Datengetriebene Zustandsdiagnose als Assistenz einer effizienten Instandhaltung

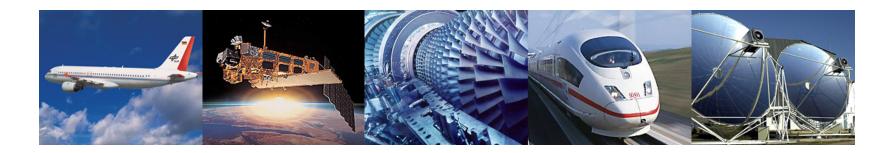
Struktur der Vortrags

1.Rolle des DLR / Instituts für Verkehrssystemtechnik

2. Zustandsorientierte Instandhaltung und Datenanalyse

3. Anwendung im Bereich der Instandhaltung

4. Nutzenbeurteilung aus wirtschaftlicher Sicht



Das Institut für Verkehrssystemtechnik im Deutschen Zentrum für Luft- und Raumfahrt e.V.

Das DLR Deutsches Zentrum für Luft- und Raumfahrt

- Forschungseinrichtung
- Raumfahrt-Agentur
- Projektträger

Standorte und Personal

Circa 7.400 Mitarbeiterinnen und Mitarbeiter arbeiten in 32 Instituten und Einrichtungen in 16 Standorten.

Büros in Brüssel, Paris, Tokio und Washington.

Institut für Verkehrssystemtechnik

Sitz: Braunschweig, Berlin

Seit: 2001

Leitung: Prof. Dr.-Ing. Karsten Lemmer

Mitarbeiter: Momentan rund 140 Mitarbeiter aus

verschiedenen wissenschaftl. Bereichen

Forschungsgebiete: Automotive

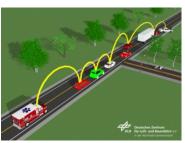
Bahnsysteme

Verkehrsmanagement

Aufgabenspektrum: Grundlagenforschung

Erstellen von Konzepten und Strategien

Prototypische Entwicklungen


Qualität: zertifiziert nach DIN EN ISO 9001

und

VDA 6.2 sowie RailSiTe® gemäß ISO 17025

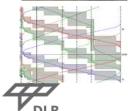
Bahnsysteme

Wissenschaftliche Ausrichtung

Forschung für die **BAHN DER ZUKUNFT**

Ziel: Sicherstellung ihrer Wettbewerbsfähigkeit

Life Cycle Management


Test und Validierung

Rail Human Factors

Innovative Bahntechnologie

Effizienter Bahnbetrieb

Nachhaltige Lösung der aktuell anstehenden Fragestellungen Basis:

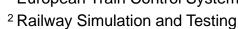
- aktuelle technologischeTrends
- wissenschaftliche Methoden
- → interdisziplinäres Vorgehen
- bahnbetrieblichesGrundverständnis

Life Cycle Management

Ziel

Optimierung der Leit- und Sicherungstechnik über ihren gesamten Lebenszyklus

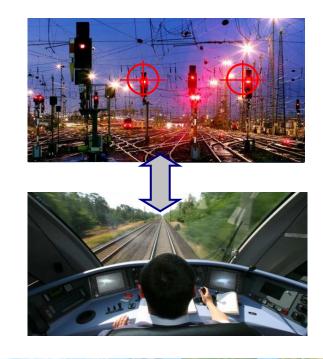
- Integrierte Bewertung von Infrastrukturmaßnahmen und Ausrüstungsvarianten der LST¹
- Migration neuer Techniken
- Zustandsorientierte Instandhaltung:
 Diagnose- und Prognosemodelle für das Abnutzungsverhalten


Test und Validierung

Ziel

Qualitätsverbesserung und Aufwandsreduzierung des Test- und Validierungsprozesses

- Interoperabilitäts- und Konformitätstests von ETCS¹ Komponenten im RailSiTe®²
- Automatisierung der Testfallerstellung, Testdurchführung und –auswertung
- Modellbasiertes Testen
- "Streckenvalidierung" für den Einsatz von ETCS¹

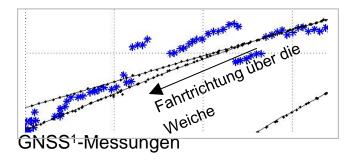


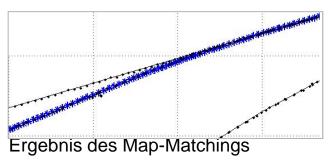
Rail Human Factors

Ziel

Menschzentrierte Systemgestaltung unter Berücksichtigung der Fähigkeiten und Grenzen von Bedienern

