
Automatic Code Generation for Attitude and Orbit Control

Systems Using Domain-Specific Languages

Pedro Azevedo Isidro

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisors: Prof. Alexandra Bento Moutinho

MSc. Meenakshi Deshmukh

Examination Committee
Chairperson: Prof. Fernando José Parracho Lau

Supervisor: Prof. Alexandra Bento Moutinho

Member of the Committee: Prof. João Carlos Prata dos Reis

November 2014

ii

Dedicado aos meus avós, Zé e Graciete.

iii

iv

Acknowledgments

I would like to start by thanking Meenakshi Deshmukh for giving me this opportunity to work in and learn

about the field of software development at the DLR, and for continuously being available to help me

with anything I needed, along with all other colleagues at SC Braunschweig. I would also like to thank

Prof. Dra. Alexandra Moutinho, for orienting me at IST and specially for the quick and detailed feedback

during the writing of this thesis.

Additionally, I would like to express my appreciation for all the amazing people that have accompanied

me throughout the last five years, in Lisbon, in Delft and in Braunschweig. My childhood friends from the

Azores, Técnico’s aerospace engineering class of 2009, the ones who made Marcushof an unforgettable

place, and those with whom I shared some great times in the kitchen of Wendenring 35. It was a great

and successful experience, thanks to you.

Last but not least, I want to thank my family, who showed me nothing but support and pride, pushing

me and expecting from me no less than I was capable of.

v

vi

Resumo

O Sistema de Controlo de Atitude e Órbita (AOCS) é o subsistema responsável por determinar e con-

trolar a órbita e orientação de uma nave espacial. Tal como outros tipos de sistemas embarcados,

o seu software tem crescido continuamente em tamanho e complexidade. No entanto, em compara-

ção com outras indústrias, muito poucos satélites são produzidos a cada ano. A consequência é um

nível insuficiente de automação no processo de desenvolvimento, que leva a uma baixa capacidade

de reutilização de software, elevando os custos. A solução proposta para este problema é desenvolver

uma Linguagem de Domínio Específico (DSL) usando a plataforma de desenvolvimento de linguagens

Xtext. A linguagem contém abstrações adequadas ao AOCS, que permitem a criação de um mod-

elo relativamente simples de um sistema. É acompanhada de um editor específico, um validador de

modelos e um gerador de código. O código C++ gerado é então personalizado para implementar fun-

cionalidades de baixo nível. Uma prova de conceito centrada no processamento de telecomandos é

desenvolvida para provar a viabilidade de aplicar a solução a todo o subsistema. A sua concepção e

implementação baseia-se numa análise realizada ao código-fonte do satélite TET-1 do Centro Aeroes-

pacial Alemão (DLR). A Plataforma de Domínio Específico (DSW) desenvolvida é testada recorrendo a

um modelo-exemplo e uma simples personalização do código-alvo, mostrando a sua facilidade de uso

e comprovando que se comporta como esperado.

Palavras-chave: Sistema de Controlo de Atitude e Órbita, Desenvolvimento de Software

Guiado por Modelos, Linguagem de Domínio Específico, Xtext, Eclipse.

vii

viii

Abstract

The Attitude and Orbit Control System (AOCS) is the spacecraft subsystem responsible for determining

and controlling the vehicle’s orbit and orientation. Similarly to other kinds of embedded systems, its soft-

ware has been continuously growing in size and complexity. However, very few satellites are produced

each year, when compared to other industries. The consequence is an insufficient level of automation

in the development process, which leads to low software reusability, driving up the costs. The proposed

solution to this problem is to develop a Domain-Specific Language (DSL) using the Xtext language work-

bench. The language contains tailored abstractions that allow a simple system model to be created, and

is bundled with a specific editor, a model validator and a code generator. The generated C++ code

is then customized to implement low-level behavior. A proof of concept centered in the telecommand

handling functionality is developed to prove the feasibility of applying the solution to the whole subsys-

tem. Its design and implementation is based on an analysis conducted on the source code of the TET-1

satellite of the German Aerospace Center (DLR). The resulting Domain-Specific Workbench (DSW) is

tested with an example model and target code customization, showing its ease of use and proving that

it behaves as expected.

Keywords: Attitude and Orbit Control System, Model-Driven Software Development, Domain-

Specific Language, Automatic code generation, Xtext, Eclipse.

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Figures . xv

List of Listings . xvii

List of Acronyms . xix

1 Introduction 1

1.1 Motivation . 1

1.2 Research goals . 3

1.3 Outline . 3

2 Background 5

2.1 Attitude and orbit control system . 5

2.1.1 Units . 5

2.1.2 Functions . 6

2.1.3 Software considerations . 7

2.2 Model-driven software development . 7

2.2.1 Models . 8

2.2.2 Modeling languages . 9

2.2.3 Code generation . 10

2.3 Domain-specific languages . 12

2.3.1 Benefits . 12

2.3.2 DSL processing . 13

2.3.3 Distinctions . 13

2.3.4 Design guidelines . 15

3 Related work 17

3.1 The AOCS framework project . 17

3.1.1 Concept . 18

3.1.2 Conclusions . 20

3.2 Standardization of space systems . 20

xi

3.2.1 Satellite plug-and-play avionics . 21

3.2.2 SAVOIR . 21

3.2.3 Conclusions . 22

3.3 DSL-based solutions . 22

3.3.1 Magnetic measurements at CERN . 23

3.3.2 Refrigerator programming at BSH . 23

3.3.3 Mbeddr . 24

3.3.4 Conclusions . 25

4 Development tools 27

4.1 Eclipse . 27

4.2 Eclipse Modeling Framework . 28

4.3 Xtext . 29

4.3.1 Customization . 30

4.3.2 Testing . 31

4.3.3 Grammar and parsing . 31

5 The AOCS DSL 35

5.1 Context . 35

5.2 Scope . 36

5.3 Analysis . 37

5.3.1 Command handlers . 37

5.3.2 Components . 39

5.3.3 Applications . 42

5.3.4 Surveillance . 43

5.4 Design . 44

5.4.1 Common language module . 44

5.4.2 Semantic model . 44

5.4.3 Generation gap pattern . 45

6 Implementation 47

6.1 Common language module . 47

6.1.1 Number literals . 47

6.1.2 Documentation comments . 48

6.1.3 Qualified identifiers . 48

6.2 Grammar definition . 48

6.2.1 Parameters . 49

6.2.2 Higher-level elements . 51

6.3 Model validation . 52

6.3.1 Parameters . 53

xii

6.3.2 Higher-level elements . 53

6.4 Code generation . 54

6.4.1 Output configuration . 54

6.4.2 Helper classes . 55

6.4.3 Names . 55

6.4.4 Generate methods . 56

6.4.5 Compile methods . 57

6.4.6 Library files . 57

6.4.7 Generator workflow . 58

6.5 Other features . 59

6.5.1 Content assist . 59

6.5.2 Syntax coloring . 60

6.5.3 Formatting . 60

7 Demonstration 63

7.1 Project setup . 63

7.2 An example model . 64

7.3 Target code customization . 66

7.4 Testing . 67

8 Conclusions and recommendations 69

8.1 Summary of the results . 69

8.2 Future work . 70

Bibliography 73

A Grammar files 79

A.1 Terminals . 79

A.2 Common . 79

A.3 AOCS . 80

B Demonstration files 83

B.1 Example AOCS model . 83

B.2 Test main function . 83

xiii

xiv

List of Figures

2.1 AOCS software external interfaces (adapted from [4]) . 6

2.2 AOCS software (based on illustration from [4]) . 6

2.3 Model transformation (credits to INTEROP-VLab Education Committee) 8

2.4 Code generation (from [21]) . 10

2.5 Generation Gap Pattern (from [22]) . 11

2.6 Domain-Specific Language (DSL) processing . 13

2.7 Internal DSL . 14

2.8 Textual and graphical representation of a state machine (from [34]) 15

3.1 The AOCS framework approach (from [10]) . 18

3.2 Proposed development process (from [36]) . 19

3.3 SDM in PnPSat (from [39]) . 21

3.4 COrDeT-2 high level architecture (from [8]) . 22

3.5 Portion of a MDSL script (from [15]) . 23

3.6 Mbeddr compilation process (from [41]) . 25

3.7 mbeddr (from [11]) . 25

4.1 Basic Ecore concepts (from [24]) . 28

4.2 Xtext workflow . 29

5.1 TET-1 satellite with deployed solar panels and stripped of its insulation (from [46]). 35

5.2 Command handler class diagram. 39

5.3 Class to instantiate the component’s commands . 40

5.4 Component class diagram . 41

5.5 Class to instantiate components . 41

5.6 Component manager class . 42

5.7 Template class for telecommand interpreters . 43

5.8 Surveillance component class . 44

5.9 Semantic model design for the Attitude and Orbit Control System (AOCS) DSL 45

5.10 Generation Gap Pattern (GGP) in the command handlers 46

6.1 Error message for an enumeration-constrained float parameter 53

xv

6.2 Warning for an unused parameter . 54

6.3 Helper class for multi-word identifiers . 55

6.4 Template proposals at model scope . 59

6.5 Automatic drop-down list to choose the parameter type . 60

6.6 Hover assist for a parameter . 60

7.1 Project folder after compilation . 64

7.2 Customizable (left) and purely generated (right) files . 65

7.3 Parameter definition in AbstractCommandHandlerCmd.h 65

7.4 Command parameter value checking in AbstractCommandHandlerCmd.cc 65

7.5 Customization points in the Tasks view . 66

7.6 Default error message IDs . 66

7.7 Resulting printed message . 68

xvi

List of Listings

6.1 Common rules for parsing numbers . 47

6.2 Definition of documentation comments . 48

6.3 Definition of a command parameter . 49

6.4 Ranges and enumerations . 50

6.5 Number literals . 50

6.6 Parameter types . 51

6.7 Hierarchy of AOCS concepts . 51

6.8 The entry rule for the AOCS model . 52

6.9 Definition of a static name . 56

6.10 Method to derive a dynamic name . 56

6.11 Generate method for the component commands class . 56

6.12 Generate method for the implementation file of the component commands class 57

6.13 MEthod to generate library files . 58

7.1 Simple main function . 64

7.2 Component definition . 67

7.3 Component method implementation . 67

7.4 Headers included in CommandHandlerCmdTest.cc . 67

7.5 Custom code for the test command handler . 67

A.1 Default Terminals grammar definition . 79

A.2 Common grammar definition . 79

A.3 AOCS grammar definition . 80

B.1 ExampleAOCSModel.aocs . 83

B.2 ExampleMain.cc . 83

xvii

xviii

List of Acronyms

AOCS Attitude and Orbit Control System.

API Application Programming Interface.

APID Application Process Identifier.

AST Abstract Syntax Tree.

DLR German Aerospace Center.

DSL Domain-Specific Language.

DSM Domain-Specific Modeling.

DSW Domain-Specific Workbench.

EBNF Extended Backus-Naur Form.

EMF Eclipse Modeling Framework.

EPC Estimation, Prediction and Control.

ESA European Space Agency.

GGP Generation Gap Pattern.

GPL General-Purpose Language.

HKD Housekeeping Data.

IDE Integrated Development Environment.

M2M Model-to-Model.

MDE Model-Driven Engineering.

MDSD Model-Driven Software Development.

OBSW On-Board Software.

xix

OO Object-Oriented.

SC Simulation and Software Technology.

TET Technology Experiment Carrier.

UI User Interface.

UML Unified Modeling Language.

URI Uniform Resource Identifier.

xx

Chapter 1

Introduction

A spacecraft can be placed into orbit for a number of purposes, like observation, communication or

research. Once in orbit, the spacecraft becomes an artificial satellite. A satellite is composed by a bus

and a payload. The payload can include various instruments or experiments. The satellite bus, on the

other hand, must perform many mission-critical tasks, which are divided into separate subsystems. The

way that the subsystems are defined depends on how these tasks are distributed among them. However,

combining information from [1] and [2], one can infer a general subsystem configuration for unmanned

spacecraft:

Structure subsystem: Physical structure of the spacecraft, launcher adapter and other moving

parts.

Power subsystem: Generates, stores, distributes and regulates electrical power supply to the whole

spacecraft.

Thermal control subsystem: Maintains all equipment within allowed temperature ranges.

Telemetry, tracking and command subsystem: Used to track, monitor, and communicate with the

spacecraft from the ground. Also called “communications subsystem”.

Command and data handling subsystem: Decodes, validates and distributes incoming telecom-

mands. Gathers, processes and formats telemetry data to be sent.

Attitude and orbit control subsystem: Determines the vehicle’s orbit and orientation using sen-

sors, and controls them using actuators which apply the required forces and torques. The signals

sent to the actuators are calculated by the control laws embedded in the flight software. Sometimes

these tasks are split into two different subsystems.

1.1 Motivation

The size and complexity of a satellite’s On-Board Software (OBSW) is steadily increasing, with satellites

from the European Space Agency (ESA) now containing hundreds of thousands of lines of code [3].

1

Traditional software development methods based on manual coding are no longer suitable.

Even though the AOCS is inserted in the more general field of embedded systems, very few satellites

are produced each year, when compared to other industries. The consequence is that the level of au-

tomation in the development process is lower than that observed in, for instance, the automotive industry.

Very mature tools for automatic code generation of control algorithms already exist (e.g. Simulink). How-

ever, considering that those algorithms represent only about 20-30% of the AOCS software [4], there

is still much room for improvement. Another issue is the discrepancy in the evolution of hardware and

software. In recent years, new processors have been space-certified, bringing a significant improvement

in terms of memory and processing capabilities, thus eliminating previous constraints on software com-

plexity. Now the main limitation is the mentioned lack of high-level methods for developing more complex

software.

Currently, AOCS software (as well as that concerning other subsystems) is still mostly re-written from

scratch for each mission. This low-level design and development has many drawbacks, which become

increasingly significant as the complexity of the system grows. Firstly, having human developers carrying

out repetitive low-level tasks is highly unproductive, since they are focusing on implementation details

instead of design decisions. Secondly, any human programmer is prone to make occasional errors,

as opposed to computers, which only produce systematic errors which are easier to trace. Lastly, the

fact that software development is carried out at a low level leads to low reusability, since the reusable

elements of the system model are mere objects (if Object-Oriented (OO) methodologies are used) or

even routines or sub-routines, instead of more abstract and portable concepts. In a space application,

changes at this level imply the complete re-qualification of the module or routine [5], increasing the

development time and thus driving costs even higher.

The described issues call for the creation of methodologies and tools which can raise the level of

abstraction of the design process. By exploring the domain-specificity of the problem, one can use

a DSL to create high-level models of the domain-specific software, from which low-level code can be

automatically generated.

Model-Driven Software Development (MDSD) puts models in the core of the development process.

It has for years been used in the branch of embedded systems as a mean of increasing productivity

and reliability and decreasing time to market. Even though many modeling tools with code generation

ability already exist, they are mostly oriented towards controller design, like the widely used Simulink and

SCADE [6, 7]). In the space industry in particular, where the major stakeholders recognize reusability as

one of the main factors influencing development costs, efforts are being made in standardizing interfaces

and components, concerning both hardware and software (see Section 3.2). Even though the DSL

approach has already been prescribed [8], it is a relatively new development which has not yet been

properly explored in the domain of satellite software.

2

1.2 Research goals

This thesis proposes to study the feasibility of applying the DSL methodology to automate the develop-

ment of AOCS software, with a focus on all the aspects of the system except for the controller itself. Such

research yields interesting results, mainly to developers of space systems software and space agencies.

The elimination of repetitive tasks and consequent coding errors, decrease in cost and increase in reli-

ability are just some of the benefits that can be attained. Naturally, showing the applicability of DSLs to

such a complex and constrained system would mean that it could be applied to other areas as well.

The first step towards this is to analyze both the literature on the AOCS in general and the software of

a specific implementation, in order to find common functionalities, design patterns and repetitive tasks.

This will allow to create a domain model representative of the system’s structure and behavior and to

identify which parts of the implementation can be automated or abstracted.

The development of a proof of concept follows. The product will be a DSL tailored to populate part of

the formulated domain model. The idea is to create a domain-specific framework capable of facilitating

the development and maximizing the maintainability. Aside from editor support for the developer, the

framework must also feature a code generator which outputs readable target code.

Lastly, the proof of concept must demonstrate how the method can be extended to the remaining

AOCS elements and possibly even the whole satellite software.

1.3 Outline

After an introductory chapter, this thesis is made up of seven other chapters, organized as follows:

Chapter 2 provides background knowledge on the relevant topics and concepts and explains how

they affect the project, namely the AOCS, MDSD and DSLs.

Chapter 3 presents related solutions and efforts, both completed and under development, their

achievements and shortcomings, and how this project fits into the state of the art.

Chapter 4 introduces the tools used in the development of the AOCS DSL. It describes the workings

of Xtext and related software.

Chapter 5 describes the proposed solution. It presents the context of this thesis work and defines

the objectives. Then, from an analysis of existent AOCS software, a design for the system model

and the code generator is outlined.

Chapter 6 provides details on the implementation of the proof of concept: developed features, chal-

lenges encountered and solutions applied.

Chapter 7 demonstrates the capabilities of the developed software, through an example AOCS

project.

Chapter 8 summarizes the results and findings of this project, identifies eventual unresolved issues

and recommends possible solutions and further improvements.

3

4

Chapter 2

Background

This chapter provides background knowledge on the topics and concepts relevant to the project, being

fundamental to a proper understanding of the following chapters.

First, the AOCS is introduced, in order to understand all of its relevant features concerning structure,

functionality and requirements. Next, MDSD – the software engineering paradigm on which this thesis

is based – and its fundamental principles are explained. By exploring domain-specificity in the realm of

model-driven approaches, one encounters DSLs, the last topic that this chapter addresses.

2.1 Attitude and orbit control system

The AOCS is the spacecraft subsystem responsible for determining and controlling the position and

orientation of the vehicle during all phases of a mission. It is an embedded, mission-critical system, with

hard real-time constraints [9], i.e., the input-computation-output process must meet strict deadlines.

In the past, orbit control was done in open-loop, with commands sent from ground stations [10]. For

this reason, it is sometimes decoupled from the attitude control system, which is then referred to as the

Attitude Determination and Control System (ADCS).

2.1.1 Units

The term ‘unit’ is used to refer to the hardware components of the AOCS. These include sensors, actu-

ators and the processor1. Passive sensors, which do not have an internal processor, include Sun and

Earth sensors, magnetometers and gyroscopes. On the other hand, active sensors like star sensors

or GPS receivers can have an internal software matching the complexity of the AOCS [10]. Attitude

control is achieved through actuators like magnetorquers and reaction wheels, which impart torques on

the spacecraft. To control the orbit, thrusters (or delta-V actuators2) are used.

1AOCS computations can also be distributed across multiple processors [9]. For the sake of simplicity, the most common case
is assumed here.

2Delta-V actuators are those which produce a change in velocity (∆V)

5

2.1.2 Functions

The core task of the system is the enforcement of the control algorithms, typically done autonomously in

closed-loop, but with the possibility of being overridden by ground commands [10]. Measurements are

collected from the sensors and used for estimation of the state of the spacecraft. Then the necessary

control signals are calculated and sent to the actuators. The component responsible for the whole

control signal computation cycle is called the EPC – Estimation (of the current state), Prediction (of

the next state), and Control. However, due to the nature of space missions, the AOCS software must

implement much more than mere control algorithms.

The system must also manage a two-way data exchange link with the ground station, as depicted

in Figure 2.1. This communication links usually run through another spacecraft subsystem called Com-

mand and Data Handling (C&DH) system.

Figure 2.1: AOCS software external interfaces (adapted from [4])

The AOCS must receive and process telecommands from the ground via the uplink. These com-

mands are used to influence the behavior of the satellite, possibly overriding internal decisions of the

OBSW. On the other hand, the AOCS must provide Housekeeping Data (HKD), i.e., general status in-

formation, to be sent to the ground with the remaining telemetry data of the spacecraft (e.g. science

data), via the downlink [10]. But managing the data for uplink and downlink are only two of the functions

typically carried out by the system. Other than that, the AOCS is usually responsible for managing the

operational mode, executing attitude and orbit change manoeuvres and detecting failures. Figure 2.2

shows this schematically.

