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Introduction 

 

We develop a miniaturized multi-antenna L-band receiver for robust global navigation systems (GNSS) in 

the framework of an industrial-academic publicly funded research project. In contrast to previous 

successful implementation [1], our goal is to provide the benefits of array processing on a smaller 

geometrical scale, where compactness is achieved by reducing both the size of the individual antenna 

elements as well as their inter-element distances. In order to maintain full diversity as required for robust 

satellite navigation algorithms, we employ a decoupling and matching network DMN as proposed earlier 

[2]. DMNs are passive circuits; they generate noise proportional to their ohmic losses. Since the DMN 

forms an integral part of the antenna, it must be connected directly to the feed ports of the array. 

Therefore, it must be placed in front of the first amplifier, resulting in a noise penalty that might outweigh 

the intended gain in diversity. So far, DMNs have often been considered lossless [3, 4]. To our 

knowledge, it has not yet been proven that real, i.e. dissipative, DMNs can be used beneficially for low-

noise receivers. 

 

In this paper, the noise contribution of the DMN is accurately taken into account in terms of the 

equivalent system noise temperature. We provide detailed insight into the noise performance of a small 

antenna array system, including a network exciting matched eigenmodes, low-noise amplifiers, and 

digital beamforming. It is shown that the DMN is necessary to reduce the equivalent noise contribution of 

the LNAs significantly, especially for full exploitation of pattern diversity. It is observed that noise 

matching using a DMN results in a reduction of the equivalent system noise temperature by up to a factor 

of three (or 4.8 dB) compared to the conventional version of an otherwise identical array. 

 

Model of the GNSS Diversity Receiver 

 
According to Fig. 1, the diversity receiver comprises four components: antenna array, DMN, LNAs, and 
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Fig. 1. Receiver model in full-diversity configuration: DN and MN denote the decoupling network and the 

matching network, respectively. SADMN indicates the combined S-parameter matrix of antenna array and DMN. The 

conventional configuration excludes the components inside the blue frame. 
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beamformer. The antenna is composed of a 2 × 2 array of corner-truncated square patches on RO3010 

with a grid spacing of d = λ/5. The overall size of the antenna is 10 cm × 10 cm. The measured right-hand 

circularly polarized (RHCP) radiative eigen-efficiencies are 56 %, 16 %, 6 %, and 1 % for modes #1 

(even), #2 (odd1), #3 (odd2), and #4 (π-mode), respectively. 

 

The DMN is implemented in two blocks. The first stage is composed of four 3-dB 180° hybrid couplers 

(Fig. 1). The measured S-parameters of the decoupled antenna array are fed into a lossy matching-

network model, designed with Agilent ADS, to achieve either power or noise matching to the LNA, 

depending on the operational strategy. 

 

Four inductively degenerated common-source cascode stages with lumped LC loads and input tanks were 

employed for low-noise amplification. They have been implemented in a commercial 0.35-µm CMOS 

process. Each amplifier was mounted to a standard FR4-based printed circuit board. Measurements 

revealed an input impedance of Zin = 50 Ω, a minimal noise figure of Fmin = 1.7 dB, a noise resistance of 

Rn = 6 Ω, and a noise-matching impedance of Zopt = (26 + j0.3) Ω. 

 

We consider a typical deterministic beamformer for determining the complex-valued weights for a 

desired direction of arrival (DoA) across the upper hemisphere. As we focus here exclusively on the noise 

contribution of the DMN, the spatial scenario is simplified to an interferer-free situation. The diversity 

capability of the antenna array plays no role in this case. 

 

Receiver Performance Characterization 
 

We use the carrier-to-receiver noise density ratio at the output of the beamformer as the figure of merit of 

the receiver. This is a convenient and straightforward approach since it contrasts the unequal influence on 

the carrier and noise components of the received signal. The carrier-to-receiver noise density ratio 

χ = C/N0 is a scalar value, with C and N0 the equivalent available carrier power and the equivalent 

available noise power spectral density, respectively, referred to the LNA inputs. C and N0 can be 

expressed in analytical form, incorporating measured far-field patterns, S-parameters, and noise 

parameters of antenna array, DMN, and amplifiers, respectively. 

