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Introduction Higher Order Discontinuous Galerkin Finite Element methods

Higher order discretization methods

A discretization method is of order n if the discretization error behaves like
O(hn). This means:

Reducing the mesh size from h to h/2 (one global mesh refinement step),
the discretization error is reduced by a factor of 2n.

Example:
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DG discretization of
Poisson’s equation:

The L2(Ω)-error of the
DG(p), p = 1, . . . , 5,
discretization behaves like
O(hp+1)
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Introduction Higher Order Discontinuous Galerkin Finite Element methods

Discontinuous Galerkin Discretization

Basic properties:

finite element method with discontinuous trial and test functions

uses numerical flux functions

has a local and global conservation property

DG of 1st order is comparable to a basic finite volume method

higher order simply by increasing the polynomial degree p

higher order on unstructured and locally refined meshes

different polynomial degree in different parts of the domain

allows error estimation, hp-refinement
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Introduction Numerical analysis of DG methods
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Introduction Numerical analysis of DG methods

Topics in the numerical analysis of Discontinuous Galerkin methods

... which will be covered in this lecture:

Consistency

Coercivity and stability

Adjoint consistency

Order of convergence in the L2-norm

Order of convergence in specific target quantities J(·)

A priori error estimation

A posteriori error estimation

Derivation of indicators for local (isotropic) mesh refinement (h-refinement)

... which will not be covered in this lecture

Derivation of indicators for local anisotropic mesh refinement

Derivation of indicators for hp-refinement
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Introduction Numerical analysis of DG methods

The problem and its discretization

Primal problem: Consider a linear PDE of the form

Lu = f in Ω, Bu = g on Γ,

with f ∈ L2(Ω) and g ∈ L2(Γ), where L denotes a linear differential operator on
Ω, and B denotes a linear differential (boundary) operator on the boundary Γ.

Consider the finite element discretization: find uh ∈ Vh such that

Lh(uh, vh) = Fh(vh) ∀vh ∈ Vh.

Vh is a discrete function space and Lh : V × V → R is a bilinear form.
Here V is a function space such that Vh ⊂ V and u ∈ V , where u is the exact,
i.e. analytical, solution to the primal problem.
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Introduction Numerical analysis of DG methods

Consistency and Galerkin orthogonality

The discretization: find uh ∈ Vh ⊂ V such that

Lh(uh, vh) = Fh(vh) ∀vh ∈ Vh,

is consistent if the exact solution u ∈ V to the primal problem satisfies

Lh(u, v) = Fh(v) ∀v ∈ V .

This answers the question: Do we solve the right equations?

Subtracting both equations for vh ∈ Vh ⊂ V we obtain
the Galerkin orthogonality:

Lh(u − uh, vh) = 0 ∀vh ∈ Vh.
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Introduction Numerical analysis of DG methods

Coercivity & Stability

Coercivity of Lh: Is there a constant γ > 0, such that

Lh(vh, vh) ≥ γ|||vh|||2 ∀vh ∈ Vh,

where |||v ||| is a norm (or seminorm) on V .
Continuity of Fh: Is there a constant CF > 0 such that

Fh(vh) ≤ CF |||vh||| ∀vh ∈ Vh.

Then, for the solution uh ∈ Vh to the discrete problem

Lh(uh, vh) = Fh(vh) ∀vh ∈ Vh,

we obtain

γ|||uh|||2 ≤ Lh(uh, uh) = Fh(uh) ≤ CF |||uh|||,
and thus stability: |||uh||| ≤ CF

γ .

If ||| · ||| is a norm (and not only a semi-norm) on V then the discretization is
stable.

Ralf Hartmann and Tobias Leicht (DLR) Higher order and adaptive DG methods for compressible flows11. Dec. 2013 10 / 74



Introduction Numerical analysis of DG methods

Convergence and order of convergence

Does the discrete solution uh converge to the exact solution u?

What is the order of convergence, i.e., given a solution u with ‖u‖∗∗ <∞,
what is (the maximum) r such that

‖u − uh‖∗ ≤ chr‖u‖∗∗.

Here, ‖ · ‖∗ is an appropriate (global) norm to measure the error in, e.g.
‖ · ‖∗ = ‖ · ‖L2 ,
and ‖ · ‖∗∗ is a norm on (possibly a subset of) V .
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Introduction Numerical analysis of DG methods

Convergence in specific target quantities J(·)

The target quantity J(u) may represent a physically relevant quantity

weighted mean value of the solution

weighted boundary integral of the solution or its normal derivative

aerodynamic force coefficients: drag, lift and moment coefficients

Given a solution u with ‖u‖∗∗ <∞, what is (the maximum) s such that

|J(u)− J(uh)| ≤ chs‖u‖∗∗.
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Introduction Numerical analysis of DG methods

A priori and a posteriori error estimates

A priori error estimates: e.g.

‖u − uh‖∗ ≤ chr‖u‖∗∗,
|J(u)− J(uh)| ≤ chs‖u‖∗∗

A posteriori error estimates: e.g.

|J(u)− J(uh)| ≤ E (uh),

|J(u)− J(uh)| ≈ E (uh, zh)
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Introduction Numerical analysis of DG methods

Adjoint-based error estimates and adjoint consistency

Error estimates in the L2-norm or in target quantities J() require the use of
duality arguments:

Define an appropriate adjoint problem connected to the primal problem and
the L2-norm or the target quantity.

Some analysis reveals that the discretization is of optimal order only if the
discretization is adjoint consistent.

In addition to consistency require adjoint consistency for optimality
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Consistency and adjoint consistency Definition of consistency and adjoint consistency
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Consistency and adjoint consistency Definition of consistency and adjoint consistency

Definition of consistency and adjoint consistency for linear problems

Primal problem: Lu = f in Ω, Bu = g on Γ,

Target quantity:
J(u) =

∫
Ω

jΩ u dx +

∫
Γ

jΓ Cu ds = (jΩ, u)Ω + (jΓ,Cu)Γ

Compatibility condition: J(·) is compatible to the primal problem if

(Lu, z)Ω + (Bu,C∗z)Γ = (u, L∗z)Ω + (Cu,B∗z)Γ.

Adjoint problem: L∗z = jΩ in Ω, B∗z = jΓ on Γ.