- Untersuchungen zum Bedienerverstehen: Anforderungs- und Aufgabenanalysen und experimentelle Verhaltensstudien
- Evaluation bestehender Mensch-Maschine-Schnittstellen und Bewertung der menschlichen Zuverlässigkeit
- Konzeption neuartiger Assistenz- und Informationssysteme

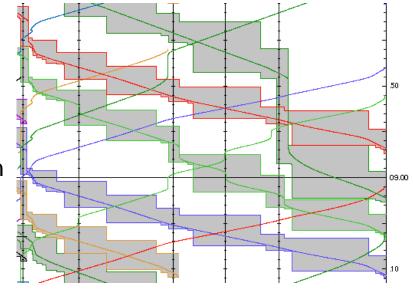



Innovative Bahntechnologie

Ziel

Erhöhung der Effizienz des Bahnbetriebes durch die Entwicklung sensorgestützter Lösungen für Schienenfahrzeuge

- Entwicklung eines modularen, fahrzeugautarken Ortungssystems für eine gleisselektive Ortung: Sensordatenfusion, Map-Matching
- Konzept für ein Tool zur teilautomatisierten Kartengenerierung
- Erweiterung von railML[®] (Infrastruktur-Datenaustauschformat)

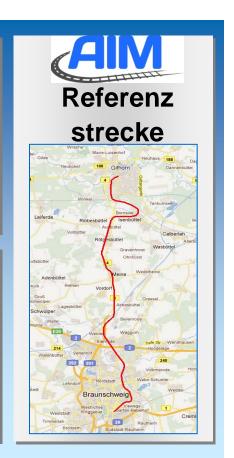


Effizienter Bahnbetrieb

Ziel

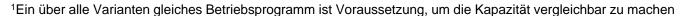
Erhöhung der Effizienz des Bahnbetriebes durch die Entwicklung betrieblicher Lösungen

- Betriebliche Maßnahmen für einen energieeffizienten, lärmarmen Bahnbetrieb
- Methodenentwicklung und –
 anwendung zur effizienten Durchführung der Sicherheitsbetrachtungen
- Methoden zur Beseitigung von Streckenengpässen
- Anschlusssicherung im öffentlichen Verkehr



Bahnsysteme

Großanlagen



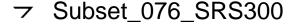
Railonomics

Variantenvergleich für Infrastrukturmaßnahmen

	Kapazitäts- auslastung¹	LCC		
MSTW		83 %	100 %	
ESTW		71 %	60 %	
ESTW mit Streckenblock		55 %	65 %	
ESTW mit Ausweichstelle		43 %	90 %	
ESTW zweigleisig		27 %	130 %	

Projekte (Auswahl)

Gute Balance unterschiedlicher Auftraggeber:

