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München, den 21. Mai 2014



iv

Nomenclature and Abbreviations

{an} autoregressive process
Aij an adjacency matrix

Acyl
ij , Aspy

ij adjacency matrix for cylindrical, spherical properties

Aijt a multislice adjacency matrix
Aρ, Az fitting parameters
{An} amplitudes of the (complex) Fourier transform of {yn}
α parameter for unweighted network
Bρ fitting parameter
β Lorenz parameter
c parameter of AR process
cPM(∆) cross correlation in phase map at shift ∆
C average clustering coefficient
Cν clustering coefficient of node ν
Cp,Cnp periodic and nonperiodic autocorrelation function
Cijt a three-dimensional intraslice coupling matrix
C(τ) autocorrelation function
d a dimension
di,j horizontal distance
δij = δ(i, j) Kroenecker delta
dmin minimal horizontal distance in a time series
e elementary charge
exp(·) exponential function
ε threshold for adjacency matrix of unweighted network
F(yi, T ) predictor for point yi at lead time T
F a Force
g number of nearest neighbors for nonlinear prediction error
gν community of node ν
γ resolution parameter for community finding algorithm
η distance of strings vs. extent of string
ηn number drawn from Gaussian distribution
kν number of neighbors of node ν
K component of a graph
κ average connectivity
κν connectivity of node ν
κor parameter; ε will be chosen such that κ = κor for original data
lν,i length of path from note ν to node i
L average path length
Lν path length of node ν
λ screening length
m mixing parameter
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M mass of a dust particle
µ total edge strength of a network
n number of constituents of a system
ncyl number of particles of cylindrical structure in a null model
nsph number of particles of spherical structure in a null model
N∆
n u number of links between neighbors of node ν

P partition of a graph
{φn} phases of the (complex) Fourier transform of {yn}
Q quality of a partition
Θ(·) Heaviside function
R(t) stability of a partition
R ratio nsph/ncyl

ri, ri 3D vector of position of particle i and its modulus
ρ Lorenz parameter
ρi (cylindrical) radius of particle i
{sn} random shuffle of {yn}
S(X) significance of measure X
σ Lorenz parameter
τ a time: argument of correlation function; delay time for embedding
T lead time for NLPE
Ug(i) set of indices of the g nearest neighbors of point i
ω, ω rotation vector and its modulus
Ωρ, Ωz cylindrical and vertical confinement parameter
{yn} a time series of length n

3D three-dimensional
AGN active galactic nucleus
AR autoregressive
Ark Ark 564 (galaxy)
ASCA Advanced Satellite for Cosmology and Astrophysics
MCG MCG-6-30-15
Mrk Mrk766 (galaxy)
NLPE nonlinear prediction error
QPO quasi periodic oscillation
RE J RE J1034+396 (galaxy)
RQA recurrence quantification analysis
XMM X-ray Multi-Mirror Mission (satellite)
surrogate algorithms:
FT Fourier-transformed
AAFT amplitude-adjusted Fourier-transformed
IAAFT iterative amplitude-adjusted Fourier-transformed
SA simulated annealing
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Chapter 1

Networks

1.1 What is a (Complex) Network?

Originating from “classical” networks such as power grids [Watts and Strogatz,
1998] or the World Wide Web [Albert et al., 1999], complex network analysis has
been adopted for a wide range of systems [Albert and Barabási, 2002; Boccaletti
et al., 2006]. Common to all these applications is the procedure of associating the
constituents of a system (current generators or routers) with the nodes of a network,
and their interactions (transmission lines between generators or connections between
routers) with edges connecting them.

The term complex network is used to set it apart from a regular network which
was studied at the beginning of graph theory, and will sometimes be omitted in this
work. Erdös and Rényi [1960] modeled large, complicated networks with random
graphs, where any two nodes are connected with a probability p. Watts and Strogatz
[1998], guided by the properties of real complex networks, proposed the small world1

network, which is created by a “rewiring” process of a ring of n nodes, each connected
to its k nearest neighbors. The rewiring is done by reconnecting each node to a
random node with probability p. Scale-free networks focus more on the dynamics
of a growing network. With a preferred attachment of new nodes to nodes that
have already relatively many neighbors, scale-free networks reproduce the power-law
degree distribution (see Sec. 1.2 for the definition of degree centrality) observed in
many real networks [Barabási and Albert, 1999].

In recent years, complex network analysis has also been applied to systems whose
architecture is not obviously network-like. The contributions of network analysis to
time series analysis are eminent and lead to insights in both fields [Lacasa et al.,
2008; Donner et al., 2010; Donges et al., 2013]. Community detection, which has
contributed vastly to the understanding of structural properties of large networks,
was used in other fields: Mucha et al. [2010], for example, used it to divide the
representatives of the U.S. senates of the last two centuries in groups, depending on

1The name small world stems from Milgram [1967] who found that the chain of acquaintances
between any two persons in the US has typically the length six.
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Figure 1.1: Creating a simple network. (a) Scatter plot of 50 points with x and y positions
drawn from a uniform distribution. A ball with radius ε = 0.15 centered on the zeroth point
(in blue) contains the particles closer than ε. (b) The corresponding adjacency matrix.
Black dots denote unity entries in the matrix and denote the connections in the network.
Accordingly, the neighbors of point 0 are shown in the zeroth column (or line) of the matrix.
They are highlighted in red. (c) A representation of the network where the nodes have
the coordinates of the points they correspond to. The neighbors of the zeroth node are
highlighted in red.

the similarity of their voting behavior. As expected for a two-party system, most of
the senates consist of two communities. The senates with more than two communities
at a time, however, correspond to historically important events like the beginning of
the American Civil War.

The information stored in a network can be expressed by a square matrix A
of size n, where n is the number of constituents of the system. A is called the
adjacency matrix. Aij then takes the value of the edge connecting nodes i and j.
For an undirected network, the matrix is symmetric; for an unweighted network,
Aij ∈ {0, 1}. The components of a network are sets of nodes that are connected
by paths of one or more non-zero edges. In Fig. 1.1(a), 50 points with random
xy positions are plotted. A network is created by considering points that are closer
to each other than a threshold ε = 0.15 as neighbors of the corresponding network.
The adjacency matrix then reads

Aij(ε) = Θ (ε− ‖xi − xj‖)− δij, (1.1)

where Θ(·) is the Heaviside function and xi is the two-dimensional position vector of
point i. The Kronecker δ sets the diagonal terms to zero in order to avoid self-loops
in the network: a point is not considered to be its own neighbor. A is shown in
Fig. 1.1(b). In Chapters 2 and 3, similar definitions of the adjacency matrix, albeit
with different measures of distance, will be used to create networks.



1.2 Measures on Networks 3

1.2 Measures on Networks

As was stated in Sec. 1.1, the degree centrality reflects important properties of the
network. This measure and others will be described below. The network measures
reduce the information stored in the adjacency matrix to a value or a distribution of
values that characterize the network at a given scale.

As a first network measure, the degree centrality kν counts the number of nodes
that are connected to node ν [Freeman, 1979]. It is defined as

kν =
n−1∑
i=0

Aν,i. (1.2)

Dividing by the maximum possible value yields the connectivity κν . The average
connectivity κ is defined as the mean of all nodes κν ,

κ =
1

n

n−1∑
ν=0

κν =
1

n(n− 1)

n−1∑
ν=0

kν . (1.3)

Taking into account only the immediate neighbors of the node2, this measure may be
regarded as a local measure. For a random network, kν obeys a Poisson distribution,
for scale-free networks on the other hand, it obeys a power-law distribution.

The clustering coefficient Cν [Watts and Strogatz, 1998] acts on intermediate
scales of the network. It evaluates the number N∆

ν of links between neighbors of a
given node versus the maximum possible number kν(kν − 1)/2:

Cν =
2

kν(kν − 1)
N∆
ν =

1

kν(kν − 1)

n−1∑
i,j=0

Aν,iAi,j.Aj,ν . (1.4)

The average clustering coefficient is the mean value of the Cν , summed over all nodes
of the network,

C =
1

n

n−1∑
ν=0

Cν . (1.5)

Finally, the path length Lν of node ν is considered. For every node ν of the
network, the minimum numbers lν,i of edges that have to be traversed to get to any
other node i of the same component are calculated. The path length Lν is then
calculated by averaging over all nodes i that are in the same component as ν.

Lν =
1

nK(ν)

nK(ν)−1∑
i=0

lν,i, (1.6)

2Note that depending on the definition of the adjacency matrix, connected nodes (neighbors)
of the network do not necessarily represent constituents of the system that have a small spatial
separation.
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Figure 1.2: (a) The Network of Fig. 1.1 color coded with the network measure degree
centrality kν . The histogram (b) has the same colors as a function of kν . For the zeroth
node, highlighted in Fig. 1.1, k0 = 3. (c), (d): The same for the clustering coefficient Cν .
Cν can take a multitude of non-integer values, the bin size was therefore reduced. C0 = 1,
since all neighbors of the zeroth node are connected to each other. (e), (f): The same
for path length Lν . Being at the border of its component, the path length for the zeroth
particle is relatively big L0 ' 3.09.

where nK(ν) is the number of nodes in the same component as node ν. By averaging
over all nodes ν, the average path length L is obtained [Watts and Strogatz, 1998]:

L =
1

n

n−1∑
ν=0

Lν . (1.7)

The small world property mentioned in Sec. 1.1 is characterized by a relatively small
average path length L (like a random network) and at the same time a high average
clustering C (like a regular network, much higher than a random network). This
is modeled by the rewiring step, which dramatically reduces L of the initial ring
network already for small p� 1, while keeping the value of C almost unchanged.

The measures on the network from Sec. 1.1 are plotted in Fig. 1.2. As can be seen
in Fig. 1.2(a), the nodes of dense regions have a relatively high degree centrality kν .
The average path length Lν , [see Fig. 1.2(e)], on the other hand, yields high values
for nodes that are situated at the border of large components. For the clustering
coefficient Cν , which depends on the “connectedness” of the neighbors of a node, it
is difficult to find a pattern in the coloring of the nodes. The value for an isolated
node is equal to zero for each of the considered network measures.
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1.3 Community Finding in Networks

If a network has only one component, it is called connected. Communities, on the
other hand, are sets of nodes in a connected network which are “more connected” to
each other than to the rest of the network. In a network communities often correspond
to the functional units of the system under consideration. For the example of power
grids from Sec. 1.1, communities may represent different cities, or, on a larger scale,
countries. Having defined the communities, one may then consider a higher-level
network, where each community is represented as a node, to examine the interactions
of these functional units. In this Section sums without limits are summed over all
possible values.

