Antares DLR-H2 - Flying Test Bed for Development of Aircraft Fuel Cell Systems

Fuel Cell Seminar 2013
24.10.2013
Dr. J. Kallo, P. Rathke, S. Flade, T. Stephan, Dr. J. Schirmer
Short Presentation DLR

DLR is the Aerospace Research Center as well as the Space Agency of the Federal Republic of Germany

Research Areas
- Space Flight
- German Space Agency
- Aeronautics
- Transport Research
- Energy Technology
7,000 employees working in 31 research institutes and facilities
- at 8 sites
- in 7 field offices.

Fuel cell research in Hamburg and Stuttgart
DLR - Institute of Technical Thermodynamics
Electrochemical Systems

Fuel cells systems
Reformer and stacks

Battery systems
Battery packs

Electrolysis

Hybrid systems
Fuel cell stack
Battery pack

DC
AC
M
Electric Load
Fuel Cell Aircraft and Airport Applications at the DLR

Airworthy technology development platform for A320
- for emergency power
- for multifunctional use
 → APU
- energy source for nose wheel drive

Modular architecture development platform
- for GPU applications
- for high torque airport applications (transport)

Modular airworthy propulsion platform
Antares DLR H2
- for UAV applications
- for general aviation
 (up to 6 Pax or utility)
Antares DLR-H2 – overview, build-up

High efficient airplane

Technical Challenges:
- High efficient fuel cell system
- Minimized air drag
- Optimized aeroelastics

Fuel cell system
Hydrogen storage
Hydrogen storage system

- Tank: Dynetec W205
- Dimensions 415 mm x 2110 mm
- Weight 99.5 kg
- Volume 74 Liter, H2 capacity 4.89 kg
 at 350 bar → max. 5 h flight time
Fuel cell technology Antares DLR H2

Fuel cell system power up to 33kWnet

→ modular system 3 x 11kW
→ liquid cooled

Modular fuel cell system with cooling booster
Antares DLR H2 – LT PEM Fuel Cell Technology Gen 2
Optimized electrical network - direct hybrid

> 40% overall efficiency (from chemical energy to movement)

Storage System

Batteries

Energy Delivering System
approx. 33kW

High efficient power grid
200-450V DC at 40kW

Very high efficiency and reliability due to:
- Direct coupling of the motor electronic to the fuel cell/energy source, without DC/DC
- High reliability due to direct, parallel use of an optional battery
Aircraft application: Flight profile

Temperature!
$\Delta T = -6 \ldots -10 \text{ K/km}$
Fuel cell system performance „on ground“ (150m) vs. „in flight“ (1200-1600m)

- summarized performance loss „in flight“ due to altitude and cooling effects ca. 5%
Concept of the direct hybrid

- Fuel cell stack: high energy density
- Battery pack: high power density

Load distribution

Hybrid system

Load
Concept of the direct hybrid

Conventional hybrid systems

- DC/DC converter for potential separation
- DC/DC converter are expensive
- DC/DC converter require cooling system

Direct hybrid system

Advantages
- No inductance
- High efficiency
- Lower cost
- Light weight
- Reliable
- Passive elements

Disadvantages
- High voltage spread
Concept of the direct hybrid

- Fuel cell
- Battery
- Battery OCV

Graphs showing the relationship between current in A and voltage in V, as well as power in kW and hybrid current in A.
Battery characteristics: State of charge (SOC)

- Battery voltages depend on SOC and current
- I-U-characteristics change while battery is discharged
- Battery current ratio reduces at lower SOC
Battery characteristics: Temperature

- Battery resistances decreases with higher temperature
- Battery current ratio decreases at lower temperature
- OCV slightly reduces at lower temperature
- Battery heats up over time due to ohmic losses
Fuel cell degradation

- Fuel cell degrades over time: voltages decreases
- Fuel cell current ratio is reduced over time
Aircraft application: Battery Temperature

- Hybrid system/battery used only at high power requests
- Different initial battery temperatures
- Higher fuel cell current at lower temperature
- Battery heats up due to ohmic losses – less influence
Aircraft application: Fuel cell degradation

- Comparison between new and degraded fuel cell at room temperature
- Fuel cell current ratio decreases over time
Conclusions and Outlook

- Hybrid characteristics influenced by
 - Battery state of charge/temperature
 - Fuel cell degradation
- Reliable design for aircraft application
 - Low cost, high efficient, light weight
 - Support fuel cell at high power request (e.g. flight start)
- Very promising results for aircraft application

- **Next step:** Integration and test with Antares DLR-H2 with improved FC Power

- **Further work:** Efficient dynamic applications
Thank you for your attention!