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Abstract— This paper works with the concept of Divergent
Component of Motion (DCM), also called ’(instantaneous)
Capture Point’. We present two real-time DCM trajectory gen-
erators for uneven (three-dimensional) ground surfaces, which
lead to continuous leg (and corresponding ground reaction)
force profiles and facilitate the use of toe-off motion during
double support. Thus, the resulting DCM trajectories are well
suited for real-world robots and allow for increased step length
and step height. The performance of the proposed methods was
tested in numerous simulations and experiments on IHMC’s
Atlas robot and DLR’s humanoid robot TORO.

I. INTRODUCTION

For humanoid robots to be used in real world scenarios,
there is a need of robust and simple walking controllers.
Many successful Linear Inverted Pendulum (LIP) based
walking control methods have been presented recently [1]–
[6]. Wieber [3] and Herdt et al. [4] propose trajectory
free approaches for planning based on the solution of a
Quadratic Program (QP) in a Model Predictive Control
(MPC) framework. The use of the LIP model for bipedal
walking control is typically restricted to horizontal motions
of the CoM (z = const.). This motivates the derivation of
methods for non-constant CoM and floor height. Kajita et al.
[7] introduce the 3D Linear Inverted Pendulum Mode, which
constrains the CoM to be on a (not necessarily horizontal)
plane. They present experiments for walking on spiral stairs,
yet a rather static walking is achieved. Zhao and Sentis
[8] present a method for three-dimensional foot placement
planning on uneven ground surfaces based on the Prismatic
Inverted Pendulum. Yet, the lateral foot-placement cannot
be predefined, but is dependent on the sagittal dynamics
and the “desired CoM Surface”. Additionally, the method is
restricted to ground surfaces with laterally constant heights.

To simplify the design of walking controllers, several
previous works, such as [1], [11]–[16], propose to split the
CoM dynamics into a stable and an unstable part. All these
methods are based on LIP model dynamics and thus most of
them are theoretically restricted to walking on flat ground. In
[17] we overcame the limitation of constant CoM and floor
height by extending the concept of Divergent Component
of Motion (DCM [1], also called ‘(instantaneous) Capture
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Fig. 1. Atlas robot [9] doing 70 cm steps in IHMC’s simulation
environment (SimulationConstructionSet [10]) using toe-off motion.

Point’ [18]) to 3D. Therefore, the “Enhanced Centroidal
Moment Pivot point” (eCMP) and the “Virtual Repellent
Point” (VRP) were introduced, which allow for the encoding
of both direction and magnitude of the external (e.g. leg)
forces and the total force (i.e. external forces plus gravity)
acting on the robot. Based on eCMP, VRP and DCM, a
method for real-time planning and control of DCM trajecto-
ries in 3D was presented. Yet, the DCM trajectory generator
presented in [17] assumed constant eCMP positions with
instantaneous transitions between subsequent single support
phases (no double support considered). This lead to discon-
tinuous desired leg forces and desired joint torques, which
can cause perturbations in the actuation system. Therefore,
as the first contribution of this paper, a method for generating
Continuous Double Support (CDS) trajectories is introduced,
which - similar to the “Multi-Contact Transitions” in [8]-
results in smooth eCMP and related leg force profiles.

The use of toe-off motion facilitates energy efficient [19]
and human-like [20] walking. Thus, the second contribution
of this paper is the extension of the CDS trajectory generator
to a Heel-to-Toe (HT) trajectory generator, in which the
eCMP is shifted from heel to toe during single support.
This allows for early toe-off motions during double support,
increasing maximum achievable step length and step height.
Throughout the paper we will often use the terms “eCMP”
(and its corresponding “VRP”) and “DCM”. For certain
assumptions (constant CoM height, constant angular momen-
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Fig. 2. Point correlations for general robot dynamics. The CMP is found as
intersection of the line CoM-to-eCMP with the ground. The line of action
lact of the external force can be shifted via a torque τ around the CoM
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tum w.r.t. CoM [21]), the eCMP can be equivalent to the
ZMP [22] and the DCM to the (instantaneous) Capture Point
(iCP, [18]), so many ideas presented here can be applied to
ZMP- and iCP-based methods.

