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ABSTRACT:

To improve the quality of algorithms for automatic generation of Digital Surface Models (DSM) from optical stereo data in the remote
sensing community, the Working Group 4 of Commission I: Geometric and Radiometric Modeling of Optical Airborne and Space-
borne Sensors provides on its website http://www2.isprs.org/commissions/comm1/wg4/benchmark-test.html a benchmark
dataset for measuring and comparing the accuracy of dense stereo algorithms. The data provided consists of several optical spaceborne
stereo images together with ground truth data produced by aerial laser scanning. In this paper we present our latest work on this bench-
mark, based upon previous work.
As a first point, we noticed that providing the abovementioned test data as geo-referenced satellite images together with their corre-
sponding RPC camera model seems too high a burden for being used widely by other researchers, as a considerable effort still has to
be made to integrate the test datas camera model into the researchers local stereo reconstruction framework. To bypass this problem,
we now also provide additional rectified input images, which enable stereo algorithms to work out of the box without the need for
implementing special camera models. Care was taken to minimize the errors resulting from the rectification transformation and the
involved image resampling.
We further improved the robustness of the evaluation method against errors in the orientation of the satellite images (with respect to
the LiDAR ground truth). To this end we implemented a point cloud alignment of the DSM and the LiDAR reference points using an
Iterative Closest Point (ICP) algorithm and an estimation of the best fitting transformation. This way, we concentrate on the errors from
the stereo reconstruction and make sure that the result is not biased by errors in the absolute orientation of the satellite images.
The evaluation of the stereo algorithms is done by triangulating the resulting (filled) DSMs and computing for each LiDAR point
the nearest Euclidean distance to the DSM surface. We implemented an adaptive triangulation method minimizing the second order
derivative of the surface in a local neighborhood, which captures the real surface more accurate than a fixed triangulation. As a further
advantage, using our point-to-surface evaluation, we are also able to evaluate non-uniformly sampled DSMs or triangulated 3D models
in general. The latter is for example needed when evaluating building extraction and data reduction algorithms.
As practical example we compare results from three different matching methods applied to the data available within the benchmark
data sets. These results are analyzed using the above mentioned methodology and show advantages and disadvantages of the different
methods, also depending on the land cover classes.

1. INTRODUCTION

Given the rising number of available optical satellites and their
steadily improving ground sampling resolution, as well as ad-
vanced software algorithms, large-scale 3D stereo reconstruction
from optical sensors is increasingly getting a widespread method
to cost-efficiently create accurate and detailed digital surface mod-
els (DSMs). Their manifold usage includes for example monitor-
ing of inaccessible areas, change detection, flood simulation / dis-
aster management, just to name a few. Due to the amount of data,
and with the prospect of a realtime global coverage by a network
of optical satellites in the near future, the algorithms used for 3D
stereo reconstruction have work fully automatic.
A natural engineering question for the development of these 3D
stereo reconstruction algorithms is the availability of a common
objective test-bed environment, comparing the stereo results with
a known ground truth. In many computer vision related areas,
such benchmarks boosted the development of their respective fields,
as they directly allow to compare their numerical accuracy. In the
area of 3D stereo reconstruction, the most prominent benchmarks

are the Middlebury stereo benchmark (Scharstein and Szeliski,
2002) and the KITTI stereo benchmark (Geiger et al., 2012). De-
spite the challenging data sets, especially so the KITTI bench-
mark, their image acquisition is focused on ground based indoor
and outdoor scenarios (e.g. automotive). So even if some of the
most common stereo problems are to some degree existent in the
data sets (sensor oversaturation due to glaring sunshine, texture-
less areas and repetetive textures, low-contrast shadow areas, oc-
clusions), the nature of the image acquisition and their sensor
properties are quite different to the ones used in optical satellites.
For aerial imagery an additional benchmark, EuroSDR (Haala,
2013), is available, which unfortunately does neither provide a
comparison of the submitted algorithms and their results, neither
is the ground truth data (LiDAR points) publicly available.
To adress the aforementioned drawbacks, a stereo benchmark for
dense stereo matching of optical satellite images was introduced
by (Reinartz et al., 2010). In this work we build upon this bench-
mark and improve the evaluation procedure, provide more de-
tailed results in different types of urban and rural sub-areas, up-
load the submissions with the applicants consent to the corre-

