Towards Understanding Thermal Runaway of Lithium Batteries

Motivation

Thermal runaway mechanism
- Internal short-circuit
- Crash
- Over-charge
- Over-discharge
- External short-circuit

Approach

Trigger and runaway simulation
- Monte Carlo
- Stochastic parameter variation

Micro Model

Degradation models at high temperature include:
- Solid electrolyte interface (SEI) decomposition
 \[\text{CH}_3\text{OCO}_3\text{Li}_x \rightarrow \text{Li}_x\text{CO}_3 + \text{C}_2\text{H}_6 + \text{CO}_2 + 0.5 \text{O}_2 \]
- SEI formation (Electrolyte decomposition)
 \[2 \text{C}_2\text{H}_6\text{O}_4 (\text{EC}) + 2 \text{e}^- + 2 \text{Li}^+ \rightarrow (\text{CH}_3\text{OCO})_2\text{Li} + \text{C}_2\text{H}_4 \]
- Electrolyte evaporation
 \[\text{C}_6\text{H}_6\text{O}_3 \text{(liquid)} \rightarrow \text{C}_6\text{H}_5\text{O}_3 \text{(gas)} \]

Simulation of differential scanning calorimetry (DSC) for SEI decomposition and formation.
Heat rate is 5K/min.

Stochastic Model

Bayesian filtering
\[x_t \rightarrow \text{model state at time } t \]
\[y_t \rightarrow \text{measurement at time } t \]

System model:
\[x_t = f(x_{t-1}, u_t) + \mu_t \rightarrow \text{model error} \]

Measurement model:
\[y_t = g(x_t, v_t) + \nu_t \rightarrow \text{measurement error} \]

Update of uncertain model predictions with measurements via Bayes' theorem:
\[p(x_t|y_{0:t}) = \frac{p(y_t|x_t) \cdot p(x_t)}{p(y_t)} \]

Complete sequential procedure (simplified):
- Information loss
- Information gain
- Update

Solution of model equations with a particle filter:
- Continuous probability density is discretized by particles (individual model runs)
- Measurement update via reweighting of the particles

Macro Model

3D, 2D and 1D model of single cell will be investigated using COMSOL

Temperature distribution of 3D cell model

3D simulation is compared with 1D simulation under nominal discharge operation in 1 hour (1C rate).

Experiment

General characterization

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A123 A183650</td>
<td>33.39</td>
<td>0.0345</td>
<td>3.3</td>
<td>2.67</td>
<td>9.57</td>
<td>20.5</td>
<td>77.4</td>
<td>105.7</td>
</tr>
<tr>
<td>Sony US26650VT</td>
<td>33.39</td>
<td>0.0345</td>
<td>3.7</td>
<td>2.67</td>
<td>9.57</td>
<td>20.5</td>
<td>77.4</td>
<td>105.7</td>
</tr>
<tr>
<td>Panasonic CQ1-26590</td>
<td>33.39</td>
<td>0.0345</td>
<td>3.6</td>
<td>3.39</td>
<td>11.9</td>
<td>20.0</td>
<td>97.4</td>
<td>127.8</td>
</tr>
</tbody>
</table>

Battery cycling

Operation characteristics of SONY US26650VT

Abuse experiments such as short circuit, nail penetration and overcharge will be conducted.

Experiment
deesof2006.dell.com

Thermal runaway = Chemistry + Heat transport