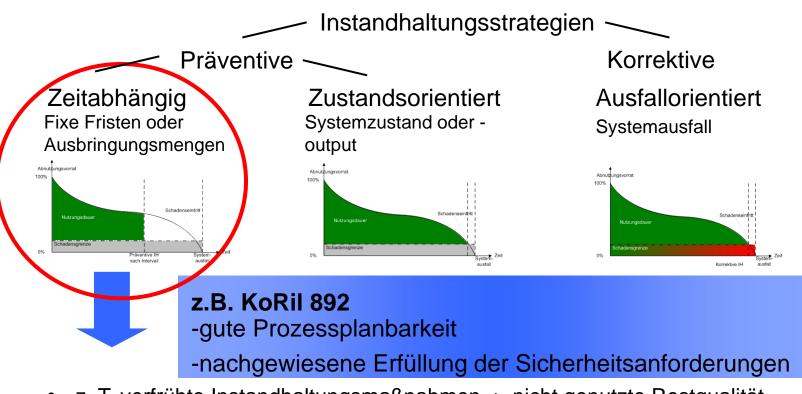

- DemoOrt
- フ PiLoNav
- → NeuPro Plus
- フ NeGSt



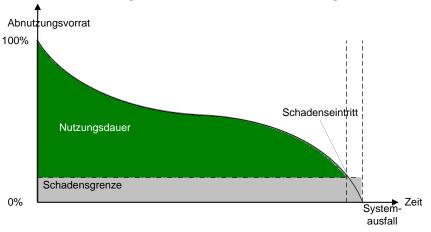
Smsmod

- フ EVC Tests
- → FSB Anwendung
- フ DiB
- → Usability ETCS DMI
- → ETD

- → NGRS
- フ NGT
- → RCAS


Zustandsorientierte Instandhaltung und Datenanalyse

zur Einstimmung IBM TV-Spot auf YouTube

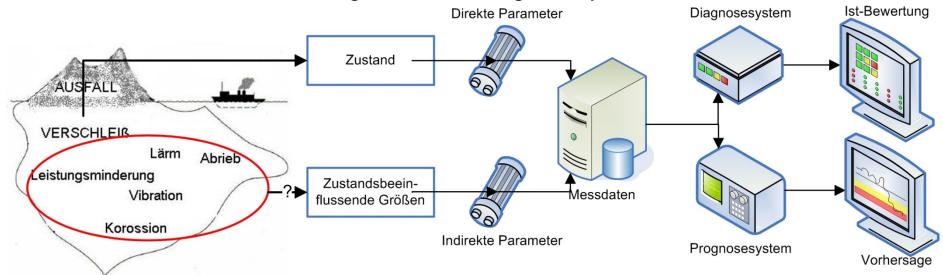

Jede Instandhaltungsstrategie hat ihre Vor- und Nachteile

- z. T. verfrühte Instandhaltungsmaßnahmen -> nicht genutzte Restqualität
- Ausfall eines Elementes vor Ablauf des Wartungszyklusses
- Meist punktuelle Zustandsaussagen durch manuelle Inspektionen

Zustandsorientierte Instandhaltung wird allgemein als beste Strategie für langlebige, produktionskritische Anlagen angesehen

Grund: Optimale Ausnutzung der Funktionsfähigkeit und Lebensdauer

Voraussetzung:


Der Zustand der Anlage muss jeder Zeit bekannt sein.

- → D.h. permanente, manuelle Inspektion oder
- → Automatische Fernüberwachung mit Diagnose und Prognose

Analyse von großen Datenmengen aus der Anlagenüberwachung hat mehrere Zwecke

- Statistik für einfache Auswertungen
- Identifizieren der (versteckten) Zusammenhänge beim Verschleiß
- Entwickeln eines Diagnose- und Prognosesystems

- Daten sind vorhanden. Wenn die Qualität stimmt, lassen sich viele

Aussagen daraus ableiten

Was ist möglich, wenn eine starke Datenbasis

existiert?

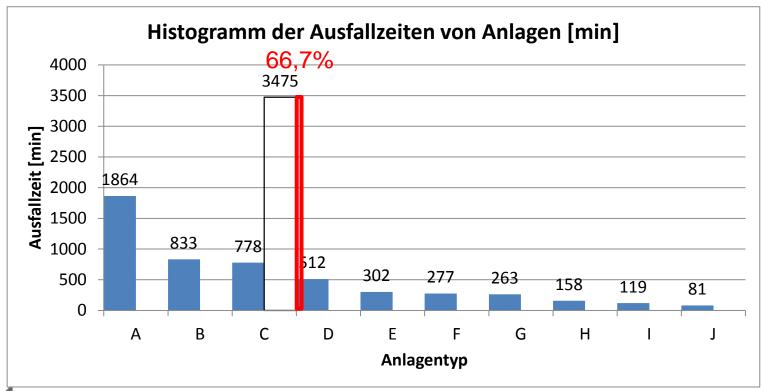
Signalverarbeitung und Data Mining:

- Wiederkehrende Muster, die Hinweise auf Probleme geben
- Unterstützung des Instandhalters bei der Ursachensuche
- Vorausschauende Planung
- Neues Wissen und bisher unentdeckteZusammenhänge

