Impact of road traffic emissions on tropospheric ozone

Mariano Mertens¹, Eleni Tsati¹, Astrid Kerkweg², Volker Grewe¹, Patrick Jöckel¹ and Rainer Friedrich³

¹ Institute for Atmospheric Physics, DLR, Oberpfaffenhofen, Germany
² Institute for Atmospheric Physics, University of Mainz, Germany
³ IER, University of Stuttgart, Germany

Wissen für Morgen

COSMO User Seminar 2014

Aim of this study

- What is the contribution of road traffic emissions on the production of ozone in the troposphere over Europe (Germany)?
 - Impact of different resolutions
 - Evaluation of mitigation strategies

- Why ozone?
 - Tropospheric ozone has noxious effects
 - Negative effects on plants and other creatures
 - Ozone acts as greenhouse gas in the troposphere

Road traffic emissions

- $_{\text{-}}$ Emitted NO, CO and NMHC emissions are precursors of ozone
- Road traffic is an important source of anthropogenic emissions

Tropospheric ozone chemistry

- Photochemical cycle with NO_x as a catalyst

 $NO_{2} + h \nu \rightarrow NO + O$ $O_{2} + O + M \rightarrow O_{3} + M$ $NO + O_{3} \rightarrow NO_{2} + O_{2}$

- Radicals from CO/NMHC oxidation can affect this cycle, leading to NO $_{\rm 2}$ production from reactions of NO and oxidation products without destroying O $_{\rm 3}$

Tropospheric ozone chemistry is strongly non linear

Ozone (nmol/mol) as a function of anthropogenic NO_x and NMHC emissions for a regional model of the USA. Sillman et al. 1990

Quantifying the contribution of different sources

- Perturbation approach: Comparison between a base simulation and a simulation with changed emissions
 - Taylor approximation with a linearization around base simulation assuming same chemical background in booth simulations
- Tagging approach: Accounting system following the relevant reaction pathways

Quantifying the contribution of different sources

- Perturbation approach only suitable to investigate the effect of reduced/increased emission scenarios
- Tagging approach suitable to quantify the contribution of a certain emission sector

Details of the tagging method

The basic idea: Track the reaction path of the species from different sources
emissions

- Contribution of a certain sector (j) on a specie (i) [for details see Grewe 2013]

$$\frac{\partial}{\partial t} x_i^j = P_i^j(t) + F_i(\vec{x}) \frac{\vec{x}^{j^T} \nabla F_i(\vec{x})}{\vec{x}^T \nabla F_i(\vec{x})}$$

- Simple example:

$$\frac{\partial HNO_2 \rightarrow HNO_3}{\partial t} = \kappa OH \cdot NO_2 = P_{HNO_3}$$

$$\frac{\partial \text{HNO}_{3}^{j}}{\partial t} = \frac{1}{2} P_{\text{HNO}_{3}} \left(\frac{\text{OH}^{j}}{\text{OH}} + \frac{\text{NO}_{2}^{j}}{\text{NO}_{2}} \right)$$

Details tagging submodel

- Diagnostic species added to chemical system to calculate production and loss rates
 - With these (and the known emissions) the tagging DGL can be solved
- Problem: Number of different species is very high. To keep memory demand feasible a family approach is chosen (see Grewe 2004)
 - NMHC and NO, treated as families
- **5 tagged species**: O3, NO_v , NMHC, CO and PAN
- **10 tagged categories**: Lightning, biomass burning, industry, traffic, ship, aviation, N2O degradation, CH4 degradation and impact from stratosphere
 - 50 additional tracers for tagging
- Computational costs approx 15% of total walltime
- Tagging increases largely the demand for memory, but computational costs only slightly

Details of the model system

- MECO(1) setup (Kerkweg & Jöckel 2012a/b)
 - Global EMAC instance with T42L31ECMWF (up to 10 hPa)
 - COSMO/MESSy nest over Europe with 0.5x0.5° resolution
 - 1 way on line coupled
 - tagging submodel working global and regional

Details of the model system

- Setup is based upon the REFC1 setup for ESCiMo consortia simulations¹
 - detailed atmospheric chemistry module MECCA (Sander et al. 2005)
 - CCMI emission dataset for anthropogenic emissions (0.5° resolution)
 - EMAC instance is nudged with ECMWF operational analysis data

¹ details see: www.pa.op.dlr.de/~PatrickJoeckel/ESCiMo/

Tropospheric ozone column January 2008

Tropospheric ozone column January 2008

NOy road sector at lowest model layer (January 2008)

Tropospheric ozone column May 2008

Tropospheric ozone column May 2008

NOy road sector at lowest model layer (May 2008)

Conclusion and outlook

- Tagging submodel allows a detailed study of the contribution from different sources on ozone chemistry
- Consistent model chain from global to regional resolution allows a detailed comparison of global and regional effects
- First results show, that there is only a minor difference between the EMAC model and the COSMO/MESSy nest for the tropospheric ozone column
 - short lived species can show big differences
- Detailed evaluation of the simulation and tagging results
 - comparison with observations
 - difference of long lived and short lived species
 - detailed analysis of production/loss ratios
- Nests with higher resolution over Germany (using detailed regional emissions)

