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Abstract: With the introduction of complex precomputed scattering tables by Bruneton in
2008, the quality of visualizing atmospheric scattering vastly improved. The presented algo-
rithms allowed for the rendering of complex atmospheric features such as multiple-scattering
or light shafts in real-time and at interactive framerates. While their published implemen-
tation corresponding to the publication was merely a proof of concept, we present a more
practical approach by applying their scattering theory to an already existing planetary ren-
dering engine. Because the commonly used set of parameters only describes the atmosphere
of the Earth, we further extend the scattering formulation to visualize the atmosphere of
the planet Mars. Validating the modified scattering and resulting parameters is then done
by comparison with available imagery from the Martian atmosphere.
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1 Introduction

Atmospheric visualization is widely used in computer graphic applications such as video-
games, special effects in movies or in scientific visualization. Especially when used in a
real-time application, rendering a realistic looking atmosphere is a trade-off between qual-
ity and performance. With the algorithms presented by Bruneton [BN08] in 2008, a re-
alistic and plausible atmosphere can be rendered in real-time, including effects such as
multiple-scattering and lightshafts. The available implementation published by Bruneton
corresponding to the publication is limited to spherical surfaces only and is rather designed
as a proof-of-concept rather than as a plugin for existing renderers. Thus the here presented
implementation extends this approach by creating a plugin-like structure to work with an
arbitrary planetary renderer. This allows for an increased amount of realism for any planet
rendering and improved presence inside a virtual reality environment. While the Earth’s at-
mosphere is, due to its convenience of viable reference, the commonly used example case for
atmospheric rendering, the visualization of other planet’s atmospheres have become increas-
ingly desirable, e.g. for the planet Mars. Visualizing the Martian atmosphere is challenging
because of its difference in scattering properties but still can be done in a plausible man-



ner with using the same atmospheric rendering technique as used for rendering the Earth’s
atmosphere.

2 Related Work

Previous to the already mentioned work by Bruneton, several approaches have been made
to visualize an atmosphere in real-time. Research on the scattering theory inside the atmo-
sphere and its implementation has been done by Nishita et al. [NSTN93]. Their approach is
based on a clear sky atmospheric model, assuming the atmosphere consists only of two types
of particles, namely gas-molecules and aerosols. Despite using a precomputed 2D lookup
table to improve performance on calculating the scattering-integral, their implementation
is not suitable for real-time rendering. Hoffmann and Preetham [HP02] further analysed
the light scattering inside the atmosphere by describing absorption, in- and out-scattering
and the concept of the aerial perspective. Based on the physical model presented by Nishita
[NSTN93], ONeil [ONe05] improved the rendering speed using low sampling of the scattering
integral in the vertex shader. His usage of a polynomial to approximate the transmittance
results in a real-time implementation. However to ensure interactive framerates, the number
of samples is limited. Still the visual quality of the outcome is high while being able to
render in real-time and thus this approach is very suitable for the usage in e.g. video-games.
Schafhitzel [SFE07] et al. present a method based heavily on precomputation. Their ap-
proach is using a 3D texture parameterized by observer height, view-direction and angle
of incident sunlight. During runtime the scattering integral is substituted by one texture-
lookup per pixel. While they provide images of a Martian atmosphere, they do not describe
the parameters used and if this approach differs from rendering Earth’s atmosphere.
In 2008, Bruneton [BN08] presented a method to precompute all light scattering for any ob-
server position, view angle and angle of incident light. Using a four-dimensional texture, all
needed information can be accessed at runtime by performing texture lookups for the current
view-configuration. This approach includes atmospheric effects like multiple scattering and
light-shafts, which no other implementation was able to render in real-time. Additionally,
Sperlhofer [Spe11] further discussed Bruneton’s approach by applying it to a custom build
planetary renderer to visualize the Earth.
All approaches are using a set of parameters resembling the atmosphere of the Earth. The
reason the following work is based on the approach by Bruneton is the high physicality
of their implementation in addition to the support of multiple scattering. While multiple
scattering not being included in this implementation, the possibility of adding it with only
increasing the amount of calculations in the precomputation step is an important benefit to
allow a scientific visualization which is close to the real scattering inside the atmosphere.
Using Bruneton’s approach, we thus present an implementation for the visualization of the
Martian atmosphere which is designed as a plugin for existing planetary rendering engines
such as the renderer provided by the German Aerospace Center (DLR), developed by West-
erteiger [WGH+11].



