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Anisotropic Sampling of Planar and
Two-Manifold Domains for

Texture Generation and Glyph Distribution
Andrea Kratz, Daniel Baum, and Ingrid Hotz

Abstract—We present a new method for the generation of anisotropic sample distributions on planar and two-manifold domains.
Most previous work that is concerned with aperiodic point distributions is designed for isotropically shaped samples. Methods
focusing on anisotropic sample distributions are rare, and either they are restricted to planar domains, are highly sensitive to
the choice of parameters, or they are computationally expensive. In this paper, we present a time-efficient approach for the
generation of anisotropic sample distributions that only depends on intuitive design parameters for planar and two-manifold
domains. We employ an anisotropic triangulation that serves as basis for the creation of an initial sample distribution as well as
for a gravitational-centered relaxation. Furthermore, we present an approach for interactive rendering of anisotropic Voronoi cells
as base element for texture generation. It represents a novel and flexible visualization approach to depict metric tensor fields that
can be derived from general tensor fields as well as scalar or vector fields.

Index Terms—Tensor visualization, texture generation, anisotropic sampling.
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1 INTRODUCTION

We introduce a novel technique for generating un-
structured sample distributions on planar and two-
manifold domains for visualizing metric tensor fields.
Due to the anisotropy of metric tensors, our focus
are samples that vary in size, shape and orienta-
tion (anisotropic samples). Such sample sets improve
glyph-based visualizations [1], [2], [3], [4], [5] and
build a basis for texture generation [3], [5]. The use
of textures for visualization provides high flexibility
to encode features and, therefore, has a great potential
for the visualization of tensor fields.

Our main contribution is the design of an algorithm
for the generation of anisotropic sample distributions
that works both on planar and two-manifold domains.
The extension of the planar case to two-manifold do-
mains implicates additional challenges. To achieve in-
teractive results, a compromise between an approach
with a solid theoretical basis and a more practical
solution is needed. The design of our solution is
guided by the following requirements: (1) The sample
generation should be time-efficient. (2) It should only
depend on very few intuitive parameters. (3) The
sample distribution should have a random character
(no noticeable pattern) and the sample domain should
be covered densely (avoid large empty areas as well as
cluttered areas which would be visually distracting).

The most critical part for the extension to two-
manifold domains is the computation of distances
and the generalization of distance measures. Our tech-
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nique avoids costly distance computations whenever
possible. Where distance computations are needed,
we use fast approximations which are sufficient for
our purposes and result in sample sets that fulfill our
requirement of good visual quality (see Requirement
(3)). Thus, our approach is not only an extension
to two-manifold domains. It also significantly speeds
up the generation of anisotropic sample distributions
for the planar case compared to previous approaches
(e.g., [5]). Due to this speed-up, our approach also
enables interactive slicing through three-dimensional
datasets.

As second contribution, we present an interactive
visualization technique that is based on the previously
computed sample set. Kratz et al. [5] have recently
shown that generalized anisotropic Voronoi diagrams
in the planar domain can be efficiently used to repre-
sent the underlying metric. The Voronoi cells can be
texturized using various types of textures to encode
features of interest. Our work is motivated by [5] and
represents an extension and generalization of their
approach resulting in an interactive rendering method
of anisotropic Voronoi cells and their texturization.

To demonstrate the potential of our approach, we
present visualizations of several examples for the pla-
nar as well as the two-manifold case. In particular, we
visualize the formation of endothelia cells of a blood
vessel in accordance with the simulation of a blood
flow in an aneurysm. Since endothelia cells naturally
have shapes that are similar to anisotropic Voronoi
cells, this is an application that directly benefits from
our approach.
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2 RELATED WORK

The generation of sample distributions with specific
properties is a central research topic in computer
graphics with applications in rendering, visualization
and geometry processing. A huge amount of related
work exists, most of which focuses on very specific
requirements and applications. Since an exhaustive
review of related methods from sampling theory and
geometry processing is out of scope of this paper,
we refer the reader to the following survey articles.
For a deeper insight into remeshing approaches, we
refer to the article by Alliez et al. [6]. And for an
overview about the creation of aperiodic isotropic
sample distributions, we refer to the articles by Lagae
et al. [7], [8], [9]. In the following, we focus on work
that is related to the approach presented in this paper.

Many previous work in generating sample distri-
butions focuses on the generation of Poisson-disk dis-
tributions [8]. Distributions with this property cover
the sample domain densely while maintaining a min-
imum separation given by a specified radius, the
Poisson-disk radius. Common basic algorithms to
create such distributions are dart throwing [10] and
Lloyd relaxation [11]. These algorithms are expensive
and have a high memory requirement. Thus, several
enhanced methods for generating Poisson-disk distri-
butions have been presented [8]. Among these, tile-
based methods [7], [12] have gained special interest.
Tile-based methods generate a small set of tiles once,
where each tile has the Poisson-disk characteristics.
Thus, tile-based methods have a low memory re-
quirement and are suited for real-time applications.
Since these methods are difficult to generalize to
the anisotropic case, where the samples vary in size,
shape and orientation, work on tile-based anisotropic
samplings is rare [?].

The objective of mesh generation most often is to
find a mesh that is as coarse as possible and as fine
as needed to represent all properties of the shape of
the underlying object, or to compute simulations or
interpolations on it. In this context, anisotropic meshes
are beneficial for simulating functions with a strong
directional character. The strength of such meshes is
that the shape of the mesh elements can be controlled
by an underlying anisotropy function (metric tensor
field). Various approaches to tackle this problem have
been presented [?], [13], [15]. In [?], for example,
anisotropy is incorporated in the common circumcircle

test to compute anisotropic Delaunay meshes. Other
solutions build on the construction of an anisotropic
Voronoi diagram, for example, [16], [17]. In [16], [18],
the triangle mesh is then defined as the dual of the
Voronoi diagram. These approaches are mathemati-
cally sound but computationally expensive and hard
to generalize to the two-manifold case.

In contrast to mesh generation, remeshing algo-
rithms have the goal to improve a given mesh with

respect to specific criteria. Most advanced remeshing
approaches rely on surface parameterizations. Simi-
larly, parameterizations are used for anisotropic sur-
face sampling [?], [4] and meshing of curved sur-
faces [?]. While for meshing algorithms an accurate
representation of surface details is of high importance,
this is not the case for our purpose, which is texturing
the surface. This simplifies the sampling process in
many ways. Hence, our approach does not require an
expensive parameterization.

