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ABSTRACT:

Accurate knowledge of position and orientation is a prerequisite for many applications regarding unmanned navigation, mapping, or
environmental modelling. GPS-aided inertial navigation is the preferred solution for outdoor applications. Nevertheless a similar
solution for navigation tasks in difficult environments with erroneous or no GPS-data is needed. Therefore a stereo vision aided inertial
navigation system is presented which is capable of providing real-time local navigation for indoor applications.
A method is described to reconstruct the ego motion of a stereo camera system aided by inertial data. This, in turn, is used to constrain
the inertial sensor drift. The optical information is derived from natural landmarks, extracted and tracked over consequent stereo image
pairs. Using inertial data for feature tracking effectively reduces computational costs and at the same time increases the reliability due
to constrained search areas. Mismatched features, e.g. at repetitive structures typical for indoor environments are avoided.
An Integrated Positioning System (IPS) was deployed and tested on an indoor navigation task. IPS was evaluated for accuracy, ro-
bustness, and repeatability in a common office environment. In combination with a dense disparity map, derived from the navigation
cameras, a high density point cloud is generated to show the capability of the navigation algorithm.

1 INTRODUCTION

Many applications for indoor environments as well as for outdoor
environments require an accurate navigation solution. GPS aided
inertial navigation is widely used to provide position and orienta-
tion for airborne and automotive tasks. Although this is working
very well it has major weaknesses in difficult environments with
erroneous or no GPS data, e.g. urban areas, forested areas or in-
door environments as needed for robotic applications or indoor
3D reconstruction tasks.
Due to errors inherent to inertial sensors, the pure integration
of inertial data will lead to an unbound error grow, resulting in
an erroneous navigation solution. Reasonable measurements of
an additional sensor are needed to restrain this errors. Some
proposed solutions require active measurements, e.g. radar, laser
range finder, or local infrastructure which have to be established
first (Zeimpekis et al., 2003). On the other hand vision can pro-
vide enough information from a passive measurement to serve as
a reference. As no local infrastructure or external references are
used it is suitable for non-cooperative indoor and outdoor envi-
ronments. A stereo based approach was preferred to obtain 3D
information from the environment which is used for ego motion
determination. Both, inertial measurements and optical data are
fused within a Kalman filter to provide an accurate navigation
solution. Additional sensors can be included to achieve a higher
precision, reliability and integrity.
The Integrated Positioning System (IPS) includes a hardware con-
cept to guarantee synchronized sensor data as well as a software
design for real time data handling and data processing (Grießbach
et al., 2012). IPS was evaluated for accuracy, robustness, and re-
peatability in a common office environment. In combination with
a dense disparity map, derived from the navigation cameras, a
high density point cloud is generated to show the capability of
the navigation algorithm.

2 INTEGRATED POSITIONING SYSTEM (IPS)

A multi-sensor navigation system for the determination of posi-
tion and attitude of mobile devices was developed. The naviga-
tion is based on a strapdown algorithm which integrates inertial
measurements to achieve position and attitude. A method is de-
scribed to reconstruct the ego motion of a stereo camera system
aided by inertial data. This, in turn, is used to constrain the in-
ertial sensor drift. Both, inertial measurements and optical data
are fused within a Kalman filter to provide an accurate navigation
solution. To produce real-time high level information from low
level sensor data, a hardware concept to guarantee synchronized
sensor data and a software framework to implement hierarchic
data flows is needed.

2.1 Inertial Navigation

Inertial navigation systems (INS) consists of an inertial measure-
ment unit (IMU) containing a triad of gyroscopes and accelerom-
eters and a computing unit to integrate the measurements.
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Figure 1: Strapdown mechanization
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Figure 1 shows the integration of the IMU signals by means of the
well known strapdown mechanization (Titterton and J.L.Weston,
2004). The superscripts b and n are standing for body-frame and
navigation-frame respectively. The navigation frame has an arbi-
trary origin with its axes aligned to the local tangent plane. Some
difficulties arise when integrating measured angular velocity ω̂b

and accelerations âb. Besides systematic scaling errors and errors
from axis-misalignment which can be corrected beforehand, the
bias terms ωb

bias, ab
bias are unknown from switch-on to switch-

on and also varying with temperature and time. This leads to a
strong drift in attitude qn

b , velocity vn, and position sn if left un-
compensated.
First, the quaternion update is calculated as follows:

qn
b,tk+1 = qn

b,tk
◦ (1,ωb∆t/2)T , (1)

with the corrected angular rateωb = ω̂b−ωb
bias and qn

b,tk
repre-

senting the rotation from body-frame to navigation-frame at time
tk. The operator ◦ describes a quaternion multiplication. For
the velocity update, the change in velocity is calculated from cor-
rected acceleration measurement ab = âb − ab

bias with

∆vb = ab
tk+1∆t+

1

2
ωb

tk+1∆t× ab
tk+1∆t, (2)

and rotated to the navigation-frame with(
0

∆vn

)
= qn

b,tk
◦
(

0
∆vb

)
◦ qb

n,tk
. (3)

