
Modelling Functionality of Train Control Systems
using Petri Nets

Michael Meyer zu Hörste
and Hardi Hungar

German Aerospace Centre (DLR)
Institute of Transportation Systems

Lilienthaplatz 7, 38108 Braunschweig, Germany
Email: {Michael.MeyerzuHoerste,Hardi.Hungar}@dlr.de

Eckehard Schnieder
Technical University Braunschweig

Institute for Traffic Safety and Automation Engineering
Langer Kamp 8, 38106 Braunschweig, Germany

Email: E.Schnieder@tu-bs.de

Abstract—Railway safety systems are highly complex systems
with respect to functionality as well as dependability. The new
European Train Control System (ETCS) as one part of the
European Rail Traffic Management System (ERTMS) is the
example presented here. A formal model using Coloured Petri
Nets (CPN) was prepared by using the existing ERTMS/ETCS
specification as a basis. The applied method is an integrated event-
and data-oriented approach, which shows the different aspects of
the system on their own Petri Net levels. The model comprises
three sub-models with a model of the environment developed next
to the onboard and trackside systems. This environment model
covers all the additional systems connected through the system
interfaces, examples of which are interlocking or regulation.
Starting from a net representing the system context, the processes
of the onboard and trackside sub-systems were modelled. Here,
the different operations and processes are visualized in the form
of scenarios, which in turn have access to additional refinements
representing specific functions.

I. INTRODUCTION

Complex systems as train control systems are specified
by many functional, safety-related or other requirements.
Showing completeness and consistency of these requirements
is a quite difficult task. In the case of ETCS many documents
- so-called Subsets - have been written for different purposes.
Characteristics of these documents are that they specify
different aspects, are based on each other, and have different
objectives [1], [2]. From this follows that there are separate
documents for specific sub-functions and sub-systems which
specify a certain segment of the requirements made on the
system, a phenomenon which is most apparent with the central
systems which immediately adjoin the interoperable interfaces.
The documents can be seen as forming a specification network
interlinked by references and cross-references. All this means
that, in order to finalize specification work and set about
implementation, the specification has to be proved to be
fully consistent, and system operability has to be verified; it
should also be checked that the system suits the operational
conditions of the different railway operators and countries.
In the past, a multitude of highly diverse methods and
means of description, employing specific computer tools or
even manual operations, were used to meet these requirements.

The basic architecture of ETCS exhibits an air gap between
the trackside and the onboard subsystems. In one typical

equipment configuration, the trackside is realised by a Radio
Block Centre (RBC) which sends messages by radio to the
Onboard Unit (OBU). The model developd follows this system
structure and adds a third part, which is the common system
environment. More details can be found in [3]. The Fig. 1
shows the structure.

Fig. 1. Example train control system architecture

Central aspects were the air gap and the EuroBalise in-
terface, which were to be modelled with as much detail as
possible and in compliance with the System Requirements
Specification [1].

II. SOME DEFINITIONS

A. The term ’model’

A model can in a general way be characterised by three
properties: a model represents part of the reality, and of that
reality those features that are of relevance for the immediate
purpose of the model; other features that are without relevance
for the purpose of the model are only presented in a reduced
form. The model serves a specific purpose; this characteristic
of a model is referred to as pragmatics. A model can serve to
describe certain conditions, it can provide insights, or it can
replace a real system.

B. Means of description, method and tool

The GMA sub-committee 1.8.1 “Standardisierte Beschrei-
bungsmittel in der Automatisierungstechnik” (Standardised
means of description in automation engineering) provides the
following definitions for the terms ’means of description’,
’method’ and ’tool’ [4]:



Means of description: A means of description describes
graphically certain conditions for visual percep-
tion and storing. Means of description are al-
phanumeric signs, symbols and other graphic ele-
ments of representation (semiotics,) and also con-
ventions on how these can be combined (syntax).
Assigned to the different elements of representa-
tion, their possible combinations and allocations
are specific conditions and concepts from a certain
context, which may be specified in a more or less
detailed and formal way (semantics).

The following distinctions are made:

Formal means of description: Has a mathematical basis
and a defined and complete syntax.