Automatische Anlagenüberwachung hat viele Vorteile für eine Netzinstandhaltung

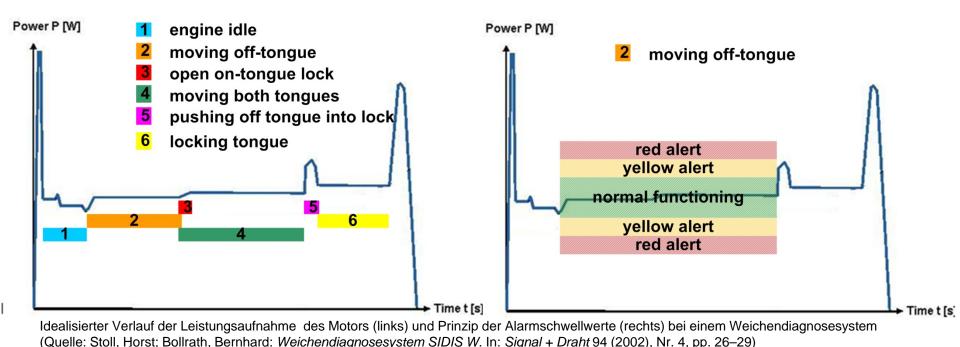
- Über die Pünktlichkeit freut sich der Fahrgast, das ist gut für den Ruf.
- Die Fernüberwachung erhöht die Sicherheit, das ist gut für die Instandhalter.
- Die Planbarkeit beugt Stress vor, das ist gut für die Zufriedenheit.
- Die Abgabe von Routinearbeiten schafft Freiraum für die schwierigen Fälle, das ist gut für die Beherrschung der Technik.
- Über die Effizienz freut sich die Konzernbilanz, das ist gut für das Management.

Anwendung im Bereich der Instandhaltung



Eisenbahnweiche

Statistik für einfache Auswertungen über Handlungsschwerpunkte und Anlageneffizienz

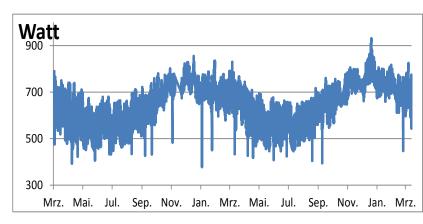

Beispiel: Welche Anlagen sind hauptsächlich für die Ausfallzeiten verantwortlich?

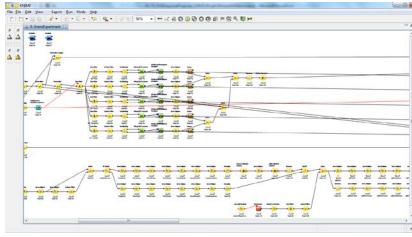
Kontinuierliche Überwachung des Weichenantriebs

- Basis sind Messreihen eines Weichendiagnosesystems
- Überwachung des Stromverbrauchs während des Umstellvorgangs

Die Anzahl der Alarme und die tatsächlichen Störungen passen noch nicht zusammen

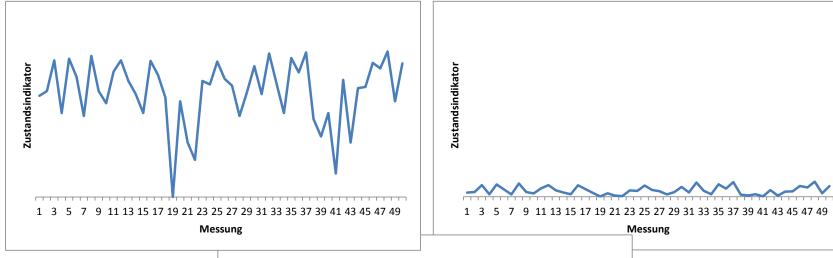
Gegenüberstellung Alarmmeldungen des Weichendiagnosesystems zu tatsächlichen Störungen (Zeitraum 2 Jahre)

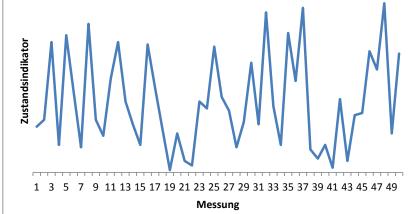

Switch	Measures	Yellow Alerts (no Red)	% of Measures	Red Alerts	% of Measures	Failures
1	2429	819	33,72%	12	0,49%	2
2	1376	576	41,86%	124	9,01%	1
3	754	393	52,12%	20	2,65%	0
4	760	45	5,92%	9	1,18%	0
5	10992	7523	68,44%	2510	22,83%	4
6	31229	4134	13,24%	358	1,15%	13
7	10911	1889	17,31%	757	6,94%	11
8	432	134	31,02%	24	5,56%	0
9	2224	485	21,81%	220	9,89%	1
10	2059	930	45,17%	681	33,07%	0
11	1800	69	3,83%	9	0,50%	0



Die Genauigkeit des Diagnosesystems kann durch Integration der Einflussfaktoren verbessert werden

