
Parallel Computing 49 (2015) 153–163

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

On the parallel iterative solution of linear systems arising in the

FEAST algorithm for computing inner eigenvalues✩

Martin Galgon a,∗, Lukas Krämer a, Jonas Thies b, Achim Basermann b, Bruno Lang a

a Bergische Universität Wuppertal, Fachbereich C – Mathematik und Naturwissenschaften, 42097 Wuppertal, Germany
b German Aerospace Center (DLR), Simulation and Software Technology, Linder Höhe, 51147 Cologne, Germany

a r t i c l e i n f o

Article history:

Available online 25 June 2015

Keywords:

Parallel inner eigenvalue computation

FEAST

Sparse linear systems

CARP-CG

Multi-coloring

Graphene modeling,

a b s t r a c t

Methods for the solution of sparse eigenvalue problems that are based on spectral projectors

and contour integration have recently attracted more and more attention. Such methods re-

quire the solution of many shifted sparse linear systems of full size. In most of the literature

concerning these eigenvalue solvers, only few words are said on the solution of the linear

systems, but they turn out to be very hard to solve by iterative linear solvers in practice. In

this work we identify a row projection method for the solution of the inner linear systems

encountered in the FEAST algorithm and introduce a novel hybrid parallel and fully iterative

implementation of the eigenvalue solver. Our approach ultimately aims at achieving extreme

parallelism by exploiting the algorithm’s potential on several levels. We present numerical

examples where graphene modeling is one of the target applications. In this application, sev-

eral hundred or even thousands of eigenvalues from the interior of the spectrum are required,

which is a big challenge for state-of-the-art numerical methods.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The solution of eigenvalue problems

AX = BX� (1)

with Hermitian matrices A, B ∈ C
N×N and positive definite B is a common task in numerical linear algebra. It arises in many

application areas such as electronic structure calculations [1] or modeling of graphene nanoribbons [2], see also below. Typically,

only a subset of the eigensystem is required, i. e., m < N eigenvalues with corresponding eigenvectors have to be computed.

Several methods are available to solve this kind of problem, for instance, of Lanczos [3] or Jacobi–Davidson type [4].

A new class of algorithms for the solution of large, sparse eigenproblems is part of current research. It is based on contour

integration of the so called resolvent function z �→ (zB − A)−1B of the matrix pair (A, B). Techniques of this class for solving

certain eigenvalue problems have been pioneered by Sakurai and co-workers [5–7]. A related approach is the so called FEAST

algorithm, first introduced in 2009 [8]. Since then, efforts in analyzing the convergence of the method [9–11] have been made. In

addition, a lot of work has been invested to improve the performance of FEAST and related methods, e.g., [10,12]. These methods
✩ This work was supported by the German Research Foundation (DFG) through the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA)

under project ESSEX.
∗ Corresponding author. Tel.: +49 2024392913.

E-mail addresses: galgon@math.uni-wuppertal.de (M. Galgon), lkraemer@math.uni-wuppertal.de (L. Krämer), jonas.thies@dlr.de (J. Thies),

achim.basermann@dlr.de (A. Basermann), lang@math.uni-wuppertal.de (B. Lang).

http://dx.doi.org/10.1016/j.parco.2015.06.005

0167-8191/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.parco.2015.06.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2015.06.005&domain=pdf
mailto:galgon@math.uni-wuppertal.de
mailto:lkraemer@math.uni-wuppertal.de
mailto:jonas.thies@dlr.de
mailto:achim.basermann@dlr.de
mailto:lang@math.uni-wuppertal.de
http://dx.doi.org/10.1016/j.parco.2015.06.005

154 M. Galgon et al. / Parallel Computing 49 (2015) 153–163
promise high potential for parallelism by subdividing tasks on multiple levels. Coarse grained parallelism can already be achieved

by subdividing the region in which eigenvalues are sought [8,9]. Furthermore, they are able to compute hundreds or thousands

of eigenpairs at once, where typical Krylov or Jacobi–Davidson solvers fail in this respect because they require orthogonalization

of any new basis vector with respect to the previously converged ones and the current basis. A fixed search space size keeps the

amount of required work and memory predictable.

The FEAST method essentially consists of two main components: the (numerical) integration of the resolvent function along

a contour in the complex plane, coupled with a Rayleigh–Ritz procedure. The numerical integration step involves the solution

(for V) of several size-N linear systems of the form

(zB − A)V = BY (2)

for several complex shifts z and an N × m matrix Y. The solution of very large and sparse linear systems is typically performed

iteratively, e. g., with Krylov-based methods [13]. For linear systems (2) as found in the FEAST algorithm, standard methods

such as GMRES [14] and other Krylov-based solvers show poor performance [9], requiring hundreds of iterations even for small

system sizes. In the original publication on FEAST [8, Example III], GMRES was used to solve the inner linear systems to modest

accuracy. In many publications on FEAST and similar methods, direct methods are used for the solution of the inner linear

systems, or no comment is made on which linear solver was used [6,11,12,15].

The advantage of iterative methods, apart from memory efficiency, is that the accuracy from the solution of the linear systems

translates to the accuracy of the eigenpairs obtained by FEAST [9]. Therefore, the goal of this paper is to identify an iterative

method for solving the linear systems in FEAST and to present a numerical study that shows the effectiveness, but also the limits,

of such an approach. We demonstrate that a parallel row-projection method gives promising results in terms of robustness and

scalability. Our implementation is a combination of a scheme called CARP-CG [16] with a multi-coloring technique for better

memory efficiency on hybrid shared/distributed memory machines. A limitation that we find is that the number of required

iterations for the linear solver to converge increases with the proximity of the integration points to the spectrum, but this issue

is left to future work. As a benchmark application we will use eigenvalue problems from graphene modeling and a 3D model

problem for Anderson localization.

Graphene is a manifestation of atomic carbon, and eigenvalue problems arise from the modeling of graphene tubes and

ribbons in the tight-binding approach [17]. In order to better understand its properties, simulations involving large sparse

matrices are necessary, and a comparatively large number of inner eigenpairs is required for instance to compute an electric

current through a graphene sample. This application was previously discussed in the context of the ESSEX project [2,18]. In our

experiments, graphene samples of W × L atoms are described mathematically, resulting in Hermitian matrices of size WL × WL.

The main diagonal of these matrices contains random entries from an interval [−γ , γ], γ > 0, the spectrum then is contained

in [−3 − γ , 3 + γ]. In [18], the distribution of eigenvalues for a typical problem from graphene modeling can be found. The

eigenpairs of interest are those with eigenvalue close to the center of the spectrum [2,18]. The basic configuration of graphene is

a two-dimensional hexagonal lattice of carbon atoms, and we consider interactions with nearest and next-nearest neighbors. In

practice however, three-dimensional models, e. g., of samples consisting of multiple layers of graphene, pose a greater challenge

to the linear solver. For this reason, we also briefly study a three-dimensional model problem for the Anderson localization,

which was also studied in [19].

