Integrierte Bewertung von Schieneninfrastrukturmaßnahmen

Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Verkehrssystemtechnik

Anja Bussmann Dresden, 16.07.2014

Agenda

- DLR Institut für Verkehrssystemtechnik
- Life Cycle Management
- Integrierte Bewertung von Schieneninfrastrukturmaßnahmen
- Anwendungsbeispiel

Das Deutsche Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Forschungsbereiche

- Luftfahrt
- Raumfahrtforschung und -technologie
- Energie
- Verkehr
- Sicherheit

Standorte und Personal

Circa 7.400 Mitarbeiterinnen und Mitarbeiter arbeiten in 32 Instituten und Einrichtungen in 16 Standorten.

Büros in Brüssel, Paris und Washington.

Forschungsetat: 796 Mio. €

- ca. 51% Bund (BMWi, BMVg), Länder
- ca. 49% Drittmittel (Projektträger, eigene Erträge, Projektförderungen)

Institut für Verkehrssystemtechnik

- Braunschweig
- Berlin

Institut für Verkehrssystemtechnik

Sitz: Braunschweig, Berlin

Seit: 2001

Leitung: Prof. Dr.-Ing. Karsten Lemmer

Mitarbeiter: Momentan rund 140 Mitarbeiter aus

verschiedenen wissenschaftl. Bereichen

Forschungsgebiete: Automotive

Bahnsysteme

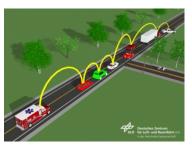
Verkehrsmanagement

Aufgabenspektrum: Grundlagenforschung

Erstellen von Konzepten und Strategien

Prototypische Entwicklungen

Qualität: zertifiziert nach DIN EN ISO 9001


und

VDA 6.2 sowie RailSiTe®

gemäß ISO 17025

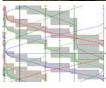
Abteilung Bahnsysteme Forschung für die Bahn der Zukunft

Ziel: Sicherstellung ihrer Wettbewerbsfähigkeit

Nachhaltige Lösung aktuell anstehender Fragestellungen mit Fokus auf Leit- und Sicherungstechnik sowie bahnbetrieblichen Aspekten

Basis:

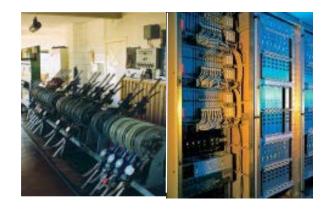
- aktuelle technologische Trends
- wissenschaftliche Methoden
- interdisziplinäres Vorgehen
- bahnbetriebliches Grundverständnis


Test und Validierung

Rail Human Factors

Innovative Bahntechnologie

Effizienter Bahnbetrieb

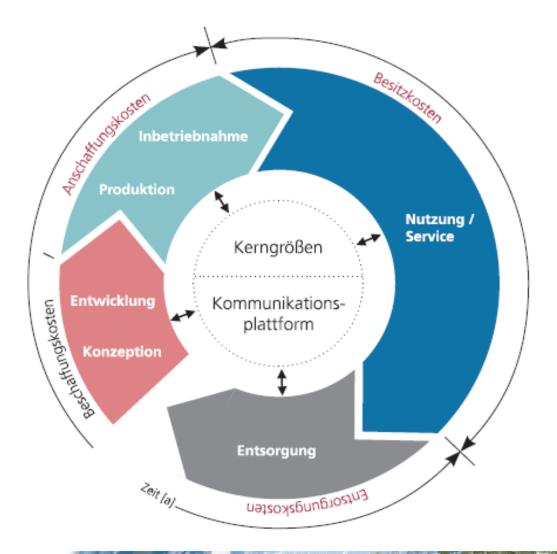

Life Cycle Management

Ziel

Optimierung der Leit- und Sicherungstechnik über ihren gesamten Lebenszyklus

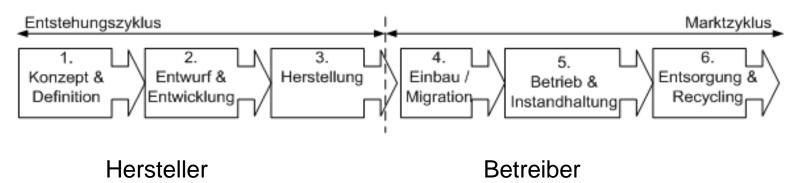
Forschungsschwerpunkte

- Integrierte Bewertung von Infrastrukturmaßnahmen und Ausrüstungsvarianten der LST¹
- Migration neuer Techniken
- Zustandsorientierte Instandhaltung:
 Diagnose- und Prognosemodelle für das Abnutzungsverhalten



