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Consistency and adjoint consistency Derivation of the adjoint problem

Outline

0 Consistency and adjoint consistency
@ Derivation of the adjoint problem
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Consistency and adjoint consistency Derivation of the adjoint problem

Definition of consistency and adjoint consistency for nonlinear problems
Primal problem:

Nu=0 inQQ, Bu=0 onT.

Target quantity:
J(u) = /jg(u) dx + /jr(Cu)ds,
Q r

with Fréchet derivative

Jul(w) = /Jé[u] de—|—/jF[Cu] C'[u]wds.

Q r
Compatibility condition: J(-) is compatible to the primal problem if
(N'[u]w, 2) + (B'[u]w, (C'[u])"2)r = (w,(N'[u])*2)a + (C'[u]w, (B[u])"2)r.
Adjoint problem:
(N'[u])*z = jo[u] in Q, (B'[u])*z =jf[Cu] onT.
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Consistency and adjoint consistency Derivation of the adjoint problem

Definition of consistency for nonlinear problems

Primal problem:
Nu=0 in£, Bu=0 onT.
Discretization: Find v, € V}, such that
Np(up, vi) =0 Vv, € V.
Consistency: The exact solution u to the primal problem satisfies:

Np(u,v) =0 Vve V.
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Consistency and adjoint consistency Derivation of the adjoint problem

Consistency analysis

Rewrite the discrete problem: Find uj, € V), such that
Nh(uh, Vh) =0 VYvyeV,

in following element-based primal residual form: Find u, € Vj, such that

/ R(up)vpdx + Z

/ uh vhds+/rr(uh)vhds =0 Vv, € V.
= Or\I r

The discretization is consistent
if the exact solution u to the primal problem satisfies

R(u)=0 in K,k € Tp,
r(u)=0 on I\ T,k € Ty,
r(u)=0 onT.
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Consistency and adjoint consistency Derivation of the adjoint problem

Definition of adjoint consistency for nonlinear problems

Discretization: Find v, € V}, such that
N;-,(Uh7 Vh) =0 VVh S Vh,

Compatible target quantity: J(u)
consistent discretization Ju(up) with Jy(u) = J(u).

Discrete adjoint problem: find z, € V}, such that

N,g[uh](wh,zh) = JL[Uh](Wh) VYwy € V.

Adjoint consistency: The exact solution z to the adjoint problem satisfies:

Ni[ul(w,z) = J[u](w) Yw e V.
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Consistency and adjoint consistency Derivation of the adjoint problem

Adjoint consistency analysis

Rewrite the discrete adjoint problem: find z; € V}, such that
Nilun](wh, zn) = Jplup)(wn)  VYwy € Vi,

in adjoint residual form: find z, € V}, such that

3 / wi R [un](z0) dx + 3 /d v onlC) ds + /r wh r[us] (20) ds = 0,

KETR Y KET)

The discrete adjoint problem is a consistent discretization of the adjoint problem
if the exact solution z to the adjoint problem satisfies

R*[ul(z) =0 ink, r*[ul(z)=0 ondr\Tl,k €Ty, rlul(z)=0 onT.

Then the discretization Ny, in combination with J;, is adjoint consistent.
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DG discretization of the compressible Euler equations The compressible Euler and its adjoint equations

Outline

© DG discretization of the compressible Euler equations
@ The compressible Euler and its adjoint equations
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DG discretization of the compressible Euler equations The compressible Euler and its adjoint equations

The compressible Euler equations
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DG discretization of the compressible Euler equations The compressible Euler and its adjoint equations

The compressible Euler equations

0 ovi ov2
O en |, 9 ovi +p + 9 vz _0
ot | owv 0xy oviV2 0x2 ovs +p
oE vi(oE + p) v2(0E + p)
0 0
Tut ) + 5 (u) =0
atu+a 1 1( )+8X2 2(U)

Ralf Hartmann and Tobias Leicht (DLR) Higher order and adaptive DG methods for compressible flowsl2. Dec. 2013

10 / 65



DG discretization of the compressible Euler equations The compressible Euler and its adjoint equations

The compressible Euler equations
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DG discretization of the compressible Euler equations The compressible Euler and its adjoint equations

The compressible Euler equations

0 ovi ov2
0| on + 0 ovi+p " 0 oviva —0
ot | ow 0xq ov1iV2 Ox ovs5 +p
oE vi(oE + p) v2(0E + p)
0 0
Tt Zfe(u) + 25 (u) = 0
atu + a 1 1 ) + 8X2 2 (U)
9tV Fu) =0
ot N

Steady state compressible Euler equations:

V- F(u) =0
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DG discretization of the compressible Euler equations ~ The compressible Euler and its adjoint equations
Boundary conditions
@ Supersonic inflow corresponds to Dirichlet boundary conditions where
ur(u) = gp = Ucc.
@ Supersonic outflow corresponds to Neumann boundary conditions where
ur(u) =u.

@ The subsonic inflow boundary condition takes the pressure from the flow
field and imposes all other variables based on freestream conditions u., i.e.

p(u)

.
ur(u) = <poovpc>ovl,ooa PocVaoe =+ oo (Voo + vzz,oo)) :

Here, p = p(u) denotes the pressure.

@ The subsonic outflow boundary condition imposes an outflow pressure p,;
and takes all other variables from the flow field, i.e.
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DG discretization of the compressible Euler equations The compressible Euler and its adjoint equations

Slip wall boundary conditions

@ For slip wall boundary conditions we set

0 0 0
B 1—n —mn O
ur(u) = —mn 1—-n3 0
1

0 0

O OO

which originates from u by removing the normal velocity component of u,
i.e. v=(v1,v) is replaced by v = v — (v-n)n.
This choice ensures a vanishing normal velocity,

BUr(u) = Mmurp+ NUr3z=pn-vQ = 0,
for the boundary operator

Bu=niu + npuz on y.
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DG discretization of the compressible Euler equations The compressible Euler and its adjoint equations

The continuous adjoint equations

Given an inviscid compressible flow at an angle of attack a.
Then the aerodynamic force coefficients are given by

J(u)=/rj(u)ds=/rwpn-¢ds7

where 1 = 14 = £ (cos(a),sin()) " for the drag coefficient

oo

and Y =19, = é(fsin(oz),cos(oz))T for the lift coefficient.
Primal problem with slip wall boundary conditions, n-v = njvy + novp, = 0:
Nu=V- -F(u)=0 onQ, Bu=niu+nu3s=0 only.
Multiply left hand side by z, integrate over € and integrate by parts:
(V-F(u),2)a = —(F(u),Vz)q + (n- F(u),2)r.
Linearize about the exact solution u
(V- (Filul(w)) , 2)g = — (Filul(w), V2)q + (n - F[u](w), 2)
= — (w. (Felu) " Vz)_+ (w.(n-Flu)) " 2)
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DG discretization of the compressible Euler equations The compressible Euler and its adjoint equations

The continuous adjoint equations

The variational formulation of the adjoint problem is given by: find z such that

— (w. (Fu) " Vz)_+ (w,(n- Filu) 2) = Sulw) vwe V.

