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Abstract—This paper presents a control approach to stabilize
limit cycle motions along a mechanical mode of variable sfiness
actuated (VSA) robots. Thereby, first a computed torque PD
controller with gravity and Coriolis /centrifugal compensation
shapes a desired dynamics, which is decoupled in terms of
modal coordinates. Then an asymptotically stable limit cyle
is generated on the link side dynamics for a selected mode.
Finally, the modal control approach first introduced for rigid
robots is extended to the VSA case. This is done by a joint
torque controller, which decouples the torque dynamics fron the
link side dynamics. Stability and convergence are proven fothe
dynamics resulting from each feedback control. Furthermoe,
the energy dficiency of the proposed approach is verified by
simulation and experiments on the VSA robotic arm DLR Hand
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The emergence of variable ftiess actuators (VSA) in Z 20 %
robotic systems foers the capability to perform highly dy- v O .
namical, explosive or cyclic motiondfiently. Due to serial, g _28 //t
tunable elastic elements in the joints, the output power®AvV = _60 ’
robots is no longer restricted by the motors. The elasticggne — %2 01 o - o1 o2
storage can be exploited to maximize peak force and vedsciti deflection (rad)
Thereby, the intrinsic resonance behavior of the elastioto
can be customized to match the desired motion@richprove Fig. 1. DLR Hand Arm System and basic VSA principle.

the dficiency of actuation. However, the mechanical imple-
mentation of VSA usually introduces strong nonlinearifies
addition to the rigid robot dynamics. Therefore, the goal is ) ) o .
to control such highly dynamical motion while taking thes€’ walking and running [6], where it is more important
nonlinear dynamics of the plant into account. that the desired orbit is attractive, rather than to track a
The generation of explosive motions using analytical optRredefined trajectory accurately [7], [8]. Due to the ocenoe
mal control solutions is addressed in [1]. A method to embod disturbances and impacts the attractive behavior is gbma
desired (periodic) motions while tuning thefBiiess optimally importance in these tasks. The generation of stable linciesy
is proposed by [2]. Both approaches are currently feaséla f for rigid robots have been already studied in [9], [10], [11]
single joint system. To control dynamical, multi-joint rimts, While the basic theory on limit cycles is concerned with two-
numerical, constrained optimization is applied to gereera@limensional vector fields [12], [13], [14], [15], a main issu
motor trajectories [3], [4]. The approach is currently lied IS to.gene_rahze for motions in the robo_t’s hlgher-d|mer_181b
due to the increasing computational complexity and numbe@nfiguration space. This can be achieved by choosing one
of local minima with the number of degrees of freedom.  Position-velocity pair for the limit cycle, while the renmaing
In our previous work [5] we proposed a method to exp|0ﬁtat95 have tOIbe C(.)nSFralned, e.g. by virtual COﬂSU&lE[KSd}_
modal properties of the mechanical system for motion gen@? feedback linearization [10] or null space decomposition
ation. However, the approach was limited to the generatfon [d1]-
motor trajectories for serial elastic actuated robots Withar In the present work, the considered class of mechanical
stiffness in the joints. Due to the presence of modal couplisgstems are VSA robots. Each joint of the robot is composed
terms and the open-loop structure, this method is limited & a motor and link side mass. Both masses are connected
quasi-linear systems, motions on the first mode of the systevia a nonlinear, tunable spring as depicted in Fig. 1. Due
and tasks where external disturbances are not expected. to the elastic energy storages, the plant itself exhibitana&
Here, we rigorously extend this method for stabilizingscillatory dynamics [16]. We identify these so-calleditbse
modal limit cycles for multi-joint VSA robots. In contrash t tion modes and apply a control which decouples these modes
the above mentioned approaches, we aim to produce a cona&odl constrains the motion on one of the invariant manifolds.
for intrinsically periodic tasks, such as hitting, drumigin Using these dynamic constraints, we are able to stabilizi li
cycles along the natural dynamics of the multi-joint rodat.