Common to the different methods to partition a network into communities is the
definition of the goodness of a partition. A quality function Q quantifies a partition
by comparing the number of intracommunity edges of the partition to the expectation
value of a null model [Porter et al., 2009]:

Q ∝
∑
ij

(
Aij − Anull

ij

)
δ(gi, gj). (1.8)

Here, Aij is the adjacency matrix of the network, Anull
ij is the expected weight between

nodes i and j under a given null model and gi is the community assignment of node i.
A popular choice for the null model is the modularity proposed by Newman and
Girvan [Newman and Girvan, 2004; Newman, 2006]:

Anull
ij =

kikj
2µ

, (1.9)

where ki is the degree of node i and µ =
∑

i,j Aij/2 is the total edge strength in the
network.

The quality Q of a partition can also be expressed in terms of its stability R,
that is, an autocovariance function of a Markov process on the network [Lambiotte
et al., 2008]. With this equivalence of the quality function on one hand, and Laplacian
dynamics on the other hand, a resolution parameter can be derived, determining the
size of the communities that maximize Q. Considering an ergodic Markov Process for
the underlying dynamics, the stability of partition P can be written as [Lambiotte
et al., 2008]

R(t) =
∑
K

P (K, t)− P (K,∞), (1.10)

where P (K, t) is the probability for a walker to be in the same community K initially
and at time t. R(t) describes the probability that a random walker remains within the
same community after a time t, relative to the expected value under independence.
The sum includes all communities of the network. Assuming independent, identical
Poisson processes on each node of the graph, Lambiotte et al. [2008] derived with
the Kolmogorov equation for the probability density pi of a random walker i,

ṗi =
∑
j

Aij
kj
pj − pi ≡

∑
j

Lijpi (1.11)
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and its stationary solution p∗i = ki/2µ the stability to be

R(t) =
∑
K

∑
i,j∈K

[(
etL
)
ij

kj
2µ
− ki

2µ

kj
2µ

]
δ(gi, gj)

≈
∑
K

∑
i,j∈K

[
δij
kj
2µ

+ t

(
Aij
kj
− δij

)
kj
2µ
− ki

2µ

kj
2µ

]
δ(gi, gj)

=
1

2µ

∑
K

∑
i,j∈K

[
tAij −

kikj
2µ

]
δ(gi, gj) +

1

2µ

∑
K

∑
i,j∈K

[δij (ki − tki)] .

(1.12)

Here, the matrix exponential was expanded to first order in t. Omitting the second
sum, which makes the same contribution for all partitions due to the Kronecker δ,
and multiplying by γ ≡ 1/t, the stability can be understood as a modularity:

R(γ) =
1

2µ

∑
ij

[
Aij − γ

kikj
2µ

]
δ(gi, gj), (1.13)

where the resolution parameter γ now determines the scale at which communities
will be found in the network. R(γ) reduces to the modularity proposed by Newman
and Girvan [2004] (Eq. 1.9) for γ = 1. By varying γ, the community structure at all
scales of the systems can be examined.

In the same manner, Mucha et al. [2010] derived a quality function for a multislice
network, i.e., a set of adjacency matrices Aijt, one for every time step t, and interslice
couplings Cjtr connecting node j at time t to itself at time r [Mucha et al., 2010]. It
can be derived as

Qmultislice(γ) =
1

2µ

∑
ijtr

[(
Aijt − γ

kitkjt
2µt

)
δtr + δijCjtr

]
δ(git, gjr), (1.14)

where γ is the resolution parameter and kjt =
∑

iAjit the strength of an individual
node. The normalization factor is defined as 2µ =

∑
jt (kjt + cjt) with cjt =

∑
r Cjtr

the strength of node j across the slices.
Multislice networks are particularly interesting for systems that evolve over

time [Bassett et al., 2013]. The interslice coupling Cjtr can be chosen to connect
every node j to itself for two successive time steps t and r. Then, the nodes tend
to stay in the same community over time, except if the structure of the network
changes such that a node becomes very connected to a different community. The
value of Cjtr determines how this coupling to the future time step r compares to
the connections Aijt in the system at time t. The dynamics of functional units for a
system can thus be examined, at a scale defined by resolution parameter γ.

The algorithm used here is an adaption of the so-called Louvain method that
aggregates nodes to small communities which are the nodes of a new network at a
later iteration step until Q is maximized [Mucha et al., 2010; Blondel et al., 2008].



Chapter 2

Analysis of Nonlinear Time Series

2.1 Motivation

One main goal of nonlinear time series analysis is to determine whether a system has
underlying chaotic dynamics [Kantz and Schreiber, 2004; Strogatz, 2006]. To this end,
some measure for nonlinearity is calculated for the time series. In order to make a
significant statement, the measure may also be applied to a set of so-called surrogate
data sets which mimic the linear properties of the original data (see Sec. 2.2.1).

Most tests for nonlinearity are derived or at least motivated from chaos theory.
In his much renowned paper on cellular convection, Lorenz [1963] conjectured that
low-dimensional, deterministic equations can show chaotic behavior in such a way
that “prediction of the sufficiently distant future is impossible by any method, unless
the present conditions are known exactly”. The attractor of such systems was later
called strange [Ruelle and Takens, 1971], as it often exhibits a fractal structure.

The correlation dimension, as one example of a measure for nonlinearity, attempts
to estimate the dimensionality of this fractal structure [Grassberger and Procaccia,
1983]. To this end, the correlation sum is calculated, which counts how many points
in phase space are nearer to each other than a distance r. The slope of the double-log
plot of correlation sum versus r then yields the correlation dimension. If the value of
the slope is constant in a range of r values and not equal to an integer, it is probable
that the system has chaotic dynamics. Noise can, however, easily blur the fractal
geometry of the trajectory [Schreiber and Schmitz, 1997].

The correlation dimension can be attributed to the class of static measures for
nonlinearity, since it considers the trajectory in phase space as a whole [Wackerbauer
et al., 1994]. The nonlinear prediction error, which takes the dynamics at each time
step into account, is an example of a dynamic measure for nonlinearity and will be
described in Sec. 2.2.4.

Since a network contains the complete information about interactions of the
system, time series may also be subject of analysis. In order to use network analysis
for the detection of nonlinearities, first of all a suitable network has to be found.
While it is straightforward to derive a network from systems like social or neural
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networks [Albert and Barabási, 2002], there is no “natural” way of how to create a
network from a time series.

One approach is the recurrence network [Xu et al., 2008; Marwan et al., 2009]
motivated from recurrence quantification analysis (RQA) [Eckmann et al., 1987]. In
RQA, the time series is embedded in an artificial phase space (see Sec. 2.2.2). The
recurrence matrix then contains the information which points are sufficiently close to
each other in phase space. The structural properties of the recurrence matrix can be
used to characterize different dynamic aspects of the time series. By interpreting the
recurrence matrix as an adjacency matrix, a network can be constructed from the
time series. This approach may be used to characterize the underlying dynamical
system [Donner et al., 2010] or detect dynamic changes by a sliding-window technique
[Marwan et al., 2009]. Both RQA and the analysis of recurrence networks are static
measures for nonlinearity.

In this chapter, recurrence networks are used to test for weak nonlinearities in
time series. To this end, network measures are calculated for the time series under
study and their surrogate data sets. Four different surrogate generating algorithms
are examined. The performance of the network test is compared to the nonlinear
prediction error. The Lorenz system is used as an example of low-dimensional chaotic
time series. The data is mixed with a (linear) autoregressive process in order to test
both the ability to detect weak nonlinearities and the susceptibility to erroneously
consider a linear time series as nonlinear. As real-world data, light curves of active
galactic nuclei (AGN) are examined. AGN represent an active research domain and
nonlinear time series analysis may help to understand their fundamental physical
processes.

2.2 Tools

2.2.1 Surrogate Data

Surrogates are an important tool for the detection of nonlinearities in time series.
They are data sets which mimic the linear properties, i. e. the autocorrelation
function, of the original data, while possible higher order correlations are randomized.
Comparing the result of some measure for nonlinearity for the original time series
with those for the surrogate data offers a rigorous statistical test for nonlinearity. The
most commonly used methods for generating surrogates are Fourier-transformed (FT)
surrogates and their amplitude-adjusted (AAFT) and iterative amplitude-adjusted
FT (IAAFT) generalizations, as well as simulated annealing (SA) surrogates. As
it is impossible to perfectly reproduce both the autocorrelation function as well as
the amplitude distribution, the available surrogate generating algorithms focus on
different aspects. They will be described below.

FT surrogates are compatible with the null hypothesis of a linear Gaussian process
[Theiler et al., 1992]. They are generated by randomizing the phases {φn} of the
discrete Fourier transform of the original time series and subsequently performing
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the inverse transform. The Wiener-Khinchin theorem guarantees the surrogates to
have the same autocorrelation function as the original time series. Being truly linear,
the surrogates can unveil higher order correlations, however, this test is limited to
time series which themselves obey a Gaussian distribution.

AAFT surrogates extend the null hypothesis to a Gaussian process which was
distorted by an instantaneous, time-independent measurement function [Theiler
et al., 1992]. Here, the original time series is first rank-order remapped1 to a set of
random numbers drawn from a Gaussian distribution. Then, FT surrogates of this
remapped time series are created. Finally, the surrogates are rank-order remapped to
the original time series. The surrogates now mimic both the autocorrelation function
and the amplitude distribution. The final step, however, leads to a whitening of the
power spectrum (or, equivalently, of the autocorrelation function) as compared to
the original time series. In Schreiber and Schmitz [1996] it was shown that this may
lead to a false detection of nonlinearity in purely linear time series.

IAAFT surrogates were designed to overcome this shortcoming [Schreiber and
Schmitz, 1996, 2000]. The IAAFT scheme starts with a random shuffle {sn} of
the original time series {yn}. The Fourier amplitudes {An} of the original time
series are saved. Now, the following two steps are repeated iteratively. (1) Take the
Fourier transform of {sn}, replace the corresponding Fourier amplitudes by {An},
and transform back. {sn} now has exactly the same autocorrelation function as {yn},
but not the same amplitude distribution. (2) Rank-order remap the resulting {sn} to
{yn}. As step (2) changes the power spectrum of the surrogate {sn}, the two steps
are repeated iteratively. The algorithm may be stopped after a given number of
iterations, or continued until the rank-order remapping no longer leads to a change
in the surrogate. Here, the algorithm is always stopped after step (1) in order to
have exactly the same power spectrum as the original time series.

