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ABSTRACT

In this paper, we present a comparison between two
torque-based control algorithms for a free-floating robot:
the first uses the generalized Jacobian transpose, while
the second is based on a complete feedback linearization
of the free floating robot dynamics. The analyzed task
is to follow a desired trajectory (e.g. provided by a mo-
tion planner) and the controllers must satisfy predefined
compliance and impedance conditions for the manipu-
lator end effector. The effectiveness of the algorithms
and the performance are demonstrated in simulation and
through experiments on a hardware-in-the-loop facility.

Key words: free-floating robot; torque control; robotics
facility; OOS; space debris.

1. INTRODUCTION

The number of space debris objects, given by non-
functional satellites in low-earth orbits, has been increas-
ing over recent year. Rather than disposing defective
satellites, On-Orbit servicing system (OOS) can under-
take maintenance task and put them back into opera-
tion. To validate the OOS technology, on-ground test
facilities are required for testing and verification of plan-
ning and control algorithms prior to the launch. Some
technologies such as free-fall towers, parabolic flights,
air-bearing testbeds, neutral buoyancy, suspended sys-
tems and robotic simulators [1], [2] are already avail-
able. A first milestone for the robotic technology in
space was ROTEX developed by the German Aerospace
Center (DLR) [3], where several robotic key technolo-
gies were firstly tested on the COLUMBIA Space Shut-
tle. Further, the Engineering Test Satellite (ETS) VII in
1997 was an important mission where many technologies
and control algorithms were tested with the focus on un-
manned on-orbit servicing [4]. In [5] the feasibility of
grasping, berthing and servicing operations were partly
demonstrated in autonomous mode and in teleoperation
mode, for a non-cooperative target satellite on an OOS
simulation facility on ground (see Fig.1).
Space robots can be classified into free-flyer robots,

Figure 1: On-ground experimental simulator for a space
robot (left) and a target satellite (right)

where the satellite base is actuated by thrusters or reac-
tion wheels, and free-floating robots, in which the satel-
lite base is free to float. During the capture phase, the
free-floating robot results more energy efficient and this
is the case that we consider in our paper. The presence of
a floating base induces many challenges from the point
of view of robot dynamics, planning and control. In-
deed, the robot motion is coupled with the floating motion
of the satellite, inducing translations and rotations of the
base together with interferences on the desired motion of
the end effector. One important consequence of such cou-
pling is the presence of dynamic singularities [6, 7] that
are path-dependent, unlike for the fixed-base case. The
presence of dynamic singularities further complicates the
task of the trajectory planning algorithms [8]. In [9] the
kinematic problem for a free floating robot was addressed
and the generalized Jacobian was presented. This relates
the end effector velocities to the joint velocities, taking
into account the conservation of momentum, which char-
acterizes the motion of the free-floating robot in absence
of external forces. Based on this concept, a kinematics-
based control was then presented in [10]. The dynamics
problem was treated in [11], where a generalized trans-
posed Jacobian approach was presented for the end effec-
tor regulation control and the stability was proved. In [12]
the generalized Jacobian was shown to be the natural ex-
tension of the classic Jacobian for free-floating systems,
allowing to address most of the control problems using



classical approaches for fixed-base manipulators. The ef-
fectiveness of the transpose Jacobian control was further
investigated also for free-flying systems in [7].
The major benefits using torque controlled robots is that
compliance with the environment can be achieved. A
torque controlled robot typically processes the joint sen-
sor torque signal locally at joint level, with lower laten-
cies and high frequency, compared to the position con-
trol. Impedance control can therefore be properly im-
plemented in the outer loop controller, where an en-
hanced compliant behavior at the tool-center-point can be
achieved in Cartesian space. We believe that in on-orbit
servicing robotics, such a property is valuable in allowing
impedance during the grasping.
In this work, a comparison between a controller based
on the generalized Jacobian transpose and a torque con-
troller based on an inverse dynamics linearization is per-
formed. The feasibility of their application on a robot
with flexible joints is discussed and evaluated experimen-
tally. The tests are performed on a real-time OOS simu-
lation facility on ground [5]. The facility consists of an
industrial robot (KUKA) and a 7 degrees of freedom (dof)
Light-Weight-Robot (LWR) mounted on its end effector,
to simulate the servicer satellite, resulting in a macro-
micro configuration with 6+7 dofs (see Fig.1).