Life Cycle Management

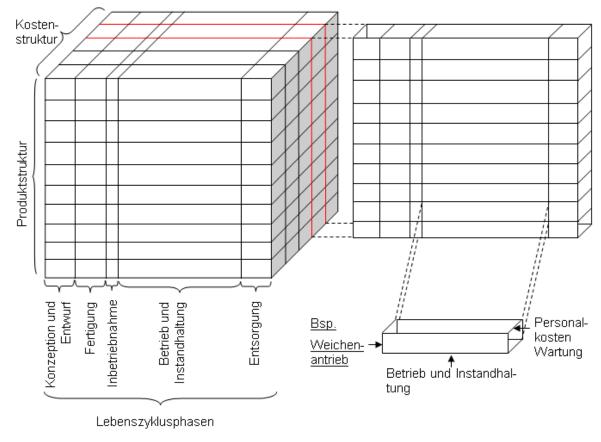
Was ist unter Lebenszyklusmanagement zu verstehen?



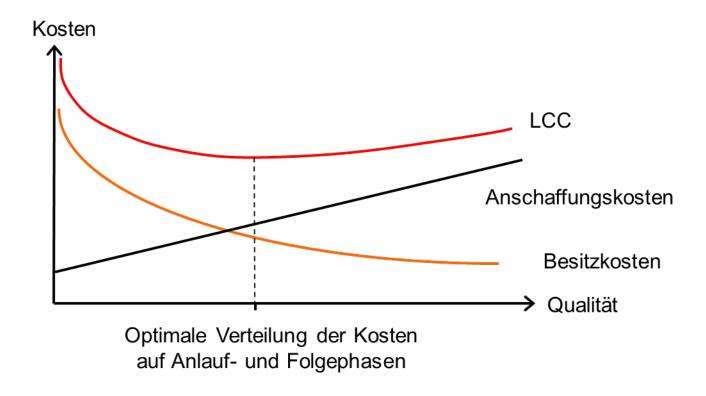
Was ist unter Lebenszyklusmanagement zu verstehen? LCM & LCC

Lebenszyklusmanagement (Life Cycle Management - LCM) ist die ganzheitliche Planung, konstruktive und organisatorische Steuerung und Kontrolle des Leistungsoutputs einer Anlage über alle Phasen seines Lebenszyklus von der Entwicklung und Produktion über die Betriebsphase bis zur Entsorgung.

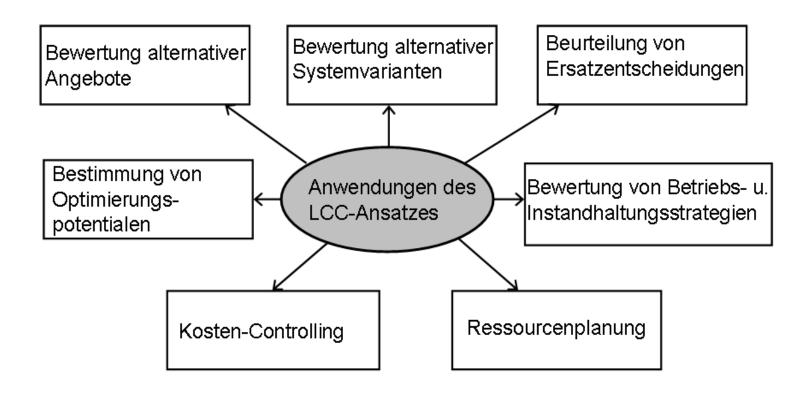
Lebenszykluskosten (Life Cycle Costs - LCC) sind die kumulierten Kosten einer Anlage über dessen Lebenszyklus, d.h. die Kosten für deren Beschaffung, Besitz und Entsorgung. (DIN EN 60300-3-3)



Was ist unter Lebenszyklusmanagement zu verstehen?

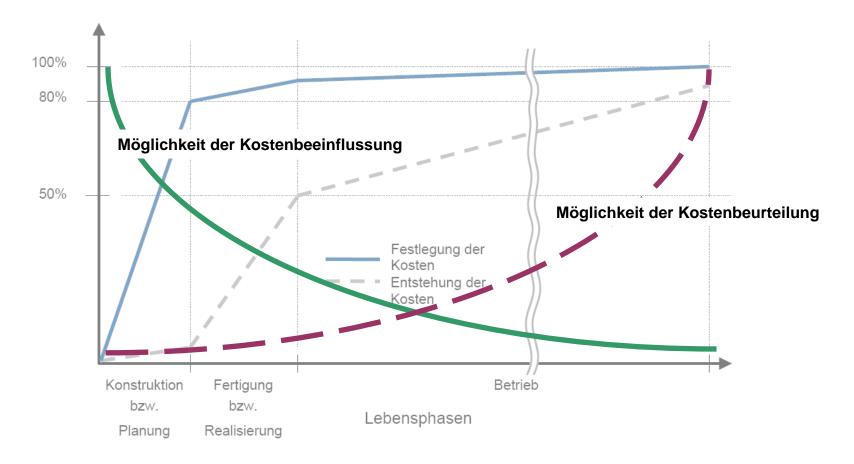

LCC-Analysen (DIN EN 60300-3-3)

