Extending DLR's operational data quality control (DataQC) to a new sensor Results from the HySpex 2012 campaign

Objectives

Introduce a new approach for DataQC within DLR's PAF

- Characterization of sensor *in-flight* performance e.g., spectral smile
- Identification of "anomalous" pixels and data sets e.g., striping
- Provide scene-dependent DataQC e.g., on saturation

Show DataQC examples from HySpex 2012 campaign

Brief update on DLR's PAF related to pre-processing of two camera pushbroom scanners

DataQC Approach

Assumption:

- If scene is large enough for sound statistics, mean bandwise radiance is approximately equal for all cross-track detector elements
- For L1 data, derivations from mean radiance matrix are related to de-calibrated detector elements (striping, bad pxiels, ...)

Prerequesite:

- Approximately equal distribution of surfaces within columns
 - ⇒ can be tested by column variance

Baseline of the Approach

HySpex SWIR 320m-e Image Cube

(13.5°) / 27° FOV 320 cross-track pixels 256 spectral bands (0.9 - 2.5µm) 6.25 nm spectral sampling interval

Band 40

Array of DNs

20	22	81	:
22	23	78	•••
18	21	78	

Array of DNs

20	22	81	:
22	23	78	•••
18	21	78	

Mean DN per column

20	22	79	
----	----	----	--

"Detector Map"

Detecting Striping Artefacts in L1 Data

Anomalous pix. at band 31, pixel 237

Normalized detector map of scene "Lehrforst"

Detecting Striping Artefacts in L1 Data

Difference of ~30% (in radiance) to spatially & spectrally neighboring detector elements

Normalized detector map of scene "Lehrforst"

Detecting Striping Artefacts

Normalized detector map of scene "Lehrforst"

Band 31 Cross-track detector element 50 100 150 200 300 Normalized mean DN per colun h, band 31 1.2 0.9

100 150 200 250 Cross—track detector element 300

DataQC Approach

Objectives for operational DataQC

- Characterize nominal sensor performance
- (2) Provide scene-specific information
- Consistency in striping & bad pixels
- Unstable ("flickering") pixels
- Anomalous datasets / saturation
- Indication for drifts in sensor radiometric calibration
- Indication for changes in spectral calibration / spectral smile (e.g., as a function of temperature and pressure)

Location of the 82 flightlines used in the following

DataQC Approach (cont')

Assumptions:

- When normalized, the mean detector map should be comparable between datasets
- Differences from campaign-mean should indicate
 - Unstable ("flickering") pixels
 - Anomalous datasets
 - Spectral / radiometric drifts
- Also valid for all housekeeping data (DC = "background matrix")

Prerequesite:

- Normalization of integration time, incoming radiance level, ...
- Exclusion of all scenes where scene homogeneity is not given

Analysis of 82 L1 Datasets

- 1. Calculation of column mean & stdev per band & dataset
- 2. Normalization by bandwise mean of each dataset
- 3. Exclusion of spatially heterogeneous datasets
- 4. Aggregation: mean of means per campaign

Analysis of 82 L1 Datasets: Consistency in Bad Pix

Mean normalized radiance over 82 datasets, linear stretch, all pix with >20% derivation from mean in red

Anomalous detector element at band 31, pixel 237 is consistent over campaign i.e., decalibrated

Analysis of 82 L1 Datasets: Other Artefacts

Mean normalized radiance over 82 datasets, non-linear stretch

Analysis of 82 L1 Datasets: Other Artefacts

Bands / Wavelength

Mean normalized radiance over 82 datasets, non-linear stretch

~30 / 1.1 µm

62-90 / 1.3 – 1.5 μm

140-167 / 1.8 – 1.9µm

175 / 2.01 µm

241... / 2.4... μm

Analysis of 82 L1 Datasets: Other Artefacts

Bands / Wavelength

Mean normalized radiance over 82 datasets, non-linear stretch

~30 / 1.1 µm 62-90 / 1.3 – 1.5 µm 140-167 / 1.8 – 1.9µm 175 / 2.01 µm

241... / 2.4... μm

Note: radiance not normalized

Analysis of 82 L1 Datasets: Spectral Smile

Mean normalized radiance over 82 datasets, non-linear stretch

175 / 2.01 µm

Analysis of 82 L1 Datasets: Spectral Smile

Mean normalized radiance over 82 datasets, non-linear stretch

175 / 2.01 μm

Analysis of 82 L1 Datasets: Spectral Smile

3-band ratio related to 1267nm oxygen absorption feature

3-band ratio in wavelength region without abs. features as reference

Shape of cross-track illumination related to spectral smile is consistent over campaign