http://www2.isprs.org/commissions/comm1/wg4/benchmark-test.html


sponding web page and thereby enable a objective online com-
parison. We further simplified the first time usage of the data
by providing rectified versions of the image data sets, thus en-
abling participants to also run tests without having to care about
the camera model. And additionally, we provide own results for
two, now standard, dense stereo matching methods. These won’t
be put into the official accuracy ranking, as we deem it unethical
to provide a benchmark dataset, take care of the evaluation of its
submissions, and at the same time participate in it.

2. BENCHMARK DATA

The publicly available optical satellite datasets used for the bench-
mark were introduced in (Reinartz et al., 2010) and cover three
characteristic sub-regions near Barcelona, Spain (see Figure 1).
To further investigate the accuracy of optical stereo reconstruc-
tion methods in complex urban areas, one of these sub-regions
(Terrassa) was manually classified into typical city areas like in-
dustrial, residential, ... (see Figure 2). For more detailled infor-
mation on the satellite image acquisition properties as well as the
reference data see (d’Angelo and Reinartz, 2011) and (Reinartz et
al., 2010). All datasets and reference data is and will be provided
at (ISPRS Satellite Stereo Benchmark, 2014), were all evalua-
tions are and will be listed as well.

2.1 Datasets

Three datasets are part of the benchmark:

• Subsets of a Cartosat-1 Stereo pair, acquired in February
2008. It consists of a nadir viewing (−5◦) and a forward
viewing (+27◦) scene. The ground sample distance is 2.5m.

• Worldview-1, one L1B stereo scene acquired in August 2008.
One Nadir image (−1.3◦) and one off-nadir scene (33.9◦),
with ground sample distances of 0.5 and 0.76 meters.

• A Pleiades triplet, acquired on 8th of January 2013, with
the following off nadir angles: forward image: 18◦, nadir
image: 8◦, and backward image: 17◦.

A RPC based block adjustment was performed, independently
for each test area and sensor. GCPs derived from the ortho im-
ages and LiDAR point cloud are used as reference, ensuring a
good coregistration of the DSMs with the reference LiDAR point
cloud. Both ortho images and LiDAR point clouds are provided
by the Institut Cartogràfic de Catalunya (ICC) - see Section 2.2.
For Cartosat-1, a 6-parameter affine RPC correction was used.
For Worldview-1 and Pleiades, a row and column shift was suf-
ficient. The corrections were applied to the RPCs, resulting in a
good relative and absolute orientation of all datasets.
Benchmark participants can directly use the RPCs provided with
the data without any further adjustment or correction with GCPs.

2.2 Reference Data

The reference data consist of color orthoimages with a spatial
resolution of 50 cm as well as an airborne laser scanning point
cloud (first pulse and last pulse) with approximately 0.3 points
per square meter. The LiDAR points were acquired end of Novem-
ber 2007.

Figure 1: Cartosat-1 image showing the three 4 km×4 km test
areas: Terrassa, Vacarisses, La Mola

Figure 2: Cartosat-1 image showing the subareas in the urban
’Terrassa’ area. Blue: Industrial; Orange: Residential; Yellow:
City; Purple: Bridges; Green: Open fields; Red: Changes

2.3 Epipolar rectification

For enabling users to quickly test their stereo methods on our
benchmark, we additionally provide rectified versions of the satel-
lite images, allowing a 3D reconstruction by computing their dis-
parity maps without having to deal with the RPC camera model.
It should be noted that, although we provide a Windows binary
for converting the computed disparity maps back into a UTM
based DSM, the original satellite images and their RPC’s should
be used to create DSMs with highest quality. The two ways of
generating a DSM, either via RPCs or using the rectified images,
are shown in Figure 3.
The rigorous model of the linear push-broom sensors provides



