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In the past years, especially with the advent of multi-fingered hand prostheses, the
rehabilitation robotics community has tried to improve the use of human-machine
interfaces to reliably control mechanical artifacts with many degrees of freedom. Ideally,
the control schema should be intuitive and reliable, and the calibration (training) short and
flexible. This work focuses on medical ultrasound imaging as such an interface. Medical
ultrasound imaging is rich in information, fast, widespread, relatively cheap and provides
high temporal/spatial resolution; moreover, it is harmless. We already showed that a linear
relationship exists between ultrasound image features of the human forearm and the hand
kinematic configuration; here we demonstrate that such a relationship also exists between
similar features and fingertip forces. An experiment with 10 participants shows that a very
fast data collection, namely of zero and maximum forces only and using no force sensors,
suffices to train a system that predicts intermediate force values spanning a range of
about 20 N per finger with average errors in the range 10–15%. This training approach,
in which the ground truth is limited to an “on-off” visual stimulus, constitutes a realistic
scenario and we claim that it could be equally used by intact subjects and amputees. The
linearity of the relationship between images and forces is furthermore exploited to build
an incremental learning system that works online and can be retrained on demand by the
human subject. We expect this system to be able in principle to reconstruct an amputee’s
imaginary limb, and act as a sensible improvement of, e.g., mirror therapy, in the treatment
of phantom-limb pain.
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1. INTRODUCTION
The term ultrasound is used to refer to sound (pressure) waves of
frequency over 20 kHz. These sound waves are routinely produced
by natural phenomena as well as some animal species such as, e.g.,
bats to navigate flight and to locate food sources. In the 40 s and
50 s (Dussik, 1942; Donald et al., 1958) it was discovered that,
thanks to their capability of penetrating the soft tissues without
harming them, focussed ultrasound waves could be employed to
visualize the innards of the human body and used as a diagnostic
tool. The technique has turned out to be so powerful and useful
that today medical ultrasound imaging (also known as medi-
cal ultrasonography, hereafter US imaging) is routinely used in
hospitals for diagnostic purposes.

Modern US imaging (Cobbold, 2007) fully exploits the prin-
ciple of wave reflection and advanced microelectronics to obtain
two- or three-dimensional live images of the body parts of inter-
est. An array of piezoelectric transducers generates a multiplexed,
focused beam of ultrasound waves which penetrates the body
part; partial reflection of the waves at the interfaces between tis-
sues with different acoustic impedance is then converted to a
gray-scale 2D image. High values of gray denote tissue interfaces.
Modern US imaging machines are portable or even hand-held
and can achieve sub-millimeter spatial resolution and 100 Hz
temporal resolution, penetrating several centimeters below the
subject’s skin (Jensen, 2002). US imaging has no known side

effects (World Health Organisation, 1998) and is routinely used
in most hospitals. Figure 1 shows a typical ultrasound image,
obtained from a human forearm.

US imaging is widely used to detect conditions of the muscu-
loskeletal system (Kane et al., 2004) and carries a good deal of
information about the configuration of the human hand. Such
a wealth of information is beginning to be exploited to build a
novel Human-Machine Interface (HMI) with clear future appli-
cations in, for instance, advanced hand prosthetics, and potential
to become a serious competitor to more established non-invasive
peripheral-nervous-system-machine interfaces such as, e.g., sur-
face electromyography. Recently, extensive work by Zheng et al.
(2006); Chen et al. (2010); Jing-Yi et al. (2011) and ourselves
(Castellini and Passig, 2011; Castellini et al., 2012) has revealed
that US imaging can actually be used as an HMI. In Castellini and
Passig (2011) in particular, we have for the first time shown that a
linear relationship exists between the angles at the metacarpopha-
langeal joints of the human hand and spatial first-order features
extracted from US images of the forearm. Since the metacar-
pophalangeal joints are those at the basis of the fingers (linking
each finger to the palm), it is possible to reconstruct the hand
configuration to a good degree of precision, using the US images
of the forearm. The information extracted using such features is
positional, allowing the system to work irrespective of the veloc-
ity of the subject’s movement, the only limitation lying in the
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FIGURE 1 | (A) A typical ultrasound image obtained during the experiment.
The ulna is clearly visible in the bottom-left corner, while the flexor muscles
and tendons are seen in the upper part. (B) A graphical representation of
the human hand and forearm (right forearm; dorsal side up). The transducer
is placed onto the ventral side; plane “B” corresponds to the section from
which the ultrasound image was taken.

hardware and software (i.e., the imaging rate of the ultrasound
machine, the computational power, etc.).

Previous work with surface electromyography (Castellini et al.,
2009; Tenore et al., 2009) shows that a remarkable residual activity
is present in trans-radial amputees even decades after the oper-
ation; therefore we hypothesize that US imaging, which is far
more detailed than electromyography, could effectively be used to
visualize the imaginary limb of an amputee, or of a nerve-injury
patient. The main application of such an achievement would be
that of rehabilitating patients whose motor function is impaired,
by showing them what they actually desire to do. An even more
interesting idea is that of treating phantom-limb pain and other
forms of neuropathic pain, for instance complex regional pain
syndrome (CRPS): the (albeit partial) restoration of the broken
sensorimotor feedback loop might have beneficial effects on it,
since mirrored, imagined and executed movements of the phan-
tom limb are known to be negatively correlated to phantom-limb
pain (Ramachandran et al., 1995; Chan et al., 2007; Diers et al.,
2010).

