Institut fur

Dynamik der Flugsysteme

Bl.:

IB.Nr.. 515-83/1

-

Freigabe:

A Fertran Program for Solving State/Control-Constraint
Optimal Contro! Problems with System Equations Having

Expressions Involving Tabular Data

Die Bearbeiter:
Dr. M.K. Horn

Dr. K.H. Well
Der Abteilungsleiter

Der stellv Institutsdirektcr :

Dr.Ing.J.Ackermann
Der institutsdirektor :

Dieser Bericht enthalt:

Unterschriften: (

A Wl

A

M Hd Yt

([

Blatt davon

126

! _ gilder

97 Tragramne Bl.Rechnernrotokoll

Ort Oberpfaffenhofen'Datum:15.3.1983

Bearbeiter: Dr. Hown ! Zeichen -
a0

ii

PREFACE

This report is ome of a series of four volumes which are designed to treat
state/control-constraint optimal control problems involving piecewise con-
tinuous system equations including the extensive use of equation expressicns
written in terms of linearly interpolated tabular data. The titles of the
veolumes are listed below:

Volume 1 A FORTRAN Program for Solving State/Control-Constraint Optimel
Control Prcblems with System Eguations Having Expressions
Involving Tabular Data

in which extensive use of linearly interpolated tasbular data is made, treat-
ing the system truly as a piecewise continuous problem by halting the inte-
gration for eguation updates as each table grid pointc is isolated. (Current
report)

Yolume 2 A Numerical Solution of State/Control-Constraint Optimal Contrcl
Probiems with Piecewise Continucus Derivatives Using RKF45T

in which constraint violation boundary crossings are isolated, and in which
discontinuities in the derivatives occur. (See reference [1].)

Volume 3 RKF45T--a Runge-Kutta 4/5 Software Package with User-Supplied
Stops Involving the Dependent Variakles and First Derivatives

in which the user may actually halit the integraticn at any point which may be
described as a function of the independent variable, the dependent wvariables,
and the first derivatives. {See reference [2].)

Volunme & Subroutines for Handling Tabular Data Used in System Equations

in which a table structure is defined consistent with the example in Volume
1, and in which practical routines are provided for adjusting and analyzing
tabular functions. (See reference [3].)

iidi

CONTENTS

1. Introguction
Features of TROMPP

Table Description

Bowow

Subroutines for Locating Grid Points

Subroutine PHIPAR
Subroutine SUBPHI
.1 The Initialization Block
.2 Evaluating the PHI Functions
.3 The Update Section
.4 Subroutine BOUNDS
Subroutine PART

N
R S A L
NI‘JION

g~

5. The Minimum-Time-to-Climb Problem using Linearly Interpolated
Tabular Data

5.1 State Equations i

5.2 Defining the Right- Fand Sldes
5.2.1 Subroutine FDRAG
5.2.2 Subroutine FTRIEB :
5.2.3 Setting-up the Trapping Systcm

5.3 Subroutine PART 3 T EEFEEEE
5.3.1 Subroutine PART, Mode 1, Forward Integration
5.3.2 Subroutine PART, Mode 2, the Update Mode

5.4 SUBPHI Stops for Establishing the TPART2 Vector
5.4.1 Clarification cf LPOINT values at Update

6. Subroutines for Treating Tabular Data

(o))

.1 Subroutines Associated with the Minimum-Time-to-Climb Problem
.2 Subroutines Associated with RKF45T Svstem

(o)

7. Common Statements

8. Computation: Initialization and Resulits

9. Conclusions

10. References

Appendix A. listing

Appendix B. Flow Charts for GRPART and TRPART

Appendix C. Computation results {(example using backward
differencing) FE O om s

C.1 Initial parameters and RKF45T/TROMPF stopping points.
€.2 Sample Run (Using Backward Differencing) g

~N A~ W

O O e e

10

11

L F

12
14
15
15
16
17
17
18
19
19

112

116

116
118

Optimal Conthol Problems, Numerdlcal Analusis,
Linean Inteapolation

A Fortran Program for Solving State/Control-Constraint

Optimal Control Problems with System Equations Having

Expressions Involving Tabular Data

Summarz

The state/control-constraint optimal control problem is present-
ed which extenxive use is made of linearly interpolated data. To
permit numerical solutions of this type of problem, the inte-
graticn package halts the solution automatically at the grid
points of the tables, permitting the interpolation region of the
associated differential equations to be changed. Thus, the dif-
ferential equations are analyzed as truly pilecewise continuous
systems. An example of a realistic problem is given showing the
structure of the differential aquations and the related subrou-
tines for adjusting subscripting values pertaining to the tables,

Opitimale Steuerungsprobleme, numeridche Mathemazit,
Lineare Interpolation

Ein Fortran-Programm zur LOsung optimaler Steuerungsprobleme

mit Zustands—/Steuerungsbeschrinkungen und mit tabellarisch

gegebenen Systemgleichungen

ibersichnt

Ein zustands—/steuerungs—beschrinktes optimales Steuerungs-
problem wird prisentiert, in dem das Differentialgleichungs-
system von vielean linear interpolierten Daten abhingig ist.

Um die numerische L&sung eines solchen Ptroblems zu ermdglichen,
hdlt das Integrationsprogramm die Ldsung an jedem Tabellenstiitz-
punkt automatisch an, damit das Iaterpolationsgebiet gewechselt
werden kann. Dadurch wird das Differentialgleichungssystem wie
ein stiickweise stetiges System behandelt. Die Struktur der Dif-
ferentialgleichungen sowie die zugeh@rigen Unterprogramme zur
Anpassung der Tabellenkoeffizienten wird anhand eines realisti-
schen Bzispiels aufgezeigt.

1. INTRODUCTION

In the state/control-constraint optimal control problem (OCP), one frequent-
ly encounters right hand sides having expressions involving the use of func-
tions written in tabular form. In such problems the user is confronted with
the necesssity of interpolating data from these tables. Bilinear interpo-
lation of the data dafines a continuous tabular function with discontinuous
slopes along lines corresponding to each grid entry in the table domain. The
simplicity of the formulation makes the method appealing. Perhaps the most
important advantage of the scheme, however, is the ability to interchange
data sets with ease. In contrast, smooth curve fitting techniques require
considerable, off-line computing time to generate representative curves, and
new curves must be computed each time a new data set is given (or each time
that a data set is altered).

Solving the system of ordinarv differential equations (ODEs) for the OCP, in
which the right hand sides contain expressions defined by linearly interpo-
lated tabular data, requires that the integration procedure stop at each
table grid entry so that the ODE may be reevaluated nsing the correct
expressions for the "new' region of the table. In addition, the analysis at
stch points is particularly important if one uses adjoint variables in solv-
ing the OCP, since the adjoint differential equations themselves exhibit
actual "jumps'" at the grid points (rather than just slope changes)} when line-
arly interpolated data is used. In the presence of such discontinuities
(either in the ODE itself or ia the higher derivatives), even a well written
software package will waste computing time by reducing the step size severely
in an attempt to isolate the points of discontinuity, i.e., several attempted
steps are made before a sufficiently small step length is used. In addition,
these points are not located within any specified tolerance introducing addi-
tioral errors into the ODE solution. These added errors can cause
convergence difficulties for the optimization process, greatly increasing
the computation time. (See [1].) Thus, to use linear interpolation effec-
tively, one must employ a software package designed to treat tabular
functions truly as piecewise continuous functions.

The purpose of this research project is the creation of a computer program,
designed to sclve the state/coentrol-constraint optimal contrel problem in
which extenszive use is made of linearly interpolated tabular functions. This
problem requires the development (or adaptation) of several software pack-
ages. The essential package for solving the ODEs is the RKF45T program which
halts the integration whenever any component of a user-supplied vector of
stopping conditions, PHI(J), vanishes. Any stopping condition which can be
written in terms of the independent variable, the dependent variables, and/or
the first derivatives may be imposed. Thus, the table entry values may be
specified as stopping points for the integration, giving the user the oppor-
tunity to update the ODE system as each grid value is reached. Through such
analvsis. the ODE may be treated as the actual piecewise continuous system
that it is. Since the integration routine is not called directlv by the
user, the RXF45T package must be able to make all updates without returning
to the driving program. This characteristic of the problem necessitates the
development of a particuler program structure for handling the updates of the
tabular functions.

The CCP is treated as a parameter optimization problem in the example pre-
sented, using an adapted version of the TOMP (Trajectory Optimizaticn by
Mathematical Programming) scoftware package [4] for evaluating the cost func-

tion and/or the gradient. The modified version, TROMPP, (zero TRapping capa-
bilities added to TOMP with additional Partition stops), has been written to
handle the linearly interpolated, tabular data as analyzed by the RKF45T sys-
tem. Thus, the RKF45T and the TROMPP packages form a system for supplying
the value of the cost function and/or the gradients for an cptimization proc-
ess. This TROMPP/RKF45T system may be used with any wmathematical programming
package. The particular package used in the example presented is the SLLSQP
(Sequential Linear Least Squares Programming) [5] chosen because of its rapid
convergence rate.

The current report is one of four volumes all related to the solution of the
OCP for problems in which the state equations have piecewise continuous
derivatives. The ordering of the reports has been chosen according to the
motivation of the project, so that the reader may see both the forest and the
trees. The current report, Volume 1, describes the OCP involving the use of
linearly interpolated tabular data. The description of the bookkeeping
involved in this problem is sufficient to fill the entire volume. Thus, for
an indepth understanding of parts of Volume 1, the reader may be referred to
later volumes in which descriptions treating simpler problems may be enlight-
aning. To separate the various problems invclved in analyzing the piecewise
continuous equations witk tabular data expressions, Volume 2 has been
included, treating a different type of GCP problem, ramely one in which the
derivatives are piecewise continuous but do not depend upon tabular data [1].
Much of the discussion in [1] centers around the description of the stopping
conditions and the treatment of discontinuities, which may prove useful in
clarifying part of the analysis in the current volume. The problem in [1]
also handles constraint equations described as a function of the dependent
variables. Volume 3 [2] describes the use of the RKF45T package along with
examples which go beyond the scope of either the current report or [1]. Vol-
une 4 [3] gives a description of the structure of the tables used in the
current report and the interpolation formulas for the tabular data as well as
several useful subroutines for handling the data and for analyzing control
parameters expressed as cubic splines. (Volume &4 could actually be considered
as & large appendiy to Volume 1.) Imn the current report, the reader should
expect to get an overview of the solution of an OCP involving linearly
intervolated tabular data, but mav need to read parts of further volumes for
details.

The use of the RKF45T/TROMPP system is illustrated in the solution of the
minimum-time~to~climk probler in which drag and thrust characteristics are
supplied through tabular data. The problem description has been written for
easy adaptation tc other problems involving tabuiar data. The application may
be divided into two basic parts: 1) the table structure and its communicaticn
with the RKF45T/TROMPP packages, and 2) the integration stops and updates
from the RKF45T/TROMPP packages. This report gives a description of features
in TROMPP related to the integration stops (&s well as a program listing) and
provides a general description of the programs needed for use in the RKF45T
package. The table structure is described briefly (with further details con-
tained in Volume 4). The user sheuld realize that this report is designed to
give an overview of the problem. Details may often come frcm clarifications
in further volumes or from descriptions later in the current report. The ccm-
plexity of the bookkeeping necessitates such a structure. Otherwise, the
raader could easily becomz lost in details and miss the gemeral picture.

2. FEATURES OF TROMPP

The TROMPP package determines the value of the user-supplied cost function
(subroutine CCSTF) and/or the gradient values for the OCP. In order to deter-
mine these functions, a system of differential equations is solved over the
normalized time interval O to 1. The contrcl parameters used in evaluating
the ODE system are described as a cubic splines. Duriag the integration,
stops ares made at each grid point defining the cubic splines (as in TOMP
[4]). TROMPP differs from the TOMP package in that the user may supply addi-
tional vectors of stopping values (indzpendent veriable stops) in both the
forward and backward integrations as well as activate the RKF4ST trapping
option to halt the integration whenever any user-supplied stopping condi-
tions, described as a function of t, y, and y¥', are isolated. The independent
variable stops are imposed in the form of the vectors TPART1 (for the forward
and backward integrations) and TPART2 (for the backward integration only).
Each vector is dimensioned 100.

The idea behind the modification of the TOMP program is to enable the user to
treat two types of problems efficiently. Both problems deal with halting the
integration at points of discontinuity (or discontinuous slopes) so that the
ODE system can be updated using the new information. The first type of inte-
gration stop involves table grids in which the domain parameter is expressed
as a function of t (say as a cubic spline). The lift cocefficient will be pre-
sented as such a parameter, appearing in the tables defining the drag. The
lift coefficient grid may be analyzed before the integration begins to deter-
mine the wvalues of t corresponding to points on the 1lift coefficient grid
axis. These values will be imposed as stopping conditions on the integration.
The second type of integration stop concerns the location of the t values
corresponding to specified functioms of t, y, and y' which appear as table
domain parameters. The user defines the stopping points, e.g., specific val-
ues of the Mach number or altitude. The RKF45T package halts the integration
at these points {through an internal iterative process) and permits the user
to update the CDE system before continuing. Thus, TROMPP/RKF45T system allows
the user to communicate with the ODE system during the integration so that
the piecewise continuous nature of the tables is analyzed properly.

The TROMPP package is basically the TOMP program whose description is con-
tained in {4]. The modifications ars clearly marked. Twoc additional subrou=
tines have been included in the TROMPP package to handle the user-supplied
stopping vectors. GKPART and TRPART require nc user changes. At each
user-supplied stopping point (i.e., from TPART1 or TPART2) an update call is
made from TRPART. This call references & user-supplied subroutine PART with
parameters identifying the particular update point. Subroutine PART is the
only major programming effort that the user must provide in conjunction with
TROMPP. The calling sequence and defining parameters for PART are described
in 84.3. An application of the PART updates is illustrated in §5.3 using
1lift coefficient grid stops. Flow charts for both GRPART and TRPART are given
in Appendix B, with the listings given in Appendix A.

The use of the stopping rpartitions is illustrated in the minimum-time-
to-climb problem described in §5. In this example, tabular data is used
extensively in determining the right hand sides (RHS) of the ODE system. The
integration is to be stopped as the domain parameters of the table (e.g.,
Mach number, 1ift coefficient, or altitude) cross the sntries in the appro-
priate grids. At these "crossings'" the limits identifying the table entries
are shifted to designate the '"new" region of the table. These shifts are pos-

=

sible during the updates provided in TROMPP (for TPART1 or TPART2 vectors) or
in REF45T as the user-supplied stopping conditicns from subroutine SUBPHI are
isolated. For the example presented in this report, SUBPHI isolates each Mach
number and altitude entry in a total of four tables.

The user-imposed stopping conditions TPART1, i.e., the cubic spline analysis
stops for the 1lift coefficient (described in [3]) are supplied before any
forward integration. These conditions will also be imposed during the back-
ward integration (unless the user deactivates the partition stop.) The val-
ues of t established during the forward integration as corresponding to Mach
number or altitude grid sfops (determined by the RKF45T trapping process) are
imposed as TPART2Z stops during the backward integration. The user has the
opportunity to update the ODE system at each TPART1 and TPART2 stcp as well
as at any RKT'45T update point.

3. TABLE DESCRIPTION

The descripticn of the table structure is best presented by example. The
tables defining the problem in 85 are expressed in general terms for easy
adaptation to anv ODE system requiring integration stops at grid values of
user~-suppiied tables. The names used in the common blocks are deliberately
"non-commital” so that the structure can be applied to any problem. The
structure of the tablss is described thoroughly in [3] (The general
description of the tables is written for six different tables, with changes
for fewer tables requiring simple deletions and with changes for more tables
involving established patterns. The example in 85 uses only four tables.)

As far as the evaluation of the ODE system is concerned, the user is given the
indices of the bracketing grid entries in the tables. These subscript values
are held in common blocks, CON1, CON2, -CON3, CON4, CONS and CON6, (described
below). The user makes no judgements as tc the location of the domain param-
sters in relation to ctheir xespective grids. He merely uses the bounds
defined by the indices given in the common blocks. The REF45T package isco-
lates the grid crossings first stepping over the boundary and then iterating
until the table grid value is loccated accurately. Thus, the given bounding
values in the table will define all interpolaticn, even outside the grid area
until the bound is located. Then the grid bounds will be shifted and the new
values will represent the function until another bound is isolated. (See Fig-
ure 1.) Such a representation of the tabular function gives a '"fixed"
description of the function and removes chattering around grid bounds as they

re crossed. To repeat, the user makes no judgement about the indices to be
used for interpolating. He uses those values provided through common blocks
CONL,...; EON6.

The update procedure is "automatic" as far as the subroutines evaluating the
ODE are concerned. Thus, the user considers the tables analysis as having two
parts. One section defines the tables (reads in data, defines the table size,
dimension, etc., and evaluates the function); the second identifies the stop-
ping conditions and updates the boundary indices as the grids are crossed.
Although the table structure is desecribad thoroughly in [3], the basic table
elements are described briefly beiow. The analysis of the stopping conditions
requires user-supplied subroutines which zre described for the minimum-
time~to=-climb problem in §8§4.1, 4.2, and 4.3. Some of these subroutines are

interpolationg function
with bracketing indices,
Al and A2

_____7:4, Lo ” /

L e —— ==

\>><:______,. e — |7 integration path
r

Al A2 A3

Figure 1. Interpolation limits: Limits remain {Al, A2) even though the
integration steps into the (A2, A3) region during the isclation of
the A2 bound. After A2 is isolated, tlke bounds are shifted to (A2,
A3)

sssentially model routines, requiring few user changes. Others require "user
construction'.

The most difficult task for the user concerning the tables is that of defin-
ing the elements and related parameters. While this job is merely one of
beokkeeping, the user must follow a defined structure in order that the com-
munication between RKT45T, TROMPP, and the tables is correct.

Each table is stored in a separate common block, named TABLE1l, TABLEZ,
TABLE3, etc., with the correspoading interpolating indices stored in CON1,
CON2, CON3, respectively. The additional common block for describing the
tables is TLIMIT. TLIMIT defines parameters related to all tables while
TABLE"™ and CON* refer to the **th table. For the example in 85, the common
blocks appear as follows:

COMMON/TABLE1/T1P1(26), TAB1(26)

COMMON/TABLE2/T2P1(24),T2P2(35) ,TAB2(24,35)
COMMON/TABLE3/T3P1(26),T3P2(11),TAB3(26,11)
COMMON/TABLE4/T4P1(26) ,T4P2(11) ,TAB4(26,11)

COMMON/TLIMIT/INDIC{4,2) ,NGE(4,2) NCCMP(4) ,NTABLE

COMMON/CON1/KL11,KU11

COMMON/CON2/KL21,KU21,KL22 ,KU22
COMMON/CON3/KL31,KU31,KL32,KU32
COMMON/CON&4 /KL4 1, KU4 L, KL42 , KU42

The TABLE common blocks define the slements in the tables. The TP1 and TP2
vectors are referred to as domain parameters and may be 'over-dimensioned"
{where the designating table number is suppressed). Table 1 has only one

domain parameter (T1P1), tables 2, 3, and &4, have two such parameters (T2P1,
T2P2 for table 2, etc.) Tables 5 snd 6 do not exist. The tabular function,
TAB, associates TPl with the first subscript, TP2, with the second, and TP3,
with the third (or as far as the dimensioning goes), for each table. The
parameters in TLIMIT are described Below. The sctual number of TP elements is
stored in NGE. (For example, the number of TZP1l elements is given by
NGE(2,1)). The TP arrays may be over dimensioned (therefore the need for the
NGE wvalues). If the given tables are "full", the NGE values for the given
tables would be:

NGE(1,1) = 26

NGE(2,1) = 24 , NGE(2,2)=35
NGE(3,1) = 26 , NGE(3,2)=11
NGE(4,1) = 26 , NGE (4,2)=11

INDIC identifes the TP parameters, in a general sense, e.g., as Mach number,
altitude, or 1ift coeffizient. This vector provides the communicatiocn
between the tables and the REF45T package. In the common blocks given (for
the example in §5), the "non-committal" names, e.g., T2P1, represent specific
parameters. The domain parameters for the example in §5 are listed telow:

T1P1 is Mach number,

T2P1 is Mach number, T2P2 is 1ift coefficient
T3Pl is Mach number, T3P2 dis altitude
T4P1 is Mach number, T4P2 is altitude

These TP parameters must be associated with the trapping parameters, TRPR,
anaiyzed in the RKF45T program. This association occurs through the vector
INDIC. In this example,

Mach number is associated with trapping parameter 1
altitude is associated with trapping perameter 2
1ift coefficient is asscciated with trapping parameter 3

i.e., Mach number will be associated with TRPR({1), alititude, with TRPR(2),
and 1lift coefficient with TRPR(3) (if the lift coefficient is handled as such
a parameter). (The trapping parameters are defined fully in [3]. Here the
reader cnly needs to know that the ordering is arbitrary and user-supplied,
and that the trapping parameters serve as the connecting link between the
tables and the RKF45T package through the indicator INDIC.)

ek

I£ INDIC(#,%%) =]J, then table number ¥, parameter number
is associated with TRPR(J).