Figure 2.2: AOCS software (based on illustration from [4])

6

The operational mode determines the nominal attitude and the precision at which it must be kept,

the control algorithms used, and other settings. It must be managed internally because there is not a

one-to-one correspondence between the operational modes of the satellite and those of the AOCS [10].

The execution of pre-programmed parameterized manoeuvres, concerning both orbit and attitude3,

is usually triggered by telecommands from the ground.

Another crucial task of the AOCS is to detect and attempt to isolate failures. Since all of the system’s

units – sensors, actuators and processor – are redundant, once the failure is isolated the faulty unit

can be reconfigured to attempt recovery. Alternatively, the whole configuration can be changed or, if

the recovery attempts are not successful, the spacecraft can enter a safe mode and wait for ground

commands.

2.1.3 Software considerations

The design of a system as complex as the AOCS demands the use of high-level abstractions. However,

its embedded nature leads to a few constraints on the abstraction mechanisms.

One of those constraints is that, due to limited computational resources and real-time constraints,

the abstraction techniques used cannot lead to excessive runtime overhead, in terms of memory usage

and processing speed. Object-orientation is a common technique used for raising abstraction, not only

through encapsulation of variables and routines, but also through the use of inheritance [11]. Even

though all OO applications introduce processing overhead due to the extra level of indirection caused

by dynamic binding [10], today’s space-qualified processors are fast enough to allow the use of OO

languages for programming space systems [9]. Nevertheless, higher-level abstraction mechanisms are

needed which can be resolved at compile time, with little or no runtime cost [11]. Such can be achieved,

for instance, using DSLs (see Section 2.3).

Also, because it is a critical system, the standard for reliability is very high. Languages which provide

the low-level capabilities needed in most embedded applications, like C and C++, are deemed ‘unsafe’

for giving the developer excessive freedom to introduce bugs in the code. That is why coding standards

for embedded software, like MISRA4 C and C++, were created and are enforced. However, the programs

used to check for compliance are loosely integrated with the development environment. Using a DSL,

such static verification procedures could be included in the development framework [11].

2.2 Model-driven software development

Model-Driven Software Development (MDSD) is a software development methodology which focuses

on creating and exploiting models. Unlike Model-Based Software Development (MBSD), which uses

models merely as documentation artifacts [12], MDSD puts models at the core of the development

process. These models are then used to automatically generate platform-dependent designs, source

code, tests, or even documentation [13]. This not only significantly increases software reuse, but also

3Attitude change manoeuvres are also called slew manoeuvres.
4Motor Industry Software Reliability Association

7

allows the developer to abstract away the implementation details, which are not relevant to the problem

domain.

In the realm of model-driven approaches to software development, all the different representations

of the system are considered as models, and the core mechanism of the development process is model

transformation. The general principles behind model transformation are illustrated in Figure 2.3.

Figure 2.3: Model transformation (credits to INTEROP-VLab Education Committee)

In this thesis work, for instance, the highest level – the metametamodel – is the domain model of

the AOCS, from which the source and target metamodels are derived by the developer of the DSL. In

this particular case, these are, respectively, the language definition and the target code architecture and

templates, while the mapping is programmed in the code generator. On the lower level, the models are

the DSL script and the target code.

The higher level of abstraction allows not only a quicker development of complex systems, but it also

provides an opportunity for an early verification of the system design. It has been shown that about

70% of faults are introduced early in the development process, and 80% of those caught only at the

stage of integration testing or later, where the cost of fixing them is much higher [14]. By validating this

model, which is directly linked to the target system, many of these faults can be eliminated early in the

development process.

2.2.1 Models

A model is nothing more than an abstraction of some aspect of a system, i.e., a simplification of reality.

This means that it leaves out some of the details of said system, while preserving its relevant charac-

teristics [11]. Which characteristics are relevant greatly depends on the purpose of the model. Another

important concept is that of a metamodel. A metamodel defines the language used to describe a model

[11], which is nothing more than an instantiation of the first [15].

A distinction can be made here between descriptive and prescriptive models. A descriptive model is

one intended for communication or analysis of a system, while a prescriptive model is used to, fully or

8

partially, automate the construction of the target system [11]. Therefore, when referring to models in the

context of MDSD, one means prescriptive models. One fundamental implication of this distinction is that

prescriptive models require a higher level of detail (see Section 2.2.2).

Models are created to gain a more meaningful insight into the system, more reusable software,

and better integration of design, implementation and testing [16]. So for an abstraction to be truly

advantageous, the models used must provide that.

2.2.2 Modeling languages

When modeling a software system, a fundamental point of concern is the language used. There are

many “flavors” of modeling languages: graphical or textual, general-purpose or domain-specific, and

other less relevant distinctions for this case. All of them offer pros and cons, and which one is the best

really depends on what it is going to be used for.

The approach of this master’s thesis work is to use a domain-specific textual language. Textual

languages use standardized keywords and parameters to construct a computer-readable model [17].

When a language is designed with a focus on readability, textual models can even be more understand-

able than graphical ones. They also make the task of a version control system much easier [18], since

that model is stored in plain text files. The advantages of exploring domain-specificity are discussed in

Section 2.3.

For a model to be usable in the context of MDSD, it must be complete enough to contain all the

details needed for the generation of target code, whether the production of this target code is partially

or completely automated (see Section 2.2.3). At the same time, it must still be simple, because a

complicated model defies the very purpose of modeling.

The consequence is that many widely used modeling languages, like Unified Modeling Language

(UML), are unsuitable. Due to their general-purpose nature, they don’t provide abstractions powerful

enough to contain all the necessary information within the model. Attempts have been made to extend

these languages to incorporate behavior modeling, so that the models can be transformed into exe-

cutable artifacts. One example of that is based on UML: the Extendable and Translatable UML (xtUML).

Not only is it meant to support high- and low-level code generation, but it can also be tweaked to support

various targets for embedded software development [19]. However, the limitations of a General-Purpose

Language (GPL) are still not tackled. The graphical models are created as diagrams of the software

classes of the system as core abstractions. When dealing with complex systems, the absence of higher-

level abstractions will likely lead to models not being as clear and understandable as they could be.

The solution is then to exploit the domain-specific characteristics of the problem at hand. An ap-

plication domain comprises a set of software applications with common features. By capturing those

features, one can create a domain-specific modeling language (or metamodel) which offers to develop-

ers powerful concepts and notations tailored to capture the characteristics of that same domain, while

allowing the specification of a concrete system [12]. Bundled with a reference architecture common to

all applications within the domain, a code generator, and a library of reusable domain components, a

9

framework is created that lets the developer work at the level of abstraction of the domain [20], with more

meaningful concepts. The topic of DSLs is covered in Section 2.3.

2.2.3 Code generation

The code generator is one of the essential components of a MDSD tool. It maps an abstract input model

into executable target code. This process is depicted in Figure 2.4, and is nothing more than a specific

case of the general model transformation shown in Figure 2.3. Code generators are also referred to as

compilers.

Figure 2.4: Code generation (from [21])

Several types of code generators exist, using very different paradigms. However, within MDSD, only

metamodel-based generators are relevant. More important is to summarize the guidelines for its design

that can be found in the literature.

First of all, it is important to notice the gap in the level of abstraction between the input model and the

generated code. The consequence of this gap is that the code contains much more detailed information

about the system. Therefore, the transformation can only be unidirectional, i.e., changes in the code

cannot be reflected in the model. So the generated code cannot be edited. Guaranteeing that there will

be no need for that is a responsibility of the designer of the code generator. Also, if that gap proves to

be so wide that it forces the code generator to be excessively complex, then it is probably a good idea to

create intermediate representations using Model-to-Model (M2M) transformations. In practice, a single

transformation is sufficient, if needed [22].

However, the fact that the generated code should never be hand-edited does not mean that it should

not be readable. In fact, at times developers may want to know how it works, so producing clean code is

a key principle [18].

Due to the complexity of the AOCS software, there is a lot of code to be generated concerning the

architecture of the system, which is common to all applications in the domain. In that case, when the

dynamic code to be generated represents a small amount of the total code, a generation mechanism

based on code templates is the most appropriate [18]. Also, template languages offer a good syntactic

mix of model traversal code and to-be-generated code [11].

The last consideration concerns testing. Although one of the biggest benefits of MDSD is possibility

to automate test generation, it is not addressed in this project, for the simple reason that dedicated

software testing methods for the AOCS already exist.

10

Generation gap pattern

In very simple domains, it is possible for a system to be completely described with an abstract model.

However, for many real-world systems, it is not possible to abstract away some of their features. In this

case, code will have to be manually written to complement the output of the code generator, and the

integration of automatically generated and hand-written code becomes an issue [11].

The most widely accepted way to introduce code separation is the GGP, which prescribes that gener-

ated and hand-written code be separated using inheritance [18]. Obviously, this requires that the target

language be Object-Oriented. This pattern is shown in Figure 2.5. The generated classes implement

Figure 2.5: Generation Gap Pattern (from [22])

default, and possibly incomplete, behavior, which can be augmented or overridden by a concrete sub-

class. When using the GGP, a good practice is to make use of the compiler of the target language to

guarantee that the necessary manual code is implemented [22]. By creating abstract methods in the

generated classes, the compiler will force the developer to create a subclass which implements those

methods.

Although this pattern hints on how to split the code in the software structure, it makes no recom-

mendation on how to separate the corresponding files in the project directory. A common approach

is to put generated code in one folder (usually named src-gen) and have the developer save manual

code in another (usually named src). However, this requires that the developer looks for which classes

to subclass and which methods to override. Further support can be given by automatically generating

class and method stubs5 in the src folder. The key here is that, while the content of the src-gen folder

is regenerated every time the generator is run, files in the src folder are only generated if they do not

already exist [23]. In summary, stub files are therefore only generated once, with the intent of providing

a scaffolding for developer to manually implement the missing functionality. Because of this, the pattern

is referred to as the generate once policy.

5A stub is a temporary replacement for code that still has not been developed. It is commonly used as an implementation of a
known interface, when the actual implementation is not known.

11

2.3 Domain-specific languages

A Domain-Specific Language is defined by Martin Fowler as follows [18]:

Domain-specific language (noun): a computer programming language of limited expressive-

ness focused on a particular domain.

Unlike general-purpose programming languages like C/C++ or Java, a DSL is limited to, but optimized

for, use in applications within a given domain. The goal when building a DSL is to create a programming

(or modeling)6 language with concepts and notation closely related to the domain, in order to meet the

way that software developers reason in said domain [24]. It trades generality – most DSLs are not Turing

complete [11] – for abstractive power.

2.3.1 Benefits

DSLs allow system design to be done at the level of abstraction of the domain, which has numerous

advantages:

Shorter programs: It has been shown that the amount of code alone introduces complexity in a

program [11]. The high-level character of a DSL means that a possibly very elaborate concept can

be instantiated with a small amount of code [25].

More readable models: Readability is greatly improved by the usage of domain notation in the lan-

guage.

Easier communication: The communication between software developers and domain experts can

be a limitation in a project [26]. A well designed DSL can make the work of the developer under-

standable to the expert [27].

Higher reliability: A DSL frees the developer of the clutter of implementation details and repetitive

tasks. These low-level tasks are not only a waste of the time and capabilities of a human designer,

but they are also error prone. Unlike a computer, a human programmer is bound to make occa-

sional errors like missing references, typos and use of uninitialized variables. This is a result of the

often unnecessary degrees of freedom offered by a GPL [28].

Earlier validation: A DSL is a metamodel, which not only captures the domain concepts, but also

the domain-specific constraints and rules [15]. As such, it can be used to enforce compliance

with standards [29], like those seen in the embedded systems industry, and also to apply model

validation checks early in the development process.

Possibility for further automation: Not only target code can be generated from the model. Auto-

mated tests and documentation artifacts are also a possibility [30].

6In the general area of Model-Driven Engineering, modeling and (high-level) programming are often considered synonyms.

12

The result is a major improvement in productivity and reliability, with several electronics manufactur-

ers reporting productivity increases of 300-1000% and a 50% decrease in number of program errors,

when compared to manual coding [28].

2.3.2 DSL processing

In order to understand how DSLs work, it is important to introduce a few key concepts. The first of those

concepts is the grammar. The grammar consists of a set of rules which determine how a script written in

the language is converted into an actual model of the system [18]. In other words, it defines the concrete

syntax (or textual representation) of the language. With knowledge of this concrete syntax, the parser7

is able to create a model based on its abstract syntax, i.e., its meaning. This model is therefore called

the Abstract Syntax Tree (AST), or alternatively semantic model. It is a data structure that holds the

meaningful information expressed in the script [18]. From this model, a number of optional artifacts can

be automatically generated, namely target code, which is the end goal of this project. An intermediate

model can also be generated via a M2M transformation, to reduce the complexity of the code generator.

This whole process is depicted in Figure 2.6.

Figure 2.6: DSL processing

An important note here is that the semantic model is usually just a subset of the domain model, as

not all of the domain concepts are best handled by the language [18].

2.3.3 Distinctions

Many different types of DSLs exist, and understanding their differences, and the pros and cons of each,

is essential for defining how a new language will be designed. Once again, it all depends on the intended

application.

Internal or external: External DSLs featured their own grammar and parser, while internal (or em-

bedded) DSLs are built within a pre-existent host language. Internal DSLs basically shape their

host language for domain-specific purposes [31], by adding domain-specific concepts and by re-

stricting the use of the host language to a subset of its elements (see Figure 2.7). While they

present the advantage of reusing all the infrastructure of the host language (editor, compiler, etc.),

they are also bound to its syntax and constraints. Perhaps more importantly, internal DSLs lack

custom content assist and other forms of editing support. The boundary between an internal DSL

and an Application Programming Interface (API) is very fuzzy and falls beyond the scope of this

thesis, but [11] provides a good distinction between the two. External DSLs, on the other hand,

7The term ‘parser’ is used to refer to the entire lexer-parser-linker toolset. More details on that in Section 4.3.

13

Figure 2.7: Internal DSL

provide the cleanest form of abstraction [11]. Although they require the implementation of a full lan-

guage infrastructure, a lot of unnecessary clutter can be avoided, as a result of the full control over

the design and notation of the language. Also, custom domain-specific Integrated Development

Environment (IDE) support can be bundled with the language, which allows to better guarantee

that the developer follows rules and conventions, of the domain or of a product family [28]. The

downside of creating an external DSL is that it requires the construction of a whole framework,

including a parser, a validator and a code generator. The creation of a custom parser (plus the

required lexer and linker) alone is already a complex task, only at the reach of language specialists

[32]. However, the continuous maturation of language workbenches, which provide support for

creating these elements, has been mitigating this problem. External DSLs will be addressed in

detail throughout this thesis.

Graphical or textual: When designing a DSL, one of the key considerations concerns how to edit

a program: graphically or textually. Graphical visualizations can be created from a textual model

and a textual representation can be generated from a a graphical model through projection, so

the concern really lies on how to edit it. While a graphical model provides a better overview of

a system, a textual modeling language is easier to develop [33]. The choice must be based on

what feels more natural in the domain. For instance, state machines are usually more intuitive

when expressed with a graphical notation (see Figure 2.8). One advantage of textual DSLs is that

the concrete syntax of the language corresponds to the way the model is stored, thus improving

migration of models to other projects and platforms [22]. Another significant advantage concerns

team work, as plain text files integrate much better with version control systems [18].

Technical or application domain: DSLs can be categorized according to their targeted users. [11]

defends that a technical DSL is meant to be used by a programmer, i.e., someone with knowledge

of software development, while an application domain DSL is intended for domain users. In the

case that a very simple and complete language can be created for a given domain, this distinction

can be made in terms of internal and external DSLs [27]. However, this does not have to be the

case, and the AOCS DSL (see Chapter 5) constitutes a good counter-example. With additional

development, it is theoretically possible to evolve it into a simple enough language to be used by

14

Figure 2.8: Textual and graphical representation of a state machine (from [34])

domain users with relatively little knowledge of programming, but the amount of work required to

achieve that may overweight the advantages.

2.3.4 Design guidelines

Language design is a cumbersome task, usually performed by specialists. Today’s language work-

benches provide a valuable help, allowing less experienced, but adventurous developers, to create their

own DSLs, either with a specific application in mind, or just for didactic or recreational purposes. How-

ever, by following some basic guidelines, the need for trial-and-error may be greatly mitigated. This

section presents a compilation of those guidelines, found in the literature.

First of all, it is important to understand that a DSL is just one of the elements of a complete domain

framework. The Domain-Specific Modeling (DSM) methodology, which concerns the development of

such a framework, prescribes the following ingredients [20]:

• Domain model.

• Domain-Specific Language.

• Code generator (or any other kind of model transformation tool)8.

• Library of reusable components.

This is important because considerations about other components can (and usually do) influence the

design of the language, since the domain framework is developed as a whole in a language workbench.

8Alternatively, the model can also be directly executed by an interpreter. Interpreters are often used for simulation of the system,
but simulation falls beyond the scope of this project.

15

One important point is to properly separate the domain concerns. As stated before, the domain

model should not be entirely reflected in the language. A Domain-Specific Workbench (DSW) also

contains a reference architecture and an execution engine which can complete the model of a system,

thus allowing said model to be simpler. According to [11], this separation should be done as follows:

• The elements or features which are invariable, i.e., equal for each program in the domain, belong

to the reference architecture.

• Those that can be derived by fixed rules from an input model belong to the execution engine,

meaning that they will be inferred by the model transformation mechanisms.

• Only the set of variable features that cannot be derived should be included in the DSL, which must

in turn provide the adequate abstractions to express them.

When performing this separation of concerns, one important point to consider is that, when using a

model-driven approach to software development, a developer must be able to make all decisions con-

cerning design at the model level [29].

Considering that one of the main points of MDSD is to increase reuse of software, one commonly

found advice is to reuse existing languages when possible, either by extension or composition. Even

if a new language must be created, [33] prescribes that an existing type system be reused in order to

reduce the workload of the developer and to promote acceptance by the user. Also with the intent of

easing the adoption of the language, the notation used by the domain experts should be present in the

language.

DSLs are designed to make the models simpler. As such, unnecessary complexity must be avoided.

The language should reflect only the necessary subset of domain concepts. Also the number of lan-

guage elements (the size of the language [11]) should be kept to a minimum. Excepting a few very

simple application domains, this requires either the use of libraries or a modular language [33]. In a

modular language, modules would augment, and be translated to, a small core language, adding its

own IDE support. Then, other modules can be added and translated to the first-level modules, and so

on. A very promising example of a modular language is presented in Section 3.3.3. This approach is

related to a programming paradigm described by Martin Ward [25], called Language-Oriented Program-

ming, which is based on creating and extending DSLs to solve each problem at the appropriate level of

abstraction. However, this approach has not been followed in this project. Explanations about this and

other design choices are given in Chapter 5.

16

Chapter 3

Related work

This chapter provides an overview of what has been done so far that could contribute to solving the

problem of reusability in AOCS software. Related work includes developments made towards the same

goal or with a similar methodology, since results can be applied and adapted to overcome eventual

shortcomings. The following sections will show, through real examples, that this project addresses a

real and current problem, and that it complements previous research with a unique approach. This

review is also important to establish a basis for comparison and evaluation.

As mentioned in Chapter 1, graphical modeling tools like Simulink (The MathWorks) and SCADE

(Esterel Technologies), despite their widespread use in aerospace and other industries, are focused in

the development of controllers, and not of whole software systems. Even though they may provide the

means to integrate a software architecture described with UML or SysML1 class diagrams, the system

models are created externally and so these tools will not be reviewed here.

Section 3.1 presents a project addressing the exact same problem, but following a different (pre-

DSL) paradigm: a software framework. Section 3.2 follows, with a description of the current efforts

in the space industry concerning reusability and standardization. Finally, DSL-based solutions already

developed for other kinds of embedded systems are discussed in Section 3.3.

3.1 The AOCS framework project

The AOCS Framework Project was carried out at the turn of the millennium in the Computer Science

Department of the University of Constance, in Germany [35]. It presents a related but different approach

to AOCS software development, from before the popularization of DSLs. The documents written with

respect to the project also show the most in-depth practical study of the system to be found, and are

used as references on the matter throughout this thesis.