In the ideal case the system should be extremely lightweight
and easy to use; in particular, the calibration phase (training) must
be quick, cannot involve sensors, and must only involve very simple
tasks: amputees and CRPS patients can usually control their imag-
inary limbs only to a very limited degree of dexterity, such as, e.g.,
imagining to flex or extend a finger; but it is very unlikely that
they can perform graded tasks, as they have no actual cognition
of the position/force they are applying. A further requirement is
that of being able to add new knowledge as the patient requires
it; that is, the system must work incrementally: it must be bounded
in space and fast, and it must allow for fast retraining whenever
required.

In this paper we move along this line, proposing a detailed
analysis of the possibilities given by US imaging as an HMI, and
using it in a realistic way, according to the above requirements.

First of all, we shift the focus from joint angle prediction
to finger force prediction. From the point of view of prosthetic
applications, this enables force/impedance control as opposed to
position control, allowing for a more natural, dexterous inter-
action with the environment and the objects to be grasped and
manipulated. Secondly, we show how a system based upon simple
linear regression can be tuned to fulfill the above requirements:
we show that a linear relationship exists between spatial first-
order US image features and forces at the fingertips; we show
that it suffices to gather data from a human subject only when
resting and exerting maximum force, and the model will then be
able to correctly predict the intermediate force values, too, to an
acceptable degree of precision; we show that no force sensor is
required to train the system: a visual stimulus can be directly used
as the ground truth, therefore relieving the patient from using
additional hardware - the data collection can be reduced to press-
ing one’s fingers on a table. Lastly, we show that the system can
be re-calibrated each time a new US image is available, keeping
the prediction speed at cinema quality (30 Hz). We first analyse
how the prediction error changes as new samples are taken into
account; we then perform an online experiment showing that,
as the prediction degrades due to external factors (in this case, a
shift in the position of the ultrasound transducer), the system can
acquire new knowledge and incorporate it, restoring the previous
prediction accuracy.

This work is an extension and a completion of Castellini and
González (2013).

2. MATERIALS AND METHODS
2.1. PARTICIPANTS
Ten healthy human subjects (ages 28.5 ± 4.86, max 40, min 23,
all right-handed, gender: 9 males, 1 female) joined the experi-
ment. Each subject received a thorough description of the exper-
iment, both in oral and written form. Informed written consent
was obtained from all participants. Experiments with ultrasound
imaging were approved by the Ethical Committee of the DLR.

2.2. EXPERIMENTAL SETUP
2.2.1. Ultrasound imaging
Ultrasound images were gathered using a General Electric Logiq-
e portable ultrasound machine equipped with a 12L-RS linear
transducer (also called probe). The machine was set to B-mode,
resulting in a gray-valued image representing a section of what
lies directly under the probe, and configured with the following
settings: ultrasound frequency of 12 MHz, edge enhancement on,
focus point at a depth of about 1.3 cm, minimum depth of field.
This results in a frame rate of 38 Hz.

Movement of the probe with respect to the subject’s skin,
which would have severely hampered the system [see Castellini
et al. (2012) again] was avoided using a custom-built plastic
cradle obtained via rapid prototyping. The cradle hosts the trans-
ducer’s head on one side (velcro straps attach the transducer
to the cradle), while being lightly but firmly tied to the fore-
arm on the other side by means of a biocompatible elastic band
and a side-release buckle. Figures 2B–D shows the transducer,
the cradle and the combination of the two fixed on a subject’s
forearm.
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FIGURE 2 | Parts of the setup. (A) ATI Mini45 force sensor, fixed to the table. The subjects press on its top; (B) linear ultrasound transducer GE 12L-RS; (C)

custom-made transducer cradle, disassembled; (D) transducer attached onto a subject’s forearm, using the cradle.

After extensive initial visual checks, we fixed the transducer on
the ventral side of the forearm, at a distance of about 10 cm from
the elbow. The typical output image (consider Figure 1 again)
contains the ulna and the main flexor muscles and tendons. The
images are captured from the ultrasound machine’s VGA video
output using a commercial PCIe video capture card, running at
60 frames per second. As the frames are captured asynchronously
with respect to the ultrasound machine, not all of them are whole
ultrasound images. In order to avoid considering torn or repeated
frames, we enforced the same kind of filtering of Castellini et al.
(2012), obtaining a valid frame rate of slightly less than 30 frames
per second.

2.2.2. Fingertip forces
A single ATI Mini45 SI-290-10 force sensor was employed to cap-
ture the force exerted by each finger in turn. This sensor features
a guaranteed linear output and a resolution of 1

8 N. The sensor
was taped onto the setup table at a convenient distance from the
subject’s hand, so that a minimal movement would be involved
in pressing it with each finger. The sensor was connected to a
DAQ card, and its values were streamed over UDP onto the local
network. Figure 2A shows the force sensor.

