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Consistency and adjoint consistency Derivation of the adjoint problem

Definition of consistency and adjoint consistency for nonlinear problems

Primal problem:

Nu = 0 in Ω, Bu = 0 on Γ.

Target quantity:

J(u) =

∫
Ω

jΩ(u) dx +

∫
Γ

jΓ(Cu) ds,

with Fréchet derivative

J ′[u](w) =

∫
Ω

j ′Ω[u] w dx +

∫
Γ

j ′Γ[Cu] C ′[u]w ds.

Compatibility condition: J(·) is compatible to the primal problem if

(N ′[u]w , z)Ω + (B ′[u]w , (C ′[u])∗z)Γ = (w , (N ′[u])∗z)Ω + (C ′[u]w , (B ′[u])∗z)Γ.

Adjoint problem:

(N ′[u])∗z = j ′Ω[u] in Ω, (B ′[u])∗z = j ′Γ[Cu] on Γ.
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Consistency and adjoint consistency Derivation of the adjoint problem

Definition of consistency for nonlinear problems

Primal problem:

Nu = 0 in Ω, Bu = 0 on Γ.

Discretization: Find uh ∈ Vh such that

Nh(uh, vh) = 0 ∀vh ∈ Vh.

Consistency: The exact solution u to the primal problem satisfies:

Nh(u, v) = 0 ∀v ∈ V .

Ralf Hartmann and Tobias Leicht (DLR) Higher order and adaptive DG methods for compressible flows 12. Dec. 2013 5 / 65



Consistency and adjoint consistency Derivation of the adjoint problem

Consistency analysis

Rewrite the discrete problem: Find uh ∈ Vh such that

Nh(uh, vh) = 0 ∀vh ∈ Vh

in following element-based primal residual form: Find uh ∈ Vh such that∫
Ω

R(uh)vh dx +
∑
κ∈Th

∫
∂κ\Γ

r(uh)vh ds +

∫
Γ

rΓ(uh)vh ds = 0 ∀vh ∈ Vh.

The discretization is consistent
if the exact solution u to the primal problem satisfies

R(u) = 0 in κ, κ ∈ Th,
r(u) = 0 on ∂κ \ Γ, κ ∈ Th,

rΓ(u) = 0 on Γ.
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Consistency and adjoint consistency Derivation of the adjoint problem

Definition of adjoint consistency for nonlinear problems

Discretization: Find uh ∈ Vh such that

Nh(uh, vh) = 0 ∀vh ∈ Vh,

Compatible target quantity: J(u)
consistent discretization Jh(uh) with Jh(u) = J(u).

Discrete adjoint problem: find zh ∈ Vh such that

N ′h[uh](wh, zh) = J ′h[uh](wh) ∀wh ∈ Vh.

Adjoint consistency: The exact solution z to the adjoint problem satisfies:

N ′h[u](w , z) = J ′h[u](w) ∀w ∈ V .
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Consistency and adjoint consistency Derivation of the adjoint problem

Adjoint consistency analysis

Rewrite the discrete adjoint problem: find zh ∈ Vh such that

N ′h[uh](wh, zh) = J ′h[uh](wh) ∀wh ∈ Vh,

in adjoint residual form: find zh ∈ Vh such that∑
κ∈Th

∫
κ

wh R∗[uh](zh) dx +
∑
κ∈Th

∫
∂κ\Γ

wh r∗[uh](zh) ds +

∫
Γ

wh r∗Γ [uh](zh) ds = 0,

The discrete adjoint problem is a consistent discretization of the adjoint problem
if the exact solution z to the adjoint problem satisfies

R∗[u](z) = 0 in κ, r∗[u](z) = 0 on ∂κ \ Γ, κ ∈ Th, r∗Γ [u](z) = 0 on Γ.

Then the discretization Nh in combination with Jh is adjoint consistent.
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DG discretization of the compressible Euler equations The compressible Euler and its adjoint equations

The compressible Euler equations

∂
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u +∇ · F c(u) = 0

Steady state compressible Euler equations:

∇ · F c(u) = 0

Ralf Hartmann and Tobias Leicht (DLR) Higher order and adaptive DG methods for compressible flows12. Dec. 2013 10 / 65



DG discretization of the compressible Euler equations The compressible Euler and its adjoint equations

The compressible Euler equations

∂

∂t


%
%v1

%v2

%E

+
∂

∂x1


%v1

%v 2
1 + p
%v1v2

v1(%E + p)

+
∂

∂x2


%v2

%v1v2

%v 2
2 + p

v2(%E + p)

 = 0

∂

∂t
u +

∂

∂x1
fc
1 (u) +

∂

∂x2
fc
2 (u) = 0

∂

∂t
u +∇ · F c(u) = 0

Steady state compressible Euler equations:

∇ · F c(u) = 0

Ralf Hartmann and Tobias Leicht (DLR) Higher order and adaptive DG methods for compressible flows12. Dec. 2013 10 / 65



DG discretization of the compressible Euler equations The compressible Euler and its adjoint equations

The compressible Euler equations

∂

∂t


%
%v1

%v2

%E

+
∂

∂x1


%v1

%v 2
1 + p
%v1v2

v1(%E + p)

+
∂

∂x2


%v2

%v1v2

%v 2
2 + p

v2(%E + p)

 = 0

∂

∂t
u +

∂

∂x1
fc
1 (u) +

∂

∂x2
fc
2 (u) = 0

∂

∂t
u +∇ · F c(u) = 0

Steady state compressible Euler equations:

∇ · F c(u) = 0

Ralf Hartmann and Tobias Leicht (DLR) Higher order and adaptive DG methods for compressible flows12. Dec. 2013 10 / 65



DG discretization of the compressible Euler equations The compressible Euler and its adjoint equations

