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Introduction

• Solar Fuels – wide variety with great
perspectives

• Drivers for solar (thermal) fuels
• Economical
• Political

• Synergies with industrial processes
• Connections to fossil ressources

• Innovative processes
• Connections to hydrogen and

Fuel Cells
• Summary and Outlook
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Solar Fuels

• Fuels – Materials to produce heat and power (Dictionary)

• Hydrogen, Synthesis Gas, Methane, Fischer-Tropsch Fuels, 

Methanol, Metal oxides, Sulfur …

• Solar Fuels = Chemically stored solar energy!

• Thermal, photo(electro)chemical, biochemical

• At SolarPACES 2013:

• 2 Solar Fuels sessions - 11 papers, 1 keynote, 9 posters 

• 5 Storage sessions – 3 thermochemical papers, 4 posters

www.DLR.de  •  Chart 3 > Solar Fuels > 17 September 2013



Principle of the solar thermal fuel production
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Chemical heat storage = very high energy densities
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Technology Energy Density (kJ/kg)

Hydrogen 142000

Gasoline 45000

Sulfur 12500

Cobalt Oxide Redox‐cycle 850

Lithium Ion Battery 580

Molten Salt (Phase Change) 230

Molten Salt (Sensible) 155

Elevated water Dam (100m) 1



6th German Energy Reserach Programme
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Concentrated Solar Fuels – CSF
The Advantages

• Very high storage densities

• Dispatchability and for some application for mobility!

• Possibly very efficient production 
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Solar Chemistry instead of Solar Power

• Solar Thermochemistry is efficient because energy conversion steps are
reduced!

• Example: Hydrogen production: H2O → H2 + ½ O2

• Solarchemical: 2 conversions
• Solar radiation – heat – Chemical reaction

• Via solar power: 4 conversions
• Solar radiation – heat – mechanical energy – electrical energy –

chemical reaction
• Solar photo-chemistry uses the light directly without any conversion. 

Photo-chemistry can be economical if the reaction needs a large amount
of photons

• Example: Production of Caprolactam an intermediate for Nylon 
Annual production > 200,000 t (artificial light reduces the efficiency)
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Efficiency comparison for solar hydrogen production from 
water (SANDIA, 2008)*

Process T
[°C]

Solar plant Solar-
receiver
+ power 
[MWth]

η 
T/C 

(HHV)

η Optical η 
Receiver

η
Annual 

Efficiency
Solar – H2

Elctrolysis (+solar-
thermal power)

NA Actual 
Solar tower

Molten 
Salt 
700

30% 57% 83% 14%

High temperature 
steam electrolysis

850 Future 
Solar tower

Particle 
700

45% 57% 76,2% 20%

Hybrid Sulfur-
process

850 Future 
Solar tower

Particle 
700

51% 57% 76% 22%

Hybrid Copper 
Chlorine-process

600 Future 
Solar tower

Molten 
Salt
700

49% 57% 83% 23%

Nickel Manganese 
Ferrit Process

1800 Future 
Solar dish

Rotating 
Disc 
< 1

52% 77% 62% 25%

*G.J. Kolb, R.B. Diver SAND 2008-1900



Concentrated Solar Fuels – CSF
The Challenges
• High temperatures, sometimes corrosive materials
• High investment cost – similar to CSP

• Solar towers seem to be favorable 
• Some applications are forseen to be operated in dishes
• Line focussing concentrators are not providing sufficient temperatures

for most processes, besides steam generation
• Acceptance of competing technologies like PV+electrolysis or

photoelectrochemistry might be higher
• Development status of the technologies

• Lack of support compared to competitors like nuclear fusion or fission
• Reasons?