SA surrogates follow a different iteration scheme [Schreiber, 1998], and were
promoted to be more flexible, for example for data that are not evenly sampled.
Initially, after calculating the autocorrelation function Cdata(τ) of the data, the
data are shuffled. Then, at each iteration step, the following scheme is repeated:
Calculate the autocorrelation Cbefore(τ). Swap2 two random data positions a and
b, and calculate the new autocorrelation Cswap(τ). Calculate the cost function
E[C(τ)] =

∑n
τ=1[C(τ) − Cdata(τ)]/τ for the two autocorrelation functions, as well

as their difference dE = E[Cswap]− E[Cbefore]. Now, do a so-called Metropolis step
[Metropolis et al., 1953]: If dE ≤ 0, accept the swapping; if dE > 0, accept the
swapping only with a probability exp(−dE/kT ) and revert it otherwise. The thermal
energy term kT controls the acceptance of an increase of the cost function. kT
decreases with increasing iteration steps, hence the name of the scheme.

1The rank-order remapping of a data set {xn} to {yn} is a reordering of {yn} such that if xi
is the ith smallest of the {xn}, then yi is the ith smallest of the {yn}. The reordered {yn} thus
“follow” the original set {xn} while having an amplitude distribution identical to the one of {yn}.

2For a and b drawn randomly from zero to n, the swapping is done as follows: tmp = sa, sa = sb,
sb = tmp.
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The surrogates based on the Fourier transform assume a periodic autocorrelation
Cp(τ) = 1/n

∑n−1
i=0 xix(i+τ)%n where % is the modulo operator. SA surrogates are

not, in this perspective, limited, and a more general, nonperiodic autocorrelation
can be used3: Cnp(τ) = 1/(n− τ)

∑n−τ−1
i=0 xixi+τ . This makes sense when a periodic

signal cannot be assumed, or, more specifically, start and end values of a time series
are significantly different. Here, only the nonperiodic autocorrelation function is
considered for the SA surrogates.

2.2.2 Embedding of a Time Series

Often, only a one-dimensional series of observables is available for a system that
is expected to depend on more than one parameters. Takens [1981] addressed the
question how the phase space of an attractor could be reconstructed from this time
series of observables. He proved that there exists an embedding, i. e., a continuous
mapping of the time series to a space that is topologically equivalent to the attractor.

To embed a time series in d dimensions, one may use the consecutive time
derivatives [Packard et al., 1980]:

yi =

(
yi,

dyi
dt
, ...,

dd−1yi
dtd−1

)
. (2.1)

Due to the uncertainties for estimating higher time derivatives for time series, the
method of delay coordinates is generally preferred [Packard et al., 1980]:

yi = (yi, yi+τ , . . . , yi+(d−1)τ ), (2.2)

where τ is the delay time. The embedded time series has (d− 1)τ less data points
than the original time series.

For an experimental time series whose phase space is not known a priori, suitable
delay time τ and embedding dimension d have to be found. One method of deter-
mining the embedding dimension is the false neighbor method [Kennel et al., 1992],
where the behavior of near neighbors under changes in the embedding dimension are
examined. The idea is that if the embedding dimension is too small, points may be
near to one another only because the attractor is projected onto a lower dimension.
By increasing the embedding dimension, the percentage of these false neighbors can
be calculated. The embedding dimension with a small enough percentage of false
neighbors is used. Choosing a too high embedding dimension leads to a sparsely
filled phase space that complicates the analysis. Also, especially when dealing with
time series with a small number of data points or when a large delay time τ has
to be chosen, a high dimensional embedding decreases the number of points in the
embedding space

For determining an appropriate delay time τ three values can be considered: first
zero-crossing or first minimum of the autocorrelation function, or first minimum of
mutual information.

3The SA algorithm can be used to minimize any cost function.
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Figure 2.1: Embedding of a time series. (a) 10000 points of the Lorenz system at a step
length h = 0.005. The data is plotted in 3D, with the xy projection shown in red. (b) Time
delay embedding of the x coordinates from (a) in d = 3 dimensions with delay time
τ = 18 time steps. (c) Embedding of the x coordinates with the first two time derivatives
ẋi = (xi+1 − xi−1)/2h and ẍi = (xi+1 − 2xi + xi−1)/h2.

In Fig. 2.1(a), the three-dimensional (3D) Lorenz system (see Sec. 2.3.1) is
plotted. The attractor, which resembles a butterfly, is clearly visible. This attractor
is reconstructed from only the x coordinates of the data using the method of delay
coordinates in Fig. 2.1(b). For this simple example, the embedding dimension d = 3
was chosen in order to compare it with the original attractor. The delay time τ is
chosen by visual inspection of the result. In Fig. 2.1(c), an embedding using time
derivatives is shown. For the smooth Lorenz system, this method also works very
well for reconstructing the topology of the attractor.

2.2.3 Measures for Nonlinearity derived from Networks

In order to test a time series for nonlinearity with the help of network analysis, it
is first embedded in an artificial phase space. Then, a network is created from the
embedded time series and different network measures are obtained. These network
measures are compared to the measures from networks which correspond to surrogate
data. In Donges et al. [2011], a similar approach was applied to the sliding-window
method, where the “surrogates” were randomly drawn points from the embedded
time series.

The adjacency matrix of the recurrence network [Donner et al., 2010] reads

Aij(κor) = Θ (ε(κor)− ‖yi − yj‖)− δij, (2.3)

where the {yn} are now the vectors in embedding space. The threshold ε(κor) of
the recurrence network is chosen such that the global connectivity of the network
from the embedded time series is κ = κor. The same threshold is then used for the
surrogate data. For the FT surrogates, the time series is rank-order remapped to a



12 2. Analysis of Nonlinear Time Series

Gaussian distribution before calculating the threshold of the recurrence network and
the network measures.

The network measures average connectivity κ (Eq. 1.3), average clustering coeffi-
cient C (Eq. 1.5) and average path length L (Eq.1.7) are used for a statistical test to
determine whether the null hypothesis of a linear time series has to be rejected. The
idea is that if the original time series is nonlinear, its structure in embedding space
will be different to that of its surrogates. This difference in structure is examined
with the aid of network measures. If the measure of the original time series has the
maximal or minimal value compared to 19 realizations of surrogate data, the null
hypothesis is rejected. The size of a test is the probability that the time series has
the maximal or minimal value by chance [Schreiber and Schmitz, 1997]. For the
total of 20 data sets (the original data and 19 surrogates), the size of the test is 0.10.
Repeating the test for a sufficiently large data set yields a rejection probability.

In the case of the AGN light curves (see Sec. 2.4), a statistical test is not
appropriate, since the number of data sets is limited. Instead, the significance S(X)
of the deviation of the time series from the surrogates is calculated as

S(X) =
|Xor − 〈Xsurrogate〉|
σ({Xsurrogate})

, (2.4)

where X is a measure for nonlinearity, and Xor and {Xsurrogate} the values of the
measure for the original time series and the surrogates. 〈·〉 and σ(·) denote average
value and standard deviation, respectively.

2.2.4 Nonlinear Prediction Error

The nonlinear prediction error (NLPE) is one of the most powerful measures for
nonlinearity in time series [Sugihara and May, 1990]. In Schreiber and Schmitz
[1997] it was found to be the one with the best overall performance for different
nonlinear data sets. The underlying idea is that if a nonlinear time series is embedded
with suitable parameters, points that are close to each other in phase space have a
comparable time evolution. By averaging over the future positions of the neighbors
of a point yi, an estimate F(yi, T ) for the future position is obtained. The local
nonlinear prediction error is then the distance from this estimate to the actual future
position in phase space yi+T (see Fig. 2.2). The NLPE is then defined as

NLPE({yn}) =
1√
n− T

√√√√n−T−1∑
i=0

[yi+T − F (yi, T )]2, (2.5)

where T is the lead time. T determines for how many time steps into the future of
the points the prediction is made.

There are multiple ways of defining the predictor, here a fixed mass method is
used:

F(yi, T ) =
1

g

∑
j∈Ug(i)

yj+T , (2.6)
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Figure 2.2: Sketch of the method of the nonlinear prediction error (NLPE). The attractor
of a system is represented as lines, and the data points are numbered in an arbitrary way.
The NLPE for y0 is obtained as follows. Find the 3 nearest neighbors of y0. Find the
center F(y0, 1) of the future position of these neighbors a lead time T = 1 ahead. Calculate
the Euclidean distance between y1 and F(y0, 1). The NLPE of the system is then obtained
by averaging over the prediction errors of all points.

where Ug(i) is the set of indices of the g nearest neighbors of point yi. Another
possibility is the fixed ball method, where all particles nearer than a given radius are
considered. Care has to be taken when choosing the radius, as it must not be too
small for the points to have at least one neighbor in the sparse regions of the phase
space, and be small enough to resolve the smaller scales in the dense regions.

Due to the smooth dynamics on the attractor, the error is expected to be smaller
for a nonlinear time series than for a random time series with the same linear
properties. Accordingly, the null hypothesis is only rejected in this case, reducing the
size of the test to 0.05. For the AGN data, the significance of the test is calculated
according to Eq. 2.4.

2.3 Analysis of the Lorenz System

Artificial, nonlinear data obtained from integrating the Lorenz system are examined
in order to test the measure for nonlinearity based on network analysis. The null
hypothesis that the time series is in agreement with a linear process is tested with
different surrogate generating algorithms. The data is mixed with a linear process
to test both the ability to reject the hypothesis when nonlinearities are present and
the susceptibility to erroneously do so when the data is purely linear. In previous
studies, noise of a given amplitude was simply added to the time series under study
[Schreiber and Schmitz, 1997]. The embedding proposed here enables a throughout
analysis in the range from a purely linear time series to a nonlinear signal.
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Figure 2.3: Lorenz system mixed with an AR process. The 125 first steps of a data set
of 2000 steps are shown for different mixing parameters m. The step size for the Lorenz
system is 0.08 time units.

2.3.1 Data Sets

The tests for nonlinearity are applied to the well known Lorenz system [Lorenz, 1963],
which is given by the following equations:

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz.

(2.7)

The parameters are chosen to have the standard values σ = 10, β = 8/3 and ρ = 28.
A 3D plot of the Lorenz system at a small step size can be seen in Fig. 2.1. In the
following, data sets containing 2000 time steps with a larger step size of 0.08 time
units are considered. The x coordinates {xn} of the data are subject of the analysis.

The univariate data {xn} are mixed with a linear autoregressive (AR) process
{an} in order to generate a new series {yn} which contains a fraction m of the
nonlinear series,

yn = m · xn + (m− 1) · an, (2.8)
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where m is called the mixing parameter. m includes the whole range from a linear
process to a nonlinear time series in the interval m ∈ [0, 1]. Ideally, a measure for
nonlinearity should not reject the null hypothesis for m = 0, and detect nonlinearities
for m > 0. In this work, six values of m are used to evenly sample this interval. This
sampling is already sufficient to depict differences in the measures for nonlinearity
and the different surrogate generating algorithms.