Let the primal problem be discretized: Find uh ∈ Vh such that

Lh(uh, vh) = Fh(vh) ∀vh ∈ Vh,

and evaluate the discrete target quantity, Jh(uh).
Consistency: The exact solution u to the primal problem satisfies:

Lh(u, v) = Fh(v) ∀v ∈ V , Jh(u) = J(u).

Adjoint consistency: The exact solution z to the adjoint problem satisfies:

Lh(w , z) = Jh(w) ∀w ∈ V .
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Consistency and adjoint consistency The consistency and adjoint consistency analysis

Derivation of the adjoint problem

Given the primal problem

Lu = f in Ω, Bu = g on Γ,

and the target quantity

J(u) =

∫
Ω

jΩ u dx +

∫
Γ

jΓ Cu ds = (jΩ, u)Ω + (jΓ,Cu)Γ.

Find the operator C and the adjoint operators L∗, B∗ and C∗ via the
compatibility condition

(Lu, z)Ω + (Bu,C∗z)Γ = (u, L∗z)Ω + (Cu,B∗z)Γ.

Then the adjoint problem is given by

L∗z = jΩ in Ω, B∗z = jΓ on Γ.
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Consistency and adjoint consistency The consistency and adjoint consistency analysis

Consistency analysis of the discrete primal problem

Rewrite the discrete problem: Find uh ∈ Vh such that

Lh(uh, vh) = Fh(vh) ∀vh ∈ Vh

in following element-based primal residual form: Find uh ∈ Vh such that∫
Ω

R(uh)vh dx +
∑
κ∈Th

∫
∂κ\Γ

r(uh)vh ds +

∫
Γ

rΓ(uh)vh ds = 0 ∀vh ∈ Vh.

The discretization is consistent
if the exact solution u to the primal problem satisfies

R(u) = 0 in κ, κ ∈ Th,
r(u) = 0 on ∂κ \ Γ, κ ∈ Th,

rΓ(u) = 0 on Γ.
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Consistency and adjoint consistency The consistency and adjoint consistency analysis

Adjoint consistency of element, interior face and boundary terms

Rewrite the discrete adjoint problem: find zh ∈ Vh such that

Lh(wh, zh) = Jh(wh) ∀wh ∈ Vh,

in following element-based adjoint residual form: find zh ∈ Vh such that∫
Ω

wh R∗(zh) dx +
∑
κ∈Th

∫
∂κ\Γ

wh r∗(zh) ds +

∫
Γ

wh r∗Γ (zh) ds = 0 ∀wh ∈ Vh.

The discrete adjoint problem is a consistent discretization of the adjoint problem
if the exact solution z to the adjoint problem satisfies

R∗(z) = 0 in κ, κ ∈ Th,
r∗(z) = 0 on ∂κ \ Γ, κ ∈ Th,
r∗Γ (z) = 0 on Γ.

Then, the discretization Lh in combination with Jh is adjoint consistent.
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DG discretization of the linear advection equation The linear advection equation and its adjoint equation
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DG discretization of the linear advection equation The linear advection equation and its adjoint equation

The linear advection equation and its adjoint equation

Consider the linear advection equation

Lu := ∇ · (bu) + cu = f in Ω, u = g on Γ− = {x ∈ Γ,b(x) · n(x) < 0}.

Multiply by z , integrate over Ω and integrate by parts∫
Ω

(∇ · (bu) + cu) z dx = −
∫

Ω
(bu) · ∇z dx +

∫
Ω

cuz dx +
∫

Γ
b · n uz ds.

After splitting the boundary Γ = Γ− ∪ Γ+ we obtain:

(∇ · (bu) + cu, z)Ω + (u,−b · n z)Γ−
= (u,−b · ∇z + cz)Ω + (u,b · n z)Γ+

.

Comparing with the compatibility condition

(Lu, z)Ω + (Bu,C∗z)Γ = (u, L∗z)Ω + (Cu,B∗z)Γ,

we see that for Lu = ∇ · (bu) + cu in Ω and

Bu = u, Cu = 0 on Γ−,

Bu = 0, Cu = u on Γ+,

the adjoint operators are given by L∗z = −b · ∇z + cz in Ω and

B∗z = 0, C∗z = −b · n z on Γ−,

B∗z = b · n z , C∗z = 0 on Γ+.
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DG discretization of the linear advection equation The linear advection equation and its adjoint equation

The linear advection equation and its adjoint equation

Primal problem:

Lu := ∇ · (bu) + cu = f in Ω, u = g on Γ−.

For the operators Lu = ∇ · (bu) + cu in Ω and

Bu = u, Cu = 0 on Γ−,

Bu = 0, Cu = u on Γ+,

the adjoint operators are given by L∗z = −b · ∇z + cz in Ω and

B∗z = 0, C∗z = −b · n z on Γ−,

B∗z = b · n z , C∗z = 0 on Γ+.

In particular,

J(u) =

∫
Ω

jΩ u dx +

∫
Γ

jΓ Cu ds =

∫
Ω

jΩ u dx +

∫
Γ+

jΓ u ds,

is compatible and the continuous adjoint problem is given by

−b · ∇z + cz = jΩ in Ω, b · n z = jΓ on Γ+.
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DG discretization of the linear advection equation The DG discretization

Derivation of the DG discretization

Consider the linear advection equation:

Lu := ∇ · (bu) + cu = f in Ω, u = g on Γ−.

Multiply by a test function v , integrate over κ∫
κ

(∇ · (bu) + cu) v dx =

∫
κ

fv dx,

and integrate by parts

−
∫
κ

(bu) · ∇v dx +

∫
κ

cuv dx +

∫
∂κ

b · n uv ds =

∫
κ

fv dx.

Sum over all κ ∈ Th and replace u by g on Γ− by g :

−
∫

Ω

(bu) · ∇v dx +

∫
Ω

cuv dx +
∑
κ∈Th

∫
∂κ\Γ

b · n uv ds +

∫
Γ+

b · n uv ds

=

∫
Ω

fv dx−
∫

Γ−

b · n gv ds.
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DG discretization of the linear advection equation The DG discretization

Derivation of the DG discretization

−
∫

Ω

(bu) · ∇v dx +

∫
Ω

cuv dx +
∑
κ∈Th

∫
∂κ\Γ

b · n uv ds +

∫
Γ+

b · n uv ds

=

∫
Ω

fv dx−
∫

Γ−

b · n gv ds.