J(u)—/rj(u)ds—/rwpnwdx
Siolw) = [ Fulwyds = [ plulw)n- s

T'w

with

The continuous adjoint problem is
(N'u])'z=—(Fu) "' Vz=0 inQ, (n-Fu])" z=;[u] onTw.
Using F¢(u) - n = p(0, n1, n2,0)" on [y we obtain
p'[u](0, n1, n2,0) - z=p'luln-1 on My,
which reduces to the boundary condition of the adjoint problem:
(B'[u])*z=mz +nmz =n-1 only.
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DG discretization of the compressible Euler equations ~ The DG discretization

Outline

© DG discretization of the compressible Euler equations

@ The DG discretization
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DG discretization of the compressible Euler equations ~ The DG discretization

The DG discretization of the compressible Euler equations

The problem:
V-F(u)=0 inQcCR?

with u = (97 ovi, QV27pE)T'

The DG(p) discretization: Find up, in V¥ such that

Ny(up, vp) = Z {— / F(up) : Vv, dx —1—/ h(u},u;, ,n) v ds}
weTh K Or\l

+/ﬁr(u;f,n) vids=0 Vv, e VE,
.
with
VP = {vy € [L2(Q)]" wvhls 0 Fr € [@u(R)]™ if & is the unit square, and
Vil 0 Fi € [Po(R)]™ if & is the unit triangle, x € 7p}.

Numerical flux function h: (Local) Lax-Friedrichs, Vijayasundaram, Roe,
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DG discretization of the compressible Euler equations ~ The DG discretization

Consistency

The discretization: find uy, in V’; such that

Nh(uh,vh) = —/ Fc(uh) : Vv, dx 4+ Z / hh v, d5+/hr7h . Vh+ ds=0
Q keTh Or\l

A A

for all v, € VP, with hy := h(u},u;,n) on @x \ T, and hr j, := hr(uf,n) on T,
is consistent if

@ the numerical flux h on interior edges e € ' is consistent, i.e
h(v,v,n) = n- F<(v) onecly,

@ and, the numerical flux ﬁr on boundary edges is consistent, i.e., the exact
solution u of the flow equations satisfies

A

hr(u,n) =n- F(u) onT.
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DG discretization of the compressible Euler equations ~ The DG discretization

Adjoint consistency
The discretization: find uj in V/ such that

Z/ hy, - v} ds+/hr7h~vh+ds:0
Or\l

Nh(uh,vh / .7:C uh : Vv, dx +
k€T

A~ A

for all vy € V2, with hy := h(uj,u;,n) on 9k \ T, and hr, := hr(uf,n) on .
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DG discretization of the compressible Euler equations ~ The DG discretization

Adjoint consistency
The discretization: find uj in V/ such that

Np(up,vp) = —/ F(up) : Vvpdx + Z / IA1h~v; ds+/|A1r7h~vhJr ds=0
Q Or\l r

k€T

for all v, € VP, with hy, := ﬁ(u;r,u;,n) on Ak \ T, and hrj, :== ﬁr(uﬁ,n) onT.
The (compatible) target quantity:

J(u)z/r pn-ds,

Task: Find a discretization J,(up) of J(u) which is consistent and
which (in combination with Np) is adjoint consistent.
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DG discretization of the compressible Euler equations ~ The DG discretization

Adjoint consistency
The discretization: find uj in V/ such that

Np(up,vp) = —/ F(up) : Vvpdx + Z / hy, ~vhJr ds+/|A1r7h~vhJr ds=0
Q weTh Or\l r

for all v, € VP, with hy, := ﬁ(u;r,u;,n) on Ak \ T, and hrj, :== ﬁr(uﬁ,n) onT.
The (compatible) target quantity:

J(u):/r pn-ds,

Task: Find a discretization J,(up) of J(u) which is consistent and
which (in combination with Np) is adjoint consistent.

Consider following discretization of J(u):
In(up) =/ hrp, - 2 ds,
rw

with 9 = (0,11,12,0) T on Ty for ¢ = (11, ¢) .
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DG discretization of the compressible Euler equations ~ The DG discretization

Adjoint consistency

Consider the target quantity and its discretization
J(u) = / pn-ds, In(up) = / IA1r7h -4 ds,
Mw Mw

with ¢ = (0,)1,2,0) " for 9 = (1,12) ", and ﬁr,h = ﬁr(u;r,n) on .
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DG discretization of the compressible Euler equations ~ The DG discretization

Adjoint consistency

Consider the target quantity and its discretization
J(u) = / pn-ds, In(up) = / IA1r7h -4 ds,
Mw Mw

with 9 = (0,%1,12,0) T for 3 = (¢1,42)7, and hr, := hr(u},n) on T.

Assume hr is consistent. Then, J,(uy) is a consistent discretization of J(u), as
the exact solution u satisfies

A ~ ~ ~

and thereby Jy(u) = J(u).
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DG discretization of the compressible Euler equations ~ The DG discretization

Adjoint consistency

Consider the target quantity and its discretization
J(u) = / pn-ds, In(up) = / IA1r7h -4 ds,
Mw Mw

with 9 = (0,%1,12,0) T for 3 = (¢1,42)7, and hr, := hr(u},n) on T.