In visualization, anisotropic sample distributions
have been computed to guide the positioning of
glyphs [1], [2], [3], [5]. The more a sample distribution
reflects the continuous behavior of an input vector-
or tensor field, the more informative the final glyph-
based visualization becomes. Examples for applica-
tions within the context of tensor field visualization
have been presented in [19], [20]. Building on the
particle-based method of [?], in [1], an approach for
planar domains and volumes is presented for diffu-
sion tensors. Here, the input diffusion tensor field
is mapped to a potential energy field determining
inter-particle forces. For the planar case, this approach
was extended in [2], which focuses on an improved
initial sampling and interactivity by using an isotropic
Delaunay triangulation. More exact neighbor compu-
tations are achieved with anisotropic Delaunay trian-
gulations [5]. A limitation of these particle force-based
algorithms is that they often suffer from many non-
intuitive parameters.

Lloyd relaxation [11], [21] was used in [3] to gen-
erate anisotropic samplings of planar domains. As
Lloyd relaxation relies on Voronoi diagrams, this ap-
proach requires the computation of an explicit gen-
eralized Voronoi diagram including the handling of
orphans. One advantage of such a relaxation-based
method over particle-based methods is that it is al-
most parameter-free. However, the computation of
an explicit generalized Voronoi diagram on surfaces
including the handling of orphans is computationally
too expensive for our purposes. Building upon ideas
of [3], in [4], dart throwing and relaxation is ex-
tended to anisotropic sampling. For this purpose, the
Euclidean distance metric is replaced by a geodesic
one. However, relaxation is only applied on planar
domains, while surface sampling is restricted to dart
throwing in combination with surface parametriza-
tions. The authors also present a method for the
evaluation of anisotropic samples assuming warpable
domains. A more general analysis method for non-
uniform samplings is presented in [?]. In this paper,
we avoid the need of surface parametrizations. The
resulting approach is time-efficient and needs only
few parameters. Our approach also uses relaxation in
the two-manifold domain to equalize distances.
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3 OVERVIEW

The following steps summarize our method for gener-
ating anisotropic sample distributions on planar and
two-manifold domains. Input is a scalar-, vector- or
tensor field.

1) Define a metric tensor field. Since anisotropy

design is application-specific, it will be handled sepa-
rately in Sec. 7. Until then it should suffice to assume
that a suitable metric tensor field (Sec. 4.1) is given.

2) Generate an initial sample distribution respect-
ing this metric (Sec. 5.2), where the sample domain is
covered densely (no holes) while the samples main-
tain a minimum distance (no overlaps). To generate
such a distribution, we employ anisotropic triangula-
tions (Sec. 4.2.1) and compute triangle fillrates to find
areas that are sparsely populated. In these areas, new
samples are added. For more flexible sample distribu-
tions, two additional design options are provided: the
overall density can be steered by a parameter η and
a spatially varying importance function facilitates a
local density adaptation.

3) Apply a relaxation process (Sec. 5.3) that
equalizes triangle sizes with respect to the underlying
metric tensor field. Thus, more uniform sample dis-
tances with respect to the underlying metric tensor
field are achieved. The relaxation is based on the
anisotropic triangulation.

Finally, we present an interactive rendering tech-
nique of anisotropic Voronoi cells and their texturiza-
tion (Sec. 6).

4 BASIC CONCEPTS

This section provides the basic concepts behind the
algorithm and summarizes the relevant prerequisites.

The algorithm takes as input: (1) A geometric do-
main Ω that can be either a planar domain Ω ⊂ R2

with boundary ∂Ω, or a two-manifold domain Ω ⊂
R3 with or without boundary. (2) A two- or three-
dimensional (2D/3D) input field given on a uniform,
triangulated or tetrahedral grid. The input field can be
either scalar-, vector- or tensor-valued. (3) Optionally,
a spatially varying importance function can be added
to create adaptive sample distributions.

Output of the algorithm is a point distribution that
fulfills the Poisson-disk characteristics (Fig. 11) with
respect to an underlying metric tensor field.

4.1 Metric Tensor Fields
Regardless of the input field (scalar, vector, or tensor),
our algorithm (Sec. 5) works on a metric tensor field,
which is either a direct mapping of the input field or
is derived from it. The size, shape and orientation of
the samples depend on the sample positions p ∈ Rd

and the local metric M(p) ∈ Rn×n at position p.
Here, d and n are 2 in the planar case and 3 in the
two-manifold case (see also Sec. 7). In either case,

the metric tensor M is represented by an n × n
symmetric positive-definite matrix. To reconstruct M
at arbitrary sample positions in the planar domain,
we use component-wise linear respectively bilinear
interpolation. On surfaces, the tensors are interpolated
on a per-triangle basis using barycentric coordinates.

The metric tensor describes anisotropic distances
between sample positions p ∈ Ω. It can be imagined
as an ellipse or ellipsoid, respectively, which is scaled
according to the reciprocal eigenvalues and oriented
according to the eigenvectors of M [3]. Consequently,
ellipses and ellipsoids build our basic sample shapes.

We assume that the metric tensor field does not vary
strongly within a small local environment. The idea
behind this assumption is that reasonable visualiza-
tion results can only be achieved if the variation of
the tensor field, compared to the size of the samples,
is relatively small. Only with this assumption, the
samples are valid representatives for the part of the
metric tensor field which they cover (see also [3], [5]).

In the following, we use the term sample for ellip-
tical or ellipsoidal sample, and metric for a 2D or 3D
metric tensor.

4.2 Delaunay Triangulations / Voronoi Diagrams

Given a planar Euclidean domain Ω and a point set
P = {pi, i = 1 . . . n} ⊂ Ω, a Voronoi diagram is
defined as the set of n Voronoi cells Ωi for which holds
that all points that lie within Ωi are at least as close
to pi as to any other point in P .

The Delaunay triangulation D of Ω w.r.t. P can be
defined by a couple of equivalent properties:

• D is the dual graph of the Voronoi diagram.
• D maximizes the sum of the minimum angles.
• D guarantees that the circumcircle of each trian-

gle does not contain any other point of P .