 Das System verstehen – Kostentreiber und Optimierungspotentiale identifizieren

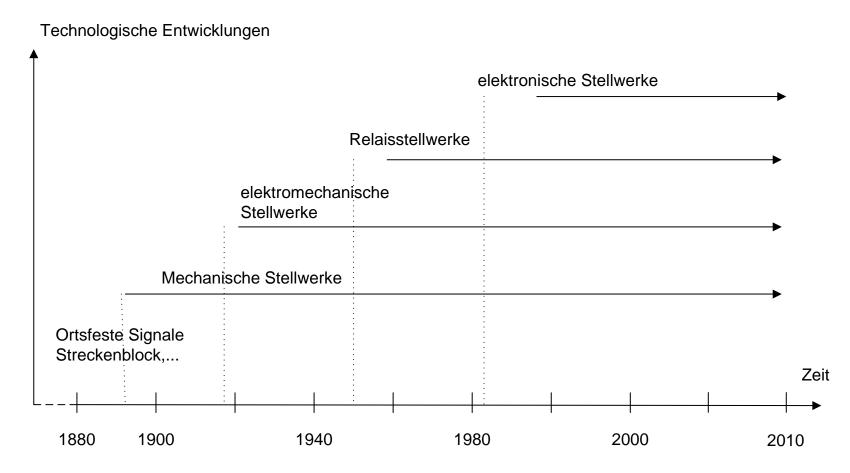


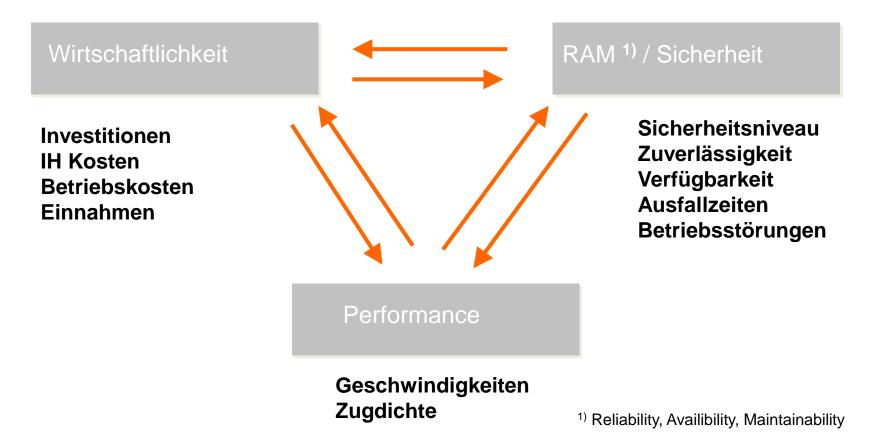
Was ist unter Lebenszyklusmanagement zu verstehen? LCC-Analysen

Was ist unter Lebenszyklusmanagement zu verstehen? LCC-Anwendungsfelder


Quelle: Beck, Rapp, Jäger "Life Cycle Costing- Ausgangspunkt für Kostensenkungen in der Eisenbahnsignaltechnik" in S&D Heft 5 2008

Warum ist LCM für das Eisenbahnumfeld wichtig? Einordnung Eisenbahn


Warum ist LCM für das Eisenbahnumfeld wichtig? Kostenentwicklung

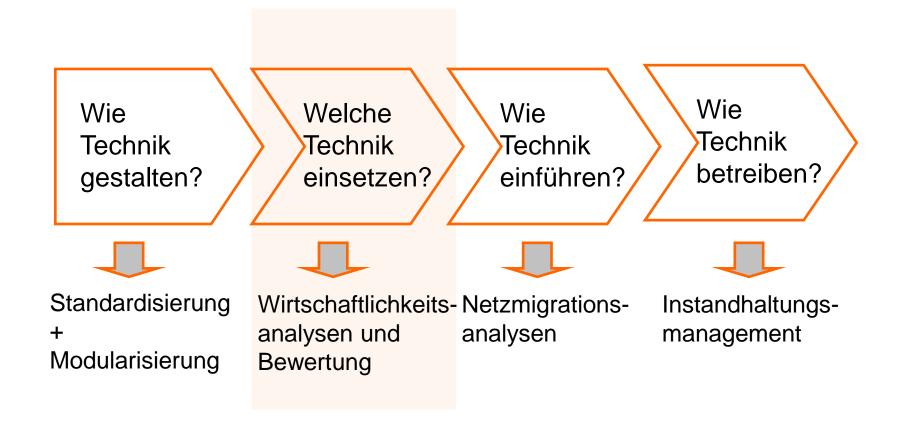

Warum ist das für das Eisenbahnumfeld wichtig? Systemvielfalt

Warum ist LCM für das Eisenbahnumfeld wichtig?

