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ABSTRACT:

This paper proposes a new method for estimating human crowd densities from aerial imagery. Applications benefiting from an accurate
crowd monitoring system are mainly found in the security sector. Normally crowd density estimation is done through in-situ camera
systems mounted on high locations although this is not appropriate in case of very large crowds with thousands of people. Using
airborne camera systems in these scenarios is a new research topic. Our method uses a preliminary filtering of the whole image space
by suitable and fast interest point detection resulting in a number of image regions, possibly containing human crowds. Validation of
these candidates is done by transforming the corresponding image patches into a low-dimensional and discriminative feature space and
classifying the results using a support vector machine (SVM). The feature space is spanned by texture features computed by applying a
Gabor filter bank with varying scale and orientation to the image patches. For evaluation, we use 5 different image datasets acquired by
the 3K+ aerial camera system of the German Aerospace Center during real mass events like concerts or football games. To evaluate the
robustness and generality of our method, these datasets are taken from different flight heights between 800m and 1500m above ground
(keeping a fixed focal length) and varying daylight and shadow conditions. The results of our crowd density estimation are evaluated
against a reference data set obtained by manually labeling tens of thousands individual persons in the corresponding datasets and show
that our method is able to estimate human crowd densities in challenging realistic scenarios.

1 INTRODUCTION

Monitoring large crowds is an important topic in the field of se-
curity surveillance as it can provide crucial information for de-
cisions by the local security forces, as for example detecting a
hazardous situation which may result in a panic. For mass events
with thousands of people, the only feasible method for crowd
monitoring is by airborne camera systems, due to sheer scale and
the limited field of view from in-situ cameras. Manual crowd
estimation by human observers is possible when enough trained
experts are at hand, but in general this is not the case and often
also a question of costs and time. Therefore it is highly desirable
to employ airborne camera systems which are able to monitor hu-
man crowds at such large events.
For ground based scenarios, (Lin et al., 2001) train a classifica-
tion system on head-like contours to detect and count people in
indoor scenarios. For this system to work, the camera needs to
be roughly on the same height like the observed people, resulting
in the same limited field of view as for a human observer in the
same situation, and is therefore only applicable for small indoor
scenarios. The work (Ghidoni et al., 2012) uses co-occurence
matrices of the input images to measure change in image texture.
As this method is not invariant in scale, rotation or even intensity,
this method only works for stationary cameras as for example in
stadiums. A very good work done by (Arandjelovic, 2008) uses a
sliding window approach in scale space to create a bag-of-words
descriptor for each image patch using clustered SIFT features and
classifying them using a SVM. However, their result is just a bi-
nary crowd mask and the evaluation is done by comparison w.r.t.
a hand-segmented ground truth, and ergo has quite a strong sub-
jective bias towards the labeling persons definition of a crowd.
In a different terrestrial setup, (Aswin C et al., 2009) are using a
multi camera setup and background subtraction to detect single
persons (and classifying their activities using pre-learned linear
dynamical systems).
In the field of aerial crowd detection and crowd density estima-

tion, (Hinz, 2009) uses sequences of temporally consecutive and
overlapping images to estimate the background by applying a
gray-level bounded region-growing approach. Then, a blob de-
tector (in the paper called Laws texture filter) is used on the fore-
ground pixels to filter out non-crowd-like objects. To estimate the
crowd density, a Gaussian smoothing kernel with a fixed standard
deviation / bandwidth is applied. This is an often used approach
for density estimation which we slightly adjust to our needs. Un-
fortunately, a quantitative evaluation is missing. In the work of
(Sirmacek and Reinartz, 2011), the FAST feature detector is ap-
plied to detect blob-like and corner-like image structures. To filter
out non-crowd / non-people responses in highly cluttered back-
ground, in a second step image segmentation is used to remove
segmented areas which are too small (crowds are assumed to be
placed atop of a uniform looking surface) and which contain less
than a certain amount of local features. This approach seems to
work well when the parameters are tuned to a given dataset, but
it is clearly non scale or color/contrast invariant, as the chosen
parameters for the image segmentation algorithm and the thresh-
olds for the number of local features and minimum area size need
to be tuned for every dataset anew. However, the herein proposed
method of determining the bandwidth for the kernel density es-
timation via the mean of the minimum nearest distances of the
detected people gives promising results for estimating the crowd
density.