Additional DataQC - Saturation

Saturation — example 6×104 5×10⁴ Scaled radiance 4×104 3×10⁴ 2×104 1×10⁴ 1500 2000 Wavelength [nm] 1000 2500

SWIR dataset Munich

QC flags "Saturation"

Increased importance for flagging & monitoring saturation due to HySpex variable gain

Additional DataQC - Saturation

SWIR dataset Munich

QC flags "Saturation"

Analysis of 92 SWIR datasets indicates no real problem with saturation

Summary – Methodological Approach

- Approach based on bandwise column means ("detector map")
 - ⇒ suitable for operational processing chains
- Normalization of mean radiance per detector element
 - ⇒ reduced influence of integration time & scene radiance
 - ⇒ mean radiance data now comparable between flights
- Calculation of mean of normalized means for full campaign
 - ⇒ measure for average system performance
- Calculation of relative difference between single flightline and average
 - ⇒ indicator for "abnormal" system performance

Findings – First HySpex Campaign

- Relative calibration of detector elements in relation to spatial / spectral neighbours consistent within campaign
 - ⇒ striping can thus be reduced by improved lab. (or in-flight) calibration
- No large derivation of normalized radiance to normalized campaign mean
- Shape of smile is consistent within campaign
 - Magnitude of smile within campaign yet to be analysed
- No indication for larger spectral shifts
 - Interactive analysis yet to be performed
- Saturation is no major issue in SWIR

Summary and Outlook

- Summary:

- DLR's pre-processing chain adjusted to HySpex two-camera system
 - DataQC as presented
 - For ATCOR & ORTHO feel free to ask!
- In-flight QC shows that HySpex SWIR is stable related to calibration artefacts, bad pixels & shape of smile

- Next steps:

- Update of system correction using CHB lab. measurements
- Full analysis of campaign data incl. VNIR
- Test on variety of pushbroom sensors (incl. simulated EnMAP)

Summary and Outlook

- Summary:

- DLR's pre-processing chain adjusted to HySpex two-camera system
 - DataQC as presented
 - For ATCOR & ORTHO feel free to ask!
- In-flight QC shows that HySpex SWIR is stable related to calibration artefacts, bad pixels & shape of smile

- Next steps:

- Update of system correction using CHB lab. measurements
- Full analysis of campaign data incl. VNIR
- Test on variety of pushbroom sensors (incl. simulated EnMAP)

Thank you for your attention!

Backup slides...

ATCOR – what's new related to HySpex?

- Automatic inclusion of HySpex variable gain
- Bands @ 820nm for WV estimation
- Multiple exo-atmospheric spectral irradiances standards (E0)
- Hitran release (databse 2011 & 2012)

Relative difference Kurucz Vs. Fontenla

Influence of Hitran versions depicted for a vegetation spectrum

ORTHO – what's new related to HySpex?

VNIR

Co-Registration

VNIR (green)

SWIR (red)

Spectral Smile CHB Measurements & In-Flight Estimates

Laboratory measurement in CHB (A. Baumgartner et al.)

In-flight estimation using ATCOR

For band in oxygen feature reagion at ~760nm:

- magnitude of smile @ 2x binning: ~0.7 nm
- magnitude of smile @ 4x binning: ~0.3 nm

Statistics on Atm. Correction

- Consistency in WV estimation VNIR-SWIR (excl. Water scenes)
 - Mean abs. diff in WV column: 0.20 cm
 - SWIR (line with boxes) consistently by
 ~10% lower WV than VNIR
- Reasons:
 - Linear interpolation Vs. non-linear spectral shape of materials
 - WV feature selection (820nm Vs. 970nm)
 - Calibration accuracy
- Influence on overlapping spectral region between VNIR & SWIR

Analyisis of HK data

Linear stretch

Nonlinear stretch

Profile of scanline (no bad pix)

➤Spread of DC is one factor contributing to overall system noise

Mean DC of 82 SWIR datasets

Excluding unsuited scenes (i.e., scene content largely differes cross-track)

Norm. Mean

norm. var.

