

A Model-driven Approach to Design
Multi-device Forms for Capturing Data

in a Medical Study Environment

Master‘s Thesis

Florian Klein

Koblenzer Str. 1 – 56826 Lutzerath

KleinFlorian@live.de

Bonn, 25th of August 2013

in cooperation with

German Aerospace Center

Simulation and Software Technology

Rheinische Friedrich-Wilhelms-Universität
Institute of Computer Science III
Professor Dr. Armin B. Cremers

A Model-driven Approach to Design Multi-device Forms
for Capturing Data in a Medical Study Environment
Master’s Thesis
Author: Florian Klein
Submission Date: August 25, 2013

First Supervisor
Prof. Dr. Armin B. Cremers
Rheinische Friedrich-Wilhelms-Universität Bonn
Institute of Computer Science III

Second Supervisor
Prof. Dr. Rainer Manthey
Rheinische Friedrich-Wilhelms-Universität Bonn
Institute of Computer Science III

In Cooperation with
German Aerospace Center (DLR)
Simulation and Software Technology
Distributed Systems and Component Software

Ehrenwörtliche Erklärung

Hiermit versichere ich, dass die vorliegende Arbeit von mir selbständig angefertigt
und nicht anderweitig zu Prüfungszwecken vorgelegt wurde. Außerdem wurden keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet und wörtliche sowie
sinngemäße Zitate als solche gekennzeichnet.

Bonn, den 25.08.2013

Abstract
During medical studies a large amount of data has to be captured for later evaluation.
Instead of doing this by pen and paper forms recent approaches use electronic data
forms that directly digitize the entered data and store it in a central database. The us-
age of such electronic forms on mobile devices allows the study staff to carry the
forms with them such that they do not have to move to dedicated data capturing sta-
tions inside the study facility.

The high diversity of available mobile devices (smartphones and tablets) requires
developing electronic data forms in such a way that they adapt to the platform specif-
ic features. This is especially challenging due to the differences of the devices’ dis-
play sizes. Furthermore, the devices offer different possibilities to connect peripheral
devices for automating the data capturing process. These differences require a solu-
tion for designing multi-device data forms that are usable on the different device
types without generating a dedicated form for each device from scratch.

This thesis presents a model-driven method that allows the design of multi-device
data forms. The approach works on four model layers that are traversed one after an-
other. Based on the definition of the data to be captured, an abstract version of the
form’s layout is gathered. This is refined by a concrete definition for each device type
until the final user interface of the data form is generated. The transitions between the
model layers are done by automatic transformation processes. The developed ap-
proach is prototypically implemented in the context of a study management software
at the German Aerospace Center (DLR).

The results of a usability study that tested the developed model-driven approach con-
cerning its applicability for the future user group show that the test users were able to
complete the given task at an average of about 86%. The test users additionally ex-
pressed a high satisfaction when using the implemented prototype. Thus, this model-
driven method is assumed to be applicable to design multi-device data forms for use
in a medical study environment.

Kurzfassung
Während der Durchführung medizinischer Studien fällt eine große Menge an Daten
an, die zur späteren Auswertung erfasst werden. Moderne Methoden der digitalen
Datenerfassung ersetzen die händische Erfassung mit Hilfe von Papierformularen
durch elektronische Eingabemasken. Dabei werden die Daten in einer zentralen Da-
tenbank gespeichert. Der Einsatz solcher elektronischer Formulare auf mobilen End-
geräten erlaubt es den Studienmitarbeitern die Formulare bei sich zu tragen, was
ihnen das Aufsuchen spezieller Datenerfassungsstationen innerhalb der Studienanlage
erspart.

Aufgrund der großen Vielfalt mobiler Geräte (Smartphones und Tablets) müssen
elektronische Formulare so entwickelt werden, dass sie den gerätespezifischen Eigen-
arten gerecht werden. Die unterschiedlichen Displaygrößen der Geräte machen dies
zu einer besonderen Herausforderung. Darüber hinaus unterscheiden sich die Geräte
in ihren Möglichkeiten zur Einbindung externer Geräte, mit deren Hilfe der Vorgang
der Datenerfassung teilweise automatisiert werden kann. Um die Entwicklung separa-
ter Formulare für jede Geräteart zu vermeiden, wird eine Lösung zur Gestaltung gerä-
teunabhängiger Formulare benötigt.

Diese Arbeit stellt eine modell-getriebene Methode vor, welche die Entwicklung sol-
cher geräteunabhängiger Formulare ermöglicht. Diesem Ansatz liegen vier Modell-
ebenen zugrunde, die nacheinander durchlaufen werden. Basierend auf der Definition
der zu erfassenden Daten wird eine abstrakte Version des Formularlayouts abgeleitet.
Dieses wird dann spezifisch für jede Geräteart konkretisiert, um letztlich ein geräte-
spezifisches Formular automatisch zu generieren. Der Übergang von einer Modell-
ebene in die nächste erfolgt mit Hilfe automatischer Modelltransformationen. Der
entwickelte modell-basierte Ansatz wurde im Rahmen einer Studienmanagement
Software des Deutschen Zentrums für Luft- und Raumfahrt (DLR) prototypisch im-
plementiert.

Die entwickelte Methode wurde mit Hilfe einer Benutzerstudie bezüglich ihrer An-
wendbarkeit für die spätere Benutzergruppe evaluiert. Die Ergebnisse der Studie zei-
gen, dass die Testnutzer die gegebene Aufgabenstellung im Durchschnitt zu 86%
lösen konnten und eine große Zufriedenheit bei der Benutzung des Prototyps äußer-
ten. Dies lässt die Annahme zu, dass der erarbeitete modell-getriebene Ansatz zur
Gestaltung elektronischer Formulare für den Einsatz in medizinischen Studien geeig-
net ist.

Danksagung
Zu allererst möchte ich mich bei den beiden Gutachtern meiner Master Thesis Prof.
Dr. Armin B. Cremers und Prof. Dr. Rainer Manthey von der Rheinischen Friedrich-
Wilhelms-Universität Bonn bedanken, die mir diese Arbeit erst ermöglicht haben.

Außerdem gilt mein Dank meinem Betreuer Dr. Tobias Rho, ebenfalls von der Rhei-
nischen Friedrich-Wilhelms-Universität Bonn, sowie meinen Kollegen beim Deut-
schen Zentrum für Luft- und Raumfahrt (DLR), insbesondere Jan Flink, Thomas Sau-
erwald und Doreen Seider, für die Unterstützung und die fachlichen Ratschläge.
Ebenfalls danke an Andrea Nitsche für das Korrekturlesen.

Mein besonderer Dank geht an die Mitarbeiterinnen und Mitarbeiter des Instituts für
Luft- und Raumfahrtmedizin und der Einrichtung für Simulations- und Softwaretech-
nik, die die Zeit gefunden haben an der im Rahmen der Arbeit durchgeführten Benut-
zerstudie teilzunehmen.

Nicht zuletzt möchte ich mich auch bei meiner Familie bedanken, deren Unterstüt-
zung während der gesamten Zeit meines Studiums mich stets vorangetrieben hat.
Danke auch meinen Freunden, die mich – sicherlich manchmal unwissentlich – moti-
viert und getrieben haben am Ball zu bleiben

- xi -

Table of Contents
List of Abbreviations ... xv

List of Figures .. xvii

List of Tables ... xix

List of Listings .. xxi

1 Introduction ... 1

1.1 Working Environment ... 1

1.2 Motivation ... 1

1.3 Objective .. 2

1.4 Limitations ... 3

1.5 Thesis Outline .. 4

2 Foundations ... 5

2.1 Medical Studies ... 5

2.1.1 Study Planning .. 5

2.1.2 Data Capturing .. 8

2.1.3 Running Example ... 8

2.2 Model Driven Software Development ... 9

2.2.1 Domain Specific Languages ... 10

2.2.2 Transformations .. 10

2.3 Used Technologies .. 11

2.3.1 XML Schema Definitions ... 11

2.3.2 XSL Transformations ... 12

2.3.3 XAML .. 14

2.3.4 The MVVM Design Pattern ... 16

3 Related Work .. 19

3.1 Model-based User Interface Development .. 19

3.1.1 Core Models ... 19

3.1.2 CAMELEON Reference Framework ... 20

3.1.3 The “Graceful Degradation” Approach .. 21

3.1.4 Constraint-based Layout Management ... 21

3.2 User Interface Description Languages ... 22

3.2.1 USIXML ... 22

3.2.2 UIML .. 22

Table of Contents

- xii -

3.2.3 XIML .. 23

3.3 Design Environments ... 23

4 Conception ... 25

4.1 Overview .. 25

4.2 Model Layers ... 28

4.2.1 Data Definition Model .. 28

4.2.2 Abstract Form Model .. 31

4.2.3 Concrete Form Model ... 36

4.3 Model Changes .. 44

4.4 Automated Data Acquisition ... 47

4.5 Element Sizing ... 52

4.6 Transformations ... 55

4.6.1 Data Definition Model to Abstract Form Model 55

4.6.2 Abstract Form Model to Concrete Form Model 58

4.7 Final Form Implementation ... 61

5 Implementation ... 63

5.1 Requirements ... 63

5.2 Implementation Concept .. 64

5.3 Graphical User Interface .. 65

5.4 Model Validation ... 67

5.5 Transformations ... 71

6 Evaluation .. 77

6.1 Considered Usability Attributes ... 77

6.2 Setup of Usability Study .. 78

6.2.1 Selection of Study Participants ... 79

6.2.2 Study Procedure .. 79

6.2.3 Technical Infrastructure .. 80

6.2.4 Questionnaires .. 81

6.2.5 User Task .. 81

6.3 Presentation and Discussion of Results ... 82

6.3.1 Usability Attributes ... 83

6.3.2 Observed Potential for Improvement .. 89

6.3.3 Conclusions .. 90

7 Summary and Future Work... 93

7.1 Summary .. 93

Table of Contents

- xiii -

7.2 Future Work ... 94

References .. I

Appendix ... V

A Example Study Protocol ... V

B Transformation Example ... VII

C Introduction Sheet .. IX

D User Task Sheet ... XI

E List of Subtasks .. XIII

F Questionnaire about the User’s Background ... XV

G Questionnaire about the User’s Satisfaction ... XVII

H Contents of the Attached DVD ... XIX

- xv -

List of Abbreviations
AFE Abstract Form Element

AFM Abstract Form Model

AID Automated Input Device

AMSAN Arbeitsmedizinische Simulationsanlage
(Simulation Facility for Occupational Medicine Research)

AUI Abstract User Interface

CAMELEON Context Aware Modeling for Enabling Leveraging
Effective Interaction

CFE Concrete Form Element

CFM Concrete Form Model

CRF CAMELEON Reference Framework

CUI Concrete User Interface

DDM Data Definition Model

DLR Deutsches Zentrum für Luft- und Raumfahrt
(German Aerospace Center)

DOM Document Object Model

DSL Domain Specific Language

FUI Final User Interface

GUI Graphical User Interface

HTML Hyper Text Markup Language

IDE Integrated Development Environment

IDM Input Device Model

ISS International Space Station

lp Logical Pixel

M2M Model to Model

M2T Model to Text

MBUID Model Based User Interface Development

mCFM Mobile Concrete Form Model

MDSD Model Driven Software Development

MED Model Element Definition

OASIS Organization for the Advancement of Structured
Information Standards

OMG Object Management Group

OSP Microsoft Open Specifications Promise

T4 Text Template Transformation Toolkit

List of Abbreviations

- xvi -

TCT Task Completion Time

UI User Interface

UIDL User Interface Description Language

UIML User Interface Markup Language

UML Unified Modeling Language

USIXML User Interface Extensible Markup Language

W3C World Wide Web Consortium

WPF Windows Presentation Foundation

XAML Extensible Application Markup Language

XIML Extensible Interface Markup Language

XML Extensible Markup Language

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformation

- xvii -

List of Figures
Figure 1: Relevant tables of the :study database .. 6

Figure 2: Graphical editor of the :studyforms application ... 7

Figure 3: Typical data capturing process in a medical study environment 8

Figure 4: Schematic illustration of the XSL transformation process (according
to [Bon08], page 27) ... 13

Figure 5: Screenshot of a “Hello World” application resulting from the
XAML code of Listing 5 .. 15

Figure 6: Interdependencies between the components of the MVVM design
pattern ... 16

Figure 7: The basic layers of the CAMELEON Reference Framework
(according to [LVM+04]) ... 20

Figure 8: Overview of the general approach for generating multi-device data
forms ... 26

Figure 9: Meta-model of the Data Definition Model ... 29

Figure 10: Meta-model of the Abstract Form Model ... 33

Figure 11: Example for an internal data form workflow with backward
navigation ... 34

Figure 12: Meta-model of the Concrete Form Model .. 37

Figure 13: Linear layout with vertical orientation (left) and horizontal
orientation (right) .. 38

Figure 14: Positioning of elements in a linear layout with vertical orientation 40

Figure 15: Concrete Form Element DisplayElement ... 41

Figure 16: Concrete Form Element TextBlock ... 41

Figure 17: Concrete Form Element TextBox .. 41

Figure 18: Concrete Form Element TextArea .. 42

Figure 19: Concrete Form Element NumericUpDown .. 42

Figure 20: Concrete Form Element CheckBox .. 42

Figure 21: Concrete Form Element ToggleControl .. 42

Figure 22: Concrete Form Element DropDown .. 43

Figure 23: Concrete Form Element List ... 43

Figure 24: Concrete Form Element RadioButtons .. 43

Figure 25: Examples for the Concrete Form Element
TestSubjectSelector ... 44

Figure 26: Concrete Form Element Button... 44

List of Figures

- xviii -

Figure 27: Copying of information versus referencing the source element by
the example of the TextEdit Abstract Form Element and
TextBox Concrete Form Element .. 45

Figure 28: Meta-model of the Input Device Model .. 48

Figure 29: Supported resolutions of the Windows Phone platform (according
to [Kuh12]) ... 53

Figure 30: Comparison of elements with fixed sizes and positions on two
different resolutions .. 53

Figure 31: Mapping data definitions to Abstract Form Elements 56

Figure 32: Dividing Concrete Form Elements to several pages 60

Figure 33: Common page frame of the Windows Phone :studydata application 62

Figure 34: Example 24h urine laboratory data form on Windows Phone 62

Figure 35: Main window of the model-driven :studyforms prototype 67

Figure 36: Answer values regarding the satisfaction with the :studyforms
prototype in general .. 83

Figure 37: Answer values regarding the satisfaction with the underlying
model-driven approach ... 84

Figure 38: Answer values regarding the satisfaction with the structure and the
design of the generated data form ... 85

Figure 39: Answer values regarding the general usage of mobile data forms in
a medical study environment .. 85

Figure 40: Answer values regarding the time needed to learn how to use the
software ... 86

Figure 41: Answer values regarding the transparency of the automatic
transformations ... 87

Figure 42: Answer values regarding the applicability of the software in the
future ... 87

Figure 43: Average task completion time needed by the test users to fulfill the
task .. 88

- xix -

List of Tables
Table 1: Possible requirement types and values of automated input device

definitions ... 51

Table 2: Defined baseline resolutions for the different target devices 54

Table 3: Mapping between Abstract and Concrete Form Elements for the
mobile platform .. 59

Table 4: Parameters of the data form that is developed by the participants of
the user study .. 82

- xxi -

List of Listings
Listing 1: Example library XML Document ... 11

Listing 2: XML Schema Definition of the example library XML Document 12

Listing 3: Transformed library XML Document... 13

Listing 4: XSLT-Stylesheet for transforming the example library XML
document... 13

Listing 5: A simple XAML example .. 15

Listing 6: Example Data Definition Model for the 24h urine laboratory data
form... 31

Listing 7: Example Abstract Form Model for the 24h urine laboratory data
form... 36

Listing 8: Input Device Model definitions of the barcode scanner and
electronic balance Automated Input Devices ... 52

Listing 9: Pseudo code for generating pages out of the Abstract Form Model
structure .. 60

Listing 10: XSD complex type ConcreteLayoutableElement 68

Listing 11: XSD simple type definition of the Size data type 69

Listing 12: XSD simple type definition of the Positions enumeration 69

Listing 13: XSD complex type definition of the ConcreteLayout element 70

Listing 14: Loading a meta-model package from the modeling project 71

Listing 15: T4 text template part for generating the XML schema definition 71

Listing 16: XSL template matching the DataModel element 72

Listing 17: XSL template for transforming a DataDefinition element to a
NumericalEdit element ... 73

Listing 18: XSL template for transforming a DataDefinition element to
an AbstractDisplayElement ... 73

Listing 19: Source code excerpt calling the DDM to AFM transformation 74

Listing 20: Source code excerpt calling the mCFM to Windows Phone
transformation ... 74

- 1 -

1 Introduction
This introductory chapter first gives an overview of the working environment and
describes the motivation for this thesis. Subsequently, the objectives and limitations
are formulated. The chapter finishes with an overview of the thesis’ further structure.

1.1 Working Environment
The thesis was written in cooperation with the German Aerospace Center (DLR) at
the facility for Simulation and Software Technology. DLR is Germany’s national aer-
onautics and space research center. The main research areas are aeronautics, space,
energy, transport and security. Currently, DLR has about 7400 employees at 16 na-
tional locations and four offices in foreign countries. [DLR13]

The thesis is originated within a software development project which is called :study.
The goal of the :study project is to develop a study management software that fully
supports the course of a medical study [DLRb]. The expert scientists of the DLR In-
stitute of Aerospace Medicine are the main target group of the software. They carry
out scientific studies regarding the effects of long term stays in space to the human
body (for example on the International Space Station, ISS) and explore possible
countermeasures [DLRa]. The :study software facilitates and improves the study spe-
cific workflows and thereby supports the study staff in their daily work. This is
achieved by simplifying the study planning process and the data collection by appro-
priate applications and devices. One of the core features of the :study software is to
facilitate the acquisition of data during a study via electronic data forms. Here it is
important that these data forms can be designed by the expert scientists or the study
staff themselves. This enhances the flexibility when performing a study and reduces
the dependency on computer science experts from other departments. For this pur-
pose, a simple graphical data form editor was developed. For the actual data capturing
process, the generated forms are displayed by another application. This software runs
on some stationary PCs with touch displays in the study facility. A more detailed in-
troduction into medical studies and the supporting features of the :study software is
given in Section 2.1.

1.2 Motivation
Data capturing in the course of medical studies is currently done by pen and paper
forms. For the later evaluation, the entered values are manually transferred to decen-
tralized electronic data storages. This process is susceptible for transferring errors and
not efficient due to the need of capturing each value twice (once on the paper form
and again into an electronic representation). The :study software already solved these
problems by offering a system for generating and using electronic data forms. There-
by, the entered values are directly digitized and stored in a central database. Whenev-
er possible, the values are directly read from peripheral devices, such that manual
entries become obsolete. The drawback of the current solution is that the electronic

1 Introduction

- 2 -

data forms can only be displayed on desktop systems that are installed at dedicated
places in the study facility. This does not allow the study staff to capture data where it
is actually measured.

Using mobile devices like smartphones and tablets for data capturing in a medical
study environment could improve the standard workflow and generate completely
new application areas. The study staff can enter data directly where it is collected,
such that they do not have to move to any data capturing station. This combines the
advantages of the classical pen and paper forms with the ones of the already devel-
oped electronic approach.

Due to their features, mobile devices offer even more potential. The decreasing costs
make it possible to equip every single study staff member with them. This means that
the smartphone or tablet is always used in the context of a specific person, which is
an essential difference to the data capturing stations that are used by several people.
The personal context information can be used to automatically open an appropriate
data form at a specific point in time. Additionally, the devices’ internal sensor system
can be used to detect the physical environment. Thereby, entered data can automati-
cally be assigned to the right context. These opportunities not just reduce the effort
for the user; they also minimize erroneous inputs.

The usage of mobile devices for data capturing requires a possibility to design elec-
tronic data forms that are usable on several device types. Thus, the data forms need to
be designed in such a way that they transform well if they are displayed on a
smartphone, a tablet, or a desktop PC. The enormous difference in the display sizes of
these device types makes the design of such multi-device data forms a serious chal-
lenge. In addition to the mentioned device types, the diversity of different platforms
that are available for each device type requires a platform independent development
of the data forms in order to not restrict the users to a specific platform. Available
smartphone platforms are for example Android, iOS, or Windows Phone.

In the following course of this thesis, the term “device” stands for the different device
types (smartphone, tablet and desktop) whereas the word “platform” denotes the dif-
ferent operating systems and technologies that are available for each device. The no-
tion “target platform” has to be understood as the combination of a specific platform,
running on one of the device types.

1.3 Objective
The goal of this thesis is to explore an approach to easily create multi-device data
forms for use in a medical study environment. Since the data, which should be cap-
tured by a data form, stays the same on the different devices, it would be a significant
effort to develop completely independent data forms for each device. This would be a
very tedious and non-user-friendly solution. Instead, the common parts of a data form
that are consistent for each device and platform should be developed just once. Only
the device specific parts should be treated specifically by the designer. Nevertheless,
the design of the data forms should be adaptable to the specific requirements of a

1.4 Limitations

- 3 -

device and be consistent with the design guidelines and visual concept of a certain
platform.

One of the main differences between the devices is the display size and resolution.
The variation of display sizes reaches from full size monitors over reduced tablet
screens to small smartphone displays. This is even more disadvantageous because the
already small screen of mobile devices is nowadays usually not just used as an output
device but also as the (sometimes only) input device in form of a touchscreen. This
means that in addition to the data form, also a touch-keyboard has to fit on the screen.
Due to these circumstances, it is not possible to simply display the same data forms
on a mobile device as on a desktop PC, because this would lead to a very small depic-
tion of the form. As a result the user would often have to zoom in and out which
might cause him to lose overview. This would be neither productive nor user friendly.
Instead, there should be adapted versions of a data form that meet the specific re-
quirements of a smartphone, a tablet and a desktop PC. Therefore, an important chal-
lenge to be solved is to have an appropriate layout of the form’s elements on each
device. The developed approach should support the designer in generating the device
specific layouts.

Also the integration of peripheral devices into multi-device data forms is challenging.
An example for this is an electronic laboratory balance whose measured value is au-
tomatically entered into the data form, such that the user does not have to transfer the
value manually. Due to the different features of mobile devices concerning the possi-
bilities to connect peripheral devices, the approach for designing multi-device data
forms also has to deal with these differences. For example, it might be impossible to
connect a laboratory balance to a smartphone in the same way as to a desktop PC
because the smartphone does not provide the required interface. Instead, it might sup-
port Bluetooth communication. So the balance could be integrated using this techno-
logy. Some of the missing options to connect peripheral devices to smartphones and
tablets can possibly be compensated by using internal sensors or wireless connection
technologies, which are often available on mobile devices.

The multi-device data form design approach is exemplarily developed in the context
of the :study software. The evaluation of the approach regarding its applicability for
the future users and general problems is done by a usability study. Therefore, the im-
portant parts of the approach are prototypically implemented. This includes support-
ing the development of data forms for at least two device types and the integration of
peripheral devices to the data forms.

1.4 Limitations
Due to restricting facts regarding the environment and especially the available time
for this thesis, there are some limitations to the prototypical implementation as well as
to the user study:

For historical and DLR internal reasons, the :study software currently focuses on a
homogeneous Windows based environment. Therefore, it is reasonable to firstly inte-
grate Windows based mobile end user devices (Windows Phones and Windows based

1 Introduction

- 4 -

tablets). Thus, the prototypical implementation only supports the generation of data
forms for these target platforms. Nevertheless, it has been taken care that the acquired
approach is also applicable for other platforms like Android or iOS.

Caused by the limited time, the practical realization focuses on the design process of
the data forms. This means that the prototypical implementation concentrates on the
development of an application for designing multi-device data forms according to the
developed approach, which is used for the evaluation by a usability study. The actual
application for data capturing on the different target platforms is not of major im-
portance for this thesis and is implemented just rudimentarily to allow the participants
of the user study to view their results.

Another limitation concerns the number of possible study participants. Since the tar-
get group of the software is rather small, also the number of available test users is
limited. Thus, an empirical analysis of the user study is not possible. But, according
to Tullis and Albert ([TA08], p. 119), even with a small number of test users it is pos-
sible to detect the major usability problems. As the goal of the user study is to evalu-
ate the basic concept, and not to identify particular implementation problems, a small
test user group is assumed to be adequate.

1.5 Thesis Outline
Before going into detail, the following paragraphs give a short overview of this thesis
and its structure:

Chapter 2 (Foundations) describes foundations that are needed for understanding
the content of this thesis. This includes an introduction to medical studies as well as
the explanation of basic concepts and technologies that are used throughout the thesis.

In Chapter 3 (Related Work), related work concerning the development of plat-
form-independent user interfaces is presented. Especially model-based methods are
described.

Chapter 4 (Conception) explains the overall concept for designing multi-device data
forms that was devised during this thesis. This includes the description of similarities
and differences to the approaches introduced in the Related Work chapter. Further-
more, the integration of the developed concept into the :study software is described.

Chapter 5 (Implementation) describes the implementation of a prototype that sup-
ports the development of multi-device data forms according to the approach intro-
duced in the previous chapter. The overall concept of the prototype is illustrated and
the basic parts of the implementation are explained by selected examples.

Chapter 6 (Evaluation) is about the usability study that was conducted for evaluat-
ing the developed approach. The study setup is described and the results are dis-
cussed.

Finally, Chapter 7 (Summary and Future Work) summarizes the results of this
thesis and gives a prospect of possible enhancements and future work.

- 5 -

2 Foundations
This chapter starts with a description of basic concepts that are important for under-
standing the further deliberations in this thesis. This includes an introduction into
medical studies as well as an overview of Model Driven Software Development
(MDSD). Following, the fundamental technologies used for the prototypical imple-
mentation are briefly described.

2.1 Medical Studies
The term “medical study” is very extensive. Therefore, the following paragraphs ex-
plain what has to be understood by a medical study in the context of this thesis.

The typical goal of a medical study is to explore medical methods regarding their
efficiency. The DLR Institute of Aerospace Medicine focuses on the effects of aero-
space and road traffic on persons like astronauts, pilots or drivers [DLRa]. To ensure
their healthiness, possible physical impacts due to their working environment have to
be investigated and countermeasures have to be explored.

Throughout a medical study a group of study participants is located at a confined
study location. This ensures that the test subjects live in a controlled environment
which is important to achieve proper results. During this time, the participants are
subject to medical interventions. The group of study participants is typically divided
into two or more subgroups. One subgroup received a specific treatment and the other
group is treated differently or gets placebos. This allows to compare the groups and to
draw conclusions about the investigated treatment.

