## Lightweight Design: The Vanguard of Automotive Engineering Strategies for Materials and Construction Methods

Wissen für Morgen

Prof. Dr.-Ing. Horst E. Friedrich Dipl.-Ing. Marco Münster Dipl.-Ing. Gundolf Kopp



## Agenda

- 1. Growing importance of lightweight construction
- 2. Methodical approach in the development process
- 3. Lightweight construction strategies
- 4. Challenge: lightweight construction in the volume segment
- 5. Concepts for current and future cars
- 6. Trends in materials and structures yesterday, today and tomorrow





## Megatrends

- We are reaching the limits of oil extraction
- Climate change is taking place
- Growing population, concentrated in big cities and conurbations
- Demographic trend



- Lower energy consumption
- Reduced CO<sub>2</sub> emissions
- Alternative and regenerative energy sources
- Automated driving / connectivity



Source: http://www.fotocommunity.de/pc/pc/mypics/1438338/display/18369424







Source: versust.blogsport



# CO<sub>2</sub> emissions in new vehicles in Germany and EU CO<sub>2</sub> limits





### **Total of normal resistances and consumption**



## Extension of range with small electric vehicles







## Lightweight construction, vehicle dynamics and electromobility



- Running resistances

- Lateral dynamics
  dependent on CG (SP)
- Unsprung mass
- Secondary effects



conventional vehicle (ICE)

- Position of battery
- Wheel hub drive

- Crosswinds
- Road transverse gradient
- Ruts, stochastic unevenness
- More sensitive to weight



battery electric vehicle (BEV) or fuel cell vehicle (FCV)

- $\rightarrow$  Roll behavior
- $\rightarrow$  Yaw behavior

Lightweight design measures required

Source: IVK Stuttgart, DLR

## From the chain of effects of the traffic system to the methodical development process



## Lightweight requirement

### **Objective:**

- light vehicle with high crash performance (L7e) **Solution:** 

- Body structure in sandwich architecture
  - Skin layers aluminum alloy
  - Foam core polyurethane
- Joining process
  - Crash-stable structural adhesive
  - Welded parts







BIW < approx. 80 kg



#### Euro-NCAP frontal crash $\rightarrow$ intrusion approx. 102 mm

Source: DLR

## Lightweight design concept Objective:

- Crash modular, adaptable vehicle front

### Solution:

 Energy absorbed through cutting



Approx. 20% lighter than steel reference structure



- Lightweight requirement Lightweight concept J Lightweight materials Lightweight shape
- Three-dimensional, reinforced light front vehicle structure



- Peeling pipes for adjustment of energy



## Lightweight material design Objective:



- Light CFRP B-pillar



### Solution:

- Layer structure (0/90/ $\pm$ 45)
- Manufacture using VARI procedure
- Internal reinforcement with additional Omega profile

Source: DLR

### Lightweight material design Objective:

- BIW weight reduction  $\geq$  85 kg ( $\geq$  30%)
- Lightweight construction costs (cost of parts) ≤ 5 €/kg





#### Materials



#### Percent by weight

| Aluminium | 96kg (53%)  |
|-----------|-------------|
| Steel     | 66 kg (36%) |
| Magnesium | 11 kg (7%)  |
| Plastics  | 7 kg (4%)   |

#### Solution:

- Body in white 100 kg lighter than reference (approx. 35%)
- Complete CAD model of the BIW
- Validation of structure (crash, static etc.)
- Specification of joining and production processes
- Life cycle analysis for MMD concept

Source: VW, DLR

## Lightweight shape Objective:

- A-pillar cast node lighter and more cost-attractive

#### Solution:

- New design with magnesium alloy
- Integration of suspension strut slot and A-pillar
- Weight saving approx. 50 %







Source: DLR

## Challenge: lightweight construction in the volume segment



Adjusting lever for lightweight construction:

- Materials
- Concepts
- Production technology
- etc.

- Weight
- Safety
- NVH
- etc.

Source: VW; Daimler; DLR

## **Concept: steel-intensive Example: Golf VII**



### Weight saving:

- structural weight reduced by about 100 kg
  - Electrics - 6 kg
  - 40 kg - Drive train
  - Chassis - 26 kg
  - Body - 37 kg

#### Lightweight design measures:

- High-strength and higher-strength types of steel, reduced sheet thickness (TRB)
- Only using material where it is needed
- Optimal geometry of profiles and surfaces



Ultra-High-Strength Steel, hot formed





Source: VW

## Concept: Aluminum-intensive Example: Range Rover V

### Weight saving:

- Vehicle about 420 kg lighter than its predecessor
- Weight saved in basic shell approx. 39% (almost 180 kg)

#### Lightweight design measures:

- External skin panels between 0.9 and 1.5 mm
- All body joints riveted or bonded
- Side parts compressed in a single aluminum component
  → Fewer body joints
- High-strength AI AC300 for the crash structure





Source: ATZ; www.carsuk.net

## Concept: Aluminum-/steel-intensive hybrid design Example: Audi TT 2nd generation

### Weight saving:

- Weight of body: 206 kg
- Reference body in steel would be 48% heavier
- Pure Al body would be 12% lighter

#### Lightweight design measures :

- Multi-material-desgin
- Shell and space frame structure combined



#### Aluminum 69%

Sheet metal 63 kg
 Cast components 45 kg
 Extruded profiles 32 kg
 Sheet 31%
 Sheet metal 66 kg

Source: Audi

## Concept: Bi-module (CFRP-Al-intensive) Example: BMW i3

### Weight saving:

- Vehicle total weight approx. 1195 kg with battery
- Approx. 300 kg saved through new material and purpose-built design

#### Lightweight design measures:

- Material combination CFC + aluminum
- Bi-modular design
  - "Life" module CFC monocoque body
  - "Drive" module crash and structural components, AI chassis



Source: www.bimmertoday.de

CFRP "Life" module



Source: www.bimmertoday.de Aluminum "Drive" module



Source: BMW

## **Concept: CFRP-intensive Example: F125!**



#### Lightweight design measures:

- Ultra-light fiber composite body
- Structure-integrated hydrogen storage
- Function integration through CFRP e.g. safety belt integrated into seat structure

#### Weight saving:

- CFRP-intensive design approx. 250 kg lighter than current reference
- Front curved and support structures designed as load-bearing assembly unit in CFRP sandwich hybrid design

## Correctly use the good material characteristics of





## Summary

- CO<sub>2</sub> limits are driving forward lightweight construction in vehicle design
- Gradual electrification is reinforcing the trend towards lightweight construction
  - Compensation for extra weight of new components
- Further development of construction methods:
  - Increase in MMD in volume-intensive production sector
- Focus for research and development:
  - Consideration overall, methodical approach in the product

development process



Source: DLR

## Thank you for your attention!