2 METHOD

As the image space Ω we deal with, is made up by multiple im-
ages in a range of ≈ 21MPix, in a first step we need to apply a
fast method to reduce the search space for the following time con-
suming feature extraction and classification steps. To that end we
apply the FAST interest point detector (Rosten and Drummond,
2006) to extract all corner- and blob-like structures in the image,
as a crowd populated by many individual persons is expected to
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consist of an agglomeration of such structures.
In a second step we extract image patches around these interest
points and extract scale- and rotational invariant texture feature
descriptors by Gabor filtering these image patches. The result-
ing feature descriptors are classified by a support vector machine
(Drucker et al., 1997) and the positively classified crowd areas
are then used to estimate a crowd density for the whole image,
based on kernel density estimation with an automatically com-
puted kernel bandwidth.
For filtering out non-crowd image patches in the second step it is
of course also possible to use additionally provided road maps,
building footprints or digital elevation models, but as this data
usually is not available to the local operators and would restrain
the usage of our method, we do not consider these options. Fur-
thermore we decided against a single person detection, as the re-
sults would be highly unreliable using typical nowadays aerial
imagery taken from a law-regulated flight altitude of 1000-1500m,
where a person seen from directly atop covers roughly 5-10 im-
age pixels (see Figure 1 for examples).
The single components of our complete workflow are as follows

1. Detect FAST features Fk ∈ Ω

2. Extract image patches Ik around Fk

3. Create texture feature descriptors vk by Gabor filtering Ik

4. Classify vk using a trained SVM

5. Estimate crowd density based on positive detections

and will be described in detail in the following sections.

2.1 Interest Point Detector

To restrict the search range for image patch based classification
from all possible pixel positions (e.g. 21MPix) to a small number
of probable candidates (50,000), we first apply an interest point
detector as a very rough but fast initial filtering of all image posi-
tions into regions possibly containing crowd areas or non-crowd
areas. The design of the interest point detector does not need
to be overly complicated, as long as it detects local image in-
tensity changes (see the characterization of crowd areas in the
following Section 2.2). Further, we do not want to detect in-
tensity changes along regular edges, but to detect blob-like and
corner-like small elements. Typical operators for this task are the
Harris corner detector (Harris and Stephens, 1988) or the Lapla-
cian of Gaussian. However, the FAST corner detector (Rosten
and Drummond, 2006) was specifically designed to detect these
points of interest in a minimum of computational time, which is
why we use these FAST features for initial filtering of possible
crowd areas.

2.2 Feature Extraction

Seen from an aerial observer’s side, a human crowd is charac-
terized by an image region containing a number of very small
subregions which are differing in brightness or color from their
surrounding. These subregions or blobs should be further ran-
domly distributed (ranging from dense to sparse), exhibiting no
recognizable pattern (see Figure 1 for typical examples). And as
we are interested in crowd detection only, all other image regions
are deemed to not contain crowds.
We thus need to transform this intuitive characterization of prop-
erties of an image patch I ∈ RM×N into a formal operator F ,
with which we can automatically compute a distinctive and reli-
able feature space Rd

F : RM×N → Rd (1)

The resulting d-dimensional feature space should have low intra-
class variability (one crowd area should result in a similar feature
vector as a completely different crowd area) and a high interclass
variability (feature vectors of crowd areas should be distinct from
feature vectors from non-crowd areas).

(a) High crowd density plus shad-
ows

(b) Low image resolution and low
contrast

Figure 1: Examples of 64×64 image patches containing human
crowds in a challenging aerial imagery. A reliable estimation of
single persons is not possible due to the low image resolution.

