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Abstract

Seamless pedestrian navigation in both indoor and outdooromments is an unsolved chal-
lenge today. Though various navigation systems and sessgwtswhich are suitable in terms
of size, cost, and power consumption, today none of thegeragds expected to serve as a sole
means for personal navigation in the mid-term future. Iipalar the characteristic drawbacks
of today’s systems in specific environments prevent theicessful use. This work shows how
to solve the problem by the rigorous application of a soumtétically motivated approach:
The combination of various sensors and the optimal joint@ssing of their provided data by
a Bayesian filter algorithm, which optimally takes into acabthe uncertainty inherently in-
cluded in each sensor’'s data and which exploits optimallyaailable knowledge about the
movement of the navigating individual, such that in the endniormation is lost during the
processing of the data. After an introduction to persongigadion systems and sensors, par-
ticularly focusing on satellite and inertial navigatiomdaa summary on the concept and the
implementation of Bayesian filters, the thesis addresseagpkcation of Bayesian filtering to
enhance the performance of satellite navigation receimardan multipath environments. The
results confirm the benefit of the Bayesian approach, whichads/s to outperform a conven-
tional navigation receiver significantly. Subsequentlyoxeal integration scheme for inertial
sensors is proposed based on the concept of foot-mountehirsensing. Thereby particular
emphasis is put on the incorporation of an adequate maestestrian mobility model in
order to reduce the heavy drift of today’s small-scale ang-dost micro-electro-mechanical
inertial sensor platforms. The results show that the coathin of inertial navigation with a
map-based pedestrian mobility model can achieve a fullgrearhous drift-free navigation in
indoor environments. Finally it is shown how seamless pidesnavigation systems can be
designed successfully by the use of Bayesian filtering dlgos. The design of the filter al-
gorithms is addressed and depending on the employed arldldgasensors the suitable filter
implementation is chosen, including an extended Kalmaer fitir the combination of finger-
printing via a wireless local area network and foot-mouniextitial sensors and a particle filter
for the integration of a satellite navigation receiver, doarequency identification unit, a com-
pass, a baro-altimeter, a foot-mounted inertial platfaamd a map-based pedestrian mobility
model.
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Zusammenfassung

Das Problem der nahtlos und kontinuierlich ¥gbaren Ful@nger-Navigation ist heute noch
weitgehend ungékt, insbesondere innerhalb von @abden. Obgleich heute eine Vielzahl
von Systemen und Sensoren zur \dgring steht, die aufgrund ihrer Merkmale wietGe,
Kosten und Stromverbrauch als geeignet erscheinen, istaksrdittelfristig nicht zu erwarten,
dass eine der bereits exisitierendeisungen das alleinige Mittel der Wahl sein wird, um die
Probleme der Ful&mger-Navigation zudisen, da dem insbesondere die jeweils systemspezi-
fischen Schachen der einzelnen Systeme und Sensoren in unterschedli8zenarien entge-
genstehen. Im Rahmen dieser Arbeit wird aufgezeigt wie destdhende Probleme durch die
strikte Anwendung eines theoretisch solide motiviertersatnes géist werden knnen: Die
Kombination verschiedener Sensoren und die optimale beitang ihrer Daten mittels eines
Bayes’schen Filters, das in optimaler Weise die Unsich&zhén den Sensordaten beksicht-

igt und welches optimal alles vérgbare Wissefiber die Bewegung der navigierenden Person
miteinbezieht, so dass letztendlich keinerlei Informatiei der Verarbeitung der Daten ver-
loren geht. Nach einer Einleitung zu Systemen und Sens@eful3gnger-Navigation, die
speziell die Grundlagen der Satelliten- unddheitsnavigation adressiert, und einer Zusam-
menfassung der Prinzipien und Implementierungen der Bsgfesih Filter, wird in der vor-
liegenden Arbeit die Anwendung der Bayes’schen FilterungleeSignalverabeitung in Satel-
litennavigationsemp@ingern untersucht, insbesondere mit dem Ziel, deren Gghetin stdt-
ischen Mehrwegeumgebungen zu verbessern. Die daseptierten Resultate basgen den
Vorteil der Bayes'schen Filterkonzepte, die verglichen kahventionellen Emgingeralgo-
rithmen eine deutlich #here Genauigkeit erzielen. Basierend auf dem Konzept &nBr
montierten Sensorplattform wird nachfolgend eine neuegirationsmethodeif die Nutzung
von Tragheitssensoren vorgeschlagen, wobei im Speziellen dieB&chtigung von geeigneten
kartenbasierten FuBgger-spezifischen Bewegungmodellen im Vordergrund stelitdem
Ziel die bei der Verwendung der heute \iggbaren miniaturisierten und kostémgstigen mikro-
elektro-mechanischen Sensoren entstehende Drift zu ndemi. In diesem Zusammenhang
wird gezeigt, dass durch die Kombination vora@heitssensoren und kartenbasierten Bewe-
gungsmodellen eine voll autonome und Drift-freie Navigatinnerhalb von Geduden erzielt
werden kann. Schlie3lich wird diskutiert, wie nahtlose garfher-Navigationssysteme mit-
tels Bayes’scher Filter realisiert werdearinen. Dabei wird gezeigt, wie ein geeignetes Filter
in Abhangigkeit von den verwendeten und \ggbaren Sensoren entworfen und implemen-
tiert werden kann. Im Speziellen wird dabei der Entwurf sieeweiterten Kalman-Filters
zur Fusion einer Feldatke-basierten Ortung mittels eines lokalen Funknetzegedad Ful3-
montierten Tagheitssensoren behandelt und der Entwurf eines PaFikets zur Fusion von
Satellitennavigation, Funkidentifikation, Kompassh)hgnmesser, Ful3-montiertenagheits-
sensoren und eines kartenbasierten n@gr-Bewegungsmodells.
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Chapter 1

Introduction

The termnavigation which originates from the Latin verbavigare denotes the art of ori-
entation in a topographic space with the objective to reagpegific destination. It comprises
basically two operations: The determination of positiod eaurse and the control of the move-
ment to the destination. The early fundamentals of nawgdtave been developed by ancient
sailors millennia ago and have evolved continuously to daig. Today the term navigation
is used not only in nautics but more generally for space,rertical, and land navigation as
well. Apart from suitable guidance to the destination a @ustep in the process of navigation
is the retrieval of the required information, i.e. basigdhe actual position and course of the
navigating object. This information can usually not be deiaed directly, and thus there is
the need to infer it indirectly from observations of physiefiects, which are somehow related
to the place of their observation and/or to the movement efnidwigating object. The capa-
bility to perform orientation and navigation is a fundansmroperty of intelligent life-forms.
Humans and animals own sense organs, which enable themetttaig, e.g. through visual
perception. The most intuitive method of human orientatiod navigation is via landmarks:
The direct orientation by the recognition of already knowrpre-described places or objects.
Nevertheless not all physical effects that can be expldibechavigation are directly perceiv-
able by the human senses. The rise of natural sciences atettivécal advances through the
past centuries enabled the development of tools and instritsywhich could make previously
unexploitable physical effects properly perceptible tonlans or man-made apparatuses. Such
instruments, which are denoted as sensors, are key comgarfanodern navigation systems.
Historically sailors used compass and sextant as sensbessdnsing of the earth’'s magnetic
field by the compass allowed to determine north direction la@aring, whereas the sextant
was used to determine the position based on the observdtithre @levation angle of a star
with respect to the horizon. Today the by far most importamisgng principle has become the
reception of electromagnetic waves, which are emitted fsonrces of known location, such
that their power, their direction of arrival, their time afri@al, their Doppler shift, and their
distortion is characteristic for the place of reception #ings can be used to derive information
about the receiver’s position. In this context global daéechavigation systems (GNSS) like
the Global Positioning System (GPS) [PS96] or the futureofean satellite navigation system
Galileo have today become the most important radio-baseidatéon systems. The success-
ful deployment of a fully operational constellation of destied navigation radio-transmitters in
space and the establishment of an associated ground mfiase in terms of the GPS space
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and ground segments represents a unique advance in they lot@vigation, since the world’s
first world-wide available radio-based navigation systexs become available. Whereas satel-
lite navigation was formerly restricted and limited to i@hy and professional applications, it is
currently firmly established in the mass market. Satelimsed navigation systems for private
cars have become a standard during the last decade. A st#asing percentage of mobile
phones is packaged with satellite navigation receiverkimggpersonal navigation an estab-
lished mass market application. Although GPS and the Rusdi®®NASS system still are the
two only operational GNSS, the fact that in the near futu@fiwther GNSS in terms of the Eu-
ropean Galileo system and the Chinese Compass system wildbatde, shows the importance
of satellite navigation today. A quite complementary seggirinciple is the concept of inertial
navigation [TWO04], since it is based on body-mounted sensolg and does not require any
additional infrastructure. As expressed by Newton’s lawnattion any navigating object ex-
periences characteristic accelerations and turn ratésgdits movement. In inertial navigation
these quantities are sensed via an assembly of accelersmaett gyroscopes. Mathematical
integration of the observed quantities allows to computginaously position and attitude by
the concept of dead-reckoning. Inertial navigation syst@iNS) became standard in aircraft,
ships and submarines during the 1960s using the stabl@ptatechnology. Since then the
increasing performance of micro-computers and advanceggynoscope technology allowed
for the realization of strapdown inertial navigation sys$e which has lead to decreased size,
complexity, power consumption, and cost of such systemsd8]. Within the past few years
micro-electro-mechanical (MEMS) inertial sensors haverbdeveloped significantly and are
about to replace conventional mechanical and opticaliales¢nsors in many classical applica-
tions as well as to open new fields of application for inemiavigation systems due to further
reduced size and cost. In particular personal navigatiabasit to take benefit of these techno-
logical advances, since power consumption, size, and ¢dsedatest MEMS inertial sensors
have reached a scale which allows to integrate them intolmdbvices and wearables.

1.1 The Need for Pedestrian Navigation

Though there are various sensors and systems availablé wdday work properly for many
pedestrian navigation applications, there is still a larged for seamless pedestrian navigation
systems, i.e. for systems that still operate under conditishich may be regarded as harsh
for the existing systems and which may even cause them toFRail instance satellite based
navigation works properly in free field conditions but usyé#ails in dense urban canyons or
indoor environments. Consequently, satellite navigatioesdnot provide a seamless solution
covering both indoor and outdoor scenarios. But specifidallypedestrian navigation a key
issue is the capability to operate also accurately in derns@nuenvironments or indoor, since
these adverse scenarios are the most relevant ones foatiagigersons. Thus there is still
an unmet demand for seamless solutions, and the current-wiate efforts in research and
development of such systems confirm this need. Applicatibat will take benefit of such
solutions are numerous: localization, monitoring and gnak of first responders, firefighters,
relief units, and special forces in the professional seatmt, amongst many others, mass market
applications such as guidance and assistance of touridtr@arelers, general location-based
and context-aware services, sports applications, ansteddiving for the elderly.

2
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1.2 Combining Sensors for Pedestrian Navigation

Each navigation method has its individual advantages aadlwicks which are determined
mainly due to the characteristic properties of the empla@tsors. Actually, it can be shown
that the integration of complementary navigation sensomsy/stems into a joint multi-sensor
navigation system is advantageous, since the adverserpespef the individual sensors or
sub-system can be compensated in the joint system. In plartithe combination of GNSS
and INS, which is well-established in aerospace applioat{iF97], is a famous example, as
both system have quite complementary characteristics: M$ ik fully self-contained, very
accurate in the short term, even under highly dynamic cawrdit but does degrade in the long
term, mainly due to instrument imperfections. In contrbst&GNSS solution is generally rather
inaccurate in short term, but does not degrade in the lomy. tdihe synergy of both systems
allows for an improved calibration of the INS instrumentoesralong with a reduction of the
GNSS receiver noise susceptibility, which leads to mutdabatage. Thus the shortcomings
of the INS are compensated by the GNSS and vice versa, sucthépmint system achieves
a significantly improved performance. They key for a sudcggstegration of complementary
sensors and systems is the use of an optimal sensor data &gayithm. Since itis not possible
to manufacture perfect sensors, each real-world sensardiegs inherently not represent the
truth, but is disturbed somehow, so that there is always eifspamount of uncertainty in the
provided data. Thus an optimal fusion of sensor data is aetlienly if the information within
the components of the joint system is represented and egedan association with reliability
measures, i.e. in particular by a representation via pribtyateensity functions (PDFs) instead
of fixed data values. If each of the components exploits tbeiged probabilistic information
adequately, no information is lost during the interactidrin@ systems components and thus
the overall system performance is increased up to the thearthresholds. The probabilistic
concept has already been applied successfully in comntioncsystems [Hag94] and has an
even longer history in navigation [May79], where the opfimlgorithm can be circumscribed
as follows: It uses all available sensors to compute posiiod course by ensuring that the
accuracy of each sensor is taken into account in an optimgl \Warthermore, the optimal
algorithm makes use of any a priori knowledge about the ¢iavlwf position and course, which
is given due to physical constraints in the movement of thegaéing object. In this context it
is well known that the framework of Bayesian filtering allowsmplement the desired optimal
probabilistic solution. Since the introduction of the Kalmfilter [Kal60], which optimally
solves the problem of Bayesian filtering for the special c@#sSaussian and linear dynamic
systems, the theory on Bayesian filter implementations halved significantly to this day.
Specifically the increase in computational power in digsighal processors and computers in
combination with the development of the Patrticle filteritgpaithms [AMGCO02] during the last
decade allows us today to solve general nonlinear Bayesienrfg problems, which could not
be solved adequately in the past. In particular the field odqeal navigation, which is today
still more a subject of research than a mature technologypscted to reap a large benefit from
both the recent developments in the field of signal procgssapabilities as well as the recent
developments in sensor technology. Specifically, for peabkpavigation applications there are
certain restrictions on the sensors that can be used: Retnsawigation sensors need to be
light-weight, small-scale, low-power and low-priced, winiprevents the use of some existing
navigation sensor technologies. In Figure 1.1 variousa@snthat are suitable for personal

3
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Figure 1.1: Personal navigation sensors and their prgseffiach sensor has its individual char-
acteristics. The combination of complementary sensorawiaptimal sensor fusion algorithm
allows to exploit synergetic effects and improves the dveavigation performance.

navigation are summarized along with their individual pdjes and characteristics, which are
discussed in more detail in the following.

Satellite Navigation

Satellite navigation offers the major advantage of woridenavailability. A complete GNSS
constellation enables the user device to continuouslywcite its three-dimensional position at
any time and at any place in the world, given that a sufficiemlber of operating satellites can
be received properly. Satellite navigation receivers aday available in the form of integrated
circuits, which makes it possible to integrate them into Isis@ale mobile devices such as mo-
bile phones or personal digital assistants (PDA). The aoyuwith latest mass market receivers
approaches to 1-2 meters in free field conditions. When thaisitiqn is assisted by mobile
communication systems the time-to-first-fix (TTFX), theipdrfrom switching on the receiver
to the first position fix, is today only a few seconds. A majonaiing problem in GNSS is the
performance degradation in urban or indoor environmerttgraithe reception of multipath can
cause errors up to 100 meters and more [SL0O3]. In some halslbrirenvironments satellite
navigation is even completely unavailable.

Mobile Communications

Positioning via mobile communication signals benefits flmgher reception power compared
to GNSS, leading to a significantly increased availabilityadverse urban and indoor envi-

4
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ronments. Nevertheless the achievable accuracy with ®d#égndardized second and third
generation mobile communication signals, such as the G®jmtem for Mobile Communica-
tions (GSM) or the Universal Mobile Telecommunicationst8gs (UMTS), is in the order of
50-300 meters or even worse, depending on the concenti@tarailable base stations and the
positioning method used [DMS98]. It is usually accuratewgytofor a coarse orientation and
beneficial when used to assist the acquisition of GNSS, baitaliis limited accuracy it can not
serve as a sole means for all personal navigation applicatio

Radio Frequency Identification

Localization via radio frequency identification (RFID) igghiy valuable whenever it is pos-
sible to distribute infrastructure. Depending on the empgtbstandard RFID can provide an
accuracy in the order of few meters [WRRB7] or even less, which allows to maintain accu-
rate positioning indoors, whenever other sensors or sysliée GNSS are inaccurate or even
completely unavailable. There are two basic approaches W{R&sed positioning: Either the
RFID readers are deployed and the users carry the tags oriteeweay round with the users
being equipped with RFID readers and distributed tags. TBéipning via RFID systems can
be done either based on the received signal strength (RS8%ed lon the identification number
(ID) of the received tag only.

Wireless Local Area Network

The localization via wireless local area networks (WLANSQI99, IEE9Q9] is comparable to
the RFID approach with respect to the system characterislibe achievable accuracy is in
the same order and both approaches require a deployedtinttase. A major advantage of
the WLAN approach is that today in the majority of buildingsathich people require personal
navigation, for example in airports, public buildings, asammpany premises there already ex-
ists a dense installation of WLAN infrastructure. In WLAN pasning commonly the RSS
of the received base stations is used to determine the ussrdn. For this purpose the RSS
characteristics of each base station, the so-called RSSpinggs, need to be known at regu-
larly distributed reference locations, which is a majovarack, as it usually requires to carry
out extensive calibrations. In some advanced WLAN positigrsystems the signal timing
information is exploited to derive the location informatio

Ultra-Wideband Systems

Ultra-Wideband (UWB) systems [GT®5] require the deployment of infrastructure as well
but offer several major benefits compared to RFID- and WLANedgzositioning. Due to the
high bandwidth of the UWB pulses, whose travel time is commaoiskd to determine the user
position, the achievable accuracy is much higher and cathreathe millimeter range. In
particular for first responder applications UWB is a favoeahlternative, since on site mobile
UWB transmitters can be deployed quickly around any buildind the emitted UWB signals
can penetrate the walls of a building to a certain extent.
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Inertial Sensors

Basically two approaches for the use of inertial sensors iegmal navigation can be distin-
guished. The pedometer approach employs an acceleronoetdetecting individual steps
whilst the stride length and stride direction are themsek&imated using additional sensors
or a priori information [GM99]. Given a detected step, itadéh and its direction, a person’s
position can be determined by dead-reckoning. The latggbaphes are based on full six de-
gree of freedom (6DOF) inertial navigation. A foot-moun6iOF strapdown inertial platform
comprising triads of accelerometers and gyroscopes istoséead reckon via a conventional
inertial navigation algorithm. Rest phases of the foot, \Wwtace detected from the accelerom-
eter signals, trigger zero-velocity updates (ZUPTSs), Whattow for the compensation of the
drift errors, which accumulate in the inertial navigatiaiusion. It was shown in [Fox05] that
this approach can achieve a performance down to one pertém raveled distance or less
even with today’s low-cost MEMS inertial sensors, becabseAUPTs are usually so frequent
that errors build up only slowly during each step a pedastmakes.

Baro-Altimeter

Baro-altimeters are widely used in airborne navigation [K€nd for sports applications such
as hiking or skydiving. Once calibrated for the local airgzare, baro-altimeters usually main-
tain sub-meter accuracy for intermediate-term periods.oBétimeters can be used to sense
changes in the floor level indoors and thus are valuable wktsnéing personal navigation
towards the vertical dimension. A typical problem is thecgyibility to changes in the sur-
rounding temperature, which may occur when entering roamsbaildings and the long-term
stability, which is degraded by the natural variations @f lihcal atmospheric pressure.

Magnetic Compass

The natural magnetic field of the earth is a valuable indicatdocal bearing and thus the
compass is today still an important navigation sensor, wigaised in many navigation appli-
cations such as attitude and heading reference systems (AHR&ugh traditional mechanical
compasses are more and more becoming replaced by eleatnagicetometers, the principle
has remained the same: The compass aligns with respect todddlemagnetic field of the
earth and, given that the local magnetic declination (theatien between the magnetic and
the actual north direction) is known, the actual headindywétspect to north direction can be
determined. A characteristic problem of the magnetic canmits susceptibility to local ex-
ternal disturbances, which may be caused by surroundingetiagnaterials and by any nearby
current-carrying structures. In particular in indoor eéamments this can cause a serious per-
formance degradation.

Movement Models and Maps

A movement model characterizes the constraints in the digsaofi a navigating object, e.g.
the maximum speed and the inertia of a pedestrian. Even thibug not possible to predict
the movement of a navigating object completely accurats sitill possible to predict its move-
ment in a probabilistic fashion with a specific amount of utaiaty. Actually maps can be

6
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regarded as a part of general movement models. The topofdgg map affects the movement
[KKRAOQS], since given the actual position and course of areobjand the map layout, some
new positions and directions may be considered to be magly likan others, e.qg. itis unlikely

that a pedestrian will attempt to cross a building wall. la gimple use of map information

the user position and direction is just matched via a magzihiag algorithm onto the map. For

many applications, e.g. car navigation, this is sufficigmten the map is up to date and the
matching algorithm converges properly. In more elaboratedels the movement is explicitly

characterized by a map-dependent probabilistic model [KB&A

1.3 Objectives of the Thesis

Seamless personal navigation is an unsolved challengg.tdta key motivation of this thesis
is to address this challenge by applying the concept of séasimn and to show that optimally
fusing complementary sensors and sources of informatiorbeaighly beneficial, even if the
sensors are either rather simple or seem to be only of |dleey at least when used stand-alone.
Specifically the formulation of suitable Bayesian filter implentations is addressed, with the
objective to quasi-optimally fuse satellite navigationertial sensors, and further navigation
sensors as illustrated in Figure 1.1, in order to achievenkss personal navigation in indoor
and outdoor environments. Although in particular the inaign of GNSS and INS is already
a well established field in engineering science, which wagedrin particular by aerospace
applications, the boundary conditions are quite diffefenfpersonal navigation. Firstly, size,
weight, and power consumption of the sensors must meet tesref a personal navigation
system, which imposes stringent restrictions on the quafid thus on the performance of the
sensors. Secondly, the dynamics of a pedestrian differfgigntly from those of an aircratft,
ship, or land vehicle and thirdly the user environment is Imomore challenging. In particu-
lar in urban or indoor environments the propagation coodgifor electromagnetic waves are
adverse due to the crucial problems of signal blockagenadtgon and multipath propagation,
which degrade the nominal performance of radio-based atwiy seriously. Thus the thesis
focuses on the handling of these adverse propagation emvénts and on the incorporation
of pedestrian movement models into inertial navigation. u&Her motivation is thereby not
only to make personal navigation in these environmentsifeasobust, and precise, but also
to accompany the navigation with information that inforime tiser about the current reliability
and precision of the system.

1.4 Structure of the Thesis

The thesis is structured as follows: After the introductio@hapter 2 the fundamentals of satel-
lite navigation, inertial navigation, and optimal filtegimre reviewed as far as they are relevant
for the scope of the thesis. In Chapter 3 the problem of pefsatallite navigation is ad-
dressed, in particular focusing the problem of multipattd aan line-of-sight (LOS) reception
and its successful mitigation via sequential Bayesian estom. Thereby emphasis is placed
on time-variant dynamic multipath channels, which are abi@ristic for urban environments.
Subsequently Chapter 4 deals with the efficient integratianestial sensors. The central is-
sue of this chapter is the proper combination of conventifo@-mounted inertial navigation,

7
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which lacks an adequate pedestrian movement model, wiboelteed map-based movement
models. In Chapter 5 two real-world implementation examfdepersonal navigation systems
are presented and evaluated: first a joint WLAN fingerprintamgl inertial positioning sys-

tem based on two federated extended Kalman filters, and decoaxperimental multi-sensor
fusion platform, which integrates satellite navigatiomertial sensors, compass, RFID, baro-
altimeter, map information, and a pedestrian movement inddea cascade of an extended
Kalman filter and a particle filter algorithm. Chapter 6 cowes the thesis by summarizing the

main contributions of the presented work and gives an okittogossible future work in the
context of this thesis.




Chapter 2

Fundamentals

2.1 Satellite Navigation

Within global navigation satellite systems, such as theb&@ld?ositioning System (GPS) or
the future European satellite navigation system Galilee,user position is determined based
upon the code division multiplex access (CDMA) navigatiognsis received from different
satellites using the time-of-arrival (TOA) method. A caikttion of orbiting satellites transmits
continuously navigation signals. Each of the satellitasgmits its own unigue CDMA code
sequence, which is modulated by a stream of navigation dakee signal travel time from
the satellite to the receiver is measured at the receiveedoh of the received satellites. For
that purpose the provided navigation data includes for eatdilite the relevant information to
retrieve the position of the satellite at the time of trarssidn as well as the time of transmission
itself. Since the receiver clock is not synchronized to thstesn time, the measured travel
time at the receiver has a common error for all received lgatel This error is referred to as
the receiver clock offset and has to be estimated in additdhe three-dimensional receiver
position. Thus once the travel time is measured for at leastreceived satellites, the receiver
position and the receiver clock offset can be determinedngdacally as illustrated in Figure
2.1. Since the measured travel time is not equal to the tawelttime due to the receiver
clock offset, the distance measure at the receiver is cortymeferred to as pseudorange. The
pseudorange for satellitg j = 1,..., M, with M being the number of received satellites, is
according to [Kap96]

pj=th—r"fct 7, (2.1)
with the pseudorangg;, the position of the transmitting satellité, the receiver position”,
the receiver clock bias”, and the speed of light The observable pseudorange measure is
affected by several systematic errors, for which correstican be retrieved from the received
navigation data. These errors include the transmitterkciftset 7/ and, due to the signal
propagation through the annosphere,theionospheHC(#ﬁayaS\NeH as the tropospheric
delayr;“’po [PS96]. Considering these additional error terms the dgtoa¢asured travel time
7; at the receiver is finally

= pj T T+ r;mp‘) +ée5 . (2.2)
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Figure 2.1: 2D illustration of TOA positioning: The meastiteavel timep; is different from
the true geometrical travel tirrﬁ = ]r§ — rT| ¢! due to the asynchronous receiver clock. The
receiver position is at the intersection of the three dasiretes.

Further unknown errors, e.g. the random error due to thevesceoise, are taken into account
by the residual error termy,. To obtain a position from the TOA measurements the parasiete
rl, 7}, T}OHO,T;”"O ande; are considered as known values and a linearized approximait(2.1)
and (2.2) is commonly used to solve the non-linear systens@figorange equations iteratively
[Kap96]. For this procedure the unknowns are collected envbctorx = [r”, 77| and the

system of equations is expressed by the truncated Tayli@sstpansion

71(x) 71 (X0 + 0%) 71(X0) 5 71(x)

F| = : = e | ox . (2.3)
T (X) T (X0 + 0%) T (Xo) Tar (%) “

T To ah D 3

The solution obtains a refined position and clock bias eséia= x, + dx based on an initial
hypothesis,, where the refined value is computed via the weighted leastreg (LS) estimate

0% = (D"W™'D) ' DTW(# — 1) (2.4)

with the diagonal weighting matri¥v = diag([c?, ..., 03,]) and the satellite geometry matrix
D. In the weighting matrix the elemenff refers to the variance of the delay estimateln the
iterative solution of (2.4) the actual point of linearizatix, is set equal to the estimakefrom
the previous iteration. For a receiver located on the sartédche earth the solution usually
converges quickly after few cycles of iteration [EMO6a].