2.3. EXPERIMENTAL PROTOCOL
The main experiment of this study consisted of data collection
only; US images, force readings from the sensor and stimulus val-
ues were synchronously recorded. Section 3 describes a second
experiment in which data were captured and processed online.
The second experiment closely follow the guidelines of the main
one.

At the beginning of the experiment, each subject sat com-
fortably on an adjustable office chair, maintaining an upright
body posture with both feet on the floor and the elbow bent
at 90◦. Certified US gel was applied directly to the skin over
the target area, approximately 10 cm below the elbow. The US
probe was then fixed to the forearm using the custom cradle.
In front of the subject, and directly next to the force sensor, a
computer screen showed the live US images and the experiment
instructions. Figure 3 shows a bird’s eye view of the setup.

Initially each subject was asked to press the sensor once with
each finger, applying the largest possible force without feeling dis-
comfort or pain. This way we gathered an indication, Fmax, of the
maximum forces applicable by each subject at each finger. The
subjects were then asked to simply lean their dominant hand on
the table next to the sensor and, during the experiment, do as
instructed by a visual stimulus.

The experiment consisted of two identical sessions, and each
session was likewise divided in two parts, according to the kind

FIGURE 3 | A bird’s eye view of the setup. The subject sits in front of a
screen on which the stimulus is shown; meanwhile force data and US
images are recorded.

of stimulus administered: an on-off phase (OO) and a graded
phase (GR). The complete structure of the stimulus for one of
the sessions is displayed in Figure 4A. The different phases will be
hereafter denoted as OO1 and GR1 (for session 1) and OO2 and
GR2 (for session 2).

2.3.1. On-off phase
During these phases (OO1 and OO2), the stimulus induced the
subject to either rest or apply maximum force with each finger.
The subject was presented with both text banners (e.g. “rest”,
“press with the index finger” or “press with the thumb” - notice
that pressing with the thumb in this configuration is tantamount
to rotating it, for example when hitting a piano key with the
thumb) and five green wide vertical bars, one for each finger,
that got filled whenever the subject had to apply force. The
subjects were instructed to press with the required finger on
the sensor applying “a reasonably large amount of force.” This
intentionally fuzzy indication reflects what can be asked of an
amputee.

As depicted in Figure 4A during the on-off phase the subject
was told to rest or apply force with each finger in turn (little, ring,
middle, index and thumb), and the whole cycle was repeated 5
times. Each flexion lasted 4.5 s, and 4.5 s of rest were allowed in-
between flexions. Additionally, the transition of the vertical green
bars from rest to maximum force and vice versa lasted 1 s each.
This results in a duration of 5 × 5 × (4.5 s + 1 s + 4.5 s + 1 s) =
275 s for each on-off phase.
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FIGURE 4 | (A) Structure of the stimulus shown to the subjects, first session.
In the on-off phase (OO1), only rest and maximum force are induced for each
finger, each repetition consisting of 4.5 s of force application, followed by 4.5 s

of rest. Five repetitions per finger are induced. In the graded phase (GR1) the
subjects must exert force following a squared sinusoidal pattern. (B) Forces as
measured by the force sensor during the experiment for a typical subject.

2.3.2. Graded phase
In the graded phase, the subject was induced to exert forces fol-
lowing a squared sinusoidal pattern, i.e., to apply a full range of
forces from none to maximum. During this phase two colored
vertical bars were displayed on the screen: a wide green bar rep-
resenting the required force and a narrow red bar showing the
force actually applied at the sensor’s surface. The stimulus for the
required force was chosen as 0.8Fmax sin2(t). Figure 4B shows the
force measurements of the sensor for a typical subject during one
of the sessions. In this case each pattern (from rest, increasing the
force to maximum then decreasing again to rest according to the
sin2 pattern) lasted 4.5 s, and 1.5 s of rest was allowed in-between
flexions. This results in 5 × 5 × (4.5 s + 1.5 s) = 150 s for each
graded phase.

2.3.3. Data synchronization
All in all the experiment lasted 275 s + 150 s + 275 s + 150 s =
850 s = 14′10 s. No subjects reported discomfort of fatigue dur-
ing or after the experiment. US images, force measurements
and stimulus values were initially inspected to ensure that no
delay was introduced during the UDP transmission of the forces.
This allowed us to use the valid frame rate, 30 Hz, as the global
sampling frequency. (Notice anyway that the bandwidth of the
signals we are interested in, i.e., frames and force data, is directly
dependent on the stimulus, that is less than 1 Hz).

2.4. VISUAL FEATURES
2.4.1. Feature extraction
From each ultrasound image the same kind of visual local fea-
tures used in Castellini et al. (2012) were extracted; namely,
181 uniformly distributed circular regions of interest (ROIs) of
radius 20 pixels were selected on the image, each ROI cen-
ter being 50 pixels apart from each other. These values are the
optimal trade-off between the required amount of information
and computational feasibility, and were determined in an initial
round of experiments—this was already determined off-line in
the aforementioned paper.

