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ABSTRACT

Sparse spectral unmixing can be modeled as a linear combi-
nation of endmembers contained in an overcomplete dictio-
nary weighted by the corresponding sparse abundance vec-
tor. This method exploits the fact that there is only a small
number of endmembers inside a pixel compared to the over-
complete endmember spectral dictionary. Since the informa-
tion contained in hyperspectral pixels is often spatially corre-
lated, in this work we propose to jointly estimate the sparse
abundance vectors of neighboring hyperspectral pixels within
a local window exploiting joint sparsity with common and
noncommon endmembers. To demonstrate the efficiency of
our framework, we perform experiments using both simulated
and real hyperspectral data.

Index Terms— Spectral unmixing, joint sparsity, over-
complete spectral dictionary.

1. INTRODUCTION

A common approach to model pixels of hyperspectral images
(HSI) exploits a linear mixing of spectral signatures referred
to as endmembers. These signatures correspond to the spectra
of pure materials, which can be obtained from field/laboratory
spectrometer measurements [1] or determined from the data
by exploiting pixels known to contain a single material. The
basic linear mixing model will be assumed to be given by

yj = Axj + εj (1)

where yj ∈ Rm
≥0 denotes the reflectance of the jth hyperspec-

tal pixel with m spectral channels; A ∈ Rm×n
≥0 is an over-

complete spectral dictionary [2] of n endmembers (i.e., n is
inevitably greater than m); xj ∈ Rn

≥0 represents the abun-
dance vector to be estimated; and εj ∈ Rm is a perturbation
term that captures any modeling errors and noise contribu-
tions [1]. Thus, given yj and A, the goal is to recover the
unknown vector xj .

Traditional inversion techniques include the method of
least squares (LS), nonnegative least squares (NNLS) [1],
and fully-constrained least squares (FCLS) [3]. While NNLS
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ensures the LS criterion is restricted to nonnegative abun-
dances, FCLS additionally enforces that the elements of the
abundance vector sum to one. Although often employed,
these techniques are limited to overdetermined mixing mod-
els and thus require a preselection of endmembers based on
a priori knowledge [1]. In contrast, recent sparsity-based
unmixing algorithms have been shown to be able to deal
with the underdetermined case [2, 4, 5]. In essence, these
techniques exploit the fact that—assuming a suitable spatial
resolution—only few endmembers contribute to yj . In other
words, high-resolution imaging renders the vector xj sparse.
Accordingly, recovery of abundances is usually achieved by
solving optimization problems such as basis pursuit denois-
ing (BPDN) [6] or the least absolute shrinkage and selection
operator (LASSO) [7].

Spatial contextual homogeneity is exploited by applying
an alternative joint sparsity model (JSM) originally intro-
duced in [8]. In this setting, every vector xj will be recovered
together with a small number of neighboring abundance vec-
tors selected by means of a window centered on the jth spatial
position. The basic inputs to the algorithm are then multiple
neighboring pixels yj (hereinafter referred to as looks) as well
as a dictionary A. Thus, the goal will be to take advantage
of the fact that the ensemble of unknown vectors exhibit both
common endmembers and abundances. As will be shown,
this approach also allows for capturing their noncommon
endmembers. Finally, the applicability of JSM will be vali-
dated by comparing it with BPDN, NNLS using both real and
simulated data.

2. MULTI-LOOK MODEL FOR SPARSE SPECTRAL
UNMIXING

Given the linear model defined by equation (1) and under the
assumption of a small number of active endmembers (i.e.,
sparsity), the nonnegative BPDN algorithm [2, 4, 5] estimates
a single abundance vector xj (i.e., a single look) by solving
the following L1-norm optimization problem:

min
x̃j

1

2
‖Ax̃j − yj‖22 + λ ‖x̃j‖1 s. t. x̃j ≥ 0 (2)

Since the L1-norm serves as a proxy for sparsity, the penalty
parameter λ can be used to trade sparsity of the solution for



data mismatch. Also, in order to ensure physical validity, the
abundance vector is constrained to be nonnegative. Further-
more, note that the performance of (2) can be shown to de-
pend on the conditioning of A, the sparsity level, and the per-
turbation level (see, for example, [1, 5, 9] and the references
therein).

As it follows from (2), BPDN operates on a pixel-by-pixel
basis and is thus unaware of the spatial ergodicity commonly
exhibited by most pure materials. In effect, endmember abun-
dance is expected to present a slow variation along the two
spatial dimensions. Thus, given a L-element window cen-
tered on the jth position, the ith pixel yi (with 1 ≤ i ≤ L)
can be expressed as

yi = Axi = Axc
j +Axnc

i (3)

where xc
j ∈ Rn

≥0 and xnc
i ∈ Rn denote, respectively, the com-

mon and noncommon abundances. By letting

Yj =


y1
y2
...
yL

 Xj =


xc
j

xnc
1
...
xnc
L

 (4)

and

AJSM =


A A 0 · · · 0
A 0 A · · · 0
...