The compressible Euler equations

∂

∂t


%
%v1

%v2

%E

+
∂

∂x1


%v1

%v 2
1 + p
%v1v2

v1(%E + p)

+
∂

∂x2


%v2

%v1v2

%v 2
2 + p

v2(%E + p)

 = 0

∂

∂t
u +

∂

∂x1
fc
1 (u) +

∂

∂x2
fc
2 (u) = 0

∂

∂t
u +∇ · F c(u) = 0

Steady state compressible Euler equations:

∇ · F c(u) = 0

Ralf Hartmann and Tobias Leicht (DLR) Higher order and adaptive DG methods for compressible flows12. Dec. 2013 10 / 65



DG discretization of the compressible Euler equations The compressible Euler and its adjoint equations

Boundary conditions

Supersonic inflow corresponds to Dirichlet boundary conditions where

uΓ(u) = gD = u∞.

Supersonic outflow corresponds to Neumann boundary conditions where

uΓ(u) = u.

The subsonic inflow boundary condition takes the pressure from the flow
field and imposes all other variables based on freestream conditions u∞, i.e.

uΓ(u) =

(
ρ∞, ρ∞v1,∞, ρ∞v2,∞,

p(u)

γ − 1
+ ρ∞

(
v 2

1,∞ + v 2
2,∞
))>

.

Here, p ≡ p(u) denotes the pressure.

The subsonic outflow boundary condition imposes an outflow pressure pout

and takes all other variables from the flow field, i.e.

uΓ(u) =

(
u1, u2, u3,

pout

γ − 1
+

u2
2 + u2

3

2u1

)>
.
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DG discretization of the compressible Euler equations The compressible Euler and its adjoint equations

Slip wall boundary conditions

For slip wall boundary conditions we set

uΓ(u) =


1 0 0 0
0 1− n2

1 −n1n2 0
0 −n1n2 1− n2

2 0
0 0 0 1

u on ΓW ,

which originates from u by removing the normal velocity component of u,
i.e. v = (v1, v2) is replaced by vΓ = v − (v · n)n.

This choice ensures a vanishing normal velocity,

BuΓ(u) = n1uΓ,2 + n2uΓ,3 = ρn · vΓ = 0,

for the boundary operator

Bu = n1u2 + n2u3 on ΓW .
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DG discretization of the compressible Euler equations The compressible Euler and its adjoint equations

The continuous adjoint equations

Given an inviscid compressible flow at an angle of attack α.
Then the aerodynamic force coefficients are given by

J(u) =

∫
Γ

j(u) ds =

∫
ΓW

p n ·ψ ds,

where ψ = ψd = 1
C∞

(cos(α), sin(α))> for the drag coefficient

and ψ = ψl = 1
C∞

(− sin(α), cos(α))> for the lift coefficient.

Primal problem with slip wall boundary conditions, n · v = n1v1 + n2v2 = 0:

Nu = ∇ · F c(u) = 0 on Ω, Bu = n1u2 + n2u3 = 0 on ΓW .

Multiply left hand side by z, integrate over Ω and integrate by parts:

(∇ · F c(u), z)Ω = −(F c(u),∇z)Ω + (n · F c(u), z)Γ.

Linearize about the exact solution u

(∇ · (F c
u [u](w)) , z)Ω = − (F c

u [u](w),∇z)Ω + (n · F c
u [u](w), z)Γ

= −
(

w, (F c
u [u])>∇z

)
Ω

+
(

w, (n · F c
u [u])> z

)
Γ
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DG discretization of the compressible Euler equations The compressible Euler and its adjoint equations

The continuous adjoint equations

The variational formulation of the adjoint problem is given by: find z such that

−
(

w, (F c
u [u])>∇z

)
Ω

+
(

w, (n · F c
u [u])> z

)
Γ

= J ′[u](w) ∀w ∈ V ,

with
J(u) =

∫
Γ

j(u) ds =

∫
ΓW

p n ·ψ ds,

J ′[u](w) =

∫
Γ

j ′[u](w) ds =

∫
ΓW

p′[u](w) n ·ψ ds.

The continuous adjoint problem is

(N ′[u])∗z = − (F c
u [u])>∇z = 0 in Ω, (n · F c

u [u])> z = j ′[u] on ΓW .

Using F c(u) · n = p(0, n1, n2, 0)> on ΓW we obtain

p′[u](0, n1, n2, 0) · z = p′[u]n ·ψ on ΓW ,

which reduces to the boundary condition of the adjoint problem:

(B ′[u])∗z = n1z2 + n2z3 = n ·ψ on ΓW .
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DG discretization of the compressible Euler equations The DG discretization

The DG discretization of the compressible Euler equations

The problem:

∇ · F c(u) = 0 in Ω ⊂ R2,

with u = (%, %v1, %v2, ρE )T .
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The DG(p) discretization: Find uh in Vp
h such that

Nh(uh, vh) ≡
∑
κ∈Th

{
−
∫
κ

F c(uh) : ∇vh dx +

∫
∂κ\Γ

ĥ(u+
h ,u

−
h ,n) · v+

h ds

}

+

∫
Γ

ĥΓ(u+
h ,n) · v+

h ds = 0 ∀vh ∈ Vp
h ,

with

Vp
h = {vh ∈

[
L2(Ω)

]m
:vh|κ ◦ Fκ ∈ [Qp(κ̂)]m if κ̂ is the unit square, and

vh|κ ◦ Fκ ∈ [Pp(κ̂)]m if κ̂ is the unit triangle, κ ∈ Th}.