2.1.1 Synchronization of Navigation Signals

Unlike communication signals, navigation signals areglesil and optimized in particular with
respect to synchronization performance instead of datarmeasion performance, as the precise
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synchronization at the receiver is crucial to provide aatitime delay estimates for the subse-
guent position computation. In particular the synchrottraof the CDMA code sequence is
important, as it provides (unlike the phase synchronimi@m unambiguous measure of signal
travel time [Kap96]. According to [PS96] the complex vallsaseband-equivalent received
signal in a navigation receiver for satellites equal to

z(t) = a;(t)s; (t = 7;(1) +n(t) (2.5)

wheres;(t) is the CDMA navigation signaly;(t) is its complex amplitude, and (¢) the time
delay of the signal according to (2.2). The signal is assutoeloe received superimposed
by white Gaussian noise, which is represented through). The signal is sampled at times
(m+kL)T,,m =0,...,L —1and grouped in blocks af samples together into vectatsgy,
k=0,1,...,. Assuming the parameter functiongt) anda,(¢) to be constant and equal g,
anda;;, during the corresponding time interval, the discrete-tgmal for satellitej at time
indexk may be written in the compact form

Z;r = sj(ijk)aj,k—i—nj,k. (26)

In a conventional navigation receiver a combination of aagdbck loop (DLL) and a fre-
guency/phase lock loop (FLL/PLL) is used to estimate sigieddys. The DLL is designed to
keep track of the maximum of the correlation of the received @ local replica signal [PS96]
and thus implements an approximation to the maximum likelth(ML) time delay estimator
[Kay93]. The FLL/PLL is used to counter the variations of ttemplex amplitude of the re-
ceived signal [Kap96]. The DLL estimation is based on a sege®f coherent observations of
the received signal, with theT, being the so-called coherent integration time of the rexeiv
and a local linear approximation of the cross-correlatiorcfions’ (7)z; ., where at each time
step the delay estimatg is obtained through refining a delay hypotheﬁkg by the estimate of
the actual timing mismatch  ;, i.e.:

Tk = Ty + Teji - (2.7)

The timing mismatch is obtained via the linear approxinratio

) (dD(Tj,k)

Te,j,k = dT‘ B
.77

) D(7;x) , (2.8)

with the functionD(e) being the timing error detector (TED) of the DLL, e.g. a naherent
unnormed early/late discriminator [PS96]

e 12 2
D<Tj,k) = ’Zc,j,k| _‘Zlc,j,k‘ ) (2.9)
with the early and late correlation values
Z (T56)Zik (2.10)
(Tix)Zjk - (2.11)

The computation of the correlation valug$(e)z;, is done by receiver components that are
denoted as correlators. The slope of the functiof@) is designed to be an approximation

e H
cjik 8
l _ H
Zejk — Sj
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FLL/PLL T'”phase
Correlators Early Detector ] Loop Filter L NCO 7(t)
(2.10), (2.11) (2.8) (2.14) (2.15)

Late

Replica generation timing adjustment

Figure 2.2: Synchronization in a navigation receiver: A bamation of a DLL and a FLL/PLL
is used to track the delay of the received signal with resjpegtiocal replica signal.

to the derivative of the correlation functiasf (7)z; ., which is according to (2.9) achieved
by subtracting the squared results of the correlation oféleeived signak; ; with two local
replica, one in advance (early) and one delayed (Iate%—”byThe individual delays of the two
correlators are thus given by

AT
AT
The = Th— -5 (2.13)

Other types of TED functions are also used in practice [BvD89). the narrow correlator
[VDFF92], whereAr is much smaller than the chip duration, or the double-dedtaetator
[GVDR96], which uses an additional pair of correlators taridhe TED. The DLL in a nav-
igation receiver is a sequential implementation of a snap$kD, since the estimates of the
timing mismatch are low-pass filtered to reduce the noise

Ny My,
N A f .
Tejk = T pon T binTejk—m > (2.14)
n=1 m=0

and the filtered estimates are used to obtain the actual dstagyate,
Tik = Tjk—1+ %Ef,j,k ; (2.15)

which is used in turn in the next cycle as new reference deddyevby settingr]?k = Tjk—1-
The filter coefficients:,,, b,, of the low-pass filter depend on the specific DLL implementati
[PS96]. Figure 2.2 illustrates the DLL concept. An inphpsahpt correlation

Zojn =S (Tk) 2 (2.16)

is commonly used to feed the frequency/phase estimatidmedftL/PLL.

2.1.2 The Problem of Multipath

A major error source for positioning in GNSS comes from npalth, the reception of addi-
tional signal replica due to reflections caused by the recamvironment, which is illustrated
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Figure 2.3: lllustration of multipath due to a reflection di@use front. The LOS path may be
shadowed or even blocked simultaneously.

in Figure 2.3. The reception of multipath leads to a distoriof the TED of the DLL, which
introduces a bias into the time delay estimate, which firlaliygs to a bias in the position esti-
mate. In a multipath environment the line-of-sight (LOS)r&ll is superimposed by additional
replica and the generalized multipath signal model becomes

N m

5(t) = > ai(t)s; (t—7i () +n(t) (2.17)

=0

wherer, ;(t) andag ;(t) corresponds to the delay and the complex amplitude of the sigr&l
andr; ;(t) anda; ;(t) withi =1, ..., N,, to the respective time delays and complex amplitudes
of the V,,, considered multipath replica. Following the discrete tima¢ation used in Section
2.1.1 the signal is sampled and grouped into blocks, withptimameter functions, ;(¢) and

a; ;(t) that are assumed to be constant and equa] tp anda; ;, during the corresponding
time intervals. In the concise notation the signal vectoesstacked together as columns of
the matrixS; (7, ) = [s;(70,%), - - - »S;(7n,..;.6)] @nd the amplitudes are collected in the vector
ajr = a1k ---,an, x| such that the discrete-time multipath-affected signal may be
written in the compact form

Zip = Si(Tir)ajr+n5 . (2.18)

The multipath performance is commonly assessed using thigpath error function [PS96],
which gives the estimation bias of the TED for a LOS signalesipposed by a single ad-
ditional path as a function the relative delay of the repli€@arameters of the multipath er-
ror function are the signal-to-multipath ratio (SMBR)log,, (|ao jx||a1 ;x| ") and the relative
phasejy = arctan (ao ;) — arctan (a1 j ). The error envelope function relates to the inphase
(0w, = 0) and antiphasei(;, = m) scenario, which represent the two worst-case situations
that form the positive and negative upper error bound witipeet to the estimation bias due
to the variation of the relative phase. Details on the calboh of the bias functions can be
found in [PS96]. The magnitude of the multipath bias variéh whe relative phase and delay
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Figure 2.4: Tracking bias envelopes for BPSK (2.4(a)) and BQIG(®.4(b)) modulation,
early/late TED withA7 = 0.5 chips (outer dotted line)Ar = 0.1 chips (middle dashed line),
and double-delta TED withh7 = 0.1 chips (inner solid line), SMR=6 dB, rectangular modula-
tion pulses, 16 MHz two-sided precorrelation signal bamdkyichip rate 1023 MHz, Gold code
of length 1023. As evident the DLL suffers much less from thdtipath when the BOC(1,1)
modulation is used. Additionally the advantage of the mamapglex TED functions becomes
obvious.

of the multipath replica, the TED used and the shape of thegatwn signal. Various adap-
tations of the TED have been proposed to reduce the multigradns, including the Narrow
Correlator [vDFF92], the Strobe Correlator [GVDR96], the @aBorrelator [MB99], or the
Pulse Aperture Correlator [JFS04]. The Narrow correlatanigfficient mitigation technique,
which enhances the multipath robustness by a simple adamsgtai the correlator spacinggr
towards values smaller than the duration of a chip. The De@idlta correlator concept, for
instance implemented by the Strobe correlator, uses ati@ualipair of correlators to calculate
the detector function. The additional early/late cor@iaiare placed at

Tﬁz = T£k+AT , (2.19)
T% = T](-),k — AT (2.20)

and a combination of the inner and outer detector function

e 2
Dilrogns) = [sT(r0)zin]” — [s7 (7L )zl (2.21)
e 2
Do(rogrs) = |s"(m2)zim|” — 8™ (72) 21| (2.22)
yields the TED for the Double-Delta correlator
D(TO,j,k,l) == Di(TO,j,k,l) — 0.5DO(T0,]'71€71) . (223)

To enhance the receiver robustness against multipathurefgatellite navigation systems, mul-
tipath performance has become an important criteria in gséga of future navigation signals
[ARHW™07]. An illustration of multipath error envelopes is shownRigure 2.4 for a con-
ventional binary phase shift keying (BPSK) signal, whichusrently transmitted by the GPS
system, and a binary offset carrier (BOC) (1,1) signal, whagresents the concept of offset
carrier signals that is pursued for future satellite navagesignals.
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2.2 Inertial Navigation

Inertial navigation is based on the sensing of acceleratmhrotational speed. Using the math-
ematical formulation of Newton'’s law of motion, which expses the physical dependencies
between mass, force, acceleration, velocity, positiditpude, and rotational speed, it is possi-
ble to derive position, velocity and attitude from the meadlacceleration and rotational speed,
given initial values of position, velocity, and attitudeeavailable. The procedure of obtaining
these initial values is termed alignment [TWO04]. After thggament has been performed, an
inertial navigation system (INS) provides fully self-caimted autonomous navigation capabil-
ities. Characteristic for inertial navigation is the degtoh of the navigation accuracy over
time, often referred to as the drift, which arises amondgstioéffects mainly due to instrument
errors, i.e. the noise and imperfections of the inertiaksesnt An INS comprises basically two
components: A sensor cluster, which is commonly termedialeneasurement unit (IMU),
and an inertial navigation computer (INC), which performs tiecessary computations to de-
rive position, velocity and attitude from the sensor data.

2.2.1 Inertial Sensors and Platforms

The sensor cluster of a conventional IMU comprises threelaoemeters and three gyroscopes,
which are mounted onto a common platform such that theirtbemaxes are mutually orthogo-
nal. Though the basic concept has remained the same sinodiddelays of inertial navigation,
technological advances and innovation had a big impact @etblution of inertial navigation
during the last 50 years [Kin98]. Whereas formerly the sepsaiform was mounted within
a set of gimbals, which kept the cluster aligned to the namgdrame and thus independent
from the vehicle attitude, today strapdown sensor clustav® become the preferred type of
IMUs (see Figure 2.5). In a strapdown IMU the sensor clusgtattiached directly to the host
vehicle and the resolution of the accelerometers measutsrieethe navigation frame is done
in a computer. The advantage of the strapdown approachtisoéheomplex mechanical gim-
bals are required. Strapdown systems became feasiblegdinén1970s due to the advances
in gyroscopes technology, which allowed to sense a largeamyc range of rotational speed
and the advances in micro-electronics, which enabledaligamputers that were capable of
performing the computationally demanding strapdownwatgtcomputations.

2.2.2 Inertial Navigation Computations

Though the concept of inertial navigation is rather simgile,implementation of the navigation
algorithm can indeed be complex [TWO04]. This is mainly due dot fthat inertial sensors
sense their measures with respect to the pure inertial spdereas the coordinate system in
which the navigation takes place is usually attached to phersc rotating earth. Additionally
accelerometers are not able to differentiate between tgtaonal and dynamic acceleration.
Since this thesis focuses on the navigation of individusisgilow-cost MEMS inertial sensors,
Schuler and Coriolis effects will be neglected. A flat nomatioig earth is assumed, which is
adequate when considering a moving pedestrian within d@darocal area. In this case the
navigation coordinate frame equals the inertial coordirfime. As it is commonly known the
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Figure 2.5: Principle of a gimbaled platform (left) and apttown platform (right). In the gim-
baled variant the gimbals keep the platform leveled andatigwith respect to the navigation
coordinate frame. The strapdown platform is attached Isig@lthe host vehicle.

acceleration is the second temporal derivative of the joosit

2

a = @I‘ s (224)
The superscriptindicates thereby that the vectors are given in the reptasen of the inertial
frame. The triad of acceleration sensors of the IMU provaleseasure of the specific force

N ,

in which g’ is the gravitation vector due to the gravitational acceienaof the earth. As the
inertial platform is not necessarily aligned to the indrtiaordinate frame, the force§ are
actually measured in the sensor platform or so-called boalyé via the force vectdi®. To
resolve the body frame measurements to the inertial frartrapaformation according to

fi = Cif° (2.26)

is required, in whichCj is the rotation matrix that relates the attitude of the badyrfe with
respect to the inertial frame [TWO04]. Figure 2.6 illustrasesh a transformation for two coor-
dinate systems. Inserting (2.26) into (2.25) and rearraptgads to the differential equations

2
%ri = Cif° g, (2.27)
%vi = Cif'+¢g . (2.28)

The solution of (2.27) and (2.28) allows to calculate positand velocity. Usually this solu-
tion is performed numerically in a dedicated navigation pater. For that purpose the exact
value of the gravitational acceleratigf needs to be known. Since usually the exact value is
not known, an average value is often used. For some spegialgnecision applications also
gravitational maps are employed. Furthermore the nawgatomputer has to continuously
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Figure 2.6: Tilt of two coordinate systems. The transfororadf a vector from one into another
coordinate system is performed through a multiplicatiothefvector with a rotation matrix.

update the attitude matrix based on the turn rate measutsmgnwhich are obtained by the
gyroscope triad. According to [TWO04] thus an attitude comepiias to implement a solution
for the differential equation

d _. .
ZCl =G, (2.29)

in which Q% is a skew symmetric form

0 —w, wy
Qb = w, 0 —w, (2.30)
—Wy Wy 0

of the turn rate vectow?, = [w,,w,,w.|”, or in alternative notatiof2}, = [w? x]. The concept
of a complete strapdown navigation and attitude computatigorithm is illustrated in Figure
2.7.

Implementation Example

Various numerical integration schemes are appropriatelt@$2.27), (2.28), and (2.29). The
most simple implementation is the approximation of thegrdaés by a sum of rectangles. Given
that the discrete time equivalents v;, f7, %, ,, Cj ;, andg], are constant during the observa-
tion interval T}, position and velocity can be computed via

ry =1 +vi_ T, . (2.31)
Vi =V +ag Ty (2.32)

with aj_, = C} ,_,f}_, + gj_,. Following [TWO04] the attitude matrix is computed in accor-
dance via

Ci,k = Cé,kq(I + [w?b,kfl x]T) . (2.33)
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Figure 2.7: lllustration of the strapdown navigation coitgpun inertial frame mechanization.

For each set of arriving gyroscope measurements the atdaohputer is updated. The latest
attitude matrix is used to resolve the measured accelesfiom the vehicle’s body frame to

the inertial navigation frame. After subtraction of thethaacceleration position and velocity
are computed by numerical integration.
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2.3 Optimal Estimation

Common to all navigation, positioning, and localizationtsyss is the principle of deriving
navigational information from the observation of physiefiécts which are somehow related to
this information. To observe the effects physical sens@siaeded, whose output corresponds
in a characteristics manner to the physical effect and thigyaaonal information that is of in-
terest finally. E.g. a compass senses the magnetic field &atke, which allows to derive its
orientation, or an antenna receives a signal whose tramelis of interest. Due to imperfections
the output of a sensor is not only depending on the quantitgtefest, but also on other dis-
turbing quantities and effects. To infer the quantity oeneist accurately on principle all other
relevant disturbing factors have to be known. Since thiistime case in practice, the output
of a sensor is always disturbed by a noise quantity, whichutatas the unknown contributions
in the sensor output. Practically this error can be chariaeie by a random process, which is
characteristic for each sensor. So even if the exact rémlizaf the disturbance is unknown, the
quantity of interest can be inferred with a specific uncatjaiwhich can be quantified by the
characteristics of the random process. Necessarily theofaany navigation system is thus to
derive information about specific navigational quantitishich here will be referred to as the
hidden statex;,, based on an evolving sequence of noisy measuremgrfts/er the temporal
index k). Since the measurements depend on the hiddensstaiad on a random proces$'
that cumulates all unknown impacting factors, the measengscan be expressed generally via
the function

VAR hk(Xk, Ilgl) . (234)

Given the process underlying;* is specified, an alternative probabilistic representatbn
(2.34) is thelikelihood functionp(z|xy), the probability density function that characterizes
the likelihood of the observed measurement conditionaherunknown state. The optimal in-
ferred knowledge about the state is then ahgosteriori probability density functiop(xy |z ),
which is obtained by applying the Bayes rule:

_ p(zelxx)p(xz)
p(Xk|zr) = A (2.35)

The functionp(x;) thereby represents ttaepriori probability density functionwhich includes
all the knowledge about the state, that was available bef@emeasurement was observed.
The evidenceterm p(z;,) is a constant for a given observation and normalizes theugtoof
the likelihood function and the a priori PDF in the numeratbr(2.35). This way of infer-
ence is optimal and no other estimator can outperform ttpsageh, in particular since all the
remaining uncertainty is kept in the a posteriori PDF. Thesprvation of this information is
a key paradigm to reach optimal performance and has beernsuepgessful in the field com-
munications engineering [Hag94]. Specifically the paradaan be adapted to navigation and
localization problems under the tei®oft-LocationSoLo) [AKR'01]. Nevertheless, as will be
shown later, Soft-Location has a far reaching history indsign of multi-sensor navigation
systems.

Since the measurement noise is limiting the inferable kedgé through the likelihood
function, the only remaining way to improve in (2.35) is teeusore sensors, more observa-
tions, or to use a refined a priori knowledge. The benefit oftemidl sensors and additional
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measurements from the same sensors is implicitly given &ysSibft-Location paradigm. For
that purpose the vector of measurements is grouped intoectiors according to

Zké{zj,kyj = 1, ey M} y (236)

and the vectors; are introduced fog, after omittingz; x, i.e. z;; = z\z;. If now indepen-
dent noise perturbatlons on the sub-vectors are assureedhat the actual error affecting the
observatiorg, ;, is statistically independent from the errors that affecotiler current observa-
tion (and generally also from all disturbances, which hdfected any previous observations),
the likelihood function for sensgrmay be written as

p(zjx|Xk, 25 ) = p(ZikX8) (2.37)

so that given the actual state, the measurementwill not affect the measuremeny ;.. In this
case the overall likelihood function can be written in protdorm according to the factorization
of Bayes' rule [AKR"01] as

p(zi|x) = CHp(Zj,k’Xk) ) (2.38)

with C' being a normalizing constant. In other words, the sensardeancorporated by sim-
ple multiplication of their likelihood functions. A prooffdhis fundamental equation can be
found in Appendix A. Since the information that is comprisaedeach factor of the overall
likelihood function is always positive [Kay93], each adhiital sensor or or observation con-
tributes necessarily beneficial, at least theoreticatiyrhctice the measurement model is often
slightly mismatched to the real world situation, which deteates the theoretically expected
performance, as the assumptions taken in the derivatio@.88) are violated. Furthermore
the amount of available sensors is usually limited due tosylsem design: The performance
advance with additional sensors does not always justifyirtheease in power consumption,
system cost and size. On the other hand the number of obiserpatr sensor can not increased
arbitrarily, since the underlying state that biases thesmesment is changing over time, e.g.
a pedestrian is moving and in consequence the measurententsTaus a set of taken mea-
surements is only sufficient to infer the state during a sjpeeriod of time. At this point the
refinement of the a priori knowledge comes into play. Thouglolaservation is only valid for
a limited time two successive observations are certaintgedwmw related to each other, since
the dynamics of a moving individual or generally any stat@@von are practically limited due
to physical constraints. Although the exact evolution iseggally unknown, at least a statistical
characterization of the temporal dependencies can helpttoroa refined a priori knowledge
from any past observations. In particular if the futureestsiven the current state and all its past
states depends only on the previous state (and not on angtpéest), the temporal evolution
of state parameters can be modeled as a first-dvidekov processs illustrated in Figure 2.8.
The process is characterized by the function

Xp, = foo1(Xp-1,mf_y) (2.39)

with the uncertainty in the evolution being characterizgdhe process noisa{ ;. As a con-
sequence equation (2.39) can for a specified process uimdeny , also be expressed proba-
bilistically in terms of thetransition densityp(x|x;_1). If it is furthermore assumed that the
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Figure 2.8: lllustration of the hidden Markov estimatiorogess for three time instances. The
measurements are the sequemgg; = 0,...,k}, and the parameters to be estimated are
X4,q=0,...,k}

noise affecting successive measurements is independtrd pést noise values, such that each
observation depends only on the present state, the optohaian is given by the application
of the well-known framework ofequential Bayesian estimatioA detailed derivation of the
general framework for optimal estimation of temporally leirng (Markovian) parameters by
means of inference is given in [AMGCO02]; and here a similaatioh is chosen. The entire
history of observations can be written as

Zy={z,,q=1,... .k} . (2.40)

It can be shown that the sequential estimation algorithragansive as illustrated in Figure 2.9,
as it uses the a posteriori PDF computed for time instaneel to compute the a posteriori
PDF for instance: . For a given a posteriori PDF at time instarice- 1, p(xx_1|Zx_1), the a
priori PDF p(xx|Zx_1) is calculated in the so-callgatediction stefby applying the Chapman-
Kolmogorov equation:

p(xe|Z 1) = / P61 )P (b1 |Zo 1)1 (2.41)

with p(xx|xx_1) being the state transition PDF of the Markov process acogrtti (2.39). In
the update steghe new a posteriori PDF for stépis obtained by applying Bayes’ rule to
p(Xk|2zk, Zr—1) yielding the normalized product of the likelihood functip(e,|x;) and the a
priori PDF:

p(xi|Zy) = p(xk|zk, Zr—1)
P(Zk|Xk;7 Zk—l)p<xk|zk—1)

p(Zk|Zk_1) (2.42)
p(Zk Xk )p(Xk|Z1—1)
p(z1|Zk-1) ’
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Figure 2.9: lllustration of the recursive Bayesian estimaide operations prediction and up-
date can be carried recursively, since the computationecd thosteriori PDb(x|Zy,) requires
beside the likelihood functiop(z,|x;) as well the a priori PDFp(x|Z_1), which can be
computed from the previous a posteriori PRk _1|Zk_1).

which is actually a more general formulation of (2.35). Otloe a posteriori PDF has been
evaluated either that parameter configuration that maesiizzan be determined - the so called
maximum a posteriori (MAP) estimate; or expectation cantoesen - equivalent to the mini-
mum mean square error (MMSE) estimate:

)%ZIAP = argmax p(Xy|Zx) , (2.43)
Xk
RMMSE / Xpp(Xk|Zy)dxy (2.44)

Xk

For the scope of this thesis, unless stated otherwise, althe@yMMSE estimate will be used.
Note that for the important case of a Gaussian a posteriof Bih criteria are equivalent. In
addition, the a posteriori PDF itself contains all uncertginformation about the current state
and is thus the optimal reliability measure.

2.3.1 Algorithm Implementation

The optimal Bayesian filtering algorithm relies on evalugtihe integral (2.41), which is usu-
ally a very difficult task, except for the measurement mo@e84) and the dynamic model
(2.39) have certain restrictive properties. Beside fewrietstl optimal algorithms a large num-
ber of suboptimal approximations to the optimal Bayesiamé&aork exist. In the following

those filter implementations that are relevant for the saufpihis thesis are discussed: The
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optimal grid-based filter (GBF), the conventional and theeeded variant of the Kalman filter
(KF/EKF), the patrticle filter (PF), and a general marginedifilter (MF), which may consist of
any nested combination of Bayesian filters.

Grid-Based Filter

If the state space is discrete and finite the Bayesian recucaiobe carried out analytically. The
associated computations are referred to as the grid-bdtsedfgorithm [RAGO04]. In a discrete
and finite state space of dimensidhthe a posteriori PDF at time — 1 can be represented as
the sum

p(Xk—1|Zg—1) Zwk 10(Xk—1 — X5 _q) - (2.45)
Using (2.41) the GBF algorithm computes the a priori PDF with
D(Xk|Zi—1) Zwk (xr —x4) (2.46)
in which the predicted weights are computed via
N
= Zw;’i_lp(Xﬁ!X%_l) : (2.47)

In this case the transition PD#tx,|x;—1) may be any regular PDF. The likelihood function
p(z|xx) can be any regular PDF as well and the use of (2.42) gives

p(Xk|Zy) = Zw,’:d X — X)) (2.48)

and the updated weight becomes

Wl = wi PERx) (2.49)

N
2wy pzx[xy)

v=1

Kalman Filter

The Kalman filter [Kal60] is an optimal implementation of tBayesian recursion for the

important case of linear state dynamics and linear measmesaguations, in which the dy-

namic and measurement noise processes are given by adddwssian noise respectively.

The process dynamics (2.39) are restricted to the classobgms that can be expressed in

the form ofx, = F;_1x;_1 + n¢_,, in which the realization of the random process follows
1 ~ N(0,Qx_1). The measurement relation (2.34) is required to be reptaisienvia the

23



CHAPTER 2. FUNDAMENTALS

functionz, = Hyx,. + n}*, with the measurement noise accordingifp ~ AN(0, Ry). Addi-
tionally the a posteriori PDF is restricted to be a Gaussensiy, and thus

p(Xk—1|Zk—1) = N(fik—h Pk—l) ) (2.50)
Due to the imposed restrictions the transition PDF can besssed as
P(Xk|Xk71) = N(szflxkfla Qkfl) . (2.51)

The termF;_; denotes the transition matrix, which characterizes therdenistic dynamics

of the statex. Since (2.50) and (2.51) are both Gaussian, inserting #iljdeads to an inte-
gral, which can be tracted analytically and it can be shovan tte resulting a priori PDF is a
Gaussian as well:

p(Xk|Zk_1) = N()ACI;, P,:) > (252)
with meanx, and covarianc®, according to

x, = Frax1, (2.53)
P, = FiPFl_ + Q. (2.54)

As mentioned above the measurement model is linear andkitlehbod function can be ex-
pressed due to the Gaussian measurement noise in terms of

p(zilxk) = N (Hpxp, Ry) (2.55)

whereH,, is the so-called measurement matrix. Since (2.52) and 2#&5bboth Gaussian, it
can be shown that inserting in (2.42) leads to an expressibith can be solved analytically
and that the resulting a posteriori PDF is again Gaussian:

p(Xk|Zx) = N (%, Py) (2.56)
in which meanx; and covarianc®, are given by

P, = (I-KiHy)P, , (2.58)

where the so-called Kalman galk€, computes with
K, = P.H (H,P,Hf +Ry)" . (2.59)

Extended Kalman Filter

A suboptimal implementation for more general non-lineashems is the extended Kalman
filter [May79]. For the EKF (2.39) can be of the form

xp = fr_1(xp—1) +0j_ (2.60)
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and (2.34) of the form

The random processes follow thereby the Gaussian restriotithe KF, such that the transition
PDF is for the EKF

p(xklxp-1) = N(feo1(xx-1), Qr-1) - (2.62)
The a priori PDF is a Gaussian approximation of the true aigfDF
p(xk|Zi—1) = N (%, P}) , (2.63)
with mean
X, = f1(Xk—1) (2.64)
and the Jacobian approximation of the transition matrix

Of—1(xk-1)

F. . =
E—1 O,

, (2.65)

Xp—1

which is used according to the generic KF equation (2.54jHercalculation of the predicted
covarianceP, . Due to the non-linear measurement equation the likelifondtion becomes

p(zi|xx) = N (hy(x), Ry) (2.66)
and the a posteriori PDF is approximated through the GaugXd-
p(xk|Zy) =~ N (Xx, Pr) (2.67)
with mean
xi = X5, + Ki(z, — hy(xy)) - (2.68)

The calculation of the a posteriori covariance and the Kalgein follow thereby the generic
KF equations (2.58) and (2.59) respectively, in which theob&an approximation
. 8hk(xk)

Hy, = —2h) (2.69)

ox -
kool

is used for the measurement matrix. An alternative equidt@mulation of the EKF is the
small-signal space filter, which computes the large-sigregctory X; ={x/,q = 0, ..., k}
independently from the small-signal perturbatioig. The transition PDF in the small-signal
space EKF is with using;, = xj, + dx;,

p(xp|xp—1) = N (1 (%)) + Fro10x-1, Q1) - (2.70)

The a priori PDF follows from (2.63) with meat), = xj, + 0%, , in whichxj, = f;,_;(x}_,)
andox, = F;_10%,_;. The likelihood function in this formulation is approxineat by

p(zk|xi) = N (hi(xg) + Hpdxi, Rye) (2.71)
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and thus after the update the a posteriori PDF follows fro®ARwith meark, = xJ, + dX;, =

xi + 0%, + Ky (z — H.0%,, ), with the small-signal space measurement z; — hy,(x}). It
can be derived from (2.70) and (2.71) that this formulatibboves to decouple the computation
of x} anddx; (except for the computation df, andH,). A correction of the large-signal
trajectory may be performed each filter cycle by adding thienesed small-signal deviations
viax; = x! + §%,. The calibration is considered in the filter by using the neval signal
meandx{® = 0. After correction the previous state equals the calibrpteslious state, namely
x;_, = x;, and the filter prediction usek,_; = dx',. If a correction is applied after
each filter update, the small-signal formulation of the EKHully equivalent to the direct
EKF formulation. In some implementations the sign of the Issignal space is inverted. The
implementation with the inverted sign is referred to as therespace implementation of the
EKF, since the filter tracks the errors of the large-sigregettory, which are subtracted to give
the total mean. Due to the inverted sign the effective epace measurementis = —z} =
h,(x},) — zx. The error space implementation can be found often in tregiation of satellite
and inertial navigation systems [Nat04], since the deaaipbmputation ok}, andédx;, allows

to perform the filter computations at lower rate than thosthefreference trajectory. E.g. in
an integrated satellite and inertial navigation systenréfierence trajectory is computed at the
high rate of the inertial sensor data, whereas the filter igpdaexecuted only once per each

incoming satellite measurement.