The motivation for choosing a uniformly-spaced grid is that
we are not interested in targeting precise anatomical features pro-
jected on the image, but rather to have a thorough although
compact representation of the deformations induced by the

FIGURE 5 | The grid of ROIs, superimposed to the typical shot seen in

Figure 1. Each ROI has a radius of 20 pixels, and each ROI center is 50
pixels apart from each other.

application of forces. Local spatial approximations are preferred
with respect to, e.g., global features (histograms) and temporal
derivative features (optical flow) since, as it emerges from visual
inspection of the images (Castellini et al., 2012), local changes in
the images are related to the anatomical structures involved in
the applied forces. For instance, flexing the little finger is enacted
by flexing a part of the M. Flexor Digitorum Superficialis, whose
projection on the ultrasound images (in our setting) is localized
in the upper-left corner. The changes in the images positionally
reflect the movement of the muscle, therefore being related to the
exerted forces. Figure 5 shows the grid of ROIs superimposed to
the typical shot visible in Figure 1.

More in detail, about the extracted features: let the ith ROI
be centered around (xi, yi); then from each ROI three real num-
bers (αi, βi, γi) were computed, such that the gray values of
each pixel (x, y) ∈ ROIi would be approximated by αi(xi − x) +
βi(yi − y) + γi. Intuitively, αi denotes the mean image gray-scale
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gradient along the x direction (rows of the image), βi is the
same value along the y (columns) direction, and γi is an offset.
The three features represent a first-order spatial approximation
of the gray values of the ROI, accounting for the morpholog-
ical structure of that region. In order to extract these features
(and for all other image-related computations and evaluations)
we used the HALCON v10.0 library by MVTec (see www.mvtec.
com/halcon). Since three numbers were extracted from each ROI,
the dimension of one US sample is 181 · 3 = 543.

Notice that no mechanism compensating the movement of the
probe with respect to the subject’s skin is here enforced, as it had
been done in Castellini et al. (2012). The reasons for this choice
are explained in the Discussion Section.

All signals (force and visual features) were lowpass filtered
with a Butterworth first-order low-pass filter, cutoff frequency of
1 Hz. From the data in the on-off phases only the last two thirds
of the on and off periods were taken into account in order to
avoid considering the transitions from rest to maximum force and
vice-versa.

2.4.2. Qualitative feature analysis
A qualitative analysis of the patterns corresponding to finger
forces, as they appear in the input space, was performed initially;
in particular, we were interested to determine how different from
one another they were. Figure 6 shows two different views of
some of the visual feature samples obtained from a typical sub-
ject, reduced to three dimensions using Principal Component
Analysis. Each color denotes a subset of the features. The samples
labeled “rest” are obtained by selecting all samples in the OO1
and OO2 phases corresponding to the last two thirds of each off
period; the other sets are obtained in the same way for each finger,
but considering instead the last two thirds of each on period.

As is apparent from Figure 6, at least in this case each reduced
pattern obtained during extreme forces (minimum and maxi-
mum) is clearly clustered and occupies a different portion of
the reduced input space. The patterns representing the resting
state are all grouped into one single cluster. In order to check
whether this property holds in general for our dataset, we have
checked, for each subject separately, how separated these clusters

are in the original, 543-dimensional space. The chosen measure
of separatedness is the following: let Ci and Cj denote two of
the aforementioned clusters, and let σi ∈ R

543 be the standard
deviation of Ci; then a safety index sij is defined between the two
clusters as

sij = max{σi}
||Ci − Cj||

The value sij is therefore the ratio between the maximum over
all dimensions of the standard deviation of cluster Ci (the largest
width of the cluster), and the Euclidean distance between clus-
ters Ci and Cj. A small value of sij indicates that most elements in
Ci are far away from Cj, therefore hinting at a good separability
between the two clusters. For each subject the safety index among
all pairs of clusters was computed, leading to a safety matrix
S = {sij}; we then averaged out all safety matrices, obtaining the
general safety matrix, visible in Figure 7.

The highest value in the matrix is 2.054% (little and ring fin-
gers) indicating that in all cases the patterns employed for the

FIGURE 7 | The general safety matrix. Each entry of the matrix, sij , is the
safety index between clusters Ci and Cj , that is the ratio of the maximal
standard deviation of cluster Ci and the Euclidean distance between the
two clusters. Values averaged over all subjects.

FIGURE 6 | Two different views of a three-dimensional PCA projection of the samples obtained from a typical subject during OO1 and OO2. Colors
denote finger flexions and rest.
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on-off training are extremely well separated in the input space
and could be effectively classified, if required1.

We have also run a standard linear classification method
[namely a Support Vector Machine with linear kernel (Boser et al.,
1992; Cristianini and Shawe-Taylor, 2000)] on all clusters, subject
per subject. The dataset was first shuffled, then training was per-
formed on one tenth of it while testing was done on the remaining
90%; this procedure was repeated 50 times, each time with a dif-
ferent shuffling. The classification error (balanced error rate) is
in all cases extremely low, namely, the highest error rate is 2.7%
± 1.8%. Notice that in Shi et al. (2012) a more complex experi-
ment was set up, in which classification recognition rates of finger
flexion motions ranged from 92 to 97%.