The same distorted AR process as in Schreiber and Schmitz [1996] is used, it
reads

an = xn
√
|xn|,

xn = cxn−1 + ηn,
(2.9)

with c = 0.9 and noise ηn drawn from a Gaussian distribution. The first 125 steps
of the AR process, corresponding to m = 0 of the mixed time series, are shown in
Fig. 2.3(a). Other realizations for different m up to m = 1.00 (pure Lorenz) are
shown in Fig. 2.3(b)-(f). Note that due to the different amplitude distributions of
the Lorenz system and the AR process, m = 0.5 does not correspond to equal parts
of linear and nonlinear contributions.

2.3.2 Finding Nonlinearities in the Lorenz System

The mixed Lorenz data is embedded in d = 3 dimensions. The delay time for the
embedding is set to τ = 2 time steps such that the attractor is clearly reconstructed
for m = 1. As proposed in Sugihara and May [1990], the number of nearest neighbors
for the predictor was set to g = d+ 1 = 4. The best results of the NLPE were found
for a lead time T = 2.

The discrimination power of the NLPE as a function of m can be seen in Fig. 2.4(a).
The AAFT surrogates erroneously reject the null hypothesis at m = 0, where the
series is a pure AR process, with a probability of more than 20 %. This observation
was used in Schreiber and Schmitz [1996] to motivate the advantages of the IAAFT
algorithm which indeed shows a lower percentage of false rejections. In this paper,
however, the performance of the algorithms was not compared for time series with
nonlinearities. In Fig. 2.4(a) it can be seen that at m = 0.2, the rejection probability
of the IAAFT algorithm is still around 10 % (which corresponds to the size of the
test) while the FT and AAFT surrogates already detect nonlinearities. Stopping the
IAAFT algorithm already after ten iterations has no effect, these surrogates [labeled
IAAFT(10) in the Figure] yield results almost identical to the IAAFT surrogates.
The FT algorithm shows a good performance, starting at about 10 % at m = 0 and
showing a rejection probability of more than 20 % at m = 0.2. The SA algorithm
shows a performance comparable to the IAAFT algorithm that is almost constant
for m ≤ 0.2.

The same embedding parameters are used for the network measures. The pa-
rameter controlling the threshold of the adjacency matrix (see Eq.2.3) is set to
κor = 0.01.
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Figure 2.4: Discrimination power of the measures for nonlinearity for the mixed Lorenz
data versus mixing parameter m. The rejection probability of 200 tests based on the
NLPE (a) and network measures average connectivity κ (b), average clustering coefficient
C (c) and average path length L (d). The size of the test is plotted as a dashed line. For
the IAAFT algorithm, the surrogates were saved after 10 iterations [IAAFT(10)], before
continuing until further iterations lead to no change in the surrogate (IAAFT). The SA
algorithm stopped when the cost function was decreased to E[C(τ)] = 0.01. Only 100 tests
were made with the SA surrogates due to the numerical expense of the iteration scheme.



2.3 Analysis of the Lorenz System 17

Figure 2.4(b) shows the discrimination power of the test based on the average
connectivity κ of the network. The performance of most surrogate algorithms is
similar to the NLPE. Stopping the IAAFT algorithm after ten iterations yields a
relatively high false rejection probability of 40 % at m = 0, which even decreases
for increasing m. Iterating the IAAFT scheme until no change in the surrogates is
obtained cancels this effect, the rejection probability for m = 0.2 is then quite small
as in the case of the NLPE. This dependence of the rejection probability on the
number of iterations shows that locally the surrogates change significantly even after
ten iterations. The AAFT and FT algorithms show a comparable performance, with
the former showing a higher rejection probability at m = 0.2. The SA surrogates fail
to detect the linearity of the AR process.

In Fig. 2.4(c), the average clustering coefficient C yields a test with a slightly
weaker performance compared to the NLPE. The surrogate generating algorithms
AAFT, IAAFT and FT show similar performance. As in the case of the test based
on κ, the IAAFT algorithm shows an increased false rejection probability at m = 0
if stopped after ten iterations. The SA algorithm also shows this increased rejection
at m = 0. At m = 0.2, the rejection probability is still near 10 % for all algorithms.

Finally, in Fig. 2.4(d), the average path length L is considered. The test shows a
relatively weak performance with the first significant rejection of the FT algorithm
at m = 0.60. The AAFT and IAAFT surrogates reject the hypothesis only when the
data are almost pure Lorenz system. This global network measure fails to detect
weak nonlinearities in the mixed Lorenz data.

2.3.3 Discussion

To explain the weak performance of the test based on the average path length L,
it can be argued that the global properties of a (embedded) time series are not
significantly different from its surrogate. Indeed, when κor is further decreased, the
networks are very sparse and the average path length, taking into account only edges
of the same component, becomes a more local measure. Accordingly, the performance
of the test based on L improves. The network measures for a range of κor from 0.005
to 0.040 are shown in Fig. A.1 in the Appendix. Due to the weak performance of the
test based on average path length L for detecting nonlinearities in the Lorenz system,
and its strong dependence on κor, this network measure will not be considered for
the application to real data in Sec. 2.4.

In Fig. A.1 it can also be seen that the network measures based on κ and C yield
very similar results for the values of κor considered in the Appendix. The rejection
probability for the test based on κ decreases slightly with increasing κor, while the
performance of the test based on C increases. This can be understood as for small
κor, the local structure is resolved very well, leading to the best performance of the
local network measure κ. The clustering coefficient C, being a network measure
on intermediate scales of the network, requires greater values of κor. In total, tests
based on κ and C have a good performance comparable to the NLPE.
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Calculating the rejection probability of the NLPE over the whole range of the
mixing parameter shows that the main argument of Schreiber and Schmitz [1996] has
to be reconsidered: While it is true that the IAAFT algorithm shows a smaller false
rejection probability for linear time series, the rejection probability is smaller than
that of other surrogate generating algorithms when weak nonlinearities are present.
The mixing proposed here thus allows a mode detailed study of nonlinear time series,
and enables a more profund comparison of different tests for nonlinearity.

The SA surrogates yield a relatively good performance for the NLPE, but they fail
for the network test based on connectivity. The reason may be that the cost function
has to be reduced further in order to mimic well the dynamics on the smallest scales.
For a deeper insight, dedicated studies on the SA surrogates are necessary.

2.4 Analysis of Active Galactic Nuclei

Active galactic nuclei (AGN) light curves are analyzed as an example of real-world
data. An AGN is a luminous region at the very center of a galaxy. It is powered by
accretion onto a supermassive black hole. Ionization and recombination processes
lead to X-ray emission from regions near to the event horizon of the black hole.
The accretion disc contributes a continuum emission in the X-ray band that can
be described by a power-law. Perpendicular to the accretion disc are radio jets.
There are two classes of AGN, radio-loud AGN where the jet contributes to the
emission, and radio-quiet AGN where this contribution can be neglected. Seyfert
galaxies discussed here are a subclass of radio-quiet AGN which are again subdivided
in different types ranging from 1 to 2, depending on the observed line widths. It
was argued that the variety of AGN is partly the result of different aspect angles
[Antonucci, 1993].

A spectral analysis is the typical approach to examine the observed X-ray emis-
sion. The observation of the gravitationally broadened iron Kα line was the first
confirmation of a black hole in an AGN [Tanaka et al., 1995]. Spectral properties
also permit an estimate of black hole spin and inner disc radii [Miller, 2007].

The contributions of a test for nonlinearity are twofold. First, linear models like
global disk oscillation models [Titarchuk and Osherovich, 2000] can be rejected with
the detection of nonlinearities. Second, the analysis of the (nonlinear) dynamics can
put to test different nonlinear models. Fore example, it was argued that AGN are
galactic black hole binary systems with their masses scaled up [McHardy et al., 2006].
Black hole binaries can be in the state of quasi periodic oscillation (QPO) [Remillard
and McClintock, 2006]. One evidence of the relation between galactic black hole
systems and AGN would be the detection and characterization of QPOs in AGN data
[Antonucci, 1993]. A unified model for these objects of very different masses4 and
time scales would contribute greatly to the understanding of the physical processes

4The masses of the black holes of AGN are in the range of 106 − 109 solar masses, as opposed to
around 10 solar masses for galactic black holes.
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Figure 2.5: AGN light curves. (a) MCG. (b) Mrk. (c) Akn. (d) RE J. The data is binned
with a bin size of 50 s. Since the characteristic times for the analysis for nonlinearities are
given in time steps (see Sec. 2.4.2), the x axis labels of the plots show the bin number instead
of time. The durations of the time series vary from about 80 ks (Mrk) to 120 ks (MCG).

close to a black hole.

2.4.1 Data Sets

The first time series considered here is a measurement of the Seyfert galaxy MCG-
6-30-15 (MCG) taken in 2001 by the X-ray Multi-Mirror Mission (XMM-Newton)
satellite [McHardy et al., 2005]. The time series is plotted in Fig. 2.5(a). With a
duration of more than 120 ks it is the longest time series considered here.

The bright Narrow Line Seyfert 1 galaxy Mrk766 (Mrk) has been observed by all
main X-ray observatories. Here, a measurement taken by the XMM-Newton satellite
in 2005 is used. The light curve is shown in Fig. 2.5(b). Power density spectra have
been analyzed in Markowitz et al. [2007], and a test for nonlinearity has previously
shown a very significant outcome [Räth et al., 2012]. The significance of the detection
of a QPO in another measurement on Mrk766 [Boller et al., 2001] was questioned
by Benlloch et al. [2001].

The Advanced Satellite for Cosmology and Astrophysics (ASCA) observation of
Ark 564 (Ark) in the X-ray band is also examined [Edelson et al., 2002]. As can be
seen in 2.5(c), starting and ending point of this time series have very different values.

Finally, the time series of RE J1034+396 (RE J), taken by the XMM-Newton
satellite in 2007, shows an oscillation with a periodicity of about one hour [Gierliński
et al., 2008]. It is to date the only AGN light curve that shows periodic oscillations
clearly visible by eye.
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Figure 2.6: The first five realizations of SA surrogates for the Mrk data shown in one plot.
The algorithm stopped when the cost function was decreased to E[C(τ)] = 0.02.

2.4.2 Finding Nonlinearities in Active Galactic Nuclei Light
Curves

As can be seen in Fig. 2.6, the SA algorithm tends to exactly reproduce the original
time series of the Mrk, and cannot be used for a test for nonlinearity. Reproducing
both the autocorrelation (with the Metropolis steps) and the amplitude spectrum
(by starting the algorithm with a shuffle of the original time series) essentially leads
to a copy of the original time series.

