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Cover picture 1 Infrared photograph taken from the Eiffel tower overlooking Paris and La Defense (by 
Thomas Smith, King’s College London) 

“The CBD has no fence around it, no wall as there was around the city in Europe in the Middle 

Ages. You will never see a sign, “You are entering the CBD,” although there may be signs 

directing you to the city’s downtown area. However, the district can be conceptualized and its 

position outlined on a map on the basis of this mental construct. How can this best be done?” 

 

(Raymond E. Murphy, Editor of Economic Geography, 1971, p.2) 
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Abstract  

 

Central Business Districts (CBDs) are important for the functional arrangement of cities and 

urban risk analysis, however, past research underscores the importance of their spatial 

delineation. This dissertation presents a conceptual framework to define this urban structure type 

using physical parameters, and a transferable method to detect and delineate CBDs from a 

combination of Cartosat-1 high resolution digital surface models and multispectral Landsat 

images. Applying the method to three European megacities, CBDs are detected with a producer 

accuracy of 75.71% and spatially delineated with overall accuracies exceeding 82.97%. Cross-city 

comparison paints a characteristic picture of the spatial CBD configuration.  
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1. INTRODUCTION 

1.1 The Central Business District in Urban Geography 

 
The Central Business District (CBD) as a concept of Urban Geography has been examined in 

various contexts. However, definitions of this mental construct are qualitative and no universal 

theory on its location and spatial extent in complex urban environments exists. Furthermore, few 

studies on its internal structure have been carried out due to the lack of spatial datasets for this 

comparatively small geographic zone (Murphey et al., 1955; McDonald and McMillen, 2010). This 

introduction provides basic characteristics of CBDs, brings the term in line with theories of city 

structure, and presents existing approaches towards CBD delimitation.   

1.1.1 Characteristics of the CBD  
 
One of the most visible features of global cities and their supremacy in national economies are 

CBDs (Sassen, 2001 and 2002; Drozdz and Appert, 2010). Originating in industrial America, the 

term CBD was used to describe the downtown of American cities in the 19th century (Pitzl, 2004) 

but was diffused to the rest of the western world in the following decades. Although settled as a 

geographic concept, the CBD is difficult to define. Definitions are qualitative such as the CBD is 

“the nucleus … of an urban area that contains the main concentration of commercial land use” 

(McColl, 2005, p. 159) or a “unique area of massive concentration of activities and focus for the 

polarisation of capital, economic and financial activities in cities” (Drozdz and Appert, 2010, p.2). 

Thus, several authors describe CBDs as areas marked by the various qualitative indicators relative 

to the surrounding urban environment (Table 1-1). 

 

Tab. 1-1 Qualitative features of CBDs (Murphy, 1971; Waugh, 2000; Haggett, 2001; Heineberg, 2001) 

Qualitative feature 

- main concentration of commercial land use; 

- main concentration of the city’s offices and high employment density; 

- dominance of tertiary sector activities; 

- peak land values; 

- tallest buildings within a city; 

- high degree of accessibility and traffic density; 

- high daytime vs. low night-time population and low resident population. 
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Literature on the temporal development of CBDs provides recent discussions about the decline 

of existing CBDs (Coffey et al., 1994) in favour of new business districts in peripheral locations 

and therefore, functional separation (Baerwald, 1978; Borusso and Prorceddu, 2009). Hence, 

business districts remain important for the distribution of functional spaces within cities.  

1.1.2 Theories of city structure and the CBD 
 

Burgess (1929) was among the first interested in the functional arrangement of cities. In his 

concentric zone model, the CBD represented the inner core of functional concentric land use 

zones and the origin of marginal urban growth. Hoyt (1939) advanced this model by the concept 

of land pricing with maximum values within the CBD and the importance of transportation 

routes leading to axial urbanisation and sectoral zoning. Contrasting the growth around a single 

urban core, Harris and Ullman (1945) developed a model of patchy urban form with multiple 

centres of specialised functions, thus, being an early model very accurate for the description of 

today’s internal configuration of cities (Figure 1-1).  