The authors are with the Institute of Robotics and Mechatl’orparticu|ar, this leads to an increase in between motor aukd li
ics, German Aerospace Center (DLR), D-82234 Obdfpfdnofen, Ger- side power
many{dominic.lakatos, gianluca.garofalo, florian.petit, stién.ott, alin.albu- T . .
schadfen@dlr.de The paper is organized as follows: In Section Il a control



to first shape and then decouple the dynamics based on eigemon-singular matrix¥ € R™" and a diagonal matriBy, €
mode analysis is proposed. Since the uncontrolled systenR&", such thaW "W = A andW~"ByW™ = B.
nonlinearly coupled, it is accounted for modal cross-cmgpl  If we now apply this lemma tA = M(qg) and B = Kq4(q),
terms due to the state dependency of the mass matrix (amel obtain the transformation

stiffthess matrix). Furthermore, it is proven that the obtained

dynamics are asymptotically stable (even in the absence of z=W(g) g (6)
Corioligcentrifugal terms). Then a controller to generate an, . - . ~
attractive limit cycle on a particular mode is presented iWh'_Ch maps the joint error coordinatepto the modal co-
Section I1l. Therefore, the total energy correspondinghtis t °'dinatesz. In order to transform the system (3) to modal
mode is regulated to a desired level. Finally, the approafferdinates, we rewrite (6) as

is applied to the VSA case using a feedback controller which §=W(q)z @)
decouples the joint torque dynamics from the link side motio

(Section 1V). Moreover, the accuracy of the modal decouplirand derive w.r.t. time:

is validated in simulations and the performance affidiency . .

of the whole approach are demonstrated in experiments for a g=W(g)z+W(qg)z, (8)
complete VSA robotic arm (Section V). A brief conclusion is = W(g)z+ 2W(q)z+W(Q)z. 9)
given in Section VI.

1. M ODAL CONTROLLER DESIGN TherebyW(q) depends explicitly on time, i.&V(g+ gy(t)) =

: w(a).
A. Modal decoupling Remark 1: The transformation matriz(q) is composed of
The modal decoupling is introduced for the link side dyn eigenvectors, which result from the generalized eigemvalu
namics, given by problemKqy(g)w = AM(g)w. In the caser > 3 the matrixw(q)
N L\ and consequently the derivatiVé(g) can not be computed in
M@+ C(q. G+ 9(d) =7 (1) closed form. To compute the time derivativesWd{q) we use

Herein g € R" are joint positions,M(q) € R™" is the & method, which was proposed by [19] and is described in the
symmetric and positive definite inertia matrig(q, §)g the Appendix A.

Coriolis/centrifugal forces andy(q) the gravitational forces. The damping matrix
Before performing the modal decoupling we consider the B ) B
computed torque plus PD control Da(0) = W(q) ™" (2diag(¢ v4i)) W(a) ™, (10)

7= Ug + C(d, )+ 9(q) + M(a)dy — Da(@)q— Ka(q)g (2) s designed in modal coordinates. Hergir: 0 is a constant,

) o ) ) normalized damping factor, referred to as modal damping. By
which compensates for Coriolcentrifugal and gravity féects. substituting (7)—(9) in (3) we obtain the modal dynamics
The controller is able to track a desired trajectggt) in joint
coordinates, wherg = q—- qq is the tracking error. In addition 7+ 2diag(§i V/li(Q)) 7+ diag(Ai(q)) z= W(q)" (uq _ 7) (11)
to the symmetric and positive definite fRtiess and damping
matrix Dq(q) andKg(q), we introduce an intermediate controlwhere
input ug. Substituting the control (2) in the plant dynamics

(1), leads to the desired closed-loop error dynamics I =W(q)" M(g)W(q) , (12)
. (1 (Q)) = T

M(Q)+ Da(a)d+ Ka(@)d = U (3) TRo(@) =WQ KiWie), 13

where the following property holds: 7 = (M(@W(a) + Da()W(q)) 2+ 2M(q)W(q)(zl.4)

Property 1. For robot manipulators with rotational joints,
the controller gainKq(q) can be designed such that theror certain eigenvalue and modal damping distributions and
generalized eigenvalue(Kq(q), M(q)) keep bounded, i.e.  moderate velocities [16], the influence of the remaining-cou

_ _ pling terms is weak and can be neglected. In particular,gf th
0 < Aminkm < 4i(Ka(0). M(0) = Amaxicm < oo, rate of change of the eigenvalues is moderate, several modal

Vi=1....n.VqeR" control approaches [20], [21], [22] successfully run witho
where compensating these coupling terms. However, tiiece in-
creases for high velocity motions. Since we are interested
Aminkm = INf Amin(Ka(a), M(0)) , (4) in generating and stabilizing highly dynamical motionsgé
o coupling terms are cancelled using the control law:
Amaxkm = SUPlmax(Ka(Q), M(Q)) . )