In the given example, each TP grid representing Mach number must be desig-
nated "1" altitude must be designated "2" 1ift coefficient must be desig-
nated "3". This requirement assigns the following values to INDIC:

INDIC(1,1) = 1

INDIC(2,1} = 1 , INDIC(2,2) = 3
INDIC(3,1) = 1 , INDIC(3,2) = 2
INDIC(4,1) = 1, INDIC(&4,2) = 2

Setting the INDIC parsmeters correctly is an essential part of the table
definition.

NCOMP(*) is the dimension of the TAB* parameter, i.e., the number of domain
vectors, not the length of the vectors. For example, NCOMP(3)=2, states that
TAE3 is analyzed as a two dimensional table. For the above examplie,

NCOMP(1) = 1
NCOMP(2) = 2
NCOMP(3) = 2
NCOMP (&) = 2

NTABLE is simply the number of tables being analyzed. (For this example, NTA-
BLE=4.)

The CON common blocks hold the indices of the table parameters to be used in
interpolating the tabular functions, i.e., CON1 stores the current interpo-
lating indices <for table 1, CON2 for table 2, etc. The bounds used for
interpolating the given tables are:

Domain parameters Tabular function

Lower bound Upper bound Bounding values

Table 1:

T1P1(KL11) T1P1(KU11) TAB1{KL11) TAB1(XKU11)
Table 2:

T2P1(KL21) T2P1(KU21) TAB2 (KL21,KL22) TAB2(XU21,KL22)
T2PZ(KL22) T2P2 (KU22) TAB2(KL21,KU22) TAB2(KU21,KU22)
Table 3:

T3P1(KL31) T3P1(KU31) TAB3(KL31,KL32) TAB3(XU31,KL32)
T3P2(KL32) T3PZ(KU32) TAR3(KL31,KU32) TAB3(KU31,KU32)
Table 4:

T4P1(KL41) T4P1(KU&1) TAB4 (KL&41,K142) TAB4(KU41,KL42)
T4P2 (KL42) T4P2 (KU42) TAB4 (KL41,KU42) TAB4(KU41,RKU42)

Further details concerning the description of the tables may be found in [3].

4, SUBROUTINES FOR LOCATING GRID POINTS

User-supplied subroutines for isolating grid values of tabular data are also
described bv example. The routines described here are model routines, where
SUBPHI and BOUNCE require few user changes, while PHIPAR and particularly
PART will require more user attantion. The purposs of each subroutine is
described below:

PHIPAR is structured by the user and gives the current values cof the
parameters used as stopping conditions (trapping parameters)
during the integration.

SUBPHI evaluates the PHI components after each successful step and ref-

erences BOUNDS to update limits when a grid bound is isolated.

BOUNDS shifts the indices for the grid values in each table as the grid
entries are reached.

PART is used to supply and update the TPART! and TPART2 vectors for
the user-supplied partition (independent variable) stops during
the integration.

These subroutines are described in detail in the following subsections.
Examples of the routines are listed in Appendix A with clarifying headings.

4.1 Subroutine PHIPAR

Subroutine PHIPAR evaluates the trapping parameters at the current value of
t. The trapping parameters, TRPR(I), are the current values of the parameters
being trapped. These terms appear in the domain of at least one table, and
thus, are designated as TRPR(I) elements which the RKF45T package is to ana-
lyze. Each TRPR{I) component has two bracketing values from the table
entries which are the current stopping points wizich the RKF45T package seeks.
The user orders the TRPR elements arbitrarily when designing the PHIPAR sub-
routine. Once the order is established, the wuser is to convey that
information to the tables through the vector, INDIC described in §3 and [3].

The standard calling sequence for PHIPAR is
SUBROUTINE PHIPAR(MODE,NEQN,T,Y,YP,NTRPR,TRPR,TRPRP)

whose parameters are identified in the program description in Appendix A. The
basic structure of the subroutine is user-supplied. The user must be sure
that the order selected for the TRPR(I) elements is properly related to the
tables through the INDIC vector. The user must supply the current values of
TRPR and TRPRP (the derivative of TRPR) when PHIPAR is referenced by the
REKF45T package (MODE=1). If the user references PHIPAR separately, MODE may
be used to designate the scurce. Clarifying remarks concerning the calling
sequence and use of PHIPAR may be found in the program listing in Appendix A.

4.2 Subroutine SUBPHI

Subroutine SUBPHI evaluates the functions which define the grid crossings in
the tables. COnce a grid boundary has been isolated, SUBPHI (along with
BOUNDS) updates the grid limits in the tables. SUBPHI is essential to the
entire trapping procedure and merits a thorough description. The use of SUB-
PHI is described in detail in [1] and {2]. The main sectioms of the routine
are described below.

SUBPHI has three basic secticns: (1) the initialization block, (2) the PHI
vector evaluation, and (3) the update portion. The basic structure of SUBPHI
need not be changed regardless of the number of tables. Details related to
specific precblems enter through common blocks (which would have to be
eltered) and through PHIPAR. Otherwise, the structure of SUBPHI is standard.
(The user may wish to modify SUBPHI, however, if additional stopping condi-
tions are desired not related to the tables.)

The PHI vector is treated in each section of SUBPHI, requiring current values
of the TRPR vector from PHIPAR. (PHIPAR is referenced immediately upon entry
into SUBPHI.) A PHI vector must be chosen which changes sign as it passes
through zero, i.e., the PHI function should not "bounce" on a zero. (For a
description on "bouncing” see [1].) The function

PHI(1) = (Z2U - Z)*(Z -~ ZL)

is positive whenever ZL < Z < ZU and negative whenever Z < ZL or Z > ZU .
Thus, if ZL and ZU identify ccnsecutive grid values, the PHI function suits
cur purpose quite well. The one difficulty which might occur concerns the
"size" of the PHI function, e.g., the magnitude of the altitude is on the
order of 1.D4+03, while the magnitude of the Mach number is on the order of
1.0D+00 . Thus, a scaled PHI component is introduced

PHI(I) = (BCUNDU(I) - TRPR(I})*(TRPR(I) - BOUMDL(I))/ SCALE(I)

whaere SCALE(I) = 0.3D0 * {BOUNDU(I)-BOUNDL(I))
#* (DABS(EOUNDU) + DABS(BOUNDL(I})

Each trapping parameter has its own bcunds, BOUNDL, BOUNDU, chosen from all
of the grids in the tables associated with that parameter. .{The greatest low-
er bound and least upper becund are selected from the associated grids.) The
TRPRP vector, the derivatives of TRPR, is generated in PHIPAR (or set equal
to zero) so that PHIP(I) terms (estimates, or dummy values) may be evaluated.
Botn PHI(I) and PHIP(I) are evaluated in DO loops so that no user changes are
required to determine the values of these parameters.

4.2.1 The initialization Block

The initializatieon is identified through the parameter, KOUNTR=0. In this
bleck, the BOUNDL and BOUNDU values are determined by reéferencing subroutine
INITBD. The structure of INITBD is standard with the only adaptations needed
for other programs, being in the two common blocks (which may be copied from
SUBPHI). Subroutine WARN is called to check that appropriate bounds have been
set., (WARN, listed in Appendix A, prints warning messages if the given bounds
are violated. The subroutine is not essential to the table analysis, but pro-
vides an important safety check.) The SCALE(I) values are alsc set in the
injtialization block using the BOUNDL and BOUNDU values just established. The
initialization block, identified by KOUNTR=0, is referenced at the beginning
of each iteration. Table limits should have already been established by the
user in the TROMPP initialization call (either in subroutine ZWEIGE or in
subroutine PART). (SUBPHI has already referenced PHIPAR so the current TRPR
values are available.) No discussion of the calling sequence is needed since
the communication between SUBPHI and INITBD is not changed by the user.

4,2.2 Evaluating the PH! Functions

The section evaluating PHI(I) and PHIP(I) is straightforward. The PHI func-
tions are defined in function statements using the scaled expression in §4.2.

10

If the user wants to print the functions, the following information is of
importance. SUBPHI is referenced after every integration step. If INDEX = 0,
the trapping iteration is not active. If INDEX > 0, PHI(INDEX) is currently
being analyzed in the RKF45T system. Thus, the user wanting information only
during the trapping iteration (cr never during the iteration) has a "flag" in
the parameter INDEX.

4.2.3 The Update Section

Once a boundary has been isolated, SUBPHI is referenced in order that the
user may make updates in the tables and ODE expressions. The current TRPR
values are determined before entering the update section. INDEX indicates
which trapping parameter (or actually which PHI component) is being updated.
The "lower'" or "upper'" boundary is iderntified by checking the derivative of
PHI (INDEX) with respect to TRPR(INDEX). (PHI(INDEX) is parabolic (nose up) in
terms of TRPR(INDEX), so that if PHIP(INDEX) (with respect to TRPR(INDEX)) is
positive, a lower boundary is being crossed, and if the value is negative, an
upper boundary is being crossed.) The boundary information is needed in
BOUNDS which updates the tables.

4.2.4 Subroutine BOUNDS

When a grid value has been isolated by the RKF45T package, the value must
first be identified as an upper or lower boundary. With this information the
user knows in which directicn to shift the subscripts. The update of the
table parameter subscripts, however, is complicated by the fact that several
table parameter arrays may be associated with the trapping parameter being
updated, e.g., four Mach number grids are used in defining the tables, not
all elements being identical. Thus, a separate subroutine, BOUNDS, is refer-
enced to sort through all tables analyzing any domain parameter grid which is
being updated, and choosing the bounds from amcng all of these arrays.

Upcn entry into BOUNDS, the update point has been identified as either an
upper or lower boundary. BOUNDS compares INDIC(I,J) with INDEX, the index of
the TRPR parameter being updated, for each table, I, and each domain parame-
ter, J. If parameter J from table I is to be updated, BOUNDS shifts the bounds
one unit in the correct direction. The lower and upper subscript values are
stored in IBL(I,J) and IBU(I,J), respectively. TABBND is referenced to set
the adjusted IBL(I,J) and IBU(I,J) egual to the corresponding KL and KU val-
ues from common block CON for table I, and to set GRIDL(I,J) and GRIDU(I,J)
equal to the corresponding TP values from table I parameter grid J. Upon
return to BOUNDS, GRIDL(I,J) or GRIDU(I,J) may be adjusted slightly if the
isclated boundary has not yet been crossed, to ensure the correct sign of ths
PHI component at update. As each table is analyvzed, the maximum of the
adjusted GRIDL values is chosen as the new lower bound for TRPR(INDEX), with
the minimum of the adjusted GRIDU values, as the new upper bound.

4.3 Subroutine PART

The user is reguired to supply the subroutine PART which may be used to sup-
ply a vector, TPART1, of stopping values (independent variable stops) for any
forward integration and/cr a vector, TPART2, of stopping values for the back-
ward dintegration. (The user is not required to supply either TPART1 or
TPART2.Y Part is referenced before any integration is initialized. If a
TPART1 vector is supplied, the stopping conditions will be imposed on the
independent variable during the fnrward integration. At each stopping point,
PART will be called in an update wmode so that the user may update the ODE sys-
tem if needed. The TPART1 wvector will also be iwmposed on the backward
integration (if backward differencing is used), although the user has the
opportunity to deactivate its use before the backward integration begins. The
user also has the opportunity to impose a second vector of stepping condi-
tions TPART2, on the backward integration. If either TPART! or TPART2 stops
are active, PART will be called in an update mode as the stops are encount-
ered.

The calling seguence for FART is:

SUBROUTINE PART(MCDE,TPART1,NTPRT1,ISTOP1,TPART2,NTPRT2,1I8TOP2,
1 FINTEG,NEQN,T,Y,YP)

If MODE=1, PART is being called in the initiealization mode, i.e., before the
integraticn begins.

If FINTEG = .TRUE., the integrationris in the forward direction; if FINTEG =
.FALSE., the integration is in the backward direction.

If the user is supplying s TPART1 vector, he must also declare the length of
the vector, NTFRT1. Similarly, if the user is supplving a TPART2 vector, the
length, NTPRTZ, must also be given. In the input mode, I3ZTOP1 and ISTOP2 play
no role. The ODE solution and the derivative evaluation are available, at T,
with the variable dimension parameter, NEQN, giving the length of the vectors
Y and YP.

If MODE=Z, PARY is keing called in the update mode. If ISTOPl is non-zero,
TPARTI(ISTOP1) is being updated at the current value of T, Y, and YP. If
ISTOP2 is non-zero, TPART2(ISTOP2) is being updated. Both TPARTL and TPART2
components can corraspond to the same value of T, so one may have two updates
with one call.

The use of PART is described in the example given in this report. The subrou-
tine is used to supply stops corrssponding to lift coefficient grid elements.
These stops (TPART1) are imposed in both forward and backward integrations.
As the forward integration is performed, additional stops from the RKF45T
package are stored to be used as a TPART2 arrey of stopping conditicns in the
backward integration. The example PART and related routines are discussed in
§5.3.

5. THE MINIMUM-TIME-TO-CLIMB PROBLEM USING LINEARLY INTERPO-
LATED TABULAR DATA

The RKF45T system with a table structure defined briefly in §3 (and
thoroughly in [3]) 1is used to solve the minimum-time-to-climb problem for
the equations of motion given in §5.1.

5.1 State Equations

The equations of motion of an aircraft in the vertical plane in a flight path
coordinate system are:

s V=g [(T -D)/W - sin ¥ |

(5.2) ¥ o=

09

[pSV2cp/(2W) -cos ¥] 7V

(5.5 h' =V sin ¢

(5.4) W' =-S8FC*T

with V, the velocity, ¥, the flight path angle, h, the altitude, and W, the
weight. SFC is the specific fusl consumption, supplied by tabular data. The
remaining parameters are p, the air density, 35, the planform area, T, the
thrust, and D, the drag. The Mach number is defined as, M = V/a, with a, the
speed of sound expressed as a function of h. The thrust is given by

T=T, ¢ (Mh) &

where the power setting, §, will be heid constant in the example presented.

With ¢ and 6 prescribed as functions of t, and with initial conditions V ,
¥ ,h ,and¥W given at t=0, (5.1) ~ (5.4) mey be integrated.

The drag coefficient may be written, °5 = ©p + AcD giving
0

o
I

[c; +Acg]l pSV2/2
0

il

where cp =

cy (M, h and Ac
X DOL) D

ﬁchM,cL)

are both given in terms of tabular data which is to be interpolated linearly
(using the bilinear interpolation formulas given in [3]). The additional pa-
rameters, Cn = Cq (M,h) and SFC = SFC(M,h), are also expressed in terms of
tabnler data which is to be interpolated similarly.

The ¢, (£t} {(and &6(t)) controls are to be determined so that the final

conditions: Vf 5 Kf , and hf are satisfied with

(5.5) t = minimum (minimum time)

(5.6) W(tf) = maximum (minimum fuel consumption)

Optimal control theory gives the conditions under which the cost functiom
£.5) or (5.6) reaches an extremum. The Hamiltonian function is:

- 1 =] = 1 = EI = i
(5.7) H= =X\, V' =X ¥ - R - AW

h W

The Legrangian multipliers, determined from the Euler equations:

(3.8) A, = -\, g [3T/8V - A/AVI/W - X g [p § ¢ /(M) + (cos ¥)/V*]

- hy sin ¥+ A [T 35FC/V + STC aT/9V)

5. W =). gces ¥ - A\, sin ¥)/V - A\ V 1

(3499 x y & cos ;8 (sin ¥)/ i cos

(5.10) Aé = - Xv g [aT/3h - 3D/3k]/W - A gV S cI(ap/ah)/(z W)
+ xw [T 8SFC/3h + SFC 3T/3h]

5.11) X" = 1} (T - D)/We + X gV o J(2 W2

(5 ! = v g {)/ 4 8P L‘(W)

The partial derivatives with respect to V and h are:

aT/3vV = T (3¢ /8V) & where 3c /3V = (3c /3M) (3M /aV)
» max T T T

i/ av p SVec+ps Ve (BcD/SV) £, where BchGV = (BCD/GM) (3aM/av)

D

38FC/3V = (38FC/aM) (aM/av)

il

T/3h = T c[dc [Ah + (3 /M) (3M/33) (3e/3h)] 6
E]

max

H

8D/3h = [(3e/3h) V* 5 ¢ + p V? § (acD/BM) (aM/3a) (%a/3h)] / 2

y
E#

9SFC/3h = 3SFC/8h + (8SFC,;sM) (§M/%a) (da/en)

14

In the case of linearly interpolated data all the above expressions have
jumps at each of the corresponding table grid entries. Data for the given
problem has been taken from [6], describing the F-4 Phantom.

5.2 Defining the Right-Hand-Sides

The right hand sides of the ordinary differential equations ccntain disconti-
nuities if the tables used in determining the drag coefficient, thrust coef-
ficient, and specific fuel consumpticn are interpolated linearly. The RKF45T
package is used to isolate each of the discontinuities as they are encount-
ered. The discontinuities correspond to the grid entries of the domain vec-
tors defining the tables. Thus, these points are imposed as stopping
conditicns for the BRKF43T system. More specifically, the <trapping
parameters, (Mach number, 1ift coefficient, and altitude) are located in each
of their respective table grids with the current bracketing indices frecm
these grids used as stopping values. When a grid valwe is isoclated, the
bracketing indices are shifted and "new" limits are imposed. The ODE is then
reevaluated always using the current indices.

When the user programs the right hand sides of the ODEs, he makes no judge-
ments as to the location of the trapping parameters. He is supplied with the
current bracketing indices for each trapping parameter in =sach table through
the common blocks CON1, CONZ, CON3 and CON4 with the values of the domain
grids and tabular functions in TABLE1l, TABLEZ, TABLE3, and TABLE4. (See §3.)
The ODEs are to be written in terms of this information. When a shift in
indices occurs, the shift takes place outside the RHS system of subroutines.
All information in RHS is current, corresponding tc conditions at T.

The subroutines describing the RHS system for the equations in §5.1 are list-
ed in Appendix A. This system includes: RHS, FDRAG, FTRIEB, FATM, LIFTC,
PLIFTC, MATRX1, and MATRX2 . The "main" program of this system is RHS which
"organizes" the YP values. The additional subroutines supply the following
terms for RHS:

Sukroutine Values supplied

FDRAG determines drag and partial derivatives of drag with respect
to velocity and altitude

FTRIEB determines thrust and partial derivatives of thrust with
respect to velocity and altitude

FATM determines density and air speed and derivatives with
respect to altitude '

LIFTC determines lift coefficient and derivative of lift coeffi-
cient with respect to T

PLIFTC determines 1lift coefficient and derivative of 1lift coeffi-
cient with respect to T, using perturbed coefficients from
the TROMPP system (used in generating the gradient evalu-
ations)

MATRX1 cerforms one dimensional matrix multiplication (for ferming
the gradient evaluations)

15 -

MATRX2 performs two dimensional matrix multiplication subroutine
(for forming the gradient evaluaticoms)

The FDRAG and FTRIEB subroutines need further clarification since these two
routines handle the tabular data. Ths other routines are documented suffi-
ciently in the listing in Appendix A.

5.2.17 Subroutine FDRAG

In determining the drag, subroutine FDRAG requires tabular data from TABLE1
and TABLEZ and corresponding indices from CON1 and CON2. These values will
have already been set each time that RHS is referenced.

Since FDRAG is a particular application, the parameters in the common blocks
have been renamed to make identification easier. The common blocks, as they
appear in FDRAG, are:

COMMON/TABLE1/ AM1(26), TAB1(26)
COMMON/TABLE2; AM2(24), CAZ2(35), TAB2(24,35)
COMMON/CON1/ KMLI1,RXMUL

COMMON/CON2/ KML2,XKMU2,KCAL2,KCAU2

The bracketing grid values of c are:
0

AM1(KML1) giving the current lower bracketing index on Mach number
AM1 (KMUL) giving the current upper bracketing index on Mach number

Table 2 gives the Ac data as a function of Mach number and 1ift coeffi-
cient. The bracketing grid values are:

AM2 (XMLZ) giving the current lower bracketing index on Mach number
AM2 (RMUZ) giving the current upper bracketing index on Mach number

CAZ2(XCAL2Z) giving the current lower bracketing index on 1lift coefficient
CA2(KCAU2) giving the current upper bracketing index cn lift coefficient

The bilinear interpoclation formulas along with the derivative formulas are
given as functicn statements (See [3].). Thus, when an interpolated value is
generataed, the user need only be concerned with typing the subscripts cor-
rectly.

Tne FDRAG subroutine may be used in two modes. Mode 1 determines only the
drag. Mode 2 determinmes drag and its partial derivatives with respect to
velocity and zltitude (which are needesd if backward differencing is used to
generate gradients in TROMPE).

5.2.2 Subroutine FTRIEB

In determining thrust, subroutine FTRIEB requires tabular data from TABLE3
and TABLE4 and corresponding indices from CCH3 and CON4. These values will
have already been set each time that RHS is referenced.

16

Since FTRIEB is a perticular application, the parameters in the common blocks
have been renamed to make identification easier. The common blocks, as they
appear in FTRIEB, are:

COMMON/TABLE3/ AM3(26), H3(11), TAB3(26,11)
COMMON/TABLE4/ AM4(26), H&(11), TAB4(26,11)
COMMON/CON3/ KML3,KMU3,KHL3,KHU3
COMMON,/CON&/ KML&G , KMUL , KHTL, KHUA

Table 3 gives the Csi data as a function Mach number and altitude. The
bracketing grid values are:

AM3(XML3) giving the current lower bracketing index on Mach number
AM4 (KMU4) giving the current upper bracketing index on Mach number

H3(KHL3) giving the current lower bracketing index on altitude
H3 (KiU3) giving the current upper bracketing index on altitude.