The embedding dimension of d = 3 is kept for the analysis of the AGN data. Since
the optimal delay time cannot be detected by optical inspection of the embedded time
series, ranges covering both first minimum and first zero crossing of the autocorrelation
function were chosen. RE J with its relatively fast oscillations has the smallest range,
starting at τ = 50 time steps. The delay times of MCG, being long and with relatively
slow dynamics, range from τ = 250 to τ = 400 time steps. The delay times can be
read off the x axis of the plots of Fig. 2.7. The lead time of the NLPE is set to T = 5
time steps.

The same delay times as for the NLPE are used for the test based on the network
measures. κor = 0.01 as in Sec. 2.3, with further tests for different values in the
Appendix. The IAAFT algorithms gave almost identical results if stopped after ten
iterations or iterated until the end for all tests.

The significances of the tests of the MCG light curve are shown in the top row
of Fig. 2.7. The NLPE shows significant nonlinearities of more than 5σ for the FT
and AAFT surrogates5. The network test based on κ yields a higher significance for
the AAFT surrogates, and a lower significance for the FT surrogates as compared
to the NLPE. The test based on C shows results comparable to the NLPE. The

5Note that even though the significance as defined in 2.4 is a dimensionless measure, it is common
practice to repeat the σ.
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Figure 2.7: Significances of the NLPE (first column), connectivity (second column) and
clustering coefficient (third column) versus delay time τ of the embedding. First row: MCG,
second row: Mrk, third row: Akn, fourth row: RE J. The significances were calculated for
200 realizations of the surrogates and are colored as in Fig. 2.4. The 3σ detection limit is
plotted as a dashed line.

significances of the IAAFT surrogates are below the detection limit of 3σ for all
three measures for nonlinearity.

As for the Mrk, the significances of the FT surrogates vary from ' 7σ for the
NLPE to near and below 3σ for the network measures (see Fig. 2.7, second row).
The significances of AAFT and IAAFT algorithms are below the detection limit for
all tests considered here. Supposing that the significance of the NLPE for the FT
surrogates is not an error, this suggests that both AAFT and IAAFT surrogates
contain nonlinearities that prevent the detection of nonlinearities in the original data.

The analysis of the Akn data with the NLPE yields significant values of about 5σ
for the FT surrogates, while the significances of the network measures are below (test
based on κ) or near (based on C) the detection limit. The AAFT surrogates show
an opposite behavior: Slightly above the detection limit for the NLPE, they reach
significances of 5σ and 4σ for the network measures. Finally, the IAAFT algorithm
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Figure 2.8: Phase maps with shift ∆ = 1 for surrogates of the Mrk data. For each surrogate
generating algorithm, the surrogate with the highest cross correlation cPM (see Eq. 2.10)
out of 20 realizations is chosen. The values of cPM are FT: 0.06, AAFT: 0.25, IAAFT: 0.43.

yields low significances.
The analysis of the RE J time series yields no significant values for any of the

tests for nonlinearity (see Fig. 2.7, bottom row). This case may be compared to
m = 0 for the Lorenz system, where the results of the NLPE were confirmed by the
network measures.

The performance of the network tests for different κor for MCG, Mrk and Akn
are shown in Appendix A. The significances for the RE J were below the detection
limit for all values of κor considered here and are not shown. The significances do
not change dramatically in the range of κor considered here, as did the rejection
probability for the mixed Lorenz data in Sec. 2.3. The significances of the test based
on κ decrease with increasing connectivity κor of the networks, which also agrees
with the case of the Lorenz data. For the test based on C, the significance may
decrease (Akn data) or increase (FT surrogates of Mrk data).

2.4.3 Phase Correlation in the Surrogates

To further investigate the differences of the surrogate generating algorithms, so-called
phase maps are considered. The phases of the Fourier modes {φi} are plotted versus
the phases {φi+∆} of the modes that where shifted by ∆. For a linear time series,
the {φn} are independent, and thus scattered uniformly in the square bounded by ±π.
Structure in a phase map shows that the {φn} are not independent, which means
that the phases contain information about the time series. Phase maps are a readily
implemented test for phase information, however, they do not necessarily show a
significant structure for nonlinear data. One way to quantify the correlation in the
phase maps is to calculate the cross correlation between {φi} and {φi+∆}:

cPM(∆) =
〈φiφi+∆〉

σ({φi})σ({φi+∆})
. (2.10)

In Fig. 2.8, phase maps of the three surrogate generating algorithms FT, AAFT
and IAAFT are shown. Since the SA surrogates have not been used in Sec. 2.4.2 due
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Figure 2.9: NLPE versus cPM(∆ = 1) for 200 surrogates of the AGN data. The NLPE is
calculated for the following delay times: MCG: τ = 300, Mrk: τ = 250, Akn: τ = 200,
RE J: τ = 100. The NLPE is divided by the value of the NLPE of the corresponding time
series which are plotted as an x mark (original time series) and a plus sign (rank-order
remapped time series). The values of the cross correlation between NLPE and cPM are
shown in square brackets in the legend. Root-mean-squared fits to the surrogates are shown
as dashed lines to guide the eye.
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Figure 2.10: Average connectivity κ versus cPM(∆ = 1) for 200 realizations of AAFT,
IAAFT and FT surrogates for the Mrk. Delay time and legend are the same as in Fig. 2.9.

to their resemblance to the original time series, their phases will not be analyzed
further. The phase maps of the SA surrogates showed no phase correlations in a
first analysis. The FT scheme, which stops after randomizing the phases of the
Fourier modes, is guaranteed to contain no phase information. Diagonal features
are evident for the AAFT and IAAFT algorithms. The rank-ordering (AAFT) and
the iteration scheme (IAAFT) thus reintroduce phase correlations to the surrogates
which only at the beginning of the algorithms were truly linear. As was shown for
AGN and financial market data in Räth et al. [2012], these nonlinearities lead to a
non-detection of nonlinearities in the time series.

In order to examine the impact of the phase correlations on the measures for
nonlineartiy, the NLPE of the surrogates of the AGN data is plotted versus the cross
correlation cPM of the phase maps in Fig. 2.9. There is a significant anticorrelation
for AAFT and IAAFT surrogates for the three light curves where nonlinearities were
detected in Sec. 2.4.2. In Fig. 2.10 the average connectivity of the corresponding
networks is also plotted versus the cross correlation for surrogates of the Mrk data.
The correlation in this case are as strong as the anticorrelation for the NLPE.

2.4.4 Discussion

Significant nonlinearities were found for the MCG, Mrk and Akn data. For the
periodic light curve of RE J, however, no nonlinearities could be detected. It is thus
still an open question if a QPO state of a galactic black hole corresponds to the
variability observed for RE J [Middleton and Done, 2010].

The network measures proposed here perform as well as or slightly worse than
the NLPE. This suggests once again that the NLPE is a very robust measure for
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nonlinearity with good performance. Dynamic measures (see Sec. 2.1) seem to be
more appropriate than the static measures, as could be expected for an analysis of
the dynamic properties of a system. The network measures might thus rather be
compared to other static measures like the correlation dimension. Still, the network
analysis of nonlinear time series allows a deeper insight in the differences of the
surrogate generating algorithms.

The FT surrogates yield the highest significance for the NLPE for all light curves
considered here. They are, however, less significant than the AAFT surrogates for
the network measures of MCG and Akn. One reason may be the strong impact on
the structure of the time series of the rank-ordering to a Gaussian distribution.

The reproduction of surrogates almost identical to the original time series il-
lustrates the weakness of the SA algorithm in a striking manner. It is impossible
to make sure that no nonlinearities are induced during the iteration scheme. For
unevenly sampled time series, a prime example for the application of SA surrogates,
it seems more promising to find a basis that allows the generation of FT surrogates.
Rossmanith et al. [2012] examined the impact of the Galactic plane on the detection
of non-Gaussianities in the cosmic microwave background by using a set of orthogonal
basis functions on the cut sky6.

The analysis of the AGN data with the NLPE and network measures suggests
that the IAAFT scheme is not useful when examining time series with rather long
correlation times. The phase correlations introduced by the iteration scheme were
detected in the phase maps and clearly show that there are induced nonlinearities in
the surrogates. The fact that the structures found in the phase maps (anti)correlate
with the measures for nonlinearity shows that these nonlinearities in the surrogates
have an impact on the significance of the tests for nonlinearity. IAAFT surrogates
also yielded a weak performance in Sec. 2.3, where, however, no obvious phase
correlations were found in the phase maps.

Correlations in the phase maps have also been found for the AAFT surrogates.
The AAFT surrogates show the highest significances exactly in the cases where
the correlation between the NLPE and cPM are not too strong (MCG: -0.31 and
Akn: -0.20 as compared to Mrk: -0.76, see Fig. 2.9). In these two cases the significance
is even higher for the test based on network measure κ. In the case of the Mrk data,
however, the NLPE and the network measures strongly (anti)correlate with cPM and
yield significances below the detection limit.

The influence of the Fourier phases on properties of data in real-space should be
examined further. Such studies are beyond the scope of this work which will continue
with the application of network analysis to spatial structures, namely complex plasma
crystals.

6The variations of the cosmic microwave background are much smaller than signals measured
from our galaxy. Therefore, one can subtract what is thought of being part of this foreground, or
cut the whole area influenced by Galactic signals
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Chapter 3

Analysis of Complex Structures

3.1 Motivation

The results of this chapter have previously been published in Laut et al. [2014].
Complex (or dusty) plasmas are ionized gases containing micron-sized dust particles.
The particles are in general negatively charged since the electrons of the plasma have
a higher mobility than the ions, and can arrange in regular patterns.

Complex plasmas exist in various forms, from small clusters to large extended
systems [Thomas et al., 1994; Fortov et al., 2005; Ivlev et al., 2012]. Two- and
three-dimensional clusters are popular objects to study for two main reasons. First,
they are used as model systems to study generic phenomena such as self-organization
and transport, at the level of individual particles [Arp et al., 2004; Totsuji et al., 2005;
Melzer et al., 2010; Hyde et al., 2013]. Second, clusters can be used for diagnostic
purposes, e. g. probing the plasma parameters at the position of particles [Arp et al.,
2005; Carstensen et al., 2010; Nosenko et al., 2009].

The dust particles constituting a complex plasma cluster are highly charged
and therefore have to be externally confined. For instance, in Arp et al. [2005] the
particles were suspended in a short open glass tube placed on top of the rf electrode
in a gas discharge. The authors suggested that the nearly isotropic particle cluster
confinement was mainly determined by gravitational, electric and thermophoretic
forces. A contribution from the ion drag force due to streaming ions was not observed.
Dust particles suspended in a glass box can exhibit various structures, such as isolated
single linear chains [Kong et al., 2011], vertical strings [Wörner et al., 2012], zigzag
structures [Melzer, 2006], helical structures [Tsytovich et al., 2007], and Coulomb
clusters with onionlike shells [Arp et al., 2005; Totsuji et al., 2005].