Semi-formal means of description: Has a defined and
complete syntax, not, however, a mathematical
basis.

Informal means of description: Also possesses the char-
acteristics of a means of description (semiotics,
syntax, semantics), these are, however, not always
complete.

The means of description used in modelling ERTMS/ETCS
are coloured and hierarchic Petri nets, since the aim is to ex-
amine whether these offer the possibility of using one uniform
means of description for the entire development cycle, starting
with the specification through to implementation. Above and
beyond that, Petri nets provide the required capacity that allows
different methods to be used during one single phase of the
development cycle and also phase-specific methods [5].

Method: A method is a procedure, systematic both in
terms of the point in question and the purpose,
following a set of principles and designed to
produce insights and practical results.

In the project presented here, an integrated method was
used, which has both a data and event-related orientation. It
provides for visualization of the sub-system processes, but also
of the operational processes in the form of scenarios, and of
the functions in individual nets.

Tool: Designed to assist man in or during the production
of results. Today, the term ’tool’ is normally
understood to mean ’realised by computer systems
(hardware / software)’.

Following comparative investigations and studies, De-
sign/CPN was selected as tool for this project. The decision
was not least taken because of the fact that it provides for a
reachability analysis [5], [6].

III. MODEL STRUCTURE

A. Principles of the Net Structure

For ERTMS/ETCS modelling it was decided to visualize
system context, sub-system process, operational processes in
the form of scenarios and functions in an integrated manner.
For this purpose, nets are decomposed to reflect these four
aspects in four levels (see Table I).

TABLE I. THE DIFFERENT LEVELS OF NETS WITHIN THE MODEL

Level Content
Context System and relation to system envirnoment (Architecture)
Process System and interfaces (Interfaces)
Scenario Reactive sequence of messages and events (Event-Sequence)
Function Details of functional steps with respect to an event (Functionality)

B. Overall Model / Context Net

The system context is depicted on the uppermost level.
This net comprises the two modelled sub-systems onboard
system and RBC. All the other sub-systems are comprised in
the environment, they may, however, be further refined during
a later phase of modelling work.

Fig. 2. Petri Net model level 1: System context

This net corresponds to the formal representation of the
system architecture in Fig. 1. On this level, all the interfaces
are defined as uni-directional channels.

C. Nets on the Process Level

The next level is formed by the nets of process visualiza-
tion. This level defines what scenarios can be passed in what
sequence.

In a central position are the transitions and places that pro-
vide additional application logics. To the right and to the left
are two dark-grey boxes, which accommodate the interfaces
to the outside. Messages sent to a receiver or received by a
sender are combined in one place. At the train end the right-
hand box, and at the RBC end the left-hand box, is reserved
for communications between train and control system.

D. Scenario Nets

The different scenarios are refined with two more aspects.
The interfaces are disintegrated until individual messages are
singled out. For each message there is a transition, referred
to as driver, which is responsible for translating the message
from the general data type ”message” into the required context



Fig. 3. Petri Net model level 2: Process

specific type. In this context, messages are defined strictly in
compliance with the definitions in chapters 7 and 8 of the
System Requirements Specification [1]. In the nets themselves,
the sequence of events is shown. The possibility of parallel
event sequences as a function of specific initial situations and
stimulations is given due consideration. Used as a basis here
is SRS [1] and the related low-level documents.

Fig. 4. Petri Net model level 3: Scenario

These nets comprise three areas: the application logics is
again located in the centre, while the two boxes with the
interfaces are located at the outer left and right. Next to the
interfaces is a box designated radio driver and interface driver,
respectively. All transitions in these boxes start with ’send’ or
’receive’; they comprise the receive or send logics for a specific
message. This is why between these boxes and the application
logics there are one or several more dark-grey boxes, providing
one place for each individual message. The name of these
boxes starts with ”messages”. This overall structure is common
to all scenario nets.

E. Functional Nets

The functions, if explicitly modelled, form a net level of
their own, and are visualized in the following way.