Wirtschaftlichkeit, Sicherheit und Performance

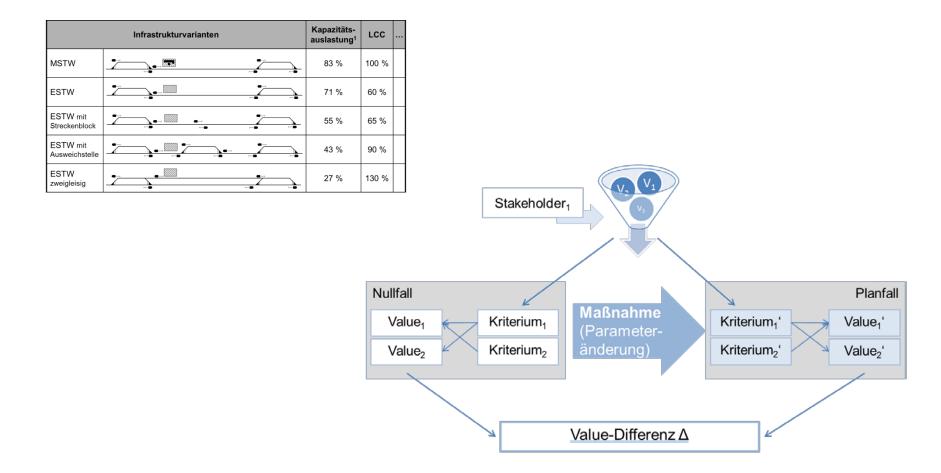
Warum ist das für das Eisenbahnumfeld wichtig? Motivation und Herausforderungen

Motivation


→Der Verkehrsträger Bahn muss seine Wirtschaftlichkeit steigern um langfristig wettbewerbsfähig zu sein!

Herausforderungen

- 1.Entwicklungen für Bahninfrastruktur sind aufwendig, Investitionen teuer und Entscheidungen schwer revidierbar
- 2.Sehr differenzierter Anlagenbestand
- 3. Oftmals veraltete Strukturen und technologisch überholte Prozesse
- 4. Entwicklungen auf europäischer Ebene



Welcher Herausforderungen nimmt sich das DLR an? Lebenszyklusausrichtung

Bewertungsverfahren

Railonomics®

Variantenvergleich für Infrastrukturmaßnahmen

Infrastrukturvarianten		Kapazitäts- auslastung¹	LCC	
MSTW		83 %	100 %	
ESTW		71 %	60 %	
ESTW mit Streckenblock		55 %	65 %	
ESTW mit Ausweichstelle		43 %	90 %	
ESTW zweigleisig		27 %	130 %	

Integrierte Bewertung von Schieneninfrastrukturmaßnahmen

Bewertung...

- einer Schieneninfrastrukturmaßnahme
 - Betrachtung der Wirkungen
 - auf den Schieneninfrastrukturbetrieb
 - über den gesamten Lebenszyklus
 - auf alle betroffenen Interessengruppen

Motivation zur integrierten Bewertung

Wie wird über Schieneninfrastruktur nachgedacht?

Motivation zur integrierten Bewertung

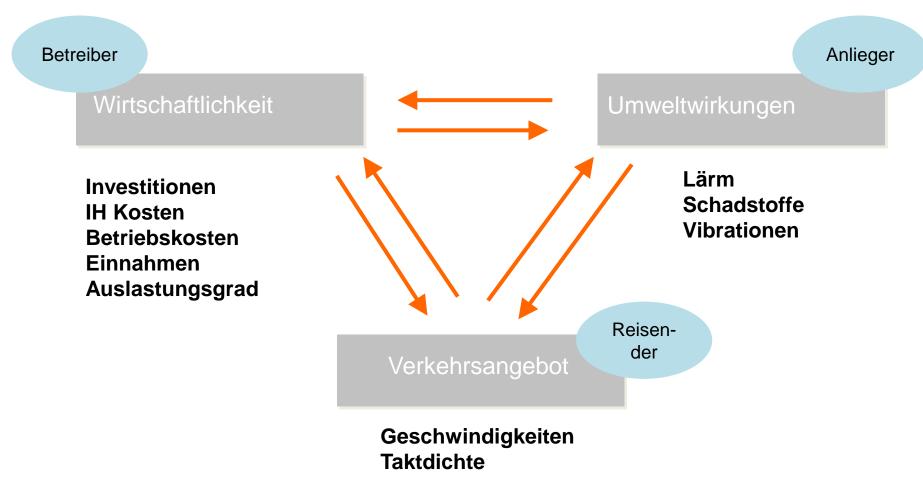
Wie wird über Schieneninfrastruktur entschieden?