Replace u and v by uh ∈ V p
h and vh ∈ V p

h where

V p
h = {vh ∈ L2(Ω) : vh|κ ◦ Fκ ∈ Qp(κ̂) if κ̂ is the unit square, and

vh|κ ◦ Fκ ∈ Pp(κ̂) if κ̂ is the unit triangle, κ ∈ Th},

and replace b · n u on ∂κ by a
numerical flux function ĥ(u+

h , u
−
h ,n)

where u+
h and u−h are the interior and ex-

terior traces of uh on ∂κ.
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DG discretization of the linear advection equation The DG discretization

Derivation of the DG discretization

Then, the DG discretization is given by: find uh ∈ V p
h such that

Lh(uh, vh) = Fh(vh) ∀vh ∈ V p
h ,

with

Lh(uh, vh) =−
∫

Ω

(buh) · ∇hvh dx +

∫
Ω

cuhvh dx +
∑
κ∈Th

∫
∂κ\Γ

ĥ(u+
h , u

−
h ,n)vh ds

+

∫
Γ+

b · n u+
h vh ds,

Fh(vh) =

∫
Ω

fvh dx−
∫

Γ−

b · n gvh ds.

The numerical flux function ĥ(u+
h , u

−
h ,n) will be specified later.
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DG discretization of the linear advection equation The DG discretization

Consistency

Integrating

−
∫

Ω

(buh) · ∇hvh dx +

∫
Ω

cuhvh dx +
∑
κ∈Th

∫
∂κ\Γ

ĥ(u+
h , u

−
h ,n)vh ds

+

∫
Γ+

b · n u+
h vh ds =

∫
Ω

fvh dx−
∫

Γ−

b · n g vh ds

back by parts gives∫
Ω

∇h · (buh) vh dx +

∫
Ω

cuhvh dx +
∑
κ∈Th

∫
∂κ\Γ

(
ĥ(u+

h , u
−
h ,n)− b · n u+

h

)
vh ds

−
∫

Γ−

b · n u+
h vh ds =

∫
Ω

fvh dx−
∫

Γ−

b · n g vh ds.
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DG discretization of the linear advection equation The DG discretization

Consistency

∫
Ω

∇h · (buh) vh dx +

∫
Ω

cuhvh dx +
∑
κ∈Th

∫
∂κ\Γ

(
ĥ(u+

h , u
−
h ,n)− b · n u+

h

)
vh ds

−
∫

Γ−

b · n u+
h vh ds =

∫
Ω

fvh dx−
∫

Γ−

b · n gvh ds.

Thus, we obtain the primal residual form: find uh ∈ V p
h such that∑

κ∈Th

∫
κ

R(uh)vh dx +
∑
κ∈Th

∫
∂κ\Γ

r(uh)vh ds +

∫
Γ

rΓ(uh)vh ds = 0 ∀vh ∈ V p
h ,

with

R(uh) = f −∇h · (buh)− cuh in κ, κ ∈ Th,
r(uh) = b · n u+

h − ĥ(u+
h , u

−
h ,n) on ∂κ \ Γ, κ ∈ Th,

rΓ(uh) = b · n (u+
h − g) on Γ−,

rΓ(uh) ≡ 0 on Γ+.
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DG discretization of the linear advection equation The DG discretization

Consistency

R(uh) = f −∇h · (buh)− cuh in κ, κ ∈ Th,
r(uh) = b · n u+

h − ĥ(u+
h , u

−
h ,n) on ∂κ \ Γ, κ ∈ Th,

rΓ(uh) = b · n (u+
h − g) on Γ−,

rΓ(uh) ≡ 0 on Γ+.

R(u) = 0 and rΓ(u) = 0 for the exact solution to

∇ · (bu) + cu = f in Ω, u = g on Γ−.

Furthermore, r(u) = 0 if and only if ĥ(u, u,n) = b · n u.

Definition: A numerical flux function ĥ is said to be consistent if

ĥ(v , v ,n) = b · n v .

Ralf Hartmann and Tobias Leicht (DLR) Higher order and adaptive DG methods for compressible flows11. Dec. 2013 30 / 74



DG discretization of the linear advection equation The DG discretization

Global conservation property

Setting c = 0 and v ≡ 1 in the variational formulation we obtain∑
κ∈Th

∫
∂κ\Γ

ĥ(u+
h , u

−
h ,n) ds +

∫
Γ+

b · n u+
h ds =

∫
Ω

f dx−
∫

Γ−

b · n g ds.

Rewriting in terms of interior edges e ∈ ΓI we obtain

∑
e∈ΓI

∫
e

ĥ(u+
h , u

−
h ,n)+ĥ(u−h , u

+
h ,−n) ds+

∫
Γ−

b·n g ds+

∫
Γ+

b·n u+
h ds =

∫
Ω

f dx.

Hence, the discretization is conservative, i.e.∫
Γ−

b · n g ds +

∫
Γ+

b · n u+
h ds =

∫
Ω

f dx,

if and only if the numerical flux function ĥ is conservative, i.e.

ĥ(u+
h , u

−
h ,n) = −ĥ(u−h , u

+
h ,−n).
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DG discretization of the linear advection equation The DG discretization

Numerical flux functions for the linear advection equation

The mean value flux (or central flux):

ĥmv(u+
h , u

−
h ,n) = b · n {uh}, where {uh} =

1

2

(
u+

h + u−h
)
.

The upwind flux:

ĥuw(u+
h , u

−
h ,n) =

{
b · n u−h , for (b · n)(x) < 0, i.e. x ∈ ∂κ−,
b · n u+

h , for (b · n)(x) ≥ 0, i.e. x ∈ ∂κ+,

where ∂κ− and ∂κ+ are the inflow and outflow boundaries of element κ:

∂κ− = {x ∈ ∂κ,b(x) · n(x) < 0},
∂κ+ = {x ∈ ∂κ,b(x) · n(x) ≥ 0} = ∂κ \ ∂κ−.

