Airframe related aeroacoustics of transport aircraft

-research into prediction and reduction of sound radiation-

Presentation NASA Ames, 07/10/2013

Knowledge for Tomorrow

Jan Delfs DLR – German Aerospace Center Institute of Aerodynamics and Flow Technology Technical Acoustics – AS-TEA Braunschweig, Germany jan.delfs@dlr.de

DLR German Aerospace Center

- Research Institution for Aeronautics, Space, Transport, Energy
- Space Agency
- Project Management Agency

Tools

Prediction & Design

• component sound generation & propagation:

• complete a/c airframe noise estimation: semi-empirical

Testing & Validation

- acoustic wind tunnels (AWB, NWB, LLF, ...)
- flyover testing (A320 ATRA, G550 HALO,...)

Outline

- Introduction definition of topic
- Airframe related aircraft noise
- conclusions
- outlook

Introduction

Typical rank ordering of sources at approach

Source: Airbus

Airframe related aircraft noise

- 1. Airframe (component) noise
 - generation of sound due to (turbulent) flow past airframe components "noise of an aircraft flying at engines off"
- 2. Source installation effects (exterior + interior noise)

3. Acoustic installation effects (exterior + interior noise)

"Classical" sources of airframe noise at aircraft

Parasitic sources at real a/c airframes

- tone noise from pin-holes in landing gear pins/bolts (hollow for weight reasons)
- tone noise from pressure release openings

• broadband excess noise from slat/flap tracks

 broadband excess noise from recessed geometries

Parasitic tones at wings

Approach noise of Airbus A319

Helmholtz resonator

Landing gear noise

- considerable experimental research during past 15 years in EU and USA
- most important source of airframe noise (at certification point)
- very broadband in character (slow roll-off of spectrum)
- Size² scaling of intensity for similar geometry (in all details!)
- Speed⁶ scaling of intensity (compact source components)
- No pronounced directivity due to complex cluster of compact sources
- flyable noise reduction measures and new designs successfully developed for NLGs and MLGs

Low noise main landing gear

Optimal combination of modifications yields up to 8 dB(A) source noise reduction for flyable solution

Dobrzynski et al. 2010

Imp

Significance of high lift devices for airframe noise

• But: much more difficult to improve, since aerodynamically highly optimized component

Characteristics of slat noise

- significance and main parametric dependencies found by Dobrzynski, 1997/98, hypothesis: trailing edge mechanism
- most physics-based description so far by Guo's model 2010 (not predictive)
- origin of low frequency spectral characteristics unknown

What mechanism generates low frequency broadband signals in slat flows?

• fluctuating pressure from Poisson equation (incompressible flow near wall)

$$\Delta p' = -\rho_{\infty} \nabla \cdot \nabla \cdot (\boldsymbol{v} \boldsymbol{v})' = -\rho_{\infty} ({}^{t} \nabla \boldsymbol{v} : \nabla \boldsymbol{v})'$$

decomposition in mean + fluctuation

$$oldsymbol{v} = oldsymbol{v}^0 + oldsymbol{v}'$$

$$\Rightarrow \Delta p' \simeq -2\rho_{\infty}({}^{t}\boldsymbol{\nabla}\boldsymbol{v}^{0}\boldsymbol{:}\boldsymbol{\nabla}\boldsymbol{v}')$$

• order of magnitude estimation like

$$p'/l_{\omega}^2 \sim 2
ho_{\infty} |\boldsymbol{\nabla} \boldsymbol{v}^0| \frac{\sqrt{k}}{l_{\omega}}$$
 with $|\boldsymbol{\nabla} \boldsymbol{v}^0| = \sqrt{\boldsymbol{\nabla} \boldsymbol{v}^0} \cdot \boldsymbol{\nabla} \boldsymbol{v}^0$

What mechanism generates low frequency broadband signals in slat flows?

• time scale from LEE pressure equation (compressive part neglected)

What mechanism generates low frequency broadband signals Sr~1 in slat flows?