The paper is organized as follows: In Section II, we
recapitulate the main results from [17] as the derivations
in this paper build on the methods proposed there. Sec-
tion III contains the main theoretical contributions of the
paper, namely the derivation of DCM reference trajectories
for continuous double support (CDS) and heel-to-toe (HT)
transfer. Section IV outlines the used walking state machine.
Section V discusses the trajectories resulting from the pro-
posed trajectory generators. In section VI, we outline the
simulations and experiments that were performed to validate
the proposed methods. Section VII concludes the paper.

II. BACKGROUND [17]

A. Introduction of three-dim. DCM, eCMP and VRP

Motivated by the performance of 2D Capture Point
(= DCM) control [13], [14], the three-dimensional Divergent
Component of Motion (DCM) was introduced as

ξ = x+ bẋ, (1)

where ξ = [ξx,ξy,ξz]
T is the DCM, x = [x,y,z]T and

ẋ= [ẋ, ẏ, ż]T are the CoM position and velocity and b > 0
is the time-constant of the DCM dynamics. By reordering
(1), the CoM dynamics is found as

ẋ=−1
b
(x−ξ). (2)

This shows that the CoM has a stable first order dynamics
for b > 0 (→ it follows the DCM). Additionally, the so
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Fig. 3. For planning, the eCMP is designed to coincide with the point foot
(or foot center) which along with the assumption L̇= 0 leads to a constant
focus point, through which all force lines pass.

called Enhanced Centroidal Moment Pivot point (eCMP) was
introduced, which encodes the external (e.g. leg-) forces in
a simple repelling force law (linear dependency), based on
the difference of the CoM and the eCMP:

Fext =
m
b2 (x−recmp). (3)

The eCMP is closely related to the CMP [21], but it is not
restricted to be within the foot plane or ground surface. This
allows for encoding of not only the direction of the total
external force, but also its magnitude. To encode the sum of
all forces acting on the CoM including gravity, the Virtual
Repellent Point (VRP) was introduced as

rvrp = recmp +
[
0 0 b2g

]T
= recmp +

[
0 0 Δzvrp

]T
. (4)

This leads to the following DCM dynamics:

ξ̇ =
1
b
(ξ−rvrp) (5)

This shows that the DCM has an unstable first order dy-
namics (“pushed” by the VRP on a straight line). The VRP
encodes gravity and external forces in a single point:

F =
m
b2 (x−rvrp). (6)

Figure 2 clarifies the correlations between the eCMP, CMP
and CoP for a general (bipedal) robot dynamics.

B. Generation of DCM reference

The basic idea in [17] - exploiting the first order DCM
dynamics - was to find a DCM trajectory which corresponds
to constant eCMPs in the centers of the preplanned future
foot positions r f ,i, thus fulfilling the ZMP constraints. Given
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a desired eCMP-to-VRP height difference Δzvrp, the accord-
ing desired VRPs (see Fig. 4) are found via (4) as

rvrp,d,i = r f ,i +
[
0 0 Δzvrp

]T
(7)

The time-constant of the DCM dynamics results from (4)
as b =

√
Δzvrp/g. The VRP-height Δzvrp can be intuitively

interpreted as an average height of the CoM over the ground
surface. The desired DCM locations at the end of each step
are found via recursion:

ξd,eos,i−1 = ξd,ini,i = rvrp,d,i + e−
tstep

b (ξd,eos,i −rvrp,d,i). (8)

For t < tstep, the desired DCM trajectory in time is

ξd(t) = rvrp,d,1 + e
t−tstep

b (ξd,eos,1 −rvrp,d,1). (9)