Figure 3: Two options to create the DSM, either with original satellite images and RPC camera model or using the rectified images.
The triangulated DSM is then evaluated against the LiDAR ground truth

quasi-epipolar geometry for well-orientated images, where the
search space of a point can be constrained to a curve in the search
image. Due to the high stability of the spaceborne platform, this
could be approximated as a straight line for data covering a rel-
atively small area (Morgan et al., 2004), like in the case of our
benchmark dataset. Therefore, the stereo images can be digitally
rectified in a way that the matching correspondences are located
on the same row of the rectified image grids, thus simplifying the
matching problem and not needing the camera geometry anymore
to produce a disparity map (Hartley and Zisserman, 2003).
We adopt a two-step strategy for computing the rectified images,
similar to the one proposed by (Wang et al., 2011). The basic idea
of this approach is to first project the original images to a com-
mon reference plane parallel to the ground, and then applying
a 2D affine transformation to align the equivalent epipolar lines
(EEL) to the same sampling row in the image grid. In most of the
cases the RPC (Rational Polynomial Coefficient) are provided as
a backward projection, namely from the object space to the image
space, defined as

x =
SampNum(X,Y, Z)

SampDen(X,Y, Z)
, y =

LineNum(X,Y, Z)

LineDen(X,Y, Z)
(1)

while the forward projection is computed iteratively by giving
the height value. To rectify the projected images, we first need to
find the pairs of EEL, which carry all the correspondence for each
other. Simply put, the correspondences of points on the epipolar
line in the left image can be found in its EEL on the right image.
A pair of EEL can be computed with the following procedure:
Given a point in the left image, we first compute its corresponding
epipolar line in the right image (Zhao et al., 2008), and then based
on the central point of this epipolar line, find its corresponding
epipolar line back to the left image. These two lines are equiv-
alent and contain the matching correspondences for each other.
Given pairs of EEL, the transformation parameters for aligning
these pairs of the EEL can be estimated by minimizing their er-
rors in the vertical direction. We employ a 2D rigid transforma-
tion for the image rectification, which consists of rotation and
translation. In practice, the 2D rigid transformation can be calcu-

lated by estimating the average rotation angles and y-axis offsets
of the EEL pairs in a step-wise manner. The rotation angle θL for
the left image is computed as:

θl =
1

n

n∑
i

arcos(kl,i) (2)

where kl,i is the slope of the epipolar line i in the left image, and
n is the number of considered EELs. The angle θR for the right
image can be computed similarly. After applying the rotation to
both images, the vertical shift tl and tr can be estimated by taking
the mean value of the vertical shifts of the rotated EEL:

tl =
1

n

n∑
i

(yr,i − yl,i)
2

tr = −tl (3)

where yl,i and yr,i are the vertical coordinates of the rotated
EELs on the left and right images, respectively. The transfor-
mation from the original images I to the rectified image Irect can
be then described by the coordinate transformation

prect = A

[
p
1

]
= [Rθ T ]

[
P
1

]
(4)

where A is the affine transformation matrix containing the rota-
tion matrixRθ ∈ R2×2 with respect to the angle angle θ, plus the
vertical translation vector T =

[
0 t

]T .
(Wang et al., 2011) have proven that these pairs of EEL have
small residuals in terms of their agreement of the slope, and the
final y parallax is within 0.5 pixels for most of the sensors. We de-
rived the 2D rigid transformation parameters based on three pairs
of EELs, which were chosen evenly across the vertical direction
of the image.



