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Abstract—This paper presents a control approach to stabilize
limit cycle motions along a mechanical mode of variable stiffness
actuated (VSA) robots. Thereby, first a computed torque PD
controller with gravity and Coriolis /centrifugal compensation
shapes a desired dynamics, which is decoupled in terms of
modal coordinates. Then an asymptotically stable limit cycle
is generated on the link side dynamics for a selected mode.
Finally, the modal control approach first introduced for rig id
robots is extended to the VSA case. This is done by a joint
torque controller, which decouples the torque dynamics from the
link side dynamics. Stability and convergence are proven for the
dynamics resulting from each feedback control. Furthermore,
the energy efficiency of the proposed approach is verified by
simulation and experiments on the VSA robotic arm DLR Hand
Arm System.

I. Introduction

The emergence of variable stiffness actuators (VSA) in
robotic systems offers the capability to perform highly dy-
namical, explosive or cyclic motions efficiently. Due to serial,
tunable elastic elements in the joints, the output power of VSA
robots is no longer restricted by the motors. The elastic energy
storage can be exploited to maximize peak force and velocities.
Thereby, the intrinsic resonance behavior of the elastic robot
can be customized to match the desired motion and/or improve
the efficiency of actuation. However, the mechanical imple-
mentation of VSA usually introduces strong nonlinearitiesin
addition to the rigid robot dynamics. Therefore, the goal is
to control such highly dynamical motion while taking these
nonlinear dynamics of the plant into account.

The generation of explosive motions using analytical opti-
mal control solutions is addressed in [1]. A method to embody
desired (periodic) motions while tuning the stiffness optimally
is proposed by [2]. Both approaches are currently feasible for a
single joint system. To control dynamical, multi-joint motions,
numerical, constrained optimization is applied to generate
motor trajectories [3], [4]. The approach is currently limited
due to the increasing computational complexity and number
of local minima with the number of degrees of freedom.

In our previous work [5] we proposed a method to exploit
modal properties of the mechanical system for motion gener-
ation. However, the approach was limited to the generation of
motor trajectories for serial elastic actuated robots withlinear
stiffness in the joints. Due to the presence of modal coupling
terms and the open-loop structure, this method is limited to
quasi-linear systems, motions on the first mode of the system,
and tasks where external disturbances are not expected.

Here, we rigorously extend this method for stabilizing
modal limit cycles for multi-joint VSA robots. In contrast to
the above mentioned approaches, we aim to produce a control
for intrinsically periodic tasks, such as hitting, drumming,
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Fig. 1. DLR Hand Arm System and basic VSA principle.

or walking and running [6], where it is more important
that the desired orbit is attractive, rather than to track a
predefined trajectory accurately [7], [8]. Due to the occurrence
of disturbances and impacts the attractive behavior is of major
importance in these tasks. The generation of stable limit cycles
for rigid robots have been already studied in [9], [10], [11].
While the basic theory on limit cycles is concerned with two-
dimensional vector fields [12], [13], [14], [15], a main issue
is to generalize for motions in the robot’s higher-dimensional
configuration space. This can be achieved by choosing one
position-velocity pair for the limit cycle, while the remaining
states have to be constrained, e.g. by virtual constraints based
on feedback linearization [10] or null space decomposition
[11].

In the present work, the considered class of mechanical
systems are VSA robots. Each joint of the robot is composed
of a motor and link side mass. Both masses are connected
via a nonlinear, tunable spring as depicted in Fig. 1. Due
to the elastic energy storages, the plant itself exhibits natural
oscillatory dynamics [16]. We identify these so-called oscilla-
tion modes and apply a control which decouples these modes
and constrains the motion on one of the invariant manifolds.
Using these dynamic constraints, we are able to stabilize limit
cycles along the natural dynamics of the multi-joint robot.In
particular, this leads to an increase in between motor and link-
side power.

The paper is organized as follows: In Section II a control



to first shape and then decouple the dynamics based on eigen-
mode analysis is proposed. Since the uncontrolled system is
nonlinearly coupled, it is accounted for modal cross-coupling
terms due to the state dependency of the mass matrix (and
stiffness matrix). Furthermore, it is proven that the obtained
dynamics are asymptotically stable (even in the absence of
Coriolis/centrifugal terms). Then a controller to generate an
attractive limit cycle on a particular mode is presented in
Section III. Therefore, the total energy corresponding to this
mode is regulated to a desired level. Finally, the approach
is applied to the VSA case using a feedback controller which
decouples the joint torque dynamics from the link side motion
(Section IV). Moreover, the accuracy of the modal decoupling
is validated in simulations and the performance and efficiency
of the whole approach are demonstrated in experiments for a
complete VSA robotic arm (Section V). A brief conclusion is
given in Section VI.