Numerical flux function ĥ: (Local) Lax-Friedrichs, Vijayasundaram, Roe, . . .
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DG discretization of the compressible Euler equations The DG discretization

Consistency

The discretization: find uh in Vp
h such that

Nh(uh, vh) ≡ −
∫

Ω

F c(uh) : ∇vh dx +
∑
κ∈Th

∫
∂κ\Γ

ĥh · v+
h ds +

∫
Γ

ĥΓ,h · v+
h ds = 0

for all vh ∈ Vp
h , with ĥh := ĥ(u+

h ,u
−
h ,n) on ∂κ \ Γ, and ĥΓ,h := ĥΓ(u+

h ,n) on Γ,

is consistent if

the numerical flux ĥ on interior edges e ∈ ΓI is consistent, i.e.

ĥ(v, v,n) = n · F c(v) on e ∈ ΓI ,

and, the numerical flux ĥΓ on boundary edges is consistent, i.e., the exact
solution u of the flow equations satisfies

ĥΓ(u,n) = n · F c(u) on Γ.
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DG discretization of the compressible Euler equations The DG discretization

Adjoint consistency

The discretization: find uh in Vp
h such that

Nh(uh, vh) ≡ −
∫

Ω

F c(uh) : ∇vh dx +
∑
κ∈Th

∫
∂κ\Γ

ĥh · v+
h ds +

∫
Γ

ĥΓ,h · v+
h ds = 0

for all vh ∈ Vp
h , with ĥh := ĥ(u+

h ,u
−
h ,n) on ∂κ \ Γ, and ĥΓ,h := ĥΓ(u+

h ,n) on Γ.

The (compatible) target quantity:

J(u) =

∫
ΓW

p n ·ψ ds,

Task: Find a discretization Jh(uh) of J(u) which is consistent and
which (in combination with Nh) is adjoint consistent.

Consider following discretization of J(u):

Jh(uh) =

∫
ΓW

ĥΓ,h · ψ̃ ds,

with ψ̃ = (0, ψ1, ψ2, 0)> on ΓW for ψ = (ψ1, ψ2)>.
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DG discretization of the compressible Euler equations The DG discretization
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DG discretization of the compressible Euler equations The DG discretization

Adjoint consistency

Consider the target quantity and its discretization

J(u) =

∫
ΓW

p n ·ψ ds, Jh(uh) =

∫
ΓW

ĥΓ,h · ψ̃ ds,

with ψ̃ = (0, ψ1, ψ2, 0)> for ψ = (ψ1, ψ2)>, and ĥΓ,h := ĥΓ(u+
h ,n) on Γ.

Assume ĥΓ is consistent. Then, Jh(uh) is a consistent discretization of J(u), as
the exact solution u satisfies

ĥΓ(u,n) · ψ̃ = (n · F c(u)) · ψ̃ = p(u)(0, n1, n2, 0)> · ψ̃ = p(u)n ·ψ,

and thereby Jh(u) = J(u).

Furthermore, one can show (cf. Theorem 5.13) that Nh in combination with Jh is
adjoint consistent.
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DG discretization of the compressible Euler equations The DG discretization

With a numerical flux function at the boundary . . .

1. . . . based on the normal boundary flux

ĥΓ,h = ĥΓ(u+
h ,n) = n · F c(uΓ(u+

h )),

the discretization is given by

−
∫

Ω

F c(uh) : ∇hvh dx +
∑
κ∈Th

∫
∂κ\Γ

ĥh ·v+
h ds +

∫
Γ

n ·F c(uΓ(u+
h )) ·v+

h ds = 0.

(a) This discretization is adjoint consistent in combination with

Jh(uh) =

∫
ΓW

ĥΓ,h · ψ̃ ds =

∫
ΓW

(
n · F c(uΓ(u+

h )
)
· ψ̃ ds

=

∫
ΓW

p
(
uΓ(u+

h )
)

n ·ψ ds = J(uΓ(u+
h )).

(b) It is adjoint inconsistent in combination with following direct discretization

J(uh) =

∫
ΓW

p(uh) n ·ψ ds.
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DG discretization of the compressible Euler equations The DG discretization

With a numerical flux function at the boundary . . .

2. . . . based on the interior numerical flux

ĥΓ,h = ĥΓ(u+
h ,n) = ĥ(u+

h ,u
−
Γ (u+

h ),n),

where the boundary exterior state u−Γ (u+
h ) is obtained by

1

2

(
u+

h + u−Γ (u+
h )
)

= uΓ(u+
h ), i.e., u−Γ (u+

h ) = 2uΓ(u+
h )− u+

h ,

uΓ(u) =


1 0 0 0
0 1− n2

1 −n1n2 0
0 −n1n2 1− n2

2 0
0 0 0 1

u, u−Γ (u) =


1 0 0 0
0 1− 2n2

1 −2n1n2 0
0 −2n1n2 1− 2n2

2 0
0 0 0 1

u.

Then, the discretization is given by

−
∫

Ω

F c(uh) : ∇hvh dx+
∑
κ∈Th

∫
∂κ\Γ

ĥh·v+
h ds+

∫
Γ

ĥ(u+
h ,u

−
Γ (u+

h ),n)·v+
h ds = 0.
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DG discretization of the compressible Euler equations The DG discretization

With a numerical flux function at the boundary . . .

