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Abstract The first ever regional thermal properties map of Vesta has been derived from the temperatures
retrieved by infrared data by the mission Dawn. The low average value of thermal inertia, 30±10 J m�2 s�0.5 K�1,
indicates a surface covered by a fine regolith. A range of thermal inertia values suggesting terrains with
different physical properties has been determined. The lower thermal inertia of the regions north of the
equator suggests that they are covered by an older, more processed surface. A few specific areas have higher
than average thermal inertia values, indicative of a more compact material. The highest thermal inertia value
has been determined on the Marcia crater, known for its pitted terrain and the presence of hydroxyl in the
ejecta. Our results suggest that this type of terrain can be the result of soil compaction following the
degassing of a local subsurface reservoir of volatiles.

1. Introduction and Background

Determining the thermal inertia of the surface of an atmosphere-less body provides insight into the structure
and physical properties of that surface, giving indications on the type and history of the surface material
[Harris and Lagerros, 2002]. However, our knowledge of asteroidal thermal properties is still based on
relatively few data, mainly derived by disk-integrated measurements [see, e.g., Delbo et al., 2011] which
provide average results. Thermal inertia is a function of the thermal conductivity, the density, and thermal
capacity of the material and depends on regolith particle size and depth, degree of compaction, exposure of
rocks, and composition in the first centimeters of the surface. It is defined as TI = √Kρc (Jm�2 s�0.5 K�1), where
K is the thermal conductivity, ρ is the density, and c is the specific heat. It provides a quantified expression of
how fast a material is able to store heat during the day and to release it at night. As such, it is the key property
controlling surface temperature variations on airless bodies and is a sensitive indicator of the presence of
dust, regolith, or rock, since these materials are more or less thermally insulating. In general, unconsolidated
fines (i.e., dust) have low values of thermal inertia (5–30 Jm�2 s�0.5 K�1) [Putzig, 2006]; sand-sized particles
have higher values (i.e., about 400 Jm�2 s�0.5 K�1 for Mars [Mellon et al., 2000] and a still higher value for an
atmosphere-less body [Presley and Christensen, 1997]); and rocks and exposed bedrock have still higher
values (even larger than 2500 Jm�2 s�0.5 K�1) [Jakosky, 1986]. By considering thermal inertia together with
other observed surface properties, insight can be gained into the physical characteristics of the surface and
the geological processes by which the surface has been affected.

To derive the Vesta thermal properties map, the data acquired by the Visual and Infrared (VIR) [De Sanctis
et al., 2011] mapping spectrometer on Dawn [Russell et al., 2012] have been used. VIR operates in the range
0.25–5.1μm with an instantaneous field of view of 250 μrad. The region of the infrared spectrum between
3.5 and 5.1μm is dominated by the thermal emission of the asteroid’s surface. The measured radiance in this
spectral region has been used to determine surface temperature and spectral emissivity by means of
temperature retrieval algorithms [Keihm et al., 2012].

The VIR spatially resolved data (1.3 km/pixel), obtained during the Approach phase at a heliocentric distance
of 2.23 AU, have been the subject of the analysis discussed in this paper. The general behavior of surface
temperature on a global scale is mainly determined by latitude, season, and local solar time. Superimposed
on this general trend, smaller-scale variations can be due to local illumination conditions and to variations in
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the thermophysical properties in the first few centimeters of the Vestan soil. By comparing the measured
temperatures with theoretical values, we observe that maximum temperature is fairly high and attained
shortly after midday, both clear indications of a low thermal inertia.