Assume hr is consistent. Then, J,(uy) is a consistent discretization of J(u), as
the exact solution u satisfies

A ~ ~ ~

and thereby Jy(u) = J(u).

Furthermore, one can show (cf. Theorem 5.13) that N, in combination with Jj is
adjoint consistent.

Ralf Hartmann and Tobias Leicht (DLR) Higher order and adaptive DG methods for compressible flowsl2. Dec. 2013 19 / 65



DG discretization of the compressible Euler equations ~ The DG discretization

With a numerical flux function at the boundary ...
1. ...based on the normal boundary flux

A

hrs = hr(uy,n) = n- F(ur(u))),

the discretization is given by

/.7:C uh thhdx—i-Z/

hevi ds—i—/n-fc(ur(u,f))-v; ds = 0.
Or\l r

(a) This discretization is adjoint consistent in combination with
In(up) = / hrp-tds = / (n- F(ur(uy)) - ¥ ds
Mw M'w
— [ p(ur(u}) n-wods = Jfur(u})
Mw
(b) It is adjoint inconsistent in combination with following direct discretization

Sos) = [ plun)n-ps.
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DG discretization of the compressible Euler equations ~ The DG discretization

With a numerical flux function at the boundary ...

2. ...based on the interior numerical flux

A~

hr s = hr(uj, n) = h(uy ,ur (uf),n),
where the boundary exterior state ur (u;’) is obtained by
(uy +ur(uy)) =ur(uy), e, up(uy)=2ur(uy) —uy,
0 0

1
2
1 0
. 0 1-— n% —mny O _ .
| 0 —mnm 1-n% 0 u, ur (u) =
0 0 0 1
b

Then, the discretization is given

0 0
1-— 2n% —2n1n>
—2mny 1-— 2n§

0 0

[N e NN

= O O O

/,7-" (up) : thhdx—f—Z/ I:|h~vh+ds+/h(uh,ur (uf),n)-v;ds =0.
Q Or\l

k€T
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DG discretization of the compressible Euler equations ~ The DG discretization

With a numerical flux function at the boundary ...

2. ...based on the interior numerical flux, the discretization,
/}'C up) thhdx—i—Z/ v;”ds—k/h(uh,ur (uf),n)-v;i ds =0,
K,GT 8R\r
(a) ...is adjoint consistent in combination with following discretization of J(-),

Ip(up) = / hrp -1 ds = / h(u;r,ur (uf),n)- P ds,
Mw Mw
(b) ...is adjoint inconsistent in combination with the direct discretization
Jup) = / p(un)n - ds,
Mw

(c) ...is adjoint inconsistent in combination with
J(ur(uy)).
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DG discretization of the compressible Euler equations

The DG discretization

Example: Inviscid flow around NACAQ0012 airfoil at M = 0.5, a =0°

71 isolines of the discrete
adjoint solution zj for Cqp, for
J(up) = [r,, p(un)n-4pds
(adjoint inconsistent)

-0.2 0 0.2 0.4 0.6 08 1 12
z; isolines of the discrete
adjoint solution z, for Cyy, for
h(un) = fr, e ds
(adjoint consistent).
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DG discretization of the compressible Navier-Stokes equations ~ The compressible Navier-Stokes and its adjoint equations

Outline

e DG discretization of the compressible Navier-Stokes equations
@ The compressible Navier-Stokes and its adjoint equations
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DG discretization of the compressible Navier-Stokes equations ~ The compressible Navier-Stokes and its adjoint equations

The compressible Navier-Stokes equations

c 9 cc 9 ey 9 ¢y _
—u+ Tfl (u) + aixzfz (u) — 87le1 (u, Vu) 87)(2f2 (u, Vu) =0
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DG discretization of the compressible Navier-Stokes equations ~ The compressible Navier-Stokes and its adjoint equations

The compressible Navier-Stokes equations

c 9 cc 9 ey 9 ¢y _
—u+ Tfl (U) + 87)(2{:2 (u) — 87le1 (u, Vu) 87)(2f2 (u, Vu) =0

%u—i—V-]—'C(u) - V- F(u,Vu) =0
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DG discretization of the compressible Navier-Stokes equations ~ The compressible Navier-Stokes and its adjoint equations

The compressible Navier-Stokes equations

c 9 cc 9 ey 9 ¢y _
—u+ Tfl (U) + 67)(21:2 (u) — 87le1 (u, Vu) 87X2f2 (u, Vu) =0

0

&u—i-v-]:c(u) - V- F(u,Vu) =0
We consider the steady state equations

V-F(u) = V- F'(u,Vu) =0,

with the no-slip wall boundary decomposed in isothermal and adiabiatic
boundaries 'y = Mg, U T ,4i» and following boundary conditions imposed

v=0 on rW, T= Twall on riso, n-VT =0 on radia.
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DG discretization of the compressible Navier-Stokes equations ~ The compressible Navier-Stokes and its adjoint equations

The adjoint equations

Primal problem:
V-F(u)—V-F'(u,Vu)=0 on Q,

with adiabatic or isothermal wall boundary conditions.
Target quantity: Total drag or lift coefficient:

J(u) = /j(u)ds:/ (pn—1n)-pds
r Tw
Adjoint problem:
~(Fe - F) V2=V (7)) Vz) =0,
subject to boundary conditions

zy =1, z3 =15 on [y, zz =0 on [, n-Vz; =0 on [g..
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DG discretization of the compressible Navier-Stokes equations ~ The DG discretization

Outline

e DG discretization of the compressible Navier-Stokes equations

@ The DG discretization
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DG discretization of the compressible Navier-Stokes equations ~ The DG discretization

DG discretization of the viscous part of the Navier-Stokes equations
-V -F(u,Vu) = -V - (G(u)Vu) =0 in Q,

System of first order equations
g = G(u)Vu, —V.-c=0 inQ.