4eQ Ug =W(A) U, +7, (15)

Now, we derive the decoupling coordinate transformatiQfperey, is an additional intermediate control input. Substi-
fqr the system (3). Therefore, we make use of the generallzt%cﬁng the control (15) in (11), we obtaimmodal subsystems
eigenvalue problem known from matrix algebra, see [17] and
[18]: 7+ 2diag(& VA(Q)) z+ diag(Ai(Q)) z=u,,  (16)

Lemma 1: Given a symmetric and positive definite matrix ( FY ) ' ’

A € R™™ and a symmetric matriB € R™", Then there exist in terms of the modal coordinates



B. Sability analysis 60 Aimaxkm Ali.mm.KM Aimaxkm
P \
To proof stability of the homogeneous closed loop dynamic 50 P i _ 30,
(16) we consider a positive definite Lyapunov function cand 40 R4 7 = |
dateV; for each decoupled subsystem and deduce stability o 30 e 2 L 20 |
each time derivative/; is negative definite, i.eV = Y,; Vi > 20| ./ i s |
0=Vi>0,V=3;Vi<0&Vi<0,¥(22#0). Thus, letus 10| ! 4 7 10
consider tha-th decoupled subsystem 0
0
2+ 26 VA(@2 + A0z = 0 (17) R
isolated. With the state vectog = (z, )", a positive definite @ (b)
Lyapunov function candidate is given by Fig. 2. Determination of cd&cientsc; andc;.
C1
oy LTl 22 |y
VI(XI) = Exi & 1 ]XI s (18) C. Comments
2

The control law (2) cancels out the Corigtientrifugal
where ¢;, ¢, are positive constants anc > c2/4. The effectsC(q, §)q. This is necessary to accurately decouple the
derivative of the Lyapunov function dynamics. From a viewpoint of passivity the skew-symmetric
property of M(q) — 2C(q, §), commonly considered to prove
stability of such type of mechanical systems, is lost. Haavev

a method is proposed to prove stability based on the bounded-
ness of the modal $thess and damping term. These bound-
edness conditions do not restrict the domain of attraction,

(.6 = ~5x HiA(@)x; (19

is negative definite, if the matrix

1 1 Q) - since the eigenvalueg(M(q), Kq(qg)) are naturally bounded.
Hi(Ai(q)) = C;y'rg?) '(q)‘,; Cl/i' g '_(11 @ (20) Therefore, asymptotic stability in the whole state-spaae c

be proven for a certain choice of the desiredfistissKq(q)

is positive definite. We can conclude that the equilibriurmpo (without preserving the above mentioned skew-symmetric
x; = 0 of (17) is asymptotically stable, if the leading principaProperty). We can summarize that for the orign2 = 0 of
minors of H;(1(q)) are strictly positive (ing). Thatisvge Q the homogeneous dynamics (16), global asymptotic stabilit

can be guaranteed under the conditions (21) and (22).
det(H (ill/li(q) g 8’ (zg) I1l. ENERGY BASED LIMIT CYCLE CONTROL
et(Hi(4(@)) > 0. (22) Let us assume that we want to produce an asymptotic stable
Remark 2: Condition (21) is always fulfilled by definition limit cycle for the k-th decoupled system in (16). Choosing

of ¢, and Property 1. Condition (22) implies that positivék = 0 and dividing by«(t) > 0 ¥t, the system becomes
constant; andc, can be found such that

1 . 1
VYA4;,0 < AiminkM < Ai £ dimaxkm < 09, det(Hi(/li)) >0 /lk(t)Zk t 4= /lk(t) Uz (23)
where with state(z, z) € R2. Similarly to what was done in [11] let
us consider the scalar function
Aiminkm = INf A min(Ka(g), M(Q)) , 1 1
0eQ Ht z,2) = ——Z + = 24
(t. 2. 2) 2/lk(t)i+22i’ (24)

Aimaxkm = SUPL max(Ka(Q), M(Q)) ,
aeQ with time derivative along the trajectories of (23):

hold. The above conditions are depicted in Fig. 2(a). For . ) () .

certain &, Aiminkm and Aimaxkm the iso-contour curves H(t z z) = muzkzk— MO (25)

detHi(Aiminkm)) = detMHi(Aimaxkm)) = O are plotted w.r.tcy _ K

andc,. Thereby, the area within the intersection of both curveé¥)d choose the input as

determinesc; and c; such that condition (22) is fulfilled. . o (D)