II. Modal controller design

A. Modal decoupling

The modal decoupling is introduced for the link side dy-
namics, given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ . (1)

Herein q ∈ Rn are joint positions,M(q) ∈ Rn×n is the
symmetric and positive definite inertia matrix,C(q, q̇)q̇ the
Coriolis/centrifugal forces andg(q) the gravitational forces.

Before performing the modal decoupling we consider the
computed torque plus PD control

τ = uq + C(q, q̇)q̇ + g(q) + M(q)q̈d − Dd(q) ˙̃q − Kd(q)q̃ (2)

which compensates for Coriolis/centrifugal and gravity effects.
The controller is able to track a desired trajectoryqd(t) in joint
coordinates, where ˜q = q− qd is the tracking error. In addition
to the symmetric and positive definite stiffness and damping
matrix Dd(q) andKd(q), we introduce an intermediate control
input uq. Substituting the control (2) in the plant dynamics
(1), leads to the desired closed-loop error dynamics

M(q) ¨̃q + Dd(q) ˙̃q + Kd(q)q̃ = uq , (3)

where the following property holds:
Property 1: For robot manipulators with rotational joints,

the controller gainKd(q) can be designed such that the
generalized eigenvaluesλi(Kd(q), M(q)) keep bounded, i.e.

0 < λmin,KM ≤ λi(Kd(q), M(q)) ≤ λmax,KM < ∞ ,

∀i = 1, . . . , n ,∀q ∈ Rn

where

λmin,KM ≔ inf
q∈Q
λmin(Kd(q), M(q)) , (4)

λmax,KM ≔ sup
q∈Q

λmax(Kd(q), M(q)) . (5)

Now, we derive the decoupling coordinate transformation
for the system (3). Therefore, we make use of the generalized
eigenvalue problem known from matrix algebra, see [17] and
[18]:

Lemma 1: Given a symmetric and positive definite matrix
A ∈ Rn×n and a symmetric matrixB ∈ Rn×n. Then there exist

a non-singular matrixW ∈ Rn×n and a diagonal matrixBW ∈
R

n×n, such thatW−TW−1 = A andW−T BWW−1 = B.
If we now apply this lemma toA , M(q) and B , Kd(q),

we obtain the transformation

z =W(q)−1q̃ (6)

which maps the joint error coordinates ˜q to the modal co-
ordinatesz. In order to transform the system (3) to modal
coordinates, we rewrite (6) as

q̃ =W(q)z (7)

and derive w.r.t. time:

˙̃q =W(q) ż + Ẇ(q)z , (8)
¨̃q =W(q) z̈ + 2Ẇ(q) ż + Ẅ(q)z . (9)

Thereby,W(q) depends explicitly on time, i.e.W(q̃+ qd(t)) ≔
W(q).

Remark 1: The transformation matrixW(q) is composed of
n eigenvectors, which result from the generalized eigenvalue
problemKd(q)w = λM(q)w. In the casen > 3 the matrixW(q)
and consequently the derivativėW(q) can not be computed in
closed form. To compute the time derivatives ofW(q) we use
a method, which was proposed by [19] and is described in the
Appendix A.

The damping matrix

Dd(q) =W(q)−T
(

2diag
(

ξi

√

λi

))

W(q)−1 , (10)

is designed in modal coordinates. Hereinξi ≥ 0 is a constant,
normalized damping factor, referred to as modal damping. By
substituting (7)–(9) in (3) we obtain the modal dynamics

z̈ + 2diag
(

ξi

√

λi(q)
)

ż + diag(λi(q)) z =W(q)T
(

uq − γ
)

(11)

where

I =W(q)T M(q)W(q) , (12)

diag(λi(q)) =W(q)T Kd(q)W(q) , (13)

γ =
(

M(q)Ẅ(q) + Dd(q)Ẇ(q)
)

z + 2M(q)Ẇ(q) ż .
(14)

For certain eigenvalue and modal damping distributions and
moderate velocities [16], the influence of the remaining cou-
pling terms is weak and can be neglected. In particular, if the
rate of change of the eigenvalues is moderate, several modal
control approaches [20], [21], [22] successfully run without
compensating these coupling terms. However, the effect in-
creases for high velocity motions. Since we are interested
in generating and stabilizing highly dynamical motions, these
coupling terms are cancelled using the control law:

uq =W(q)−T uz + γ , (15)

whereuz is an additional intermediate control input. Substi-
tuting the control (15) in (11), we obtainn modal subsystems

z̈ + 2diag
(

ξi

√

λi(q)
)

ż + diag(λi(q)) z = uz , (16)

in terms of the modal coordinatesz.