Particle Filter

Another important class of Bayesian filters are those betan¢p the family of sequential
Monte Carlo (SMC) filters [AMGCO02] [DdFGO01]. SMC filters, whicheaalso referred to as
particle filters, solve the Bayesian filtering equations basethe principle ofmportance sam-
pling and thus inherently implement only a suboptimal approxiomadf the optimal Bayesian
solution. In a SMC filter the a posteriori PDF at stejs represented as a sum, and is specified
by a set ofN,, particles:

NP
p(xk|Zy) ~ Zwﬁé(xk —xi) (2.72)
pn=1

where each particle with indgxhas a stat&’, and has a weight/,. The sum over all particles’
weights is one. The SMC filters are not restricted with respethe class of the model and
the noise process, but the number of employed particles rsi@at parameter, as only for
N, — oo the approximate a posteriori PDF approaches the true PDiEt(sspeaking only the
expectations on the discrete approximation converge texpectations on the true PDF). The
particles are drawn according to the concept of importanogeéing from a so-called proposal
densityq(xx|x}_,,zx), such that their respective weight is calculated via

wu x wu p(Zk|XZ)p(Xg|XZ_1)
R gy 2n)

(2.73)

The selection of the proposal density is crucial for the grenance of the particle filter. Al-
though the optimal proposal density can be derived thexaibti AMGCO02], it is in practice
often impossible or at least very difficult to actually drawrh this density and to compute the
corresponding weight according to (2.73). Consequentlychitéce of the proposal density is
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characteristic for the specific realization of the filteradgorithm. The most common choice is
the so-called sequential importance resampling partitéz (SIR-PF) [AMGCO02]. In the SIR-
PF the proposal density is chosen tofe,|x,_; = x}_,), and with resampling [AMGCO02] at
every time step. The key step in which the measurement ftanosk is incorporated, is in the
calculation of the weighi!’, which for the SIR-PF can be shown to be the likelihood functio
p(zg|x}). The characterization of the dynamic process enters inlt@ithm when at each
time instancet, the state of each particlg; is drawn randomly from the proposal distribution;
i.e. fromp(xg|xi ;).

Marginalized Filter

In a marginalized filter [SGNO5], which is also often refeft® as Rao-Blackwellized filter
[DAFMRO0OQ] the state space is separated iftsub-state vectors accordingip = [x}, ..., x}"].
Often the state space is separated into two groups: Lineassgm and non-linear states.
Thereby KFs are used to estimate the linear and Gaussi&s staalytically whereas the non-
linear states are tracked by the sub-optimal and computdtjomore complex PF. Though the
term marginalized filter is often used as synonym for the doation KF/PF, a marginalized
filter can actually comprise any nested combination of Bayesiters. A general marginal
filter factorizes the a posteriori PDF according to

! W plzelxy, .., x)) W
Z = Z._ 2.74
P(Xp, Xy, |Zy,) (24 Zs 1) (X, X | Zg-1) ( )
(Zk|xllw .- X?/ w+1 %%
= p(XP| L1, x0T, X
(Zk|zk 1) H k‘ k—1 k )
w
_ H Zk\zk 1>X1;f,---7xk) ( |Zk . w+1 g XW)
_ Zk|Zk 1,X w+17"'7XE/) - ’ T

W
= H }(]</,|Zk;7 w+1, ,XZV) I

in which a specific filter is associated to each conditionalsteriori PDR (x| Zy, xi' T, ..., xV).
To factorize the a posteriori PDF according to (2.74) se\amaditions must hold [DdFGO1]. It
was shown that the MF approach can significantly improve ttegifig performance compared
to an equivalent PF implementation for a given number ofiglag (which is not necessarily a
reasonable criteria under all circumstances, since in athdfFcombines KF/PF each particle
carries commonly its own KF, and the complexity of severaidreds of KFs could be higher
than that of a sufficient number of additional computati@fitient particles in some cases).

A crucial step in any MF is the computation of the marginatlikood functions that are
used to update the nested filters. The marginal likelihoodtian can be computed recursively
via

p(zk|zk—17 Xlkvv ce JXZV) = (275)

/ p(z|Zi-1, %} h ~~;sz)p(kaflfzk71,xqé}w--aka)dx;:fl :

w—1
X
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A Posteriori Cramer-Rao Lower Bound

The a posteriori Cramer-Rao lower bound (CRLB/PCRB) is the theatgterformance bound
of anunbiasedsequential Bayesian estimator. As it was shown in [vT68] @ugawnce of any
unbiased estimator must be larger than the CRLB. A detailed suynon the derivation and
the computation of the CRLB is available in [RAGO04]. In the scopthis thesis the CRLB is
used to compare the performance of the derived algorithrmsisicthe theoretically achievable
limits whereas in difference to the general filtering infation matrix notation the bound is
calculated via the EKF approximation, which is viable whesrdghe process and measurement
noise models are Gaussian and when a unique system trgjectmed instead of an ensemble.

Model Matching

It is important to point out that the Bayesian estimators ailg as good as their system mod-
els match the real world situation. The state model needajituceall relevant hidden states
with memory and needs to correctly model their dependenwieide adhering to the first order
Markov condition. Furthermore, any memory of the measurgmeise affecting the likeli-
hood functionp(zx|x;) must be explicitly contained as additional states of the ehedso that
the measurement noise is i.i.d.. Practically there will lveags a mismatch between the as-
sumptions taken in the estimation algorithm and the realdv&ituation. Nevertheless if the
mismatch is reduced as much as possible, it may be expedatththestimation accuracy is
increased.

2.3.2 Application to Joint Satellite and Inertial Navigation

The standard algorithm to combine a satellite navigatiatesy and an inertial navigation sys-
tem is the EKF, whose dynamic and measurement model is abtiptiee joint system. Unlike
the GNSS measurements the acceleration and gyroscopemsreasiis are not treated as regu-
lar measurements in the standard implementation of a ctiomehGNSS/INS EKF. This is due
to the fact that the standard EKF algorithm for the integraof inertial sensors indeed follows
Bayesian philosophy, but assumes uniform and thus nonrav#tive priors on accelerations and
turn rates, which transforms the transition model from aagiyit to a pure kinematic one. This
is a crucial point, since in this case there is no more benftiteotransition model with respect
to the inertial measurement. This leads to the consequématthe algorithm formulation is
completely independent of the navigating vehicle or indlixl, e.g. though an aircraft and a
pedestrian have obviously quite different dynamics theventional EKF integration algorithm
[TWO04] does not consider this. The lack of an adequate dynamitel is the major drawback
of todays standard integration approach.

Depending on the level of integration three basic types te#gration approaches can be
found in the literature [NatO4]:

» Loose Coupling In a loosely coupled GNSS/INS the fusion filter combinespbsition
estimates of the GNSS receiver with the inertial solution.

» Tight Coupling: In a tightly coupled GNSS/INS fusion the inertial solutienjoined
directly with the delay estimates of the GNSS receiver, Wiias the advantage that a
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Figure 2.10: State-of-the-art implementation of the Bagesistimator for a joint satellite and
inertial navigation system. The inertial navigation conagpions are performed in parallel to a
Bayesian estimator, commonly an EKF, which estimates tloeseaf the inertial navigation.

filter update is not restricted to the case that at least founare delay estimates are
available at the GNSS receiver.

» Ultra-Tight Coupling/Deep Integration : In a ultra-tightly coupled GNSS/INS, which is
also referred to as deeply integrated GNSS/INS, the fusiien &ids the DLL/PLL/FLL
circuitry of the GNSS receiver. Depending on the implemigoiiaalso correlator outputs
are used as measurements instead of the time delay estimates

As illustrated in 2.10 commonly an error state space fortiands used for a GNSS/INS filter
[May79]. The error state space formulation, which is aldemred to as indirect estimation,
arises due to the linearization in the EKF. As addressedipiieSection 2.3.1 the error state
space implementation allows to use the navigation solutfdhe INS to obtain the large-signal
system trajectory, upon which the linearization is perfedywhich enables the estimation of
the small-signal error dynamics. The error estimates atermused to correct the solution of
the INS and thus the large-signal system trajectory as Welihe error space implementation
of the EKF the INS serves as reference system. The genere¢pbaf how the information is
joined in a combined GNSS/INS navigation system is showrigare 2.11.

Loose Coupling
The state vector in a loosely coupled system comprisesipositelocity and attitude

Xy = [k, Vi, ¥ (2.76)
Using (2.31), (2.32), and (2.33) the position is assumedltow the process

r, ="rp_1+ve_11s+ nfyk , (2.77)
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Figure 2.11: Information fusion in a GNSS/INS navigatiosteyn as it is used in aeronautics.
Since there is no information that constrains the movemeéthevessel a sole INS solution
degrades over time, thus the uncertainty about its locatimeases continuously (2.11(a)). The
information provided by the GNSS constrains the possiltations, which allows to correct
the joint estimate (Figure 2.11(b)).
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the velocity is assumed to follow
Vi = Vi_1+ a;g_lTs + ng,k ; (278)
the attitude is assumed to follow

(UNEST IS h (2.79)
and the Jacobian system matrix becomes for the EKF accoralifig/v04]:

Isxs IsxsTs  Osxs
sz—l = 03><3 I3><3 [flz—l X]TS . (280)
O3x3 0343 Isys

Xp—1

The measurement that is used to update the filter is the pogstimate of the GNSS receiver
zi¢ = 7. Thus the effective measurement for the error space EKFeiglifference of the INS
position and the computed position of the GNSS receiver:

70 =1l — 1] (2.81)
The measurement matrix is thus
H = ( Isxs Osxs Oses ) - (2.82)

Tight Coupling

In a tightly coupled system the state space is extended beteéver clock bias and clock drift
to allow for the direct incorporation of range measuremetising the clock bias; and the
clock drift 7/ the state vector for the tightly coupled integration is

Xt =[x, 10, 71] - (2.83)
The clock bias is assumed to follow the process
=Ti+ T +ndy (2.84)
and the clock drift the process
o= Th_ 0y - (2.85)
The extended system matrix is thus

FI | 0Ogxi 0gyy
Fe — [ 0 1 T, | . (2.86)
01x9 0 1

The measurements are now the range estimates of the GNS&rege= 7,. Consequently
the error space measurements are the difference of thefgddanges and the estimated ranges
of the GNSS receiver

7' = Fop— Th (2.87)
wheret ;. = 7([F}, 0]) according to Section 2.1. The measurement matrix is thus
H) = ( D; Oumxs Omxs lausai Owsa ) (2.88)

in whichD;, = Dy ;.5 according to (2.3).
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Ultra-Tight Coupling

In a ultra-tightly coupled integration the signal trackicigcuitry of the GNSS receiver is aided
by the output of the integration filter. The state space irhsadilter equals that of a tightly
coupled system and thug' = x}¢ andF}*, = Fi° ,. To aid the DLLs the linearization point
for the TED is adjusted based on the predicted state of the@GNSS/INS. Introducing a vector
notation for the TED linearization points) = [7{,,..., 7y, ,]" and the filtered version of the
timing mismatchr/, = [7/, ..., #/,, T according to Section 2.1.1, the point of linearization
is obtained via

T Tok (2.89)
= 7o([t,, 7)), (2.90)

in which the functionr(e) follows from (2.3). The delay estimates are then obtainad vi
Tr=Tor+ 7L, (2.91)

Beside the aiding of the tracking loops an alternative foatiah of the measurement equations
is characteristic for some implementations of the ultgittly coupled concept, e.g. the deeply
integrated system analyzed in [NatO4], which is based oditieet observation of the early/late
and prompt correlator outputs.
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Chapter 3

Pedestrian Satellite Navigation

As the need for personal localization and navigation systenemerging, pedestrian naviga-
tion is today a rapidly growing market. Location- and cottaware applications are mainly
driving the evolution in the mass market sector. In the @eitenal sector fire fighters and other
relief units have the still unmet want for a system allowihg precise and seamless localiza-
tion and tracking of operating individuals. Indeed staddaation has already taken place for
positioning via mobile radio signals and positioning calids are becoming a design criteria
for future mobile radio communication systems. GPS recsiaee today integrated in many
types of mobile phones and PDAs, hence world-wide posttigf individuals is feasible. In
particular the synergies between communication and nawigaystems are exploited in as-
sisted GPS (AGPS) applications. An initial coarse fix andher assistance data is provided
by the mobile radio communication system, which allows twuee the search space in the
acquisition for the satellite signals significantly, rémg in a time-to-first-fix (TTFF) of few
seconds or even less. Furthermore high sensitivity navigagceivers allow the processing of
heavily attenuated signals using long periods of coheesgption. Geodetic applications can
reach centimeter or even millimeter accuracy by the pracgsd carrier phase measurements
[Ver05]. Despite these advances todays existing systemsmeet the accuracy and availabil-
ity criteria of many future personal navigation applicago A crucial problem seizing these
applications is the impact of the user dynamics and the usgromment on the availability
and accuracy of satellite-based positioning. Though I#at@lavigation works very accurate
in free field conditions with todays latest mass market kemsj their performance gets de-
graded heavily in those environments, where accurate diadbleelocalization of individuals
is of particular interest: Environments where people Uguabve most frequently, like dense
urban environments or even inside of buildings. The phyaresthereby the limiting factor,
since in these scenarios the local environment causesadifin and attenuation of the direct
satellite-to-user propagation path. The signal is difiedcat edges of obstacles like buildings
or trees and the signal power gets reduced due to propagdhtimmgh foliage, walls, roofs or
windows. Additionally multipath, the reception of addiia signal replica due to reflections
caused by the receiver environment, worsens the situatimifisantly. The reception of mul-
tipath introduces a bias into the time delay estimate of #aydlock loop of a conventional
navigation receiver, which finally leads to a bias in the nezrés position estimate. Multipath is
today still one of the most crucial problems in GNSS, as therés caused locally and can not
be corrected through the use of conventional correctioa, datich is provided by differential
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Figure 3.1: Classification of multipath mitigation approash The genuine mitigation ap-
proaches actually mitigate the impact of multipath, wheitba estimation approaches estimate
and compensate the multipath at a later processing stage.

augmentation systems. Examples are the differential GRHE) systems EGNOS, a satellite-
based augmentation system (SBAS), or SAPOS, a ground-bagetkentation system (GBAS).
In particular for personal navigation multipath is a caliproblem, since the pedestrian user
dynamics do not allow for the use of geodetic measurementipies. Nevertheless the dy-
namics are smaller compared to those of vehicles, leaditestovariation in the propagation
channel and thus increased impact of multipath.

The need to cope with the multipath problem has led to theldpreent of various sig-
nal processing techniques for multipath mitigation. Thesfolution to this day reaches back
almost twenty years. During that period the advances inftelt have led to a continuous
improvement of performance. As illustrated in Figure 3.%iGally two major approaches can
be distinguished: The class of techniques that actumitigatethe effect of multipath by mod-
ifications of the antenna pattern (either by means of harel@dasign or with signal processing
techniques) or by aligning the more or less traditional ikezecomponents (e.g. the early/late
correlator) and the class of multipagistimationtechniques, which treat multipath (in partic-
ular the delay of the paths) as something to be estimated tinemeceived signal, so that its
effects can be trivially removed at a later processing stagest of the conventional mitiga-
tion techniques are in some way aligning the discriminatdhe DLL to the signal received in
the multipath environment. Well-known examples of thisegary are amongst others the Nar-
row Correlator [vDFF92] and the Strobe Correlator [GvDR96]r tfe estimation techniques
static and dynamicapproaches can be distinguished, according to the undgragsumption
of the channel dynamics. Examples for static multipatmesiion are those belonging to the
family of maximum likelihood (ML) estimators, where the pably best-known technique is
the multipath estimating delay lock loop (MEDLL) [vNSFT94Dynamic algorithms for es-
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3.1. MULTIPATH SIGNAL MODEL

timation of time-varying synchronization parameters imesygl spectrum systems have been
suggested in the field of communications using the extenddth&n filter [11t90] as well as
the sequential Monte Carlo approach [PDF04, BRPTO4]. For a#eig systems estimators
based on sequential importance sampling methods (pdiitteléng) have been considered for
static [CFPFRO06] and dynamic scenarios [LKRTO07, LKR08, KW0%id& from the aforemen-
tioned mitigation techniques various other concepts haesishown to improve the multipath
mitigation performance in navigation systems, includihg tise of antenna arrays and array
processing techniques for multipath and interferencegation [SGFRFP05, HKDAOS8], and
concepts which are based on the exploitation of the mutyagmencies of the signal delays
through the common position parameters like the vector DVDIL) [PS96], including the
position domain ML estimator [CFPFRO07a] and joint positignand mitigation tracking algo-
rithms [GTO5, KLRO8a, KLRO8b].

The objective of this chapter is the application of the Bageesipproach to the problem of
multipath mitigation, which thus becomes now a problem airotel estimation. Apart from
the required complexity, which may indeed be high, the athgenof Bayesian approach is
obviously the fact, that it is an optimal approach, at leasiceptually. In other words, no other
algorithm can outperform the optimal Bayesian filter, givem$ame premises and assumptions.
Starting from the conventional approach to apply the chibesimation separately per each
received satellite, the multipath problem is subsequesttippedded into a superior estimation
problem: The direct estimation of the relevant states ofdévidual, in particular its position
and speed, and all other states affecting the receivedlsjgng. the state of the receiver clock
and the realization of the particular channel responsesikéJather algorithms the Bayesian
filtering approach allows thereby to exploit the probabdislependencies between the user and
the channel dynamics [LSO05] and is thus foreseen to readbrijgrformance compared to
other methods.

3.1 Multipath Signal Model

A crucial problem in Bayesian filtering is to model all relevatservations, states and their
temporal dependencies properly by means of a probabiigtitem model. Only if these mod-
els are correct the Bayesian approach is optimal. To addguatedel the observations and
measurements that are performed in a navigation recehermeceiver is assumed to provide
M parallel channels to simultaneously process the signailaray from the available satel-
lites [PS96]. After coarse removal of the Doppler shiftg,. éhrough a conventional PLL, the
complex valued baseband-equivalent received signal eordbeiver channel = 1, ..., M, is
expressed as

z

m

zj(t) = ) eij(t)ai;(t)s;(t — 7 (1)) +ni(t) , (3.1)

i

Il
o

wheres;(t) is the CDMA navigation signaly,, is the maximum number of considered multi-
path replica reaching the receiver (to restrict the modetiomplexity).e; ;(¢) is a binary func-
tion that controls the activity of théth path andy; ;(t) andr; ;(t) are their individual complex
amplitudes and time delays, respectively. The signal isibed by additive white Gaussian
noisen;(t).
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% |-~ Blocks: e;, T;, constant

| - | Sub-Blocks:a, ;,; constant
1 l Ny

Figure 3.2: Signal model using blocks and sub-blocks. Tmeptex amplitudes are allowed
to vary with a higher rate than the path activity indicatend the delays-.

Usually signal models in this context, e.g. the ones use&&iOgb] or [SGFRFPO5] con-
sider a fixed known number of replica. The benefit of the modgbppsed here is that it incor-
porates the commonly unknown number of received replicdiaitly through the parameter
functionse; ;(1).

3.1.1 Discrete Time Model

As common in satellite navigation a block fading processtli@ complex amplitudes is as-
sumed, which has higher dynamics compared to the other gigreameters, and as consequence
a discrete time signal model comprising blocks and cohesabtblocks is used [SelO4c].
The concept of the signal model is shown in Figure 3.2. Theadigs sampled at times
(m+(—1)L+kLN,)Ts,m =0,...,L—1and grouped in sub-blocks éfsamples together
into vectorsz; ., s;(7;.x,.), andn;,, with the block indext = 0,1, ..., and the sub-block
index! = 1,..., N,, with N, being the number of sub-blocks in each bldckThe parameter
functionse; ;(t) andr; ;(¢) are assumed to be constant and equaj j¢ andr; ; ; for the dura-
tion of an entire block, thus; ., = e; j» andr, ; ., = 7 ;& The functions, ;(¢) are assumed
to be constant and equal &, ., during a coherent sub-block interval only. Furthermore the
vectore; . = € = [€0jkis---»EN ki) IS USEd, Withe; ; ., € [0, 1] to determine whether
the ¢'th path is active or not by being eithey;;, = 1 corresponding to an active path or
eijk; = 0 for a path that is currently not active. Note that the notatiath the binary path ac-
tivity parameters; ; ; is used to address the estimation of the commonly unknowrbeuwf
impinging replica. For concise notation the signal and atnghé vectors are stacked together as
columns of the matriceS;(7;x;) = [s;(70,k1): - - -,8;j(Tn,. jk:)] @nd the discrete-time signal
for the sub-block in block £ may be written in the compact form

Zik, = Si(Tin)Ejriar + 0k (3.2)
= Ykl Tk
with E; ., = diag([eo i ---€en,, k1)) The delays and amplitudes are collected in the pa-
rameter Vectors j x; = [To ks - - - » TNmjikd)” @NAa; k1 = [ao ks - - - an,, jril”-
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3.1.2 The Likelihood Function

The likelihood function plays a central role for the pararneethannel estimation algorithms.
Its purpose is to quantify the conditional probability oétreceived signal conditioned on the
unknown signal (specifically the channel parameters). &y, denotes the signal hy-
pothesis and is according to (3.2) completely determinethéghannel parametessy ;, e; « .,
andr; ;. Using the signal model according to (3.2) and assumingithgatis a vector of zero-
mean element-wise uncorrelated white Gaussian noise 'm‘rmUj? the associatelikelihood
functionfor a sub-block can be written as

1 1 .
p(Zj,k,l\{a,e,T}j,k,Z)ZW'GXP —@(Zapk,l—yj,k,ﬂ (Zjry — Yikd)| - (3.3)
J J

Efficient Computation

The use of likelihood measures or other types of cost funstisas become widespread in
navigation receivers implementing high performance rpatti mitigation algorithms. Since
the data size in navigation receivers is typically quitgéadue to the bandwidth of the navi-
gation signals, reduced complexity techniques are emglayell real-time implementations
such as [VNSFT94, FJO5]. In [Sel04b] a general theory forefffieient representation of the
likelihood function was presented. The key idea of this embés to formulate (3.3) through
a vectorz,. ;. resulting from an orthonormal projection of the observeghalz;,;, onto a
smaller vector space, so that; ; is a sufficient statistic according to the Neyman-Fisher fac
torization [Kay93] and hence suitable for estimatizge, 7}, ;. In other words the reduced
signal comprises the same information as the original $igealf. In practice this concept
becomes relevant as the projection can be achieved by gingethe received signal with a
bank of correlators. A variant of this very general concegst lso been referred to as thig-
nal Compression Theoreim [Wei06]. The large vector containing the received siggahples
z; . 1S linearly transformed into a vectar, ; ., of much smaller size. Following this approach
the likelihood function according to (3.3) can be rewritéen

p(zjkil{a e, T}jx1) =
1 _ka’lzj,k,l n %{ka,ch,ngij,k,l} _ Yfk,ch,ijij,k,l]

————57 €xp
L 2L 2 2 2
(2m)ko3 207 0; 207

(3.4)

L H H H
1 exp Zj 1%kl . {2z 1 Yeiki)  YejriYeiki
pr —_— X —_— J—
2L 2 2 2
(2m)ko3 207 o; 207
H H
‘SR{ZC,j,k,lycvjzkzl} _ yC,j,k‘,lyC7j7kvl

2 2 )
o; 2<7j

X exp

with the compressed received vectoy, ., and the compressed signal hypothesis;. ;:

Zejrt = Qlzjnt,  Vejrt = QUiyina - (3.5)

and the orthonormal compression maiy ;, which needs to fulfill

Qc,ijjsj(r) ~ S;(1), g{ch,j ~1, (3.6)
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Figure 3.3: Architecture for efficient evaluation of thediihood function in navigation re-
ceivers [Sel04c]. A bank of conventional correlators ptded the reduced data sgt ;. ;, which
is sufficient to compute the likelihood function and to estienthe signal parameters.

to minimize the compression loss. According to [SelO4c]dbmpression can be two-fold so
that it can be factorized according to

Qc,j = Qcc,jQpc,j (37)

into acanonical component decompositi@iven by anL x N,. matrix Q.. ;, and aprincipal
component decompositipgiven by anV... x N,. matrixQ,. ;. In [Sel04c] two choices fof)... ,
are proposed, which correspond to the correlator bank imgrhéations found in [VNSFT94]
and [FJO5]. In this thesis the compression through

Q..; = S;(T") R} (3.8)

is considered, witt8;(r%) = [s;(}),...,s(7}. )], as it does not require a factorization of
the signal into a code sequence and a modulation pulse, vidiigbt necessarily unique, in
particular for novel modulation schemes [Wei06]. In (3.8 £lements of the vectar® =
[72,...,7%.]" define the positions of the individual correlators. To pebjihe bank outputs
(S;(7%))"z;,, onto a vector space of uncorrelated noise the whiteningixnR,. ; can be
obtained from a QR decomposition ®f(7°), such that

Zejrt = (R )" (S;(7") 2k - (3.9)

The implementation is illustrated in Figure 3.3. Detailstba compression throug®,,. ; are
available in [SelO4c].

A crucial parameter for the complexity of the hardware impdatation of the compression
through the canonical components is the minimum numberpfired complex correlators.....
According to [Sel04c] it is sufficient to place the individuwarrelators with a delay spacing
that corresponds to the Nyquist-rate associated to théveetsignalz;(t). Furthermore it is
recommended to have at least the main correlation peakedbsrthe correlators as illustrated
in Figure 3.4. Thus given a chip rate'tf for the CDMA signal and a pre-correlation reception
bandwidth ofB,,. the minimum number of required correlators computes with

Neo > AT, Byre - (3.10)
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(a) BPSK signal matched (b) BOC(1,1) signal matched

Figure 3.4: Output of correlator banks that can be used fta siae reduction in navigation
receivers for a BPSK and a BOC(1,1) signal with 1.023 MChips/geesely. The obtained
samples need to cover at least a chip interval around the peaik.

Hence for processing the GPS C/A signal (Chip rate 1.023 MChips/s) with e.g. a one-sided
receiver bandwidth oB,,. = 8 MHz at leastV.. = 33 correlators are required.
Interpolation

In [Sel04c] it was proposed to compute (3.4) independeritth@sampling grid by making use
of interpolation techniques [Sel06]. For this purpose thed is factorized into

Si(Tijkl) = S?é(kaJ), (3.11)

whered is e.g. a sampled Sl-pulse of lengtf andS;? a matrix representing the signal. Using
(3.11) and the discrete Fourier transformation (DFT), witlbeing the DFT matrix andy !
its inverse (IDFT), the compressed signal may be written as

Yeikl = QZS?‘IJﬁldlag [‘115(0)] Q(TLk’l)Ej’k’laj’k’l (312)
= M, ;QUmr)Ejriaj5
with Q(7;.:) = [270,5k1)s - - - (7N, jk0)] DEING @ Matrix of column-wise stacked vectors

with Vandermonde structure [Sel04c], such that the eleratemiw g and column (correspond-
ing to pathi) computes with

R{QUT 00 0a} = cos(zw(g—1)Ti7j7k,l/(NgTs)) , (3.13)
S{Imikoa} = —sin(2m(g — Vrigaa/ (N,TL)) (3.14)

The advantage of the interpolation is that it can take platiee reduced space. The most costly
computations in (3.12) can be carried out in precalculatisrthe matriXM,_ ; is constant. The
row dimension ofM,_; corresponds to the dimension of the reduced space and thmwcol
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dimension is the pulse lengtN,. The interpolation exploits that fact that a delayed versio
of the signal can be obtained by delaying the pulse companemhich is achieved through a
transformation into the frequency domain, a subsequeniphohtion with complex exponen-

tials, and a transformation back to temporal domain finditythe following sections always

the uncompressed signal notation will be used without Iéggenerality regarding the use of
compressed signals.

3.2 Bayesian Estimation in the Pseudorange Domain

As addressed in Section 2.3 the concept of sequential Bayestanation allows to consider
statistical dependencies between successive obsenmatermals, given that the evolution of
the estimated parameters can be modeled as a first order Wiar&oess, which holds if fu-
ture parameters given the present state of the channel ltglEdst states, depend only on the
present channel state (and not on any past states), andibibe affecting successive channel
outputs is independent of the past noise values; so eachvalise depends only on the present
channel state. The objective of this section is to apply dgpential Bayesian approach to the
multipath problem while considering the requirement tliegt mitigation is applied indepen-
dently per each received satellite as it is done in conveatinavigation receivers. In this case
the problem of multipath mitigation becomes one of seqaéokiannel estimation, in particular
one of the estimation of a hidden Markov process: The unknclvamnel parameters are esti-
mated based on an evolving sequence of received noisy dhaupeitsz; ;. Intuitively the
optimal sequential algorithm exploits thereby not only thannel observations to estimate the
hidden channel parameters (via the likelihood function) dbso exploits the a priori knowledge
about the statistical dependencies between successivef sttannel parameters, which is very
promising for practical reasons, as real world navigatioanmels are temporally and spatially
constrained through the dynamics of the user [SL0O4].