The paper is structured as follows. In Section 2, the basic FEAST method and our parallel implementation are described. In

Section 3 we describe the properties of the arising linear systems in more detail and review the so called CGMN algorithm.

Section 4 covers the parallel implementation of CGMN for clusters of shared memory nodes, and leads to the novel multi-

colored CARP-CG algorithm. Section 5 contains numerical experiments to firstly investigate the robustness and performance

of the scheme in the context of FEAST and secondly demonstrate its scalability. Section 6 summarizes the paper and gives an

outlook on future research.

2. The FEAST algorithm

2.1. Short description

The basic FEAST algorithm [8] can be formulated as in Algorithm 2.1. For simplicity and due to the target application we

will henceforth focus on the standard eigenvalue problem, i. e., B = I. The symbol C in step 1 of Algorithm 2.1 denotes a closed

contour in the complex plane, surrounding the interval Iλ =
[
λ,λ

]
(for an example, see Fig. 1). We assume that the interior of C

does not contain any other eigenvalues than those residing in Iλ. Approximating the matrix U in step 1 of Algorithm 2.1 leads to

numerical integration of the function z �→ (zI − A)−1Y, which can be formulated as

U ≈ Ũ = 1

2π i

p∑
j=1

ω jϕ
′(t j)

(
ϕ(t j)I − A

)−1
Y. (3)

Here, ϕ : [0, 2π] → C is a parametrization of C, the numbers ω j, j = 1, . . . , p, are integration weights and t j ∈ [0, 2π], j =
1, . . . , p, are integration points.

Steps 2–4 of Algorithm 2.1 are a plain Rayleigh–Ritz process with the subspace spanned by Ũ [9]. In the computation of (3)

the solution of p block linear systems

(z jI − A) · V = Y (4)

M. Galgon et al. / Parallel Computing 49 (2015) 153–163 155

Fig. 1. Generic contour example over an interval Iλ =
[
λ,λ

]
. The eight shifts are not necessarily symmetric w.r.t. the imaginary axis. Real eigenvalue problems

allow for exploitation of complex conjugated symmetry though; only one half (here the upper half in the imaginary positive half-plane) of the closed contour

(here a circle) needs to be considered.

Algorithm 2.1 Skeleton of the FEAST algorithm (as in [9,10]).

Input: An interval Iλ :=
[
λ,λ

]
and an estimate m̃ of the number of eigenvalues in Iλ.

Output: m̂ ≤ m̃ eigenpairs with eigenvalue in Iλ.

1: Choose Y ∈ C
N×m̃ of rank m̃ and compute an approximation Ũ to

U := 1

2π i

∫
C

(zI − A)
−1 Ydz.

2: Form the Rayleigh quotients AŨ := ŨHAŨ, BŨ := ŨHŨ.

3: Solve the size-m̃ generalized eigenproblem AŨW̃ = BŨW̃�̃.

4: Compute the approximate Ritz pairs
(
�̃, X̃ := Ũ · W̃

)
.

5: If convergence is not reached then go to Step 1 with Y := X̃.
with complex numbers z j = ϕ(t j) is necessary. This is in general by far the most time consuming part of the overall computation,

hence particular attention has to be paid to this part of the algorithm. Problems in practice often yield very large and sparse ma-

trices A. In this case, a method for the solution of (4) that is based on factorization of the system matrix z jI − A is not applicable;

focus has to be shifted to iterative solvers. A variety of different iterative methods for the solution of such systems is known, for

instance those based on Krylov subspaces. For an overview, see, e. g., [13]. We will discuss this topic in some detail in Section 3.1.

2.2. Parallel implementation

The FEAST algorithm exhibits potential for parallelism on multiple levels. Being a method to compute eigenpairs inside a

given interval, the most obvious approach consists of subdividing the initial search interval Iλ into smaller sub-intervals that may

be tackled independently.

While this seems to provide immediate parallelism without any synchronization between separate sub-intervals, eigenvec-

tors of individually computed eigenpairs show poor orthogonality when their eigenvalues are in close proximity [20]. For an

illustration of this effect, see [9]. Therefore, and due to the requirements of the target application—not much more than a few

hundred eigenpairs around a certain point inside the spectrum are required—the multiple-intervals approach has not been pur-

sued for the experiments in this paper.

Further opportunities for parallelization result from the size-N complex shifted linear systems arising during numerical in-

tegration of the resolvent. Using, e. g., a Gauß–Legendre scheme [21] as approximation, the solution of a set of p block linear

systems (z jI − A)V j = Y, j = 1, . . . , p, is required, each with a block of multiple right-hand sides Y. Three levels of paralleliza-

tion may be exploited here: I) The p systems may be assigned to p processor groups, solving the systems independently. II) The

right-hand sides of each block system may be distributed over the corresponding processor group, again solving the same system

with different right-hand sides independently.

At a third level, each BLAS-like operation performed during the linear solves as well as other operations from the FEAST

algorithm may be performed in parallel, with matrix and vectors distributed over subgroups of processors.

In our current FEAST implementation, the third level is handled by the underlying PHIST1 library developed in the con-

text of the ESSEX project [18]. It provides an interface layer to hybrid-parallel building block functionality implemented in li-

braries such as GHOST2 [18], as well as implementations of some iterative solvers for linear systems and extremal eigenvalue

problems.
1 https://bitbucket.org/essex/phist .
2 https://bitbucket.org/essex/ghost .

https://bitbucket.org/essex/phist
https://bitbucket.org/essex/ghost

156 M. Galgon et al. / Parallel Computing 49 (2015) 153–163
As for the parallelization of the linear systems, right-hand sides are distributed over processor groups of variable size, in a

manager/worker-type hierarchy (level II parallelism). A group of processors takes the position of the manager, performing the

FEAST algorithm (Algorithm 2.1) while dealing out tasks of solving the linear systems (4) as required. All remaining groups

take a worker role, each group working on their respective set of vectors once requested. Operations within these groups are

parallelized as described in the preceding paragraph.

As the number of available nodes on the testing architectures (see Section 5.2) was moderate, we chose to process the dif-

ferently shifted systems sequentially (i. e., no level I parallelism is used), thus bypassing a fan-in summation of the results and

issues with load balancing because the convergence rate of iterative solvers depends very much on the shift.