Gabor filters are a highly suitable choice for the transformation
F , with their frequency and orientation representations being sim-
ilar to the human visual system. Introduced to computer vision
by (Daugman et al., 1985) and (Daugman, 1988) they have been
found to be particularly appropriate for texture representation and
discrimination. Usage ranges from retrieval of image data, e.g.
(Manjunath and Ma, 1996) and (Han and Ma, 2007), to optical
character recognition (Wang et al., 2005) and fingerprint feature
extraction (Lee and Wang, 1999), just to name a few.
A 2D Gabor filter is a Gaussian kernel function modulated by a
sinusoidal wave in a specified direction (Figure 2), with the re-
sponse of a 2D image convolution being highest for image gra-
dients along the filters orientation. Simply speaking, Gabor fil-
ters are detecting image gradients of a specific orientation. The
convolution of image patches with a number of different scales
and orientations allows for extraction and encoding of local tex-
ture information into a low dimensional feature vector, usable for
generic classification.
The motivation behind our choice of Gabor filters is that a crowd
area, having the aforementioned characteristics of randomly dis-
tributed blobs, should give a high response in every direction,
whereas regular man made structures only have high responses
orthogonal to their main orientations and natural structures should
give a similar response in every direction, but due to lack of con-
trast of a lower magnitude than for crowds.

As their definitions are manifold, and in order for this paper to
be self-contained, we describe our choice of Gabor filters used
throughout the rest of the paper in the following:
The mother wavelet of the two-dimensional complex Gabor func-

Figure 2: Gabor filter bank for 3 scales and 8 orientations
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The real and imaginary parts of this wavelet are computed as

gre(x, y) = G(x, y) · cos (2πWx)

gim(x, y) = G(x, y) · sin (2πWx) (4)

A filter bank of gabor functions gs,k(x, y) is now generated by
rotating and scaling the mother wavelet g(x, y) as follows

gs,k(x, y) = a−sg(x′, y′) (5)

x′ = a−s(xcosθk + ysinθk)

y′ = a−s(−xsinθk + ycosθk)

with angles θk = kπ/K (k = 0, ..,K − 1), K being the num-
ber of orientations, and the scaling factor a−s assuring that the
energy of the filter is independent of the scale s = 0, .., S − 1
(S being the number of scales). Following the argumentation of
(Manjunath and Ma, 1996) to reduce the redundancy of the re-
sulting nonorthogonal Gabor wavelets, we set a = (Uh/Ul)

1/S ,
resulting in W = Uh/a

S−s. The upper and lower center fre-
quency of interest are set to Uh = 0.4 , Ul = 0.1 and σx, σy are
set accordingly.
Given an image patch I ∈ RM×N , its Gabor wavelet transform
is now defined as

Ws,k(x, y) = I(x, y) ∗ gs,k (6)

=

M−1∑
i=0

N−1∑
j=0

I(i−M/2, j −N/2) · gs,k(i, j)

The corresponding texture attributes for one such wavelet trans-
form, given a scale s and orientation k, are computed as the mean
and standard deviation of the absolute valued filter response

µ(s,k) =

M−1∑
x=0

N−1∑
y=0

|Ws,k| (7)

σ(s,k) =

M−1∑
x=0

N−1∑
y=0

(|Ws,k| − µ(s,k)

)2
and the full feature vector f constructed by applying a whole
filter bank of Gabor wavelets (e.g. S = 3 and K = 8) to the
image patch I and concatenating the resulting attributes to a 48-
dimensional vector

f(i) =
[
µ(0,0), σ(0,0), µ(0,1), . . . µ(2,7), σ(2,7)

