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Abstract— Several methods for object category recognition in
RGB-D images have been reported in literature. These methods
are typically tested under the same conditions (which we can
consider a “domain” in a restricted sense) such as viewing
angles, distances to the object as well as lightening conditions
on which they are trained. However, in practical applications
one often has to deal with previously unseen domains.

In this paper, we investigate the effect of domain change on
the performance of object category recognition methods. We
use the public RGB-D Object Dataset from Lai et al. [1] for
training, and for testing we introduce the DLR-RGB-D dataset,
representing a similar, but different domain. The data present
in both datasets holds various object instances grouped into
general object categories. Object category detectors are trained
using the objects of one domain and tested on the objects
of the other domain. We then explored how do different 3D
features perform when the model trained on the source domain
is applied on the target domain, and evaluated two feature
selection strategies.

In our experiments we show that a domain change can have
significant impact on the model’s accuracy, and present results
for improving the results by increasing the variability of the
objects in the training domain. Finally, we discuss the relevance
of the descriptors and the properties they capture.

Index Terms— object categorization, cross-domain learning,
feature selection, domain adaptation, RGBD object databases

I. INTRODUCTION

We consider the problem of domain change, as one of

the major obstacles faced in practical adaptation of object

categorization algorithms is that object instances used for

testing are different than the training ones, and they might

be captured under slightly different conditions than the ones

used for building a training database. Domain in this context

refers to properties of a dataset that are dependent on the

data capturing process and conditions.

For RGB data, it has been shown that domain change

severely affects recognizer performance, in spite of the fact

that feature detectors and descriptors aim to be as invariant as

possible. Therefore, we are continuing our previous work on

categorizing high-variance RGB-D data [2], focusing here on

increasing the robustness of the used classifiers by selecting

the right features and augmenting the training dataset.

In order to evaluate the effect of relying on an online RGB-

D object database during category recognition performed in

a different environment, we have used the largest available

benchmark RGB-D dataset for training, and a new dataset

(DLR-RGB-D) for testing. Our database contains 21 object
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categories recorded on a table with Microsoft Kinect [3],

and it is publicly available for the community, in order to

support other benchmarking experiments. Using the 21 object

categories that are common between the two sources, we

train our classifier using the categories from one domain and

see how that classifier performs on samples from the other

domain. The main objective is to see how much robustness

is provided by depth information against domain change.

We have used combinations of well known 3D features

(VFH, ESF, PFH as summarized in [4]), and trained SVM

classifiers. For feature selection we have used the minimum

Redundancy Maximum Relevance (mRMR) and Maximal

Relevance (MaxRel) feature selection methods [5]. The

mRMR feature selection algorithm selects features with

minimizing redundancy and takes into account their highest

relevance to the target class. The MaxRel feature selection

algorithm selects features with the consideration of highest

relevance of features to the target class. We have tested

our classifier on the RGB-D Dataset using 5-fold cross

validation as well as on the DLR dataset, without adaptation,

to highlight the difficulties encountered during cross-domain

categorization. During our evaluations we investigated vari-

ous combination of features as well as the amount of data

used to train the classifier for optimizing performance as

reported in the experimental section of the paper.

We report on the following contributions in this work:

• quantifying the generalizing power of object category

recognition between datasets;

• evaluating the VFH, ESF and PFH features and their

combinations (full and partial concatenation);

• analyzing the results given by features selection meth-

ods (mRMR and MaxRel);

• quantifying the effect of domain change from the RGB-

D (original) to the DLR (target) domain;

• improving the categorization accuracy obtained through

adapting the training set.

In the following we will give an overview of the related

approaches, then describe our work in sections III-V, present

the experimental results in Section VI and discuss our find-

ings in Section VII before finally concluding and discussing

further research directions in VIII.