The nets on this level are much simpler in structure: they
only show the transition refinements. This is why they do not
have any interfaces with external systems, even if the transition
itself has such interfaces. Communication is safeguarded by the
higher (scenario) level net. The net logics is accommodated in

Fig. 5. Petri Net model level 4: Function

a box delimited by a dashed line; the inputs and outputs of the
transitions of the higher-level net are outside this box.

IV. RESULTS

A. Model Complexity and Performance

ERTMS/ETCS system modelling has to date proceeded
to the degree of complexity given in Table II. As modelling
aims at providing a detailed visualization of the air gap, the
environment model only serves to produce stimulations, which
is why the environment model was not taken beyond the
required abstraction level.

TABLE II. MODEL COMPLEXITY

Onboard RBC Environment
Number of nets 75 87 6
Net elements 1,075 1,411 97
Places 734 954 65
Transitions 341 457 32
Hierarchy levels 7 7 3
Lines of code 15,500 12,500 0
(incl. comments)

The model performance can be subdivided into two groups.
On the one hand, modelling itself has achieved a number
of aims: the SRS has been modelled in a formal way, the
interface that has a central role to play for interoperability,
i.e. the air gap between track and train, has been visualized,
and the operational processes have been shown in the form
of scenarios. A second group is represented by the simulation,
which implies both simulation of the operational processes and
simulation of the supervision functionality.

One may compare the modeling approach chosen here,
namely to use Petri nets, to one emplying state machines
from the UML. Both share the idea of introducing hierarchy
to offer views at different levels of detail. A main difference
lies in the form in which the communication mechanism is
represented. The Petri net model represents communications
(or communication relations) explicitly in a graphical form
via places and tokens. This is in particular helpful when
communication is a major concern, as it is the case with the air
gap. State machines would rather use events, i.e., non-graphical
elements. This gives per se more readable results when entities
partake in many activities. Here, this occurs at level 4. Our
Petri net model employs “shared places” to remain readable.
These are places like the one on the right in Fig. 5, which
appear in more than one net.



B. Quality Assurance of the Specification

Validation of the model is, of course, an important aspect.
The precise goal of the validation will depend on the purpose
for which the model is to be used. Manual techniques like in-
spections or reviews [8], [9] common for program verification
can be transferred to semi-formal and formal models.

These manual techniques can be complemented by model
animations and simulations, or by specific analyses. Some
reachability analyses have already been done, in which in-
dividual scenarios and sequences of scenarios were used as
examples. See Fig. 6 for an example visualisation of the results.
Extended analyses will have to be the subject matter of future
work. They can provide information on the possible sequences
of execution of the model.

V. USE OF THE PETRI NET MODEL

A. Safety Standards / Certification Support

The formal model can assist in furnishing the proof of
safety standards. Formal description of the system at the same
time provides a clear and unequivocal definition of the system
behaviour. On this basis system implementation can be tested
with reference to the model, and the system behaviour can be
checked for given conditions and also in an abstract manner,
in the form of an analytical procedure.

B. Use for Test and Validation of Products

In this respect, the model will serve as a reference for the
behavior of the product. There are different forms of relation
between model and product behavior.

1) Abstract observer: Each of the different levels of the
Petri net can be viewed as an abstraction of the real system. A
formal definition of the abstraction relation will map concrete
traces to abstract ones (more generally, it may relate the trace
sets). Then, any animation, simulation, test, or field observation
of an implementation yields traces which can be checked for
consistency with the model. This is a standard use case for
any kind of model which has an operational semantics.

On the other hand, such observations on an implementation
may also be seen as a check for the correctness of the model.
In system development, abstract specifications done in early
design steps are often not correct in a strict interpretation of
this term. For instance, they may be too restrictive (overspec-
ification) or lack important detail (error handling, effects of
low-level timing). Such discrepancies, if uncovered, can be
used to correct or complete the model. Checking the observer
relation is thus a means to arrive at a consistent development
documentation.

2) Test construction: The scenario and functional nets pro-
vide (as indicated above) abstract view of the behavior of the
implementation. These can obviously also be used as skeletons
of test cases. To turn them into applicable test cases, the
skeletons will have to be parameterized, translated to technical
interfaces of the unit under test, and turned into executable
scripts with stimuli specifications and pass/fail criteria. In other
words, one may derive a test specification from the Petri net
model by systematically covering the model.