• Not visionary enough?
• Thermodynamics are already well understood, therefore no

„breakthroughs“ are expected?
• Not fancy enough? Marketing?
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INNOHYP-CA Roadmap 2007 can be interpreted positively
Right processes and planned actions
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SiC family- Corrosion & mechanical behavior

Catalysts - performances & technologies
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Generic Materials
Support

Generic Components 
support

1-10 MW HT Solar facilities
Dedicated to H2 production 

1-10 MW Simulated Nuclear
Facilities development

1-10 MW Scale Tests 
Facilities

Experimental
European Platform

SiC family- shaping & assembly technologies

1-10 MW European HT Experimental
facilities Infrastructure 
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& Qualification 

Open Shared
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Low costs metallic materials + coatings / corrosion

Ceramic for   electrolyser cells – HTSE & hybrid
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The cross-cutting actions Roadmap shows some 
delays: Materials and Test Infrastructure
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0,1‐1MW Solar tests

Lab tests <2kW

10MW Pilot Plant

10 kW Lamp tests 10kW Solar tests

200kW Lamp tests

DLR Innovation Cycle - Solar Tower

Under Construction
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Drivers for CSF

• Economy
• If somebody can make money with the technology there will be 

progress
• First business cases are most probably not obvious

• Policy
++ Security of supply – value to control fuel production 
++ Changing regulations caused by pollution – Megacities (e.g. 

German and European emission laws, California’s Zero Emission 
Policies …)

+ Changing regulations caused by climate change, Scenarios are 
seriously taken into account by CO2 intensive industry, but still 
discussed controversial by the society

- No need to protect of jobs
• Need to support this by R&D as well as by information and education
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Political view: SET-Plan (2007) 
European Strategic Plan for Energy Technology 

• Goals of the EU until 2020 (20/20/20)
• 20% higher energy efficiency
• 20% less GHG emission
• 20% renewable energy

• Goal of the EU until 2050: 
• 80% less CO2 emissions than in 1990

• Actions in the field of energy efficiency, codes 
and standards, funding mechanisms, and the 
charging of carbon emissions necessary

• Significant research effort for the 
development of a new generation of CO2
emission free energy technologies, like 

• Offshore-Wind 
• Solar
• 2nd generation Biomass
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HORIZON 2020

• Most probably about 70 bn€ (2014-2020)

• Main Topics

• Strengthen the EU’s position in science. European Research Council 
(ERC) Person related basic research (31,73%)

• Strengthen industrial leadership in innovation (22,09%)
• address major concerns shared by all Europeans such as climate 

change, developing sustainable transport and mobility, making 
renewable energy more affordable, ensuring food safety and security, or 
coping with the challenge of an ageing population (38,53%)

• Plenary by P. de Bonis on Thursday
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Programs in Germany

• 6th Energy Research 
Programme (3.5 billion € for 
the period 2011-2014).

• The Programme focuses on 
key topics relating to the 
restructuring of Germany's 
energy supply, i.e. 

• renewable energies,
• energy efficiency,
• storage and grids.
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IEA SolarPACES and HIA

• SolarPACES Task II: Works on these technologies since the start of the IA

• 27th Task 2 Meeting yesterday!
• Study for solar fuel roadmaps in South Africa and Australia as high 

potential countries
• Two workshops with 60 and 45 participants

• Information, education, advertisement, collection of ideas 
and strategies

• Connection with activities by HySA and ARENA
• Joint efforts by experts from Australia, Canada, Germany, Israel 

Japan, South Africa, Switzerland, USA 
• Work goes on, roadmaps are under preparation 

• New HIA Task on solar hydrogen production under preparation

• Proposed by the US DoE, broad participation by the HIA members
• Close connection (co-location?) with SolarPACES Task II planned
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Solar Fuels

Synergies with established industrial processes
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Established High Temperature Industrial Processes
• Gasification and reforming of

carbonaceous feedstock for the production
of synthesis gas

• Natural gas
• Coal
• Petcoke
• Waste
• Biomass

Goal: Fuels with reduced CO2 emissions for
power production but also for air, land, and, 
sea transportation

• Sulfuric acid splitting
• Sulfuric acid production

Goals: Reduction of emissions, raise of
efficiency, production of heat and hydrogen
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Steam and CO2-Reforming of Natural Gas

Steam reforming: H2O + CH4  3 H2 + 1 CO

CO2 Reforming: CO2 + CH4  2 H2 + 2 CO

Reforming of mixtures of CO2/H2O is possible and common

Use of CO2 for methanol production:

e.g. 2H2 + CO  CH3COH (Methanol)
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CO2 Reduction by solar heating of steam methane 
reforming and coal gasification
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CO2 Reduction 20 – 50%
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Solar Methane Reforming – Technologies