II. RELATED WORK

Object recognition has been an active area of research

in computer vision. Object category recognition extends

this concept to recognize classes of objects (chair, car, ...)

instead of individual object instance detection. In a typical

scenario for object recognition, training is performed on a



subset of a Dataset and tested on the remaining subset.

Recent challenges are to improve the robustness of the object

recognition systems as well as their detection accuracy.

Several methods proposed in the literature for object

recognition are based on the available textural information in

RGB images data. The focus have been to propose different

features based on the available textural information. For

instance, [6] has proposed a real time multi-resolution object

detection framework using Histograms of Oriented Gradient

(HOG) features. A hierarchical region based object detection

framework based on coherent probabilistic model has been

proposed in [7]. Similarly, A region based object segmenta-

tion method using salient information (holistic properties of

object shapes, geometric relationship of object boundaries)

has been introduced by [8]. Another work [9] has proposed

a learning framework of object detection and classification

by concatenation of feature and context information using

Support Vector Machine (Context-SVM).

In robotics and vision community, a major challenge is

the real time object recognition and pose estimation for ma-

nipulation tasks on RGB-D (color+depth) data using sensors

like Microsoft Kinect [3]. Lai et. al [10] has presented an

object recognition framework for based on the image-level

depth features using hierarchical kernel descriptors. Burrus

et. al [11] have recently proposed a model based 3D shape

reconstruction approach using classical histogram compar-

ison for the task of pose estimation. Therefore, different

methods have been proposed to adapt classifiers trained on

one domain to the other domain.

A visual object recognition framework with domain adap-

tion using web data has been introduced by Lai et. al

[12]. They introduce a probabilistic exemplar-based method

using SVM on Google 3D Warehouse and local Datasets.

Bo et. al [13] have presented an unsupervised object

recognition framework using hierarchical feature represen-

tations from RGB-D data. They have introduced dictionary

learning mechanism to generate RGB-D depth and color

image features. They have reported accuracy for category

and instance recognition in comparison to their existing work

and previously available approach (Convolutional K-Means

descriptor [14]).

III. RGB-D DLR OBJECT DATASET

The RGB-D DLR Dataset is collected using by Microsoft

Kinect [3]. The acquirement of each frame is performed

by the Point Cloud Library (PCL) [15], using the OpenNI

Grabber Framework. The Kinect is placed about one meter

from the table where the objects to be sampled are placed.

The data was taken with the Kinect mounted at 45◦ above

the horizontal. An example frame is shown in Figure 1, on

which standard 3D object segmentation methods from PCL

are used to extract the objects.

One revolution of each object was recorded, the rotation

of the object was done manually rotating it around 5◦ in

each frame, and in some cases, depending on the shape of

the object, the object was rotated in more than one axis.

This procedure gives a total of 7893 RGB-Depth frames in

Fig. 1. An example of RGB-D DLR Dataset scene

Fig. 2. RGB-D Object Dataset objects hierarchy. The number of instances
in each leaf category is given in parentheses.

the DLR RGB-D Object Dataset. The DLR RGB-D Object

Dataset contains 70 different objects in 21 categories, these

categories are also included in RGB-D Dataset from Lai [1].

Figure 2 shows the categories and objects collected.

Once we have the cropped point cloud, To find the table

and object, we assume that all the sampled objects are lying

on the planar surface, then we perform RANSAC plane

fitting to find the table plane and take points that lie above it

to be the object. To remove the outlier in segmented objects,

we have applied Radius Outlier Removal filter PCL [15].

The segmentation results are shown in Figure 3.

The resulting DLR dataset can be found at: http://

dlr.de/rmc/rm/de/staff/haider.ali/

IV. FEATURE EXTRACTION

As we found in our previous work [16] that geometric

features perform better for categorization of previously un-

known object instances, we focused here on three promis-

ing global 3D object descriptors that were evaluated and

described in [4]: the Point Feature Histograms (PFH), the

Viewpoint Feature Histogram (VFH), and the Ensemble of

Shape Functions (ESF).