Now it can be corrected for gravitation g and added to the previ-
ous velocity.

vn
tk+1 = vn

tk
+ ∆vn + g∆t (4)

For the interval tk to tk+1 the position integral is approximated
with the trapezoidal rule.

xn
tk+1 = xn

tk
+

vn
tk

+ vn
tk+1

2
∆t (5)

A detailed derivation of the strapdown equations can be found in
(Titterton and J.L.Weston, 2004). Since the used gyroscopes do
not provide a sufficient accurate measurement to resolve the earth
rotation it is not possible to find the north direction. Because there
is also no global position reference available the earth rotation is
neglected. For most indoor applications with low velocities and
short times of pure inertial integration this is acceptable.

2.2 Stereo Vision

Visual information of a stereo system can be used for ego motion
estimation or visual odometry (Olson et al., 2003, Nistér et al.,
2004). Changes in position and attitude between two consecutive
image pairs are estimated from homologous points. At a fixed
frame rate this corresponds to measurements of velocity and an-
gular velocity. To measure in images, a precise knowledge of ge-
ometric camera calibration is assumed (Grießbach et al., 2008).
In projective space P mapping of a homogeneous object point
M̃ ∈ P3 to an image point m̃ ∈ P2 is defined with,

m̃ = PM̃ (6)

where P is a 3×4-projection matrix (Hartley and Zisserman, 2000)
consisting of the parameters of the interior- and exterior orienta-
tion of the camera.

P = K
[
R|t] (7)

with R, t describing the rotational matrix and translation of the
exterior orientation and the camera matrix K containing the focal
length f and the principal point u0, v0.

K =

f 0 u0

0 f v0

0 0 1

 (8)

Furthermore lens distortion has to be considered. The very com-
mon radial distortion model (Brown, 1971) is used, considering
pincushion or barrel distortion which is expressed as follows:(

x̂
ŷ

)
=

(
x
y

)
(1 + k1r

2 + k2r
4 + k3r

6 + · · · ), (9)

with

r2 = x2 + y2 (10)

and xy
1

 = K−1

uv
1

 , (11)

where x, y are normalized image coordinates calculated from the
image coordinates m̃ = (u, v, 1)T .

For image based pose estimation, features have to be detected
and tracked over consecutive frames. Natural landmarks such as
corners, isolated points or line endings are found by analysing
the autocorrelation matrix from image intensity gradients as pro-
posed by (Harris and Stephens, 1988).

Intra

Inter

tk

Inter

tk+1

Figure 2: Paths for intra-frame and inter-frame matching

The extracted features have to be matched by using normalized
cross correlation to find homologous image points. Figure 2 shows
the two different matching steps. First, features in the left im-
age at time tk are matched to the right image at time tk (intra-
matching). By using the epipolar constraint, the search area is
reduced to a single line. 3D object coordinates are now recon-
structed by applying the interior orientation and the relative exte-
rior orientation of the cameras.
The next step will be to match left and right images at time tk
to left and right images at time tk+1 (inter-matching). Having
the strapdown navigation solution from inertial measurements, it
is possible to predict the relative change in position and attitude[
∆R′|∆t′

]
. With the triangulated object points M̃ the expected

feature positions m̃′ at time tk+1 as well as their uncertainties are
calculated. The image point uncertainties are used to determine
the size of the search area.

m̃′k+1 = K
[
∆R′|∆t′

]
M̃k (12)

With the found homologous image points, the relative change in
pose between both image pairs can be estimated. This is done
by minimizing the distance of image points m̃ from time tk+1 to
transformed and back-projected object points from time tk.

min
∆R,∆t

‖K [∆R|∆t
]
M̃k − m̃k+1‖2 (13)

A RANSAC approach (Fischler and Bolles, 1981) is needed to
filter for mismatched features to achieve a stable solution.
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2.3 Data Handling

The low-level sensor fusion is realized by a FPGA board that has
different sets of Add-ons attached. Depending on the applica-
tion, major interface standards of low bandwidth sensors like SPI,
CAN, RS232, digital in/outputs are supported. The data sampling
process of external sensors usually takes place asynchronous to
the capturing device. This makes it difficult for multi-sensor sys-
tems to align the different measurements to one common time
line during the fusion process. The custom hardware used within
the presented multi-sensor platform allows precise and determin-
istic synchronization by referencing all sensor data to one local
time scale that is kept by the FPGA. A high precision clock gener-
ates timestamps to which all sensor communication is referenced.