Reformer heated externally 
(700 to 850°C)
Optional heat storage 
(up to 24/7) 

Development: Australia, Germany, 
Israel, Spain, USA

E.g. ASTERIX project

Irradiated reformer “tubes” filled with 
catalysts or molten salt (up to 
850°C), temperature gradient 

Approx. 70 % Reformer‐h
Development: Australia, Germany, 
Israel, Italy, Japan, and the USA

E.g. Australian solar gas reformers,
Presentation this morning by UMN,
Afternoon by Niigata University

Catalytic active direct irradiated 
absorber

Approx. 90 % Reformer‐h
High solar flux, works only by 
direct solar radiation

Development: Germany, Israel, 
Japan

e.g. SOLREF project

decoupled/allothermal indirect (tube reactor) Integrated, direct, 
volumetric

Source: DLR
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SANDIA-WIS’s sodium reflux heat pipe solar 
receiver-reformer (1983-1984) 

(b)	
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Project Asterix: Allothermal Steam Reforming of 
Methan

• DLR, Steinmüller, CIEMAT
• 180 kW plant at the Plataforma Solar de Almería, Spain 

(1990)
• Convective heated tube cracker as reformer
• Tubular receiver for air heating
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Pilot Scale Solar Chemical Reactors - SolarGas
Experimental set-up of the 200 kW SolarGas reactor, scale-up to 600 kW

Source: R. McNaughton et al., CSIRO, Australia

Top view of DCORE reactor (right) layout of entire integrated reformer and HRU
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„Porcupine“ and „Particle“ Receivcer, WIS
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The metallic-foam-based 5-kWth absorber/reactor 
of Inha University, Korea
• CO2 reforming of 

methane on the Solar 
Dish System 
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Direct heated volumetric receivers:
SOLASYS, SOLREF (EU FP4, FP6)
• Pressurised solar receiver,

• Developed by DLR
• Tested at the Weizmann 
Institute of Science, Israel

• Power coupled into the process 
gas: 220 kWth and 400 kWth

• Reforming temperature: 
between 765°C and 1000°C

• Pressure: SOLASYS 9 bar,  
SOLREF 15 bar

• Methane Conversion:
max. 78 % (= theor. balance)
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Solar Fuels

Water or CO2 splitting processes
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New High Temperature Industrial Processes

• Water splitting
• Hydrogen is necessary for the production of all gaseous or liquid solar 

fuels
Goals: 

• Production of hydrogen for power generation and transportation (land, 
sea, and air?) 

• Upgrade of fossil recourses (oil sands, coal, natural gas)

• CO2 splitting
• If a suitable source is available it is possible to recycle CO2 into new 

fuels
• It needs lower temperatures but the efficiency depends crucially on 

the generation of a useful gas flow
Goals: Synthetic gaseous and liquid fuels
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Hydrogen Vision by the CHIYODA Corporation

• Import of
renewable
hydrogen from
Australia

• Cycling of the
liquids Toluen
and MCC 
(Methyle
Cyclohexane)

• High storage
capacity of
3 mols of H2 in 
1 mol of MCC
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Canadian Oil Sands – Vision by Alberta Innovates

• In 2011, 3MM bpd of oil from 
Alberta, 59% from oil sands

• Oil sands account for 38.2%
of GHG in Alberta (2010)

• H2 production is #1 source 
of CO2 emissions/bbl

• Up to 2000 scf H2/bbl needed 
to  turn bitumen into synthetic 
crude

• SMR is the main technology
• Solar fuels as GHG mitigation 

alternative to CCS
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Power
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Hydrogen
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Steam
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Hot water
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Others
16%

GHG sources ‐ synthetic crude

Source: S. Trottier et al., Alberta Innovates, Canada 
Poster at SolarPACES 2013



Hydrogen for Mobile Applications - Hyundai

• In early 2012, a Hyundai ix35 Fuel Cell 
set a range record for hydrogen cars by 
driving from Oslo to Monaco using only 
existing fuelling stations

• Production of the Hyundai ix35 Fuel Cell 
began in January 2013, making Hyundai 
the first automaker to begin commercial 
production of a hydrogen-powered 
vehicle.