Fig. 3. Examples of 21 object categories from the RGB-D DLR Dataset.

All three capture various 3D surface properties, and have

a high number of dimensions: 125 for PFH, 308 for VFH

and 640 for ESF. We used the tools available in PCL to

process the input point clouds, namely to estimate surface

normals, subsample the points s.t. the resolution is around

1 cm, and to compute the feature descriptors for each input

file. The feature matrices were concatenated, thus creating

a descriptor of length 1073, as such concatenations provide

a good way to fuse the information from different sources

[17], [18]. However, some tests were performed using the

individual features separately as well.

V. MULTI-CLASS OBJECT CLASSIFICATION

We used multi-class Support Vector Machine (SVM) clas-

sifiers with a linear kernel [19]. A linear kernel was chosen

because it is faster to train and it gives comparable results

to RBF Kernel for such large number of features/samples.

In order to investigate which positions in the high di-

mensional feature descriptors hold the most discriminative

power, we used the mRMR and MaxRel algorithms [5] for

the identification of best 500 features. We have then selected

the best 50, 100, 150, ..., and 500 as well as all the features

for training different models.

For different combination of features descriptors (VFH,

ESF and PFH) using mRMR and MaxRel, we have repeated

the given sequence of feature selection separately. In Addi-

tion to that we also combine the top scoring of each of the

feature types (VFH, ESF, PFH) Top 50, Top 100 and compare

with the globally best 150 and 300 selected by mRMR and

MaxRel.

VI. EXPERIMENTS AND RESULTS

In this section we will present the results of our evalu-

ations. All experiments, where only a subset of the feature

descriptor vectors’ dimensions were used, were performed

twice, once using the feature ranking provided by mRMR

and then using the ones by MaxRel. The two methods select

the same top 500 features, but order them differently, as

shown in Figure VII. The top 118 dimensions according to

MaxRel are scored in the same order by mRMR, but the

remaining ones are mingled.

First, we checked the 5-fold cross-validation results we

obtained on the RGB-D dataset separately. The SVM pa-

rameters were selected such that they maximize this cross-
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Fig. 4. Comparing the ordering of the best 500 feature dimensions by
mRMR and MaxRel. The first 118 dimensions according to MaxRel are
sorted in the same (relative) order by mRMR, but the remaining ones do
not show any correlation between the two methods.
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Fig. 5. Linear SVM 5-fold cross-validation accuracies on the RGB-D
Object Dataset using the concatenation of all three descriptors. The top
scoring feature dimensions according to mRMR and MaxRel were tested
in steps of 50 up to 500, and compared to the case when every feature
dimension is kept.

validation accuracy, and very good results were obtained, as

shown in Figure 5.

Interestingly, contrary to our expectations based on [5],

the feature vector dimensions scored higher by MaxRel

performed in general much better than the ones scored

highly by mRMR. This finding was confirmed in successive

experiments, as we will show, suggesting that for the task

of identifying the most important feature dimensions (and

indirectly the object properties) the MaxRel method is more

useful.

Looking at the features individually (Figure 6), we can

see that a small subset of the ESF and PFH features already

captures most of the variance between the object categories,

while in the case of VFH the accuracy increases steadily

as more and more dimensions are added. This means that a

large portion of the information that PFH and ESF capture

is redundant, or not too relevant for this categorization task.

On the other hand, a small portion of them (between 100 and

150 dimensions) already has the same discriminative power

as the full 308 dimensions of VFH.

We also evaluated the effect of selecting the top scoring

50 or 100 features from each descriptor and concatenating
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Fig. 6. Linear SVM 5-fold cross-validation accuracies on the RGB-D
Object Dataset using the three descriptors separately. The top scoring feature
dimensions according to mRMR and MaxRel were tested in steps of 50,
and compared to the case when every feature dimension is kept.
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Fig. 7. Linear SVM 5-fold cross-validation accuracies on the RGB-D Ob-
ject Dataset using the 50 (top) or 100 (bottom) highest scoring dimensions
of the three descriptors separately, compared to their concatenation and the
globally best 150 or 300 dimensions, respectively.

them. This was compared to the globally best 150 or 300

features, respectively, as shown in Figure 7.