...
...

. . .
...

A 0 0 · · · A

 (5)

the resulting multi-look linear model can be written as

Yj = AJSMXj + Zj (6)

where Zj ∈ RLm accounts for the corresponding L pertur-
bations and AJSM ∈ RLm×(L+1)n

≥0 is a JSM dictionary [8].
Accordingly, under the hypothesis of the existence of com-
mon components, Xj provides a sparse representation that
exploits the redundancy exhibited by the L sparse vectors xi.
As a result, the multi-look JSM reconstruction (MLJSR) can
be accomplished by means of the previously introduced non-
negative version of BPDN:

min
X̃j

1

2

∥∥∥AJSMX̃j − Yj
∥∥∥2
2
+ λ

∥∥∥X̃j

∥∥∥
1

s. t. X̃j ≥ 0 (7)

where, again, λ is used to trade sparsity for data mismatch.
By way of illustration, consider the case of L abundance

vectors xi containing a single common material. Next, as-
sume their abundances are the same except for one vector
(hereinafter indicated by x0) which presents a lower abun-
dance. It then follows that, by allowing negative noncommon
components, the minimum achievable support of Xj reduces
to 2. On the contrary, by enforcing nonnegativity of Xj , the
minimum achievable support equals L. Nonetheless, if x0

is high enough, either case will result in one dominant com-
mon abundance and hence the residual components can be
assumed to be captured by the perturbation term Zj . In light
of the previous considerations, this paper will provide a nu-
merical evaluation of MLJSR based on (7).

3. EXPERIMENTAL RESULTS

We have tested our algorithm using simulated and real hyper-
spectral data. For the simulation experiment, we used 90 man-
made materials, vegetation, and soil spectra selected from
the USGS spectral dictionary [10], merged with endmembers
from a DLR roof-material dictionary containing 39 endmem-
bers into one spectral dictionary A with finally m = 129 end-
members. After discarding noisy and water-absorption bands,
each spectrum in the dictionary exhibits n = 96 bands.

3.1. Simulated Scenario

In order to assess the performance of the MLJSR algorithm
with hyperspectral data using the dictionary A, we simulated
10000 joint YL pixel ensembles each with L = 4 pixels. The
pixels y1, ..., y4 form a mixture of 2, 3, 3, and 4 endmembers,
respectively, and share 2 common endmembers. The com-
mon and noncommon endmembers were randomly selected
from the dictionary A and the abundances for all pixels were
also randomly chosen with the sum to one restriction. The
abundance of each common endmember was at least 10%.
Additionally, the simulated pixels were contaminated with
white noise to achieve a signal-to-noise ratio (SNR) of 25,
30, 40, 50, and 60 dB, respectively. The SNR, signal-to-
reconstruction error (SRE) are defined as in [9]. The errors
are calculated for pixel y4 in all simulated YL, as the most
mixed pixels contain 2 common and 2 noncommon endmem-
bers. Fig. 2 presents results for the simulated pixels experi-
ment using both MLJSR and BPDN method. The function of
mean SRE for 10000 simulated pixels with different SNR is
plotted. The proposed MLJSR outperforms NNLS as well as
BPDN for all tested noise conditions.

Subsequently we performed unmixing with MLJSR and
BPDN arranging the λ parameters in the range from e−15 to
1. For λ < e−15 solution stabilizes for all tested scenarios so
that the L1 term of the minimization (2) does not have signif-
icant influence on the final result and becomes equivalent to
NNLS, i.e., when λ = 0. The upper bound of λ = 1 indicates
the direction towards unrealistic solutions. In Fig. 1 the SRE
for MLJSR and BPDN at different noise levels is shown.

The MLJSR outperformed the BPDN for all test cases,
i.e., the maximum SRE for MLJSR is always greater than the
maximum SRE for BPDN. Additionally, we can observe that
the best reconstruction in terms of SRE is dependent on λ and
the noise level. For smaller SNR stronger regularization is
required.
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Fig. 1. Plot of the SRE values as a function of λ regular-
ization parameter for reconstruction of abundance from sim-
ulated pixels with SNR = 30, 40, 50 dB using BPDN and
MLJSR methods.

3.2. Real HyMap Image
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Fig. 2. Comparison of NNLS, BPDN, and MLJSR algorithms
using (a) SRE and (b) nRMSE measures for signal with dif-
ferent SNR.