• repeat dimensional analysis with locally available data from RANS:

 \Rightarrow Source near trailing edge which is no trailing edge source (need no edge)

What mechanism generates low frequency broadband signals Sr~1 in slat flows?

 Do CAA simulation with/without slat trailing edge ("without" = slat extended by infinitely thin surface along t.e. streamline)

 \Rightarrow two sources at work, one due to acceleration, one classical edge noise source

Simulation based aeroacoustic Design

Optimum slat settings

Simulation based aeroacoustic Design

Simulation based aeroacoustic Design

Optimum slat settings

Background noise issue at frequencies below 1.5kHz (spurious noise from model attachment)

10

15

5

f [kHz]

Slat noise of high lift airfoil 30P30N

Airframe related aircraft noise

- 1. Airframe (component) noise
 - generation of sound due to (turbulent) flow past airframe components "noise of an aircraft flying at engines off"
- 2. Source installation effects (exterior + interior noise)
 - change/occurence of aerodynamic sound generation at an aircraft component due to its attachment to the aircraft
 - typically accompanied by change in/occurence of acoustic power
- 3. Acoustic installation effects (exterior + interior noise)

"Installation" sources of exterior noise at aircraft

Jet flap interference (JFI)

Source installation effects of pylon on OR sound generation

- 6.5dB increase upstream on front rotor downstroke side of pylon
- 4.5 dB increase downstream on rear rotor downstroke side of pylon

 \Rightarrow Importance of sense of rotation for installation at aircraft

Airframe related aircraft noise

- 1. Airframe (component) noise
 - generation of sound due to (turbulent) flow past airframe components "noise of an aircraft flying at engines off"
- 2. Source installation effects (exterior + interior noise)
 - change/occurence of aerodynamic sound generation at an aircraft component due to its attachment to the aircraft
 - typically accompanied by change in/occurence of acoustic power
- 3. Acoustic installation effects (exterior + interior noise)
 - change in the sound radiation of an aircraft component due to influence of the a/c geometry
 - typically not accompanied by change in acoustic power

Acoustic installation phenomena of exterior/interior noise at aircraft

DLR

J. Dierke et al., AIAA 2010-3917

A/c configuration / shielding of CROR sound

- Ray tracing approach fails for representation of largely extended sources, e.g. Contra Rotating Open Rotors
- Need complete solution to wave equation: Fast Multipole BEM code
- Shielding of rotor alone tone BPF_{front rotor} =171.5 Hz

A/c configuration / shielding of CROR sound

• Shielding of rotor alone tone BPF_{rear rotor} =137.0 Hz

Concept and Integration

Acoustic installation effect of CROR -sense of rotation-

Acoustic installation effect of CROR - LNA vs. rear mounted -

Cabin noise excitation at transport aircraft

Fuselage sound pressure level from engine tone signals

Fuselage sound pressure level from engine tone signals

- Re = 200 M
- RANS/FRPM/LEE
- active Thompson b.c.
 to specify incoming wave

Fuselage sound pressure level from engine tone signals

Refraction & Scattering at turb. eddies \Rightarrow Doppler shift (position dependent) !

Conclusions

- significance of airframe for a/c noise is high and related to
 - i) component source noise
 - ii) installation sources
 - iii) acoustic installation effects
- high lift system is THE challenge for approach noise
- noise of new generations of transport a/c will be dominated by installation sources
- a/c exterior/interior noise depends on the installation of the engine.
 Effects may be exploited at current and new a/c configurations

Outlook

- challenges in airframe component noise:
 - flow permeable trailing edges extremely efficient reduction devices why do they work? how can one predict/model their effect?

adapt

reference low noise

- efficient non-empiric aero-acoustic design capability
- Adaptive structures/ active flow control?
- challenges in source installation effects:
 - Definition of relevant, but generic test cases
 - Hard to do validation, necessarily in large acoustic facilities
- challenges in acoustic installation effects:
 - Full a/c simulation for frequencies up to 10kHz?
 - Taking into account viscous flow effects on shielding
 - Realistic prediction of engine related fuselage pressure fluctuations: boundary layer effects extremely important, i) hard to simulate. ii) extremely hard to measure!

