Network analysis of 3D complex plasma clusters

I. Laut¹ C. Räth¹ L. Wörner² V. Nosenko¹ S. Zhdanov³ J. Schablinski⁴ D. Block⁴ H. M. Thomas¹ G. E. Morfill³

¹DLR German Aerospace Center, 82234 Weßling, Germany

²Quantum Nanophysics Group, 1010 Vienna, Austria

³Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany

⁴Christian-Albrechts Universität zu Kiel, 24118 Kiel, Germany

July 8, 2014

Outline

Characterizing a network

Measures Community finding

Analysis of Complex Plasma Clusters

Experimental setup Particle strings Cluster geometry

Conclusion

Measures on networks

Degree

Clustering coefficient

 $k_
u = \sum_{i=0}^{n-1} A_{
u,i}$ $C_
u = rac{\sum_{i,j=0}^{n-1} A_{
u,i} A_{i,j} A_{j,
u}}{k_
u (k_
u - 1)}$

How many nodes are

connected to node ν ?

(local scale)

Which fraction of neighbors of node ν are themselves connected? (intermediate scale) Average path length

 L_{ν}

How long is the average path from node ν to any other node?

(global scale)

Community finding in networks

- Community: group of nodes that are more connected to each other than to rest of network.
- $Q \sim \sum_{ij} \left(A_{ij} \gamma A_{ij}^{\text{null}} \right) \delta(g_i, g_j)$ measure for quality of a partition g.
- Multislice network: each node in one slice is connected with itself in other slices.

Mucha et al. (2010)

Experimental setup

Particle strings:

How to detect them?

Wörner et al. (2012)

- 3D cluster in glass box
- holographic 3D imaging
- external rotating electric field drives clusters

Competing geometries:

Particle strings: Adjacency matrix

Adjacency matrix

$${\cal A}_{ij} = egin{cases} d_{{
m min}}/d_{ij}, i
eq j \ 0 ext{ otherwise.} \end{cases}$$

Communities as vertical particle strings.

Particle strings: Resolution parameter

- Find optimal resolution parameter γ where inter-community distance is large compared to average extent of the communities, η = (d_{i,next}/d_{i,same}).
- Connect particle at time t_i with itself at t_{i+1} in a multislice network.

Particle strings: Time evolution

Cluster geometry: Create networks

- Connect nodes, if difference in cylindrical radius is smaller than a threshold ε: A^{cyl}_{ii}(ε) = Θ (ε − |ρ_i − ρ_j|) − δ_{ij}
- Calculate network measures.
- Compare to null models of known geometry.

Cluster geometry: Null models

- Artificial structures with ratios $R = n^{\text{sph}}/n^{\text{cyl}}$
- Uniform noise is added.

Cluster geometry: Find best ratio R

- Compare network measures of data to null models with R = 0, 1/3, 1/2, 1, 2, 3, ∞ to find the best ratio.
- ► Repeat for spherical adjacency matrix $A_{ij}^{\text{sph}}(\epsilon) = \Theta(\epsilon - |r_i - r_j|) - \delta_{ij}$

Cluster geometry: Result

- Strong dependency on noise amplitude of null models.
- Rotating clusters systematically "more cylindrical".

Cluster geometry: Estimate particle confinement

Dynamical force balance

$$\langle \mathbf{F}^{\text{rep}} \rangle + \langle \mathbf{F}^{\text{fr}} \rangle + \langle \mathbf{F}^{\text{in}} \rangle + \langle \mathbf{F}^{\text{conf}} \rangle = 0.$$

- Yukawa interaction $\langle \mathbf{F}^{rep} \rangle$ with estimated particle charge Z = 50000 and screening length $\lambda = 0.4$ mm.
- Neglect friction (F^{fr}) and inertial forces (Fⁱⁿ) due to slow particle movement and cluster rotation.

$$\blacktriangleright \langle \mathbf{F}^{conf} \rangle \simeq - \langle \mathbf{F}^{rep} \rangle$$

Cluster geometry: Estimate particle confinement

Calculate vertical and radial confinement parameters from force profile: $F_{\rho}^{\rm conf} \simeq -M\Omega_{\rho}^2 \rho \equiv -A_{\rho}\rho$ $F_{z}^{\rm conf} \simeq -M\Omega_{z}^2 z \equiv -A_{z} z$ Rotation $\Omega_{\rho}[\mathrm{s}^{-1}]$ $\Omega_z [s^{-1}]$ clockwise 19 + 2 33 ± 1 counter- 12 ± 15 36 ± 2 clockwise

nonrotating 16.2 ± 0.8 32.0 ± 0.3

Conclusion

With networks, you can ...

- focus on different aspects of your data.
- find stable units in complicated structures.
- measure global properties of the structure.

▶ ...

Thank you for your attention.