Similar to for Poisson’s equation we obtain: find u, € V4 such that

/ G(up)Vaup - Vipvpdx — Z / 8, Vp@nds
Q Ok

KET)

+ Z / (ﬁh — uh) Xn: (GT(uh)Vvh) ds=0 Vv, € VZ,

with numerical flux functions

0y = 0(up) = d(uy,uy), G| = O, = G (uy),
&), = 6(un, Vup) = 6(uy ,u,, Vuy, Vuy), Gplr = 61 p = &r(uy, Vuy).
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Ralf Hartmann and Tobias Leicht (DLR)

DG discretization of the compressible Navier-Stokes equations ~ The DG discretization

DG discretization of the compressible Navier-Stokes equations
Combine with the discretization of the compressible Euler equations to get

Nh(Uth)E/( F(up) + F(un, Vhup)) : VthdX+Z/ h—Uh")-VhdS
Q

KET)
+ Z / Up—up)@n: (GT(uh)Vvh) ds =0,
KET)
with h| = Fl = ﬁr(u?{,n) and Qh‘r = Qr,h = Qr(u;‘:,vu;).
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DG discretization of the compressible Navier-Stokes equations ~ The DG discretization

DG discretization of the compressible Navier-Stokes equations
Combine with the discretization of the compressible Euler equations to get

N/-,(U/hvh) = / (—fc(uh) + fv(uh, thh)) : Vipvp dx—+ Z / (ll’\lh — th)-vh ds
Q oK

KET)

+> /(%(ﬁ,, —up)@n: (G (up)Vvy) ds =0,

KET)

with Fl|r = Flnh = ﬁr(u?{,n) and Qh‘r = Qr,h = Qr(u?{,vu;).
The (compatible) target quantity

J(u):/ (pn—1n)-1ds

Tw

Task: Find a discretization Jy(up) of J(u) which is consistent and
which (in combination with N}) is adjoint consistent.
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DG discretization of the compressible Navier-Stokes equations ~ The DG discretization

DG discretization of the compressible Navier-Stokes equations
Combine with the discretization of the compressible Euler equations to get

N/-,(U/hvh) = / (—fc(uh) + fv(uh, thh)) : Vipvp dx—+ Z / (ll’\lh — th)-vh ds
Q oK

KET)

+> /am(ﬁh —up)@n: (G (up)Vvy) ds =0,

KET)

with Fl|r = Flnh = ﬁr(u?{,n) and Qh‘r = Qr,h = Qr(u?{,vu;).
The (compatible) target quantity

J(u):/ (pn—1n)-1ds

Tw

Task: Find a discretization Jy(up) of J(u) which is consistent and
which (in combination with N}) is adjoint consistent.

Ip(up) = /r (ﬁnh —Qr,h") -9 ds,
with 9 = (0,%1,%2,0)" for 1 = (11,42)".
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DG discretization of the compressible Navier-Stokes equations ~ The DG discretization

DG discretization of the compressible Navier-Stokes equations

Consider the target quantity and its discretization
J(u) = (pn—1zn)-ds, Ip(up) = / (F'F,h - Ql—yhn> -1 ds,
Mw

with ,l/) = (07’(/}17’(/}270)T for ’lIJ = (wlu 1/)2)-'—-
Assume hr and & are consistent. Then, Ju(uy) is a consistent discretization of
J(u), as the exact solution u satisfies

(Br(u,m) = (@r(u, Vu)n)) - & = (n- F<(u) — n - F*(u, V) - = (pn — 7n) -,

due to n- F¢(u) = (0, pny, pn2,0) " and
n-F'(u,Vu) = (0,(rn)1, (rn)2,Kn-VT)T on M. Thus Jy(u) = J(u).
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DG discretization of the compressible Navier-Stokes equations ~ The DG discretization

DG discretization of the compressible Navier-Stokes equations

Consider the target quantity and its discretization

J(u) = (pn—1zn)-ds, Ip(up) = /r (F'F,h - erhn> -1 ds,

Mw

with ,‘/J = (07’(/}17’(/}270)T for ’lIJ = (wlu 1/)2)-'—-
Assume hr and & are consistent. Then, Ju(uy) is a consistent discretization of
J(u), as the exact solution u satisfies

(Br(u,m) = (@r(u, Vu)n)) - & = (n- F<(u) — n - F*(u, V) - = (pn — 7n) -,

due to n- F¢(u) = (0, pny, pn2,0) " and
n-F'(u,Vu) = (0,(rn)1, (rn)2,Kn-VT)T on M. Thus Jy(u) = J(u).

Furthermore, one can show (cf. Theorem 6.9) that N}, in combination with Jj is
adjoint consistent.
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DG discretization of the compressible Navier-Stokes equations ~ The DG discretization

Numerical flux functions
For SIPG and BR2 the fluxes are given by

0n = {unl}, 8= {G(up)Vyup} — 6(up) on Iz,
with
(up) = QP%leIUh]] for IP (Hartmann & Houston, 2006a),
8(un) = GrZ{G(up)}[us]  for IP (Hartmann & Houston, 2008),
O(up) = CGero{ G(un)Lg(up)}  for BR2 (Bassi et al. 2005),
5(un) = Cerof{Lo(un)} for BR2 (Bassi & Rebay, 2000a, 2002).
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DG discretization of the compressible Navier-Stokes equations ~ The DG discretization

Numerical flux functions
For SIPG and BR2 the fluxes are given by

0n = {unl}, 8= {G(up)Vyup} — 6(up) on Iz,
with
(up) = QP%leIUh]] for IP (Hartmann & Houston, 2006a),
8(un) = GrZ{G(up)}[us]  for IP (Hartmann & Houston, 2008),
O(up) = CGero{ G(un)Lg(up)}  for BR2 (Bassi et al. 2005),
5(un) = Cerof{Lo(un)} for BR2 (Bassi & Rebay, 2000a, 2002).

Then the DG discretization is given by: find us € V/ such that

Z/ hh~VhdS
Or\l

KET)

_ /rz[[u,,]]; {G T (up)Vvp} ds — /rz{{G(uh)vhuh} [va]

Nh(uh,vh) I/ (7.7:6(Uh) + ]—"’(uh,thh)) :Vpvpdx +
Q

+ Q(uh) : |[vh]] ds + Nr,h(uh,vh) =0 WVv,e€ VZ.
rr -
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DG discretization of the compressible Navier-Stokes equations ~ The DG discretization

With a numerical flux function at the boundary ...
1. ...based on the normal boundary flux

hr(uf,n) =n-Zur(u})), brp=ur(u)), &r,=F"(ur(u}), Vu})—or(u)),

the discretization at the boundary is given by

Ny 4t Vi) = / 0 (F(ur(ul)) — F (ur(ui), Vup) + 8 (up)) -vi ds

T'w

- /rw (uf —ur(u})) ®n: (6T (uf)Vv}) ds

(a) This discretization is adjoint consistent in combination with

In(up) = / (A — 4 - ds = JS(ur(uf)) + / (n-8r(uf)) - ds,

Mw

with J(u) :/r (pn—1zn)-9ds.