 

The equivalent available carrier power is calculated from 

 HH H

Dsa M DMNt N( ) ( ) ( , ), ,φ θ φ θ φ θ=C C w G F F G w , (1) 

where Csat is the power received with an ideal RHCP isotropic antenna, and w is the vector of the 

weighting coefficients in the beamformer. The individual elements of the column vector F(ϕ,θ) denote the 

normalized complex-valued realized RHCP amplitude gain of the single antennas with respect to an *-

isotropic radiator. GDMN is the effective gain matrix of the DMN: 
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SDMN and SA are the S-parameter matrices of the DMN and the antenna array, respectively. SDMN,ij is the 

two-port equivalent S-matrix from port i to port j. The reference plane 1 refers to the interface between 

DMN and LNA, while plane 2 refers to the interface between DMN and antenna. The S-parameters of the 

LNA are irrelevant since they affect the carrier and noise signal components equally. If no DMN is 

included in the receiver, the gain matrix of the DMN simplifies to GDMN = I. 

 

We derive the noise power spectral density from the equivalent system noise temperature Tsys, referred to 

the LNA inputs: 
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The combined noise temperature correlation matrix of antenna array and DMN is calculated from 

 ADMN A

H
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where TA and TDMN denote the noise temperature correlation matrices of antenna array and DMN, 

respectively. TA includes noise received from the environment as well as from the antenna losses: 
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Tenv = 100 K is the assumed equivalent isotropic environmental temperature for GNSS conditions; 

Tamb = 290 K is the ambient temperature of the antennas. HA denotes the radiation matrix of the array: 
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TDMN can be obtained from the S-parameters of antenna array and DMN: 
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TDMN includes the noise occurring in the DMN as well as noise which is reflected back from the antennas 

due to mismatch and mutual coupling. The parameters in (7) read: 
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The contribution due to the amplifiers is calculated according to Warnick et al. [5]. The equivalent noise 

temperature correlation matrix is defined as: 
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where the S-matrices of array and DMN are combined as: 

 T T
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We assume that the noise generated by one LNA is uncorrelated with all other amplifiers. Therefore, the 

input-referred noise correlation matrices in (11) simplify to Tα = TαI, Tβ = TβI, and Tγ = TγI, in which Tα, 

Tβ, and Tγ are calculated from the measured noise parameters Fmin, Rn, and Zopt [6]. If no DMN is 

employed in the receiver chain, we have TDMN = 0, SDMN,11 = SDMN,22 = 0, and SDMN,12 = SDMN,21 = I. 

 

Results and Discussion 

 
To evaluate the system performance, χ = C/N0 has been calculated for Galileo E1-band signals where 

Csat  = −157 dBW [7]. In a first step, w was fixed to the respective eigenvectors, and χ was calculated for 

all directions across the upper hemisphere. The resulting noise temperatures with and without DMN are 

shown in Table I. It can be seen that noise matching reduces the system noise temperature for mode #4 

(π) by a factor of three, a truly significant improvement. Similarly, as depicted in Fig. 2, the maximum χ-

value is improved by approximately 10 dB for the π-mode, which is beneficial for robust satellite 

navigation in the presence of interferers. However, for the amplifier chosen, there is no clear advantage in 

terms of matching strategies, since Zopt ≈ Zin. In the next step, the direction of arrival was swept across the 

upper hemisphere, and the beamforming weights for each direction were used to calculate χ; the results 

are displayed in Fig. 3. It is evident that a DMN improves the system performance due to an increased 

matching efficiency. 

 

Conclusions 

 

The employment of a DMN in small antenna arrays results in an increased antenna noise temperature due 

to increased ohmic losses. On the other hand, it minimizes the amplifier noise contribution considerably, 

thus reducing the equivalent system noise temperature. Therefore, the use of a DMN for small antenna 



arrays displaying full diversity is not only beneficial but necessary for optimizing receiver performance. 

The analysis sketched here will be extended to null-steering or interferer-cancellation scenarios. 
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TABLE I 

EQUIVALENT NOISE TEMPERATURES 

 
    With DMN 

  
Without 

DMN 
 

Power 

matching 
 

Noise 

matching 

Mode  TA TLNA  TADMN TLNA  TADMN TLNA 

#1  156 171  169 156  148 145 

#2  144 439  242 171  223 151 

#3  203 216  221 152  200 158 

#4  74 1120  276 164  236 155 

Fig. 2. C/N0 for all spatial directions for fixed 

eigenmode excitation weights, without DMN (a), 

for power matching (b), and for noise matching (c). 

Highest and lowest values are given in the legends. 

(b) (c) (a) 

Fig. 3. C/N0 across the upper hemisphere after applying 

beamforming weights. Highest and lowest values are given in 

the legends. 