The realization of a medical study contains many different aspects that are supported
by the :study software. Therefore :study is not one single application but a software
system that provides dedicated programs for each aspect. The following sections de-
scribe the most important aspects in the context of this thesis and introduce the :study
applications that target them. The applications share a common database that holds all
data that accumulate during a study. To access this database the applications use a
central web service.

2.1.1 Study Planning
Prior to the execution of a medical study a detailed study protocol is developed. This
protocol defines all activities that are done by or with the study participants during the
study. The notion “activity” in this context denotes all actions and examinations that
are concerned with the test subjects. This reaches from simple tasks like getting up in
the morning or having lunch, to complex medical examinations like a run on a human
centrifuge. The study protocol can be conceived like a schedule at a university. It
defines which study participant has which activity at which study day and at which
time. Furthermore, the protocol contains information about the room in which an ac-
tivity takes place (for example a laboratory) and which member of the study crew is
responsible for an activity. An excerpt of a study protocol is attached in Appendix A.

2 Foundations

- 6 -

The example illustrates the level of detail of such a protocol. The :study software
supports the development of a study protocol by the :studycreator application.

Each of the planned activities is an instance of a predefined activity pattern. These
activity patterns are used across different studies and contain basic data about the
activities of this pattern. This includes a short description of the objective, infor-
mation about the resources that are needed to perform the activity and a list of param-
eters that are collected for activities of this pattern during a study. A parameter can be
seen as the structure of a captured value. It defines the data type of the value, in
which unit the value is captured and stored and possibly some logical thresholds,
which must not be exceeded when entering the value. An example for a parameter is
the weight of a urine sample, which is stored as a decimal number with the unit gram
(g) in the :study database. Figure 1 shows an excerpt of the Entity Relationship Model
of the :study database. The depicted part illustrates the important relations between
activities, their patterns and parameters. The gray tables contain master data that is
reused across multiple studies. The red one belongs to study planning data, and the
actual study data is depicted in blue color.

Rel_Activity Pattern_Parameter

Study Data

 Study Data_Acquisition Time
 Study Data_Value

Activity

 Activity_Name
 Activity_Starttime
 Activity_Duration
 Activity_Responsible Person

Parameter

 Parameter_Name
 Parameter_Data Type
 Parameter_Shortcut
 Parameter_Description

Parameter Threshold

 Parameter Threshold_Name
 Parameter Threshold_Type
 Parameter Threshold_Description
 Parameter Threshold_Value

Activity Pattern

 Activity Pattern_Name
 Activity Pattern_Description
 Activity Pattern_Objective

Parameter Unit

 Parameter Unit_Name
 Parameter Unit_Shortcut

Data Form

 Data Form_Name
 Data Form_Xaml

...

Figure 1: Relevant tables of the :study database

Due to the connection of activities to activity patterns and thereby to parameters, the
study protocol already provides meta-information for the values captured during the
study. In other words, in the planning phase an activity can be seen as an empty con-
tainer, for which it is well defined what kind of values have to be added at which
point in time during the study execution phase.

2.1 Medical Studies

- 7 -

For each of the planned activities that require capturing some data, a data form is de-
veloped using the :studyforms application. The functionality of :studyforms is limited
to the development of the data forms. For displaying the forms to the user and filling
in the values the separate :studydata application is available (see Section 2.1.2). In the
following course of this thesis, the user of the :studyforms application is also called
designer.

The :studyforms application offers an easy-to-use graphical editor for designing the
data forms. The user interface is similar to a conventional GUI designer (Graphical
User Interface) like it is known from common Integrated Development Environments
(IDE). However, the handling and the available features are much simpler. This is of
special importance, because the software is not meant to be used by programmers or
GUI designers but by the scientific and supporting members of the study staff. These
people do not have a computer science background or experience in using such soft-
ware. Figure 2 shows the main window of the :studyforms application and illustrates
the graphical editor surface.

Figure 2: Graphical editor of the :studyforms application

A user starts to design a new data form by first specifying for which activity pattern
the form is developed. This limits the available parameters that can be captured by the
form because the definition of an activity pattern contains a set of related parameters
(compare Figure 1). It is possible that the values of one activity pattern are collected
in multiple steps using different data forms. This means that a data form does not
have to provide input elements for all parameters of the activity pattern. The other
way round, it is not possible that a data form captures values of parameters, which are
not assigned to the specified activity pattern.

After setting up the new form, the designer arranges the different elements on the data
form using drag and drop. These elements are not simple GUI widgets but more com-
plex interaction elements. The input element, which offers the user the possibility to

2 Foundations

- 8 -

enter data manually, not only consists of a text box for entering the actual value, but
also includes a caption, describing which value should be entered. Thereby the de-
signer does not have to deal with too many different elements on the form. Addition-
ally, this approach ensures that different forms get a similar look since the design
opportunities are restricted. Besides such manual interaction elements, there also exist
special elements that make peripheral devices like a barcode scanner or an electronic
balance available on the data form. This simplifies the data capturing process by au-
tomatically acquiring data using these devices.

The relation between the values entered into the data form and the parameters of the
activity pattern is established by assigning the appropriate parameters to the interac-
tion elements by which the values are collected.

2.1.2 Data Capturing
During the study execution phase the previously designed electronic data forms are
displayed by the :studydata application. This application thereby builds the connec-
tion between the data form and the central :study database. Figure 3 shows the typical
data capturing process during a study. The user opens a data form that supports data
acquisition for the samples he is currently processing. Since the samples are related to
a specific study participant, he first selects the correct one. Then the ascertained data
is entered. After that, the user commits these data to the system and proceeds with the
next sample until he has finished. If the user accidentally enters the values of a wrong
sample, he can reset the whole data form without committing these values.

Figure 3: Typical data capturing process in a medical study environment

The submitted values are stored to the :study database and assigned to the activity for
which they are acquired. This assignment is done based on the information about the
study participant which is selected on the data form and the activity pattern to which
the data form is linked. An additional aspect that is taken into account for the associa-
tion of the data is the acquisition moment. Since the study protocol provides a de-
tailed time schedule of the activities, it is thereby possible to find the right activity in
most cases automatically.

2.1.3 Running Example
A very descriptive example of a typical data collection process during a medical
study is the acquisition of values for 24h urine samples. This example is used
throughout this thesis to explain requirements and parts of an electronic data form

2.2 Model Driven Software Development

- 9 -

that allow a laboratory assistant to enter the determined values. To get a better im-
pression, the following paragraphs shortly describe the 24h urine examination.

At the beginning of a 24 hours period a study participant has to empty his bladder into
the toilet. From this time on, the urine of the participant is collected over a period of
24 hours. The samples are provided in special urine bottles that are closed with a cap.
During a study, the participants are usually located in a closed area, which is the Sim-
ulation Facility for Occupational Medicine Research (AMSAN) at DLR. Here, the
samples are collected in a refrigerator until the end of the 24 hours period. In some
study settings, already during this sampling process some information like a comment
about the sample’s visual impression (clear, cloudy, etc.) are recorded.

After the 24 hours collection period, the samples are handed over to the laboratory
where they are analyzed by a laboratory assistant. This analysis includes determining
a number of specific indicators that are defined in advance of the study. Typical indi-
cators for a urine sample are the pH-value or the hemoglobin value. Furthermore, the
samples are weighed. Here it is important, that the net weight of the sample is deter-
mined. This means, that the tare weight of the urine bottle, including the cap, has to
be known in advance. After determining all relevant indicators, the sample might be
aliquoted1 and frozen for further tests. A simplified version of a data form for captur-
ing the determined values of 24 hours urine samples at the laboratory is shown at the
screenshot in Figure 2.

2.2 Model Driven Software Development
Model Driven Software Development (MDSD) describes an approach for generating
software by specifying its functionality on an abstract layer using formal models.
Stahl et al. define the term MDSD as a generic term for technologies that automatical-
ly generate software from formal models ([SVEH07], p. 11).

In this context, a formal model means that a model used in MDSD describes a certain
aspect of the software completely. For this purpose, often UML models (Unified
Modeling Language) are used. Based on one or several such models, the result of a
MDSD process is a piece of executable software. In general this can be achieved by
generating source code of some kind of programming language out of the defined
models or by using an interpreter that reads a model at runtime and executes actions
depending on the content of the model. The generation of source code is usually done
by automated transformation processes that are integrated into the build process. The
general intention of MDSD is to program on a more abstract layer and thereby unify
the software architecture and enlarge the interoperability ([SVEH07], p. 13ff). Due to
the usage of automated transformations, recurrent patterns in the software are trans-
lated to similar source code structures. Once implemented, the transformations can
also be used by similar software development projects. This enlarges the reuse of
already done work which is usually more difficult with directly implemented source

1 To aliquot denotes the process of dividing a sample into a set of sub samples that are examined.

2 Foundations

- 10 -

code. Here it has to be mentioned, that the implementation of a software using MDSD
consist of automatically generated and manually implemented source code parts be-
cause models do not describe the whole system ([SVEH07], p. 13).

The Object Management Group (OMG)2 standardized a MDSD approach called
Model Driven Architecture (MDA). With this standardization, the OMG tries to en-
hance the ability of developing platform independent software. Therefore, the MDA
approach defines four different modeling levels. The highest layer defines the soft-
ware features in a very abstract fashion that is close to the notion of the domain ex-
perts, for which the application is developed. The lower model layers get more and
more specific in the sense of leaving the notion of the domain experts and adding
implementation details, until the last model layer actually represents the implementa-
tion by a concrete programming language. The step from one model layer to the next
is done by using Model to Model transformations (M2M). The development of a
software version for a different target platform can theoretically be achieved by simp-
ly changing the transformations between the model layers in a way, that at the end of
the transformation process the source code for the new platform results. In practice,
this often becomes more complicated because the models are not completely platform
independent but contains platform specific parts (compare [SVEH07], p. 15). More
information about the MDA approach can be found at the OMG website (see
[OMG13b]).

2.2.1 Domain Specific Languages
Closely related to the definition of formal models is the usage of Domain Specific
Languages (DSL). A DSL is a programming language that targets a special applica-
tion area. In general, a DSL is specified by a meta-model that defines the available
meta-model elements and their interdependencies. This is denoted as the abstract syn-
tax of the DSL that formally defines the structure of the domain. Furthermore, the
meta-model includes the static syntax of the DSL, which defines constraints that a
model has to match in order to be well-formed. The actual models are implemented
using a concrete syntax. This can be a textual or a graphical syntax. Thus, a DSL can
contain several concrete syntaxes but always is defined by exactly one abstract syn-
tax. The last part of a DSL is the dynamic semantics, which specify the meaning of
the different language elements defined by the meta-model. Meta-models are often
defined using UML. Another possible solution is to use XML based models that use
XML Schema Definitions (see Section 2.3.1) as meta-models. More information about
Domain Specific Languages is given in ([SVEH07], p. 97ff).

2.2.2 Transformations
When using multiple model-layers the transition from one model layer to the next is
done by automated transformations. This also holds for automatic changes that are
applied to a model (refactoring) or for generating the final source code. In general it is

2 OMG is an international non-profit consortium for standardization in the computer industry. For more

information see [OMG13a].

2.3 Used Technologies

- 11 -

distinguished between Model to Model (M2M) transformations that transform one or
several source models to a target model and Model to Text (M2T) transformations,
which generate source code on the basis of a source model. Usually, transformations
are implemented using special transformation languages. These languages are specifi-
cally optimized for projecting the elements of the source model to the target model. In
the course of the Model Driven Architecture approach, the OMG defines the Query
View Transformations (QVT) language (see [OMG11]). Stahl et al. give a detailed
description of Model to Model transformations (see [SVEH07], p. 195ff).

2.3 Used Technologies
The following sections briefly introduce the most important technologies that are
used for the prototypical implementation of the model-driven data form design ap-
proach. The descriptions are limited to those aspects that are needed to understand the
explanations of the implementation in Chapter 5.

2.3.1 XML Schema Definitions
XML Schema Definitions (XSD) is a W3C3 standard for defining the structure of
XML documents [W3C04]. The schema definition itself is also an XML document.
This section shortly introduces the XSD concept.

Generally speaking, an XML Schema Definition allows specifying the elements that
can be part of an XML document that conforms to the schema definition. Additional-
ly the element hierarchy is defined. The content of each element is specified by its
type. XSD distinguishes between simple and complex types. Simple types are prede-
fined basic data types. In addition to these predefined simple types it is possible to
define own simple types by restricting another simple type. A complex type defines a
new element structure with attributes and sub elements. Optionally, complex types
can be based on another complex type that can be extended or restricted.

The usual structure of an XSD document is explained by a simple example. Listing 1
shows a short XML document containing information about the books of a library.
Each book has an author and a title as attributes. The XML Schema Definition of the
library XML document is given in Listing 2. For the namespace prefix of XSD ele-
ments usually the abbreviation “xs” is used.

1
2
3
4
5
6
7
8
9
10

<library>
 <book>
 <author>Bongers, Frank</author>
 <title>XSLT 2.0 and XPath 2.0</title>
 </book>
 <book>
 <author>Klein, Florian</author>
 <title>A Model-driven Approach to Design …</title>
 </book>
</library>

Listing 1: Example library XML Document

3 W3C stands for World Wide Web Consortium. This is an international community for developing web

standards.

2 Foundations

- 12 -

The root element of each XSD document is the xs:schema element. Inside this root
element, the element and type definitions are located. In the library example, the
names of the authors are written according to the pattern “Surname, Forename”.
Therefore, a simple type restricting the xs:string type is specified that matches
this pattern using a regular expression (Listing 2, l. 3-7). The structure of a book ele-
ment is defined by a complex type (Listing 2, l. 9-14). The xs:sequence element
denotes that the author and title sub elements have to be contained in this order in the
book element. Finally, the library root element is specified using the xs:element
XSD element (Listing 2, l. 16-22). This element contains a sequence of book ele-
ments. The type of these elements is set to the previously defined book complex type.
The maxOccurs attribute set to “unbounded” denotes that the library element can
contain an unlimited number of book elements.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="authorType">
 <xs:restriction base="xs:string">
 <xs:pattern value="[a-zA-Z0-9]*, [a-zA-Z0-9]*" />
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="bookType">
 <xs:sequence>
 <xs:element name="author" type="authorType" />
 <xs:element name="title" type="xs:string" />
 </xs:sequence>
 </xs:complexType>

 <xs:element name="library">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="book" type="bookType" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

</xs:schema>

Listing 2: XML Schema Definition of the example library XML Document

A more detailed explanation of XSD is given in part 0 of the W3C recommendation
(see [W3C04]).

2.3.2 XSL Transformations
The term XSL stands for Extensible Stylesheet Language. XSL is an XML-based
declarative language that is used for describing transformations of XML documents
to other XML documents. This process is denoted as Extensible Stylesheet Language
Transformation (XSLT). An XML document that contains XSLT is named XSLT-
Stylesheet. This designation has historical reasons and is a bit misleading because the
functionality of XSLT is much more extensive than a static description of an appear-
ance in the sense of a style sheet ([Bon08], page 28). XSLT is extensively used for
generating presentations for XML documents that describe data just in its structure.
The output of an XSL Transformation is not restricted to XML documents. Also
HTML files for web pages or plain text files are possible output formats.

In an XSLT transformation at least three documents are involved. These are the XML
source document, the XSLT-Stylesheet and the target document. The XML source

2.3 Used Technologies

- 13 -

document and the XSLT-Stylesheet are passed to an XSLT-Processor. This is a soft-
ware component that performs the transformation according to the instructions in the
style sheet. XSLT-Processors are available for a large amount of application devel-
opment frameworks and programming languages. The result of the transformation
process is the target document. Figure 4 illustrates the transformation process sche-
matically. For accessing resources during the transformation process it is also possi-
ble to pass additional XML documents into the transformation process.

XML Source
Document

XSLT-Stylesheet

XSLT-Processor Target Document
(XML, Text, HTML)

Figure 4: Schematic illustration of the XSL transformation process

(according to [Bon08], page 27)

In the following, the general structure of an XSLT-Stylesheet as well as the most im-
portant language elements are briefly described. This is done using the book example
XML document already introduced in Section 2.3.1 (see Listing 1). This source XML
document should be transformed into a target XML document that represents the data
in a different structure (see Listing 3).

1
2
3
4

<library>
 <book author="Bongers, Frank">XSLT 2.0 and XPath 2.0</book>
 <book author="Klein, Florian">A Model-driven Approach to Design …</book>
</library>

Listing 3: Transformed library XML Document

All elements of the XSL language are part of the XSL namespace and therefore have
an “xsl:” prefix. The root element of an XSLT-Stylesheet is the xsl:stylesheet
element. Listing 4 shows the XSLT code implementing the above mentioned trans-
formation.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:template match="/library">
 <library>
 <xsl:apply-templates />
 </library>
 </xsl:template>

 <xsl:template match="book">
 <book author="{author}">
 <xsl:value-of select="title" />
 </book>
 </xsl:template>

</xsl:stylesheet>

Listing 4: XSLT-Stylesheet for transforming the example library XML document

2 Foundations

- 14 -

The specification of the structure of the output document is done using the
xsl:template element. This is the most important element of an XSLT-
Stylesheet. During the transformation process, the XSLT-Processor traverses the
XML elements of the source XML document. These source elements are matched to
one of the templates defined by the style sheet. Thereby, the output structure of the
source elements is determined. For which source elements a template should be used
is defined by the match attribute. This is set to an XPath4 query that determines the
elements of the source document for which the template should be applied. The
xsl:applytemplates element instructs the XSLT-Processor to select the next
nodes of the source XML document. In that way, the structure of the target document
is built up.

A more extensive description of the XSL Transformation’s basics is beyond the scope
of this thesis. Additional elements that are used in the following course of the thesis
are shortly explained at the respective passages. A detailed explanation of XSLT and
all XSL elements is given by Bongers in [Bon08].

2.3.3 XAML
The Extensible Application Markup Language (XAML) is an XML based language
for defining object trees and the attributes of the objects. The language was developed
by Microsoft and is part of the Microsoft Open Specifications Promise (OSP), which
allows using certain Microsoft technologies in own projects (see [Mic07]). XAML
was originally introduced with the .NET Framework 3.05 to construct the graphical
user interfaces of WPF (Windows Presentation Foundation) applications6. Thereby,
the definition of the application’s view becomes independent of the business logic,
implemented in any .NET language like C# or Visual Basic. Nowadays, there exist
additional specialized XAML versions for the GUI description of Silverlight7 web
applications and Windows 8 Modern UI8 apps. Even for developing apps for Win-
dows Phone, the language is used to declare the user interface. Although these differ-
ent versions slightly differ, the basic programming concept stays the same throughout
these GUI frameworks.

As already mentioned, XAML describes object trees and is therefore closely related
to the underlying GUI framework (WPF, Windows Runtime, etc.). The elements of
an XAML tree map directly to .NET objects of the GUI framework classes. Attributes

4 XPath is a query language for selecting nodes of an XML document. For more information see [Bon08].
5 The .NET Framework is a software development framework that is primarily used on Microsoft Windows

systems. The currently up to date version is .NET 4.5.
6 WPF is a programming model for developing Windows- and Browser-based end user applications based on

the .NET Framework. A detailed introduction is given by Huber (see [Hub10], p. 39ff).
7 Silverlight is a software framework for developing rich internet applications. Nowadays it is also used to

develop applications for mobile devices.
8 Modern UI denotes a new graphical user interface introduced with Windows 8 that is optimized for touch

operation. The essential features of Modern UI are its graphical simplicity and the fact that applications
usually run in full screen mode (no windows). Modern UI applications are based on a new framework
called Windows Runtime.

2.3 Used Technologies

- 15 -

are mapped to .NET Properties9 of these classes. Every .NET class providing a de-
fault constructor (without any parameters) can be used in XAML. Thus, according to
Huber, XAML can be seen as a format for serializing the object structure ([Hub10], p.
141). Hence, there are no features of XAML that could not also be implemented using
a .NET language. To get an impression, Listing 5 illustrates the XAML code of a
simple WPF Window of a “Hello Word” application. Figure 5 shows the resulting
Window.

1
2
3
4
5
6
7
8
9
10

<Window x:Class="WpfApplication1.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Hello World Application" Height="100" Width="200">
 <StackPanel Margin="12">
 <Button Width="150" Content="Greet!" />
 <TextBlock HorizontalAlignment="Center"
 Text="Hello World!!!!" />
 </StackPanel>
</Window>

Listing 5: A simple XAML example

Figure 5: Screenshot of a “Hello World” application

resulting from the XAML code of Listing 5

In addition to the strict separation of the GUI definition and the application logic,
Huber mentions additional advantages of using XAML in comparison to implement-
ing the user interface using a .NET language ([Hub10], p. 143). Three of them are of
special interest for implementing the approach of platform independent data forms in
the Windows environment:

• XAML files can be loaded at runtime. This allows exchanging the graphical user
interface of an application dynamically. The declared objects in the XAML file
are then instantiated and can be used in the application.

• Once loaded, the objects are treated like normal .NET objects. Thus, there are no
performance drawbacks using XAML for defining the user interface of an appli-
cation.

• As the name already suggests, XAML is extensible. This allows using XAML to
declare objects of self-specified classes.

The implementation of the UI logic is done using one of the .NET languages in a so
called codebehind file. This file contains the event handler, etc. for the GUI elements
defined in the XAML file. The compiler integrates these two files and generates an

9 In the .NET languages private fields are encapsulated using Properties. They can be used like public fields,

but allow to add additional code before or after reading or writing the value of the field. A property thereby
combines the Getter and Setter methods, known from other programming languages.

2 Foundations

- 16 -

intermediate, binary version of the XAML representation that is deployed with the
application.

To better support the separation of GUI design and UI logic the above mentioned
GUI frameworks provide additional mechanisms to loosely couple the GUI to the
application logic. These include data bindings as well as a command architecture for
loosely linking GUI elements to fields of the data classes or methods performing
business logic. The consequent usage of these mechanisms yield that the codebehind
file does not contain any content. For this implementation strategy, a special design
pattern was developed which is briefly introduced in the following Section 2.3.4.

2.3.4 The MVVM Design Pattern
The Model-View-ViewModel design pattern has originally been introduced by
Grossman at his blog [Gro05]. The pattern is based on the Model-View-Controller
pattern and has been designed to improve the cooperation between GUI designers and
programmers. Figure 6 shows the interdependencies between the three components of
the MVVM pattern. The three components are:

• View: The View represents the Graphical User Interface of the application. This
component is implemented using XAML. When using the MVVM pattern, the
codebehind files usually do not contain any code which makes it possible to load
the View at runtime.

• ViewModel: The ViewModel preprocesses the data of the Model to be displayed
by the View and provides Properties, to which the View can bind to access this
data. Additionally, the ViewModel contains the logic that handles user interaction
with the View.

• Model: The Model represents the actual data. Usually, the Model consists of clas-
ses that just contain data.

Figure 6: Interdependencies between the components

of the MVVM design pattern

The interesting part in the context of this thesis is that the ViewModel, which con-
tains the logic for handling user interaction with the View, does not know the actual
implementation of the View and does not contain any GUI elements itself. Thereby, it
is possible to exchange the View implemented using XAML easily at runtime. All

2.3 Used Technologies

- 17 -

user inputs to the View are directly forwarded to the ViewModel to be handled. This
is possible via the command architecture and data bindings mentioned at the end of
Section 2.3.3. Thus, the View knows about the implementation of its underlying
ViewModel. A more detailed explanation of the MVVM design pattern can be found
at ([Hub10], p. 507ff).

- 19 -

3 Related Work
The development of multi-device data forms is a special form of developing multi-
device user interfaces in general. The diversity of mobile computing devices and
available platforms request user interfaces to be suitable for several devices. This
results in new requirements to user interfaces that have an impact on their develop-
ment process. Therefore, a lot of research was done in the field of designing applica-
tions and especially user interfaces for targeting multiple devices and platforms. This
kind of applications is often called “nomadic applications” (compare for example
[MPS03]). In the following sections some of the available concepts and latest re-
search results in this area are introduced. A special focus is laid on model-based ap-
proaches because they are closely related to the approach developed by this thesis.

3.1 Model-based User Interface Development
According to Meixner, one method for developing multi-device user interfaces is
nowadays commonly known as Model-based User Interface Development (MBUID)
[Mei11]. The core concept of MBUID is the abstraction of user interface definitions
in different layers. Thereby the UI definition gets independent of the concrete UI
framework which is later used to provide the UI on a certain target platform. MBUID
does not focus on graphical user interfaces but targets any kind of UI. Thus, it for
example also includes speech in- and output systems. The approach shares the basic
concepts and aims of Model Driven Software Development (compare Section 2.1.3).
The main difference between these two approaches is that the goal of MBUID is not
to build a whole application based on formal models, but just the user interface of the
application in order to gather a UI that is suitable on different target platforms.

3.1.1 Core Models
In their summary paper “Past, Present, and Future of Model-Based User Interface
Development” [MPV11] the authors Meixner, Paternò and Vanderdonckt summarize
the MBUID approach with three different abstraction layers that are commonly used
for describing a user interface. These are the Task Model, the Dialog Model and the
Presentation Model, which are briefly described in the following:

• The Task Model defines which tasks a user can actually accomplish by using the
UI. The exact definition of a task is done by dividing complex tasks into subtasks
until the definition has reached a level of basic input and output operations. The
relation of the different tasks is defined by temporal attributes. Thereby it is pos-
sible to define which tasks can be done in parallel and which must be sequential.

• The Dialog Model connects the task model with the presentation model by defin-
ing mappings between tasks and presentation elements and specifies which tasks
are available in which state of the application. This information can be derived
automatically by evaluating the tasks and their temporal relations from the task
model.

3 Related Work

- 20 -

• Finally, the Presentation Model defines the hierarchical structure of UI elements
with which the user actually interacts.

In their paper “Applying Model-Based Techniques to the Development of UIs for Mo-
bile Computers” [EVP01] Eisenstein et al. divides the Presentation Model into ab-
stract interaction objects that are platform-neutral and platform specific concrete in-
teraction objects. The Presentation Model assigns several concrete interaction objects
to each abstract interaction object which makes the UI portable to any platform. Addi-
tionally the authors introduce a further model for describing the features of the differ-
ent target platforms. This Platform Model defines constraints on the platforms which
are used at design time to generate a set of user interfaces that are dedicated for a
specific target platform. Additionally a run time usage of the Platform Model is con-
sidered. A comparable solution is used by the model-driven data form design process
introduced by this thesis for integrating peripheral devices into the data capturing
process on different target devices.