3. An iterative solver for the shifted linear systems

While the FEAST algorithm comes with a promise of excellent parallelization potential and memory-efficient computation

of many inner eigenvalues, its practical applicability is limited so far by the linear systems (2) that have to be solved by (sparse

or banded) direct methods involving some triangular factorization of a sparse matrix for each shift. The factorization step is very

expensive and memory consumption is high. For matrices from 3D elliptic PDEs it typically has a computational complexity of

O(N2), where N is the dimension of the matrix. For 2D problems a more favorable O(N2/3) [22] can be achieved. Nonetheless,

we do not want to limit our eigensolver to applications such as graphene, which happens to possess this structure. The iterative

method we propose achieves linear complexity in our experiments when the shift is fixed, and O(N2/3) for graphene matrices in

the context of FEAST as the interval size has to be decreased with approximately
√

N to keep the number of eigenvalues inside

constant. It is also far more memory efficient and scalable than direct sparse solvers, which better suites our aim of exploiting

the massive parallelism of today’s supercomputers.

Throughout this section, we consider a linear system Mx = b, M ∈ C
N×N, with a single right hand side b. The most popular

alternative to direct methods are Krylov subspace methods which approximate the solution x in a low-dimensional Krylov sub-

space, Kk(M, b, x0) = span
{
x0,Mx0,M2x0, . . . ,Mkx0

}
, k
 N. The convergence behavior of such a method (and thus the number

of iterations k required to achieve the desired accuracy) depends on the spectral properties of M. For Hermitian matrices, con-

vergence will be reached fast if the spectral condition number κ = σmax/σmin (i. e., the ratio of the largest and smallest singular

value) is close to one. However, even with a large condition number, convergence speeds may still be quite reasonable if the

distribution of the eigenvalues is favorable [23]. The eigenvalues of zI − A will typically lie on both sides of the imaginary axis,

which prevents methods as GMRES or BiCGStab from converging fast [14]. The system matrix is non-Hermitian and indefinite

even if A is (real) symmetric and positive definite, hence the conjugate gradient (CG) method [13] for Hermitian positive defi-

nite (hpd) matrices is not directly applicable, and neither is MINRES, which requires a Hermitian indefinite matrix (and an hpd

preconditioner). A method that can exploit the symmetry of the matrix (even though it is indefinite and non-Hermitian) is the

simplified QMR method. One could also use the “double shift” strategy and solve the hpd system (z̄I − A)(zI − A)x = (z̄I − A)b
(the normal equations) instead. The system matrix then is hpd as long as z is not an eigenvalue of A. This strategy squares the

condition number of the original problem, but may still give quite good results in practice. The CGMN method used in this paper

can be interpreted as a preconditioned “double shift” method.

3.1. Properties of complex-shifted linear systems

For the sake of this discussion, we consider the shifted matrix Az := zI − A, which is an instance of the system matrix in (2).

All considerations made in the following can easily be transferred to the generalized eigenvalue problem with B �= I Hermitian

and positive definite via a simple transformation [20]. If z ∈ C and A is real symmetric, then Az = (zI − A) = Az
T ∈ C

N×N is com-

plex symmetric and indefinite in general. If A ∈ C
N×N is Hermitian, then Az is neither Hermitian nor complex symmetric. The

eigenvalues of Az are related to those of A by λz
(j) = (z − λ(j)), and the eigenvectors are those of A. Hence, Az is a normal matrix

with the same eigenvalue distribution as A, but the condition number may be significantly worse if z is close to an eigenvalue of

A. Assuming that we want to compute only a small section in the interior of the spectrum of A, and that the eigenvalue distri-

bution is fairly dense in this region, we can roughly assume for the condition number of the system matrix Az to be proportional

to the inverse of the imaginary part of the shift. The shifts z are dictated by the FEAST algorithm. If we are only interested in

a small portion of the spectrum, the interval Iλ and hence the contour C from step 1 of Algorithm 2.1 is small. This results in a

small imaginary part of some of the shifts z and hence in a large condition number κz. In future work, we plan to investigate

techniques that can bring the shifts further away from the real axis without sacrificing accuracy.

Despite the close relation between A and Az, it is a challenging task to develop a preconditioner that can improve the con-

vergence behavior of an iterative method for Az. Consider, for instance, the multigrid method [24] as a preconditioner. What

makes this approach successful is that matrices A(ell), stemming from the discretization of elliptic partial differential equations

(PDEs), typically have few distinct smooth eigenmodes at the lower end of the spectrum, which can be ‘removed’ by a coarse

grid correction. By contrast, the matrix Az
(ell), with z in the interior of the spectrum σ

(
A(ell)

)
of A(ell), typically has non-smooth

eigenvectors associated with its smallest eigenvalues. A typical application yielding such matrices is the Helmholtz equation,

and attempts have been made to adjust the standard multigrid method for this problem [25]. It is not clear whether these tech-

niques can be applied to interior eigenvalue problems in general or graphene simulation in particular. Similarly, some authors

have adapted FETI-type methods [26,27]. A commonly used technique for the Helmholtz equation is multigrid on the shifted

Laplacian (typically with a complex shift “with opposite sign”, see e. g. [28]).

M. Galgon et al. / Parallel Computing 49 (2015) 153–163 157
Another class of preconditioners is based on the idea of incomplete LU (or LDLT) factorizations, which are popular because

of their algebraic nature and ease of use. However, they are difficult to parallelize and lack robustness for indefinite matrices

unless great care is taken. For an overview and references, see [29]. The only robust algorithm we are aware of is ILUPACK [30],

which was applied to the inner eigenvalue problem of the Anderson model in [19]. For our purposes ILUPACK does not provide

sufficient potential for parallelism and the factorization consumes large amounts of memory and compute time. Furthermore,

ILUPACK has difficulties factoring matrices with a very weak diagonal, i. e., |Mii|
 ∑
j �=i |Mi j| (as is the case in our graphene

application) because it requires at least some diagonally dominant rows on each level in order to effectively reduce the size of

the following Schur complement. The difficulties with weak diagonals seem to be inherent to ILU-type preconditioners.

3.2. The CGMN algorithm

An alternative to the presently popular preconditioning techniques mentioned above is the use of row projection (RP) meth-

ods [31]. One of the most well-known algorithms of this class is the Kaczmarz [32] method, denoted by KACZ in the following.

Nowadays KACZ is rarely used as stand-alone solver for linear systems because it is typically inferior to Krylov methods with

preconditioning for systems stemming from the discretization of elliptic PDEs. However, derivatives of RP methods may be at-

tractive for challenging linear systems because they are purely algebraic and extremely robust. In 1979, Björck and Elfving [33]

published several algorithms based on conjugate gradient acceleration of row projection methods. We are particularly interested

in their CGMN method, see also [34]. It is based on the following ideas:

• The KACZ sweep (see Algorithm 3.1 below) is equivalent to SOR on the minimum norm problem (MNP),

MMT y = b, x = MT y. (5)

• Letting the forward KACZ sweep be followed by a backward sweep yields SSOR on the MNP,

x(k+1) = QSSORx(k) + RSSOR b,with

QSSOR = Q1Q2 . . . QnQn−1 . . . Q1, Qi = I − ω

||mH
i,:
||2

mH
i,:mi,:, and

RSSOR = ωδi j

∑
k

mk,i.