B. Stability analysis

To proof stability of the homogeneous closed loop dynamics
(16) we consider a positive definite Lyapunov function candi-
dateVi for each decoupled subsystem and deduce stability if
each time derivativėVi is negative definite, i.e.V =

∑

i Vi >
0⇐ Vi > 0, V̇ =

∑

i V̇i < 0⇐ V̇i < 0, ∀(z, ż , 0). Thus, let us
consider thei-th decoupled subsystem

z̈i + 2ξi

√

λi(q)żi + λi(q)zi = 0 (17)

isolated. With the state vectorxi = (zi, żi)T , a positive definite
Lyapunov function candidate is given by

Vi(xi) =
1
2

xT
i





c2
c1

2c1

2
1




xi , (18)

where c1, c2 are positive constants andc2 > c2
1/4. The

derivative of the Lyapunov function

V̇i(xi, q) = −
1
2

xT
i Hi(λi(q))xi , (19)

is negative definite, if the matrix

Hi(λi(q)) =

[

c1λi(q) λi(q) + c1ξi
√
λi(q) − c2

sym. 4ξi
√
λi(q) − c1

]

(20)

is positive definite. We can conclude that the equilibrium point
xi = 0 of (17) is asymptotically stable, if the leading principal
minors ofHi(λi(q)) are strictly positive (inq). That is∀q ∈ Q

c1λi(q) > 0 , (21)

det(Hi(λi(q))) > 0 . (22)

Remark 2: Condition (21) is always fulfilled by definition
of c1 and Property 1. Condition (22) implies that positive
constantsc1 andc2 can be found such that

∀λi, 0 < λi,min,KM ≤ λi ≤ λi,max,KM < ∞, det(Hi(λi)) > 0

where

λi,min,KM ≔ inf
q∈Q
λi,min(Kd(q), M(q)) ,

λi,max,KM ≔ sup
q∈Q

λi,max(Kd(q), M(q)) ,

hold. The above conditions are depicted in Fig. 2(a). For
certain ξi, λi,min,KM and λi,max,KM the iso-contour curves
det(Hi(λi,min,KM)) = det(Hi(λi,max,KM)) = 0 are plotted w.r.t.c1
andc2. Thereby, the area within the intersection of both curves
determinesc1 and c2 such that condition (22) is fulfilled.
Moreover, Fig. 2(b) shows that forc1 and c2 chosen w.r.t.
Fig. 2(a), condition (22) continuously holds within the bounds.

As detailed in the Appendix B,ξi determines the domain
D ≔]λi,1, λi,2[ such that forλi(q) ∈ D conditions (21) and
(22) are fulfilled. Thereby, one can find constantsc1, c2 that
minimize and maximize the lower boundλi,1 and upper bound
λi,2, respectively. Then, given the ”stable” domainD, Kd(q)
has to be designed such thatλi,min,KM > λi,1 and λi,max,KM <
λi,2.
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Fig. 2. Determination of coefficientsc1 and c2.

C. Comments

The control law (2) cancels out the Coriolis/centrifugal
effectsC(q, q̇)q̇. This is necessary to accurately decouple the
dynamics. From a viewpoint of passivity the skew-symmetric
property of Ṁ(q) − 2C(q, q̇), commonly considered to prove
stability of such type of mechanical systems, is lost. However,
a method is proposed to prove stability based on the bounded-
ness of the modal stiffness and damping term. These bound-
edness conditions do not restrict the domain of attraction,
since the eigenvaluesλi(M(q), Kd(q)) are naturally bounded.
Therefore, asymptotic stability in the whole state-space can
be proven for a certain choice of the desired stiffnessKd(q)
(without preserving the above mentioned skew-symmetric
property). We can summarize that for the origin (z, ż) = 0 of
the homogeneous dynamics (16), global asymptotic stability
can be guaranteed under the conditions (21) and (22).