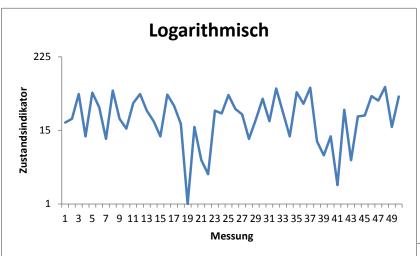
- Der Weichenstellstrom unterliegt
 Schwankungen (saisonal und täglich)
- Schwankungen verursachen
 Fehlalarme der Diagnosesysteme
- Temperatur ist ein Grund für Schwankungen bei bestimmten Weichen
- Temperatur wird zur Diagnoseadaption integriert
- Anzahl der Fehlalarme konnte deutlich reduziert werden

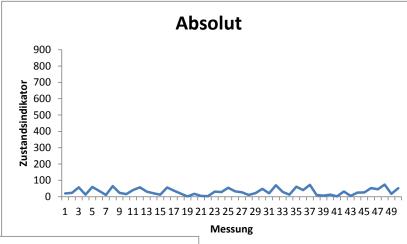


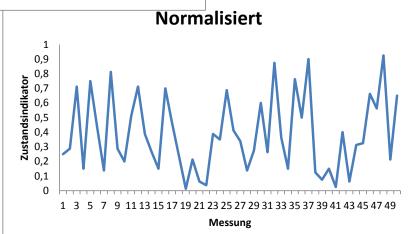


Mustererkennung zur Diagnose

Mensch tendiert zur "Musterfindung"...



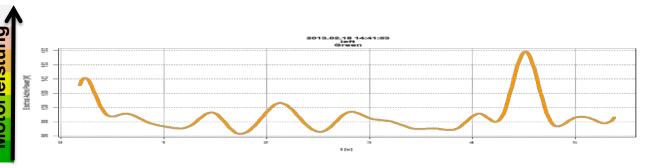


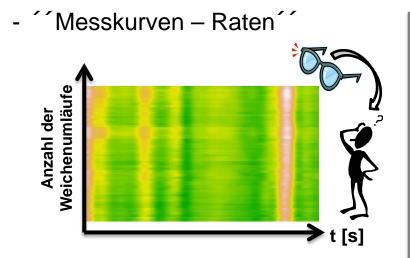


Mustererkennung zur Diagnose

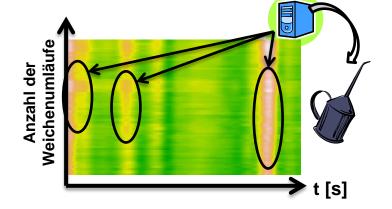
..., doch es fehlt ihm an Objektivität.

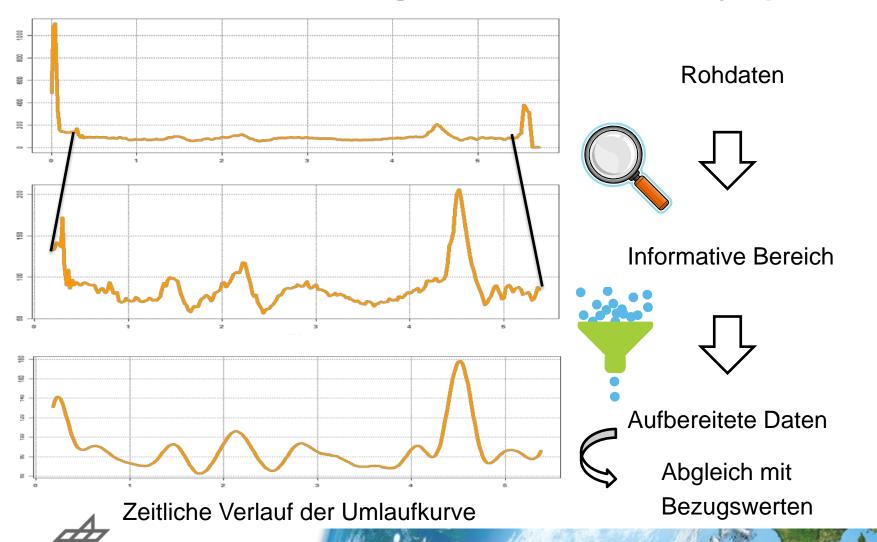






Gezielte, ursachengerechte Entstörung durch Auswertung mehrerer Weichenumläufe

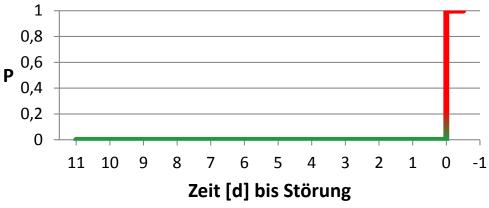

Aufzeichnung mehrerer Weichenumläufe (Draufsicht)