Moreover, Fig. 2(b) shows that far; and c, chosen w.r.t. Ug, = Ak(t) [ —kvH (6, z, 2) z + (D

Fig. 2(a), condition (22) continuously holds within the bais. A(t)
As detailed in the Appendix B determines the domainwhereky > 0, H (t, z, z) = H (t, z, zZ) — Hqg andHg > 0, such

D =]Ai1, A2 such that forai(g) € D conditions (21) and that the derivative oH (t, z, z) results in

22) are fulfilled. Thereby, one can find constanfsc, that . . ~ D

gnin)imize and maximize t%e lower boungh and upper bound H(t 20 2) = —kvH (. 20 2) i : (27)

di2, respectively. Then, given the "stable” domain Kq(d)  The system (23), unlike the one considered in [11], is

has to be designed such thafninkm > di1 and dimaxkm < non-autonomous and consequently we cannot apply LaSalle

Ai 2. theorem. Nevertheless with a similar argumentation we can

z).  (26)



prove that it has an asymptotically stable limit cy¢le = of the springs can be tuned to match with the oscillatory
{zv, z | H(t, z«, %) = Hg}. We have to show stability and at-dynamics shaped by control. Thereby, the performance and

tractiveness. efficiency will increase.
Uniform stability: Choosing as Lyapunov function the _ _
continuously diferentiable function A. Dynamic modeling of VA robots
1. VSA robots are under actuated Euler-Lagrange systems and
V(t,z.2) = =H (t, 2. 2)? . (28) can be generally described by dynamic equations of the form
2 [24], [25]:
with:
. V(tQ) =0 M (X)X + c(X, X) + al;)((x) - Q. (30)
* S1 (2,29 <V (1,3, 4) < Sp (%, 4) _ . _ ,
e V(t,z.2) = —kvH (t, 2, 2)? %2 < O Herein x € R" are generalized coordinates a@de R" is a
vt > 0 andV (z, z) € R2, where non-conservative, generalized force dualxtoThe potential
- ’ ' . energy
. 1 1 ., 1
S1(802) = 5 (50— + 57 - H) . U(9 = Ug) + Uy @31)
,max
1 1 1 2 is composed of the gravity potentiélg(x) and the spring
So (7, ) = > (2/1 Z+ Eé - Hd) , potential U,(x). FurthermoreM(x) € R™" is the symmetric
k,min

and positive definite inertia matrix aragx, X) € R" a vector of
are positive definite functions oR?, we conclude thaf is Corioliscentrifugal forces of the complete robot, respectively.
uniformly stable. m The design of VSA robots involves that not all of the system
Attractiveness. To prove attractiveness we will useStates are directly actuated. Therefore, let us partitierstates
Barbalat's lemma (see, e.g. [23]). We have already showi (67.d")" asé € R* being directly actuated states (referred
that V (t, ., ) is bounded from below and that (t, z,z) O @ motor positions) ande_R“"‘ being indirectly actuated
is negative semidefinite. What is missing in order to appffates (referred to as link positions). Then the generhfizee
Barbalat's lemma is tha¥ (t, z, z) is bounded. This follows
from V(t,z,2) = —2kvH (t, z, 2)? (kv + ZZ), which is Q=[
bounded, since (23) is stable. So we conclude that

Tm
Text

(32)

(29) consists of the control input, € R and the externally applied

t“_ToV(t’ %.4) =0 force teq. Before deriving a controller for the joint torque

Let B, (Q) be a neighbourhood @®, such that dynamics, the general dynamic model (30) is customizedbase
on simplifying assumptions fully justified for the DLR Hand
(z«=0,z=0) ¢ B.(Q) . Arm System [26] and briefly summarized as following:
SinceQ is stable, we can choose the initial condition such * (e coupling inertias in between motor and link side can
that the solution is always irB. (). Moreover we have be neglect_e’d . .
shown that eithez — 0 or H (t,z.2) — Hg ast — oo, . ;Il'ggleeclfgéncal motor dynamics arefBaiently fast to be

but since the system cannot converge(zp+ 0, z, = 0) and i . . .
(z= 0.2, = 0) ¢ B.(Q) then we conclude that the solution * Stiffness adjustments are performed quasi statically.

converges td = {z, z | H (t, . z) = Ha}. m Accordingly, the simplified motor dynamics have the form:
Remark 3: The controller (26) is composed of a term to

regulate the energy along theth mode and an additional, Bq+7=7m, (33)
Corioligcentrifugal like termCp,oq to compensate for thkth = 09Uy (6q, 9, 6,) = (0 — G, 6,) (34)
diagonal entry of the derivative of the modal mass manrix 004 an

Chod + Clmd, where A = diag(Y/4i(t)). However, in (2) the

Herein B is a constant, diagonal, and positive definite matrix
of motor inertiasfq € R* are motor coordinates, arj € R*

are constant parameters for thefsgss adjustment. Using the
above mentioned assumptions, the link side dynamics resmain
as introduced in (1).