III. Energy based limit cycle control

Let us assume that we want to produce an asymptotic stable
limit cycle for the k-th decoupled system in (16). Choosing
ξk = 0 and dividing byλk(t) > 0 ∀t, the system becomes

1
λk(t)

z̈k + zk =
1

λk(t)
uzk , (23)

with state(zk, żk) ∈ R2. Similarly to what was done in [11] let
us consider the scalar function

H (t, zk, żk) =
1

2λk(t)
ż2

k +
1
2

z2
k , (24)

with time derivative along the trajectories of (23):

Ḣ (t, zk, żk) =
1

λk(t)
uzk żk −

λ̇k(t)
2λk(t)2

ż2
k , (25)

and choose the input as

uzk = λk(t)

(

−kV H̃ (t, zk, żk) żk +
λ̇k(t)

2λk(t)2
żk

)

, (26)

wherekV > 0, H̃ (t, zk, żk) = H (t, zk, żk)−Hd andHd > 0, such
that the derivative ofH (t, zk, żk) results in

Ḣ (t, zk, żk) = −kV H̃ (t, zk, żk) ż2
k . (27)

The system (23), unlike the one considered in [11], is
non-autonomous and consequently we cannot apply LaSalle
theorem. Nevertheless with a similar argumentation we can



prove that it has an asymptotically stable limit cycleΩ =
{zk, żk | H (t, zk, żk) = Hd}. We have to show stability and at-
tractiveness.

Uniform stability: Choosing as Lyapunov function the
continuously differentiable function

V (t, zk, żk) =
1
2

H̃ (t, zk, żk)2 , (28)

with:
• V (t,Ω) = 0
• S 1 (zk, żk) ≤ V (t, zk, żk) ≤ S 2 (zk, żk)
• V̇ (t, zk, żk) = −kV H̃ (t, zk, żk)2 żk

2 ≤ 0
∀t ≥ 0 and∀ (zk, żk) ∈ R2, where

S 1 (zk, żk) =
1
2

(

1
2λk,max

ż2
k +

1
2

z2
k − Hd

)2

,

S 2 (zk, żk) =
1
2

(

1
2λk,min

ż2
k +

1
2

z2
k − Hd

)2

,

are positive definite functions onR2, we conclude thatΩ is
uniformly stable.

Attractiveness: To prove attractiveness we will use
Barbalat’s lemma (see, e.g. [23]). We have already shown
that V (t, zk, żk) is bounded from below and thaṫV (t, zk, żk)
is negative semidefinite. What is missing in order to apply
Barbalat’s lemma is thaẗV (t, zk, żk) is bounded. This follows
from V̈ (t, zk, żk) = −2kV H̃ (t, zk, żk)2 (kV żk + żk z̈k), which is
bounded, since (23) is stable. So we conclude that

lim
t→∞

V̇ (t, zk, żk) = 0 . (29)

Let Bǫ (Ω) be a neighbourhood ofΩ, such that

(zk = 0, żk = 0) < Bǫ (Ω) .

SinceΩ is stable, we can choose the initial condition such
that the solution is always inBǫ (Ω). Moreover we have
shown that either ˙zk → 0 or H (t, zk, żk) → Hd as t → ∞,
but since the system cannot converge to(zk , 0, żk = 0) and
(zk = 0, żk = 0) < Bǫ (Ω) then we conclude that the solution
converges toΩ = {zk, żk | H (t, zk, żk) = Hd}.

Remark 3: The controller (26) is composed of a term to
regulate the energy along thek-th mode and an additional,
Coriolis/centrifugal like termCmod to compensate for thekth
diagonal entry of the derivative of the modal mass matrixΛ̇ =
Cmod + CT

mod, whereΛ = diag(1/λi(t)). However, in (2) the
Coriolis/centrifugal vectorC(q, q̇) was already cancelled and
here this term is introduced again for thek-th mode. This is
as the modal analysis requiresC(q, q̇) to be cancelled but it
is necessary for the passivity of the controller (26).

IV. Extension to the variable stiffness actuated case

In the previous sections the modal decoupling and limit
cycle controller were introduced for the rigid robot case, where
it was assumed that we can directly access the joint torques.In
this section we will extend the methods for a VSA robot arm,
where only the motor torque is accessible. In the rigid robot
case the oscillatory dynamics were achieved by a virtual elastic
potential using control. Instead, the VSA robot consist of a
variable spring between the motor and the link. Thus, the plant
itself exhibits oscillatory dynamics. In particular, the stiffness

of the springs can be tuned to match with the oscillatory
dynamics shaped by control. Thereby, the performance and
efficiency will increase.