 

        

Fig. 1-1 a) Concentric zone model b) sector model, and c) multiple nuclei model (Harris and Ullmann, 1945) 

 

Since the 1960s, more complex theories have been developed. Central places’ theory highlights 

the significance of human activities for the definition of urban hierarchies (Berry and Allen, 1961) 

with the CBD as the service centre of the highest order within a city. Furthermore, several 

authors dealt with density functions regarding land use/value or the occurrence of transportation 

infrastructure decreasing from the CBD towards the urban fringe (Alonso, 1960; Knos, 1962).  

In recent years, the scientific discussion on urban form shifted towards mono- versus polycentric 

urban patterns (Hoch and Waddel, 1993; Waddel et al., 1993) stressing the emergence and 

a)                                              b)                                             c) 
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coexistence of new CBDs in peripheral locations (Heikkila et al., 1989; Fogelston, 2001). 

Prominent examples are the new business districts at Carnary Wharf, London or Lujiazui CBD, 

Shanghai (Borusso and Prorceddu, 2009). To analyse these emerging spatial patterns, new 

methods have been employed including geographic information systems (GIS) (Batty and 

Longley, 1994), remote sensing (Wegmann et al., 2011), and urban modelling (Benenson and 

Torrens, 2004). 

1.1.3 Existing delineation techniques 
 

First studies on the delineation and cartographic representation of CBDs were based on 

observation and perception (Murphey, 1971). By contrast, Murphey and Vance (1954a) aimed to 

quantify activities being central to the urban environment using indices of central business height 

(CBHI) and intensity (CBII). Defining a set of typical central business land uses, they calculated 

the two metrics on block level (eq. 1 and 2) and spatially delimited CBDs using distinct 

thresholds (Figure 1-2). In a study (Murphey and Vance, 1954b), they applied this Central-

Business-Index-Technique to compare nine American CBDs in terms of shape and spatial extent. 

 

      
                                         

                       
 (1) 

 

         
                                        

                 
     (2) 

 

In the following years, various indicators of urban centrality have been used for CBD 

delimitation in case studies: Carol (1960) emphasised the significant difference between day and 

night-time population whereas Ning (1984) and Erteking (2008) analysed spatial pattern and 

hierarchical structure of shopping malls. Furthermore, Guillain (2006) and Marguilos (2007) used 

spatial distributions of employment and real estate to measure centrality.  

 

Due to increased availability of spatial datasets and analytical tools, generation and analysis of 

density surfaces such as population or commerce have recently gained attention for the detection 

of urban centres in several GIS-based approaches (Thurstain-Goodwin and Batty, 1998; Borusso 

and Prorceddu, 2009; Zheng, 2009). For example, Thurstain-Goodwin and Unwin (2000) 

calculated centrality based on a continuous density transformation of spatial variables such as 

building density and residential population from geocoded unit postcode data.  
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Fig. 1-2 CBD delimitation for Tulsa, Oklahoma (Murphey and Vance, 1954b) 

 
Although a certain amount of research towards CBD delineation has been carried out, no 

universal method exists. All of the presented methods rely on spatial data availability of 

socioeconomic variables from land use surveys and therefore, are often limited to small 

geographic regions regarding their transferability. In this context, remote sensing should be 

reconsidered as a tool for large-scale urban monitoring and structuring.  

1.2 Urban Remote Sensing 

1.2.1 Remote sensing of urban environments  
 

In the last decades, the majority of research based on earth observation from space has been 

applied to natural environments whereas the application of remote sensing to urban areas is 

relatively new (Weng and Quattrochi, 2007). However, the capabilities of remote sensing for 

studies on urban environments for reasons of widespread availability of datasets, frequency of 

update and costs are now widely recognised (Donnay and Barnsley, 2001; Netzband et al., 2007).  
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Today, not only optical, but also radar (radio detection and ranging) sensors which are capable of 

acquiring data independent from weather and time of day at very fine spatial resolutions, as well 

as topographic datasets derived from LiDAR (light detection and ranging) or 

stereophotogrammetric measurements are used to study urban phenomena, specifically 

supporting data fusion approaches (e.g. Wurm et al., 2011). Such studies include the detection of 

urban heat islands (Streutker, 2002), land use change detection (Mas, 1999), population 

estimation (Wu et al., 2007), or the analysis of urban morphology (Longley and Mesev, 2000). 