2. Thermophysical Classification of the Surface of Vesta
2.1. The Thermophysical Model

In order to determine thermal inertia from measured temperatures, a thermophysical model is required.
Our model solves the heat conduction equation and provides the temperature as a function of thermal
conductivity, albedo, emissivity, and subpixel roughness ξ (see supporting information). Local illumination
and observing geometry have been derived from the detailed shape model of Vesta [Raymond et al., 2011]. A
layered terrain, with regolith on the surface and density increasing toward the interior, is assumed. Because
night temperatures are unavailable (VIR is only sensitive to temperatures> 180 K), it is impossible to reliably
disentangle the effects of thermal conductivity and subpixel roughness. The subpixel roughness can be
regarded as a measure of the surface irregularity at a scale smaller than the shape model (of the order of
20m) and larger than the thermal skin depth (of the order of 1 cm, expressed, in the case of the diurnal cycle,
as D= √KP/πρc, where P is the rotation period). It can be interpreted, for example, as the percentage of
cratered terrain with respect to flat terrain [Müller and Lagerros, 1998; Keihm et al., 2012]. High values of the ξ
parameter will increase the computed surface temperature, while low values, indicating a flatter surface, will
have an opposite effect.

2.2. Derivation of the Thermal Properties Map

The procedure followed in order to derive the regional thermal inertia values is now described. The observed
surface of Vesta has been divided in quadrangles of 5° latitude and 10° longitude. From the thermophysical
code, theoretical temperature curves are computed representing the average temperatures, at the
observation date, of each quadrangle, as a function of different values for the input parameters (thermal
conductivity and subpixel roughness). Three classes of material with increasing thermal conductivity, from
lunar dust to regolith, have been considered in the analysis. These parameters are changed, and the
temperature is calculated iteratively until the best match with the measured temperatures is obtained. We
were able to assign thermal inertia and subpixel roughness to most of the quadrangles in which the surface
of Vesta has been divided, as shown in Figure 1.

The subpixel values given for each class are only indicative of a trend (high, average, and low); due to the
unavailability of night temperatures, in many cases it is impossible to reliably disentangle the effects of
thermal conductivity and subpixel roughness in the derivation of thermal inertia values.

Figure 1. The thermal properties map of Vesta is superimposed on aMercator projectionmap (in the Claudia coordinate system,
here and in the rest of the paper, see http://sbn.psi.edu/archive/dawn/fc/DWNVFC2_1A/DOCUMENT/VESTA_COORDINATES/
VESTA_COORDINATES_121214.PDF). Color code is as follows: blue, VHL class; light blue, HL class; green, AA class; yellow, LH class;
and orange, VLH class.
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Five different classes have been identified by their associated values of thermal inertia and subpixel roughness:

1. Very low thermal inertia-high roughness (VLH) (TI = 10 ± 5 J m�2 s�0.5 K�1, ξ = 0.67 ± 0.02, orange in the
map). This type of terrain is characterized by a lower-than-average thermal inertia, which can be asso-
ciated with very fine, powdery material; this class covers almost uniformly all the longitudes in a
belt located north of the equator (latitudes 20°N–30°N). It is worth noting that the oldest terrains of
Vesta are found at these latitudes [Marchi et al., 2012].

2. Low thermal inertia-high roughness (LH) (TI = 20 ± 10 J m�2 s�0.5 K�1, ξ =0.67 ± 0.02, yellow in the map).
This class is the third most abundant, and its major occurrence is correlated with terrains mainly located
in the southernmost regions comprised between longitudes 240°E–360°E, close to the central pit
of Rheasilvia.

3. Intermediate thermal inertia-intermediate roughness (AA) (TI = 30 ± 10 J m�2 s�0.5 K�1, ξ = 0.44 ± 0.02,
green in the map). This is the most abundant class, grouping regions mainly found around and immedi-
ately below the equator.

4. High thermal inertia-low roughness (HL) (TI = 40 ± 10 J m�2 s�0.5 K�1, ξ = 0.2 ± 0.02, light blue in the map).
The regions pertaining to this class are only found within the green region. Various areas with relatively
high thermal inertia and low roughness are visible in the longitude range 0°–240°E; major regions are
notably around the Marcia and Calpurnia craters (0°–20°N, 180°E–220°E), the region of the Cornelia
crater (10°S–0°, 220°E–230°E), the region centered around the Publicia crater (0°–25°N, 60°E–100°E), and
the region north of the Lucaria Tholus (5°S–5°N, 100°E–140°E). Two of these areas partially cover spots
(on the Calpurnia and Cornelia craters), where patches of pitted terrain have been detected [Denevi
et al., 2012].