The generic flux:

ĥb0 (u+
h , u

−
h ,n) = b · n {uh}+ b0 [uh], where [uh] = u+

h − u−h .

represents the mean value flux for b0 = 0

represents the upwind flux for b0 = 1
2 |b · n|
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DG discretization of the linear advection equation The DG discretization

Coercivity

Let Lh(·, ·) be given by

Lh(uh, vh) =−
∫

Ω

(buh) · ∇hvh dx +

∫
Ω

cuhvh dx

+
∑
κ∈Th

∫
∂κ\Γ

ĥb0 (u+
h , u

−
h ,n)vh ds +

∫
Γ+

b · n u+
h vh ds,

where ĥb0 represents

the mean value flux for b0 = 0

the upwind flux for b0 = 1
2 |b · n|

Then for all vh ∈ V p
h we have

Lh(vh, vh) = ‖c0vh‖2 +
∑
e∈ΓI

∫
e

b0 [vh]2 ds +
1

2

∫
Γ

|b · n| v 2
h ds =: |‖vh‖|2b0

,

where we assume that c(x) + 1
2∇ · b(x) > 0 and set c2

0 (x) = c(x) + 1
2∇ · b(x).
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DG discretization of the linear advection equation The DG discretization

Stability

We have coercivity of Lh(·, ·)

Lh(vh, vh) = ‖c0vh‖2 +
∑
e∈ΓI

∫
e

b0 [vh]2 ds +
1

2

∫
Γ

|b · n| v 2
h ds =: |‖vh‖|2b0

.

and continuity of F (·)
F (vh) ≤ CF |‖vh‖|b0

Thereby,
|‖vh‖|2b0

= Lh(vh, vh) = F (vh) ≤ CF |‖vh‖|b0

|‖vh‖|b0 ≤ CF

and we have control over all terms in

|‖vh‖|2b0
= ‖c0vh‖2 +

∑
e∈ΓI

∫
e

b0 [vh]2 ds +
1

2

∫
Γ

|b · n| v 2
h ds ≤ C 2

F ,

with b0 = 0 for the mean value flux and b0 = 1
2 |b · n| for the upwind flux
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DG discretization of the linear advection equation The DG discretization

A priori error estimate

Theorem: Let u ∈ Hp+1(Ω) be the exact solution to the linear advection
equation. Furthermore, let uh ∈ Ṽ p

h be the solution to

Lh(uh, vh) = F (vh), ∀vh ∈ Ṽ p
h ,

where Lh(u, v) =−
∫

Ω

(bu) · ∇hv dx +

∫
Ω

cuv dx

+
∑
κ∈Th

∫
∂κ\Γ

(b · n {u}+ b0 [u]) v ds +

∫
Γ+

b · n uv ds,

F (v) =

∫
Ω

fv dx−
∫

Γ−

b · n gv ds.

Then, for b0 = 1
2 |b · n|, i.e. when using the upwind flux, we have

|‖u − uh‖|b0 ≤ Chp+1/2|u|Hp+1(Ω),

and for b0 = 0, i.e. when using the mean value flux, we have

|‖u − uh‖|b0 ≤ Chp|u|Hp+1(Ω),

where |‖v‖|2b0
= ‖c0v‖2 +

∑
e∈ΓI

∫
e

b0 [v ]2 ds + 1
2

∫
Γ
|b · n| v 2 ds.
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DG discretization of the linear advection equation The DG discretization

Adjoint consistency

Given the (compatible) target quantity J(u) and its discretization Jh(uh),

J(u) =

∫
Ω

jΩ u dx +

∫
Γ+

jΓ u ds, Jh(uh) = J(uh) =

∫
Ω

jΩ uh dx +

∫
Γ+

jΓ uh ds,

then the discrete adjoint problem: find zh ∈ V p
h such that

Lh(wh, zh) = Jh(wh),

rewrites in adjoint residual form: find zh ∈ V p
h such that∫

Ω

wh R∗(zh) dx +
∑
κ∈Th

∫
∂κ\Γ

wh r∗(zh) ds +

∫
Γ

wh r∗Γ (zh) ds = 0 ∀wh ∈ V p
h ,

with R∗(zh) = jΩ + b · ∇hzh − czh in κ, κ ∈ Th,
r∗(zh) = −b · n [zh] on ∂κ \ Γ, κ ∈ Th,
r∗(zh) = jΓ − b · n z+

h on Γ+,

The adjoint residuals vanish for the exact solution z to the adjoint equation

−b · ∇z + cz = jΩ in Ω, b · n z = jΓ on Γ+.

⇒ discretization Lh(uh, vh) in combination with Jh(uh) is adjoint consistency.
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DG discretization of the linear advection equation The DG discretization

A priori error estimates for target functionals J(·)

Corollary: Let uh ∈ V p
h be the solution to the DG discretization with upwind

flux. Assume that u ∈ Hp+1(Ω) and z ∈ Hp+1(Ω). Then, there is a constant
C > 0 such that

|J(u)− Jh(uh)| ≤ Ch2p+1|u|Hp+1(Ω)|z |Hp+1(Ω) ∀u ∈ Hp+1(Ω). (1)

Proof: See (Houston and Süli, 2001; Harriman et al., 2003).

Compare with
|‖u − uh‖|b0 ≤ Chp+1/2|u|Hp+1(Ω),

and note the order doubling in (1) due to adjoint consistency.
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DG discretizations of Poisson’s equation Poisson’s equation and its adjoint equation

The continuous adjoint problem to Poisson’s equation

For ΓD ∪ ΓN = Γ and ΓD 6= ∅ consider the Dirichlet-Neumann problem

−∆u = f in Ω, u = gD on ΓD , n · ∇u = gN on ΓN .

Multiply left hand side by z and integrate by parts twice

(−∆u, z)Ω = (∇u,∇z)Ω− (n · ∇u, z)Γ = (u,−∆z)Ω + (u,n · ∇z)Γ− (n · ∇u, z)Γ.

After splitting the boundary terms according to Γ = ΓD ∪ ΓN and shuffling terms

(−∆u, z)Ω+(u,−n·∇z)ΓD
+(n·∇u, z)ΓN

= (u,−∆z)Ω+(n·∇u,−z)ΓD
+(u,n·∇z)ΓN

.

