Reaction and Transport in Gas Diffusion Electrodes of Li-O\textsubscript{2} batteries: Experiments and Modeling

T. Danner, B. Horstmann, D. Wittmaier, N. Wagner and W.G. Bessler

224th ECS Meeting, San Francisco, 10/29/2013
Content

I. Motivation and background

II. Continuum model of an aqueous Li-O₂ system

III. Model parameterization

IV. Model validation

V. Electrode and cell design

VI. Summary
I. Motivation and background

- Proposed designs
 - **Aprotic** Li-O₂ batteries \((U = 3 \text{ V})\)
 \[
 \text{O}_2 + 2 \text{Li}^+ + 4 \text{e}^- \rightleftharpoons \text{Li}_2\text{O}_2^{(s)}
 \]
 - Stable electrolyte?
 - Solubility and diffusivity of \(\text{O}_2\)?
 - Insulating discharge products

 - **Aqueous** Li-O₂ batteries \((U = 3.45 \text{ V})\)
 \[
 \text{O}_2 + 2 \text{H}_2\text{O} + 4 \text{e}^- \rightleftharpoons 4 \text{OH}^-
 \]
 - Stable anode protection?
 - Precipitation of \(\text{LiOH}\cdot\text{H}_2\text{O}\)
 - Advantage: GDEs
 - …

\[\Rightarrow\text{Very high theoretical energy densities}\]

I. Motivation and background

- Porous Gas Diffusion Electrode
 \[\text{O}_2 + 2 \text{H}_2\text{O} + 4 \text{e}^- \rightleftharpoons 4 \text{OH}^- \]
 - High surface area
 - Fast transport of O\(_2\)
 \(\Rightarrow\) High current densities

- Lithium metal anode
 \[\text{Li} \rightleftharpoons \text{Li}^+ + \text{e}^- \]
 - Stable anode protection

- Separator
 - Precipitation of LiOH·H\(_2\)O (\(c_s = 5.3 \text{ mol} l^{-1}\))
 \[\text{Li}^+ + \text{OH}^- + \text{H}_2\text{O} \rightleftharpoons \text{LiOH} \cdot \text{H}_2\text{O}^{(s)} \]
 - Clogging of transport pathways
II. Continuum modeling

- 1D spatially resolved continuum model
- Transport in liquid electrolyte
 - Concentrated solution theory
 - Electro-neutrality condition
 - Darcy flow \(\mathbf{\vec{v}} = -B/\mu \cdot \text{grad } p_{\text{liq}} \)

 \[
 \frac{\partial (\varepsilon_{\text{liquid}}c)}{\partial t} = -\text{div}(\mathbf{\vec{v}}\varepsilon_{\text{liq}}c) - \text{div}\mathbf{j} + A_{\text{spez}}\dot{s}
 \]
 - Global kinetics (Butler-Volmer type)
 \(\Rightarrow \) ORR/OER
 - Single set of parameters
 \(\Rightarrow \) Literature or own experiments

\(\Rightarrow \) Simulation software DENIS

II. Continuum modeling - Transport in porous media

- Effective transport properties

- Bruggeman equation:

\[D_j^{\text{eff}} = D_j^0 \cdot \varepsilon_{\text{liq}}^\beta = D_j^0 \cdot (\varepsilon^0 s)^\beta \]

- Capillary pressure in porous electrodes

\[p_c = p_{\text{gas}} - p_{\text{liq}} = -\sigma_t \sqrt{\varepsilon^0 / k} \ J(s) \]

- Constant Total Volume \(\sum_k \varepsilon_k(p_k) = 1 \)

- Liquid equation of state: \(\sum_s \frac{\partial V_{\text{liquid}}}{\partial N_s} c_s = 1 \)

- Gas equation of state: \(p_{\text{gas}} V_{\text{gas}} = N_{\text{gas}} RT \)

III. Model parameterization

- Thermodynamic parameters
 - LiOH\(\cdot\)H\(_2\)O precipitation
 - 'Salting-out' of oxygen