Table 3 gives the SFC data as a function Mach number and altitude. The
bracketing grid values are:

AME (KMLA) giving the current lower bracketing index on Mach number
AM& (RMU4) giving the current upper bracketing index on Mach number

Ha (KHLA) giving the current lower bracketing index on altitude
H4 (KHU4) giving the current upper bracketing index on altitude.

The bilinear interpolation formulas along with the derivative formulas are
given as function statements. Thus, when an interpolated value is generated,
the user need only be concerned with typing the subscripts correctly.

The FTRIEB subroutine may be used in two modes. Mode 1 determines only the
thrust. Mode 2 determines thrust and its partial derivatives with respect to
velocity and altitude (which are needed if backward differencing is used to
generate gradients in TROMFP).

5.2.3 Setfting-up the Trapping System

The CDE expression, described in §5.1, requires no knowledge of the trapping
system, merely the use of the indices supplied as a result of the trapping
procedure. Now the user must forget the RHS system and concern himself with
setting the traps for the indices. The communication between these two sys-
tems occurs through the common blocks TABLE® and CON¥*, where, for this exam=-
ple, ® =1,2,3, or 4.

The table structure is thoroughly described in [3], including the definitions
of the related commen blocks. That report also gives an example of subrou-
tines for initializing and later adjusting the bracketing values of the TRPR
values for linear interpolaticn. Once the table structure is understood, the
trapping analysis centers on the generation of the stopping vectors, TPART1
and TPART2, and on the use of SUBPHI to stop the integration at the grid boun-
daries not handled in TPART1. The TPART1 vector is established before =ach
integration in subroutine PART. PART is also responsible for the updates of
the TPART1 vector. TPARTZ is established through the SUBPHI updates as the

17

forward integration progresses. In the backward integration, the SUBPHI
analysis is suspended, and PART becomes responsible for updating conditions
at each TPART2 stcp.

5.3 Subroutine PART

The general description of PART (§4.3) needs to be extended, since, for this
example, PART supplies the stopping conditions for the lift coefficient in
the forward integraticn and all stopping conditions in any backward inte-
gration. While many of the remarks in this section pertain to the current
example, the pattern may ba extended to the general problem. The PART routine
for the current example is listed in Appendix A.

5.3.1 Subroutine PART, Mode 1, Forward integration

Mode 1 initislizes conditions for the forwarcd integration. If TROMP is refer-
enced in the forward differencing mode (IMPULS=.FALSE.), the TPART1 vector is
determined but no TPART2 analysis is activated. If TROMP is referenced in the
backward differencing mode (IMPULS=.TRUE.), the TPART1 analysis is ageain
active. If the gradient is being generated (IG=2), the TPARTZ2 vector is also
initialized.

5.3.1.1 Subroutine PART, Mode 1, Forward Integration, Forward Differenc-
ing '

In mode 1 during the forward integration, PART is asked to supply the TPART1
vector (and define the length, NTPRT1). (NTPRT1=0 upon entry into PART. Fai-
lure to reset NTPRT1 will activate »o TPART:I vector stops.) PART may also be
used for the general initialization of the particular integration.

The example presented uses PART to set the table indices before the inte-
gration begins, by referencing TABLIM. (See [3].) Thus, the RHS system is
given the proper information at T=0, before being referesnced. PART then pro-
ceeds to locate T wvalues which correspond to the lift coefficient grid
entries in Table 2, since the lift coefficient, expressed as a cubic spline,
can be analyzed analytically. The T values corresponding to the 1lift coeffi-
cient stops will be imposed as the TPART1 vector. PART references PARTCA to
identify these T values. Transfering the analysis to PARTCA (and further to
SHIFT and QRCOT) is designed to streamline the logic in PART. (PARTCA, SHIFT,
and QROOT are described in [3].) The TPART1 vector is returnad to PART from
PARTCA and the initial indices are stored in common block CON2, corresponding
to the second domain parameter (which is the 1ift coefficient). Thus, the
lift coefficient grid stops are completely identified before the integration
begins.

18_

5.3.1.2 Subroutine PART, Mode 1, Forward Integration, Backward Differ-
encing '

In mode 1 (during the forward integration) with backward differencing being
used, PART establishes the TPART1 vector as in the forward differencing anal-
ysis (85.1.1.1). If a gradient is being evaluated, a backward integration
will be used in which the stopping points located by the SUBPHI program will
be imposed as the TPART2 vector. The initial point in the TPART2 vector (T=0)
along with the associated parameters (in this example, the LPOINT vector and
NPOINT) must be set. The parameters associated with the TPART2 stops are
described in §5.4.1.)

5.3.2 Subroutine PART, Mode 2, the Update Mode

Mode 2 of PART deals with the update of a TPART1 or a TPART2 vector element.
The analysis involves the shifting of indices and reevaluation of the deriva-
tive to correspond to the adjusted conditions. If forward differencing is
being used, only a TPART1 vector stop is possible. If backward differencing
is being used, then the TPARTI1 vector stops are updated in the forward inte-
gration in the same manner used in forward differencing. In the backward
integration, both the TPART1 and TPART2 vector stops are imposed, with the
type of update identified through ISTOP1 and ISTOP2. Once the "type of stop"
is identified, the update again consists of shifting indices and reevaluating
the ODE.

5.3.2.1 Subroutine PART, Mode 2, Forward Integration, Forward or Back-
ward Differencing

Mode 2 during the forward integration identifies the update of a TPART1 stop.
(Only the TPART1 stops are active in FART during the forward integratiom, so
no update confusion cccurs between TPART1 and TPART2.) ISTOP1 is supplied to
identify the component of TPART1, i.e., T=TPART1(ISTCOP1). In the initializa-
tion phase, PARTCA delivered not only TPART1(J) values but also corresponding
IPARTL({J) and IPARTU(J) values to identify the bracketing indices of the T2P2
(lift coefficient) grid. (The parameters are identified as TVECT, IVECTL, and
IVECTU 4in PARTCA.) The IBL({2,2) and KL22 values are set equal to the
IFARTL(ISTOP1) value, while the IBU(2,2) and KU22 values are set equal to the
TPARTU(ISTOP1) value. The GRIDL(2,2) and GRIDU(2,2) values are then set equal
to the T2P2(XL22) and T2P2(KU22) values, respectively. Once the bounds have
been shifted, the user must evaluate the derivative since the slopes will
change after update. WARN is zlso referenced to ensure that the bounds are
set correctly. Thus, once the TPART1 vector is established in the initializa-
tion mode of PART, the analysis of the TPART1 vector consists of merely
shifting the subscripts and reevaluating the derivative at update.

5.3.2.2 Subrcutine PART, Mode 2, Backward Integration, (Backward Dif-
ferencing)

Mode 2 during the hbackward integration updates either a TPART1 or a TPART2
staop. The type of stop is identified through the parameters ISTOP1l and
IsTOPZ. (ISTOP1=JJ, JJ non-zero, identifies the stop as TPART1(JJ);
ISTCP2=KK, KK non-zero, identifies the stop as TPART2(KK), where both a
TPFART1 and TPART2 stop may be active at the same update point.) The TPART1

19

updates are similar to those in the forward integration, the difference being
that the direction of integration is reversed. The TPART2 updates involve the
analysis of the three-dimensional vector LPGINT, (described in detail in
§5.4.1). LPOINT(I,J,ISTOP2)=LL, LL non-zero, indicates the |LL|th point in
table I, table parameter J. ISTOP2 is the index of the TPART2 element used as
the stopping condition. LL is used to determine the new lower bound on the
parameter being updated. An example of the index adjustment is given in
§5.4.1. Once the IBL and IBU bounds are established, the update procedure is
similar to that followed in the 1ift coefficient update.

5.4 SUBPHI Stops for Establishing the TPART2 Vector

Section 4.2 describes the use of SUBPHI for stopping the integration whenever
a component of PHI vanishes (i.e., in this example, whenever a Mach rumber or
altitude grid entry is crossed). During the boundary shifting analysis in the
forward integration, the user may store information about the current stop-
ping values so that they may be used as the TFART2 stopping conditions during
the backward integrations (avoiding the trapping analysis a second time).
This analyvsis is performed in BOUNDS if the forward integration is active and
a gradient evaluation (IG=2) is being genesrated in TROMPP. The TPART2 vector
is named PVECT with the three dimensional vector LPOINT identifying the
table, table parameter, and PVECT point and with NPOINT identifying the num-
ber of points currently in PVECT. LPOINT(I,J,X) = LL, gives information about
table I, table parameter J, fcr the current point, TPART2=PVECT(X). If LL=0,
no update is being made concerning this table parameter. If the update occurs
at the current lower bcund (the new upper bound), LL < 0. If the update
cccurs at the current upper bound (the new lower bound), LL > 0. In either
case |LL| is the value of IBL(I,J) AFTER the bounds are updated.

5.4.1 Clarification of LPOINT values at Update
The follewing example is given to clarify the update procedure for the TPART2
vector elements using the appropriate LPOINT values.

Assume that the following grid is being analyzed, the T2P1 grid with the
integration stops during the forward integration being labeled "a,b,c,d, and
"

a > b > p=S===
¥
e < =<===
mmetmmm—————— N — e T —— +=
T2P1 indices: 4 5 6 7 8
Integration New Bounds LPOINT(2,1,%)
stop IBL IBU

(%3]

T A0 T
b ono~i G
Oy~ 0~ O
VoA
Ur Oy <1 Oy

For example, at update of "a", the new bounds will be IBL(2,1)=5 and

IBU{2,1)=6. The update occurs at the new lower bound (the previous upper
bound), and therefore, LPOINT(2,1,a) is given a positive sign, the magnitude
being IBL(2,1) after update. At update of "d", the new bounds are
IBL(2,1)=6, IBU(2,1)=7, where "d" is at the new "upper" boundary (the previ-
ous lower bound). Thus, LPOINT has a "negative" sign, the magnitude being the
new IBL(2,1).

In integrating backwards, the process starts at 'e" and moves toward "d". The
update formula for IBL and IBU at "d" when integrating from T=1 to T=0 is:

IBL(2,1) = |LPOINT(2,1,d)} - ISIGN(1,LPOINT(2,1,d))
new
= 6 - (-1) = 7
IBU(2,1) = IBL(2,1) +1 = 38
new new

which does indeed represent the conditions for integrating from "d" towards
"e". To continue the example (with LPOINT > 0), as the integration reaches
"e" (from the "d" direction),

IBL(2,1) = |LPOINT(2,1,c)| =~ ISIGN(1,LPQINT(2,1,c))
new
= 7 - (#1) = 6
IBU(2,1) = IBL{2,1) +1 = 7
new new
which sets the bounds correctly for integrating from "c" towards "b". The

general formula for updating the IBL coefficient for table *, parameter #%,
at TPARTZ(ISTCP2) is
IBL(*,%%) =|LPOINT(*,%*,ISTOP2)| - ISIGN(1,LPOINT(*,®*, 6 ISTOP2))

new

IBU(%,%%) = IBL(%,**%) + 1
ney new

where LPGINT(*,*¥%,ISTOP2) is non=-zero. If LPOINT(¥*,**,ISTOP2)=0, the inte-
gration stop does not correspond to the table *, parameter ** grid and no
update should be made.

6. SUBROUTINES FOR TREATING TABULAR DATA

Due to the large number of subroutines used in solving the problem in §5, an
alphabetical listing of the subroutine names and their main role in the sol-
ution of the problam are given. A secocnd list is given providing the subrou-
tines used in the RKF45T system. The subroutines are listed in Appendix A,
with clarifying remarks in the comment cards.

- 21

6.1 Subroutines Associated with the Minimum-Time-to-Climb Problem

In solving the minimum-time-to-climb problem using tabular data with inte-
gration stops at the dcmain parameter entries, the driving program, PHANT,
uses the following subroutines:

BOUNDS

COSTF

EX

FATM

TDRAG

FTIRIEB

GRPART

INITBD

INSERT

LIFTC

LOCATE

MATRX1

MATRX2

PART

used in conjuncticn with SUBPHI to shift bounding limits for PHI
components

referenced by TROMPP to evaluate the cost function (and partial
derivatives of constraint functions if a gradient evaluation is
being mads)

EX1DT1 and EX2DT2 referenced by TABLES to extend the Mach number
grid at the lower limit on tables 1 and 2

referenced by RHS to detérmine the density of the air and the
speed of sound along with the derivatives with respect to alti-
tude

referenced by RHS to determine the drag (and the partial deriva-
tives if a gradient evaluation is being determined by backward
differencing)

referenced by RHS to determine the thrust (and the partial deriv-
atives if a gradient evaluation is being determined by backward
differencing)

referenced by TROMPP to establish the current integration limit
(either a cubic spline knot or a TPART1 or TPARTZ value) (Flow
chart is given in Appendix B.)

used in conjunction with SUBPHI to set initial bounding limits
for PHI compcnents

referenced by QROOT to insert the current rcots into a vector of
such roots so that the vector elements are monotonic increasing

referenced by RHS to compute 1lift coefficient (and possibly
derivative of 1lift coefficient with respect to t) using the
assumed control function (cubic spline) (See PLIFTC)

referenced by TABLIM to locate the given TRPR value within a spe-
cified array and to return the bracketing indices from that array
along with the bracketing array elements to be used as the cur-
rent beunds for that table domain member

referenced by RHS to evaluate tne dot product, B *Y, two vectors
of length &

referenced by RHEHS to perform matrix multiplication between a 4x&
matrix and a vector

referenced by TRPART (TROMPP) to establish or update the TPARTL
or TPART2 vector components i

PARTCA

PHIPAR

PLIFTC

PR

QROOT

QMXMN

REATAB

SUBPHI

TABLE

TABLIM

TABBND

TROMPP

TRPART

WARN

w22

referenced by PART to set the TPART1 vector of lift coefficient
STOpsS

referenced by SUBPHI and PART to determine the trapping parame-
ters, TRPR and TRPRP

referenced by RHS to compute 1lift coefficient (and possibly
derivative of lift coefficient with respect to t) using the per-
turbed control function (cubic spline) for the forward differ-
encing integrations

PR1DT1, PR2DT2, PR2DT3, PRZDT4 referenced by TABLES to print the
tables for verification

referenced by PARTCA to solve for the roots of a cubic equation

referenced by QROOT to establish maximum and minimum bounds on a
given cubic equation

RD2DT2 referenced by TAZLES to reducs the number of lift coeffi-
cient entries in Table 2

an "inherited" subroutine which reads the data from files
referenced to determine the derivative evaluations

referenced by PARTCA to adjust cubic coefficients from the
spline package to suit representation in QROOT

(Sequentiasl Linear Least Squares Program) due to K. Schittkowski
and D. Kraft vused as the optimization package [5]

referenced by the RKF45T system to‘supply the values of the PHI
and PHIP functicns or to update a lccated zero of PHI

referenced by the driving program to set data into the table com-
mon blocks and to set parametars defining the table dimensions

referenced by PART to establish the bracketing indices on the
rapping parameter value in each table grid

referenced by BOUNDS during each update to shift the indices on
table parameter values being updated

Trajectory Optimization by Mathematical Programming with
zero-trapping capabilities and added stopping partititions (mod-
ified versicn of TOMP [4]) used to determine cost function and
gradient evaluations

referenced by TROMPP to obtain TRPART1 or TPART2 vectors or to
update integration stops corresponding to an element in one of
the two arrays (F¥Flow chart is given in Apperdix B.)

designed for checking toc see if current table bounds bracket the
associated TRPR elements. A "time-lag' is built in to discontin-
ue the warning analysis if the trapping iteratiom is in effect.

23

ZWEIGE is a dummy routine in this application. ZWEIGE is generally used
to initialize branching indicators when a small number of dis-
continuities is being analyzed (See [1].)

6.2 Subroutines Associated with RKF45T System

The RKF45T system is documented in [2]. The subroutines of major importance
in the RKF45T package are:

RKF45T which is the driving program for the package which acts as an
interface between the user and the internal workings of the inte-
grator,

RKFST which is the decision making subroutine for the integratien,

SETRAP which serves as an interfacing routine between RKFST and TRAPPD
monitoring the PHI elements to see if the trapping procedure should
be activated to isolate a zero of anv PHI component,

TRAPED which uses an iterative procedure to isolate the zeros of the PHI
componernits which have changed sign over a given integration step,

SCALED which evaluates the solution at a point within a given integration
step during the trapping procedure, and

VANISH which checks to see if the solution has vanished throughout the
step (referenced by TRAPPD at update).

Subroutines associated with the RKF45T system (of lesser importance) are:

RQUNCD which analyzes the PHI components to see if any have "bounced” on a
zero (In general, the REF45T system does not locate bouncing
zeros, but if one is detected, it is treated in a special manner.),

LAGCK which adjusts IFLAG if the trapping option is being used,
QUTFLG which prints warning messages if IFLAG indicates difficulties,

PANIC which serves as an emergency option which prints dense output
throughcut a step where difficulties are about to terminate the
trapping iteration,

SHIFTI which checks to see if INDEX (the parameter indicating the compo-
nent of PHI currently being trapped) should be shifted,and

TSTAR which estimates the wvalue of T that will cause PHI(INDEX) to
vanish. (The wvalue of TSTAR establishes the next step size to be
taken by TRAPPD.)

Common hlccks in RKF45T are to be avoided. To aid in debugging, however, omne
torm of the package is available with a blcck data subprogram for specifying
the printing indices for TRAPPD and related subroutines. Sufficient comment

cards are included so that the user knows which constants activate printing
in which subroutines,

[=]
£~

7. COMMON STATEMENTS

A great deal of information is passed through the presented example in the
form of commen blocks. In order to help the user keep track of the elements,
the following list is presented giving the ccmmon block name and the subrou-
tines in which the blocks are located. This information is particulerly
important if the user needs to change the length of any arrays in the blocks.
A few of the common blocks are inserted for debugging during the development
of the program and may be deleted. These blocks are denoted with an * before
their listing.

COMMON block Subroutine

ATHSF3: TABLE, REATAB

ACWOCA: TABLE, REATASB

ENDVAL: DRIVER, COSTF

CHECKCA: RHS, WARN

CON1: FDRAG, PART, TABLIM, TABBND, WARN

CON2: FDRAG, PART, TABLIM, TABBND, WARN

CON3: FTRIEB, PART, TABLIM, TABBND, WARN

CON&: FTRIEB, PART, TABLIM, TABBND, WARN

*CRKF45: BOUNDS, DRIVER, SUBPHI 7

CTRMPP: DRIVER, COSTF, BOUNDS, LIFTC, PLIFTC, PARTCA, RHS, TROMPP
CUMMY: WARN

DTABLZ: TABLE, R2DT2

*EMERG: FDRAG, FTRIEB

FKOUNT: DRIVER, RHS,

*FSTEP: DRIVER, FDRAG, FTRIEB, SUBPHI, RHS,

GRIDBD: BOUNDS, INITBD, PART, SUBPHI, TABLIM, TABBND, WARN
IDENT: DRIVER, SUBPHI, TROMFP, WARN

PARTV: PART, BOUNDS

TABLE1: FDRAG, PART, TABLE, TABLIM, TARBND, WARN

TABLE2: FDRAG, PART, PARTCA, TABLE, TABLIM, TABBND, WARN
TABLE3: FTRIEB, PART, TABLE, TABLIM, TABBND, WARN

TABLE4 : FTRIEB, PART, TABLE, TABLIM, TABBND, WARN

TLIMIT: BOUNDS, FDRAG, FTRIEB, INITBD, PART, PARTCA, SUBPHI, TABLE,
TABLIM, TABBND, WARN

* denotes common blocks for checking difficulties which are not
essential to the table analysis

8. COMPUTATION: INITIALIZATION AND RESULTS

With the table structure (defined in [3]) usad to construct the right hand
sides as given in §85.1 and 5.2, and with the update procedure as defined in
§85.3 and 5.4, one may apply an optimization package to the equations of
motion described in §5.1 and be assured that the tabular data representation
will remain fixed from iteration to iteration. (That is, with each grid boun-
dary crossing as an integration stopping point, and with updates in the ODE
as the grids are crossed, the tabular functions have a definite structure
which will not change regardless- of the control parameter description or of
the integration path through the table domain.) With the set-up procedure
described in the preceding sections, the user may now apply any mathematical
programming package to optimize the solution. As long as the output is
"warning free', the trapping procedure is proceeding smoothly.

The SLLSQP (Sequential Linear Least Squares Program) is applied to the prob-
lem described in §5.0, with TROMPP used to generate the cost function and
gradient evaluations. The lift coefficient serves as the only control func-
tion, being described as a cubic spline. The initializaticn parameters are
listed in the driving program, PHANT, in Appendix A, and are printed in the
resulting output in Appendix C. (This report assumes that the user is famil-
iar with the TROMPP (or at least TOMP [4]) software package, so that the
meaning of the input parameters is clear.

The initial estimates for the control function data (lift coefficient to be
expressed as a cubic spline) is given in a data statement in the driving pro-
gram. Control bounds, initial conditions, end other pertinent information
appear in both the driving program (listed in Appendix A) and in the computa-
tional results.