3 Introduction to Atmospheric scattering

As previously mentioned, there have been a number of approaches for the visualization of
atmospheric scattering effects. To give a short introduction on the scattering theory used
in state of the art atmosphere rendering, we first present the basic scattering equations by
Rayleigh and Mie, fit to atmospheric rendering by Nishita [NSTN93].

3.1 Rayleigh-Scattering

The so-called Rayleigh-Scattering explains computation of light-scattering due to small par-
ticles (smaller than 10% of the incident lights wavelength [Ray99]). Because these particles
have a very small cross-section, the wavelength λ has a strong impact on the resulting scat-
tering. This is due to the higher probability of short wavelengths to collide with a given
particle, thus resulting in increased scattering for lower wavelengths. When computing
the scattering-coefficients which describe the amount of reflection from incident light, the
scattering parameter is divided in reflection coefficient βR/M and the phase function γR/M ,
indicating the directional characteristic.
The corresponding equations for the Rayleigh-Scattering are described by the equations

βR(h, λ) =
8π3(n3 − 1)2

3Nsλ4
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γR(θ) =
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with
ρ(h) = e

− h
HR (3)

and h being defined as the observer height over ground h = r−RGround with r denoting the
distance of the observer to the planet’s origin and RGround the altitude of the surface. HR

is the scale height or thickness of the atmosphere if it had uniform density and Ns represents
the molecular number density of the standard atmosphere. n is the refraction index of the
air, θ is the angle of the incident light and ρ is called the density ratio.

3.2 Mie-Scattering

Mie-Scattering accounts for particles which are of equal or greater size than λ. These particles
are commonly referred to as aerosols, which cause a dusty blur on objects far away from the
observer. Since their size is greater than the wavelength mixture of visible light emitted from
the sun, all light gets scattered equally. This results in omitting the wavelength dependency
in equation 1, resulting in the equation

βM(h) =
8π3(n3 − 1)2
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is a result from the Henyey-Greenstein phase function and was improved by Cornette [CS92].
The asymmetry factor g is a constant and depends on conditions like haze or dusty air. If
g = 0, this function is equal to Rayleigh-Scattering.

4 Precomputing the Light Contribution

Based on the presented scattering theories, the light intensity reaching an observer inside the
atmosphere can now be computed. The formulation of incident light for an observer inside the
atmosphere is split into direct light, inscattered light and reflected light. While direct light is
the circle of the sun visible on the sky which is rendered later as an additional post-processing
effect, the inscattered light, being the global illumination inside the atmosphere, and the
reflected light, when looking at the planet’s surface, contribute to the overall atmosphere
brightness.

4.1 Transmittance

Independent of the direction of incident light, we need a formulation on how much light is
reaching the observer when emitted from any arbitrary point inside the atmosphere. With
βR,M representing the probability of light being scattered away at a certain height, we can
calculate this attenuation. Computing a for an arbitrary ray inside the atmosphere is done
by tracing the view-vector and summing the respective values of βR,M along the ray using

a(λ, r) =
∫ d

0
βR(λ, h(r))βM(λ, h(r))dr. (6)

The following equation
t(λ, r) = e−a(λ,r) (7)

then converts the attenuation coefficient a into the extinction factor, here referred as the
transmittance t. This transmittance is defined as a percentage of incident light from the
start point of the ray r, reaching the end of the ray.
As seen in equation 6, the transmittance only depends on the height h and the distance d to
the edge of the atmosphere. Because the distance d from any point inside the atmosphere
is connected to the view-angle, we have a description for the transmittance at any height
h and view-angle α. Since the transmittance does not change during rendering, it can be
entirely precomputed and stored inside a texture (Figure 1)

4.2 Inscattered Light

Without accounting for inscattered light, the atmosphere would appear black whenever the
view-ray is not directed at the sun. But because light is scattered into the view ray at each
point along the ray, the atmosphere has a high overall brightness.
A physical representation of inscattered light is given by equation

Iinscatter =
∫ p

x
t(λ, r′)j(y, v)dy (8)



and

j(y, v) =
∫ 4π

0
(βR(y)γR(v • θ) + βM(y)γM(v • θ)) · Itotal(y, v

′, d′)dθ. (9)