1Systems Modeling Language.

17

3.1.1 Concept

The concept behind the AOCS Framework Project is that of a software framework. It is natural that

applications within the same domain will have similar high-level requirements, which in turn translate to

a common structure at software level. The point of a framework is then to create an architecture that

captures these common requirements and optimize it for the target domain, thus allowing one to easily

and quickly create an instance of such a system [26].

The AOCS Framework intends to build a complete system as a composition of independent compo-

nents [9]. The key here is how they are connected to the well-defined framework. The framework has

specific hooks2 for each kind of component, and any component which is attached to these hooks to

extend (or override) functionalities must implement certain abstract interfaces, i.e., sets of related oper-

ations which are declared, but not implemented [26]. This means that implementation of system-level

functionalities at component-level is left up to, and demanded from, the component developer. Figure 3.1

shows a schematic example.

This interface-based approach naturally requires the use of an OO methodology3.

Figure 3.1: The AOCS framework approach (from [10])

Customization code

Once the AOCS is properly understood and the framework is created, another concern is how to develop

the customization code. Of course, hand-coding the components is always an option, but one of the

priorities of this project was to allow integration of automatically generated code. This because it was

felt that “autocoding” tools, as the authors call them, have strengths and weaknesses complementary to

those of framework technology [5, 10] :
2In programming, a hook is a place, usually accompanied by an interface, for a programmer to insert custom code.
3The framework was initially developed in C++ and later ported to Java [4]

18

Architecture design: The graphical modeling tools used for code generation do not generally facil-

itate architecture design, which is captured by the framework.

Generality: Frameworks are built specifically for an application domain, while graphical modeling

tools feature component-level abstractions of several domains, mostly concerning controller de-

sign.

Simulation: Code generation tools are typically created for development environments intended for

algorithm design and simulation, providing a good integration of development and validation. On

the other hand, a framework, being defined at code-level, and representing a usually incomplete

system, is not simulation-capable.

The synthesis process proposed consists of the merging of an architectural skeleton provided by the

framework and mission-specific components provided by the code generators of dynamical simulators

[10].

Integration strategy

To allow the complete instantiation of a system, a configurable integration of different resources is still

necessary. The end goal of the AOCS Framework is then to extend it in order to provide such integration,

as depicted in Figure 3.2. Is this example, the widely used modeling software from The MathWorks was

chosen to illustrate the strategy.

Figure 3.2: Proposed development process (from [36])

19

3.1.2 Conclusions

To sum it up, this project aims at creating a platform for the development of reliable software systems, by

customizing a generic architecture with unit-verified components compliant with a well defined interface.

However, despite representing a great advancement in the field of AOCS software development, there

is still room for improvement in the AOCS Framework.

First of all, note that a domain-specific architecture is by default embedded into a DSL by the process

of domain engineering (see Section 2.3), so the framework approach results in just a subset of what can

be achieved with a complete domain-specific development platform.

The customization of the AOCS Framework must be done either at code-level or with separate mod-

eling tools, while a DSL allows further automation of the process to be integrated in the platform, by

providing high-level abstractions for the variable part of the system. This leads to very readable models

which more clearly show the relation between the fixed architecture (defined by the language structure)

and the application-specific parts (specified using language constructs).

In other words, domain-specificity can be explored to automate recurrent design patterns beyond the

architecture. In fact, a DSL can even be developed to the point of including low-level concepts, eventually

allowing it to completely express systems like the AOCS.

3.2 Standardization of space systems

There are ongoing efforts in the space industry to standardize the development of space avionics,

concerning both hardware and software. This section highlights the software-related outputs of those

projects, to raise awareness of the current problems and needs of the industry and to understand how

this thesis proposes to meet them.

As stated before, reusability is a big concern within the space community these days, and the projects

presented in the next sections share a common end-goal: to decrease time and cost of development of

space avionics, by reaching a development paradigm with the following features [37]:

• A reference architecture which captures the basis of all the subsystems in the domain.

• Standard interfaces which allow easy integration of components.

• Reusable components conforming to the standard interfaces.

The proposed modularity of space systems comes with the downside of affecting performance when

compared to highly optimized designs. However, the performance of modern hardware allows that

sacrifice to be made. In other words, it is becoming a viable option to produce software systems which

can be built much faster, with a ‘good enough’, instead of optimal, performance, as long as the required

reliability is assured [38].

20

3.2.1 Satellite plug-and-play avionics

Conducted by the North-American Air Force Research Lab, the Satellite Plug-and-Play Avionics (SPA)

project aims at adapting Plug-and-Play (PnP) approaches for use in space systems. Commonly seen in

personal computers and other everyday electronics, PnP technology has resulted in the proliferation of

cheap and easily integrable devices, inspiring its use in more ambitious applications like critical systems

[39]. The principle behind PnP is to design systems based on an interface-driven set of standards.

Since compliant components are platform-independent and seen by the system as a black-box4, their

integration stops being an issue and the consequence is quicker development and higher reusability.

On the software side, the project involves developing a middleware layer called Satellite Data Model

(SDM). This layer aims at promoting software reuse at the application level [38] by decoupling the appli-

cation software from the execution platform, as shown in Figure 3.3. The applications then interact with

the spacecraft components through API calls to the middle layer. A demo satellite called PnPSat was

developed but never launched [40].

Figure 3.3: SDM in PnPSat (from [39])

In the SPA project, nothing is prescribed on how to develop these components and applications, as

the project focuses solely on the interfaces. Therefore the usage of DSLs is not excluded.

3.2.2 SAVOIR

Taking inspiration from AUTOSAR, an open and standardized automotive software architecture, the

Space Avionics Open Interface Architecture (SAVOIR) is an initiative to improve the way that the Euro-

pean space community builds and develops avionics. It is coordinated by the SAVOIR Advisory Group,

which is comprised of three working subgroups and includes representatives from ESA, Astrium, Thales,

DLR and other major stakeholders in the community [37]. The subgroup SAVOIR-FAIRE5 is in charge

4A black-box is something that is viewed only in terms of input and output, with no knowledge of its internal workings.
5Fair Architecture and Interface Reference Elaboration.

21

of creating a standardized architecture for OBSW.

Departing form the identification of the main avionics functions of spacecraft, the group proposes

to develop a standard interface between them, so that components can be more easily developed and

reused across different projects [37]. The result is a software architecture based in the separation of

application software and execution platform (like the one seen in Section 3.2.1), named Component-

Oriented Development Techniques (COrDeT). Model-Driven Engineering (MDE) (see Section 2.2) and

component composition are the other foundational principles of this architecture. The high-level structure

of the second version of COrDeT is depicted in Figure 3.4.

Figure 3.4: COrDeT-2 high level architecture (from [8])

But SAVOIR goes one step further than its North-American counterpart, to provide a set of possibili-

ties on how to develop the interface-compliant components. One of those possibilities is described in [8]

as Scenario 1.b-2. It prescribes the use of a DSL and an associated toolset to generate an Ecore-based

metamodel (see Section 4.2) with the full specification of the components.

3.2.3 Conclusions

The above-presented projects are very similar in their motivations and goals. Both promote the platform-

independence of application software, both defend a standardization of the system architecture and

component interfaces, and both have as an end-goal the faster development of space avionics by means

of component reuse. The difference is that, while SPA relegates the development methodology of the

components to their developers, SAVOIR defends the possibility of a DSL-based development, thus

confirming the pertinence that this thesis assumes in the current context of the space industry.

3.3 DSL-based solutions

With the recent and fast maturation of language workbenches, DSLs are now a relatively easy way to

implement a modeling platform tailor-made to address the specific problems faced by each industry or

manufacturer. As a result, several renowned institutions and established companies have been turning

to DSM, searching for a valuable increase in productivity.

This section addresses the most notable examples of DSL-based solutions, developed and under

development, and their results. These include a language for programming and processing magnetic

22

measurements, a language for programming refrigerators, and an ambitious tool for embedded software

development based on domain-specific extensions for the C programming language. The purpose of

this section is to raise awareness to the most recent developments and set the bar for the contributions

that this project aims to make.

3.3.1 Magnetic measurements at CERN

The measurement systems at the laboratory of the European Organization for Nuclear Research (CERN),

having been developed one by one with traditional software development methodologies, lacked a sepa-

ration between the generic and specific code, necessary to achieve satisfying levels of software reusabil-

ity and maintainability. Carlo Petrone addressed this issue in his thesis [15], by creating a DSL to be

integrated in CERN’s also recent Flexible Framework for Magnetic Measurements (FFMM). The goal

was to provide an easy and flexible way to define test procedures, synchronize measurement tasks and

configure the involved instruments.

Figure 3.5: Portion of a MDSL script (from [15])

The Measurements Domain-Specific Language (MDSL) has been designed for non-programmer

users, allowing them to create their own measurement applications. The simplicity of the resulting

language can be seen in the code snippet in Figure 3.5. Having added editor support like completion

proposals, the author highlights the ease of use of his DSL.

3.3.2 Refrigerator programming at BSH

Even though the basic refrigerator cooling algorithms are already well known at Bosch and Siemens

Home Appliances (BSH), the continuous search for better efficiency requires some trial and error. How-

ever, testing new ideas was time-consuming [30]. So BSH hired itemis, a software company focused

23

on MDSD, to develop a DSL-based solution which would allow the domain experts to quickly test new

ideas.

The domain experts (and end users) were involved in the process and the result was a set of three

independent but cooperating Xtext-based (see Section 4.3) DSLs: one for defining variants within the

product family, one for defining the cooling algorithms and one for testing those algorithms.

The team created an interpreter-based simulator to speed up the testing iterations and a C code

generator to automatically implement the algorithms in the form of production code for the target devices

[30]. The industrial standards for the embedded code were taken into account when developing the code

generator, so there is no need for the experts developing the cooling algorithms to worry about them,

instead focusing on design decisions. In addition, the team at itemis provided the platform with the ability

to generate additional documentation, like state charts, flow charts and lists of relevant requirements for

each product variant.

The project was presented at the EclipseCon Europe 2011 conference, in Ludwigsburg, Germany.

3.3.3 Mbeddr

Developed by a team mostly resident at itemis, using the JetBrains MPS language workbench, mbeddr

is a tool targeting embedded software development, basically consisting of a stack of DSL extensions to

a C core.

Most real systems cannot be completely described with a single tool or DSL, and the integration of

hand-written code and code generated by several different modeling tools can be a cumbersome task

[41]. With this in mind, the team responsible for mbeddr decided to tackle the challenge by searching

for a tight integration of general-purpose code and domain-specific models. By directly embedding the

extensions into C, mbeddr proposes to simply remove that integration challenge [11].

Mbeddr has taken a language-oriented approach to become a prime example of a modular language,

as described in Section 2.3.4. Each language module is built on top of other modules (or directly on top

of the C core), extending them with higher-level constructs and abstractions, syntax, and IDE support.

The compilation process therefore becomes a chain of relatively simple reductions from high- to low-

level languages, eventually leading to a program completely written in C. The consequence is that all

transformations (or reductions) are reused by the language modules above [11], and that no runtime cost

is paid for the abstractions. The compilation process is exemplified, with standard extension constructs,

in Figure 3.6.

The advantages of giving the developer the possibility to choose at which level of abstraction to solve

a particular problem are numerous, including [41]:

• Legacy code written in C can be easily integrated.

• C’s constructs can be used to program efficient low-level operations, while the extensions can be

used to get rid of implementation details at design-level.

• C, being a low-level, general-purpose, Turing-complete language, is very difficult to analyze stati-

cally. Such static analysis can be done at the level of the DSL extensions, which are more restricted

24

Figure 3.6: Mbeddr compilation process (from [41])

by nature.

Figure 3.7 shows the stack of default extensions. Exceptions to the language stacking principle are

the support for requirements traceability and product variability, which are common to all embedded

software and provide the same functionality at all levels of abstraction. Additionally, a developer can

create his own custom extensions to further expand the stack [11].

Figure 3.7: mbeddr (from [11])

3.3.4 Conclusions

The team behind mbeddr proposes to create a single environment where the complete software of an

embedded system can be developed. Mbeddr is a very ambitious and promising project. It already

provides a basis for all embedded systems and an extensibility mechanism. In the future, with the

development of a library of more specific, higher-level extensions, it might get to see widespread use in

embedded systems development. However, for now it only provides some basic extensions, and directly

creating a tailored language from scratch may still be the best option in some cases.

Creating and using DSLs for a specific task has been proven feasible and very useful by the examples

in Sections 3.3.1 and 3.3.2. But the AOCS is a significantly different and far more complex system, so

the approach taken here cannot be quite the same. The AOCS DSL cannot, at least at first, reach the

level of simplicity to allow its use by non-programmer domain experts. This challenge is exactly what

makes a DSL-based solution for the AOCS a valuable contribution, to space software and to overall

embedded software developers.

25

26

Chapter 4

Development tools

In this chapter, the tools used in the development of all the components of the AOCS DSL are presented.

The whole DSW is created using the Xtext workbench. However, since it is integrated in the Eclipse IDE

and uses Eclipse Modeling Framework (EMF) to create and manipulate models, an introduction to these

software tools is also necessary.

4.1 Eclipse

Eclipse is a software IDE with a base workspace customizable by means of an extensible plug-in system.

Plug-ins are the smallest units of extension of the Eclipse platform [42]. Existent plug-ins allow it to be

used as a development environment for several commonly used programming languages, most notably

Java, C/C++1 and PHP.

One of its key benefits is its ability to integrate several tools in a single environment. For instance,

by installing the development tools for Java and C/C++, it becomes a development environment for both

languages simultaneously. In order to tag the tools which a certain project uses and requires, Eclipse

uses a project nature mechanism. A project can have multiple natures, meaning that it will be shared by

the correspondent tools [42]. For instance, a project that uses an Xtext-made DSL for developing C/C++

source code will have the Xtext nature and the C/C++ nature.

The User Interface (UI) of Eclipse is based on three concepts [42]: editors, views and perspectives.

An Eclipse window consists of a certain arrangement of editors, used to browse and edit files (or re-

sources), and views, which are visual components used to navigate sets of data. A perspective is just

an arrangement of editors and views optimized for a specific task.

Another valuable feature of Eclipse is its easy integration of version control systems and associated

team repositories.

1Since C++ is nothing more than a superset of C and the development tools for both are usually bundled together, sometimes
they will be referred to as if they were a single language (C/C++).

27

4.2 Eclipse Modeling Framework

The Eclipse Modeling Framework is a framework for the development of model-based software. It facili-

tates the creation of models and metamodels and provides automatic generation of Java code [24], thus

simplifying the development of complex applications [43].

The core component of EMF is Ecore [11], which is basically a metamodel for describing models

(or lower level metamodels). Ecore models are built from a small set of concepts, each of them directly

related to a Java concept. The relations between them are shown in Figure 4.1. An EPackage is a

Figure 4.1: Basic Ecore concepts (from [24])

container of information, equivalent to Java’s package and C’s namespace concepts. An EClass is,

like classes in any OO programming language, a template for the creation of objects (EObjects in EMF),

containing an arbitrary number of attributes (EAttributes) and references to other classes (EReferences).

EStructuralFeature is just a common interface. References can denote association or containment rela-

tions. Attributes are defined by a name and a type (EDatatype) [24].

EMF’s code generator creates Java classes from an additional metamodel called generator model

(with extension .genmodel) [24]. This model has the same structure, but its elements have additional

properties which facilitate the generator’s task.

It is important to note that EMF does not model behavior. The implementation must therefore be

provided as hand-written Java code, which can then be included in the model [24]. Despite this limitation,

EMF still provides an always helpful separation of concerns.

28

4.3 Xtext

Xtext, as has been pointed out, is an open source language workbench consisting of a set of plug-ins

to the Eclipse IDE [24]. It provides the tools for developing and using DSLs2, alongside with their UI

features [43].

The first step towards developing a DSW is to define the abstract and concrete syntax of the lan-

guage. Both are defined in the grammar, written with an Extended Backus-Naur Form (EBNF)3 style

notation [44] called grammar language (see Section 4.3.3). The whole workflow of the Xtext framework

departs from the grammar definition, and is outlined in Figure 4.2.

Figure 4.2: Xtext workflow

From the DSL grammar, Xtext derives an AST metamodel, a parser, a very simple default validator,

and an Eclipse-based editor with basic support [27, 43]. The AST metamodel is saved as an Ecore

model, while the parser is created using the ANTLR parser generator. Subsequently, EMF generates

Java interfaces and implementation classes for each EClass in the metamodel, corresponding to lan-

guage concepts. The implementation class contains getters and setters for each EAttribute, usually

corresponding to assigned features within a grammar rule. Since these artifacts are generated, they are

saved in the corresponding package in a folder called src-gen. [43]. Later, when a DSL script is parsed,

the AST is instantiated as a tree of EObjects, i.e., instances of the EClasses in the metamodel [11].

Furthermore, Xtext creates a scaffolding to assist the user in the development of the DSL. Default

implementations for the validator and all editor support features are provided. All of these default imple-

mentations are customizable, and for the most common of them, customization class stubs are automat-

ically added to the src folder. Since the code generator can be used to output any kind of target code, a

default implementation cannot be provided. Nevertheless, an implementation class stub is also created.

2Xtext, as most language workbenches, can also theoretically be used to develop GPLs. However, doing so would be highly
unpractical, so this possibility will not be taken into account here.

3EBNF is a type of metasyntax notation for defining grammars.

29

Xtext provides yet other services to assist the developer, from which the class MyDslGrammarAccess

must be highlighted. It allows one to programmatically access and use the elements of the grammar.

Xtext follows the GGP and uses a DSL called Modeling Engine Workflow 2 (MWE2) to configure the

generation of the above-mentioned components and artifacts [24].

Finally, it is important to mention Xbase. It is a reusable expression language developed with Xtext.

It was designed to provide a base for including behavior modeling into new DSLs. However, it is tightly

coupled with Java. If the goal is to generate target code in some other language, as is the case here,

Xbase cannot be used [43].

4.3.1 Customization

The automatically generated default implementations shown in Figure 4.2 can be extended and overrid-

den by the user. Customization is done using the same mechanism that is used to assemble all Xtext

components [45]. It is based on the dependency injection pattern, in which the dependencies (or ser-

vices) are passed to the dependent object (or client). This means that, when developing a component,

one only has to declare the dependencies, without worrying about resolving them. The resolution is then

handled by the framework, in this case Google Guice. For instance, when creating a component that

depends on a scope provider (for cross-reference handling), a developer could inject it into his class with

@Inject
private IScopeProvider scopeProvider ;

A so-called module is then used to map types to the implementations that should be injected by means

of API methods, like

public class MyDslRuntimeModule extends AbstractMyDslRuntimeModule {
public Class <? extends IScopeProvider > bindIScopeProvider () {

return MyConcreteScopeProvider . class ;
}

}

This bind method, for instance, makes Guice inject a new instance of MyConcreteScopeProvider upon

declaration of a dependence to the interface IScopeProvider. By subclassing a default implementation

and binding it, the user can customize nearly everything in Xtext.

To code the custom implementation classes, Xtext encourages the use of Xtend. It is a statically

typed language which fully integrates with, and translates to, Java. Xtend eliminates some of Java’s

syntactic clutter and extends it with some handy features. The most remarkable of those features is

probably its template expressions, ideal for templated code generation [44].

To extend the validator, the user has to write validation methods annotated with @Check within the

validator stub class. The validator will then pass all instances with a compatible runtime type to those

methods [43]. An example of how to configure the code generator is provided (commented out) in the

generator stub class, using the doGenerate method. When the code generator is triggered, this method

is called for each model file (also called resource) in the project [11].

30

4.3.2 Testing

For every feature implemented/extended in an Xtext project, as in the development of any other software

application, it is of the uttermost importance to test it in order to verify that it works as expected. Auto-

mated tests are necessary to continuously verify that the code is behaving as it should, and that newly

added features do not interfere with the workings of existent ones [43]. If a problem arises, the failed

test(s) will indicate it right away, while also hinting the developer on where the error resides. Note that

the effectiveness of testing greatly depends on which scenarios are covered by the test cases, so tests

do not guarantee that the code is bug free.