Comparing with the compatibility condition

(Lu, z)Ω + (Bu,C∗z)Γ = (u, L∗z)Ω + (Cu,B∗z)Γ.

we see that for Lu = −∆u in Ω and

Bu = u, Cu = n · ∇u on ΓD ,

Bu = n · ∇u, Cu = u on ΓN ,

the adjoint operators are given by L∗z = −∆z on Ω and

B∗z = −z , C∗z = −n · ∇z on ΓD ,

B∗z = n · ∇z , C∗z = z on ΓN .
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DG discretizations of Poisson’s equation Poisson’s equation and its adjoint equation

The continuous adjoint problem to Poisson’s equation

Primal problem:

−∆u = f in Ω, u = gD on ΓD , n · ∇u = gN on ΓN ,

For the operators Lu = −∆u in Ω and
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Bu = n · ∇u, Cu = u on ΓN ,

the adjoint operators are given by L∗z = −∆z on Ω and

B∗z = −z , C∗z = −n · ∇z on ΓD ,

B∗z = n · ∇z , C∗z = z on ΓN .

In particular, J(u) =

∫
Ω

jΩ u dx +

∫
Γ

jΓ Cu ds

=

∫
Ω

jΩ u dx +

∫
ΓD

jD n · ∇u ds +

∫
ΓN

jN u ds,

is compatible and the continuous adjoint problem is given by

−∆z = jΩ in Ω, −z = jD on ΓD , n · ∇z = jN on ΓN .
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DG discretizations of Poisson’s equation The DG discretization

Derivation of the DG discretization

For ΓD ∪ ΓN = Γ and ΓD 6= ∅ consider the Dirichlet-Neumann problem

−∆u = f in Ω ⊂ R2, u = gD on ΓD , n · ∇u = gN on ΓN ,

where f ∈ L2(Ω), gD ∈ L2(ΓD) and gN ∈ L2(ΓN).
Rewrite this as a first-order system:

σ = ∇u, −∇ · σ = f in Ω, u = gD on ΓD , n · ∇u = gN on ΓN .

Multiply the first and second equation by test functions τ and v , respectively,
integrate over κ ∈ Th and integrate by parts∫

κ

σ · τ dx = −
∫
κ

u∇ · τ dx +

∫
∂κ

u n · τ ds,∫
κ

σ · ∇v dx =

∫
κ

fv dx +

∫
∂κ

σ · n v ds.
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DG discretizations of Poisson’s equation The DG discretization

Derivation of the DG discretization

Sum over all elements κ ∈ Th∫
Ω

σ · τ dx = −
∫

Ω

u∇ · τ dx +
∑
κ∈Th

∫
∂κ

u n · τ ds,∫
Ω

σ · ∇v dx =

∫
Ω

fv dx +
∑
κ∈Th

∫
∂κ

σ · n v ds,

Replace u and σ by discrete functions uh ∈ V p
h and σh ∈ Σp

h = [V p
h ]2 and by

numerical flux functions ûh and σ̂h on interfaces ∂κ ∩ ∂κ′ between elements∫
Ω

σh · τ h dx = −
∫

Ω

uh∇h · τ h dx +
∑
κ∈Th

∫
∂κ

ûh n · τ h ds ∀τ h ∈ Σp
h,∫

Ω

σh · ∇hvh dx =

∫
Ω

fvh dx +
∑
κ∈Th

∫
∂κ

σ̂h · n vh ds ∀vh ∈ V p
h .

ûh = û(uh) = û(u+
h , u

−
h ) and σ̂h = σ̂(uh,∇uh) = σ̂(u+

h , u
−
h ,∇u+

h ,∇u−h ) will be
specified later.
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DG discretizations of Poisson’s equation The DG discretization

The primal flux formulation∫
Ω

σh · τ h dx = −
∫

Ω

uh∇h · τ h dx +
∑
κ∈Th

∫
∂κ

ûh n · τ h ds ∀τ h ∈ Σp
h,∫

Ω

σh · ∇hvh dx =

∫
Ω

fvh dx +
∑
κ∈Th

∫
∂κ

σ̂h · n vh ds ∀vh ∈ V p
h .

Replace τ h by ∇hvh and perform second integration by parts in the first equation:∫
Ω

σh · ∇hvh dx =

∫
Ω

∇hu · ∇hv dx +
∑
κ∈Th

∫
∂κ

(ûh − uh)n · ∇hv ds.

Eliminate σh by substituting this into the second equation gives
the primal flux formulation: find uh ∈ V p

h such that∫
Ω

∇huh ·∇hvh dx−
∑
κ∈Th

∫
∂κ

σ̂h ·n vh ds +
∑
κ∈Th

∫
∂κ

(ûh−uh)n ·∇hvh ds =

∫
Ω

fvh dx,

for all vh ∈ V p
h .
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DG discretizations of Poisson’s equation The DG discretization

Consistency and conservation property

The discretization∫
Ω

∇huh ·∇hvh dx−
∑
κ∈Th

∫
∂κ

σ̂h ·n vh ds +
∑
κ∈Th

∫
∂κ

(ûh−uh)n ·∇hvh ds =

∫
Ω

fvh dx,

is consistent if and only if the numerical flux functions û and σ̂ are consistent,

û(v) = v , σ̂(v ,∇v) = ∇v , on ∂κ \ Γ, κ ∈ Th,
û(v) = gD , σ̂(v ,∇v) = ∇v , on ΓD ,

û(v) = v , σ̂(v ,∇v) · n = gN , on ΓN ,

whenever v is a smooth function satisfying v = gD on ΓD and n · ∇v = gN on ΓN .

It is conservative if and only if the numerical flux function
σ̂ = σ̂(u+, u−,∇u+,∇u−) is conservative, i.e.,

σ̂(u+, u−,∇u+,∇u−) = σ̂(u−, u+,∇u−,∇u+),

(also call “σ̂ is single-valued”).
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DG discretizations of Poisson’s equation The DG discretization

Adjoint consistency

For the (compatible) target quantity

J(u) =

∫
Ω

jΩ u dx +

∫
ΓD

jD n · ∇u ds +

∫
ΓN

jN u ds,

and its discretization

Jh(uh) =

∫
Ω

jΩ uh dx +

∫
ΓD

jD σ̂h · n ds +

∫
ΓN

jN ûh ds,

the DG discretization of Poisson’s equation is adjoint consistent if and only if
the numerical fluxes û and σ̂ are single-valued, i.e.,

σ̂(u+, u−,∇u+,∇u−) = σ̂(u−, u+,∇u−,∇u+), û(u+, u−) = û(u−, u+).
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DG discretizations of Poisson’s equation The DG discretization