C. Three-dimensional DCM tracking control

The DCM control law used in this work is given by

rvrp,c = ξ+ kξ b(ξ−ξd)− bξ̇d . (10)

It leads to the following stable closed loop dynamics[
ẋ

ξ̇

]
=

[−1/b 1/b
0 −kξ

][
x
ξ

]
︸ ︷︷ ︸

f eedback

+

[
0 0
kξ 1

][
ξd
ξ̇d

]
︸ ︷︷ ︸

f eed f orward

. (11)

As the DCM error eξ = ξ− ξd converges asymptotically,
also the commanded VRP rvrp,c and its corresponding
eCMP recmp,c converge to their desired values (rvrp,d,1 and
recmp,d,1 = r f ,1) asymptotically after a perturbation. The
according desired external force can be found as

Fext,c =
mg

Δzvrp
(x− (rvrp,c −

[
0 0 Δzvrp

]T︸ ︷︷ ︸
recmp,c

)) (12)

Note that the only equations that are finally needed are
(8) and (9) for 3D DCM trajectory generation and (10)
and (12) for force-based DCM tracking control. They can
easily be computed in real-time on any computer. The design
parameters are the VRP-height Δzvrp, the DCM control gain
kξ and the time per step tstep.

III. CONTINUOUS DOUBLE SUPPORT (CDS) AND

HEEL-TO-TOE (HT) TRAJECTORIES

A. Continuous Double Support trajectories

The planning method presented in [17] (and recapitulated
in section II-B) is very powerful, as it allows for the design of
walking trajectories over unstructured (3D) ground surfaces
in real-time. Yet, as the original method only considers single
support phases (and instantaneous transitions between them),
there is the drawback of discontinuous desired VRP (and
eCMP) and thus discontinuous desired leg forces (and ground
reaction forces, respectively) at the support transitions (see
Fext in Fig. 8). This leads to considerable discontinuities in
the commanded joint torques, which can be unfeasible for a
physical robot due to its limited actuator dynamics and might
excite unmodeled structural elasticities. This motivates the
derivation of DCM trajectories which satisfy C1 continuity
and thus lead to continuous eCMP (and corresponding leg
force) transitions. Therefore, we will make use of a walking
state machine (described in Sec. IV) and explicitly consider
the anticipated double support phases for the generation of
a modified DCM reference trajectory.

Figure 5 (left) shows the outline used for the generation
of DCM trajectories with continuous double support (CDS)
transitions. The CDS trajectory generation builds on the
method proposed in [17] (based on eCMPs in the foot centers
and instantaneous single support transitions), which leads to
the zigzag trajectory for the DCM shown in Fig. 4 (bright
blue lines). The edges around the initial DCMs ξ ini,i are now
“rounded” (turquoise curves) to guarantee continuity of the
eCMP and corresponding leg forces during double support.
For a desired DCM position and velocity, the correlating
VRP is obtained from (5) as

rvrp = ξ− b ξ̇. (13)

This means that a reference trajectory with continuous de-
veloping of DCM position and velocity (C1 continuity) will
result in a continuous VRP trajectory and corresponding con-
tinuous eCMP (see (4)) and leg force (see (3)) trajectories.
This motivates the use of a third order polynomial interpola-
tion to “round” the edges of the preliminary DCM reference
trajectory (corresponding to smooth transition during double
support). Given a desired double support duration t DS, the
idea is to compute two points

ξiniDS,i = rvrp,i−1 + e−
ΔtDS,ini

b (ξini,i −rvrp,i−1) (14)

(“iniDS” stands for “initial double support”) and

ξeoDS,i = rvrp,i + e
ΔtDS,end

b (ξini,i −rvrp,i) (15)
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Fig. 5. Delineation of Continuous Double Support (left) and Heel-to-Toe
(including continuous double support; right) DCM trajectories. Depicted for
three previewed future footsteps.