Coriolis/centrifugal vectorC(qg, g) was already cancelled and
here this term is introduced again for tkeh mode. This is

as the modal analysis requir€q, g) to be cancelled but it

is necessary for the passivity of the controller (26).

IV. EXTENSION TO THE VARIABLE STIFFNESS ACTUATED CASE
B. Decoupled torque control

In the previous sections the modal _dgcoupllng and limit Now, let us derive a controller to track a desired joint tegqu
cycle controller were introduced for the rigid robot casteve o o qic concept of the controller is to decouple the joint
itwas as_sumed that we can directly access the joint tordlll]'es‘torque dynamics from the dynamics of the joint position,tioe
this section we will extend the methods for a VSA robot armypiain a system in triangular form. The approach was prapose

e e oy s sy 20 for he case f consiant jon hess and wil b
yay y extended to the VSA case as follows.

potential using control. Instead, the VSA robot consist of &
yarlab|e spring be_tween the mOt.OI' and the.“nk- ThUS, thetpla 17his assumption is fulfilled in the presence of high geangttf. [27].
itself exhibits oscillatory dynamics. In particular, thiéffess  2Singular perturbation assumption, cf. e.g. [28], [29].



To relate the system (1), (33), and (34) we first rewrite (33) V. EXPERIMENTAL VALIDATION AND PERFORMANCE ANALYSIS

in terms of joint torquesr. Therefore, the strictly monotone |, yis section we first show the influence of the remaining
and odd spring functions (34) are inverted, i.e. modal coupling terms by simulations. Then, we experiméntal
0 q = y(c)? (35) apply the presented approach on a VSA robotic arm. Finally,
a—d ’ we demonstrate performance antiaency.

Then deriving the inverse spring function twice w.r.t. tiared

substituting the result in (33), one obtains )
The relevance of the modal decoupling controller (15)
op(r)™t.  d(oy(r)t). . proposed in Section Il is demonstrated for a double pendulum
B(TT T (T)") +7=1m~-B{ (36) like robotic arm in simulation. Therefore, it is assumedttha
control (2) and (15) can be directly commanded to the rigid
In the above dynamics the terBt] remains. In order to cancel body dynamics (1). The following parameters are considered

A. Smulation

out this term, the control law Both links of the robot are equal: link length, = 0.4m
) and point massesm,;, = 5.0kg placed at half the link
™m = U, + BQ, (37) length. The desired $fhness isKy = diag(2Q 10) Nnyrad and

) _ ) _ ) ] the modal damping = (0.7,0). The responses to a step-
can be considerédHereinu. is an intermediate control input jike excitation U, = (100.0)" in terms of normalized modal

for the resulting decoupled torque dynamics: forces are simulated in Matlgimulink® using the fixed-
() d {op(r) step solver odel (Euler forward integration) with a fixegste
B 4 B—( )'T+T =u, (38) size of Q0005s. Notice that only the mode that is excited
ot e\ or is damped. Modal positions and velocities for two cases are

shown in Fig. 3. In the first case depicted in Fig. (3)(a)—(b)
the modal coupling termg (cf. (14)) are compensated. It can
be clearly seen that the modal motion is accurately decduple
d (oy(r)™t). In the second case Fig. (3)(c)—(d) the modal coupling terms
_( T ) are maintained in the system (i.e.= 0 in the decoupling

o1 controller (15)). It can be seen that both modes are excited.
+ Bax//(‘r) 74— D&, — Kig,) (39) Since the step-like excitation acts only on the first modis, th

ot is due to the modal coupling term

/ (N
1 2 3 0 1 2 3
time (s) time (s)

(a) (b)

6

4 10
From (40) and (41) it can be seen that the desired torquegqual §
the actual torque if the torque error converges to zero. The 0 12 3 ‘
desired dynamics derived in the last sections can be achieve ime (<) ime (<)
by replacingr by 74 in (2). © (d)