- Praktisch, aber zu einseitig!

Ziele

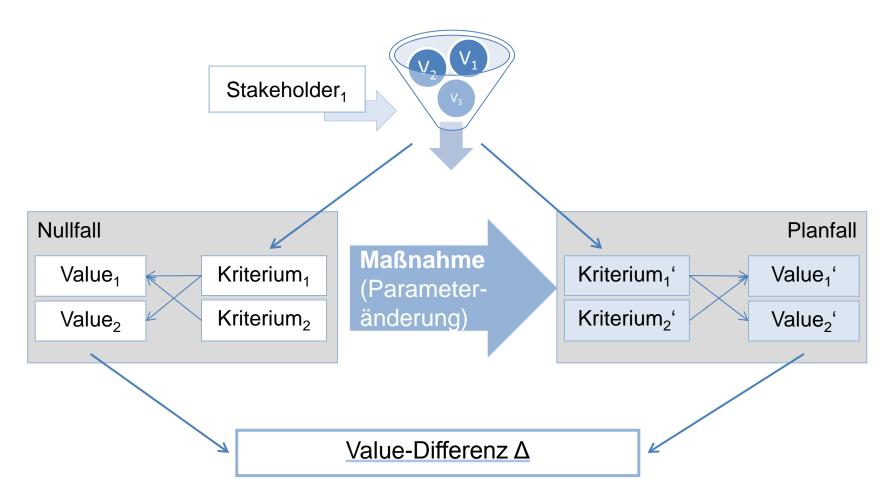
- Integrierte Bewertung: Vollständigkeit in der Darstellung der Wirkungen
 - Betriebs- und volkswirtschaftliche, gesellschaftliche und Umweltwirkungen
- Abbildung aus Sicht aller Interessengruppen (=Stakeholder)
- Transparente Darstellung der Wirkzusammenhänge
- Darstellung der Zusammenhänge zwischen Infrastruktur und Betrieb
- Beibehaltung der Wirkungsgrößen soweit möglich → Vermeidung von Monetarisierungsfaktoren

Stakeholderverfahren

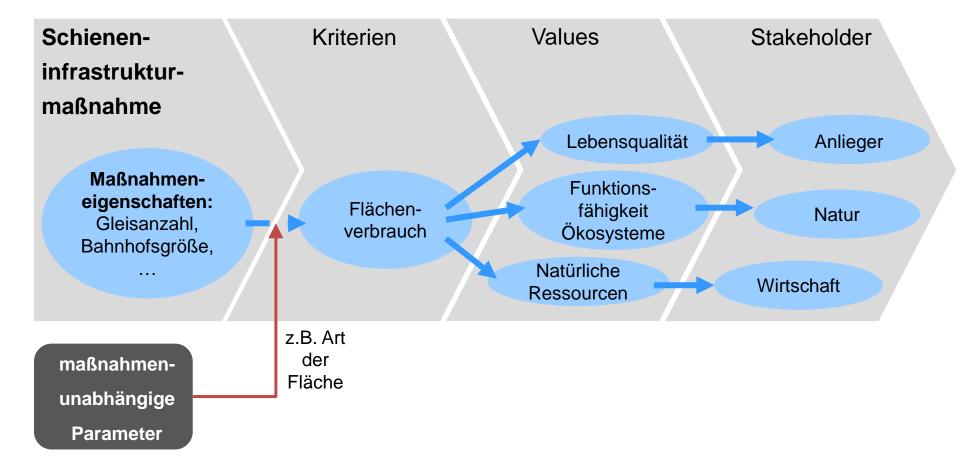

Wer hat ein Interesse?

Worin besteht dieses Interesse?