3.1.2 CAMELEON Reference Framework
The CAMELEON Reference Framework (CRF) formalizes a MBUID structure for the
development process of multi-target user interfaces. The framework was originally
proposed in 2002 by Calvary et al. as a result of the European CAMELEON10 project
[CCT+02]. In 2003, the framework was revised by Calvary et al. in the paper “A uni-
fying reference framework for multi-target user interfaces” [CCT+03]. Figure 7
shows a simplified version of the four levels of abstraction that the framework de-
scribes. The model layers of the CRF serve as a reference for the model-driven ap-
proach for developing multi-device data forms.

Figure 7: The basic layers of the CAMELEON Reference Framework

(according to [LVM+04])

10 CAMELEON stands for Context Aware Modeling for Enabling Leveraging Effective Interaction. More

information can be found at the project website [cam04].

3.1 Model-based User Interface Development

- 21 -

At the top level, the Concepts-and-Tasks Model describes the tasks for which a user
can utilize the UI and their hierarchy. At the Abstract User Interface (AUI) level the
user interface is defined by abstract user interface elements. These elements are inde-
pendent of any look-and-feel. This means that an element, which offers the user the
possibility to select out of several possibilities, would for example be denoted as
“choice”. Only at the Concrete User Interface (CUI) level the definition whether this
choice element is actually implemented as a set of radio buttons or a combo box or in
a non-graphical way in case of a speech in- and output system, occurs. Although at
the CUI level a concrete look-and-feel of the UI is defined, this level is still inde-
pendent of any device, platform or UI framework. The Final User Interface (FUI) is
the fourth level of the CRF. It represents the actual implementation of the user inter-
face using a specific UI framework and is obtained from the CUI by automatically
generating source code. The transition between the different abstraction levels is done
by semi-automatic transformations between the models or by automatic code genera-
tion in the last step, respectively.

3.1.3 The “Graceful Degradation” Approach
In their paper “Graceful Degradation of User Interfaces as a Design Method for Mul-
tiplatform Systems” [FV04] the authors Florins and Vanderdonckt describe an ap-
proach for designing multi-target user interfaces that they call “Graceful Degrada-
tion”. They claim that it must be possible to gain different user interfaces that are
suitable for different devices by designing a user interface for the less constraint tar-
get platform and applying some predefined transformation rules to that “root inter-
face”. These rules are called Graceful Degradation rules. In the paper the authors ex-
plain rules for resizing or moving UI elements or changing their orientation. The in-
troduced rules are categorized according to the layers of the CAMELEON Reference
Framework.

3.1.4 Constraint-based Layout Management
In “Multi-device Layout Management for Mobile Computing Devices” [LCC03] Luy-
ten et al. describe a combination of an abstract definition of a user interface with a
constraint-based layout system. The user interface is defined in terms of abstract UI
elements. These elements are logically grouped. Elements of the same group at the
lowest layer of the grouping hierarchy are always displayed together. The arrange-
ment of the elements is specified by spatial relations (above, left-of, …) between the
elements of one group. These constraints allow calculating the UI structure depending
on the available screen size. The grouping is used to divide the user interface on small
screens. Using the spatial relations, the UI elements are arranged on the available
space that is divided into grid cells. This allows generating a device specific user in-
terface at runtime by dynamically building the layout structure and mapping the ab-
stract UI elements to concrete implementations depending on the actual platform.

A similar method of grouping elements and thereby dividing them into different areas
is used by the model-driven approach introduced by this thesis to divide a data form
into several pages on small screens.

3 Related Work

- 22 -

3.2 User Interface Description Languages
In their paper “A Review of XML-compliant User Interface Description Languages”
[SV03] the authors Souchon and Vanderdonckt give an overview of available XML
based User Interface Description Languages (UIDL) that can be used for describing
one or several of the model layers mentioned in Section 3.1.

This section shortly introduces some prominent UIDL examples. Although none of
these languages is directly used by the approach developed in this thesis they serve as
a source of inspiration. The reason why the languages are not applicable is that they
are considered to be too complex for the future user group not consisting of computer
science professionals.

3.2.1 USIXML
Also in the context of the CAMELEON project the User Interface Extensible Markup
Language (USIXML) was developed [LVM+04]. USIXML is a User Interface De-
scription Language that supports the definition of context-sensitive user interfaces
that are device-, platform- and modality independent. Therefore the language pro-
vides the possibility to define several models. The AUI and CUI models reflect the
same named levels of the CRF. In addition a task-, domain-, context- and UI model
are specified. Furthermore USIXML defines a model for the transition between the
different models. The modular structure of the language allows starting the develop-
ment process from any abstraction level and specifying only those models, which are
actually needed to satisfy the requirements of the intended user interface.

3.2.2 UIML
The User Interface Markup Language (UIML) is an XML compliant UIDL that is
standardized by OASIS11 (see [HSL+08]). UIML allows UI designers to define the
structure, style, content and behavior of user interface elements, which are called
parts in UIML. Each part is a member of a class. The classes are not predefined. The
structure is defined by a virtual tree of parts. The style defines values for different
part properties (e.g. the background color, or the font of a text). Additionally it is pos-
sible to define the action that occurs when the user interacts with the UI. This is done
by defining rule-based behaviors. Each rule defines a condition as well as a sequence
of actions that are executed if the condition becomes true.

The relation between this abstract definition and a concrete UI framework is defined
in a separate part of a UIML document or even in a different document. This is done
by mapping the classes of interface parts and their properties to concrete widgets and
their properties of a UI framework. The loose coupling between the abstract defini-
tion and the concrete framework ensures UIML do be totally device, platform and
framework independent.

11 OASIS stands for Organization for the Advancement of Structured Information Standards and is a non-

profit consortium that supports the development of open standards for the information society.

3.3 Design Environments

- 23 -

3.2.3 XIML
The Extensible Interface Markup Language (XIML) [PE01] allows specifying arbi-
trary user interfaces. Basically, XIML provides a way to define the elements of a UI,
their attributes and relations. The elements are organized in components. In XIML,
elements should not be understood as abstract UI elements but as interaction data in a
more common sense. The number of components and different elements is not limited
by the language and can be extended. Nevertheless, XIML predefines five basic com-
ponents in its first version, which are task, domain, user, dialog and presentation.
Thereby, XIML provides a standard format for exchanging interaction data defini-
tions between different frameworks and applications without specifying how the defi-
nitions should be implemented. XIML covers the whole UI development process
from design via operation to evaluation.

3.3 Design Environments
In the papers “Tool Support for Designing Nomadic Applications” [MPS03] and
“Design and Development of Multidevice User Interfaces through Multiple Logical
Descriptions” [MPS04] Mori et al. present a tool that supports developing multi-
device user interfaces using a model-based approach. This tool is called TERESA. It
provides a top-down transformation process that follows the CAMELEON Reference
Framework. Therefore the tool provides a graph based editor that enables the designer
to define a task model. Based on this model different task sets are derived which con-
tains tasks that are available at the same time. The authors call this sets “presentation
task sets”. The presentation task sets and the task definitions are input for the genera-
tion of an Abstract User Interface. From this step on the transformation process fol-
lows the CRF and ends with the automatic generation of the final UI. The models on
each layer are developed using dedicated XML-based languages.

By this time, the TERESA tool is not further developed. Instead there is a follow-up
tool, called MARIAE12 (MARIA Environment) that uses a similar method for devel-
oping interactive applications for several platforms based on web services
(see [PSS09]). MARIA is the name of the XML-based language that is used by the
tool and supports describing user interface at abstract and concrete levels.

Referring to this thesis, the user interfaces of both tools as well as the underlying
XML-based languages serve as a source of inspiration for the development of a mod-
el-driven approach to design multi device data forms. Especially many ideas of ab-
stracting UI elements can be transferred to this thesis.

12 The MARIAE tool is publically available and can be downloaded at [HII].

- 25 -

4 Conception
Based on the findings of the related work research, a model-driven method for de-
signing platform independent data forms for use in a medical study environment is
elaborated. This chapter explains this concept in detail.

4.1 Overview
The general approach is based on the abstraction layers, defined by the CAMELEON
Reference Framework. Summarized, a data form is developed by running through
four different levels of abstraction. The layers are passed one after another. Like it is
known from Model Driven Software Development (MDSD), the transition from one
model layer to the next is performed by automatic transformations from the higher
model level to the lower one (compare Section 2.2.2). Thereby, the designer is guided
through the model-driven process and just has to add the specific information on each
layer until the final transformation to a specific target platform can be done.

In comparison to the CAMELEON Reference Framework, which proposes a model
based development process for specifying complete user interfaces for multiplatform
applications, the purpose of this thesis is slightly different. Here, the goal is to come
up with a solution for designing device independent data forms. This variation results
in two important differences. First, the designed data forms are opened and shown by
a dedicated application. In terms of the :study software this is the :studydata applica-
tion. If a data form shall be displayed and filled out on a specific platform, a version
of :studydata for this platform is needed. Hence, the data form itself is not supposed
to be a standalone application. This method is comparable to using an interpreter for
executing a formal model definition in the MDSD approach (compare Section 2.2).
The second disparity is the fact that a data form is already a very special kind of user
interface. In the context of this thesis, a data form is assumed to have a graphical user
interface. This means that all non-graphical solutions, like for example speech sys-
tems, that are also included in the general notion of platform independence, are ig-
nored in the further consideration. In addition, when designing a general user inter-
face, the amount of tasks a user can do using this interface can be arbitrarily large and
complex. This complexity is defined in the Task Model of the CRF. For a data form,
the task is clearly defined and in principle it is the same for each data form. Broadly
speaking, a user opening a data form always wants to capture some data. Also the
process for doing so always follows the same pattern, which has been explained in
Section 2.1.2. To recap, the user opens the form, selects the test subject, enters the
data and commits it to the database (compare Figure 3).

Despite these differences, the models defined by the CRF serve as a reference for the
developed approach. Figure 8 depicts the basic process for generating multi-device
data forms running through four model layers. The first three model layers are part of
the actual data form design process. They are generated and edited by a designer. The
fourth layer represents the final data form implementation that is specific for an actual
target platform. At this level, the designer has no more options for changing.

4 Conception

- 26 -

4. Model Layer

3. Model Layer

2. Model Layer

1. Model Layer

Data
Definition Model

Abstract Form
Model

Concrete Tablet Form
Model

Concrete Mobile
Form Model

Concrete Desktop
Form Model

Windows
Phone ... iPad ... Desktop PC ...

Automated
Transformation

Data Form
Deployment

Data Form
Design

Figure 8: Overview of the general approach for generating multi-device data forms

While a formal definition of a task model is not necessary, there is another important
part of the form that has to be specified. The question here is: Which data should ac-
tually be captured by the form? This question is very similar to which tasks does a
user have to do to achieve his goal. The developed approach therefore starts with
specifying a single Data Definition Model (DDM). In the DDM, the designer speci-
fies which values are captured by the form and how they are entered. Possible options
for entering a value are to fill it in manually or to read it from a peripheral device.
The Data Definition Model also defines possible dependencies between some data.

Based on the Data Definition Model, at the second layer an abstract definition of the
data form is generated. This Abstract Form Model (AFM) is still device independent.
It defines the visual appearance of the data form in terms of abstract form elements
that are used to capture the specified data. These elements do not contain information
about their visual manifestation. They are just characterized by their features and be-
havior. Thereby, a rough structure of the data form is constructed. Another aspect,
which is specified at this layer, is the workflow that guides a user through the data
form. This is the order, in which the form elements are activated one after another.
Usually this order conforms to the working process of the user entering the data.

At the last design layer, the actual visual appearance of the data form is specified by a
Concrete Form Model (CFM). At this concrete layer, the definition is split into sever-
al models, one for each possible target device. The possible target devices are denoted
as Mobile, Tablet and Desktop where Mobile mainly stands for smartphones. This
classification is considered to be reasonable because it reflects the differences in
screen size and other features of the devices. Thereby, the designer is able to define
different layouts of the data form for each device that are suitable for the typical dis-
play size of a device. The Concrete Form Model makes the visual appearance of the
form elements explicit. This means that for each abstract form element of the AFM a

4.1 Overview

- 27 -

concrete realization is specified. This concrete realization considers the characteristics
of the respective target device type. Therefore, an abstract form element can be real-
ized differently on the individual Concrete Form Models. The tendency to larger
smartphones and smaller tablets makes it difficult to define a clear border between
these two device types. Therefore it is possible that for a very large smartphone de-
vice the layout defined in the Concrete Form Model for tablets results in a better de-
piction and vice versa.

The final step of the design process is the transformation from the Concrete Form
Model to the Final Form (FF) implementation. This Final Form is the specific reali-
zation of the data form for an actual target platform. The particular realization of a
Final Form depends on the GUI framework of the respective platform. In case of
Windows based platforms, like Windows Phone or Windows Tablets, the Final Form
layer is implemented by XAML based user interface descriptions. The XAML files
are automatically generated by a transformation from the Concrete Form Model. The
generated XAML code can be loaded directly by the versions of the :studydata appli-
cation implemented for the mentioned Windows based platforms. This means, that
the last transformation step is executed explicitly and its result is stored as a XAML
document.

If the target platform does not provide such a feature for loading user interfaces at
runtime, there is also the possibility to do the last transformation step implicitly. In
this case, the respective version of the :studydata application interprets the relevant
Concrete Form Model at runtime and directly instantiates the user interface elements
of the data form. In addition, also a mixed solution is conceivable: The Concrete
Form Model is transformed into some intermediate model, which is then interpreted
by the :studydata application. More particularly, this solution is more or less the same
as the generation of XAML files. The only difference is that the intermediate model is
proprietary. Therefore, a dedicated interpreter has to be implemented for the :study-
data application to read this proprietary intermediate model. This is a difference to the
XAML solution, because the GUI frameworks of the above mentioned Windows plat-
forms support loading XAML files directly.

The described approach ensures that a designer does not have to implement things
twice. All information, that is valid across the different target devices, is stated in the
first two model layers. This is mainly information about the captured data and the
capturing methods. Only at the Concrete Form Model layer, the development is split
into the three device types. The information that is given on this layer, for example
the data form’s layout or the size of the form elements is specific for the respective
device type.

To guide the designer through the design process traversing the three model layers, a
support tool for the explained method is needed. In terms of the :study software, this
tool is an exhaustively extended version of the :studyforms application. The most
important challenge that has to be solved by this application is to enable a designer
without computer science background to easily work with the described model-driven
method.

4 Conception

- 28 -

In addition to the already mentioned models, which are traversed one after another
during the design process, a further model for defining automated input devices is
defined. This Input Device Model (IDM) provides information about available pe-
ripheral devices that can be used for gathering values in an automated way. This con-
cept is explained in detail in Section 4.3. Prior to this, the following section describes
the three introduced model layers of the design process in more detail.

4.2 Model Layers
The following sections explain the goals and the structure of the upper three model
layers, which are part of the actual design process, in detail. For each of the layers a
Domain Specific Language (DSL) is defined, which allows to specify a clearly de-
fined part of a data form. The abstract syntax (compare Section 2.2.1) of the lan-
guages is specified in a corresponding meta-model for each model layer. These meta-
models are described by UML class diagrams that specify the available elements and
their interdependencies. Common attributes of several elements within the same me-
ta-model are composed in abstract base classes of the concerned elements. These ab-
stract elements are themselves no parts of the DSL and cannot be used in the models.
For the concrete textual syntax for the DSLs, the XML format has been chosen. The
reasons for this choice are the platform independence of the XML format as well as
the tree-like structure of an XML document that projects the hierarchical structure of
the models. This textual syntax is also used to store the models during and after the
design process. To validate the models against their meta-models, the defined class
diagrams will later be transformed to XML Schema Definitions. This eases the vali-
dation in the :studyforms application. For the purpose of editing the models in :study-
forms a graphical syntax is introduced for the models (see Chapter 5).

4.2.1 Data Definition Model
One of the disadvantages of the former, purely graphical data form design process
(compare Section 2.1.1) is the mixing of data and their visual appearance on the data
form. The design process is only based on arranging graphical form elements that are
linked to a parameter of the database. This causes that even attributes like an initial
value of some data, which is closely related to the data itself, is set on the input ele-
ment that graphically represents that data. To overcome this drawback, the separate
Data Definition Model (DDM) is introduced. On one hand, the DDM is the first step
of the model-driven design process, from which the graphical appearance of the data
form is gathered. On the other hand it represents an independent data layer that de-
fines which data is collected by the data form and exists beside the lower model lay-
ers. It thereby forms the connection between the central :study database and the data
form. Figure 9 shows the meta-model of the Data Definition Model.

The DDM is specified in a hierarchical structure. The root of this structure is the
DataModel element that holds a reference to the activity pattern the form is related
to. The actual pattern definition is not part of the model but stored in the :study data-
base. Additionally, the DataModel element holds the name of the form. For build-

4.2 Model Layers

- 29 -

ing the hierarchic data structure of the DDM, the meta-model defines three elements.
These are DataGroup, DataDefinition and VolatileDataDefinition.

Figure 9: Meta-model of the Data Definition Model

DataGroup is a simple grouping element that has no further attributes, just child
elements. It is used to group data logically within the form. This grouping eases the
transformation of the form to several devices in the upcoming transformation process.
For the 24h urine example a possible group would be the weight, which is composed
of the gross, tare, and net weights. For a flexible structuring it is possible to nest data
groups. Each of the DDM elements is identified by a name attribute that has to be
unique within the same group.

With the two supported data definition elements, DataDefinition and Vola-
tileDataDefinition, the designer specifies which values are captured by the
form. The two elements have several attributes in common:

• For each of the elements it is possible to define an initial value (attribute Ini-
tialValue). To this value, the data is set after the form is initially opened or
reset.

• Using the IsRequired attribute, the designer can specify whether the data has
to be set to a valid value when the values of the form are submitted, or whether
entering a value is optional. The validity of a value is checked by the :studydata

4 Conception

- 30 -

application according to the defined data type as well as possible thresholds de-
fined for a parameter in the :study database.

• The DerivationFormula attribute allows to specify that a value should be
calculated based on the entered values of other data definitions. This is for exam-
ple the case for the net weight of 24h urine samples. This value is calculated as
the difference of the determined gross weight and the tare of the urine bottle. The
reference to another value is stated by the name of its data definition element and
its parent elements. These names build a unique path with the pattern “Mod-
elName/GroupName/…/ReferencedElementName” starting at the root of the
DDM. For the gross weight of the before mentioned example this path could for
example be “24hUrineLab/Weight/GrossWeight”.

• The need to enter a value can also be dependent on other values. For example,
some data only has to be gathered if for others specific values are entered. This
can be achieved by setting the Condition attribute to a logical expression that
defines this dependency. The references to other elements are again expressed via
their paths. The possibility to define such a condition leads to a context sensitive
behavior of the data form. This is one of the crucial advantages an electronic data
form has over its paper representation. Thereby it is possible to hide all currently
unnecessary input elements of the form, which allows the user to focus on his cur-
rent task. This is especially important on mobile devices since they are usually
used casually during gaps in the actual task of the user (compare [HB11],
p. xxix). Additionally, it avoids unreasonable data sets since the entering of spe-
cific data is not possible under certain circumstances.

• The EntryMode attribute is one of the central attributes that is evaluated by the
transformation from the Data Definition Model to the Abstract Form Model (see
Section 4.6.1). It allows defining whether the value of a data definition will be en-
tered manually by the user of the data form or captured in an automated way by
means of a peripheral device. It is also possible to offer both options for example
to handle exceptional cases like hardware defects or connection issues.

The essential difference between the two types of data definitions is that a Vola-
tileDataDefinition represents data that will not be stored in the database.
Such data is just used within the context of the data form as a base for calculating
other values or for supervisory purposes. For example, the calculated net weight of a
24h urine sample should be displayed in the form, such that the user can verify the
value. However, since storing redundant information should be avoided, the value of
the net weight will not be stored in the database.

As opposed to this, the value of a DataDefinition element is stored in the data-
base when the form is submitted. Therefore, each DataDefinition refers to a
parameter of the :study database. This enables the system to assign the entered values
to the right parameter. The reference is established by storing the unique surrogate
key of the parameter as an attribute of the DataDefinition element in the DDM.
The parameter definitions in the database contain information that is needed by the
data form. This is the data type, the default values and the unit in which the parameter
is captured. To avoid holding redundant information for the DataDefinition

4.2 Model Layers

- 31 -

elements these details are not part of the Data Definition Model. Instead, this infor-
mation is loaded from the database during the design process and when the form is
opened and displayed to the user. This ensures that the form always provides up to
date default values and units. Since the VolatileDataDefinition elements are
not linked to a parameter of the database, for these elements the needed information is
part of the DDM. Therefore, the meta-model allows specifying the following attrib-
utes on a VolatileDataDefinition element:

• The DataType specifies of which type the entered values have to be. It can be
set to one of the available DataTypes. The DataType set to “Discrete” means
that the entered value has to be one of the specified default values.

• The DefaultValues attribute define a list of standard values which are com-
monly entered for this data definition. These elements can be offered for selection
by the user, which eases to fill in the data form. The values are specified in form
of a comma separated list.

• For values that are entered in a specific unit, the UnitShortcut attribute de-
fines this unit by its abbreviation. This abbreviation can be shown in the data
form near to the corresponding value.

To get an impression of a Data Definition Model, Listing 6 shows a shortened version
of a Data Definition Model for the 24h urine laboratory data form. The example is
shown using the concrete XML syntax.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

<DataModel Name="24h-Urine Laboratory" ActivityPatternId="083c0f2f-…">
 <DataDefinition Name="BottleNumber" ParameterId="334d7112-…"
 IsRequired="true" EntryMode="AutomatedOrManual" />
 <DataGroup Name="Weight">
 <DataDefinition Name="GrossWeight" ParameterId="b0279a2a-…"
 IsRequired="true" EntryMode="Automated" />
 <DataDefinition Name="TareWeight" ParameterId="4c94c6e7-…"
 IsRequired="true" EntryMode="AutomatedOrManual" />
 <VolatileDataDefinition Name="NetWeight" IsRequired="true"
 EntryMode="Manual" DataType="Decimal"
 DerivationFormula="…/…/GrossW - …/…/TareW" />
 </DataGroup>
 <DataDefinition Name="pHValue" ParameterId="47aac2a6-…"
 IsRequired="true" EntryMode="Manual" />
 <DataDefinition Name="Comment" ParameterId="dd080c92-…"
 IsRequired="true" EntryMode="Manual" />
</DataModel>

Listing 6: Example Data Definition Model for the 24h urine laboratory data form

4.2.2 Abstract Form Model
The Abstract Form Model (AFM) is comparable to the Abstract User Interface of the
CAMELEON Reference Framework. In this step of the data form design process, the
focus shifts from the pure data view to the actual interaction elements that are dis-
played in the form and used to enter the values. The AFM therefore defines the visual
elements of the form in the sense of abstract user interface elements. The reason why
they are denoted as abstract is, that at this design layer their concrete realization is not
yet defined. This means, that the elements are characterized only by their basic be-
havior or the task they support. However, the visual appearance of the elements on
the data form is still undefined. An example for such an abstract UI element is a field
that shows and allows editing numerical values. This field does not define how the

4 Conception

- 32 -

editing is done but just that it is possible. A concrete version of this field could allow
entering the value directly via the keyboard or by pressing an increment or decrement
button. These abstract UI elements will be denoted as Abstract Form Elements (AFE)
in the following course of this thesis.

The AFM defines the visual structure of the form by grouping the Abstract Form El-
ements and thereby building a hierarchical structure. This structure reflects the struc-
ture of the Data Definition Model and is the base for the layout of the elements in
different device specific versions of the form on the next design layer. Additionally to
the visual structure, the Abstract Form Model also specifies the data form’s internal
interaction workflow. This has to be understood as the order in which the elements on
the form are activated and filled in by the user. Usually this workflow starts with se-
lecting a test subject to which the entered data is captured. Then the data is entered
and submitted to the database. The interaction workflow does not specify which of
the entered data is stored to the database. This is distinguished at the Data Definition
Model by the two alternative data definition elements DataDefinition and Vol-
atileDataDefinition.

The following sections describe the available AFEs and their attributes in detail. Fig-
ure 10 gives an overview of the Abstract Form Model’s meta-model.

The root element of the AFM is the AbstractForm element. The attributes
FirstElement and LastElement allow specifying the start and end of the in-
teraction workflow. The FirstElement attribute is set to the element that will be
activated when the form is opened or reset. The LastElement attribute specifies
the element after which the workflow is finished and restarts for processing the next
sample of another test subject.

The AbstractCompound element corresponds to a DataGroup in the Data Defi-
nition Model. It allows structuring the Abstract Form Elements in the sense of group-
ing them to different graphical areas on the data form. Like in the Data Definition
Model, each AFE is identified by a name attribute that has to be unique within the
same AbstractCompound element. This allows referencing AFEs by their path,
starting at the root element of the Abstract Form Model.

In general, the AFEs can be divided into two groups. Some elements only make in-
formation visible on the form. They are denoted as Output Only Elements in the fol-
lowing paragraphs. With the other elements, the user can interact somehow. There-
fore they are called Interaction Elements.

Output Only Elements
On the Abstract Form Model, there are two pure output elements available. These are
AbstractDisplayElement and Description.

AbstractDisplayElement
This element displays the value of a referenced data definition on the form. The
Caption attribute is used to set up the heading text that is displayed nearby the val-

4.2 Model Layers

- 33 -

ue on the data form. An output element is for example useful to show an automatical-
ly calculated value or a value that was read from a peripheral device.

Description
The Description element represents additional textual information on the data
form. It is not linked to an element of the DDM. Instead, the displayed text is speci-
fied at design time by setting the Text attribute of the Description element.

Figure 10: Meta-model of the Abstract Form Model

Interaction Elements
All other Abstract Form Elements offer some sort of interaction with the user. There-
fore, all of them can be part of the data form’s interaction workflow. To define that
activation order, the elements have a Successor and Predecessor attribute.
These attributes hold a reference to the next and the previous interaction element in
the workflow. The reason for the ability of setting the predecessor element separately
is that in some situations it is reasonable to activate another element than the previous
element in the workflow when navigating back. An example for such a situation is a

4 Conception

- 34 -

faulty result after a barcode scan. In this case, it is more sensible to correct this error
manually than to scan the barcode again. Therefore, if the user navigates in backward
direction, starting at the element following the barcode scanner, the manual input
element that shows the faulty result should be activated instead of the barcode scan-
ner (compare Figure 11). This behavior cannot be stated in general. The actual deci-
sion how to proceed in such a situation has to be made during the form’s design pro-
cess.