The Qi are projections onto the ith row mi, : of M. For more details, see [33, Sections 4 and 5].
• CG for the related linear system (I − QSSOR)x = RSSOR b converges even though the system matrix is only symmetric positive

semi-definite.

CGMN is thus an efficient implementation of the conjugate gradient method for (5) (for an N × K, K ≤ N matrix M), precondi-

tioned by symmetric SOR. Alternatively, it can be seen as the Kaczmarz method accelerated by CG. This solver has several features

that make it attractive for our highly indefinite linear systems:

• Robustness. The method was developed for singular and non-square matrices.
• Short recurrence. The CG algorithm only requires scalar products and vector updates so that the main parallelization chal-

lenge is the Kaczmarz kernel (see Section 4).
• Scaling. Squaring the system matrix increases the relatively small diagonal elements occurring in our target application,

graphene, while the inherent row scaling of the Kaczmarz method alleviates the squared condition number [35].

For the readers convenience, the complete CGMN algorithm is shown in Algorithm 3.2. The operator to which the CG method

is applied is (I − DKSWP (M, b, x,ω)), where DKSWP (M, b, x,ω) denotes a “double Kaczmarz sweep”, that is, a forward KACZ

sweep (see Algorithm 3.1) followed by a backward sweep (with the i-loop reversed), in order to make the operator symmetric.

In Algorithm 3.1, ω is a relaxation parameter, which we set to 1 in all our experiments (no significant speed-up was achieved by

using ω �= 1 for our test cases). In contrast to the standard (sparse) matrix-vector operation y ← Mx, this operation updates x
in-place and writes to x by indirect access (symbolized by ji here). These properties prevent a straight-forward parallelization of

the method.

Algorithm 3.1 x ← KACZ (M, b, x,ω): Forward Kaczmarz sweep.

mi, : denotes the i-th row of M and ji denotes the column indices of the nonzero entries in mi, :.

1: for i = 1, . . . , N do

2: s = (mi, ji
x ji

− bi)/||mH
i, ji

||2
2

3: x ji
= x ji

− ωsmH
i, ji

4: end for

In [36] it is shown that a solver based on CGMN can be very efficient when solving the Helmholtz equation at high frequency,

but the method has not been applied to inner eigenvalue computations so far.

158 M. Galgon et al. / Parallel Computing 49 (2015) 153–163

Algorithm 3.2 Simple implementation of the CGMN algorithm [33].

Input: A, x0, z, b, ω, tol, maxIter

Output: A vector x fulfilling ‖(zI − A)x − b‖2 /‖(zI − A)x0 − b‖2 < tol, or a warning message if the tolerance was not achieved

within maxIter steps of CGMN.

1: nrmr = nrm0 = ‖(zI − A)x0 − b‖2

2: x = x0

3: r = DKSWP(zI − A, b, x,ω) − x
4: p = r
5: r2new = rHr
6: for k = 1, maxIter do

7: q = p − DKSWP(zI − A, 0, p,ω)
8: α = r2new/(pHq)
9: x = x + αp

10: if mod(k − 1, 10) == 0 then

11: nrmr = ‖(zI − A)x − b‖2

12: if nrmr < tol · nrm0 then

13: break

14: end if

15: end if

16: r = r − αq
17: r2old = r2new

18: r2new = rHr
19: β = r2new/r2old

20: p = r + βp
21: end for

22: if nrmr ≥ tol · nrm0 then

23: warning “convergence was not achieved within maxIter steps”

24: end if

25: return
4. Parallel CGMN

Row projection methods were introduced as sequential algorithms to begin with, but many authors have worked on gener-

alizing them to more parallel schemes. Most methods to date are based on the block projection (BP) algorithm of Elfving [37]. It

requires choosing a partitioning of the rows of M into n block rows Mi,:,

MH =
(
MH

1,:, M
H
2,:, . . . ,M

H
n,:

)
. (6)

The solution vector is then successively projected onto the null space of each block row, which (in general) requires the solution

of linear systems with matrices Mi,:MH
i,:

. For instances of this algorithm, see, e. g., [38,39]. A special situation is the case where

each MH
i,:

is an orthogonal matrix. The linear systems then reduce to diagonal scalings. Hence the partitioning should be chosen

such that it produces (approximately) independent columns in each block MH
i,:

. We will further discuss this in Section 4.1.

Gordon and Gordon [16,40] propose a different approach. The system is also partitioned into block rows, but not to generate

parallelism in each block. Instead, as is done in domain decomposition methods [26], the aim of the partitioning is to minimize

the “edge cut”, i. e., the number of non-zero entries in the off-diagonal blocks. The KACZ sweeps required for CGMN are then

performed independently for each block row, which leads to inconsistent entries in the x-vector on the interface between two

or more partitions. In [40] it is shown that averaging these “duplicate” vector elements between the partitions is equivalent to

KACZ in some superspace of R
N×N and therefore recovers the convergence properties of the sequential algorithm. In [16] the

CGMN-like method based on this idea is presented, which is called CARP-CG.

4.1. Multi-coloring

Let GM be the undirected graph which has a node for every row of M, and an edge between nodes i and j if mi, j �= 0. A distance-

1 coloring is a decomposition of the nodes of GM into n sets Sk such that any nodes i �= j in the same set are not connected by an

edge. A distance-2 coloring of GM is a distance-1 coloring of GM2 , which means that any path between two nodes i, j in the same

set consists of at least three edges and two nodes not in this set. For matrices with a symmetric sparsity pattern, the problem of

finding an optimal row partitioning such that Mi,:MH
i,:

is a diagonal matrix for each block i is equivalent to finding a distance-2

coloring of the adjacency graph GM of M.

If a distance-2 coloring of M is available, the KACZ algorithm (Algorithm 3.1) can be parallelized by treating the rows that

correspond to the same color in parallel. No race condition occurs in line 3 of Algorithm 3.1. The number of synchronization

M. Galgon et al. / Parallel Computing 49 (2015) 153–163 159
points is equal to the number of colors, because the colors must be treated sequentially. The problem of finding an optimal

coloring of a graph with the least possible number of colors is NP-complete, but algorithms and software exist that compute a

reasonably good distance-2 coloring for a matrix with symmetric sparsity pattern in shared [41,42] and distributed [43] memory

environments.