Here, complex plasma clusters observed by Wörner et al. [2012] are analyzed using
complex networks. By considering the whole adjacency matrix with information
stored for each particle, this approach may remain applicable where many other
tools relying on some kind of averaging fail because of too weak statistics. The
experimental setup is explained in Sec. 3.2. In order to show the advantage of
network analysis over more straightforward methods, vertical strings of the clusters
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are revisited in Sec. 3.3. They were identified in Wörner et al. [2012] by introducing
a certain fixed threshold to their transverse extent. This simple approach has its
evident advantages but also limitations such as erroneously including passing by
particles and a somewhat arbitrary threshold. With the help of multislice networks
[Mucha et al., 2010], strings are found and resolved throughout the whole time series
in a natural way.

As a second application of networks to complex plasma clusters, the global
structure of the clusters is analyzed in Sec. 3.4. In Wörner et al. [2012], the clusters
were found to be of spheroidal shape, yet a competing cylindrical symmetry was
also present due to streaming ions which create an anisotropy in the interparticle
potential. Since there was no appropriate analysis method, the contributions of the
competing symmetries in the clusters was not further analyzed in Wörner et al. [2012].
By creating networks from the structural properties of the clusters, the analysis now
reveals an interplay between these two symmetries. Spherical and cylindrical ordering
of the particles is examined by comparing network measures of the experimental
data with null models. These findings are compared with an estimate of the radial
confinement. To this end, a dynamical force balance is considered.

3.2 Driven Complex Plasma Clusters

The clusters of micron-size particles were suspended in a glass box mounted on top of
the rf electrode in a capacitively coupled discharge in argon (see Fig. 3.1). Sinusoidal
voltages were individually applied to the sides of the box, which results in an electric
field at the position of the particles that has a constant magnitude and rotates in
the horizontal plane. This “rotating wall” technique [Nosenko et al., 2009] can be
used to manipulate complex plasma clusters. Depending on the frequency of the
applied electric field, the clusters rotated in the direction of the electric field (albeit
with much lower frequency) or remained stationary. Here, a rotating cluster driven
at 5 kHz and a stationary cluster driven at 1 kHz will be analyzed.

The particle coordinates were measured using a 3D imaging method, namely the
stereoscopic digital in-line holography [Kroll et al., 2008]. In two identical channels,
expanded laser beams illuminated the particle cluster from two perpendicular direc-
tions. The diffracted light was registered directly by two CCD cameras operating
at 50 frames per second over a time interval of 10 s. In the resulting images, each
particle is represented by a system of concentric circles [see Figs. 3.1(b) and (c)].
The depth information is encoded in the intercircle spacing.

Whether rotating or not, the clusters are significantly compressed in the radial
direction by the applied field. The specific mechanism of this compression is not
clear. The ponderomotive force [Lamb and Morales, 1983], a naturally expected
candidate, is of minor importance in this experiment. Indeed, the clusters driven at
the frequencies of 1 kHz and 5 kHz are of the same size (see Fig. 3.8), whereas the
ponderomotive force has an inverse quadratic dependence on frequency.
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beam
expanders

(a) (b)

(c)

Figure 3.1: (a) Experimental setup. A 3D cluster of micron-size particles is suspended
in the glass box mounted on top of the rf electrode in a capacitively coupled discharge.
The particles are charged negatively and are manipulated by applying voltages on the
conductive side plates of the box. By shifting sinusoidal signals on the adjacent plates by
π/2, a rotating electric field is created at the position of particles. Expanded laser beams
at 532 nm illuminate the particles from two perpendicular directions. The diffracted light
is attenuated by neutral density filters (NDF) and registered by CCD cameras A and B.
The interference patterns of the whole cluster (b) and of an individual dust particle (c) are
also shown.

3.3 Particle Strings in the Clusters

3.3.1 Detecting Particle Strings with Community Finding
Algorithms

As was motivated in Sec. 1.3, community detection in networks can be used to
find functional units in complex structures. If the strength of a node is inversely
proportional to the horizontal distance between two particles, the functional units at
an appropriate scale are the vertical strings observed in the cluster. Weighting the
nodes by this distance leads to a connected network where each node is connected to
all other nodes as opposed to the networks in Chapter 2. Persistent strings can be
found with the help of multislice networks. By considering the whole measurement
over 10 s, the dynamics of the strings of the cluster will be analyzed.

The network slice Aijt is defined to be inversely proportional to the horizontal
distance between particles i and j at time t,

Aijt =

{
dmin/dij for i 6= j

0 otherwise.
(3.1)

Here, dij =
√

(xi − xj)2 + (yi − yj)2 is the horizontal distance between two particles
at time t and dmin the minimal horizontal distance in the time series such that Aijt
is at most one. The connection between two particles is thus stronger, the nearer
they are to each other. The resulting multislice network contains one slice Aijt for
each frame t of the experimental data.
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Figure 3.2: Dependency of detected communities on resolution parameter γ. (a) Ratio η
of intercommunity distance to community size for different values of γ for the rotating
(triangles) and nonrotating (squares) cluster. The maximum values are plotted as solid
symbols. The standard deviations are plotted as error bars and are concealed by the symbols
in the case of the nonrotating cluster. (b)–(d) Histograms of the number of particles per
community for different values of γ. The absolute counts including all particles and time
steps are shown.

In order to resolve the communities in time, each particle is connected with itself
at the consecutive time step. Varying the strength of this connection changes the
susceptibility of a particle to change the community. Here, the connection is set to
Cjtr = 0.1δt,r+1 for all particles. The cummunity finding algorithm then calculates
the partition of the network that maximizes Qmultislice(γ) (see Eq. 1.14).

The resolution parameter γ is chosen as follows. It is considered optimal when
the distances between the communities of a partition are largest compared to the
extent of the communities, i. e., where

η = 〈di,next/di,same〉 (3.2)

is maximal. Here di,next is the horizontal distance of particle i to the next particle of
another community and di,same is the average horizontal distance to the particles in
the same community if the particle is in a community with more than one particle
and infinity otherwise. The brackets denote the average over all particles and time
steps.

As can be seen in Fig. 3.2(a), η varies weakly in the range of resolution parameter γ
from 2 to 6 around the maxima for the clockwise rotating and nonrotating clusters.
The value of η is significantly larger for the rotating cluster where the strings are
more pronounced. The distribution of the number of particles per community is very
sensitive to γ [see Figs. 3.2(b)–(d)]. The algorithm finds more small communities of
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Figure 3.3: Time evolution of detected strings for resolution parameter γ = 4. Projection
of the rotating (a) and nonrotating (b) cluster on the xy plane at t = 0. Particles which
were found to be in the same string are grouped together and have the same color. An
initially elongated community is highlighted for the rotating cluster. (c), (d): The string
affiliation of particles over time for the rotating and nonrotating cluster. A transition from
one string to another appears as a change in color of the line corresponding to the particle.
(e), (f): Projection of the clusters on the xy plane with all frames superimposed. The
highlighted community from (a) is plotted in blue with the positions of the particles at
t = 0 and t = 10 s represented by circles and crosses, respectively.



32 3. Analysis of Complex Structures

one or two particles in the case of the nonrotating cluster, while larger communities
with at least three particles are more likely for the rotating cluster.

By considering the communities as the vertical particle strings in the cluster, one
thus obtains persistent strings of different size depending on γ, in contrast to a more
traditional approach of grouping particles whose distance is below a certain value
as in Wörner et al. [2012]. The strings for γ = 4 and their evolution in time for
the rotating and nonrotating clusters are shown in Fig. 3.3. It is evident from the
plots of the string affiliations over time in Figs. 3.3(b) and (e) that in the case of the
nonrotating cluster there are fewer transitions between the strings.

3.3.2 Discussion

The strings are quite robust against encounters with only occasionally passing by
particles: During their passage, these roaming particles are not considered to be
part of the string. The cases where the horizontal distance between the particles is
small, while a large vertical distance prohibits physical correlation, do not persist
in time. These events are thus not considered as strings by the community-finding
algorithm. Indeed, the mean vertical distance between particles of the same string is
0.79 mm (rotating cluster) and 0.86 mm (nonrotating cluster), and the events where
this distance is larger than 1.2 mm are not frequent (less than 3 %) for both clusters.

By inspection of Fig. 3.3(a) alone, it is not obvious why, for example, the particle
near the center belongs to the highlighted longish community. In order to understand
this, the whole time series has to be considered, as this roaming particle quickly
joins the two remaining particles and forms a persistent string. In Fig. 3.3(c), the
position of the particles at all time steps are plotted. The particles of the highlighted
community are plotted in blue again, with their positions at t = 0 represented by
circles, and the positions at t = 10 s represented by crosses.

This special feature of community assignment in networks may be a powerful
tool within a wide range of possible applications.

3.4 Global Structure of the Clusters

3.4.1 Examining Competing Symmetries with Networks

The global structure of the clusters is analyzed by means of unweighted networks. In
order to examine the cluster geometry, the adjacency matrix was chosen to connect
two particles whose difference in cylindrical radii is small enough. The procedure is
sketched in Fig. 3.4: In (a), the 60th particle of the cluster is plotted in blue and
the particles with comparable cylindrical radii in red. The latter can be read off the
60th column of the corresponding adjacency matrix, (b). A representation of the
resulting network can be seen in Fig. 3.4(c). At this time step the network consists
of two main components, which correspond to the two ring regions of the cluster,
and various smaller components.
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Figure 3.4: Method for generating an unweighted network from the data. (a) 3D plot of
the clockwise rotating cluster. The 60th particle is plotted in blue and the particles j
satisfying |ρ60 − ρj | < ε are plotted in red, they will be the neighbors in the corresponding
network. As opposed to Fig. 1.1, neighbors are now not necessarily close to each other.
(b) The corresponding adjacency matrix. The nodes connected to the 60th node can be
read off the 60th column (or line) of the matrix. (c) Representation of the network. The
nodes representing the particles have the same markers as in (a). The positions of the
nodes is chosen such that the components of the graph are clearly visible

The network thus obtained is analyzed using the network measures defined in
Sec. 1.2 and the results are compared to those of a network from a null model where
a certain fraction of points is in perfectly spherical order, and the rest in cylindrical
order. The ratio that shows the best agreement with the experimental data will be
considered as the ratio of the competing spherical and cylindrical geometries of the
cluster.