A. Dynamic modeling of VSA robots

VSA robots are under actuated Euler-Lagrange systems and
can be generally described by dynamic equations of the form
[24], [25]:

M(x)ẍ + c(x, ẋ) +
∂U(x)
∂x

= Q . (30)

Herein x ∈ Rn are generalized coordinates andQ ∈ Rn is a
non-conservative, generalized force dual to ˙x. The potential
energy

U(x) = Ug(x) + Uψ(x) , (31)

is composed of the gravity potentialUg(x) and the spring
potentialUψ(x). FurthermoreM(x) ∈ Rn×n is the symmetric
and positive definite inertia matrix andc(x, ẋ) ∈ Rn a vector of
Coriolis/centrifugal forces of the complete robot, respectively.
The design of VSA robots involves that not all of the system
states are directly actuated. Therefore, let us partition the states
x = (θT , qT )T asθ ∈ Rk being directly actuated states (referred
to as motor positions) andq ∈ Rn−k being indirectly actuated
states (referred to as link positions). Then the generalized force

Q =
[

τm

τext

]

(32)

consists of the control inputτm ∈ Rk and the externally applied
force τext. Before deriving a controller for the joint torque
dynamics, the general dynamic model (30) is customized based
on simplifying assumptions fully justified for the DLR Hand
Arm System [26] and briefly summarized as following:
• the coupling inertias in between motor and link side can

be neglected1.
• The electrical motor dynamics are sufficiently fast to be

neglected2.
• Stiffness adjustments are performed quasi statically.

Accordingly, the simplified motor dynamics have the form:

Bθ̈q + τ = τm , (33)

τ =
∂Uψ(θq, q, θψ)

∂θq
= ψ(θq − q, θψ) . (34)

Herein B is a constant, diagonal, and positive definite matrix
of motor inertias,θq ∈ Rk are motor coordinates, andθψ ∈ Rk

are constant parameters for the stiffness adjustment. Using the
above mentioned assumptions, the link side dynamics remains
as introduced in (1).

B. Decoupled torque control

Now, let us derive a controller to track a desired joint torque.
The basic concept of the controller is to decouple the joint
torque dynamics from the dynamics of the joint position, i.e. to
obtain a system in triangular form. The approach was proposed
in [30] for the case of constant joint stiffness and will be
extended to the VSA case as follows.

1This assumption is fulfilled in the presence of high gear ratios, cf. [27].
2Singular perturbation assumption, cf. e.g. [28], [29].



To relate the system (1), (33), and (34) we first rewrite (33)
in terms of joint torquesτ. Therefore, the strictly monotone
and odd spring functions (34) are inverted, i.e.

θq − q = ψ(τ)−1 . (35)

Then deriving the inverse spring function twice w.r.t. timeand
substituting the result in (33), one obtains

B
(

∂ψ(τ)−1

∂τ
τ̈ +

d
dt

(

∂ψ(τ)−1

∂τ

)

τ̇

)

+ τ = τm − Bq̈ (36)

In the above dynamics the termBq̈ remains. In order to cancel
out this term, the control law

τm = uτ + Bq̈ , (37)

can be considered3. Hereinuτ is an intermediate control input
for the resulting decoupled torque dynamics:

B
∂ψ(τ)−1

∂τ
τ̈ + B

d
dt

(

∂ψ(τ)−1

∂τ

)

τ̇ + τ = uτ . (38)

Finally, the torque erroreτ = τ − τd can be introduced. Then
the control law

uτ = τd + B
d
dt

(

∂ψ(τ)−1

∂τ

)

τ̇

+ B
∂ψ(τ)−1

∂τ
(τ̈d − Dτėτ − Kτeτ) , (39)

leads to the error dynamics

ëτ + Dτėτ +



Kτ +

(

∂ψ(τ)−1

∂τ

)−1

B−1



 eτ = 0 , (40)

whereKτ and Dτ are diagonal, positive definite gain matrices,
respectively. Substitutingτ = τd +eτ in the link side dynamics
(1), one obtains

M(q)q̈ + C(q, q̇)q̇ + g(q) = τd + eτ (41)

From (40) and (41) it can be seen that the desired torque equals
the actual torque if the torque error converges to zero. The
desired dynamics derived in the last sections can be achieved
by replacingτ by τd in (2).