4.2. Hybrid-parallel approach

The approach based on graph coloring discussed in Section 4.1 has two problems. First, finding a “good” coloring in the sense

that the number of colors is small may not be feasible for extremely large matrices on massively parallel and heterogeneous

machines. Second, depending on the problem at hand, the number of required colors may be quite large and therefore apply-

ing the KACZ sweeps involves many global synchronization points. For instance, a graphene matrix with only nearest-neighbor

interactions can be (distance-2) colored using not more than four colors, but as soon as interactions with the next-to-nearest

neighboring atoms are taken into account during modeling, about 20 colors are required. For 3D problems this number increases

even further. The 7-point stencil used in the Anderson model problem requires 15 colors, even with only nearest neighbor inter-

actions taken into account. We therefore chose to parallelize by coloring only inside each (shared memory) node of the compute

cluster. Between the nodes, the averaging method of CARP is used.

As an alternative, CARP can be used even within the single nodes. CARP requires synchronization only between the KACZ

sweeps. However, its shared memory implementation requires the duplication of certain nodes in the interior of the MPI parti-

tion. Such an approach was pursued in [44] for GPUs, but with moderate success. We will show in Section 5 that the increase

in “averaged” vector entries leads to a significant memory overhead in weak and strong scaling experiments with CARP, so that

fewer nodes can be used compared to the hybrid approach. We expect that our approach will prove feasible also when parts of

the computation are performed on the GPU.

5. Numerical experiments

We consider the following model problem. A square graphene sheet consisting of W × W carbon atoms with periodic bound-

ary conditions results in a matrix of size N = W 2. The disorder parameter is set to γ = 0.2, and interactions with the nearest and

next-to-nearest neighbors are taken into account. We will present two experiments. First, we assess the number of iterations re-

quired by CARP-CG when seeking a given number of eigenpairs for an increasing problem size. In the second set of experiments,

we assess the performance and scalability of variants of the CARP-CG method, noting that its time consumption is proportional

to the number of iterations. We also show the variation in iteration numbers between the CARP-CG variants and use the results

of the two sets of experiments to extrapolate the performance of FEAST/CARP-CG for larger problems. The implementation of

FEAST used throughout the experiments is our own code, as described in Section 2.2.

5.1. Experiment A: convergence behavior

We compute all eigenpairs in an interval around 0, for increasing values of W. In order to keep the number of eigenvalues

in the interval approximately constant, the interval size is chosen to be proportional to 1/W. For all experiments, we use Gauß–

Legendre integration with eight integration points on a semi-circle (exploiting complex conjugated symmetry). The stopping

criterion for both, the eigenvalue residuals and the inner linear solver, is set to tol = 10−12. The CGMN method serves as iterative

solver with multi-coloring for node-level parallelism (single node only). The starting vectors are always chosen as x0 = 0 and the

convergence criterion is the residual relative w.r.t. the right-hand side, ‖Azx − b‖2/‖b‖2 < tol.

It is obvious that in this setting, the integration points (and thus the shifts z in the linear systems) move closer to the spectrum

as W grows. The resulting increase in numbers of CGMN iterations is shown in Table 1. Note that the shifts are distributed

symmetrically with respect to the axis bisecting the interval in its center (see Fig. 1), such that shifts 1, 2, 3, 4 give similar

iteration counts as shifts 8, 7, 6, 5. The numbers shown are a pessimistic average over all FEAST iterations and right-hand side

vectors because the method iterates on blocks of 16 vectors at a time and moves on to the next block only if all systems in a block

are converged. The iteration count of CGMN is roughly proportional to the inverse of the interval length, which is consistent with

our expectations from Section 3.1. The fairly dense spectrum near the interval boundaries does not allow to effectively reduce the
Table 1

Interval boundaries: [−β,β], number of eigenvalues found: nev , the last

four columns show the average number of CGMN iterations required for

the first four shifts.

W β nev itFEAST itMC−CGMN

z1 z2 z3 z4

100 1/4 124 7 699 166 86 61

200 1/8 139 5 1273 333 165 120

400 1/16 132 6 2766 664 324 234

160 M. Galgon et al. / Parallel Computing 49 (2015) 153–163

Fig. 2. Multi-coloring vs. CARP inside a 10 core shared memory socket. Left: the various bars marked ‘CA-X’ show the dependence of the number of iterations on

the number of cores when CARP is used; LEX: using lexicographic ordering (serial Kaczmarz); MC: using multi-coloring (parallel Kaczmarz). The right-hand plot

shows the run time for solving all the 64 linear systems with the two variants, CARP-CG and hybrid MC-CGMN.
iteration count by preconditioning, so the condition number increases linearly as the imaginary part of the shift moves closer to

the spectrum. The outermost integration points (shift z1 in Table 1) lead to the worst conditioned systems by far, and the number

of iterations clearly reflects the circular shape of the integration curve on which the shifts are located.

Our results show that the proposed row projection method is able to converge within a reasonable number of iterations,

whereas the standard techniques mentioned in Section 3.1 (e. g., GMRES(m) or BiCGStab with or without ILU preconditioning)

fail in this regard. For instance, GMRES takes many iterations and requires an expensive preconditioner, see, e. g., [45].

5.2. Experiments B: weak and strong scaling of CARP-CG

Our second experiment gives a first indication of the performance characteristics of the two parallelization techniques for the

CGMN method discussed in Section 4. We start with an experiment similar to Experiment A, measuring the required iterations

for different shifts. The test problem is a graphene sheet of now fixed size 1024 × 1024 atoms. This results in a matrix of size

10242 × 10242, and for each of the eight shifts a system with eight right-hand sides is solved. For this experiment, we employed

a single socket of the Emmy HPC cluster.

Access to the Emmy HPC cluster, named after Amalie Emmy Noether, was kindly provided by RRZE, the IT service provider

of Friedrich-Alexander-Universität Erlangen-Nürnberg. The cluster features 560 compute nodes, each of which is equipped with

two Intel(R) Xeon E5-2660V2 chips and 64 GB of shared memory. Each chip provides 10 SMT-enabled physical cores running at

2.2 GHz. The nodes are connected by an Infiniband network with 40 GBit/s bandwidth per link and direction. For experiments in

this paper, up to 256 nodes (5120 physical cores) were used.

The results are shown in Fig. 2. It is clear from the plots that the variant that relies on multi-coloring (MC) takes between

about 25% (one core) and 50% more time than the variant based on component averaging. This can be explained by an increasing

number of scattered memory accesses (by construction there will be less memory re-use of the vector elements when accessing

the matrix rows color-by-color). The disadvantage of the pure CARP-CG variant is a relatively large memory overhead, which

we will see in the following experiments. We note that our multi-coloring based implementation is not optimal and it is pos-

sible to reduce the overhead of multi-coloring by code optimizations, but this is not the topic of this paper. To achieve the

good performance of the MPI parallelization (by component averaging), we used persistent MPI communication. Without this,

the scaling in a single socket and across multiple nodes was significantly worse than for the variant with coloring inside the

socket.