Remark 4: In the case of the DLR Hand Arm System, the

spring functions (34) and consequently the inverted spriﬁg- 3. Influence of the modal coupling teryn The first/ second row
functions (35) consist of no couplings in between the jointg plays modal positions and velocities, wherés / is not canceled out.
i.e. ¢t = yi(ri)™L. Thus, the torque error dynamics itself
are decoupled. In order to prove asymptotic stability fq§ Eyneriments
the (W — k) decoupled systems (40) we can consider ithe b

scalar system isolated. Notice that the tefimi(r)~2/d7;)~t = The complete approach (i.e. modal decoupling, limit cycle,

oui(6, — 0)/06, = 92U,(6. 6)/0¢2, is the second derivative of and torque feedback control) was tested for the first four VSA
9 ] 1 . . .

the spring potential and bounded from above and below, il@ints of the DLR Hand Arm SystefnFor all experiments the

0 < C3 < (Ai(ri)~1/d7i) 1 < ¢4 < c0. Thus, we can consider adesired stiness wasKy = diag(150150Q 150 150) Nmyrad

similar Lyapunov function as already used in Section I1-®, t2nd the modal dampingk = 0 for the k-th excited mode

prove asymptotic stability of the torque error dynamics)(40@nd & = 1 for the remaining modes. The parameters of
the torque tracking controller weré, = diag(1Q5,5,5) 1/s

and D, = diag(Z:w-i)1/s, whereé; = 1 andw, = (K; +

Finally, the torque erroe, = T — 74 can be introduced. Then
the control law

leads to the error dynamics

p(r)"
or

o

é + Dfe,+[K,+( )lB-l}e,zo, (40)

o

mod. pos.z (rad)

mod. vel. Z (rad's)

N OoON AN

whereK, and D, are diagonal, positive definite gain matrices,
respectively. Substituting = 74+ €; in the link side dynamics
(1), one obtains

M(a)g+ C(a, q)q+ g(d) = 7a + & (41)

o o

mod. pos.z (rad)

mod. vel. Z (rad's)

3The controller (37) requires the second time derivative hef imeasured
link position, which can be obtained from (1), since theriné torquesr are
measurable. 4A video attachment is provided, showing the experimentsiste
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tation of higher derivatives for measured signals, only the % «,\\"ﬂ (Ll I‘k H’\I | 11— ]l\,",‘\'\‘l"lh' "L"'!"L'“:'\'“'"
desired joint torquery(t) and the first derivativer4(t) had g » \f\ \"\1 SANTEL AN R
. . .. e A 2
been provided to the torque tracking controller. The limit 0 2 4 s s o 2 4+ & s
cycle controller was applied either to the first or second time (s) time (s)
mode. Thereby the desired total energy wdsg = 0.08 @) ()
or Hy = 0.035, respectively, and the limit cycle feedback
gain ky = 1.5. In order to induce the limit cycle motion & | ¢ Ghpbasdsin E® rI\ |\,‘| ll\‘
: < e ) AR < 2 w\ﬂ, hi !
the robotic arm had been manually pushed from one of the ¢ , UYVIVTVYY Y I s i Y l ( (| 1 I
initial configurations:qg = (-7/6,0,0,7/3) for the firstand ¢ || Y e o VY
Qq = (7/6,7/6,7/12,7/3) for the second mode. o 2 4 & s o 2 4 6 8
time (s) time (s)
4 (©) (d)
3 2
15
g 2 g 1 Fig. 5. Tracking performance of the torque controller. Tlesiced (dashed
g g o5 lines) and actual (solid lines) torques are displayed fahgaint. The data
g 0 §> o " corresponds to motions depicted in Fig. 4(e)—(f).
z £ o5
3 5
8, s
-15 4
-3 o 5 2
-4 15
-04 -0.2 0 02 04 06 -1 -0.5 0 05 1 ) 2 7 1
modal position (rad) joint position (rad) % 1 E 05
(a) First mode motion (b) Joint motion § 0 g o b
2 £ -0s
: ) g 2 2 71’;
15 -3 2
g 2 @ 1 4
g & os -04 -02 0 02 04 06 -1 -05 0 0.5 1
g 0 _% o . modal position (rad) joint position (rad)
- 1 é -05 (a) Modal motion (b) Joint motion
g 2 S ;;
-3 ,'2 Fig. 6. Attractive behavior of the controller in the presenaf external
-4 disturbances. The VSA robotic arm was manually stopped eledsed during
-04 -0.2 0 02 04 06 -1 -0.5 0 0.5 1 motion.
modal position (rad) joint position (rad)
(c) First mode motion (d) Joint motion
4 fourth joint. Moreover, second mode motions are shown in
s Fig. 4(e)—(f). This mode involves the motion of all jointshd
g’ 2 corresponding tracking performance of the torque corgrad
2 ; = shown in Fig. 5. During the regulation phase (where the robot
I 3 maintains in the initial configuration), a constant trackerror
g, £ can be observed. This can be due to friction (not considered
. for the torque controller). In order to reduce the trackinge
W N during the high acceleration phases of the desired torquee, o
04 *O:I o O-Zd 04 06 02 04 06 °-8d o2 should consider also the second time derivative of the el@sir
ot pestion (e o postien (29 torque. Furthermore, the attractive behavior of the maidit |
(¢) Second mode motion (f) Joint motion cycle controller is depicted in Fig. 6. Thereby, the robatim