• Hyundai plans to manufacture 1.000 
units of the hydrogen-powered ix35 Fuel 
Cell vehicles by 2015, targeted 
predominantly at public sector and private 
fleets, with limited mass production of 
10.000 units beyond 2015.
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Toyota
• Successful startup: -30° Celsius
• Extended cruising range: 830km 

(JC08 mode) without refueling

• A sedan-type next-generation fuel-cell 
concept is planned for launch in about 
2015.

• Toyota says it will be among the first 
manufacturers to bring hydrogen-
powered vehicles to the European 
market in 2015. The company has also 
said it will start selling fuel cell vehicles 
in the US in 2015, first in California.
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Hydrogen Planes?

• Standard for rockets – e.g. ARIANE V
• Proven for jet planes in the 1980s e.g. by

Tupolev and for small fuel cell aircrafts e.g. 
DLR Antares

• Safety advantage – most casualties
because of burning cerosene, hydrogen 
would be gone instantly (burning batteries
are even worse)

• But unlikely for mass application in the
next decades because of the existing
proven and expensive infrastructure, long
lifetime of aircrafts

Need for liquid fuels with very high 
quality and reduced carbon foot print -
Solar Jet Fuels!
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Well researched Thermochemical Cycles
Steps Maximum Temperature 

(°C)
LHV Efficiency 

(%)

Sulphur Cycles
Hybrid Sulphur (Westinghouse, ISPRA Mark 11) 2 900 (1150 without 

catalyst)
43

Sulphur Iodine (General Atomics, ISPRA Mark 16) 3 900 (1150 without 
catalyst)

38

Volatile Metal Oxide Cycles
Zinc/Zinc Oxide 2 1800 45

Non-volatile Metal Oxide Cycles
Iron Oxide 2 2200 42

Cerium Oxide 2 2000 68

Ferrites 2 1100 – 1800 43

Low-Temperature Cycles
Hybrid Copper Chlorine 4 530 39
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MOreduced MOoxidized

HYDROSOL as an example for Solar Fuel Production

1200 °C

800-900 °C

DLR: Roeb, Müller-Steinhagen, Science, Aug. 2010

CO2

CO
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2004:
First solar thermochemical 
Η2 production

2008:
Pilot reactor (100 kW)

2005:
Continuous Η2 production

HYDROSOL as a technology scale-up example 

DLR solar furnace

PSA solar tower
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2012: HYDROSOL 3D: 1 MW Pilot Plant Designs
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850 m
m

530 mm 1000 mm
Installation on DLR‘s Solar Tower 
Jülich (Artistic View) Compact 1 MW Receiver Design



Important Recent Improvements

• Identification of the key losses within the processes
• Work is done on redox cycles by the leading research groups in Germany, 

Greece, Japan, Korea, Spain, Switzerland, the USA, …
• Stability of the redox materials – from ferrites to ceria, to doped ceria

to spinells and perovskites – reduced temperatures, increased
stability

• Two presentations by SANDIA this morning, three by APTL, 
KIER, and Niigata University this afternoon

• Sweep gas – losses by heating large volumes of non reactive gases
to remove oxygen – reduction of sweep gas and pressure

• Temperature swing – losses by cyclic heating – pressure swing
• Reactor design – imporved particle receivers, redox material as

construction material
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• Demonstration of a thermochemical cycle based on metal oxides

• A lot was learned over the last ten years which has to be implemented

• In all projects we could realise improvements and scale-up

• It is not perfect yet and also the demonstration will not be!