When generalizing these ideas to non-Euclidean
spaces, utilizing a spatially varying metric, the above
mentioned properties of the Delaunay triangulation
are not equivalent anymore. In general, an anisotropic
Delaunay triangulation is defined based on the dual-
ity property. Unfortunately, it is not guaranteed that
the dual of an anisotropic Voronoi diagram actually
results in a valid triangulation (e.g. [16], [18]). This
is already the case for planar domains and even
worse for the manifold case. To avoid this problem,
several heuristics have been proposed (e.g. [?], [13],
[15]). Among the algorithmic challenges are an effi-
cient geodesic distance computation and the fact that
Voronoi cells are no longer bounded by straight lines.
We propose to define a triangulation that represents
a meaningful neighborhood structure, independently
from the Voronoi cells. In the following, we introduce
our definitions to generate anisotropic triangulations
and to draw anisotropic Voronoi diagrams.
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Fig. 1. Modified edge flip. Left: Configuration for which
the angle condition is tested (red edge). Here, the
Euclidean angles are depicted. Middle: To validate the
angle condition, we analyze the angles opposite to
this edge with respect to the inverse metric (swapped
ellipses). In this configuration, the angle condition is not
fulfilled. Right: Valid configuration.

4.2.1 Anisotropic Triangulation

To compute a Delaunay triangulation for non-
Euclidean metrics of parametrized surfaces, Shimada
et al. [?] propose an edge-flip algorithm based on
a generalized circumcircle test in parametric space.
Since we deal with triangulated surfaces without
given parametrization, we propose to adapt the De-

launay angle condition (see also [22]), also applying
an edge-flip algorithm. The angle condition is easy
to generalize to the anisotropic case and does not
require a parametrization. Note that the edge-flip
algorithm only concerns the neighborhood relation of
the samples and does not change the original surface.

We check for each edge of a given triangulation if
the sum of its opposite angles α and β satisfies the
following condition (Fig. 1):

α + β ≤ π. (1)

Therefore, we solely need to adapt the dot product
for computing the angles α and β. For two vectors
v,w ∈ R3 and a local metric M, the scalar product
becomes �v,w�M = vT ·M ·w. Accordingly, the length
of the vector v is defined as �v�M =

√
vT · M · v. If

v,w are the two vectors that enclose the angle � (v,w)
and share the point p we have

� (v,w)M(p) := arccos
� �v,w�M(p)

�v�M(p)�w�M(p)

�
. (2)

We evaluate the angle condition using the inverse
metric (Fig. 1) and call the resulting triangulation
anisotropic triangulation.

4.2.2 Anisotropic Voronoi Diagram

We compute anisotropic Voronoi diagrams on the
basis of a well-distributed sample set (Sec. 5) and
a simplified distance measure independently from
the triangulation. The most natural generalization of
the Voronoi diagram is to use a geodesic distance

(a) Euclidean Space (b) Metric Space

Fig. 2. Isotropic Voronoi cells in the undistorted Eu-
clidean space (a) and anisotropic Voronoi cells in the
distorted metric space (b). The black lines are the
isolines corresponding to the local metrics.

measure, which, however, is computationally expen-
sive. To ensure a time-efficient solution, we apply a
distance measure that has already been successfully
used in previous work [3], [5], [16]. Assuming a local
metric Mp and two points p and q, the simplified
distance measure is defined as

dMp(p,q)=�q− p�Mp=
�

(q−p)T · Mp · (q−p). (3)

This distance measure simulates a piecewise constant
metric. Thus, it fits very well to the idea of elliptic
glyphs which represent the region of the tensor field
that they cover and it is also generalizable to two-
manifold domains. See Fig. 2 for a comparison of
isotropic and anisotropic Voronoi diagrams. Further
details about the computation of Voronoi diagrams
are given in Sec. 6.1.

4.3 Projection Tensor

Fig. 3. 3D tensor projected onto a tangent plane.

Some steps of our algorithm require the projection
of the metric tensor M onto the tangent plane of a
given surface (Fig. 3). The metric �M projected to the
surface defined by the surface normal n is given by

�M = P(n) · M · PT (n). (4)

Here, P is the projection tensor given by

P(n) = I−(n⊗n)=




(1−n2

x) −nxny −nxnz

−nxny (1−n2
y) −nynz

−nxnz −nynz (1−n2
z)



, (5)

where I is the identity map. The projection tensor is
symmetric, i.e., PT = P. It has one eigenvector in the
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Fig. 4. Delaunay triangulation w.r.t. a uniform isotropic
tensor field (left) and anisotropic triangulation w.r.t. a
non-uniform anisotropic tensor field (right).

direction of the surface normal n with eigenvalue zero
and two orthogonal eigenvectors, lying in the tangent
plane. The eigenvectors of the projected tensor �M are
in general not eigenvectors of the original tensor M.

5 ANISOTROPIC SAMPLE DISTRIBUTIONS
In the following, we present our algorithm for gener-
ating anisotropic sample distributions on planar and
two-manifold domains.

5.1 Anisotropic Triangulation
The core of our method builds an anisotropic trian-
gulation as defined in Sec. 4.2.1.

5.1.1 Properties of the Triangulation

The triangulation, which is generated with respect to
the underlying metric tensor field, has the following
properties (see Fig. 4):

• Its triangles are stretched according to the metric
field and the edges are oriented along the direc-
tion of the major eigenvector field [23].

• It naturally has an adaptive character, which sup-
ports our requirement of good visual quality.

• It leads to more meaningful neighbor computa-
tions in metric space [5] than isotropic triangula-
tions do [2].

5.1.2 Algorithm

For creating the triangulation in the planar domain,
we use an incremental algorithm starting with a
supertriangle that covers the whole sample domain.
We successively refine the triangulation by adding
new samples in sparsely populated areas (Sec. 5.2)
thereby following the approach by [24]. Whenever a
new sample is added, we check if the angle condition
(Eq. (1)) is still fulfilled. Thus, the triangulation is built
concurrently with the initial sample distribution.

For creating the triangulation in the two-manifold
domain, we propose an edge-flip algorithm on the
basis of the triangulated input surface. For computing
edge flips in parallel, we distinguish four steps (sim-
ilar to [22]): (1) Starting from the input triangulation,

we check for each edge whether its adjacent triangles
fulfill the angle condition (Eq. (1)). If it is not fulfilled,
the edge needs to be flipped and, therefore, is labeled
l = 1. Otherwise and if it is a boundary edge, it is
labeled l = 0. (2) Next, a subset of edges with label
l = 1 needs to be found that can be flipped in parallel.
An edge can be flipped (in parallel) if the two adjacent
triangles do not have another edge that is labeled.
(3) Now, the actual edge flip is performed for all
labeled edges in parallel. (4) Finally, the triangulation
and all neighbor information are updated. These four
steps are repeated until a user-specified number of
edges fulfills the angle condition (Eq. (1)) or a max-
imum number of iterations was reached. In general,
this leads to an anisotropic triangulation as defined
in Sec. 4.2.1. Depending on the underlying metric
field, however, dead-locks are possible. These occur
if flipping one edge results in a configuration where
another edge becomes invalid and vice versa, and it
occurs if the two triangles adjacent to the current edge
have another edge that needs to be flipped and this
configuration cannot be eliminated over several iter-
ations. For the further computations, however, these
edges do not lead to problems, because we only need
the neighbor relations to compute minimum distance
and, therefore, we use second-order neighbors.