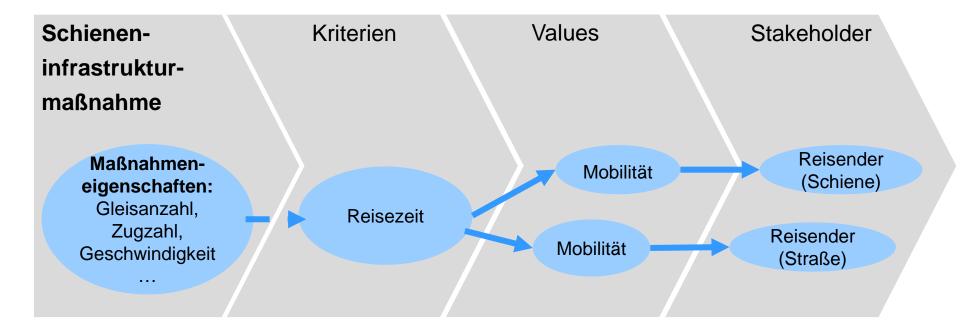
Welche Wechselwirkungen zu den Parametern der Infrastrukturmaßnahme bestehen?



Zielkonflikte

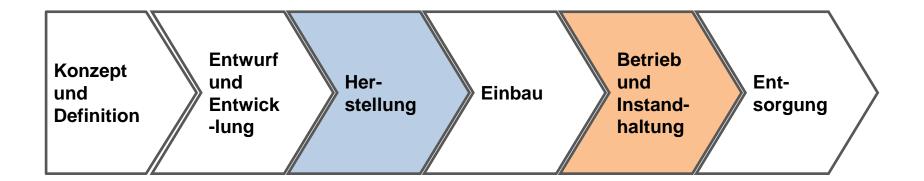


Zusammenhänge der Bewertungskriterien



Zusammenhänge der Bewertungskriterien

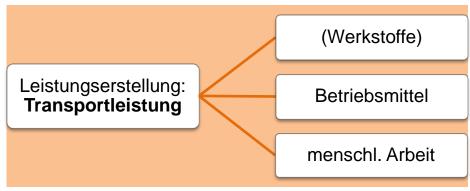
Zusammenhänge der Bewertungskriterien

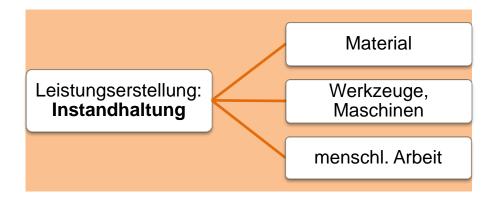


Darstellung von Wirkungsketten

- Zur transparenten Darstellungen der Wirkungen und Zielkonflikte
- Zur Darstellung verschiedener, Stakeholder-spezifischer Sichtweisen
- Als Diskussionsgrundlage für einen Dialog zwischen Stakeholdern
- Zum Vergleich der Vor- und Nachteile verschiedener Varianten oder Maßnahmen
- Zur Nachvollziehbarkeit von Entscheidungen über die Priorisierung von Schieneninfrastrukturmaßnahmen

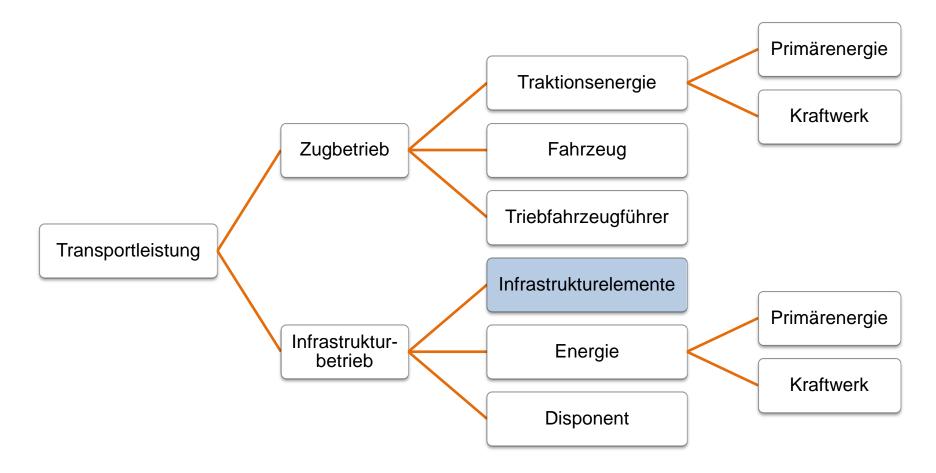
Lebenszyklus einer Schieneninfrastrukturmaßnahme