3.2.1 Choice of Channel Process

To exploit the advantages of sequential estimation theahctuannel characteristics (channel
parameters) must be described so that these are captuggedy,_1). In other words, the
model must be a first order Markov model and all transitiorbptwlities, i.e. the system dy-
namics must be known. Recalling the general notation (2.39)

Xp, = foo1(Xp—1,mf_y) (3.15)

the channel dynamics are approximated as follows: The etasnotally characterized by a
direct LOS path (index = 0) and at mostV,, echoes. Each path has complex amplitudg. ;,

[ =1,...,N,, activity e, ; ,, delay T, ; ,, and delay rate; ; ,, where echoes are constrained
to have delayr; ;, > 7, ¢ = 1,..., N, to reflect that multipath replica are physically
constrained to arrive later at the receiver than the LOS. gatinthermore the echoes are con-
strained to have delay ; , < 70 ;%7 + 1c, @ = 1,..., Ny, With T, being the chip duration of
the CMDA code, in order to consider only those replica whichehactually an impact on the
receiver behavior.
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Characterization of Delays and Delay Rates

The delay of each path is assumed to follow the process
Tigk = Tijk—1+ Tijk—1 At + 0, +n, (3.16)

with At = LN, T, and wheren, ; » andn.; is white Gaussian noise with. being the same value
for all indicesi, in order to model the impact of the receiver clock, whichhe same on all

replica. Each parameter, ;. that specifies the rate of the change of the path delay folitswvs
OWn Process:

Tigk = Tijhk—1 1 Nijs + Nt (3.17)

with white Gaussian noise; ; - andn;. Therebyn; is again the same value for all indicgsn
order to model the impact of the receiver clock drift thatomily affecting all observed delay
rates.

Characterization of Path Activity

Since the number of impinging multipath replica is unknoeach echo is either "on” or "off”,
as defined by the channel parametgr, € {1 ="on”,0 = "off" }, wheree, ;,i =1,..., N,
follows a simple two-state Markov process with a-symmaetrassover and same-state proba-
bilities:

pleijr =0leijr—1=1) = Ponoft i=1,..., Ny , (3.18)
pleijk =1leijr—1=0) = Pofion t=1,..., Ny .

The LOS component is assumed to be always present and cemslgqy ;. = 1 for all k.
Appearing echoes(; , = 1 ande; ; ,_1 = 0) are initialized according to [CFPFRO06] with

Tijk = Togk + [Tm + jnl (3.19)

with white Gaussian noise; ., and the characteristic mean valgg. Additionally persisting
echoes are allowed to jump with a small probabilitypaf,.,. In this case a new echo delay is
drawn from (3.19). This scenario is considered to modelgttchanges in the echo delay that
are due discontinuities on the surface of a reflector, e.guadnfront.

Characterization of Amplitudes

The complex amplitudes, ; ;; are assumed to depend on the amplitudes of the previous sub-
blocka; ;-1 through

— 32w foLTs7; i 1
ik = Qi jpg—re S TIOIT R Lo (3.20)

Thus the rate of change in the delay affects the evolutiom@itbmplex amplitude through a
phase shift according to the current Doppler frequency analdaitional white Gaussian noise
termn, ;,,. This allows to consider the physical relations betweersphB®oppler-frequency,

and time delay adequately. Blockage and shadowing of the li@falss considered through

variations of the LOS amplitude, ; ;.
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Model Summary

The model implicitly incorporates nine i.i.d. noise sowwedgthin the process noise vectat:
Gaussiam; ;, ~ N(0,07,.), nij: ~ N(0,07,.), nr ~ N(0,07), ny ~ N(0,03), njr ~

N (Tm,07,,), and complex Gaussian ; ., ~ N(0,07; ,.), as well as the noise process driving
the state changes fer ; , and the process for drawing samples according to the prilyabi
Pjump- 1hESE sources provide the randomness of the model. The smisces:. andn; are
included to model the impact of the receiver clock on theivillial delays and delay rates, since
at the receiver they are actually affected simultaneouglyhe same clock random process.
Finally, At = N,LT; is the time between instancés- 1 andk. It is assumed that all model
parameters (i.eAt, noise variances, and the "on”/"off” Markov model) are ipéadent of.
Note that the model implicitly represents the number of p#though the time variant parameter

N"L
Nojkg = Z €ijkl - (3.21)
=0
The hidden channel state vector;; of the range-based channel model is thus represented as

Xjel = la,e, T, T}k - (3.22)

The channel state model used here is motivated by channedlmgavork for multipath prone
environments such as the urban satellite navigation ch@in865, SL04]. In fact the process
of constructing a channel model in order to characterizeliamnel for signal level simulations
and receiver evaluation comes close to the task of buildifigteorder Markov process for se-
guential estimation. For the algorithm implementatiomr, tihodel needs to satisfy the condition
that one can carry out the Bayesian recursion with relatiesiycomputational complexity, e.g.
that some calculations can be performed analytically byrtéal or grid-based filters and that
one can draw states with low computational effort in a pkerfiiter. Adapting the model struc-
ture and the model parameters to the real channel envirdrimanask that is not addressed in
detail here. It may even be possible to envisage hieraramiodels in which the selection of the
current model itself follows a process. In this case e.ggaeetial estimator will automatically
choose the correct weighting of these models accordingeioability to fit the received signal.

3.2.2 Filter Implementation

Different families of algorithms are known to implement tBayesian recursion (2.41) and
(2.42), including amongst others the well-known Kalmarefiths well as the particle filtering
algorithms. Certain restrictions are imposed on the useesfetalgorithms. The objective here
is to estimate the channel parameters (3.22) using thehdad function (3.3) and the process
defined in 3.2.1, which makes the estimation complex: Thelitude parameters, ;;; are
continuous and the measurement depends linearly on themhéactivity parameters ; 4,
which are discrete and thus follow a discrete evolution. iffecence the observations depend
nonlinearly on the continuous delays; ;, which are also nonlinear with respect to their dy-
namics. A straightforward way would be to implement thereation algorithm completely
with a patrticle filter, which is the most general method wiispect to system nonlinearities,
but depending on the considered number of pafhsthe state space in such a filter becomes
large and it becomes difficult to cover the entire space wittegonable number of particles.
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To consider the nonlinearities while keeping the state esgache covered by the parti-
cles as small as possible, it was proposed to reduce the ¢atigmal complexity of the filter
by means of marginalization over the linear state varialdetechnique also known as Rao-
Blackwellization. In a marginalized filter, particles ardlsised to estimate the non-linear
states, while for each of the particles the linear statedbeastimated analytically. A marginal-
ized filter was already proposed in [CFPFRO08], and here thespiiicextended towards the use
of path activity estimation, resulting finally in a two-foldarginalization. The novel two-fold
marginalized estimator factorizes the a posteriori PDoating to

p({a,e, 7,7} kilZjk) = (3.23)
?(aj,k,zfzj,k,h {e, T, j-}j,k,l)/?(ej,k,lyzj,k,la {7, ‘i'}j,k,l)?({T; T}kl Zijg)
Kalman filter Grid-based filter Particle filter

Kalman filters are used to estimate the amplitualgs analytically conditional on the param-
eters{e, T, 7},x,. The discrete path activity parameters are in turn estichededitionally on
the delays and delay rat¢s, 7}, using a grid based method [AMGCO02], which is appropri-
ate to optimally estimate their discrete state space. Fyitta delays and delay rat¢s, 7}, x,
are the only remaining parameters to be estimated by thegtimal particle filtering algo-
rithm. Using

p{a, e, 7,7} inilZjri-1) = (3.24)
p(aj,k,lyzj,k,lfla {e, 7'7j’}j,k,l)p(ej,k,l‘Zj,k,lfla {7'> +}j,k,l)p({77 +}j,k,l|zj,k,lfl) )

the update step (2.42) of the marginalized filter can be assgictas

p({a,e, 7,7} kilZjky) = (3.25)
p(zjri{a e 7, 7}k
(25102 1)
p(z;rl{a, e, 7,7} 5) .
= Pl Zyg e, j_}jka)p(aj,k,l|Zj,k;,l—1a {e,7,7}x0)
Amplitude estin;;\tor: Kalman filter
P(ZikilZjni—1,{e, 7, T}jki)
P(Zj kil Zjra—1, AT, T}jka)
Path activity estin:gtor: Grid-based filter
(2 50| Zj -1, AT, T k)
p(Zj,k,l\Zj,k,lq)
Delay and delay rat;,estimator: Particle filter

= plajrilZjks, {e, T, T}ir)P(€nilZjns, {7, T k)T Tkl Zjks) -

p{a,e, 7,7 }jnilZjri-1)

J/

p(ej,k,lfzj,k,l—l, {7'; ‘i'}j,k,l)

J/

J

The details of the filter computations are discussed now.

Estimation of Amplitudes From (3.25) follows the implementation of the conditioniadyai-
tude filter. The conditional a posteriori PDF with respecthite complex amplitudes is given
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by

p(ajri|Zjn {e, 7,7 k) = (3.26)
p(z;k{a e, 7,7} k,)
p(zj,k,l‘zj,k,lfla {e, T, ""}j,k:,z

)p(aj,k,l|zj,k,l—1> {e,7,T}ir1) -

Recalling the structure of the amplitude system model, 83&)(@nd (3.20), the observed signal
z; 1, depends linearly on the amplitudes;; and the amplitude dynamics are linear condi-
tional on the delay rates. Hence the Rao-Blackwellizationbmaapplied directly [DAFMRO0,
SGNO5] and the a priori PDF is given by the Gaussian

(ki Zjpi—1,{e, T, T}jr) =N (éj_,k,laf)j_,k,l> ) (3.27)

with mean and covariance that are obtained in the predistiep from the previous time in-
stance — 1 through the framework of the Kalman filter equations

Akl = Fjridjnia (3.28)
Pj_,k,l = Fjvkvlf)jvkvl—lﬁ‘zk,l + Qj . (3.29)

In this case the matricds; ;. ; andQ; follow directly from (3.20) and compute with

Fj w = diag ([E*J'QﬁfoLTsf'o,j,k,z7 o 7€*j2ﬂf0LTs+Nm,j,k,z])

: (3.30)
Q;, = diag([00 00N, 5al) - (3.31)

The notatiors indicates thereby that dimension and values of the resgatiatrices correspond
to the active paths as given ley,;. The notatione used for the mean vector implies this as
well. Due to the conditional linear Gaussian model the eat#bn of (3.26) is feasible through
the application of the Kalman filter update equations andtpesteriori PDF becomes

Pl Zip, {e, 7. 7}jky) =N <éj,k:,la f’j,k,l) ; (3.32)

in which mean and covariance are given by

ajpe = A+ Ky (Zj,k,l—sj,k,la},k,z) ) (3.33)

Pj,k,l - (I - Kj,k,lsj,k,l) f)j_,k,l y (334)

with the concise notatio; ,; = S;(7,x,) and the Kalman gain

~ ~ ~ ~ ~ -1
Kkt = PjuST (SimPrnSiu +R) (3.35)

The value ofR; = o7 - I follows directly from (3.3).
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3.2. BAYESIAN ESTIMATION IN THE PSEUDORANGE DOMAIN

Estimation of Path Activity The estimation of the path activity; ;. , follows (3.25) and thus
the conditional a posteriori PDF for the activity state igegi by

p(€jnilZjng {7, T}jna) = (3.36)
p(zj,k:,l|zj,k:,l—la {e, T, 7"}j,k,l)
P(Zj k| Ljgi—1, {7 T}jki)

plejnilZjpi—1,{T,T}in1) -

The activity state space is discrete and thus can be estroptenally using a grid-based filter
[AMGCO02]. In this case the prediction (2.41) simplifies to $waluation of the sum

p€jrilZjn—1, AT T}ikt) = (3.37)
Z pejrileini—1, Zjri—1, 47, T}ik)P(€j ki1 Zjri—1, AT TFika) -

€j,k,1—1

The transition density with respect to the activity stasagiven by (3.18) and (3.19) and depends
therefore on the realization of the path transition accaydo

p(€jki = €jrileiri1 = €1, Ljki1,Tjki, Tjkl) = (3.38)
(poffon)]\]()%n ’ (ponoff)Non()ff : (1 - po‘ffon)NO]%Ef . (1 — ponoﬁ)N‘mO“ ,

whereN,g,, is the number of paths switching from "off” to "on’y,,..¢ is the number of paths
switching from "on” to "off”, N.g.¢ IS the number of paths remaining "off”, and,,,, is the
number of paths remaining "on” during the transition frem,_, to €; ;. Note that there are
2Nm+1 discrete states artdV=+2 transitions to be covered by the grid based filter. The matgin
likelihood value used in the update step is given by the swiuwif the integral

P(ZjkilZjpi-1,{€ T, T}k = (3.39)
/ P(Zj k| Ljri—1,1a, e, T, 7} e0)P(@5 00| Zj k-1, 1€ T T }ikg)da e

.k,

which equals the Gaussian density
P(ZjkilZjri—1, i€, T, T}int) =N (Sj,k,léj_,k,p SikiP St + Rj) : (3.40)

Since the somewhat lengthy derivation of (3.40) in its gahfrm is well-established in the
context of marginalized Bayesian filters, it is omitted hdfer a detailed proof the interested
reader is referred to [SchO3].

Estimation of Path Delays Due to the nonlinearity in the system model the remainingspar
of the state vector, namely the delays and the delay ratestodne estimated by a particle
filter. According to (3.25) the a posteriori PDF with respecthe path delays and delay rates
computes with

p(Zj,k,z|Zj,k,1717 {7'; 7"};',14,1)
p(zj,k,l \ Zj,k,lfl)

P77}kl Zjry) = P77}kl Zjri-1) - (3.41)
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CHAPTER 3. PEDESTRIAN SATELLITE NAVIGATION

Here a simple SIR-PF according to [DdAFGO01] is proposed toemgint the marginalized delay
and delay rate estimator. In the SIR-PF algorithm the a post&DF at stept is represented
as a sum, and is specified by a sef\ofparticles:

Np
pUT T jwd Ziwd) = Y wh ST F Y jws — {T M) (3.42)
pn=1

where each particle with index has a statgr, 7}, , and has a weight}, ;. The key
step in which the measurement for instaricés incorporated, is in the calculation of the
Weightwﬁkvl, which for the SIR-PF and the given implementation is the mafged likeli-
hood function:p(z; s.i|Z; -1, {7, 7"}?,1@70- The characterization of the channel process, which
is given by (3.16), (3.17), and (3.19), enters in the alganitvhen at each time instanéehe
state of each particléf,i-};.fk’l is drawn randomly from the proposal distribution; i.e. from
p({7, T}ika{7, 7}5,,_1), which corresponds to drawing values for,, n; +, n,, n+, andn; ..

The marginal likelihood value, which is required to upddte marginal particle filter, is given
by summing up the weighted marginal likelihood values ofpalh activity hypotheses

(2 x| ZLj -1, AT TYja) = (3.43)
Z p(zj,k,llzj,k,lfly {e,T, +}j,k,l)p(ej,k,l‘Zj,k,lfla {7, 7"}j,k,l) .

€5k,

Estimation of Position and Clock Recalling that the final objective in a navigation receiver
is to determine the position based on the obtained delayats through the relation (2.1), the
joint a posteriori PDF o, , = [r},, 7., with respect to all received satellites signdls;, =
[Z1 k1, - - -, Z k] is given according to the Soft-Location concept [AKBRL] by the product of
the range-wise a posteriori PDFs, including the transfdiondrom the range parameters into
their position-domain equivalents:

M

aT}k,l(Ekl>
p(&ilZi) = C ] Ja— P(Tj(Er)|Zjrr) - (3.44)
e 3%
Using the approximatio OT i€, (Tiki(&e)Zjny) = N (7o ri,0%,,) With the esti-
g pp 9, PAT ki \Ski) | Ljki) = 0.5,k 5 ke 1

mates for mean and covariance
T0jkl = /To,j,k,zp(To,j,k,z|Zj,k,l)d70,j,k,z 7 (3.45)
&?7k,l = /(To,j,m—%07j,k,z)2p(70,j,k7z|Zj,k,l)d70,j,k: , (3.46)

the statef,, , can be computed according to (2.3) via the system of equgtion

70,1,k 70.1k0(&0 k1) 5 70.1,k0(&)
) D€ ,
T0,M,k,1 70,0,k (&0 11) Toar k(&) £,
J (& J/ 0,k,
T To,k,1 D‘l:,l
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3.3. BAYESIAN ESTIMATION IN THE POSITION DOMAIN

Analogously to the conventional approa&;il) =& 1 +5ék,l can be computed iteratively using
the weighted least squares estimate

06, = (DI W, iDy) " DI Wi H(F iy — Tosa) (3.48)
with the weighting matridW,.; = diag[67 ;. .., 073, ,,]. Consequently the Gaussian approxi-

mation of the position domain density becomes

PEilZr) = N (€ (DL WD) ) (3.49)

3.3 Bayesian Estimation in the Position Domain

In the preceding section the concept of sequential Bayestamation applied on a single-
range basis was introduced. A two-fold marginalized estimaas proposed, in which the
delays and delay rates are estimated by a particle filterwdregte path activity and complex
amplitudes are estimated optimally using conditional tpéded and Kalman filters. Actually,
given that the individual LOS delays and delay rates of eackived satellite signal are not
independent from each other, since they are mutually degyemmoh the common user and clock
parameters through (2.2), the range-based approach istibieyoptimal solution, as the mutual
correlation between these states is not exploited. In daexploit these dependencies the
optimal estimator has to consider the actual relevant stael processes, which are finally
causing the dynamics of each of the received satellite Egnamely the user and receiver
clock parameters. Given these parameters are included sy#tem, the delays and delay rates
for each received satellite can be directly expressed mdef (2.2), and there is no need to
consider independently evolving processes and statekdar.tIn the following this approach
is referred to as the position-based method. An advantate giosition-based approach is that
the resulting estimator is able to provide directly an ag@asti PDF of the user position instead
of the indirection via the conventional solution through4g.

3.3.1 Choice of System Process

Compared to the range-based approach the formulation oftiewic processes is much more
straightforward in the position-based approach. The m®o®odel includes beside the receiver
clock model directly a statistical characterization of theer dynamics and incorporates thus
a true user movement model, i.e. a direct probabilisticattarization of the dynamics of the
receiver expressed with respect to the position domairgiwikithus equivalent to the dynamics
of the navigating user or vehicle.

User Model

As mentioned before the temporal evolution of the receiwsitpn can be characterized by a
physical movement model of the user or vehicle that carhes¢ceiver. Though this model
could be any Markovian model of user movement, e.g. as giydiKKRAOQ8], here a simple

model is proposed, which represents the user movementyjubelstates position and velocity,
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CHAPTER 3. PEDESTRIAN SATELLITE NAVIGATION

which both are related linearly over time and which are driby Gaussian noise processes
according to

r, = r._,+v, At+n, , (3.50)
VZ = V2—1+nv ) (351)

with the velocityv}, = [v],, v} ,,v.,]" as the temporal derivative af, = [r7, .7} ., 77,7,
andn, = [n,,n,,n.)", n, = [n:,ny,n:]" being vectors of element-wise uncorrelated zero-
mean white Gaussian noise, whose elements have a givemeaido?, o, o> andoy, oy,
o2, respectively. As will be shown later the simple linear Gaais model eases the theoretical
analysis of the estimator.

Clock Model

The clock model is used to characterize the receiver clogbarticular the evolution of the user
clock offsetr; and the user clock drift;. Here the following simple model is used:

T = T4+ 7T At+n, , (3.52)
T = Tho s (3.53)

The noise terms.. andn; are realizations of a zero-mean white Gaussian noise Earfes
variances? ando? respectively.

Model Summary

Since the position-based formulation does affect only tLlcomponents, the modeling of
the multipath channel, i.e. specifically the process dgwhthe complex amplitudes, the path
activity parameters, and the multipath delays and delagsraemain the same as the ones
introduced in Section 3.2. Actually the only crucial diface between both models is that the
LOS delays and delay rates are in the position-domain appregpressed via

Toj = ’rz — r’"‘ c 471"+ i + T;OHO + T;mpo +¢ei, (3.54)

fog = |Vi— v AT 4 A A4 TP g (3.55)

according to (2.1) and (2.2) and thus follow the previouslyaduced position domain pro-
cesses. To achieve in the following a convenient notatierdtdays of the multipath delays and
delay rates for each satellite are grouped into vectors

T;‘I,llsl = [Tl,j,k,h e ,TNmVijJ}T s (356)
1"?},?, = [Frjkis- > TNmkd)” (3.57)

and the amplitude, path activity, multipath delay, and ipath delay rate vectors associated to
the respective satellites are collected in the super-v&cto

ar; = {aiks .-, amelf (3.58)
e = {eiks-- empit (3.59)
'rzn,lp = {Trlr’l}z,l, . ,T]rfl/}?k,l , (3.60)
Tl = AT0ihn - Tatki) - (3.61)
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3.3. BAYESIAN ESTIMATION IN THE POSITION DOMAIN

Using the previously introduced notations the relevanapeaters can be combined into the
overall state vector of the position-based model. Usingtreise notation

£k7l = {1"2,1: V;,h Tl:,h 7Ll:,l7 TII:})’ Tzlf ) (362)
the state vector of the position-based model becomes finally
xp = {a,e,&hp - (3.63)

3.3.2 Filter Implementation

The previously introduced range-based concept requireyestkan estimator per each received
satellite and the navigation computation is performedsgbsntly. This concept is comparable
to a conventional receiver, where the DLLs are replaced beBiay estimators. For that reason
the range-based Bayesian estimation concept has also Heeredeto asBayesian DLLin
the literature [CFPFRO6]. In difference the position-baspgraach requires to estimate the
navigational parameters directly along with the channalizations. This unfortunately leads
to an increase of the state space of the joint estimator sithchannel parameters, which have
previously been estimated range-wise in separated estispare now to be estimated jointly
in a single estimator. Nevertheless, for the implememntatibthe joint estimator, fortunately
advantage can be taken of the distributed structure of tivatson problem, which allows to
keep some of the structures used in the range-based apprbaishfinally allows to preserve
at least the overall number of conditional estimators, ttee Kalman and grid-based filters,
and to keep their number equal to the one, which is requirgdddrrange-based formulation.
This can be achieved, since given the position, velocityitipath delays, and their rates the
path activity and complex amplitude densities for all daés can be estimated conditionally
independent, such that the a posteriori PDF of the parsaiparable estimator can be expressed
in the product form

p({a, e, & rilZry) = (3.64)

M
[ p(@ixilZri, {e, &ra) plejnilZia, €0) | P&kl Zry) -

J=1

Vv ' v
Kalman filter Grid-based filter Particle filter

Comparing (3.64) to (3.23), the factorization of the a pastePDF leads to a quite similar
structure with respect to the conditional a posteriori PBffghe path activity states and the
complex amplitudes. As an important consequence still lqalfiiters can be used to estimate
the amplitudesa;,; analytically conditional on the parametess;,; and§;, ;. In a similar
fashion the discrete path activity parameters are estaaiaditionally on the parametegs
using the optimal grid-based filter. Actually these estonaitemain of the same structure as in
the range-wise separated range-based estimators. Iredifieonly the stateg, ; are estimated
jointly by the particle filtering algorithm, instead of estting {, 7}, independently per
each received satellite. Assuming the joint a priori PDFleamvritten in a product comparable
to (3.64), the a priori PDF can be expressed as

p({a, e, &} il Zry—1) = (3.65)
M

H p(aj,k:,z | Zk,lfl ) {e, €}k,l)p(ej,k,l \ Zk,lfl ) €k,l) p(Sk,l ’ Zk:,lfl) )

j=1
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CHAPTER 3. PEDESTRIAN SATELLITE NAVIGATION

which is viable, if the evolution of the complex amplitudasdgpath activities depends for
satellitej only ong, ; and on its own amplitudes; ., ; and activitye;;, ; for each received
satellite respectively. As for the dynamics of complex atagdes and path activities the models
introduced in Section 3.2.1 are reused, this conditiondfdirthermore it is assumed that the
overall likelihood function can be factorized according(2038) into the the contributions of
each of the received satellite signals respectively via

M
p(zeil{a e, &) = [ [ p(zjnil{a e}jns &) - (3.66)
i1

Applying the Bayes rule to (3.65) and (3.66), it can be showw timat (3.64) holds, as the
update step of the joint filter can be expressed as

p({a, e, & rilZry) = (3.67)

p(ziil{a, e, E}r)
p(zk7l|zk,l—1) p({a, e, €}kl |Zlc,l—1)

M
p(Zjri{a e}jin, Exa)

1Pk 2 €5 €y

Amplitude estimator: Kalman filter

)p<aj,k,l‘zk,l—1a €kl &)

J/

P(Zj x| Zra-1,€5k05Er )
P(Zj k| Lri-1,€py)

Path activity estimator: Grid-based filter

p(ej,k,l|zk,l717 ék,l)

J/

M
H P(ZjkilZri1, €k;,l)

7=1
p(Zk,l ’Zk,l—l)

Position, velocity, delay and delay rate estimator: Pafitter
M

= [ P(@jnilZis. €jhis &x)p(€jnil Ziss €xp) | P(ExslZira) -

J=1

p(fk,z | Zk,l—l)

J/

The details of the filter computations are discussed now.

Estimation of Amplitudes From (3.67) follows the implementation of the conditionat-a
plitude filter. The conditional a posteriori PDF with resperthe complex amplitudes is thus
given by

Pkt Zj1, €5t Et) = (3.68)
p(zjri{a, e}k i)
P(Zj k| Zjri—1, €5k Epy

)p(aj,k,l’Zj,k,lfla el &) -

Recalling the structure of the amplitude system model, 8&)(@nd (3.20), the observed signal
z; ., depends linearly on the amplitudes, ; and the amplitude dynamics are linear conditional

50



3.3. BAYESIAN ESTIMATION IN THE POSITION DOMAIN

on the delay rates. Hence a marginalization can be appligteisame manner as done for the
range-based approach and the a priori PDF of the amplitsdggen by the Gaussian

P(aj,k,l|zj,k,lfl7ej,k,ly€k,z) :N<é;k,l715;k,l> ) (3.69)

in which mean and covariance are obtained in the predictiem fsom the previous time in-
stance — 1 through the prediction in the Kalman filter

= Firdjria (3.70)
Piri = Fa‘,ka’j,k,l—lﬁ‘JT,k,erQj- (3.71)

The matriced'; ., andQ; follow directly from (3.20) and compute with

Fj,k,l = diag ([€—j27rfoLTs'fo,j,k,l7 o 76—j27rfoLTsT'N,,L,j,k,l]) ’ (3.72)

Q, = diag([00 0, 0%, 5al) - (3.73)

In difference to the range-based approach the delay rateedf®S path is expressed via the
geometry-weighted superposition of the position-domaimalents

. _ ' T T by
T0,4,00 = Aj 1V g+ djovy g + djsVl g+ Ty s (3.74)

where according to (2.3J,,, corresponds to the matrix element a rewand columnn of
the satellite geometry matri®. In accordance to the range-based formulation the evaluati
of (3.26) is performed through the Kalman filter update eiguatand the a posteriori PDF
becomes

(k02 €0 €ry) =N <éj,k:,l> f)j,kJ) , (3.75)
with mean and covariance according to
Bt = At Kot (200 = Siiye) (3.76)
P = <I - Kj,k,lgj,k,l> P;kl ; (3.77)
with the Kalman gain
~ ~ ~ - ~ ~ -1
Kj,k,l = P;k,szT,k,l (Sj7k,lP;k,lS£k,l + Rj) ) (3-78)

the measurement noise matl = o7 - I, andS; ., = S; (T x.).