2. . . . based on the interior numerical flux, the discretization,

−
∫

Ω

F c(uh) : ∇hvh dx+
∑
κ∈Th

∫
∂κ\Γ

ĥh·v+
h ds+

∫
Γ

ĥ(u+
h ,u

−
Γ (u+

h ),n)·v+
h ds = 0,

(a) . . . is adjoint consistent in combination with following discretization of J(·),

Jh(uh) =

∫
ΓW

ĥΓ,h · ψ̃ ds =

∫
ΓW

ĥ(u+
h ,u

−
Γ (u+

h ),n) · ψ̃ ds,

(b) . . . is adjoint inconsistent in combination with the direct discretization

J(uh) =

∫
ΓW

p(uh) n ·ψ ds,

(c) . . . is adjoint inconsistent in combination with

J(uΓ(u+
h )).
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DG discretization of the compressible Euler equations The DG discretization

Example: Inviscid flow around NACA0012 airfoil at M = 0.5, α = 0◦
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DG discretization of the compressible Navier-Stokes equations The compressible Navier-Stokes and its adjoint equations
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DG discretization of the compressible Navier-Stokes equations The compressible Navier-Stokes and its adjoint equations

The compressible Navier-Stokes equations

∂

∂t
u +

∂

∂x1
fc
1 (u) +

∂

∂x2
fc
2 (u)− ∂

∂x1
fv
1 (u,∇u)− ∂

∂x2
fv
2 (u,∇u) = 0

∂

∂t
u +∇ · F c(u)−∇ · Fv (u,∇u) = 0

We consider the steady state equations

∇ · F c(u)−∇ · Fv (u,∇u) = 0,

with the no-slip wall boundary decomposed in isothermal and adiabiatic
boundaries ΓW = Γiso ∪ Γadia and following boundary conditions imposed

v = 0 on ΓW , T = Twall on Γiso, n · ∇T = 0 on Γadia.
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DG discretization of the compressible Navier-Stokes equations The compressible Navier-Stokes and its adjoint equations

The adjoint equations

Primal problem:

∇ · F c(u)−∇ · Fv (u,∇u) = 0 on Ω,

with adiabatic or isothermal wall boundary conditions.
Target quantity: Total drag or lift coefficient:

J(u) =

∫
Γ

j(u) ds =

∫
ΓW

(p n− τ n) ·ψ ds

Adjoint problem:

− (F c
u −Fv

u )>∇z−∇ ·
(

(Fv
∇u)>∇z

)
= 0,

subject to boundary conditions

z2 = ψ1, z3 = ψ2 on ΓW , z4 = 0 on Γiso, n · ∇z4 = 0 on Γadia.
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DG discretization of the compressible Navier-Stokes equations The DG discretization

Outline

1 Consistency and adjoint consistency
Derivation of the adjoint problem

2 DG discretization of the compressible Euler equations
The compressible Euler and its adjoint equations
The DG discretization
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5 Numerical results
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DG discretization of the compressible Navier-Stokes equations The DG discretization

DG discretization of the viscous part of the Navier-Stokes equations

−∇ · Fv (u,∇u) = −∇ · (G (u)∇u) = 0 in Ω,

System of first order equations

σ = G (u)∇u, −∇ · σ = 0 in Ω.

Similar to for Poisson’s equation we obtain: find uh ∈ Vp
h such that∫

Ω

G (uh)∇huh : ∇hvh dx−
∑
κ∈Th

∫
∂κ

σ̂h : vh ⊗ n ds

+
∑
κ∈Th

∫
∂κ

(ûh − uh)⊗ n :
(
G>(uh)∇vh

)
ds = 0 ∀vh ∈ Vp

h ,

with numerical flux functions

ûh = û(uh) = û(u+
h ,u

−
h ), ûh|Γ = ûΓ,h = ûΓ(u+

h ),

σ̂h = σ̂(uh,∇uh) = σ̂(u+
h ,u

−
h ,∇u+

h ,∇u−h ), σ̂h|Γ = σ̂Γ,h = σ̂Γ(u+
h ,∇u+

h ).

Ralf Hartmann and Tobias Leicht (DLR) Higher order and adaptive DG methods for compressible flows12. Dec. 2013 28 / 65



DG discretization of the compressible Navier-Stokes equations The DG discretization

DG discretization of the compressible Navier-Stokes equations

Combine with the discretization of the compressible Euler equations to get

Nh(uh, vh) ≡
∫

Ω

(−F c(uh) + Fv (uh,∇huh)) : ∇hvh dx+
∑
κ∈Th

∫
∂κ

(
ĥh − σ̂hn

)
·vh ds

+
∑
κ∈Th

∫
∂κ

(ûh − uh)⊗ n :
(
G>(uh)∇vh

)
ds = 0,

with ĥ|Γ = ĥΓ,h = ĥΓ(u+
h ,n) and σ̂h|Γ = σ̂Γ,h = σ̂Γ(u+

h ,∇u+
h ).

The (compatible) target quantity

J(u) =

∫
ΓW

(p n− τ n) ·ψ ds

Task: Find a discretization Jh(uh) of J(u) which is consistent and
which (in combination with Nh) is adjoint consistent.

Jh(uh) =

∫
ΓW

(
ĥΓ,h − σ̂Γ,hn

)
· ψ̃ ds,

with ψ̃ = (0, ψ1, ψ2, 0)> for ψ = (ψ1, ψ2)>.
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(ûh − uh)⊗ n :
(
G>(uh)∇vh

)
ds = 0,
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DG discretization of the compressible Navier-Stokes equations The DG discretization

DG discretization of the compressible Navier-Stokes equations

Consider the target quantity and its discretization

J(u) =

∫
ΓW

(p n− τ n) ·ψ ds, Jh(uh) =

∫
ΓW

(
ĥΓ,h − σ̂Γ,hn

)
· ψ̃ ds,

with ψ̃ = (0, ψ1, ψ2, 0)> for ψ = (ψ1, ψ2)>.
Assume ĥΓ and σ̂Γ are consistent. Then, Jh(uh) is a consistent discretization of
J(u), as the exact solution u satisfies(

ĥΓ(u,n)− (σ̂Γ(u,∇u)n)
)
· ψ̃ = (n · F c(u)− n · Fv (u,∇u)) · ψ̃ = (pn− τn) ·ψ,

due to n · F c(u) = (0, pn1, pn2, 0)> and
n · Fv (u,∇u) = (0, (τn)1, (τn)2,Kn · ∇T )> on ΓW . Thus Jh(u) = J(u).