5.2 Initial Sampling
The initial sampling procedure computes a set of
samples S := {pi|pi ∈ Ω, i = 1 . . . n}, where n is
the number of samples. We require our initial sample
distribution to have Poisson-disk characteristics, i.e.,
the samples should cover the domain densely while
a minimum separation between them is maintained.
The major bottleneck of methods to generate such
distributions, e.g., dart throwing, are costly distance
computations [3], [5]. In this paper, we present a
method that exploits the triangulation’s properties
(Sec. 5.1.1) to generate an initial sampling with high
visual quality. Thus, we do not require distance com-
putations to identify sample intersections. These are
implicitly provided by the triangulation. The prop-
erties of the triangulation in combination with the
assumption that the metric tensor field does not vary
strongly within a small local environment (Sec. 4.1),
and finally the fillrate, make it possible to avoid an
explicit sample intersection test.

5.2.1 Triangle Fillrate

For identifying areas where it is beneficial to insert a
new sample, we use the fillrate of a triangle as mea-
surement (Fig. 5). In [5], the triangle fillrate was used
for population control in order to insert or remove
samples during the refinement procedure. We use the
triangle fillrate as guidance for the initial sampling
procedure. To guarantee interactivity, we propose the
following computations.
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Fig. 5. To compute the fillrate of a triangle, we use the
metric at the triangle’s barycenter (red ellipse). If the
fillrate falls below a user-defined threshold (left), a new
sample is inserted at the triangle’s barycenter (right)
and a retriangulation (dotted lines) is initiated.

A triangle’s fillrate is the ratio between the subarea
A◦ of the triangle that is covered by the elliptical
samples at its corners, and the triangle area A� itself.
To compute A◦, we use the determinant of the metric
at the triangle’s barycenter q = 1

3 (p1+p2+p3), where
p1,p2,p3 are the triangle’s vertices. As the sum of all
triangle angles is always π, the area A◦ that is covered
by an ellipse/ellipsoid is always half of the area of the
ellipse/ellipsoid A◦ = 0.5 ·π ·det(M(q)). From A◦ and
A�, the fillrate η is computed as

η =
A◦
A�

. (6)

We can guide the distribution’s density by chang-
ing the target value for η. Smaller values result in
less dense initial samplings and higher values in
denser samplings. To add adaptivity, an additional
importance function can be used that influences the
scale of the samples and, thus, also the fillrate. For
example, an importance function that is guided by
the magnitude of the image gradient creates initial
sample distributions that are denser at the edges of
the input image (see also Fig. 10).

5.2.2 Algorithm

Starting point of initial sampling is a coarse anisotropic
triangulation of the input domain.

In the planar case, we start by randomly sampling
the boundary ∂Ω of the planar sample domain and
adding a few random samples within Ω. (1) For these
samples, an anisotropic triangulation is computed that
results in a set of triangles T := {tk|tk ∈ Ω, k =
1 . . . m}, where m is the number of triangles. (2) For
each triangle tk, its fillrate is determined. If the fillrate
is below a user-defined threshold, a new sample
is added at the triangle’s barycenter. (3) Then, the
triangulation is updated and the procedure is started
again with step (1). Steps (1)-(3) are repeated until a
desired density, specified by η, has been reached.

In the two-manifold case, we assume a given trian-
gulated surface X . (1) In a first step, X is simplified

Fig. 6. For gravitational-centered relaxation, the star
around each sample is considered. To compute the
centroid of this star, the metric tensors (green ellipses)
at the triangles’ barycenters are used as weights (left).
Once the star’s centroid is computed, the sample posi-
tion and its one-ring neighborhood are updated (right).

using an edge-contraction algorithm [25]. This proce-
dure yields a coarse sample mesh �X and an associated
set of triangles T := {tk|tk ∈ Ω, k = 1 . . . m}, where
m is the number of triangles. Step (2) is similar to
the planar case with the difference that new sample
positions need to be projected onto the original surface,
as described in Sec. 5.4. (3) Next, the triangulation is
updated and the procedure is started again with step
(2) until a desired sample density is reached.

5.3 Gravitational-Centered Relaxation
The initial sample distribution already fulfills Poisson-
disk characteristics. To equalize sample distances, we
propose a gravitational-centered relaxation on the
basis of the anisotropic triangulation. It equalizes
triangle sizes with respect to the metric tensor field
so that sample distances become more uniform (e.g.,
Fig. 10(d)). This is desirable for the rendering of
generalized Voronoi diagrams (Sec. 6).

5.3.1 Centroid of Tensor-Weighted Star

For each sample pi, we consider its one-ring neigh-
borhood tj ∈ N(pi) (Fig. 6). This star consists of
n triangles that all share the sample pi and have
a barycenter qj . The centroid ci of the star with
respect to the metric is defined in analogy to the
center of mass, which will be regained when using
the Euclidean metric

ci = M−1
i ·

n�

j=1

A�j · (M(qj) · pi), (7)

whereby Mi =
�n

j=1 A�j · M(qj).

5.3.2 Point Relocation

The point relocation comprises an update of the cur-
rent sample’s one-ring neighborhood, i.e., all triangles
that share pi. For planar domains, the sample pi is
simply translated towards the centroid ci with

pi ← pi + (ci − pi). (8)
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For the two-manifold case, centroids that are com-
puted with Eq. (8) in general do not lie on X .
Therefore, the translated points need to be projected
back onto X . The point relocation for surfaces, thus,
becomes

pi ← P (pi + (ci − pi),ni)
pi ← P (pi + (ci − pi),−ni),

(9)

where P is the projection of the translated point onto
X (Sec. 5.4), either in the positive normal direction ni

or in the negative normal direction −ni.