2. DYNAMICS AND KINEMATICS OF A SPACE
ROBOT

This section introduces the model of a space robot.
The general equations of motion for a free-flying robots
are [13]:
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whereHb ∈ R
6×6, Hm ∈ R

7×7, Hbm∈ R
6×7 are the iner-

tia matrices of the base and manipulator and the coupling
inertia matrix between the base and the manipulator, re-
spectively. The vectors̈xb ∈ R

6×1 andq̈ ∈ R
7×1 are the

acceleration of the base and the acceleration of the robot
joints; cb ∈ R

6×1 andcm ∈ R
6×1 are the non-linear ve-

locity dependent terms on the base and on the manip-
ulator, respectively.Fb ∈ R

6×1 and Fe ∈ R
6×1 are the

force torque wrenches acting on the center of mass of the
base-body or on the end effector, respectively. Moreover,
τττ ∈ R

7×1 is the internal torque vector andJb ∈ R
6×6 and

Jm ∈ R
6×7 are the Jacobian matrices of the base and ma-

nipulator, respectively.
From eq. (1),̈xb can be eliminated to obtain the following
expression:

H∗q̈+C∗ = τττ + J∗TFe. (2)

whereH∗ ∈ R
6×6, C* ∈ R

6×1, J* ∈ R
6×7 are the so-

called generalized inertia matrix, generalized Coriolis
and centrifugal forces and generalized Jacobian of a

space robot, respectively [9]. The matrixH∗ can be
mapped onto the Cartesian space using the generalized
Jacobian matrix defined as:

J∗ = Jm − JbHb
−1Hbm. (3)

The kinematics between the operational space and the
joint space is described as follows:

ẋe = J∗q̇+ JbH−1
b

[

P
L

]

(4)

whereẋe ∈ R
6×1 is the end effector velocity vector.P

andL are the linear and angular momentum with respect
to the centre of mass of the system, which, in our case,
are constant, since we do not consider any external forces
acting.

3. CONTROLLER DESIGN

One of the most important phases during the capture of
a satellite by a space robot is the approach phase. An
unexpected contact can lead to losing the target. Usu-
ally, torque-based control is preferred in this case since
it is based on an impedance behavior between the end
point and the target point. The goal of the controller is to
minimize the error between the current end effector po-
sition and the target position, or otherwise, to follow a
reference trajectory to a predefined target grasping point.
We assume here that the target information (e.g. position
and orientation) is provided by a camera system mounted
onto the space robot. We use a quaternions represen-
tation in order to define the rotational error. We define
Rc ∈ R

3×3 to be the rotational matrix of the end effector
with respect to the inertial frame andRt ∈ R

3×3 to be the
desired rotational matrix, expressed in the same frame.
The error matrix is then defined asRφ = RtRT

c . By us-
ing the quaternion representation, a scalarη and a vector
ε̂εε ∈ R

3×1 can be defined, such that the orientation error
∆φφφ ∈ R

3×1 follows as:

∆φφφ = 2ET ε̂εε , (5)

whereE ∈R
3×3 is defined asE = I(3,3)η − ε̃ and where

ε̃ is the known skew-symmetric matrix of the vectorε̂εε.
Analogous for the position error:

∆p = pc−pt , (6)

wherepc is the position of the end effector in the iner-
tial frame andpt is the desired position. The error in
orientation and position can be expressed as the vector
∆x ∈ R

6×1, given by:

∆x = [∆p;∆φφφ ]T . (7)

This representation will be used in the following subsec-
tion in order to design the controllers.