(b) It is adjoint inconsistent in combination with any other discretization, like

J(up), or J(ur(uﬁ)).
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DG discretization of the compressible Navier-Stokes equations ~ The DG discretization

Example: M = 0.5, « = 0°, Re = 5000 viscous flow, NACAQ0012 airfoil

Target quantity: Total drag coefficient: J(u fr pn—17n)-ds
Adjoint consistent discretization:

In(up) fr (ﬁrﬁh - Qr,hn) : {ZJdS = J(UF(UZ_)) + frW (n QF(UZ)) : "Nbds

> oo

—SIPG
---BR2

sqele
The error |J(u) — Jp(up)| of
SIPG(p) and BR2(p) is of O(h?")
adjoint consistent
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DG discretization of the compressible Navier-Stokes equations ~ The DG discretization

Example: M = 0.5, « = 0°, Re = 5000 viscous flow, NACAQ0012 airfoil

Target quantity: Total drag coefficient: J(u fr (pn—1n)-vds
Adjoint consistent discretization:

In(un) = fr, (ﬁrﬁh —Qr,hn) -pds = J(ur(u})) + Jr,, (n-0r(uf)) - abds

10 ‘ ‘
107k 1 1072
107
§ 10 % .
B S 10
10°
w0l
= |
10 . 2
10° 10
sqele sqele
The error |J(u) — Jp(up)| of The error |J(u) — J(ur(us))| of
SIPG(p) and BR2(p) is of O(h?") SIPG(p) and BR2(p) is of reduced order
adjoint consistent adjoint inconsistent
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DG discretization of the compressible Navier-Stokes equations ~ The DG discretization

With a numerical flux function at the boundary ...
1. ...based on the interior numerical fluxes

hr(uf,n) = h(uf, ur (uf),n), Grp=ur(uy), &, ={F (un, Vup)}r — or(uy),
where {-}r denotes the mean value of a function evaluated at the interior state

u; and the (mirrored) boundary exterior state uy (u}’) given by

1 _ . _
2 (uy +ur (uy)) = ur(uy), e, ur (u}) = 2ur(u

the discretization at the boundary is given by

e va) = [ (i ur () m) = (" an, T+ 3r(w)) - ds

Mw

—/ (uf —ur(u)) @n: (G (uf)Vv)) ds

Mw

p) U

(a) This discretization is adjoint consistent in combination with
In(up) = / (ﬁr,h - Qr,h“) P ds
Fw

(b) It is adjoint inconsistent in combination with any other Jx(up).
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Adjoint-based error estimation and adaptive mesh refinement Error estimation and adaptive mesh refinement

Outline

e Adjoint-based error estimation and adaptive mesh refinement
@ Error estimation and adaptive mesh refinement
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Adjoint-based error estimation and adaptive mesh refinement Error estimation and adaptive mesh refinement

Error estimation for nonlinear problems
Discretization: find up € V{, such that

Nh(uh,vh) =0 Wv,e€e VZ

Error representation:
J(U) — Jh(uh) = Rh(uh, Z)7

where z is the exact (but unknown) solution to the adjoint equations. Replace z
by the solution to following discrete adjoint problem: Find Z, € V% such that

Np[up)(wh, 25) = J'[un](ws) Ywy € V.
We obtain the error estimate (approximate error representation):

J(u) — J(up) = Ru(up, Z5) Z M-

r€Th
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Adjoint-based error estimation and adaptive mesh refinement Error estimation and adaptive mesh refinement

Error estimation for nonlinear problems
Discretization: find up € V{, such that

Nh(uh,vh) =0 Wv,e€e VZ

Error representation:

J(U) — Jh(uh) = Rh(uh, Z)7
where z is the exact (but unknown) solution to the adjoint equations. Replace z
by the solution to following discrete adjoint problem: Find Z, € V% such that

Np[up)(wh, 25) = J'[un](ws) Ywy € V.
We obtain the error estimate (approximate error representation):

J(u) — J(up) = Ru(up, Z5) Z M-

r€Th
Note, that Rp(un,zs) = —Nu(up,zp) = 0 for any z, € V7. Thereby,
- - B 0 for z, € V},
Ri(un, 2n) = Ru(un, 25 — 24) = { Ey#0 forz,e VP ¢ VP,

Take, for example, \_/Z = V’Z, with p = p+ 1, on the same mesh 7.
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Adjoint-based error estimation and adaptive mesh refinement Error estimation and adaptive mesh refinement

Single-target adaptive algorithm

. for the accurate and efficient approximation of a single target quantity J(u).
The error estimate:

J(u) = J(up) = Ru(un, Zn) = Y _ 7la
k€T
includes the so-called adjoint-based indicators 7.
Algorithm:
@ Construct an initial mesh 7.
Compute u, € V¥ on the current mesh 7p,.
Compute z, € VP = VZ on the same mesh employed for uj, with p = p + 1.
Evaluate the approximate error representation Ry(up,zs) = ZHET;, -

If | > .er, x| < TOL, where TOL is a given tolerance, then STOP.

© 006 0 O

Otherwise, refine and coarsen a fixed fraction of the total number of
elements according to the size of |fj,| and generate a new mesh 75; GOTO 2.
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Adjoint-based error estimation and adaptive mesh refinement Residual-based mesh refinement

Outline

e Adjoint-based error estimation and adaptive mesh refinement

@ Residual-based mesh refinement
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Adjoint-based error estimation and adaptive mesh refinement Residual-based mesh refinement

Derivation of residual-based indicators
The error representation:

J(u) — J(up) = Ru(up,z) = Rp(up,z — zp).