Furthermore, one can show (cf. Theorem 6.9) that Nh in combination with Jh is
adjoint consistent.
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DG discretization of the compressible Navier-Stokes equations The DG discretization

Numerical flux functions

For SIPG and BR2 the fluxes are given by

ûh = {{uh}}, σ̂h = {{G (uh)∇huh}} − δ(uh) on ΓI ,

with

δ(uh) = CIP
p2

he
µ[[uh]] for IP (Hartmann & Houston, 2006a),

δ(uh) = CIP
p2

he
{{G (uh)}}[[uh]] for IP (Hartmann & Houston, 2008),

δ(uh) = CBR2{{G (uh)Le
0(uh)}} for BR2 (Bassi et al. 2005),

δ(uh) = CBR2{{L̃
e

0(uh)}} for BR2 (Bassi & Rebay, 2000a, 2002).

Then the DG discretization is given by: find uh ∈ Vp
h such that

Nh(uh, vh) =

∫
Ω

(−F c(uh) + Fv (uh,∇huh)) : ∇hvh dx +
∑
κ∈Th

∫
∂κ\Γ

hh · vh ds

−
∫

ΓI

[[uh]] : {{G>(uh)∇vh}} ds −
∫

ΓI

{{G (uh)∇huh}} : [[vh]]

+

∫
ΓI

δ(uh) : [[vh]] ds + NΓ,h(uh, vh) = 0 ∀vh ∈ Vp
h .
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DG discretization of the compressible Navier-Stokes equations The DG discretization

With a numerical flux function at the boundary . . .

1. . . . based on the normal boundary flux

ĥΓ(u+
h ,n) = n · F c(uΓ(u+

h )), ûΓ,h = uΓ(u+
h ), σ̂Γ,h = F̃v (uΓ(u+

h ),∇u+
h )− δΓ(u+

h ),

the discretization at the boundary is given by

NΓW ,h(uh, vh) =

∫
ΓW

n ·
(
F c(uΓ(u+

h ))− F̃v (uΓ(u+
h ),∇u+

h ) + δΓ(u+
h )
)
· v+

h ds

−
∫

ΓW

(
u+

h − uΓ(u+
h )
)
⊗ n :

(
G>(u+

h )∇v+
h

)
ds

(a) This discretization is adjoint consistent in combination with

Jh(uh) =

∫
ΓW

(
ĥΓ,h − σ̂Γ,hn

)
· ψ̃ ds = J(uΓ(u+

h )) +

∫
ΓW

(
n · δΓ(u+

h )
)
· ψ̃ ds,

with J(u) =

∫
ΓW

(p n− τ n) ·ψ ds.

(b) It is adjoint inconsistent in combination with any other discretization, like

J(uh), or J(uΓ(u+
h )).
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DG discretization of the compressible Navier-Stokes equations The DG discretization

Example: M = 0.5, α = 0◦, Re = 5000 viscous flow, NACA0012 airfoil

Target quantity: Total drag coefficient: J(u) =
∫

ΓW
(p n− τ n) ·ψ ds

Adjoint consistent discretization:

Jh(uh) =
∫

ΓW

(
ĥΓ,h − σ̂Γ,hn

)
· ψ̃ ds = J(uΓ(u+

h )) +
∫

ΓW

(
n · δΓ(u+

h )
)
· ψ̃ ds

10
2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

sqele

cd
er

ro
r

 

 

1
2

1

4

1

6

p=1
p=2
p=3
SIPG
BR2

The error |J(u)− Jh(uh)| of

SIPG(p) and BR2(p) is of O(h2p)

adjoint consistent

10
2

10
−4

10
−3

10
−2

sqele

cd
er

ro
r

 

 

p=1
p=2
p=3
SIPG
BR2

The error |J(u)− J(uΓ(uh))| of

SIPG(p) and BR2(p) is of reduced order

adjoint inconsistent

Ralf Hartmann and Tobias Leicht (DLR) Higher order and adaptive DG methods for compressible flows12. Dec. 2013 33 / 65



DG discretization of the compressible Navier-Stokes equations The DG discretization

Example: M = 0.5, α = 0◦, Re = 5000 viscous flow, NACA0012 airfoil

Target quantity: Total drag coefficient: J(u) =
∫

ΓW
(p n− τ n) ·ψ ds

Adjoint consistent discretization:

Jh(uh) =
∫

ΓW

(
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DG discretization of the compressible Navier-Stokes equations The DG discretization

With a numerical flux function at the boundary . . .

1. . . . based on the interior numerical fluxes

ĥΓ(u+
h ,n) = ĥ(u+

h ,u
−
Γ (u+

h ),n), ûΓ,h = uΓ(u+
h ), σ̂Γ,h = {{F̃v (uh,∇uh)}}Γ − δ̃Γ(u+

h ),

where {{·}}Γ denotes the mean value of a function evaluated at the interior state
u+

h and the (mirrored) boundary exterior state u−Γ (u+
h ) given by

1

2

(
u+

h + u−Γ (u+
h )
)

= uΓ(u+
h ), i.e., u−Γ (u+

h ) = 2uΓ(u+
h )− u+

h ,

the discretization at the boundary is given by

NΓW ,h(uh, vh) =

∫
ΓW

(
ĥ(u+

h ,u
−
Γ (u+

h ),n)− {{F̃v (uh,∇uh)}}Γ + δ̃Γ(u+
h )
)
· v+

h ds

−
∫

ΓW

(
u+

h − uΓ(u+
h )
)
⊗ n :

