Terrain Renderer for Sensor Simulations -An Accuracy Analysis-

MEON Workshop 2014

Turgay Aslandere

Knowledge for Tomorrow

Outline

- Application Terrain Renderer
- Motivation for the Sensor Simulation
- Basic LIDAR Simulation
- Basic Camera Simulation
- Conclusions

Application-Terrain Renderer

- Previously introduced in the 2011 MEON workshop
- Interactive visualization
- For a wide range of applications

Application-Terrain Renderer

• Level of Detail Approach (LOD) with the HealPix (NASA) data structure.

Level of Detail (LOD) Approach

Application-Terrain Renderer

- Various datasets
- For moon KAGUYA + LRO, 4.1 TB
- Hybrid data sets. Eg. Image data

Apollo 15 Landing Area (DLR Terrain Renderer)

IVILLE PROPERTY AND A REPORT OF THE REPORT OF

Position: 25.40 N, 2.30 E Altitude AGL [km]: 108.9 Altitude AMSL [km]: 107.8 Terrain Elevation [km]: –1.096

Height Scale: 1.00 LOD Scale: 10.00

10

Mode: Navid

Position: 25.69 N, 2.66 E Altitude AGL [km]: 37.8 Altitude AMSL [km]: 35.7 Terrain Elevation [km]: -2.079

Model Navigates

Position: 26.03 N, 3.42 E Altitude AGL [km]: 13.1 Altitude AMSL [km]: 11.1 Terrain Elevation [km]: -1.932

Mode: Navigation

Position: 26.25 N, 3.39 E Altitude AGL [km]: 1.9 Altitude AMSL [km]: -0.1 Terrain Elevation [km]: -1.919

Position: 26.27 N, 3.40 E Altitude AGL [km]: 0.5 Altitude AMSL [km]: -1.5 Terrain Elevation [km]: -1.923

Motivation

- High Accuracy and Real time Requirements from Space
 Domain for Sensor Simulation
- ATON (Autonomous Terrain based Optical Navigation)
- CROSS DRIVE (Collaborative Rover Operations and Satellites Science in Distributed Remote and Interactive Virtual Environments)

CROSS DRIVE (http://www.cross-drive.eu/)

TRON (Testbed for Robotic Optical Navigation)

- LIDAR: Light Detection And Ranging
- Flash LIDAR
- Each Pixel represents a range value

LIDAR Image /DLR SC

- LIDAR Images by OpenGL depth buffer.
- Depth Buffer measures the range between 0 1, non-linear [4].
- Transformations and quantization applied.
- Accuracy may suffer.
- Dynamic Clipping Planes : min (Zback/ Zfront)
- Errors due to rendering and DEM.

- Error sources are defined.
- To detect these errors, validation software is created.
- The similar pipeline as a rendering engines follows.

Possible Error Sources

- It determines distances from the view point to all visible triangle vertices
- It finds minimun and maximum values of each pixel

- We tested our application :
 - Results: OpenGL Buf with dynamic clipping plane ranges works fine in the terrain renderer sofware.
 - All the pixel values are between the limits (min and max value).
 - No errors : Deviation is around %0.10 for the given figure.

- Pin hole camera model Basic
- To visualize correct topology of the planets and lighting
- Real time and accuracy requirements
- More challenging than LIDAR :
 - Correct lighting :
 - Correct Light Source Simulation
 - Correct Shadow Simulation

- Light Source Computation: SPICE (NASA) tool
 - Sub solar point compared with LTVT software
- The basic shading, only considers normal mapping
- Terrain Renderer lacks of accurate shadows

Camera Image/LTVT

Camera Image/DLR Braunschweig

Camera Image/ DLR SC

Camera Image/ DLR OS

- Accuracy vs Performance
- Commonly used Algorithms for shadows :
 - Raycasting , Shadow Mapping
 - Horizon Mapping for bump mapped surfaces [2]
- Raycasting is computationally expensive.
- Shadowmapping renders scene from 2 points of view.
- Horizon mapping employs precomputed values.

-11-

- More about Horizon Mapping
 - Algorithm: If sun is a point light source in the sky, $\omega \beta > 0$ (true:in shadow) (See Figure)
 - Sun is not a point source [1] : If δ is the angular diameter of the sun, let α = (w β)/(δ/2) By plane geometry area formulas [2], the visible fraction of the Sun :

$$f(\alpha) = \begin{cases} 0.0 & \alpha \le -1 \\ 0.5 + (\sin^{-1} \alpha + \alpha) / (1 - \alpha^2) / \pi & -1 \le \alpha \le 1 \\ 1.0 & 1 \le \alpha. \end{cases}$$

• Planets are not flat [3]

$$\Rightarrow \qquad \beta' \approx \arctan\left(\frac{d\tan\beta - 2(R+h)\frac{\gamma^2}{4}}{2(R+h)\frac{\gamma}{2}}\right)$$

- A prototype for Horizon Mapping is created.
- The accuracy analysis for the camera simulation is in progress.

Results from Our Prototype with an Artifical Mesh

Results from Our Prototype with Kaguya Dataset

- Next steps:
 - Integration of the algorithms to the application.
 - Evaluation of the shadows by comparing the real images of Moon with the artificial ones.

DLR Terrain Renderer, the images (taken by NASA) are mapped to Moon surface.

Conclusions

- An overview of the terrain renderer application is given.
- LIDAR simulation is presented. The possible error sources demonstrated and the validation is descibed.
- The state of our work is given for the camera simulation. The work is still in progress. We are still evaluating shadowing algorithms for our application.
- The terrain renderer application is on its way to give both real time (See our demo) and accurate results for the sensor simulation.

Thanks

Turgay Aslandere German Aerospace Center Simulation and Software Technology | Software for Space Systems and Interactive Visualization Lilienthalplatz 7 | 38108 Braunschweig | Germany Telephone +49 531 295 2956

Image: DLR Terrain Renderer, Moon North Pole 87 N, 28 E

[1] Horizon Mapping for bump-mapped surface, Nelson L. Max, 1988

[2] Interactive Horizon Mapping Peter Pike, Micheal Cohen, 2000

[3] Real-time Rendering of Bump map Shadows Taking Account of Surface Curvature Koichi Onoue, Nelson Max, 2004

[4] <u>http://msdn.microsoft.com</u>

[5] http://ltvt.wikispaces.com/LTVT

[6] https://developer.nvidia.com/