Figure 11: Example for an internal data form workflow with backward navigation

The purpose and the specific attributes of the interactional Abstract Form Elements
are now explained in detail. Depending on the data type of the referenced value the
designer can choose out of four different manual input fields, each of them is intend-
ed to handle values of a specific data type. These manual input fields are the first four
of the described AFEs. All of them reference to the data definition of the DDM they
represent on the form. This reference is held by the DataReference attribute. Ad-
ditionally they have an option to set a caption string (attribute Caption).

BooleanEdit
This field supports data definitions with “Boolean” data type. It just toggles the value
between true and false.

TextEdit
The TextEdit element focuses on the “Text” data type. It allows entering alpha-
numerical strings and special characters. In some cases it might also be feasible to use
this type of input field for “Integer” or “Decimal” values. This is for example the
case, if a decimal number with a large amount of fractional digits has to be entered. In
that case, the direct input via the keyboard is much more comfortable. The maximal
number of characters entered to the text edit field can be restricted by setting the
MaxLength attribute to an integer greater zero.

NumericalEdit
For entering numerical values of the data types “Integer” or “Decimal” the Nu-
mericalEdit element should be used. Depending on its actual realization on the
Concrete Form Model layer it provides different types of features that simplifies en-
tering a numerical value. This could for instance be two spin buttons for incrementing
or decrementing the value. The minimal and maximal allowed value as well as the
number of displayed fractional digits can be set by respective attributes. In case of an
Integer value, the FractionalDigits attribute is set to zero.

Selector
The Selector element stands for an input field that allows the user to choose one
value out of several suggestions. It is used for values of the type “Discrete”. The

4.2 Model Layers

- 35 -

available values are either specified in the Data Definition Model or loaded dynami-
cally from the :study database when the form is opened (compare end of Section
4.2.1). Hence, the Selector element has no further attributes. The provision of a
multi select option is considered as being not reasonable. This is caused by the gen-
eral concept of data capturing provided by the :study software, which assumes that for
each parameter a unique value is captured at a specific point in time. This assumption
also holds for the value of a VolatileDataDefinition because it is seen as a
volatile equivalent of a parameter.

AbstractTestSubjectSelector
The AbstractTestSubjectSelector element allows determining to which
study participant the entered data is linked when it is stored to the database. Since the
concept of data acquisition in :study assumes that a data form is always filled out in
the context of a specified study participant, there is no explicit data definition for the
current test subject in the DDM. Therefore, the test subject selector does not need a
reference to an element of the DDM. Instead, the data model that holds the currently
selected test subject as well as all available test subjects is provided by the :studydata
application that shows the data form and handles the access to the database. The ref-
erence to this data is established by the actual implementation of the Abstract-
TestSubjectSelector for the respective target platform. During the design
process, the relation can be assumed to be defined implicitly.

AbstractAutomaticInput
The AbstractAutomaticInput element is the most complex element of the
AFM. It represents any kind of peripheral device that is included into the data form to
automate the entry of selected values into the form. Examples for such devices are a
barcode scanner or a laboratory balance.

The available automated input devices as well as their attributes and the actions they
provide are defined in the Input Device Model (see Section 4.4). To avoid the need
for adapting the meta-model of the AFM every time a new automated input device is
added to the system, the devices are not directly used in the Abstract Form Model.
This means that there is not a separate Abstract Form Element for each input device
defined in the IDM. Instead, all devices used by a form are represented via the Ab-
stractAutomaticInput element. Which kind of peripheral device is concerned
is specified by setting the InputElementName attribute of such an element to the
name of one of the input devices defined in the IDM. To assign values to the different
attributes of the devices defined in the IDM and add references to the Data Definition
Model, the element allows defining sub elements of the types Attribute and
DataLink. These sub elements refer to one of the data link or property definitions
defined for the concerned device in the Input Device Model. The references are estab-
lished by setting the Name or respectively LinkName attribute to the name of the
respective data link or property definition. The intended value is set to the Value or
respectively DataReference attribute. An example for this is given in Listing 7,
l. 7.

4 Conception

- 36 -

Command
The Command element represents an interaction element for triggering actions on the
data form. Actions are provided by automatic input devices or by the data form itself
which provides the “submit” and “reset” actions. These special actions are used for
triggering the underlying :studydata application to store the entered values in the da-
tabase or to reset all values to their initial values. The implementation of this behavior
is part of :studydata application. The link to an action is established by setting the
ActionReference attribute to the path of the data form or automatic input ele-
ment, followed by the name of the triggered action. Available actions for an automat-
ed input device are defined in the Input Device Model. The pattern for this kind of
reference is specified as follows: “ModelName/Group1Name/…/Referenced-
ElementName::ActionName”.

Listing 7 shows a simplified version of an Abstract Form Model, which is consistent
to the example Data Definition Model of Listing 6.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

<AbstractForm Name="24h-Urine Laboratory">
 <AbstractTestSubjectSelector Name="TestSubjectSelector" />
 <TextEdit Name="TextEdit_BottleNumber" Caption="Urine Bottle Number"
 DataReference="…/BottleNumber MaxLength="6" />
 <AbstractCompound Name="Weight">
 <AbstractAutomaticInput Name="Balance" InputElementName="Balance">
 <DataLink LinkName="WeightValue" DataReference="…/GrossWeight" />
 </AbstractAutomaticInput>
 <Command Name="Command_Weight" Caption="Weight"
 ActionReference="…/…/Balance::Weight" />
 <AbstractDisplayElement Name="DisplayElement_GrossWeight"
 Caption="Gross Weight" DataReference="…/GrossWeight" />
 …
 </AbstractCompound>
 <NumericalEdit Name="NumericalEdit_pHValue" Caption="pH-Value"
 FractionalDigits="2" DataReference="…/pHValue" />
 <TextEdit Name="TextEdit_Comment" Caption="Comment"
 DataReference="24h-Urine Laboratory/Comment" />
 <AbstractCompound Name="Finishing">
 <Command Name="Command_Submit" Caption="Submit"
 ActionReference="24h-Urine Laboratory::Commit" />
 </AbstractCompound>
</AbstractForm>

Listing 7: Example Abstract Form Model for the 24h urine laboratory data form

4.2.3 Concrete Form Model
The Concrete Form Model (CFM) concretizes the Abstract Form Elements defined in
the AFM for a specific target device type. At this model layer the designer specifies
the actual layout of the data form by setting the height and width of the now Concrete
Form Elements (CFE). Since these details vary significantly depending on which de-
vice the form is displayed on, the design process is split at the Concrete Form Model
layer. This means, that a CFM is defined for each of the three possible target devices
types (Mobile, Tablet and Desktop) independently. Thus, a CFM is specific for one
device type, but still independent of the target platform. The Concrete Form Model is
therefore comparable to the Concrete UI of the CAMELEON Reference Framework
(compare Section 3.1.2).

Although the heterogeneity of display sizes is much lower within one device type
than across the different devices, it is still not possible to define the data form’s layout
by fixed positions and sizes of the form elements. Instead, the CFM also orders the

4.2 Model Layers

- 37 -

elements in a hierarchical structure. But, there is an essential difference in the mean-
ing of this structure in comparison to the two higher model layers explained above.
The group elements are not just simple containers that group their children logically
or define abstract areas in the data form. Instead, they are concrete layouts, which
define how their child elements are visually arranged on the data form and therefore
also have several layout attributes themselves. These layout containers adapt the size
and positions of the elements depending on the actual screen size at runtime and
thereby assure a proper layout on each platform. More details about the handling of
different screen sizes and resolutions are explained in Section 4.5.

The available Concrete Form Elements are now explained in detail, starting with the
possible layout options. An overview of the CFM’s meta-model is depicted in
Figure 12.

Figure 12: Meta-model of the Concrete Form Model

4 Conception

- 38 -

The root element of the CFM is the ConcreteForm element. Its only attribute de-
fines the target device of the model and can be set to either “Mobile”, “Tablet” or
“Desktop”. The root element contains one or several Page elements as children. A
page represents a section of the data form. The elements within one page are visible at
the same time. The page concept has mainly been introduced for smartphone devices
whose display sizes are most limited. On such devices it is reasonable to divide the
data form into several pages that are displayed one after another. On desktop and tab-
let devices it can be assumed that the data form is usually designed as a single page.
For sake of flexibility, it is nevertheless also possible to define several pages on a
CFM targeting these devices. Each Page element has exactly one child element,
which is the root layout container of the page. For the time being, the only layout
container that is defined by the CFM is the LinearLayout. This layout arranges its
child elements in a single column or a single row depending on the value of the Ori-
entation attribute (inspired by [Gooa]). The Orientation attribute can be set
to “Vertical” for arranging the child elements in a column one below the other, or to
“Horizontal”, which causes the child elements to be stacked side by side in one row.
Figure 13 illustrates this simple concept. The LinarLayout is chosen as first lay-
out container because it allows easily arranging elements on the data form. In spite of
this simplicity, also complex layout structures can be achieved by arbitrarily nesting
several layout containers. However, the meta-model of the CFM is defined flexible
enough to be extended by further layouts in a future version.

Figure 13: Linear layout with vertical orientation (left) and horizontal orientation (right)

Additionally to the obligatory name attribute for identifying and referencing the mod-
el elements, each of the CFEs has attributes for specifying the element’s size and po-
sition. Due to the different possible display sizes and resolutions of the target plat-
forms the sizing and positioning is not done by fixed pixel values. Instead, the values
are defined in a platform independent fashion. The solution for this is inspired by the
Grid panel of the Windows Presentation Foundation (compare [Hub10], p. 348ff).
The size is determined by the PreferedHeight and PreferedWidth attributes.

4.2 Model Layers

- 39 -

The reason why the attributes are denoted with the “preferred” prefix is that the actual
size of the element on the target device might differ from the specified values. This is
the case if the target display is too small to satisfy all defined size values. The two
attributes can be set in three different modes:

• Setting the value to the string “auto” yields the according size to be calculated
automatically. This means that the element takes exactly the space that is needed
to display its content without cutting something off. If the available size is smaller
than the size needed, it is still possible that parts of the content are cut.

• The second option is to set the size relative to the available size of the parent lay-
out container. This relative size value is specified by a decimal value, followed by
the “*” (Star) symbol. All child elements that use a relative size share the availa-
ble space of their parent layout container. Here it is important, that the distribu-
tion of available space only works in the orientation direction of the parent linear
layout. Setting the size value of the other direction to any relative size (using the
Star symbol) results in the container size in that direction, regardless of the pre-
ceding weight value. The available space of a layout container calculates as the
size of the container minus the sizes of automatically or fixed sized elements
within that layout. The decimal value of the relative size serves as a weight value
that denotes which amount of available space the element receives. This makes it
possible to divide the available space equally (all weights are equal) or weighted.

• In some cases, it is also reasonable to set the size of an element to a fixed value.
This is done by a plain decimal value, specifying the size in pixels. But, due to the
diversity of resolutions, it is not possible to specify the size in real device pixels.
Instead, the value is specified in terms of Logical Pixels (lp). A detailed explana-
tion of this is given in Section 4.5.

The Position attribute determines the alignment of an element within the area of
its parent container. Since for now, the only layout container is the LinearLayout,
which stacks its child elements either in vertical or in horizontal direction, there is
just a single Position attribute, and not one for each axis. Valid position values are
“Top/Left”, “Center”, and “Bottom/Right”. The value always refers to the axis com-
plementary to the linear layout’s orientation. Figure 14 illustrates this by an example:
If an element is a child of a linear layout arranging its children in a column (Orien-
tation attribute set to “Vertical”) the position attribute defines the element’s
alignment on the horizontal axis. If the size of the element is set to “*” (Star), and
thus not smaller than the parent container, the Position attribute does not cause a
visible difference.

In addition to the layout attributes mentioned until now, those elements for which it is
possible to define a caption in the Abstract Form Model, have an attribute Cap-
tionPosition. This attribute defines where the specified header should be posi-
tioned relative to the actual field showing the value. Valid values for this attribute are
“None”, “Top”, “Left” or “Auto”. The first option results in hiding the caption on
the data form. The next two options display the caption above or to the left of the
value field, respectively. Since the :study software is expected to be used in a cultural

4 Conception

- 40 -

environment with a left to right reading direction, arranging the caption to the right or
to the bottom of the value field is assumed to be unreasonable. To prevent design
errors caused by unintentionally using such inappropriate position values these op-
tions are not provided. With the “Auto” option, the designer can specify that the cap-
tion should be displayed either above or to the left of the input field depending on the
current aspect ratio of the elements’ parent layout container. This option is especially
useful on the Concrete Form Models targeting smartphone or tablet devices since the
user might use them in landscape or portrait mode. Changing the screen orientation
also leads to a change of the aspect ratio of a layout container with relative sizes.
Thus, the feature allows reacting dynamically to a change of the device orientation.
The actual implementation of this feature is part of the :studydata application on the
respective platform.

Figure 14: Positioning of elements in a linear layout with vertical orientation

The remaining Concrete Form Elements (in Figure 12 denoted as Conrete-
SimpleElements) are the concrete versions of one or several Abstract Form Ele-
ments. While for the manual input fields of the Abstract Form Model there are differ-
ent options to implement them on the concrete layer, for the other AFEs there exists
exactly one concrete element that represents it. Except the layout attributes, the Con-
crete Form Elements have no further specific attributes. The reason for this is that all
properties which can be specified are defined on the abstract layer because they are
valid for each of the possible target devices. Only the visual appearance of an Ab-
stract Form Element might differ on different target devices. To make the properties,
defined on the Abstract Form Model layer, available for the Concrete Form Elements,
each CFE provides the attribute AbstractReference. This attribute holds the
reference to the abstract base element of the CFE on the Abstract Form Model.
Thereby, the attributes set to the referenced AFE are available to its concrete imple-
mentation. In addition, this referencing mechanism avoids copying data from the Ab-

4.2 Model Layers

- 41 -

stract Form Model to the Concrete Form Model. This eases the propagation of chang-
es between the model layers (see Section 4.3).

Following, the available ConcreteSimpleElements are described in detail.
Furthermore it is stated which Abstract Form Elements they represent and a wire-
frame image illustrates the visual appearance of the elements. The illustration has to
be understood as an example. The actual visual appearance differs depending on the
device type and the platform. Moreover it is possible that not all of these elements are
available for each device type.

ConcreteDisplayElement
Represented AFE: AbstractDisplayElement
The display element shows the value of the referenced data definition on the data
form. Editing the value is not possible. The fact that this is a read only field is ex-
pressed by the blue colored border of the value field. This optically distinguishes this
element from the TextBlock and TextBox elements (see below). The decision for
the blue color has no special reason.

Figure 15: Concrete Form Element DisplayElement

TextBlock
Represented AFE: Description
This is a simple output element for predefined static textual content. It just prints the
text to the screen and inserts line breaks if necessary. To clearly distinguish between
additional informative text and displayed data, this element cannot be used to repre-
sent data defined in the Data Definition Model.

Figure 16: Concrete Form Element TextBlock

TextBox
Represented AFEs: TextEdit or NumericalEdit
The TextBox element is a single line field for entering alphanumerical characters.
The element does not allow line breaks. It is intended to be used for strings that have
a fixed maximal length or which are expected to be rather short (up to 30 characters).
A second use case for this element is a numeric value that is supposed to lie in a wide
range. An example for this is a decimal number with a large amount of fractional dig-
its. In this case entering the value using the NumericUpDown (see below) element
would be tedious.

Figure 17: Concrete Form Element TextBox

4 Conception

- 42 -

TextArea
Represented AFE: TextEdit
A TextArea allows entering a free text. This includes the possibility to enter line
breaks. The text length is not limited.

Figure 18: Concrete Form Element TextArea

NumericUpDown
Represented AFE: NumericalEdit
This is an input element for numeric values. It provides an input field for entering the
value via keyboard as well as buttons for incrementing or decrementing the current
value by the step size specified at the Abstract Form Model.

Figure 19: Concrete Form Element NumericUpDown

CheckBox
Represented AFE: BooleanEdit
This element enables the user to set a Boolean value by checking or unchecking a
checkbox.

Figure 20: Concrete Form Element CheckBox

ToggleControl
Represented AFE: BooleanEdit
The ToggleControl is an alternative for the CheckBox which is especially used
on mobile devices. It provides a stylized switch that signifies the current state of the
Boolean value. By clicking or touching the switch, the state can be changed.

Figure 21: Concrete Form Element ToggleControl

DropDown
Represented AFE: Selector, TextEdit
If the available screen size is very limited, the DropDown element is a good realiza-
tion for the abstract Selector element. It shows the currently selected value similar
to a TextBox and shows the available values on a popup or full page menu if the

4.2 Model Layers

- 43 -

user clicks or touches it. The DropDown element can alternatively be used for textu-
al values. Then the user can either enter text manually or select one of the default
values suggested in the drop down menu.

Figure 22: Concrete Form Element DropDown

List
Represented AFE: Selector
The List element displays a list of possible values on the screen and lets the user
select one of these values by clicking or touching it. Since this element always shows
all available options it needs a lot of screen space. If the element size is smaller than
the space needed to show all options, a scroll bar is shown.

Figure 23: Concrete Form Element List

RadioButtons
Represented AFE: Selector
A further alternative for implementing the abstract Selector element is the Radi-
oButtons element. It provides a dynamically arranged set of radio buttons; one for
each possible value. The user can select the value by marking one of the radio but-
tons. Like the List element, this element always displays all available options on the
screen. Since the options are presented by one radio button each, no scrolling is pos-
sible to limit the needed screen size.

Figure 24: Concrete Form Element RadioButtons

ConcreteTestSubjectSelector
Represented AFE: AbstractTestSubjectSelector
The ConcreteTestSubjectSelector element allows selecting the current test
subject out of a list of all study participants. The actual realization of this element

4 Conception

- 44 -

differs depending on the target device and platform. On a desktop system it can for
example be a set of toggle buttons that carry the codes13 of the available test subjects
(see Figure 25 left). However, on a mobile device it might be implemented as a sim-
ple drop down box due to the limited available space (see Figure 25 right).

Figure 25: Examples for the Concrete Form Element TestSubjectSelector

Button
Represented AFE: Command
With the Button element the user of a data form triggers actions of automated input
elements or the “commit” and “reset” actions of the data form itself.

Figure 26: Concrete Form Element Button

ConcreteAutomaticInput
Represented AFE: AbstractAutomaticInput
This element is the representation of an automated input device on the concrete layer.
Since the actual implementation of this type of element depends on the target plat-
form (see Section 4.4) this element just acts as a dummy for which the position and
size is determined.

4.3 Model Changes
An essential problem that arises when using a model-driven approach that includes
several model layers is the consistency between the models on the different layers.
The following paragraphs explain this problem in more detail. Following it is de-
scribed how the problem is, at least partially, solved by the described approach for
designing multi-device data forms.

The general problem arises after a transformation from one model layer to the next
initially took place. From this state on, the designer can make changes to the target
model in order to edit it for his purposes. However, at any time in the design process
the designer is allowed to make changes at the upper model layers, which are the
source models of the initial transformation. This possibility is needed since otherwise
there would be no option to correct errors at that layers or add missing elements. To
ensure that the models of the source and target layer of the transformation do not be-

13 For reasons of anonymization, an alphanumerical code is assigned to each study participant. This code is

used for storing data concerning this participant in the :study database. Matching these codes to real names
is only possible offline, which means outside the :study software.

4.3 Model Changes

- 45 -

come inconsistent, changes made to one of the affected models need to be propagated
to the respective other model. Thus, the problem can be divided into two parts: On
one hand, changes made to the higher model layer need to be propagated to the lower
model layer. The other way round, depending on the structure of the models, it is also
possible that changes made to the lower model layer need to be propagated back to
the source model. For the model-driven approach described in this thesis there might
also arise the question whether changes on a Concrete Form Model should be auto-
matically propagated inside the CFM layer to models targeting other devices. Since
the intention of splitting the models of this layer is to allow designing independent
versions for the different target devices, this is considered to be not useful.

The propagation of changes made on lower model layers back to the respective
source model is solved by the way the models are designed and work together. Each
of the described model layers (Data Definition Model, Abstract Form Model and
Concrete Form Model) just contains information that is specific for this layer. This
means that for example information that is contained in the Abstract Form Model
layer is not copied to the Concrete Form Model layer when transforming from AFM
to CFM. Instead, a reference to the source elements is added to the elements of the
CFM. Figure 27 illustrates the difference between copying information to the next
model layer (left) and referencing the source element (right) by the example of the
TextEdit Abstract Form Element and TextBox Concrete Form Element.

3. Model Layer

2. Model Layer
Abstract Form Model

Concrete Form Model Concrete Form Model

Automated
Transformation

TextEdit

- MaxLength
- ...

TextBox

- AbstractReference
- ...

TextBox

- MaxLength
- ...

references

copied

Figure 27: Copying of information versus referencing the source element

by the example of the TextEdit Abstract Form Element
and TextBox Concrete Form Element

Since the Concrete Form Model thereby does not contain all information directly, a
transformation from the CFM to a Final Form additionally needs the AFM as a sec-
ond source model to access the information set at the abstract layer. This information
is needed for generating a Final Form implementation that considers all settings made
by the designer. Since the described model-driven approach is intended to be used in
a limited area using dedicated applications that support the designer in applying the
approach, namely the :studyforms application, this is assumed to be applicable. Be-
cause the lower model layers do not contain details that may be changed by the de-
signer and that are also applicable to the higher model layer, there is no need for
propagating changes from lower model layers to higher ones.

4 Conception

- 46 -

The problem of propagating changes made to the source model down to the target
model(s) after the initial transformation is serious. The problem is that most of the
available transformation approaches are stateless (compare [Tra08]). This means that
after the initial transformation was performed, the only possibility to apply changes
on the source model to the target model is to rerun the transformation again. This
produces a new version of the target model from scratch regardless of the already
existing version. The question is now what to do with the two versions of the same
model. The easiest solution is to overwrite the old version with the new one. In the
course of this thesis, this solution is used in the prototypical implementation. The
essential drawback of this method is that the changes to the target model made by the
designer get lost. Since this behavior is not acceptable for a later productive imple-
mentation of the model-driven approach, possible solutions for the problem are ex-
plained in the following paragraphs. To implement one of the described approaches
remains open for future work.

A simple idea that arose during this thesis is to merge the two versions of the models
by some merging algorithm. Since this approach does not consider the relations be-
tween source and target elements it may not properly work if the elements are re-
named and reordered.

Tratt and Clark propose a solution that is based on logging the changes to the source
model [TC03]. These logs are denoted as change deltas. The change deltas are the
input for delta transformations that generate deltas to the target model that are im-
plied by the change deltas. In a second step, these deltas are applied to the target
model. Instead of dividing this process in two separate steps it would also be possible
that the delta transformations directly perform the changes to the target model. A
drawback of this solution is that the number of different possible changes can be very
high. This results in a large number of needed delta transformations which have to be
implemented manually. Furthermore, the application of delta transformations might
overwrite intentionally made changes to the target model. This could be avoided by
marking regions of the target model that contain changes made by the designer as
protected. This Protected Regions approach is for example used by Xtext14 (compare
[Die]). Therefore, special keywords are introduced that mark the start and the end of
such regions. The code that is enclosed by a Protected Region is not changed by the
transformation process.

A transformation language that directly supports change propagation joins the above
mentioned solutions in one transformation framework. This means, that the transfor-
mations propagate changes on the source model to the target model without destroy-
ing manually made changes on the target model. Therefore, the transformation
framework includes a method for transforming change deltas and additionally consid-
ers removed elements. To achieve this, such a transformation framework needs to
distinguish elements on the target model to specific source elements. An example for
a change propagating model transformation is given by Tratt [Tra08].

14 Xtext is a framework for developing and generating programming and domain specific languages.

4.4 Automated Data Acquisition

- 47 -

For the implementation of the model-driven approach introduced by this thesis, a
mixed solution of tracking changes to the source model and protected regions in the
target model that contains manually made changes is conceivable. This means, that
the tool which supports a designer in using the model-driven approach tracks changes
on the higher model layers after an initial transformation to a lower model layer is
done. This tracking includes added and removed elements as well as attribute chang-
es. Since the elements on the lower model layers reference their base element of the
higher layer, each tracked change can be propagated to the lower layer by altering the
referenced element at the lower model appropriately. If a data definition for example
is deleted at the DDM layer also the Abstract and Concrete Form Elements that refer-
ence this data definition are deleted. If a new data definition is added or an attribute
of an existing one is changed, it is conceivable to only transform this single data defi-
nition again and insert the transformation result into the Abstract Form Model.
Thereby the transformation logic remains encapsulated at the transformation process.
Inserting a new element can be done based on the element’s siblings in the hierar-
chical structure. A drawback of this solution is that the transformation of a single
element does not consider the element in context of its whole model. To prevent
overwriting manually made changes at the lower model layer special XML comments
can be inserted around those parts of the model’s XML representation that mark these
regions as not changeable. Due to these Protected Regions it is possible that the prop-
agation of changes causes conflicts that have to be solved manually by the designer or
by a complete retransformation.

4.4 Automated Data Acquisition
As already mentioned in the introduction (Chapter 1) the data capturing workflow can
be optimized by reading values directly from peripheral devices, instead of entering
them manually to the data form. Since it is not predictable which kind of samples
have to be processed during future studies, it is not possible to define a closed set of
peripheral devices that can be integrated into the data forms for gathering values in an
automated way. Therefore, a flexible system is needed, that allows defining such Au-
tomated Input Devices (AID). The idea to solve this problem is to formally define the
available devices in a separate model, the Input Device Model (IDM).

In the preceding chapters, already two possible devices that are used to optimize the
data capturing process are mentioned: A barcode scanner and an electronic balance.
These devices serve as examples for the definition of Automated Input Devices.
Therefore their application is concretized by the example of the data capturing pro-
cess of 24h urine samples (compare Section 2.1.3). The usage of the scale device is
intuitive: The bottles, containing the urine samples, are weighed using the balance
and the result is entered automatically into the respective field on the data form. The
barcode scanner is used in a more complex fashion: The urine bottles that are collect-
ed during the 24 hours period are equipped with a barcode. This barcode contains a
unique bottle number, the tare weight of the bottle and the code of the study partici-
pant, to which the sample belongs. This means, that for each study participant, a set
of urine bottles is available. Thus, a participant only uses bottles that carry his test

4 Conception

- 48 -

subject code. The cap of the bottle carries a separate barcode which only contains the
tare weight of the cap. This makes the caps exchangeable between the bottles which
eases the handling for the study staff. Hence, when processing the samples in the la-
boratory, both barcodes need to be scanned. Thereby, the right test subject is selected
on the data form. Furthermore, the bottle number, which is needed to match the sam-
ple to one of the initially captured ones, and the tare weight of the urine bottle are
entered automatically to the data form. The tare weight is needed to calculate the net
weight of the urine sample out of the determined gross weight. The development of
this barcode system was not part of this thesis, but was done in an earlier stage of the
:study project.