3.1. Torque controller using the generalized trans-
posed Jacobian

This controller leads to a compliance behavior between
the end-effector and the target point. The control strategy
is based on the torque control law (8), whereτττ ∈ R

7×1

are the input torques to the manipulator:

τττ = J∗TF+(I − J∗TJ
∗T
)Γ. (8)

J∗T is the generalized Jacobian matrix traspose, while
F∈R

6×1 is the virtual control forces vector applied at the
end-effector. For a redundant robot (such as is the case of
the LWR) the null space motion requires particular at-
tention and must be taken into account in the controller
law. For this reason, we consider an arbitrary generalized
joint torque vectorΓ =−Dnq̇ that acts as internal damp-
ing torque in the null space of the robot, without interfer-
ing with the end effector motion. To apply this torque in
the null space, we use theJ

∗
∈ R

7×6 [14] that results as
the dynamically consistent generalized inverse (note that
J∗ is not a square matrix) defined as:

J∗ = H∗−1J∗TΛ . (9)

whereΛ ∈ R
6×6 is the inertia matrixH∗ in the Cartesian

space:

Λ = (J∗H∗−1J∗T)
−1
. (10)

Moreover, in eq. (8), the gravitational torque vectorg
can be added for the application of the controller on the
facility on ground. The virtual Cartesian forces vector
F at the end-effector is modeled like a PD (Proportional
Derivative) behavior, defined as:

F = KP∆x+KD∆ ẋ, (11)

KP andKD are [6x6] positive definite matrices, represent-
ing stiffness and damping gains of the controller. Eq. (8)
is then computed as internal joint torques to the general-
ized free floating robot dynamic in eq. (2).

3.2. Torque controller based on the inverse dynam-
ics linearization

This controller is based on a full inverse dynamics of the
free floating robot dynamics, in order to apply linear con-
trol. The authors in [15] defined the equations of motion
in the operational space as a function of the end effec-
tor acceleration and joint torques and apply a controller
based on feedback linearization for a free-floating robot
without flexible joints. The derivative of eq. (4) leads
to define the acceleration of the end effector in Cartesian
space. Then, by using eq. (2) the equation of motion in
Cartesian space can be expressed as:

ẍe = J∗H∗−1τττ +(Λ−1+Λ−1
b )Fe+ µµµ, (12)

where µµµ ∈ R
6×1 is the Coriolis and centrifugal forces

vector in Cartesian space andΛb = (J∗bH∗−1
b J∗T

b )
−1

∈

R
6×6 is the inertia matrix of the base. We want to have

a desired behavior of the end effector (later defined) such
that ẍe = u whereu is a desired control. In order to do
that we apply a torque defined as:

τττ = H∗J
∗
u+H∗J

∗
[−µµµ − (Λ−1+Λ−1

b )Fe]+ (13)

(I − J∗TJ
∗T
)Γ.

In our case,Fe = 0 since we do not consider any external
forces acting. Eq. (13) can be substituted in eq. (12)
which it leads to a linearized dynamics. The output is the
end effector acceleration expressed as:

ẍe = u+H∗J
∗
(I − J∗TJ

∗T
)Γ. (14)

Here is where the impedance behavior is imposed as:

u = Mẍt −Kp∆x−Kd∆ẋ, (15)

whereẍt is the desired target acceleration.M,KP andKD
are [6x6] positive definite matrices representing the mass
matrix and the stiffness and damping gains. From the
above consideration, asymptotic stability is guaranteed:

M∆ẍ+Kd∆ẋ+Kp∆x = 0. (16)

Note that in the above control, a strong dependence on
the dynamics model of the robot results.

4. SIMULATION

The controllers defined above were tested in simulation.
The mass and inertia parameters of the simulated servicer
satellite can be found in Table 1.