- Kinetic parameters
 - ORR/OER

- Structural parameters
 - Porosity, tortuosity, etc

- Transport parameters
 - Leverett function
 - Effective transport

Literature

LiOH solubility
III. Model parameterization – Electrochemical characterization

- Three-electrode setup
 - Alkaline LiOH solution (0.1-2M)
 - Pure oxygen (1 atm)
- Ag-GDE (commercial)
 - Defined structure
- Measurements
 - CV, EIS

→ Broad parameter range for parameterization and validation

III. Model parameterization – Structural characterization

FIB-SEM → **Binarization** → **Reconstruction**

- **Good agreement to experimental results**

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Measurements</th>
<th>FIB-SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity (vol%)</td>
<td>0.479</td>
<td>0.495</td>
</tr>
<tr>
<td>d_{50} (µm)</td>
<td>0.51</td>
<td>0.82</td>
</tr>
<tr>
<td>Specific surface area (m$^{-1}$)</td>
<td>3.3×10^6</td>
<td>1.1×10^6</td>
</tr>
</tbody>
</table>

Collaboration with S.K. Eswara Moorthy, Central Facility of Electron Microscopy, University of Ulm
III. Model parameterization – Transport parameters

Collaboration with Prof. Arnulf Latz

- Lattice-Boltzmann modeling
 - 2D and 3D simulations
 - SRT-BGK model
 - Multiphase simulations (Rothmann-Keller type)
 - Heterogeneous structures

- Simulation of p_c-S curves

- Effective transport properties

Initial code provided by Prof. Volker Schulz (DHBW Mannheim)

III. Model parameterization

- Thermodynamic parameters
 - LiOH·H₂O precipitation
 - ’Salting-out‘ of oxygen

- Kinetic parameters
 - ORR/OER

- Structural parameters
 - Porosity, tortuosity, etc

- Transport parameters
 - Leverett function
 - Effective transport

→ Single set of parameters
IV. Model validation

- IV curves and impedance spectra
 - Good qualitative agreement
- Deviation at high temperature, overpotential
 - Change in reaction mechanism?
 - Additional transport limitations?

Nyquist plot - 1 M - 25 °C

Nyquist plot - 2 M - 75 °C
V. Electrode and cell design - Gas Diffusion Electrodes

- Sensitivity of current density

 \[S_j = \frac{(i^0 - i^+)}{i^0} / \frac{(\zeta^0 - \zeta^+)}{\zeta^0} \]

- No influence of
 - Anode (three electrode setup)
 - \(\text{O}_2 \) pore-space transport (no liquid film modeled)

- High sensitivity of
 - Cathode kinetics \((k^0, \beta)\)
 ➔ Development of new catalysts
 - Structural parameters \((\epsilon, \tau, A^V)\)
 ➔ Optimization of GDE structure

➔ Validated 1D model as design tool
V. Electrode and cell design – Precipitation in aqueous Li-O₂ batteries

- Classical theory of nucleation and growth
 \[\text{Li}^+ + \text{OH}^- + \text{H}_2\text{O} \rightleftharpoons \text{LiOH} \cdot \text{H}_2\text{O}^{(s)} \]

(a) Nucleation on *surfaces*
 ➔ Porous separator

(b) Nucleation on *dust* particles
 ➔ Bulk separator

 ➔ Precipitation mainly on anode side

III. Modeling and simulation – Precipitation in aqueous Li-O₂ batteries

- Evaluation of battery design
 - **Flooded** electrodes best at low rates
 - **Gas Diffusion Electrodes** best at high rates
 - **Bulk separator** superior at very high rates

→ Precipitation as engineering task

→ Design depends on operating conditions
IV. Summary

- Model experiments on Ag GDEs
 - Parameterization and validation

- FIB-SEM for electrode reconstruction
 - Structure determination

- Lattice-Boltzmann simulations
 - Multiphase flow

- Detailed model of precipitation in aqueous Li-O₂ batteries
 ➔ Operating conditions determine battery design

- Validation of transport model
 ➔ Good qualitative agreement

Thank you for your attention!