Choose z, = N,z and write Ry in primal residual form:
J(u) = JS(up) = /R(u,,) (2 - Myz) dx
Q

+,;Th/8n\r r(up) - (z— Mpz)* +p(up) : V(z— Myz)* ds

+/I’r(uh) . (Z — |_|/,Z)+ —i—gr(uh) . V(Z — |_|hZ)+ dS,
r

Assume some smoothness properties of the adjoint solution, apply approximation
estimates and obtain

1/2
() — J(u)| < € (Z (nges>)2> , with

K€T)

™ = hulIR(uA) [l 20 + B2 [I¥on (un) | 2(om) + B 212, (un)l| 2(00)-
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Numerical results

Numerical examples

Compare
@ adjoint-based mesh refinement (using 7,;) against
o residual-based mesh refinement (using 7).

K

Investigate the accuracy of the error estimation
J(u) — J(uh) = Rh(uh,z) =S Rh(uhaih)'

Use the error estimate for improving/enhancing the computed target quantity
Jn(up) as follows

jh(uh) = Jh(uh) + Rh(uh,ih).
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Numerical results

Numerical example: Linear advection equation

Lu:=V-(bu)=0 inQ=1[0,2] x[0,1] € R?,

13
u=1 on |:§,Z:|X{O}
u=0 elsewhere on _.

DAl B S . i il

P S S S
P N A
A S
T/T/‘/'A,,,.H/v/v/'/'/'

TR TR RN N
R N

AN

1 e s

vector field b primal solution

= = = E nae
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Numerical results

Numerical example: Linear advection equation

Lu:=V-(bu)=0 inQ=1[0,2] x[0,1] € R?,
u=1 on [é,%]x{O}

u=0 elsewhere on _.

B
B
N
\
I\
\
|
|
\
\
\
I\
I\
N

P S S g
P N A
Vi

/4

f

TR TR RN N
R N

P SN S
T/ /'4,,,.,»//'/'/'/'

AN

1 e s

vector field b primal solution

Interest in the solution on right boundary part: x € {2} x (3,1).

= = = E E DA
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Numerical results

Numerical example: Linear advection equation

Lu:=V-(bu)=0 inQ=1[0,2] x[0,1] € R?,
u=1 on [é,%]x{O}

u=0 elsewhere on _.

B
B
N
\
I\
\
|
|
\
\
\
I\
I\
N

P S S g
P N A
Vi

/4

f

TR TR RN N
R N

P SN S
T/ /'4,,,.,»//'/'/'/'

AN

1 e s

vector field b primal solution
Interest in the solution on right boundary part: x € {2} x (3,1).

Define target quantity J(u) = fﬁjr uds

= = = E E DA
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Numerical results

Numerical example: Linear advection equation

Lu:=V-(bu)=0 inQ=1[0,2] x[0,1] € R?,
u=1 on [é,%]x{O}

u=0 elsewhere on _.

B
B
N
\
\
\
|
|
\
\
\
I\
I\
N

N
N\
N\
\
\
|
|
|
\
\
\
\
N
N

P S SN g

PP SRR %
P N A
; P

i
T/ /! N

BN S
R N
[ OO

AN

1 rern

vector field b primal solution

Interest in the solution on right boundary part: x € {2} x (3,1).

Define target quantity J(u) = fr+ Jjruds , with

: - 3)72_ _52_3*2> 1

Jr(2,y) = exp <(8) (y=3)—3) ") forz<y<l1 and 0 elsewhere.
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Numerical results

Numerical example: Linear advection equation

Target quantity: J(u) = [ jruds
with jr # 0 and smooth on
right outflow boundary

—-b-Vz=0 inQ,
b-nz=j onl,.

The primal and adjoint solutions:

primal solution

.. S . v 7
P S S S

PP N .

Ry

N

T T

NN N

g - T
R

P GG S P g

[ ST S S S g

TR RO N
4’\»\\\\\ \vA \
I SN NN \‘ N
TN
NN

NN

I g

S

VA
1/

tt

i e

adjoint solution
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Numerical results

I RS Sl

DA S R R

NN N

o
\
M
\4
N
NN

ST

NN

1 e

adjoint solution

e

solution on residual-based refined mesh  solution on adjoint-based refined mesh
o & = = aan
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and an angle a = 5°

Numerical results
Supersonic flow past a BAC3-11 airfoil
Inviscid flow at M = 1.2

past the BAC3-11 airfoil

Mach number on
residual-based refined mesh

sonic lines

(M =1 lines)
5

[m]
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Numerical results
Supersonic flow past a BAC3-11 airfoil
Inviscid flow at M = 1.2

and an angle v = 5°

past the BAC3-11 airfoil

o T
T

pressure

Target quantity:

J(u) = p(xo)

M<1
seees
. (e
(pressure at leading edge) S
Problem: find pressure at
leading edge to C
best g edg Mach number on sonic lines
est accuracy. . )
Y residual-based refined mesh

(M =1 lines)
o
Ralf Hartmann and Tobias Leicht (DLR)
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Numerical results
Supersonic flow past a BAC3-11 airfoil
Inviscid flow at M = 1.2

and an angle v = 5°

past the BAC3-11 airfoil

o T
T

pressure

Target quantity:

J(u) = p(xo)

M<1
. et
(pressure at leading edge) S
Problem: find pressure at
leading edge to
g cdg Mach number on
best accuracy.

sonic lines

residual-based refined mesh (M =1 lines)
How to create an efficient mesh for this?