3. EVALUATION PROCEDURE

The automatic evaluation procedure requires the submitted DSMs
to be projected into UTM Zone 31 North and sampled with two
times the GSD (5m for Cartosat-1 and 1m for Worldview-1). Re-
sulting holes need to be filled, otherwise a B-Spline based inter-
polation method is used to fill remaining holes (Lee et al., 1997).
In a first step, to ensure that the evaluation is not biased by errors
in the orientation of the satellite images, the (x, y, z)-shift of the
DSMs with respect to the reference point clouds is computed, us-
ing an Iterative Closest-Point Algorithm (Besl and McKay, 1992)
and the 3D-3D least-quares registration method of (Umeyama,
1991).
The final evaluation step is done by computing for each LiDAR
point of the reference point cloud its distance to the meshed DSM
surface. The LiDAR point is being projected onto the 2D grid
of the corresponding DSM, falling between four incident pixels
(x, y), (x+1, y), (x+1, y+1), (x, y+1). Instead of comparing
the LiDAR height value with the interpolated height value of the
DSM, we use a more robust distance measure and compute the
minimum distance of the LiDAR point to the triangles created by
the two possible triangulations of the DSM surface as shown in
Figure 4.

Figure 4: The two possible triangulations of a square involving
four incident pixels vij and the projected LiDAR point in blue.

As result, each LiDAR point from the reference data is associated
with its distance to the computed DSM and the overall mean ab-
solute error (MAE) per test area is computed. For the different
sub-aeras of the dataset Terrassa (as shown in Figure 2), masks
are applied to only evaluate the error inside these regions. For the
final ranking of the algorithm’s accuracy, the average MAE over
all sub-aeras is computed (compare Figure 6).
To further give an intuitive feedback of the accuracy, locating ar-
eas where algorithms perform quite well or bad, we also provide
visual error maps as show in Figure 5. For this purpose we project
the LiDAR points (and their distances to the computed DSM re-
spectively) onto a 2D grid, having the same geo-reference and
ground sampling distance as the computed DSMs.

Figure 5: Evaluation of a sample area using the described ap-
proach

4. DSM GENERATION

To provide first example results, we processed the benchmark
data with two standard dense stereo matching methods, described
in this section.
Let the image space of the reference image I1 be denoted as
Ω ⊂ R2. For every pixel x = (x, y)T ∈ Ω and every height
hypothesis γ ∈ Γ = [γmin, γmax], we compute a matching cost

C(x, γ) with respect to a second image I2. The matching cost
function is defined as

C(x, γ) = Diff( Desc(I1,x), Desc(I2, π(x, γ)) ) (5)

with Desc being a local image descriptor, π the function project-
ing a pixel x ∈ I1 to image I2 by using the height γ, and Diff a
function to measure the difference of the aforementioned image
descriptors.
As local image descriptors Desc we used the Census transform
(Zabih and Woodfill, 1994) with a 9×7 window, measuring their
difference by the Hamming distance of their respective bit strings.

In the resulting three-dimensional (Ω×Γ) disparity space image
(DSI), also called cost cube, we now search for a functional u(x)
(the disparity map), which minimizes the energy function arising
from the matching costs (called data term Edata), plus additional
regularization terms. As the data term is prone to errors due to
some incorrect and noisy measurements, one often needs some
smoothness constraints Esmooth, forcing the surface of the dis-
parity map to be locally smooth.

u(x) = argmin
u

{∫
Ω

Edata + Esmooth dx
}

= argmin
u

{∫
Ω

λ · C(x, u(x)) +∇u(x) dx
}

(6)

This energy is non-trivial to solve, since the smoothness con-
straints are based on gradients of the disparity map and therefore
cannot be optimized pixelwise anymore. Various approximations
for this NP-hard problem are existing, e.g. Semi-global Match-
ing (Hirschmueller, 2005), energy minimization via graph cuts
(Boykov et al., 2001) or minimization of Total Variation (Pock
et al., 2008) - just to name three examples. When the matching
costs C and the smoothness penalties ∇u are normed, one can
steer the smoothness of the resulting height map using a scalar
balancing parameter λ without the need to choose it manually,
depending on the height values of the given data and there possi-
ble gradients respectively.