The adjacency matrix is defined similar to Eq. 1.1 as

Acyl
ij (ε) = Θ (ε− ‖ρi − ρj‖)− δij, (3.3)

where ρi =
√
x2
i + y2

i is now the cylindrical radius, and ε again an appropriate
threshold. The threshold ε is chosen to be a fraction α of the mean difference in
cylindrical radius: ε = α〈|ρi − ρj|〉. The brackets denote the average over all particles
and time steps. The fraction is set to α = 0.1.

The null models are artificial structures with a predefined ratio R = nsph/ncyl of
the number of particles in a perfect spherical structure to the number of particles in
a perfect cylindrical structure. The total number of particles n = nsph + ncyl of the
null models is equal to the number of particles in the experimental data. Two-shell
null models are used with different ratios R = 0, 1/3, 1/2, 1, 2, 3, ∞. Each model is
constructed as follows. The cylindrical structure consists of two concentric cylinders
with the same (cylindrical) radii as the main components of the experimental data
(ρ1 = 1.0 mm, ρ2 = 1.6 mm). For a given ncyl, the ratio of the particle number in the
inner cylinder to that in the outer cylinder is chosen to be equal to ρ1/ρ2. The two
shells of the spherical structure have (spherical) radii r1 = 1.1 mm and r2 = 1.7 mm.
A uniformly distributed random noise of amplitude 0.15 mm is added to the positions
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Figure 3.5: Comparison of network measures for the clockwise rotating cluster with the
measures for null models of different ratios R. The histograms (for all particles and time
steps) of measures on networks of the clockwise rotating cluster are plotted in black. They
are identical in all rows. The null models are plotted in red with the ratio ranging from
R = 0 (top row, purely cylindrical structure) to R = ∞ (bottom row, purely spherical
structure), where R is the ratio of particles from a perfectly spherical geometry to particles
from a cylindrical geometry. First column: connectivity κν , second column: clustering
coefficient Cν , third column: path length Lν . The row with the best agreement for all
three network measures is highlighted with a pale yellow background. The good agreement
of the measures in the fifth row is clearly visible. See Figs. B.1 and B.2 in the Appendix
for comparisons for the counterclockwise rotating cluster and the nonrotating cluster.
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Figure 3.6: Comparison of experimental cluster to null model. Projections of the clockwise
rotating cluster onto the ρz plane (a) and xy plane (b). The two main components of Acyl

are plotted as triangles (squares) and correspond to the inner (outer) ring regions of the
cluster. For the sake of clarity the network edges are only plotted in panel (a). The network
is identical to the one in Fig. 3.4(c), only the positions of the nodes are chosen differently:
While in Fig. 3.4 a more abstract representation of the network was chosen to show its
structure, here the positions correspond to the projections of the particles. (c), (d) The
same for the null model whose network measures showed the best agreement with the
cluster: The ratio of particles in a spherical arrangement to particles in a cylindrical
arrangement is R = 2.

of all particles. See Figs. 3.6(c) and (d) for the projections of such a null model with
R = 2 on the ρz and xy plane.

For each time step of the experimental data, the corresponding networks of the
data and of a null model with a given ratio R are created and analyzed with the
network measures degree centrality κν , clustering coefficient Cν and path length Lν .
As opposed to Sec. 2, the distributions and not averaged values of the measures will
be considered. The histograms of these measures for all particles and all time steps
of the data are compared, and the ratio R of the null model with the best agreement
is considered to be the ratio of spherical to cylindrical order of the cluster.

In Fig. 3.5, the results for Acyl of the clockwise rotating cluster are shown and
compared to the null models. Given the good agreement for R = 2, one can argue
that the spherical geometry of the cluster is two times more pronounced than the
cylindrical geometry. The projections of the null model with R = 2 on the ρz and
xy planes are plotted in Figs. 3.6(c) and (d) and compared to the clockwise rotating
cluster [Figs. 3.6(a) and (b)].

In order to test the network approach, the analysis is repeated, this time comparing
the spherical radii of the particles. The adjacency matrix now reads

Asph
ij (ε) = Θ (ε− ‖ri − rj‖)− δij (3.4)

in the same notation as in Eq. 3.3 where r is the spherical radius and ε = α〈|ri − rj|〉
with α = 0.1. See Appendix B for comparisons of the network measures for Asph.



36 3. Analysis of Complex Structures

Table 3.1: Ratios R = nsph/ncyl of the number of particles in a perfect spherical structure
to the number of particles in a perfect cylindrical structure, and anisotropic confinement
parameters Ωρ and Ωz of the clockwise and counterclockwise rotating, and nonrotating
clusters. The values of R shown here provided the best agreement for network measures
on the cylindrical (Acyl) and spherical (Asph) properties of the clusters. The results
are averaged over 40 calculations, with the standard deviation indicated as error. The
cylindrical (Ωρ) and vertical (Ωz) confinement parameters [Eq. (3.8)] are calculated from
the linear fitting parameters of the projections of the Yukawa forces (see Fig. 3.9).

Cluster rotation

Parameter Clockwise Counterclockwise Nonrotating

R for Acyl 2.0±0.2 2.0±0.2 3.0±0.2
R for Asph 1.3±0.5 1.0±0.2 2.0±0.2

Ωρ [s−1] 19±2 12±15 16.2±0.8
Ωz [s−1] 33±1 36±2 32.0±0.3

The results of the analysis of the rotating and nonrotating clusters for both
adjacency matrices Acyl

ij and Asph
ij are summarized in Table 3.1. Even though the

results for the cluster geometry are not the same for the different adjacency matrices,
the general observation remains the same: One finds comparable results in the cases
of clockwise and counterclockwise rotation, while the value of R is greater for the
nonrotating cluster.

The dependence of the best ratio R on the noise amplitude of the null models is
shown in Fig. 3.7. Noticeably, decreasing the noise amplitude generally shifts the
optimal ratios R to higher values for Acyl but towards lower values for Asph. This
can be understood as in the first case the difference in the cylindrical radii mostly
determines whether nodes are connected or not. Hence, in order to find the best
agreement, more particles of spherical structure have to be added when the noise
level is reduced, increasing nsph and thus increasing R = nsph/ncyl. In the second
case of Asph, decreasing the noise amplitude is to be compensated by adding more
cylindrically structured particles, yielding a lower value for R.

Another possibility to examine the structure of a cluster is to merely plot the
particle z positions vs. cylindrical radius ρ [Arp et al., 2004; Totsuji et al., 2005;
Schella et al., 2013] (see Fig. 3.8). In this projection, spheres appear as semicircles
and cylindrical structures as vertical lines. One can see that in the case of rotation
[Figs. 3.8(a) and (b)] the particles at the bottom and the top of the cluster have
moved outward, while the particles at z ' 0 appear to have moved inward compared
to the nonrotating cluster, Fig. 3.8(c). The rotating clusters thus appear more
cylindrical, while the spheres are more pronounced in the nonrotating case, but there
is neither strong visual evidence nor a numerical result as in the case of network
analysis.
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Figure 3.7: Ratio R = nsph/ncyl vs. noise amplitude of null models for Acyl (a) and Asph (b).
The results are averaged over 40 calculations, and the standard deviations are plotted as
error bars. The results in Table 3.1 correspond to a noise amplitude of 0.15 mm.

Figure 3.8: Projection of particle positions on the ρz plane for clockwise (a) and coun-
terclockwise (b) rotating, and nonrotating (c) clusters. Vertical lines and semicircles are
adjusted to the cylindrical structure of the rotating clusters and to the spherical structure
of the nonrotating clusters, respectively, in order to guide the eye. Particle positions at
each time step correspond to a transparent marker, leading to lines in the event of a string
transition and solid structures if the particle stays in the same position throughout the
time series.
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3.4.2 Estimating Particle Confinement

The difference in structure between rotating and nonrotating clusters stems from
the particulars of the mutual particle interactions and the forces confining the
cluster. Even though it is a rather difficult task to explore the forces controlling the
cluster dynamics in detail, it is instructive to assume that globally the system is
in quasiequilibrium. The latter is determined by the balance of repulsion Frep via
the Yukawa forces, neutral gas friction Ffr, inertial forces Fin, and confinement Fconf

provided by all other forces1:

〈Frep〉+ 〈Ffr〉+ 〈Fin〉+ 〈Fconf〉 = 0. (3.5)

Here, the stochastic averaging is assumed to be performed.
The Yukawa forces, governing the mutual repulsion between the particles, can be

directly calculated from the data:

Frep
i = − (Ze)2∇ri

N∑
j 6=i

exp (− |ri − rj| /λ)

|ri − rj|
, (3.6)

where ri is the position of particle i, Ze = 50000e is the particle charge (e is the
elementary charge) and λ = 0.4 mm is the screening length as proposed in Wörner
et al. [2012]. The radial and vertical projections F rep

ρ,z of the Yukawa force computed
from the experimental data are shown in Fig. 3.9. The figure also contains the
best-rms fits introduced by the relations

F rep
ρ = Aρρ+Bρρ

2, F rep
z = Azz, (3.7)

with Aρ, Az, Bρ the parameters and ρ the cylindrical radius. In the case of coun-
terclockwise rotation, the particles occasionally approach each other very closely,
leading to a wide spread of the estimated Yukawa forces [see Fig. 3.9(b) and (e)].
This leads to a large uncertainty of the parameters in the insets of Fig. 3.9 (e); the
approach of the dynamic force balance may therefore not be applicable there.

The friction force is Ffr = −MγEpsv, where M is the particle mass, γEps is the
Epstein drag coefficient [Epstein, 1924] and v is the particle velocity. The value of
the friction force at the cluster periphery has been estimated in Wörner et al. [2012]
to be smaller than 10 fN. Compared to the Yukawa forces in the same region of the
cluster, which are on the order of 0.5–2 pN, the friction force is of minor importance
and can be neglected in the balance of Eq. (3.5).

The inertial forces in the rotating frame of the cluster consist of the centrifugal
force Fcentri and the Coriolis force FCor [Hartmann et al., 2013]. The former is readily
estimated as F centri = Mω2ρ < 1 fN, where M = 1.1× 10−12 kg is the particle mass
[Wörner et al., 2012] and ω ' 0.4 s−1 is the rotation speed of the cluster. To estimate

1The confinement is provided by gravity, electric field of the plasma sheath, rotating electric
field, ion drag force due to streaming ions, and ion wake mediated interaction.
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Figure 3.9: Repulsive Yukawa-type forces for the clockwise (a) and counterclockwise (b)
rotating, and nonrotating (c) clusters are shown as red lines (in arbitrary units) pointing
from the 3D positions of the particles. (d)–(f) The cylindrical projection of the Yukawa
forces F rep

ρ vs. the cylindrical radius ρ. The solid lines are the best-rms-fit parabolas [Eq.
(3.7)] to the force profiles. The insets show the mean values of Aρ in pN/mm and Bρ in
pN/mm2 which are calculated for each time step, with the standard deviations indicated
as errors. The vertical lines are the same as in Fig. 3.8. (d)–(f) The same for the vertical
profiles of the Yukawa forces F rep

ρ , here, the few particles suspended below the cluster at
z ' −2 mm (see Fig. 3.8) are left out. The insets show the parameter Az in pN/mm of the
linear fit to the profiles.
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the particle velocities, five consecutive frames are averaged, as the jitter on some
particles due to imaging processes complicates the calculation of the instantaneous
velocity. The Coriolis force, which is maximal during transitions of a particle from an
inner to an outer string or vice versa, then yields FCor = 2M |ω × v| < 3 fN. Hence,
compared to the Yukawa forces, the contribution of inertial forces can be neglected.
The confinement force profiles can thus be estimated as F conf

ρ,z ' −F rep
ρ,z .