5.3.3 Algorithm

Gravitational-centered relaxation is based on the ini-
tial sample set S := {pi|pi ∈ Ω, i = 1 . . . n}, where
n is the number of samples. (1) For each sample
pi, its one-ring neighborhood is found. (2) Then, for
each one-ring neighborhood, its centroid is computed.
(3) Next, the sample pi is translated towards this
centroid ci. (4) Finally, in the two-manifold domain,
the translated point is further projected back onto X .
The procedure starts again with step (1) until a stable
configuration has been found, i.e., when all samples
lie in the centroid of their surrounding star, or if a
desired number of iterations has been reached.

5.4 Back-Projection
For initial sampling and relaxation in the two-
manifold domain, we need to maintain the link be-
tween the original mesh and the sample mesh. That
is, for each sample, we need to know which triangle
of X it corresponds to (Fig. 7 (a)). To do this efficiently,
we use a triangle octree (see, e.g., [26]) to store all
triangles of the input mesh X . As projection of a point
pi, we take the closest intersection point of the ray
that starts in pi and goes into the direction of ni and
−ni, respectively, with X . Thereby, the octree data
structure helps to quickly identify those triangles that
need to be checked for intersection. The intersection
test is done in a hierarchical fashion starting with the
root node that encloses all triangles and traversing the
octree until a node is found that is not subdivided
anymore. Then, its elements, i.e., its triangles, are
checked for intersection with the ray.

5.5 Volume Slicing
Slicing enables the inspection of 3D input data. These
can be volume data but also 2D animated scenes
or time-dependent data. To provide a smooth tran-
sition between the visualizations (Voronoi diagrams
or glyphs) of single slices, we adapt our anisotropic
sampling for planar domains in the following way:
Initial sampling as described in Sec. 5.2 is done
once for the first slice. For this slice, a gravitational-
centered relaxation (Sec. 5.3) is computed until a
stable configuration is achieved. For subsequent slices,

we use the result of the previous slice as initial sample
distribution. Before relaxation, we compute the fillrate
for each triangle of the previous result and insert or re-
move samples if needed. Due to spatial coherence be-
tween the slices, these operations are rarely required.
Finally, very few relaxation steps (in our examples a
maximum of 5 steps were sufficient) are needed until
a stable sample configuration is achieved, which guar-
antees interactivity while inspecting the 3D volume or
depicting two-dimensional animated scenes.

6 VORONOI CELL RENDERING
Several visualization techniques benefit from a sample
distribution generated with the method presented in
Sec. 5. In visualization, the most common application
is to position glyphs according to the sample dis-
tribution [1], [2], [3], [5]. Recently, it was shown [5]
that anisotropic Voronoi diagrams can be efficiently
computed for visualization purposes on the basis of
such sample distributions. Through the definition of
Voronoi cells (Sec. 6.1), textures provide many visu-
alization options to encode scalar- and vector-valued
features that are contained in tensors.

To guarantee interactivity, which is one of our most
important requirements, we present a GPU imple-
mentation that computes the Voronoi cells in the
fragment shader. In contrast to previous GPU imple-
mentations of generalized Voronoi diagrams in the
planar domain [27] or centroidal Voronoi diagrams
in the two-manifold domain [28], we do not need
an explicit representation of the diagram, because we
use the diagram for visualization purposes only. The
implementation that we present in this paper does not
require a surface parameterization.

All visualization algorithms were implemented us-
ing the Open Graphics Library (OpenGL) and shader
programs of the OpenGL Shading Language (GLSL).

6.1 Generalized Voronoi Cells
Let S be a set of well-defined sample positions. In
our case, a generalized Voronoi diagram partitions
the domain Ω into n Voronoi regions Ωi, where each
region corresponds to a Voronoi site that is centered
at pi. In this work, a site has elliptical or ellipsoidal
shape and is described by a metric tensor M (Sec. 4.1).
A Voronoi region Ωi of a site centered in pi then is
defined as the set of all points P ⊂ Ω that are at least
as close to the site in pi than to any other site in pj ∈ Ω
with j = 1 . . . n and i �= j

Ωi = {P ∈ Ω|dM(pi)(pi, P ) ≤ dM(pj)(pj , P )}, (10)

with dM(p) (Eq. (3)) using the 3D coordinates of pi.
In metric space, Voronoi regions are not bounded by

straight lines but by curves. Furthermore, they might
be neither convex nor connected. In this case, orphans

can appear, which are part of a Voronoi region that
do not necessarily contain the region’s barycenter. For
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(a) Projected samples (b) Patches

(c) �X (d) Voronoi cells

Fig. 7. Patches (b) are generated to keep the corre-
spondence between the samples (black dots in (a)) and
the original mesh (a, b, d). Thus, high-quality Voronoi
cell rendering is possible (d) even if the samples are
distributed sparsely (c).

computations that are based on the Voronoi diagram,
such orphans have to be avoided. We present a com-
putation based on samples that are equally distributed
with respect to an underlying metric tensor field
(Sec. 5). For such well-defined sample distributions,
orphans generally do not appear and the Voronoi
diagram can be computed via a simplified distance
measure. Our method does not guarantee the absence
of orphans in areas where the anisotropy of the met-
ric tensor field varies strongly. However, as we use
the Voronoi diagram for visualization purposes only,
the rare appearance of orphans is negligible. Visual
artifacts only occur when the borders of the Voronoi
cells are displayed. They are not visible if the cells
are texturized. Furthermore, we require that the input
tensor fields locally do not have large differences in
anisotropy (Sec. 4.1). For tensor fields that have a
high local variation of anisotropy, the appearance of
orphans would be more likely.

6.2 Pre-Processing and Data Structures
This section introduces the data structures and the
preprocessing necessary to compute Voronoi cells in
the fragment shader.

6.2.1 Enriched Original Surface

To compute Voronoi cells, we require a data structure
that provides information about the sample’s local
neighborhood. Therefore, input of the rendering step
is the original mesh X enriched with the information
about the 3D sample positions and their correspond-
ing site ids. Since this meta data is encoded in the
sample mesh �X , we splat the site ids of �X onto
the triangles of X . That is, the id of a sample is
projected onto X and the information is spread into
its neighborhood (Fig. 7). To achieve this, we use the
following approach.