We can see that the “balanced” concatenation of top scor-

ing features performs similarly to the globally best features,

and in the case of the less optimal mRMR methods, it is even

capable of correcting its shortcomings. In general, however,

the global scoring of features (i.e. all of them scored together

at once) is sufficient.

As our goal is to evaluate how well do the features and

training database generalize to a new dataset and acquisition

method, we used the models trained on the RGB-D dataset

from Lai et al. for categorizing the object scans we created
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Fig. 8. Linear SVM prediction accuracies on the DLR dataset using the
concatenation of all three descriptors. The top scoring feature dimensions
according to mRMR and MaxRel were tested in steps of 50 up to 500, and
compared to the case when every feature dimension is kept.
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Fig. 9. Linear SVM prediction accuracies on the DLR dataset using the
three descriptors separately. The top scoring feature dimensions according
to mRMR and MaxRel were tested in steps of 50, and compared to the case
when every feature dimension is kept.

at DLR.

The results highlight the difficulties posed by domain

change, due to the limited generalization power of the train-

ing data and features, reaching an accuracy of approximately

60%. This is in strong contrast to the randomized cross

validation results presented above, as shown in Figures 8, 9

and 10.

Thus, we can safely conclude that some sort of domain

adaptation is required. Instead of a weighting approach

performed in [12], we left one object instance per category

out of our testing dataset, and included them during training.

To compensate for the added training examples, one of the

original training instances was left out of training. We then

compared the results on the remaining objects obtained using

the original and the updated model, shown in Figure 11.

The adaptation step was performed multiple times in a

randomized way in a form of jackknifing, and the mini-

mal and maximal accuracies shown by the error bars. The

baseline of 60.62% using the original model is based on a

single classification of the DLR objects, where one object

per category was removed (which produced a negligible

improvement with respect to Figure 8). However, based on

the randomized results for the updated model (and those that



�� ��� ��� ��� ��� ��� ��� ��� ��� ���

�

���

���

���

���

���

���

��	

��


���

�

�
�
 ���
�� ������	������������

�� ��� ��� ��� ��� ��� ��� ��� ��� ���

�

���

���

���

���

���

���

������
�
� ��������
��� ��������������������

�� ���
�
� �� �����
��� �� �����������������

!� ���
�
� !� �����
��� !� �����������������

!� �
�
��
�

�� �
�
��
�

����
�
��
� ������ ������� �������� ����� �������

���

���

���

���

���

���

�
�
 ���
��

�� ��� ��� ��� ��� ��� ��� ��� ��� ���

�

���

���

���

���

���

���

��	

��


���

�

�
�
 ���
�� ������	������������

�� ��� ��� ��� ��� ��� ��� ��� ��� ���

�

���

���

���

���

���

���

������
�
� ��������
��� ��������������������

�� ���
�
� �� �����
��� �� �����������������

!� ���
�
� !� �����
��� !� �����������������

!� ����	 �� ����	 �������	 
����� ������	 
������� ����� �����	�

���

���

���

���

���

���

�
�
 ���
��

!� �����	 �� �����	 ��������	 
����� ������	 
������� ����� �����	�

���

���

���

���

���

���

�
�
 ���
��

Fig. 10. Linear SVM prediction accuracies on the DLR dataset using the
50 (top) or 100 (bottom) highest scoring dimensions of the three descriptors
separately, compared to their concatenation and the globally best 150 or 300
dimensions, respectively.

will be presented in Figure 12), we don’t expect a deviation

larger than a few percents for this case either.