was externally disturbed by catching and releasing thetwris

Fig. 4(1f-_ E>f<peri_m_enta| ;/agdag?_r& 0}: th% tigmplgte app)rogmﬂNSIA ﬁ[iOb'Otri]C manually during motion. The motion converges back to the
arm (first four joints of the and Arm System). On the leftdaright  [; i ;
side phase plots of modal and joint motions are depicteghertiwely. limit CyC|e in less than a half CyCIe'

The experimentally recorded first mode motions for two
different stifness presets (i.e. low ftiessé, = 6, min and C. Performance measures
high stifnessé, = 0.50,max) are shown in Fig. 4(a)—(d).
For both stifness presets the modal motion is similar. This In the introduction of this paper we stated that VSA robots
is as the desired dynamics is equal. In both cases, the motiwa able to execute poweffieient motions. In particular, the
of the first mode asymptotically approaches the limit cyclefficiency can be increased by adjusting the VSA&istiss such
while the motion of the remaining modes stays within that it matches the desired dynamics. To verify thrency of
small region around the origin of the modal state space. Ttiee proposed approach, we introduce a performance measure
motion in terms of link positions involves mainly the firstcan based on power considerations. Let us therefore consigder th



total power of the VSA robot dynamics (1) and (33)—(34):
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joint 1 (rad)

g
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Pot= § Tt + 8 Tm + 8 —=—— +Pis . (42) oo A i\’ ) \/ y ! Ls LA
—— 6q . = L 0.01
Plink Prmotor ——— e 0 2 4 6 0 2 4 6
Pstf time (s) time (s)
Herein, Pk (Whereti = T + Text) and Pmotor iS the power of @) (b)

the links and motors, respectiveBg; is the power transmitted
via the springs an®y;s the dissipated power. The motion gen-
erated using the proposed approach is periodic and therefor
also the input- and output power will be periodic. Additiina

0xr10.
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joint 3 (rad)
joint 4 (rad)
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in practice the power of the motors is not limited due to peaks 740” 2 B o o 5 B s
with short duration. In order to account for this, we define th time (5) time (s)
performance measure as the ratio of root-mean-square (RMS) © )

like values of the input and output power:

Fig. 8. Motor positiond; (solid line) and link side positio; (dashed line)

t t VIO > h A
o= [\/f (Plink(T))Z d‘r] /{\/f (PmOtOI’(T))Z d‘r] ' (43) for the ith joint. The data corresponds to motions depicted in Fig)-4¢l).
0 0

For the same modal limit cycle dynamics , the performance jgbotic arm DLR Hand Arm System. It is demonstrated that
the case of low and high VSA fliness presets is comparedthe approach accurately separates the modal dynamicsifEven
Therefore,aiow and anigh was evaluated for the experimentathe system is externally disturbed the motion convergek bac
recordings corresponding to motions shown in Fig. 4(a)-(&) the modal limit cycle. Furthermore, it is experimentally
and Fig. 4(c)—(d), respectively. The time evolutionsagdw validated that the natural dynamics of the plant can be garie
and anigh plotted in Fig. 7 are similar for both cases andpy statically adjusting the joint $thess) to closely match the
explained as follows. During the resting phase the motor agdsired modal dynamics. Thereby, even the powgciency

link power is zero and consequently the performance megsuigincreased.