]
(8)

encoding, laxly speaking, the amount of edges in a number of
different orientations. Note that due to taking the absolute value
of the filter response, it does not matter whether a person appears
dark on bright background or vice versa.
As a naive 2D convolution of image patches I ∈ RN×N with Ga-
bor filters g ∈ RM×M would result in an intractable complexity
of O(N2M2), we transform both the image patch and the fil-
ter from spatial domain to frequency domain by the fast Fourier
transform, multiply the elements pointwise and transform the re-

sult back to obtain our feature attributes, resulting in a complexity
ofO(N2logN2+M2logM2). For typically sized image patches
I ∈ R64×64 and Gabor filters g ∈ R32×32 the speedup factor is
around factor 70. We further sped up the algorithm by precom-
puting the FFT’s of the different Gabor filters only once and by
making use of multi core parallelization. The border pixels of
an image patch need to be treated with care, both in the spatial
and frequency domain. Therefore, before computing the Fourier
transform, we apply a windowing function to the input image, to
reduce the ringing effects. Note that in the spatial domain we
would have similar problems.

2.3 Classification

As we cannot assume our feature vectors to be linear separable
with respect to their classes, statistical distance measures like
the Mahalanobis distance would perform quite bad. In constrast,
kNN classifiers (k nearest neighbors) are fully capable to handle
multimodal distributions in the feature space, but are quite sensi-
tive to overlapping / mixed distribution class areas. Support vec-
tor (regression) machines (SVM) (Drucker et al., 1997) instead
are combining both of the aforementioned advantages, as they
are specifically designed for non-linear classification and, based
on statistical regression, are robust to areas of overlapping class
distributions. The only care has to be taken for highly imbalanced
training data, where the number of positive samples of one class
is much larger than the other classes. Simple over-sampling (syn-
thetically generating positive samples) is taking care of this issue
though.

2.4 Crowd Density Estimation

To estimate a crowd density based upon our classification results,
we consider the crowd density as a probability density function
(pdf) over the image domain. Since the classification results pro-
vide only a finite and very sparse set of N sampled data points
of this pdf, we need to apply additionally data smoothing in-
between, inferring about the real underlying pdf. A standard
method to this end is the kernel density estimation, defined as

fh(x) =
1

N · hd

N∑
i=1

K
(x− xi

h

)
(9)

with the kernel function K typically being a Gaussian distribu-
tion. The only problem here is the choice of the smoothing pa-
rameter (also called bandwidth) h. As the crowd detection algo-
rithm is required to work on images of different scale, the size
and distances between two identical image features can vary in
image space, when the images are taken from different distances
in world space or with a different image resolution. Therefore,
an automatic data-driven bandwidth selection is needed, adapting
for every image or scale respectively.

3 EVALUATION

Instead of hand-segmenting human crowds and comparing a com-
puted binary crowd mask, we evaluate the accuracy of the esti-
mated crowd density in a continuous way without applying any
thresholds. We choose this approach because in reality there is
also no artificial threshold where you distinguish between certain
crowd density levels. Our proposed method uses original, not-
orthorectified JPEG images and does not rely on additional in-
formation like road maps or building plans as our method should
work ad-hoc without additional preprocessing steps.
The images are all taken with the DLR 3K camera system which
consists of three non-metric Canon EOS 1Ds Mark III cameras.
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(a) Public Viewing (b) Public Viewing: Result with some misclassification in the dense
crowd.

(c) Football Stadium (d) Football Stadium: Result with lowest RMSE and DKL in this test
run

Figure 3: Test images with classification results of the detected interest points. green =̂ classified as crowd, red =̂ classified as non-crowd

Each camera has a full frame CMOS sensor with a resolution of
21 MPix. The used lenses are a Zeiss Makro Planar 2/50mm and
a Zeiss Distagon T 2/35mm.