For the purpose of implementing automated tests, Xtext uses JUnit. It is a widely-used frame-

work for unit testing and it is shipped with the Eclipse Java Development Tools (JDT). One can easily

create classes in the tests package containing methods annotated with @Test. Assert methods (e.g

assertEquals and assertTrue) can then be used to check the correct functioning of the developed

software. JUnit then provides a helpful report about failed tests. To assist the testing of the grammar,

the validator and the code generator, Xtext automatically generates helper classes [43].

4.3.3 Grammar and parsing

This section, based on the Xtext user guide [45], presents some of the basic features of the grammar

language and their importance in the parsing process. The goal is to provide the concepts to under-

standing the definition of the grammar of the AOCS DSL. Other concepts will be introduced in Chapter 6

as they appear in its implementation.

Preamble

Every Xtext grammar contains a short preamble before the syntax definition, consisting of a language

declaration, EPackage declarations, and optional Epackage imports.

The first line in every grammar is the language declaration, and it takes the following form:
grammar my. package . MyDsl with org . ec l i pse . x t e x t . common. Terminals

This example declares a language called MyDsl. It makes use of Java’s classpath mechanism to indicate

that the grammar is contained in the package my.package. The ‘with’ keyword is used to specify that

this language inherits all constructs and features of the Terminals language (org.eclipse.xtext.common

package). All Xtext grammars inherit from this language by default. Its definition can be seen in Ap-

pendix A.1.

The most common, and easiest approach, is to let Xtext infer a metamodel (EPackage), from the

grammar. To do this, it is necessary to have an EPackage declaration like
generate mydsl " h t t p : / / www. ec l i pse . org /my/ package / MyDsl "

It tells Xtext to generate an EPackage named mydsl, with the namespace URI)4 (nsURI) “http://www

.eclipse.org/my/package/MyDsl”. The name and nsURI are the only properties needed to create an

EPackage.
4A Uniform Resource Identifier (URI) is string of characters used to identify a resource.

31

Existent EPackages can be imported using their Uniform Resource Identifier (URI). A commonly

imported package is Ecore. By declaring it as
import " h t t p : / / www. ec l i pse . org / emf /2002/ Ecore " as ecore

the Ecore EPackage is imported with the alias ecore. Types defined in this package can then be used

in the grammar through a qualified reference like ecore::EString. The applications of this are shown

in the next sections.

Terminal rules

The first step of the parsing process is called lexing. The lexer runs through the input character se-

quence (the DSL script) and transforms it into a sequence of atomic symbols called tokens. A token is a

sequence of characters. It can either be a keyword or a match to a terminal rule (or lexer rule). The lexer

will always look to match a longer token. In the case that a character sequence matches two or more

different terminal rules, it will be attributed to the one defined first. Xtext provides an error message when

a terminal rule is hidden by a previous one, i.e., when it cannot possibly be matched. As an example,

the terminal rule INT, included in the Terminals grammar, is defined as
terminal INT re tu rns ecore : : E In t :

(’ 0 ’ . . ’ 9 ’) + ;

A character range is declared with two dots (..), so `0'..`9' matches any character between ’0’ and

‘9’5. The expected number of occurrences of the expression between parenthesis is defined by the

cardinality operator:

• Exactly one (default);

• One or none (?);

• One or more (+);

• Any number (*).

Therefore, the INT terminal rule is matched by a sequence of one or more integers from 0 to 9. Although

in this case the quotes surround a single character, they can be used to declare other literals, like

keywords or even multiple-word strings.

Terminal rules return a value with a certain type (EDatatype), which defaults to EString (equivalent to

a Java String). If another type is to be returned, like EInt (equivalent to int), it must be explicitly declared.

Furthermore, if the user wishes to have the returned value be anything other than the parsed character

string itself, a value converter must be implemented, with two-way transformation methods between

value and string.

Production rules

After the lexing phase, the parser takes the stream of tokens as input. Using production rules (or parser

rules), it attributes meaning to the input and constructs a tree of EObjects. The type of each node in the
5The order of characters is given by their ASCII code.

32

tree is inferred by the parser. To demonstrate how production rules are defined and how they influence

the parsing phase, lets walk through the Entities grammar (org.example.entities.Entities) [43].

The entry point for building the model is the Model rule, which merely states that an Entities model

consists of a list of entities. Then, the Entity rule is defined as

E n t i t y :
’ e n t i t y ’ name=ID (’ extends ’ superType =[E n t i t y]) ? ’ { ’

a t t r i b u t e s += A t t r i b u t e∗
’ } ’

;

The parser will expect the ‘entity’ keyword followed by an identifier (default terminal rule ID), which is

assigned to the feature name. The type of an assigned feature is derived from the return type of the

right-hand side of the assignment. In this case, ID returns EString, so name will be a string. Next, an

optional super-type can be declared to specify that the entity inherits from another entity. The square

brackets denote a cross-reference to another object of type Entity, which will be resolved later, in the

linking stage. Finally, there is an assigned call to the rule Attribute. Therefore, the parser will process

the following token sequence according to that rule. Furthermore, the assignment operator += tells it to

expect multiple instances, which makes attributes a list feature. The type of the elements of that list

will be derived from the return type of the called rule. It defaults to a class named after the rule, but it

can be specified to be any other arbitrary class, which would be interpreted as being a superclass.

Continuing down the hierarchy of rules, the Attribute rule simply declares that an attribute has a

type and a name. More interesting though, is the rule AttributeType, since it uses another assignment

operator.

At t r i bu teType :
elementType=ElementType (ar ray ?= ’ [’ (l eng th=INT) ? ’] ’) ? ;

This last assignment operator ?= denotes a boolean assignment. The consequence is that array is a

boolean feature, which will be assigned the value true if the keyword ‘[’ is found.

In the rule ElementType there are no assignments, only unassigned rule calls.

ElementType :
BasicType | Ent i tyType ;

Since the parser creates the EObjects lazily upon the first assignment, this means that ElementType will

not be instantiated. Instead, it will become an abstract class with two subclasses. The vertical bar (pipe)

separates alternatives.

At last, an EntityType contains only a cross-reference to an Entity, while a BasicType lets the user

choose the type of the attribute in question from a list of alternatives:

BasicType :
typeName=(’ s t r i n g ’ | ’ i n t ’ | ’ boolean ’) ;

Ent i tyType :
e n t i t y =[E n t i t y] ;

The last stage of the process will be done by the linker, which will resolve the cross-references in the

tree model. The scope provider lists the objects with a matching type which are referable, i.e., within the

scope of the reference. The linker then tries to match the input token to one of those objects. The most

common scenario is to have an ID as input and matching it to the name feature of the object.

33

Data type rules

Like terminal rules, data type rules also create instances of EDataType and do not call production rules

or contain any assignments. The difference resides in the fact that they are used by the parser instead

of the lexer. The consequence is that these rules are context-sensitive, so they will not conflict with, or

hide, terminal rules.

As an example, lets write a rule to define a signed integer:
SignedIn t re tu rns ecore : : E In t :

(’− ’ | ’ + ’) ? INT ;

In this case, since the sign is optional, an unsigned integer could be interpreted as an INT or as a

SignedInt. If the latter is defined as a terminal rule, there would be a conflict. However, the parser

knows from the production rules to expect one or the other, so the definition is valid. For this reason, it

is always a good practice to have a minimal amount of terminal rules.

As was the case with terminals, a data type rule must have an associated value converter [43].

34

Chapter 5

The AOCS DSL

This chapter describes the proposed solution for reducing the development time and increasing the

reusability of the AOCS software. As already mentioned, it is a DSW developed with the Xtext language

workbench.

In the first place, the context of this thesis work is presented in Section 5.1. Next, the scope for the

implementation of the AOCS DSL is defined in Section 5.2. Then, Section 5.3 conducts an analysis

on the existing AOCS software which provides the basis for this work. Lastly, Section 5.4 presents the

design for the language modules, the semantic model and the code generator.

The whole system analysis and design presented throughout this chapter provides a basis for the

implementation of the proof of concept, which is the topic of Chapter 6.

5.1 Context

The AOCS DSL has been developed at the Department of Simulation and Software Technology (SC)

BRaunschweig of the German Aerospace Center (DLR). This work is influenced by a few of the projects,

concluded and ongoing, of the department.

SC has been responsible for the development of AOCS software for several DLR-lead missions under

the German space program. The latest of those satellites is TET-1, depicted in Figure 5.1

Figure 5.1: TET-1 satellite with deployed solar panels and stripped of its insulation (from [46]).

35

The Technology Experiment Carrier (TET)-1 is a technology demonstration satellite and it was launched

on July 2012 [47], under the German national On-Orbit Verification (OOV) program [48]. The goal of this

program is to provide the means for the industry and research institutes to test space technologies in

their intended space environment [48], thus bridging the gap between ground testing and intended appli-

cation. The series of satellites for this program use a generic satellite bus called Technology Experiment

Carrier (TET), a modular multi-mission spacecraft bus based on the also DLR-lead BIRD1 satellite [49].

This satellite was launched in 2001 [50], intended for detection and observation of hot-spots on Earth

and also as a technology demonstrator [51].

The coding of repetitive and low-level tasks in the development of AOCS software for the above-

mentioned projects lead the developers to believe that there was room for automation. The possibility

of using a DSL-based solution to solve the problem stems from another one of SC’s research projects,

called Language for Metadata Based Applications (LAMBDA) [44], and its product is a new DSW to

model metadata for knowledge management tools. The framework is intended to be used by the de-

velopers of these tools as a mean of ensuring a consistent data model over the set of components.

Although not related to AOCS software, the activities in the development of DSLs provide a much help-

ful insight and base experience for this thesis. The LAMBDA DSL was developed in the Xtext language

workbench, which is why it is chosen for this thesis work.

5.2 Scope

The AOCS software is a big and complex system, even for small satellites like the BIRD or the TET-1.

Therefore, it would be unrealistic to aim for the full implementation of the framework during a master’s

thesis project. Instead, one has to define a starting point: a specific functionality of the system which is

to be implemented as a proof of concept. Since this implementation aims to demonstrate the possibilities

of applying DSL technology to the entire system, it is also fundamental to recreate the general structure

of the AOCS around the implemented feature. The goal is to show in detail how the support for the

development of that specific feature can be implemented, from the bottom level (functionality) up to

the top-level constructs of the AOCS software. The proof of concept can then be branched at any

point to implement support for other functionalities, reusing (and adapting, if necessary) the higher-level

constructs of the language.

By consulting with the AOCS specialists at SC, the telecommand handling functionality has been

chosen for this purpose. The analysis of the system consequently follows a bottom-up paradigm, start-

ing with the C++ classes corresponding to the command handlers. In order to ensure that a good insight

is gained on the handlers, several instances were taken and compared, to locate the common and spe-

cific features. Then, the elements on which the command handlers depend are analyzed, and then the

elements on which these depend, and so on. The objective is to end up generating a partial, but compi-

lable, collection of target files. The intention is obviously to extend the DSL to possibilitate the modeling

of other functionalities. However, the code generated by the proof of concept can theoretically be aug-

1Bi-Spectral Infrared Detection.

36

mented manually, thus representing already an improvement on the current development methodology.

In this process, empty stubs are to be used, when needed, to replace code that falls beyond the defined

scope.

5.3 Analysis

The first step of this thesis work is to analyze the AOCS: its structure, functionalities and behavior. The

intent is to study the feasibility of a DSL-based solution, i.e., assess which parts of the software can

be automated and how, in order to evaluate what can be achieved. Another goal is to determine the

requirements for the language and the code generator, such that a similar system can be instantiated.

The theoretical part of this analysis consists in the literature review conducted in Section 2.1. But to

understand the software of the system in detail, it is necessary to study the source code of an actual

implementation. This more practical analysis is conducted on the source code of the AOCS of the TET-1

satellite, introduced in Section 5.1. This system results of an adaptation and extension of BIRD’s attitude

control software at DLR’s SC[48]. The end result of this section is the specification of the target classes

and files to be replicated.

5.3.1 Command handlers

When telecommands are received from the ground, they are processed and dispatched to the appropri-

ate command handler, which is put in charge of executing it. Note that terms command and telecom-

mand are used interchangeably. There is no risk of ambiguities because all commands mentioned in

this context are originally sent from the ground.

Base class

A base class CommandHandler exists which works as a superclass for each specific handler. Although

technically it is a default implementation, it acts mostly as an interface2. In other words, it is possible to

instantiate this base class, but its main purpose is to guide the implementation of specific handlers. The

class contains two methods: a virtual destructor and the handle method.

• The virtual destructor allows for the destruction of an instance of a command handler using a

pointer to the base class. It is a common procedure in C++ programming, to avoid memory leaks

by inadequate resource deallocation [52].

• The handle method receives as input a pointer to the (location in memory of the) parameters

for the execution of the command. A set of parameters is defined as a single command-specific

structure (a C++ struct). Since all commands are processed equally until they reach the handler,

the reference is received as a void pointer, i.e., a pointer to objects of any data type. It returns

the number code of an error message (of type ErrorMessage::ID), which is meant to provide
2The C++ equivalent of a Java interface is an abstract class. Such a class contains so-called pure virtual methods that must be

implemented in its subclasses.

37

feedback about the success of the command execution to the caller. This default implementation

of the handle method returns the error message unimplementedHandler.

This base class does not need any input from the developer of the AOCS software, so it can be

generated with a static template.

In the analyzed source code, some types of commands inherit from a more specific base class, which

in turn inherits from CommandHandler. However, this specific case will not be covered here. If needed,

one can easily modify the code generator to create such intermediate classes.

Specific classes

In the TET-1 software, the specific command handler classes are named CommandHandler<MyCommand>.

They override the default implementation in the base class according to the telecommand that they need

to execute.

The only method in a command handler is handle, which overrides the correspondent virtual method

of the base class to execute the command. By comparing the handlers for different commands, it is

possible to identify its general workflow:

1. An ErrorMessage::ID-type variable is initialized to noError, to be changed during execution of

the command if something unexpected happens. This initialization should be done automatically.

2. The received void pointer is casted to a Parameter pointer, so that its members can be accessed.

The Parameter structure is defined privately in each handler. This behavior can easily be gener-

ated with no user input.

3. The command is executed, resorting to a combination of low-level operations and calls to methods

of AOCS components (see Section 5.3.2). Low-level operations could be easily integrated in the

DSL if an expression language like Xbase existed for C++. Since it does not, it is probably easier

to have this task performed manually at target code level. Components must be requested from

a class called ComponentManager. Since the calls to components can be intertwined with other

operations, they must be manually coded as well. What can be done to facilitate the user’s task is

to provide an implementation stub with instructions on how to get the desired components.

4. An ErrorMessage::ID is returned indicating the result of the command execution. Therefore, it

must also be manually implemented.

Figure 5.2 outlines these classes. It also shows the inheritance relation to the previously introduced

base class and the aggregation relation to the defined Parameter structure.

The specificity of these classes requires that a parameterized template is used to generate them.

The DSL must then provide the abstractions to define the parameters of the command.

Managing commands

In order to generate the target files revolving around the command handlers as completely as possible,

it is necessary to look further into the system to understand how these handlers are used and how they

38

Figure 5.2: Command handler class diagram.

fit into its structure.

The AOCS software is organized hierarchically. Commands are grouped into components, and com-

ponents are grouped into applications, the top-level constructs of the system. Command handler in-

stances are created and held by a class at the component level. The same class then registers the

handler instances at the telecommand interpreter specific to the application that owns the component,

i.e., at the application level.

The registration of command handlers involves the use of the identification number. Similarly to error

messages, each command has an ID defined in an enumeration (a C++ enum). The difference is that

command IDs are unique only in their application, and not in the whole AOCS. This ID is also used to

document the handler class.

The following sections assess these elements, and others which are related, in more detail.

5.3.2 Components

Components are units of the system that implement certain functionalities. For example, the Estimation,

Prediction and Control (EPC) is the component responsible for all tasks concerning the automatic con-

trol loops. Mission control can interact with the components and their functionalities by issuing telecom-

mands. Although a command handler can call any component in the system during its execution, each

command is hierarchically under a component. In the source code file tree, this means that command

handler files are put into a folder corresponding to the component that owns them. Therefore, the AOCS

DSL must provide the possibility to instantiate components to wrap a group of commands. For the sake

of completeness, all the remaining classes at the component level should be generated, whether their

implementation is automated or not.

39

Command handler instances

For each component, there is a class <MyComponent>Commands which instantiates the command handlers

which are grouped under it (see Figure 5.3). Other than having an instance of each handler as a

private member, it only contains the public method registrateCommands. This method registers the

commands at the telecommand interpreter of the application to which the component belongs (see

Section 5.3.3), taking no arguments and returning no output. To automatically generate this class, only

a list of commands is needed.

Figure 5.3: Class to instantiate the component’s commands

Component classes

Identically to command handlers, AOCS components have a base class which provides an interface to

specific component classes. However, the Component base class in the TET-1 software is simply an

empty class, foreseeing the eventual need to define a component interface. This class can therefore be

generated without any feature being added to the DSL. To replicate the pattern followed by the command

handlers, a virtual destructor can be added.

Without going too off-course, a basic stub for the specific classes of the components declared in a

model can still be generated. The relevant points about component classes are:

• The constructor of each component in the TET-1 AOCS software is responsible for registering it at

the ComponentManager. This could easily be automated just taking the name of the component as

input. However, since components are to be declared at DSL level and automatically generated,

an additional class can be generated which holds all component instances and registers them,

similarly to what is done for the command handlers.

• A component has an arbitrary number of members and methods. Without studying AOCS compo-

nents further, the only option is to let the user define and implement them manually.

The consequence is that the to-be-generated component classes are just empty stubs, with the excep-

tion of a virtual destructor in the base class. Nevertheless, Figure 5.4 explicitly depicts these classes.

Component instances

As already mentioned, the constructors of the component classes in the TET-1 software are responsible

for registering the created objects at the component manager. But advantage can be taken of the fact

that the C++ code is automatically generated to create an additional class.

40

Figure 5.4: Component class diagram

This class, named Components, contains an instance of each component as a private member. Not

only does it instantiate the user-defined components, but also the default surveillance component and

a command interpreter for each defined application. Its only method, registerComponents, registers

each and every one of these instances at the component manager. Figure 5.5 outlines this class.

Figure 5.5: Class to instantiate components

Component IDs

By now, it is possible to recognize the pattern of having AOCS elements of the same type associated

with an identification number (ID) in an enum. Components are no different, and again the contents of

the target file containing those IDs can be easily inferred.

Component manager

As already mentioned, components are registered at the ComponentManager upon instantiation. This

class consists of three static methods:

• The private method getComponents is used internally to fetch a table of pointers to all components.

This table is defined as a static variable. This means that its “life time” spans the whole execution

of the program. On the first call, getComponents sets all pointers in the table to null pointers (0 or

NULL).

• The registrate method receives a component’s ID and a pointer to the location of its instance

(again a void pointer). The component is then registered by including the pointer in the table. The

ID serves to indicate the position at which it should be inserted. It then returns a boolean value to

assert that the ID received is valid.

41

• The last method getLocation is used by any entity that wishes to fetch a certain component. A

pointer is retrieved from the table by calling getComponents and then returned to the caller.

Figure 5.6 summarizes the above. It can be concluded that this class will present the same imple-

mentation for any AOCS system, so it can be generated from a static template.

Figure 5.6: Component manager class

5.3.3 Applications

Applications are the software modules of the AOCS. Each application is unambiguously identified within

the whole spacecraft system by an Application Process Identifier (APID). It is also used, together with the

telecommand code, to document the command handlers in their definition source file. The application’s

APID can easily be inferred from the order of the application definitions in a model.

As stated in Section 5.3.1, an enumeration of telecommand IDs exists for each application. It includes

all the telecommands owned by the components of that application. Command IDs are unique for each

application, but mission control stations in the ground actually identify all the commands of the spacecraft

system with a single number. For that reason, the enumeration of the commands of an application is

accompanied by a constant integer called OFFSET. This allows the translation of a global identification

code to an application-specific one.