The main objective for the data handling software is to set up
a data processing chain from low level data to high level infor-
mation (e.g. from sensor measurements to a navigation solution).
Ideally, a particular task is encapsulated in a container, having
only defined inputs and outputs. If input data is available, the
task is immediately executed and sent to an output buffer. It is
important to have buffer capabilities as a succeeding task may
not be ready to receive new data at the moment when it is gener-
ated. Combining those containers allows for a flexible, efficient
data handling, and data processing. For a detailed description see
(Grießbach et al., 2012)

Sensors Grabbing Middleware Application Network

Trigger

IMU

Tilt

Camera Camera

CameraCamera Stereo

Pose 
EstimationTrigger

IMU
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FPGA

Switch
Stereo 

Matching

Strapdown Filter

Figure 3: Sensor data processing chain

2.4 Data Fusion

To combine the different sensor outputs to a navigation solution a
derivative free Kalman filter is used. The main advantages of that
filter type are the third order accuracy with Gaussian inputs and
the easy integration of mostly nonlinear equations. The systems
ego motion is modeled with the assumption of constant angular
rate and acceleration over a discrete period of time. The filter
was formulated in total state space with a 16 components state
vector s including the rotation in terms of a quaternion, velocity,
raw angular velocity, angular velocity bias and acceleration bias,
each vector with three degrees of freedom.

s =
[
qn

b , vn, ω̂b, ωb
bias, ab

bias

]
(14)

Figure 4 shows the combination of Kalman filter and optical sys-
tem which provides incremental attitude- and position updates.
Receiving IMU-, camera-, or inclinometer-measurements the fil-
ter cycle is completed including a check for feasibility of the data.
(Grießbach et al., 2010). The corresponding observation equa-
tions for the visual data are defined as follows:

ω̂b
cam,tk

= ω̂b
tk
− ωb

bias,tk
+ η (15)(

0
v̂b

cam,tk

)
= qb

n,tk
◦
(

0
vn

tk

)
◦ qn

b,tk
+ ζ, (16)

where v̂b
cam,tk

and ω̂b
cam,tk

denote the estimated velocity and
angular velocity of the visual measurement. The variables η,
ζ describe their zero-mean Gaussian white noise sequences re-
trieved from the estimation process.

Figure 4: Fusion filter flowchart

3 SENSOR HEAD

This chapter gives an overview of the applied sensors and their
main characteristics. The default configuration consists of a micro-
electromechanical IMU (MEMS) and two cameras forming a stereo
system. Additionally an inclination sensor is added to get a more
accurate system initialization. Other sensors capable of provid-
ing position, attitude, or their derivatives, e.g. GPS receiver, or
barometer may be included for redundancy and more accuracy.
In case of bad light conditions two LED’s proving near infrared
illumination are also included but not used for the indoor experi-
ment.

Figure 5: IPS prototype

MEMS-Sensors have the advantage to be small, lightweight and
low-cost in comparison to IMU’s with fibre-optical-gyros (FOG)
or ring-laser-gyros (RLG). Although there is reasonable progress
in the development of MEMS-gyros, FOG and RLG are still sev-
eral orders in magnitude better with regard to bias stability and
angle random walk (Schmidt, 2010). MEMS-gyros are also sen-
sitive to accelerations introducing an additional error to the sys-
tem. In fact, pure inertial navigation with MEMS-IMU’s will give
very pure performance and can be used only for short periods of
time. Table 1 shows the specification of the used IMU.
Two industrial panchromatic CCD-cameras (see table 2) form the
stereo system. Together with the IMU and the inclination sensor
the cameras are mounted on an optical bench to achieve a stable
setting. A stereo base line of 0.2 meter gives a usable stereo range
from 0.55 meter with an image overlap of 80% to about 10 meter
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Gyro Acceleration

Range ±350 ◦/s ±18 g
Bandwidth 330 Hz 330 Hz
Bias stability 25.2 ◦/h 0.2 mg
Scale-factor stability 10000 ppm 15000 ppm
Random walk 2 ◦/

√
h 0.2 m/s/

√
h

Table 1: IMU ADIS-16405 specification

with reasonable uncertainties from triangulation. The images are
binned by factor two to allow real-time data processing with 15
frames per second on a standard notebook. This includes image
logging, real-time image processing, and data fusion.