Derivation of various DG discretization methods

∫
Ω

∇huh ·∇hvh dx−
∑
κ∈Th

∫
∂κ

σ̂h ·n vh ds +
∑
κ∈Th

∫
∂κ

(ûh−uh)n ·∇hvh ds =

∫
Ω

fvh dx,

where the numerical fluxes ûh and σ̂h are given by

on ΓI on ΓD on ΓN

ûh σ̂h ûh σ̂h ûh σ̂h

BO {{uh}}+ n+ · [[uh]] {{∇huh}} 2uh − gD ∇huh uh gNn

NIPG {{uh}}+ n+ · [[uh]] {{∇huh}} − δip(uh) 2uh − gD ∇huh − δip
Γ (uh) uh gNn

SIPG {{uh}} {{∇huh}} − δip(uh) gD ∇huh − δip
Γ (uh) uh gNn

BR2 {{uh}} {{∇huh}} − δbr2(uh) gD ∇huh − δbr2
Γ (uh) uh gNn

where {{uh}} = 1
2 (u+

h + u−h ), [[uh]] = u+
h n+

h + u−h n−.

Discretization is consistent if û(v) = v and σ̂(v ,∇v) = ∇v for smooth v

Discretization is adjoint consistent if ûh and σ̂h single-valued
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BO {{uh}}+ n+ · [[uh]] {{∇huh}} 2uh − gD ∇huh uh gNn

NIPG {{uh}}+ n+ · [[uh]] {{∇huh}} − δip(uh) 2uh − gD ∇huh − δip
Γ (uh) uh gNn

SIPG {{uh}} {{∇huh}} − δip(uh) gD ∇huh − δip
Γ (uh) uh gNn

BR2 {{uh}} {{∇huh}} − δbr2(uh) gD ∇huh − δbr2
Γ (uh) uh gNn

where {{uh}} = 1
2 (u+

h + u−h ), [[uh]] = u+
h n+

h + u−h n−.
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DG discretizations of Poisson’s equation The DG discretization

Derivation of various DG discretization methods

on ΓI on ΓD on ΓN

ûh σ̂h ûh σ̂h ûh σ̂h

BO {{uh}}+ n+ · [[uh]] {{∇huh}} 2uh − gD ∇huh uh gNn

NIPG {{uh}}+ n+ · [[uh]] {{∇huh}} − δip(uh) 2uh − gD ∇huh − δip
Γ (uh) uh gNn

SIPG {{uh}} {{∇huh}} − δip(uh) gD ∇huh − δip
Γ (uh) uh gNn

BR2 {{uh}} {{∇huh}} − δbr2(uh) gD ∇huh − δbr2
Γ (uh) uh gNn

Discretization is consistent if û(v) = v and σ̂(v ,∇v) = ∇v for smooth v

Discretization is adjoint consistent if ûh and σ̂h single-valued

Assume that δip(v) = δbr2(v) = δip
Γ (v) = δbr2

Γ (v) = 0 for smooth functions v

and δip(uh), δbr2(uh) single-valued

method of Baumann-Oden BO consistent adjoint inconsistent
non-sym. interior penalty Galerkin NIPG consistent adjoint inconsistent
symmetric interior penalty Galerkin SIPG consistent adjoint consistent
2nd scheme of Bassi & Rebay BR2 consistent adjoint consistent
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Discretization is consistent if û(v) = v and σ̂(v ,∇v) = ∇v for smooth v

Discretization is adjoint consistent if ûh and σ̂h single-valued
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Assume that δip(v) = δbr2(v) = δip
Γ (v) = δbr2

Γ (v) = 0 for smooth functions v

and δip(uh), δbr2(uh) single-valued

method of Baumann-Oden BO consistent adjoint inconsistent
non-sym. interior penalty Galerkin NIPG consistent adjoint inconsistent
symmetric interior penalty Galerkin SIPG consistent adjoint consistent
2nd scheme of Bassi & Rebay BR2 consistent adjoint consistent

Ralf Hartmann and Tobias Leicht (DLR) Higher order and adaptive DG methods for compressible flows11. Dec. 2013 48 / 74



DG discretizations of Poisson’s equation The DG discretization

Baumann-Oden, symmetric and non-symmetric interior penalty

Choose the interior penalty term:

δip(uh) = δ[[uh]] on ΓI , δip
Γ (uh) = δ (uh − gD) n on ΓD

Find uh ∈ V p
h such that

Lh(uh, vh) = Fh(vh) ∀vh ∈ V p
h , where

Lh(u, v) =

∫
Ω

∇hu · ∇hv dx

+

∫
ΓI∪ΓD

(θ[[u]] · {{∇hv}} − {{∇hu}} · [[v ]]) ds +

∫
ΓI∪ΓD

δ[[u]] · [[v ]] ds,

Fh(v) =

∫
Ω

fv dx +

∫
ΓD

θgD n · ∇v ds +

∫
ΓD

δgDv ds +

∫
ΓN

gNv ds,

with

method of Baumann-Oden BO θ = 1 δ = 0

non-sym. interior penalty Galerkin NIPG θ = 1 δ > 0

symmetric interior penalty Galerkin SIPG θ = −1 δ > 0
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DG discretizations of Poisson’s equation The DG discretization

2nd method of Bassi & Rebay

Choose the penalization term:

δbr2(uh) = δbr2
Γ (uh) = −CBR2{{Le

gD
(uh)}} for e ⊂ ΓI ∪ ΓD ,

where the so-called local lifting operator including Dirichlet bc’s is given by:
Le

gD
(w) ∈ Σp

h is the solution to∫
Ω

Le
gD

(w) · τ dx =

∫
e

(w − gD) n · τ ds ∀τ ∈ Σp
h, for e ⊂ ΓD∫

Ω

Le
gD

(w) · τ dx =

∫
e

[[w ]] · {{τ}} ds ∀τ ∈ Σp
h, on e ⊂ ΓI ,

and Le
gD

(w) is defined to be zero for e ⊂ ΓN .
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DG discretizations of Poisson’s equation The DG discretization

Coercivity and stability

Method of Baumann-Oden (BO):

Lh(vh, vh) = ‖∇hvh‖2
L2(Ω) ∀vh ∈ V p

h .

But Lh(vh, vh) = 0 for vh ∈ V 0
h and vh 6≡ 0, i.e. BO is unstable.

(Non-)Symmetric interior penalty Galerkin (NIPG and SIPG) with δ = CIP
p2

h :

Lh(vh, vh) ≥ γ|‖vh‖|2δ ∀vh ∈ V p
h .

