OBJECT-BASED IMAGE ANALYSIS FOR IDENTIFYING SMALL SCALE ELEMENTS DURING LARGE SCALE PUBLIC EVENTS

Assessment and interaction of segmentation methods and machine learning

Hannes Römer1, Christoph Fourie1, Amelie Stolle1, Giulio Gullotta2, Elisabeth Schoepfer1
1German Aerospace Center (DLR), German Remote Sensing Data Center, 82234 Oberpfaffenhofen, Germany
2Federal Office of Civil Protection and Disaster Assistance, 53127 Bonn, Germany

Major public events such as open-air festivals are characterized by large concentrations of people in relatively small areas. These events represent challenging situations for public authorities concerned with organization, traffic and security and for festival organizers. In the research project VABENE++ an end-to-end monitoring system has been developed in order to provide situational and traffic related information in near real-time based on terrestrial and airborne platforms. In the present study, the potential of object-based image analysis (OBIA) for the extraction and classification of small scale features in the context of large scale public events is examined. The features to be identified involve based on terrestrial and airborne platforms.

Methods are evaluated considering computational cost, thematic accuracy, robustness/transferability and the amount of user interaction. Finally, a methodological framework is developed as a basis for the development of semi-automated procedures to be implemented in the existing airborne monitoring system of VABENE++. Even though methods are predominately tested and compared using very high resolution aerial imagery, it is also assessed if and to what extent lower resolution imagery from optical satellites (e.g., WorldView-2) represent appropriate alternatives for the same objectives.

Possible application scenarios in the context of large scale events may involve the monitoring of the occupancy of parking and assembly areas, camping sites and the estimation of the number of overnight guests and the assessment of the accessibility of emergency and escape routes.

The results of the scaling experiments provide also relevant information for users, such as the Federal Office of Civil Protection and Disaster Assistance of Germany (BBK), regarding the suitability and reliability of satellite imagery for comparable application cases and scenarios where accurate reference information is usually not available. These cases involve uncontrolled growing refugees and IDP camp structures. The (multi-scale) visual appearance of relevant features and the observed classification & detection rates are presented in a reference catalogue (Fig. 5).