Remark 4: In the case of the DLR Hand Arm System, the
spring functions (34) and consequently the inverted spring
functions (35) consist of no couplings in between the joints,
i.e. ψ−1

i = ψi(τi)−1. Thus, the torque error dynamics itself
are decoupled. In order to prove asymptotic stability for
the (n − k) decoupled systems (40) we can consider theith
scalar system isolated. Notice that the term (∂ψi(τi)−1/∂τi)−1 ≡
∂ψi(θi − qi)/∂θi ≡ ∂2Uψ(θ, q)/∂θ2

i , is the second derivative of
the spring potential and bounded from above and below, i.e.
0 < c3 ≤ (∂ψi(τi)−1/∂τi)−1 ≤ c4 < ∞. Thus, we can consider a
similar Lyapunov function as already used in Section II-B, to
prove asymptotic stability of the torque error dynamics (40).

3The controller (37) requires the second time derivative of the measured
link position, which can be obtained from (1), since the internal torquesτ are
measurable.

V. Experimental validation and performance analysis

In this section we first show the influence of the remaining
modal coupling terms by simulations. Then, we experimentally
apply the presented approach on a VSA robotic arm. Finally,
we demonstrate performance and efficiency.

A. Simulation

The relevance of the modal decoupling controller (15)
proposed in Section II is demonstrated for a double pendulum
like robotic arm in simulation. Therefore, it is assumed that
control (2) and (15) can be directly commanded to the rigid
body dynamics (1). The following parameters are considered.
Both links of the robot are equal: link lengthl1/2 = 0.4 m
and point massesm1/2 = 5.0 kg placed at half the link
length. The desired stiffness isKd = diag(20, 10) Nm/rad and
the modal dampingξ = (0.7, 0). The responses to a step-
like excitation ûz = (100, 0)T in terms of normalized modal
forces are simulated in Matlab/SimulinkR© using the fixed-
step solver ode1 (Euler forward integration) with a fixed step-
size of 0.0005 s. Notice that only the mode that is excited
is damped. Modal positions and velocities for two cases are
shown in Fig. 3. In the first case depicted in Fig. (3)(a)–(b)
the modal coupling termsγ (cf. (14)) are compensated. It can
be clearly seen that the modal motion is accurately decoupled.
In the second case Fig. (3)(c)–(d) the modal coupling terms
are maintained in the system (i.e.γ ≡ 0 in the decoupling
controller (15)). It can be seen that both modes are excited.
Since the step-like excitation acts only on the first mode, this
is due to the modal coupling termγ.
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Fig. 3. Influence of the modal coupling termγ. The first / second row
displays modal positions and velocities, whereγ is / is not canceled out.

B. Experiments

The complete approach (i.e. modal decoupling, limit cycle,
and torque feedback control) was tested for the first four VSA
joints of the DLR Hand Arm System4. For all experiments the
desired stiffness wasKd = diag(150, 150, 150, 150) Nm/rad
and the modal dampingξk = 0 for the k-th excited mode
and ξi = 1 for the remaining modes. The parameters of
the torque tracking controller wereKτ = diag(10, 5, 5, 5) 1/s2

and Dτ = diag(2ξτωτ,i) 1/s, whereξτ = 1 andωτ = (Kτ +

4A video attachment is provided, showing the experimental tests



(

∂ψ(τ)−1/∂τ
)−1

B−1)1/2. To overcome the numerical compu-
tation of higher derivatives for measured signals, only the
desired joint torqueτd(t) and the first derivative ˙τd(t) had
been provided to the torque tracking controller. The limit
cycle controller was applied either to the first or second
mode. Thereby the desired total energy wasHd = 0.08
or Hd = 0.035, respectively, and the limit cycle feedback
gain kV = 1.5. In order to induce the limit cycle motion
the robotic arm had been manually pushed from one of the
initial configurations:qd = (−π/6, 0, 0, π/3) for the first and
qd = (π/6, π/6, π/12, π/3) for the second mode.
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(e) Second mode motion
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(f) Joint motion

Fig. 4. Experimental validation of the complete approach for a VSA robotic
arm (first four joints of the DLR Hand Arm System). On the left and right
side phase plots of modal and joint motions are depicted, respectively.

