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Lilienthalplatz 7, 38108 Braunschweig
Marcel.Wallraff@dlr.de

Computational Fluid Dynamics (CFD) methods have advanced substantially in the
past decades. Moreover, CFD tools have become essential in the design process
and analysis of modern aircraft design. The last decade has seen an interest in
high order numerical methods, in particular in the discontinuous Galerkin (DG) Finite
Element method. The analysis of turbulent flows employing steady-state computa-
tions based on Reynolds-averaged Navier-Stokes (RANS) equations and a turbu-
lence model might be considered as the work-horse in this field. Nevertheless, DG
results are relatively rare for this particular application. One of the reasons for this
might be the stiffness introduced by both the turbulence model equations and the
highly stretched meshes typically used for an efficient resolution of turbulent bound-
ary layers. In order to solve the RANS equations in combination with a turbulence
model several authors suggested strongly implicit schemes that are close to New-
ton’s method. A Backward-Euler method in combination with an iterative linear solver
can be considered as standard approach to solve a nonlinear set of equations for DG
[2].
Here, we focus on a combination of nonlinear multigrid algorithms using strongly im-
plicit schemes as smoothers and linear multigrid algorithms to exploit hierarchies of
coarse level problems in solver algorithms [3]. Based on either lower order discretiza-
tions or agglomerated coarse meshes the resulting algorithms can be characterized
as either p- or h-multigrid, respectively. The only difference between these multi-
grid algorithms is the use of different coarse level DG discretizations and, therefore,
transfer operators. All other ingredients like smoothers, timestep control, usage of a
Galerkin-transfer [3], startup strategy, etc. will stay the same for both kinds of multigrid
algorithms.
The proposed algorithms will then be applied to the DG discretizations of the steady-
state RANS equations in combination with two different turbulence models: the Wilcox-
kω two equation model [4] and the negativ Spalart-Allmaras one equation turbulence
model [1]. Results based on various combinations of multigrid algorithms are shown
in comparison to a strongly implicit single grid solver. As a test case we consider
the MDA 30P30N configuration which is a 2D high-lift three element airfoil and was
recently considered as a test case for the Second International Workshop on High-
Order CFD Methods in Cologne on May 2013.



In Figure 1 a comparison in normalized CPU time of a single grid Backward-Euler
method and a 2 level nonlinear h-multigrid with a Backward-Euler smoother is shown.
These computations are performed on a mesh with 8432 elements. This mesh is
agglomerated resulting in an unstructured mesh with 4243 agglomerates. In order
to converge a strongly implicit scheme in a satisfying behavior a good initial guess
is needed. Therefore, a second order (p = 1) solution of the RANS-kω equations is
computed with a single grid Backward-Euler solver on the agglomerated mesh with
4243 agglomerates. This converged solution is used as initial solution for a single
grid Backward-Euler solver for a third order (p = 2) discretization on the same mesh.
These coarse level computations are marked with x in Figure 1. The resulting con-
verged solution is used as initial solution for the algorithms used on the mesh with
8432 elements, represented in Figure 1 with a line which is unmarked and one marked
with a •. The only difference between these lines is that the unmarked line uses in ev-
ery iteration the agglomerated mesh in an h-multigrid sense, whereas the line marked
with a • only uses the mesh with a 8432 elements to compute a converged solution.
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Figure 1: Computation of a third
order (p = 2) solution
for the MDA airfoil with
an h-startup strategy.

Figure 2: Pressure plot of a third order
(p = 2) solution on a mesh with
32k elements.
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