Ralf Hartmann and Tobias Leicht (DLR)

[m]

= =
Higher order and adaptive DG methods for compressible flowsl2. Dec. 2013

44 / 65



Numerical results
Supersonic flow past a BAC3-11 airfoil

Inviscid flow at M = 1.2 and an angle o = 5° past the BAC3-11 airfoil
Target quantity (pressure at leading edge): J(u) = p(xo)
Reference value (fine mesh computation): J(u) = 2.393

RO
RO
R

WY

N
&

d

residual-based refined modified residual-based
13719 elements 0516 elements
J(u) — J(up) =35-1072 J(u) — J(up)=79-1073
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Numerical results

Supersonic flow past a BAC3-11 airfoil

Inviscid flow at M = 1.2 and an angle o = 5° past the BAC3-11 airfoil
Target quantity (pressure at leading edge): J(u) = p(xo)

ll'
‘l,',"/n,’;/l

T

M>1

M<1
M>1
adjoint-based refined sonic lines
1803 elements
J(u) — J(up) =3.0-1073

(M = 1 isolines)
Ralf Hartmann and Tobias Leicht (DLR)

adjoint solution z

[m]

&
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Numerical results

Supersonic flow past a BAC3-11 airfoil

Inviscid flow at M = 1.2 and an angle o = 5° past the BAC3-11 airfoil
Target quantity (pressure at leading edge): J(u) = p(xo)

T T
01
001
.
x
0001 1 residual indicator —+—
modified residual indicator ~x-—-
(dualweighted residual indicator -

100 1000

[J(u) = J(up)|

over number of cells
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10000

0.001

residual indicator ——
modified residual indicator ------
(dual-)weighted residual indicator -—--

1 10 100 1000

[J(u) = J(up)|

over number of time units
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Numerical results

ADIGMA BTC3 test case

Laminar flow at M = 0.3, Re = 4000 and a = 12.5° around a delta wing

Reference values by fine grid computations:
Cref = 0.34865, Ci*f = 0.16608, and C:¢f = —0.03065

ADIGMA industrial accuracy requirements:
TOL¢ = 1072, TOL¢, = TOL¢, = 1073

Performance of
@ residual-based refinement

@ adjoint-based refinement
(single-target and multi-target)

@ error estimation
(single-target and multi-target)
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Numerical results

ADIGMA BTC3 test case

Laminar flow at M = 0.3, Re = 4000, oo = 12.5°

around a delta wing

Multi-target adjoint-based mesh refinement for the
sum of relative errors of (, Cq and Cy,

Error in Cy:

residual

0.01 |-

error in Cd

0.001 -\

adjoint-based(multi) —e— |

adjoint-based(Cd) —&—
adj(multi)+est

adj(Cd)+est —e—
ToL_cd

‘ global —+—
l-based ——

100000 1e+06

number of dofs

Ralf Hartmann and Tobias Leicht (DLR)

le+07

1e+08

Error in G:

errorin Cl

T T
global —+—
residual-based —»—
adjoint-based(multi) —w—
adjoint-based(Cl) —&—
adj(multi)+est
adj(Cl)+est —e—

0.001
100000
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Numerical results

ADIGMA BTC3 test case

Laminar flow at M = 0.3, Re = 4000, oo = 12.5°

around a delta wing

Multi-target adjoint-based mesh refinement for the
sum of relative errors of (, Cq and Cy,

Error in Cy:
T
global —+—
residual-based ——
0.01 F adjoint-based(multi) —e— |

error in Cd

0.001 -\

adjoint-based(Cd) —&—
adj(multi)+est

adj(Cd)+est

ToL_cd

——

100000 1e+06

number of dofs
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le+07

1e+08

Error in Cy:

error in Cd

0.01

0.001

1le-05
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T T
global —+—
residual-based —»—
adjoint-based(multi) —w— _|
adjoint-based(Cd) —&—
adj(multi)+est
adj(Cd)+est
ToL_cd

—e—

\ 3]
Il Il Il Il

le-04 0.001 0.01 0.1 1
time (fraction of global refinement to meet TOL_Cd)
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Numerical results

ADIGMA BTC3 test case

Laminar flow at M = 0.3, Re = 4000, o« = 12.5°

around a delta wing

Multi

(]
=
+
f-
L
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[
S
()
<
4=
[
=
=
(%]
(9]
S
o
Q
(%2}
]
0
45
£
o
e
o
(o]
4+
[
a0
pan
(o]
+

Cm

Cq and

sum of relative errors of (,

After 4 adjoint-based ref. steps: 6.6 mio. DoFs

Sum of relative errors: 1.6%

After 5 residual-based ref. steps: 14.7 mio. DoFs

Sum of relative errors: 5%

Rel. computing time: 0.017 (incl. error est.)

Rel. computing time: 0.06 (no error est.)
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Numerical results

ADIGMA BTC3 test case

a=12.5°

= 4000

0.3, Re

Laminar flow at M

around a delta wing

[T
[ T
/77T

/7 v 1)
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7
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After 5 residual-based mesh refinement steps: 14.7 mio. DoFs
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Numerical results

The DLR-F6 wing-body configuration without fairing

@ The original mesh of 3.24 x 10° elements
has been agglomerated twice.

@ The elements of the coarse mesh of 50618
elements are curved based on additional
points taken from the original mesh

curved mesh with lines given by polynomials of degree 4
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Numerical results

Subsonic turbulent flow around the DLR-F6 wing-body

Modification of the
DPW Il test case:

@ M = 0.5 (instead
of M = 0.75)

e a=-0.141
(instead of target
lift G = 0.5)

@ Re=15x 100

DG solutions
on coarse mesh
of 50618 curved
elements.

Ralf Hartmann and Tobias Leicht (DLR)

coarse mesh

2" order solution

S

g

3'd order solution

4th order solution

[m] = = =

Do
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Numerical results

Subsonic turbulent flow around the DLR-F6 wing-body

Mesh after 2 édjbfnt—based refinement sfeps

Density adjoint
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Numerical results

Subsonic turbulent flow around the DLR-F6 wing-body

Convergence of Cy
(global mesh refinement):

0.05

p=1, global —>¢—
p=2, global
L p=3, global i
i 0.045 TAU ——
L Ot T T 004 - ]
Mesh after 2 adjoint-based refinement steps
0.035 - g
0.03 |- g
0.025 | xlj\x R
0.02 ‘
1e+06 le+07

degrees of freedom

Density adjoint
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Numerical results

Subsonic turbulent flow around the DLR-F6 wing-body

0.05

0.045

il [ 0.04

Mesh after 2 édjoint—based refinement sfeps
0.035

0.03

0.025

Density adjoint
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Convergence of Cy
(global & anisotropic h-refinement):

b3 Sohal —%
=2, global
b5 obal 2 |
residual-based —li—
adjoint-based(Cd)
adj(Cd) + est.
TAU — Ao

0.02
1le+06

le+07

degrees of freedom
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Numerical results

@ The original mesh of 884 224 elements has
been agglomerated twice.