Furthermore, very high resolution (VHR) optical satellite-based sensors of the commercial sector 

provide crucial information for urban planning on building level (Albertz, 2007; Wurm and 

Taubenböck, 2010) and exceed the capabilities of traditional pixel-based analysis techniques. 

Thus, new analytical concepts such as object-based feature extraction have been developed 

(Wang and Schenk, 2000; Blaschke, 2010; Taubenböck et al., 2010). 

 

Another application of remote sensing is linked to rapid worldwide urbanisation: Cities are 

projected to absorb almost all of the world’s population growth in the future (UN, 2008). In this 

context, area-wide and up-to-date information for spatiotemporal analysis of urban sprawl is on 

demand. An indicator for the degree of urbanisation is the urban footprint of a city, i.e. the land 

covered by impervious surfaces. Taubenböck et al. (2012) extracted and comparatively analysed 

the spatiotemporal development of urban footprints for all global megacities. However, these 

studies do not allow for the identification of the internal urban structure such as the spatial 

delineation of CBDs as a physical reflection of a city’s temporal evolution (Wurm et al., 2009). 

1.2.2 Urban structuring using remote sensing 
 

As already indicated, CBDs are a distinct urban structure type (UST) defined not only by 

individual buildings, but also by the surrounding urban morphology. Recent research has 

employed remote sensing to quantitatively describe the spatial structure of urban environments 

and characterise morphological patterns but has shown strong dependence on data availability 

and the purpose of structuring (Taubenböck et al., 2008a). For ecological purposes, a straight-

forward urban biotope mapping approach has been used (Sukopp and Wittig, 1998; Bochow et 

al., 2007). A similar approach can be chosen for the structuring of the built-up landscapes into 

USTs on block level (Wurm et al., 2009). This scale presents statistical reference units that allow 

classification of a city into areas homogenous in terms of a combination of physical 

characteristics, land use, and land cover from the heterogeneous arrangement of individual 

buildings, streets and open spaces. Furthermore, USTs on block level enable a certain degree of 
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transferability and comparability as they fit into the hierarchical structure of urban administrative 

units with a direct reference to both the higher level of urban morphology (local districts) and the 

lower level of individual structure elements (buildings) (Figure 1-3) (Wurm and Taubenböck, 

2010).  

 

 

Fig. 1-3 Scale-dependent analysis of USTs (Sukopp and Wittig, 1998) 

 

Various studies on urban structuring using remote sensing have been carried out in the past 

including methodological concepts such as spatial metrics (Angel et al., 2005; Herold et al., 2002), 

object-oriented classification using decision trees (Wurm et al., 2009), or supervised classification 

(Bochow, 2010). In addition, several authors aimed at the delineation of particular USTs such as 

slums (Netzband et al., 2009). However, most approaches remain on the stage of case studies and 

are limited in terms of spatial coverage. Exceptions include the study by Herold et al. (2003) who 

used spatial metrics and image texture parameters from VHR Ikonos images to map urban land 

use in southern California and Wurm et al. (2009) who classified the urban structure of two 

German cities combining VHR Ikonos and LiDAR data from airborne lasercanning. However, 

these studies require the compilation of relatively costly VHR datasets of high data volume and 
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are therefore rarely transferable beyond case studies. Although some quantitative descriptions of 

the physical appearance of CBDs exists (e.g. Pan et al., 2008), no study towards spatial delineation 

of the UST using earth observation has been carried out before, underscoring the importance of 

the CBD for the functional arrangement of cities.  

1.3 Research objectives 

 
As indicated in this brief introduction, CBDs are a mental construct that does not feature a clear 

geographic boundary but exhibits certain qualitative characteristics. Based on these 

characteristics, existing approaches towards CBD delineation either rely on socioeconomic 

datasets or land use surveys that are rarely available for spatially extensive urban environments, 

thus, limiting the general transferability of these methodological concepts. Therefore, a distinct 

research gap towards urban structuring with regard to CBDs in general and transferrable 

methods for spatial CBD delineation in particular, exists, especially for large-scale and complex 

urban landscapes.  