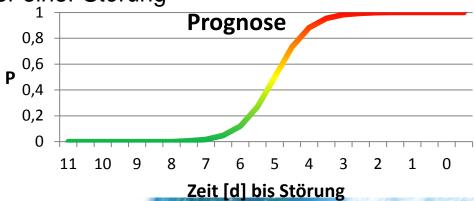


- algorithmische Diagnose

Von der Aufbereitung der Messdaten zu Symptomen

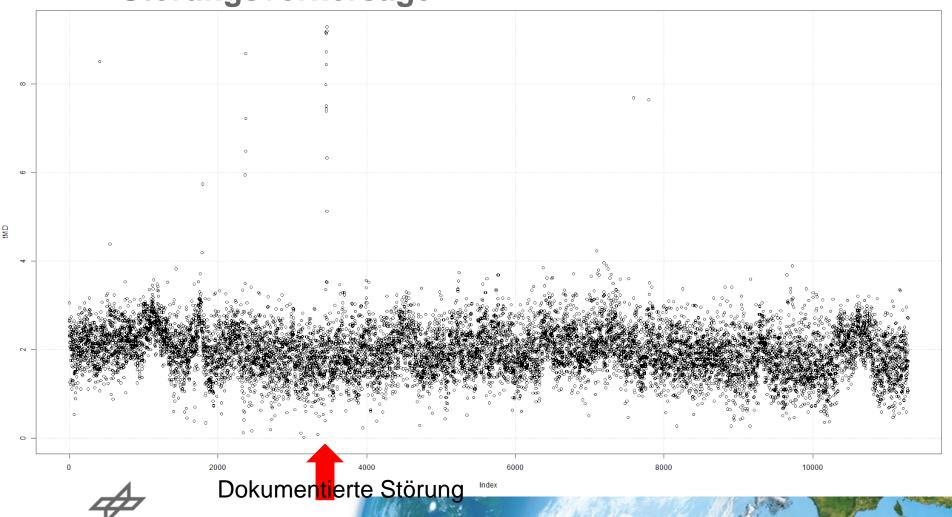
Nutzen der Mustererkennung für die Diagnose von Störungen


Damit lassen sich Störungsursachen bereits ermitteln bevor Mitarbeiter in den Feldeinsatz entsendet wird. Das geht schneller, ist günstiger und angenehmer für das Personal.

