Modelling and optimization of transient processes in parabolic trough power plants with single-phase heat transfer medium

Sollab Doctoral Colloquium 2014, June 23, Odeillo, France

Kareem Noureldin, DLR Institute of Solar Research kareem.noureldin@dlr.de

Supervisors:

Prof. Robert Pitz-Paal Dr. Tobias Hirsch

Why more optimization?

- Optimizing process control not only efficiency of components
- Building of new plants offer the possibility to integrate more control measures
- We seek to represent a whole field with multiple loops in "real" weather conditions

How should the "operators" react to passing clouds?

Andasol thermal PP

- Find optimal solutions to balance the increase in fluid temperature, losses due to defocusing of the parabolic mirrors and pumping power
- This is especially interesting for molten salt systems where the temperature limits (upper and lower) play an important role
- Could the control be automated?

Could we further optimize start-up processes?

 Estimate the ideal mass flow as a function of time to achieve more efficient start-up procedures and avoid hydraulic unbalances

Could we make the hydraulic calibration process easier and more flexible?

- A numerical tool could help with calibrating the hydraulic network to balance the mass flow rates in the parallel loops
- A steady-state calibration is not sufficient

Mass flow variations with temperature difference between loops

Simulation set up for a network with 4 loops

 Δm and ΔT are the difference between the 1st and last loops in the network

Proposed Simulation Model

- The numerical tool should be able to:
 - Map the *hydraulic network* for multiple loops (including mass flow distributions)
 - Account for *time varying* weather conditions (DNI, T_{amb},...)
 - Be *robust* and *reliable* even with varying model parameters
 - Be fast for online computations with changing conditions, for example, passing clouds

Proposed Validation Methods

- Comparing with single loop data, from either available numerical, analytical or experimental results
- Comparison of mass flow distribution for multiple loops with either existing models or data from other applications (e.g. district heating)
- Ideally, would be the comparison with data from fully operational solar thermal power plants (e.g. Andasol)

The PhD project

Phase I: development of the tool

Phase II: Applications

May 2014

- Selection of the basic equations
- Description of mass flow distributions
- Selection of suitable solution schemes
- Implementation
- Validation

- Optimization of the startup processes
- Control strategies in the case of passing clouds

May 2017

Reminder! ©

Monday 23 June

			(L) Change to local time
23 JUN 2014 - 13:00 Local time GROUP B Arena Corinthians Sao Paulo	NETHERLANDS	18:00	CHILE *
23 JUN 2014 - 13:00 Local time GROUP B Arena da Baixada Curitiba	** AUSTRALIA	18:00	SPAIN
23 JUN 2014 - 17:00 Local time GROUP A Estadio Nacional Brasilia	CAMEROON	22:00	BRAZIL 🔷
23 JUN 2014 - 17:00 Local time GROUP A Arena Pernambuco Recife	CROATIA	22:00	MEXICO

Thank you for your attention! **Questions?**

http://www.schott.com/newsfiles/20070531190120_Solar.jpg