NIPG stable for CIP > 0 and SIPG stable for CIP > C 0
IP > 0.

For C 0
IP see (Shahbazi, 2005; Hillewaert, 2013).

2nd method of Bassi & Rebay (BR2):

Lh(vh, vh) ≥ γ|‖vh‖|2Le
0

∀vh ∈ V p
h .

BR2 stable for CBR2 > C 0
BR2 where C 0

BR2 is the number of faces of an element
(C 0

BR2 = 3 on triangles, C 0
BR2 = 4 on quadrilaterals).
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DG discretizations of Poisson’s equation The DG discretization

A priori error estimate in DG-norm for NIPG and SIPG

Lemma 4.12: Let u ∈ Hp+1(Ω) be the exact solution to Poisson’s equation.
Furthermore, let uh ∈ V p

h be the solution to

Lh(uh, vh) = Fh(vh) ∀vh ∈ V p
h ,

for NIPG (θ = 1) and for SIPG(θ = −1), with δ = CIP
p2

h , CIP > C 0
IP. Then

|‖u − uh‖|δ ≤ Chp|u|Hp+1(Ω)

where |‖ · ‖|2δ is the norm as defined in

|‖v‖|2δ = ‖∇hv‖2
L2(Ω) +

∫
ΓI∪ΓD

δ−1 (n · {{∇v}})2 ds +

∫
ΓI∪ΓD

δ[v ]2 ds.

Thereby, the discretization error of the NIPG and SIPG method in the H1-norm
behaves like O(hp).
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DG discretizations of Poisson’s equation The DG discretization

Example: Model problem

Consider Ω = (0, 1)2 and Poisson’s equation with forcing function f such that

u(x) = sin( 1
2πx1) sin( 1

2πx2).

Dirichlet boundary conditions are based on the exact solution u.
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DG discretizations of Poisson’s equation The DG discretization

A priori error estimate in DG-norm for NIPG and SIPG

Lemma 4.12: Let u ∈ Hp+1(Ω) be the exact solution to Poisson’s equation.
Furthermore, let uh ∈ V p

h be the solution to

Lh(uh, vh) = Fh(vh) ∀vh ∈ V p
h ,

Then, for NIPG (θ = 1):

‖u − uh‖L2(Ω) ≤ Chp|u|Hp+1(Ω),

and for SIPG (θ = −1):

‖u − uh‖L2(Ω) ≤ Chp+1|u|Hp+1(Ω).

Due to adjoint consistency, the discretization error in L2 of the SIPG method,
O(hp+1), is one order higher than that of the NIPG method, O(hp).
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DG discretizations of Poisson’s equation The DG discretization

Example: Model problem
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Example: Model problem
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DG discretizations of Poisson’s equation The DG discretization

Example: Model problem, computational effort
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DG discretizations of Poisson’s equation The DG discretization

Example: Model problem, computational effort
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DG discretizations of Poisson’s equation A priori error estimates for target functionals J(·)
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DG discretizations of Poisson’s equation A priori error estimates for target functionals J(·)

A priori error estimates for target functionals J(·)
Given an adjoint consistent discretization (e.g. SIPG): Find uh ∈ V p

h such that

Lh(uh, vh) = Fh(vh) vh ∈ V p
h .

Note, that Lh is continuous (cf. Appendix A.4.2):

Lh(w , v) ≤ CB |‖w‖| |‖v‖| ∀w , v ∈ V .

Furthermore, we have following a priori error estimate:

|‖u − uh‖|δ ≤ Chp|u|Hp+1(Ω) ∀u ∈ Hp+1(Ω).

and following approximation estimate for the L2-projection Pp
h :

|‖v − Pp
h v‖|δ ≤ Chp|v |Hp+1(Ω) ∀v ∈ Hp+1(Ω).

Let z ∈ V be the solution to the adjoint problem. Due to adjoint consistency we
have Lh(w , z) = Jh(w) for all w ∈ V . Thus, for |J(u)− Jh(uh)| = |Jh(e)| we have

|Jh(e)| = |Lh(e, z)| = |Lh(u − uh, z − Pp
h z)| ≤ C |‖u − uh‖| |‖z − Pp

h z‖|
≤ Chp|u|Hp+1(Ω)Chp|z |Hp+1(Ω) = Ch2p|u|Hp+1(Ω)|z |Hp+1(Ω) ∀u ∈ Hp+1(Ω),

i.e., the error |J(u)− Jh(uh)| is of order O(h2p).
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DG discretizations of Poisson’s equation A priori error estimates for target functionals J(·)

A priori error estimates for target functionals J(·)

Same situation as before. But now consider a discretization which in combination
with the discretized target functional Jh(·) is adjoint inconsistent.

Then the solution z to the adjoint problem does not satisfy

Lh(w , z) = Jh(w) ∀w ∈ V .

Instead define the solution ψ to following mesh-dependent adjoint problem:

Lh(w , ψ) = Jh(w) ∀w ∈ V .

ψ is mesh-dependent and not smooth. We obtain

|Jh(e)| = |Lh(e, ψ)| = |Lh(u − uh, ψ − Pp
hψ)| ≤ C |‖u − uh‖| |‖ψ − Pp

hψ‖|
≤ Chp|u|Hp+1(Ω),

i.e., the error |J(u)− Jh(uh)| is of order O(hp).
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DG discretizations of Poisson’s equation A priori error estimates for target functionals J(·)

A priori error estimates for target functionals J(·)
Target quantity which is compatible with Poisson’s equation:

J(u) =

∫
Ω

jΩ u dx +

∫
ΓD

jD n · ∇u ds +

∫
ΓN

jN u ds,

SIPG discretization in combination with

Jh(uh) =

∫
Ω

jΩ uh dx +

∫
ΓD

jD σ̂h · n ds +

∫
ΓN

jN ûh ds

=

∫
Ω

jΩ uh dx +

∫
ΓD

jD
(
∇huh − δip

Γ (uh)
)
· n ds +

∫
ΓN

jN uh ds

= J(uh)−
∫

ΓD

jD δip
Γ (uh) · n ds = J(uh)−

∫
ΓD

jD δ (uh − gD) ds

is adjoint consistent. Thereby, |J(u)− Jh(uh)| is of order O(h2p).