The OCP consists c¢f finding the minimum time required to reach a given alti-
tude with specified final velocity and flight path angle. This problem has
been run using both forward and backward differencing in generating the par-
tial derivatives. As long as no warning messages are printed, the
RKF45T/TROMPP analysis 1is stopping the integration as each grid entry is
encountered permitting the updating of the ODE system. The t values corre-
sponding to the grid partition stops are given in Appendix C as well as those
for the optimal sclution. In the backward mode, 30943 derivative evaluations
were required to solve the problem of which 2650 were used in generating the
grid stops (less than 9%). The results using forward differencing lead to
essentially the same optimal solution. A comparison between the derivative
counts using forward and backward differencing methods could be wisleading
since the adjoint system used in the backward differencing increases the size
of the ODE (elthough the use of adjoint system decresases the total derivative
count. (The actual function count needed for forward differencing is 113635
of which 13334 are used for the trapping analysis.)} Both forward and back-
ward differencing schemes converged in 21 iterations. A comparison of CPU

26

time shows that 18.05 sec are needed to solve the problem using backward dif-
ferencing while 35.61 sec are required using forward differencing. If
trapping is used in beth the forward and backward integrations, the CPU time
increases to 19.33, an increase oi some 7% over the time required if the
stopping points are stored during the forward integration. (Treating the
problem with forward and backward trapping,however, avoids a great deal of
bookkeeping work for the user.)

9. CONCLUSIONS

The use of linearly interpolated tabular data in system equations greatly
simplifies the programming efforts in {light dynamics problems. Such a
model, permits an easy interchange of data as new aircraft are tested on the
computer. In contrast, using smooth curve fitting techniques to represent
tabular data, while mathematically pleasing, requires a great deal of
off-line computing time to generate the curve fits, and new data or changes
in existing tables require repeating the curve fitting process from the
beginning. The use of linearly interpolated data to represent tabular infor-
mation, however, introduces discontinuities in the higher order derivatives
in the ODE system. The integration erross introduced by failing the isolate
these points of discontinuity precisely affect the individual integrations
tc some degree and are particularly detrimental to the convergence rate in
the optimization process. More spscifically, more time is wasted if the
integrator attempts to locate the points of discontinuity by itself rather
than by using an efficient (and more accurate) convergence scheme, and the
errors from the individual integrations "confuse" the optimization process
in that the method can not distinguish between perturbations in the optimal
estimates and the integration '"moise" from errors caused by the errors due to
the discontinuities. '

In this report, a table structure is defined which permits the use of numer-
cus tables which may have the domain functions but whose grids need not be
identical. The communication between the tables and the RKF45T package is
defined so that the REXF45T/TROMPP package may isolate the grid crossings in
the various tables, as each is encountered. Updates in the ODE system are
then made so that the ODE expressions reflect the current conditions in the
tables. The ODE evaluation subroutines themselves are given the current
bracketing values for the linear interpolation. These subroutines make no
decisions as to the locations of the current parameters in the table domains.
All decisions concerning the changing of these bracketing indices occur in
the RKF45T system. Such a structure simplifies the programming in the ODE
expressicns. The RKF45T subroutines for analvzing the tables are generally
model subroutines whose extensions reguire basic pattern recognition. Thus,
the given example can be extended readily to different types of problems in
which linearly interpcliated tabular data is used. Increases or decreases in
table number and/or size pose no difficulties. The system passes through a
large region of the table domain in the given example without encountering
any difficulties in the table grid locations or in updating.

27 =

Acknowledgements

The author wishes to thank K.H. Well for his support throughout the develop-
ment of this system of reports and D. Kraft for his help in the use of the
TOMP and SLLSQP. Thanks are also extended to R. Dierstein for his help in the
use of the report writing package for the final draft of the manuscript.

10,

(1]

[2]

(34

[6]

REFERENCES

Horn, ;K.

Hern, M.K.

Horn, M.K.

Kxafts B

Kraft, D.

Schitrkowski, K.

Well, K.H.
Rraft, D.
Berger, E.

28

A Numerical Solution of State/Control-Cons-
straint Optimal Control Problems with Piece-
wise Continuous Derivatives Using RKF45T
DFVLR-IB 515-83/2

RKF45T - A Runge-Kutta 4/5 Software Package
with User-Supplied Stops Involving the Depen-
dent Variables and First Derivatives

DFVLR-IB 515-83/3

Subroutines for Handling Tabular Data Used
in System Equations
DFVLR-IB 515-82/16

FORTRAN-Programme zur numerischen L&sung
optimaler Steuerungsprobleme
DFVLR-Mitteilung 552-80/3

Theorie und Anwendung der sequentiellen
quadratischen Programmierung in Steuerungs-
und Regelungsaufgaben
DFVLR-Forschungsbericht (in Bearbeitung)

Zwischenbericht {iber die Entwicklung eines
schnellen Optimierungsverfahrens zur Be-
rechnung ebener, zeit~ und verbrauchsopti-
maler Bahnen von Kampfflugzeugen

DFVLR-A 552-76/8.

29

APPENDIX A. LISTING

1. SUBROUTINES USED IN SOLVING THE MINIMUM-TIME-TO-CLIMB PRO-
BLEM ‘

Subroutine BOUNDS

SUBROQUTINE BOUNDS (INDEX,PARAM,T,TOLER,BNDRYL,BNDRYU,UPPER,
1 NTRPR,5CALE)

= e e s o M S Sm M Em a A M M em M S W B M e M e M Mm Em R M M 4% S B SN BN W SR W HN mm e S S e e s S e e mw o tm U M VM ER e e em e e

PURPOSE :
TRAPPING ANALYSIS HAS JUST ISOLATED A ZERO WITH TRAPPING
PARAMETER VALUE "PARAM", TRAPPING PARAMETER NUMBER=INDEX.
BOUNDS SHIFTS TABLE BRACKETING INDICES WHICH HAVE THIS
PARAMETER AS A DOMAIN MEMBER.

PARTITICN FOR INTEGRATION STOPS SET IF BACKWARD DIFFERENCING
SCHEME IS USED.

STRUCTURE : STANDARD (SEE USER CHANGES)
INPUT PARAMETERS:
INDEX TRAPPING PARAMTER INDICATOR
PARAM VALUE OF TRAPPING PARAMTER AT ZERO PHI(INDEX)
POINT
L VALUE OF INDEPENDENT VARIABLE
TOLER CONVERGENCE TOLERANCE
FORWRD LOGICAL PARAMETER,
FORWRD=.TRUE. ==> FORWARD DIFFERENCING SCHEME

FORWRD=.FALSE. ==> BACKWARD DIFFERENCING SCHEME

QUTPUT PARAMETERS:
BOUNDL MAXIMUM LOWER BOUND FROM ALL ANALYZED GRIDS
BOUNDU MINIMUM UPPER BOUND FROM ALL ANALYZED GRIDS

GRID BOUNDE AND INDEX LIMITS ALSO ADJUSTED BY CALL TO
TABBND (HELD IN COMMCN BLOCK GRIDBD)

s e s e A e s Em T W SO BN OB SR M S N N e S M R SR N S AN GS A RS SN M R A e S5 M A S AA S S S 4 S S S e S e S e Se AN e s = e W e S G e

e s e e m m me s e e e A e M W W me wm m s e e M s e M A fu MR P W SN W R M G R WS Rm SN S SR Mm RS Sm M m TN Rm S SN am M Ra D W W Em e M S e e

USZR CHANGES (MINIMAL):
1) USER MUST SUPPLY PROPER DIMENSIONING VALUES IN COMMON BLOCKS.

4) SEE SUBROUTINES TABLIM FOR DIMENSION COF COMMON BLOCKS TLIMIT
AND GRIDBD

B) DIMENSIONING OF PVECT AND LPCINT:
LIMP = DIMENSION OF PVECT IS SET AT 20. IF¥ USER INCREASES
THE SIZE OF PVECT, HE MUST MAKE THE SAME CHANGES
IN COMMON BLOCK FPARTV IN SUBPHI.

aOagoooooaooonaoaoOOoOaooaoaaOoOoaaoaoaaoaaoaoaaoaooooaaaaoaonanna

oo agamcaaaan

]

(]

30

COMPARE LPOINT DIMENSION WITH IBL(II,JJ)

DIMENSION PVECT(LIMP), LPOINT(II,JJ,LIMP)

2) FCT AND FCTP MUST HAVE THE SAME EXPRESSIONS AS IN SUBPHI

i am ae RS s T ER LS SR e M AR R M T LA B R M M A G e M e e 4N SR SN SD SR O3 A NS RN U S EN S MDA G R A e S BN e SN e S SS es e

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION SCALE(NTRPR)

COMMON/TLIMIT/INDIC (4,2) ,NGE(4,2) ,NCOMP (&) ,NTABLE
COMMON/GRIDBD/GRIDL(&, 2),GRIDU(4, 2),IBL{ &, 2),IBU(&, 2)
COMMON/PARTV/PVECT(30),LPOINT(&, 2, 30),NPOINT

DATA LIMP/ 30/

COMMON/CTRMEP/GRID(15,5),STIFF(15,5),U(i5,5,5),A(15,5,5),
B(15,5,5),C6(15,5,5),UL(15,5,5),UU(15,5,5),
UiH(15,15,5,5),
AH(15,15,5,5),BH(15,15,5,5),CH(15,15,5,5),
P(10),Y(70),TOL, INTERV,KONTRL,KNOT(5) ,NP,NY,
MQP,IG,NPHI,

IMPULS ,FINTEG, LDUM(16) , TRAPB, LDUM2 (2)

DATA IPRINT/O/

COMMON/CRKF45/ IOPT , IDUMAS (&)

Lo)R S G I

LOGICAL UPPER, IMPULS,LDUM,FINTEG,GRADI,TRAPB, LDUM2

FUNCTION STATEMENTS--AS IN SUBPHI (DERIVATIVE IS MISSING DX/DT,
SINCE DERIVATIVE IS WRT X)-

FCT(X,XU,XL,XSCALE)= (XU - X)*(X-XL)*XSCALE
DFCTDX(X,XU,XL,XSCALE)= (-2.D0%*X + XU+XL)*XSCALE

e e e e e e em e mm e e e T e B e e Sw M T e e e M M NE R e mm e MR R Mm e M SR M D M M N M M e YE M M SR MM e mm o Em s e

SET GRADI = .TRUE. IF GRADIENTS ARE BEING FORMED AND A TPART2
VECTOR IS BEING USED
SET GRADI = .FALSE. OTHERWISE

GRADI = .TRUE.

I¥ (.NOT. IMPULS) GRADI = .FALSE.
IF (TRAPB) GRADI = .FALSE.
IF (.NOT. FINTEG) GRADI = .FALSE.
IF (IG .NE. 2) GRADI = .FALSE.

O

IF (.NOT. GRADI) GO TC
NPOINT = NPOINT + 1
IF (NPCINT .LE. LIMP) GO TO &
ERINT 1500,NPCINT,LIMP
STOP
& CONTINUE
PVECT(NPOINT) =T
DO 5 ITABLE = 1,NTABLE

31

LIMIT = NCOMP(ITABLE)
DO 5 ICOMP = 1,LIMIT
5 LPOINT{ITABLE,ICOMP,NPOINT) =

C
6 CONTINUE
g G S] R S
IBOUND = 0O
C
IF (IOPT .EQ. 1) TIPRINT =1
C
o 5 o 4
C STUDY EACH TABLE AND EACH COMPONENT OF THAT TABLE
PSPy g g Ly S
DO 50 ITABLE=1,NTABLE
LIMIT = NCOMP(ITABLE)
DO 50 ICOMP = 1,LIMIT
o
[e 0 T 0 B o e SR 0 o o
IF (INDEX .NE. INDIC(ITABLE,ICOMP)) GO TO 50
[i o o i o e n m m ms m m Sm e eS S e SN RN YR S S S A M D N N Y SN M G S B WSS SN S R M N S e S M m A e e en e
C UPDATE OF COMEONENT "ICCMP". SEE IF PHI(INDEX) VANISHES USING
C CURRENT GRID BOUNDS FROM TABLE--ITABLE COMFONENT--ICOMP
B e e e
IF (UPPER) GO TO 7
S CONVERGENCE TO LOWER BOUND--USE BNDRYU AS ONE LIMIT
PHI = FCT(PARAM,BNDRYU,GRIDL{ITABLE,ICOMP),SCALE (INDEX))
GO TO 8
7 CONTINUE
C CONVERGENCE TO UPPER BOUND--USE BNDRYU AS ONE LIMIT
PHI = FCT(PARAM,GRIDU(ITABLE, ICOMP),BNDRYL,SCALE (INDEX))
& CONTINUE
c

IF (IPRINT .EQ. 1) PRINT 999,ITABLE, ICOMP,PHI,TOLER
999 FORMAT(' TABLE=',I2,' COMP=',12,2X,'PHI = ',D15.7,2X, 'TOLER=',

1 D15.7)

c

IF (DABS(PHI) .GT. TOLER) GO TO 50
i o
Crmec e s e e e s mcm s e e e — e = o o = = = e e e e e e = e e e e e -
C CONVERGENCE TO BOUNDARY IN TABLE--ITAELE FOR COMPONENT--ICOMP
O e e i
e e e
c

1F (UPPER) GO TO 10
1%}
C CONVERGENCE TO LOWER BOUNDARY
C

IF (IPRINT .EQ. 1) PRINT 1501,INDEX,PARAM,GRIDL(ITABLE,ICOMP),
1 GRIDU(ITABLE,ICOMP)
1501 FORMAT(' CHECK CONVERGENCE--LGWER BOUND',/,2X,13,3(2X,D15.7))
C
IBL(ITABLE, ICOMP}
IBU(ITABLE,ICOMP)

IBL(ITAELE ICOMP) - 1
IBU(ITABLE,ICOMP) - 1

SET TPARTZ2 STCPPING LIMITS IF GRADRI IS BEING EVALUATED

(o I B

IF {GRADI) LPOINT(ITABLE,ICOMP,NPOINT) = -IBL(ITABLE,ICOMP)

()

32

C CALL TABBND TO SHIFT SUBSCRIPTS AND AND GRIDL, GRIDU VALUES

CALL TABBND(ITABLE,ICOMP)
IF (PARAM .GT. GRIDU(ITABLE,ICOMP)) GRIDU(ITABLE,ICOMP) = PARAM

GO TO 12
O e e
C CONVERGENCE TG THE UPPER BOUNDARY
L e
10 CONTINUE
IBL(ITARLE,ICOMP) = IBL(ITABLE,ICOMP) + 1
IBU(ITABLE,ICOMP) = IBU(ITABLE,ICOMP) + 1
C
C SET TPART2 STOPPING LIMITS IF GRADI IS BEING EVALUATED
C
IF (GRADI) LPOINT(ITABLE,ICOMP,NPOINT) = +IBL(ITABLE,ICOMP)
C
C

IF (IPRINT .EQ. 1) PRINT 1502, INDEX,PARAM,GRIDL{ITABLE,ICOMP),
1 GRIDU(ITABLE , ICOMP)
1502 FORMAT(' CHECK CONVERGENCE--UPPER BOUND',/,2X,I3,3(2X,D15.7))

c
c CALL TAEBND TO SHIFT SUBSCRIPTS AND AND GRIDL, GRIDU VALUES
CALL TABBND(ITABLE,ICOMP)
C
c IF PARAM IS NOT ACROSS THE BOUNDARY SET LOWER BOUND = PARAM
c
- IF (PARAM .LT. GRIDL{ITABLE,ICOMP)) GRIDL(ITABLE,ICOMP) = PARAM
12 CONTINUE
C
e i i e o e
C SET MAXIMUM LOWER BOUND AND MINIMUM UPPER BOUND FROM GRIDL
C AND GRIDU VALUES GENERATED IN THE CURRENT SEARCH
e o e T R R R S e e e e
IF¥ (IBOUND .EG. 1) GO TO 11
BOUNDL = GRIDL(ITABLE,ICOMP)
BOUNDU = GRIDU(ITABLE, ICOMP)
11 CONTINUE
IBOUND = 1
BOUNDU = DMIN1(GRIDU({ITABLE,ICOMP),BOUNDU)
BOUNDL = DMAX1(GRIDL(ITABLE,ICOMP),RBOUNDL)
C
50 CONTINUE
C
BNDRYL = BOUNDL
BNDRYU = BOUNDU
C
I¥ (.NOT. GRADI) RETURN
IF (IPRINT .EQ. 0) RETURN
C

DO 62 J = 1,NPOINT
PRINT 1509,J,LPOINT(1,1,J),LPOINT(2,1,J),LPOINT(3,1,J),
1 LPOINT(3,2,J),LPGINT(4,1,J),LPOINT(4,2,J)
62 CONTINUE
1509 FORMAT(' LPOINT VALUES:',/, ' J=',I2,3X,6(2X,I4))
c
1500 FORMAT(//,' NUMBER OF STOPPING POINTS STORED FOR BACKWARD '
1 , ' INTEGRATION = ',I6,/,' THIS EXCEEDS THE LIMIT SET = ',I2,/,
2 ' THE USER MUST INCREASE THE VALUE OF LIMP AS WELL AS THE '

33

3 ,/,'DIMENSIONING IN PVECT AND LPOINT IN COMMON BLOCK PARTV'
4 ,' WHICH APPEARS IN BOUNDS AND SUBPHI ',//,

5 " TERMINAL ERROR',//)

RETURN

END

Subroutine COSTF for evaluating the cost function and derivatives

Cmmmm e e e o e e —————_—————_——————_——
SUBROUTINE COSTF(P,X,Y,F,G,FP,FY,GP,GY,IFLAG,TO,WORK)
T e
C
IMPLICIT REAL#*8 (A=-H,C-%Z)
G
DIMENSION G(1),P(1),X(1),Y(1),FP{1),¥F¥(1),GP(25,25),GY(25,25)
DIMENSION WORK(1)
COMMON/CTRMPP/GRID(15,5),8TIFF(15,5),U(15,5,5),A(15,5,5),
1 B(15.5.5),6{15,5,5),UL{15,5,5%,U0(15 ,/5,5),
2 UH(15:15,5,5) ;
32 AH(15,15.58.5) BHL5,T15 5. 59 JEHILS 15 550k
4 DESP(10),YDUM(70),TOL, INTERV,KONTRL,KNOT(5) ,NP,NY,
5 IDUM(3),
6 LDUM(21)
COMMON/BNDVAL/VF , GAMMAT ,HF
C ...
G NOTE: THE LEADING DIMENSION ON GP AND GY MUST MATCH THAT IN
C THE DRIVING PROGRAM FOR DG--HERE 38
C ___
LOGICAL LDUM
C
IF (IFLAG .EQ. 1) GO TO 20
o
G CCMPUTE THE COST FUNCTION
G
F = DESP{1)
G
G COMPUTE CONSTRAING VECTORS:
g PSI11=V-VI,PSI2=GAMMA-GAMMAF ,PSI3=H-HF
C
G(1) = (Y(1)=-VF)/VF
G(2) = Y(2)-GAMMAF
G(3) = (Y(3)-HF)/HF
C
G
GO TO 350
C
G IFLAG = 1 PREPARE INITTAL CONDITIONS OF ADJOINT VARIABLES
C
20 CONTINUE
C FORM FY (DFDZ)--ALL SHOULD BE ZERO--THESE ARE SET IN TROMPP
€
C FORM GY (DGDZ)~~-SUPPLY ONLY NON-ZERO VALUES
c

GY(1,1) = 1.0DO/VF

34

GY(2,2) = 1.0D0

GY(3,3) = 1.0DO/HF
C
c FORM FP (DFDP) DERIVATIVE OF F WRT DESIGN PARAMETER
C

FP(1) = 1.0D0
C
c FORM GP (DGDP) DERIVATIVE OF G WRT DESIGN PARAMETER
C ALL ARE ZERO
C

30 CONTINUE
RETURN
END

Subroutines EX1DT1 and EX2DT2, which are used to adjust the table size, are
given in [3]

Subroutines EX1DT1 and EX2DT2, which are used to adjust the table size, are
given in [3]

Subroutines FATM for determining the density and airspeed:

C
C

- e s m D EY EE WE AN s S D S RS SR SR e s e e e R e e S R W e N SN S e S S e e e N R R M A W MR R M e M e e e e e e e o

- WS N S M e mm T e e R W A AN M R W A R R R e e R e R M R AW Me RS A e e e em A S M W e AR e

PURPOSE: COMPUTES DENSITY AND AIRSPEED AND THEIR DERIVA-
TIVES FOR USE IN FTRIEB AND FCW.