Estimation of Path Activity ~ Since the estimation of the path activity;,; follows (3.67), the
conditional a posteriori PDF with respect of the path atgistates is given by

P&kl Lk Ery) = (3.79)
P(Zj k1| Zj ki1, €005 €k )
P2kl Zjri-1,8,)

p(ej,k,l|zj,k,l—1,§k,l) .
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CHAPTER 3. PEDESTRIAN SATELLITE NAVIGATION

In accordance to the range-based approach the discretéyastate space is estimated by an
optimal grid-based filter. Hence the prediction (2.41) difigs to the evaluation of the sum

p(ejrilZjri-1,€y) = (3.80)
Z p(jkilini—15Zji-1, & )P €112 k11, 8k) -

€5 k,l—1

The transition density with respect to the activity stasagiven by (3.18) and (3.19) and depends
therefore on the realization of the path transition accaydo

p(€jkt = €rilejri-1= €ri-1,Ljri-1,8,) = (3.81)

(poffon> offon . (ponoff) onoff (1 - poffon) offoff . (1 - ponoff)NOnon

Y

whereN,gon, Nonotts Noffoff, @NA N0, follow from the number of switching paths as defined in
Section 3.2.2. The marginal likelihood value used in theatpdtep is given by the solution of
the integral

P(ZktlZj ki1, €00, k) = (3.82)
/ P(Zj k| Zji—15 Q5 k05 €5kt Ex )P @Gk Ljiki—1, €5k, Exr)dAg ki
aj k,l

which equals in correspondence to (3.40) the Gaussiantgensi

P(Zj k1| Zj gei-1, €5kt Ek,z) =N (Sj,k,léj_,k,b Sj,k,lf’j_,k,lggr,k,z + Rj) . (3.83)

Joint Estimation of Receiver and Channel Parameters So far the estimation has been quite
similar to the range-based approach. In accordance thememaarts of the state vector in the
form of §, , are now estimated by a patrticle filter. Corresponding to (3U6& a posteriori PDF
with respect t;, , computes with

—=

p(Zj,kJ’Zk,zq, €k,l>
1

p(zk,l \ Zk,l—l)

Again the SIR-PF algorithm is proposed to implement the egomwhere the a posteriori PDF
at stepk is represented as a sum, and is specified by a s€} phrticles:

P&l Zgr) =* P&kl Zri1) - (3.84)

P(&ralZii) = Zwkl (€ro = &ky) (3.85)

pn=1

where each particle with indgx has a staté;;, and has a weight;,. The key step in which
the measurement for instankes incorporated, is in the calculation of the weighjt,, which
for the position domain SIR-PF is the product of the margeealilikelihood functions:

M
why ocwl ) [ [Pkl Zjna1, €L - (3.86)

j=1
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3.4. COMPARISON OF APPROACHES

The characterization of the system process enters in tlogithign when at each time instance
k, the state of each partic@j’l is drawn randomly from the proposal distribution; i.e. from
p(£k71|€g’171), which corresponds to drawing values fof, n,, n., n:, n;,, n;; andn,; .
The marginal likelihood values, which are required to updae particle filter, are given by
summing up the weighted marginal likelihood values of athgectivity hypotheses:

P(Zi k| Zj g1, €r) = (3.87)
Z P(Zj k| Zj 15 €5105 €kt )P(€ k1| Zij i1, E1y) -

€5kl

Modified Proposal Density Since the number of dimensions that are to be covered by the
position-based estimator can be quite large, the propesality used in the SIR-PF, i.e. in the
given implementation the densit¥¢, ,|£);,_,), is only a weak choice. Though the selection of
a better proposal is generally difficult, the previouslyaciuced range-based approach may be
exploited for that purpose. The basic idea is to employ thefsange-based estimators in order
to construct an improved proposal density for the high-disi@nal position-domain estimator.
Given the approximate a posteriori PR, ;|Z,) according to (3.49), an improved proposal
density is given by the function

Q(fk,l’£Z,1—1a Zy;) < p(ék,l‘ﬁz,l—ﬂﬁ(fk,l’Zk,l) . (3.88)
In this case the update of the particle filter computes adegnd (2.73) with

M

p(€’é,z|€’;§,171) | 1p(zj7k7l|zj,k,l—1v€g,z)
]:

(3.89)
q(&kil&hi 1> Zra)

© B
Wy X Wy

3.4 Comparison of Approaches

The complexity of the estimator is a crucial criterion forplamentation. Though the Rao-
Blackwellized formulation allows to cover some states wiptimal analytical estimators, each
particle in the superordinate particle filter has to casyoivn conditional estimators. In partic-
ular the proposed two-fold Rao-Blackwelization that is iltaged for both approaches in Figure
3.5 requires a large number of Kalman filters, which growsoeemtially with the number of
considered multipath replica. Another relevant paramstidr respect to the complexity is the
number of states that are to be covered by the particle Sitere the number of required parti-
cles is coarsely growing exponentially with the number afet. Nevertheless state dimensions
with little dynamics, limited range, or those states, whieim be inferred accurately, usually
require only a smaller number of hypotheses to be covered.atlvantage in the channel es-
timation for navigation is that the region in which the mpitih delays are of interest due to
their impact on the receiver is commonly limited to the diarabf a chip of the CDMA signal.
Thus the state space for a GPS C/A multipath signal can beeliniiom the LOS delay up to
1 us after the LOS delay, which corresponds to 300 m. Furtherfmra fair comparison of
the range- and position-based method it is crucial to compath estimators under the same
conditions, i.e. the assumptions that are taken on the gsatynamics must be equivalent for
both approaches.
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CHAPTER 3. PEDESTRIAN SATELLITE NAVIGATION

(a) Range-based (b) Position-based

Figure 3.5: Structure of the range-based (3.5(a)) and tsei@o-based estimator (3.5(b)). In
the range-based formulation there is a separate partikeefik each received satellite, and each
particle (black dots) carries a grid-based filter and séwabman filters. In the position-based
formulation there is only a single particle filter, in whichah of the particles carries several
grid-based filters with associated Kalman filters.

3.4.1 Equivalent Dynamic Modeling

In the range-based approach the LOS delay dynamics arendiywthe noise sources, ; - and

no,j,+ Whereas in the position-based approach the movementvisndoy the noise processes

n, andn,. Since the common clock process is already adequatelydsmesi in both models
through the noise processes andn; the remaining task is to obtain an equivalent model for
the LOS dynamics in the range-based approach, given thetitgn-based characterization of
(3.50) and (3.51). An equivalent formulation is now possibblanks to (2.3), since the dynamics
may be linearized locally. Using the satellite geometryrrdD, whered,, ,, corresponds to

the matrix element at row: and columm, the noise processes at the range-based model are a
superposition of the noise processes driving the evoluidhe position-based model and may
thus be expressed as

no,j,’T - j,lnl‘ + d]72ny + d],?)nz 9 (3.90)
No,j,+ = Q1M + dj’gny + dj’gng , (391)

and the variances of the Gaussian noise soutggs andn, ; ; can be computed accordingly
via

0jr = 3100+ d5 500 + d5 307 (3.92)

z

00,4 = d5.10% + d505 + dj 507 (3.93)
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3.5. RESULTS

3.4.2 Estimator Complexity

For the pseudorange-based estimation the number of relqpéicle filters corresponds to
the number of received satellitédd, as for each received satellite signal a separate particle
filter is required. The dimension of the particle filter isthgiven by the maximum number of
required multipath replica. For the LOS path and each ragliglay and delay rate are to be
estimated. Thus the dimension to be covered by each paifitieleis 2/V,, + 2. Thereby at
least the state space with respect to the multipath deldysited. In difference the position-
based estimator has to consider at least eight states:-dhmamsional position and velocity,
the receiver clock bias and the receiver’s clock drift. Aubaially the multipath delays and
and their rates need to be estimates for each of the receatellites, which requires the high
number of8 + 2M N,, states to be covered by the central particle filter. In botbr@gches
each particle needs to carry its grid-based filters to estirtiee path activities. In the range-
based approach there is only a single grid-based filter pecigawhereas in the position-based
estimator there ar&/ grid-based filters per each particle. Hence the overall raxrabrequired
grid-based filters in the receiver equalBN, in both approaches. Their respective dimension
is 2¥=  because the LOS path is assumed to be always active. TheenawhKalman filters
computes accordingly with/ N,2"~, since each activity hypothesis is required to carry its own
Kalman filter, and consequently the overall number of rezgiiKalman filters is the same for
the range- and the position-based formulation. The dinsensf the Kalman filters depends
thereby on the number of active paths and is in the rangk of , NV,, + 1. In the overall

implementation at each dimension there afév, ]X;” Kalman filters of dimensiom + 1,

wherem corresponds to the number of active paths. Actually bothagaghes, range-based and
position-based estimation, have a quite similar structuhech is highlighted by the illustration
in Figure 3.5.

3.4.3 A Posteriori Cramer-Rao Bounds

The position-based estimator seems to be the favorableagpifrom the theoretical point
of view, since it implements straightforwardly the Bayessproach to estimate the position
directly from the received signals instead of estimating time delays and the position sep-
arately. Thus it is expected that the position-based estimsa superior, which is confirmed
when calculating the PCRB as illustrated in Figure 3.6. In tivestigated scenario the estima-
tion performance is more than doubled when using the poshtiased formulation.

3.5 Results

To assess the introduced algorithms computer simulatiere warried out for different prop-
agation conditions. For conceptual verification and for panson of the range-based and
the position-based approach these scenarios includertipgesadditive white Gaussian noise
(AWGN) channel and the static multipath channel, which isdgity used to assess the per-
formance of multipath mitigation algorithms for GNSS reess. In difference to well-known
earlier introduced algorithms [VDFF92, vNSFT94, SA06a, ERP6] the accompanying re-
sults presented here include a performance analysis flistre@ropagation conditions, which
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Figure 3.6: PCRB of the range-based and the position-baseda¢st. The position-based
approach outperforms the range-based approach, sincet# @ intermediate step of range-
wise independent time delay estimation before the postignputation.

are resembled by the latest available cutting-edge higdalstic pedestrian navigation channel
model [LS09] as well as by sequences of real measured chdatae]SL04].

3.5.1 AWGN Channel

The AWGN channel is the by far simplest channel model. Assgrthiat the received signal is
the result of the convolution of the transmitted signal wite channel impulse response (CIR)
h(t) superimposed by white Gaussian noise, the CIR of the AWGN aHasigiven by

h(t) = aop - e_j%fom(t)é(t —1(t)) (3.94)

in which the complex amplitude of the channel response isrdenhed by the nominal am-
plitude aq and the phase rotation due to the channel delay, which felioam the basics of
electromagnetic wave propagation. Though the AWGN chasedt representative for typical
pedestrian propagation environments such as urban soepatich are addressed specifically
in this thesis, an assessment of the introduced estimdtiontams based on the AWGN chan-
nel is still highly valuable. The AWGN channel representsstasmdard environment, for which
conventional navigation receivers are designed for, aptesents, since it is actually based
on quite optimistic assumptions, the mildest propagatiemddions a receiver algorithm has
to cope with. In particular for theoretical analysis the wdfined and simple channel offers
various advantages, including the feasibility of the cltian of accuracy bounds such as the
CRLB or the PCRB. As pointed out in section 3.4.3 the position-dastimator is favorable
from the theoretically point of view, since it optimally &&into account the mutual correlations
of the received signals. Nevertheless the complexity optistion-based approach tends to be
higher, since more states have to be estimated simultalyedtiss has a serious impact on the
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Figure 3.7: Performance comparison of the range-basednenpasition-based approach in a
four satellite scenario. Due to the smaller state spacefenly(~100) particles are needed for
the range-based approach to reach convergence, since wighparticles its performance does
not improve further. Nevertheless for more than 1.000 glagithe position-based approach is
able to outperform the range-based estimator as it is exgebeoretically by the PCRB (see
Figure 3.6). With more than 10.000 patrticles there is ncherimprovement for the position-
based estimator.

number of particles that are required to implement the egtmas the discrete particles need
to cover the high-dimensional state-space properly tomize the error due to the sub-optimal
particle filter implementation of the Bayesian recursion.e Bxpected behavior is confirmed
by the result of the computer simulations, which are showigure 3.7. The performance of

the range-based estimator tends to saturate already far timan 100 particles, since a further
increase in the number of particles does not improve theopeence any more. Since for a
small amount of particles the position-based approactslathk sufficient number of particles

its performance is even worse than the range-based apprdhehresults reveal that at least
1000 particles are required for the position-based estimatachieve a performance improve-
ment compared to the range-based estimator, as it is peeldist the theoretical performance
bounds (see Figure 3.6). Thus the theoretically feasiblarack is subject to a trade-off between
estimator performance and complexity (in terms of the meglnumber of particles).

3.5.2 Static Multipath Channel

A further common channel for the assessment of satellitegation receiver signal processing
algorithms is the static multipath (SMP) channel. In thegarform of the SMP channel the
CIR of the conventional AWGN channel is extended by an addifioelayed echo tap, such
that the CIR of the SMP channel becomes

h(t) = age 2D (t — 15(2)) + are 2T 5 (¢ — 70(2) — ) (3.95)
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Figure 3.8: Positioning error for the conventional receivging narrow spaced DLLs and LS
estimation, the range-based and the position-based éstima static multipath scenario with

four received satellites. For very short echogs,(< 7 m) the mitigation algorithms are not

able to resolve the two paths any more. Once the paths carsbled the advanced estima-
tion methods perform much better than the conventionalagmbr. Thereby the position-based
estimator is superior with respect to the error performance

with the nominal multipath amplitude, and the static multipath delay,,. For the simulations
presented in the following a four satellite scenario is agsdy in which only one of the four
ranges is assumed to be affected by the multipath chann¢harmdhers are received in AWGN
conditions. According to the conventional error envelajection the results presented in Fig-
ure 3.8 are shown for a fixed SMR in terms of the positioningreversus the relative delay of
the multipath component. The error behavior illustrateBigure 3.8 reveals the benefit of the
advanced estimation algorithms compared to the positibmason in a conventional receiver.
For multipath delays that are larger than 15 m, which cowedp to the 20th part of a chip for
the simulated GPS C/A signal, the sequential estimatorgatéithe impact of the multipath
replica to a large extent. Thereby the position-based agpres slightly superior compared to
the range-based approach. As illustrated in Figure 3.9 éayd in the region between 7 m
and 15 m the estimators are operating in the region, wherstiacti detection of the multipath
component is not entirely feasible, and thus the error isem®ed. For delays smaller than 7
m the estimation algorithms are not capable to resolve tloeswparate paths any more and
thus the average a posteriori detection probability is atnzero. Interestingly in the investi-
gated four-satellite scenario the average a posterioectien probabilities of the range- and
the position-based estimator almost coincide, which léadke conclusion that, though it is
expected generally, the multipath detection in the pasibased estimator benefits only to a
negligible extent from the other received signals in therasiskd scenario.
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Figure 3.9: Average a posteriori multipath detection plolitst p(e; 1 x|Zy) for the the range-
based and the position-based estimator in a static muitgagnario with four received satel-
lites. For very short echoes,(, < 7 m) the mitigation algorithms are not able to detect the
multipath component any more.

3.5.3 Pedestrian Channel Model

During the last decade the German Aerospace Center (DLR) haedl@nd published sev-
eral satellite navigation channel models based on thelddtanalysis of measurement data
[SLO3, SL04, SLF04, LS05]. These models represent the latest state of ds@athis field
and have already or are about to become standardized reéenendels at the International
Telecommunication Union (ITU) [IR03, IR07]. Whereas the mlitmodels were devoted to
aeronautical, land mobile and vehicular scenarios thatl&eensions are capable of emulat-
ing propagation conditions that are typical for pedestaaplications [LS09]. To assess the
performance of the introduced algorithms under realisiioditions computer simulations have
been carried out. The used multipath channel was generatectie public available channel
model published in [LS09]. The channel model is composedstbehastic and a deterministic
part. The simulated user moves within an artificial scenkat ts generated from statistical
processes. The deterministic scenery comprises obstaatbsas house fronts, trees, and lamp
posts, which are used to compute the blockage and shadowithg @ OS path based upon
geometrical considerations and statistical processes niditipath components of the channel
model are generated from statistical processes that ptfleetors at positions whose statistical
distributions have been determined empirically from thasueed data. The overall structure of
the model is illustrated in Figure 3.10. The mixed stat&tand deterministic modeling leads
to a highly realistic modeling of the channel dynamics, sitie impact of the user’s movement
profile on the channel dynamics (e.g. the Doppler bandwidtig) on the LOS obtrusion by
obstacles is reflected adequately. Very characteristithierhighly realistic channel model is
the high number of reflectors that may occur simultaneowshych can reach up to fifty si-
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Figure 3.10: Structure of the pedestrian channel modelrdoapto [LS09]

multaneous echoes and more. Since most of these echoeshuait/éife cycles and are very
weak in power, it is of particular interest how many multipabmponents an advanced channel
estimating receiver will have to take into account in oradergach its optimal performance. For
that reason in the following simulations the introducedalhms have not been compared only
to the conventional DLL receiver, but also the impact of theameterVN,, has been studied.
For the scope of this analysis at first only simulations omglsirange-level have been carried
out. The user movement profiles used for the simulation arengin the Appendix in Section
B.1.4. The results of the simulations are illustrated in FegB.11 in terms of the cumulative
density function (CDF) of the LOS estimation error. Due to Ld&ckage and shadowing large
errors can occur occasionally for the conventional DLL neme It can be seen clearly that
the use of the sequential estimation algorithm enhancepdtfermance significantly, even if
only a single LOS path/(,, = 0) is considered by the estimation algorithm. This is due to
the dynamic model that underlies the recursive estimatrocgriure and which prohibits the
LOS estimate to have errors that become on average as latigesasof the conventional DLL
receiver. For the actual mitigation algorithms,( > 0), which are capable of detecting and
tracking multipath and which thus are able to remove theredion bias due to multipath, it
can be observed that the estimation performance tendsumtaguickly forN,, > 1. Thus
the additional complexity that is needed by consideringar®multaneous paths may not be
justified, given the amount of performance gain. Furtheenbe quick performance saturation
for N,, > 1 shows that the presence of more than a single relevant ratfitgpmponent tends
to happen only rarely and if so, that the simultaneous tragcki two or more multipath replica
leads only to a small amount of performance improvementereiferage error statistics.

As addressed in the previous sections the position-baggdagh can achieve theoretically
better performance compared to the range-based approaeh agsufficient number of particles
and thus complexity is spent on its implementation. To gfatite benefit under environments
that are more realistic than the AWGN or SMP channel, the tedldstrated in Figure 3.12
present a comparison of the position- and range based éstiomader the propagation condi-
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Figure 3.11: Cumulative normalized histogram of the LOS yletimation error of the range-
based approach in comparison with a conventional narroveledor DLL using the pedestrian
channel model. Already without considering multipath theamnced approach is significantly
superior. Considering more simultaneously echoesAyigleads to a further improved perfor-
mance, which tends to saturate rapidly for more than ondiaddl path.

tions that are given by the previously introduced pedestiannel model. Basically the results
confirm the previous ones. Occasionally large errors happarconventional receiver, which
uses DLLs and a LS position estimator. Due to the exploitethdyc models and the multipath
tracking capabilities the two introduced advanced estinsaare both superior to the conven-
tional approach. Similar to the AWGN and SMP scenario thelteseveal that compared to the
range-based estimator the position-based estimator msraail the more elaborated approach,
even for the realistic propagation conditions that aremgive the pedestrian channel model.

3.5.4 Measured Pedestrian Channel

So far results for the AWGN, SMP, and the DLR pedestrian chlanndel have been presented
to validate the concept of the introduced sequential esibmalgorithms. A remaining valida-
tion method is the simulation with measured CIRs, which is &sawn as the concept of the
stored channel A channel profile is recorded during a measurement camggrthe stored
profile is fed back into the simulation. Though the statatgignificance of such simulations
is limited, it is the most realistic simulation approacmcs the employed channel corresponds
to a real world scenario. In Figure 3.13(b) such a recordediicél profile is illustrated [SLO4].
It represents the CIR that affects the propagation from dlisatat 10 degrees elevation to a
pedestrian user that moves in an urban environment. Thdegotdiarly motivates the pursued
algorithmic approach. Discrete echoes due to reflectors aadouse fronts are clearly visi-
ble. Thereby each echo experiences a typical life-cyclechvis basically determined by the
dynamics of the user. The simulations with the stored chdmnes been carried out for differ-
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Figure 3.12: Comparison of a conventional narrow corretatieceiver and the range- and
position-based estimator in a four satellite scenariogigive pedestrian channel model. The
advanced algorithms allow for a significant improvementafusacy. The position-based im-

plementation is even more advanced than the range-bassxbappin particular for errors that

are larger than 10 m.

ent types of modulation schemes that are typical for seeiavigation signals, including the
conventional BPSK modulation, which is used for the GPS L1 G¢ha, and the BOC and
the composite BOC (CBOC) modulation, which are both candidatethé future European
satellite navigation system Galileo [ARHW7] and the modernization of the GPS navigation
signals. The results of the simulations are shown in Figuid.3 As already observed for
the pedestrian channel model the DLL shows occasionalgelarrors. The performance of
the sequential estimation algorithm tends to saturateMgr > 1, irrespective of the signal
modulation. Compared to the BPSK signal (Figure 3.14(a)) th€@() and CBOC signals
(Figures 3.14(b) and 3.14(c)) show improved performancédth the DLL and the estimation
algorithm. The detailed comparison of the BOC(1,1) and CBOCoperdnce does not reveal
significant differences. Interestingly the results shoat the performance gain due to the ad-
vanced signals is much smaller for the estimation algosthiine DLL receiver is able to take
large benefit of the BOC(1,1) or CBOC signal. In difference théguerance of the estimation
algorithms is much more influenced by the channel itself artdg the used modulation, such
that the performance is rather independent of the signa¢foam.

To illustrate the operation of the sequential estimatiagoathm its MMSE estimates of
the LOS and multipath delays are depicted in Figure 3.15 agur€& 3.16, which correspond
to two typical scenarios a navigation receiver has to coph i urban environments. The
scenario shown in Figure 3.15 corresponds to a situatiorrevbeveral simultaneous echoes
arrive at the receiver. The evolution of these echoes shbergypical behavior that can be
observed in urban environments, including echoes thajgmeaching and other echoes that are
departing due to the movement of the receiver toward to oy drean the reflector. The scenario
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Figure 3.13: Figure 3.13(b) illustrates the impulse respanf a channel, which was measured
for a pedestrian moving in the urban environment shown imufeé@.13(a), where the pedes-
trian’s track is indicated by the arrows (Picture by Googéetk). The view on the scenery
corresponds to the direction of the transmitter statiomiddl properties of the channel are the
long correlation times in the multipath echoes and theiartjeobservable binding to the user
dynamics and the surrounding environment, where reflee@bhouse fronts cause echo traces
that persist, approach and depart along with the occasysteddowed LOS path.
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Figure 3.14: Comparison of LOS delay estimation error for BRSK signal 3.14(a), the
BOC(1,1) signal 3.14(b) and the CBOC signal 3.14(c) for the nrealspedestrian channel
scenario corresponding to Figure 3.13(b). The advanceditations significantly outperform
the conventional BPSK signal and the range-based estinat®siperior compared to the nar-
row correlator DLL. As already observed for the channel nh@geincrease of the number of
considered pathd/,,, improves the performance.
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illustrated in Figure 3.16 represents a situation whereraghlggt shadowed LOS component is
superimposed by a strong multipath signal. Both scenarwsatehe general benefit of the
sequential estimation approach compared to the convefiri. On the one hand the explicit
consideration of the multipath replica in the signal modehe receiver allows to mitigate the
multipath errors successfully, on the other hand the etgilon of the constrained dynamic
model allows to obtain more smooth and realistic estimatédéch do not follow the abrupt
changes in the channel such as the DLL does occasionallynd=ggure 3.16 during the period
from 275 s to 295 s, which are quite unlikely given the limithchamics of the pedestrian. In
particular this period shows the major drawback of the cotigeal DLL: Though the DLL
implements a low-pass characteristic and thus limits theadycs it is not able to take into
account a real probabilistic and physical model of the rezadynamics and thus tends to track
immediately the strongest present path while neglectingveeaker earlier paths, which are
much more likely to be the actual LOS path due to the recemradichistory and the limited
user dynamics.
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Figure 3.15: The channel estimation algorithm has to cople s@veral simultaneous multipath
replica. The DLL receiver shows the typical multipath esfovhose magnitude varies due to
the fading processes of the path amplitudes. If the muhlipaplica are not taken account by
the estimator §,, = 0, Figure 3.15(a)), there are still significant errors, beitimagnitude is
smaller than the DLL errors, since the dynamic model useterestimator helps to constrain
variation of the LOS estimate. With,, = 1 (Figure 3.15(b)) the number of considered paths
is to small to track all replica and thus the multipath delaneates tend to jump between the
respective multipath signals. Once the number of considegplica is sufficient to take into
account all present signal&vf, > 1, Figures 3.15(c) and 3.15(d)), the estimation algorithm
detects and tracks properly the channel.
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Figure 3.16: In the illustrated scenario there is a paytisiiadowed LOS path that is superim-
pose by a heavy multipath component. During some periodswaak LOS the DLL receiver
tracks the multipath signal instead of the true LOS, whicadgeto high errors in the order of
100 meters. Comparable to the scenario shown in Figure 3el&stimation algorithm is still
slightly biased, if the multipath replica is not taken aagoby the estimator/,, = 0, Figure
3.16(a)). Nevertheless the magnitude of the errors is moiler than the DLL errors, since
the dynamic model of the estimator prevents fast variatminthe LOS estimate. Once the
number of considered replica is sufficient to take into aotduoth present signals\f, > 0,
Figures 3.16(b), 3.16(c), and 3.16(d)), the estimatioortigm detects and tracks properly the
additional replica and thus successfully mitigates thetipath errors.
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Chapter 4

Pedestrian Inertial Navigation

During the last century the development of inertial nav@asystems was mainly driven by
military applications. Today their use has become widempso in various fields of civil
applications, including commercial and private aviatioayal, and land vehicle navigation. In
the past size, cost, and power consumption of inertial @lat§ was preventing their use for
pedestrian navigation. During the last decade the techathances in the implementation of
mechanical structures along with miniaturized integratieduits have led to the maturity of
micro-electro-mechanical inertial sensors. Today iaeMEMS are produced in high quantity
with significantly reduced cost, mainly induced by autow®tpplications. The reduced size
and power consumption of these novel sensors allows toratethem into small-scale personal
mobile devices and wearable ubiquitous computing syst€luasequently inertial sensors are
about to be considered and applied for pedestrian navigagpecially for indoor applications,
since they can provide autonomous navigation, where ofstems like satellite navigation
fail. For the use of inertial sensors in personal navigatiasically two approaches can be dis-
tinguished. The pedometer-approach employs an accel&oifoe detecting individual steps
whilst the stride length and stride direction are themseb&imated using additional sensors,
such as GNSS, or a priori information. Given a detected stepength and its direction, a
person’s position can be determined by dead-reckoning [§M&d00]. In a more advanced
approach a complete foot-mounted strapdown inertial@aticomprising triads of accelerom-
eters and gyroscopes is used to dead reckon via a convdrgicaadown navigation algorithm.
An extended Kalman filter runs in parallel to the strapdovgoathm, where rest phases of the
foot, which are detected from the accelerometer signager zero-velocity (virtual) measure-
ments that are used to update the filter (ZUPT). Due to thdaegWPT measurements the drift
errors, which accumulate in the strapdown solution, carstienated and corrected [Fox05]. It
was revealed that this approach can achieve very good p&afare even with today’s low-cost
MEMS sensors, because the ZUPTs are so frequent that euitits1p only slowly during each
step the pedestrian makes. Since the foot-mounted INS agipis more flexible and performs
much better than the pedometer approach [@F], it is expected that future high-performance
pedestrian navigation will rely on foot-mounted INS, atstefar professional applications such
as localization and guidance of firefighters and other relnets. For that reason the enhance-
ment of the integration of foot-mounted inertial sensoraddressed within the scope of this
chapter, specifically because the state-of-the-art iategr approach for foot-mounted INS is
not optimal, as the algorithm does not take into account goyoai knowledge about the mo-
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tion of the pedestrian or the motion of her foot and there ismathematically sound procedure
when considering the incorporation of nonlinear map-matghechniques or additional non-
linear / non-Gaussian sensors typically used in an indoena®o. To address this problem
a cascaded estimation architecture is proposed in thist@hapo estimate the foot’s naviga-
tion parameters a state-of-the-art integration filter @psed, which comprises a conventional
strapdown navigation computer, an extended Kalman filted, a ZUPT detection algorithm
for the foot that is suitably equipped with the inertial sensuite. In the novel approach for
each step the foot displacement and heading changes frofodtie filter are computed and
exploited as measurements within a higher-level main fu§oarticle) filter, which is able to
consider the nonlinear dynamics of the human by means of i@ated pedestrian movement
model, including also maps and building constraints. Thjgraach, which operates at a much
lower sampling rate, is shown to be highly valuable, in gattr in an indoor scenario. Based
on a simple mechanical pedestrian model interconnect@agdaestrian’s body and her feet it
is shown additionally that the same approach is still viaidhen integrating a pair of platforms
that are mounted on each of the pedestrians’ feet resplyctivés shown that in this case the
accuracy of the dead-reckoning is doubled.