Telecommand interpreter

Externally to the AOCS, the commands received from the ground station are processed and dispatched

to the telecommand interpreter of the target application. These interpreters are components instantiated

from a template class TCInterpreter.

They contain three member variables:

• The variable commandHandlerTable is a table of pointers to the command handlers.

• The variable undefinedHandler is used to initialize the pointer table.

• The lastTcCode is an unsigned integer variable that holds the identification code of the last re-

ceived telecommand.

Additionally, the TCInterpreter template defines and implements the following methods:

• Its constructor initializes the handler pointer table as a table of undefined handlers. Then, it reg-

isters the interpreter at the command manager. Again, this task will be relegated to the class that

instantiates all components.

42

• The method registrateCommand registers the received handler by adding it to the handler table.

• The method executeCommand starts by reporting the received telecommand to the surveillance

component (see Section 5.3.4). It then passes the parameters to the appropriate handller for exe-

cution. In the case that some error occurs during execution, the failure is reported to surveillance

and the method returns the boolean value false.

Figure 5.7: Template class for telecommand interpreters

Figure 5.7 shows a schematic of the described template class. This class can be generated from a

static template. Furthermore, if the AOCS DSL allows the user to define applications, it is trivial to derive

a component ID and instance name for each application.

5.3.4 Surveillance

As seen in Section 5.3.3, an application’s command interpreter uses a surveillance component called

SurveillanceInterface to report events and failures. Some of the command handlers analyzed hap-

pened to call methods of this component as well. Also, by looking into the file tree of the TET-1 source

code, it can be observed that both the event and error message IDs reside in the directory of the surveil-

lance component. Therefore, this section addresses the SurveillanceInterface class, along with the

declaration of the identification codes.

Events and error messages

The enumerations for the events and the error messages need to follow the same pattern: enum mem-

bers for default events and error messages must be generated in a way that the enumeration can be

extended with new members. How exactly to do this is a problem that will be addressed in Section 5.4.3.

The default members that need to be defined in order to assure that the generated code is compilable

are:

Events: REC_CMD (received command).

Error messages: noError, commandParameterRange and unimplementedHandler.

43

Surveillance interface

Since the analysis of the SurveillanceInterface class would fall beyond the scope of this work, defined

in Section 5.2, generating a class with empty stubs for these two methods suffices. Once again, if

functionality needs to be added, it can always be manually implemented by the user. Figure 5.8 outlines

the to-be-generated surveillance class.

Figure 5.8: Surveillance component class

5.4 Design

The knowledge about the AOCS software obtained in Section 5.3 is used in this section to outline the

design of the AOCS DSW.

First, the composition of the language, i.e., its language modules, is presented in Section 5.4.1.

Then Section 5.4.2 describes the semantic model of the DSL based on the analysis conducted. Finally,

Section 5.4.3 presents a plan for using the GGP for code generation.

5.4.1 Common language module

One of the goals of the proof of concept is to demonstrate how to extend the methodology to other AOCS

subsystems. With that in mind, a reusable language model is to be created containing features common

to all subsystems. The idea is that any additional DSL developed for another spacecraft subsystem can

be built on top of this module.

This language, named Common, extends the Terminals grammar with new terminal rules and some

basic data type rules. These rules are naturally accompanied by their respective value converters.

The implementation of this language is presented in Section 6.1

5.4.2 Semantic model

From the analysis conducted on the TET-1 source code, it is found that the desired semantic model

is a simple hierarchic structure. The model is made up of applications, applications contain compo-

nents, components contain commands, and commands in turn contain parameters. The telecommand

parameter is therefore the most complex concept in the language.

In the analyzed source code, the definition of a parameter contains only its name and type, while the

range (or set) of valid values is coded directly into the validity check performed in the handle method.

Therefore, a feature to specify the valid values of a parameter would be a valuable addition, allowing to

automate the validity check.

44

Additionally, and taking inspiration from mbeddr (Section 3.3.3), a feature to specify the physical

quantity represented by a parameter and a unit of measurement in which it is expressed can be added to

the parameters. Although this is not currently used in the AOCS software, it can be used to document the

target code. Furthermore, it opens the possibility to automate model validation and formal verification.

Figure 5.9 shows the semantic model design as described above. It can already be seen that a

system model can be greatly simplified by using domain-specific abstractions. Note that this does not

represent the actual semantic model of the AOCS DSL, as implementation details are not taken into

account here.

Figure 5.9: Semantic model design for the AOCS DSL

Note that while the Parameter defined in the source code corresponds to a structure of parameters,

this Parameter class represents each one of those parameters. This concept, to be realized by a pro-

duction rule in the grammar, is consequently translated by Xtext into an Ecore EClass (and later by EMF

into a Java class). Because of this, UML class diagrams depicting DSL concepts exhibit Ecore types.

5.4.3 Generation gap pattern

It was seen in Section 5.3 that most of the target code can be automatically generated from the DSL

model. But for some of the software components, generated and manually written code must be inte-

grated. There are three such cases: the command handlers, the component classes and error message

and event code enumerations.

The framework is to follow the GGP to separate automatically generated and manual code. The idea

is to put purely generated files in a folder (named src-gen) and to have files which are generated only

once (e.g. class stubs) in a different folder that allows the user to modify them (named src).

The error message and event codes contain only the defaults, so they must be manually customiz-

able. Since these are defined in enums, and not classes, inheritance cannot be used to provide the

desired extensibility. The only solution is therefore to follow a generate once policy (see Section 2.2.3).

The files are then created in the src folder, where the user can edit them at will. There is a risk that

the default definitions are inadvertently deleted, but in that case an error message will be issued by the

45

compiler.

The component classes generated are just empty stubs, so any customization has to be done man-

ually. Consequently, the correspondent files can be simply put in the src folder as well.

The command handlers require a more complex solution. It is necessary to automate the parameter

definition and range checking, while leaving the command execution code to be manually written. The

solution to this is depicted in Figure 5.10.

Figure 5.10: GGP in the command handlers

An intermediate abstract class is introduced which implements the handle method. After casting

the pointer to the parameter structure and performing the validity check, it calls the behavior method,

which is defined as a pure virtual method in the abstract class. This forces the user to provide the

implementation in the concrete subclass, which is created in the src folder.

46

Chapter 6

Implementation

This chapter presents the implementation phase of the whole proof of concept. It begins by describing,

in Section 6.1, the developed Common language module. The remaining sections cover the AOCS

DSW.

The grammar which defines the concrete and abstract syntax of the language is the topic of Sec-

tion 6.2. Then the implementation of the model validator and the code generator is explained in Sections

6.3 and 6.4, respectively. Finally, Section 6.5 presents some additional features, mostly related to the

UI.

6.1 Common language module

A language module named Common was developed with the intent of extending the default Terminals

grammar. It includes new terminals and basic data types which are not specific to the AOCS language.

The following sections show the definition of these rules and related features. The complete Common

grammar can be found in Appendix A.2.

6.1.1 Number literals

Since the Terminals grammar only defines a rule for lexing unsigned integers (INT), one of the issues

addressed is the representation of numbers. Rules have been created to define hexadecimal integers,

signed decimal integers and real numbers. These rules are shown in Listing 6.1.

Real re tu rns ecore : : EDouble : S ignedIn t ’ . ’ INT ((’E ’ | ’ e ’) (’ + ’ | ’− ’) ? INT) ? ;

S ignedIn t re tu rns ecore : : E In t : (’ + ’ | ’− ’) ? INT ;

terminal HEX re tu rns ecore : : E In t : ’ 0 ’ (’ x ’ | ’X ’) (’ 0 ’ . . ’ 9 ’ | ’ a ’ . . ’ f ’ | ’A ’ . . ’F ’) + ;

Listing 6.1: Common rules for parsing numbers

Note that the fractional part of real numbers is defined to be mandatory. This is due to the possibility

that Real and SignedInt being used as alternatives for an abstract rule. In that case, a Real rule with

optional fractional part would shadow the SignedInt rule.

47

A very simple value converter was developed for the Real rule. The Java standard method Double

.valueOf(String s) (from the java.lang package) is called to parse the input string into a real value.

For the rules SignedInt and HEX, a single integer converter class is used. By having its constructor

take the base (or radix) in which the number is expressed, this class can be instantiated to convert

both hexadecimal and decimal integers. It calls the method Integer.valueOf(String s, int radix)

(java.lang package) to perform the conversion to value.

The proposal provider in the Common UI plug-in was also customized to provide basic completion

proposals for each of these rules.

6.1.2 Documentation comments

A new terminal rule, inspired in Java’s documentation comments, was created to allow the user to

document the model. These multi-line comments, delimited with /** and */, are parsed and can be

included in the target code. The rule is called DOC_COMMENT, and it can be seen in Listing 6.2. The

operator -> denotes ‘until’.

terminal DOC_COMMENT: ’ /∗∗ ’ −> ’ ∗ / ’ ;
terminal ML_COMMENT: ’ /∗ ’ (! ’∗ ’) −> ’ ∗ / ’ ;

Listing 6.2: Definition of documentation comments

To prevent conflicts with the rule ML_COMMENT, which defines multi-line comments in the Terminals

grammar, that rule must be overridden.

A value converter was implemented for DOC_COMMENT, which strips the comment string of its de-

limiters when converting to value and puts them back when converting back to string. Additionally,

to help the user distinguish these and other comments, a custom color is defined by extending the

DefaultHighlightingConfiguration class. This configuration was then connected to the DOC_COMMENT

rule by overriding the calculateId method of the DefaultAntlrTokenToAttributeIdMapper class.

6.1.3 Qualified identifiers

An additional data type rule is defined to handle Java-like qualified identifiers. This can be useful for

navigating namespaces/packages/scopes or file trees. No value converter has been developed for this

particular type, since it is simpler to have an identifier as a single string and split the qualifiers whenever

necessary.

6.2 Grammar definition

A grammar definition is used by Xtext to automatically generate the parser and infer both the concrete

and abstract syntax of the language. With that in mind, a grammar is constructed based on:

• The reference semantic model presented in Section 5.4.2, which serves as a guideline for design-

ing the abstract syntax.

48

• The desired concrete syntax. To improve ease of use and acceptance of the tool, it must be as

simple as possible and reflect the terminology used in the domain.

• The general good practice of having a loose grammar accompanied by strict validation [43]. This

is advisable because the validator can handle issues in the model much more gracefully, providing

clear error messages and hints on how to fix them.

This section starts by discussing the rule that defines the AOCS telecommand parameters, along

with the lower-level rules that it requires. Then those concepts higher in the hierarchy of the model are

described. The complete AOCS grammar can be found in Appendix A.3.

6.2.1 Parameters

The attributes to be included in the Parameter class were shown in Figure 5.9, where it is evident that

this is the most elaborate concept in the DSL. Listing 6.3 shows how the rule is actually implemented.

The best way to understand it is to walk through the rule and discuss its elements one by one.
Parameter :

comment=DOC_COMMENT?
’ parameter ’ name=ID ’ i s ’
type=Type (ar ray ?= ’ ar ray ’ ’ (’ a r raySize=INT ’) ’) ?
(

(cons t ra ined ?= ’ i n ’ (
rangeConstrained?= ’ range ’ (range=AnonymousRange | rangeRef =[Range])
| enumConstrained?= ’enum ’ (enumeration=AnonymousEnumeration | enumerationRef =[Enumeration])

)) ?
& (’ w i th ’ ’ u n i t s ’ u n i t =MeasurementUnit) ?

)
;

Listing 6.3: Definition of a command parameter

Before the actual definition of the parameter in the model, the user has the option of writing a docu-

mentation comment which will be included in the model and therefore reachable to the code generator.

Then, the user must write “parameter myParameter is”, followed by a mandatory declaration of the

type of the parameter. If it is to be a multi-valued parameter (an array), then that must be specified with

the ‘array’ keyword, immediately followed by its size in between brackets. The boolean assignment to

the feature array is there merely to simplify the task of traversing the model.

The operator & separates the elements of an unordered group, so the parameter value constraint

and measurement unit can be defined in any order. The assignment of a measurement unit is pretty

straightforward. The constraint, however, is a little more complex. The parameter can be constrained to

a range (Range rule) or to a set of values (Enumeration rule). The user can reference a range or a set

defined elsewhere, as long as it is within the scope of the parameter. Alternatively, one can declare the

constraint directly in the definition of the parameter, using the anonymous versions of the rules.

Some examples of valid parameter definitions are:
/∗∗
∗ This comment w i l l be inc luded i n the t a r g e t code
∗ f o r boolPar
∗ /

parameter boolPar is bool a r ray (2)
parameter f l o a t P a r is f l o a t in range 0.0 to 1.0 with units ms
parameter i n t P a r is i n t 32 in enum ENUM

49

Parameter constraints

As stated, ranges and enumerations can be defined separately and then referenced, or defined anony-

mously within a parameter definition. Listing 6.4 shows the grammar rules involved.

Range :
’ range ’ name=ID ’ i s ’ min=NumberLi tera l ’ to ’ max=NumberLi tera l

;

Enumeration :
’enum ’ name=ID ’ i s ’ ’ (’ (enumerators+=Enumerator (’ , ’ enumerators+=Enumerator) ∗)? ’) ’

;

AnonymousRange re tu rns Range :
min=NumberLi tera l ’ to ’ max=NumberLi tera l

;

AnonymousEnumeration re tu rns Enumeration :
{ Enumeration }
’ (’ (enumerators+=Enumerator (’ , ’ enumerators+=Enumerator) ∗)? ’) ’

;

Enumerator :
name=ID (e x p l i c i t ?= ’= ’ value=SignedIn t) ?

;

Listing 6.4: Ranges and enumerations

First of all, it can be seen that the standalone versions of the rules have a name feature. This is

required to be able to reference those definitions later. Note also that the anonymous version of each

rule specifies a return type to be that of the original rule. This means that no AnonymousRange or

AnonymousEnumeration EClasses will be created by Xtext. Instead, these rules merely present a differ-

ent way to instantiate the same class: without specifying the name.

The limits of a range can be declared using a number literal, whose defining rule is shown in List-

ing 6.5. It is an abstract rule that allows the user to input either an integer or a real number.

NumberLi tera l : I n t e g e r L i t e r a l | R e a l L i t e r a l ;

I n t e g e r L i t e r a l : value=SignedIn t ;

R e a l L i t e r a l : value=Real ;

Listing 6.5: Number literals

An enumeration is composed of a list of members, or enumerators, whose name is declared. The

user can explicitly assign an integer value to each enumerator. Otherwise, a sequential numbering

is assumed, starting with zero. Enumerations are syntactically allowed to be empty, so that a more

elaborate error message can be provided by the validator.

As an example, the above-described types of parameter value constraints can be defined as

enum ENUM is (ZERO, TWO=2 , THREE)
range RANGE is 0 to 5

Types and measurement units

Parameter types and measurement units are defined in a similar fashion. The user specifies them using

a keyword from a set of alternatives. The chosen value is the assigned to a feature called code. As an

example, the Type rule definition is shown in Listing 6.6

50

Type :
{ BooleanType } code= ’ bool ’
| { IntegerType } code =(’ u i n t 8 ’ | ’ i n t 8 ’ | ’ u in t16 ’ | ’ i n t 16 ’ | ’ u in t32 ’ | ’ i n t 32 ’)
| { FloatType } code =(’ f l o a t ’ | ’ double ’)

;

Listing 6.6: Parameter types

Note that the type codes are grouped by categories, which are distinguished by so-called simple

actions. By default, the object returned by a production rule is created lazily upon the first feature

assignment. However, simple actions can be used to explicitly demand the creation of an EObject of a

certain type, in which case the type of the object is specified between curly braces. Parameter types,

for instance, are divided into BooleanType, IntegerType and FloatType. The type codes in the AOCS

grammar directly translate to C++ data types.

6.2.2 Higher-level elements

The semantic model shown in Section 5.4.2 prescribes that each higher-level element of an AOCS

model contains only a collection of the elements immediately below it in the hierarchy. However, one

can take advantage of the cross-referencing mechanism of Xtext to give the user some extra freedom,

as shown in Listing 6.7.

A p p l i c a t i o n :
comment=DOC_COMMENT?
’ a p p l i c a t i o n ’ name=ID ’ i s ’

(enumerationDefs+=Enumeration
| rangeDefs+=Range
| parameterDefs+=Parameter
| commandDefs+=Command
| componentDefs+=Component
| ’ component ’ componentRefs +=[Component | Qua l i f i ed ID]

)∗
’ end ’ ’ a p p l i c a t i o n ’

;

Component :
comment=DOC_COMMENT?
’ component ’ name= Qua l i f i ed ID ’ i s ’

(enumerationDefs+=Enumeration
| rangeDefs+=Range
| parameterDefs+=Parameter
| commandDefs+=Command
| ’command ’ commandRefs+=[Command]

)∗
’ end ’ ’ component ’

;

Command:
comment=DOC_COMMENT?
’command ’ name=ID ’ i s ’

(enumerationDefs+=Enumeration
| rangeDefs+=Range
| parameterDefs+=Parameter
| ’ parameter ’ parameterRefs +=[Parameter]

)∗
’ end ’ ’command ’

;

Listing 6.7: Hierarchy of AOCS concepts

By allowing elements to be defined in an outer scope of where they are used, the user gains the

possibility to better separate definitions by level of abstraction. For example, a parameter can be defined

at the component level, and then referenced in a command within that component. One important

51

difference between these elements and a parameter is that, since their definitions are expected to span

multiple lines, they have an end delimiter. The same pattern is applied to all levels of the hierarchy.

Note that the name of a component is given by a qualified identifier instead of a simple identifier.

This is an exception, and is meant to be used solely for organizing the generated files. Within the AOCS

software, components are treated only by their last name, which must therefore be unique in the whole

system.

Listing 6.8 shows the first rule in the grammar, which constitutes the entry point for creating an AOCS

model.

AocsModel :
(app l i ca t i onDe fs += A p p l i c a t i o n

| componentDefs+=Component
| commandDefs+=Command
| parameterDefs+=Parameter
| enumerationDefs+=Enumeration
| rangeDefs+=Range

)∗
;

Listing 6.8: The entry rule for the AOCS model

At this level, applications defined are automatically a part of the model, while any other lower-level

definition will only be included when referenced in an appropriate inner scope. This design pattern can

be applied as follows:

command cmd is
parameter par is bool

end command

component cpt is
command cmd

end component

appl icat ion app is
component cpt

end appl icat ion

6.3 Model validation

One great advantage of DSM is that is allows validation to be performed at the model level. When using

an Xtext-based DSL, the validator is automatically integrated with the generated editor. It continuously

checks the code for validity, providing marks and custom messages of different kinds: errors, warnings

and information. This section shows how the validation mechanism was implemented for the AOCS

DSL, describing the custom validity checks created for each class in the metamodel.

By default, Xtext generates only a class stub for the manual implementation of validation methods.

However, there are validators already embedded in Xtext which can be activated in the file Generate-

MyDsl.mwe2, where the workflow for the generation of Xtext artifacts is defined. One of those validators

is programmed to check for the uniqueness of object names within each scope of the model. When

it is activated, Xtext adds the NamesAreUniqueValidator (org.eclipse.xtext.validation package) to the

abstract DSL validator class, using a composed check annotation (@ComposedChecks). This indicates

that the methods of that class are to be used as validation methods.

52

6.3.1 Parameters

The ParameterValidator class contains methods which check the validity of the values assigned to

each attribute of a parameter.

Since the size of an array parameter is given by the terminal rule INT, a check has been implemented

which issues an error if a zero-sized array is declared, and a warning if the user declares a parameter

to be an array of size one.

Other than that, a few check methods verify the consistency between the declared parameter type

and the other attributes. Error messages are shown if a value constraint or a measurement unit is

declared for a boolean parameter, or if the user tries to limit a floating point parameter to a set of

discrete values. Figure 6.1 shows how one of these error messages looks like in the AOCS editor. The

error underline marker can be placed in any of the elements of the rule in question.

Figure 6.1: Error message for an enumeration-constrained float parameter

Since range limits are allowed to be either integer of real, their types are also checked against that

of the parameter in question. A warning is issued when these types are inconsistent.