The equations represent integration along the view-ray and evaluate the inscattered light at
each point along the ray. With r′ being the vector from the observer at x to an arbitrary
point y. Performing the spherical integration j(y, v) for the precomputation is called multiple
scattering and was, as previously mentioned, first presented by Bruneton in a real-time
implementation. For the sake of simplicity we only take single-scattering into account.
While the loss of general brightness is tolerable, multiple scattering can later be added
by including iteration over the inscattered light [BN08]. Single-scattering is the result of
omitting the spherical integration at each point along the view-ray while only taking the
direct light into account.
The parameters of the inscattered light are, in addition to the already used height above
ground and view-angle, the angle of the incident light and the angle between the view and
the light-direction. Those are needed to be able to compute the incident light to every
point along the view-ray. For a resulting precomputation, we solve the integral along the
view-ray by sampling and trapezoidal integration. At each sample point, the intensity of
incoming light is computed using the transmittance table we previously generated. The
thus computed intensity is then attenuated from the sample point up until it reaches the
observer. To account for all possible daytimes, the precomputation is performed for all light
directions and for all angles between view-direction and light direction, resulting in the need
of a four-dimensional texture to store all needed data for a real-time visualization.
The resulting four-dimensional inscatter-table, which is rendered into a 3D texture, is shown
in figure 1.

Figure 1: Left: Transmittance Texture; Right: Inscatter Texture

4.3 Reflected light

With now having a formulation to compute the light intensity at any position inside the
atmosphere, still a formulation for a view-ray intersecting with the planet is missing. The
light incident to any point on the planet’s surface can be computed by integrating over the
hemisphere at said point, calculating the overall light intensity from all directions. This is



again called multiple-scattering but is, as with the inscattering, omitted in this implemen-
tation for the sake of simplicity. To still account for the reflected light, again only the direct
light reaching the planet’s surface is taken into account. In the case of an already shaded
planet, e.g. because of the planetary renderer already applying a phong lighting, we are able
to directly use this lighting information and only need to attenuate it twice.

5 Implementation

While the previous chapters briefly described the theoretical approach to atmospheric scat-
tering, we are now able to use this approach to add this atmosphere to an planetary rendering
engine using the methods introduced by Nishita and used by Bruneton. Precomputing both
the transmittance and inscatter texture can be performed once before rendering the atmo-
sphere. With this data at hand, only the parameters for acessing the textures are yet to
be computed before the atmosphere can be rendered around the planet. Obtaining these
parameters without having detailed acess to the scene itself is described in the next section.

5.1 Accessing the Textures

For the following computations we assume a scenario in which the atmosphere is to be applied
to an existing, arbitrary renderer with no influence on the already rendered planet and little
information about the scene itself. The previously generated inscatter-texture needs four
parameters to be accessed correctly during runtime.
Starting with the observer’s height above ground, the current position of the camera relative
to the planet’s radius is either given or can be obtained by extracting the modelview matrix
from the currently used rendering context. Is the planet in the origin of the coordinate-
system, the height above ground is the length of the camera’s position vector. Otherwise
the planet and the observer’s position first have to be moved so that the planet’s origin lies
on the coordinate-system’s origin.
Next up is the computation of the view-angle parameter. This angle is unique for each
pixel on the screen and is thus most efficiently computed on the GPU. Using the hardware-
accelerated interpolation of vertex-attributes, we can get each pixel’s world position by
creating a vertex at each edge of the far-plane.
By setting the viewport to an artificial unit-viewport and placing four vertices to each edge of
back-plane of the the view-frustum, we obtain the quad representing the far-plane. Using the
inverted projection matrix, we can now project this far-plane back into world-coordinates and
thus have both the edges of the view-frustum and, by using linear interpolation, all position
vectors for each pixel on the far-plane in world-coordinates. Subtracting these values for each
pixel from the camera position, we obtain the view-direction per pixel which can directly be
converted into the view-zenith angle by using the dot-product.
The two missing parameters for accessing the inscatter texture are both depending on the
direction of incident light. In the event that the planet is already shaded, that light direction



has to be used. Is the planet not shaded, the normals on the surface of the planet have to
either be given or computed. The angle between the view-direction and the light direction
can again be computed using the dot-product.
Since the light reaching the observer has to be computed for each pixel on the screen, the
whole computation is, as already mentioned, performed on the GPU inside a fragment-
shader.