Next, we investigate the scaling behavior beyond a single node. In Fig. 3 we show the weak (left) and strong (right) scaling

behavior. The middle figure shows the speed-up achieved by solving several systems at once in a weak scaling experiment. A

single linear system with a complex shift is solved for one or multiple right-hand sides and a convergence tolerance of 10−12.

The shifts used are not ‘realistic’ in the sense that the interval would contain far too many eigenvalues for the larger problems

in an actual FEAST run, but for the performance experiments conducted here, this does not matter as the runtime of CGMN is

proportional to the number of iterations.

We use one MPI process per socket and OpenMP with multi-coloring for the intra-socket parallelization. Using OpenMP within

the full nodes leads to problems with the placement of data in the ccNUMA memory hierarchy that cannot easily be resolved

for the KACZ kernel. This variant is compared with an MPI-only CARP-CG using lexicographic ordering on each subdomain (MPI

partition) and 8 MPI processes per socket. To keep the comparison fair, only 8 of the 10 available cores are also used in the

OpenMP variant. Using all 10 cores does not improve the overall runtime significantly due to the memory-bounded KACZ kernel,

M. Galgon et al. / Parallel Computing 49 (2015) 153–163 161

Fig. 3. Left: weak scaling for the CARP-CG and MC_CARP-CG variants (ca. 20M unknowns per node). Center: speed-up through blocking. Right: strong scaling,

20M unknowns in total. The bars are scaled such that a constant bar height indicates linear speed-up w.r.t. the number of nodes used. The groups of bars marked

by an asterisk (∗) denote the MPI-only CARP-CG variant.
and leads to even more memory overhead for the MPI-only variant. The problem size of 3200 × 6400 ≈ 2 × 107 on each Emmy

node already exceeds what can be done by a direct solver such as PARDISO [46] in the Intel(R) Math Kernel Library MKL. The total

problem size of more than five billion degrees of freedom could not be handled by any parallel direct solver today, especially

since the subspace in the FEAST algorithm has to be stored as well. The problem size we achieve is realistic for presently

manufacturable graphene structures [47].

In the left and middle plot of Fig. 3, the problem size grows linearly with the number of nodes, with ∼ 20 million matrix rows

per node (the graphene sheet is extended by doubling the number of atoms along the shortest edge when doubling the number of

nodes used). In the right plot, the total problem size is fixed to ∼ 20 million in total, so the number of rows per process diminishes

with increasing node count. A very simple z-partitioning is used, achieved by numbering the grid points in a lexicographic order

and assigning consecutive blocks of rows to MPI processes. Obviously this is a poor choice, but even with this ordering we get

near linear scaling between the nodes. The lower socket-level performance of our coloring-based implementation can be seen

on the larger scale, however, as it requires significantly fewer MPI processes (and thus internal buffer space), its lower memory

requirements allow scaling the application to higher node counts.

In the middle plot we solve for nvec = 1, 8, 16 vectors simultaneously. Scalar products are bundled, even though a separate

Krylov subspace is used for each right-hand side. The value shown is the time required per right-hand side of the linear system,

multiplied by the number of nodes to make the results easier to compare. Here we see that the use of block operations alleviates

the poor ratio of memory transfers to flops in our current implementation of multi-colored KACZ, whereas it increases the mem-

ory overhead of pure MPI CARP-CG linearly with the block size, restricting this approach to even fewer nodes (16 instead of 32 for

a single system). For the two-dimensional test matrices from graphene simulation, we observe excellent parallel performance

as the amount of data communicated is roughly proportional to
√

N (the performance is bounded by the main memory of each

node, not network bandwidth or latency). The time required for finding the distance-2 coloring on each MPI process is negligible.

5.2.1. A 3D problem

In order to show how the performance results carry over to three-dimensional problems, we use another class of test matri-

ces in a final experiment. The test problem is a model problem for Anderson localization and was studied using ILUPACK in [19].

The matrix shows the sparsity pattern of a standard 7-point Laplace operator on a structured grid with periodic boundary con-

ditions. The diagonal contains random numbers between −L/2 and +L/2, where we use L = 16.5 here. The shift is chosen as

z ≈ −0.25 + 7.8 × 10−3i, and again, we solve for eight right-hand sides. For this model problem, the interval has to be contracted

proportionally to the problem size N in order to keep the number of eigenvalues inside constant, which makes the number of

iterations grow more sharply in an actual FEAST run with the present solver. The number of iterations is found to be roughly

constant (around 900 for a residual tolerance of 10−10) as the number of nodes is increased while keeping the number of un-

knowns per node fixed to 2563 ≈ 16M. We stick to the simple z-partitioning because it is not clear whether graph partitioning

tools such as ParMETIS [48] will be feasible for extremely large problems in the future. Obviously, a simpler idea such as oc-

tree partitioning could be used in this particular case, and would certainly improve the inter-node performance we achieve

here.

Fig. 4 shows the weak scaling behavior. We expect the strong scaling to be slightly worse because of the decreasing ratio

of computation to communication. However, as we are primarily interested in solving very large problems and our FEAST

implementation offers another level of parallelism (the manager/worker model, see above), we did not perform the strong scaling

experiment here. Even more than in 2D, 3D problems quickly hit the memory barrier when addressed by direct methods or ILU-

type preconditioners such as ILUPACK, and the problem size of approximately 2.1 billion (128 nodes × 2563 unknowns/node)

shown here is well beyond what could be achieved by such an approach today. In the 3D case the performance shifts from

memory-bounded towards communication-bounded such that our coloring approach is more competitive compared to a pure

MPI implementation; but as mentioned before, smarter partitioning algorithms could be used to improve this.

162 M. Galgon et al. / Parallel Computing 49 (2015) 153–163

Fig. 4. Weak scaling experiment for the 3D Anderson model problem, 2563 ≈ 16 M unknowns per node and one/multiple right-hand side(s) (left/right).
6. Conclusion

We have developed a fully iterative implementation of the FEAST algorithm to compute all eigenvalues and corresponding

eigenvectors of a large sparse symmetric or Hermitian matrix in a given interval from the interior of the spectrum. We have

summarized the numerical properties of the shifted linear systems in question that made a direct solution of these systems

infeasible and proposed to use a row projection method called CGMN in the context of FEAST. In order to parallelize this scheme

for use on modern hybrid-parallel HPC clusters, the existing CARP-CG variant of CGMN was extended to use multi-coloring for

leveraging intra-node parallelism and reducing the memory overhead of CARP-CG when implemented using MPI only.

In numerical experiments with FEAST, CGMN proves to be very robust when applied to the considered class of matrices from

graphene simulation and Anderson localization. In all cases it eventually achieves convergence to the desired tolerance of 10−12.

