Simple estimations of thermodynamic properties of Yukawa systems

S. A. Khrapak,¹ A. G. Khrapak,² A. V. Ivlev,³ G. E. Morfill³

¹Forschungsgruppe Komplexe Plasmen, DLR, Oberpfaffenhofen, Germany
²Joint Institute for High Temperatures, RAS, Moscow, Russia
³Max-Planck-Institut für extraterrestrische Physik, Garching, Germany
Motivation

- Equation of state for complex (dusty) plasmas
 - Thermodynamics
 - Hydrodynamic description of the particle component
 - Waves and instabilities

- Specifics of complex plasmas
 - Open systems
 - Particle charge depends on particle density (charge cannibalism)
 - Plasma composition can vary

- Strategy
 - Develop simple analytical approximations for the “basic” case
 - Study relative importance of various specific phenomena
Model

- Two–component system consisting of
 - Point-like particles of charge Q and density n_0
 - Neutralizing background (uniform – OCP; linear response - Yukawa)

- Main parameters
 - Wigner-Seitz radius $a = (3/4\pi n_0)^{1/3}$ and the screening length λ
 - Coupling parameter, $\Gamma = Q^2/aT$
 - Screening parameter, $\kappa = a/\lambda$

- Main quantities of interest (in reduced units)
 - Internal energy, $u = U/NT$
 - Helmholtz free energy, $f = F/NT$
 - Pressure, $p = P V/NT$
Debye-Hückel + Hole (DHH) Approximation

- Conventional Debye-Hückel approach results in unphysical negative density

- Main idea behind DHH is to introduce a cut off (hole radius) h, below which the particle density is zero

- The hole radius, h, has to be found self-consistently via electrostatic consideration

DHH has been explicitly introduced for the OCP by Nordholm (1984)
Similar relations have been known earlier, e.g. Gryaznov&Iosilevskiy (1973)
DHH for Yukawa systems: Procedure

- Solve Poisson equation

\[\Delta \phi = -4\pi (Qn - en_m) \]

- Two solutions, inside and outside the hole

\[n = \begin{cases}
0, & r \leq h \\
 n_0(1 - Q\phi/T), & r > h
\end{cases} \]

- Match the two solutions at the hole boundary to determine \(h \) and one unknown parameter in the expression for \(\phi \) inside the hole

- Determine excess energy via the conventional expression

\[u_{ex} = \frac{1}{2} \frac{Q}{T} \left[\phi(r) - \frac{Q}{r} \right]_{r \to 0} \]
Results: Excess Energy

Numerical results from Hamaguchi et al. (1996, 1997)
Results: Helmholtz Free Energy at Weak Coupling

Excess free energy:

\[f_{\text{ex}} = \int_0^\Gamma d\Gamma' \frac{u_{\text{ex}}(\kappa, \Gamma')}{\Gamma'} \]

Debye-Hückel (DH) approximation:

\[u_{\text{ex}}(\kappa, \Gamma) = -\frac{1}{2} \Gamma \kappa \sqrt{1 + 3\Gamma/\kappa^2} \]
\[f_{\text{ex}}(\kappa, \Gamma) = -\frac{\kappa^3}{9} \left[\left(1 + \frac{3\Gamma}{\kappa^2}\right)^{3/2} - 1 \right] \]

<table>
<thead>
<tr>
<th>(\kappa)</th>
<th>MD</th>
<th>DH</th>
<th>DHH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-0.4368</td>
<td>-0.577</td>
<td>-0.460</td>
</tr>
<tr>
<td>0.2</td>
<td>-0.4495</td>
<td>-0.588</td>
<td>-0.471</td>
</tr>
<tr>
<td>0.4</td>
<td>-0.4809</td>
<td>-0.617</td>
<td>-0.502</td>
</tr>
<tr>
<td>0.6</td>
<td>-0.5284</td>
<td>-0.660</td>
<td>-0.548</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.5866</td>
<td>-0.715</td>
<td>-0.606</td>
</tr>
<tr>
<td>1.0</td>
<td>-0.6541</td>
<td>-0.778</td>
<td>-0.673</td>
</tr>
<tr>
<td>1.2</td>
<td>-0.7304</td>
<td>-0.848</td>
<td>-0.747</td>
</tr>
<tr>
<td>1.4</td>
<td>-0.8103</td>
<td>-0.922</td>
<td>-0.826</td>
</tr>
<tr>
<td>2.0</td>
<td>-1.0710</td>
<td>-1.169</td>
<td>-1.084</td>
</tr>
<tr>
<td>2.6</td>
<td>-1.3504</td>
<td>-1.435</td>
<td>-1.360</td>
</tr>
<tr>
<td>3.0</td>
<td>-1.5424</td>
<td>-1.619</td>
<td>-1.549</td>
</tr>
<tr>
<td>3.6</td>
<td>-1.8326</td>
<td>-1.900</td>
<td>-1.838</td>
</tr>
<tr>
<td>4.0</td>
<td>-2.0274</td>
<td>-2.091</td>
<td>-2.033</td>
</tr>
<tr>
<td>4.6</td>
<td>-2.3223</td>
<td>-2.380</td>
<td>-2.326</td>
</tr>
<tr>
<td>5.0</td>
<td>-2.5200</td>
<td>-2.574</td>
<td>-2.523</td>
</tr>
</tbody>
</table>

MD results from Hamaguchi et al. (1997)
Application: Dust Acoustic Waves (DAW) at strong coupling

- Simplest hydrodynamic approach (particles)

\[
\frac{\partial N_d}{\partial t} + \nabla (N_d \mathbf{V}_d) = 0,
\]

\[
\frac{\partial \mathbf{V}_d}{\partial t} + (\mathbf{V}_d \cdot \nabla) \mathbf{V}_d = \frac{Q \mathbf{E}}{M_d} - \frac{\nabla (P_d \gamma)}{M_d N_d}
\]

- Boltzmann response of the neutralizing medium + Poisson equation

- Resulting dispersion relation

\[
\frac{\omega^2}{\omega_p^2} = \frac{q^2}{q^2 + \kappa^2} + \frac{q^2}{3 \Gamma} \gamma \mu_p
\]

where \(q = k \alpha \), \(\gamma \approx 1 \), and \(\mu_p = 1 + p_{cx} + \frac{\Gamma}{3} \frac{\partial p_{cx}}{\partial \Gamma} - \frac{\kappa}{3} \frac{\partial p_{cx}}{\partial \kappa} \)
Dust Acoustic Waves at Strong Coupling

Numerical results: Ohta & Hamaguchi (2000);
Solid curves: Hydrodynamics with DHH, Dashed curves: sum rule analysis OCP
Recent Developments: Ion Sphere Model (ISM)

- Fixed hole radius = Wigner-Seitz radius
- Pure electrostatics to estimate the static excess energy, u_{ex}
- Simple approximation to estimate the thermal contribution to u_{ex}
- ISM is simple and more accurate than DHH at strong coupling

Numerical results from Hamaguchi et al. (1996, 1997)
Conclusion

- The ultimate goal of these studies is to produce reliable equation(s) of state for complex (dusty) plasmas

- The first element of the project is to develop simple analytic approximations for the “basic” case

- Two such approximations have been proposed

- DHH approximation is an extension of the DH approach and is suitable in the weak/moderate coupling regime

- ISM approximation is more appropriate in the moderate/strong coupling regime
 - paper in preparation
Thank you for your attention!