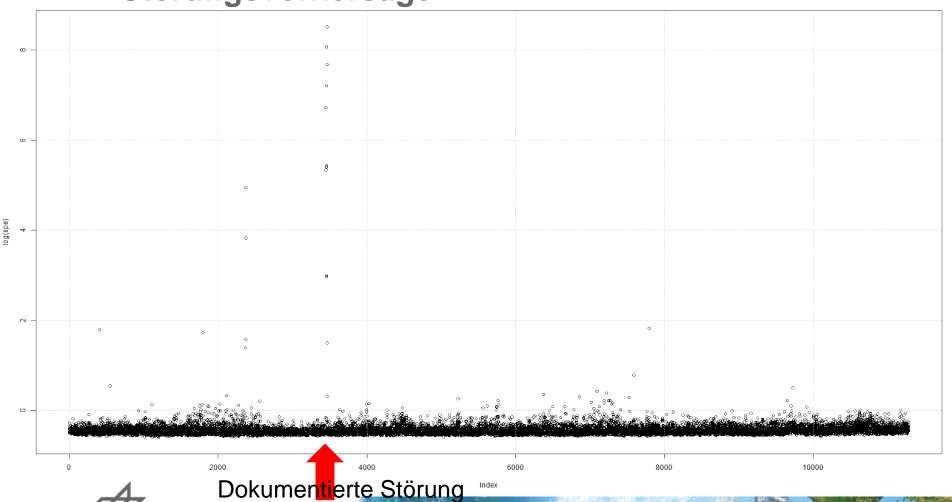


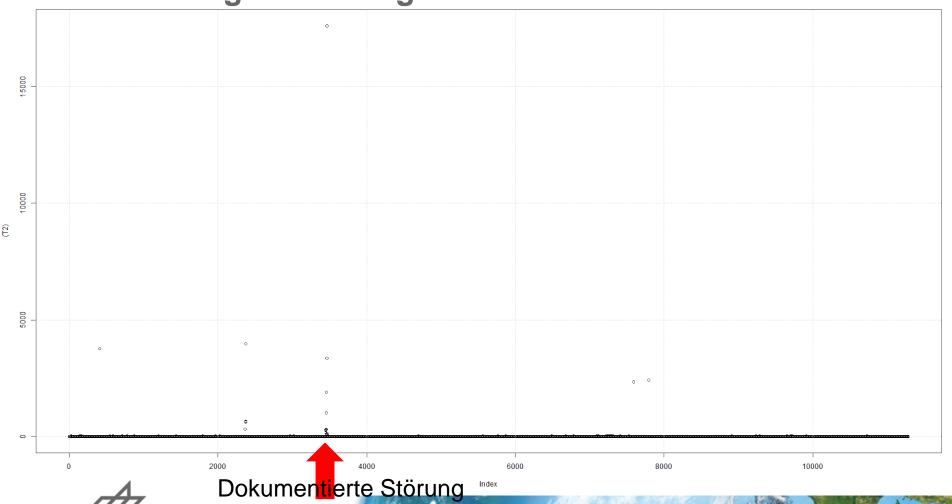
Klassifizierung in Normalzustände und kritische Zustände als Basis einer Prognose

Reaktion bei einer Störung

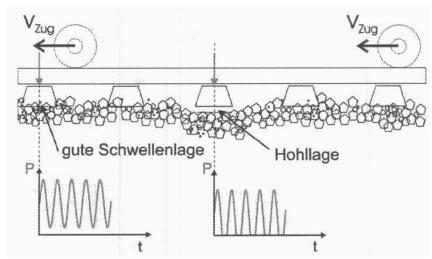


Aktion vor einer Störung




Verdichtete Merkmale zur Rauschfilterung und Störungsvorhersage

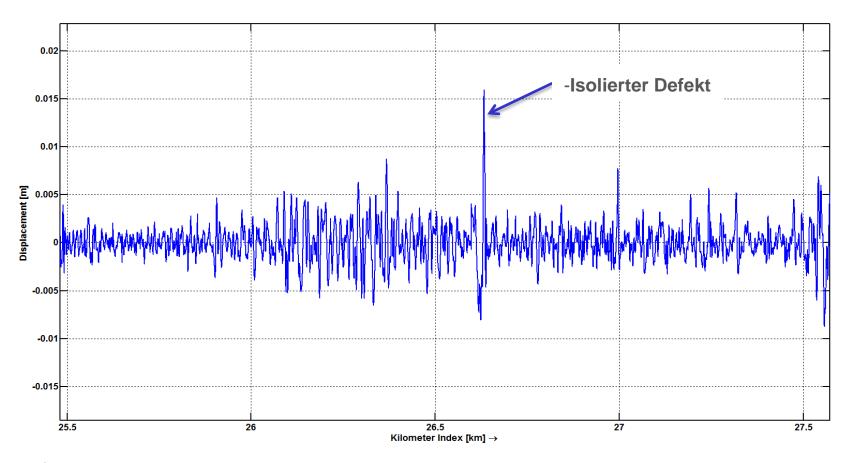
Verdichtete Merkmale zur Rauschfilterung und Störungsvorhersage


Verdichtete Merkmale zur Rauschfilterung und Störungsvorhersage

Beispiel aus der Fahrweginstandhaltung in AutoMain Geometrische Fehlzustände bei relativer Gleislage

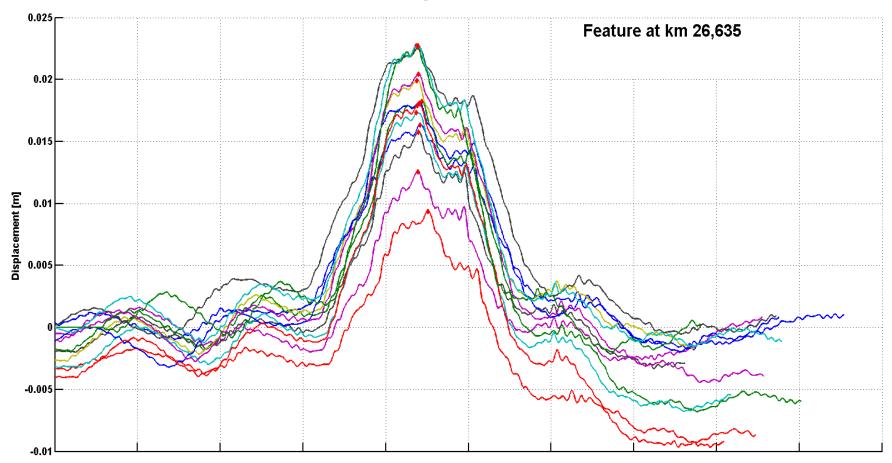
- Einzelfehler können
 - zu Beeinträchtigungen der Fahrzeugdynamik führen (Aufschaukeln)
 - Materialbrüche begünstigen