2.5. APPROXIMATING FINGER FORCES VIA RIDGE REGRESSION
We hereby try and extend to forces the analysis first described
in Castellini et al. (2012), according to which a linear relation-
ship exists between the ultrasound image features described in the
previous Section and the angles at the metacarpal hand joints.
The analysis is performed separately according to which signal
is considered the ground truth: either the force, as recorded by
the force sensor, or the stimulus. In the first case we consider the
force applied by each finger during the flexion, and zero force oth-
erwise; in the second, the stimulus itself is used, with the hope
that the subject has followed it with a certain degree of preci-
sion. Notice that this second scenario reflects the typical situation
with an amputee, in which no ground truth is available in princi-
ple and one must resort to either imitation learning or bilateral
action [see, e.g., Castellini et al. (2009); Nielsen et al. (2011)]—
using a visual stimulus and instructing the subjects to imitate it is
tantamount to imitation learning.

For each finger and each type of ground truth (force or stim-
ulus values), a linear mapping is determined between the feature
vector v ∈ R

543 extracted from each frame and the ground truth
value g ∈ R: g = wT v. The feasibility of the linear approximation
is checked by considering the square-root mean-square error nor-
malized over the range of the target values (nRMSE), between the
ground truth and the predicted values.

2.5.1. Ridge regression
In order to find the optimal w ∈ R

543 we used a standard
technique called ridge regression, which is a regularized variant
of least-squares regression. In general, given n (sample,target)
pairs

{
xi, yi

}n
i = 1 as gathered during the data acquisition, the

optimal w is

w =
(

XTX + λId

)−1
XT y

where the matrix and vector X, y are formed by juxtaposing
all samples and target values, d = 543 is the dimension of the
input space, Id is the identical matrix of order d and λ > 0 is
the regularization coefficient, which we consistently set at the
standard value of 1.

1The reader should not be deceived by the Euclidean distances visible in
Figure 6, which are much smaller than those obtained in the non-reduced
input space of dimension 543.

2.5.2. Cross validation
Each w was evaluated using 10% of the data set under examina-
tion (e.g., 10% of one session) chosen at random, then predicting
the ground truth values for the remaining 90% of the set. This
procedure was repeated 50 times in order to smooth out statistical
differences among the sets used for the evaluation.

2.5.3. Complexity
The evaluation of w involves inverting a d × d matrix, therefore
the time complexity of ridge regression is dominated by d rather
than by n: its time complexity is O(d3 + nd2), its space complex-
ity is O(d2 + nd) and the complexity of a prediction is O(d).

2.6. ULTRASOUND FEATURES ARE LINEARLY RELATED TO FINGER
FORCES

2.6.1. Aim
To determine whether the forces exerted at the fingertips by a
healthy human subject can be predicted using a linear combina-
tion of the visual features extracted from the US images of the
forearm.

2.6.2. Results
Figure 8 shows the prediction error for a typical subject, for each
session (OO1, GR1, OO2 and GR2) and finger. In (Figure 8A) the
force values are used as ground truth, whereas in (Figure 8B) the
stimulus values are used. The analysis was repeated for all sub-
jects. Figure 9 shows the error values averaged across all subjects.

As is apparent from the Figures (consider especially Figure 9),
the linear regression is able to approximate all required values
to a remarkable precision. All on-off values are predicted with a
nRMSE of 1% of the force ranges or less. Graded phases (GR1 and
GR2) exhibit a higher error, slightly higher than 1.5% in case the
force is used as ground truth, and slightly higher than 2% in case
the stimulus is used. These results are consistent across subjects
and fingers. We believe this is reasonable, since in the graded case

FIGURE 8 | Normalized root-mean-square error obtained by the linear

prediction of force (A) and visual stimulus (B) for a typical subject, for

each session (OO1, GR1, OO2 and GR2) and for each finger. Each bar
and stem represents the mean nRMSE and one standard deviation
obtained over the 50 cross-validation folds considered.
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FIGURE 9 | Normalized root-mean-square error obtained by the linear

prediction of force (A) and visual stimulus (B) for all subjects, for each

session (OO1, GR1, OO2 and GR2) and for each finger. Each bar and
stem represents the mean nRMSE and one standard deviation obtained
over all subjects.

many more different values must be predicted; moreover, in case
the stimulus is used as ground truth, there is an inevitable discrep-
ancy between the stimulus and the actual action performed by the
subject. This increases the uncertainty. Notice that these error lev-
els are obtained by training on one tenth of the available data, and
are comparable to those presented in Castellini et al. (2012).

From these results we conclude that a linear relationship exists
between finger forces and ultrasound images.

2.7. ON-OFF TRAINING SUFFICES TO PREDICT GRADED FORCES
2.7.1. Aim
To check whether an on-off training suffices to accurately pre-
dict graded forces: if during training the system only sees data
obtained while resting and applying maximum force, will it then
be able to correctly predict intermediate force values?

2.7.2. Results
Figure 10 shows the nRMSE obtained for all subjects, for
each session (OO1, GR1, OO2 and GR2) and finger. In panel
(Figure 10A) the force values are used as the ground truth,
whereas in (Figure 10B) the stimulus values are used.