Initially, all triangles of X are labeled with i =
−1. Then, all vertices of �X are inspected and their
ids are splatted onto X via a breadth-first search.
During point relocation in the relaxation procedure
(Sec. 5.3), we have already computed the projection
of the current site with a triangle of X . Starting from
this intersected triangle, we assign each neighboring
triangle to the current site if the triangle’s id is i < 0,
i.e., no id was assigned to this triangle so far. If i > 0,
we compute the Euclidean distance in 3D space to the
current site and to the previously assigned site. If the
distance to the current site is smaller, the triangle’s site
id is updated. The size of the neighborhood that needs
to be considered depends on the relation between the
number of triangles of the original surface and the
number of samples. Each sample of X needs to know
which triangles of X are in its vicinity (Fig. 7 (b)).
The correspondence between �X and X does not need
to be precise, because we use second-order neighbors
for the computation of the Voronoi cells. We only
need one triangle that is in the vicinity of the current
sample. Then, we can determine the correct neighbors
using this sample as starting point.

6.2.2 GPU Data Structures

The information we need to compute Voronoi regions
in the fragment shader and to evaluate the distance
function given in Eq. (3) are the metric tensors, the ids
and the coordinates of (at least) the current sample’s
one-ring neighborhood.

The basic idea is to consider the samples pi com-
puted with our sampling approach (Sec. 5) as Voronoi
sites around which the regions Ωi are generated. Each
site is described by a unique id i = 1 . . . n, and by its
shape characterized by its coordinates pi ∈ R3 and the
metric M in pi. In order to upload this information
to the GPU, where the rendering is performed, we
encode this information into two textures.

Id Texture. The id texture stores the information
about the local one-ring neighborhood of a site in
the luminance channel of a 3D floating point texture
(Fig. 8). To build this texture, we traverse all sites
of the sample mesh. The site’s id determines the
position i, j where its local neighborhood is stored in
z-direction. If n is the number of samples or Voronoi
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Fig. 8. GPU data structures for the computation of
Voronoi cells. The id texture stores the ids of the
current sample’s one-ring neighborhood. The attribute
texture stores the corresponding 3D coordinates and
tensors.

sites, we set the texture size to �
√

n � × �
√

n � × 16.
The depth of 16 is a fixed value and ensures enough
memory for the whole one-ring neighborhood. Actu-
ally, the texture’s depth depends on the degree (or
valence) of the vertex v that represents the current
Voronoi site. Consequently, a few texels will not con-
tain any information and, thus, are superfluous. They
are labeled as invalid, i.e., i = −1. When traversing the
neighbors of a site, thus, an id of i = −1 indicates that
all neighbors of the current site have been considered.

Attribute Texture. The attribute texture stores the
coordinates and the metric tensor of a site in the RGB-
channels of a 3D floating point texture (Fig. 8). The
first texture layer stores the coordinates, where R1 =
x, G1 = y, B1 = z. The second and third texture layers
store the tensor components, where R2 = m11, G2 =
m22, B2 = m33 and R3 = m12, G3 = m13, B3 = m23.
We set the size of the metric texture to �

√
n �×�

√
n �×

3 for 3D metric tensors, and to �
√

n � × �
√

n � × 2 for
2D metric tensors.

6.3 Voronoi Cell Computation

Given all the data needed (Sec. 6.2) to draw the
Voronoi cells on the original surface, the cells are
computed in the vertex and fragment stages. All
geometry information (vertex positions, normals, site
ids) of the enriched original mesh is uploaded in a
vertex buffer object. Surface rendering then is initiated
by rendering X .

The vertex stage mainly processes the information
of the enriched original mesh. Besides the regular
operations that are performed in the vertex stage, the
interpolated vertex coordinates and the flat site ids are
passed to the fragment shader.

The fragment stage then computes the Voronoi
regions on a per-fragment basis. In addition to the
interpolated vertex coordinates and the site id of the
current vertex, the id texture and the attribute texture
are provided as input. With this information, we can
determine - for the current fragment - which site the
interpolated vertex position is nearest to using the

distance measure given in Eq. (3). Depending on this
assignment, the fragment is colored or texturized.

6.4 Texturing of Voronoi Cells
To compute the texture coordinates of the current
Voronoi cell, we need the interpolated vertex co-
ordinate �pi, the coordinates of the current site pi

and the metric tensor at the current site M(pi). The
computation of the texture coordinates, thus, is done
in the fragment shader.

The coordinates of the current vertex position are
transformed into the local coordinate system of the
current Voronoi cell Ωi, i.e., the coordinate system that
is distorted by the local metric and with pi lying in
the center

pΩi = (M(pi)−1 · (�pi − pi)) +
w

2
. (11)

Here, w is the width of the input texture and w = h.
Up to this stage, all computations were performed in
R3. To get the 2D texture coordinates puv ∈ [0, 1], pΩi

is projected into the 2D parameter space of the cell
and normalized to the [0, 1]-range

pu =
�pΩi , e1�

w
; pv =

�pΩi , e2�
w

. (12)

Here, the projection vectors e1 and e2 are the major
and medium eigenvectors of the projected metric
tensor �M (Eq. (5)).

7 ANISOTROPY DESIGN
Until now, we have assumed that a suitable metric
tensor field (Sec. 4.1) is given. In this section, we
explain how metric tensor fields are generated in this
work. A tensor

M = U · V · UT , (13)

can be described by its eigenvalues and eigenvectors,
where U is a rotational matrix whose columns are the
eigenvectors of M, and V is a diagonal matrix whose
diagonal elements are the eigenvalues λ1, λ2, λ3 of M.

If the input data are scalar or vector fields, we first
create the parts, i.e., U and V, and then compose
them again to get M (Eq. (13)). In more detail, we
derive the information about the three eigenvectors
and their scaling (represented by the eigenvalues)
from the input data. If tensor fields are given as input,
we first decompose the tensor into U and V. Then,
we have the possibility to manipulate (map, scale)
the eigenvalues to finally compose the parts again to
get M (Eq. (13)). In the following, we give specific
examples for the datasets that are presented in Sec. 8.

Scalar Fields. To derive a metric tensor field from
an input color image (Figs. 10, 13), we compute the
image’s gradient as minor eigenvector. The vector
field orthogonal to the gradient field then represents
the major eigenvector field aligning with the edges
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Fig. 9. Schematic depiction of endothelia cells moti-
vated by a depiction in [31].

of the input image. Further anisotropy design then
mainly subsumes the scaling and/or mapping of the
eigenvalues.