Parameter constraints

Specific validator classes have been implemented for Range and Enumeration. In a range definition, it

is asserted that the minimum is in fact lower than the maximum, otherwise an error is issued. The types

of each of these attributes are also checked for consistency.

As stated in the grammar description, enumerations are syntactically allowed to be empty. It is up

to the EnumerationValidator to check for an erroneous input of this kind and mark it as an error.

Another issue is the value of enumerators. The validation method that addresses this issue attributes

default values to enumerators, when these are not explicitly declared. While doing so, the enumeration

is checked for the existence of repeated values, which results in an error marker.

6.3.2 Higher-level elements

Also included as composed checks in the main validator class AOCSValidator are the specific validators

for commands, components and applications.

The default NamesAreUniqueValidator will prevent the instantiation of objects with the same name

within a scope. However, due to the referencing pattern described in Section 6.2.2, it will still allow, for

example, for a command to be defined and referenced within the same component definition. Therefore,

a validation method must be implemented at each level to correct this.

The fact that telecommands must be unique for each application, which is not their immediate con-

tainer, demands for a specific check as well. Similarly, components must be checked for uniqueness at

53

the model level, i.e., in the AOCSValidator. Also in Section 6.2.2, it is stated that only the last name

of the qualified identifier attributed to a component is used in the target software. This leads to the

necessity for assuring the system-wide uniqueness of the last name of each component.

The last kind of validity checks implemented, at the top level of the model, concerns unused objects.

As stated before, any element defined out of place is only a part of the system once it is referenced in

an appropriate inner block. With that in mind, validation methods were developed to warn the user of

unused objects. As an example, Figure 6.2 shows how the warning looks like for a defined but unused

parameter. The parameter par is defined, but not referenced in a command within the app application,

hence the warning.

Figure 6.2: Warning for an unused parameter

6.4 Code generation

By comparing the target files which need to be generated and the semantic model used (both addressed

in Chapter 5), it becomes evident that there is a big gap between them in terms of abstraction and

complexity. Without an intermediate M2M transformation, the code generator needs to single-handedly

bridge this gap. However, note that the AOCS DSL was in fact developed iteratively, following a direct

approach. This quest for simplicity ends up backfiring in a way, since the approach taken does not scale

well as the complexity of the system increases. As a result, it was observed that the code generator

evolved to be very complex. Nevertheless, the generator was logically split into several well organized

files, which significantly mitigates the effects of its complexity.

This section describes the implementation of the code generator, including the output configuration,

the types of helper classes and generator methods developed, the mechanisms for defining names for

the target code, and the overall workflow of the generator.

6.4.1 Output configuration

The output configuration of the code generator was, as already mentioned, made to follow the GGP.

This is achieved by creating a custom class to implement the IOutputConfiguration interface, named

AOCSOutputConfigurationProvider. As with any customization in Xtext, it was then bound to the de-

pendency injection mechanism. According to the design described in Section 5.4.3, two project-level

output folders are created:

src-gen Purely generated files are written to this folder. All the resources in it are cleaned and re-

written every time the code generator runs. Additionally, the files are marked as ‘derived’, so that

the user is warned by Eclipse when trying to edit them.

54

src This folder receives all the files which follow the generate once policy (see Section 2.2.3). They

are not overwritten or deleted, and the user may edit them at will.

6.4.2 Helper classes

Two helper classes were created to ease specific tasks of the generator classes: the FileInfo class

and the MultiWordIdentifier class.

The FileInfo class is intended to automate the compilation of the headers of the target files. Its

attributes hold relevant data like the names of the source model file and the target file, a message

instructing on whether to edit the file or not, a descriptive title, and any additional information. Its

only non-constructor method, compileHeader, automatically compiles the file header, depending on

the above-mentioned attributes. In this way, a FileInfo object can be passed to the compile methods

(see Section 6.4.5), reducing the header compilation to a single line.

The second helper class contains a set of static methods to handle multi-word identifiers. It is an

essential tool for transforming identifiers declared in the model into variable names, class names, enum

IDs, etc. It contains two split methods: one to split a qualified identifier, and another one to split all

words in an identifier. The word limits are identified by commonly used notations like white spaces, dots,

capital letters (CamelCase notation) or underscores (snake_case notation). Additionally, it contains

several methods to transform a multi-word string. This class is outlined in Figure 6.3 to show the variety

of transformations it supports. Its methods are pretty much self-explanatory.

Figure 6.3: Helper class for multi-word identifiers

6.4.3 Names

Many kinds of names or identifiers are needed by the classes involved in code generation. They are all

represented within the generator as Java Strings. Some of these names are used for output configura-

tion, like folder and file names and file extensions. Others contain the name of files of the C++ standard

library which need to be included. But most of those strings represent C++ concepts like class, method,

55

or variable names, as well as data types, enum labels, namespace names and debug flags1. They are

used as parameters for the code generation templates.

In order to make it as easy as possible to configure the code generator, none of these strings is

coded directly into the file or class template. Static names, which are independent of the input AOCS

model, are defined with constant static strings. As an example, Listing 6.9 shows the definition of the

name of the file containing the command interpreter template class, which happens to reuse other such

strings.
val public s t a t i c FILE_commandInterpreterTemp = CLASS_commandInterpreter + EXTENSION_definit ion

Listing 6.9: Definition of a static name

Other names which must be dynamically created are given by static methods. Listing 6.10 shows

one of these methods. This one in particular infers the name of the specific command handler class

from the name of the command.
def public s t a t i c getHandlerClassName (Command command) {

return CLASS_commandHandlerBase + command . name . toFirstUpperCamelCase
}

Listing 6.10: Method to derive a dynamic name

All of these variables and methods are public, so that they can be accessed by the other generator

classes.

6.4.4 Generate methods

In the AOCS code generator, the creation of the target files is commanded by a group of methods pre-

fixed with generate (hence the denomination ‘generate methods’). These methods receive as param-

eters the input model (a Resource), an object which provides access to the file system (implementing

the IFileSystemAccess interface), and any needed additional objects. Listing 6.11 shows the gener-

ate method concerning the class that holds the instances of all the command handlers of a component

(<MyComponent>Commands), as an example.
def package s t a t i c void generateHandler Instances (Resource resource , IFi leSystemAccess fsa , Component

component , A p p l i c a t i o n a p p l i c a t i o n) {

/ / D e f i n i t i o n f i l e
generateHandler InstancesDef (resource , fsa , component)

/ / Implementat ion f i l e
generateHandler InstancesImpl (resource , fsa , component , a p p l i c a t i o n)

}

Listing 6.11: Generate method for the component commands class

For each C++ class to be generated, two files are typically compiled: a header (or definition) file

and an implementation file2. The generateHandlerInstances method abstracts away this detail. It is

called by the main generator class AOCSGenerator, and then orders the generation of each individual

file. It then calls, for example, the method generateHandlerInstancesImpl, shown in Listing 6.12,

to create the implementation file. This file-specific generate method starts by creating an instance of

1Debug flags are used for conditional compilation, making use of the C preprocessor. If a flag is specified in the compilation
command, additional code which prints debug messages is included in the target executable file.

2Exceptions are abstract classes and concrete classes with simple default implementations, which only require a definition file.

56

FileInfo. Then it must call the generateFile method of the file access object, providing the target

relative file path and the file contents. The file contents are obtained from a so-called compile method

(See Section 6.4.5), which receives the previously created FileInfo object. For the sake of brevity, the

equivalent method for generating the definition file is not shown here.
def pr ivate s t a t i c void generateHandler InstancesImpl (Resource resource , IFi leSystemAccess fsa , Component

component , A p p l i c a t i o n a p p l i c a t i o n) {
val f i l e I n f o = new F i l e I n f o (

MESSAGE_gen, / / message
component . commandInstancesImplFileName , / / t a r g e t f i l e
resource . URI . t o P l a t f o r m S t r i n g (fa lse) , / / source f i l e
" Implementat ion o f c lass to hold a l l " + component . className . toReadableName + " commands" / / t i t l e

)
fsa . genera teF i le (

component . commandInstancesImplFilePath , / / f i l e path
compi leHandler InstancesImpl (f i l e I n f o , component , a p p l i c a t i o n) / / contents

)
}

Listing 6.12: Generate method for the implementation file of the component commands class

6.4.5 Compile methods

As already stated in Section 6.4.4, methods prefixed with compile are put in charge of creating the

contents of the target files. These methods are made to return a string or a character sequence (Java

CharSeq), created using the template capabilities of Xtend.

Continuing with the example of the <MyComponent>Commands class, the method compileHandlerInstancesImpl

is called to generate the contents of the implementation file. This method works at the file level, but

other compile methods exist: class-level methods and helper methods. File-level compile methods are

in charge of:

• Using the received FileInfo object to compile the file header.

• Compiling include guards3 (in definition files).

• Compiling include directives for necessary header files.

• Compiling the opening and closing of namespaces.

• Compiling the declaration of used namespaces.

• Calling a class-level compile method to create the class definition/implementation.

The called class-level method (compileHandlerInstancesClassImpl in this case) will then return

the actual contents of the class. Both file- and class-level compile methods make intensive use of small

helper compile methods.

6.4.6 Library files

Xtend templates are not the only mechanism through which files can be generated in the AOCS DSL

framework. A folder named resources/library exists in the main Eclipse plug-in project of the AOCS DSL.
3An include guard is a construct used to avoid double inclusion of header files when dealing with include preprocessor directives

(as is the case with C/C++).

57

The generateLibrary method, shown in Listing 6.13, copies each file found in that folder (and sub-

folders) into the src-gen target folder. In this way, existent files can be easily included in the generated

code. To prove its workings, a header file debug.h has been created, containing basic support for printing

debug messages.
def void genera teL ib ra ry (Resource resource , IFi leSystemAccess fsa) {

/ / Get l i b r a r y f o l d e r
val l i b P a t h = getL ibPath ()

/ / Get a l l f i l e s i n l i b r a r y f o l d e r
val l i b F i l e s = g e t F i l e L i s t (l i b P a t h)

/ / Generate copies o f the l i b r a r y f i l e s
for (f i l e : l i b F i l e s) {

fsa . genera teF i le (
ge tL ibF i l eTarge tPa th (f i l e) , / / f i l e path
ge tF i leCon ten t (f i l e) / / contents

)
}

}

Listing 6.13: MEthod to generate library files

6.4.7 Generator workflow

All the different kinds of classes, methods and variables involved in the code generation process have

been introduced in the previous sections. Here the high-level workflow of the code generator is pre-

sented, to give a better understanding of what target files are created and under which conditions.

The entry point to the code generator is the method AOCSGenerator.doGenerate, which is defined for

compliance with the IGenerator interface. From this point on, the generation process starts by creating

the static files, followed by those which are conditioned by the input model, and finishes by copying the

library files. It goes as follows:

1. Surveillance: Error message and event IDs (two header files).

2. Base classes: Component and command handler base classes (two header files).

3. AOCS interfaces: Surveillance interface class, telecommand interpreter template and component

manager class (three header and two implementation files).

4. Applications: Telecommand IDs for each application (one header file per application).

(a) Components: Component IDs and instances (two header files and one implementation file).

i. Commands: Class to hold command handler objects (one header and one implementa-

tion file per component) and command handlers (two header files and two implementation

files per command).

5. Library: Copy all files in the library folder.

Remember that there can be unused definitions of AOCS elements. To filter out these definitions,

the generation of all the custom files concerning applications, components and commands is done

hierarchically. Furthermore, this structure assigns the responsibility of generating logically contained

58

elements to their container. The described workflow results in a minimum of eleven generated files,

adding one file for each application, two for each component and four for each command.

6.5 Other features

The essential components that need to be implemented for an Xtext-based DSL to be functional are the

grammar, the model validator, the code generator and the scope provider. The first three were described

in the previous sections. The scope provider, used for resolution of cross-references, was not mentioned

because the default offered by Xtext is used. It allows forward referencing (referencing a variable before

its declaration) and references to variables defined in an outer scope [43]. As this is exactly the desired

behavior for the AOCS DSL, no customization was made.

Several other features can be implemented/customized with Xtext, mainly intended to improve the

user experience. To make usage of the DSL easier in a way to increase acceptance, custom content

assist was implemented, along with editor syntax highlighting and an automatic code formatter. This

section describes these customizations.

6.5.1 Content assist

Content assist features are intended to help the user better understand the elements of the language

and what can or should be written in each part of the program. Furthermore, automatic code completion

also increases coding speed and efficiency, by instantly inserting typo-free code.

A custom provider of template proposals (AOCSTemplateProposalProvider) was implemented. De-

pending on the context of the model, the user can select from a list of suitable templates, for parameters,

commands, etc. The general structure of the chosen element is then automatically inserted, allowing

the user to navigate between the customization fields. For instance, if the user asks for completion

proposals4 in the very first line of an AOCS model file, he will get template proposals for each of the

concepts of the language, since all are valid in that context. Figure 6.4 shows the mechanism in action.

Figure 6.4: Template proposals at model scope

When navigating the input fields, the user can again request completion proposals. These simple

proposals work on a token-by-token basis and are automatically provided by Xtext. In the case of
4In Eclipse, completion proposals can be requested by simply pressing ctrl+space.

59

parameter types and measurement units, which are to be chosen from a given set of values, it was

deemed important to have a drop-down list automatically appear when the user navigates to that field.

This is achieved by extending the class AbstractTemplateVariableResolver. The result can be seen

in Figure 6.5.

Figure 6.5: Automatic drop-down list to choose the parameter type

To avoid confusion, keywords which can be replaced by more complete template proposals are

filtered out by customizing the AOCSProposalProvider.

Finally, editor hover assist was implemented to instruct the user on the meaning of each concept of

the DSL. Figure 6.6 shows the information that the user sees when hovering a parameter definition.

Figure 6.6: Hover assist for a parameter

6.5.2 Syntax coloring

The only customization regarding the syntax coloring in the AOCS editor was the differentiation of param-

eter type and measurement unit codes from other keywords. Xtext already provides default highlighting

of grammar keywords, and the different coloring for documentation comments is implemented in the

Common language.

As already mentioned in Section 6.1, the class in the Common UI plug-in which connects the custom

highlighting configuration for the documentation comments is CommonAntlrTokenToAttributeIdMapper.

This class is bound to Guice in the Common language. However, due to a bug in Xtext, this binding is

not inherited by the AOCS language. This is an issue within Xtext and solving it is consequently out of

the scope of this thesis work. The binding was simply manually added to the AOCSUiModule class.

6.5.3 Formatting

Text formatting is necessary for two tasks. One of them is to automatically format an AOCS textual

model file. The other is applying quick fixes. As stated in Section 4.3, a quick fix can act upon the text or

60

the Ecore model. In the latter case, changes to the model must be reflected in the text file, thus calling

for a text formatter.

No quick fixes have been implemented in this framework. Nevertheless, a custom text formatter

is relatively simple to implement and allows the user to easily and quickly format the textual model5.

This customization was implemented in the class AOCSFormatter, thus overriding Xtext’s default One-

WhitespaceFormatter [43] which simply inserts a white space between each token.

5In Eclipse, simply pressing ctrl+shift+f automatically formats the code.

61

62

Chapter 7

Demonstration

The best way to show the capabilities of the developed tool is to perform a demonstration. This chapter

does so in a tutorial-like form, guiding the reader through the steps of a simple example using the Eclipse

IDE. Section 7.1 shows how to set up an AOCS project in Eclipse. Next, an example AOCS model is

presented in Section 7.2, along with an overview of the automatically generated files. Section 7.3 then

provides a step-by-step description of simple customizations to the generated files. Finally, the resulting

software is tested in Section 7.4 to show that it works as expected.

7.1 Project setup

Since no specific project wizard got to be developed for the AOCS DSL framework, this section describes

how to manually set up an AOCS project in Eclipse.

The first step is to create a new C++ project. For this example, an empty executable project was

created and given the name ExampleAOCSProject. The project wizard also requires the user to select

a toolchain1 to use for compilation of the C++ code. The Linux GCC toolchain was selected in this case,

but several appropriate options may exist.

Then a model file must be created. A simple empty file was created in the project folder with the

extension .aocs. The empty model file was named ExampleAOCSModel.aocs. When a file with a DSL

extension is created, Eclipse automatically asks the user if the Xtext nature should be added to the

project2. After clicking “Yes”, the code generator of the DSL is immediately called and the src and

src-gen folders are created. Typically, the model file would be put into the src folder, but lets keep it

separated from the target code for this demonstration.

At this point, the Xtext-based DSL is already working. However, a few additional steps are required

to allow the compilation of the C++ code. First the compiler must be instructed on where to look for

included files. To do that, lets open the project properties and find the “include paths”, under the settings

for the C++ compiler. Then, both the src and the src-gen folders must be added. In Eclipse, this can be

specified with the following paths:

1A software development toolchain typically consists of a compiler, an assembler, a linker, a set of libraries and a debugger.
2See Section 4.1 for information on project natures.

63

$ { workspace_loc : / $ { ProjName } / s rc }
$ { workspace_loc : / $ { ProjName } / src−gen }

Note: If Visual C++ was the toolchain chosen when creating the C/C++ project, an extra

step is required here. The Windows SDK Library must be manually added in the “additional

libraries” field of the C++ Linker settings, with the path:

$ { WindowsSdkLib }

The last step of the project setup is to provide an entry point for the program, so that it can be

compiled and tested. In C++, the entry point is the so-called main function. A new C++ source file,

named ExampleMain.cc, was created in the project folder, containing the code in Listing 7.1.

i n t main () {
return 0;

}

Listing 7.1: Simple main function

Now the project can be built, either by direct command or by re-saving the model file. The C++

toolchain will create an executable file in the project folder, as can be seen in Figure 7.1.

Figure 7.1: Project folder after compilation

7.2 An example model

A simple model was developed to show the possibilities of the AOCS DSL. The code, which can be

seen in Appendix B.1, was put in the ExampleAOCSModel.aocs file. It consists of a single application

named app with a single component named my.cpt. This component contains two commands: cmd

and cmdTest. The first has several example parameters. The second is empty to allow testing without

worrying about parameter constraints.

After saving the example model, the AOCS code generator produces a large number of C++ files,

displayed in Figure 7.2. It can be noted that the files subject to customization are a minority. Note also

the folder structure resulting from the cpt component name qualifier. The implementation files in the

src-gen folder are not shown to avoid presenting an excessively long list.

64

Figure 7.2: Customizable (left) and purely generated (right) files

Figure 7.3: Parameter definition in AbstractCommandHandlerCmd.h

Figure 7.4: Command parameter value checking in AbstractCommandHandlerCmd.cc

The command handler for the cmdTest command is the one that is customized and tested in the next

sections. However, one can look into the abstract handler class for the cmd command to see how the

parameters defined in the example model are reflected in the target code. Figures 7.3 and 7.4 show the

declaration of the cmd parameters and how their value constraints are applied, respectively. Note that a

set is created as a member of the class for checking enumeration-constrained parameters.

65

7.3 Target code customization

In the previous sections an AOCS project was set up, and an example model file was created, from

which the AOCS code generator derived a collection of target files for the system software. Some of the

files were outputted to the src folder, so that they can be edited and customized. This section provides

an example customization of those files.

All generated classes, methods and enumerations needing (or allowing) customization contain a

TODO task tag. These tags, which are written in the form of single-line comments, are recognized by

Eclipse, and can be seen in the Tasks view. Figure 7.5 shows a screenshot of this view after the steps

taken in the previous sections. It shows which task must be performed in which file, and the exact line

of code where the tag is inserted.

Figure 7.5: Customization points in the Tasks view

Lets start by adding a custom error message to the correspondent enumeration. All the user has to

do is double-click the task corresponding to the file ErrorMessageIds.h. Eclipse will open the file in the

editor and highlight the tag. At this point, it can be seen that the file contains the definition of default

IDs and instructions on how to edit it (see Figure 7.6). Following the provided instructions, a new error

message labeled EXAMPLE_ERROR is introduced with the code ‘3’, meanwhile attributing the code ‘4’ to

the special member LAST.

Figure 7.6: Default error message IDs

Now lets open the two files concerning the cpt component class, in order to define and implement a

simple custom method. Again, double-clicking the corresponding entries in the Tasks view is all it takes.

A boolean method named exampleComponentMethod is defined in the header file Cpt.h (Listing 7.2).