4.1 Motivation of a Novel Approach

The state-of-the-art approach to integrate strapdowniaeensors into a navigation system is
to use an extended Kalman filter together with a strapdowigatien computer [GWAO1]. The
combination of the two algorithms may be interpreted as abipbilistic” inertial navigation
system (INS) and allows to calculate an approximation ofahgosteriori PDF of position,
velocity, attitude, and sensor errors based on the seque#nmoeasurement received from the
sensors of the inertial platform. The approximated a pasieand a priori PDFs are Gaussian
densities, whose mean is given by the strapdown solutiorectad by the Kalman filter state
vector and whose covariance matrix is given by the covaeanatrix of the Kalman filter. The
major advantage of this approach is that the resulting GaugDFs can be joined analytically
with linear/linearized Gaussian likelihood functions afther sensors during the filter update
step (2.73). Despite the fact that the Kalman filter impletsarBayesian filter, the conventional
integration approach suffers from the major drawback thabés not follow (2.41) and (2.42)
straightforwardly for two reasons:

» The Kalman filter indeed uses a probabilistic state treorsinodel, but this model is
based solely on pure kinematic relations between velggdgition, attitude, and sensor
errors rather than on a true probabilistic characteripadiothe dynamics of the tracked
object (e.g. a person traveling by foot)

* No likelihood function and no a priori knowledge is usedriioarporate the accelerometer
and gyroscope measurements into the algorithm. Acceldesraed gyroscope measure-
ments enter the algorithm directly via the strapdown comans and no explicit use
is made of any a priori knowledge about the object’s dynamis a consequence the
performance of a conventional INS is mainly determined k@ qoality of the inertial
Sensors.
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To overcome this drawback it would indeed be optimal to fdateia Bayesian estimator whose
dynamic model characterizes - besides position, velagityude, and sensor errors - also accel-
erations and turn rates of the navigating individual usiipakov chain whose state transitions
occur at the sensor measurement rate, which is relativglyfor inertial sensors. Due to non-
linear constraints this is a very difficult task, especiallyen considering a Markov-chain char-
acterization of a pedestrian and the motion of her foot. Beeafithis problem the conventional
integration approach is the only appropriate one to esértiet movement of a pedestrian’s foot.
Indeed, for the considered application this is not a majamack, as the inertial drift errors
can be constrained efficiently through the use of ZUPT measents. However, it is generally
desirable to consider further a priori knowledge about theégstrian’s dynamics in an overall
navigation filter. To take benefit of both the accurate footnted inertial system and a dedi-
cated pedestrian movement model including nonlinear eff@ech as building plans a cascaded
estimation architecture is introduced in the following.

4.2 Cascaded Implementation

Due to the requirement to be flexible with respect to the ipomation of sensors and process
models (movement or mobility models) that are nonlinearwahgth may have non-Gaussian
noise models, it is required to employ a particle filter fraraek for the main fusion filter. In
particular the movement model shall be flexible to incorpmeabuilding map based mobility
model whenever available, which may be nonlinear. Thusptaposed here to use a Kalman
filter to provide stepwise computed values of foot displaeetrand heading change, here re-
ferred to as the step-measurement, which in turn can besttest measurements within the
particle filter algorithm, where they enter via a Gaussi&elihood function along with the
measurements and likelihood functions of further avadladd@nsors. The particle filter is de-
signed to perform sensor fusion roughly every second or wiiggered to do so by a specific
sensor - specifically an update cycle is performed appraeiyat the latest once every second
and also upon each received step-measurement. To digimiguihe following the low rate op-
erations of the "upper” particle filter from the high rate ogt@ons of the "lower” Kalman filter,
the termsk-rate and!/-rate are introduced. The upper filter is associated toktirate, which

is approximately the step-rate, and the lower filter is assed to the-rate, which is given by
the rate of the inertial sensors. Corresponding variablesraficated by the subscripte);
and(e);. The overall architecture of the two-layered fusion althori is illustrated in 4.1. The
details on the computations that are performed in both taged their interaction is addressed
in the subsequent sections.

4.2.1 Upper Filter

As already mentioned a patrticle filter is selected for themnasion filter, since it is a quite
flexible implementation with respect to nonlinearities tMéxception of the step-measurement
it adopts according to the standard SIR formulation [AMGQb2]|state transition probabilities
as proposal function (2.73) and uses the product of the s€ngalihood functions in the
weight computation (2.38). The incorporation of the IN8gstneasurement, however, does not
follow this approach, as outlined later.
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Figure 4.1: lllustration of the cascaded estimator: Thénhage inertial computations for the
stride estimation are performed in the lower extended Kalfiteer (light gray). For each step
the pedestrian makes the displacement computer calc@atesplacement estimate, which is
used at a reduced rate along with all other measuremente mpiber main particle filter (dark

gray).

State Model

The particle filter is designed to track the pedestrian’stimwsr;, and her heading . To allow
the incorporation of the step-measurement the state vectxtended by the step-statas,
andAV,, which relater, andW¥,, to the time index: — 1 as illustrated in Figure 4.2. Hence the
overall state vector becomes

Iy
Wy,
Ark
AV,

4.1)

X =

Measurement Model

The step-measurement, which will be the only used measurement within the scopéhnisf t
chapter, is assumed to depend only on the current stad@d a noise term, via the function

zr = h(Xg,np) - (4.2)
In particular it is assumed that
. Ark
Zk_(A\I/k>+nA , (4.3)

with n, being zero-mean element-wise uncorrelated Gaussian. Adiseunderlying variances
0A. T4, @ndo}, are adjusted to reflect the uncertainty of the step-measanem
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Figure 4.2: lllustration of the foot displacement vector and the change in heading¥ for
each step the pedestrian makes.

Movement Model

A probabilistic movement model is used to characterize éngpbral evolution of the state,.
Given that this evolution can be characterized by a tramwsgli densityp(xx|xx_1), the model
follows the Markovian approach. The movement model used hiens to reflect the physical
constraints that are imposed on the movement of a pedestrigarticular in an indoor scenario,
where the layout of the building restricts the dynamics.nkally, the new state;, is assumed
to depend only on the previous state ; and a noise term, through

X = f(kal, Ild) . (44)

It is assumed that the new location and heading depend datstically on the past state (and
on the current state through thestates) according to

r, = I+ C(V,)C(Vy_y)Ar , (4.5)
Uy = U + AV, (4.6)

whereC(¥,_,) is the rotation matrix

cos(e) —sin(e) 0
C(e) = | sin(e) cos(e) 0 : (4.7)
0 0 1

and where the average heading misalignment of the ineer@® platform with respect to the
pedestrian’s heading is given by the angle which can either be set to a fixed value or which
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can be modeled as a random process as addressed subseqUeafbyobabilistic part of the
movement model is incorporated into the temporal evolubidhe displacement statés-, and
A\I’k via

Arp = f.(x-1,1,) , (4.8)
AV, = fy(xp-1,n9) , (4.9)

which depend only on the past state ; and the noise terms, andny. The constraints that
are imposed by the building layout are included in (4.8) &t the displacement of the location
Arj, depends on the presence of nearby walls and obstacles. Aivgpje movement model is
proposed here: Given that a displacemAmj, intersects with one of the walls that are stored
in the map database, the probabilitixy |xx_1) = peross IS @ssigned [EMO6b], wherg.,os is

a small probability that takes into account that the stongittiing data may be erroneous. In
other situations, if a wall has not been crossed, the displ@at is assumed to follow

Ary = n, , (4.10)

wheren, andny are drawn from mutually uncorrelated zero-mean white Ganswise pro-
cesses, whose variance JS, ando2 are adapted to the movement of a pedestrian. Despite
the fact that this model is suitable for the case of a wall €ingg it is quite coarse otherwise,
as it does not adequately represent the probability witrckvii pedestrian will move, given a
known building layout or map [KKRAOQ8]. To alleviate this, neaccurate movement models
could be used as well. An illustration of the pedestrian nhaded here in terms of a dynamic
Bayesian network is shown in Figure 4.3, where at each stephhege in position and the
change in heading is observable through the step-measnot¢na).

The relation between the measurement (4.3) and the movei@é&i (4.6) is illustrated
in Figure 4.4. Specifically the actual displacement wittpees to the navigation coordinate
system is given according to (4.5) By}, = C(V.)C(¥,_)Ar, which is a rotated version of
the displacement stat®r,,.

Modeling of Angular Drift

When modeling the evolutio®. by a random process the state vector (4.1) can be extended
by the time-variant misalignmenit. ;,, and the heading drift rat&. ;, for which the following
simple Gaussian linear models are assumed:

\Ijs,k = \I’E,k—l + \Pa,k—lAt + Nye , (412)

llls,k = \IIE,k—1+n\ij75 y (413)

with ny . andny, _ being zero-mean white Gaussian noise of variariceando?, _ respectively
andAt being the time elapsed during the interval betwkemdk — 1.

4.2.2 Lower Filter

As the integration method proposed in [Fox05] was shown ve feth good performance and
low complexity, this approach is followed for the step estiion algorithm. The lower filter
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OO

k+1 k+2

Figure 4.3: Dynamic Bayesian network illustration of the @&tdan model used in the upper
particle filter. The current position depends on the previpasition and the current displace-
ment, which is observable through the measurement (4.3).

operates at the rate given by the output of the inertial gesigite, which is in the range of
100-500 Hz, depending on the hardware settings.

Implementation

A strapdown navigation algorithm [TWO04] processes the vwecfacceleration and turn rate
measurementg!™ = [f}, w?]”, which is provided by the inertial sensors, to compute posi-
tion r;, velocity v;, and attitude¥;. In parallel an extended Kalman filter is used to estimate
the errors of the strapdown calculations. Typically ati€astates are estimated by the filter
[GWAOQ1]: position errorsir;, velocity errorsyv;, and attitude erroré¥,;. Additionally sensor
imperfections like accelerometer biagds and gyroscopic biaséss; may be estimated along.
The error estimateér;, ov;, andé W, are perturbations around the filter operating pojnt;,

¥, that is calculated by the strapdown algorithm. The purpdsbeolower filter architecture

is to provide step-wise estimates of position and attituideerefore a conventional strapdown
computation according to Section 2.2.2 is carried out:

v, = 1, +vi T, , (4.14)
Vi = Vi, + (i gl )T (4.15)
G, = Cé,l—l(l‘f'[w?b,l—lx]ﬂ) . (4.16)

For concise notation the large-scale state is writter;as [r;, v;, ¥;|. To estimate the drift
errors of the inertial navigator an extended Kalman filtethimerror space formulation is used,
where the small-scale error state, = [or;, Jv;, ¥,] is estimated. Starting with an initial state
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Figure 4.4: Movement of particles in the upper filter. TheptlisementAr, = [Ar, i, Aryi]”
corresponds to the movement with respect to the "Zero-Hhegidioordinate system that is
associated to each particle according to its heading. Theleamovement with respect to the
upper filter navigation coordinate system is thus for eactigh@ given by the vector), =
[Ar7, ., Ary, ]", which is according to (4.5) just the result of a rotatiomahtformation om\ry.
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dxy = 6%, and an associated initial covarianBg = P,, the linearized dynamics (cf. Section
2.3.2) allow the prediction of the mean via

I3z I3x37T% 033

0%, = | Osxs  Isxz [ x|Ty ) 0% . (4.17)
0343 O3x3 Isxs
FL

The covariance is predicted with
P, =F,_,P_,F, +Q . (4.18)

The system noise matri® is adjusted to the quality of the inertial sensor according t

03,3 033 0523
Q = 0323 Cz,lEZC?,ZTSQ 0323 ) (419)
03,3 03,3 Cé,ZEiC?,ZTf

with the direction cosine matri€} ;, the sampling interval’; and the vectors comprising the
noise variances of the accelerometer and gyroscope triads:

¥ = diag([o} .00, 001" (4.20)
2 = diag([aivz,ai,y,aivz]T). (4.22)

Depending on the detection of zero-velocity updates thestepiori mean of the INS errors
computes in the EKF’s update step with

5%, = { 0%, + Kyi(zf —Hox;, ) if ZUPT (4.22)

0x, otherwise ’

with the error space ZUPT measuremgnt= h;(x;) —z, = vi_,, sinceh;(x;) = v{_, andz, =
0 for the zero velocity measurement. In accordance the qmurebng covariance computes
with

[ I-KH)P, ifZUPT
P = { P, otherwise ’ (4.23)
with the Kalman gain
K, =P,/ H'(HP;H" + R))™" . (4.24)

Since for the analysis of the lower filter the only used mearments are the ZUPTs, which
correspond to conventional velocity measurements, thesunement matriH is given by

H = [ 033 Iss Oscs | - (4.25)

To ensure a smooth zero-velocity updating it was proposfebix05] to adjust the measurement
noise of the zero-velocity updates to the current covagamicthe estimated velocities. In
this case the estimated covariance of the velocities andWT measurement covariance are
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Figure 4.5: Magnitude of acceleration vector subtractedrayity ¢ during the beginning of a
walk sequence. ZUPT triggers and k-cycle triggers are shadamg. Each time a novel step is
detected a fusion at the upper filter is triggered.

always in the same order of magnitude, which prevents nawalgsroblems during the update
of the Kalman filter. Following this approach the measuremmaise matrixR,; equals the
corresponding covariance of the predicted velocity:

R, = Pl - (4.26)

In the subsequent processing only position and headingtatessof interest and can be ex-
pressed in concise notation as

X5 = < \Ijl ) , (4.27)

with the yaw anglel, that is derived from¥’;. From the a posteriori PDF of the lower filter the
(marginalized) a posteriori PDKx;|Z,;) can be derived straightforwardly.

Rest Phase Detection

The reliable identification of the foot’s rest phases is @lor the update of the lower filter.
Different approaches have been proposed to trigger the Zd@asurement [Fox05, GLCO06].
Here these ideas are adopted basically and the magnitude Gfcceleration vector, which
is sensed by the accelerometer triad, is monitored [GLCOBihd signal remains within a
threshold interval around earth gravity for a certain timetival ZUPTs are triggered until the
threshold condition is violated. In the cascaded approherZtJPT detection is also used to
trigger the update of the upper filter. Each time a ZUPT isgergd in the lower filter the
elapsed time since the last update of the upper filter is @tkcK this time exceeds a certain
threshold, for instance one second as illustrated in Figusea new update of the upper filter
is initiated.
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Upper filter Xk Rkl

Lower filter X; X41 X143
XL XL+1

Figure 4.6: Relation between upper and lower filter schedulirhe time instances where the
lower index! corresponds to the indexindicate a cycle a thg-rate.

The Step Sensor

The lower filter is used to process the high rate inertial mesaments. To exploit them in the
upper filter a (virtual) step sensor is derived from the lofilegr in order to provide a measure
of the traveled distance and the change in heading for eaphtls¢ pedestrian makes. As the
step sensor does not provide absolute position and headfioigniation the inertial navigator
of the lower filter can be aligned with arbitrary position amehding, which eases the align-
ment procedure. To provide the step measurements the fotiloeperations are performed
at the interface between the lower filter and the virtual sepsor: As illustrated in Figure
4.6 each time a new upper filter cycle-€ycle) is triggered the expectation of the lower filter
X; is stored in the variablg; =x; with L = k. Please note that variables associated to the
lower filter are indicated by the subscrigt),, for those time instancelsfor which k-cycles

are triggered. Introducing the step displacement varidbte¢ = x; — x; , its expectation

is almost independent from previous steps due to the ZUPatsaite applied. Thus there is
AxS = E(AxS|Zy)) =~ E(AxS |Z\Z, 1) and the displacement with respect to the coordinate
system of the lower filter may be expressed as

AL = %%, (4.28)
ry T
_ () (0 4.29
(o )-(a) 429
[ ARy
= <A\PL> . (4.30)

Finally the displacement with respect to the heading at teeipusk-cycle is computed ac-
cording to

([ CT(U, AR,
z, = ( I : (4.31)

such that the displacement with respect to the zero-headioglinate system that is actually
reported as measurement to the upper filter is giver\by = CT(\ifL_l)AfL according to
(4.31). In Figure 4.7 the relations between the coordingttems are illustrated. The so-called
"Zero-Heading” coordinate system, which is used to provigedisplacement measurement, is
spanned by the heading at timie— 1 respectively.
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Lower
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,Zero-Heading*
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Figure 4.7: lllustration of the track that is computed by tbwer filter. At each step the dis-
placementAr; = [ArLL,Ary,L]T and the change in headiny¥, is computed. The final
measure that is provided to the upper filter is the displacete) = [Ar) ;, Arf ]", which
expresseg\r;, with respect to the "Zero-Heading” coordinate system. &ionly changes of
position and heading are reported the alignment of the Idilter coordinate system can be
performed arbitrarily.
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Figure 4.8: Performance of a resting foot-mounted INS casing state-of-the-art low-cost
inertial MEMS depending on the interval between two sudeebsapplied ZUPTs. With more
frequent ZUPTs the drift gets reduced significantly.

Drift Analysis

As the system dynamics of an inertial navigator model ardinear (see (2.31), (2.32), and
(2.33)), a general performance analysis is difficult. Nthwaess an approximate analysis is
feasible when the magnitude of the errors is restrictedefGthe errors are small, the system
dynamics can be linearized for a given state to obtain thealirsmall-scale error dynamic
equations. A truncated Taylor-series expansion of thesggtem equations is generally used
for the linearization procedure [TWO04]. Given a linear emuodel the system can be analysed
using the well known framework of Kalman filtering [May79]céording to [TWO04] the inertial
error propagation may be performed in a similar fashion agtiplementation of the previously
introduced error space EKF in this case. In difference toatiégne calculation of the EKF
covariances the large-scale trajectory is not computed the inertial measurements, but from
a predefined true state trajectaXy = {x,,¢ = 1,...,l}. Given this true state trajectory the
error covariances, which equal the PCRB [RAGO04], can be cordpetaursively using (4.18)
and (4.23). The results of such a system analysis are shoWwigume 4.8, where the impact
of the frequency of ZUPT is shown, and in Figure 4.9, whereittiygact of the quality of the
inertial sensors is illustrated.

4.2.3 Choice of an Appropriate Proposal Density

The selection of the proposal density is crucial for the geenfance of the particle filter algo-
rithm and it showed up to be an apparent problem for the dexigime upper filter in the cas-
caded estimation framework. If it is not possible to use thneal proposal density a suitable
choice is often the transition density. In this case the tepdgep of particle filtering essen-
tially incorporates the latest sensor evidence at eachistdye form of the particles weights
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Figure 4.9: Performance of different classes of inertialsses when applying regular ZUPTs
with a rate of 1 Hz to a resting inertial platform. As it can lees the development of improved
sensors will enable an increase of the inertial dead-ranggrerformance in the near future.

through the likelihood function (SIR particle filter [AMGC]2As the optimal choice has been
shown to be not appropriate in many situation due to comgglegasons the SIR particle filter
is commonly the most widespread approach. Despite theitiared densityp(x;|x}, ) is a
convenient choice, there can be situations where it is natr&ble, as the latest evidengg

is not incorporated. For instance if the likelihood funotis narrow compared to the density
after the prediction step, then only a few "lucky” particiedl receive significant weights. The
result is usually sample impoverishment which degradesracyg significantly for a given num-
ber of particles. As the likelihood function for the stepasarements is comparatively narrow
due to the high accuracy of the step measurement, it is ¢rnac@oose the proposal density
other than the state transition density in order to avoidcath@ve mentioned problem. In other
words it should be avoided to draw particles that do not ¥olibe accurate step-measurement,
because they will receive low weight from the step likelidldanction during the update step
anyway and hence are a waste of computational resourcesirclimeent this drawback the
auxiliary particle filter was proposed [PS99]. But espegifdl more extreme situations, where
the likelihood function is much tighter than the a priori REfke optimal proposal comes very
close to the likelihood function itself. Here the situatiersimilar, the step sensor is quite accu-
rate, whereas the movement model is influenced mainly byufrewnding walls. Hence it is
more efficient to draw according to the step likelihood fimet Recalling the weight equation
(2.73) the likelihood function cancels out with the prodakthe displacement is drawn from
q(Ary, AW,|z), since the likelihood function (4.3) does not depenagnV,, and the states,,

¥, are computed deterministic using (4.5), (4.6). Using theawdficient likelihood proposal
the weight update becomes

wg X wﬁ_lp(XZ\XZ_l) . (4.32)
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Figure 4.10: Comparison of the conventional movement prapafshe SIR PF and the likeli-
hood proposal after 10 s of walking. With the likelihood pospl much less particles (approx.
100) are needed to attain the a posteriori Cramer-Rao bound.

In this case the particles follow the step measurement anddoh particle a disturbance of
small Gaussian noise is superimposed at every step. Théwsighen calculated from the
movement model corresponding to (4.32). This strategyressinat enough particles survive
at each step and impoverishment is avoided. The benefit oifiripeoved proposal density

is illustrated in Figure 4.10. A similar approach referredas likelihood particle filter was

proposed in [AMGCO02] for a different application scenario.

4.2.4 Integration of a Pair of Platforms

An obvious extension for the integration of foot-mountedrtral sensors is to take benefit of
a pair of platforms, with one mounted on each of the pedesdri@et respectively. Unlike
the conventional integration approach, which is based anglesKalman filter, the cascaded
architecture is flexible with respect to the use of a furtl@timounted platform. To integrate
the pair of platforms for each of the two feet a Kalman filtegrba used to estimate the stepwise
position displacement and heading change respectiveally, that the lower part of the cascaded
architecture shown in Figure 4.1 is just doubled. In thigdasth lower filters provide their step-
measurements to the upper particle filter. Due to the natuagpedestrian movement the step
measurements of the lower filters normally arrive asynobusn To solve this issue the use of
a simple mechanical pedestrian model is proposed now. Sosas assumed that the position
of the pedestrian’s foot coincides with its body positiditwlo platforms are used it needs to be
addressed with respect to which initial state the displadrastimates are sensed respectively.
To ease these considerations a simple physical interfaetet proposed. As illustrated in
Figure 4.11 the body center may be assumed to be on the céaténe connecting the centers
of both feet. It can be derived easily by geometrical consitilens that during travel and turn
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Left foot

Body center
(after step)

Body center
(before step)

Right foot
(after step)

Right foot
(before step)

Figure 4.11: Mechanical pedestrian model. The body ceatassumed to be centered on the
connecting line of the two feet. Due to geometrical consteaat each step the body center
experiences half the movement of the respective foot.

of each of the two feet the body center and heading undergolearage of exact the half of the

feet ones. Thus each of the step-measurements providee lgvibr filters actually senses the
doubled displacement and heading change with respect tmthecenter. Hence the extended
vector of measurements is

2 = (25,7 (4.33)
and the right foot measurements may be written as
zl =2 ( AA&;’; > g, (4.34)
and correspondingly as well for the left side
zl =2 < AA&;Z > T (4.35)

4.2.5 Joint System Error Analysis

As the step measurements are assumed to be superimposedssydBanoise according to (4.3)
and (4.34), (4.35) respectively, an analysis of the achievdead-reckoning performance may
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be carried out analytically. For the analysis a free spaepao is assumed, at which the step-
measurement likelihood functions are far tighter than threathic restrictions that are given
by the probabilistic pedestrian movement model. As alrgaetyormed for the lower filter an
analysis of the performance threshold of the joint systeamely the corresponding PCRB, can
be performed based on a linearized system model. Assuinirg 0 the transition equation for
the small-scale error state spajoeof the upper filter is given according to (4.5), (4.6), (4,10)
and (4.11) by

1 0 g1 ci1 ci2 O

0 1 g2 co1 c2 O

00 1 0 0 1

00 0 O 0 0

00 0 0 0 0
Fk‘:l

The elements; ; denote the respective element at roand column; of the matrixC(Wy_,).
The termsy; andg, are the respective elements of the vector

g = C/(\Ijk_l)AI‘k N (437)
with the derivative of the rotation matrix
o 0C(P)
C'(¥) = o (4.38)

According to the EKF framework the incoming step-measurgna¢ time stepk affects the
covariance through

P, = (I- K.H)P; | (4.39)
with the Kalman gain
K,=P,H (HP,H" +R) " . (4.40)
The a priori covariance computes with
P, =F, P, ,F, , +Q, (4.41)

where the transition matrik, follows from (4.36). The other matrices are defined as

H = [ 03 Iy |, (4.42)

R = diag([ oA, O’QAy oAy ]) , (4.43)
0343  O3x3

= <l 4.44

Q {Ofm ngdg] (4.49)

Note thatQr! = diag([02, 02, 03]) is matched to pedestrian movement. When&gf' >>

R, ; for all matrix elements, j, the influence of3?? on the error performance is almost negli-
gible. In other words in this case the influence of the movemerdel becomes negligible, and
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the the error performance is driven almost solely by theenofghe step-measurements and the
pedestrian’s trajectory. For the analysis of the doub&fpim scenario the same approach is
still viable. Nevertheless it has to be taken into accouat iththis case the step-measurements
follow (4.34) and (4.35). Thus the measurement matrix bexofor the extended scenario

H = [ 05 2] . (4.45)

4.2.6 Integration of Additional Sensors

The integration of any further available sensors as conedlgtshown in Figure 4.1 can be done
intuitively pleasing, given their errors are mutually ip@edent. Using the likelihood proposal
derived in Section 4.2.3, the weight update may incorpoaggitional sensors according to
(2.38) and (2.73) via

M

wy, o wi_yp(Xy[xg_1) Hp(zj,k‘xk) . (4.46)
j=1

Hence (4.46) just extends (4.32) by the contributions thhaihe factors of the likelihood func-
tions of the additional sensors.

4.3 Results

The performance achievements of shoe-mounted INS as atand-or coupled with GNSS
and / or magnetometer has been widely reported in the literdGM99, CGO5, GLCO6]. Here
results are presented that consider the incorporation mifrrear map-matching as well as the
extension towards a pair of foot-mounted platforms, intigccomputer simulation and exper-
imental results.

4.3.1 Simulation

The performance advance with a pair of platforms is assdsg@@dmputer simulations. The
simulation scenario is the following: Two pedestrians, ofitnem using a single shoe-mounted
platform and the other a pair of them, start dead-reckoniaghfa known initial position and
with known initial heading. The step-measurements arerasduo arrive with a rate of 1
Hz respectively, and the measurements of the second ptatoe delayed by 0.5 s. An error
analysis corresponding to 4.2.5 is carried out along. Tivaradge of the double platform ap-
proach is shown in Figure 4.12(a). For the step-measurentsen, standard deviations of
oar = 0ay = 0.1m andoag = 2° are assumed. The true state trajectory is static. As the
number of available measurements is doubled effectivelyhi® double platform approach, the
variance is reduced by a factor of 2 compared to the singtéopha case. An alternative inter-
pretation of the result is given as follows: As it may be dedifrom the mechanical pedestrian
model, the effective variance of the step-measuremengnaib respect to the body movement
is decreased by a factor of four compared to the foot movemglung the use of a second
platform doubles the number of required filter recursions tuthe additional measurements,
leading to a variance increase by a factor of two in turn, shahas final advance a performance
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gain by a factor of two is reached. Figure 4.12(b) shows tkalt®f the corresponding error
analysis. As illustrated the simulation results are veogelto the behavior that is expected from
the error analysis. This implies that the loss due to the gtimal particle filter implementation
is small.
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Figure 4.12: Comparison of the particle filter performance e approximate analytical so-
lution for the single and double platform approach duringtfitO s of dead-reckoning. The
simulation results shown in 4.12(a) are averaged over 750t&4Garlo runs using/,, = 2000
particles respectively. The results of the Monte-Carlo $athons match the analytical results
quite well, where as expected an additional platform impsothe performance by a factor of
two.

4.3.2 Experiment

The chosen experimental scenario is the following: a pedesmoves through a building,
using only the shoe-mounted INS. The initial position is mmkn, and no source of absolute
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Figure 4.13: Integration with map-matching in the uppetiplfilter: Initially the location hy-
potheses (gray) are distributed uniformly across the mgldThe true position of the pedestrian
is indicated by the cross-filled dot.

position information such as GNSS is used. The only oth@rmétion available to the upper
fusion filter is the building layout (floor-plan). It is alsesumed that the user is within the
specified building, and on a certain known floor. As Figure4hows, the upper fusion filter -
the particle filter - starts with a uniform distribution ofrtiales in the known area. Each particle,
according to (4.1), includes its location and current hegdAs illustrated in Figure 4.14 over
time only those patrticles survive which are compatible whilayout of the floor-plan. In other
words, those hypotheses of the state space will surviveghwivhen moved according to the
lower fusion filter’s estimate, have not crossed a wall. Atfihere are many such hypotheses,
some moving in different directions compared to the trug boeover the course of time, only
one hypothesis (the correct one), survives. In the givea tids was achieved in roughly one
minute of walking. Naturally, the rate of convergence anel thduction of modes will be a
function of the actual route which was walked and of its refato the floor plan restrictions.
In a large hall without walls there will only be moderate retion on the size of the remaining
mode compared to the case with many walls. It should be nbigdie surviving modes are
"randomly” distributed across the layout and bear no retehip to the correct location (except
the true mode, of course). As can be seen from the third tie &5 s.) the true mode has
already achieved its steady-state local uncertainty (ogindy the dimension of the corridor
width). This implies that additional position informatican be of significant value even if this
is quite coarse (e.g. on the order of 10-50 meters).
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Figure 4.14: Integration with map-matching in the uppetipk filter: A pedestrian wearing
the foot-mounted sensor walked the indicated track (bladk3 the pedestrian walks the a
posteriori position estimate (gray) becomes increasiagturate, after 80 s it is unimodal.
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Chapter 5

Application Examples

In the previous chapters it was shown how the concept of Bagdsdiering can be applied
successfully to the problem of multipath mitigation in $i#e navigation receivers and to the
integration of foot-mounted low-cost inertial sensors.tHa following chapter this work will
be extended to the design and development of two person@atmn systems and algorithms,
which are representative for two real world applicationregées, which gain advantage from
the Bayesian approach. At first it is shown how a foot-mounteditial navigation system is
joined beneficially with a WLAN fingerprinting system via antexded Kalman filter, which
is shown to successfully solve the problem of inertial atngmt and drift. Subsequently based
on the approach discussed in chapter 4 a concept for a modul@irsensor fusion platform is
introduced, which is able to plug in easily any availablelm@ar sensor and mobility model
due to a flexible particle filter implementation. In both caseal world data is used to assess
and to quantify the performance of the proposed sensorrfadgorithms.