Even this simple mixing of domains resulted in an im-

provement to an average of 70% in the categorization ac-

curacy on the new domain’s objects. In total around 15000

RGB-D point clouds from the original training domain were

replaced by around 2500 from the new one, however, the

original clouds had large overlaps (the authors proposed

using every fifth scan only). As there are on average around

5-6 object instances per category, the data from the new

domain constitutes only a small portion of the updated

dataset, but it was sufficient for improving the results consid-

erably. The parameters obtained by cross-validation on the

original dataset were reused, so the re-training lasted only

4.5 minutes.

In case all the original objects were kept for the updated

training dataset, the accuracy was 69.41%, thus the accuracy

increase was not due to leaving bad data out of the training

set. For an in-depth analysis of the variability in object

categories that is captured by the RGB-D Object Dataset,

we performed another set of randomized experiments (10

runs each), as shown in Figure 12. First, in the left part,

we can see that reducing/increasing the number of objects

in the source dataset does not affect the general accuracy,

but there are clearly objects that are more similar to testing

ones than others. As the number of objects increase, their

effect diminishes, and the variance between different splits

decreases considerably. Second, on the right, the effect of
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Fig. 11. Linear SVM prediction accuracies on the DLR dataset using the
concatenation of all three descriptors, with one object left out per category.
Top: the original model trained on the RGB-D Object Dataset was used.
Bottom: the model was re-trained by exchanging one object per category
from the original training data with the objects left out from the testing
dataset. Error bars show the minimum and maximum accuracies obtained
using all features (10 runs), and each feature selection step (5 runs).

Fig. 12. Left: distribution of the accuracies on the full DLR dataset, when
one or two thirds of the object instances are used (the red line shows the
result for 100%). Right: clear improvement on the reduced DLR dataset
(1 object per category left out for adaptation) when the training dataset is
adapted, with respect to using only objects from the RGB-D Object Dataset.

adding an object from the new domain is made apparent:

when random objects are added to the training set there is a

consistent performance increase (in each run we test the same

original training objects and testing objects, once without and

then with adaptation).

Similarly to the left part of Figure 12, a reduction in

variance can be seen in Figure 13, where the two feature

selection methods are evaluated. Their performance follows

the same general path than when using 100% of the object

instances, with 66% of the data already showing relatively

stable results, suggesting that there might be some redun-
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Fig. 13. Results using only a subset of the features, showing the minimum
and maximum of the accuracies obtained on the DLR dataset, when one or
two thirds of the object instances are used.
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Fig. 14. The ordering of the best 500 feature dimensions according to
MaxRel, shown for the three descriptors consecutively. First part shows the
ESF dimensions’ ordering, the second the positions of the PFH dimensions
in the ordering, and finally, the VFH dimensions’ positions.

dancy in the training set.

VII. DISCUSSION ON FEATURE RELEVANCE

As noted above, the ordering of the feature dimensions

according to the MaxRel algorithm provided an good indi-

cation of which of them holds the most discriminative power.

Therefore we analyzed which descriptors, and what part of

them are most useful.

Looking at the ordering provided by MaxRel (overview

shown in Figure 14), we can see a clear clustering of

descriptor dimensions. The best 67 dimensions are all from

PFH, then followed by the remaining PFH dimensions min-

gled with some of the VFH and most ESF ones. The last

dimensions from the top 500 are all from VFH, except a

single ESF value.

As all of the PFH dimensions are included in the top 250,

and the classification accuracies using them are already quite

close to the maxima, we can conclude that the information

captured by PFH is the most relevant for this categorization

task. It has only 125 dimensions, which makes training

models fast, however, it has a combinatorial runtime com-

plexity. Nonetheless, it was already used for categorization

tasks [20], being able to distinguish 15 (view dependent)

surface types.