5.2 Accounting for Rough Terrain

Adding the atmosphere to the rendered planet yields incorrect results. This is due to the
simplified representation of the planet as only a radius without features such as mountains
or valleys. Every surface feature which lies above or under the parameterized planet radius is
not accounted for and thus does not block the atmosphere as it should (figure 2). Bruneton

Figure 2: Left: Not accounting for rough terrain; Right: Using the corrected light intensity

proposed a solution to this problem by computing the atmosphere color at both the camera
position and the surface point with the same view-direction. Because the light intensity
is additive, these can be subtracted and thus yield the correct atmosphere color from the
observer to the point on the planet’s surface.
To apply this in a practical sense, the coordinates of each intersection of the view-rays
with the planet’s surface have to be known. Assuming the atmosphere only being an post-
processing effect, this results in the need of accessing the depth buffer after the planet was
rendered.
After linearizing the depth, we can use the previously per-pixel computed view-direction
in world coordinates to reconstruct each pixel’s world position. Is the computed world
coordinate of the pixel differing from either the far-plane or the parameterized radius of the
planet, we then can perform an additional texture lookup to correct the light intensity.

6 Parameter Estimation

With the theory and implementation of state of the art atmospheric visualization described
in the previous sections, the visualized atmosphere is still based on the Earth’s atmosphere



and its physical properties. We will now first discuss the parameters resembling the atmo-
sphere of the Earth and then develop a method to use the implemented visualization to
visualize a Martian atmosphere.

6.1 Earth Atmosphere Parameterization

Recall the scattering parameters βR,M and their dependencies (eq. 1 and eq. 4). While
Nishita [NSTN93] discusses these equations in terms of atmospheric scattering, he does not
explicitly give the parameters used for the presented example images. Bruneton, who based
his work on the presented equations for βR,M and γR,M , uses values presented by Riley
[REK+04] for his implementation [BN08].

βR = (5.8, 13.5, 33.1)10−6 for wavelengths λ = (680, 550, 440)10−9m (10)

Riley uses a molecular number density at sea level Ns = 2.55 ∗ 1025 and a set of wavelengths
resembling red, green and blue light (eq. 10) for each scattering parameter. Information miss-
ing however is the used refraction index of air n. Reconstructing the used refraction index
based on the given scattering coefficients βR yields the used refraction index n = 1.000206102

for all three wavelengths. This value however differs from the refraction of dry air at 15◦C
defined as n = 1.000276 for λ = 680nm 1. Also a phyiscal reason for choosing the wave-
lengths is given in neither publication.
While all parameters are based on physical data available for the standard atmosphere of
Earth, the choice of both refraction index and wavelengths is influenced by the visual out-
come of the rendering. Due to the convenient way of comparing a rendering with the Earth’s
atmosphere on photographs, adjusting these parameters to fit the atmosphere yields a very
high image quality.

6.2 Martian Atmosphere Parameterization

However, for a Martian atmosphere, estimating parameters is limited by the availability of
both physical data and viable visual reference. Starting with a physical approach, the Mar-
tian atmosphere weights about 0.5% of the Earth’s atmosphere and has a scale height of
11km compared to the Earth’s 7km. It consists to >95% of CO2 and has, although being
very thin compared to the Earth’s atmosphere, a high amount of aerosols, which let the
atmosphere appear very dusty [Rob06]. The dust gets the characteristic red-yellowish color
from iron oxide which also partially covers the surface of the planet.
Based on these observations, the direct use of Rayleigh- and Mie-Scattering would yield in-
correct results. While Mie-Scattering is simulating the light scattering at larger particles and
is thus independent of the light’s wavelength, the dust particles in the Martian atmosphere