Msatellite[kg] Ix[kgm2] Iy[kgm2] Iz[kgm2]

150 38 20 23

Table 1: Mass and inertia properties of the servicer satel-
lite (base of the LWR)

The servicer arm considered is a 7 dof LWR, whose mass
and inertia parameter were identified and are reported in
Table 2.

Mlink[kg] Ix[kgm2] Iy[kgm2] Iz[kgm2]

2.71 0.023 0.023 0.005
2.71 0.024 0.005 0.024
2.54 0.013 0.013 0.005
2.50 0.023 0.005 0.002
1.30 0.023 0.022 0.003
1.57 0.003 0.003 0.003
4.1 0.024 0.002 0.024

Table 2: Mass and inertia properties of the LWR servicer
arm
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Figure 2: Input trajectory referred to the inertial frame

Furthermore, the simulation was performed on a 2.26
GHz Linux computer in a Simulink/Matlab environment.
The error in orientation is show here in plots below with a
Euler 321 representation[ψ ,θ ,φ ], which is more intuitive
than the quaternions representation used by the controller
(see Sec.3).
The considered impedance is described by the stiff-
ness and damping gains. For the first Jabobian-
based controller we implemented a stiffness ofKp =
diag[1000,1000,1000,200,200,200] and a damping
of KD = diag[25,25,25,4,4,4]. For the second
linearization-based controller, optimal gains were de-
rived from the case of a unitary mass with a damp-
ing ratio ξ = 0.7 and frequencyf = 10Hz, resulting
in Kp = diag[40,40,40,40,40,40] and dampingKD =
diag[13,13,13,13,13,13]. Both simulations were per-
formed for the same reference trajectory, shown in Fig. 2.
The trajectory alongψ andφ is kept to zero, therefore
these components are not shown in Fig. 2. Usually, in the
autonomous mode, the trajectory is provided by a motion
planner in order to guarantee feasibility with respect to
motion constraints, such as singularities, collision avoid-
ance and end-effector camera field of view [8].

4.1. Torque controller using the generalized trans-
posed Jacobian

The torque control in eq. (8) is analyzed here in simula-
tion. The error detected during the tracking is shown in
Fig. 3. The maximun error detected is 0.007m in position
and 0.01degin orientation during the tracking phase. De-
spite the controller solves only a regulation problem, the
tracking performance are satisfactory for the given tra-
jectory. Due to the given LWR motion, the satellite base
moves as shown in Fig. 4.
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Figure 3: Tracking error with the torque control using the
transpose of the generalized Jacobian
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Figure 4: Relative motion of the satellite base

4.2. Torque controller based on the inverse dynam-
ics linearization

The simulation presented here considers a torque input
described in eq. (13). The error detected during the
tracking is shown in Fig. 5. During the tracking phase the
maximum error is found to be 0.004 m for the position
and 0.003degfor the orientation. In the steady state it is
10−6 m in position and 0.001deg in orientation. Due to
the given LWR motion, the satellite base moves as shown
in Fig. 6.

4.3. Torque controller based on the inverse dynam-
ics linearization with flexible joint dynamics

The simulation shows that the controller has good perfor-
mance by decoupling the complete dynamics (even using
lower gains) in case of a rigid joints robot. However, if
unmodeled dynamics are not taken into account, the con-
troller behaves differently. For example, let us consider
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Figure 5: Tracking error with the torque control base on
the inverse dynamics linearization

0 2 4 6 8 10
−0.01

0

0.01

0.02

time [s]

po
si

tio
n 

[m
]

 

 

x

y

z

0 2 4 6 8 10
−15

−10

−5

0

5

time [s]

ba
se

 o
rie

nt
at

io
n 

[d
eg

]

 

 

ψ
θ
φ

Figure 6: Relative motion of the satellite base

the dynamics of flexible joints [16], given by:

Bθ̈θθ + τττ +DmK−1
m τ̇ττ = τττmmm (17)