The overall nRMSE is clearly much larger than in the previous
case, this time around 10% of the target range. Notice, however,
that this error is remarkably consistent over subjects, fingers and
chosen training/testing datasets (i.e., there is no statistically sig-
nificant difference when OO1 or OO2 is used to estimate the
linear regression, as well as there is no difference when testing
on GR1 or on GR2). This error level is, again, comparable with
that obtained in Castellini et al. (2012). Also, by comparing the
upper and lower panels of Figure 10, it is apparent that there is
no relevant difference when using the force as ground truth, or
the stimulus.

From these results we conclude that on-off training suffices to
predict graded forces.

FIGURE 10 | nRMSE for all subjects, when training on an on-off phase

and testing on a graded phase. The legend denotes the training/testing
phase, e.g., OO1/GR2 means that ridge regression was evaluated with data
gathered during the first on-off phase, and the prediction was tested on
data gathered during the second graded phase. (A) With the force as
ground truth; (B) with the stimulus as ground truth. Each bar and stem
represents the mean nRMSE and standard deviation obtained over all
subjects.

3. ONLINE IMPLEMENTATION
As a last requirement, the system is expected to work inside
a non-stationary environment, meaning that it must adapt to
changing conditions; for example, the displacement of the ultra-
sound transducer due to a collision with an external object. In
such a case, a non-incremental system would require a completely
new training session from scratch to regain full functionality. As
opposed to that, by exploiting the linearity of the relationship
found in Section 2.6, we can extend the approach to incremental
(or recursive) ridge regression. This approach enables us to add
knowledge to the system at any point.

3.1. INCREMENTAL RIDGE REGRESSION
Consider again the ridge regression equation, w = Ab where, for
the sake of simplicity, we have redefined A = (XTX + λId)

−1 and
b = XT y, and a new (sample,target) pair (x′, y′) acquired after w
has been evaluated. The updated regression vector can be evalu-
ated as w′ = A′b′, where A′ and b′ are obtained by juxtaposing
the new sample to X and y:

X′ =
[

X
x′

]
and y′ =

[
y
y′

]

Notice that, as expected, adding a new sample will not increase
d, the size of the matrix A; notice as well, that there is no need to
compute the inverse of A, since A′ and b′ can be directly evaluated,
e.g., by using the Sherman-Morrison formula (Hager, 1989):

A′ = A − Ax′x′T A

1 + x′T Ax′ and b′ = b + x′y′
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With this approach the time complexity of updating the model
is O(d2), that is, independent of the total number of samples
acquired so far, n.

3.2. SIMULATION OF THE ONLINE BEHAVIOR
The behavior of an online system based upon the above stated
remarks has been first simulated by “replaying” the (sam-
ple,target) pairs acquired during the main experiment of Section
2. Figure 11 shows the prediction error for a typical subject
obtained by the online system. In particular, (Figure 11A) dis-
plays the error for each degree of freedom as the on-off training
phase takes place: each time a new pair is acquired, the linear
regression vector w is updated and the error for each finger is eval-
uated over the whole graded phase (GR1+GR2); (Figures 11B–E)
show the prediction for one of the degrees of freedom (in this
case, the little finger) after different sections of the on-off training
phase have been completed.

Concretely, (Figure 11B) shows the force prediction of the lit-
tle finger when the system has been trained only with the first
on repetition of the little finger; in (Figure 11C) the system was
trained with the first on repetition of the little finger and the first
repetition of resting; in (Figure 11D) the system was trained with
the first on repetition of the little finger, the first on repetition
of the ring finger and the first two repetitions of resting; finally,
in (Figure 11E) the system was trained with a complete on-off

training round (that is, one on-off repetition for each finger, out
of five—see Figure 4A, on-off part).

Notice the difference between the stimulus signal here and that
of the graded part of Figure 4A. In this particular case we are only
interested in the little finger, the space between each activation
corresponds to the flexions of the other four fingers.

Consider now (Figure 4B). With the knowledge correspond-
ing only to the maximum force of the little finger, the prediction
cannot recognize any of the intermediate force values, or the rest-
ing position, and hence the 91.81% nRMSE (notice that the initial
prediction error for the other fingers, as seen in (Figure 4A), is
much lower. This is due to the skewed testing set, with predom-
inant zero values. When the system has not seen any training
information for a particular finger, it will predict always 0, which
translates into a value of 23.63% NRMSE in the graded testing
set).

The situation changes in (Figure 11C), where the system has
already been trained with the maximum force of the little finger
and the rest position; the prediction is accurate for all the interme-
diate force values of the little finger; however, since the knowledge
of the system is limited only to the little finger, the prediction
reacts to the flexions of the other fingers and this cross-talk causes
a 18.43% nRMSE. In (Figure 11D) the system has already seen
what the features for the ring finger look like, and so the little fin-
ger force prediction does not react when the ring finger is exerting

FIGURE 11 | System learning process for a typical subject. (A) Evolution of the prediction error evaluated over the two graded sessions (GR1+GR2) as the
system is fed on-off training data; (B–E) Little finger: stimulus target signal and force prediction at the training points B, C, D, and E (see A).
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force (notice that the ring finger flexion comes right after the lit-
tle finger flexion), lowering the error to 13.76%. Lastly, once a
complete on-off training round has been completed, the little fin-
ger force prediction is still accurate over the whole range of force
values while keeping “silent” when the other fingers are exerting
force. Further on-off rounds have no effect on the prediction,
obtaining a relatively flat prediction error after the first training
round.