1refractiveindex.org



however are scattering red light while absorbing blue light. The Rayleigh-Scattering on the
other hand is barely visible due to the very thin atmosphere compared to e.g. the Earth’s
atmosphere. Thus even though the atmosphere would appear in a darker blue when the sky
would be clear of the iron oxide dust, the Rayleigh-Scattering impact on the visual outcome
is negligible.
Since the scattering theory by Nishita [NSTN93] is hardly applicable in the context of the
Martian atmosphere, we still want to get a visual convincing visualization using the provided
tools. Usually the scattering coefficients behave in a way that with increasing wavelength,
the probability of scattering decreases (eq. 1). On Earth, this results in a blue sky when
the sun is high at the sky, because blue light is scattered widely across the atmosphere.
When the sun sets or rises, the distance the light travels through the atmosphere is longer
than during the day, resulting in increased scattering of the blue light. With the blue light
being almost completely scattered away, the sky appears yellow or red. On Mars on the
other hand, the sky has, due to the iron oxide in the dust, a yellow or red-ish color during
daylight. This is again because the red light is scattered widely inside the atmosphere just
like the blue light in the Earth’s sky. When the sun is setting or rising on Mars, the red light
is, just like the blue light on Earth, scattered over a longer distance inside the atmosphere
and thus loses intensity. Because of this effect, a Martian sunset shows a blue hue over the
horizon in comparison to the Earth where the sky appears yellow or red (figure 3).

Figure 3: Sunset as seen by the Pathfinder Mars Lander

Using this characteristic, we can adjust the scattering coefficients to simulate an equivalent
scattering formulation. Instead of having increased scattering for short wavelengths we want
the inverse effect, namely the increased scattering of red light, thus of longer wavelengths.
The other parameters for the scattering coefficient βR can be adjusted for an atmosphere
consisting of mainly CO2. Because the Martian sky has a variety of sky colors due to different
concentrations of dust and occasional, potential planet-wide, sandstorms, these parameters
are merely estimations and are in this case designed to yield a plausible outlook of the
Martian sky. For reference on the Martian sky, we use imagery published by the NASA
and taken by several Mars-Rovers or -Landers. Figure 3 was taken by the Mars-Lander
Pathfinder and shows the blue hue at sunset as well as a pale, red-ish atmosphere color.
While this picture is not necessary how human eyes would perceive the atmosphere, NASA
published photos taken by the Curiosity Rover with a corrected set of colors (figure 4).
To resemble this yellow-ish dusty atmosphere, we choose the scattering parameters for the



Figure 4: Color-corrected image from mount sharp taken by the curiosity rover

Rayleigh-Scattering as seen in equation 11.

βR = (19.918, 13.57, 5.75)10−3; λ = (680, 510, 440)10−9m (11)

As already mentioned, longer wavelengths are now scattered with a higher probability than
shorter wavelengths. While this results in a formulation different from the Rayleigh Scatter-
ing as presented by [NSTN93], it is a physically accurate model for the Martian atmosphere
because it takes the reflected color of the particles into account. The effect of the Rayleigh
Scattering on the other hand is neglectable because of the low density of the Martian atmo-
sphere.
Rendering the same scene as photographed by the Curiosity Rover yields a convincing ren-
dering of the Martian atmosphere (figure 5). When rendering a sunset using the proposed

Figure 5: Rendered Atmosphere

parameters above, the sky above the horizon changes to a blue hue just as seen on figure 3.
An example render for a sunset on Mars is shown in figure 6. The size and light intensity of
the sun are not accurate in this image but since the sun is also parameterized, the parameters
can be set to fit the actual size and brightness of the sun as seen from an arbitrary distance.
Additional information on how the post-processing of the planet and the sun are performed
can be found in [Col13].

7 Conclusion

We proposed a way of computing and rendering a Martian atmosphere by extending ex-
isting rendering algorithms to support an arbitrary planetary renderer by only using the
previously rendered image and depth map. Rendering the atmosphere is performed during



Figure 6: Sunset visualized by the atmosphere renderer

runtime while draining about 10% of the planetary rendering engine’s framerate. With the
additionally introduced set of parameters, we invert the properties of Rayleigh scattering to
visualize the characteristic dusty red atmosphere of Mars while still using the benefits of the
precomputation, thus allowing for real-time rendering in a virtual environment.
While this gives a plausible and realistic look for a Martian atmosphere, the implementation
still can only render a uniform atmosphere. Different densities of the dusty atmosphere can
not be visualized using only one transmittance- and one inscatter-texture. Also the repre-
sentation is limited to spherical planets, because of the simplifications in parameterization.
Improving these approximations can yield to an even more accurate physical representa-
tion for the Martian atmosphere, even though more viable sources for the actual outlook of
the atmosphere on Mars is needed, in order to appropriately match reality with a rendered
image.
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