The PCL implementation computes three angles based

on a point-pair’s normals (α,φ ,θ ), divides the range of

their values in 5 intervals, and creates histogram bins that

correspond to specific value combinations. The top 67 dimen-

sions are all histogram bins (feature dimensions) from the

range [32,99]\{31} (with 31 being ranked at position 100),

meaning that the mid-range values of the angles are most

discriminative (intervals 2-3 for α and θ , and 2-4 for φ ).

This makes sense, because we use PFH as a global descriptor,

capturing the variability of estimated surface normal angles

to distinguish objects of different categories. In such a task,

extreme values of angles correspond to normals pointing

in the same or opposite directions. The latter is quite rare

in RGB-D images, and the former does not have much

discriminative value. The use of PFH as a global descriptor

corresponds to its original design, as conceived at DLR [21],

only with one of the constituent features (point-to-point

distance) left out.

The usefulness of these normal angles is further high-

lighted by the results obtained by VFH. This descriptor has

two parts, one based on the fast variant of PFH (FPFH), and

another that is viewpoint dependent. Overall, VFH performs

very well, both for pose estimation and categorization [4],

but the highest ranking dimensions come all from the PFH-

based part of it. This makes sense, as the view-variant part is

not so useful for categorization, and thus those dimensions

are ranked at the lower end of the top 500.

The ESF dimensions that made it to the top 500 are all

from the range [537,640], with only dimension 539 missing,

and 537 being the one not part of the main cluster, at

position 403. Because ESF is a concatenation of ten 64-bin

histograms, this range corresponds to the ones for the shape

functions 8 (second half) to 10 as being most important for

object categorization. These are all point pair (line) features,

describing the lines which cross unoccupied space in the

point cloud. A similar approach to quantify the amount of

free space through point-to-point line traces is also the idea

behind GFPFH, the global feature that integrates besides this

information also local shape classification using FPFH [4].

While it is clear that MaxRel produces a better feature

ordering for our object categorization task, its absolute cor-

rectness is difficult to asses. Since SVM are not affected by

the Hughes phenomenon, the occasional dips in performance

as the number of dimensions increases suggests that some

of the features are wrongly selected. Figure 15 shows the

features’ performance in groups of 50, where a downward

trend would be expected if they are sorted correctly. These

combinations consider correlations between features as well,

so high values are not so surprising also using lower ranked

features. However, mRMR has a clearly inverted trend, and

considering the relation between the mRMR and MaxRel

ordering in Figure as well, it is safe to conclude that

MaxRel’s ranking is more reliable. Moreover, the selected

feature ordering seems to generalize well to a new dataset,

as there is a very high correlation in feature performance

on the source and target domain (0.99 for mRMR and 0.97

for MaxRel). On average around 60% of the accuracy is
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Fig. 15. Feature combination accuracies in groups of 50, as sorted by
mRMR and MaxRel, both on the training data (RGBD) and on the target
data (DLR). The decreasing linear fit is shown for MaxRel, suggesting that
the ordering it produced is correct.

preserved by the feature combinations when dealing with

the new object instances.

VIII. CONCLUSION

In our evaluations we have quantified and discussed the

effect of training object category recognizers on one dataset

and testing it on another one, captured in a different envi-

ronment, and slightly different conditions. The results show

that even the largest RGB-D training database available

online does not capture a sufficiently high variation in

common object categories, and that some form of domain

adaptation is needed. Even a simple approach proved to be

highly effective, and could be improved further by methods

presented in [22] for avoiding the costly re-training step, by

updating existing models with new data.

Based on the comparison of features, and the useful

insights given by MaxRel, we can conclude that a well-

chosen subset of features is already capable of capturing most

of the information necessary for the presented categorization

task involving 21 object categories. However, as we saw, the

real-world variance in object categories can be quite difficult

to capture in current datasets, and there are thousands of

object categories of potential relevance [23]. Nonetheless,

identifying the most relevant parts of long feature vectors, at

least for a given limited application, can aid in optimizing

performance, and also to guide future descriptor designs to

focus on the most descriptive properties.
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