3.3. IMPLEMENTATION
We have integrated the aforementioned algorithm into a C# soft-
ware application. All the necessary algebraic operations during
training (including the update of the inverse matrix with the
Sherman-Morrison formula) require an average of 16.5ms; in
contrast, producing a prediction during the prediction mode
requires only an average of 3.7ms. Considering that gather-
ing a new valid frame requires an average of 33.9 ms (29.5 Hz)
and that both operations are computed in parallel in a multi-
threaded environment, training or predicting does not affect the
global frequency of the system and no frames are lost without
processing.

Obviously, since the training can happen at each new frame,
the system can be switched from training to prediction mode and
vice versa at any point and without losing any previous knowl-
edge. This allows us to adjust the training length to the strictly
necessary. Should the prediction not have the desired accuracy or
become worse after a perturbation, it is possible to go back to
training and give the system more knowledge about the desired
finger/fingers.

Figure 12 represents the training/testing process for a typical
subject. In this case the middle and index fingers were trained,
both with only one on-off repetition. Once the training was com-
pleted the prediction mode was enabled. A sinusoidal stimulus
was launched for each finger and the subject was asked to fol-
low it as closely as possible (basically the subject had to apply
force so that the 3D hand model displaying the prediction moved
exactly as the model displaying the stimulus). As can be seen
in the figure, starting at approximately 32 s for the middle fin-
ger and at 38 s for the index finger, both the sinusoidal stimulus
and the prediction look remarkably similar. Concretely, during

this sinusoidal stimulus a nRMSE prediction error of 6.07% and
8.52% was obtained for index and middle finger, respectively.

Soon after, the ultrasound transducer was manually shifted
and then placed at approximately the same position it was in
the beginning. The subject was asked again to follow a sinu-
soidal stimulus, failing to do so and obtaining 22.77% and
24.01% nRMSE prediction errors. A new training round was then
launched, again with only one on-off repetition per finger. Back to
the prediction mode, the subject was able, once again, to replicate
accurately the movement of the stimulus hand reducing the errors
to 6.27% and 6.86% for index and middle finger respectively.

For a live demonstration of the online system, please refer to
the movie in the Supplementary material. In the movie, the stim-
ulus and prediction are displayed using two separate Blender 3D
hand models. The force of the fingers is proportional to their flex-
ion angle in the model and maximum force is represented by a
completely flexed finger (as during the on-off training).

4. DISCUSSION
In previous work (Jing-Yi et al., 2011; Castellini et al., 2012) it has
been shown that medical ultrasound imaging has great potential
as a novel human-machine interface, with the main application of
controlling an advanced hand prosthesis. In the current work we
have pushed the envelope to the point that we now claim that US
imaging is mature to be delivered to the clinics, as part of a new
form of treatment. In particular, the results shown here indicate
that it works in a realistic scenario, that is, it is practically usable
by disabled subjects.

4.1. A REALISTIC SCENARIO FOR US IMAGING AS AN HMI
Too many a time a human-machine interface is studied with lit-
tle or no reference to its practical application. In this work we
have tried to give a sensible definition of “realistic scenario” for US
imaging to be used, e.g., by amputees, and we have tested whether
it would deliver good results2. In particular, amputees require at
least

2We claim that most of the considerations about a realistic implementation of
the US-based HMI would hold for any other HMI whatsoever to be employed
in this field.

FIGURE 12 | Online training/testing for a typical subject. After a
perturbation in the position of the US probe reduces the quality of the
prediction, the system is set again to training and more information is fed

to the system. After a fast retraining phase the prediction recovers the
accuracy obtained with the initial training. (A) Stimulus and prediction values
for the middle finger; (B) stimulus and prediction values for the index finger.
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1. that the training (calibration) phase be short;
2. that the calibration entail simple imitation tasks;
3. that it need no sensors; and lastly,
4. that the system be able to acquire new knowledge when

required.

The first three items are motivated by (1) the generally bad con-
dition of a stump, which quickly elicits fatigue and stress; (2) the
lack of sensory feedback from the missing limb, which makes it
hard (if not impossible) for the amputee to apply graded forces;
(3) the absence, in principle, of ground truth coming, e.g., from
force sensors and/or datagloves. The fourth item is motivated,
first and foremost, by the necessity of retraining previous patterns
in case the signal changes due to, e.g., movement of the ultra-
sound transducer, or in order to improve the current prediction
in case the subject is unsatisfied with it; as well, it is motivated
by the desire by the subject to learn new patterns, if required.
Regarding item (2), notice that the vast majority of amputees
have phantom feelings that do not correspond to the intended
force/movement patterns; therefore a further effort is required to
ignore the feeling and this further motivates the requirement for
a simple calibration task.