Its implementation is put in the file Cpt.cc. Listing 7.3 shows that the method does nothing more than

66

returning the boolean value false.

class Cpt : public Component {
public :

bool exampleComponentMethod () ;
} ; /∗ c lass Cpt ∗ /

Listing 7.2: Component definition

bool Cpt : : exampleComponentMethod () {
return fa lse ;

}

Listing 7.3: Component method implementation

The logical next step is to use the component cpt and the implemented custom method within the

execution of a command handler. The file CommandHandlerCmdTest.cc contains a method stub for the

implementation of the execution behavior of the command cmdTest. This file can be accessed directly

through the corresponding task as well. The handler’s Parameter structure has protected visibility3, so

a Parameter cannot be created, for example, in the main function. A handler without parameters, like

the CommandHandlerCmdTest is easier to test, since no parameter validity check is conducted, so any

void pointer can be provided as a parameter.

The handler implementation file contains commented include directives for the header files concern-

ing the component manager and the component IDs. In order to use the component cpt, the user must

uncomment these two lines and add an include for the file Cpt.h (see Listing 7.4).

#include " i nc lude /my/ cpt / commandHandlers / CommandHandlerCmdTest . h "
#include " i nc lude / component / ComponentManager . h "
#include " i nc lude / component / ComponentIds . h "
#include " i nc lude /my/ cpt / Cpt . h "

Listing 7.4: Headers included in CommandHandlerCmdTest.cc

Finally, the command behavior is implemented according to Listing 7.5. This example implementa-

tion starts by getting a pointer to the component, resorting to the component manager. It then calls the

method exampleComponentMethod within a condition. From the method implementation shown earlier,

it is obvious that the condition will not be verified, so the command handler is expected to return the

custom error message EXAMPLE_ERROR, with associated value ‘3’.

ERROR_MESSAGE: : ID CommandHandlerCmdTest : : behavior (const Parameter∗ p) {
/ / Declare r e s u l t v a r i a b l e

ERROR_MESSAGE: : ID r e s u l t ;

/ / Get component
Cpt∗ c p t P t r = stat ic_cast <Cpt∗>(ComponentManager : : ge tLocat ion (COMPONENT: : CPT)) ;

/ / Ca lcu la te r e s u l t
i f (cp tP t r−>exampleComponentMethod () == true) / / Not going to happen

r e s u l t = ERROR_MESSAGE: :NO_ERROR;
else

r e s u l t = ERROR_MESSAGE: :EXAMPLE_ERROR;

return r e s u l t ;
}

Listing 7.5: Custom code for the test command handler

7.4 Testing

The last step of this demonstration is to test the command handler customized in Section 7.3, to check

that it behaves as expected, i.e., that it returns the error code ‘3’.

3Methods and members with protected visibility can only be accessed by objects of the class and subclasses.

67

Command handlers can be instructed to print debug messages by adding a debug flag to the com-

pilation command. In Eclipse, the user can easily access the header file CommandHandlerCmdTest.h

by left-clicking the corresponding include directive while pressing the ctrl key. The class definition is

preceded by a comment indicating which debug flag should be used. Alternatively, simply hovering

the class name in the behavior method implementation also shows this comment. The C++ compiler

settings must be accessed to add the flag “-D AOCS_TEST_COMMAND_HANDLER”. After building the project

again, the resulting executable file will include instructions to print debug messages to the standard

output (the Eclipse console, in this case).

The only thing left to do is to code a test routine in the main function created earlier. The implemented

routine can be seen in Appendix B.2. It essentially orders the execution of cmdTest through the command

interpreter, to simulate a telecommand received from a ground station. The project is subsequently re-

built and run in Eclipse (as a Local C/C++ Application). Figure 7.7 shows the resulting message printed

in the console. The message confirms the expected behavior, thus concluding this demonstration.

Figure 7.7: Resulting printed message

68

Chapter 8

Conclusions and recommendations

This thesis work was intended to answer the problems of low software development automation and

consequently low reusability, which translate into higher costs and longer time of development. It was

proposed to do so by using DSM to create high-level models from which software code can be automat-

ically generated.

8.1 Summary of the results

A literature review was conducted on related projects, i.e., any projects whose results could be ap-

plied to solving or mitigating the identified problem, to show that this thesis work complements previous

research and developments. In this process, the proposed solution was compared against existing pos-

sible alternatives, showing to be a promising approach. The comparison also indicates that the AOCS

is significantly more complex than any other system to which textual DSM has been applied so far, so

it cannot be expected to reach the level of simplicity of the studied example applications. Finally, it

was seen that the use of DSL-based solutions fits in well with the ongoing efforts to standardize space

systems.

The scope for implementation of a proof of concept was chosen to be centered in the telecommand

handling functionality. With that in mind, the software of an orbiting satellite was analyzed, starting with

the command handlers and exploring adjacent systems elements as needed. From this analysis, it was

concluded that the proof of concept would need to be able to recreate not only the command handlers,

but also the classes involved in managing them, as well as AOCS component classes and others to

manage the components, and a few different files related to the surveillance component.

Based on the system analysis, a preliminary design was developed, including a language module

common to all satellite subsystems, a simple hierarchical semantic model and a plan for integrating

generated and manual code.

The telecommand Parameter is the most complex concept of the AOCS semantic model, while

other higher-level concepts are trivial. Parameters are contained in Commands, which are contained in

Components, which are in turn contained in Applications, the top-level concept in the metamodel.

69

The generate once pattern was chosen to provide the separation of manual and automatic code

in the file system. Some of the customizable software elements laying in the boundary of the defined

scope for implementation were chosen to be created as mere empty stubs. Although these elements

require almost full manual implementation, they are generated to make the target code compilable, so

that the developed solution does not present any drawback when compared to manual development of

the system.

The implementation of the proof of concept was based on the analysis performed and the resulting

design of the framework. The Common language module, wrapping concerns not specific to the AOCS,

includes the definition of a type of comment intended to be parsed and possibly included in the target

code for documentation, thus increasing the understandability of the generated files.

Taking advantage of the cross-referencing capabilities of Xtext, the designed semantic model was

extended on the implementation stage to give the user greater flexibility to separate a model definition

by levels of abstraction. Validity check methods were implemented to continuously validate the model,

providing feedback on its correctness. A file containing basic support for printing debug messages was

included in the framework, to prove a feature of the code generator which allows it to simply copy existing

files into the target folder. The user experience was further improved by implementing editor features

like content assist, syntax highlighting and code formatting, making the workbench quite easy to use.

The workflow of the code generator results in a minimum of eleven generated files, to which are

added: one for each application, two for each component and four for each command. By comparing

the extremely simple input model with the generated code, it can be concluded that this tool indeed

removes a big workload from the AOCS software developer.

To show the result of this thesis work, a tutorial-like demonstration of the developed DSW was per-

formed. To begin, it was shown how to set up an AOCS project in Eclipse. Then, an example AOCS

model was presented to illustrate the features of the language. The generated code was seen to in-

clude task tags in the customization points, giving the user easy access to these points. Next, simple

modifications were then done to implement custom behavior. Finally, a test routine simulating a telecom-

mand sent from a ground station was developed to prove the correct functioning of the resulting software

system. The program was run, yielding successful results.

8.2 Future work

This section addresses some unresolved problems and recommendations for future work, by the order

in which they appeared during the development of the AOCS DSL.

The first unresolved problem to appear was mentioned in Section 6.5.2, and concerns the inheritance

of syntax coloring customizations. The class in the Common UI plug-in which connects the custom

highlighting configuration for the documentation comments is CommonAntlrTokenToAttributeIdMapper.

It was bound to the dependency injection mechanism in the CommonUiModule. However, due to an issue

within Xtext itself, it was observed that this binding is not inherited by the AOCS language.

The creation of an expression language which reflects C/C++ low-level operations could possibly

70

allow the development of the whole AOCS software to be carried out in a single editor. However, it would

be a relatively big venture, so it’s feasibility greatly depends on how interested possible stakeholders

would be in its development. For now, the presented solution satisfies the requirements.

The growth in size and complexity of the code generator was underestimated in the planning and

design phase of the AOCS DSL, partly due to the simplicity of existing DSL applications. Although its

files are still perfectly readable due to their organization, looking back it seems like an intermediate M2M

transformation would have made the implementation of this framework more modular. The Eclipse-

based model transformation language ATL (Atlas Transformation Language) could possibly be used to

bridge the gap between the Ecore model which results of the parsing process and the generated code.

Following a similar pattern to the one used in EMF itself, an interim model could be inferred which would

be as close to the generated code as possible.

Another possible improvement to the AOCS DSL framework would be to create a specific project

wizard to automate the process of setting up an AOCS project, described in Section 7.1 of the product

demonstration. This would significantly improve the ease of use of the tool.

Another product of SC (which was not mentioned in Section 5.1) is Virtual Satellite [53]. It is an

IDE intended to support the design process of spacecraft systems over the full development life cycle.

Its core element is an underlying data model using an OO approach, also defined with the EMF. The

software also acts as a framework for research activities in the areas of MDE, Design Theory and Formal

Verification & Validation (V&V). Given the promising results of the AOCS DSL, its development could be

continued with the end goal of being integrated in the Virtual Satellite software.

71

72

Bibliography

[1] TU Delft. Spacecraft bus subsystems. URL http://www.lr.tudelft.nl/en/organisation/

departments/space-engineering/space-systems-engineering/expertise-areas/

spacecraft-engineering/design-and-analysis/configuration-design/subsystems/

subsystems/. Accessed 2014-09-27.

[2] W. J. Larson and J. R. Wertz. Space Mission Analysis and Design, volume 8 of Space Technology

Library. Microcosm Press and Kluwer Academic Publishers.

[3] A. Jung and J. L. Terraillon. Faster, Later, Softer: COrDeT - an on-board software reference archi-

tecture, December 2010. URL http://flightsoftware.jhuapl.edu/files/2010/FSW10_Jung.

pdf. Presentation at the 2010 Workshop on Spacecraft Flight Software, in Pasadena, California,

USA. Accessed 2014-09-23.

[4] A. Blum, V. Cechticky, A. Pasetti, and W. Schaufelberger. A Java-Based Framework for Real-Time

Control Systems. In Emerging Technologies and Factory Automation, 2003. IEEE Conference,

volume 2, pages 447–453, Lisbon, Portugal, September 2003.

[5] A. Pasetti and W. Pree. A Component Framework for Satellite On-board Software. In 18th Digital

Avionics Systems Conference, volume 2, pages 7.C.1–1–7.C.1–10, St. Louis, Missouri, USA, 1999.

[6] T. Erkkinen. Simulink Capabilities for Embedded Code Generation. URL http://www.mathworks.

com/company/events/miadc_03/MIADC_CodGen_May30.pdf. Presentation at The MathWorks In-

ternational Aerospace and Defense Conference 2003, in Natick, Massachussets, USA. Accessed

2014-09-21.

[7] J. Gärtner and W. Klinge. Advanced Methodologies for Aerospace, Automotive and Transportation

software development, February 2004. URL http://www.dlr.de/fs/portaldata/16/resources/

dokumente/vk/vortrag_klinge_050203.pdf. Presentation at Braunschweiger Verkehrskollo-

quium, in Braunschweig, Germany. Accessed 2014-09-21.

[8] A. Jung and J. L. Terraillon. SAVOIR - Software aspects of the reference architecture, October

2012. URL http://congrexprojects.com/docs/12c25_2310/sa1025_jung.pdf?sfvrsn=2. Pre-

sentation at The 6th ESA Workshop on Avionics, Data, Control and Software Systems, in Noordwijk,

The Netherlands. Accessed 2014-09-14.

73

http://www.lr.tudelft.nl/en/organisation/departments/space-engineering/space-systems-engineering/expertise-areas/spacecraft-engineering/design-and-analysis/configuration-design/subsystems/subsystems/
http://www.lr.tudelft.nl/en/organisation/departments/space-engineering/space-systems-engineering/expertise-areas/spacecraft-engineering/design-and-analysis/configuration-design/subsystems/subsystems/
http://www.lr.tudelft.nl/en/organisation/departments/space-engineering/space-systems-engineering/expertise-areas/spacecraft-engineering/design-and-analysis/configuration-design/subsystems/subsystems/
http://www.lr.tudelft.nl/en/organisation/departments/space-engineering/space-systems-engineering/expertise-areas/spacecraft-engineering/design-and-analysis/configuration-design/subsystems/subsystems/
http://flightsoftware.jhuapl.edu/files/2010/FSW10_Jung.pdf
http://flightsoftware.jhuapl.edu/files/2010/FSW10_Jung.pdf
http://www.mathworks.com/company/events/miadc_03/MIADC_CodGen_May30.pdf
http://www.mathworks.com/company/events/miadc_03/MIADC_CodGen_May30.pdf
http://www.dlr.de/fs/portaldata/16/resources/dokumente/vk/vortrag_klinge_050203.pdf
http://www.dlr.de/fs/portaldata/16/resources/dokumente/vk/vortrag_klinge_050203.pdf
http://congrexprojects.com/docs/12c25_2310/sa1025_jung.pdf?sfvrsn=2

[9] A. Pasetti and W. Pree. A Reusable Architecture for Satellite Control Software, 2000. Department

of Computer Science - University of Constance, in Constance, Germany.

[10] A. Pasetti. Software Frameworks and Embedded Control Systems, volume 2231 of Lecture Notes

in Computer Science. Springer, 2002.

[11] M. Völter. DSL Engineering – Designing, Implementing and Using Domain-Specific Languages.

Self-published, 2013.

[12] N. M. J. Basha, S. A. Moiz, and M. Rizwanullah. Model Based Software Development: Issues

& Challenges. International Journal of Computer Science & Informatics, 2(1,2):226–230, 2012.

InterScience.

[13] R. Viennau. Tech Views. Software Tech News, 12(4):3, January 2010. The Data & Analysis Center

for Software, United States Department of Defense.

[14] P. H. Feiler and J. Hansson. Toward Model-Based Embedded System Validation through Virtual

Integration. Software Tech News, 12(4):26–32, January 2012. The Data & Analysis Center for

Software, United States Department of Defense.

[15] C. Petrone. Domain Specific Language for Magnetic Measurements at CERN, October 2009. Mas-

ter’s thesis at CERN, for the University of Sannio, in Benevento, Italy.

[16] S. Gretlein. Modeling of embedded designs - Part 1: Why model?, October 2012.

URL http://www.embedded.com/design/prototyping-and-development/4399743/

Modeling-of-embedded-designs--Why-model--. Accessed 2014-09-14.

[17] S. Gretlein. Modeling embedded designs - Part 2: Modeling method examples, Novem-

ber 2012. URL http://www.embedded.com/design/prototyping-and-development/4400903/

Modeling-embedded-designs--Modeling-method-examples-. Accessed 2014-09-14.

[18] M. Fowler. Domain Specific Languages. Addison-Wesley Professional, 2010.

[19] H. Kashif, M. Mostafa, H. Shokry, and S. Hammad. Model-Based Embedded Software Development

Flow. In 4th International Design and Test Workshop, pages 1–4, Riyadh, Saudi Arabia, November

2009.

[20] E. Tyugu and P. Grigorenko. Components in Model-Based Software Development. In Computer

Science and Information Technologies 2013, pages 1–8, Yerevan, Armenia, September 2013.

[21] J. Küster. Model-Driven Software Engineering – Code Generation, 2011. URL http://

researcher.ibm.com/researcher/files/zurich-jku/mdse-08.pdf. Lecture at IBM Research,

Zurich, Switzerland. Accessed 2014-09-14.

[22] S. Efftinge, P. Friese, and J. Köhnlein. Best Practices for Model-Driven Software Development, June

2008. URL http://www.infoq.com/articles/model-driven-dev-best-practices. Accessed

2014-09-14.

74

http://www.embedded.com/design/prototyping-and-development/4399743/Modeling-of-embedded-designs--Why-model--
http://www.embedded.com/design/prototyping-and-development/4399743/Modeling-of-embedded-designs--Why-model--
http://www.embedded.com/design/prototyping-and-development/4400903/Modeling-embedded-designs--Modeling-method-examples-
http://www.embedded.com/design/prototyping-and-development/4400903/Modeling-embedded-designs--Modeling-method-examples-
http://researcher.ibm.com/researcher/files/zurich-jku/mdse-08.pdf
http://researcher.ibm.com/researcher/files/zurich-jku/mdse-08.pdf
http://www.infoq.com/articles/model-driven-dev-best-practices

[23] H. Behrens. Generation Gap Pattern, April 2009. URL http://heikobehrens.net/2009/04/23/

generation-gap-pattern/. Accessed 2014-09-09.

[24] A. Natali. Introduction to EMF, Ecore and Xtext. URL http://edu222.deis.unibo.it/ANIS1213/

CorsoIS1213BOLM/target/site/pdf/Models/IntroEmfEcoreXtext.pdf. University of Bologna.

Accessed 2014-09-09.

[25] M. P. Ward. Language Oriented Programming. Software Concepts and Tools, 15:147–161, 1995.

Association for Computing Machinery.

[26] V. Cechticky, G. Montalto, A. Pasetti, and N. Salerno. The AOCS Framework. In International

ESA Conference on Spacecraft Guidance, Navigation and Control Systems, Frascati, Italy, October

2002.

[27] D. Darvas. ICE TEA: Domain-specific languages - What, how and when?, February 2014. URL

https://indico.cern.ch/event/304218/contribution/0/material/slides/0.pdf. Presenta-

tion at CERN, in Zürich, Switzerland. Accessed 2014-09-11.

[28] J.-P. Tolvanen. Domain-Specific Modeling for Full Code Generation. Software Tech News, 12(4):4–

7, January 2010. The Data & Analysis Center for Software, United States Department of Defense.

[29] R. Pohjonen. Boosting Embedded Systems Development with Domain-Specific Modeling. RTC

Magazine, pages 57–61, April 2003. RTC Group.

[30] K. Dörfler and M. Vöelter. Programming Refrigerators with Eclipse Xtext, November 2011.

URL http://www.voelter.de/data/presentations/RefrigeratorsAndDSLs.pdf. Presentation

at EclipseCon Europe 2011, in Ludwigsburg, Germany. Accessed 2014-09-11.

[31] M. Veldthuis. Quby - A domain-specific language for non-programmers, August 2012. Master’s

thesis at the University of Groningen, in Groningen, The Netherlands.

[32] V. Vernon. Developing a Complex External DSL, April 2009. URL http://www.infoq.com/

articles/External-DSL-Vaughn-Vernon. Accessed 2014-09-20.

[33] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and S. Völkel. Design Guidelines for

Domain Specific Languages. In 9th OOPSLA Workshop on Domain-Specific Modeling (DSM’09),

pages 7–13, Orlando, Florida, USA, October 2009.

[34] M. Fowler. Domain-Specific Languages: An Introductory Example, September 2010. URL http:

//www.informit.com/articles/article.aspx?p=1592379. Accessed 2014-09-29.

[35] A. Pasetti. AOCS Framework Project, June 2002. URL http://www.pnp-software.com/

AocsFramework/. Accessed 2014-09-21.

[36] V. Cechticky, P. Chevalley, A. Pasetti, and W. Schaufelberger. A Generative Approach to Frame-

work Instantiation. In 2nd International Conference on Generative Programming and Component

Engineering, pages 267–286, Erfurt, Germany, September 2003.

75

http://heikobehrens.net/2009/04/23/generation-gap-pattern/
http://heikobehrens.net/2009/04/23/generation-gap-pattern/
http://edu222.deis.unibo.it/ANIS1213/CorsoIS1213BOLM/target/site/pdf/Models/IntroEmfEcoreXtext.pdf
http://edu222.deis.unibo.it/ANIS1213/CorsoIS1213BOLM/target/site/pdf/Models/IntroEmfEcoreXtext.pdf
https://indico.cern.ch/event/304218/contribution/0/material/slides/0.pdf
http://www.voelter.de/data/presentations/RefrigeratorsAndDSLs.pdf
http://www.infoq.com/articles/External-DSL-Vaughn-Vernon
http://www.infoq.com/articles/External-DSL-Vaughn-Vernon
http://www.informit.com/articles/article.aspx?p=1592379
http://www.informit.com/articles/article.aspx?p=1592379
http://www.pnp-software.com/AocsFramework/
http://www.pnp-software.com/AocsFramework/

[37] J.-L. Terraillon. SAVOIR: Reusing specifications to improve the way we deliver avionics. In Embed-

ded Real Time Software and Systems 2012, Toulouse, France, February 2012. SAVOIR Advisory

Group - European Space Agency.