3.1 Test Data

Evaluation of the proposed algorithms is done on five different
aerial image datasets (see Table 1). The City Centre dataset con-
sists of three images showing the crowded shopping streets around
Munich’s New Town Hall on a sunny day. While the individual
persons and their shadows are clearly visible, other regions in
the image consist of small dense crowds where single persons
occlude each other. Due to the lower flight altitude the Public
Viewing data set has a slightly higher resolution. In some im-
ages of this scene one large group sits on the ground of an arena
in front of a screen and smaller but also dense groups stand in
other areas (Figure 3a). The lighting conditions are mixed with
images containing shadows and no shadows respectively. The
Southside data set shows images of a rock festival from two dif-
ferent flight altitudes (1000m/1500m) and different angles. The
scene has both dense crowds and individuals. The main challenge
in this dataset is the huge campground with a lot of small tents.
The interest point detector apparently detects all the corners of
the tents which does not really lead to a reduction of the search
space. Moreover individuals standing between tents can hardly
be detected. The RockamRing dataset shows another rock festi-
val with dense and sparse crowds (Figure 6a, details in Section
3.2). It was acquired with an older camera system which is why
the GSD is worse than in the other datasets. Finally, the images
of the Football Stadium dataset show the crowded area in front of
a stadium from a side-view perspective which results in varying
GSDs. The reference data is acquired by manually marking each
single person in the test images. The ”Images” column in Table

1 indicates the number of manually marked images per data set,
the ”Point of view” column indicates if the data set contains only
nadir images or also images from a sideview perspective.

Dataset GSD [cm] Images Point of View
City Centre 13 3 nadir
Public Viewing 10 10 nadir/side
Southside 13/18 5 nadir/side
Rock am Ring 20 4 nadir
Football Stadium 10 (varies) 10 side

Table 1: Overview of the five different data sets.

3.2 Accuracy evaluation

We evaluate the accuracy of the classified images by comparing
them with the reference images. Single persons in these reference
images were labeled by different human interpreters. Then we
apply the same image smoothing kernel as defined in Section 2.4
on these reference images resulting in a Gaussian-filtered image
with highest intensities at regions with the highest number of la-
beled persons. To actually compare the pdfs of the reference and
of the classified image we normalize both pdfs and convolve the
image with the same Gaussian kernel. Both resulting images are
represented by P and Q in the following. Without loss of gen-
erality the kernel’s radius and standard deviation were selected
beforehand, based on the choice of different human interpreters
who decided which number of persons per area is sufficient to
regard a specific area as crowded.

For similarity measurement we calculate the mean absolute error
MAE = 1

n

∑N
i=1 |pi − qi|, the root mean square error
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RMSE = 1
n

√∑N
i=1(pi − qi)2, and the Kullback-Leibler di-

vergence DKL = (P,Q) = (P −Q) log
(

P
Q

)
of the difference

between the classified P and the respective reference image Q.
DKL ∈ [0,∞) where DKL = 0 means P = Q. Apparently,
the smaller the errors are the more similar the images are and the
better is the classification result.

The classifier training runs on one manually selected image of the
dataset with a certain parameter combination which the classifier
uses for all images in the dataset. Then, this procedure of training
and classifying with the same parameters repeats for many com-
binations. Concretely, we tried Gabor filters with different scales,
orientations, filter radii, and image patch widths. The parameter
ranges are listed in Table 2. We tried all possible combinations in
the given range with the constraint that the Gabor radius must not
be bigger than half the width of an image patch.

Image Patch Width [pixel] 32, 48, 64, 80, 96
Gabor Filter Radius [pixel] 8, 16, 24, 32
Number of scales 2, 3, 4
Number of orientations 8,10,12,14,16,18,20,24

Table 2: Gabor filter parameters we used in the evaluation.

Figure 4 shows the resulting measures for the Publicviewing dataset.
The RMSE and the DKL are plotted for forty of the classified
images. Images 1-20 have the lowest RMSE whereas Images
21-40 have the highest RMSE of the whole test run which con-
sists of several thousands of images due to the large number of
possible parameter combinations. Table 3 lists the used parame-
ters for these images. All three similarity measures often corre-
late with each other and show that the lower these measures are
the better is the classification result. Figure 3 shows the classifi-
cation results with the lowest (=best) similarity measures of the
whole Public Viewing dataset and the whole Football Stadium
dataset, respectively.
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Figure 4: RMSE and DKL for the Publicviewing dataset. The
steep slope between images 20 and 21 marks the border between
images with lowest and highest errors.