Vector Fields. An application that directly benefits
from our approach is the visualization of endothelia
cells of a blood vessel (Figs. 14, 15). See Fig. 9 for a
schematic depiction. Input data is a vector field that
represents the wall shear stress. In this case, the vector
field itself becomes the major eigenvector field and
the vector field orthogonal to the input field serves as
medium eigenvector field. As this data set is an ex-
ample for a surface tensor field, the minor eigenvector
field is represented by the surface normal where the
corresponding eigenvalue is set to λ3 = � > 0.

Tensor Fields. Finally, arbitrary tensor fields are
possible input data for our algorithm. In that case, we
first decompose the input tensor T into its eigenvalues
and eigenvectors T = U·V·UT . Then, the eigenvalues
can be scaled through eigenvalue mapping [30].

8 RESULTS AND APPLICATIONS

The evaluation of our algorithm is guided by the
requirements that we have named in the introduction:

• Time-efficient sample generation
• Few intuitive parameters
• Interactive rendering
• Visualization results of high visual quality

To demonstrate that the presented algorithms meet
these requirements, we have applied the proposed
methods to various datasets from different applica-
tions. For the planar case, we have used color images
as input. For the two-manifold case, a surface vector
field was used as input.

In the following, we evaluate the different stages of
our algorithm separately. All results presented in this
paper were obtained on an Intel Xeon X5550 2.67 GHz
system with 8 cores and an NVIDIA GeForce GTX680
graphics card.

8.1 Initial Sampling
Planar Domain. Fig. 10 shows results of initial sam-
pling in the planar domain. The images vary by
the three design parameters for the sampling: global
density steered by the fillrate η, an additional spatially
varying importance function (Sec. 5.2) that is guided
by the magnitude of the image gradient, and the met-
ric tensor field that was derived from the input image.

Depending on the input data and these parameters,
our initial sampling strategy generates approximately
10, 000 samples per second. On average, the gener-
ation of the images depicted in Fig. 10 took about
0.5 seconds. As comparison, anisotropic dart throwing
as presented in [4] generates about 200 samples per
second and anisotropic dart throwing as presented
in [5] generates about 100 samples per second. The im-
ages show that the initial sampling strategy that was
presented in this paper, efficiently generates sample
distributions that avoid holes and clutter. It reaches
already a high quality even without the relaxation
process and may be sufficient for many applications.
The uniformity of the sample distribution depends on
the underlying metric tensor field. See also Fig. 11 for
an analysis of the quality of the sample distribution.

Two-Manifold Domain. Fig. 14 depicts results
for the sample distribution and the corresponding
anisotropic meshes in the two-manifold domain. The
metric tensor field is designed on the basis of the wall
shear stress of a blood-flow simulation. In this exam-
ple, the fillrate was set to η = 1.0. That is, as many
samples as possible were distributed on the surface.
The resulting anisotropic triangulation represents the
anisotropy of the underlying metric. Depending on
the complexity of the original surface, our initial sam-
pling strategy generates around 6, 000 samples per
second in the two-manifold domain. The most time-
consuming steps are the projection of new samples
onto the original surfaces and the re-triangulation of
the sample mesh. The table in Fig. 12 provides an
overview of times that were needed to generate an
initial sample distribution for two analytic examples
(sphere and calypso) and the aneurysm dataset. It can
be observed that the time needed for initial sampling
also depends on the size of the original mesh. That is,
adding a single sample took about ≈ 0.06 ms for the
sphere dataset, ≈ 0.03 ms for the calypso mesh and
≈ 0.08 ms for the aneurysm dataset. Overall, the time
needed for initial sampling depends on many aspects:
the coarseness of the initial mesh, the variance of the
metric field, the size of the metric tensors, and how
many samples can be added in a single step. In this
sense, the timings given in Fig. 12 should be treated
only as reference.

8.2 Relaxation
Planar Domain. In Fig. 10 (d), a relaxation result after
10 iterations is shown. The relaxed sample distribu-
tion is much more uniform. Focusing on the sample
images, the initial sampling can be more pleasing
to the eye due to the formation of regular patterns
during the relaxation process. But the relaxed version
results in less artifacts when rendering the Voronoi
cells. The effect on the quality of the Voronoi-cell
rendering is further demonstrated in Fig. 13. Using a
random sample distribution as input, artifacts occur
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(a) η = 0.1 n = 6, 639
15, 439 samples per sec.

(b) η = 0.1 n = 3, 000
10, 714 samples per sec.

(c) η = 0.1 n = 3, 000
10, 714 samples per sec.

(d) Relaxed (c), 10 steps

Fig. 10. Results for initial sampling (a-c) and relaxation (d). The global density is controlled via the fillrate η.
Local density is controlled via an additional importance function based on the image’s gradient (c). Anisotropy
is steered by the choice of metric: In (b), an isotropic metric was used; the other examples (a, c, d) show an
anisotropic metric.

(a) t = 3.2s (b) t = 0.078s (c) t = 1.078s (d) t = 0.068s (e) t = 1.068s

(f) Dart Throwing (g) Initial samples (h) Relaxed samples (i) Initial samples (j) Relaxed samples

Fig. 11. Isotropic point sets (a-c), anisotropic point sets (d,e) and their corresponding power spectra (f-j). The
number of samples in all examples was n = 4000. The power spectra all have the characteristics of a blue noise
spectrum. That is, a zero region for low frequencies and a relatively constant high-frequency region. Also almost
no repetition artifacts and no grid artifacts are visible. Overlaps at the borders arise because of the random
initialization and because our method does not compute any sample intersections. For the analysis, we have
used the point set analysis tool presented in [29].

in the Voronoi-based visualization that are caused by
holes and clutter in the initial sample distribution.
For a good approximation of anisotropic Voronoi di-
agrams, a well-distributed sample set is required as
input. While the initial sample set already produces
good results, an even higher visual quality for the
Voronoi diagram is achieved with the relaxed sample
set. For the generation of Fig. 13, 100 relaxation steps
were carried out in 1.5 seconds. That is, a single
relaxation step in the planar domain took 15 ms.