Given the values of the fitting parameters Aρ introduced above, the radial
confinement near the center of the cluster can be estimated as

F conf
ρ ' −MΩ2

ρρ, MΩ2
ρ ≡ Aρ, (3.8)

where Ωρ is the cylindrical confinement parameter. The values of Ωρ as well as the
values of the vertical confinement parameter Ωz (obtained similarly with the relation
MΩ2

z ≡ Az) are shown in Table 3.1.
It is not surprising that the vertical confinement force is systematically stronger

than the cylindrical one, as can be naturally expected due to the stronger forces
of the sheath electric field and gravity compressing the cluster vertically [Wörner
et al., 2011]. Note that a stronger vertical confinement was also found in Stokes et al.
[2008] for “dust molecules” consisting of only two particles.

Neglecting the case of counterclockwise rotation due to the wide spread of data
points, this approach yields a stronger cylindrical confinement for the clockwise rotat-
ing cluster than for the nonrotating one (see Table 3.1). This stronger confinement,
increasing the cylindricity of the rotating cluster, is in good agreement with the
findings from the network analysis of Sec. 3.4.1. To study individual contributions
to Fconf from, e. g., the ion drag force, dedicated measurements are needed.

From the estimate of the centrifugal and the Coriolis force it follows, furthermore,
that the structural changes in the rotating cluster are not due to the cluster rotation
per se. It must rather be inferred that the electrostatic confinement of the whole
cluster changes with the applied frequency, allowing for string formation within the
rotating cluster.

3.4.3 Discussion

Both the network analysis of the global structure and the estimate of the particle
confinement show that the cylindrical symmetry is more important in the case of
cluster rotation than in the case of nonrotation (see Table 3.1). Dynamically driven
clusters favor the formation of vertical strings which were observed in Sec. 3.3. As
can be seen in Fig. 3.2(a), the detected strings are also more compact in the case of
cluster rotation.

As to the network analysis, it can be seen in Fig. 3.7 that the results depend
sensitively on the noise amplitude of the artificial null models. The exact values of
the ratios R thus have to be treated with caution, but they are a convenient tool for
comparing structures. Considering Fig. 3.7, it is not possible to name the exact value
of the ratio of the competing spherical and cylindrical geometries of the clusters, but
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it is evident that the nonrotating cluster systematically shows a higher value of R.
The geometry is thus more spherical in the case of the nonrotating cluster, while the
rotating clusters have a more pronounced cylindrical geometry.

For the Yukawa interactions used for the estimate of the particle confinement
(see Eq. 3.5), constant particle charge Ze and screening length λ are assumed. It is
straightforward to see that different values of λ and Z only change the scale of the
profiles in Fig. 3.9, and not the general shape. While Yukawa interaction is valid
and widely used in two-dimensional systems, an additional contribution from the
wake-field interaction is not negligible in 3D [Lampe et al., 2000; Ivlev et al., 2012].
An adequate description of the wake field interaction is not straightforward and
the subject of current research. Nonetheless, this simplified model of the Yukawa-
type interaction gives a hint for the origin of the differences in symmetry revealed
by network analysis. A more detailed analysis should take into account the mass
dispersion of the particles as well as the anisotropy in the interparticle interaction.
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Chapter 4

Conclusion

The test for nonlinearity based on network measures of recurrence networks proposed
in Chapter 2 has proven a bit weaker than the nonlinear prediction error which
is a dynamic measure for nonlinearity. The network-based test could possibly be
improved by comparing the distributions of the network measures containing the
whole information for each node instead of the average values. Another route would
be to consider visibility graphs instead of recurrence networks [Lacasa et al., 2008;
Luque et al., 2009]. There, the time series is considered as landscape, and a visibility
criterion determines whether points are connected or not, concentrating more on the
dynamic aspects of the time series.

Induced phase correlations were found in surrogate data produced by the estab-
lished algorithms AAFT and IAAFT. The influence of these correlations on tests for
nonlinearity were shown both for the nonlinear prediction error and for the network
measure average connectivity. In order to gain a deeper insight into the relation of
correlations in the Fourier phases on one hand and the properties of data in real
space on the other hand, further nonlinear time series should be studied. A broader
range of light curves of active galactic nuclei could already give additional insights.
Other candidates are stock markets, showing a multitude of interesting nonlinear
properties. Also, equations that reliably produce artificial time series with phase
correlations would be an informative subject, but are not known.

In Chapter 3, two promising applications of networks to complex plasmas were
described. To my knowledge, it is the first network analysis of spatial structures that
are not obviously network-like. The detection of vertical strings with the aid of a
community finding algorithm has proven an elegant way of examining stable units
in complex structures. A further advantage of this method was shown to be the
ability to examine the time evolution of a system as a whole with the aid of multislice
networks, yielding information about the dynamics of the system. These advantages
were shown for the detection and analysis of vertical strings in dynamically driven
complex plasma clusters.

Multislice networks could possibly also be used to identify (quasi)particles in more
complicated structures. Complex plasmas offer a multitude of interesting possible
further applications, like the onset of synchronization in a melting two-dimensional
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crystal [Couëdel et al., 2014] or the dynamics of defects that have discontinued
displacements and can be created and annihilated.

Network analysis also enabled a throughout study of the global structure of the
clusters. For the relatively small clusters of about 60 particles a significant difference
between the well-studied case of nonrotating clusters and dynamically driven clusters
was demonstrated. Driving the clusters with external fields leads to a more cylindrical
structure.

The analysis could be repeated for any structure of competing or emerging
symmetries if appropriate null models exist. One candidate is the forthcoming
PK-4 setup onboard of the International Space Station to study complex plasmas
under microgravity conditions [Thoma et al., 2007]. For example, the emergence
of anisotropic structures in these strongly coupled systems can be examined [Ivlev
et al., 2011].
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Figure A.1: Discrimination power of 100 tests based on network measures with different κor

applied to the mixed Lorenz data (see Sec. 2.3.2). The value of κor is given in the legend
of the leftmost plot and is valid for the whole line. Higher values of κor lead to networks
that are more connected as can be seen in a representation of a network of a time series
with m = 1 (pure Lorenz) where the positions of the nodes are the projections of the
corresponding point in phase space onto the xy plane. The network measures are indicated
at the top left corner of each plot.
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Figure A.2: Significances of tests based on network measures for the MCG data as a
function of delay time τ (see Sec. 2.4.2). The value of κor is given in the leftmost plot and
is valid for the whole line. First row: connectivity κ, second row: clustering coefficient C.
200 realizations of the surrogates were used. The network of the data is shown in the
rightmost plot; the nodes’ positions are the projections of the embedded data onto the
xy plane.
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Figure A.3: Significances of tests based on network measures for the Mrk data as a function
of delay time τ (see Sec. 2.4.2). The value of κor is given in the leftmost plot and is
valid for the whole line. First row: connectivity κ, second row: clustering coefficient C.
200 realizations of the surrogates were used. The network of the data is shown in the
rightmost plot; the nodes’ positions are the projections of the embedded data onto the
xy plane.
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Figure A.4: As Fig. A.3 for the Akn data.
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Figure B.1: Comparison of network measures on Acyl for the counterclockwise rotating
cluster (see Sec. 3.4.1). The histograms (for all particles and time steps) of measures on
networks of the clockwise rotating cluster are plotted in black. They are identical in all
rows. The null models are plotted in red with the ratio ranging from R = 0 (top row,
purely cylindrical structure) to R = ∞ (bottom row, purely spherical structure). First
column: connectivity κν , second column: clustering coefficient Cν , third column: path
length Lν . The row with the best agreement for all three network measures is highlighted
with a pale yellow background.
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Figure B.2: As Fig. B.1 for measures on Acyl for the nonrotating cluster.
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Figure B.3: Comparison of network measures on Asph for the clockwise rotating cluster
(see Sec. 3.4.1). The histograms (for all particles and time steps) of measures on networks
of the clockwise rotating cluster are plotted in black. They are identical in all rows.
The null models are plotted in red with the ratio ranging from R = 0 (top row, purely
cylindrical structure) to R =∞ (bottom row, purely spherical structure). First column:
connectivity κν , second column: clustering coefficient Cν , third column: path length Lν .
The row with the best agreement for all three network measures is highlighted with a pale
yellow background.
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Figure B.4: As Fig. B.3 for measures on Asph for the counterclockwise rotating cluster.
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Figure B.5: Comparison of network measures on Asph for the nonrotating cluster (see
Sec. 3.4.1). The histograms (for all particles and time steps) of measures on networks
of the clockwise rotating cluster are plotted in black. They are identical in all rows.
The null models are plotted in red with the ratio ranging from R = 0 (top row, purely
cylindrical structure) to R =∞ (bottom row, purely spherical structure). First column:
connectivity κν , second column: clustering coefficient Cν , third column: path length Lν .
The row with the best agreement for all three network measures is highlighted with a pale
yellow background.
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Gierliński, M., Middleton, M., Ward, M., and Done, C. (2008). A periodicity
of 1 hour in X-ray emission from the active galaxy RE J1034+ 396. Nature,
455(7211):369–371.

Grassberger, P. and Procaccia, I. (1983). Measuring the strangeness of strange
attractors. Physica 9 D, 9:189–208.



Bibliography 61
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Laut, I., Räth, C., Wörner, L., Nosenko, V., Zhdanov, S. K., Schablinski, J., Block, D.,
Thomas, H. M., and Morfill, G. E. (2014). Network analysis of three-dimensional
complex plasma clusters in a rotating electric field. Phys. Rev. E, 89:023104.

Lorenz, E. N. (1963). Deterministic nonperiodic flow. J. Atmos. Sci., 20(2):130–141.

Luque, B., Lacasa, L., Ballesteros, F., and Luque, J. (2009). Horizontal visibility
graphs: Exact results for random time series. Phys. Rev. E, 80(4):046103.



62 Bibliography
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