For the experiment with real data we used a hyperspec-
tral scene acquired over Dresden, Germany, with the airborne
sensor HyMap [11]. The scene with originally 126 spectral
channels was reduced to 96. The image has been atmospheri-
cally and geometrically corrected with a ground resolution of
4 m. The window size for MLJSR was L = 9 where the un-
mixed pixel yi,j was in the center of the window. By sliding
the window over the image each pixel was processed, i.e., we

used measurements of all 9 pixels to get a reliable unmixing
only for the central pixel.

We have tested both MLJSR and BPDN with 10 λ param-
eters arranged in the range from e−9 to e. In order to select
the best reconstruction, we have overlapped all unmixing re-
sults on the high resolution image and empirically selected
the λ parameter which provided the best results according to
our knowledge. The qualitative comparison of the unmixing
results is presented in Fig. 3. These results were computed us-
ing NNLS (right column), both BPDN (middle column) and
MLJSR (left column) with λ = 0.13. The MLJSR algorithm
in comparison to BPDN and NNLS results in smoother tran-
sitions from one material to another which indicates better
recovery of mixed pixels with small abundances for selected
materials. This benefits from the joint recovery of neighbor-
ing pixels.

4. CONCLUSION

In this paper we have proposed a multi-look joint sparse
reconstruction for sparse spectral unmixing. The proposed
model takes advantage of the neighboring information by
means of joint approximation of abundances in a sliding win-
dow and especially a joint approximation of common end-
members. Compared to the standard sparse BPDN or NNLS
method, experiments with simulated data demonstrate that
the proposed method restores abundances for pixels sharing
common endmembers more accurately in terms of the SRE
measure. The qualitative analysis of the results on HyMAP
image shows the MLJSR approach to be competitive with
respect to BPDN and NNLS methods and visually show more
consistent results. As future work, we propose to address
further tests on real hyperspectral data including quantitative
analysis. Additionally, the MLJSR can be extended to a more
complex design, e.g. incorporating not only common end-
members in the whole window but also shared endmembers
between singular pixels in the window.
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Fig. 3. Unmixing results for, respectively columns from left to right, MLJSR, LASSO and NNLS. First row of images presents
abundance map for white roof shielding. The second row are the abundances for lawn grass.

terial quantification in hyperspectral imagery,” Geo-
science and Remote Sensing, IEEE Transactions on, vol.
39, no. 3, pp. 529 –545, Mar. 2001.

[4] M. Parente and A. Zymnis, “Statistical clustering and
mineral spectral unmixing in aviris hyperspectral image
of cuprite, nv,” Tech. Rep. CS229, Stanford University,
December 2005.

[5] J. Bieniarz, R. Müller, X. X. Zhu, and P. Reinartz, “On
the use of overcomplete dictionaries for spectral unmix-
ing,” in 4th Workshop on Hyperspectral Image and Sig-
nal Processing. WHISPERS 2012, June 2012.

[6] Scott Shaobing Chen, David L. Donoho, Michael, and
A. Saunders, “Atomic decomposition by basis pursuit,”
SIAM Journal on Scientific Computing, vol. 20, pp. 33–
61, 1998.

[7] Robert Tibshirani, “Regression shrinkage and selection
via the lasso,” Journal of the Royal Statistical Society,
Series B, vol. 58, pp. 267–288, 1994.

[8] D. Baron, M. F. Duarte, S. Sarvotham, M. B. Wakin, and
R. G. Baraniuk, “An information theoretic approach to
distributed compressed sensing,” in Allerton Conference
on Communication, Control, and Computing, 2005.

[9] M.-D. Iordache, J.M. Bioucas-Dias, and A. Plaza, “Col-
laborative sparse regression for hyperspectral unmix-
ing,” Geoscience and Remote Sensing, IEEE Transac-
tions on, vol. PP, no. 99, pp. 1–14, 2013.

[10] R.N. Clark, G.A. Swayze, R. Wise, E. Livo, T. Hoefen,
R. R. Kok, and S.J. Sutley, “Usgs digital spectral library
splib06a,” Digital Data Series 231, 2007.

[11] T. Cocks, R. Jenssen, A. Stewart, I. Wilson, and
T. Shields, “The hymap (tm) airborne hyperspectral sen-
sor: the system, calibration and performance,” in 1 st
EARSeL Workshop on Imaging Spectroscopy. EARSeL,
1998.


	 Introduction
	 Multi-Look Model for Sparse Spectral Unmixing
	 Experimental Results
	 Simulated Scenario
	 Real HyMap Image

	 Conclusion
	 References