During the design process, a peripheral device is represented by an Automated Input
Device element on the Abstract or Concrete Form Model. The AbstractAuto-
maticInput element references to one of the defined AIDs in the Input Device
Model. The definitions in the IDM include information about the attributes a designer
can set for an Automated Input Device. Additionally possible actions provided by an
AID are defined. These actions can be made available on the data form by the design-
er, such that they can be triggered by the later user of the data form (see Command
element in Section 4.2.2).

Figure 28: Meta-model of the Input Device Model

4.4 Automated Data Acquisition

- 49 -

As already mentioned above, the IDM is not a direct part of the data form design pro-
cess. The model does not need to be newly generated or adapted each time a new
form is designed but is static. During the design process it provides information about
the available Automated Input Devices that can be added to a data form. Only if a
new AID is added to the system, the model has to be adapted. The definition and de-
ployment of new Automated Input Devices is done by the developers of the :study
project. It is not intended to be done by a data form designer himself.

Figure 28 depicts the meta-model of the Input Device Model. Like the other models,
the IDM is stored using the XML format. The definitions of Automated Input Devices
are not ordered in a hierarchical structure within the model. Nevertheless, the struc-
ture of an XML document requires a single root element. Therefore, the artificial el-
ement InputDeviceModel which has no attributes builds the model’s root ele-
ment and contains the list of defined devices.

The definition of an input device is done using the InputDevice element. Each of
these elements is identified by a unique name (attribute Name). This name is used to
reference a specific AID out of the Abstract Form Model (compare to the Ab-
stractAutomaticInput element in Section 4.2.2). Additionally, the element
allows to specify a DisplayName and a Description that are used in the
:studyforms application to present the Automated Input Device and describe its func-
tionality to the data form designer.

In contrast to the input fields that are filled out manually by the user, an Automated
Input Device can provide more than just one of the values captured by a data form.
As a reminder: The urine barcode scanner provides the bottle number and the tare
weight of the bottle. This requires the possibility to bind an AID to several data defi-
nitions of the Data Definition Model. Which values are provided by an AID is de-
fined by specifying a set of DataLinkDefinition elements as sub elements of
an InputDevice element. A DataLinkDefinition characterizes a provided
value by a name and the data type of the value. The list of possible data types matches
the one defined for the data type of data definitions in the DDM.

Similar to the definition of the provided values, for each Automated Input Device
further properties can be specified that change its behavior or its appearance on the
data form. Such properties are defined using the PropertyDefinition element.
Besides the attributes for defining the name and the data type of the property, a prop-
erty definition contains the attribute DefaultValue. This can be used by the de-
veloper of the Automated Input Device to specify a default value that is used for the
attribute if the designer of the data form does not set a value for that property. The
available data types for a property definition are limited to the basic types “Boolean”,
“String”, “Integer” and “Double”. An example for such an attribute definition is a
Boolean flag that can be set for the urine barcode scanner AID and specifies whether
the tare weight of the barcode scanner is used by the data form. This information is
important because the cap of a urine bottle carries a separate barcode including the
tare weight of the cap. Thus, if the tare weight is required, both barcodes have to be
scanned before the data capturing workflow can continue. If a urine sample is just

4 Conception

- 50 -

collected without weighing it, scanning the barcode of the cap is needless since it
only contains the tare weight of the cap which is of no interest in this situation.

The last aspect that is important for the abstract definition of an Automated Input
Device is the information about the actions provided by the device element. An action
has to be understood as a functionality of the AID that is triggered by the user of a
data form. The available actions of an input device are defined using the Action
element. The Name attribute specifies the identifier of the action. It is used to refer-
ence the action from a Command element on the Abstract Form Model. The electron-
ic balance AID provides two actions. The “Weight” action causes the current weight
value of the device to be inserted into the related field on the data form. The “Set-
Tare” action triggers the balance device to tare.

Beside the already mentioned attributes, the DataLinkDefinition, Proper-
tyDefinition and Action elements additionally contain a Description at-
tribute. It is used to explain the details of the respective aspect of an Automated Input
Device. For a DataLinkDefinition, this description for example gives details
about the provided value or for a PropertyDefinition the effect this property
has to the AID is explained. The descriptions are displayed to the designer in
:studyforms and help to understand how to use the AID.

Due to the different features of the target devices that are used for data capturing, the
actual implementation of an Automated Input Device depends on the target device on
that it is used. This means that the :studydata application, which is be implemented
for each target device and platform, has to include implementations for the AIDs de-
fined in the Input Device Model. Additionally, the functionality and behavior of an
AID can vary on different devices and platforms. Taken the barcode scanner example
from above, it might be the case that it is realized using a real barcode scanner device
on a desktop system, whereas on a mobile device it uses the integrated camera to read
the barcodes. As a consequence, the requirements an AID imposes are different de-
pending on which device type and on which platform it is used. For instance, the bar-
code scanner requires a port for attaching the barcode scanner device on a desktop
system whereas the mobile version of the input device depends on an integrated cam-
era. Since the actual implementation of the logic of an AID has to be done specifical-
ly for each target platform, it is also conceivable that there are platforms on which the
:studydata application does not include an implementation for some AIDs at all.

For these reasons the Input Device Model contains information about the available
implementations of each Automated Input Device on the target platforms. In the last
transformation step, which generates a Final Form for a specific platform out of a
Concrete Form Model, this information is used to select the concrete realization of an
Automated Input Device that is available for the respective platform and fits the fea-
tures of the target device. Therefore, for each AID the available implementations are
defined in the IDM using the Realization element. The Name attribute of this
element is set to the name of the class that implements the AID functionality on a
target platform. For each realization a set of requirements explains on which plat-
forms this specific realization can be used and which device features the AID need to

4.4 Automated Data Acquisition

- 51 -

operate properly. A Requirement element therefore has a Type and a Value
attribute. With the Type attribute, it is determined to which aspect a requirement
refers. An example for this is the platform, on which the AID is available. To keep it
open for future development on the device market and new device features, the IDM
meta-model does not define a fixed list of allowed requirement types. Thus, also the
possible values of each requirement type are not predefined by the IDM’s meta-
model. A list of conceivable requirement types and values combinations as well as a
short explanation is given in Table 1.

Type Values Description

Platform WP, Android, iOS Restricts the availability to a specific tar-
get platform

PlatformVersion WP7, WP8, … Restricts the availability further to a spe-
cific version of a platform

Camera Required, Front,
Back

Requires a camera; possibly explicitly at
the front or back of the device

Port USB, Serial, … Requires a specific port for connecting a
peripheral device

Bluetooth Required, 4.0, … Requires Bluetooth wireless connection

Table 1: Possible requirement types and values of automated input device definitions

The transformation that generates a Final Form implementation out of a Concrete
Form Model matches these requirements to the features of the intended target device.
This can be hard coded to the transformation’s implementation if the features of the
devices of a specific platform are fixed. In this case, the developer of the transfor-
mation needs to consider the used requirement types and their possible values. If the
diversity of the end user devices of a specific platform, and thereby the variety of the
devices’ features is too high, it is also conceivable to provide the information about
the actual target device dynamically to the transformation. This could for example be
done by an additional Target Device Model which defines the capabilities of the tar-
get device. This model can be conceived as the counter part of the requirement defini-
tions of the Input Device Model. The transformation uses this model to match the
requirements with the capabilities of the target device. Thereby it is possible to de-
termine the realization of an Automated Input Device that is applicable to the intend-
ed target device’s platform and features. Since the usage and the characteristics of
such a Target Device Model depend on the implementation of the transformation
from the Concrete Form Model to the Final Form, this model is not defined further in
the context of this thesis.

During the transformation from the Concrete Form Model to the Final form it is pos-
sible that the matching of requirements of an Automated Input Device and capabili-
ties of the target device yields to more than just one realization of an AID that is ap-
plicable for the target device. For handling this case, the Realization element
contains the Weight attribute. It is set to an arbitrary integer value. If several realiza-
tions are relevant the one with the highest weight value is chosen. When defining an

4 Conception

- 52 -

AID in the Input Device Model it has to be taken care that the weight values are
unique throughout the realizations of an AID.

Listing 8 shows the definitions of the above mentioned electronic balance and urine
barcode scanner Automated Input Devices. The description attributes are omitted in
the given listing. The reason why the barcode scanner AID does not contain a Data-
LinkDefinition for the test subject contained in the barcode is that the Data Def-
inition Model does not provide a data definition for the current test subject. It is set
directly by the implementation of the barcode scanner AID.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

<InputDevice Name="UrineBarcodeScanner" DisplayName="Urine Barcode Scanner">
 <DataLinkDefinition LinkName="BottleNumber" DataType="Text" />
 <DataLinkDefinition LinkName="TareWeight" DataType="Decimal" />
 <PropertyDefinition Name="IsScanCap" Type="Boolean"/>
 <Realization Name="UrineBarcodeScanner">
 <Requirement Type="Port" Value="USB" />
 </Realization>
 <Realization Name="UrineBarcodeScannerWithCamera">
 <Requirement Type="Camera" Value="Back" />
 </Realization>
</InputDevice>

<InputDevice Name="Balance" DisplayName="Laboratory Balance">
 <DataLinkDefinition LinkName="WeightValue" DataType="Decimal" />
 <Action Name="Weight" />
 <Action Name="SetTare" />
 <Realization Name="LaboratoryBalance" Weight="10">
 <Requirement Type="Port" Value="Serial" />
 </Realization>
 <Realization Name="BluetoothBalance" Weight="5">
 <Requirement Type="Bluetooth" Value="Required" />
 </Realization>
</InputDevice>

Listing 8: Input Device Model definitions of the barcode scanner and
electronic balance Automated Input Devices

4.5 Element Sizing
Until now, the described concept considers the crucial differences in the screen sizes
of smartphone, tablet and desktop devices by defining an individual layout of a data
form for each device type. This makes it feasible to assume that the screens of differ-
ent machines that use the same Concrete Form Model have almost the same size. The
critical part of this assumption is the word “almost” because there are still small var-
iations. Typical displays of today’s smartphones for example have sizes between 3.5”
and 5”. Of cause these values are much closer together in comparison to a tablet with
about 7” to 10” but there are still differences. In addition to that, there are
smartphones on the market whose display sizes are close to the lower end of the tablet
screen sizes.

In addition to the physical size of the displays, their resolution as well as their aspect
ratio is another crucial point. For some platforms the supported resolutions are very
limited. For example Windows Phone 8, which is the current up to date version of the
Windows Phone operating system, only supports three different resolutions with two
aspect rations (compare [Mic13b]). For others, like Android, the diversity is much
higher because the vendor does not limit the amount of different display sizes that
strict. An example for this is the Android system which is used on smartphones and

4.5 Element Sizing

- 53 -

tablets. Figure 29 illustrates the differences in resolutions supported by Windows
Phone 8. The graphic shows that even if the supported resolutions are limited, the
differences cannot be ignored.

WVGA
480 x 800

15:9

WXGA
768 x 1280

15:9

720p
720 x 1280

16:9

Figure 29: Supported resolutions of the Windows Phone platform (according to [Kuh12])

WVGA
480 x 800

15:9

some text
Text Field:

Button

WXGA
768 x 1280

15:9

Figure 30: Comparison of elements with fixed sizes and positions

on two different resolutions

Another aspect is that even if the supported resolutions are limited, it is still possible
that devices with the same physical display size use different resolutions. This results
in variable pixel densities or in other words, in different sizes of a single pixel.

The described differences can be neglected as long as the designer of a data form only
uses automatic or relative sizes. Unfortunately, this would not result in a nice design
that considers the design concept and guidelines of the respective platform. For ex-
ample the height of a button or a text field is usually predefined in the design guide-
lines, whereas the width should be determined automatically. Therefore, a good de-
sign also contains elements with fixed sizes. If these sizes would be specified in terms
of real device pixels this would yield in a very different presentation on devices with
different pixel densities. Figure 30 depicts a text box and a button with a fixed size of
100x300 pixels on a WVGA resolution (left) and on a WXGA resolution (right),

4 Conception

- 54 -

which is exactly 1.6 times larger. The positions of the elements are also assumed to
be given by fixed pixels relative to the upper left corner. Although the actual display
size stays the same, the text box on the right is larger than on the left because the res-
olution changed and therefore each single pixel has a different size.

To overcome the described problem the vendors of the different operating systems for
mobile devices mainly use two different solutions:

The first one, which is used for example by Windows Phone, is to define a minimal
baseline resolution on which base the design of the GUI is done (compare [Kuh12]).
If the GUI is displayed on a screen with a resolution higher than the baseline, it is
scaled up, independent of the pixel density. This means that on displays with the same
physical size but with different resolutions, the GUI elements keep the same size,
while on larger screens the elements become larger. Since the variation of display
sizes of current Windows Phone devices is rather small, this approach is reasonable.

The second option, for example used by Android, specifies the size of a GUI element
in terms of Density Independent Pixels (see [Goob]). Also with this approach, a GUI
element whose size is defined using this kind of pixel values keeps the same size on
two equally sized screens with different resolutions. The difference to the first ap-
proach is that this also holds if the display becomes larger and has a higher resolution.
Instead of becoming larger, the GUI elements keep their size and potentially more
elements would fit on the screen.

Due to the fact that the described approach for designing platform independent data
forms already splits the platforms in different device types, the variation of screen
sizes is considered to be rather low for devices that use the same version of the data
form. This assumption is applicable because the :study software is used in a closed
environment where it can be influenced which devices are used. Therefore, it is rea-
sonable to compensate the described screen differences by scaling up the form such
that it fills the whole screen. This behavior ensures that the user gets a data form with
the same layout although he uses different devices of the same type and the same
platform. Thus, the specification of fixed sizes is done in terms of Logical Pixels (lp)
which are normed to a baseline resolution that is different for each device type. The
baseline resolutions of the considered device types are defined in Table 2. The values
are based on low-end resolutions of currently available devices of each type.

Device Type Baseline Resolution
Mobile 480 x 800

Tablet 1366 x 768

Desktop 1440 x 900

Table 2: Defined baseline resolutions for the different target devices

For desktop devices this might be a too strict assumption because the variation of
screen sizes is much higher for this device type. Here it might be reasonable to dis-
play the data form in a non-fullscreen mode. Since this thesis mainly focuses on mo-
bile devices, this is not further explored and remains open for future work.

4.6 Transformations

- 55 -

4.6 Transformations
As already mentioned, the transitions from one model layer to the next one are sup-
ported by automatic transformations (compare Section 2.2.2). The following sections
explain the transformations applied during the model-driven data form design pro-
cess.

4.6.1 Data Definition Model to Abstract Form Model
The first automatic transformation takes the Data Definition Model as the source and
builds a basic version of the Abstract Form Model, from which the designer can start
to build up the data form’s layout. Thus, the main objective of the transformation is to
generate a first, abstract version of the data form’s graphical user interface. Therefore,
the transformation has to map the elements of the DDM to user interface elements
that are suitable to show or manipulate the defined data. To determine appropriate
Abstract Form Elements, the transformation uses the information that is directly de-
fined for the data definition elements, as well as information that is implicitly availa-
ble due to some data definitions referencing parameters of the :study database. The
result of this transformation step is an abstract version of the data form that is com-
plete in respect to the Data Definition Model. This means that the data form contains
all elements that are necessary to use the form for capturing the specified data. Only if
the designer likes to add further features to the data form (for example Automated
Input Device elements for capturing some of the values in an automated way) or to do
some other changes, the resulting Abstract Form Model has to be adapted. But, the
generated AFM can be used for the further design process even without such changes.

Due to the similar hierarchical structure of the Data Definition Model and the Ab-
stract Form Model, the transformation starts by mapping the DDM’s root element
DataModel to an instance of the AbstractForm element, which builds the root
of the AFM. The name of the new element is taken from the source element without
any adaptions. This helps the designer to better understand the relations between the
DDM and the AFM and avoids evolving lengthy names during the transformation
steps that would be the result if some layer specific pre- or postfix would be added.
The same holds for the transformation of DataGroup elements. They are mapped to
AbstractCompound elements, containing exactly these Abstract Form Elements
that relates to the child data definitions of the source data group.

This results in an abstract layout structure of the resulting Abstract Form Model that
reflects the grouping of data definitions on the DDM layer. The structure ensures that
the UI elements representing data of the same group are spatially close together on
the data form’s user interface. On one hand this is an intuitive assumption; on the
other hand this is proven to be a good way for grouping related elements because it
conforms to the proximity rule of the Gestalt Laws (see [HB11], p. 515). The de-
scribed behavior makes clear that it is essential for the transformation process that the
designer builds plausible groups of data definitions already at the DDM layer. Re-
gardless of that, grouping elements is still possible on the Abstract Form Model.

4 Conception

- 56 -

For mapping the two data definition elements DataDefinition and Vola-
tileDataDefinition of the DDM to appropriate Abstract Form Elements the
transformation takes three attributes of the data definitions into account. The decision
tree in Figure 31 illustrates graphically how the data definition elements are mapped
to Abstract Form Elements.

Figure 31: Mapping data definitions to Abstract Form Elements

The first two of the considered attributes are EntryMode and DerivationFor-
mula. They allow deciding whether the Abstract Form Element that represents the
data definition should allow entering and changing the value or whether the value is
gathered in an automated way and should just be displayed to the user. If the Entry-
Mode is set to “Automated” or the designer has specified a derivation formula, the
data definition is mapped to the AbstractDisplayElement. The name of this
element is set to the name of the data definition prefixed by “DisplayElement_”. This
simplifies to recognize the control’s type during the design process in the :studyforms
application. For the Caption attribute, the name of the data definition is taken pure-
ly.

If the EntryMode attribute of a data definition is set to “Manual” or “Auto-
matedOrManual” and no derivation formula is specified, the transformation inserts
one of the available manual edit fields to the generated Abstract Form Model. Which
type of edit field is inserted is determined by taking the data type of the data defini-
tion element into account. In case of a VolatileDataDefinition the data type
is defined on the DDM. For a “normal” data definition the data type is read from the
referenced parameter in the :study database. Thus, a data definition with “Boolean”
data type is transformed to a BooleanEdit element and a data definition of type
“Text” results in a TextEdit element. A NumericalEdit element results from
“Integer” or “Decimal” data types. For decimal data the FractionalDigits at-

4.6 Transformations

- 57 -

tribute of the generated NumericalEdit element is set to “2”, which is assumed
to be an appropriate default value for the amount of fractional digits of a decimal
number. For NumericalEdit elements that refer to an integer data definition, the
number of fractional digits remains at its default value, which is defined to be zero.
The “Discrete” data type specifies that the value has to be set to one of a set of prede-
fined values. Therefore for such a data definition a Selector element is added to
the AFM.

Like for the AbstractDisplayElement, the Name and the Caption attributes of
the manual edit elements are set to the name of the referenced data definition prefixed
by the element name of the manual input field (for example “TextEdit_”). For all
AFEs that are generated from a data definition of the DDM the DataReference
attribute is set to the path which points to that data definition.

Another aspect of the Abstract Form Model that can be preset by the transformation is
the activation order of the form elements that require some user interaction (compare
Section 4.2.2 – Interaction Elements). Therefore, the Successor attributes of these
elements are set to the next such element in the tree structure. As the tree structure
represents the graphical layout of the data form this basic activation order fits to the
users’ intuitive reading direction which is (at least in the western world) from top-left
to bottom right (compare [Wes98], p. 108).

All the transformation’s details mentioned until now ensure that each data definition
of the DDM is represented by an appropriate form element on the data forms GUI. In
addition, the attributes of the generated Abstract Form Elements are set to suitable or
at least plausible default values. But for generating a complete abstract data form that
could be used without any changes by the designer, two important details are still
missing: The form does not provide any elements for selecting the current test subject
and for submitting or resetting the entered values. Since these functionalities are not
represented in the Data Definition Model, the transformation inserts appropriate ele-
ments additionally:

As the first sub element of the Abstract Form Model’s root element an Abstract-
TestSubjectSelector element is inserted. This is caused by the typical data
form fill in process that starts with first selecting the study participant, to whom the
entered data is assigned to (compare Section 2.1.2, Figure 3). Although this selection
could be done automatically by some automated input device, there should usually
also be the possibility to do a manual selection, which exactly is the scope of the Ab-
stractTestSubjectSelector element. To make sure that this element is also
the first one that is activated after opening or resetting the data form, a reference to
that element is set to the FirstElement attribute of the AbstractForm element.

In the same way, two Command elements are added to a separate compound named
“Finishing” at the end of the Abstract Form Model’s tree structure. The Caption
attributes of these elements are preset to “Submit” and “Reset” and the Action-
Reference is set to the respective actions of the data form. To complete the data

4 Conception

- 58 -

form internal workflow, the LastElement attribute of the AbstractForm ele-
ment is set to the path of the inserted submit command.

Appendix B illustrates the Data Definition Model to Abstract Form Model transfor-
mation by an excerpt of the 24h urine laboratory data form.

4.6.2 Abstract Form Model to Concrete Form Model
The second automatic transformation generates a Concrete Form Model out of the
Abstract Form Model. This means, a concrete layout of the data form is generated
from the structure of the abstract elements on the AFM. Furthermore, the Abstract
Form Elements are translated into their concrete versions. These concrete versions as
well as the data form’s layout, gathered from the abstract structure of the AFM, de-
pend on the actual target device of the Concrete Form Model. Therefore, specific
transformations have to be available, which produce the Concrete Form Model for
one of the introduced target devices types (Mobile, Tablet, and Desktop). A Bool-
eanEdit element on the Abstract Form Model is for example transformed to a
CheckBox element on the Desktop Concrete Form Model, whereas on the Mobile
Concrete Form Model it is transformed to a ToggleControl because this control
is optimized for touch interfaces. Since this thesis focuses on data forms for mobile
devices and due to the limited time, the transformation to the Mobile Concrete Form
Model (mCFM) is emphasized. This is explained in the following paragraphs. For
comparison reasons, at the end of this section also some basic thoughts about the
transformation to the Tablet Concrete Form Model are introduced. The transfor-
mation to the Desktop Concrete Form Model is not treated in the context of this the-
sis.

Due to the very limited available space on a smartphone screen, it is not possible for
the mobile version of a data form to display all elements simultaneously. Instead, the
elements on the Mobile Concrete Form Model need to be divided in a sensible way.
Thus, the transformation to the mCFM does not preserve the element’s structure of
the Abstract Form Model. For defining groups of elements that are displayed at the
same time, the Concrete Form Model allows specifying Page elements. Based on the
element compositions on the AFM layer, the transformation divides the concrete ele-
ments into several pages. In general one can say that each Composition element
defined on the Abstract Form Model, results in at least one page on the Mobile Con-
crete Form Model. This method requires that the designer does not build composi-
tions with a large amount of child elements that do not fit on one page. To handle
such cases automatically by the transformation remains open for future work.

The transformation process starts with transforming the AbstractForm element to
a ConcreteForm element, whose TargetDevice attribute is set to “Mobile”.
The sub elements are transformed into their concrete equivalents. Since for some of
the abstract elements there are several options to represent them on the concrete layer,
the mapping between Abstract Form Elements and Concrete Form Elements has to be
defined. This mapping can be different for the transformations targeting different
devices types because the used concrete elements have to fit to the features of the

4.6 Transformations

- 59 -

respective device. Therefore, properties like the display size of the target device or
the type of input device (keyboard, touch, etc.) is taken into account. Additionally, the
values of the Abstract Form Elements’ attributes have to be considered.

Table 3 shows the mapping between Abstract and Concrete Form Elements, applied
by the Abstract to Mobile Concrete Form Model transformation.

Abstract Form Element Concrete Form Element
AbstractDisplayElement ConcreteDisplayElement

Description Label

BooleanEdit ToggleControl

TextEdit (limited number of characters) TextBox

TextEdit (unlimited number of characters) TextArea

NumericalEdit NumericUpDown

Selector DropDown

AbstractTestSubjectSelector ConcreteTestSubjectSelector

AbstractAutomaticInput ConcreteAutomaticInput

Command Button

Table 3: Mapping between Abstract and Concrete Form Elements for the mobile platform

The separation of the Concrete Form Elements to several pages is done according to a
predefined algorithm that is formulated in pseudo code in Listing 9. The algorithm is
defined recursively. It runs through the structure of the Abstract Form Model, starting
with the direct child elements of the AbstractForm root element. All elements
prior to the first compound element are put into one page, named “Page 1”. Then the
algorithm is called recursively for the child elements of this first compound element.
Thus, the child elements of the compound element are put to a separate page, which is
named according to the compound’s name. Thereafter, the algorithm proceeds with
handling the remaining child elements of the root element that come after the first
compound in the same way. This results in generating a separate page for each group
of consecutive elements that are not part of a Compound element. Additionally, for
each compound, at least one page is generated. The reason, why not always just one
page is generated per compound is that compounds can be nested. If this is the case,
also the child elements of a compound are transformed into several pages according
to the described method.

The functioning of the algorithm is illustrated by Figure 32. The transformation pro-
cess inserts a linear layout with vertical orientation to each generated Page element.
The transformed child elements are actually added to this root layout container on
each page. Stacking the elements vertically is a typical design used for forms on mo-
bile devices (compare [Nei12], p. 39ff).

4 Conception

- 60 -

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

call generatePage(rootElement.ChildElements, "Page")

method generatePages(elements, pageName)
 set pageIndex to 1
 foreach element in elements do
 if element is Compound then
 call generatePages(element.ChildElements, element.Name)
 pageIndex++
 else
 transform element
 if page with name <pageName + pageIndex> not exists then
 generate page with name <pageName + pageIndex>
 end
 add transformed element to page with name <pageName + pageIndex>
 end
 end
end

Listing 9: Pseudo code for generating pages out of the Abstract Form Model structure

Figure 32: Dividing Concrete Form Elements to several pages

The larger space offered by the displays of tablet devices in comparison to most
smartphones allows to put more elements into one page or even to place all elements
of a data form on a single page. Thus, the layout structure within the pages becomes
more complex on the Tablet Concrete Form Model. For building groups on that lay-
out structure, the compounds of the Abstract Form Model can be utilized in a similar
way as for building pages on the mCFM. For the evaluation of the introduced model-
driven approach, a simple version of the Abstract to Tablet CFM transformation is
used. It builds vertical linear layout containers like in the Mobile CFM and arranges
them in a parent horizontal linear layout side by side in one page. Assuming that the
tablet device is used in landscape mode, this is a trivial but applicable approach. A
limitation of this solution is that a large number of groups results in small columns.
To solve this problem, a further elaboration of the transformation to the Tablet Con-
crete Form Model has to be done which remains open for future work.