SIPG discretization with J(uh) is adjoint inconsistent. Thereby, O(hp).

NIPG discretization is adjoint inconsistent. Thereby, O(hp).
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DG discretizations of Poisson’s equation A priori error estimates for target functionals J(·)

Example 1: Model problem with SIPG

Dirichlet problem of Poisson’s equation on (0, 1)2. Consider the target quantity

J1(u) =

∫
Ω

jΩ u dx, with jΩ(x) = sin(πx1) sin(πx2) on Ω

This target quantity is compatible with the model problem.
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DG discretizations of Poisson’s equation A priori error estimates for target functionals J(·)

Example 1: Model problem with NIPG

Dirichlet problem of Poisson’s equation on (0, 1)2. Consider the target quantity

J1(u) =

∫
Ω

jΩ u dx, with jΩ(x) = sin(πx1) sin(πx2) on Ω

This target quantity is compatible with the model problem.
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adjoint inconsistent
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DG discretizations of Poisson’s equation A priori error estimates for target functionals J(·)

Example 2: Model problem with SIPG but adjoint inconsistent

Dirichlet problem of Poisson’s equation on (0, 1)2. Consider the target quantity

J2(u) =

∫
Γ

jD n · ∇hu ds, with jD ≡ 1 on ΓD = Γ

This target quantity is also compatible with the model problem.
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DG discretizations of Poisson’s equation A priori error estimates for target functionals J(·)

Example 2: Model problem with SIPG and adjoint consistent

Dirichlet problem of Poisson’s equation on (0, 1)2. Consider

J2,h(uh) =

∫
Γ

jD n · ∇huh ds −
∫

ΓD

δ(uh − gD)jD ds with jD ≡ 1 on ΓD = Γ

which is a consistent discretization of J2(u).
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of even higher order than
the expected O(h2p)
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DG discretizations of Poisson’s equation A priori error estimates for target functionals J(·)

Example 2: Smoothness of the discrete adjoint solution

The exact solution to the adjoint problem

−∆z = 0 in Ω, −z = jD on ΓD

with jD ≡ 1 is given by z ≡ −1 on Ω.

Using the SIPG discretization in combination with J2(uh) and J2,h(uh):

z_h for J_2, adjoint inconsistent
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DG discretizations of Poisson’s equation A priori error estimates for target functionals J(·)

Example 3: Another Dirichlet problem

Consider Ω = (0, 1)× (0.1, 1) and Poisson’s equation with forcing function f such
that

u(x) = 1
4 (1 + x1)2 sin(2πx1x2).

Dirichlet boundary conditions are based on the exact solution u.
Consider the target quantity J3(uh) and its adjoint consistent discretization
J3,h(uh):

J3(uh) =

∫
Γ

jD n · ∇huh ds,

J3,h(uh) = J3(uh)−
∫

Γ

δ(uh − gD)jD ds.

and choose jD ∈ L2(Γ) to be given by

jD(x) =


exp

(
4− 1

16 ((x1 − 1
4 )2 − 1

8 )−2
)

for x ∈ (0, 1
4 )× (0.1, 1),

exp
(
4− 1

16 ((x1 − 3
4 )2 − 1

8 )−2
)

for x ∈ ( 3
4 , 1)× (0.1, 1),

1 for x ∈ ( 1
4 ,

3
4 )× (0.1, 1),

0 elsewhere on Γ.
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DG discretizations of Poisson’s equation A priori error estimates for target functionals J(·)

Example 3: Another Dirichlet problem

Using the SIPG discretization in combination with J3(uh) and J3,h(uh):
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Example 3: Another Dirichlet problem

Using the SIPG discretization in combination with J3(uh) and J3,h(uh):
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DG discretizations of Poisson’s equation A priori error estimates for target functionals J(·)

Example 3: Smoothness of the discrete adjoint solution

Using the SIPG discretization in combination with J3(uh) and J3,h(uh):

z_h for J_3, adjoint inconsistent
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Summary and outlook Summary

Adjoint consistency: Questions covered today

What is adjoint consistency?

For an adjoint consistent discretization the discrete adjoint problem is a
consistent discretization of the continuous adjoint problem.

Take the adjoint of the discretized primal equations or
discretize the continuous adjoint equations?
For an adjoint consistent discretization both approaches might lead to the
same.

What is the effect of adjoint consistency?
Smooth adjoint solution. Improved order of convergence in L2 and J(·).

Can one derive an adjoint consistent discretization for any target quantity?
No, only for target quantities which are compatible with the equations.
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Smooth adjoint solution. Improved order of convergence in L2 and J(·).

Can one derive an adjoint consistent discretization for any target quantity?
No, only for target quantities which are compatible with the equations.
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Adjoint consistency: Questions covered today

So, what is a compatible target quantity?

Compatibility condition

(Lu, z)Ω + (Bu,C∗z)Γ = (u, L∗z)Ω + (Cu,B∗z)Γ,

J(u) =

∫
Ω

jΩ u dx +

∫
Γ

jΓ Cu ds

For the linear advection equation:

J(u) =

∫
Ω

jΩ u dx +

∫
Γ+

jΓ u ds.

For Poisson’s equation

J(u) =

∫
Ω

jΩ u dx +

∫
ΓD

jD n · ∇u ds +

∫
ΓN

jN u ds.

Given a discretization and a (compatible) target quantity. Does any
discretization of the target quantity give an adjoint consistent discretization?
No. There may be arbitrarily many different consistent discretizations of the
target quantity but only one may give an adjoint consistent discretization.
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Summary and outlook Outlook

Questions covered in next lecture

Adjoint consistency:

What is a compatible target quantity . . . ?

. . . for the compressible Euler equations?
The pressure-induced drag, lift and moment coefficients.

. . . the compressible Navier-Stokes equations?
The total drag, lift and moment coefficients.

Given a consistent DG discretization with adjoint consistent (interior) faces
terms (like SIPG, BR2). For adjoint consistency: Is it possible to provide a
discretization of the target quantity for any discretization of boundary terms?
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Summary and outlook Outlook

Questions covered in next lecture

Error estimation and adaptivity for a compressible flow around an airfoil:

I want to computed accurate drag, lift and moment coefficients.
Where should I refine the mesh?

How accurate are the drag and lift values I computed?

I want a good resolution of the overall flow field (including e.g. vortical
structures).
Where should I refine the mesh?

To be continued...
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