 

Overall, the state of the past research does not embrace the importance of the location and 

spatial extents of CBDs regarding the functional arrangement of cities for urban planning. This 

knowledge would also benefit applications of urban risk analysis. With regard to natural 

catastrophe loss modelling, a spatial mismatch exists for hazard data commonly modelled on 

pixel level, and exposure data often only available for aggregated spatial units (Thieken et al., 

2006). Thus, regionalisation techniques such as dasymetric mapping (Holt and Lu, 2011) aim at 

the spatial disaggregation of exposures to finer spatial resolutions (Kron, 2005; Wünsch et al., 

2009). In this context, a valid data basis for land use-based disaggregation of exposure data is on 

demand, especially for CBDs which concentrate high volumes of asset values on small spatial 

extents.  

 

In this context, the bird’s eye view of remotely sensed data is reconsidered as an independent, 

area-wide, and consistent data basis for urban monitoring and structuring. Due to capabilities of 

remote sensing measuring the physical face of cities from space and the aforementioned lack of 

suitable spatial datasets for CBD delineation, this dissertation aims at identifying characteristic 

physical features of the built-up environment that define CBDs. Furthermore, a method towards 

CBD detection and delineation from high resolution (HR) digital surface models (DSMs) for 

large scale urban agglomerations is developed. Applying the developed method to three 
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European megacities confidence is gained about the accuracy of results and transferability of this 

method. In the context of this dissertation, the following research questions (Table 1-2) will be 

addressed.  

 

Tab. 1-2 Research questions addressed in this study 

No. Research question 

(1) Which physical parameters from the published literature can be used to delineate CBDs 

as an urban structure type?  

(2) Do CBDs feature physical differences regarding these parameters compared to 

surrounding urban structures? 

(3) Which remote sensing datasets are suitable for the delineation of CBDs based on 

physical parameters in large-scale urban environments? 

(4) How can CBDs be delineated from these datasets? 

(5) How accurate are the results regarding spatial delineation and detection? 

(6) Are there differences and analogies in the spatial configuration of CBDs across European 

megacities? 

1.4 Conceptual framework of the study 

 

For a systematic approach towards the overall goal of this study, a conceptual framework 

consisting of five logical sequences of working stages has been developed (Figure 1-4).  

 

As indicated before, CBDs do not feature distinct physical thresholds or spatial boundaries. 

Thus, the central hypothesis of this study is based upon qualitative statements on the physical 

nature of CBDs: In cities that are known to exhibit CBDs, these USTs can be differentiated from 

the surrounding urban morphology based on physical parameters.  

 

Based on this hypothesis, a quantitative physical analysis and statistical designation of CBDs from 

the surrounding urban structures is performed. For this purpose, highly detailed 3D city models 

are compiled from spatial datasets for test sites of three European mega cities that are known to 

contain CBDs. As literature provides qualitative descriptions of the essential features of CBDs 

that allow for a physical parameterisation of the UST, the 3D city models are statistically analysed 

to spatially designate CBDs and derive distinct parameter thresholds.  
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With these analysis results at hand, the remote sensing analysis focuses on the delineation of 

CBDs from remotely sensed datasets. This analysis includes the selection of suitable datasets for 

large-scale urban structuring as well as the implementation of a transferable method. For the 

implementation of the method, it is resorted to the parameters and thresholds identified in 

statistical designation procedure.   

 

To assess accuracy and performance of the presented method, a straight-forward approach to 

quantify spatial delineation and detection accuracies with regard to the statistical reference is put 

forward resulting in an evaluation of the method and its subproducts. Thus, confidence about the 

thematic results and the transferability of the methods with regard to the central hypothesis is 

gained.  

 

Finally, a thematic analysis using spatial metrics in a cross-city comparison to detect analogies and 

differences of spatial CBD configuration is conducted.  

 

 

Fig. 1-4 Conceptual framework  
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2. STUDY SITES AND DATA 

2.1 Study sites 

 

According to McColl (2005), most large cities exhibit CBDs, especially global cities where 

international financial business centres can be found. Therefore, the selection of study sites is 

straight-forward by reason of three attributes to cover the spatial and thematic spectrum of urban 

morphology (Table 2-1). Consequently, two European megacities, i.e. conurbations exceeding 10 

million inhabitants (UN, 2007), and one city projected to pass this threshold shortly, were 

selected. All of these cities feature one or more well-described CBDs that are used as city-internal 

test sites. These will be described in the following sections. Photo impressions of the test sites are 

shown in figure 2-1. 

