Complex-Valued Markov Random Field Based Feature Extraction for InSAR Images

Nazli Deniz Cagatay and Mihai Datcu
German Aerospace Center (DLR), Remote Sensing Technology Institute (IMF)
82234 Oberpfaffenhofen, Germany

ABSTRACT

In this paper, complex-valued Markov random field (CMRF) parameters, namely the interaction strength and variance, which have been previously used for noise reduction in interferograms, are proposed for feature extraction from interferometric SAR (InSAR) images. A comparative performance evaluation has been carried out for feature extraction from InSAR and single-look complex (SLC) SAR images. A patch-based classification is performed for a small database of 3 forest classes. Also, a single image is tiled into small patches and unsupervised clustering is performed. The results are compared to that of another MRF-based complex-valued feature vector which consists of complex-mean and covariances.

INTRODUCTION

Automated understanding and interpretation of SAR images require the extraction of feature descriptors from complex-valued data. Most of the SAR applications make use of only the amplitude data ignoring the information hidden in the phase data. However, some recent studies take the phase information into account together with the amplitude. For instance, [1] presents the importance of phase data in terms of scattering behavior of targets, and in [2], the whole complex-valued SAR image is used to extract feature descriptors in order to be used for image classification and clustering purposes.

On the other hand, SAR interferometry inherently makes use of the phase difference between more than one complex-valued SAR images acquired from slightly different positions or at different times in order to derive surface topography or observe surface deformation. In this work, InSAR pairs are proposed to be used for feature extraction based on CMRF parameters.

INSAR GENERATION

Given two co-registered complex-valued SAR images of M x N pixels of the same scene, zmaster and zslave, the interferogram is obtained by:

\[I = z_{\text{master}} - z_{\text{slave}} \]

Once the interferogram is generated, the phase due to the curvature of the Earth is removed, i.e., the interferogram is flattened (\(I^{\text{flat}}\)).

FEATURE DESCRIPTOR BASED ON COMPLEX-VALUED MRF MODEL

Markov random field (MRF) is a well-known appropriate statistical model for parameter estimation of images [3]. According to Markovianity, given an M x N lattice \(L\), the conditional probability that a pixel \(s\) has the value of \(z\) depends only on the neighboring pixels, which can be expressed as:

\[P(z_s|I_{\text{flat}}, z_{\text{neigh}}) = \frac{1}{Z} e^{-E(z_s)} \]

For a neighborhood vector \(Q_s\) of site \(s\), the model parameters \(\Lambda_s\) and \(\sigma^2\) are estimated as [4]:

\[\Lambda_s = \sum_{s \in L} z_s Q_s^* \left(\sum_{s \in L} Q_s Q_s^* \right)^{-1} \]

\[\sigma^2 = \frac{1}{M \times N} \sum_{s \in L} |z_s - \Lambda_s z|^2 \]

For performance comparison, complex-valued mean and covariances (CVM) parameters are computed for a patch size of 1 as follows [5]:

\[\mu = \frac{1}{L} \sum_{s \in L} z_s(i,j) \]

\[K(\xi,\eta) = \frac{1}{L} \sum_{s \in L} z_s(i+j) \]

\[FV_{\text{CMRF}} = [\mu, K(0,0), K(1,0), K(0,1), K(1,1)] \]

\[FV_{\text{CVM}} = [\mu, K(0,0), K(1,0), K(0,1), K(1,0)] \]

EXPERIMENTAL RESULTS

1. Patch-based classification

<table>
<thead>
<tr>
<th>Class</th>
<th>Feature Vector</th>
<th>Class</th>
<th>Feature Vector</th>
<th>Class</th>
<th>Feature Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>CMRF SLC</td>
<td>Class 2</td>
<td>CMC SLC</td>
<td>Class 3</td>
<td>CMRF SLC</td>
</tr>
<tr>
<td>100.00 - 100.00</td>
<td></td>
</tr>
<tr>
<td>100.00 - 100.00</td>
<td></td>
</tr>
<tr>
<td>100.00 - 100.00</td>
<td></td>
</tr>
<tr>
<td>100.00 - 100.00</td>
<td></td>
</tr>
</tbody>
</table>

- For both SLC & InSAR images, the use of CMRF interaction strength results itself in a better performance than that of SLC image.
- Joint use of CMRF interaction strength & variance improves the classification of SLC images.
- For both CMRF & CMC, the use of InSAR image results in better classification performance.
- For both SLC & InSAR images, the performance of CMRF is better than that of CMC.

2. Clustering of a single image

| Image: 4096 x 4096 pixels from Munich (consists forest, agricultural area, urban) |
| Whole image is tiled into 128 x 128 blocks (or patches) (L = 64, L = 128 and L = 256) |

For feature descriptor: 2nd order CMRF & CMC parameters from InSAR image, 2nd order CMRF parameters from SLC image (CMC parameters are provided in a log-scale and the absolute value of the complex feature descriptors are used.)

- Classifier: Unsupervised K-means clustering for a total number of 4 classes (BNW)
- Using only the CMRF interaction strength, InSAR image yields a better performance than SLC image.
- Addition of the CMRF variance improves the clustering performance in both InSAR & SLC images.
- The clustering performance of CMRF & CMC are quite close for InSAR image. For a better evaluation, a supervised classification may be utilized. Also, the use of complex-valued feature vector itself instead of its absolute value is expected to enhance the clustering performance.

CONCLUSION AND FUTURE WORK

In this work, the use of InSAR images in feature extraction is emphasized through some experimental results. Also, a comparative study is carried out for two different MRF-based feature descriptors, and of these two, the superiority of CMRF features (interaction strength and variance) over CMC features (mean and covariances) is presented. A successful forest classification with accuracies equal or close to 100% is achieved by CMRF feature vectors. Since the initial results seem to be promising, the experiments will be extended to a larger InSAR database of more number of classes for a wide range of objects. In clustering of a single Munich image, the performance of CMC and CMRF feature vectors are comparable. A supervised classifier may be used for a more sophisticated performance evaluation.

REFERENCES