(“eoDS” stands for “end of double support”) on the
preliminary DCM trajectory (see Fig. 5 (left)), where
the DCM would be ΔtDS,ini = αDS,ini tDS before and
ΔtDS,end = (1−αDS,ini) tDS after the nominal (instantaneous)
support transition. In this paper, we chose the parameter
αDS,ini to be 0.5. ξiniDS,i and ξeoDS,i (and the corresponding
DCM velocities) are used as initial and final boundary
conditions for the third order polynomial, which smoothly
interpolates between the two. A polynomial parameter ma-
trix, which fulfills initial and final DCM position and velocity
boundary conditions, can be computed as

P =

⎡
⎢⎢⎣

2/T 3 1/T 2 −2/T 3 1/T 2

−3/T 2 −2/T 3/T 2 −1/T
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
ξT

ini

ξ̇T
ini

ξT
end

ξ̇T
end

⎤
⎥⎥⎦ , (16)

where T denotes the total duration of the transition and
[ξT

ini, ξ̇
T
ini,ξ

T
end , ξ̇

T
end ]

T are the boundary conditions on the
initial and final DCM position and velocity. The column
vectors in P = [px, py, pz] contain the polynomial parameters
for x, y and z direction. With P , the DCM position and
velocity can be computed for any time t ∈ [0,T ] as[

ξT (t)
ξ̇T (t)

]
=

[
t3 t2 t 1
3t2 2t 1 0

]
P , (17)

where t denotes the time in state (see Sec. IV). This poly-
nomial interpolation (using ξ iniDS,i, ξeoDS,i and the according
DCM velocities as boundary conditions and setting T = tDS

in (16)) is used during double support (turquoise curves in
Fig. 5 (left)). The VRP, eCMP and leg-force can then be

reCMP,ini,CDS

reCMP,ini,HT

full support polygon

toe-off support polygon
(TOSP)

f1

f2

Fig. 6. Full support polygon and toe-off support polygon (TOSP)

computed via (13), (4) and (3). During single support, expo-
nential interpolation (9) is used (bright blue line segments).
Figure 5 (left) also shows the continuous VRP trajectories
(pink curves) during double support. During single support,
the VRP positions are constant (marked by rvrp,i). Note that
Fig. 5 shows a top view of the desired trajectories. Yet, just
like in Fig. 4, the proposed methods and resulting DCM,
VRP and eCMP trajectories are three-dimensional in general.

Note that the use of the proposed polynomial interpolation
guarantees for continuity of the commanded VRPs and
corresponding eCMPs, whilst feasibility (corresponding CoP
in base of support) is not guaranteed. In case of a feasibilty
violation, the eCMP would have to be projected to the
feasible region (e.g. as proposed in [14]). Yet, for the chosen
parameter αDS,ini = 0.5 we did not encounter any feasibility
violation in simulations or experiments.