STRUCTURE: USER SUFPPLIED

CALLING PARAMETERS:

H ALTITUDE
RETURNED PARAMETERS:
RHO DENSITY
ASP SPEED OF SOUND
DRHODH DERIVATIVE OF DENSITY WRT ALTITUDE
DASPDH DERIVATIVE OF SPEED OF SOUND WRT ALTITULE

COMMENTS : MODIFIED FROM PROGRAM BY K.H. WELL
MODIFICATIONS 6.11.81
COMMONS DELETED, ATMOSPHERE SELECTION INTERNAL,
CALLING SEGUENCE ADDED, PRINT STATEMENT INTERNAL
ADAPTATIONS: M.K. HORN, MAY, 1982

S n At aadoa ncannce o B o

IMPLICIT REAL*8 (A-H,0-Z)

DATA RHOOA,FR2,FR5,FREXP/

#,124921D0, .22559307019D-04 , . 34025855254D+03 ,4 . 25612D0/

DATA RHOO,CK1,CX2,CK3,CK&,CKS,CK6/
*1.249152361D-01,1.02280550D0 ,1.21226930D-01,-3.48643241D-02,
*3.50991865D-03, -8.33000535D-05,1.15219733D-06/

Q

DATA IATMO/2/

ATMCSPHAERE WIRD IN JEDEM FALL ANALYTISCH BERECHNET
ANALYTISCHE AUSDRUECKE :

oOaaaan

G0 TO (10,20),IATMO

]

10 TR=1.D0-FR2*H
RHO=RHOOA*TR**FREXP
SQTR=DSQRT(TR)
ASP=FR5%8QTR

DTRDH=-FR2
DRHODH=FREXP*RHO/TR*DTRDH
DASPDH=FR5%*.5D0/SQTR*DTRDH
RETURN

20 CONTINUE _
T=((3.72D-12%H+.1933D-6)*H-8§.877D-3)*H+292. 1D0
IF (T.LT.0.D0) PRINT 1500
5QT=DSQRT(T)
ASP=20.0458D0*SQT
HEM=H*%1.0D-03
POL=HKM* (CK3+HKM* (CK4-+HKM* (CK5+HKM*CK6)))
PHI=CK1*DEXF (-POL)
REO=RHOO0*DEXP (- (CK1+CK2*HKM-PHI))

@]

DTDH=(2.D0%*3.72D~12%H+2.D0%*,19330~6)*H-8.877D-3
DASPDH=DTDH*10.0234D0/SQT

DPHIDH=-PHI* (CK3+HEM* (2. DO*CR4+HKM* (5. DOFCK5+HKM*4 . DO*CK6)))
DRHODH=-RHO* (CK2-DPHIDH)*1.0D-03

1500 FORMAT(//,' ERROR IN FATM--T .LT. 0',/)

RETURN
END

Subroutines FDRAG for determinin tha drag and partial derivatives

SUBRCUTINE FDRAG(IPD,AM,CA,V,.H,S,RHO,DRHODH,A,DADH,
1 DRAG, DDRDV , DDRDH , DDRDCA)

AR OEORGGRE GO NN aE G a et a e aan G e G IE e O 5 0I5 LG O 63 03 G LA CF T G 0 1o G @ @

e e e e e e Em s S S Um S e e e SR Gm Gm T e e R e e SN M S A e e e e S S SR SR TH T D SN SR M SD SR NN NN S SN AR Se S e e S S M Em E a m am

PURPOSE:

MOPE 1:

(IPD=0) COMPUTATION OF DRAG USING LINEARLY INTERPCLATED
VALUES FROM TABLES SET IN SUBROUTINE TABLE.

MODE 2:

(IPD=1) COMPUTATION OF DRAG AND ITS PARTIAL DERIVATIVES
WITH RESPECT TO VELOCITY, ALTITUDE, AND LIFT COEFFICIENT.

NOTATION:
SOME OF THE NOTATION IN TH& FROGRAM IS IN CERMAN (DUE TO

HISTCRICAL REASONS IN DEVELOPING THE SOFTWARE). THE FOLLOWING
CONVERSION TASLE IS GIVEN:

ENGLISH NOTATION GERMAN NOTATION
CL CA
CD Cw
CDO Cwo
DCD (DELTA CD) DCW
STRUCTURE : USER SUPPLIED

INPUT PARAMETERS:
IFD MODE OF OPERATICN

IPD = 0, DRAG IS COMPUTED
IPD = 1, ODRAG AND PARTIAL DERIVATIVES ARE
COMPUTED
AM HACH NUMBER = V/A
CA LIFT COEFFICIENT
v VELOCITY
H ALTITUDE
8 PLANFORM AREA
RHO ATR DENSITY
DRHODE DERIVATIVE OF DENSITY WRT ALTITUDE
A SPEED OF SO0UND
DADH DERIVATIVE CI' SPEED OF SOUND WRT ALTITUDE
UTPUT PRARMETERS:
DRAG VALUE OF DRAG
DDRDV DERIVATIVE OF DRAG WRT VELOCITY
DORDH DERIVATIVE OF DRAG WRT ALTITUDE
DDRDCA DERIVATIVE OF DRAG WRT LIFT COEFFICIENT

COMMENTS:
TWO TABLES ARE USED: TABLEl GIVES CWO0 IN TERMS OF AM (AND H)
(ACTUALLY CONSTANT IN H)
TARLEZ GIVES DCW IN TERMS OF AM AND CA

PROGRAMMER: M.K. HORN, MAY 1982

IMPLICIT REAL*8 (A-H,0-Z)

CCMMON/TABLE1l/ AM1(26), TAB1(26)
COMMON/TABLE2/ AM2(24), CA2(35),TAB2(24,35)
COMMON/TLIMIT/INDIC(4,2) ,NTE(4,2) ,NCOMP(4) ,NTABLE

COMMON/CON1/EML1,KMUL
COMMON/CON2Z /KML2 ,KMU2 ,KCAL2 ,KCAU2

COMMON/FSTEP/ITOPH
COMMON/EMERG,/KPRINT

DATA JPRINT/0Q/

o e M e am an e s A s Em mm ew M e S T VN ER RN AN M S S A S S MR D S Em e S S W M Sm Sm 4P M SN S N LG SN NS R NS BN Am Am Mm MmO e M A e e

- s e N BE Em T B B e e e ee A A e R e S ke S e e e e S A e e e e e em A e em e e S RN W R SR TN G M R D M ED D R RN SR M e e e e S e

VAL2D1(P,Q,F00,F10,F01,F11) = (1,0D0-P)*(1.0D0-Q)*F00 - P*(1.0D0
1 -Q)*F10 + Q*(1.0D0-P)*F01 + P*Q*F11

PART11(F1,F0,X1,X0) = (F1 - F0)/(X1-X0)

RATIO(AX,Al,A2) = (AX-A1l)/(A2-Al)

1]

PARTV1(Q,DELTALl,FO0C,F10,F01,F11) ((F10-F00)*(1.D0 - Q)
1 + (F11-F01)*Q) / DELTA1l

PARTV2(P,DELTA2,¥00,F10,701,F11) ((FO1-F00)*(1.D0 - P)
1 + (F11-F10)*P) / DELTA2

e Em e s EE e Em G Sm A G e e G M e Gm TR S e e S G e e e A em M R R S MR M T TE SN MM e e G B MM S M W em S NE M e me e e

IPRINT = O
IF (JPRINT .EQ. 1) IERINT = ITOPH

20 CONTINUE

o ol O O om0 . U O o, o Al ol Al N, " i

s m s Am s e e m e e e hm S A mm E M e Y TR M Sm ew B BS R M WM Gm Gm M A s Y SN S A A Bm Am Em Y MR M W M NN e N W Sm G N Am W Gm Sm W am em m o m

DCWODM = PART11(TAB1(KMU1),TABI(KML1),AM1(KMUL),AM1(RML1))
CWO = TAB1(KML1) + DCWODM*(AM - AM1(KML1))

rm o e e e e e e Em em ma e mm e S MmN R e S S S M R LD MR NN A N A R m e EM M Em e e e R NS M Sa MM ML W MmN M Ew E m W M M e e

RATIO(AM, AM2(KML2), AM2(RMUZ))
RATIO(CA,CA2(KCALZ) ,CA2 (KCAU2))

= VAL2D1({P,Q,TAB2(KML2,KCAL2),TABZ (KMU2,KCAL2),
1 TAB2 (KML2 ,KCAU2) ,TAB2 (KMUZ ,KCAU2))

W B

38

DRAG = 0.50D0 * RHQ * V¥V * § * CW

IF (IPD .EQ. 0) GO TD 50

- e e e e em e e e S m Em S W S M A Em e A R SN S SN e A S Em SN R Sm Sm GS R G Sn S SE R NN SN MR am e e e e w E mm v S R A m m e o m

e v o w wm e Em e e S e N S Sm AR RS T SR D M D SN D AN SD W MW MW R M e e e Em Sm S R e e e SR R NN RE NN SN G A M M RN Mm e A am e R

o e e S R e e En Ew e M AE S M SH EP ST BN TS SR M N NN G SN G S M SN R NS S e S S M B SR AN SN SR W e e Sm Tm M Em GH SN M S N Gm Bm M s am S m am Em ma s

THESE PARTIAL DERIVATIVES ARE NEEDED ONLY IN THE RACKWARD
INTEGRATION--RETURN IF IPD = 0

NOTE: D(CW)/DCA = D(DCW)/DCA SINCE CWO IS INDEPENDENT OF CA.

DELTM = AM2(KMU2) - AM2(KML2)
DELTCA = CA2(KCAU2) - CAZ({KCAL2)
DDCWDM =PARTV1(Q,DELTM, TAB2(KMLZ,KCALZ2),TAB2(KMU2,KCALZ),

aOOoaooaooaoaoooaan

1 TAB2 (KML2 ,XKCAU2) ,TAB2 (KMU2 ,XKCAU2))
DCWDCA =PARTV2(P,DELTCA,TAB2 (KML2,KCAL2),TAB2(KMU2,KCAL2),
1 TABZ (KML2 ,KCAUZ) ,TAB2 (KMU2 ,KCAU2))

DCWDM = DCWODM + DDCWDM
DMDV = 1.0DO/A
= -V (A%K)
DDRDCA = 0.50D0 * RHO * V * V #* S * DCWDCA
DDRDV = RHO*S*V*CW + 0.50D0*REO*S * V*V *DCWDM * DMDV
DDRDH = 0.50D0 * DRHODH * V*V * S *CW
1 + 0.30D0 * RHO * V&V * 5 * DCWDM*DMDA*DADH
KPRINT = 0
IF (KPRINT .EQ. 1) PRINT 1300,DDRDCA,DDRDV,DDRDH
1300 FORMAT(' FROM FDRAG:',/,' DDRDCA=',D15.7,2X,'DDRDV=',D15.7,2X,
1 'DDRDH=',D15.7)
DWRTM1=(TAB2 (KMU2 ,KCAU2)-TAB2 (KML2 ,XCAU2))/DELTM
DWRTMO=(TAB2 (KMU2 ,KCAL2) ~TAB2 (KML2 ,KCAL2)) /DELTM
DWRTC1=(TAB2 (KMU2 ,KCAU2)-TAB2 (KMU2 ,KCAL2)) /CELTCA
DWRTCO=(TAB2 (KML2 ,KCAU2)-TAB2 (KML2 ,KCAL2))/DELTCA
IF (KPRINT .EQ. 1) PRINT 1302,DWRTM1,DCCWDM,DWRTMO
IF (KPRINT .EQ. 1) PRINT 1303,DWRTC1,DCWDCA,DWRTCO
1202 FORMAT(' CHECK DERIVATIVES:',/,' DWRTM1 = ',D15.7,2X,' DDCWDM = '

1 D15.7,2X,' DWRTMO = ',D15.7)
1303 FORMAT(' CHECK DERIVATIVES:',/,' DWRTC1 = ',D15.7,2X,' DCWDCA = ',
1 D15.7,2%,' DWRTCO = ',D15.7)

e W R G e L e Se e em s e S e e e e e e e e e e R em R MR A A M T R e e M W S M RN R MM e e N Mm MM TR R e Mmoo

30 CONTINUE

IF (IPRINT .EQ. 0) RETURN

T ED mm s B E S W SR M e em ew A R S LS N A R S S M M G M e a4 e S e ek R e o e we e e R e e e e R A eSS M e e e e e e e =

PRINT 51C,AM1(XKML1),TAB1(KML1).AM,CWO0,AM1(KMUL),TAB1(KMU1)
PRINT 512,AM2(KML2),CA2(KCAL2),AM,CA,AM2 (KMU2),CAZ (KCAU2)
PRINT 513,TAB2(KML2,KCALZ2),TAR2(KML2,KCAU2),
1 DCW,TAB2 (KMU2 ,KCAL2) , TAB2 (KMU2 ,XCAU2)

510 FORMAT(/,' IN FDRAG--TABLE 1 VALUES (CW0 = F(M))',/,

39

1 ' LOWER BOUND--M
g ! M
3 ' UPPER BOUND--M

'.,D23.16,2X, 'CWO
',D023.16,2X, 'CWO
',D23.16,2%, 'CWO

L i T P O
',D23.16,/,
',D23.16,//)

mono
nnn

&
512 FORMAT(/,' IN FDRAG--TABLE 2 GRID VALUES il
1 ' LOWER BOUND--M = ',D23.156,2X, ' CA = ',D23.16,/,
g M= "',D23.16,2X, ' CA = ',D23.16,/,
3 ' UPPER BOUND--M = ',D23.16,2X, ' CA = ',D23.16,//)
G

513 FORMAT(/,' IN FDRAG--TABLE 2 VALUES (DCW = F(M,CA))',/,

1 ' LOWER = ',D23.16,5X,' UPPER = ',D23.16,/,

Z ' DCW = ',10X,D23.16,/,

3 ' UPPER = ',D23.16,5X,' UPPER = ',D23.16,/)
C

RETURN

END

Subroutines FTRIEB for determinin the thrust and partial derivatives

SUBROUTINE FTRIEB(IPD,AM.H,V,A,DADH,DELTA,TMAX,
1 SFC,THRUST,DSFCDV,DSFCDH,DTHRDV ,DTHRDH)

e e e e SE R S em N N SR R AR R @ SR R Fm e s Em e A e A S En M RN D D RN D S D R SR AR R D TE TR M e e G N G e S e N NN e e e Sa e e e e

PURPOSE :
MODE 1: (IPD=0)
FTRIEB COMPUTES SFC AND THRUST USING LINEARLY INTERPOLATED
VALUES FROM TABLES SET IN SUBROUTINE TABLES.

MODE 2: (IPD=1)

TPTRIEB COMPUTES SFC AND THRUST, AND THEIR PARTTIAL DERIVA-
TIVES USING LINEARLY INTERPOLATED VALUES FROM TABLES SET
IN SBUBRCUTINE TABLE. :

NOTATION:
SOME CF THE NCTATION IN THE PROGRAM IS IN GERMAN (DUE TO

HISTORICAL REASONS IN DEVELCPING THE SOFIWARE). THE FOLLCWING
CONVERSION TABLE IS GIVEN:

ENGLISH NOTATION GERMAN NOTATION
CTI CsI
STRUCTURE : USER SUPPLIED

INPUT PARAMETEES:

iPD MODE OF OPERATION
IPD=0, §SFC AND THRUST COMPUTED
IFD=1, S8FC, THRUST AND PARTIAL DERIVA-
TIVES COMFUTED
&M MACH NUMEER = V/A
H ALTITUDE

(o I ot T o T 0 T oo T e T O e T T e 1 e A e T v A e R A T o 4 T o L T i o A 1 o T e N o B > T o B @ I o B o

oo aoaoaooOoaoaooaooaaooaaa

(W@

40

v VELOCITY

A SPEED OF SOUND

DADH DERIVATIVE OF SPEED OF SOUND WRT ALTITUDE
DELTA POWER SETTING (CONSTANT)

TMAX CONSTANT (MAXIMUM THRUST)

CUTPUT PARAMETERS:

SFC SPECIFIC FUEL CONSUMPTION

THRUST THRUST

DSFCDV DERIVATIVE OF SFC WRT VELOCITY

DSFCDH DERIVATIVE OF SFC WRT ALTITUDE

DTHRDV DERIVATIVE OF THRUST WRT VELOCITY

DTHRDH DERIVATIVE GF THRUST WRT ALTITUDE
TWO TABLES: TABLE3 GIVES SFC = TAB3(AM,H)

TABLE4 GIVES CSI = TAB4(AM,H)

THRUST = TMAX*CSI*DELTA, DELTA = POWER SETTING
(CONSTANT)

PROGRAMMER: M.X. HORN, MAY, 1982
MAJOR SIMPLIFICATIONS FOR TOMP (6.11.81)

D T e e e T T T T T L

IMPLICIT REAL*8 (A-H,0-Z)

COMMON/TABLE3/AM3 (26), H3(11),TAB3(26,11)
COMMCON/TABLE4/ AM&4(26), HA4(11),TAB4(26,11)
COMMON/TLIMIT/INDIC(4,2),NGE(4,2) ,NCOMP(4) ,NTABLE

COMMON/CON3 /KML3 , KMU3 , KHL3 , KHU3
COMMON/ CON4 / KML4 , KMU4 , KEL4 , KHUS

COMMON/FSTEP/ITOPH
COMMON/EMERG/KPRINT
DATA JPRINT/0/

e e e e S MR R MDD e e S SR R e S e e e T R M A e e e e e M M S R MR W N S SR e e e e e e e Mmoo W e

VAL2D1(P,Q,F00,F10,F01,F11) = (1.0D0-P)*(1.0D0-Q)*F00 + P*(1.0DO
i -Q)*F10 + Q*(1.0D0-P)*F01 + P*Q*F1l1

PART11(F1,F0,X1,X0) = (F1-F0)/(X1-X0)

RATIO(AX,A1,42) = (AX-Al)/(A2-Al)

PARTV1(Q,DELTA1,F00,F10,F01,F11) ((F10-F00)*(1.D0 - Q)
i + (F11-F01)*Q}; / DELTA1l

1]

PARTV2 (P,DELTA2,FC0,F10,F01,F11) = ((FO1-F00)*(1.D0 - P)
1 + (F11-F10)*P) / DELTA2

H

T I T T T T T e e e T T

IPRINT = 0

41

IF (JPRINT .EQ. 1) IPRINT = ITOPH

e i e o v e o e RD RS YR M S G S e G R AR G e S R SR 44 S E3 SV Sm S A E En R e RE M W em D SN A M R A A Em S A B Sm A Gm Em M R M R As W e

= e Ew Em B e e W T em e em e e e e e ey S . mw me e M e R R B e P W MR e M M e SN e e A S A SN e MmN e e Em A 63 W S e e e

= RATIO(AM,AM3(KML3),AM3(KMU3))
QCSI = RATIO(H, H3{KHL3), H3(KHU3))
C5I = VALZD1(PCSI,QCSI,TAB3(KML3,KHL3),TAB3(KMU3,KHL3),
1 TAE3 (KML3,XHU3) ,TAB3 (KMU3 ,KHU3))
THRUST = TMAX * CSI * DELTA

= s e ea A SN S R R Em w S s em S Em e M S T TR W R A D W T UM e M A S e RS MR Tm 4D R SN M SD A Ss SE S BE R S MR s e e SR R SS e S e tm o W M am em

= RATTO(AM,AM4 (KML&) , AM& (RMUS))
QSFC = RATIO(H, H&4(KHL4), H4(KHUL))
SFC = VAL2D1(PSFC,QSFC,TAB4 (KML4 ,KHLA) , TAB& (RMU4 , KHLA)
1 TAB4 (KML4 ,KHUA) , TAB4 (KMU& , KHUZL))

= e e m e e e Ee A AE A s A% Em Un e e A M M e e TN AR A R Sm Sm P8 e Em O Sm BN W M e SN SN N SN S e A e MR SR G e e AR e e R e v e e e o e e

. e S SN B SE EE R SR A N M N W MM M R A Sa R S AR Y G M TE AR A AN R SA R S SR AR SR SR S SR e e S e e e S e Y e M e G M TE EE e Sm e em e e

om e am e mm i e e e e G m s G R PW R MR SR D Sm AD Sn A D N A GRS N A A U An e G Sm W Nm MY NN MM W NS R Sy Sm VR 4m W N GW Am EN e i G SN e

B T T T T T e SN S S S

DELTM = AM3(XMU3) - AM3(KML3)

DELTH H3(KHU3) - H3(KEL3)
DCSIDM = PARTV1(QCSI,DELTM ,TAB3(KML3,KHL3),TAB3(KMU3,KHL3),
1 TAB3 (KML3,KHU3) , TAB3 (KMU3 ,KHU3))
DCSIDH = PARTV2(FCSI,DELTH ,TAB3(KML3,KHL3),TAB3(KMU3,KHL3),
1 TAB3 (KML3,KHU3) , TAB3 (KMU3,KHU3))
DELTM = AM4(KMU4) -~ AM&4(RMLAG)
DELTH = H4(KHU3) - H&4(KHL3)
DSFCDM = PARTV1(QSFC,DELTM ,TAB&4 (KML4,KHL&4) ,TABSG (KMUL,KHLA) ,
1 TAB& (KML4 , KHUSG) , TAB4 (KMU4 , KHU4))
DSFCDH = PARTV2(PSFC,DELTY ,TAB&4(KML&4,KHLA4),TABL (KMU4 ,KHLG),
1 TAB4 (RML& , KHU4) , TAB4 (RMU4 , KHUG))
DELTM = AM3(RMU3) - AM3(KML3)
DELTH = H3(KHU3) - H3(KHL3)

DWRTM1=(TAB3 (KMU3 , KHU3) -TAB3 (KML3 ,KHU3)) /DELTM
DWRTMO=(TAB3 (KMU3 ,KHL3) -TAB3 (KML3,KHL3)) /DELTM
DWRTH1=(TAB3 (KMU3,KHU3) -TAB3 (XMU3,KHL3)) /DELTH
DWRTHO=(TAB3 (KML3 ,KHU3) -TAB3 (KML3,KHL3)) /DELTH
KPRINT = 0