Number of pixels 1360 × 1024
Frame rate ≤ 30 Hz, typ. 15 Hz
Focal length 4.8 mm
Field of view 85◦ × 69◦

Table 2: Prosilica GC1380H specification

Additionally a two axis inclination sensor is used to give an ab-
solute reference measurement to the local tangent plane which
defines two axis of the local navigation frame.

Range ±90◦

Accuracy 0.1◦

Resolution 0.025◦

Table 3: Tilt ADIS-16209 specification

4 RESULTS

IPS was evaluated for accuracy, robustness, and repeatability in
a common office environment. Lacking a ground truth, a closed
loop scenario was chosen to evaluate the relative error in attitude
and position. The run shown in figures 6, 7, and 8 has an absolute
path length of 317 meters covering 4 floors. This includes the
staircase, narrow corridors, and a wider entrance area with very
different illumination and feature characteristics.

Figure 6: Path overview (xy-view)

The run was repeated 21 times under real-life conditions, with
normal walking speed at 1.5 m/s, during working hours with peo-
ple interfering the visual measurement. To avoid systematic er-
rors the system was carried by varying people and restarted after
every trial. Figure 9 shows the distribution of the 2D position
errors for each pair of axes. The translational errors are more or
less evenly spread over all axes.
The averaged closed loop rotation and translation errors over all
21 trials are summarized in table 4. Due to the inclination sensor
supporting the horizontal axes in times of hold-up, their errors

Figure 7: Path Overview (xz-view)

Figure 8: Path overview (yz-view)

matches the inclination sensor accuracy given in table 3. In com-
parison, the unsupported yaw angle accumulates a much higher
error. As table 4 indicates, an averaged absolute position error of
2.7 meter or 0.85% of the total path length is achieved.

Mean Error Standard Deviation

roll [deg] -0.1 0.3
pitch [deg] -0.1 0.2
yaw [deg] 5.5 14.5
x [m] 0.4 1.0
y [m] 0.5 2.2
z [m] -0.2 1.7
absolute error [m] 2.7 1.3

Table 4: Closed loop errors

This error is partly caused by phases where no or little features
could be seen, resulting in missing or low quality vision data. The
consequence is an increased error grow from integrating the IMU
measurements. Such difficult situations occur through changing
lighting conditions, a low texturing at some areas, or for example
at narrow stairways with all objects to close for the stereo sys-
tem. Another error source can be found by the IMU scale-factors
which are greater than 1% of the specific range (see table 1).

4.1 3D Point Cloud Application

To show the capability of the navigation algorithm a high den-
sity point cloud, derived from the stereo cameras is generated.
In a parallel processing chain the stereo image data is used for
dense stereo matching using Semi-Global Matching (SGM), a
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Figure 9: 2D position error of 21 runs for all pairs of axes

very powerful but time consuming method (Hirschmüller, 2005).
To fulfil the real time requirements, the algorithm was imple-
mented on a Graphical Processing Unit (Ernst and Hirschmüller,
2008).
In combination with the navigation solution, the 3D point cloud
of each image pair is transformed to the navigation-frame and
merged together to get a high density raw point cloud. Figure 10
shows an example point cloud. This process is carried out off-line
without further data processing.

Figure 10: View of generated raw 3D point cloud

5 CONCLUSION

An integrated positioning system has been presented, including a
hardware concept to guarantee synchronized sensor data as well
as a software design for real time data handling and data pro-
cessing. The software concept allows to partition the different
tasks and helps to create a flexible and efficient data processing
chain. An application of the framework is shown realising an
indoor navigation task combining inertial and optical measure-
ments. The complementary properties of both systems are used
to reduce the drift of the inertial sensors and at the same time
supporting the feature tracking with inertial information. The
proposed system provides a robust solution for navigation tasks
in difficult indoor environments, which was shown with multi-
ple runs in a closed loop scenario. An absolute error of less than
1% of the absolute path length was achieved. This error is partly

caused by the insufficiently calibrated low cost IMU, introducing
additional systematic errors. Future work will address this issue
more deeply. Another step would be the integration of additional
sensors, e.g. a barometer or a magnetometer.
It was shown that a high density point cloud can be generated
combining the IPS trajectory with the 3D information produced
by the SGM algorithm. Further steps would have to include a
substantial data reduction.
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