B. Continuous Heel-to-Toe (HT) trajectories

The methods derived for continuous double support tran-
sitions turn out to be useful to address another problem:
when being restricted to full foot support (no toe-off) during
double support, the maximum step length a walking robot
can achieve and the maximum stair height it can step up
is limited. This is mainly due to singularities related to
the stretched knee of the hind leg in the end of double
support. To overcome this problem, a robot can make use
of its toes or allow the rear foot to tilt around its front
edge (“toe-off” motion → increase of effective hind leg
length) during double support. While reducing the singularity
problem, a toe-off introduces a new problem: to avoid tilting
of the robot about the edges of its support polygon (for
flat ground; in 3D: similar issues related to unilaterality
of foot forces), the desired CoP has to stay inside the
support polygon. During toe-off, the support polygon is
instantaneously decreased to the “toe-off support polygon”
(TOSP, see Fig. 6). For our DCM reference generation, we
assume the eCMP to coincide with the CoP (→ no torques
around CoM considered, see Fig. 2 and 3). Thus, if the
reference eCMP lies outside the TOSP, it has to be projected
to it, resulting in a discontinuous eCMP (and related leg and
ground reaction forces, respectively). One possibility to avoid
this problem is to wait for the eCMP reference to enter the
TOSP before toe-off is initiated. In the method for continuous
double support (CDS, Sec. III-A), the eCMP trajectories start
from the foot-centers (see reCMP,ini,CDS in Fig. 6), such that
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it takes comparably long until the eCMP reaches the TOSP.
The second option is to plan a DCM reference trajectory
which results in an earlier entry of the corresponding eCMP
in the TOSP. Here we propose a heel-to-toe shift of the
eCMP during single support to achieve that. Through the
earlier entry of the eCMP in the TOSP, the robot can start
its toe-off motion earlier, which helps avoiding the rear knee
singularity and maximize step length and height (→ high
stairs). Therefore, we consider two eCMPs - one close to
the heel and one close to the toe - instead of only one
central eCMP for each foot. As before, the corresponding
heel- and toe-VRPs (rvrp,H,i and rvrp,T,i) are Δzvrp above the
heel- and toe-eCMPs. Instead of one central VRP in each
foot, we now use both heel- and toe VRPs in each foot to
first derive the preliminary DCM trajectory (dark blue lines
in Fig. 5 (right)), assuming instantaneous transitions. As in
[17], this is done via backwards recursion (see (8)), starting
with the final previewed toe-VRP and iterating backwards in
time over all heel- and toe-VRPs until the current one. That
way, all future initial heel-to-toe DCMs (ξini,HT,i) and initial
toe-to-heel DCMs (ξini,T H,1) are computed. In (8) instead of
tstep we now use ΔtHT = αHT tstep (heel-to-toe transition) and
ΔtT H = (1−αHT )tstep (toe-to-heel transition) as the duration
of transition. The parameter αHT may be chosen in the range
of 0≤αHT ≤ 1 (here: αHT = 0.5). Just like in Sec. III-A, the
edges around the initial heel-to-toe-DCMs are now rounded
via third order polynomial splines (turquoise curves in Fig. 5
(right)) to achieve a continuous VRP transition from toe
to heel during double support. The initial and final double
support DCM positions can be computed via

ξiniDS,i = rvrp,T,i−1 + e−
ΔtDS,ini

b (ξini,HT,i −rvrp,T,i−1) (18)

and

ξeoDS,i = rvrp,H,i + e
ΔtDS,end

b (ξini,HT,i −rvrp,H,i). (19)

ξiniDS,i, ξeoDS,i and the according DCM velocities as used
as boundary conditions in (16) to compute the polynomial
parameters for the double support phases. Unlike in Sec. III-
A, the single support DCM reference trajectory is not
computed via exponential interpolation (9) but again via
the polynomial interpolation (17) with ξeoDS,i−1 as initial
and ξiniDS,i as final boundary condition in (16), resulting
in the bright blue curves in Fig. 5 (right). The pink curves
in Fig. 5 (right) illustrate the continuous VRP transitions
during single support (from rvrp,H,i to rvrp,T,i) and double
support (from rvrp,T,i to rvrp,H,i+1). Again, the actual DCM,

VRP and eCMP trajectories are three-dimensional in general
(Fig. 5 shows a top view). As mentioned before, the use
of the proposed polynomial interpolation does not guarantee
feasibility of the commanded VRPs (corresponding CoP in
base of support). Yet, for the chosen parameters αDS,ini = 0.5
and αHT = 0.5we did not encounter any feasibility violation
in simulations or experiments.

Figure 1 shows the simulated Atlas robot taking 70cm
steps, which was facilitated by the Heel-to-Toe trajectories
described in this section. In this paper, we only consider toe-
off during double support. Toe-off during single support is
also conceivable but not explicitly covered here.

Table I summarizes which interpolation method is used
for what controller during each phase.