Two-Manifold Domain. Fig. 14 shows an aniso-
tropic mesh and the corresponding glyph distribution

for the aneurysm dataset. The two close-ups show
the triangulation before and after relaxation. It can be
seen that the triangle sizes equalize well with respect
to the underlying metric tensor field. To demonstrate
that our method can deal with highly anisotropic and
varying metrics, we have exaggerated the anisotropy
in this example. Fig. 15 shows an alternative visu-
alization of the aneurysm data set. Here, a texture
and a metric tensor field were designed such that
the final visualization resembles a schematic depiction
of endothelia cells, which align with the blood flow
(Fig. 9).
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Metric Original Mesh (#vertices) Initial Mesh (#vertices) Sample Mesh (#vertices) Initial (ms) Relaxation (ms)
Uniform isotropic (a) 6077 (Sphere) 217 430 + 217 80 29
Uniform anisotropic (b) 6077 (Sphere) 217 413 + 217 75 26
Non-uniform anisotropic (c) 6077 (Sphere) 217 11587 + 217 716 38
Uniform isotropic (d) 1422 (Calypso) 400 2744 + 400 70 71
Uniform anisotropic (e) 1422 (Calypso) 400 1591 + 400 51 5
Non-uniform anisotropic (f) 1422 (Calypso) 400 236 + 400 24 13
Non-uniform anisotropic  (Figs. 13, 15) 112088 (Aneurysm) 1127 10535 + 1127 !"## $##

(a) (b) (c) (d) (e) (f)

Fig. 12. Timings for the sample generation in the two-manifold domain including the generation of anisotropic
triangulations. Once the sample set has been generated, rendering performs at interactive rates (≈ 100 fps).
Timings for the relaxation are given for a single iteration. For the examples that are given in this paper, we have
computed 100 relaxation steps. A stable sample configuration, however, is generally achieved after 10 to 20 steps.

Fig. 13. Top: Sample distributions (random, initial, re-
laxed). Bottom: Corresponding Voronoi cell rendering.
The zooms show that holes and overlaps in the sample
distribution result in artifacts and erroneous cells in
the Voronoi visualization. For well-defined sample dis-
tributions (middle, right), also the anisotropic Voronoi
diagram is of high quality.

The last column in the table in Fig. 12 provides
an overview of times that were needed for a single
relaxation step for the examples presented in this
paper. The times that are needed for relaxation mainly
depend on the size of the sample mesh but also on
the quality of the initial sampling, because it influ-
ences how many samples are moved in a single step.
The major bottleneck here is the back-projection of
relocated samples onto the original surface. A single
relaxation step for the aneurysm dataset takes about
0.9 seconds.

8.3 Anisotropic Voronoi Cell Rendering
Fig. 13 depicts an example application for the Voronoi-
based rendering in the planar domain: the generation
of mosaic-like images. An example from scientific
visualization is the schematic depiction of endothelia

cells of a blood vessel (Fig. 15). Since endothelia cells
naturally have shapes that equal Voronoi cells, this is
an example that directly benefits from our approach.

9 DISCUSSION AND CONCLUSION

In this paper, we have presented a method for the gen-
eration of anisotropic sample distributions in the pla-
nar domain, as well as in the two-manifold domain.
Moreover, we have presented interactive rendering of
anisotropic Voronoi cells.

The sampling approach consists of two main steps,
the initial sampling and the subsequent relaxation.
The goal of initial sampling is to generate sam-
ple distributions that cover the underlying domain
densely while significant holes and cluttered areas are
avoided. We have shown that this can be achieved
efficiently through the use of a density measure that we
call triangle fillrate in combination with anisotropic tri-
angulations. This combination of an intuitive measure
and a data structure that reflects the underlying data
helps to identify areas where it is beneficial to insert
new samples. The resulting method can be considered
as guided dart throwing, where costly intersection as
well as conflict checks are not needed. Furthermore,
in contrast to previous approaches (e.g. [5]), the only
parameter that needs to be specified by a user is
the fillrate to control the distribution’s density. The
fillrate automatically controls the number of samples.
If relaxation is required, the user also needs to specify
a maximum number of relaxation steps. However, a
fixed value of 100 works for most examples and re-
laxation in general stops earlier. As an additional op-
tion, an importance function can be used to generate
adaptive sample distributions. Motivated by Lloyd
relaxation, which is commonly used in remeshing
and sampling approaches, we propose a gravitational-
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Fig. 14. Results for the generation of anisotropic
sample distributions in the two-manifold domain (η =
1.0, n = 10, 535, t = 1.6s). The zooms show the
anisotropic mesh before (left) and after (middle) 100
relaxation steps and the resulting glyph distributions on
the basis of the relaxed sample set (right).

centered relaxation to equalize triangle sizes with re-
spect to the metric tensor field. Gravitational-centered
relaxation has the advantage that it is solely triangle-
based and does not require an explicit representation
of an anisotropic Voronoi diagram. This makes it a
stable and time-efficient method to generate more uni-
form sample distributions as they are needed for the
visualization of the anisotropic Voronoi diagram. For
applications such as stippling, however, the relaxed
sample set might be too uniform. Here, the initial
sampling result might be preferable over the relaxed
version.

The most time-consuming step during initial sam-
pling and relaxation in the two-manifold domain is
the back-projection. For the timings in this paper, the
back-projection was done every time a new sample
was inserted or every time a sample was moved. Here,
a speed-up can be achieved if the back-projection
is only done once after adding all samples. Then, a
breadth-first search starting from the last intersected
triangle might be sufficient.

Once the sample set is computed, anisotropic
Voronoi-cell rendering is achieved at interactive frame
rates. In the current implementation, we have used
quadratic textures as GPU data structures, which re-

Fig. 15. Visualizations generated via anisotropic
Voronoi cell rendering. Voronoi cells were generated
on the basis of a surface vector field that represents
the wall shear stress. The input texture was designed
so that it resembles a schematic depiction of the en-
dothelia cells of a blood vessel. The Voronoi cells align
with the blood flow. The zooms show the same region
without and with border.

sults in some redundant storage and, thus, a higher
memory consumption than actually needed. We plan
to improve this through the use of independent tex-
ture fetches and index buffer objects. However, for
the examples presented in this paper, memory con-
sumption was not an issue. For good visualization
results, a lower number of samples is preferable over
a higher number, since many samples result in many
small Voronoi regions that are difficult to be perceived
by a human observer.

The presented approach is very flexible and we
believe that it is applicable to many more scenarios
than those that were presented in this work. We
believe, that the texturization of anisotropic Voronoi
cells builds the foundation for many new possibilities
to visualize tensor fields ranging from the design of
suitable textures through texture synthesis. Consid-
ering the visualization of endothelia cells, we have
focused on their schematic depiction in this paper. For
the future, we plan more realistic visualizations which
could be achieved, for example, by adding noise to the
cell boundaries.
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