Institute of **Technical Physics**

Open Access Tools

Two-Temperature Model

 $C_e(T_e)\frac{\partial T_e}{\partial t_e} = \nabla [K_e(T_e)\nabla T_e] - \gamma_{ei}\cdot (T_e-T_i) + S(\vec{r},t)$ $C_i(T_i)\frac{\partial T_i}{\partial t} = \gamma_{ei} \cdot (T_e - T_i)$

Simulation Setup

- Aluminum target
- Gaussian laser pulse, $\lambda = 1064$ nm
- Normal incidence
- Φ = 0.19 0.37 0.74 1.49 2.97 J/cm²
- $\tau = 0.05 0.5 5 \text{ ps}$

IMD Results

3.10 2.89

2.48 2.07

1.65 1.24

0.83 0.41

Summary

EAM potential around normal state (IMD) vs. wide-range EOS (VLL)

 $\Phi = 0.19 \dots 0.37 \text{ J/cm}^2$ IMD: lower Φ_{th} (melt., ablation) than VLL

 $\Phi = 0.74 \dots 1.49 \text{ J/cm}^2$ IMD: ρ equiv. VLL, T_e and T_i higher than VLL

 $\Phi = 2.97 \text{ J/cm}^2$ IMD: Ionization (VLL) vs. extreme T_e (IMD)

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

Open Access Tools for the Simulation of Ultrashort-Pulse Laser Ablation

S. Scharring, D.J. Förster, H.-A. Eckel - DLR Stuttgart J. Roth - FMQ, University of Stuttgart M. Povarnitsyn - Joint Institute for High Temperatures, RAS Moscow

IMD - Molecular Dynamics

- Open-access software [1]
- FMQ Stuttgart
- γ_{ei}, κ_e const., c_e ∝ T_e

Simulation Details

- EAM-potential [2]
- Ionization neglected in EAM potential
- Input of absorbed energy from VLL
- 20 nm x 20 nm lateral, periodic boundary •
- 400 ... 850 nm thickness
- · Computation time:
 - 450 ... 700 ps x nm / day / CPU

VLL Virtual Laser Lab

- Online simulations [3]
- RAS Moscow
- γ_{ei} , κ_{e} wide-range model [4] • *c_e* and *c_i* from EOS [5,6]

Simulation Details

- Semiempirical multiphase EOS
- Ionization considered in EOS
- Computation of absorbed laser energy
- 1D simulation
- 1 mm bulk material
- Computation time: < 2 minutes

Knowledge for Tomorrow