(
G>(u+

h )∇v+
h

)
ds

(a) This discretization is adjoint consistent in combination with

Jh(uh) =

∫
ΓW

(
ĥΓ,h − σ̂Γ,hn

)
· ψ̃ ds

(b) It is adjoint inconsistent in combination with any other Jh(uh).
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Adjoint-based error estimation and adaptive mesh refinement Error estimation and adaptive mesh refinement

Outline

1 Consistency and adjoint consistency
Derivation of the adjoint problem

2 DG discretization of the compressible Euler equations
The compressible Euler and its adjoint equations
The DG discretization

3 DG discretization of the compressible Navier-Stokes equations
The compressible Navier-Stokes and its adjoint equations
The DG discretization

4 Adjoint-based error estimation and adaptive mesh refinement
Error estimation and adaptive mesh refinement
Residual-based mesh refinement

5 Numerical results
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Adjoint-based error estimation and adaptive mesh refinement Error estimation and adaptive mesh refinement

Error estimation for nonlinear problems

Discretization: find uh ∈ Vp
h such that

Nh(uh, vh) = 0 ∀vh ∈ Vp
h .

Error representation:
J(u)− Jh(uh) = Rh(uh, z),

where z is the exact (but unknown) solution to the adjoint equations. Replace z
by the solution to following discrete adjoint problem: Find z̄h ∈ V̄p

h such that

N ′h[uh](wh, z̄h) = J ′[uh](wh) ∀wh ∈ V̄p
h .

We obtain the error estimate (approximate error representation):

J(u)− J(uh) ≈ Rh(uh, z̄h) =
∑
κ∈Th

η̄κ.

Note, that Rh(uh, zh) = −Nh(uh, zh) = 0 for any zh ∈ Vp
h . Thereby,

Rh(uh, z̄h) = Rh(uh, z̄h − zh) =

{
0 for z̄h ∈ Vp

h ,
Eh 6= 0 for z̄h ∈ V̄p

h 6⊂ Vp
h .

Take, for example, V̄p
h = Vp̄

h , with p̄ = p + 1, on the same mesh Th.
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Adjoint-based error estimation and adaptive mesh refinement Error estimation and adaptive mesh refinement

Error estimation for nonlinear problems

Discretization: find uh ∈ Vp
h such that

Nh(uh, vh) = 0 ∀vh ∈ Vp
h .

Error representation:
J(u)− Jh(uh) = Rh(uh, z),

where z is the exact (but unknown) solution to the adjoint equations. Replace z
by the solution to following discrete adjoint problem: Find z̄h ∈ V̄p

h such that

N ′h[uh](wh, z̄h) = J ′[uh](wh) ∀wh ∈ V̄p
h .

We obtain the error estimate (approximate error representation):

J(u)− J(uh) ≈ Rh(uh, z̄h) =
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κ∈Th

η̄κ.
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Adjoint-based error estimation and adaptive mesh refinement Error estimation and adaptive mesh refinement

Single-target adaptive algorithm

.. for the accurate and efficient approximation of a single target quantity J(u).
The error estimate:

J(u)− J(uh) ≈ Rh(uh, z̄h) =
∑
κ∈Th

η̄κ

includes the so-called adjoint-based indicators η̄κ.

Algorithm:

1 Construct an initial mesh Th.

2 Compute uh ∈ Vp
h on the current mesh Th.

3 Compute z̄h ∈ V̄p
h = Vp̄

h on the same mesh employed for uh, with p̄ = p + 1.

4 Evaluate the approximate error representation Rh(uh, z̄h) =
∑
κ∈Th

η̄κ.

5 If |
∑
κ∈Th

η̄κ| ≤ TOL, where TOL is a given tolerance, then STOP.

6 Otherwise, refine and coarsen a fixed fraction of the total number of
elements according to the size of |η̄κ| and generate a new mesh Th; GOTO 2.
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Adjoint-based error estimation and adaptive mesh refinement Residual-based mesh refinement

Outline

1 Consistency and adjoint consistency
Derivation of the adjoint problem

2 DG discretization of the compressible Euler equations
The compressible Euler and its adjoint equations
The DG discretization

3 DG discretization of the compressible Navier-Stokes equations
The compressible Navier-Stokes and its adjoint equations
The DG discretization

4 Adjoint-based error estimation and adaptive mesh refinement
Error estimation and adaptive mesh refinement
Residual-based mesh refinement

5 Numerical results
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Adjoint-based error estimation and adaptive mesh refinement Residual-based mesh refinement

Derivation of residual-based indicators

The error representation:

J(u)− J(uh) = Rh(uh, z) = Rh(uh, z− zh).

Choose zh = Πhz and write Rh in primal residual form:

J(u)− J(uh) =

∫
Ω

R(uh) · (z− Πhz) dx

+
∑
κ∈Th

∫
∂κ\Γ

r(uh) · (z− Πhz)+ + ρ(uh) : ∇ (z− Πhz)+ ds

+

∫
Γ

rΓ(uh) · (z− Πhz)+ + ρ
Γ
(uh) : ∇ (z− Πhz)+ ds,

Assume some smoothness properties of the adjoint solution, apply approximation
estimates and obtain

|J(u)− J(uh)| ≤ C

(∑
κ∈Th

(
η(res)
κ

)2
)1/2

, with

ηres
κ = hκ‖R(uh)‖L2(κ) + h1/2

κ ‖r∂κ(uh)‖L2(∂κ) + h−1/2
κ ‖ρ

∂κ
(uh)‖L2(∂κ).
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Numerical results

Numerical examples

Compare

adjoint-based mesh refinement (using ηκ) against

residual-based mesh refinement (using η
(res)
κ ).

Investigate the accuracy of the error estimation

J(u)− J(uh) = Rh(uh, z) ≈ Rh(uh, z̄h).