5. Very high thermal inertia-low roughness (VHL) (TI = 50 ± 5 J m�2 s�0.5 K�1, ξ =0.2 ± 0.02, blue in the
map). Only one quadrangle has been found with such a large thermal inertia value. This is roughly
coincident with one of the more intriguing areas on the surface of Vesta, the Marcia crater (5°N–10°N,
180°E–190°E), where pitted terrain has been found [Denevi et al., 2012].

3. Discussion

The resulting picture is that the surface of Vesta is dominated bymaterials with a low thermal inertia. The best
analog is probably the surface of the Moon, as depicted in Vasavada et al. [2012] and Bandfield et al. [2011]: a
surface whose thermal response is determined by a widespread layer of dust and regolith with different grain
sizes and density increasing toward the interior. Exposed rocks are probably scarce or even absent. The
average thermal inertia of Vesta can be defined as 30 ± 10 J m�2 s�0.5 K�1, in good agreement with the values
found by ground-based observations [Müller and Lagerros, 1998; Chamberlain et al., 2007; Leyrat et al., 2012].

The thermal inertia values derived from our analysis are not very different between them, but the surface of
Vesta cannot be considered uniform from the point of view of thermal properties. The different thermal
inertia and subpixel roughness values are suggestive of terrains with different physical properties, providing
constraints that complement geological and mineralogical interpretations of other spectroscopic and/or
morphological data of the Dawn mission.

It is interesting to note that the thermal inertia spatial distribution follows the global surface exposure ages
distribution as determined by crater counting in Raymond et al. [2011]; the impact that generated the
Rheasilvia crater caused a deep excavation in the Southern Hemisphere, totally obliterating any previous
feature present in the crater area [Schenk et al., 2012] and giving rise to the youngest terrains on Vesta.
Moving progressively away from the impact area, the blanketing due to the Rheasilvia event’s ejecta has been
less effective in masking the older terrains, thus giving weight to the association of northern regions with
older terrains. The surface soil comminution is directly related to the materials’ exposure times, and
consequently very fine, dusty soil materials could explain the low thermal inertia regions prevailing north of
the equator.

The other notable finding is related to the highest thermal inertia classes which are all located in the
quadrangles falling in the longitude range 20°E–230°E and bounded in latitude between 10°S and 25°N. This
region contains most of the quadrangles with the highest thermal inertia and is a low-albedo region
[Schröder et al., 2013]. It is also the region of highest abundance of OH�, as determined by the 2.8μm band
depth [De Sanctis et al., 2012b], and of hydrogen, as determined by the Gamma Ray and Neutron Detector
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instrument [Prettyman et al., 2012]. Those observations are consistent with the delivery of water and hydrogen
to Vesta’s regolith by the infall of carbonaceous meteoroids and subsequent mixing of carbonaceous materials
with the Vestan basaltic crust. The association of terrains rich in carbonaceous chondrite (CC) materials with
areas of comparatively large thermal inertia is certainly suggestive but poses also a question. CCs have lower
densities and lower thermal conductivity [Opeil et al., 2010] than basaltic material akin to howardite, eucrite, and
diogenite meteorites. This consideration would point to a lower thermal inertia rather than a higher one, as
observed on Vesta. Thus, the factor controlling the thermal inertia in these areas could be the degree of
compaction of the uppermost surface layers, higher than in other parts of the surface.

This same consideration applies to the highest thermal inertia area, which is partly coincident with the Marcia
crater (5°N–10°N, 180°E–190°E). This formation is well known for the pitted terrains in the crater floor and in
the ejecta [Denevi et al., 2012] and OH� presence mainly in the ejecta [De Sanctis et al., 2012a; De Sanctis et al.,
2012b]. The terrain in this area seems to have different structural properties, probably a higher compactness
level giving origin to higher thermal inertia values. Pitted terrains are a type of terrain, until now, besides
Vesta, found only on Mars [McEwen et al., 2007] and are thought to be originated by the devolatilization of
ice-rich material of possible exogenic origin.