• The chance to do continous work on a technology is the important

advantage of a program like HYDROSOL
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2014: Start of the next project „HYDROSOL Plant“
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Two concecutive European Projects: HyThec and
HyCycleS: Techno-economic analysis

 Flowsheet for solar HyS process refined and 
completed 

 All Components including the solar field were 
sized for a nuclear HyS and SI process and 
a solar HyS process

 Investment, O&M cost, production cost were 
analysed
 6-7 €/kg(H2) for HyS
 scenarios lead to 3.5 €/kg(H2)

 50 MW solar tower plant for hydrogen 
production by HyS cycle defined and 
depicted

 Thorough safety analysis was carried out for 
respective nuclear and solar power plants

By-product revenues

Decomposer investment

Plant life

Electrolyser investment

Discount rate

Electricity cost

Electrolyser replacement

6 8 10 12
Production cost of hydrogen [€/kg]

Start-up expenses

Interests
Periphery

Storage
General facilities

Contingencies

Electrolyser 
replacement

50%
26%

4%

5%

 Equipment

 Electrolyser replacement

 Contingencies

 General facilities

 Storage

 Periphery (Land & Piping)

 Interests

 Start-up expenses

9%
2%

2%

2%

Equipment

Lebros et et al, IJHE 2010
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OutotecTM Open Cycle (OOC)

• Utilization of waste SO2 from fossil sources
• Co-production of hydrogen and sulphuric acid
• Hybridization by usage of renewable energy for electrolysis

> Solar Fuels > 17 September 2013www.DLR.de  •  Chart 45



SOL2HY2 process strategy concept

‐ Development in 3 phases
1. OOC: fossil SO2 + fossil electricity
2. solar‐OOC: fossil SO2 + solar electricity
3. solar‐HyS: solar heat + solar electricity
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Investments vs. revenues

‐ Reduction of initial investments
‐ Financing of HyS development by payback of OOC
‐ Increase of total revenues
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MW Scale-up 
of volumetric receiver-reactor for decomposition of H2SO4 – Start May 2013
Next step would be the coupling of Savannah River National Lab‘s SO2
electrolyzer to the solar sulfuric acid splitter at DLR
Plan exists since 2005 when joint efforts under the IPHE were started

Solar tower Jülich
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High temperature electrolysis process
Temperature in the range 
of 600°C to 900°C are 
required to drive the 
electrolyser.
Electricity and heat are 
supplied to the 
electrolyser to drive the 
electro-chemicals 
reactions. 
The waste heat from the 
H2 and O2 gas streams 
existing the cell is used 
to evaporate water.
The H2O stream is 
further heated by the 
second Heat exchanger 
to raise the temperature 
of the electrolyser. 

 2
22 2 OHeOH

eOO 2
2
1

2
2 

222 2
1 OHOH 
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Solar Superheated Steam Generator for SOEC

Source: Houaijia et al., DLR, Germany
Poster by Thomey et al. at SolarPACES
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3D Design Operation in the solar simulator
providing 5 kg/h steam at 700 °C



Business Possibilities for CSP and Components 
Industry

• Heliostat fields, towers, and Dishes

• High temperature reactions like reforming, water or CO2 splitting

• Linear Fresnel and parabolic troughs

• Steam generation (process heat and feed for electrolyzer)
• Concentrated photo(electrochemical) processes to reduce the reactor

volume

• Innovative gas turbines for heat and solar fuel conversion

• Storage systems for keeping reaction conditions constant
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Conclusion and Outlook
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Future Concentrated Solar Plants – more than power!

Production of solar fuels (renewable H2 and CH4 / CH3OH),
Recycling of CO2, Power Production and Water Desalination (H2O)

CO2

H2O

Sea water

Desalinated 
Water

CH4, CH3OH, … 

H2

Heat

Power
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Thank you very much for your attention!

Don’t miss the posters and presentations! 
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Canada DNI map (kWh/m2/y)

DNI annual average
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• Western Canada (Alberta and Saskatchewan) are home to Canada’s top 
DNI solar resource
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Annual Efficiency of Solar Power Towers
Power Tower 100MWth

Optical and thermal efficiency / Receiver-Temperature
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Solar Tower Jülich

Receiver 22.7m² 

(Intratec, Saint‐Gobain)

Tower 60m 

(Züblin)

2150 Heliostats á 8.2 m² 

(SHP/AUSRA)

Vessel 9t/h, 30 bar/500°C 

(VKK‐Standardkessel)

Thermal storage 1h

Turbine 1.5 MWe 

(KKK‐Siemens)
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Potential Solar sites
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