IF (KPRINT .EQ. 1) PRINT 1302,DWRTM1,DCSIDM,DWRTMO
IF (KPRINT .EQ. 1) PRINT 1303,DWRTH1,DCSIDH,DWRTHO

DELTM AML (RMUL) - AM4 (KML4)
DELTH H4 (KHUG) - HL4(KHLG)
DWRTM1=(TAB4 (KMU4 ,KHU4) -TAB4 (KML4 ,KHU4)) /DELTM
DWRTMO=(TAB4 (KMU4 , KHL4) ~TAB4 (KML4 ,XKHL4)) /DELTM
DWRTH1={TAB4 (KMU4 ,KHU4) -TAB&4 (XMU4 ,XHL4)) /DELTH
DWRTHO=(TAB4 (KML4 , KHU4) -TAB& (KML4 ,KHL4)) /DELTH
IF (KPRINT .EQ. 1) PRINT 1304,DWRTM1,DSFCDM,DWRTMO
IF (XPRINT .EQ. 1) PRINT 1305,DWRTH1,DSFCDH,DWRTHO

1302 FORMAT(' CHECK DERIVATIVES:',/,' DWRTM1 = ',D15.7,2X,' DCSIDM = ',
1 D15.7,2%," DWRTMO = ',D15.7)

1303 FORMAT(' CHECK DERIVATIVES:',/,' DWRTH1 = ',D15.7,2X,' DCSIDH = ',
1 D15.7,2X," DWRTHO = ',D15.7)

]

42

G .
1304 FORMAT(' CHECK DERIVATIVES:',/,' DWRTM1 = ',D15.7,2X,' DSFCDM = ',
1 D15.7,2X," DWRTMO = ',D15.7)
1305 FORMAT(' CHECK DERIVATIVES:',/,' DWRTH1 = ',D15.7,2X,' DSFCDH = ',
1 D15.7,2¥,' DWRTHO = ',D15.7)
c
DMDV = 1.0D0/A
DMDA = -V/(A*A)
C
c ---
C ...
DSFCDV = DSFCDM * DMDV
DSFCDH = DSFCDH + DSFCDM*DMDA*DADH
&
DTHRDV = TMAX * DCSIDM * DMDV * DELTA
DTHRDH = TMAX * (DCSIDH + DCSIDM*DMDA*DADH) * DELTA

IF (KPRINT .EQ. 1) PRINT 1300,DTHRDV,DTHRDH

IF (KPRINT .EQ. 1) PRINT 1301,DSFCDV,DSFCDH
1300 FORMAT(' IN FTRIEB:',/,' DSFCDV=',D15.7,2X, 'DSFCDE=',D15.7)
1301 FORMAT(' IN FTRIEB:',/,' DTHRDV=',D15.7,2X,'DTHRDH=',D15.7)

C ...
IF (IPRINT .EQ. 0) RETURN
C ___
g PRINT OPTIONS FOR SAFETY CHECKS
C ___
PRINT 510,AM3(XML3), H3(KEL3),AM, H,AM3(KMU3), H3(KHU3)
PRINT 511,AM&(XML4), H3(KHL4),AM, H,AM4(KMU4), H4(KHU&L)
PRINT 512,TAB3(KML3,KHL3),TAB3 (KML3,KHU3),
1 CSI,TAB3(KMU3,KHL3) ,TAB3 (KMU3,KHU3)
PRINT 513,TAB4(KML4,KHL4) , TAB4 (KML4 ,KHU4) ,
1 SFC,TAB4 (KMU4 ,KHLA) , TABL (KMU4 , KHU4)
®
510 FORMAT(/,' IN FTRIEB--TABLE 3 GRID VALUES ¥l s
1 ' LOWER BOUND--M = ',D23.16,2X, ' H = ',D22.16,/,
g M="',D23.16,2¥, ' H = '",D23.16,/,
3 ' UPPER BOUND--M = ',D23.16,2¥%, ' H = ',D23.16,//)
C

511 FORMAT(/,' IN FTRIE
1 ' LOWER BOUND--M
2 M
3 ' UPPER BOUND--M

--TABLE 4 GRID VALUES gy
',D23.16,2%X, ' H = ',023.16,/,
',D23.16,2X, ' H = ',D23.16,/,
',D23.16,2X, ' H = ',D23.16,//)

L B [= =

512 FORMAT(/,' IN FTRIEB--TABLE 3 VALUES (CSI = F(M, H))',/,
' 1

i LOWER = ',D23.16,5X," UPPER = ',D23.16,/,
2 ' ¢sI YIOE D28 16.7,
3 " UPPER = ',D23.16,5X,' UPPER = ',D23.16,/)
g
13 FORMAT(/.' IN FTRIEB--TABLE 2 VALUES (SCF = F(M, H))',/,
1 ' LOWER = ',D23.16,5X," UPPER = ',D23.16,/,
2 ' 8FC Y, 10X . D28, 16,7,
3 " UPPER = ',D23.16,5X,' UPPER = ',D23.16,/)
.
RETURN

END

43

Subroutine INITBD sets initial bounding values for the SURPHI subroutine

A S e MR R E S MR e S T e e N e e W S R R M S M S T M RN R SN NN AR e eSS e S e M e R R e ew e e e e

PURPOSE: INITBD SETS THE BOUNDING VALUES FCR THE TRAPPING
PARAMETERS BEFORE THE INTEGRATION BEGINS.

STRUCTURE: STANDARD (USER-SUPPLIED DIMENSIONS IN COMMON BLOCKS.
SEE PHI DESCRIPTION.)

INPUT PARAMETERS:

NTRPR DIMENSION OF BOUNDL AND BOUNDU VECTORS
OUTPUT PARAMETERS:

BOUNDL(J) LOWER BOUND ON TRAPPING PARAMETER NUMBER J

BOUNDU(J) UPFER BOUND ON TRAPPING PARAMETER NUMBER J

PROGRAMMER: M.K. HORN, DFVLR-OBERPFAFFENHOFEN, AUGUST, 1982

aaaoaaaoaaoaoaoaoaonaaaoaaaanan

e e e S e SN A N SR Sm e R MmN R NN SR MR G e e S e M R AN S M A e A M SN S M NN S S TR A e A e RS A e R AR R N e W S R e e

IMPLICIT REAL*8 (A-H,0-Z)

¢
DIMENSION BOUNDL{NTRPR) ,BOUNDU(NTRPR)

C ---
COMMON/TLIMIT/INDIC (4,2) ,NGE(4,2),NCOMP(4) ,NTABLE
COMMON/GRIDBD/GRIDL(4, 2),8RIDU(&, 2),IBL(4, 2),IBU(4, 2)

DATA IPRINT/O/

C ---

c INITIALIZATION BLOCK:

C ---

c

c BOUNDS GRIDL AND GRIDU ARE SET IN TABLIM (ALREADY REFERENCED)

c BEFORE EACH INTEGRATION BEGINS. BOUNDU(I) AND BOUNDL(I),

c I=1,...,NTRPR, MUST BE SELECTED FROM THESE VALUES.

c
DO 10 II = 1,NTRPR

c
ISET = 0
DO 10 ITABLE = 1,NTABLE
LIMIT = NCOMP(ITABLE)

DO 10 ICOMP = 1,LIMIT

C
IF (II .NE. INDIC{ITABLE,ICOMP)) GO TO 10
IF (ISET .GT. 0) GO TO 8

c

& NO BOUNDS HAVE BEEN SET YET FOR TRAPPING PARAMETER "II"

c
BOUNDL(II) = GRIDL(ITABLE,ICOMP)

BOUNDU(II) = GRIDU(ITABLE,ICOMP)
ISET = 1
GO TO 10
C
8 CONTINUE

o [o W e |

BOUNDS HAVE BEEN SET FOR TRAPPING ?ARAMETER "I1"--COMPARE THESE
WITH THOSE FOR TABLE "ITABLE" COMPONENT "ICOMP"

IF (GRIDL(ITABLE,ICOMP) .GT. BOUNDL{II)) BOUNDL(II) =
1 GRIDL(ITABLE,ICOMP)
I¥ (GRIDU(ITABLE,ICOMP} .LT. BOUNDU(II)) BOUNDU(II) =
1 GRIDU(ITABLE,ICCMP)
10 CONTINUE

IF (IPRINT .EQ. 0) GO TO 14
PRINT 1588, (J,BOUNDL(J),J,BOUNDU(J),J=1,NTRPR)
1588 FORMAT(' INITIAL BOUNDS BEFORE INGRATION BEGINS:',/,
i (5X,'BOUNDL',I2,') = ',D15.7,2X, 'BOUNDU',I2,"') = ',D15.8))
14 CONTINUE '

RETURN
END

Subroutine INSERT, in conjunction with QROOT, is given in [3]

Subroutine LIFTC, determines the value of the lift coefficient

(0 [@ I B o I o T @ B 5 B 0 [l 5 B o

145

A om e e M AR W A TE Oh R G e A G G S S AN R M S M e e S e e S e S e A S e e e e e e SR RS R T te SN A e S S W Em e Em e W e A

LIFT COEFFICIENT GENERATOR USING CUBIC SPLINE COEFFICIENTS FROM
TOMP

SUBROUTINE LIFTC(IDERIV,T,CA,DCADT,NCDE)

IMPLICIT REAL*8 (A-H,C-2Z)

COMMGN/CTRMPP/GRID(15,5),8TIFF{15,5),U(15,5,5),4(15,5,5),

1 B(15,5,5),C(15,5,5),UL(15,5,5),UU(15,5,5),

2 UH(15,15,5,5),

3 AH{15.,15,5,5) ,BH{15.15 .5, 5}, 0H{15 15,5, 5%

& P(10),Y(70),TCL, INTERV,KONTRL,KNOT(5) ,NP,NY,
5 IDUM(3),

6 LDUM(21)

LOGICAL LDUM

NOTATICN:

SOME OF THE NOTATION IN THE PROGRAM IS IN GERMAN (DUE TO
HISTORICAL REASONS IN DEVELOPING THE SOFTWARE). THE FOLLOWING
CONVERSION TABLE IS GIVEN:

ENGLISH NOTATION GEREMAN NOTATION
CL CA

THERE IS ONLY ONE INTERVAL. THUS, T DOES NOT HAVE TG BE LOCATED
WITHIN THE INTERVAL MESHES. EACE INTERVAL "I" HAS KNOT(I)NODES.

45

i R i e e L
C COMPUTE LIFT COEFFICIENT (WITHOUT PARAMETER DISTURBANCE)
[
C

CA = SPLINT{KNOT(1),GRID(1,1),U(1,1,1),8TIFF(1,1),

1 A(1,1,1),B(1,1,1),0(1,1,1),T)

IF (IDERIV .EQ. 0) RETURN

DCADT = DSPLNT(RNOT(1),GRID(1,1),U(1,1,1),STIFF(1,1),

1 A(1,1,1),B(1,1,1),C0(1,1,1),T)
c ---
C JCADT (WRT TIME) MUST BE SCALED BY 1/TFINAL = 1/P(1)
[e e e e R

DCADT = DCADT/P(1)
C

RETURN

END

Subroutine LOCATE, determines the bracketing indices for locating a parame-
ter in a given vector array

L e e R R e e e e e e e e E T T I

e e T S ———

PURPOSE :
SUBROUTINE LOCATE CHOSES MPT AND NPT SO THAT AV IS
BRACKETED BY VECTOR(MPT) AND VECTOR(NPT), MPT = NPT - 1 .
BOUNDS: BNDL= VECTOR(MPT), BNDU=VECTOR(NPT) ARE
ARE RETURNED.

STRUCTURE : STANDARD (NO USER CHANGES)

INPUT PARAMETERS:
NPTS DIMENSION OF ARRAY VECTOR
VECTOR VECTOR ARRAY, DIMENSIONED NPT
AV THE VALUE TO BE LOCATED IN ARRAY VECTOR
ITABLE TABLE BEING ANALYZED (FOR PRINT STATEMENTS)
ICOMP CCMPONENT OF TABLE #ITABLE BEING ANALYZED

CUTPUT PARAMETERS:

MPT INDEX VALUE BRACKETING AV
NPT INDEX VALUE BRACKETING AV, NPT > MPT
BOUNDL VECTOR (MPT)
BOUNDU VECTOR(NPT)
LABRELING:
deshlmfesesldeyeedd Tedevedevreent iy {)
----------- B T T e L e T T
VECTOR(1) VECTOR(2) VECTOR(3)

ALL POINTS '"+" HAVE NPT=3, MPT=2 .
POINT "0" HAS NPT=4, MPT=3

Ocaoaoaoaooaoaoaaaaoaaoaaooaoaaooaoaoaooanan

REQUIREMENTS : ,
VECTOR ENTRIES SHOULD BE DISTINCT AND SHOULD BE IN ASCENDING
ORDER.

COMMENTS:

IF AV LIES OUTSIDE OF THE GRID, A WARNING WILL BE PRINTED,
AND THE PROGRAM WILL TERMINATE. USER MUST THEN EXTEND THE
TABLES (USING, E.G., EXT1D, EXT2D, OR EXT3D) TO CONTINUE.

USER CHANGES: NONE

PROGRAMMER: M.K. HORN, DFVLR-OBERPFAFFENHCFEN, MAY, 1982

IMPLICIT REAL#*§ (A-H,0-2)
DIMENSION VECTOR(NPTS)

(oo Gl o B g 1 o il o 1 o o W B e il T o Y o i B o (R o B

IF (AV .LT. VECTOR(1) .OR. AV .GT. VECTOR(NPTS)) GO TO 100
DO 10 I = 2,NPTS
IF (AV .LT. VECTOR(I)) GO TO 30

10 CONTINUE

30 CONTINUE
NPT =1
MPT = I-1
BNDL = VECTOR(MPT)
BNDU = VECTOR(NPT)
RETURN

100 CONTINUE

PRINT 1500
PRINT 1501,ITABLE, ICOMP,AV,VECTOR(1),NPTS,VECTOR(NPTS)
1500 FORMAT(//,' DIFFICULTIES IN TABLE ',I3,3X,'WITH COMPONENT ',I3,
/,' VALUES ARE QUTSIDE CF THE TABLE GRID.',//,
' THE PROGRAM WILL TERMINATE.',//,' THE USER SHOULD CALL',
' TABEXT TO EXTEND THE TABLE,'/,' UNLESS THE LIMITS ARE',
' ALREADY REDICULOUSLY LARGE.',//)
1501 FORMAT(/,' TABLE= ',I2,2X,'ICOMP= ',I2,' PARAMETER=',D23.16,/,
' YECTOR(1) = ',D23.16,2X, "VECTOR(' ,13,") = 7,
2 D23.16,///,"' TERMINAL ERROR',//)
STOP
END

£ L=

—

Subroutine MATRX1, MATRXZ used in conjunction with RHS evaluation to multiply
matrices

SUBROUTINE MATRX1(NEQN,Y,SCPROD, ISHIFT,B)

*NoNesNeNeEesRsNoNeoNoNeNoNs NN Re NP Q (@] oo oaaoaaaQcan

(]

47

PURPOSE: FORMS SCALAR PRODUCT

DIMENSICNS: B =4 X 1 , Y COMPONENTS USED 1,...,4
'

SYSTEM: SPRCD = B Y IS5 FORMED

NOTE :

SUBSCRIPTS ARE SHIFTED BY THE AMOUNT "ISHIFT" IN RHS
I.E., Y(ISHIFT+1),...,Y(ISHIFT+4) ARE USED IN GENERATING SCPROD

PROGRAMMER: M.X. HORN, JUNE, 1982

IMPLICIT REAL*S (A-H,0-2)
DIMENSION Y(NEQN)
DIMENSION B(4)

DATA LIMIT/&/

SCPROD = 0.0DOC
DO 55 J = 1,LIMIT

535 SCPROD = SCPROD + B{J)*Y(J+ISHIFT)

RETURN
END

""" SUBROUTINE WATRX2 (NEQN,Y,YP,ISHIFT,&
PURPOSE: PERFORMS MATRIX MULTIPLICATION
DIMENSIONS: A =4 X & , Y COMPONENTS USED 1,...,4
SYSTEM: YP =AY IS FORMED
NOTE :

SUBSCRIPTS ARE SHIFTED BY THE AMOUNT "ISHIFT"
I.E., YP(ISHIFT+1),...,YP(ISHIFT+4) ARE GENERATED USING
Y(ISHIFT+1), , Y(ISHIFT+4)

PROGRAMMER: M.X. HORN, JUNE, 1982

IMPLICIT REAL*8 (A-H,C-Z)

DIMENSION Y(NEGQN),YP({NEQN)
DIMENSION A(4,4)
DATA LIMIT/&4/

De 12 I = 1,LIMIT
YP(I+ISHIFT) = 0.0D0
DO 12 J = 1,LIMIT
12 YP(I+ISHIFT) = YP(I+ISHIFT) + A(I,J)* Y(J+ ISHIFT)

48

RETURN
END

Subroutine PART, for establishing and updating independent variable stops

C ---
C ___
SUBROUTINE PART(MODE,TPART1,NTPRT1,ISTOP1,TPART2,NTPRT2,ISTOP2,
1 FINTEG,NEQN,T,Y,YP)
C ___
C ___
IMPLICIT REAL*8 (A-H,0-72)
DIMENSION Y(NEQN),YP(NEQN)
DIMENSION TPART1(100),TPART2(100)
DIMENSION IPARTL(100),IPARTU(100)
C
DIMENSION TRPR(2),TRPRP(2)
DATA NTRPR/2/
DATA IPRINT/0/
DATA IZERO/1/,MODE2/2/,MORE3/3/,MODE&4/4/
c
COMMON/PRINTR/IPR
COMMON/CTRMPP/GRID(15,5),STIFF(15,3),U(15,5,5),A(15,5,5),
1 B(15,5,5),C6(15,5,5),UL(15,5,5),UU(15,5,5),
2 UH(15,15,5,5),
3 AM(15,15,5,5),BH(15,15,5,5),CH(15,15,5,5),
4 P(10),YDUM(70) ,TOL, INTERV,KONTRL,KNOT(5) ,NP,NY,
5 MOQP, IG,NPHI,
6 IMPULS , LDUM(29)
LOGICAL IMPULS,LDUM
€
C
COMMON/TLIMIT/INDIC(4,2) ,NGE(4&,2) ,NCOMP (&) ,NTABLE
COMMON/GRIDBD/GRIDL(4, 2),GRIDU(4, 2),IBL(&, 2),IBU(&, 2
COMMON/PARTV/PVECT(30) ,LPOINT(&, 2, 30),NPOINT
C
c
COMMON/CHCKCA/CLIFT
c
COMMON/TABLE1/T1P1(26), TAB1(26)
COMMON/TABLE2/T2P1(24) ,T2P2(35) ,TAB2 (24 ,35)
COMMON/TABLE3/T3P1(26),T3P2(11),TAB3(26,11)
COMMON/TABLE4 /T4P1(26) ,T4P2(11) , TABL (26,11)
&
COMMON/CON1/KL11,KU11
COMMON/CON2/KL21,KU21,KL22,KU22
CCMMON/CON3/KL31,KU31,KL22 . KU32
COMMON/CON4 /KL41 ,KUAL K142 , KUL2
LOGICAL FINTEG
g
IF (MODE .EQ. 2) GO TO 50
c

a0

aaoaaaa

0

49

MODE 1: CALL IS MADE BEFORE INTEGRATION BEGINS.
MAKE ANY NEEDED INITIALIZATION.
INITIALIZATION: TABLE LIMITS AT INITIAL CONDITIONS MUST BE
SET (FOR WHICH TRPR VALUES ARE NEEDED)

CALL PHIPAR(MODE2,NEQN,T,Y,YP,NTRPR,TRPR, TRPRP)

IF (.NOT. FINTEG) GO TO 45

INITIALIZE FORWARD INTEGRATION:

CALL TABLIM TO INITIALIZE INDICES FOR TABLE ANALYSIS
CLIFT = U(1,1,1)

CALL TABLIM(TRPR,NTRPR)

- e e e e R S e e e A M W e WS MR W AR W e e RS S S R e R S e e T e R S TE SE S M SR e e e e e e e M G

CALL PARTCA({TPART1,IPARTL,IPARTU,NTPRT1)
KL22 = IPARTL(1)
KU22 = IPARTU(1)
IF (IPR .NE. -1) GO TO 777
PRINT 775, (J,TPART1(J),J=1,NTPRT1)
775 FORMAT(' TPART1(',I3,') = ',D15.7)
777 CONTINUE

IF (.NOT. IMPULS) GO TO 15

IF (IG .NE. 2) GO TO 15

BACKWARD DIFFERENCING WILL BE USED TO FORM GRADIENTS. INITIAL-
IZE TPART2 VECTOR (PVECT AND RELATED PARAMETERS).

=.T. ==> BACKWARD DIFFERENCING IS USED.
2 ==> GRADIENTS ARE TO BE FORMED.