5.1 A Joint WLAN/INS Pedestrian Positioning System

In the majority of buildings in which people require perskamavigation, for example in airports,
public buildings, and company premises (e.g. to be guidedcttrtain room or office) there now
exists a dense installation of WLAN infrastructure [ISOIED9], often operated by different
operators, which may be used for localization [ZHD06, KHIFZ®RMT02, QLPDO7]. A
key enabler for truly ubiquitous personal positioning amdigation will be the capability to
be as autonomous as possible, whilst requiring a minimaluamof dedicated infrastructure
and whilst building on the rapid advances in portable dataegssing and sensors. The key
idea of this section is to combine an existing WLAN infrasture with foot mounted inertial
sensors [EM06b] based on the concept of hierarchical Bayéftiers as introduced in Chapter
4. A real-time processing system is developed, which engpt@scaded extended Kalman
filters, one processing the inertial sensor data to obtajp-sise displacement measurements
and the other for fusing them with the WLAN data. The federatedessing allows to run both
filters at their local sampling rates, which reduces overaihplexity without suffering from
significant loss of final estimation accuracy. The goal isiitam and process all the sensor data
locally, and without any need of registration with the lordtastructure, which is achieved by
employing WLAN fingerprinting based on the signal power (§@BS*05]), where the only
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information needed at the local device is a fingerprintintablase for the local building. The
database itself can be maintained and distributed by aty emtiependent of the local wireless
infrastructure domain. The basic approach to use as fewra#tn locations as possible and
to rely on the short-term accuracy of foot mounted inertiBRP’in between” these points.
The role of the WLAN positioning here is therefore to provided term accuracy in the area
of interest. WLAN fingerprinting fulfills the requirement otading no association with the
actual access points and is relatively energy efficient. fifgerprinting itself is a very simple
process, requiring per each database location a calibhnatgasurement of the available WLAN
stations that lasts just a few seconds. In contrast, in thi& eoWoodman et al. [WHO8] very
coarse WLAN positioning was only used to reduce the initiabmyuities of map aided inertial
navigation. The work in [SPS®7] describes how fingerprinting can be simplified by using
an INS (not foot mounted) during calibration and how actuaf@rmance is enhanced during
positioning. The pursued approach using a foot mounted B\f8reseen perform better in
situations where WLAN positioning is not available for angrsficant length of time during
which a standard INS approach (no foot mounting; no zero tepdeould drift too far. It is
emphasized that in difference to the work presented in [EMB8&R08b, KR08a, WHO08] and in
difference to the approach introduced in Chapter 4 the pexpakjorithm does not incorporate
any information about the layout of the building, i.e. thdding map. After an derivation of the
filtering algorithm, in particular for the filter joining th&LAN data with the step displacement
estimates, the software and hardware implementation ofglaktime positioning system is
described. Finally the accuracy of the combined system @htigatively evaluated in a real
building against ground-truth.

5.1.1 WLAN Fingerprinting

Concerning the localization via WLAN RSS two primary methodslézation determination
can be distinguished. The one class of methods is based lotogatmodels, where the charac-
teristic signal strength profile over distance in space ftioenraccess points is used to derive the
location [KHLHO3]. The other class relies on previouslyaeted calibration data upon which
an RF map of a building has been created [Z18k, ZHDO06, YAS03, BP0O]. In this case the lo-
cation information may be inferred through the correlatibthe observed RSS measurements
with the RF map data, which is commonly denotediagerprinting The main drawback of the
fingerprinting approach is that generation and maintenahtee RF maps is time-consuming
and expensive when performed over wide areas. Neverthekygscally results in higher ac-
curacy compared to other methods.

A fingerprinting system provides basically two major funatil modes, one for the initial
calibration, and one for the actual operation, where thalipation takes place. The finger-
printing database is established during the calibratioeguiure via RSS measurements that are
taken at a number of topographically referenced calibngbioints. As depicted in Figure 5.1
for each calibration point the RSS manager collects the ngadrom the WLAN driver, and
establishes a fingerprint that is then stored into the datb&enerally the system accuracy
increases with the number of calibration points used. Hewevhas to be taken into account
that a too close spacing of the points leads to similar RSSIgsadnd thus to rather small per-
formance gain, such that an extensive calibration oveelargas practically does not always
justify the additional efforts. During the operation of tegstem the continual scans from the
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Beacons 1 J-»  WLAN Driver

/
RSSI |  RF Fingerprint
Manager o Constructor
\ J Y
Probabilistic Fingerprint
Positioning Engine [ Database

Figure 5.1. System overview of the WLAN fingerprinting compaot The previously estab-
lished fingerprinting database serves as the basis for tdatidm determination during the op-
erational phase.

WLAN driver are passed through the RSS manager to the posigarigine, which computes a
distance measure for each of the calibration points, by esimg each one to the observed RSS
readings. The distance for each calibration point is definethe sum over all access points

according to
Dy =33 |2 = 2 by (5.1)
i oaq

wherez'5% is the observed RSS for the access pging!® is the recorded RSS stored in
the fingerprinting database, apg; is the likelihood of measuring the reading at the given
calibration point. Corresponding to Figure 5.2 the sumnmadicer the index refers to the sum
over all database entries per access point. The locationastis then the calibration point
corresponding to the index yielding the minimum distance:

p =argmin(D,) . (5.2)
P

To enhance the stability of the location estimation, a béshee approach is used, where
the latest estimate is returned as the current location @a@mo dominant location can be
determined.

5.1.2 Inertial Step Sensing

To incorporate the foot-mounted inertial sensors the sgtimation filter derived in Section
4.2.2 is used to compute the change in positia, and the change in headingV, per each
step the pedestrian makes. The resulting step-measurgsis th

Ax; — ( ﬁ;’; ) | (5.3)
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Figure 5.2: Example of likelihood tables of a calibrationmidor different access points. As

shown in Figure 5.1 the likelihood values are provided byfthgerprinting database, where
for every calibration point the probability of receiving pegific RSS from each of the access
points is stored.

5.1.3 Main Integration Filter

The objective is now to integrate the WLAN-fingerprinting lwthe inertial step-sensor. This
is done via a main integration filter, in which the pedestsigositionr, and her heading,, is
tracked. The overall signal processing is illustrated guire¢ 5.3. The state vector is written as

m=(i>. (5.4)

In difference to (4.1) the step measures are not consideree & part of the state vector. Their
treatment is addressed subsequently.

Movement Model

The movement model is used to characterize the temporaltéwolof the statex; in order to
reflect the physical constraints that are imposed on the mewre of a pedestrian. As it was
shown in Chapter 4 this may include in indoor environments @ any restrictions which are
imposed by the building layout. Nevertheless in this agpion scenario the building layout is
not known. Hence formally, the new statg is assumed to depend only on the previous state
x;_1, the current step-measufex;, and a noise term¢ _, via the function

Xy, = f_1(xp-1, Axy) + 10 (5-5)

where in particular the new location and heading depend emp#st state and on the step-
measure through

ry = Trg1+ C(V.)C(Vy1)Ary +nArg—1 (5.6)
Uy = Uy + AV +naw k-1 (5.7)

where the rotation matrice§(e) are defined by (4.7). The vector8' = [nk,,nay]” and
na, = [Nag, nAy}T comprise realizations of zero-mean uncorrelated Gaussime processes
of variancer3,,, 03 ,, andoi, respectively, which are adjusted to reflect the uncertaifthe
step-measure. According to Chapter 4 the angleepresents the average misalignment of the
foot-mounted IMU with respect to the true body heading.
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Measurement Model

The position estimate obtained by the WLAN fingerprintingefilts used as an position mea-
suremeng,"“4N in the main integration filter and is assumed to depend ontyewcurrent state
x; and the noise term"WEAN vig

ZXVLAN = hk (Xk) + IIXVLAN (58)
= N
with n"EAN being zero-mean uncorrelated Gaussian noise of variggg,, which is adjusted
to reflect the uncertainty of the fingerprinting-based pasiestimate.

Filter Design

Since neither the building layout nor further sensors aresictered there is no need to incor-
porate any further nonlinear constraints than the one dwyefb.6). But this relation is rather
moderate with respect to nonlinearity and thus an extenddch#h filter is adequate to imple-
ment the main integration filter, in particular as all releivaoise sources are Gaussian. Given
these premises the standard implementation of the EKF mappked (see Section 2.3.1):
Given initial meanx, = X, and the associated initial covariarleg = P, at each filter iteration
the prediction step computes recursively the parametaredbaussian a priori PDF, which are
mean

X, = o1 (Xe—1, Axy) (5.9)
and covariance

P, = F,P, F} +Q, . (5.10)
The Jacobian of the system dynamics is given by

ofy.— 1, A
F, — k 1<3Xk 1, Axy) (5.11)
Xk—1
L0 o
= 01 go
00 1

X1

The termsy; andg, are the respective elements of the vector
g = C(¥.)C'(V_1)Ary (5.12)

with the derivative of the rotation matrix according to @).3In the subsequent update step the
parameters of the Gaussian a posteriori PDF are computatsiegly at each iteration. The a
posteriori mean computes with

X, = %5, + Ky, (20N — (%)) (5.13)
and the a posteriori covariance with

P, = (I- K.H,)P; | (5.14)
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Figure 5.3: This figure shows the complete system with twerayf processing: a lower one
for the WLAN position estimate and step computation whichtbes fused in a superordinate

EKF.

The Kalman gain is given by
K, =P, H (H,P,H +Ry) ",

with the Jacobian of the measurement equation

9

8hk(xk)
H, = =78
g an %=
.
(100
o 010
The other matrices become
Ry = dia@([U\QNLAN U%VLAND
Qk = dlad[aix O—sz U2A‘Il }) :

5.1.4 System Evaluation

(5.15)

(5.16)

(5.17)
(5.18)

The purpose of the undertaken system evaluation, whose@jadire presented now, is to de-
termine the performance of the standalone WLAN fingerprgnapproach and to compare it
subsequently to the performance of the joint WLAN/INS systaerorder to quantify the en-

hancement by the sensor fusion.
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X Access Point =7
» Reference Point

e

Figure 5.4: Floor plan of the test building with eleven ascpseints (black crosses) and 17
ground truth reference points (grey dots), which are distad evenly on the hallway.

Test Scenario

The systemis tested in a university building. As illustdateFigure 5.4 the building is equipped
with eleven WLAN access points on one floor. The detection fédint offices and rooms is
expected to be fairly easy by WLAN fingerprinting as the infinasture (in particular walls)
is expected to produce room-wise distinct fingerprintingfipgs. Hence the test scenario com-
prises three laps of a circular walk in the hallway. A digitabr plan is used as absolute position
reference system, where its pixels coordinates are transfbwith a known conversion factor
into meter scale. The calibration of the WLAN fingerprintingt®m was performed on calibra-
tion points that were taken approximately every 2.5 m, vithRSS readings being taken once
per second. The calibration measurements were taken bingadaptop at a fixed height (ap-
prox. 1.2 m), with slight motion to build up a likelihood datese over a small region around the
calibration point. The lookup tables were constructed g 8€60 measurement samples for
each of the calibration points respectively. At each catibn point calibration measurements
were performed for at least three access points. The caisdirof each calibration point were
defined by putting markers on the digital floor plan to desiglaeir topographic location. For
the evaluation a set of 17 ground truth reference points (&) R8s marked on the digital map
and on the floor of the building, which was followed then psedy.

The implementation of the positioning system is realizethiee separate subsystems: The
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WLAN fingerprinting, the inertial stride estimation, and joent WLAN/INS fusion filter. The
WLAN fingerprinting and the stride estimation modules comioate in client-server mode
to the main fusion module, as both sensor connections aremgmted inC while the higher
level Kalman filter is implemented ihava. In addition the main fusion features a visualization
application. The subsystems are distributed on two laptoggtop 1, with a Windows OS (for
driver reasons), implements the interface to the IMU, thidetestimation filter, and the client
part of the connection to the main filter. Laptop 2 runs Linuthviwo wireless network cards
for the fingerprinting module. One of the two network cardassd to ensure the consistency
of the measurement data results during the calibrationeplzensl to allow for channel hopping
without disrupting the network communications. The secwivdless card is used to send real-
time location updates to other displays for live preseatatf the WLAN data. Furthermore
the main Kalman filter is executed on laptop 2 as well, whereaeives the WLAN and step
data via its implemented connection server. After the fu§iter has calculated a new position,
the estimate is stored in a file and passed to the visualizagplication. To reduce network
related delays, both laptops are connected by an etherblet céhe collected sensor data is
stored together with the actual system timestamps at the éfreception, which eases the
synchronization of the data during the later evaluatiore fidw inertial sensor data is stored on
on laptop 1. The input from the WLAN fingerprinting and from tloev level inertial filter as
well as the output of the sensor fusion is stored on laptopuhErmore the system timestamps
are recorded on laptop 2 along with the result of the sensdoriuvhenever a reference point
is passed.

Results

For evaluation of the gathered data the solely WLAN fingetprgibased position and the
fused WLAN/INS position are compared with the true positisrgaven by the track over the
sequence of reference points. The performance measuresutieel absolute distance from
the actual estimated position to the position of referermatfhat temporally corresponds to
this estimate. Figure 5.5(a) shows the results for eachefthrecorded estimation points,
which were passed during the three laps of the experimeratd. wrhe results for WLAN
standalone are presented by the dashed line and the fusédmpesor is shown with the solid
line. Computing the arithmetic mean error during the testtfar both techniques yields:

» 3.2 meters for pure WLAN fingerprinting

» 1.5 meters for the fusion of fingerprinting and inertialalat

In comparison the fused result is more stable and smooth tti&rfingerprinting approach,
since the INS prevents big jumps that happen occasionallypure fingerprinting, particularly
whenever a wrong sample point is considered as currentiuosiOn the other side the fin-
gerprinting partially provides very good results, speaificwhen the GTRPs are very close to
correctly determined fingerprinting sample points. Thals® revealed by Figure 5.5(b), which
shows the normalized cumulative error histogram: The WLANgErprinting provides more
than 20% of errors below half a meter, but also 20% of erroes dvmeters - which appear
in the fused results only with a frequency below 5%. The migj@f the errors of the joint
WLAN/INS estimate is around one meter. An illustration of gemsor fusion is given in Figure
5.6
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Figure 5.5: Position error over walking time (Figure 5.%@)d cumulative probability distri-
bution of errors (Figure 5.5(b)). The errors of the joint WLANS system are significantly
smaller than those of the sole WLAN fingerprinting thanks t® slensor fusion, which joins

two complementary sensors: Noisy but long-term-stable WIfilayerprinting and smooth but
drifting INS.
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Figure 5.6: lllustration of the joint WLAN/INS estimate (kiges 5.6(a), 5.6(b), 5.6(c)) and

the sole inertial PDR solution (Figures 5.6(d), 5.6(e)(H)&luring the three laps walked. The

continuous update of the joint filter by the WLAN measuremenisipensates for the drift of
the INS.
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5.2 A Multi-Sensor Framework for Pedestrian Navigation

In this section the architectural sensor fusion approatbduced in Chapter 4 is pursued fur-
ther. Specifically the framework is extended by incorpagtdditional valuable sensors that
are suitable for pedestrian navigation. A GNSS receivedded for enhancing the navigation
outdoors, where it may be regarded as the most valuablersdiosaid the navigation in indoor
environments an active RFID-based localization systemds@dvhich operates via distributed
tags and user-worn RFID reader. Furthermore an electromipass is incorporated to aid the
navigation through improved directional information. &lig a baro-altimeter is included to
allow for the detection of floor transitions when moving inde. Since the approach introduced
in Chapter 4 is basically preserved, the architecture of é#ms@ fusion system, which is de-
picted in Figure 5.7, is actually quite similar to the onewhan Figure 4.1, except for the novel
sensors, which previously were optionally and not specifiiether. To study the performance
of the particle filtering approach compared to the fusionavsmpler and computationally less
demanding algorithm, the Kalman filter introduced in Setol is adapted to the novel sen-
sors as well by omitting the WLAN component and by adding mesament models for the data
that is provided by the new sensors.

5.2.1 Incorporation of Sensors

The incorporation of additional sensors can be performeilyetor both, the particle filter
and the Kalman filter, since the determination of the relegtate space and the modeling of
the system dynamics has been addressed already withingt®ys chapters and sections of
this thesis. As already discussed in Section 4.2.6 the greglparticle filter, which uses a
proposal density according to the provided step-estimatey incorporate the novel sensors
according to (4.46) by multiplying the particles’ weightg the product of the additionally
available likelihood values, given the joint likelihoodwa over all novel sensors can be written
in the product form (2.38). Since the Kalman filter represeéheé Gaussian a posteriori and a
priori PDFs and the likelihood function analytically by nmeand covariance, the incorporation
of additional sensors is not as convenient as for the parfitter, but still feasible. Either
the Kalman filter switches its measurement matrix dependmghe available sensor data, or
a modular approach is selected, which carries out the upztpiations separately for each
available measurement. In the modular solution the meaniattorporation of sensgrequals

%) =%, + K, (zj, —hl(x])) , (5.19)
and the corresponding covariance becomes
P, = (1-K;,H;,)P, | (5.20)
with the Kalman gain
K;, =P, H, (H;P,H , +Rj,)~" . (5.21)

In this casex],  andP~ denote mean and covariances before the filter has been dduate
the data of sensof. Thus, given after a prediction step there is the measuredanz; i,

j =1,..., M available, (5.19), (5.21), and (5.20) are computédimes successively, with
each time using; , according to the measurement received from sepsmdH,; ;, R, and
hJ (x;) corresponding to the characterization of the respectinese
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Figure 5.7: Architecture of the sensor fusion frameworkickimow integrates GNSS, compass,
altimeter, RFID, inertial sensors, and a map-based molildygel.

5.2.2 Characterization of Sensors

Subsequently for each of the newly incorporated sensorséasurement model is specified,
including a Gaussian approximation that can be used by tieméed Kalman filter.

GPS Receiver

In Chapter 3 advanced state space and measurement modedgeliitesnavigation were in-
troduced, specifically addressing the use of signal lelelihood functions (3.3). Within the
scope of this chapter a much simpler model will be used, atdire to complexity reason, and
secondly since todays commercially available GPS recenemot yet provide the appropriate
interfaces to obtain the required data. Thus here the mogisimeasurement model that can
be used for a GNSS receiver is employed corresponding tatsely coupled integration ap-
proach (see Section 2.3.2), in which the position solutibthe GNSS receiver is treated as a
measurement that is assumed to be affected by Gaussian Goisgequently the measurement
model for the GPS receiver may be expressed as

2,75 = hi"(xp) + 0" (5.22)

PS
= rk—i—ng ,

with ni™ = [n$}® nJ75]" being zero-mean white Gaussian noise of variarige; respec-
tively. Obviously this assumption is practically quesable, since GNSS positioning errors
are often temporally correlated, e.g. due to multipathot$feSince approaches to circumvent
this problem have been discussed extensively in Chapter l#othesis, an attempt to model
this kind of correlated noise is omitted here. Using (5.22) likelihood function for the GPS
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data can be expressed as

1 GPS _ .. \H(,GPS _
P8 pa) = ——— exp (JZk o) (2 rk)) | (5.23)

/ 2 2

Since (5.23) is already linear and Gaussian the derivatidioth measurement and the mea-
surement noise matrix is quite simple:

ahGPS(x) 1 00
GPS k k _
H; = —ﬁxk _ (O 1 O) , (5.24)
k
o 0
RgPS = ( %PS Uéps) . (5.25)

Compass

For the compass, which provides a measurement of the cureawling, a simple linear Gaus-
sian measurement model is assumed as well, which may besseprgia

M = h(x) + ng oM (5.26)
= \I/k —|—n$OM y

with n{°M being zero-mean white Gaussian noise of variarfeg,;. Again this is generally
a quite coarse assumption, since it does not take into attioeitemporal and spatial correla-
tion of the compass error, which often occurs in indoor envinents due to nearby disturbing
materials and current-carrying structures such as cablges. Nevertheless due to a lack of
an improved compass noise model (5.26) is assumed to holtharmbrresponding likelihood
function may be written as

() = e enp () .27
z Xp) = —F———=€X —_—— . .
Pz k 27‘(’0‘%0M p QU%OM

Practically the problem of correlated compass noise caradided to a certain extent by as-
suming a pessimistic value fe¢,,,, such that on average the impact of the correlated noise is
reduced. Since (5.27) is again already linear and Gaudsgarorrepsonding measurement and
measurement noise matrix for the Kalman filter update coempith:

8hCOMX
HSOM:'}T('“)A_ﬂOOl)a (5.28)
Xk
R{M = o620y - (5.29)

RFID

The location inference via the employed active UHF RFID systedone by means of the RSS
value of the received tags. Each tag transmits its uniqueplihan interrogation of the reader.
Associated to each tag ID its location is stored in a datglsassh that the reader position can
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be inferred from the characteristic RSS profile, which vaweéh the distance between reader
and tag. Specifically the measurement model is

Zﬁim _ hRFID<X nl};{FID) (5.30)

h?FID ( RFID nRFID)

o =

Y

in which r®FIP js the location of the received tag as stored along with its3pecifically it is
thus assumed that the measurement depends only on thecdisi@nveen tag and the receiver
[tRFID _ ¢, | and the noise term}*'P, which is not specified further. The corresponding like-
lihood function is constructed emplrlcally from measuretgata and practically realized via
the lookup table functiop:

p< RFIDlX ) g< RFID |rRFID rk|) ) (531)

Since independent measurement noise is assumed for theecktags, the joint likelihood
value over all received tagg™'” = [, ..., 2§ 'P]" can be computed by the product

p FID|X Hg RFID RFID o rk|) ] (532)

n=1

Since the RFID measurement model (5.30) is neither lineaGawssian a Gaussian approxi-
mation is needed to allow for the incorporation into the Kainfilter. Though a power level-
based likelihood function may be feasible for simplicitgan ID-based likelihood function is
used for the Kalman filter. Assuming now Gaussian nai$€" of variances3, the RFID
measurement model is approximated by

ZEFID — hRFID( )—I—DEFID (533)

RFID
= Ip+tn, ,

where the measuremenft'® corresponds taR*''P when tagn was detected. Hence the
Kalman measurement matrices can be expressed as
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HUP = (0 ) 0) , (5.34)
o2 0

RIP = ( e U%FID) : (5.35)

Baro-Altimeter

The baro-altimeter measurements are treated differerdiy the other sensors. Contrary to
the Bayesian philosophy the received data is used to takedadearsion on the floor level on
which the pedestrian is currently located. Though a sttéaglvard incorporation via a true
likelihood function is feasible and expected to be bendfioia future full 3D sensor fusion
system, it appeared to be sufficient for the 2.5D approacsuearhere, where mainly the exact
horizontal position is of interest, and the vertical infaton needs to be only correct up to floor
level accuracy, which is approximately around 3 meters.stthe altimeter data is just used to
switch the floor, whenever applicable, and to select prgpgeg map-data that corresponds to
this floor.
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5.2.3 Movement Model

In difference to the movement model used in (4.10) now thelatement is assumed to depend
on the previous one according to

AI‘k = Ark_1+nr . (536)

This is to introduce a stronger memory within the model, ieeconsider it to be more likely
that a pedestrian will keep on heading with the same spe¢ehith®f changing it completely
randomly.

5.2.4 Performance Evaluation
Scenario and Data

To assess the performance of the algorithmic approach tis@&publicly available real world
data are used [AFK09]. To compare the result of the sensor fusion against tre gedes-
trian position the data includes ground truth referencatsiGTRPS) that have been carefully
measured to sub-centimeter accuracy with a total statimp)aying differential GPS, optical
distance and angular measurements. The collected meamirdata features a wide range of
sensors that were worn by a moving pedestrian, namely toadsot-mounted accelerome-
ters and gyroscopes, an electronic compass, a baromet@®$adseiver, and an RFID reader,
which could detect RFID tags that were deployed throughaubthiding. The locations of the
distributed tags are stored in a database and the buildiogpgtey has been made available as
vector data representing walls on each of the buildings fleazls. In order to cover a wide
range of application scenarios, the measurements spdyifit@lude the important transitions
from outdoor to indoor and vice versa. Furthermore, the daflades passages with explicit
three-dimensional character, such as ramps, stairs avat@lg. In Figure 5.8 a selection of the
data is illustrated. The sensors and devices used for theureraents are listed in Appendix
C.

Data Set 3 Data set 3 starts from outside the building with good GPS rame=and already

acquired GPS-receiver. After a short walk the person ettiersffice building. The person then
walks through the corridor in the lower floor and subsegyetitinbs the stairs to the second
floor. After a similar walk on the second floor, the person hegcthe elevator. The elevator
goes up to the third floor (picking up another passengerh tfoees down to the garage level.
The person leaves the elevator and then performs a shortiaeag walk in the garage. Finally

the person leaves the garage via the ramp and returns tattiegposition.

Data Set 5 Data set 5, which is a pure 1D set, starts from outside thalibgilwith good
GPS coverage and already acquired GPS-receiver. After rd whatk the person enters the
office building. The person then walks two laps through theeidors in the ground floor whilst
entering some of the offices. Finally the person leaves tlidibg and returns to the starting
position.

104



5.2. AMULTI-SENSOR FRAMEWORK FOR PEDESTRIAN NAVIGATION

514 T T T T T
Outdoor Indoor Elevator .
L ~

T T T T T T T T T T T o
Outdoor Indoor Outdoor Outdoor

512 <
10 - conmmm. 4 A

@ omoD G NI 510

8p0 @ - o | Stalrs\
® o oo —= 508 M
6 o E! S 506 e~

< 504 -

e [m]

Ititus

Number of satellites

500 -

i i i i i i i i i 498 i i i i i i i i i
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

Time [s] Time [s]

(a) Number of available satellites (b) Baro-altimeter

T

X-Axis
— Y-Axis
20+ —— Z-Axis{

=)
T

1
N
o
T
Turn rate [rad/s]

Acceleration [m/sz]

—40F

~60 i i i i i i i i i i i i i i
75 76 v 78 79 80 81 82 83 75 76 v 78 79 80 81 82 83
Time [s] Time [s]

(c) Accelerations (d) Turn rates

Figure 5.8: An example of the sensor data of data set 3: Acuptd Figure 5.8(a) the satellite
navigation is completely unavailable during the indoorigeer The altimeter data shown in
Figure 5.8(b) indicates the important vertical transisidirough the staircase, the elevator, and
the garage drive-up. Figure 5.8(c) and Figure 5.8(d) Haistaccelerations and turn rates at the
foot-mounted IMU during a short walk sequence. The restghasthe foot are clearly visible
in both signatures.

Results

Stride Estimation Since the step estimation is performed independently flognntain fu-
sion only via the inertial sensors, a sole inertial PDR treak be computed from the collected
inertial data. Figure 5.9 illustrates the PDR track for twersarios, each lasting approximately
500 seconds. Since in both scenarios the start point c@&gseidth the stop point the accumu-
lated PDR error is just the difference between start and $teg-igure 5.9(a) and 5.9(b) reveal
the drift accumulates to some few tens of meters during theeegfuration of both experiments
respectively.