Tab. 2-1 Study site selection criteria  

No Criterion 

(1) the size of the city: based on population numbers;  

(2) existence of an already identified CBD within the selected city based on the literature; 

(3) the age of the CBD: based on the availability of acquisition dates of the selected remote 

sensing data sets; 

2.1.1 London, Carnary Wharf 
 

London currently inhabits 9.0 million people (UN, 2012a) but is projected to pass the 10-million-

threshold by 2025 (UN, 2012b). The city’s clustered distribution of specialised industries is 

unique (GLA, 2008). Representing its international economic competiveness and significance as a 

global centre for the FIRE (finance/insurance/real estate) sector (Frug and Baron, 2008), the 

CBD at Carnary Wharf was built in the 1980s and is located about 8km east of London’s 

historical centre in the London Docklands. Contrasting London’s traditional financial centre in 

the City of London, Carnary Wharf was selected as a test site as it - until recently - featured the 

UK’s three highest buildings (Shin, 2008).  

2.1.2 Paris, La Defense 
 

With 10.6 million inhabitants Paris is currently the third largest European city (UN, 2012a). 

Located in the Île-de-France region, Paris features a similar functional separation as London with 
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a coexistence of CBDs such as the selected test site, La Defense, which presents an internal edge 

city (Hall and Pain, 2006). Located about 8km west of the historic city centre (Hall and Pain, 

2006), La Defense was developed to protect central Paris from modern office development and 

embrace the demands of international business in 2000 (Trip, 2007). Along with Carnary Wharf, 

La Defense is one of the most concentrated areas of high-rise buildings in Europe (Shin, 2008). 

2.1.3 Istanbul, Levent 
 

Located in a different cultural area, Istanbul is one of the most sprawling global megacities with 

its current population of 11.3 million inhabitants (Breunig et al., 2009, UN, 2012a). Although 

being located in an earthquake prone region, the enormous population pressure forces the city 

towards high-density building and vertical expansion (Taubenböck, 2008c). Istanbul’s main 

business activities developed during the 1980s along the Levent-Maslak-axis (Yigitcanlar et al., 

2008), 8km north-east of Istanbul’s historic centre. The Levent CBD was chosen as a test site for 

this study as it exhibits the headquarters of Turkey’s major banks with a high vertical dimension 

of buildings (Seger, 2012). 

2.2 Remotely sensed data 

2.2.1 Selection of remotely sensed data sets 
 

For the development of a method for spatial CBD detection and delineation, remote sensing 

provides an independent and cost-effective data basis. According to the requirements of the 

particular application, a considerate selection of data is crucial for the success of the study. The 

choice of data is predominantly determined by technical aspects (Table 2-2).  

 

Tab. 2-2 Data selection criteria (Radberger, 2001) 

No Criterion 

(1) extent of the test sites; 

(2) number of aimed land cover classes and their spatial differentiation ; 

(3) length of the study period; 

(4) requirements for accuracy for thematic mapping. 

 

For the application at hand, a continuous surface representation of the studied cities including 

their artificial objects is needed. In this context, the Indian satellite Cartosat-1 was selected. This 

http://www.google.de/search?hl=de&tbo=p&tbm=bks&q=inauthor:%22Tan+Yigitcanlar%22
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satellite carries a sensor system which allows for the photogrammetric derivation of HR DSMs 

from stereo scenes. In addition to that, it was opted for an optical sensor of the Landsat series 

for the classification of the urban footprint of each city as a spatial frame for CBD detection. 

With regard to table 2-2, these datasets meet the requirements of the application at hand. With 

their large swath widths both sensor systems cover the areal extents and spatial distribution of 

large cities that are necessary to describe their urban morphology (Schweitzer and Steinbrink, 

1998). Furthermore, providing both spectral and HR topographic information at medium to high 

spatial resolutions, the associated datasets allow for an accurate extraction of the desired urban 

attributes (Jensen and Cowen, 1999; Jensen, 2007), i.e. classification of the urban footprint and its 

CBDs. As this application is not time-sensitive, the length of the study period plays only a minor 

role.  