DCM interpolation method
controller exponential (9) polynomial (17)
discontinuous x

conti. DS double support x
single support x

heel-to-toe double support x
single support x

TABLE I

IV. WALKING STATE MACHINE

We make use of a walking state machine (see Fig. 7) to
keep track of and thoroughly switch between walking states
and provide the DCM interpolators with their necessary
inputs (such as previewed foot positions and the current time
in state t). In total we distinguish between four states: Stance,
Initial Transfer (IT), Single Support (SS), Double Support
(DS). Stance can be seen as the robot idle state, where
no walking trajectories are commanded and it is simply
balancing in place. During Initial Transfer, the robot shifts
its DCM from between its stance feet to the final double
support DCM position ξeoDS,2 of the upcoming step (see
Fig. 5). Single and Double Support state correlate to the
phases described in Sec. III.

A timer associated to the walking state machine provides
the exponential and polynomial interpolators (9) and (17)
with the time in state t. It incrementally increases t, until the
current walking state duration is reached (t ∈ [0,T ], where
T ∈ {TIT ,TSS,TDS}), which triggers a state transition and re-
sets t (t = 0). After each DS phase, the state machine checks,
whether there are more steps to take (e.g. more elements in
list of preplanned footstep positions) and accordingly decides
to switch to stance or the next single support phase.
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Fig. 8. Comparison of discontinuous (red dashed), Continuous Double Support (green dash-dotted) and Heel-to-Toe (blue solid) trajectory generators.
Shown trajectories correspond to a walk with the following parameters: tstep = 0.8s, tDS = 0.2s, step length 0.5m, step width 0.2m, foot length 0.15m

In our implementation, we distinguish between the list of
preplanned footsteps (e.g. 100 preplanned footsteps for walk-
ing from one room to another) and the list of previewed steps.
The latter contains only a number (in our implementations
typically four, as in Fig. 5) of steps, which are considered
for DCM reference trajectory generation. In the beginning
of each single support phase the list of previewed steps is
updated and all reference points (see Sec. III) for the current
single support and upcoming double support are computed.
Also the polynomial parameters (see Sec. III) for smooth
transitions are pre-computed. For advanced applications (e.g.
online foot-adjustment), these computations might be done
every control cycle, otherwise this once-per-step precompu-
tation is sufficient. Note that the index “1” always denotes
the current (or hind) stance foot, whilst the indices “2, 3 ...”
denote the next, second next and so on footsteps.

V. DISCUSSION OF RESULTING DCM REFERENCE

TRAJECTORIES

Figure 8 shows a comparison of the discontinuous, Contin-
uous Double Support (CDS) and Heel-to-Toe (HT) trajectory
generators for a 4-step sample walk of a bipedal robot (find
details of the walking task in the caption).

For the Continuous Double Support (CDS) and Heel-to-
Toe (HT) trajectories derived in Sec. III, the force profiles
are continuous (as compared to discontinuous force profiles
for the original method [17]) and the maximum absolute
of the leg-forces is strongly decreased, resulting in smaller
minimum joint torques required for walking.

Fig. 9. Comparison (top view) of VRP (pink), DCM (blue) and CoM
(green) reference trajectories. top: discontinuous [17], middle: Continuous
Double Support (Sec. III-A), bottom: Heel-to-Toe (Sec. III-B) trajectories

The maximum DCM velocity (especially in sagittal direc-
tion x) is drastically reduced (see quantitative comparison
in table II). As the term “Divergent Component of Motion”
indicates, the DCM velocity is a measure for how fast one
of the robot states (the DCM) is diverging. Although we
make use of this divergence to allow the robot to dynamically
walk (→ “controlled divergence”), it comes with the inherent
danger of loss of control if the actual interactions of the
robot system with its environment differs from the predicted
ones. For instance in case of a delayed landing of the swing
foot, the DCM may during single support overshoot out
of the previewed (double support) support polygon, which
may result in unrecoverable instability of the robot. Thus,
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Fig. 10. OpenHRP3 simulation of humanoid robot TORO. Top: desired
(black) and real DCMs, Bottom: desired (black) and real eCMPs

the lower DCM velocities observed for the CDS and HT
trajectories decrease the risk of loss of control.