4.7 Final Form Implementation

- 61 -

4.7 Final Form Implementation
The generation of a Final Form implementation out of one of the Concrete Form
Models highly depends on the actual target platform. In the context of the :study pro-
ject, and therefore also by this thesis, Windows based end user devices are focused.
Therefore, this section illustrates how a Final Form implementation for the Windows
Phone platform is gathered from the Mobile Concrete Form Model. A detailed de-
scription of the Final Form implementation requires background knowledge about the
Windows Phone GUI framework, which is beyond the scope of this thesis. Therefore,
the general method is described:

Basically, the implementation follows the MVVM design pattern (see Section 2.3.4).
The UI- and business logic is implemented by the Windows Phone :studydata appli-
cation. The actual UI definition is done using XAML. The XAML code is generated
automatically by a transformation from the Mobile Concrete Form Model. This trans-
formation builds up the Concrete Form Elements by standard GUI widgets that are
available in the Windows Phone GUI framework. These widgets bind to the data
model as well as features provided by the :studydata application. The data model pro-
vides the data defined in the Data Definition Model. The resulting XAML code for
the different pages is integrated into a single XML document. This document as well
as the data definition model are stored in the central :study database. Therefore, the
database structure as well as the web service has to be extended in order to be able to
handle several versions of the same data form, targeting different platforms.

To ensure that each page of the data form displays conjoint information as well as
common form features in the same way and on the same place, the content of the sin-
gle pages is inserted into a uniform page frame. This frame is implemented by the
:studydata application and therefore not part of the data form’s XAML code.
Figure 33 illustrates this frame. It conforms to the Windows Phone design guidelines
[Mic13a], which ensures that the data forms feel natural for users who are familiar
with this platform.

At the top of the frame, the page header displays static information like the data form
name and the name of the related activity pattern. Below this information, the code of
the currently selected test subject is stated in big letters, such that the user always is
aware to which study participant the currently entered data is linked. Additionally to
the test subject code, the name of the current study day for that test subject and the
name of the study are shown. At the bottom of the page frame, the standard Windows
Phone Application Bar provides three common functions available for every data
form. With the left one, the user closes the data form and navigates back to the
:studydata application’s main page. The latter two buttons allow the user to navigate
in backward and forward direction through the data form’s internal workflow. The
area between the page header and the Application Bar contains the content of the dif-
ferent pages.

For loading a data form, the :studydata application invokes an appropriate method on
the web service and passes the device type and platform of the device the data form is
loaded from. For Windows Phone this is device type “Mobile” on platform “Win-

4 Conception

- 62 -

dows Phone”. The web service returns the Data Definition Model of the queried data
form as well as the Final Form implementation corresponding to the given parame-
ters. The :studydata application uses the Data Definition Model to build up the data
model, to which the view of the data form binds. Using the XAML code for the dif-
ferent data form pages, the application instantiates the view by inserting the pages’
content into the common page frame. The page content area of the frame therefore
uses a special UI element that manages several content pages and always displays just
one of them. For moving from one page to the next, the user has to perform a swipe
gesture. Figure 34 illustrates the first three pages of the 24h urine data form on Win-
dows Phone.

Figure 33: Common page frame of the Windows Phone

:studydata application

Figure 34: Example 24h urine laboratory data form on Windows Phone

- 63 -

5 Implementation
This chapter explains the prototypical implementation of the model-driven approach
described in the previous chapter. In the context of the :study software, the resulting
application prototype can be seen as an advanced version of the :studyforms applica-
tion. To clearly distinguish the two versions of the :studyforms application, the new
application prototype is denoted as model-driven :studyforms application.

5.1 Requirements
Before starting with the description of the implementation, this section explains the
most important requirements for the prototype. This includes functional and non-
functional requirements that arise from the project context and from the fact that the
model-driven method is exploratory and is thus subject to constant changes.

• The software should allow developing multi-device data forms according to the
method described in Chapter 4. The different abstraction layers should be clearly
identifiable.

• Like the former version of :studyforms, that provided a simple and intuitive
graphical editor, the model-driven version is intended to be used by expert scien-
tists and supporting study staff. These are users who do not have an intuitive un-
derstanding how a model-driven approach works and what it is good for. At the
first view, this results in a conflict between the developed method and a simple
and intuitively usable application. But, the very limited target group mitigates the
problem, because future users will be trained in using the tool. Nevertheless, the
model-driven approach has to be encapsulated in such a way, that it is easily usa-
ble by the target user group.

• The development of the models during the design process should be supported by
some kind of graphical editor. Additionally, for the Concrete Form Model layer a
direct graphical editor, comparable to the former :studyforms application, should
be available. This editor should give an impression how the data form will look
like on the different target platforms.

• Since the described model-driven approach for designing multi-device data forms
is still under exploration, changes to the defined meta-models should be easily
adaptable to the prototype. Ideally, this can be done without recompiling the tool.
This does not include major structural changes, but for example adding or remov-
ing attributes to the meta-models. More sophisticated changes should be easily
added into a flexible application structure.

• For the same reason as the previous requirement, the transformations should be
easily changeable. This allows to rapidly integrate improvements based on users’
experiences and needs.

• The prototype focuses on Windows based target devices. Therefore the last trans-
formation process, which results in the final user interface, should generate ap-
propriate XAML code that can be loaded directly by the :studydata applications
on Windows based target devices.

5 Implementation

- 64 -

5.2 Implementation Concept
At the beginning of the development there were some thoughts about using some
DSL tool support for defining the described meta-models and thereof automatically
build a graphical editor that could be extended. In the .NET environment, such a tool
support is provided by the Visual Studio Visualization and Modeling SDK
(VSVMSDK)15. Unfortunately, this SDK only allows developing tool support as a
Visual Studio plugin. This would require installing a Visual Studio distribution on
every system that is used by the study team to design the needed data forms. Beside
the fact that this would be an essential effort and cause licensing problems, the Visual
Studio environment is assumed to be too complex for being used by the target user
group. For these reasons, it has been decided to implement a standalone application,
based on the Windows Presentation Foundation (WPF) framework. Whenever possi-
ble, state of the art technologies are used to implement the different aspects of the
application.

As already mentioned in Chapter 4.1, the models on the different layers of the design
process are stored using XML as a concrete textual syntax. The general idea of the
:studyforms’ implementation is to work directly on the XML documents of the differ-
ent model layers. This does not mean that the user has to develop the models by writ-
ing XML in a text editor, or that changes to the models are done directly on the XML
documents’ files. The models’ XML documents are loaded, but the :studyforms ap-
plication does not contain a dedicated class structure that contains a class for every
element of the meta-models, to which the XML documents could be parsed. Instead,
the application internally works on the .NET framework XML classes, which reflects
the Document Object Model (DOM).

To ensure that the loaded XML documents are consistent to the defined meta-models
and that changes, which are done by the designer, do not break this consistency, the
XML documents have to be validated towards the meta-models. For this purpose, the
meta-models are implemented as XML Schema Definitions (XSD) (see Section 5.4).
Since the capability of validating an XML document against an XML Schema Defini-
tion is part of the .NET Framework, this is an easy way to ensure that the models’
XML documents are compliant to their meta-models. In addition, the XML Schema
Definitions can be loaded easily at runtime. This allows reacting to changes on the
meta-models by just replacing the XSD documents. Changes to the source code of the
prototype are not needed.

In addition to the validation purpose, the XSD files are used for gathering information
about the attributes of the model elements. This information is used to provide the
available properties of each model element to the designer. Depending on the attrib-
utes’ type that is specified in the XML Schema Definition it is possible to offer dedi-
cated editors or dialogs for setting the values of the attributes. In addition to the XSD
files, the :studyforms application obtains information from XML based Model Ele-

15 The VSVMSDK allows building graphical or form-based Domain Specific Language designers for Visual

Studio. For more information about this SDK see [Mic12a].

5.3 Graphical User Interface

- 65 -

ment Definition (MED) files. These files are maintained additionally to the XML
Schema Definitions and contain information about the elements and their attributes
that is not extractable from the XSD meta-model but which is needed by the
:studyforms application. Such a file exists for each of the three model layers of the
design process. The MED files define which model elements the designer is allowed
to add to the models manually and to which values the attributes of newly added ele-
ments are initialized. Furthermore, for each of the available elements and their attrib-
utes a short descriptive text is given. These descriptions are displayed on the User
Interface of the :studyforms application to support the designer in developing a data
form.

Gathering the needed information from the XSD and MED files makes the implemen-
tation of the :studyforms application flexible to changes on the meta-models of the
design layers. New attributes can simply be added to the definition files and are then
available in the application. This generic approach is limited to changes that do not
force to implement additional editors for setting the values of attributes of a special
type. Also major structural changes to the meta-models are not covered by this ap-
proach.

For the implementation of the transformations from one model layer to the next, it has
been decided to use XSL Transformations (see Section 5.5). The advantage of this
solution is again the possibility to load XSLT-Stylesheets easily at runtime before
performing the transformation. This allows to make changes on the transformations’
implementations without the need to rebuild the :studyforms application. Further-
more, XSL Transformations are a state of the art approach for transforming a source
XML document into a target XML document.

5.3 Graphical User Interface
One of the essential challenges when developing the prototype was to find an appro-
priate Graphical User Interface (GUI) that allows the designer to build up the models
on the different layers and, at the same time is easy and intuitive to use for people that
are not familiar with model driven approaches. A starting point for the development
was the already existing :studyforms application, that allows the designer to directly
work with the data form elements (compare Figure 2). Due to the model-driven ap-
proach the realization of such a “what you see is what you get” (WYSIWYG) editor
is not possible because the elements of the Data Definition Model and the Abstract
Form Model are not directly graphically represented on the resulting data form. Nev-
ertheless, also for these two model layers, the application should provide some kind
of graphical editor.

Since on all of the described model layers, a model with a tree like structure has to be
defined by the designer, it has been decided to represent the models by a tree view.
On the Concrete Form Model layer, the designer can switch between this tree view
editor and an editor showing a graphical visualization of the data form. This is possi-
ble because the elements defined on this layer have a fixed graphical appearance and
the arrangement of the elements on the data form is defined by the layout attributes.

5 Implementation

- 66 -

However, the graphical editor can only give an impression of the data form’s graph-
ical user interface on each of the target device types. Since the design of the Concrete
Form Elements differs for the various target platforms, the real appearance on the
device might be slightly different. Dissimilarities can additionally be caused by dif-
ferent pixel densities on the target devices or by platform guidelines. For expert users,
there is also the option to work directly on the XML document. Therefore, on each
model layer a text editor showing the model’s XML code is available. In the proto-
type, this text editor only allows to view the XML of the models. Changes in this
editor have no effect.

Figure 35 shows the main window of the model-driven :studyforms application. The
red numbers denote the most important parts of the GUI. They are briefly described
in the following paragraphs:

1. Menu Bar: The menu bar offers standard features for opening or saving data
forms or copying and pasting single elements on the models. Furthermore, the
Transform menu enables the designer to trigger the transformation processes be-
tween the model layers. The Master Data menu provides access to master data
like activity patterns and parameters stored in the :study database.

2. Tool Bar: The tool bar provides often used features without navigating through
the menu structure.

3. Editor Area: The largest area of the :studyform’s main window shows the editor
for developing the models on the three design layers. The current model can be
selected on the tab bar at the top of the editor area (a). Via the tab bar at the bot-
tom (b) the designer can switch between the available editors on each model lay-
er. On the screenshot, the selected model is the Data Definition Model. Thus, the
graphical editor is not accessible because it is only available for a Concrete Form
Model.

4. Toolbox: The toolbox shows the available model elements that can be added to
the models using drag and drop. The content of the toolbox depends on the cur-
rently selected model. The available elements are grouped in categories. When
dragging the mouse over one of the elements, a tooltip with a short description of
the element appears.

5. Properties: The properties area shows the attributes of the model element current-
ly selected in the editor. The designer can change the values of the attributes us-
ing input fields or separate dialogs that are appropriate for the attribute’s type. At
the bottom of the property grid, a brief description of the available attributes is
given (c). This makes the usage of the property grid more intuitive for the design-
er.

6. Validation Errors: The validation errors area shows errors indicating mismatches
between the models and their meta-models. For the prototype, this area is of spe-
cial importance because it gives hints to implementation errors. At the final ver-
sion of the :studyforms application, this area might be dispensable, because inva-
lid changes to the models should be prevented by the application.

5.4 Model Validation

- 67 -

Figure 35: Main window of the model-driven :studyforms prototype

5.4 Model Validation
To make sure, that the generated models conform to the abstract syntax defined by
their meta-models, the XML model documents have to be validated when they are
loaded by the :studyforms application or when the designer performs changes to the
models.

This validation process could have been hard coded into the prototype, but this would
be hard to maintain in case of changes on the meta-models. Since this is exactly one
of the requirements mentioned in Section 5.1 another solution has been found: The
meta-models are transformed into XML Schema Definitions (XSD) (see Sec-
tion 2.3.1). The defined schema definitions are then used to validate the model’s
XML documents and are loaded dynamically by the prototype. This means that no
changes to the validation source code of the :studyforms application are needed in
order to react to changes on the meta-models.

To generate the XML schema definitions automatically out of the meta-models, the
meta-models have first been defined as UML class diagrams. For this purpose, the
Visual Studio 2012 Ultimate16 edition provides a separate project type, the Modeling

16 Visual Studio 2012 is the currently up to date IDE from Microsoft for developing applications for the

Windows platforms.

5 Implementation

- 68 -

projects. This project type allows developing different kind of UML models, one of
which is UML class diagrams. The resulting class diagrams of the meta-models of the
three abstraction layers have already been shown in the figures in Chapter 4.2. The
advantage of using the Visual Studio integrated modeling capabilities is that the gen-
erated class models can be accessed by own code using the UML Modeling Extensi-
bility API (see [Mica]). Since all model elements are stored in a common model store,
the meta-models are designed in different packages. This eases the generation of ded-
icated XSD files for each meta-model. In the following, the transformation from the
meta-models to corresponding XSD documents is explained. Thereafter, the imple-
mentation of the automatic generation of XSD files is shortly described. The given
examples are taken from the Concrete Form Model.

Every class of the meta-model is transformed into an XSD complex type. If the class
is denoted as “abstract”, the generated complex type is also set to be abstract. As a
consequence, the complex type denoted as abstract cannot be used as an element in an
XML document that conforms to that schema definition. The generalization relations
are realized by defining a complex type that extends the complex type generated from
the base class. Here, it is important to mention that this extension mechanism does not
have to be understood like an inheritance hierarchy. In addition to its own attribute
and element definitions, an extended complex type contains all attribute and element
definitions of its base type. But there is no possibility to cast the extended type to the
base type. Both complex types are completely independent. Listing 10 shows the def-
inition of the ConcreteLayoutableElement element that is set to be abstract
and that extends the ConcreteFormElement complex type.

1
2
3
4
5
6
7
8
9

<xs:complexType name="ConcreteLayoutableElement" abstract="true">
 <xs:complexContent>
 <xs:extension base="ConcreteFormElement">
 <xs:attribute name="PreferedHeight" type="Size" />
 <xs:attribute name="PreferedWidth" type="Size" />
 <xs:attribute name="Position" type="Positions" />
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Listing 10: XSD complex type ConcreteLayoutableElement

For each attribute of a class, an attribute specification is added to the complex type
representing that class. The name and the data type of the attribute match the specifi-
cations of the attribute on the meta-model. The data type is mapped to the corre-
sponding XSD simple type. Others than standard data types are defined manually in a
separate XSD document that is included into the schema definitions. This is for ex-
ample the case for the Size data type of the PreferedWidth and Pref-
eredHeight attributes of the ConcreteLayoutableElement. As described in
Section 4.2.3, possible values for these attributes are plain double values, double val-
ues followed by a “*” (Star) symbol or the string “auto”. Therefore the Size data
type is defined as a simple type that is based on the xs:string simple type. The
definition of that Size simple type is shown in Listing 11. The base type is restricted
to only allow the above mentioned values using two regular expressions. The first one
defines the double values, optionally with the star sign at the end (Listing 11, l. 3).
The second one adds the possibility to set the value to “auto” (Listing 11, l. 4).

5.4 Model Validation

- 69 -

1
2
3
4
5
6

<xs:simpleType name="Size">
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9]*[.[0-9]*]?*?" />
 <xs:pattern value="auto" />
 </xs:restriction>
</xs:simpleType>

Listing 11: XSD simple type definition of the Size data type

The enumerations defined in the meta-models are also transformed to XSD simple
types. For these cases, the simple type definitions are based on the xs:string sim-
ple type, but the restriction is done by specifying the list of allowed values. These are
equivalent to the enumeration’s list of literals. Listing 12 shows the simple type defi-
nition of the Positions enumeration. The list of acceptable values is set using the
xs:enumeration element. The definition of the allowed values is case sensitive,
which means that the values of the Position attribute can only be set in the way
they are specified in the simple type definition.

1
2
3
4
5
6
7

<xs:simpleType name="Positions">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Top/Left" />
 <xs:enumeration value="Center" />
 <xs:enumeration value="Bottom/Right" />
 </xs:restriction>
</xs:simpleType>

Listing 12: XSD simple type definition of the Positions enumeration

Another important part of the meta-models that have to be represented in the XML
documents are the aggregation relations between the model elements. An example for
this is the aggregation between a layout container and its child elements on the Con-
crete Form Model. These relations are represented in the XML document in form of
sub elements of another element. To express such sub elements in an XSD, an ele-
ment definition is added to the parent complex type definition. For generating the
XML Schema Definition of the defined meta-models, it has been decided that the
parent element of an association is the element from which the association is naviga-
ble. This expects that each association in the meta-models is navigable only in one
direction. The direction is depicted by an arrow at the end of the association in the
class diagrams. In case of the above mentioned example, its child elements are navi-
gable from the layout container. In the XML document this means that the children
are sub elements of the layout container element. As already described above, XSD
does not provide a real inheritance mechanism for complex types. Thus, it is not suf-
ficient to define a single sub element with the type set to the abstract base type of the
allowed sub elements because the concrete child elements do not match this type.
When validating the XML according to its schema definition, this would cause a vali-
dation error. Instead, for each possible sub element an element definition is added as a
sub element to the complex type definition. To express that the child elements can
occur in an arbitrary order, the element definitions are part of an xs:choice defini-
tion. The multiplicity of the aggregation’s child end is taken to set the minimal and
maximal occurrence of the sub elements. Listing 13 shows a shortened version of the
complex type definition of the ConcreteLayout element.

5 Implementation

- 70 -

1
2
3
4
5
6
7
8
9
10
11

<xs:complexType name="ConcreteLayout" abstract="true">
 <xs:complexContent>
 <xs:extension base="ConcreteLayoutableElement">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="LinearLayout" type="LinearLayout" />
 <xs:element name="TextBox" type="TextBox" />
 …
 </xs:choice>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Listing 13: XSD complex type definition of the ConcreteLayout element

The last aspect that needs to be defined in a schema definition is the root element of
the XML tree structure. To indicate the root element of the meta-model in the class
diagram, a UML profile is introduced, that defines the stereotype17 <<XSD root ele-
ment>>. This stereotype is applied to the class that builds the root element of the
model. In the Concrete Form Model, this is the ConcreteForm element (compare
Figure 12). To express the root element in the schema definition, an element defini-
tion is added at the document level of the XSD. The type of this definition is set to the
name of the corresponding complex type.

The actual generation of XSD files from the defined class diagrams is done using T4
text templates (see [Micb]). T4 stands for Text Template Transformation Toolkit,
which is a template engine integrated into Visual Studio. The result of a T4 transfor-
mation is an arbitrary text file (for example an XML or a source code file). The tem-
plate contains static text parts that are directly inserted into the target file and control
blocks, which are implemented in C# or Visual Basic and are used for implementing
logic for inserting dynamic content into the generated file. Such a text template al-
lows implementing a Model to Text (M2T) transformation (compare Section 2.2.2)
that generates XML Schema Definition files according to the defined class diagrams
of each model layer. The application of the transformations can be included into the
build process, which ensures that the :studyforms application always works with the
latest meta-model definitions.

For each of the four defined meta-models, one T4 text template is generated. In these
template files, first the package containing the meta-model, for which the template
generates the schema definition, is loaded. Listing 14 illustrates this for the package
ConcreteFormModel that contains the corresponding meta-model. Since the de-
picted code should not be just copied to the output file of the transformation, but in-
stead be evaluated by the template engine, it is marked as a control block by the sur-
rounding <# … #> symbols.

17 A stereotype is an extension to existing UML model elements that is used to further specify the purpose of

an element.

5.5 Transformations

- 71 -

1
2
3
4
5
6
7
8
9
10

<#
 // Get modeling project.
 string projectPath =
 this.Host.ResolvePath(@"..\..\Models\Models.modelproj");
 IModelingProjectReader project =
 ModelingProject.LoadReadOnly(projectPath);
 // Get package from model store.
 IPackage package = project.Store.Root.NestedPackages.
 SingleOrDefault(p => p.Name == "ConcreteFormModel");
#>

Listing 14: Loading a meta-model package from the modeling project

A part of the actual template definition is shown in Listing 15. The xs:schema and
the xs:include tags are copied directly into the output file of the transformation.
The xs:include tag includes a further XSD file that contains the manually main-
tained simple types, like the type Size (see above). Between the opening and closing
xs:schema tags a further control block is defined. Inside this block it is iterated
over the elements, defined in the package and an appropriate template is applied to
each of these elements (see Listing 15, l. 5-8). Thereby, the XML Schema Definition
file is generated iteratively when the text template is executed.

1
2
3
4
5
6
7
8
9
10

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:include schemaLocation="DataTypes.xsd"/>
<#+
 foreach (IType t in package.OwnedTypes)
 {
 …
 }
#>
</xs:schema>

Listing 15: T4 text template part for generating the XML schema definition

5.5 Transformations
The transformation processes that guide the designer through the model-driven design
process and automatically generate a starting model on the always next model layer
are implemented using the XSLT (Extensible Stylesheet Language Transformation)
technology (see Chapter 2.3.2). The .NET framework supports performing XSL
Transformations natively. The framework therefore includes the class XslCom-
piledTransform that provides methods for loading an XSL-Stylesheet and for
performing the transformation. This class can be seen as a .NET integrated XSLT
processor.

As described in Chapter 2.3.2 an XSLT document defines templates that are applied
to specific elements of the source XML document. Which template is applied for
which element is specified by the pattern attribute of each template. The basic con-
cepts of the transformation processes are described in Chapter 4.6. Following, the
implementation of these transformations using XSLT is illustrated at the example of
the transformation from the Data Definition Model to the Abstract Form Model.
Therefore, selected template examples are shown and described. Additionally, some
challenges that occurred during the implementation are explained. A detailed expla-
nation of the implemented XSLT-Stylesheets is beyond the scope of this thesis, but
the shown examples allow imagining how the transformations work.

5 Implementation

- 72 -

As the transformation from the Data Definition Model to the Abstract Form Model
preserves the structure of the source model, the templates applied to the root element
DataModel and to the DataGroup element have to transform those elements
themselves, and insert the Abstract Form Elements resulting from the transformation
of their children as sub elements. The XSL template that matches the DataModel
element is shown in Listing 16. The template inserts the AbstractForm element to
the target model. The name of the AbstractForm element is set to the name of the
DataModel element of the source model. As described in Section 4.6.1, the first
child element, added to the AbstractForm definition, is an AbstractTest-
SubjectSelector element. Further child elements are added by applying tem-
plates that match the child elements of the DataModel element in the source model.
At the end of the template, the “Finishing” compound is added. This Compound
element contains the Command elements for submitting and resetting the data form.

1
2
3
4
5
6
7
8
9
10
11
12

<xsl:template match="DataModel">
 <AbstractForm Name="{@Name}">
 <AbstractTestSubjectSelector Name="TestSubjectSelector" />
 <xsl:apply-templates />
 <AbstractCompound Name="Finishing">
 <Command Name="Command_Reset" Caption="Reset"
 ActionReference="…::Reset" />
 <Command Name="Command_Submit" Caption="Submit"
 ActionReference="…::Commit" />
 </AbstractCompound>
 </AbstractForm>
</xsl:template>

Listing 16: XSL template matching the DataModel element

Beside the two grouping elements DataModel and DataGroup, the Data Defini-
tion Model contains the actual data definition elements DataDefinition and
VolatileDataDefinition. The XSL templates that transform these data defini-
tion elements to appropriate Abstract Form Elements do not only consider the name
of the source element in their match statement, but also the attributes DataType,
EntryMode, and DerivationFormula. According to the decision tree in Sec-
tion 4.6.1 (see Figure 31) there are five different Abstract Form Elements, to which
the transformation process potentially transforms the data definition elements. Since
the DataDefinition and VolatileDataDefinition elements are treated
separately, this sums up to ten templates. Listing 17 shows the template that matches
DataDefinition elements, whose data type is “Integer”, whose EntryMode
attribute is not set to “Automatic” and whose DerivationFormula attribute is
empty. For such data definitions, the template inserts a NumericalEdit Abstract
Form Element. The reference to the source element in the Data Definition Model is
set by adding the DataReference attribute using the xsl:attribute element.
The path to the source data definition element is inserted by directly calling an addi-
tional template that builds up the path and inserts it into the target model.

5.5 Transformations

- 73 -

1
2
3
4
5
6
7
8
9
10

<xsl:template match="DataDefinition[param:GetDataType(@ParameterId)=
 'Integer' and @EntryMode!='Automated' and
 @DerivationFormula='']">
 <NumericalEdit Name="NumericalEdit_{@ParameterId}"
 Caption="{param:GetDataName(@ParameterId)}">
 <xsl:attribute name="DataReference">
 <xsl:call-template name="getPath" />
 </xsl:attribute>
 </NumericalEdit>
</xsl:template>

Listing 17: XSL template for transforming a DataDefinition element
to a NumericalEdit element

In contrast, Listing 18 illustrates the XSL template that transforms a Data-
Definition element to an AbstractDisplayElement. This template does
not consider the data type of the data definition and the template matches data defini-
tions whose EntryMode attribute is set to “Automated” or for which a derivation
formula is defined.