The DKL of the first three test images (No.1-3) for the Rockam-
ring dataset is high although the MAE(not shown) and RMSE
are the lowest in this test run (Figure 5 and Table 4). DKL mea-
sures the difference between the two probability distributions of
the classified and of the reference image. In the case of the test
images No. 1-3 the chosen parameters perform badly and clas-
sify all patches as ”non-crowd” and no patch as ”crowd” which
results in a large difference of the pdfs and a large DKL. Figure

No. gr scl ori pw No. gr scl ori pw
1 8 3 14 48 21 24 2 8 48
2 16 2 16 48 22 24 2 16 48
3 8 3 24 32 .. .. .. .. ..
.. .. .. .. .. 38 16 4 24 48
19 8 4 12 48 39 24 2 12 48
20 16 3 16 48 40 8 2 8 48

Table 3: Public Viewing dataset: The images with the lowest and
highest similarity measures and the used Gabor filter
parameters.(No.= Image index which corresponds to the images
in Figure 4, gr=Gabor radius, scl=Number of scales,
ori=Number of orientations, pw=Patch width)
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Figure 5: RMSE and DKL for the RockamRing dataset. Note
the large DKL difference between images No. 3 and No. 4, but a
near constant RMSE.

No. gr scl ori pw No. gr scl ori pw
1 8 2 20 80 21 24 3 14 80
2 24 2 24 48 22 16 2 24 32
3 24 2 24 48 .. .. .. .. ..
4 16 4 20 48 38 32 3 16 80
5 32 4 8 96 39 8 2 16 80
20 24 2 14 80 40 8 2 20 80

Table 4: Excerpt of Gabor parameters for highest and lowest sim-
ilarity measure for the Rock am Ring dataset.

6b shows the bad result. Test Image No.4, however, has a low
DKL which corresponds to the visualization in Figure 6c, which
is much better. This is an unexpected result because how can a
low RMSE be achieved for a misclassified image while for the
same images the DKL is high - as expected for a wrong classifi-
cation.
This case exemplarily shows the limits of this evaluation strategy,
as a smoothing kernel might also remove relevant information.
Another, potentially more intuitive approach, is to compare the
number of manually counted people with the number of rightly
classified, and detected corners per image tile.

4 CONCLUSION AND FUTURE WORK

It has been shown that despite the low spatial resolution in aerial
images it is possible to perform an automatic classification of the
image in regions containing lots of interest points. The prelim-
inary filtering with the FAST corner detector is fast and allows
us to concentrate on regions of interest. These image regions
are convolved with a Gabor filter bank with a variety of differ-
ent scales and orientations. A support vector machine classifies
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(a) Input image (b) Misclassified image

(c) Reasonably good classified (green =̂ crowd, red =̂ non-crowd)

Figure 6: Figures b and c have a low RMSE when compared to
the reference image. However, while Figure b also has a low
RMSE it has a high DKL which helps us to understand the
totally misclassified image. The result in Figure c is considerably
better where both RMSE and DKL are low.

Figure 7: Estimated crowd density (High image intensities corre-
spond to high crowd densities.)

the resulting feature space after manual training. The quality of
the results clearly depends on good training samples and similar
images. The Gabor filter gives some good first results, however,
a good global classifier has still to be found. In our future work
Gabor filters will play a role in combination with other texture
features. Another major aspect is the non-discriminative nature
of crowds. Crowds get more dense in a continuous way and not
in discrete steps which does not fit to a binary classification. Ide-
ally, the end user could adjust the ”level of crowd density” him-
self and then the algorithm shows regions with this density level
in the image. We believe that this study shows the potential of
modern pattern recognition methods applied on crowd density
estimations in aerial images and gives some valuable hints for
further investigations.
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