One can also observe lower maximum CoM velocities
for the CDS and HT trajectories, which correlates to lower
required joint speeds or higher maximum walking speed for
a given maximum joint velocity.

Table II shows a quantitative comparison of the achieved
sagittal forces, DCM velocities and CoM velocities.

algorithm Fext,x [N] ξ̇x,max [
m
s ] ẋcom,max [

m
s ]

abs. perc. abs. perc. abs. perc.
discont. DS 190 100% 1.86 100% 0.98 100%
cont. DS 136 71.6% 1.31 70.4% 0.85 86.7%
cont. DS/HT 90.2 47.5% 1.01 54.3% 0.76 77.6%

TABLE II

VI. SIMULATIONS, EXPERIMENTS AND TRIALS

The proposed DCM reference trajectory generators from
Sec. III (and the associated DCM feedback control (10))
were thoroughly tested in numerous simulations (both for
DLR’s humanoid robot TORO and IHMC’s Atlas robot) and
experimentally with IHMC’s Atlas robot.

Figure 10 shows the desired and real (three-dimensional)
DCM and eCMP trajectories for an OpenHRP3 [23] simula-
tion in which TORO walks over a set of stairs (see Fig. 11).
The 3D DCM trajectories are tracked accurately and the
eCMP transitions are smooth during double support.

During the preparations for DARPA’s Virtual Robotics
Challenge (VRC), the Continuous Double Support (CDS)
trajectory generator (Sec. III-A) was first developed and
subsequently evolved into the Heel-to-Toe (HT) trajectory

Fig. 11. OpenHRP3 simulation of DLR’s bipedal humanoid TORO.
Walking over a set of stairs of variable height. (step height differences:
[+12,+12,+12,−12,−12,−12,+10,+5,+3,−18] cm)

generator (Sec. III-B). Based on the latter, the simulated
Atlas robot achieved a maximum step length of up to 70 cm
(see Fig. 1) in both IHMC’s simulation environment [10] and
the official VRC simulator Gazebo [24].

The algorithms described in this paper were also used
during IHMC’s participation in the DARPA Robotics Chal-
lenge Trials 2013 [25]. Amongst others, IHMC’s Atlas robot
accomplished to get full marks for the terrain task (→ ramps,
steps, stairs, inclined stairs). Figure 12 shows an experi-
mental result of Atlas walking on flat ground while using
the Continuous Double Support (CDS) trajectory generator
(from Sec. III-A). The plot shows a series of seven steps after
which Atlas comes to a stop. It displays the estimated eCMP,
DCM and CoM trajectories in x (forward) and y (sideward)
direction. We use the term “estimated” here, as these quan-
tities were not measured directly but computed from joint
torques and estimated via a state observer (Kalman filter).
The eCMP transition during double support is continuous,
resulting in continuous leg force profiles.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented two DCM trajectory generators
(the Continuous Double Support (CDS) and Heel-to-Toe
(HT) trajectory generator) which build up on the method
for three-dimensional DCM trajectory generation introduced
in [17] and can easily be computed in real-time. They lead
to continuous leg force transitions during double support
phase and facilitate toe-off motion of a walking robot. The
performance of the proposed methods was tested in numer-
ous simulations (both for IHMC’s Atlas robot and DLR’s
humanoid robot TORO) and in experiments on IHMC’s Atlas
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Fig. 12. Experimental results of IHMC’s Atlas robot walking during DRC
Trials. Pink: estimated eCMP, blue: est. DCM, green: est. CoM

robot. Future work includes enhancements of the algorithms
for the use in the DARPA Robotics Challenge (e.g. for toe-
off motion to step onto large obstacles) and the embedding of
the generators into DLR’s continuous replanning framework
(→ e.g. for online responsive joystick steering).
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