1
2
3
4
5
6
7
8
9

<xsl:template match="DataDefinition[@EntryMode='Automated' or
 @DerivationFormula!='']">
 <AbstractDisplayElement Name="DisplayElement_{@ParameterId}"
 Caption="{param:GetDataName(@ParameterId)}">
 <xsl:attribute name="DataReference">
 <xsl:call-template name="getPath" />
 </xsl:attribute>
 </AbstractDisplayElement>
</xsl:template>

Listing 18: XSL template for transforming a DataDefinition
element to an AbstractDisplayElement

One of the crucial parts of the transformation from the Data Definition Model to the
Abstract Form Model is the fact that the DataDefinition elements do not direct-
ly contain information about the data type of the data definition. Instead, these ele-
ments hold a reference to a parameter in the :study database that provides the needed
information. Unfortunately, XSL does neither support querying a database directly,
nor working with a web service. This means that it is not possible to gather the infor-
mation about the data type of a DataDefinition element directly in the XSL
Transformation. In order to nevertheless access the needed information, the extensi-
bility property of XSLT is used. XSL allows including additional instructions that are
provided by the XSLT processor. The .NET integrated XSLT processor therefore
provides the possibility to pass XSLT Extension Objects (see [Mic12b]) to the XSLT-
Stylesheet. Such an XSLT Extension Object is an arbitrary .NET class that contains
methods, which are available from the XSLT-Stylesheet. To access the data type and
the name of a parameter from the :study database, the class ParameterConvert-
er is implemented. This class provides public methods that accept the unique identi-
fier of a parameter, and returns the requested information after querying the :study
database. Here, it is important to mention that this kind of extensions to the core fea-
tures of XSLT is no .NET specific opportunity. Extensions are part of the W3C rec-
ommendation of XSLT (see [W3C99], Chapter 14).

Listing 19 shows a simplified source code excerpt of the :studyforms application that
initiates the transformation from the Data Definition Model to the Abstract Form
Model. After generating a new XslCompiledTransform object and loading the

5 Implementation

- 74 -

appropriate XSLT-Stylesheet (Listing 19, l. 1-2), an instance of the Parameter-
Converter class is passed to the transformation process. This is done by adding the
instance to the XsltArgumentList class. This argument list is passed to the trans-
formation (Listing 19, l. 4-6). Thereafter, the transformation is performed.

1
2
3
4
5
6
7
8

XslCompiledTransform xslt = new XslCompiledTransform(true);
xslt.Load("DataDefinitionToAbstractTransformation.xslt");

XsltArgumentList xslArg = new XsltArgumentList();
ParameterConverter paramConverter = new ParameterConverter();
xslArg.AddExtensionObject("urn:parameter-conv", paramConverter);

xslt.Transform(DataDefinitionModelXmlDocument, resultDocument);

Listing 19: Source code excerpt calling the DDM to AFM transformation

The transformations from the Abstract Form Model to the Concrete Form Models
targeting different device types work in a similar way as the described transformation.
The XSLT-Stylesheets contain a template for each of the Concrete Form Elements
that are potentially generated by the transformation process. The division of the ele-
ments to several pages is done by an XSL implementation of the algorithm described
in Section 4.6.2 (see Listing 9).

Another difficulty that had to be solved arose from the implementation of the trans-
formation of the Mobile Concrete Form Model to the Windows Phone Final Form.
The problem is that this transformation needs to consider the Mobile Concrete Form
Model as well as the Abstract Form Model as source model, since the mCFM does
not contain all needed information. The Concrete Form Elements instead reference
Abstract Form Elements contained in the AFM. To enable the transformation to ac-
cess the information from the Abstract Form Model, the AFM is given as a parameter
to the transformation. XSL therefore allows declaring global parameters that can be
set when the transformation is called. Setting the value of a global parameter is done
similar to passing an Extension Object to the transformation (see above). Listing 20
shows a shortened version of the call of the Mobile Concrete Form Model to Win-
dows Phone Final Form transformation. Passing the Abstract Form Model as a pa-
rameter to the transformation takes place in line 7.

1
2
3
4
5
6
7
8
9

XslCompiledTransform xslt = new XslCompiledTransform(true);
xslt.Load("XslTransformations/MobileToWPTransformation.xslt");

XsltArgumentList xslArg = new XsltArgumentList();
DynamicExtension dynExtension = new DynamicExtension();
xslArg.AddExtensionObject("urn:dyn-ext", dynExtension);
xslArg.AddParam("abstractModel", AbstractFormModelXmlDocument);

xslt.Transform(MobileConcreteFormModelXmlDocument, resultDocument);

Listing 20: Source code excerpt calling the mCFM to Windows Phone transformation

For accessing attribute values of the referenced Abstract Form Elements, an XPath
expression is built up from the path given by the AbstractReference attribute of
a Concrete Form Element. This is done dynamically during the execution of the trans-
formation. Since the XSLT version supported by the .NET framework does not allow
evaluating such dynamically generated XPath queries, this is done using an extension.
Therefore, the class DynamicExtension is implemented that contains just one
method Evaluate. This method takes the Abstract Form Model’s XML and the

5.5 Transformations

- 75 -

XPath query that should be evaluated on the given XML. The result of the query is
returned by the method. An instance of that class is given as an Extension Object to
the XSLT processor before executing the transformation (see Listing 20, l. 4-6). The
Evaluate method is then used by the XSLT-Stylesheet to access attribute values on
the Abstract Form Model by the dynamically generated XPath queries.

- 77 -

6 Evaluation
For evaluating the introduced model-driven data form design approach as well as the
developed :studyforms prototype, a usability study has been conducted. Here it has to
be mentioned that due to the limited time, some parts of the prototype are implement-
ed as a mockup without any functionality. This has been done to be able to include
important parts of the model-driven concept into the task the study participants have
to fulfill. Thus, in the context of this evaluation, the term “usability” does not focus
on the Graphical User Interface of the prototype but on the general applicability of the
model-driven approach for the future target group and on the way the :studyforms
prototype implements this approach. Therefore, the study concentrates on the users’
satisfaction and on finding general drawbacks or advantages.

The study is conducted as a formative study. This type of usability study is also called
explorative ([RC08], p. 29) or inductive ([SB11], p. 163) study. According to Sarod-
nick and Brau, a formative study is suitable for the given conditions because it focus-
es on the analysis of prototypes and tries to find drawbacks and possible improve-
ments ([SB11], p. 163). Thus, it does not compare different alternative systems but
tests just one prototype.

The following sections first explain the considered usability attributes, the setup of
the user study as well as the task, the participants have to solve. Thereafter, the results
of the user study are presented and discussed.

6.1 Considered Usability Attributes
For the usability evaluation of the model-driven data form design process using the
:studyforms prototype four usability aspects are examined by the study. These aspects
are mainly selected from the five usability attributes defined by Nielsen ([Nie93],
p. 26ff). Following, the investigated usability attributes are introduced. Furthermore,
it is expressed which metrics are used to make a point about the different usability
attributes. “A metric is a way of measuring or evaluating a particular phenomenon or
thing.” ([TA08], p. 7) The user study is designed in such a way that a statement to
each of the four aspects can be made.

Satisfaction
In the context of this user study, satisfaction is treated from two perspectives: On the
one hand, the users’ satisfaction with the model-driven data form design process us-
ing the :studyforms prototype is considered. On the other hand, the satisfaction with
the resulting data forms is of interest. Therefore, the users are shown their develop-
ment results on a Windows Phone smartphone. The two types of satisfaction are
measured by three questions for each of the two types on a questionnaire.

Learnability

The learnability attribute gives information about how easy the usage of a system can
be learned by its users. Since the :studyforms application is not intended to be used

6 Evaluation

- 78 -

intuitively and the number of future users is limited, this usability attribute is consid-
ered to be less important. It is measured by three questions on a questionnaire filled
out by the study participants.

Efficiency
Efficiency is “the amount of effort, required to complete the task” ([TA08], p. 8). In
the context of this user study, the efficiency is measured by the Task Completion
Time (TCT) which is the time needed by the test users to complete the task. The TCT
starts with generating a new data form and ends with generating the Final Form for
the target platform given in the task description. Thus, reading the task is not included
in the TCT.

Effectiveness
The effectiveness concerns the ability of a user to complete the given task ([TA08],
p. 8). Although effectiveness is not one of the five usability attributes mentioned by
Nielsen it is considered to be an important aspect for the evaluation of the results of
the user study. In the context of this user study, the participants get one global task
that is formulated in an abstract and superficial way and targets several aspects of the
tested approach. Therefore it is possible that the study participants do not complete
the task with all its aspects but partially. In contrast to this, Nielsen defines test tasks
more granularly and dedicated to specific aspects (compare [Nie93], p. 185f) such
that they are solvable completely or not at all. The effectiveness allows comparing the
results of the test users even if they do not fulfill the task completely. Therefore, a list
of 20 steps that are considered to be the most important for completing the task was
elaborated prior to the study. According to these steps, a percentage is calculated that
indicates how much of the task a user was able to do. This value is used as the metric
for measuring the effectiveness in this study.

6.2 Setup of Usability Study
In this section the general setup of the user study is explained. This includes the selec-
tion of study participants as well as a description of the study procedure and the used
questionnaires.

Since the user study is done in the course of this master’s thesis, the study is conduct-
ed by just one supervisor, who is familiar with the prototype. This also prevents dis-
tractions by other people and the participants do not feel observed by too many eyes.
The supervisor and the author of the thesis are the same person.

All data capturing in the context of the study was done pseudonymized and with per-
mission of the test users. Since all participants were German native speakers, all ma-
terial handed out to the test users was written in German language to avoid confusion
or misunderstandings caused by the language.

6.2 Setup of Usability Study

- 79 -

6.2.1 Selection of Study Participants
For the study participants, future users of the :study software were obtained from the
DLR Institute of Aerospace Medicine. These users are the target group of the
:studyforms application and can be expected to have sufficient background
knowledge about typical medical studies performed by this institute. At the same
time, these users are not expected to be familiar with model-driven approaches like
they often are used in computer science. To compare the performance of these users,
a second group of participants is obtained from the facility for Simulation and Soft-
ware Technology. These users are expected to have no experience in executing medi-
cal studies, but feel familiar with abstracting things using model-based approaches.
Following, the first group of participants is denoted as domain experts, the latter one
as computer science professionals or reference group. The comparison of the two user
groups allows distinguishing between general drawbacks of the model-driven ap-
proach and problems that are caused by misunderstandings or inexperience of the
domain experts. This simplifies to classify the severity of observed problems.

Altogether, eight users participated in the study, four on each group. The low number
of test users is caused by the small amount of available domain experts and the lim-
ited time for this thesis. The study focuses on finding general problems of the model-
driven approach and its implementation for the future users. Tullis and Albert state,
that “five participants per significantly different class of users is usually enough to
uncover the most important usability issues” ([TA08], p. 119). The authors further
claim, that “In most of the usability tests we’re [sic] [the authors] conducted over the
years, regardless of the total number of test participants, we’re [sic] seen most of the
significant issues after the first four or five participants.” Based on these statements,
the number of eight test users in total is assumed to be sufficient for this study.

6.2.2 Study Procedure
According to Sarodnick and Brau an appropriate test atmosphere is very important to
reduce stress for the participants ([SB11], p. 240). Therefore, at the beginning of each
test session, the test procedure is explained to the participant. Furthermore, the goal of
the study is specified and it is clearly stated that it is the system which is under test,
not the user. Since a formative user study is done using a prototypical implementa-
tion, it is also important to state that the later application can look differently, and that
some common features like an undo redo function are not yet implemented.

During the introduction, the participant is asked to fill in a questionnaire about his
personal background and foreknowledge that might influence the performance of the
user with the software. The details of the questionnaire are given in Section 6.2.4.

Thereafter, the study participant is requested to read an information sheet about the
:studyforms application and the underlying model-driven data form development pro-
cess (see Appendix C). The information describes the general model-driven approach
and which parts of the data form are specified at which model layer. Since the partici-
pants are not necessarily familiar with building models in general on one hand or with

6 Evaluation

- 80 -

the domain of medical studies on the other hand, questions of the participants are
answered during reading the introduction.

The :studyforms application is not intended to be used by totally novice users. In-
stead, the future users will be trained before using the software. To also take this
training phase into account, after the theoretical introduction by reading the text, the
participant also get a practical insight into the :studyforms prototype. This is done by
means of showing how to develop a simple data form for initially capturing 24h urine
samples (compare Section 2.1.3). The demo includes the major parts of the model-
driven design process and already shows how some of the parts of the user task (giv-
en in Section 6.2.5) can be solved. But, not all aspects needed to fully solve the task
are shown. Again, during this demo the participant is allowed to ask questions.

After the demo, the task description is given to the participant and he is asked to start
working. To get a better impression of what the user thinks during performing the
task the “think aloud” method is used. Therefore, before the user starts working, he is
requested to express his thoughts, confusion, frustration and even delights loudly
(compare [RC08], p. 204). The supervisor observes the progress of the user and takes
notes.

When the participant finishes the task, he is shown the resulting data form of his de-
veloping on a Windows Phone device. Since the prototypical implementations of the
:studyforms and the Windows Phone :studydata applications do not yet have a data-
base integration, the transfer of the data form to the smartphone device is done by the
supervisor. The user is then asked to explore the resulting data form. The :studydata
application prototype allows to view the data form’s graphical user interface. Missing
business logic in the prototype is explained by the supervisor.

The study participant is finally asked to fill in a questionnaire regarding his satisfac-
tion with the model-driven data form design approach and the resulting data form. At
the end, in most of the study sessions a short discussion took place. The supervisor
asked open questions and the participant had the opportunity to make additional
comments.

6.2.3 Technical Infrastructure
The demo during the introduction phase of a test session and the performance of the
user task was done on a Windows 8 based PC with standard office hardware features.
At this system, the :studyforms prototype is installed. At the same machine, the used
development environment is installed. This is needed for transferring the developed
data form to the mobile device and running it for demo purposes at the end of each
test session.

To ease the evaluation of the “think aloud” study and to be able to retrospectively
hear again the thoughts of the users, the voice of the user and the screen content of the
machine were captured during the task performance. Furthermore, a logging func-
tionality is implemented to the :studyforms prototype. Thus, during performing the
task by the user, important events like starting to develop a new data form or perform-
ing a transformation from one model layer to the next, are logged. The log also in-

6.2 Setup of Usability Study

- 81 -

cludes timestamps for each event which allows calculating the Task Completion
Time.

6.2.4 Questionnaires
During a study session, the test users filled in two questionnaires. The first one targets
the personal background (age, gender, profession) of the participants as well as possi-
ble foreknowledge that is important for the study. This concerns the general experi-
ence with computer systems and with software for generating electronic data forms as
well as knowledge in the area of Model Driven Software Development (MDSD) and
in the execution of medical studies at DLR. The user expresses his experience in
these areas on a 7 step Likert scale. The questionnaire about the test users’ back-
ground is attached in Appendix F.

The second questionnaire is divided into four areas. It is given in Appendix G. A
translation of the questions is given when presenting and discussing the results in
Section 6.3. Two areas cover questions about the user’s satisfaction. One of them
focuses on the :studyforms prototype and the model-driven approach in general, the
second one targets the result of the design process. A third area contains questions
regarding the learnability of the :studyforms application and the model-driven ap-
proach. The asked questions are inspired by standard usability questionnaires and
adapted to the given context (see [Lew95], [WHG97]). All questions are formulated
as a statement. The participant answers by expressing his affirmation to the statement
on a Likert scale from 1 (strongly agree) to 7 (strongly disagree). In the fourth area,
the participant has the chance to give additional free text comments, not restricted to
the other areas of the questionnaire.

6.2.5 User Task
The participants had to accomplish one single task. Since the goal of the user study is
to find out whether the future users are able to use the model-driven data form design
process for their needs, the granularity of the task description is rather crudely. This
means, it does not specify the single steps, the user has to perform in order to fulfill
the task. Instead, it describes what the user wants to achieve and just gives hints to the
model elements or attributes he has to use. The task is selected in such a way that it
describes a realistic data form which is not too complex for the context of the user
study. The participants were free in naming the form elements and grouping them
together. All the needed master data had already been added to the :study database
prior to the study. The task description as it was handed out to the study participants
is attached in Appendix D. Following, it is summarized in English language:

The user should develop a data form for capturing data of 24h urine samples in the
laboratory after they were initially captured at the study facility (compare Sec-
tion 2.1.3). The data form should later run on smartphones and tablets. Table 4 de-
fines the parameters that should be captured by the data form and stored to the central
:study database.

6 Evaluation

- 82 -

Parameter Data Type
Bottle Number String (max. 6 characters)

Gross Weight (of the sample) Decimal Number

Tare Weight (of the sample) Decimal Number

pH-Value Decimal Number

Freeze (Indicates, that the sample should
be frozen for later processing)

Boolean Value

Comment String (unlimited)

Signature String (max. 3 characters)

Table 4: Parameters of the data form that is developed by
the participants of the user study

The bottle number and tare weight should be captured in an automated way by a bar-
code scanner. Via this scanner, the current test subject is selected automatically. Since
the barcode could be damaged, also a manual entry of these data should be possible.

The sample’s gross weight should be captured by an electronic balance. Here, no op-
tion for entering the value manually should be available. Two buttons should enable
the user of the data form to take the current weight value and to tare the balance.

Additionally, the data form should contain a button for submitting the values to the
database and to reset all input fields on the data form.

6.3 Presentation and Discussion of Results
In this section, the results of the user study are presented and discussed. In total eight
test users participated in the study. The evaluation of the questionnaire asking about
background information yields, that in average the participants were 36 years old, the
youngest was 27 years old and the oldest person had an age of 49 years. Two of the
test users were female, the other six participants were male. The answers of the par-
ticipants concerning their profession and the DLR institute or department they work
on, allows identifying four computer science professionals and four domain experts.
This grouping is confirmed by the answers about the experience in medical studies at
DLR. All computer science professionals have no experience at all in this area,
whereas the domain experts have medium to high experience. The experience in
MDSD is contrary. Only one computer science professional stated like all domain
experts to have no experience in MDSD. The general experience about computer sys-
tems is high (all participants answered with 5 or better). This seems to be not compa-
rable between the two user groups because the participants evaluated themselves
based on their understanding of that field. Nevertheless, it shows that no novices in
working with computers participated. The answers concerning the experience with
other software for generating electronic data forms are wide spread and do not allow
to give any tendency for the two user groups.

6.3 Presentation and Discussion of Results

- 83 -

6.3.1 Usability Attributes
Following, the study results are presented and discussed in the context of the consid-
ered usability attributes (see Section 6.1). Here it has to be mentioned that the person
who evaluated the results is the same as the supervisor during the study. Although
this might bias the results, it is assumed to be sufficient in that early phase of devel-
opment. A comparison of the target and reference user group is just done if the results
show identifiable differences between these two groups. The answers from the second
questionnaire are presented on bar charts using a Likert scale from one to seven, like
it is used on the questionnaire. The bar charts do not distinguish between the comput-
er science professionals and the domain experts. Additionally, the mean and the
standard deviation were calculated.

Satisfaction
The first three questions of the questionnaire are about the user’s satisfaction concern-
ing the convenience with the developed solution for designing multi-device data
forms. Two questions are regarding the handling of the developed :studyforms proto-
type with the underlying model-based approach in general. The third one targets ded-
icatedly the benefits of the model-driven approach for designing data forms for multi-
ple devices.

The two questions regarding the :studyforms prototype and the underlying approach
in general are:

Q1: The software allows generating data forms easily.
Q2: The software forces the user to perform unnecessary working steps.

Figure 36: Answer values regarding the satisfaction with

the :studyforms prototype in general

In average, the users answered to Q1 with M1=5.63 with a standard deviation of
σ1=1.22. This allows reasoning that the users had no severe problems in using the
prototype. However, the mean value for Q2 is M2=5.25 with σ2=1.64. Here, it has to
be mentioned that the scale is inverted for question Q2, since the question is asked in
such a way, that the stronger the users agree, the worse is the result. Although this
mean value is still above the middle value, this is the worst result of all questions on
the questionnaire. This shows that some users seem to feel uncomfortable with de-
signing the data form in three different model layers. A reason for this might be that
the prototype does not yet propagate all changes in higher model layers to the lower
ones, if the transformation has already initially been done (compare Section 4.3).

6 Evaluation

- 84 -

Some of the test users (including the two who answered question Q2 worst) had to do
manual changes on the lower model layers again because they did the transformations
more than just once and thereby overwrote their modifications.

The question specifically targeting the model-driven approach is:

Q3: The model-based approach facilitates the development of data forms for multiple
target platforms (tablets and smartphones).

Figure 37: Answer values regarding the satisfaction with

the underlying model-driven approach

This question has been answered with a mean value of M3=6.63. The standard devia-
tion σ2=0.48 is rather low. These results allow concluding that the users see the bene-
fit of the model-driven approach for designing multi-device data forms. This is espe-
cially interesting since although some of the study participants felt to be forced to do
unnecessary working steps (compare Q2), the users at the same time felt that the ap-
proach eases the design process.

The user’s satisfaction concerning the results of the design process, that is the data
form itself, is determined by the three last questions of the questionnaire. The first
two of them focus on the structure and the design of the generated data form. The
very last question is about the general usage of such data forms for data capturing in a
medical study environment.

The questions regarding the visual appearance of the generated data form are the fol-
lowing:

Q7: I am satisfied with the appearance of the generated data form which I have seen
on the smartphone device.

Q8: The generated data form meets my expectations of a data form for the given task
description on a smartphone device (or tablet, except element arrangement).

6.3 Presentation and Discussion of Results

- 85 -

Figure 38: Answer values regarding the satisfaction with
the structure and the design of the generated data form

With a mean value of M7=5.75 for Q7 and M8=6.13 for Q8 the study participants
evaluate the data form, resulting from their development, uniformly very positive.
The standard deviations calculate as σ7=0.66 and σ8=0.60. These values allow con-
cluding that the users were throughout satisfied by their results they have seen on the
smartphone. Thus, the arrangement of the elements on the data form as well as the
separation into several pages and the navigation between these pages seems to be
appropriate. The fact that the generated data form also matches the user’s imagination
of a data form considering the given task description (this is Q8) allows reasoning
further, that the type of generated data forms can be used intuitively. This is affirmed
by the low standard deviation of the answers, because the users seem to have a similar
imagination of the structure and design of such a data form, which is achievable by
the features of the developed model-driven approach using the :studyforms prototype.
Here, the answers of the domain experts, which all answered with a value of 6, is
especially important since these are the people that are familiar with the current data
capturing processes during medical studies (using paper forms). The more the elec-
tronic data forms are comparable to their current paper versions, the easier the intro-
duction of the new approach will be.

The last question regarding the user’s satisfaction with the resulting data form targets
the applicability of such kind of data forms in the intended target environment. The
question is formulated as follows:

Q9: In general, I can imagine using such kind of data forms for data capturing on
smartphones or tablets in a study situation.

Figure 39: Answer values regarding the general usage of mobile

data forms in a medical study environment

6 Evaluation

- 86 -

Figure 39 shows that question Q9 was answered almost optimally with a mean value
of M9=6.88 and a standard deviation of σ9=0.33. Although the answers are uniformly
positive, it has to be distinguished between the domain experts and the reference
group. Since the domain experts are much more experienced with medical studies,
their answers can be given a higher weight. The responses of the future users show
that they are open for this new approach and willing to replace the current paper
forms with an electronic version. Due to their profession, the test users of the refer-
ence group are familiar with slipping into special domains for finding possibilities to
support domain experts by appropriate software. Based on the explanations at the
beginning of each study session they were able to simulate a study situation. There-
fore the answers of these test users are also taken into account.

Learnability
For gathering information about the learnability of the developed system, three ques-
tions are asked on the questionnaire. The first of these questions is about the time
needed to get into the software in general:

Q4: It took a long time to learn how to use the software.

Figure 40: Answer values regarding the time needed

to learn how to use the software

First of all it has to be stated that for this question the scale has been inversed, such
that higher values represent a lower hurdle to get familiar with the usage of the soft-
ware. The study participants answered with a mean of M4=5.38 with a standard devi-
ation of σ4=0.99 to this question. This shows that getting into the software was in
general not a serious problem for the test users. One of the study participants stated in
the comments section of the questionnaire that the user interface of the prototype is
unusual and that one has to try a bit until one gets the general idea. But, the user ex-
pressed further that he feels able to use the software with some practice. Since the
software is intended to be used by persons that are trained in using it, the observed
training curve for the novice test users is seen non-critical.

The second question in the area of learnability regards the transparency of the auto-
matic transformations between the model layers:

Q5: The automatic transformations between the model layers are comprehensible for
me.

6.3 Presentation and Discussion of Results

- 87 -

Figure 41: Answer values regarding the transparency

of the automatic transformations

The mean value of the answers to this question is M5=5.88 and the standard deviation
is σ5=0.78. For this question it is also interesting to look at the mean values of the
two user groups. The domain experts answered in average with 5.50 and the computer
science professionals with 6.25. Thus, there is a tendency that the transformations are
more comprehensible for the computer science professionals than for the domain ex-
perts. This seems to confirm the preliminary thoughts that the reference group feels
more familiar with the model-driven approach than the target group. However, the
answers are positive and allow concluding that the model-driven approach is applica-
ble for the future users of the system.

The last question targets the applicability of the software in the future:

Q6: I can imagine using the software in the future to generate electronic data forms
for capturing data using PCs, tablets and smartphones.

Figure 42: Answer values regarding the applicability

of the software in the future

Figure 42 shows that the answers to question Q6 are uniformly positive. The mean
value calculates to M6=6.75 and the standard deviation is σ6=0.43. This shows that
the users of both groups can imagine using the software in a productive environment
and are open to the model-driven approach, used by the software to design multi-
device data forms. One test user concluded in the comments section of the question-
naire that there is a need to be able to abstract in order to use the software because of
the unusual user interface of the prototype. Due to the answers of this user to the oth-
er questions this is taken as a neutral statement. In a later version of the prototype the
user interface might become more familiar by introducing more symbols on the GUI
for the different model elements in the tree views and the toolbar. Furthermore, the
naming of the transformation processes and the model elements could be improved to

6 Evaluation

- 88 -

be easier understandable for the future user group. These two suggestions for improv-
ing the prototype were made by two other study participants.

Efficiency
The efficiency of the test users in fulfilling the given task is measured by the time the
users need to design the data form. This is the so called Task Completion Time (TCT).
Figure 43 shows the overall average Task Completion Time in minutes (left) and the
average per user group (mid and right). The TCT starts with generating a new data
form and ends with the final transformation to the Windows Phone 8 platform. Unfor-
tunately, the given task description (see Appendix D) does not define a clear end of
the task. Therefore, the supervisor of the study gave a short hint to do this last trans-
formation, if the test users said to be finished without having it done.