[38] L. J. Hansen, P. Graven, D. Fogle, and J. Lyke. The Feasibility of Applying Plug-and-Play Con-

cepts to Spacecraft Guidance, Navigation, and Control Systems to Meet the Challenges of Future

Responsive Missions. In 7th International ESA Conference on Guidance, Navigation & Control

Systems, Tralee, County Kerry, Ireland, June 2008.

[39] J. Lyke, D. Fronterhouse, S. Cannon, and D. Lanza. Space Plug-and-Play Avionics. In 3rd Respon-

sive Space Conference, Los Angeles, California, USA, April 2005. American Institute of Aeronautics

and Astronautics.

[40] J. Singer. SpaceDev Satellite Chosen to Ride SpaceX’s Third Falcon 1 Rocket, May 2008. URL

http://www.space.com/5507-spacedev-satellite-chosen-ride-spacex-falcon-1-rocket.

html. Accessed 2014-09-22.

[41] M. Völter, D. Ratiu, B. Schätz, and B. Kolb. Mbeddr: An Extensible C-based Programming Lan-

guage and IDE for Embedded Systems. In 3rd Annual Conference on Systems, Programming,

and Applications: Software for Humanity, pages 121–140, Tucson, Arizona, USA, October 2012.

Association for Computing Machinery.

[42] W. Beaton. Eclipse Platform Technical Overview (v3.1), April 2006. URL https://www.

eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.html. Ac-

cessed 2014-10-01.

[43] L. Bettini. Implementing Domain-Specific Languages with Xtext and Xtend. Packt Publishing, Au-

gust 2013.

[44] D. Lüdtke, S. Mece, M. Deshmukh, M. Bock, A. Schreiber, and A. Gerndt. A Framework to Model

Metadata for Knowledge Management Tools. In 4th International Conference on Knowledge Man-

agement for Space Missions, volume 4, Toulouse Space Show ’12 – Toulouse, France, June 2012.

[45] H. Behrens, M. Clay, S. Efftinge, M. Eysholdt, P. Friese, J. Köhnlein, K. Wannheden,

and S. Zarnekow. Xtext user guide, 2008 - 2010. URL http://www.eclipse.org/Xtext/

documentation/1_0_1/xtext.pdf. Accessed 2014-10-02.

[46] S. Föckersperger, K. Lattner, C. Kaiser, S. Eckert, S. Ritzmann, R. Axmann, and M. Turk. The

On-Orbit Verification Mission TET-1 – Project Status of the Small Satellite Mission & Outlook for

the One Year Mission Operation Phase. In 4S Symposium 2010 (Small Satellites Systems and

Services), Funchal, Madeira, Portugal, May-June 2010.

[47] C. Bergin. Russian Soyuz-FG successfully launches five satellites, July 2012. URL http:

//www.nasaspaceflight.com/2012/07/russian-soyuz-fg-launches-five-satellites/. Ac-

cessed 2014-10-20.

76

http://www.space.com/5507-spacedev-satellite-chosen-ride-spacex-falcon-1-rocket.html
http://www.space.com/5507-spacedev-satellite-chosen-ride-spacex-falcon-1-rocket.html
https://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.html
https://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.html
http://www.eclipse.org/Xtext/documentation/1_0_1/xtext.pdf
http://www.eclipse.org/Xtext/documentation/1_0_1/xtext.pdf
http://www.nasaspaceflight.com/2012/07/russian-soyuz-fg-launches-five-satellites/
http://www.nasaspaceflight.com/2012/07/russian-soyuz-fg-launches-five-satellites/

[48] S. Föckersperger, K. Lattner, C. Kaiser, S. Eckert, W. Bärwald, S. Ritzmann, P. Mühlbauer, M. Turk,

and P. Willlemsen. The Modular German Microsatellite TET-1 for Technology On-Orbit Verification.

In 59th International Astronautical Congress, Glasgow, Scotland, September-October 2008.

[49] S. Eckert, S. Ritzmann, S. Römer, and W. Bärwald. The TET-1 Satellite Bus – A High Reliability Bus

for Earth Observation, Scientific and Technology Verification Missions in LEO. In 4S Symposium

2010 (Small Satellites Systems and Services), Funchal, Madeira, Portugal, May-June 2010.

[50] K. Brieß, W. Bärwald, E. Gill, H. Kayal, O. Montenbruck, S. Montenegro, W. Halle, W. Skrbek,

H. Studemund, T. Terzibaschian, and H. Venus. Technology demonstration by the BIRD-mission.

Acta Astronautica, 56(1,2):57 – 63, 2005. International Academy of Astronautics.

[51] K. Brieß, H. Jahn, E. Lorenz, D. Örtel, W. Skrbek, and B. Zhukov. Fire recognition potential of

the bi-spectral Infrared Detection (BIRD) satellite. International Journal of Remote Sensing, 24(4):

865–872, 2003. Taylor & Francis.

[52] S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs. Addison-

Wesley Profesional Computing Series. Addison-Wesley, 2005.

[53] H. Schumann, A. Berres, O. Maibaum, and A. Röhnsch. DLR’s Virtual Satellite approach. In 10th

International Workshop on Simulation on European Space Programmes, Noordwijk, The Nether-

lands, October 2008.

77

78

Appendix A

Grammar files

A.1 Terminals

/∗∗∗
∗ Copyr ight (c) 2008 i t e m i s AG and others .
∗ A l l r i g h t s reserved . This program and the accompanying ma te r i a l s
∗ are made a v a i l a b l e under the terms of the Ec l ipse Pub l i c License v1 .0
∗ which accompanies t h i s d i s t r i b u t i o n , and i s a v a i l a b l e a t
∗ h t t p : / / www. ec l i pse . org / l e g a l / epl−v10 . html
∗∗∗ /

grammar org . ec l i pse . x t e x t . common. Terminals hidden (WS, ML_COMMENT, SL_COMMENT)

import " h t t p : / / www. ec l i pse . org / emf /2002/ Ecore " as ecore

terminal ID : ’ ^ ’ ?(’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ _ ’) (’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ _ ’ | ’ 0 ’ . . ’ 9 ’) ∗ ;
terminal INT re tu rns ecore : : E In t : (’ 0 ’ . . ’ 9 ’) + ;
terminal STRING :

’ " ’ (’ \ \ ’ . /∗ ’ b ’ | ’ t ’ | ’ n ’ | ’ f ’ | ’ r ’ | ’ u ’ | ’ " ’ | " ’ " | ’ \ \ ’ ∗ / | ! (’ \ \ ’ | ’ " ’))∗ ’ " ’ |
" ’ " (’ \ \ ’ . /∗ ’ b ’ | ’ t ’ | ’ n ’ | ’ f ’ | ’ r ’ | ’ u ’ | ’ " ’ | " ’ " | ’ \ \ ’ ∗ / | ! (’ \ \ ’ | " ’ "))∗ " ’ "

;
terminal ML_COMMENT : ’ /∗ ’ −> ’ ∗ / ’ ;
terminal SL_COMMENT : ’ / / ’ ! (’ \ n ’ | ’ \ r ’)∗ (’ \ r ’ ? ’ \ n ’) ? ;

terminal WS : (’ ’ | ’ \ t ’ | ’ \ r ’ | ’ \ n ’) + ;

terminal ANY_OTHER: . ;

Listing A.1: Default Terminals grammar definition

A.2 Common

/∗
∗ Common te rm ina l s and data types f o r a l l AOCS grammars
∗ /

grammar de . d l r . lambda . ds l . common.Common with org . ec l i pse . x t e x t . common. Terminals hidden (WS, ML_COMMENT,
SL_COMMENT)

generate common " h t t p : / / www. d l r . de / lambda / ds l / common/Common"

import " h t t p : / / www. ec l i pse . org / emf /2002/ Ecore " as ecore

/∗
∗ Product ion r u l e
∗
∗ Needed to generate EPackage and f o r t e s t i n g
∗ /

CommonModel : {CommonModel }
(

’ AnyInt ’ i n tVa lue =AnyInt

79

& ’ S ignedIn t ’ s i gned In t =SignedIn t
& ’ Real ’ r e a l =Real
& ’HEX ’ hex=HEX
& ’ Qua l i f i ed ID ’ q id= Qua l i f i ed ID

)
;

/∗
∗ Data type ru l es
∗ /

Qua l i f i ed ID re tu rns ecore : : ESt r ing : ID (’ . ’ ID) ∗ ;

AnyInt re tu rns ecore : : E In t : S ignedIn t | HEX;

/∗
∗ Data types wi th value conver te rs
∗ /

Real re tu rns ecore : : EDouble : S ignedIn t ’ . ’ INT ((’E ’ | ’ e ’) (’ + ’ | ’− ’) ? INT) ? ;

S ignedIn t re tu rns ecore : : E In t : (’ + ’ | ’− ’) ? INT ;

/∗
∗ Custom / over r idden te rm ina l r u l es
∗ /

terminal HEX re tu rns ecore : : E In t : ’ 0 ’ (’ x ’ | ’X ’) (’ 0 ’ . . ’ 9 ’ | ’ a ’ . . ’ f ’ | ’A ’ . . ’F ’) + ;

/∗∗
∗ For documentation comments to work , ML_COMMENT (from Terminals)
∗ must be over r idden
∗ /

terminal DOC_COMMENT: ’ /∗∗ ’ −> ’ ∗ / ’ ;
terminal ML_COMMENT: ’ /∗ ’ (! ’∗ ’) −> ’ ∗ / ’ ;

Listing A.2: Common grammar definition

A.3 AOCS

grammar de . d l r . lambda . ds l . aocs .AOCS with de . d l r . lambda . ds l . common.Common hidden (WS, ML_COMMENT,
SL_COMMENT)

generate aOCS " h t t p : / / www. d l r . de / lambda / ds l / aocs /AOCS"

import " h t t p : / / www. ec l i pse . org / emf /2002/ Ecore " as ecore

AocsModel :
(app l i ca t i onDe fs += A p p l i c a t i o n

| componentDefs+=Component
| commandDefs+=Command
| parameterDefs+=Parameter
| enumerationDefs+=Enumeration
| rangeDefs+=Range

)∗
;

A p p l i c a t i o n :
comment=DOC_COMMENT?
’ a p p l i c a t i o n ’ name=ID ’ i s ’

(enumerationDefs+=Enumeration
| rangeDefs+=Range
| parameterDefs+=Parameter
| commandDefs+=Command
| componentDefs+=Component
| ’ component ’ componentRefs +=[Component | Qua l i f i ed ID]

)∗
’ end ’ ’ a p p l i c a t i o n ’

;

Component :
comment=DOC_COMMENT?
’ component ’ name= Qua l i f i ed ID ’ i s ’

(enumerationDefs+=Enumeration
| rangeDefs+=Range

80

| parameterDefs+=Parameter
| commandDefs+=Command
| ’command ’ commandRefs+=[Command]

)∗
’ end ’ ’ component ’

;

Command:
comment=DOC_COMMENT?
’command ’ name=ID ’ i s ’

(enumerationDefs+=Enumeration
| rangeDefs+=Range
| parameterDefs+=Parameter
| ’ parameter ’ parameterRefs +=[Parameter]

)∗
’ end ’ ’command ’

;

Parameter :
comment=DOC_COMMENT?
’ parameter ’ name=ID ’ i s ’
type=Type (ar ray ?= ’ ar ray ’ ’ (’ a r raySize=INT ’) ’) ?
(

(cons t ra ined ?= ’ i n ’ (
rangeConstrained?= ’ range ’ (range=AnonymousRange | rangeRef =[Range])
| enumConstrained?= ’enum ’ (enumeration=AnonymousEnumeration | enumerationRef =[Enumeration])

)) ?
& (’ w i th ’ ’ u n i t s ’ u n i t =MeasurementUnit) ?

)
;

Range :
’ range ’ name=ID ’ i s ’ min=NumberLi tera l ’ to ’ max=NumberLi tera l

;

Enumeration :
’enum ’ name=ID ’ i s ’ ’ (’ enumerators+=Enumerator (’ , ’ enumerators+=Enumerator)∗ ’) ’

;

AnonymousRange re tu rns Range :
min=NumberLi tera l ’ to ’ max=NumberLi tera l

;

AnonymousEnumeration re tu rns Enumeration :
’ (’ enumerators+=Enumerator (’ , ’ enumerators+=Enumerator)∗ ’) ’

;

Enumerator :
name=ID (e x p l i c i t ?= ’= ’ value=SignedIn t) ?

;

/∗∗
∗ Used f o r syntax c o l o r i n g and content a s s i s t
∗ /

A l t e r n a t i v e s :
Type | MeasurementUnit

;

Type :
{ BooleanType } code= ’ bool ’
| { IntegerType } code =(’ u i n t 8 ’ | ’ i n t 8 ’ | ’ u in t16 ’ | ’ i n t 16 ’ | ’ u in t32 ’ | ’ i n t 32 ’)
| { FloatType } code =(’ f l o a t ’ | ’ double ’)

;

MeasurementUnit :
{ TemperatureUnit } code =(’C ’ | ’F ’) |
{ Cur ren tUn i t } code =(’A ’ | ’mA ’) |
{ E lec t r i cChargeUn i t } code= ’Ah ’ | / / Ampere−hour
{ PowerRatioUnit } code= ’dBm ’ | / / Decibel−m i l l i w a t t s
{ AngleUni t } code =(’ deg ’ | ’ rad ’) |
{ AngularSpeedUnit } code =(’ deg / s ’ | ’ rpm ’ | ’ rad / s ’) |
{ D is tanceUni t } code =(’km ’ | ’m ’) | / / meter
{ TorqueUnit } code =(’mNm’ | ’Nm’) | / / m i l l i newton−meter
{ TimeUnit } code =(’ s ’ | ’ms ’) |
{ Vo l tageUni t } code =(’V ’ | ’mV ’) |
{ Magnet icF luxDens i tyUni t } code =(’ nT ’ | ’T ’) / / Tesla

;

81

NumberLi tera l : I n t e g e r L i t e r a l | R e a l L i t e r a l ;

I n t e g e r L i t e r a l : value=SignedIn t ;

R e a l L i t e r a l : value=Real ;

Listing A.3: AOCS grammar definition

82

Appendix B

Demonstration files

B.1 Example AOCS model

/∗
∗ Example AOCS model
∗ /

/∗∗
∗ Documentation comments preceding app l i ca t i ons , components ,
∗ commands or parameters w i l l be inc luded i n the t a r g e t code
∗ /

appl icat ion app is
/∗
∗ Components can be given q u a l i f i e d names f o r the purpose
∗ of o rgan iz ing the generated f i l e s , but they w i l l be t rea ted
∗ by t h e i r l a s t name only , so i t must be unique .
∗ /

component my. cpt is
/ / Command d e f i n i t i o n

command cmd is
/ / Parameter d e f i n i t i o n
parameter par1 is f l o a t in range 0.0 to 1.0 with units ms

/∗
∗ Components , commands , parameters , ranges and enums can also
∗ be referenced , as long as t h e i r d e f i n i t i o n i s i n scope
∗ /

parameter par2
parameter par3 is i n t 32 in enum ENUM

end command

/ / Command wi th no parameters f o r t e s t i n g
command cmdTest is
end command

end component
end appl icat ion

/ / D e f i n i t i o n o f parameter to be referenced w i t h i n a command
parameter par2 is bool
/ / D e f i n i t i o n o f enum to be referenced w i t h i n a parameter
enum ENUM is (ZERO, TWO=2 , THREE)

Listing B.1: ExampleAOCSModel.aocs

B.2 Test main function

/∗
∗ ExampleMain . cc
∗
∗ Created on : Oct 12 , 2014

83

∗ Author : p i s i d r o
∗ /

#include " i nc lude / component / ComponentManager . h "
#include " i nc lude / component / ComponentIds . h "
#include " i nc lude / component / Components . h "
#include " i nc lude / command / CommandInterpreter . h "
#include " i nc lude / command / AppCommandIds . h "
#include " i nc lude /my/ cpt / commandHandlers / CommandHandlerCmd . h "
#include " i nc lude /my/ cpt / CptCommands . h "

using namespace AOCS;

i n t main () {

/ / Reg is te r components
Components componentInstances ;
componentInstances . registerComponents () ;

/ / Reg is te r commands of component Cpt
CptCommands cptCommandInstances ;
cptCommandInstances . registerCommands () ;

/ / Get command i n t e r p r e t e r
CommandInterpreter <APP_COMMAND: : ID , APP_COMMAND: : LAST, APP_COMMAND: : OFFSET>∗ t c I n t e r p r e t e r

= stat ic_cast <CommandInterpreter <APP_COMMAND: : ID , APP_COMMAND: : LAST, APP_COMMAND: : OFFSET>∗>
(ComponentManager : : ge tLocat ion (COMPONENT: : COMMAND_INTERPRETER_APP)) ;

/ / Telecommand code
i n t tcCode = APP_COMMAND: : OFFSET + APP_COMMAND: : CMD_TEST;

/ / Mock p o i n t e r to parameter
void∗ voidParameterPtr ;

/ / Expected to p r i n t " Custom e r r o r ID : 3"
t c I n t e r p r e t e r −>executeCommand (tcCode , voidParameterPtr) ;

return 0;
}

Listing B.2: ExampleMain.cc

84

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Listings
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Research goals
	1.3 Outline

	2 Background
	2.1 Attitude and orbit control system
	2.1.1 Units
	2.1.2 Functions
	2.1.3 Software considerations

	2.2 Model-driven software development
	2.2.1 Models
	2.2.2 Modeling languages
	2.2.3 Code generation

	2.3 Domain-specific languages
	2.3.1 Benefits
	2.3.2 DSL processing
	2.3.3 Distinctions
	2.3.4 Design guidelines

	3 Related work
	3.1 The AOCS framework project
	3.1.1 Concept
	3.1.2 Conclusions

	3.2 Standardization of space systems
	3.2.1 Satellite plug-and-play avionics
	3.2.2 SAVOIR
	3.2.3 Conclusions

	3.3 DSL-based solutions
	3.3.1 Magnetic measurements at CERN
	3.3.2 Refrigerator programming at BSH
	3.3.3 Mbeddr
	3.3.4 Conclusions

	4 Development tools
	4.1 Eclipse
	4.2 Eclipse Modeling Framework
	4.3 Xtext
	4.3.1 Customization
	4.3.2 Testing
	4.3.3 Grammar and parsing

	5 The AOCS DSL
	5.1 Context
	5.2 Scope
	5.3 Analysis
	5.3.1 Command handlers
	5.3.2 Components
	5.3.3 Applications
	5.3.4 Surveillance

	5.4 Design
	5.4.1 Common language module
	5.4.2 Semantic model
	5.4.3 Generation gap pattern

	6 Implementation
	6.1 Common language module
	6.1.1 Number literals
	6.1.2 Documentation comments
	6.1.3 Qualified identifiers

	6.2 Grammar definition
	6.2.1 Parameters
	6.2.2 Higher-level elements

	6.3 Model validation
	6.3.1 Parameters
	6.3.2 Higher-level elements

	6.4 Code generation
	6.4.1 Output configuration
	6.4.2 Helper classes
	6.4.3 Names
	6.4.4 Generate methods
	6.4.5 Compile methods
	6.4.6 Library files
	6.4.7 Generator workflow

	6.5 Other features
	6.5.1 Content assist
	6.5.2 Syntax coloring
	6.5.3 Formatting

	7 Demonstration
	7.1 Project setup
	7.2 An example model
	7.3 Target code customization
	7.4 Testing

	8 Conclusions and recommendations
	8.1 Summary of the results
	8.2 Future work

	Bibliography
	A Grammar files
	A.1 Terminals
	A.2 Common
	A.3 AOCS

	B Demonstration files
	B.1 Example AOCS model
	B.2 Test main function