The drawback of the considered algorithm is that the number of iterations increases with growing matrix size if the number of

desired eigenvalues is kept constant. An obvious remedy is to keep the interval size constant as the problem size grows. This

leads to a roughly linearly increasing number of eigenvalues in the interval and therefore a likewise increasing size of the search

space. Our FEAST implementation allows for compensation of this effect by using more worker processes.

Future work will focus on further reduction of the number of iterations needed by the linear solver. This can be achieved in

part by well-known techniques such as using a block variant of CG instead of single CG iterations for the various right-hand sides.

Furthermore, it may be possible to use a relaxed convergence tolerance in early FEAST iterations, when the Ritz values are still

far from convergence. These ideas will not, however, solve the problem of the linearly increasing conditioning of the systems as

the problem size grows and the spectrum becomes increasingly dense. We intend to investigate the use of multilevel acceleration.

It is also intended to investigate techniques that can bring the shifts further away from the real axis without sacrificing accuracy.

Another important investigation will be the application of the method to eigenvalue problems stemming from other research

areas.

Low-level optimization of the KACZ kernel on a variety of hardware, including multi-core CPUs, GPGPUs and accelerators

such as the Intel(R) Xeon Phi, will also drastically reduce the overall run-time, as we have shown that the overall performance

for graphene sheets is dictated by the node-level performance.

Acknowledgments

The authors thank Andreas Pieper and Andreas Alvermann (Ernst-Moritz-Arndt-Universität Greifswald) for useful discussions

and comments on our code. The authors would also like to thank the unknown referees whose comments helped to make the

exposition clearer.

References

[1] T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni, L. Krämer, B. Lang, H. Lederer, P.R. Willems, Parallel solution of partial symmetric eigenvalue
problems from electronic structure calculations, Parallel Comput. 37 (12) (2011) 783–794.

[2] M. Galgon, L. Krämer, B. Lang, A. Alvermann, H. Fehske, A. Pieper, Improving robustness of the FEAST algorithm and solving eigenvalue problems from

graphene nanoribbons, PAMM 14 (1) (2014) 821–822.
[3] Y. Saad, Numerical Methods for Large Eigenvalue Problems, second edition, SIAM, Philadelphia, PA, 2011.

[4] G.L.G. Sleijpen, H.A. van der Vorst, A Jacobi–Davidson iteration method for linear eigenvalue problems., SIAM J. Matrix Anal. Appl. 17 (2) (1996) 401–425.
[5] T. Ikegami, T. Sakurai, U. Nagashima, A filter diagonalization for generalized eigenvalue problems based on the Sakurai-Sugiura projection method, J. Comput.

Appl. Math. 233 (8) (2010) 1927–1936.
[6] T. Sakurai, H. Sugiura, A projection method for generalized eigenvalue problems using numerical integration, J. Comput. Appl. Math. 159 (2003) 119–128.

http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0001
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0001
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0001
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0001
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0001
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0001
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0001
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0001
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0001
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0001
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0002
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0002
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0002
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0002
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0002
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0002
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0002
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0003
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0003
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0004
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0004
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0004
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0005
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0005
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0005
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0005
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0006
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0006
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0006

M. Galgon et al. / Parallel Computing 49 (2015) 153–163 163
[7] J. Asakura, T. Sakura, H. Tadano, T. Ikegami, K. Kimura, A numerical method for nonlinear eigenvalue problems using contour integrals, JSIAM Lett. 1 (2009)
52–55.

[8] E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B 79 (2009) 115112.
[9] L. Krämer, E. Di Napoli, M. Galgon, B. Lang, P. Bientinesi, Dissecting the FEAST algorithm for generalized eigenproblems, J. Comput. Appl. Math. 244 (2013)

1–9.
[10] L. Krämer, Integration based solvers for standard and generalized Hermitian eigenvalue problems, Bergische Universität Wuppertal, 2014 Ph.D. the-

sis.Published electronically, http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:468-20140701-112141-6

[11] P.T.P. Tang, E. Polizzi, FEAST as a subspace iteration eigensolver accelerated by approximate spectral projection, SIAM J. Matrix Anal. Appl. 35 (2) (2014)
354–390.

[12] S. Güttel, E. Polizzi, P. Tang, G. Viaud, Zolotarev quadrature rules and load balancing for the FEAST eigensolver, 2014. The University of Manchester, MIMS
EPrint 2014.39, http://www.manchester.ac.uk/mims/eprints.

[13] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM, Philadelphia, PA, 2003.
[14] L.N. Trefethen, D. BauIII, Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.

[15] H.M. Aktulga, L. Lin, C. Haine, E.G. Ng, C. Yang, Parallel eigenvalue calculation based on multiple shift-invert Lanczos and contour integral based spectral
projection method, Parallel Comput. 40 (7) (2014) 195–212.

[16] D. Gordon, R. Gordon, CARP-CG: a robust and efficient parallel solver for linear systems, applied to strongly convection dominated PDEs, Parallel Comput.

36 (9) (2010) 495–515.
[17] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109–162.

[18] A. Alvermann, A. Basermann, H. Fehske, M. Galgon, G. Hager, M. Kreutzer, L. Krämer, B. Lang, A. Pieper, M. Röhrig-Zöllner, F. Shahzad, J. Thies, G. Wellein,
ESSEX: Equipping Sparse Solvers for Exascale, 2014. Preprint BUW-IMACM 14/31, http://www.imacm.uni-wuppertal.de/fileadmin/imacm/preprints/

2014/imacm_14_31.pdf.
[19] O. Schenk, M. Bollhöfer, R.A. Römer, On large scale diagonalization techniques for the Anderson model of localization, SIAM J. Sci. Comput. 28 (3) (2006).293–

283

[20] B.N. Parlett, The Symmetric Eigenvalue Problem, vol. 20 of Classics in Applied Mathematics, Classics edition, SIAM, Philadelphia, PA, 1998.
[21] P.J. Davis, P. Rabinowitz, Methods of Numerical Integration, second edition, Academic Press, Orlando, FL, 1984.

[22] T.A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2), SIAM, Philadelphia, PA, USA, 2006.
[23] J. Liesen, P. Tichý, Convergence analysis of Krylov subspace methods, GAMM-Mitt. 27 (2) (2004) 153–173.

[24] W. Hackbusch, Multi-Grid Methods and Applications, Springer Series in Computational Mathematics, Springer, Berlin, Heidelberg, 2003.
[25] A. Brandt, I. Livshits, Wave-ray multigrid method for standing wave equations, Electron. Trans. Numer. Anal. 6 (1997) 162–181.

[26] A. Toselli, O. Widlund, Domain decomposition methods: algorithms and theory, vol. 34 of Series in Computational Mathematics, Springer, 2005.

[27] C. Farhat, J. Li, An iterative domain decomposition method for the solution of a class of indefinite problems in computational structural dynamics, Appl.
Numer. Math. 54 (2) (2005) 150–166.