Figure 43: Average task completion time needed by

the test users to fulfill the task

The average task completion time over all test users is about 37 minutes. One of the
domain experts stated during the user study that currently it takes between 10 and 40
minutes to generate a paper data form. The broad timespan is caused by the depend-
ence on the complexity of the data form whereby the data form designed during the
user study is assumed to be not trivial. This allows concluding that the time needed
for generating the electronic data form is comparable to the time currently needed to
generate a paper form. Hence, using the model-driven :studyforms application for
designing electronic data forms results in a comparable efficiency to generating a
paper form. Thus, the advantages of the electronic multi-device data forms, like the
simplification of the data capturing process and minimization of entry errors, are not
impaired by a more time consuming data form design process.

An interesting detail is the fact that the domain experts need in average double as
much time (about 49 minutes) as the computer science professionals (about 26
minutes). Thus, the domain experts seem to need more time to get into the details of
the prototype and the approach in general. But, it also has to be taken into account
that the domain experts spend more time to group the elements in a meaningful way
and to order them according to the real data capturing workflow. Since the computer
science professionals have no experience with medical studies, their grouping and
ordering was less reasonable and took less time.

6.3 Presentation and Discussion of Results

- 89 -

Effectiveness
The effectiveness of the test users is measured by means of how much of the given
task they fulfilled. Therefore, in the preparation phase of the study, a list with 20 is-
sues was composed, which contains the most important steps the users had to do in
order to generate a data form that is compliant with the given task. Following, these
steps are called subtasks. The list of subtasks is attached in Appendix E. During the
study, the supervisor marked which subtasks were done by the test users. These re-
sults have again been reviewed afterwards. The number of successfully performed
subtasks allows calculating a percentage that reflects how much of the task a user has
done. If the users got stuck performing some of the subtasks, the supervisor gave a
short hint. These hints were counted and documented. Minor mistakes like setting the
EntryMode attribute to “AutomatedOrManual” instead of “Automated” were not
taken into account. Here, it is more important that the user recognized that he must
change it and where to change it.

In average, the users were able to complete the task to 86% successfully. All users
solved the task to at least 80%. These results are considered positively especially be-
cause of the missing experience of the test users with the application. Most of the
participants needed one hint from the supervisor, the maximal number of given hints
is 2. Taking into account that the users saw the software for the first time, this can be
neglected. The fact that the percentage value of task completeness is above 80% for
all test users also validates the comparison of efficiency among the participants (see
above).

6.3.2 Observed Potential for Improvement
As already mentioned in Section 6.2.2 during performing the task, the test users were
requested to express their thoughts aloud. By this method, the supervisor was able to
take notes. The evaluation of the notes gives information about concrete usability
problems that are caused by the model-driven approach or its kind of implementation
in the :studyforms prototype. Following, these observations are explained and possi-
ble solutions are given. The order of the mentioned problems does not reflect their
severity.

• The missing propagation of major changes on the upper model layers (compare
Section 4.3) to the lower ones, after the transformation already had been done ini-
tially caused problems. Some of the users did the transformations again and there-
fore had to rework their changes to the lower model layers. For other users, the
models just became inconsistent. During the debriefing, one of the users proposed
to use a Wizard like user interface that guides the user from one model layer to
the next to solve the problem. But, not allowing the user to move back in the de-
sign process is assumed to be too strict. Thus, in a future version the propagation
of changes throughout the model layers needs to be enhanced. Introducing a Wiz-
ard is nevertheless an idea that should be further investigated.

• Several users had problems in understanding how the Automated Input Devices
work. This caused problems in using them because the users could not imagine
how the AID elements, which are represented just by a placeholder in the Con-

6 Evaluation

- 90 -

crete Form Model, will work and look like on the final data form. To overcome
this problem, the functionality of the available Automated Input Devices should
be described in more depth directly on the user interface.

• Related to the previous problem, some users also had problems in connecting the
command elements to the balance device element. Here, the problem was that the
users tried to specify the command’s action before they added the balance device
to the data form. Thus, they did not know how to specify the action of the com-
mand. Concerning these problems, most of the hints had to be given by the super-
visor. After the short explanation, the users were able to set up the action refer-
ences. Therefore this problem might not be crucial for trained users and if the
functionality of the AID elements is explained on the user interface.

• Most of the users did not set the data type of the volatile data definition for the net
weight. Since this value is calculated automatically, some users expected the sys-
tem to set the data type based on the data types of the values involved in the cal-
culation. This should be done in a future version.

• The EntryMode attribute of the net weight data definition caused some confu-
sion. This value should be set to “Automated” by the system, if a derivation for-
mula is specified and no longer be editable as long as a derivation formula is set.

• Several users searched the attribute for setting the maximal length of a string val-
ue on the Data Definition Model because in their mental model it belongs to the
data definition, not to the input field. Thus, this property should be moved to the
higher model layer.

6.3.3 Conclusions
The results of the usability study show that in average, the users were able to fulfill
about 86% of the given task in about 40 minutes. This time is comparable to the time
currently needed to create paper data forms with similar complexity. Thus, the model-
driven approach can be used with similar efficiency as the current data form design
process.

The comparison of the domain expert user group with the reference group of comput-
er science professionals yields that the members of the reference group felt more fa-
miliar with the model-driven approach and just need about half the time to perform
the given task than the domain experts. The results of the “think aloud” method
shows that the domain experts spend much more time thinking about a reasonable
grouping of the elements on the data form. Since the members of the reference group
do not know the details about the data capturing processes in a study environment,
they did the grouping in a more intuitive way and therefore needed less time. This
partially mitigates the difference in the Task Completion Time.

Based on the results of the questionnaire it can be concluded that the test users were
very satisfied with the model-driven approach and the prototype as well as with their
development results. In average the users answered with a 6 on a 7 step Likert scale.
The evaluation of the questions about the users’ satisfaction yields no mentionable
differences for the two user groups. Also the learnability was rated with a 6 in aver-
age, which shows that the test users in general easily became familiar with the proto-

6.3 Presentation and Discussion of Results

- 91 -

type. Nevertheless, there is a training curve that maybe can be further limited by in-
creasing the :studyform application’s usability and providing more guidance through
the model-driven process for the designer. The comparison of the answers about the
learnability of the two user groups shows a slightly better result for the computer sci-
ence professionals which was expected due to their experience with model-driven
approaches in general.

In spite of the good results of the questionnaire, the evaluation of the think aloud
method identified several problems of the model-driven approach or its implementa-
tion respectively. The most severe problem is the missing propagation of changes on
the upper model layers to the target models after the initial transformation is per-
formed. This drawback needs to be overcome before the model-driven approach for
designing data forms can be used in a productive environment because it forces the
designer to do unnecessary work which reduces the users’ satisfaction and might
cause errors in the sense of inconsistent models. The other detected problems are of
less importance because they can easily be solved by minor changes to the approach
or its implementation.

- 93 -

7 Summary and Future Work
This chapter summarizes the developed approach to design multi-device data forms
for capturing data in a medical study environment and the results of its evaluation.
Thereafter, an outline of issues that remains open for future work is given.

7.1 Summary
During the thesis, a model-driven approach for designing multi-device data forms was
developed. This approach is used to develop data forms in the context of the :study
software that optimizes the data capturing processes of medical studies conducted at
the DLR Institute of Aerospace Medicine. The approach works on four model layers
that are traversed one after another by the designer. The transitions from one model
layer to the next are done by automatic model transformations.

First, the data that should be captured by the data form is defined at the Data Defini-
tion Model (DDM). This data model also serves as the link between the data form and
predefined parameters in the central :study database. From these data definitions, an
abstract version of the data form’s graphical user interface is generated. This Abstract
Form Model (AFM) is independent of the used target device. On this abstract layer,
the designer specifies which interaction elements are used for gathering the defined
data. Furthermore, peripheral devices are integrated into the data form at this layer.
These devices can be used to partially automate the data entry process. On the next
layer, a Concrete Form Model (CFM) is designed for each type of target device the
data form will be used on. The considered device types are smartphones, tablets and
desktop devices. This separation is based on the different display sizes of these device
types which has to be considered by the design of the data form. Thus, on the con-
crete layer, the design process is split into specific models for each device type. These
models are still independent from the actual platform and application framework of
the target device. The splitting allows defining dedicated layouts of the data form that
fit to the features of the respective device type. Furthermore, the Concrete Form
Model concretizes the Abstract Form Elements from the layer above in such a way
that the used interaction elements are appropriate concerning the available display
size and device features. Depending on the target platform, a last transformation gen-
erates the Final Form (FF) implementation for this platform. The Final Form is not a
standalone application, but is interpreted by a dedicated application for data capturing
that is available for each platform a data form should be used on.

Based on the developed model-driven approach, a prototypical implementation of an
application that supports designing multi-device data forms was done. An important
requirement to this application is that it needs to be usable by people without comput-
er science background. Thus, building up the models is supported by a tree-like
graphical editor to which new model elements can be easily added using drag and
drop. On the Concrete Form Model an additional graphical editor is available that
already illustrates the later visual appearance of the data form. Since the Concrete
Form Model is still independent from the actual target platform, the exact design of

7 Summary and Future Work

- 94 -

the data form is only visible at the target device. The prototype focuses on generating
data forms for mobile devices, especially for smartphones, and provides a transfor-
mation to the Final Form implementation for Windows Phone 8.

The developed model-driven approach and the implemented prototype were evaluated
by a usability study. The study was set up as a proof of concept study whose goal was
to explore whether the model-driven approach is applicable for the future target group
and to find severe problems of the approach. Therefore, eight test users were asked to
design a data form according to a given task description. Four of the test users were
experts in the domain of medical studies at DLR and thus future users of the applica-
tion. The other four test users were computer science professionals who act as a refer-
ence group. The users’ satisfaction was determined by a questionnaire. During the
usability study, the “think aloud” method was used to get information about general
usability problems of the prototype. The answers of the questionnaire yield that the
users are highly satisfied with the implemented prototype. The test users had no se-
vere problems in using the prototype for designing a data form according to the given
task description. The overall result of the study is that the model-driven approach is
applicable for the future users. However, the study revealed some general problems
that remain open for future work.

7.2 Future Work
The following paragraphs give an overview about issues that still need to be done and
possible improvements to the model-driven approach.

Due to the limited time for the thesis, the prototypical implementation focuses on
mobile devices and especially on smartphones. Therefore, the finalization of the
transformation to the Tablet Concrete Form Model and the development of a trans-
formation to the Desktop Concrete Form Model remain subject for future work. The
same holds for the transformations to Final Form implementations for these two de-
vice types.

Especially for the Desktop Concrete Form Model it would be interesting to investi-
gate the usage of a constraint based layout system like it is described by Luyten et al.
(see Section 3.1.4) because the variation of screen sizes on this device type is not as
limited as for the other two introduced types. Additionally, the transformation to the
Mobile Concrete Form Model could be extended in such a way that large groups are
divided automatically into several pages. Therefore the exploration of a sensible divi-
sion algorithm could be subject for future work. Moreover, a further evaluation of the
log files gathered during the usability study could reveal additional potential for im-
proving the model-driven approach.

Furthermore, the prototype does not propagate changes on higher model layers to the
lower ones after the initial transformation is performed (compare Section 4.3). Since
this was one of the main drawbacks discovered during the usability study, a future
version should handle such changes and perform suitable transformations to the lower
model layers without destroying changes that were manually made by the designer.
Possible solutions for this problem have been introduced in Section 4.3.

7.2 Future Work

- 95 -

In order to prevent the designer from developing unreasonable data forms, several
constraints should be introduced. For example it should not be possible to link a Nu-
mericalEdit element at the Abstract Form Model to a data definition with data
type “Text”. There are several other design opportunities similar to this example that
can result in an inconsistent state that should be prevented by the application in ad-
vance.

One aspect that is not yet covered by the model-driven approach in general is the pos-
sibility to display already captured data on a data form. For the 24h urine example it
would for instance be useful to display the urine bottles initially captured at the study
facility at the data form used in the laboratory. Thereby the user can easily see which
samples he still has to process further. To achieve this, some kind of data query defi-
nitions could be added to the Data Definition Model. The values provided by these
elements could then be displayed by some output elements on the data form.

- I -

References
[Bon08] Frank Bongers. XSLT 2.0 & XPath 2.0. Galileo Press, Bonn, second

edition, 2008.

[cam04] Cameleon Project - plasticity of user interfaces. [online]
http://giove.isti.cnr.it/projects/cameleon.html, July 2004.
[Accessed: August 22, 2013].

[CCT+02] G. Calvary, J. Coutaz, D. Thevenin, L. Bouillon, M. Florins,
Q. Limbourg, N. Souchon, J. Vanderdonckt, L. Marucci, and C. Santoro
F. Paternò. The CAMELEON Reference Framework. Technical report,
September 2002.

[CCT+03] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg,
Laurent Bouillon, and Jean Vanderdonckt. A unifying reference
framework for multi-target user interfaces. Interacting with Computers,
15:289–308, 2003.

[Die] Daniel Dietrich. Protected Regions – Core. [online]
https://github.com/danieldietrich/xtext-protected-regions/blob/master/
plugins/net.danieldietrich.protectedregions.core.
[Accessed: August 22, 2013].

[DLRa] DLR. Institute of Aerospace Medicine. [online] http://www.dlr.de/me/en.
[Accessed: August 22, 2013].

[DLRb] DLR. :study. [online] http://software.dlr.de/p/study/home/.
[Accessed: August 22, 2013].

[DLR13] DLR. DLR at a glance. [online]
http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10443/637_read-251,
2013. [Accessed: August 22, 2013].

[EVP01] Jacob Eisenstein, Jean Vanderdonckt, and Angel Puerta. Applying
Model-Based Techniques to the Development of UIs for Mobile
Computers. In Proceedings of the 6th International Conference on
Intelligent User Interfaces, IUI ’01, pages 69–76, New York, NY, USA,
2001. ACM.

[FV04] Murielle Florins and Jean Vanderdonckt. Graceful Degradation of User
Interfaces as a Design Method for Multiplatform Systems. In
Proceedings of the 9th International Conference on Intelligent User
Interfaces, IUI ’04, pages 140–147, New York, NY, USA, 2004. ACM.

[Gooa] Google. Linear Layout. [online]
http://developer.android.com/guide/topics/ui/layout/linear.html.
[Accessed: August 22, 2013].

References

- II -

[Goob] Google. Supporting Multiple Screens. [online]
http://developer.android.com/guide/practices/screens_support.html.
[Accessed: August 22, 2013].

[Gro05] John Grossmann. Introduction to Model/View/ViewModel pattern for
building WPF apps. [online] http://blogs.msdn.com/b/johngossman/
archive/2005/10/08/478683.aspx, October 2005.
[Accessed: August 22, 2013].

[HB11] Steven Hoober and Eric Berkman. Designing Mobile Interfaces. O’Reilly
Media Inc., 2011.

[HII] HIIS Laboratory. MARIAE. [online] http://giove.isti.cnr.it/tools/Mariae/.
[Accessed: August 22, 2013].

[HSL+08] James Helms, Robbie Schaefer, Kris Luyten, Jean Vanderdonckt,
Jo Vermeulen, and Marc Abrams. User Interface Markup Language
(UIML) Version 4.0, January 2008.

[Hub10] Thomas Claudius Huber. Windows Presentation Foundation - Das
umfassende Handbuch. Galileo Press, Bonn, second edition, 2010.

[Kuh12] Peter Kuhn. Windows Phone 8: Multiple Screen Resolutions. [online]
http://www.silverlightshow.net/items/Windows-Phone-8-Multiple-
Screen-Resolutions.aspx, December 2012. [Accessed: August 22, 2013].

[LCC03] Kris Luyten, Bert Creemers, and Karin Coninx. Multi-device Layout
Management for Mobile Computing Devices. Technical report, Expertise
Centre for Digital Media Limburgs Universitair Centrum,
Wetenschapspark 2 B-3590 Diepenbeek, 2003.

[Lew95] James R. Lewis. IBM computer usability satisfaction questionnaires:
psychometric evaluation and instructions for use. International Journal of
Human-Computer Interaction, 7(1):57–78, January 1995.

[LVM+04] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent
Bouillon, Murielle Florins, and Daniela Trevisan. USIXML: A User
Interface Description Language for Context-Sensitive User Interfaces. In
Proceedings of the ACM AVI’2004 Workshop "Developing User
Interfaces with XML", pages 55–62, 2004.

[Mei11] Gerrit Meixner. Modellbasierte Entwicklung von
Benutzungsschnittstellen. Informatik-Spektrum, 34:400–404, 2011.

[Mica] Microsoft. API Reference for UML Modeling Extensibility. [online]
http://msdn.microsoft.com/en-us/library/vstudio/ee517354.aspx.
[Accessed: August 22, 2013].

[Micb] Microsoft. Codegenerierung und T4-Textvorlagen. [online]
http://msdn.microsoft.com/en-us/library/vstudio/bb126445.aspx.
[Accessed: August 22, 2013].

References

- III -

[Mic07] Microsoft. Open Specification Promise. [online]
http://www.microsoft.com/openspecifications/en/us/programs/osp/default
.aspx, February 2007. [Accessed: August 22, 2013].

[Mic12a] Microsoft. Visual Studio Visualization and Modeling SDK. [online]
http://archive.msdn.microsoft.com/vsvmsdk, September 2012.
[Accessed: August 22, 2013].

[Mic12b] Microsoft. XSLT Extension Objects. [online]
http://msdn.microsoft.com/en-us/library/tf741884.aspx, August 2012.
[Accessed: August 22, 2013].

[Mic13a] Microsoft. Design library for Windows Phone. [online]
http://msdn.microsoft.com/library/windowsphone/develop/fa00461b-
abe1-41d1-be87-0b0fe3d3389d%28v=vs.105%29.aspx, August 2013.
[Accessed: August 22, 2013].

[Mic13b] Microsoft. Multi-resolution apps for Windows Phone 8. [online]
http://msdn.microsoft.com/en-us/library/windowsphone/develop/
jj206974%28v=vs.105%29.aspx, July 2013. [Accessed: August 22,
2013].

[MPS03] Giulio Mori, Fabio Paternò, and Carmen Santoro. Tool support for
designing nomadic applications. In Proceedings of the 8th international
conference on Intelligent user interfaces, IUI ’03, pages 141–148, New
York, NY, USA, 2003. ACM.

[MPS04] Giulio Mori, Fabio Paternò, and Carmen Santoro. Design and
Development of Multidevice User Interfaces through Multiple Logical
Descriptions. IEEE Trans. Softw. Eng., 30(8):507–520, August 2004.

[MPV11] Gerrit Meixner, Fabio Paternò, and Jean Vanderdonckt. Past, Present, and
Future of Model-Based User Interface Development. i-com, 10(3):2–11,
2011.

[Nei12] Theresa Neil. Mobile Design Pattern Gallery. O’Reilly Media Inc.,
second edition, 2012.

[Nie93] Jakob Nielsen. Usability Engineering. Morgan Kaufmann, 1993.

[OMG11] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification. [available online: http://www.omg.org/spec/QVT/1.1],
January 2011. Version 1.1.

[OMG13a] OMG. About OMG. [online]
http://www.omg.org/gettingstarted/gettingstartedindex.htm, August 2013.
[Accessed: August 22, 2013].

[OMG13b] OMG. MDA - The Architecture of Choice for a Changing World.
[online] http://www.omg.org/mda/, February 2013.
[Accessed: August 22, 2013].

References

- IV -

[PE01] Angel Puerta and Jacob Eisenstein. XIML: A Universal Language for
User Interfaces, 2001.

[PSS09] Fabio Paternò, Carmen Santoro, and Lucio Davide Spano. Support for
authoring service front-ends. In Proceedings of the 1st ACM SIGCHI
symposium on Engineering interactive computing systems, EICS ’09,
pages 85–90, New York, NY, USA, 2009. ACM.

[RC08] Jeffrey Rubin and Dana Chisnell. Handbook of Usability Testing - How
to Plan, Design, and Conduct Effective Tests. Wiley Publishing Inc.,
Indianapolis, second edition, 2008.

[SB11] Florian Sarodnick and Henning Brau. Methoden der Usability Evaluation
- Wissenschaftliche Grundlagen und praktische Anwendung. Verlag Hans
Huber, Bern, second. edition, 2011.

[SV03] Nathalie Souchon and Jean Vanderdonckt. A review of XML-compliant
User Interface Description Languages. pages 377–391. Springer-Verlag,
2003.

[SVEH07] Thomas Stahl, Markus Völter, Sven Efftinge, and Arno Haase.
Modellgetriebene Softwareentwicklung: Techniken, Engineering,
Management. Dpunkt Verlag, second edition, May 2007.

[TA08] Tom Tullis and Bill Albert. Measuring the User Experience - Collecting,
Analyzing and Presenting Usability Metrics. Morgan Kaufmann, 2008.

[TC03] Laurence Tratt and Tony Clark. Issues surrounding model consistency
and QVT. Technical Report TR-03-08, Department of Computer Science,
King’s College London, December 2003.

[Tra08] Laurence Tratt. A change propagating model transformation language.
Journal of Object Technoloy, 7(3):107–126, March-April 2008.

[W3C99] W3C. XSL Transformations (XSLT) - Version 1.0. [online]
http://www.w3.org/TR/xslt, November 1999. [Accessed: August 22,
2013].

[W3C04] W3C. XML Schema Part 0: Primer Second Edition. [online]
http://www.w3.org/TR/xmlschema-0/, October 2004.
[Accessed: August 22, 2013].

[Wes98] Ivo Wessel. GUI-Design: Richtlinien zur Gestaltung ergonomischer
Windows-Applikationen. Carl Hanser Verlag, München, Wien, 1998.

[WHG97] H. Willumeit, K.C. Hamborg, and G. Gediga. IsoMetricsS, June 1997.

- V -

Appendix

A Example Study Protocol

- VII -

B Transformation Example

- IX -

C Introduction Sheet

C Introduction Sheet

- X -

- XI -

D User Task Sheet

- XIII -

E List of Subtasks
The following list contains important subtasks that need to be done by the test user in
order to fulfill the user task. Based on this list a percentage is calculated, that indi-
cates how much of the task a test user was able to do. The order of the list does not
necessarily reflect the execution order.

1. Generate a new data form and assign it to the right activity pattern

2. Add DataDefinition elements for each of the required parameters
(overall 7 DataDefinition elements)

3. Add a VolatileDataDefinition for the net weight

4. Enter the right formula to calculate the net weight (gross weight – tare weight)

5. Set the DataType attribute of the net weight data definition to “Decimal”

6. Set the EntryMode attribute of the bottle number data definition to
“AutomatedOrManual”

7. Set the EntryMode attribute of the tare weight data definition to
“AutomatedOrManual”

8. Set the EntryMode attribute of the gross weight data definition to “Automated”

9. Group the data definitions in a meaningful way

10. Limit the maximal possible number of characters for the bottle number to 6

11. Limit the maximal possible number of character for the signature to 3

12. Add the barcode scanner AID element

13. Assign the barcode scanner AID element to the correct data definitions

14. Add the electronic balance AID element

15. Assign the electronic balance AID element to the correct data definition

16. Add the “Weight” command and assign it to the right action

17. Add the “Tare” command and assign it to the right action

18. Transform to the Mobile Concrete Form Model

19. Transform to the Tablet Concrete Form Model

20. Transform to the Windows Phone 8 Final Form implementation

- XV -

F Questionnaire about the User’s Background

- XVII -

G Questionnaire about the User’s Satisfaction

G Questionnaire about the User’s Satisfaction

- XVIII -

- XIX -

H Contents of the Attached DVD
The following table gives an overview of the content of the DVD attached to this
thesis:

Folder Name Description of the Content

Thesis This Thesis as a PDF document

Online References Referenced websites as offline versions

Source Code The Visual Studio Solution containing the
source code of the prototype

Transformations The implemented XSLT transformations

XML Schema Definitions The automatically generated XSD files of each
model layer

User Study Material The questionnaires and texts handed out to the
test users

User Study Results The log files and data forms developed by the
test users

	Cover Sheet

	Ehrenwörtliche Erklärung

	Abstract

	Kurzfassung

	Danksagung

	Table of Contents

	List of Abbreviations
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Working Environment
	1.2 Motivation
	1.3 Objective
	1.4 Limitations
	1.5 Thesis Outline

	2 Foundations
	2.1 Medical Studies
	2.1.1 Study Planning
	2.1.2 Data Capturing
	2.1.3 Running Example

	2.2 Model Driven Software Development
	2.2.1 Domain Specific Languages
	2.2.2 Transformations

	2.3 Used Technologies
	2.3.1 XML Schema Definitions
	2.3.2 XSL Transformations
	2.3.3 XAML
	2.3.4 The MVVM Design Pattern

	3 Related Work
	3.1 Model-based User Interface Development
	3.1.1 Core Models
	3.1.2 CAMELEON Reference Framework
	3.1.3 The “Graceful Degradation” Approach
	3.1.4 Constraint-based Layout Management

	3.2 User Interface Description Languages
	3.2.1 USIXML
	3.2.2 UIML
	3.2.3 XIML

	3.3 Design Environments

	4 Conception
	4.1 Overview
	4.2 Model Layers
	4.2.1 Data Definition Model
	4.2.2 Abstract Form Model
	4.2.3 Concrete Form Model

	4.3 Model Changes
	4.4 Automated Data Acquisition
	4.5 Element Sizing
	4.6 Transformations
	4.6.1 Data Definition Model to Abstract Form Model
	4.6.2 Abstract Form Model to Concrete Form Model

	4.7 Final Form Implementation

	5 Implementation
	5.1 Requirements
	5.2 Implementation Concept
	5.3 Graphical User Interface
	5.4 Model Validation
	5.5 Transformations

	6 Evaluation
	6.1 Considered Usability Attributes
	6.2 Setup of Usability Study
	6.2.1 Selection of Study Participants
	6.2.2 Study Procedure
	6.2.3 Technical Infrastructure
	6.2.4 Questionnaires
	6.2.5 User Task

	6.3 Presentation and Discussion of Results
	6.3.1 Usability Attributes
	6.3.2 Observed Potential for Improvement
	6.3.3 Conclusions

	7 Summary and Future Work
	7.1 Summary
	7.2 Future Work

	References
	Appendix
	A Example Study Protocol
	B Transformation Example
	C Introduction Sheet
	D User Task Sheet
	E List of Subtasks
	F Questionnaire about the User’s Background
	G Questionnaire about the User’s Satisfaction
	H Contents of the Attached DVD