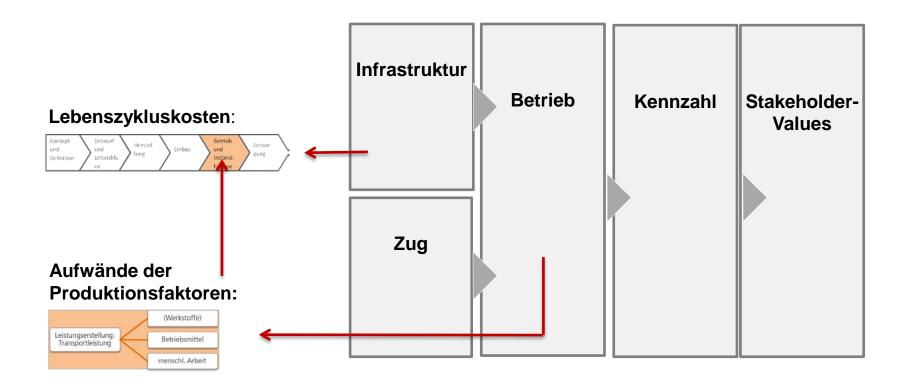

Stakeholder der Lebenszyklusphasen

Phase des Lebenszyklus	Kriterium	Interessengruppe	
Konzept und Definition	Kosten	Geldgeber	
Entwurf und Entwicklung	Kosten	Geldgeber	
Herstellung	Kosten	Geldgeber	
LST	Umweltbelastungen und Ressourcenverbräuche	Umwelt und Mensch global	
Einbau	Kosten	Geldgeber	
	Emissionen und Ressourcenverbräuche	Umwelt und Mensch	
LST	Emissionen, Landschaftsbild, Wertverlust Immobilien	Anlieger	
Instandhaltung und	Kosten	EIU und EVU	
Betrieb	Mobilitätsgewinn	Nutzer und Unternehmen,	
	Emissionen, Landschaftsbild, Wertverlust Immobilien	Anlieger	
Entsorgung LST	Kosten	Geldgeber	

Phase Betrieb und Instandhaltung

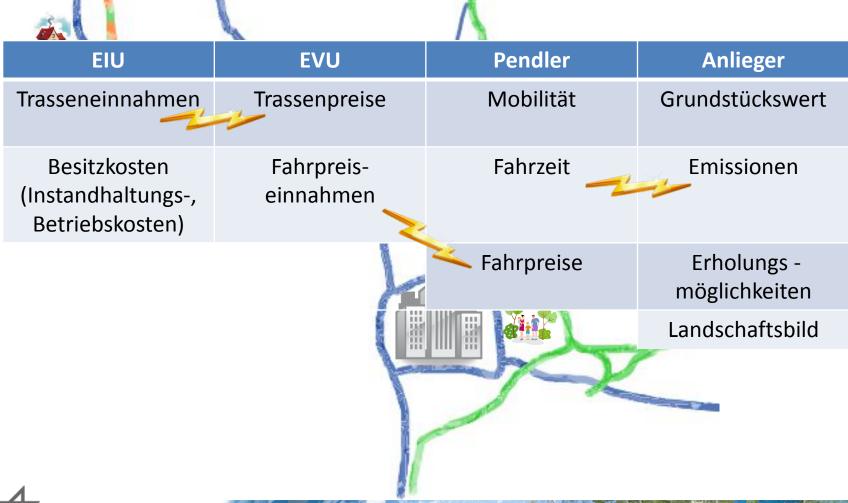


[Gutenberg, E. (1969): Grundlagen der Betriebswirtschaftslehre; Erster Band: Die Produktion, 16. Auflage, Berlin, Springer Verlag]

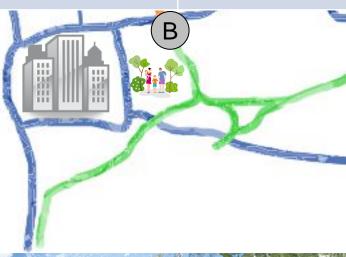


Produktionsfaktoren der Transportleistung

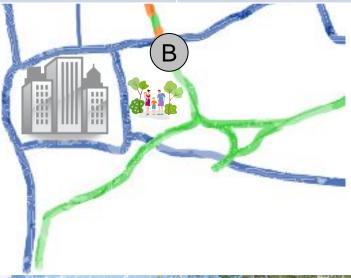
Bewertungsverfahren


Anwendungsbeispiel

- Reaktivierung einer Strecke
- Diskussion:
 - Betrieblich: Vorteile Personenverkehr vs. Nachteile Güterverkehr
 - Infrastruktur: Zusammenhang zwischen Maßnahme und Betrieb