@ The elements of the coarse mesh of 13816
elements are curved based on additional

points taken from the original mesh
geometry

z
X—:I
Y

original mesh curved coarse mesh with lines
with straight lines given by polynomials of degree 4
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Numerical results

Fully turbulent flow around the VFE-2 delta wing configuration

Underlying flow case U.1 in the EU-project IDIHOM

The VFE-2 delta wing with medium rounded leading edge
at two different flow conditions:

@ U.1b: RANS-kw, subsonic flow at M = 0.4, & = 13.3° and Re = 3 x 10°
@ U.lc: RANS-kw, transonic flow at M = 0.8, & = 20.5° and Re = 2 x 10°
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Numerical results

Subsonic flow around the VFE-2 delta wing

U.1b: Fully turbulent flow at M = 0.4, a = 13.3° and Re = 3 x 10°

/
f
fi
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/%f’?éi
0
WW RANS-kw
///////,//;//,/,/,é“ l 4th order
i 84348
//////i%/ji"'l/;":lll,:%““h hexes
i o
Y, Il"

residual-based refined mesh with ¢cp distribution

84348 curved elements 4" order solution vs. experiment (PSP)
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Numerical results

Subsonic flow around the VFE-2 delta wing

U.1b: Fully turbulent flow at M = 0.4, a = 13.3° and Re = 3 x 10°

4t _order solution on residual-based refined mesh with 84 348 curved elements

[m] = =
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Numerical results

Subsonic flow around the VFE-2 delta wing

U.1b: Fully turbulent flow at M = 0.4, a = 13.3° and Re = 3 x 10°

[m]

2"_order solution on residual-based refined mesh with 562892 curved elements

=
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Numerical results

Mesh convergence study (EU-project IDIHOM)

U.1b: Fully turbulent flow at M = 0.4, a = 13.3° and Re = 3 x 10°

DLR-TAU Code

DLR-PADGE Code

numerical scheme
design order

grids

# elements

degrees of freedom

> degrees of freedom

Ralf Hartmann and Tobias Leicht (DLR)

finite volume
2
hybrid unstructured

ql (linear) elements
grid sequence

0.6 — 146 - 10°
7 per node
1.2 —290 - 10°

Higher order and adaptive DG methods for compressible flowsl2. Dec. 2013

discontinuous Galerkin
3
hexahedral

g4 elements
refinement of starting grid

14 — 884 - 10° (global ref.)
14 — 280 - 103 (local ref.)

70 per element

1.6 — 62 - 10° (global ref.)
1.6 — 20 - 10° (local ref.)
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Numerical results

Mesh convergence study (EU-project IDIHOM)

U.1b: Fully turbulent flow at M = 0.4, a = 13.3° and Re = 3 x 10°
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Numerical results

Mesh convergence study (EU-project IDIHOM)

U.1b: Fully turbulent flow at M = 0.4, a = 13.3° and Re = 3 x 10°
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Numerical results

Fully turbulent flow around the VFE-2 delta wing configuration

Underlying flow case U.1 in the EU-project IDIHOM

The VFE-2 delta wing with medium rounded leading edge
at two different flow conditions:

@ U.1b: RANS-kw, subsonic flow at M = 0.4, & = 13.3° and Re = 3 x 10°
@ U.lc: RANS-kw, transonic flow at M = 0.8, & = 20.5° and Re = 2 x 10°
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Numerical results

Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at M = 0.8, o = 20.5° and Re = 2 x 10°
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201259 curved elements 4" order solution vs. experiment (PSP)

[m] = =
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Numerical results

Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at M = 0.8, a = 20.5° and Re =2 x 109

4" _order solution on residual-based refined mesh with 201259 curved elements
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U.1c: Fully turbulent flow at M = 0.8, a = 20.5° and Re =2 x 109

4" _order solution on residual-based refined mesh with 201259 curved elements
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Numerical results

Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at M = 0.8, o = 20.5° and Re = 2 x 10°

4" _order solution on residual-based refined mesh with 201259 curved elements
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Numerical results

Transonic flow around the VFE-2 delta wing

U.1c: Fully turbulent flow at M = 0.8, o = 20.5° and Re = 2 x 10°

4" _order solution on residual-based refined mesh with 201259 curved elements
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Numerical results

Summary
Adjoint consistency

@ ...is available for compatible target quantities J(-) only:

e pressure-induced drag, lift and moment coefficients for compr. Euler
e total drag, lift and moment coefficients for compr. Navier-Stokes

@ There are many consistent discretizations of J(-) but the discretization N, in
combination with only one discretization J4(+) is adjoint consistent.

@ Given a consistent DG discretization with adjoint consistent (interior) faces
terms (like SIPG, BR2). For any discretization of boundary terms it is
possible to a provide a discretization of the target quantity which results in
an adjoint consistent discretization (force coefficients are evaluated based
on the numerical boundary fluxes employed in the discretization Np).
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@ Given a consistent DG discretization with adjoint consistent (interior) faces
terms (like SIPG, BR2). For any discretization of boundary terms it is
possible to a provide a discretization of the target quantity which results in
an adjoint consistent discretization (force coefficients are evaluated based
on the numerical boundary fluxes employed in the discretization Np).

Adjoint-based error estimation and adaptive mesh refinement
@ Single-target (and multi-target) error estimation and adaptivity

@ Residual-based mesh refinement
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Numerical results

Summary
Adjoint consistency
@ ...is available for compatible target quantities J(-) only:

e pressure-induced drag, lift and moment coefficients for compr. Euler
e total drag, lift and moment coefficients for compr. Navier-Stokes

@ There are many consistent discretizations of J(-) but the discretization N, in
combination with only one discretization J4(+) is adjoint consistent.

@ Given a consistent DG discretization with adjoint consistent (interior) faces
terms (like SIPG, BR2). For any discretization of boundary terms it is
possible to a provide a discretization of the target quantity which results in
an adjoint consistent discretization (force coefficients are evaluated based
on the numerical boundary fluxes employed in the discretization Np).

Adjoint-based error estimation and adaptive mesh refinement
@ Single-target (and multi-target) error estimation and adaptivity

@ Residual-based mesh refinement

Thank you. Questions?
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