Thermal inertia has been derived for a number of other Main Belt asteroids from ground- and space-based
observations [Delbo and Tanga, 2008; Müller and Lagerros, 1998; Müller and Blommaert, 2004; Coradini et al.,
2011]. At a global scale, Vesta’s thermal inertia is much lower than that of small asteroids and, even if slightly
higher, still compatible with that of the few large asteroids for which data exist, like 1 Ceres, 2 Pallas, 3 Juno,
65 Cybele, and 532 Herculina (Figure 2). The observed trend in diameter-thermal inertia [Delbo and Tanga,
2008] has been interpreted in terms of age and collisional evolution: large Main Belt asteroids, over hundreds

Figure 2. Thermal inertia of Main Belt asteroids with respect to the diameter: the data (with the exception of Vesta) are taken from literature [Delbo and Tanga, 2008;
Müller and Lagerros, 1998; Müller and Blommaert, 2004; Coradini et al., 2011]. The thermal inertia of smaller (less than 100 km) asteroids is clearly higher than that of
larger bodies, even taking into account the uncertainties due to the different techniques used to derive the results reported in the plot.
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of millions of years of evolution and exposure to the space environment, have developed on the surface a
fine regolith layer gardened by small impacts. This insulating surface layer is at the origin of the low thermal
inertia values that seem to be typical of the larger Main Belt bodies. By contrast, smaller bodies can have quite
different collisional histories, often being the final product of disruptive events. Small Main Belt asteroids
have lower values of surface gravity, making it difficult to retain smaller particles. Coarser material, and even
exposed bedrock, is probably not rare, resulting in more thermally conductive topmost layers, explaining the
tendency for higher thermal inertia values in the case of smaller asteroids.

Vesta has many physical and petrologic characteristics, including thermal inertia closer to that of a small,
airless planet or a large satellite than that of an asteroid [Russell et al., 2012; Jaumann et al., 2012]. The
comparison with Mercury and Earth’s Moon is thus appropriate in this context. The average value of thermal
inertia that can be attributed to Mercury [Morrison, 1970] is 67 Jm�2 s�0.5 K�1. The average thermal inertia
that can be attributed to the Moon is instead around 35 Jm�2 s�0.5 [Keihm, 1984]. Being strongly dependent
on temperature, thermal inertia of bodies orbiting far from the Main Belt cannot directly compare with the
thermal inertia of asteroids. If we scale the Mercury and Moon thermal inertia to the heliocentric distance of
Main Belt asteroids, their thermal inertia values are comparable or even lower than that of Vesta.

With respect to asteroids, planet-sized bodies have had a different evolutionary history, mainly driven by
differentiation and tectonic evolution. Their global thermal inertia values are thus likely the result of
averaging over areas with considerably different properties. For instance, on the Moon, values of thermal
inertia higher than 1000 Jm�2 s�0.5 K�1 [Bandfield et al., 2011] can be found locally, at a scale much smaller
than that of the data analyzed in this work. On Vesta, from the analysis of temperature images at higher
resolution, a great variability is seen at a local scale, with different material deposits giving rise to a variety of
temperature anomalies [McCord et al., 2012]. These anomalies in temperature could correspond to thermal
inertia variations with respect to the surrounding areas, as in the case of Marcia crater.

Vesta certainly shares with Mercury and the Moon a complex evolutionary history, recorded also in its
thermophysical properties. Similar to the Moon, Vesta shows thermal inertia variability on its surface,
corresponding to differences in age, topography, composition, and albedo. Vesta is much more similar to an
atmosphere-less planet than to a large asteroid. The diversity of Vesta and the high variability found in its
surface thermal properties strongly point to its uniqueness in the general context of asteroids.
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