are meaningless. As the robot is externally disturbest 1 The approach can be applied to cyclic motion tasks, where
due to the external power input. Then the controller is actiyyerformance, ficiency, and immunity to external disturbances
and the value undercuts = 1 before approaching stationaryare more important than to accurately track a predefined
values ofaiow ~ 1.8 andanigh ~ 2.3. In the stationary phasemotion. For example a pick and place task is mainly defined
the dfective motor power is less than the link power. Thgy two pairs of position and velocity. In between these ®int
difference is provided by the elastic elements. Simply speake motion has only to be fast. How to customize the mode

ing, the motor performs less motion than the link as shovghape to a predefined task is part of our future work.
in Fig. 8. In particular, customizing the VSA fitiess for the

desired dynamics leads to increasirfogency. Therefore, we ACKNOWLEDGMENT
can conclude powerflgciency for the embodied limit cycle
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high VSA stifness

low VSA stiffness

power ratio ¢)

time (s) APPENDIX A
DERIVATIVES OF GENERALIZED EIGENVECTORS

Fig. 7. Performance measures evaluated for limit cycle ansticorrespond- ~ Given two symmetric matrice&, M € R™" with M pos-

ing to Fig. 4(a)—(d). The ratio of RMS values of link and mommwer for jtive definite. Consider the following generalized eigdoea
two different VSA adjustments are plotted over time. problem

Kw = AMw, (44)

VI. CoNCLUSION WMw=1, (45)
This paper presents an approach to generate and control . o )
modal limit cycles for variable sfiness actuated robots. Therewhere (45) defines a normalization for the eigenvectors. As-
fore, a link side controller is designed, which enables eateu sume that all the quantities in (44) are functions of timee Th
modal decoupling and attraction to a limit cycle. A torqugoal is to compute the time derivative of the couplg; wi),
controller ensures tracking of the desired dynamics. Stwbi Which is a solution of (44)—(45) with multiplicity one. Des
and convergence are proven. both sides of (44) and rearrange as
The approach is practically verified in simulation with a . - - :
rigid-body double pendulum and in experiments with the VSA (K = 4M) Wi = AcMwi (K - AkM)Wk : (46)



Pre-multiplying (46) bwa and taking into account that [4]
wy (K —AM) = 0 andw] Mw; = 1, leads to the derivative

of A¢ as [5]

/.lk=W1k— (K—/lkM)Wk. 47
(6]
To computew, (47) is subsituted in (46):
(K—/lkM)V'Vk=(MWkW1k——|)(K—/lkM)Wk, (48) (7]

and then one of the equation in (48) is replaced by the
derivative of (45):

2wy M = —w M . 49) 1

The last step is necessary becausekof-(1xM) is singular. [10]
ApPENDIX B
PROOF OF THE EXISTENCE OF A " STABLE” DOMAIN FOR Aj

We prove that there exists a domé&in:=]; 1, 4 »[ such that
for 2i(g) € D, condition (22) is fulfilled.
Proof: Rewrite condition (22) in terms aob = +4;(q).
That is p(w) > 0, where

pw) = —0* + 200° - [(1+ &) &1 - 22| w® + 261 Cow - G

(11]

[12]
(23]

(14]
[15]

. : . . [16]
and for convenience of notatiof := &. Since the leading

codficient of p(w) is negative, a7

lim p(w) = lm p(w) = ~. (50) [18l

19
Moreover, the solution op(w) = 0 can be expressed as ol

w12 = %§C1+ \/C_lfi %\/[(62— 1)+4\/(_1/¢f] Ci,
w34 = %501— Vo + %\/[(.52— 1)—4‘/6_15] C1,

wherea = ¢ — c§/4 > 0. From (51) it follows thatw;, are
real if (£? — 1)/¢ > —4+/a/cy. Therefore¥¢ > 0, Acy,a > 0
such thatw; 7 are real. From (52) it follows thabs 4 are real if
(62 -1)/€ > 4+Ja/cy. The latter condition showgs, 0 < £ < 1
andVvcy, @ > 0, w4 are complex. Moreover, from (51) and
(52) it can be seen thaic;, @ > 0 such thatw; , are real and
w34 are complex. Thenyé > 0, 3ci,a > 0 such thatp(w)
has exactly two real zeros. Additionally, (50) holds. We can
conclude thatlD =]w?, w2[ such thatva(q) € D, condition [26]
(22) is fulfilled. [ |

[20]

(51)

(52) [21]

[22]

[23]
[24]

[25]

[27]
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