Hydrophobicity Patterning of Gas Diffusion Media for Polymer Electrolyte Fuel Cells

I. Biswas¹, P. Gazdzicki¹, M. Tomaš^{1,2}, M. Schulze¹ ¹Deutsches Zentrum für Luft- und Raumfahrt, Stuttgart, Germany ²Západočeská Univerzita v Plzni, Plzeň, **Czech Republic**

Knowledge for Tomorrow

Outline

Water Management and the Role of the GDL Analytic tools Heterogenous Modifications Methods of Irradiation

- Mechanical stressing/damaging
- X-ray
- Ion beam modification
- Chemical modification
- Laser

Feasibility

SEM: 3x3 mm

Water Management and the Role of the GDL

Concurrent requirements need a fine balance of hydrophobicity

Infrared Spectromicroscopy

Infrared Spectromicroscopy

Single HgCdTe (MCT) detector:
Lateral resolution ~30 µm
XY stage → large scale mapping

 Imaging focal plane array (FPA) detector: Lateral resolution ~1 µm
→ small scale mapping

IR microscope with Ge ATR-Crystal

X-Ray Photoemission Spectroscopy

- Excitation of core level electrons with x-rays (~1-1.5 keV)
- Emission core level electrons
- Analysis of excess energy
- Detection of elements
- Detection of chemical state
- Surface sensitivity <10 nm
- Ultra high vacuum necessary
- X-Ray damage possible

Carbon black content [wt%]	Wetting behavior of non-stressed surface	Wetting behavior of mechanically stressed surface
30	Hydrophobic	Hydrophobic
40	Wetted by liquid water,	Hydrophobic
	not by water vapor	
50	Wetted by liquid water,	Hydrophobic
	not by water vapor	
60	Wetted by liquid water,	Hydrophobic
	not by water vapor	
70	Hydrophilic	Hydrophilic
80	Hydrophilic	Hydrophilic
90	Hydrophilic	Hydrophilic
100	Hydrophilic	Hydrophilic

A **V**_{DLR}

-Correlation between PTFE-concentration in the surface determined by XPS and the hydrophilic/hydrophobic character

-carbon concentration at the surface of electrodes prepared from different mixtures of carbon black and PTFE

- -> hydrophilic surface at carbon black concentrations above 80 wt%
- -> hydrophobic surface at PTFE concentrations above 20 wt%
- distribution of PTFE ist important
- preparation process influences the PTFE distribution
- XPS measurements allow to assess the hydrophilic/hydrophobic character

X-ray irradiation

(Al Kα, 1486,7 eV, 400 W, spot size ~0.8 mm)

Schulze et al., XPS analysis of PTFE decomposition due to ionizing radiation, Fresenius J Anal Chem 353 (1995) 778

XP spectra F1s after exposure to ionizating radiation

GDL

MPL

XP spectra C1s after exposure to ionizating radiation

GDL

MPL

XP spectra F1s after chemical modification

GDL

MPL

XP spectra C1s after chemical modification

GDL

MPL

Laser irradiation

- Line patterning
- Thermal load
- Quick burning of MPL material \rightarrow trenches
- Weak impact on GDL backing heat dissipation

Partially laser irradiated MPL

(532 nm, 400 mW)

Laser irradiation

MPL IR absorption analysis

Line profiles: -Zero PTFE in trenches -Increased PTFE between trenches → redeposition -No chemical change on mechanical indenting

Line profiles from ATR-FTIR data (C-F stretch vibration)

Mechanical indenting

MPL indented with spine of scalpel \rightarrow width similar to laser trenches

No chemical influence

Line profiles from ATR-FTIR data (C-F stretch vibration)

ATR-FTIR mapping of C-F stretch vibration

Laser irradiation

GDL backing

No impact visible by eye

Small spot XPS analysis: Fluorine 1s signal does not Reveal PTFE decomposition

 \rightarrow GDL unchanged with 532 nm / 400 mW within >10 min spot irradiation

Applicability and Feasibility

Method	X-rays	Laser	lon beam
Mechanism	Breaking of chemical bonds in PTFE	Thermal decomposition	Atomic scale decomposition
Effectivity	medium	MPL: very high Backing: very low	high
Lab scale time demand	high	low	high
Lab scale effort	high	low	high
Production scale time demand	Reasonable: batch processing with masks	low	high
Production scale effort	Low to reasonable: possibly ambient pressure irradiation	low: easy automisation	high
Feasibility	Reasonable	MPL: OK Backing: difficult	?

Acknowledgements

Funding by EU: FCH-JU Framework Programme 7

fuel cells & hydrogen for sustainability

Grant No 303446: IMPALA 303446

Thank you for your attention!

Knowledge for Tomorrow