3) Supporting hardware-in-the-loop tests: The approach
sketched above is a way in which a single activity, namely
test derivation, in standard development processes may be
improved. There are more ambitious scenarios, in which test
execution and the development itself might be modified. Thes
require further extensions to the model.

Presently, simulations of the model are made off-line, and
timing is discrete in the form of discrete steps of sequences
of events. Real-time simulations of models presuppose that
in modelling the system, aspects of the real-time mode are
given due consideration. I.e., the model needs a real-time
interpretation, for which some additions to the model will be
necessary. Also, a real-time compatible tool for simulating the
model is needed.

Adequate modelling and hardware provided, the simu-
latable model can support tests in the form of hardware-
in-the-loop tests. For such tests, part of the real system is
replaced by a simulation using suitable hardware, and one or
several parts of the system are linked in the form of their
implementation. This procedure allows hardware components
to be tested individually.

An overview about different simulations for validation and
hardware-in-the-loop tests are given in the table III taken from
[3]. “sim.” means here simulated. The bold numbers show the
target system of the test.

TABLE III. SIMULATIONS AND TESTS

onboard trackside
sim. real sim. real

Aim

1-2 0 1 0 Validation of oeprational procedures
0 1 1 0 Test and validation of onboard subsystem

1-n 0 0-m 1 Test and validation of trackside subsystem
0-n 1 0-2 1 Validation of Interoperability
0 1 0 2 trackside handover

2-n 0 0-m 1 Stresstest

4) Interface Generators: A simulatable model can be used
to supply the interfaces of a real or simulated system with
stimulations. Possible approaches are presented in [7].

5) Code Generation: Generally executable models can be
transformed into software code. Analysed are the following
three options of generating executable codes:

1) Automatic source code generation, which is followed
as a second step by conventional compilation.

2) Compilation of the Petri net itself to produce an
executable code.

3) Execution of the net itself in the form of a system.
Within the meaning of the definition of the term
’model’ this implies that the system is substituted by
a model and its hardware.

VI. CONCLUSION

On the basis of the System Requirements Specification
and the relevant documents [1] an ERTMS/ETCS model was
developed. This model visualizes the system in the form of
three Petri net models. The onboard and trackside systems
together form the core which is embedded in a model of
the environment. The two core models reflect the aspects of
the sub-system context, of the processes proceeding within



Fig. 6. Occurence Graph of Transition Level 1 to Level 2/3

the sub-systems, of operational processes in the form of
scenarios and specific functions. In developing these models,
a combination of three elements was used: Petri nets as
a means of description, an integrated method and the tool
Design/CPN. It was demonstrated that during the phases of
system development, covering the system specification through
to the final system design, a model based on Petri nets can be
used.

REFERENCES

[1] UNISIG: ETCS Subset 026 - SRS. System Requirements Specification.
[2] UNISIG: TIU FFFIS. 97E117 Version 1.0.
[3] Meyer zu Hörste, M.: Methodische Analyse und generische Modellierung

von Eisenbahnleit- und -sicherungssystemen. Fortschritt-Berichte VDI.
Series 12, No. 571, Düsseldorf, 2004 (In German).

[4] GMA Unterausschuss 1.8.1 Standardisierte Beschreibungsmittel in der
Automatisierungstechnik: Glossar. Braunschweig, 1998. www.ifra.ing.tu-
bs.de/gma181/glossar.htm.

[5] K. Jensen: Coloured Petri Nets, Volume 1, Monographs in Theoretical
Computer Science. Springer-Verlag, Berlin u.a. , 1992.

[6] Design/CPN: Occurrence Graph Analyser-Manual. Version 3.0, Aarhus,
1996.

[7] H.-M. Schulz: The complexity of technical testing. FORMS’98, Braun-
schweig, 1998.

[8] M. E. Fagan: Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal, July 1976, pp 182–211, reprinted
1999, pp 258–287.

[9] E. Yourdon: Structured Walkthroughs. Prentice-Hall, Englewood Cliffs,
NJ, 1979.