4.1 Semi-global Matching (SGM)

In the work of (Hirschmueller, 2005), the energy functional of
Equation 6 is approximated as follows

E(u) =
∑
x

C(x, u(x)) +∑
p∈Nx

P1 · T [|u(x)− u(p)| = 1] +

∑
p∈Nx

P2 · T [|u(x)− u(p)| > 1] (7)

The first term is the matching cost, the second and third term
are penalties for small and large disparity discontinuities between
neighboring pixels p ∈ Nx. The parameters P1 and P2 serve as
balancing parameter between the data term and the smoothness
terms (similar to λ in Equation 6). The key idea is now not to
solve the intractable global 2D problem, but to approximate it by
combining 1D solutions from different directions r, solved via
dynamic programming

u(x) = argmin
u

{∑
r

Lr(x, u(x)

}
(8)

For details about how the aggregated costs Lr are computed, the
reader is referred to (Hirschmueller, 2005). In our results (Section



5.), the penalties were set to P1 = 0.4 and P2 = 0.8 (with the
raw costs normed to [0, 1]).

4.2 Minimizing Total Variation (TV)

In a second approach we minimize the Total Variation of Equa-
tion 6 using the primal-dual algorithm of (Pock et al., 2008).

u(x) = argmin
u

{∫
Ω

λ · C(x, u(x)) +∇u(x) dx
}

≈ argmin
u,a

{∫
Ω

λ · C(x, a(x)) +∇u(x) +
1

2θ
(u− a)2 dx

}
(9)

In (Steinbruecker et al., 2009), a quadratic relaxation between the
convex regularizer∇u(x) and the non-convex data termC(x, u(x))
was proposed for minimizing a Total Variation based optical flow
energy functional and (Newcombe et al., 2011) used a similar
approach for image driven and TV-based stereo estimation. We
build upon these ideas and split the stereo problem from Equa-
tion 6 into two subproblems and, using quadratic relaxation, cou-
ple the convex regularizer R(u) and non-convex data term C(u)
through an auxiliary variable a:

E =

∫
Ω

R(u) + λ · C(a) +
1

2θ
(u− a)2 dx . (10)

By iteratively decreasing θ → 0, the two variables u,a are drawn
together, enforcing the equality constraint u = a. While the reg-
ularization term is convex in u and can be solved efficiently us-
ing a primal-dual approach for a fixed auxiliary variable a, the
non-convex data term can be solved point-wise by an exhaustive
search over a set of discretely sampled disparity values. This pro-
cess is done alternatingly in an iterative way. For further details
about the minimization procedure, the reader is referred to the
work of (Pock et al., 2008), (Newcombe et al., 2011), (Kuschk
and Cremers, 2013).
In our results (Section 5.), the impact of the data term was set to
λ = 0.1 (with the raw costs normed to [0, 1]).

5. RESULTS

We provide initial results for two dense stereo matching meth-
ods, which won’t be put into the official accuracy ranking. These
two algorithms were described in the former section: SGM - Sec-
tion 4.1 and a Variational approach - Section 4.2. Except for the
stereo algorithms themselves, all other parameters were fixed to
the same settings (e.g. post-processing steps like median filtering
and interpolation of holes due to UTM projection or the Census
transform as image matching cost function).
No exhaustive parameter tuning was performed, and the parame-
ters for the impact of the smoothness term were chosen in a way
to provide a similar smoothness of the resulting DSMs. As image
matching cost function, a simple Census Transform was chosen,
see Section 4..

6. CONCLUSIONS

In this work we improved and extended the existing ISPRS Stereo
Benchmark. The submitted DSMs are evaluated for all three test
areas and with respect to different land cover types as well. All

numerical and visual results will be displayed with the appli-
cants consent on the corresponding web page and thereby enable
a objective online comparison for the different algorithms. All
datasets and reference data are publicly available and we heartily
invite researchers in the field of 3D reconstruction from remote
sensing imagery to evaluate their algorithms with the proposed
benchmark. In a next step we plan to do a thorough evaluation
of the state of the art image matching cost functions and the opti-
mization methods for the energy functional to minimize.
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Figure 6: Evaluation results (22.10.2014) for two stereo algorithms: SGM and TV - see Section 4. for details.
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