τττ = Km(θθθ −q) (18)

whereB ∈ R
7×7 is the inertia matrix of the motor,θθθ ∈

R
7×1 is the measured motor position,Km,Dm ∈ R

7×7

are diagonal matrices representing the joint stiffness and
damping. Considering the flexible joints dynamics and
running the same simulation presented above, this shows
that the tracking error behaves differently (see Fig. 7). As
a matter of fact, the tracking error increases and the robot
is not able to follow the reference trajectory.
For this reason, in our experiment we only apply the
torque controller based on the generalized Jacobian ma-
trix, since in our facility we use a robot with flexible
joints. Moreover, this controller provides higher robust-
ness to the unmodeled robot dynamics. A complete de-
scription of this control method is given in [16], however
for the case of a fixed-base robot. Furthermore, it is inter-
esting to note that the feedback linearization approach for
a robot with flexible joints was found to have a limited
performance, due to the necessity of computing higher
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Figure 7: Tracking error considering uncertainties dy-
namics (e.g. flexible joints) for the controller (13)

derivate terms in the resulting control law [16].

5. EXPERIMENTS

The experiments were carried out on the DLR-RMC OOS
simulation facility [5]. The data flow of the dynamics
computation is shown in Fig. 8. The torque controller

Torque
control

FTS

LWR

F,τ

q, q̇, q̈
free-float
Robot Dyn.

& Kin.

∆Xd qdHd inv. Kin.
KUKA

KUKA

Robot
Servicer

qm

Hm

dir. Kin.

T

Figure 8: Data flow for the servicer dynamics used for
the experiment

runs on a real-time VxVorks computer with a sampling
time of 1 ms. It provides the input to the LWR in torque
mode defined in Sec. 3. The measured joint positions of
the LWR, and their time derivatives, are given as input
for the integration of the free-floating base body dynam-
ics (first line of eq. (1)). This provides a∆Xd as input to
the inverse KUKA kinematics, that accordly moves the
industrial robot in the Cartesian space.
The experiment presented here consists in following a tra-
jectory (see Fig. 9), similar to the one used in the simu-
lation test (see Sec. 4). The torque control law, used to
track this trajectory, is described in eq. (8) (adding the
gravity vectorg) and the gainsKp andKD are the same
as those uesd in the simulation. The end effector follows
the defined trajectory as shown in Fig. 10. The data in
Fig. 10 shown a maximum error of 0.008 m in position
and 0.8 deg in orientation during the tracking phase. Fur-
thermore, after the maneuver, the maximum error found
experimentally is 0.004 m for the position and 0.4 deg for
the orientation in the steady state. The difference with the
analyzed case in simulation is given by the presence of
joints friction in the hardware.
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Figure 9: Input trajectory referred to the inertial frame
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Figure 10: Experimental results: Tracking error in posi-
tion and orientation
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Figure 11: Experimental results: Measured relative mo-
tion of the satellite base

Moreover, the measured free floating robot motion, as re-
action to the LWR motion, is shown in Fig. 11. This test
is an experimental proof that using the generalized Jaco-

bian matrix the end effector position tracks the reference
trajectory to a satisfactory degree. Since the robot is con-
trolled in torque mode, some uncertainties given by the
gravity compensation and by the joints friction are intrin-
sic in the system. Nevertheless, the controller is able to
deal with them adequately.

6. CONCLUSION

In a free floating robot the dynamic coupling between the
manipulator and its base leads to a different end effec-
tor position, compared to that of a fixed base robot. For
this reason, a controller for a fixed base robot results inef-
ficient for a planned task (e.g. tracking or approaching a
target). The controller presented in this paper is applied to
solve a regulation control problem using the generalized
Jacobian matrix, therefore intrinsically accounting for the
free-floating dynamics. Experimental results show that
the controller has a good performance during the track-
ing maneuver. A compararison is made to a controller
based on the full inverse dynamics linearization, show-
ing that only the first can deal with unmodelled dynamics
resulting from flexibility in the robot joints.
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