Comparison of Algorithms A qualitative and comparative analysis of the sensor fusian
the particle filter and the extended Kalman filter is given igufe 5.10 for two mixed in-
door/outdoor scenarios. In both scenarios the pedessiequipped with GPS, altimeter, com-
pass, a foot-mounted IMU, and a building map and starts antddith GPS being available.
Outdoors both filter perform quite similar, but as soon asinldeor environment prevents the
reception of GPS the only source of absolute position in&diom, namely GPS, is not available
any more. This may generally cause a temporally increasaggadiation, nevertheless the PF
is able to constrain the movement due to the map informatidich can not be exploited by
the EKF due to its nonlinear nature. As a consequence the EldFfting freely indoors and
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Figure 5.9: PDR track reconstructed from the foot-mouniegitial sensors for two scenarios.
In both scenarios the start points coincide with the stopfgoilThe major errors arise due to the
angular drift in the heading angle, which is only weakly afsable when only inertial sensors
are used. The underlying coordinate grid is spaced by 20rmpéz line.

accumulates large errors over time, which are not compedsaitii GPS becomes available
again. From that moment both filter algorithms perform alnezpially again. Most notably
as already observed in Section 4.3.2 the map provides indoatharios sufficient information
to compensate the inherent system drift, which would agpecally indoors due to the lack
of absolute position information. Thus the PF algorithmieebs in both scenarios an average
accuracy of less than 2 meters, whereas the EKF performiisagrily worse.

Complexity The findings of an analysis of the achievable performancé®fparticle filter
are depicted in Figure 5.11, at which the measure of inteséise number of required patrticles.
Again the considered sensors are GPS, altimeter, compfasd;@ounted IMU, and the map of
the building. For each data point the average performanuetted. Thereby the average value
itself is averaged over ten successive simulations usffereint random seeds while keeping the
set of sensor data. Corresponding to the results shown imd=ig0 the average performance
of the PF is better than 2 meters, given that the number of@raglparticles is sufficient. The
results reveal that for the given scenario a range of 10@ pd@ticles is sufficient.

Value of Sensors Now the impact and the value of specific sensors is investihator that
purpose it is assumed that the pedestrian carries at lezsst #ensors, which may be regarded
as the rather easily available ones, namely the autononemsois. Within this context au-
tonomous means that there is no need for locally deployedstricture and that there is no
use of specific environmental information, i.e. specificath indoor map. In that case it may be
assumed that the pedestrian is equipped with GPS, compassalimeter, and a foot-mounted
IMU. This suite of autonomous sensors is a quite likely carabon, at least for professional
application, since all of these sensors are already aVaitatlay. Nevertheless local infrastruc-
ture may not be available as well as detailed map informa#srshown in Figure 5.12(a) RFID
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Figure 5.10: Comparison of the particle filter and the extdridaliman filter in two mixed in-
door/outdoor scenarios. In both scenarios the pedestnitansethe building after approximately
90 seconds. The indoor periods are indicated by the grayrginddnlike the PF the EKF is not
able to exploit the map-based movement model, and thus unaglates drift errors until the
pedestrian leaves the building and GPS becomes availabie @ggure 5.10(a) approx. after
450 s and Figure 5.10(c) approx. after 400 s). Thanks to thelmaged movement model the
errors of the PF do not increase during the indoor periodbiptthough there is no source of
absolute position information. As depicted in Figure 5dd&nd 5.10(d) the error statistics of
the EKF are consequently much worse compared to the PF.

is only of little value when the map is available, since thstegn performs already quite well,

in particular thanks to the fusion of the inertial step estiion and the map, which achieves in
combination with the other sensors an average performaonca@d 2 meters and better. If the
map is not available the RFID helps to constrain the locatgtimate and achieves in conjunc-
tion with the sensor fusion an improved average performahegound 3—4 meters. If neither

RFID nor the map is used the average performance is degrasedtd®—7 meters. The error

statistics shown in Figure 5.12(b) reflect these basic sasdvell.

The estimated track of the particle filter is depicted in Fggh.13. It can be clearly seen
that the particle filter is able to cope well with the vertit@nsitions, including the staircase,
the elevator, and the walk along the garage ramp. In the gubsé Figure 5.14 the operation
of the fusion algorithms is illustrated in some particulba@acteristic scenarios and transitions.
In Figure 5.14(a) a typical outdoor scenario is shown. Thége cloud is well constrained by
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Figure 5.11: Average performance depending on the numbgarntitles used. For more than
100 patrticles the performance improves only slightly, faretthan 1000 particles it is saturated
completely.

the absolute position information that is provided by theSGixd by the contributions of the
other sensors. In the phase where the building is enteredhwshdepicted in Figure 5.14(b),
the particles resemble a clearly non-Gaussian PDF, sieosdls intersect and constrain them.
Figure 5.14(c) shows the typical operation in a corridor keltee map constrains the particles
to a small cloud, whose magnitude is in the order of the corsdwidth. In such a scenario
basically the step measurements drive the movement of thel clvhereas the compass aids
the heading and the map-based movement model prevents tremmant through the walls.
As shown in Figure 5.14(d) the walls may also be less resteice.g. in the garage, where
the spread of the cloud has become significantly larger cosdp@ the corridor. The longer
the system lacks of constraining information, the biggerghrticle cloud gets, e.g. when the
garage is left after some time as illustrated in Figure ®)l4¢here obviously several slightly
dispersed modes are tracked. As soon as restraining saf@onation is available, e.g. when
GPS becomes available again, the particles collapse againimimodal Gaussian shape, as it
is shown in Figure 5.14(f).
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Figure 5.12: Impact of RFID and the building map in conjunetiath the autonomous sensors
GPS, baro-altimeter, compass, and foot-mounted IMU. Ihi®EID and the map are used,
the performance is quite similar to the map only, since thikerainaccurate RFID does not
contribute much to the already quite well performing systafvhen the map is not used the
benefit of the RFID becomes more obvious: In the periods tledahdicated by the gray markers
RFID is available and constrains the estimates, such thaviirage performance is improved.
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Figure 5.13: lllustration of the particle filter track fortdaset 3. The vertical transitions are
resolved very well thanks to the barometric aiding.
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(e) Leaving the garage (f) Reacquiring GPS outdoors

Figure 5.14: Result of the sensor fusion using GPS, compass;ditimeter, a foot-mounted
IMU, and the building map under various characteristic ovdand outdoor conditions.
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Chapter 6

Conclusions

Within this thesis the framework of Bayesian filtering hasrbapplied to enhance pedestrian
navigation by joining a variety of complementary persoraligation sensors and other related
sources of navigational information. In Chapter 2 the uryilegl fundamentals were presented
as far as relevant for this thesis. The thesis was motivadsitally by the idea to establish
signal processing concepts with the objective to suppategteians navigating seamlessly in
both indoor and outdoor environments, which may be consitlas the next step in the evo-
lution of personal navigation systems. To achieve this thralmnation of sensors via optimal
sensor fusion algorithms is mandatory from today’s pointiew, since in the mid-term future
a singular technical solution is not expected.

6.1 Summary of Contributions

The scope of Chapter 3 was the application of Bayesian filteéarsglve the crucial problem of
multipath propagation in pedestrian satellite navigatibmo novel approaches were introduced
in this context: The range-based and the position-basedadst. To facilitate their integration
into receivers it was suggested to make use of reduced caitygiechniques, which previously
have been considered only for ML estimators. The complexitiuction allows to reduce the
efforts needed for the calculation of the likelihood funas, which are the computationally
most demanding parts in the proposed filter algorithms. Bthh btroduced approaches new
two-fold marginalized Bayesian filters were derived, whitbva to estimate the state space ef-
ficiently with conditional optimal estimators where possitSpecifically it was shown that the
number of impinging multipath signals as well as their coempamplitudes can be estimated
optimally using grid-based and Kalman filters, and thus @anhgduced set of states needs to
be estimated by the computationally more demanding andptilral particle filter. For the
more elaborated position-based formulation of the Bayefdian it was revealed that the joint
estimation problem may be partially separated based ondfid_8cation concept, whenever
the likelihood function can be factorized into the conttibos of the respective received satel-
lites. It was shown that in the introduced partially sepedagstimator the number of grid-based
and Kalman filters is not increased compared to the simplagadoased estimator formula-
tion. Additionally it was proposed to aid the constructidran improved proposal density for
the high-dimensional position-domain state space by comdpithe a posteriori PDFs of an ac-
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companying set of range-based estimators. The presentathsion results for various channel
conditions, including the latest available pedestriamdehmodel as well as a stored measured
channel profile revealed the benefit of the Bayesian approastpared to the conventional
receiver signal processing. Specifically it was shown thatrhore advanced position-based
estimator outperforms the range-based method. The resultaled that under realistic prop-
agation conditions the performance of the introduced Bayefiters tends to saturate rapidly
for more than two simultaneous replica being consideredagsessment of novel modulation
schemes such as the BOC(1,1) or the CBOC, which both are candiolaased in the Galileo
system, confirmed their superior performance comparecetogdhventional BPSK modulation.

In Chapter 4 a novel method for integrating shoe-mountedialesensors into a Bayesian
location estimation framework was presented. The appraacharacterized by a cascaded
filter architecture, which allows to exploit the synergyween a conventional shoe-mounted
INS and a nonlinear pedestrian movement model in an indenwas®. An advantage of the
proposed integration algorithm is that each level of theadsd architecture can operate at an
update rate appropriate to the scale: at 100 Hz or higheh#stride estimation and roughly
at step-rate for the upper fusion layer. It was shown thatifeeof a pair of platforms improves
the dead-reckoning: the variance is reduced by a factor ofthanks to a newly introduced
pedestrian model. Based on experimental data it was showa tm@ving pedestrian can be
localized in a building just by using a foot-mounted 6 DOFrira platform and map-matching
without using any additional sensors and without the neatetermine the pedestrian’s initial
position or heading in an alignment procedure. Furtherptbeexperiment revealed that due
to the implicit map-matching the uncertainty about the géiEn’s location decreases if the
movement and the building layout is suitable, which can teddng-term stability in an indoor
navigation scenario.

The content of Chapter 5 covered two examples for real worfdiegtion scenarios. In
Section 5.1 an indoor positioning system for pedestriansozoing WLAN fingerprinting with
foot mounted inertial sensors was presented. The appreaghres no processing outside of
the local device and minimal a priori fingerprinting efforA hierarchical Bayesian filtering
approach using cascaded extended Kalman filters was imptech& achieve a real-time ca-
pability. The accuracy of the combined system was quaivigtevaluated in a real building
and shows that it is much higher than that of the WLAN fingetprmalone; in addition it also
provides an estimate of the orientation of the user. In thEeament an average positioning
error of roughly 1.5 meters was achieved. The approach altovminimize the fingerprinting
effort since the high accuracy is achieved by the suppoh@friertial-based step estimation in
the overall estimation process.

Within Section 5.2 the concepts introduced in Chapter 4 wersyed further and additional
sensors were integrated: a GPS receiver, an electronicassna baro-altimeter, and an RFID
system. Based on experimental data covering a mixed indgddor scenario including im-
portant vertical transitions such as stairs, ramps, andgles, the algorithm was assessed and
the benefit of the respective sensors was investigated.dBligswas then made publicly avail-
able [AFK™09]. The particle filtering approach was compared to the nsiaipler Kalman
filter algorithm introduced in Chapter 5.1. The results dieahow the advantage of the map-
based mobility model, which can not be exploited by the Kalrhilder algorithm, and give an
indication about the number of particles that is requiredetach convergence and about the
achievable performance with various sensor and algoritmbinations. As real data is used
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the results basically prove the feasibility of the selededsor fusion approach, and show that
an average accuracy around 2 meters or even better is feagthbut deployed infrastructure
in a representative indoor environment, given the maprmétion is available.

6.2 Future Work

The topics addressed in this thesis offer various possdslfor future work. In the context of
satellite navigation receiver signal processing the anjaat of algorithm parameters could be
addressed in more detail and extended to navigating olpéues than pedestrians. A promis-
ing approach could be to exploit the mutual correlationsveeh the LOS delay rate (Doppler)
and the echo delay rates, which are strongly correlateddotige due to the surrounding en-
vironment, in particular in urban scenarios, where echegsad and approach in a quite char-
acteristic manner. Also an adaptive steering of the echuityctransition probabilities based
on the receiver speed could be considered, since for arsayior slowly moving receiver the
likelihoods of emerging and disappearing echoes are mueienthan for a fast moving re-
ceiver. Though the introduced algorithms have been assesser simulation conditions as
realistic as possible by using latest channel models angdumed channels, an essential step in
the further development of these concepts is their evalnathder real world conditions. Thus
the implementation of a prototype receiver is certainly gomtopic for future work. From

a theoretical point of view the concept of a probabilistizigation receiver raises interesting
questions concerning the reliability and integrity of Bagesfiltering algorithms, e.g. when
these algorithms are used in safety critical applicatiathss aviation. Though the Bayesian
approach provides inherently the best possible relighiliéasure, namely the a posteriori prob-
ability density function, itis practically just an estineaif the true density, in particular for those
filtering approaches that are based on Monte-Carlo methods.

Concerning personal inertial navigation a major benefit ooor scenarios is due to the
enhancement by the map information, which was shown to ¢atid problem inertial drift.
Practically the availability of indoor map information istrubiquitous. Though, even if it was
not addressed here, an interesting challenge for futur& 18dio join the location estimation
with a simultaneous estimation and learning of maps and mewtmodels, which may be per-
formed by classical simultaneous localization and mapg8igAM) approaches [MTKWO02],
which are widely used in the robotics community. Furthereribie introduced modular estima-
tion concept could be extended by further location sensdn s UWB, which is foreseen to
play a major role for some professional applications, osseas the benefit of the incorporation
of mobile communication signals, in particular when coesillg the evolution of systems and
standards towards higher bandwidths, which will certainiprove the navigation capabilities
of these systems. A further topic that has not been addressb thesis is the use of opti-
cal and visual sensors, such as laser scanners or videoagm#rich allow for the detection,
recognition, and tracking of environmental features, Wwhscthe basis for many of the common
SLAM approaches.
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Appendix A

Proof of the Factorized Bayesian
Estimator

The factorization of the likelihood function for the Bayasestimator in a multi-sensor scenario
plays animportant role for the topics discussed in thisigh@sparticular for the concept &oft-
Location(SoLo). Therefore in this appendix an inductive proof fa factorized expression of
the estimator is given.

Proof of the Factorized Bayesian Estimat@kssuming the entire vector of the current observa-
tions z, is composed by the observations associated to each gf thd, ..., M sensors via
z,={z;,7 =1,..., M}, the a posteriori PDF at timecan be expressed as

p(xklZy) = p(xk|Zk, Zp-1) (A.1)

= p(Xk|Z1ky- -y oy Lg—1)

whereZ,={z,,q = 1, ..., k} denotes the entire history of observations up to imapplying
the Bayes rule with respect i ;, gives

p(Z1,k’Xk, Z2 ks LMk Zkfl)p(Xk’sz, ce s LMk, qu)

A.2
p(Zl,k|Z2,k; <o s Z)M kK, qu) ( )

p(Xk|Zi) =
Assuming the observations , depend only orx;, and not on any other observations, in other
words assuming that the noise affectimg, is independent of the noise affecting the other
measurement, the equalityz, i |xx, z2k, - - - , Zrk, Ze—1) = p(21k|Xk, Zr—1) May be used and
the a posteriori PDF may be expressed as

Z_
p(Xk|Zk) _ p(Z1,k|Xk)p(Xk|Z2,k, s ZM ks L 1) (A.3)
p(Z1,k|Z2,k:7 vy LMk Zk:—l)
= C1,kP(Z1,k|Xk)p(Xk|Z2,k, <o LMk, Zk—l) )
with C' ;. = [p(z1 4|22k, - - - Zak, Zi—1)] "' Introducing the termn = 1 the previous expres-

sion for the a posteriori PDF may be rewritten as

p(xx|Zy) = p(Xk‘Zerl,ka--->ZM,kaZkfl)HCj,kp(Zj,k|Xk) : (A.4)

j=1
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Applying the Bayesian rule to the first expression on the riggnid side and assuming again

P(Zims1 e[ Xy Zinto ks - - - Ea gy Li—1) = D(Zm+1 k| Xk, Zg—1) the preceding equation can be trans-
formed into
p(Zm+1 k|Xk)p<Xk|Zm+2 ky- oy LMk, qu) -
p(Xk|Zx) = : : ’ C k(2 k|x (A.5)
( k| k) p(Zm+1,k|Zm+2,k:,---,ZM,kaqu) 31:[1 Ik ( ]k’ k>
= pXrlZmr2, - - 20k Zi—1) Cong1 1P (Zm1,5 [ X1) H Cjxp(Zik|x1)
j=1
with Cr16 = [P(Zims1.kZmr2k, - - - Zak, Zk—1)]~F, which is thus equivalent to
m+1
p(Xk|Zy) = p(X|Zmizk:- - Zags Li—1) H Cjip(Zix|xr) - (A.6)
j=1

Since replacing the expressiomn+ 1 by m in (A.6) leads to (A.4) the Bayesian rule can be
applied successively for all further, ,, ¢ = 3,..., M without loss of generality, given that
P(Zg k| Xy g1 ks - - - s EMgs L—1) = D(2gk Xk, Zi—1) holds for allg, and the a posteriori PDF
may be finally expressed via

M
p(xilZr) = pxu|Zior) [ Cun(zinlxr) - (A7)

j=1

]
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Appendix B

Simulation Parameters

This appendix lists the parameters, which have been usée isitnulations and computations
that have been performed for this thesis.

B.1 Chapter3

B.1.1 Section 3.4.3: PCRB Computation

e Space segment: Four satellites at elevation 67, 27, 51e8&ds and at azimuth 58, 65,
135, 195, degrees respectively.

» Navigation signals: BPSK modulation, chip r&te=1.023 MChips/s, Gold code of length
1023, two-sided signal bandwidth 20 MHz, carrier frequefisyl.575 GHz

» Receiver: noise level 45 dB-Hz, sampling peribg50 ns, coherent observation period
10 ms corresponding t6=200 kSamples and an amplitude filter update rate of 100 Hz,
number of incoherent block¥,=10 corresponding to a delay, delay rate, position, veloc-
ity, clock, and clock drift update rate of 10 Hz, user dynaswi¢ = 0.1 m, o, = 0.1 m,

0, =01m,0, =01m,0; =01m/s, 05 =0.1m/s,0; =0.1m/s, 0 = 0.1m/s,
o, >> 1, number of considered multipath signals, = 0.

B.1.2 Section 3.5.1: AWGN Channel

» Space segment: Four satellites at elevation 67, 27, 51e8&ds and at azimuth 58, 65,
135, 195, degrees respectively.

» Navigation signals: BPSK modulation, chip r&te=1.023 MChips/s, Gold code of length
1023, two-sided signal bandwidth 20 MHz, carrier frequefisyl.575 GHz

* Receiver: noise level 45 dB-Hz, 2nd order DLL with loop barttind Hz and damp-
ing factor 0.7, narrow DLL correlator spacing afr=0.1 chips, correlator bank with
N.. = N,. = 25 signal matched correlators spaced symmetrically arouadithi in-
phase correlator at a distance of 0.05 chips, sampling ¢p&;m50 ns, coherent obser-
vation period 10 ms corresponding i=200 kSamples and an amplitude filter update
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rate of 100 Hz, number of incoherent blockg=10 corresponding to a delay, delay rate,
position, velocity, clock, and clock drift update rate ofH8, user dynamics, = 0.1 m,

o, =01m,0, =01m,0, =01m,o0; =01lm/s, oy =01lm/s, 0y = 0.1m/s,

o; = 0.1m/s, o, >> 1, number of considered multipath sign&s, = 0, interpolation
pulse lengthV, = 64.

B.1.3 Section 3.5.2: Static Multipath Channel

» Space segment: Four satellites at elevation 67, 27, 51e8&ds and at azimuth 58, 65,
135, 195, degrees respectively.

* Navigation signals: BPSK modulation, chip rdte=1.023 MChips/s, Gold code of length
1023, two-sided signal bandwidth 20 MHz, carrier frequefisyl.575 GHz

* Receiver: noise level 45 dB-Hz, 2nd order DLL with loop banitiv2 Hz and damp-
ing factor 0.7, narrow DLL correlator spacing éfr=0.1 chips, correlator bank with
N.. = N,. = 25 signal matched correlators spaced symmetrically arouadithi_ in-
phase correlator at a distance of 0.05 chips, sampling g&Le50 ns, coherent observa-
tion period 10 ms corresponding =200 kSamples and an amplitude filter update rate
of 100 Hz, number of incoherent blocRg=10 corresponding to a path activity, delay,
delay rate, position, velocity, clock, and clock drift upelaate of 10 Hz, user dynamics
o, =01lm,0, =01lm,0, =01lm, o, =01lm,0; =01lm/s, o5 = 0.1 m/s,
o; = 0.1m/s, 0; = 0.1m/s, 0, = 0.1, Pofion = 107%, ponog = 1 — 107°, number of
considered multipath signals,, = 1, interpolation pulse lengtlv, = 64, signal-to-
multipath ratio SMR=6 dB, number of particlég, = 100.

B.1.4 Section 3.5.3: Pedestrian Channel Model

» Space segment: Four satellites at elevation 67, 27, 51e8&ds and at azimuth 58, 65,
135, 195, degrees respectively.

» Navigation signals: BPSK modulation, chip r&te=1.023 MChips/s, Gold code of length
1023, two-sided signal bandwidth 20 MHz, carrier frequefisyl.575 GHz

» Channel model configuration: 10 degrees elevation, dgfaudtmeters according to [LS09].

» User movement: To create the pedestrian channel corrdsmpto a typical pedestrian
scenario the environmental parameters of the channel nawdedet according to Table
B.1. The elevation is set to a fixed value of 10 degrees. Thaéuwelazimuth with respect
to the satellite is varied through the simulation in the rentange from 0360 degrees by
keeping the absolute azimuth constant at O degreees andgyang heading of the user,
which in accordance varies the geometry of the surrounditifcal scenery. The time
series input function for speed, heading and vertical aregged from a base pattern
of 20 seconds duration, which is repeated 90 times. Therpdtiactions are depicted
in B.1. The speed pattern resembles a typical pedestrianmevean an urban environ-
ments, including regular periods of walk and rest phasesinD@ach pattern the heading
angle is continuously incremented by 4 degrees per repetilihe vertical of 1.2 meters
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is slightly varied during the walk phases in order to modelithpact of the pedestrians
strides. The duration of the simulation corresponds to 3tuteireal-time, such that the
entire azimuthal range is covered.

» Receiver: noise level 45 dB-Hz, 2nd order DLL with loop bantiwi Hz and damp-
ing factor 0.7, narrow DLL correlator spacing afr=0.1 chips, correlator bank with
N.. = N,. = 25 signal matched correlators spaced symmetrically arouadithi_ in-
phase correlator at a distance of 0.05 chips, samplingg&Le50 ns, coherent observa-
tion period 10 ms corresponding =200 kSamples and an amplitude filter update rate
of 100 Hz, number of incoherent blockg=10 corresponding to a path activity, delay,
delay rate, position, velocity, clock, and clock drift upelaate of 10 Hz, user dynamics
o, = 01lm,0, =01lm,0, =01lm, o, =01lm,o0; =01m/s, o, = 0.1m/s,

o; = 01m/s,0: = 0.1m/s, 04, = 0.1, posion = 107°, Ponor = 1 — 1075, interpolation
pulse lengthV, = 64, number of particlesv, = 100.
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Figure B.1: Movement pattern used to drive the generatiohepedestrian channel model. It
resembles a pedestrian user moving slowly with regulaiptesses (Figure B.1(a)). The pattern
is repeated 90 times, such that the entire azimuth rangevese, since per each pattern there
is a change of four degrees in the user heading with respebetsatellite direction (Figure
B.1(c)). During the movement the variation in the verticadfpe (Figure B.1(b)) reflects the
slight vertical receiver movement that is induced by eadefsteps the pedestrian makes.
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| Parameter | Value
CarrierFreq 1575420000
SampFreq 1000
EnableDisplay 0
EnableCIRDisplay 0
UserType Pedestrian
Surrounding Urban
AntennaHeight 1.2
MinimalPowerdB -40
DistanceFromRoadMiddle -6.5
GraphicalPlotArea 50
ViewVector -60 20
RoadWidth 10
BuildingRow1 1
BuildingRow?2 1
BuildingRow1YPosition -8
BuildingRow2YPosition 8
HouseWidthMean 22
HouseWidthSigma 25
HouseWidthMin 10
HouseHeightMin 4
HouseHeightMax 50
HouseHeightMean 16
HouseHeightSigma 6.4
GapWidthMean 27
GapWidthSigma 25
GapWidthMin 10
BuildingGapLikelihood 0.18
TreeHeight 6
TreeDiameter 3
TreeTrunkLength 2
TreeTrunkDiameter 0.2
TreeAttenuation 1.1
TreeRowlUse 1
TreeRow2Use 1
TreeRowlYPosition -6
TreeRow2YPosition 6
TreeRowlYSigma 0.5
TreeRow2YSigma 0.5
TreeRowlMeanDistance 60
TreeRow2MeanDistance 40
TreeRowl1DistanceSigma 20
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TreeRow2DistanceSigma 20
PoleHeight 10
PoleDiameter 0.2
PoleRowl1Use 1
PoleRow2Use 0
PoleRowlYPosition -6
PoleRow2YPosition 0
PoleRowlYSigma 0.5
PoleRow2YSigma 0.5
PoleRowl1lMeanDistance 25
PoleRow2MeanDistance 10
PoleRow1DistanceSigma 10
PoleRow2DistanceSigma 10

Table B.1: Parameters for the pedestrian channel model.
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B.1.5 Section 3.5.4: Measured Pedestrian Channel

» Navigation signals: chip rat&.=1.023 MChips/s, Gold code of length 1023, two-sided
signal bandwidth 16 MHz, carrier frequengy=1.575 GHz

* Receiver: noise level 45 dB-Hz, 2nd order DLL with loop bantiw2 Hz and damp-
ing factor 0.7, narrow DLL correlator spacing éf7=0.1 chips, correlator bank with
N.. = N,. = 35 signal matched correlators spaced symmetrically arouadihi_ in-
phase correlator at a distance of 0.0625 chips, samplingg€r=62.5 ns, coherent ob-
servation period 10 ms corresponding/te160 kSamples and an amplitude filter update
rate of 100 Hz, number of incoherent blockg=10 corresponding to a path activity,
delay, delay rate, position, velocity, clock, and clocKtdipdate rate of 10 Hz, user dy-
namicso, = 0.1m, 0, =0.1m, 0, =0.1m, 0, =0.1m, 0; =0.1m/s, 0, = 0.1 m/s,
o; = 0.1m/s, o; = 0.1m/s, 0, = 0.1, Poon = 1075, ponog = 1 — 107°, interpola-
tion pulse lengthV, = 128, signal-to-multipath ratio SMR=6 dB, number of particles
N, = 100.

B.2 Chapter 4

B.2.1 Section 4.2.3: Proposal Density

Step rate 1 Hz, step measurement neigsg¢ = oa, = 0.1 m, oay = 2°, movement model
0y, =0y =1m, oy = 45°.

B.2.2 Section 4.3.1: Error Analysis

Step rate per foot 1 Hz, step measurement nejse= oa, = 0.1 m, cay = 2°, movement
modelo, = o, = 1 m, oy = 45°.

B.2.3 Section 4.3.2: Experiment

Lower filter setting®, . = 04, = 04, = 5-10* m/s?, 0, = 04, = 0, = 0.014°, movement
modelpgqss = 0.

B.3 Chapter5

B.3.1 Section 5.1: Filter Settings

Process noisea, = oa, = 0.5m, ooy = 10°, measurement noiseyran = 5 m, initial
covariances, o = 0,0 = 10m, oy = 1°, lower filter settingsr,, = 0,y = 00, = 5 -
10* m/s?, 040 = 0wy = 04, = 0.014°.
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B.3.2 Section 5.2: Filter Settings

Step measurement noisg, = oa, = 0.02m, oay = 10°, movement modet, = o, = 1 m,
oy = 45°,
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Appendix C

Sensors and Devices

Table C.1 lists the sensors that were employed for colledctiegmeasurement data sets that
were published in [AFK09] and which were used within the scope of Chapter 5.2 of this
thesis.

| Sensor | Manufacturer, Type, URL |
GPS Receiver ublox EVK-5

htt p: / / www. u- bl ox. com
Electronic Compass OceanServer OS-5000

htt p: / / ww. ocean- server. coni

Baro-Altimeter Intersema MS55490
http://ww. i nt ersema. ch/
RFID Indentec Solutions i-CARD2 reader and tags
http://wwv. i dent ecsol uti ons. conf
IMU Xsens MTx-28A53G25

http://ww. xsens. com

Table C.1: Personal navigation sensors and manufacturdrsheir website URLS.
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