The realistic scenario we have set up consists of an experi-
mental protocol showing that, on intact subjects, US imaging
works exactly according to the above four requirements. In par-
ticular, the results of Section 2.6 show that a linear relationship
exists between simple first-order spatial features extracted from
the US images, and fingertip forces; and that the same rela-
tionship is found when the visual stimulus is used as ground
truth, both when on-off data is employed, and in presence of
graded-force tasks. Moreover, in Section 2.7 we show that train-
ing on the on-off data suffices to predict graded forces, both
when the force sensor data is used as ground truth, and when
the visual stimulus is. Lastly, Section 3 shows that, by exploit-
ing the linearity of the relationship described in Section 2.6,
an online system can be built, based upon incremental ridge
regression, able to predict finger forces incrementally; it works
in cinema-quality real-time (30 Hz) both during training and dur-
ing prediction, and it can be seamlessly switched from prediction
to training, enabling corrections or new patterns to be learned
on-the-fly.

This last characteristic is particularly important in case the
probe moves with respect to the subject’s skin, or in case the
subject assumes a very different posture with respect to the
one she had kept during training. In both cases the ultrasound
image may substantially change from what it was during train-
ing, and since we enforce no mechanism to compensate the probe
movement, new data must be acquired to restore the prediction
accuracy. There is many a reason for choosing this alternative
way, as opposed to the compensation mechanism based on opti-
cal flow enforced in Castellini et al. (2012). Firstly, in normal
conditions the probe essentially does not shift, thanks to the fix-
ing cradle (Figures 2C,D); the problem appears only in extreme
cases - see the movie in the Supplemental Material: the experi-
menter must manually shift it in order to cause a disruption in
the prediction. Secondly, in an initial round of experiments, the
optical-flow-based mechanism did not yield good results applied

in this setting; we speculate that this is due to the intrinsically
complex nature of the image deformations that appear in the
ultrasound setting. Moreover, computing the optical flow in order
to shift the interest points around requires one or more reference
frames, and can be computationally hard to evaluate (Horn and
Schunk, 1981). Lastly, retraining, in our system, is extremely fast
and accurate, and represents a valid alternative approach as we
have demonstrated.

We believe that this last point is particularly important, and
could be of help in any pattern-matching-based approach to
HMIs. If retraining is affordable (i.e., fast and accurate), then
it can be used to compensate for any shift in the input prob-
ability distribution, be it of physical, physiological or any other
nature.

4.2. APPLICATIONS AND FUTURE DIRECTIONS
Hand amputees probably constitute only one of the possible
patient communities who could benefit from the use of this novel
HMI. Ultrasound imaging machines cannot, at the current state
of the art, be miniaturized to the extent of being embedded in a
prosthesis, and this rules out its use as a wearable control system
for a hand prosthesis, although a hand-held ultrasound machine
could be easily carried by the patient in a bag. More realistically,
such a system could be used to control a robotic wheelchair; or
even employed in a hospital in a non-portable form, to provide a
novel treatment against neuropathic pain. One could think of this
system as a way of visualizing the imaginary limb of impaired sub-
jects such as, besides amputees, patients of complex regional pain
syndrome and nerve/muscle impairments. A lesser form of such a
therapy already exists, it is called mirror therapy and stems from
Ramachandran’s seminal discovery (Ramachandran et al., 1995)
that a visual illusion of the missing hand can alleviate phantom
pain [see also, for a more recent result along this line, Chan et al.
(2007)].

The application of this potential therapy to more severe
amputees (above-elbow or even disarticulated at the shoul-
der) is as well a fascinating possibility. First of all, ultrasound
imaging could be used to reconstruct the intended move-
ments/torques/forces at the elbow and shoulder, that is, patterns
which are most likely still present in the stump of such severly
mutilated patients. Interestingly however, research by Mercier,
Reilly, Sirigu and others (Mercier et al., 2006; Reilly et al., 2006)
has shown that stable electromyographic patterns referring to,
e.g., the thumb opening and closing still exist in above-elbow
amputees—patients in which the related muscular structure is
not present any longer. This phenomenon is explained as the
result of after-trauma spontaneous reinnervation appearing at the
local level. Ultrasound imaging is probably accurate enough to
detect those patterns and could therefore be used to visualize the
imaginary hand in such cases, too.

Currently, the system employs 181 interest points and extracts
543 features from them; an ongoing study has however revealed
that this number can be dramatically reduced without any appar-
ent degradation in the performance. We are in the process of
applying this new features extraction schema in the online ver-
sion. On an even more interesting side, testing the system on a
selected pool of amputees is planned as the very next step; in that
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case some form of visual-feedback method to convey the right
patterns from the subjects will probably be required.

5. CONCLUSION
In conclusion, this work describes a realistic implementation of
medical ultrasound imaging as a novel human-machine inter-
face for the disabled. We show that ultrasound images of
the forearm, obtained from a standard ultrasound machine,
can be used to quickly and reliably visualize the forces
required at the fingertips. This can be done in real-time,
incrementally, and employing very simple tasks for training,
as amputees or other neuropathic pain patients would be
able to do. We speculate that US imaging has therefore the

potential to become the basis of a treatment for neuropathic
pain, be it phantom-limb pain or consequent nerve/muscle
injuries.
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