[28] Y.A. Erlangga, C. Vuik, C.W. Oosterlee, Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz
equation, Appl. Numer. Math. 56 (5) (2006) 648–666.

[29] M. Benzi, Preconditioning techniques for large linear systems: a survey, J. Comp. Phys. 182 (2) (2002) 418–477.
[30] M. Bollhöfer, J.I. Aliaga, A.F. Martín, E.S. Quintana-Ortí, ILUPACK, in: D.A. Padua (Ed.), Encyclopedia of Parallel Computing, Springer, 2011, pp. 917–926.

[31] R. Bramley, Row Projection Methods for Linear Systems, Center for Supercomputing Research and Development Urbana, Ill: CSRD report, University of

Illinois at Urbana-Champaign, 1989.
[32] S. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bulletin International de l’Académie Polonaise des Sciences et des Lettres. Classe

des Sciences Mathématiques et Naturelles. Série A, Sciences Mathématiques 1937 (1937) 355–357.
[33] Å. Björck, T. Elfving, Accelerated projection methods for computing pseudoinverse solutions of systems of linear equations, BIT 19 (2) (1979) 145–163.

[34] D. Gordon, R. Gordon, CGMN revisited: robust and efficient solution of stiff linear systems derived from elliptic partial differential equations, ACM Trans.
Math. Softw. 35 (3) (2008) 18:1–18:27.

[35] D. Gordon, R. Gordon, Row scaling as a preconditioner for some nonsymmetric linear systems with discontinuous coefficients, J. Comput. Appl. Math. 234

(12) (2010) 3480–3495.
[36] D. Gordon, R. Gordon, Robust and highly scalable parallel solution of the Helmholtz equation with large wave numbers, J. Comput. Appl. Math. 237 (1)

(2013) 182–196.
[37] T. Elfving, Block-iterative methods for consistent and inconsistent linear equations, Numer. Math. 35 (1) (1980) 1–12.

[38] R. Bramley, A. Sameh, Row projection methods for large nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 13 (1992) 168–193.
[39] M. Arioli, I.S. Duff, D. Ruiz, M. Sadkane, Block lanczos techniques for accelerating the block cimmino method, SIAM J. Sci. Comput. 16 (6) (1995) 1478–1511.

[40] D. Gordon, R. Gordon, Component-averaged row projections: a robust, block-parallel scheme for sparse linear systems, SIAM J. Sci. Comput. 27 (3) (2005)

1092–1117.
[41] Ü.V. Çatalyürek, J. Feo, A.H. Gebremedhin, M. Halappanavar, A. Pothen, Graph coloring algorithms for multi-core and massively multithreaded architectures,

Parallel Comput. 38 (10–11) (2012) 576–594.
[42] A.H. Gebremedhin, D.C. Nguyen, M.M.A. Patwary, A. Pothen, Colpack: software for graph coloring and related problems in scientific computing, ACM Trans.

Math. Softw. 40 (1) (2013) 1.
[43] D. Bozdağ, U. Catalyurek, A. Gebremedhin, F. Manne, E. Boman, F. Özgüner, A parallel distance-2 graph coloring algorithm for distributed memory computers,

in: L.T. Yang, O.F. Rana, B. Di Martino, J. Dongarra (Eds.), High Performance Computing and Communications, vol. 3726 of Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 2005, pp. 796–806.

[44] J.M. Elble, N.V. Sahinidis, P. Vouzis, GPU computing with Kaczmarz’s and other iterative algorithms for linear systems, Parallel Comput. 36 (5–6) (2010)

215–231.
[45] M. Galgon, L. Krämer, B. Lang, Adaptive choice of projectors in projection based eigensolvers, 2015, submitted for publication, available from

http://www.imacm.uni-wuppertal.de/fileadmin/imacm/preprints/2015/imacm_15_07.pdf.
[46] O. Schenk, K. Gärtner, Solving unsymmetric sparse systems of linear equations with PARDISO, Future Gener. Comput. Syst. 20 (3) (2004) 475–487.

[47] E. Wolf, Applications of Graphene: An Overview, SpringerBriefs in Materials, Springer International Publishing, 2014.
[48] G. Karypis, K. Schloegel, ParMETIS. Parallel Graph Partitioning and Sparse Matrix Ordering Library, 4.0, University of Minnesota, Department of Computer

Science and Engineering, Minneapolis, 2013.

http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0007
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0007
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0007
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0007
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0007
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0007
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0008
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0008
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0009
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0009
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0009
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0009
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0009
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0009
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:468-20140701-112141-6
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0011
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0011
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0011
http://www.manchester.ac.uk/mims/eprints
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0012
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0012
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0013
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0013
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0013
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0014
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0014
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0014
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0014
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0014
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0014
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0015
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0015
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0015
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0016
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0016
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0016
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0016
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0016
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0016
http://www.imacm.uni-wuppertal.de/fileadmin/imacm/preprints/2014/imacm_14_31.pdf
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0017
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0017
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0017
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0017
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0018
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0018
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0019
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0019
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0019
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0020
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0020
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0021
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0021
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0021
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0022
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0022
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0023
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0023
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0023
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0024
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0024
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0024
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0025
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0025
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0025
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0026
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0026
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0026
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0026
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0027
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0027
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0028
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0028
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0028
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0028
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0028
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0029
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0029
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0030
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0030
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0031
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0031
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0031
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0032
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0032
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0032
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0033
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0033
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0033
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0034
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0034
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0034
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0035
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0035
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0036
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0036
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0036
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0037
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0037
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0037
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0037
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0037
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0038
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0038
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0038
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0039
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0039
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0039
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0039
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0039
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0039
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0040
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0040
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0040
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0040
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0040
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0041
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0041
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0041
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0041
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0041
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0041
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0041
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0042
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0042
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0042
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0042
http://www.imacm.uni-wuppertal.de/fileadmin/imacm/preprints/2015/imacm_15_07.pdf
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0043
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0043
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0043
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0044
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0044
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0045
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0045
http://refhub.elsevier.com/S0167-8191(15)00091-5/sbref0045

	On the parallel iterative solution of linear systems arising in the FEAST algorithm for computing inner eigenvalues
	1 Introduction
	2 The FEAST algorithm
	2.1 Short description
	2.2 Parallel implementation

	3 An iterative solver for the shifted linear systems
	3.1 Properties of complex-shifted linear systems
	3.2 The CGMN algorithm

	4 Parallel CGMN
	4.1 Multi-coloring
	4.2 Hybrid-parallel approach

	5 Numerical experiments
	5.1 Experiment A: convergence behavior
	5.2 Experiments B: weak and strong scaling of CARP-CG
	5.2.1 A 3D problem

	6 Conclusion
	 Acknowledgments
	 References