2.2.2 Landsat data 
 

The Landsat series of sensors (Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced 

Thematic Mapper (ETM+)) provide large-scale observations covering spatial extents of up to 

185km for large-scale conurbations such as megacities, as well as data continuity due to repetitive 

and continuous monitoring (Chuvieco and Huete, 2010). In addition, these sun-synchronous 

sensors are a cost-effective choice as imagery is provided free of charge by the United States 

Geological Survey (USGS). A further distinct advantage is data comparability due to the 

arrangement of spectral bands within the same spectral regions. However, the sensors’ relatively 

coarse geometric resolution presents one weakness with regard to classification due to subpixel 

mixed spectral information. Nevertheless, the particular datasets should allow for the 

classification of the urban footprint in its correct dimension and form (Taubenböck, 2008b). 

Technical details of the Landsat sensors are displayed in table 2-3.  
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Tab. 2-3 Technical details of the Landsat series of sensors (GLCF, 2004) 

 
 
 

For this study it was opted for imagery recorded by the TM due to technical problems with 

the ETM+ scan-line corrector (SLC) since 2003. Furthermore, acquisition dates were chosen 

not to date back before the construction of the CBDs in the selected test sites in case of 

limited temporal availability for a particular city. Furthermore, minimum cloud coverage was 

preferred.  

 

Overall, four scenes were selected for this study. Due to the spatial position of the satellites 

an image mosaic had to be generated from two scenes for study site Istanbul. All scenes were 

provided processed by the default Level 1 Product Generation System (LPGS) and projected 

MSS

Band 4: 0.50 - 0.60 Green 79

Band 5: 0.60 – 0.70 Red 79

Band 6: 0.70 – 0.80 Near IR 79

Band 7: 0.80 – 1.10 Near IR 79

MSS

Band 4: 0.50 – 0.60 Green 82

Band 5: 0.60 – 0.70 Red 82

Band 6: 0.70 – 0.80 Near IR 82

Band 7: 0.80 – 1.10 Near IR 82

TM

Band 1: 0.45 – 0.52 Blue 30

Band 2: 0.52 – 0.60 Green 30

Band 3: 0.63 – 0.69 Red 30

Band 4: 0.76 – 0.90 Near IR 30

Band 5: 1.55 – 1.75 Mid IR 30

Band 6: 10.4 – 12.5 Thermal 120

Band 7: 2.08 – 2.35 Mid IR 30

ETM+

Band 1: 0.450 – 0.515 Blue 30

Band 2: 0.525 – 0.605 Green 30

Band 3: 0.630 – 0.690 Red 30

Band 4: 0.760 – 0.900 Near IR 30

Band 5: 1.550 – 1.750 Mid IR 30

Band 6: 10.40 – 12.5 Thermal 60

Band 7:  2.080 – 2.35 Mid IR 30

Band 8:  0.52 – 0.92 PAN 15

Spectral Resolution 

(μm)

1999-2003 

(SLC on)    

                                                             

2003-2012 

(SLC off)

Spatial 

resolution (m)

Temporal 

coverage

1972-1983

1982-2012

Satellite Band

Landsat 1-3

Landsat 4-5

Landsat 7
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to the Universal Transverse Mercator projection (UTM). Furthermore, digital numbers (DN) 

were converted to units of at-sensor radiance applying the method presented by Chander et 

al. (2009) to enhance classification results (Roy et al., 2002). A detailed overview over the 

acquired datasets is given in table 2-4. The original TM scenes are displayed in appendix 3. 

 

Tab. 2-4 Details of the selected Landsat scenes 

 

2.2.3 Cartosat-1 data 
 

HR DSMs present the central datasets used for CBD delineation in this study. DSMs belong to 

the group of digital elevation models (DEMs) which are defined as continuous representations of 

surface elevation (Miller, 20004). In this context, DSMs present the earth’s surface including all 

features of the landscape such as vegetation and artificial objects (Jensen, 2007), whereas digital 

terrain models (DTMs) are a representation of the bare-earth surface. 