Use the error estimate for improving/enhancing the computed target quantity
Jh(uh) as follows

J̃h(uh) = Jh(uh) + Rh(uh, z̄h).
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Numerical results

Numerical example: Linear advection equation

Lu := ∇ · (bu) = 0 in Ω = [0, 2]× [0, 1] ∈ R2,

u = 1 on

[
1

8
,

3

4

]
× {0}

u = 0 elsewhere on Γ−.

vector field b primal solution

Interest in the solution on right boundary part: x ∈ {2} × ( 1
4 , 1).

Define target quantity J(u) =
∫

Γ+
jΓ u ds , with

jΓ(2, y) = exp
((

3
8

)−2 −
(
(y − 5

8 )2 − 3
8

)−2
)

for 1
4 < y < 1 and 0 elsewhere.
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Numerical results

Numerical example: Linear advection equation

Target quantity: J(u) =
∫

Γ+
jΓ u ds

with jΓ 6= 0 and smooth on
right outflow boundary

−b · ∇z = 0 in Ω,

b · n z = jΓ on Γ+.

The primal and adjoint solutions:

primal solution adjoint solution
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Numerical results

vector field b adjoint solution

residual-based refined mesh adjoint-based refined mesh

solution on residual-based refined mesh solution on adjoint-based refined mesh
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Numerical results

Supersonic flow past a BAC3-11 airfoil

Inviscid flow at M = 1.2
and an angle α = 5◦

past the BAC3-11 airfoil

Target quantity:
J(u) = p(x0)
(pressure at leading edge)

Problem: find pressure at
leading edge to
best accuracy.

Mach number on sonic lines
residual-based refined mesh (M = 1 lines)

M > 1
M<1

M > 1

How to create an efficient mesh for this?
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Inviscid flow at M = 1.2
and an angle α = 5◦

past the BAC3-11 airfoil

pressure

Target quantity:
J(u) = p(x0)
(pressure at leading edge)

Problem: find pressure at
leading edge to
best accuracy.

Mach number on sonic lines
residual-based refined mesh (M = 1 lines)

M > 1
M<1

M > 1

How to create an efficient mesh for this?
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Numerical results

Supersonic flow past a BAC3-11 airfoil

Inviscid flow at M = 1.2 and an angle α = 5◦ past the BAC3-11 airfoil
Target quantity (pressure at leading edge): J(u) = p(x0)
Reference value (fine mesh computation): J(u) = 2.393

-1

-0.5

0

0.5

1

-0.5 0 0.5 1
-1

-0.5

0

0.5

1

-0.5 0 0.5 1

residual-based refined modified residual-based
13719 elements 9516 elements

J(u)− J(uh) = 3.5 · 10−2 J(u)− J(uh) = 7.9 · 10−3

-1

-0.5

0

0.5

1

-0.5 0 0.5 1

b

C
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Numerical results

Supersonic flow past a BAC3-11 airfoil

Inviscid flow at M = 1.2 and an angle α = 5◦ past the BAC3-11 airfoil
Target quantity (pressure at leading edge): J(u) = p(x0)

-1

-0.5

0

0.5

1

-0.5 0 0.5 1

M > 1

M<1

M > 1

adjoint-based refined sonic lines adjoint solution z1

1803 elements (M = 1 isolines)
J(u)− J(uh) = 3.0 · 10−3
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Numerical results

Supersonic flow past a BAC3-11 airfoil

Inviscid flow at M = 1.2 and an angle α = 5◦ past the BAC3-11 airfoil
Target quantity (pressure at leading edge): J(u) = p(x0) n

0.001

0.01

0.1

100 1000 10000

residual indicator
modified residual indicator

(dual-)weighted residual indicator

0.001

0.01

0.1

1 10 100 1000

residual indicator
modified residual indicator

(dual-)weighted residual indicator

|J(u)− J(uh)| |J(u)− J(uh)|
over number of cells over number of time units
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Numerical results

ADIGMA BTC3 test case

Laminar flow at M = 0.3, Re = 4000 and α = 12.5◦ around a delta wing

Reference values by fine grid computations:
C ref

l = 0.34865, C ref
d = 0.16608, and C ref

m = −0.03065

ADIGMA industrial accuracy requirements:
TOLCl = 10−2, TOLCd = TOLCm = 10−3

Performance of

residual-based refinement

adjoint-based refinement
(single-target and multi-target)

error estimation
(single-target and multi-target)
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Numerical results

ADIGMA BTC3 test case
Laminar flow at M = 0.3, Re = 4000, α = 12.5◦

around a delta wing

Multi-target adjoint-based mesh refinement for the
sum of relative errors of Cl, Cd and Cm

Error in Cd: Error in Cl:
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r 
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global
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TOL_Cd
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Numerical results

ADIGMA BTC3 test case
Laminar flow at M = 0.3, Re = 4000, α = 12.5◦

around a delta wing

Multi-target adjoint-based mesh refinement for the
sum of relative errors of Cl, Cd and Cm

Error in Cd: Error in Cd:

 0.001

 0.01

 100000  1e+06  1e+07  1e+08

er
ro

r 
in

 C
d

number of dofs

global
residual-based

adjoint-based(multi)
adjoint-based(Cd)

adj(multi)+est
adj(Cd)+est

TOL_Cd

 0.001

 0.01

 1e-05  1e-04  0.001  0.01  0.1  1

er
ro

r 
in

 C
d

time (fraction of global refinement to meet TOL_Cd)

global
residual-based

adjoint-based(multi)
adjoint-based(Cd)

adj(multi)+est
adj(Cd)+est

TOL_Cd

Ralf Hartmann and Tobias Leicht (DLR) Higher order and adaptive DG methods for compressible flows12. Dec. 2013 50 / 65