-t e v e S Ma s R e M e W TE T W W TE M WR W G AN BE S M S SH Sm A W SN AN S S m e e ew S N M G NN e S am M R R e e M W M

1l

LPOINT(TABLE ,COMP ,1) = KL"TABLE""coMpP"

LPOINT(1, 1, 1) = KL11
LPOINT(2, 1, 1) = KL21
LPOINT(2, 2, 1) = KL22
LPOINT(3, 1, 1) = KL31
LPOINT(3, 2. 1) = KL32
LPOINT (4, A 1) = KI&1
LPOINT (4, 5, 1) = Ki42
NPOINT = 1

15 CONTINUE

e e e e e B e M ER e M WD e e Ew G B S o e e s R W e e s e e e e RS e e e e e e T R W M e M e M e e e em e e

Be e e e rw m mm e e e A4 e mm G e s e MR rm R e A e e e AR e R e e R S b R e M S M NN A e N M G e M R e S M e M M AN e s A M

CALL WARN (MODE4,TRPR,NTRPR,T,Y,NEQN, IZERD)

IF¥ (IPRINT .EQ. 0) RETURN

(]

aaoaaa

«

50

PRINT 1503, (J,TPART1(J),J=1,NTPRT1)
1503 FORMAT(' TIME(',I3,'= ',D15.7)

RETURN

45 CONTINUE

e mm e m e o e RE D R me em G P e SE R R S SR M M T e e D SR R D M S eSS MR R e Am D W B B TH W M 71 SR WR S TH Sm SR W M m mm e mm em e ww

NTPRTZ = NPOINT
IF (NTPRTZ .LE. 0) GO TO 48
DO 46 J = 1,NPOINT

46 TPART2(J) = PVECT(J)

48 CONTINUE

s o e o em m mm Ew Ra e mm e em e e e e R a3 G mm e T e e e (R G e e e S e e AR G o S S R YR PR MR B Ee H7 G M M M MR M BN R s em e Em em m e Em

CALL WARN TO SEE IF INDICES ARE PROPERLY SET
(INDICES ARE LEFT OVER FROM FORWARD INTEGRATION)

CALL WARN(MODE4,TRPR,NTRPR,T,Y,NEQN,IZERO)

IF (IPRINT .EQ. 0) RETURN

PRINT 1504, (J,TPART2(J),J=1,NPOINT)
1504 FORMAT(' TPART2(',I3,') = ',D15.7)

RETURN

50 CONTINUE

MODE 2: UPDATE MODE. A TPART1 IS A STOPPING CONDITION.
MAXE ANY UPDATE NEEDED.
ISTOP1 .NE. 0 ===> TPART1(ISTCP1) IS STOPPING VALUE

IN FORWARD DIFFERENCING MODE OF TROMPP, NO TPART2
VECTOR WILL BE IMPOSED.

CALL PHIPAR(MODE2,NEQN,T,Y,YP,NTRPR,TRPR,TRPRP)

IF (.NOT. FINTEG) GO TO &0

KL22 IPARTL(ISTOPL)
Ko22 IPARTU(ISTCPL)
IBL(2,2) KL22
IBU(2,2) Kuzz
GRIDL(2,2) = T2P2(KL22)
GRIDU(2,2) = T2P2(KU22)

0o

CALL WARN(MODE3,TRPR,NTRPR,T,Y,NEQN, IZERO)

RETURN

51

60 CONTINUE

I T T L L L L .
- = e e e e e e R e e N A e T N M WS M M e AR S SR e e MmN e W S S N S S S Gn AR S R R e A S S R SN AR e RN e e m e
e T L T I U S S

T L L L e e e e e e e e T T ———

IF (ISTOP1 .EQ. 0) GO TO 79

e e e S e R S B e e e e S e e S RN R D S e B e 66w e S R e e M S A e S e e B S G e e S e SR e M e em o e

L I e e e e e e R e

IF (ISTOP1 .EQ. 1) GO TO 70
XL22 = IPARTL(ISTOP1-1)
KU22 = IPARTU(ISTOP1-1)
IBL(2,2) = KL22
IBU(2,2) = KU22
GRIDL(2,2) = T2P2(KL22)
GRIDU(2,2) = T2P2(KU22)
INDEX = 6
70 CONTINUE
IF (ISTOP2 .EQ. N) GO TO 100
STOPPING ON A TPART2 VECTOR ELEMENT (GENERATED DURING FORWARD
INTEGRATION
DO 75 ITABLE = 1,NTABLE
LIMIT = NCOMP(ITABLE)
DO 75 ICOMP = 1,LIMIT
INDEX = LPOINT(ITABLE,ICOMP,ISTOP2)

non

IF¥ (IABS(INDEX) .EQ. 0) GO TO 75

IBL(ITABLE,ICOMP) = TABS(INDEX) - ISIGN(1,INDEX)

IF (IBL(ITABLE,ICOMP) .LE. 0) IBL(ITABLE,ICOMP) =1
IBU(CITABLE,ICOMP) = IBL(ITABLE,ICOMP) + 1

CALL TABBND(ITABLE,ICOMP)
75 CONTINUE

100 CONTINUE

RETURN
END

Subroutine PARTCA, for determining lift coefficient stops

sNeNeReReREeReRsloloNoNoNsleNeloNoNeNeRaloRoReNoRSNoN- NGRS RSEG RS HG NGNS RS RG RS NGNS

(@]

U B WP

S A e s SR AN RS R R s EN M MR M N SE TE W TR SR M Me em M D e e A N M e e T D R e R e e e U e e em SN e e e e e e e

SUBROUTINE PARTCA(TVECT,IVECTL,IVECTU,NTVECT)

i T T e e e T R e e]

PURPOSE:

PARTCA (ALONG WITH QROOT) LOCATES ALL T VALUES
CORRESPONDING TO CA(I) INTERSECTIONS WITH THE CUBIC
CURVES. THESE T VALUES ARE STORED IN TVECT AS STOPPING
CONDITIONS FCR THE INTEGRATION. IVECTL AND IVECTU
STORE THE BRACKETING INDICIES CORRESPONDING TO THE

CA COMPONENTS.

PARTCA REFERENCES "QRCOT" WITH A SET OF CUBIC COEFFICIENTS AND
THE VECTOR "CA" TO LOCATE THE VALUES OF T FOR WHICH THE

CA VALUES INTERSECT THE CUBIC. PARTCA ADDS THESE POINTS

TO VECTOR TVECT (FORMED IN INCREASING ORDER) AND STORES

THE BRACKETING INDICIES OF CA CORRESPONDING TO THE TVECT(J)
POINT IN IVECTL(J) AND IVECTU(J).

STRUCTURE : USER SUPPLIED

INPUT PARAMETERS: CUBIC COEFFICIENTS (STORED IN COMMON CTRMPP)

CA VECTOR (STORED IN COMMON TABLE2)

GUTPUT PARAMETERS: TVECT VECTCR OF T VALUES FOR STOPPING

THE INTEGRATION (DIMENSION 100)

IVECTL(J) LOWER BRACKETING CA INDEX FOR THE
INTERVAL TVECT(J) TO TVECT(J+1)
(DIMENSIONED 100)

IVECTU(J) UPPER BRACKETING CA INDEX FOR THE
INTERVAL TVECT(J) TO TVECT(J+1)
(DIMENSIONED 100)

PROGRAMMER: M.K. HORN, DFVLR-OBERPFAFFENHOFEN, JUNE, 1982

IMPLICIT REAL#*8 (A-H,0-Z)

COMMON/CTRMPP/GRID(15,5),STIFF(15,5),U(15,5,5),4(15,5,5),

B(15,5,5),8(15,5,5),UL(15,5,5),U0(15,5,5),
UH(15,15,5,5),
AH(15,15,5,5),BH(15,15,5,5),CH(15,15,5,5),
P(10),Y(70),TOL, INTERV,KONTRL,KNOT(5) ,NP,NY,
IDUM(3),

LDUM(21)

COMMON/TABLE2/T2P1(24), CA(35),TAB2(24,35)
COMMON/TLIMIT,INDIC(4,2) ,NGE (4,2) ,NCOMP(4) ,NTABLE

DATA ZAPP/1.D-10/

C
DIMENSION TVECT(100),IVECTL(100),IVECTU(100)
DIMENSION TDUM(100), ITDUM{100)
DIMENSION IV(100)
DIMENSION CACA(35)
CATA NTDUM/100/,IPRINT/O/,EPS/1.D-10/
LOGICAL LOGDUM
C
(e b A B o - s o -
C
(i i T T o
NCA = NGE(2,2)
DO 5 J = 1,NCA
5 CACA(J) = CA(J)
C
(i v st s e e 4 e e
C T =0 IS THE FIRST TVECT POINT~-LCCATE BRACKETING INDICES
C (U(1,1,1) Is THE LIFT COEFFICIENT AT T=0.
() e R S 5 m
C

TVECT(1) = 0.0D0
IF (IPRINT .EQ. 1) PRINT 1555,U(1,1,1)
1555 FORMAT(' U AT TO = ',D15.7)
CALL LOCATE(NCA,U(1,1,1),CACA,MPT,NPT,BNDL,BNDU,0,0)

c
c
IF (DABS(U(1,1,1)-CA(MPT)) .GT. ZAPP) GO TO 8
+
C INITIAL VALUE OF LIFT COEFFICIENT LIES ON A CA GRID VALUE
C LOCATE THE CA VALUE AT T+EPSILON FOR PROPER MPT,NPT LABELING
c
CALL LIFTC(0,EPS,CAEPS,DUMMY,0)
CALL LOCATE(NCA,CAEPS, CACA,MPT,NPT,BNDL,BNDU,0,0)
c
c
8 CONTINUE
c
IVECTL(1) = MPT
IVECTU(1) = NPT
NTVECT = 1
C ---
C A SET OF CUBIC COEFFICIENTS IS ASSOCIATED WITH EACH SUB-INTERVAL
C (GRID(I,1), GRID(I+1,1). INTERSECT CA LINES WITH EACH
C OF THESE CUBICS AND THROW OUT ANY T VALUES NOT IN THE
5 GRID SUB-INTERVAL (DONE IN QROOT). THE T VALUES WITHIN
> THE GRID SUB-INTERVAL BECOME STOPPING CONDITIONS FOR THE
C INTEGRATION--WITH POINTS STORED IN TVECT, INDICES IN IVECTL
C AND IVECTU.
C ...
LIMIT = KNOT(1) - 1
C ---
c LIMIT IS THE NUMBER OF CUBIC EQUATIONS BEING ANALYZED
c ONE FOR EACH INTERVAL (GRID(I,1), GRID(I+1,1)
C ...
DO 20 I = 1,LIMIT
C ---

c SET CUBIC COEFFICIENTS FROM CTROMPP-FOR THE ITH CUBIC

aaoaaa

aaaaaa

aaa

54

COEFFICIENT ORDERING IS- SOMEWHAT SWITCHED

AA =C(I, 1, 1)
BB =3(I, 1, 1)
CC =A({ I, 1, 1)
DD =U(I, 1, 1)

TLOWER = GRID(1I,1)

TUPPER = GRID(I+1,1)

COEFFICIENTS FROM SPLINE ARE SET ON THE INTERVAL (0, T).
CALL "SHIFT" TO SHIFT THE T SCALE FROM 0 TO GRID(I,1)
(THIS CHANGES THE AA,BB,CC,DD VALUES).

e e e S e S N SR R M SR Em O Sm S N A e NN SR W SN SR NS AR NN R R e NN AR N R AN N N R A A A M e e S e e e
- e e e e e R R W e e e M e e e e SR M R SR UM e T v e e ma e e e RGN e e e ey e e em e N O SN M W e e e e SR SN e

B T T T T T e I L e e R

CALL QROOT (AA,BB,CC,DD,TLOWER,TUPPER,NCA,CACA,
1 NTDUM,TDUM, ITDUM,NDUM)

IF (NDUM .EQ. 0) GO TO 20

B T T T T T e e e e e e T

NDUM POINTS HAVE BEEN RETURNED FROM QROOT. ADD THESE ON TO
THE TVECT VECTOR AND STORE THE BRACKETING VALUES IN IVECTL
AND IVECTU SLOTS CORRESPONDING TO THE TVECT VALUE.

MAKE SURE THAT THE FIRST TDUM VALUE IS NOT THE LAST TVECT VALUE.

- e e e e e SR N R ER MR R MR SR T M G e R R e I SR R TE N W e e e e e R W R MR W W M M e e R N MR M W G e e e am W

IF (DABS(TVECT(NIVECT)-TDUM(1)) .GT. ZAPP) GO TO 10

NDUM = NDUM - 1
. IF (NDUM .EQ. 0) GO TO 20
DO $ J = 1,NDUM
TDUM(J) = TDUM(J+1)
9 ITDUM(J) = ITDUM(J+1)
ALL TDUM POINTS ARE DISTINCT FROM EXISTING TVECT VALUES
ADD TDUM ON TO THE END OF TVECT

- e e e e S T R T T M e e e e S SR R N M SR R AR em e S S SR G e e e e e e SR RN NS N W M S e RN Mm S T W M e

D0 15 J = 1,NDUM

TVECT (NTVECT+J) = TDUM(J)

ITDUM(J) = KK CORRESPONDS TO THE VECTOR(KK) VALUE. DETERMINE IF
THIS IS THE UPPER OR LOWER BRACKETING VALUE AND SET IVECTL
AND IVECTU VALUES.

T = TDUM(J)

DERIV = (3.DO%*AA®T + 2.DO%*BB)*T + CC

IF (DABS(DERIV) .GT. ZAPP) GO TO 11

LOCAL MINIMUM OR MAXIMUM

CURVE = 6.D0%AA*T + 2.DO*EB

IVECTL(NTVECT+J) = ITDUM(J)

IF (CURVE .LT. 0.0D0) IVECTL(NTIVECT+J) = ITDUM(J) - 1
IVECTU(NTVECT+J) = IVECTL(NTVECT+J) + 1

IF (IPRINT .EQ. 1) PRINT 1669 ,TDUM(J)
1669 FORMAT(//,' CA BOUNCES ON A CACA GRID AT T = ',D15.7,//)
GO TO 15
&
11 CONTINUE
IF (DERIV .GT. 0.0D0) GO TO 12
C
g DECREASING FUNCTION
c
IVECTL(NTVECT+J) = ITDUM(J) - 1
IVECTU(NTVECT+J) = ITDUM(J)
GO TO 15
12 CONTINUE
c
C INCREASING FUNCTION
c
IVECTL(NTVECT+J) = ITDUM(J)
IVECTU(NTVECT+J) = ITDUM(J) + 1
15 CONTINUE
NTVECT = NTVECT + NDUM
c
20 CONTINUE
c
IF (IPRINT .EQ. 0) RETURN
C ---
c PRINT TVECT VALUES AND BRACKETING INDICES AS A SAFETY CHECK.
[i e b T T ——
c

DC 2% J = 1,NTVECT
PRINT 15%9,J,TVECT(J),IVECTL{J},IVECTU(J)
1599 FORMAT(' TVECT(',I3,') = ',D15.7,2(2X,I3))

29 CONTINUE
C
c
LIMIT = NTVECT - 1
DO 30 J =1, LIMLT
TAVG = 0.5D0*(TVECT(J) + TVECT(J+1))
CCA = SPLINT(KNOT(1),GRID(1,1),U(1,1,1),STIFF(1,1),
1 E(1.3 .10, B0, 1.0 61, 1. 1) AV
IVL = IVECTL(J)
IVU = IVECTU(J)
PRINT 1500, TAVG,CA(IVL),CCA,CA(IVU)
1500 FORMAT(' TAVG = ',D15.7,2X," CA LOWER = ',D15.7,' CA = ',D15.7,
1 ' CA UPPER = ',D15.7)
30 CONTINUE
g
RETURN
END

Subroutine PHIPAR, for evaluating the trapping parameters

oo 1 o T s O e S e s s B o T v il 0 T o O o O e R o O I 9 v Wl T o T e 5 v (o O il Y O e O 5 R (5 [o 0 O e O o B Tl e

agaoaoaoaaoooaoaoaaaaan

e e e em e R TR AR R N E e e e S N N W R S SR SN R B SE N S8 AR RN S AR N e W SR e A R e M e A S S B e W R A W e e e e

- = B e e e e e SR R A S N e G S S AN S R S N A AR A e A e e e e e e e e e e e e

PURPOSE: PHIPAR EVALUATES THE TRAPPING PARAMETERS, TRPR, AND
THEIR DERIVATIVES FOR USE IN SUBPHI.

STRUCTURE: USER SUPPLIED (CALLING SEQUENCE STANDARD)

INPUT PARAMETERS:
MODE USER IDENTIFICATION PARAMETER

MODE=1: PHIPAR CALLED FROM SUBPHI. TRPR
AND TRPRP ARE TC BE COMPUTED

MODE==2: PHIPAR CALLED FROM PART. YP MAY NOT
BE AVAILABLE. ONLY TRPR VALUES ARE
TO BE COMPUTED.

NEQN DIMENSION OF ODE SYSTEM

T INDEPENDENT VARIABLE

Y DEPENDENT VARIABLES

YP DERIVATIVE OF Y

NTRFR NUMBER CF TRAPPING PARAMETERS
OUTPUT PARAMETERS:

TRPR TRAPPING PARAMETER VECTOR

TRPRP CERIVATIVES OF TRAPPING PARAMETER

PROGRAMMER: M.K. HORN, DFVLR-OBERPFAFFENHOFEN, JUNE, 1982,

e s R R AR R AR S e A S A R e A R AR G R e e e A e A e e e e e e U S e e e e

COMMENTS: FOK CURRENT APPLICATION=-~-
TRAPPING PARAMETERS ARE NEEDED BEFORE THE INTEGRATION
BEGINS IN ORDER TO SET TABLE LIMITS. DERIVATIVES
ARE NOT YET AVAILABLE. PHIPAR IS CALLED FROM PART
WITH MODE = 2. TRPR ARE TO BE COMPUTED. TRPR? ARE
NOT TO BE COMPUTED.

IMPLICIT REAL*8 (A-H,G-Z)
DIMENSION Y(NEQN),YP(NEQN),TRPR(NTRPR),TRPRP(NTRPR)

COMPONENT 1: MACH NUMBER
COMPONENT 2: ALTITUDE

VELOCITY / SPEED OF SOUND
H

o

COMMENTS: (1) VELOCITY = Y{1)
SPEED OF SCUND IS OBTAINED FROM SUBROUTINE FATM
DERIVATIVE INFORMATION ALSO COMES IFROM FATM

(2) ALTITUDE = H = Y(3)

(o N o W o [o il ol o 8

Qo

2'CA L EY A

a

oo

—————

- - -

B e R e e e T S ——

USER SETS DIMENSION OF TRAPPING PARAMETERS, NTRPR, IN CALLING
PROGRAM

S A e mm A e A e e M A b e N R W SR M A RN M S SR N N A R M AR MR R AR A BN M SR e e e e e e e e e e
BT R e e L L kT ryea——"

¥(1)

Y(3)

CALL FATU(H,RHO,A,DRHODH,DADH)
AM=V /A

<
I

I¥ LIFT COEFFICIENT IS A TRAPPING PARAMETER, ACTIVATE THE
FOLLOWING CALL STATEMENT (WHICH IS PRESENTLY A COMMENT CARD).

IZERQ =
CALL LIFTC(IZERO,T,CLIFT,DCADT,IZERO)

IF (MODE .EQ. 2) GO TO 10

DERIVITIVES MUST BE WRT NORMALIZED TIME

DVDT = YP(1)

DHDT = YP(3)

DMDT = -V/(A*A) * DADH * DHDT + DVDT/A
CONTINUE

B T e e T I e T e ———

e e e e e e e e e e L T

TRPR(1) =
TRPR(2) =

=B

IF (MODE .EQ. 2) RETURN

DERIVITIVES MUST BE WRT NORMALIZED TIME

TRPRP(1) = DMDT
TRPRP(2) = DHDT
RETURN

END

Subroutine PLIFTC., for determining the 1lift coefficient for the perturbed
cubic coefficients

e e e mp T e e e W M M G e M e e e e e R e A e W MR M S A W M T RN N e MM Sm e W A R e e e S e e e e e e

PERTURBED COEFFICIENTS
LIFT COEFFICIENT GENERATOR USING CUBIC SPLINE COEFFICIENTS FROM

58

C 'TOMP -

SUBROUTINE PLIFTC(IDERIV,T,CA,DCADT,NODE)

C ---
IMPLICIT REAL*8 (A-H,0-Z)
COMMON/CTRMPP/GRID(15,5),STIFF(15,5),U(15,5,5),A(15,5,5),

1 B(15,5,5),.8015,5,5) ,UE{15,5 ,5) ;U0(15,5.5) .,

2 UH{15,15,5,5),

3 AH(15,15,5,5),BK(15,15,5,5),CH(15,15,5,5),

4 P(10),Y(70),TOL, INTERV,KONTRL,KNCT(5) ,NP,NY,
5 LDUM(21),IDUM(3)

C 3

c
LOGICAL LDUM

C ---

C NOTATION:

C

& SOME OF THE NCTATION IN THE PROGRAM IS IN GERMAN (DUE TO

C HISTORICAL REASONS IN DEVELOPING THE SOFTWARE). THE FOLLOWING

c CONVERSION TABLE IS GIVEN:

C

o ENGLISH NOTATION GERMAN NOTATION

c CL _ CA

C

C ...

C ...

G THERE IS ONLY ONE INTERVAL. THUS, T DOES NOT HAVE TO BE LOCATED

G WITHIM THE INTERVAL MESHES. EACH INTERVAL "I" HAS KNOT(I)NODES.