Stakeholder und Zielkonflikte

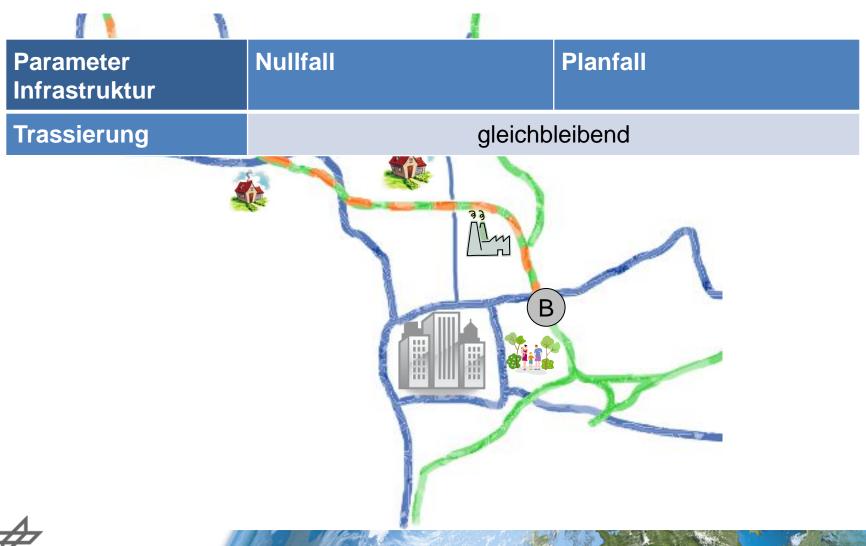


8 /	4	
Parameter Infrastruktur	Nullfall	Planfall
Oberbau	Schotter,HolzschwellenSchienenkopf: head checks etc	 Schotter: gestopft Betonschwellen Schienenkopf: geschliffen (regelm. Schienenschleifen)

1 1	4	
Parameter Infrastruktur	Nullfall	Planfall
Bahnhöfe	B: zweigleisigAusstattung: keine	B: zweigleisig
		A: zweigleisigAusstattung: P+R

N .	A .	
Parameter Infrastruktur	Nullfall	Planfall
Leit- und Sicherungstechnik	 Zugleitbetrieb* Weichen werden ortsgestellt Signaltechn. ungesicherte BÜ Signale: keine Blocklängen: Abstand Zuglaufmeldestelle 	 PZB Weichen elektrisch ferngestellt Signaltechn. gesicherte BÜ Signalisierung: Einfahr- und Ausfahrsignale an den Bahnhöfen A und B = 8 Signale Blocklängen: Abstand Bahnhöfe

*Zugleitbetrieb:


- Regelung der Zugfahrten mithilfe von Zuglaufmeldungen per Zugfunk zwischen Zugleiter und Zugführer
- Keine Signaltechnik erforderlich (ggfs. Rückfallweichen in Kreuzungsbahnhöfen), keine Signale an BÜs
- Maßgebend für Zugfolge sind Zuglauf(melde)stellen
- Strecken mit geringem und verhältnismäßig einfach strukturiertem Betriebsprogramm
- Streckengeschwindigkeit auf 80 km/h begrenzt (an Rückfallweichen 40 bis 50 km/h)
- i.d.R. 60-Minuten Takt
- Sicherheit abhängig von korrekten Zuglaufmeldungen

8		1	
Parameter Infrastruktur	Nullfall		Planfall
Oberleitung	Keine		• keine
4		B	

8	1	1	
Parameter Infrastruktur		Nullfall	Planfall
Anzahl Gleise Strecke)	(freie	• 1	• 1
4			B

Betriebliche Parameter	Nullfall	Planfall
Verkehrsart	Güterverkehr	 Personen- und Güterverkehr

Betriebliche Parameter	Nullfall	Planfall
Fahrplan Personenverkehr	• kein	12 Züge/ Tag/ Richtung

Betriebliche Parameter	Nullfall	Planfall
Fahrplan Güterverkehr	 2 Containerzüge / Woche 	 2 Containerzüge / Woche
	2 Müllzüge/Woche8 Schiebewandwagen (VW)	2 Müllzüge/Woche8 Schiebewandwagen (VW)

Betriebliche Parameter	Nullfall	Planfall
Fahrregime	• "Spitz"	Energieeffizient

Fazit

- Vielfältige Wirkungen auf unterschiedliche Interessengruppen
- Zielkonflikte
- Eingeschränkte Messbarkeit
- Komplexe Beziehungen der Parameter untereinander
 - Ziel: transparente Darstellung der Wirkungen
 - ...Integrierte Bewertung

Vielen Dank für die Aufmerksamkeit!

Kontakt:

Anja Bussmann anja.bussmann@dlr.de 0531-295-3520

Institut für Verkehrssystemtechnik Lilienthalplatz 7 38108 Braunschweig

