Research questions and key issues

(1) Future electricity storage demand for load balancing under different assumptions and constraints (scenarios).

(2) Impacts on the storage portfolio of electricity grid expansion in Germany, European overlay grid, energy demand trends, supply capacities (conventional/renewable, flexible), as well as the spatial distribution of the generation and load units.

(3) Under which boundary conditions do electricity storage technologies become economic feasible in comparison to other balancing options such as load- and generation management, grid expansion or new mobility concepts (e.g. vehicle to grid)?

(4) Influence of part load, ramping behaviour and costs of conventional power plants on the energy balancing demand.

(5) Implementation of further storage options into the model environment such as different hydrogen options/types of electrolysers, battery types or power to gas technologies.

(6) Calculation and analysis of an optimal capacity of short- and long term storages: high cycle efficiency and low energy capacity vs. low cycle efficiency and high energy capacity.

Methodology

(1) The state of knowledge and existing research- examples:
 a. The existing conventional power plant portfolio is capable of balancing electricity demand and supply up to a share of 40% renewable electricity generation [2].
 b. Economically driven electricity storage expansion until 2020 rather unlikely [3].

(2) Techno-economical characterisation of electricity storages regarding different applications.

(3) Modeling objectives: least cost mix of generation, storage, transmission capacities and their operation.

(4) Modeling approach: GIS supported and GAMS based linear optimisation in the REMix model (Renewable Energy Mix for Sustainable Electricity Supply) [4].

References:

Perspectives of electricity storages with respect to high shares of renewable energies in Germany

Felix Cebulla
Systems Analysis and Technology Assessment, DLR Stuttgart, Germany
Phone: +49-711-6862-420 E-mail: felix.cebull@dlr.de

Institute of Technical Thermodynamics

Figure 1: Renewable electricity generation, installed renewable capacity per year, total installed power capacities in Germany [1]

Figure 2: Structure of the REMix model

Knowledge for Tomorrow

Deutsches Zentrum für Luft- und Raumfahrt
German Aerospace Center