(oo o et o e e e e e

c

C ..

c COMPUTE LIFT COEFFICIENT WITH PARAMETER DISTURBANCE

L T T T e T e T

g
CA = SPLINT(ENOT{1),GRID(1,1),UH(1,NODE,1,1),STIFF(1,1),

1 AHM(1,NODE,1,1),BH(1,NODE,1,1),CH(1,NODE,1,1),T)

5
IF (IDERIV .EQ. 0) RETURN
DCADT = DSPINT{KNOT(1),GRID(1,1),

1 UH(1,NODE,1,1),STIFF(1,1),AH(1,NODE,1,1),
2 BH(1,NODE,1,1),CH(1,NODE,1,1),T)

C ...

G DCADT (WRT TIME) MUST BE SCALED BY 1/TFINAL = 1/P(1)

C ...
DCADT = DCADT/P(1)

g
RETURN
END

Subroutine PR1DT1, FR2DT2, PR2DT3, PRZDT4 are all copies of model subroutine

PR1DT or PR2DT given in {3]

Subroutine QROOT, for determining the zeros of a cubic equation is given in

(3]

Subroutine QMXMN, used in conjunction with QROOT is given in [3]

Subroutine RD2DT2, is a copy of model subroutine RD2DT which is given in [3]

Subroutine RHS, for evaluating the differential equations,

e e e e e it i e it et e et e et e Tt T T e -

e e e e e M M A e e mm wm M WE M MW W Gm SR M MR M AR AN S RS N e A SN ER e SE R e e e e e e e v e e T eE e e e A e

PURPOSE:
RHS SUPPLIES THE RIGHT HAND SIDES OF THE DIFFERENTIAL
EQUATIONS (AND OF THE ADJOINT SYSTEM IF FORWRD=TRUE)

STRUCTURE: USER SUPPLIED

INPUT PARAMETERS:
T VALUE OF INDEPENDENT VARIAERLE
b'd VALUE OF DEPENDENT VARIABLE

OUTPUT PARAMETERS: =
Ye VALUE OF DERIVATIVE OF Y

PROGRAMMER: M.K. HORN, DFVLR-OBERPFAFFENHGFEN, MAY, 1982

. o ww am e e e S e e Ew e M e e e Mm M W TR M SN M M M W MM A M e MR R T NN R AR A AR R A SE R R SR W W A e W e R R e

IMPLICIT REAL*8 (A-H,0-Z)

aoacaoaaooaaoaooaoaaaan

g
DIMENSION Y(1),YP(1)
DIMENSION PSTATE(4,4),PCA(4),PTF(4)
DIMENSION DCA(11)

C
DIMENSION YADJ(60),YFADJ(60)
DATA NADJ/60/

c

C

COMMON/CTRMPP/GRID(15,5),STIFF(15,5),U(15,5,5),ADUM(15,5,5),
3(15,5,5),6(15,5,5),UL(15,5,5),00(15,5,5),
UH(15,15,5,5),
AH(15,15,5,5),BH(15,15,5,5),CH(15,15,5,5),
P(10),YDUM(70),TOL, INTERV,KONTRL,KNOT(5) ,NP ,NY,
IDUM(3),

IMPULS ,FINTEG, LDUM(19)

Ul W RS

(% R o]

a

agaoaoaaaaoaoaoaoaacaaaoaaoaoaaoaaa

Q

c

<«

1566

= e

€0

COMMON/FSTEP/ITOPH
COMMON/CHCKCA/CLIFT
COMMON/FKOUNT /KOUNTF ,KNTFIT

DATA JPRINT/0/
DATA IZERO/0/

THRUST-MAX IS FOR TWO ENGINES
DATA TMAX,DELTA,S,G/8527.68D0,1.0D0,49.246D0,9.80665DG/

LOGICAL FINTEG,LDUM, IMPULS
CONSTANTS NEEDED: TMAX, G, DELTA, S (TMAX AND DELTA ARE NEEDED
FOR FTRIEB)

STATE VECTOR, Y:

Y(1) =V
Y(2) = GAMMA
Y(3) = H
Y(4) = WEIGHT

WITH MACH NUMBER DEFINED BY AM = V/A, WHERE A = A(H)
IPD=0 PARTIAL DERIVATIVES ARE NOT COMPUTED
IPD=1 PARTIAL DERIVATIVES ARE COMPUTED IN FDRAG AND FTRIEB

IPD = 1
IF (FINTEG) IPD =0

KOUNTF = KOUNTF + 1

KNTFIT = KNTFIT + 1

IPRINT = 0

IF (JPRINT .EQ. 1) IPRINT = ITOPH
V= ¥(1)

GAMMA = Y(2)

H = Y(3)

SING = DSIN(GAMMA)
COSG = DCOS (GAMMA)

CALL FATM(H,RHO,A,DRHODH,DADH)

CALL LIFTC(IZERO,T,CA,DCADT,IZERC)

CLIFT = CA
AM = V/A
IF (IPRINT .NE. 0) PRINT 1566,T,V,GAMMA ,H,WEIGHT,AM,CA
FORMAT(/,' IN RHS--AT T = ',D15.7,/,
! VELOCITY = ',015.7," GAMMA = ' mrgog. i
i ALTITUDE = ' PA5.7,° WEISHT = ' D15.7.7.
MACH NUMBEER = ',D15.7,' LIFT CF. = ',D15.7.,//)

61

CALL FDRAG(IPD,AM,CA,V,H,S,RHO,DRHODH,A,DADH,

1 DRAG, CDRDV,DDRDH , DDRDCA)
CALL FTRIEB(IPD,AM,H,V,A,DADH,DELTA,TMAX,
i S¥C,THRUST,DSFCDV,DSFCDH,DTHRDV , DTHRDH)

(%]

IF (IPRINT .NE. 0) PRINT 1567 ,THRUST,DRAG
1567 FORMAT(' THRUST = ',D15.7,2X,'DRAG = ',D15.7,/)
al

YP(1) = G*((THRUST - DRAG)/WEIGHT - SING)
YP(2) = G/V * (0.5D0 * RHO * V%V % S *CA / WEIGHT - COSG)
YP(3) = V * SING
YP(4) = - SFC * THRUST / 3600.0D0
C
TF = P(1)
g

IF (IPRINT .NE. C) PRINT 1568,TF
1568 FORMAT(' USING ',D15.7,' AS TF TO SCALE THE DERIVATIVES',/)

@
IF (.NOT. FINTEG) GO TO 15
C
(o m oo o o o e e e
C DERIVATIVES ARE WRITTEN WRT TIME--FOR NORMALIZED DERIVATIVE
g D()/DTAU = D()/DTIME * TF
[e e e it T
C
DO 10 J = 1,4
10 YP(J) = YP(J) * TF
IF (IPRINT .EQ. 1) PRINT 1570,TF,YP(1),YP(2),YP(3),YP(4)
c
1570 FORMAT(' AFTER SCALING WITH TF = ',R15.7,3X,' DERIVATIVES ARE:',
1 /,4(2X,D15.7))
C
RETURN
C
15 CONTINUE
&
C ..
3 FORM ADJOINT SYSTEM
C ..
C IV = ¥(5)
C 16 = ¥(8)
g TH = Y13
C IN = Y(8)
C ..
c DUE TO SUBSCRIPTING DIFFICULTIES--LABEL Y, YP FOR ADJOINT SYSTEM
g YADJ AND YPADJ AND COPY INTO Y, YP BEFORE RETURNING
D mmm i o e e e e e e e
o
DO 18 J = 1,NADJ
YADI(J) = Y(I)
18 CONTINUE
c
06 90 J = 1.N%
YPADJ(J) = YP(J)
20 CONTINUE
£

Q.

52

CONSTRUCT COEFFICIENTS FOR THE DERIVATIVE OF THE HAMILTONIAN
WRT TEE STATE VECTOR (PSTATE(4,4))

CONSTRUCT COEFFICIENTS FOR THE DERIVATIVE OF THE HAMILTONIAN
WRT LIFT COEFFICIENT (DHDCA(4))

CONSTRUCT COEFFICIENTS FOR THE DERIVATIVE OF THE HAMILTONIAN

WRT FINAL TIME

L T T L L T L L T T T T T T -~

(DHDTF (4))

PSTATE(1,1) = -G/WEIGHT *(DTHRDV - DDRDV)

PSTATE(1,2) = -G¥(0.5DO*RHO*S*CA/WEIGHT + COSG/(V*V))
PSTATE(1,3) = -SING

PSTATE(1,4) = (DSFCDV*THRUST + SFC*DTHRDV)/3600.0D0
PSTATE(2,1) = G*COSG

PSTATE(2,2) = -G*SING/V

PSTATE(2,3) = -V*COSG

PSTATE(2,4) = 0.0D0

PSTATE(3,1) = -G/WEIGHT * (DTHRDH - DDRDH)

PSTATE(3,2) = -G* 0.50D0 * V * § * CA * DRHODH / WEIGHT
PSTATE(3,3) = 0.0DO

PSTATE(3,4) = (DSFCDH * THRUST + SFC * DTHRDH) / 3600.0DO0

PSTATE (4,1)

G/ (WEIGHT*WEIGHT) * (THRUST - DRAG)

PSTATE(4,2) = G * 0.5D0 * RHO * V *S *CA / (WEIGHT*WEIGHT)
PSTATE(4,3) = 0.0DO

PSTATE(4,4) = 0.0D0

PCA(1) = -G/WEIGHT * DDRDCA

PCA(2) = G*(0.5D0 * RHO * V * S / WEIGHT)
PCA(3) = 0.0DO

PCA{4) = 0.0DO

PTF(1) = YP(1)/TF

PTF(2) = YP(2)/TF

FTF(3) = YP(3)/TF

PTF(4) = YP(4)/TF

e me e e e e e M A R e N E MmN SN A WM AN SR e A T4 R G M e e e e W MR G M SR G AR AR SN MR W A M e e R e e e e e e e B A e e

B R i T T T L I I L T

CALL MATRX2(NADJ,YADJ,YPADJ,&4 PSTATE)
CALL MATRX1(NADJ,YADJ,DHDCA1,4,PCA)
CALL MATRX1(NADJ,YADJ,DHDTF1,4,PTF)

e e e e e e e N R RN D MR M R e e S e R e e S R e e e e e A e e e e e S A e e e e e e A e = e e e e

e e e R A e e e e e SN A R e e e A S e e e e e e e e e e e e e A S e e e e e e e

CALL MATRX2(NADJ,YADJ,YPADJ, 3,PSTATE)
CALL MATRX1(NADJ,YADJ,DHDCAZ,8,PCA)
CALL MATRX1(NADJ,YAD.J,DHDTF2,8,PTF)

MATRX2 (NADJ,YADJ,YPADJ, 12,PSTATE)
CALL MATRX1(NADJ,YADJ,DHDCA3,12,2CA)

aao

€2

- -

80

81

82

83

84

90

63

CALL MATRX1(NADJ,YADJ,DHDTF3,12,PTF)
CALL MATRX2(NADJ,YADJ,YPADJ,16,PSTATE)
CALL MATRX1(NADJ,YADJ,DHDCA4,15,PCA)
CALL MATRX1(NADJ,YADJ,DHDTF4,16,PTF)

KOUNT = 20

CONTROL DISTURBANCE DUE TO PARAMETER DISTURBANCE
FORM QUADRATURE EQUATIONS

B e e e T e e el kT T S,

CONTROL PARAMETER AT CURRENT VALUE OF T
KNOTK = KNOT(1)
DO 80 I = 1,KNOTX

CALL PLIFTC(IZERO,T,CA2,DERIV,I)
DCA(I) = CA2 ~ CA

INTEGRAND FOR "QUADRATURES"

DO 81 J = 1,KNOTK

XOUNT = KOUNT + 1
YPADJ(KOUNT) = DHDCA1*DCA(J)
CONTINUE

KOUNT = KOUNT + 1
YPADJ (KOUNT) = DHDTF1

DO 82 J = 1,KNOTK

KOUNT = KOUNT + 1

YPADJ (KOUNT) = DHDCA2*DCA(J)
CCNTINUE

KOUNT = KOUNT + 1
YPAD.J (KOUNT) = DHDTF2

DO 85 J = 1,KNOTK

KOUNT = KOUNT + 1

YPADJ (KOUNT) = DHDCA3*DCA(J)
CONTINUE

KOUNT = KOUNT + 1
YPADJ(XOUNT) = DHDTF3

DO &4 J = 1,KNOTK

KOUNT = KOUNT + 1

YPADJ (KOUNT) = DHDCA&*DCA(J)
CONTINUE

KOUNT = KOUNT + 1
YPADJ(KOUNT) = DHDTF4

1,KOUNT

DOS I=
= YPADJ(I)*TF

YP(I)

64

RETURN

a

Subroutine SHIFT, for adjusting cubic coeificients for QROOT and PARTCA is
given in [3]

Subroutine SLLSQP, the optimization routine is given in ROOT and PARTCA, is
given in [_]

Subroutine SUBPHI, for determining the PHI values for the RKF45T stops

MODEL PHI BLOCK FOR: FORWARD DIFFERENCING OR
- BACKWARD DIFFERENCING
PHI PARAMETERS: MACH NO. AND ALTITUDE
LIFTC COEFF. STOPS ARE USER-SUPPLIED
STRUCTURE OF PHI COMPONENTS
PHI(I) = (XU-X)*(X-XL)

agaaaoaoaoqr

SUBROUTINE SUBPHI (NPHI,INDEX,NEQN,T,Y,YP,PEI,PHIP,KOUNTR,UPDATE,
1 IVAN, BOUNCE , ABSER)

PURPOSE: SUBPHI OPERATES IN TWO MODES.
MODE 1: (UPDATE = .FALSE.)
THE USER MUST SUPPLY THE VALUES OF PHI,
THE STOPPING CONDITIONS, AND OF PHIP, THE
DERIVATIVES CF PHI WRT T, GIVEN THE
VALUES OF T, Y, AND YP.

MODE 2: (UPDATE = .TRUE.)
THE USER IS INFORMED THAT PHI(INDEX) HAS
VANISHED AT T, AND HE SHOULD MAKE ANY
UPDATES NEEDED.
STRUCTURE: STANDARD--WITH MINOR USER CHANGES (SEE BELOW.)
INPUT PARAMETERS:

NPHI NUMBER OF STOPPING CONDITIONS,
DIMENSION OF PHI AND PHIP (2 X NO. OF TRAPPING

G -C QY €} € €3 €2 €3°0363 €3 €3 €3 €1 ') 'y €3 €1 ¢ €

aaoaoaaoaoaoaoaoaoaooaaaaaoooaaaoaoaooaoaoaoaooooaooaaoaaoaooaoOoaoaaoooaaooaooaoaaOan

65

PARAMETERS).

INDEX THE PHI COMPCNENT CURRENTLY BEING
ANALYZED OR UPDATED. (INDEX=C IMPLIES
INTEGRATION HAS NCT DETECTED THE EXISTENCE
OF A NEW ZERO.)

NEQN DIMENSION CF ODE SYSTEM (Y AND YP)

T VALUE OF INDEPENDENT VARIABLE

i VALUE OF DEPENDENT VARIABLE, DIMENSIONED NEQN
e DERIVATIVE OF Y, DIMENSIONEL NEQN

KQUNTR COUNTING PARAMETER FOR USER'S BENEFIT.

KOUNTR=0 INDICATES INITIALIZATION PHASE.

KOUNTR IS CHANGED TO 1 AFTER THE INITIAL-
ZATION CALL TO SUBPHI AND IS INCREMENTED

BY UNITY AT EACH UPDATE CALL.

UPDATE LOGICAL PARAMETER INDICATING MODE
UPDATE=.FALSE. ===> USER MUST SUPPLY PHI AND PHIP
UPDATE=.TRUE. ==> PHI(INDEX) HAS VANISHED AT T.
MAXKE ANY NEEDED CHANGES.
IVAN LOGICAL PARAMETER, USED WHEN UPDATE=.TRUE.
IVAN = .TRUE. ===> PHI(INDEX) HAS VANISHED
THRCUGHOUT THE INTEGRATION
STEP.
IVAN = .FALSE. ==> PHI(INDEX) DID NOT VANISH
THROUGHOUT THE STEP
BOUNCE LOGICAL PARAMETER, USED WHEN UPDATE=.TRUE.
: IVAN=.FALSE.
BOUNCE=.TRUE. ===> PHI(INDEX) HAS BOUNCED CN A

ZERO. THIS POINT WAS UPDATED
ON THE PREVIOUS STEP. IF
THE STEP IS TO BE REPEATED
SET KOUNTR=-2. (THIS IS A
DUMMY VALUE, AND THE PREVIOUS
VALUE OF KOUNTR WILL BE

RESTORED.)
BOUNCE=.FALSE. ===> PHI(INDEX) DID NOT BOUNCE ON
A ZERO
QUTPUT PARAMETERS:
PHI USER-SUPPLIED VECTOR OF STOPPING CONDITIONS
PHIP DERIVATIVE OF PHI WRT T
ABSER USER-SUPPLIED, ABSOLUTE ERRCR TOLERANCE

DEFAULT VALUE=ABSERR, THE INTEGRATION TOLERANCE
(MAX (ABSERR,RELERR))

USER CHANGES:
(1) THE USER MUST SUPPLY PROPER DIMENSIONING
IN CCMMON BLOCKS~--TLIMIT AND GRIDBD
AND DIMENSTIONING OF TRAPPING PARAMETERS

(2) THE USER MUST SUPPLY THE APPROPRIATE NUMBER
OF PHI AND PHI COMPCNENTS. (PATTERN IS CLEAR.)

(3) THE USER MAY SUPPLY ADDITIONAL PHI VECTORS

aaaaoaanaa

Qaaoaoaoaoaaoaoaoan

aoaaaaaaaQ

aaQ

65

NOT RELATED TO THE TABLES, AND MUST SUPPLY ANY
ADDITIONAL ANALYSIS NEEDED FOR THESE COMPONENTS.

- . e e e N R SR S Bw e Mm e e S YR N A SR M R SN SR R SR S e e M e R e e e e e S D S S e NN W R e A e R e e e e

PROGRAMMER: M.K. HORN, DFVLR-OBERPFAFFENHOFEN, JUNE, 1982.

L T e e T T e e

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION Y(NEQN),YP(NEQN)

DIMENSION PHI(NPHI),PHIP(NPHI)

COMMON/ IDENT/ITERS ,KNT ,KNTFI ,KNTBI
COMMON/CRKF45/ IOPT , IDUM&S5 (4)
COMMON/FSTEP/ ITOPH

COMMON/PRINTR/IPR

DATA MODE1/1/,MODEZ2/2/,MODE3/3/ ,MODE4/4/
DATA IPRINT/O/

DATA ZAPP/1.D-10/

e e e e e e S N R NR SR T MR R e M T M M e e e e s A B R S S e e SRR SR M e SR R e e R e e e e e e e e W e e e

A e S e Em R e EE e T e M em MR SR e e S e N SN R e SR S T e N S M e e A S e e e e e N S o e A A e e e

USER SUPPLIED DIMENSIONS:
DIMENSION OF TRPR,TRPRP, TRMAG, NUMBER OF TRAPPING
BOUNDL, AND BOUNDU PARAMETERS

i

SEE TABLIM FOR DIMENSIONING VALUES OF COMMONS TLIMIT AND GRIDBD

USER SUPPLIES "NTRPPR", THE NUMBER OF TRAPPING PARAMETERS

- e AR e A e R R M e EE e e e e e e NS R S S e e T B R R SR B S R S e e e A e e e S eSS S e S e e SR e SR e e e o Y

e e e e N MR T ST e TR M e S e e e e N e e N R SR W R RS e W SR R e e e A S e e e M N M e e e e G e S M SR W W e

DIMENSION TRPR(2),TRPRP(2),SCALE(2)

DIMENSION TRMAG(2),BOUNDL(2),BOUNDU(2)

DATA NTRPR/2/
COMMON/TLIMIT/INDIC(4,2) ,NGE (4,2) ,NCOMP(4) ,NTABLE
COMMON/GRIDBD/GRIDL(&, 2),GRIDU(&, 2),IBL(&, 2),IBU(4, 2)

e D s R e e e e e e e B U R N D e U S e e 4 e e e e s e e W W R A W W

B e e T T e I e e e e e T T

- e e e e En e S R S e e e R N A G e e R A R R e e s e e R e e e S RN En e GRS e MR W G R e G e e e

FCT(X,XU,XL,XSCALE) = (XU - X)*(X-XL)* XSCALE
FCTP(X,XU,X%L,XSCALE)=(~2.D0*X + XU+XL)* XSCALE

- e T D e S S SR e s N A R S e e e e R S e e e S S AN e SR S N A e M G R e e e e e e e

TRAPPING PARAMETERS MUST BE EVALUATED--PERFORMED IN PHIPAR--
BEFORE PHI ANALYSIS CAN BEGIN

CALL PHIPAR(MODE1l,NEQN,T,Y,YP,NTRPR,TRPR,TRPRP)

e e e e e e e e Em e AN M R R R RN S MW SR M R e e M S R4 R S M e e MR R EE SR TH M M MR R S W R e e e N R e e e e

IF (UPDATE) GO TC 50

- - e e S e e mm e R W o hm Sm e R Wm e R M e A R N e e e M R M G R N M M Re RN R e M e e R S e e e e e e

e e A e A e MmN M W M Y SR A S M R M e AR Te e G e e M A R M e G R M s A R e e e e e e e e N R e e e