The experimentally recorded first mode motions for two
different stiffness presets (i.e. low stiffnessθψ = θψ,min and
high stiffness θψ = 0.5θψ,max) are shown in Fig. 4(a)–(d).
For both stiffness presets the modal motion is similar. This
is as the desired dynamics is equal. In both cases, the motion
of the first mode asymptotically approaches the limit cycle,
while the motion of the remaining modes stays within a
small region around the origin of the modal state space. The
motion in terms of link positions involves mainly the first and
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Fig. 5. Tracking performance of the torque controller. The desired (dashed
lines) and actual (solid lines) torques are displayed for each joint. The data
corresponds to motions depicted in Fig. 4(e)–(f).
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Fig. 6. Attractive behavior of the controller in the presence of external
disturbances. The VSA robotic arm was manually stopped and released during
motion.

fourth joint. Moreover, second mode motions are shown in
Fig. 4(e)–(f). This mode involves the motion of all joints. The
corresponding tracking performance of the torque controller is
shown in Fig. 5. During the regulation phase (where the robot
maintains in the initial configuration), a constant tracking error
can be observed. This can be due to friction (not considered
for the torque controller). In order to reduce the tracking error
during the high acceleration phases of the desired torque, one
should consider also the second time derivative of the desired
torque. Furthermore, the attractive behavior of the modal limit
cycle controller is depicted in Fig. 6. Thereby, the roboticarm
was externally disturbed by catching and releasing the wrist
manually during motion. The motion converges back to the
limit cycle in less than a half cycle.

C. Performance measures

In the introduction of this paper we stated that VSA robots
are able to execute power efficient motions. In particular, the
efficiency can be increased by adjusting the VSA stiffness such
that it matches the desired dynamics. To verify the efficiency of
the proposed approach, we introduce a performance measure
based on power considerations. Let us therefore consider the



total power of the VSA robot dynamics (1) and (33)–(34):

Ptot = q̇Tτtot
︸︷︷︸

Plink

+ θ̇
T
τm

︸︷︷︸

Pmotor

+ q̇T ∂Uψ(θ, q)

∂q
︸          ︷︷          ︸

Pstf

+Pdis . (42)

Herein,Plink (whereτtot = τ+ τext) andPmotor is the power of
the links and motors, respectively.Pstf is the power transmitted
via the springs andPdis the dissipated power. The motion gen-
erated using the proposed approach is periodic and therefore
also the input- and output power will be periodic. Additionally,
in practice the power of the motors is not limited due to peaks
with short duration. In order to account for this, we define the
performance measure as the ratio of root-mean-square (RMS)
like values of the input and output power:

α =





√
∫ t

0
(Plink(τ))2 dτ




/





√
∫ t

0
(Pmotor(τ))2 dτ




. (43)

For the same modal limit cycle dynamics , the performance in
the case of low and high VSA stiffness presets is compared.
Therefore,αlow andαhigh was evaluated for the experimental
recordings corresponding to motions shown in Fig. 4(a)–(b)
and Fig. 4(c)–(d), respectively. The time evolutions ofαlow
and αhigh plotted in Fig. 7 are similar for both cases and
explained as follows. During the resting phase the motor and
link power is zero and consequently the performance measures
are meaningless. As the robot is externally disturbedα ≫ 1
due to the external power input. Then the controller is active
and the value undercutsα = 1 before approaching stationary
values ofαlow ≈ 1.8 andαhigh ≈ 2.3. In the stationary phase
the effective motor power is less than the link power. The
difference is provided by the elastic elements. Simply speak-
ing, the motor performs less motion than the link as shown
in Fig. 8. In particular, customizing the VSA stiffness for the
desired dynamics leads to increasing efficiency. Therefore, we
can conclude power efficiency for the embodied limit cycle
motion.
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Fig. 7. Performance measures evaluated for limit cycle motions correspond-
ing to Fig. 4(a)–(d). The ratio of RMS values of link and motorpower for
two different VSA adjustments are plotted over time.

VI. Conclusion

This paper presents an approach to generate and control
modal limit cycles for variable stiffness actuated robots. There-
fore, a link side controller is designed, which enables accurate
modal decoupling and attraction to a limit cycle. A torque
controller ensures tracking of the desired dynamics. Stability
and convergence are proven.

The approach is practically verified in simulation with a
rigid-body double pendulum and in experiments with the VSA
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Fig. 8. Motor positionθi (solid line) and link side positionqi (dashed line)
for the ith joint. The data corresponds to motions depicted in Fig. 4(c)–(d).

robotic arm DLR Hand Arm System. It is demonstrated that
the approach accurately separates the modal dynamics. Evenif
the system is externally disturbed the motion converges back
to the modal limit cycle. Furthermore, it is experimentally
validated that the natural dynamics of the plant can be varied
(by statically adjusting the joint stiffness) to closely match the
desired modal dynamics. Thereby, even the power efficiency
is increased.

