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Polymer Electrolyte Fuel Cells 
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Water Management and the Role of the GDL 

Concurrent requirements need a fine balance of hydrophobicity 
 
 
 
 
 
 
 
 
 
 
 
 
 
Simulation: Laterally heterogeneous hydrophobicity is advantageous  
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Infrared Spectromicroscopy 
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~5 µm surface 
information, 
sample contact – 
damage possible 

Bulk information,  
transparent samples,  
e.g. membranes 

weak signal on 
dark samples 

Attenuated total 
reflection (ATR):  

Reflection Transmission 



Infrared Spectromicroscopy 

- Single HgCdTe (MCT) detector:  
Lateral resolution ~30 µm 
XY stage  large scale mapping 
 
- Imaging focal plane array (FPA) detector:  
Lateral resolution ~1 µm 
 small scale mapping 
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IR microscope with 
Ge ATR-Crystal  



X-Ray Photoemission Spectroscopy 
 
- Excitation of core level electrons with x-rays (~1-1.5 keV) 
- Emission core level electrons 
- Analysis of excess energy 
- Detection of elements 
- Detection of chemical state 
- Surface sensitivity <10 nm 
- Ultra high vacuum necessary 
- X-Ray damage possible 
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-carbon concentration at the surface  
of electrodes prepared from different 
mixtures of carbon black and PTFE 

- hydrophilic surface at carbon black  
    concentrations above 80 wt%  

- hydrophobic surface at PTFE  
    concentrations above 20 wt% 
• distribution of PTFE ist important 
• preparation process influences the    
  PTFE distribution 
• XPS measurements allow to assess  
  the hydrophilic/hydrophobic character 

-Correlation between PTFE-concentration in the surface 
determined by XPS and the hydrophilic/hydrophobic 
character 
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X-ray irradiation 

- Spot patterning 
- Decomposition of PTFE: 

breaking of the C-F bond 
- Reduced PTFE – C ratio  
 Reduced hydrophobicity 
- Backing and microporous 

layer 
 

 
 
 
 
(Al Kα, 1486,7 eV, 400 W, 
spot size ~0.8 mm) 
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X-ray tube 

Monochromator crystal 

Focussed  
X-ray beam 

Schulze et al., XPS analysis of PTFE decomposition due to ionizing radiation, Fresenius J Anal Chem 353 (1995) 778 
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10 min 
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0 min 

X-ray irradiation 

Small spot XPS analysis  
(GDL backing) 
 
Fluorine 1s signal: 
- Main signal (689 eV) 
slightly shifted 
 
- Bysignal (696 eV): 
Charging reduced  
 
 
Modification possible  
and scalable 
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Carbon fibre covered 
with PTFE 
 
Interstitial PTFE 
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XP spectra F1s after exposure to ionizating radiation 

               GDL     MPL 
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XP spectra C1s after exposure to ionizating radiation 

               GDL     MPL 
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XP spectra F1s after chemical modification 

               GDL     MPL 



www.DLR.de  •  Chart 15 

XP spectra C1s after chemical modification 

               GDL     MPL 



Laser irradiation 

- Line patterning 
- Thermal load 
- Quick burning of MPL material  trenches 
- Weak impact on GDL backing – heat dissipation 
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   Partially laser irradiated MPL 
(532 nm, 400 mW) 



   Partially laser irradiated MPL 

Laser Irradiation 

MPL: Imaging IR absorption analysis 
 
Intensity of C-F stretch vibrations missing 
inside trenches  no PTFE 
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ATR-FTIR mapping of  
C-F stretch vibration 



Laser irradiation 

MPL IR absorption analysis 
 
Line profiles: 
-Zero PTFE in trenches 
-Increased PTFE between 
trenches  redeposition 
-No chemical change on  
mechanical indenting 
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Mechanical indenting 

MPL indented with spine of scalpel 
width similar to laser  trenches 
 
No chemical influence 
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ATR-FTIR mapping of  C-F stretch vibration 
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Laser irradiation 

GDL backing 
 
No impact visible by eye 
 
Small spot XPS analysis:  
Fluorine 1s signal does not 
Reveal PTFE decomposition 
 
 
 
 
 GDL unchanged with 532 nm / 400 mW within >10 min spot irradiation 
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Applicability and Feasibility 

Method X-rays Laser Ion beam 

Mechanism Breaking of chemical 
bonds in PTFE 

Thermal 
decomposition 

Atomic scale 
decomposition 

Effectivity medium MPL: very high 
Backing: very low 

high 

Lab scale time 
demand 

high low high 

Lab scale effort high low high 

Production scale time 
demand 

Reasonable: batch 
processing with 

masks  

low high 

Production scale 
effort 

Low to reasonable: 
possibly ambient 

pressure irradiation 

low: easy 
automisation  

high 

Feasibility Reasonable MPL: OK 
Backing: difficult 

? 
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Thank you for your attention! 
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