Numerical results

ADIGMA BTC3 test case

Laminar flow at M = 0.3, Re = 4000, α = 12.5◦

around a delta wing
Multi-target adjoint-based mesh refinement for the
sum of relative errors of Cl, Cd and Cm

After 5 residual-based ref. steps: 14.7 mio. DoFs After 4 adjoint-based ref. steps: 6.6 mio. DoFs

Sum of relative errors: 5% Sum of relative errors: 1.6%

Rel. computing time: 0.06 (no error est.) Rel. computing time: 0.017 (incl. error est.)
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Numerical results

ADIGMA BTC3 test case

Laminar flow at M = 0.3, Re = 4000, α = 12.5◦

around a delta wing

After 5 residual-based mesh refinement steps: 14.7 mio. DoFs
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Numerical results

The DLR-F6 wing-body configuration without fairing

The original mesh of 3.24× 106 elements
has been agglomerated twice.

The elements of the coarse mesh of 50618
elements are curved based on additional
points taken from the original mesh geometry

curved mesh with lines given by polynomials of degree 4
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Numerical results

Subsonic turbulent flow around the DLR-F6 wing-body

Modification of the
DPW III test case:

M = 0.5 (instead
of M = 0.75)

α = −0.141
(instead of target
lift Cl = 0.5)

Re = 5× 106

DG solutions
on coarse mesh
of 50618 curved
elements.

coarse mesh 2nd order solution

3rd order solution 4th order solution
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Numerical results

Subsonic turbulent flow around the DLR-F6 wing-body

Adjoint-based refinement for Cd:

Mesh after 2 adjoint-based refinement steps

Density adjoint
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Numerical results

Subsonic turbulent flow around the DLR-F6 wing-body

Adjoint-based refinement for Cd:

Mesh after 2 adjoint-based refinement steps

Density adjoint

Convergence of Cd

(global mesh refinement):
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Numerical results

Subsonic turbulent flow around the DLR-F6 wing-body

Adjoint-based refinement for Cd:

Mesh after 2 adjoint-based refinement steps

Density adjoint

Convergence of Cd

(global & anisotropic h-refinement):
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Numerical results

The VFE-2 delta wing with medium rounded leading edge

The original mesh of 884 224 elements has
been agglomerated twice.

The elements of the coarse mesh of 13 816
elements are curved based on additional
points taken from the original mesh

geometry

original mesh curved coarse mesh with lines

with straight lines given by polynomials of degree 4
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Numerical results

Fully turbulent flow around the VFE-2 delta wing configuration

Underlying flow case U.1 in the EU-project IDIHOM

The VFE-2 delta wing with medium rounded leading edge
at two different flow conditions:

U.1b: RANS-kω, subsonic flow at M = 0.4, α = 13.3◦ and Re = 3× 106

U.1c: RANS-kω, transonic flow at M = 0.8, α = 20.5◦ and Re = 2× 106
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Numerical results

Subsonic flow around the VFE-2 delta wing

U.1b: Fully turbulent flow at M = 0.4, α = 13.3◦ and Re = 3× 106

residual-based refined mesh with

84 348 curved elements

cp distribution

4th order solution vs. experiment (PSP)
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Numerical results

Subsonic flow around the VFE-2 delta wing

U.1b: Fully turbulent flow at M = 0.4, α = 13.3◦ and Re = 3× 106

4th-order solution on residual-based refined mesh with 84 348 curved elements

2nd-order solution on residual-based refined mesh with 562 892 curved elements
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Numerical results

Mesh convergence study (EU-project IDIHOM)

U.1b: Fully turbulent flow at M = 0.4, α = 13.3◦ and Re = 3× 106

DLR-TAU Code DLR-PADGE Code
numerical scheme finite volume discontinuous Galerkin

design order 2 3

grids hybrid unstructured hexahedral
q1 (linear) elements q4 elements
grid sequence refinement of starting grid

# elements 0.6− 146 · 106 14− 884 · 103 (global ref.)
14− 280 · 103 (local ref.)

degrees of freedom 7 per node 70 per element∑
degrees of freedom 1.2− 290 · 106 1.6− 62 · 106 (global ref.)

1.6− 20 · 106 (local ref.)
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Numerical results

Mesh convergence study (EU-project IDIHOM)

U.1b: Fully turbulent flow at M = 0.4, α = 13.3◦ and Re = 3× 106
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Numerical results
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U.1b: Fully turbulent flow at M = 0.4, α = 13.3◦ and Re = 3× 106
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Numerical results

Fully turbulent flow around the VFE-2 delta wing configuration

Underlying flow case U.1 in the EU-project IDIHOM

The VFE-2 delta wing with medium rounded leading edge
at two different flow conditions:

U.1b: RANS-kω, subsonic flow at M = 0.4, α = 13.3◦ and Re = 3× 106

U.1c: RANS-kω, transonic flow at M = 0.8, α = 20.5◦ and Re = 2× 106
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Numerical results

Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at M = 0.8, α = 20.5◦ and Re = 2× 106

refined mesh with

201 259 curved elements

cp distribution

4th order solution vs. experiment (PSP)
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Numerical results

Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at M = 0.8, α = 20.5◦ and Re = 2× 106

4th-order solution on residual-based refined mesh with 201 259 curved elements
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Numerical results

Summary

Adjoint consistency

. . . is available for compatible target quantities J(·) only:

pressure-induced drag, lift and moment coefficients for compr. Euler
total drag, lift and moment coefficients for compr. Navier-Stokes

There are many consistent discretizations of J(·) but the discretization Nh in
combination with only one discretization Jh(·) is adjoint consistent.

Given a consistent DG discretization with adjoint consistent (interior) faces
terms (like SIPG, BR2). For any discretization of boundary terms it is
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