The approach can be applied to cyclic motion tasks, where
performance, efficiency, and immunity to external disturbances
are more important than to accurately track a predefined
motion. For example a pick and place task is mainly defined
by two pairs of position and velocity. In between these points
the motion has only to be fast. How to customize the mode
shape to a predefined task is part of our future work.
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Appendix A
Derivatives of generalized eigenvectors

Given two symmetric matricesK, M ∈ Rn×n with M pos-
itive definite. Consider the following generalized eigenvalue
problem

Kw = λMw , (44)

wT Mw = 1 , (45)

where (45) defines a normalization for the eigenvectors. As-
sume that all the quantities in (44) are functions of time. The
goal is to compute the time derivative of the couple(λk; wk),
which is a solution of (44)–(45) with multiplicity one. Derive
both sides of (44) and rearrange as

(K − λk M) ẇk = λ̇k Mwk −
(

K̇ − λk Ṁ
)

wk . (46)



Pre-multiplying (46) by wT
k and taking into account that

wT
k (K − λk M) = 0 and wT

k Mwk = 1, leads to the derivative
of λk as

λ̇k = wT
k

(

K̇ − λk Ṁ
)

wk . (47)

To compute ˙wk, (47) is subsituted in (46):

(K − λk M) ẇk =
(

MwkwT
k − I

) (

K̇ − λk Ṁ
)

wk , (48)

and then one of the equation in (48) is replaced by the
derivative of (45):

2wT
k Mẇk = −wT

k Ṁwk . (49)

The last step is necessary because of (K − λk M) is singular.

Appendix B
Proof of the existence of a ”stable” domain for λi

We prove that there exists a domainD ≔]λi,1, λi,2[ such that
for λi(q) ∈ D, condition (22) is fulfilled.

Proof: Rewrite condition (22) in terms ofω ≔
√
λi(q).

That is p(ω) > 0, where

p(ω) = −ω4 + 2c1ξω
3 −

[(

1+ ξ2
)

c1 − 2c2

]

ω2 + 2ξc1c2ω − c2
2

and for convenience of notationξ ≔ ξi. Since the leading
coefficient of p(ω) is negative,

lim
ω→−∞

p(ω) = lim
ω→+∞

p(ω) = −∞ . (50)

Moreover, the solution ofp(ω) = 0 can be expressed as

ω1,2 =
1
2
ξc1 +

√
α ±

1
2

√
[(

ξ2 − 1
)

+ 4
√
αξ

]

c1 , (51)

ω3,4 =
1
2
ξc1 −

√
α ± 1

2

√
[(

ξ2 − 1
)

− 4
√
αξ

]

c1 , (52)

whereα ≔ c2 − c2
1/4 > 0. From (51) it follows thatω1,2 are

real if (ξ2 − 1)/ξ ≥ −4
√
α/c1. Therefore,∀ξ > 0, ∃c1, α > 0

such thatω1,2 are real. From (52) it follows thatω3,4 are real if
(ξ2−1)/ξ ≥ 4

√
α/c1. The latter condition shows∀ξ, 0 < ξ ≤ 1

and ∀c1, α > 0, ω3,4 are complex. Moreover, from (51) and
(52) it can be seen that∃c1, α > 0 such thatω1,2 are real and
ω3,4 are complex. Then,∀ξ > 0, ∃c1, α > 0 such thatp(ω)
has exactly two real zeros. Additionally, (50) holds. We can
conclude that∃D =]ω2

1, ω
2
2[ such that∀λi(q) ∈ D, condition

(22) is fulfilled.
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[8] Garofalo, Ott, and Albu-Schäffer, “Walking control of fully actuated
robots based on the bipedal slip model,” inProc. IEEE Int. Conf. on
Robotics and Automation, 2012, pp. 1999–2004.

[9] Duindam and Stramigioli, “Passive asymptotic curve tracking,” in
Proceedings of the IFAC Workshop on Lagrangian and Hamiltonian
Methods for Nonlinear Control, 2003, pp. 229 – 234.

[10] Canudas-de-Wit, Espiau, and Urrea, “Orbital stabilization of underactu-
ated mechanical systems,” inProc. of the 15th IFAC World Congress,
2002.
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