Quelle: Lageveränderungen des Schottergleises durch zyklische und dynamische Beanspruchungen, M. Baeßler (2007)



-Bild: Alberto Brosowsky (2009)

Beispiel aus der Fahrweginstandhaltung


Einzelfehler im Gleis bei 26,6km

Einzelfehler bei 26,6km (13 verschiedene Tage)

Amplituden werden einander zugeordnet

Zeitreihenanalyse und Prognose der Amplitude Möglich bei kontinuierlicher Datenakquise im Regelbetrieb

Nutzenbeurteilung aus wirtschaftlicher Sicht

Evaluation allgemein: Wie gut ist eigentlich eine Diagnose oder Prognose?

Ziel:

- Minimum an Fehlalarmen

- Maximum an erkannten Störungen

- Alles andere kostet unnötig Geld oder erhöht die Stillstandszeiten

Es sind die unnötigen Kosten mit den Einsparungen abzugleichen.

1. Fehlalarme:

- Verursachen unnötige Kosten, da mindestens am betreffenden Element eine Begutachtung vor Ort durchgeführt wird
- Die Folge sind unnötige Instandhaltungskosten in Höhe von –X \$

2. Erkannte Störungen:

- Verhindern das Auftreten einer Störung und der damit verbundenen Betriebserschwerniskosten
- Die Folge sind Einsparungen in Höhe der Verspätungskosten Y \$
- Instandhaltungskosten sind nicht zu berücksichtigen, da diese auch im Fall entstehen, wenn die Störung nicht erkannt würde

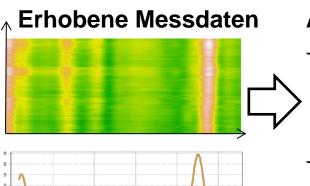
Beispiel zur Nutzenevaluation zweier Prognosesysteme

Störungen = 3 O.K. = 5

Einsparung verhinderter Störung = 10 \$

Kosten Fehlalarm = 5 \$

Messung	Realität	Zufall	1. Prognosesystem	2. Prognosesystem
7	Negativ	Positiv	Negativ	Negativ
8	Negativ	Negativ	Negativ	Negativ
12	Negativ	Positiv	Negativ	Negativ
15	Negativ	Negativ	Negativ	Negativ
16	Negativ	Positiv	Negativ	Negativ
17	Positiv	Negativ	Negativ	Positiv
19	Positiv	Positiv	Positiv	Positiv
20	Positiv	Negativ	Positiv	Positiv
Benefit		-\$5	\$20	\$30



Bei der datengetriebenen Zustandsbeurteilung ist unbedingt einiges zu beachten

- Ohne die Evaluation durch die Instandhaltungsmitarbeiter ist die Beurteilung wertlos
- Wegen neuer Anlagentypen und veränderte Betriebsbedingungen müssen Instandhaltungsmitarbeiter und Systementwickler dauerhaft zusammenarbeiten
- Die vergangenen und zukünftigen Erfahrungen aus dem Feld können nur zu einem Teil in Systemen abgebildet werden
- Die Ergebnisse der Datenanalyse sind immer nur so verlässlich, wie die Daten selbst

Datengetriebene Zustandsdiagnose als Assistenz einer effizienten Instandhaltung

Analyse und Interpretation

- Einsatz fortschrittlicher
 Methoden aus dem Bereich der Signalanalyse und Data Mining
- Bewertung und Mitgestaltung durch Instandhalter, Bauartbetreuer und Fachexperten

Verlässliche Entscheidungshilfen

Kontakt

Thomas Böhm
Thomas.Boehm@dlr.de
0531-295-3504

Institut für Verkehrssystemtechnik Lilienthalplatz 7 38108 Braunschweig