 

The DSMs used in this study were derived from stereo scenes provided by Cartosat-1. This 

Indian Remote Sensing Satellite P5 (IRS-P5) was launched in 2005 by the Indian National 

Remote Sensing Agency to provide imagery for large-scale cartographic applications (Jensen, 

2007). According to the specifications listed in table 2-5, this satellite, orbiting the earth sun-

synchronously at an altitude of 618km with a repeat cycle of 126 days, is equipped with two PAN 

cameras sensitive in the 500-850nm spectral wavelength region. Featuring a geometric resolution 

of 2.5m, these sensors simultaneously acquire images in stereo mode, one looking forward at 26° 

and one looking aft at -5°. Due to the relatively large swath width of 26km large urban 

agglomerations can be fully captured during one or two paths. With these specifications, 

Cartosat-1 provides HR stereo scenes which are well suited for the creation of large-scale DSMs 

(D’Angelo et al., 2010).  

TM 4 July 2011 Level 1

Landsat 5 USGS (Earth Explorer) GeoTiff

TM 30 June 2006 Level 1

Landsat 5 USGS (Earth Explorer) GeoTiff

TM 7 March 2003 Level 1

Landsat 5 USGS (Earth Explorer) GeoTiff

TM 7 March 2003 Level 1

Landsat 5 USGS (Earth Explorer) GeoTiff

<10%

Date / Data source Cloud cover
Path/Row 

(WRS 1/2)
Product

199/26

201/24

0%

0%

180/31

180/32

Istanbul

Sensor  

Platform
City

London

Paris

10%
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Tab. 2-5 Cartosat-1 a) orbit and b) payload specifications (Gianinetto, 2008) 

 
 

Tab. 2-6 Details of the selected Cartosat-1 scenes 

 

b) Characteristic                                                            Specification

Camera inclination (°)

Fore                                                                                  +26

Aft                                                                                   -5

Spatial resolution across-track  x along-track (m)

Fore                                                                            2.50 x 2.78

Aft                                                                              2.22 x 2.23

Spectral resolution

No. of bands                                                                      1

Bandwidth (nm)                                                             500-850

Radiometric resolution

Saturation radiance (mw/cm2/str/mm)                                55

a) Characteristic                                                            Specification Quantisation (bits)                                                             10

Nominal altitude (km)                                                   617.99 Signal-tp-noise ratio (SNR) 345

Number of orbits per day                                                   15

Orbital repetivity cycle (days)                                            116 Swath (km)

Nominal wait time to acquire adjacent path (days)            11 Stereo mode acquisition                                                    30

Max. wait time for revisit (days)                                         5 Mono mode acquisition (fore and aft combined)               26.855

Local time for equatorial crossing                                 10:30 AM

Charge-coupled device (CCD) parameters

Orbital parameters No. of detectors per camera                                           12,000

Semi-major axis (km)                                                     6,996.13 Detector element size (mm)                                            7 x 7

Eccentricity                                                                     0.001 Odd-even spacing (mm)    35 (staggered)

Inclination (°)                                                                                      97.87

Optics

Attitude and orbit control system No. of mirrors                                                    3

Attitude pointing accuracy of all axes  (°)                                   0.05 Effective focal length (mm)                                   1,980

Attitude drift (°/s)                                                          5 x 10
-5 F-number                                                            4.5

Attitude determination accuracy (°)                                           0.01 Field of view (°)                                                                  ± 1.08

Ground location accuracy (m)                                           < 220 Integration time (ms)                                               0.336

PAN Fore

PAN Aft

PAN Fore

PAN Aft

Cartosat-1 (IRS-P5)

PAN Fore

PAN Aft

PAN Fore

PAN Aft

PAN Fore

PAN Aft

PAN Fore

PAN Aft

Cartosat-1 (IRS-P5)

PAN Fore

PAN Aft

PAN Fore

PAN Aft

Cartosat-1 (IRS-P5)

4 2,505

1,521

256/210

257/210

19 May 2010

Euromap

19 May 2010

Euromap

29 June 2011

Euromap

29 June 2011

Euromap

3 July 2011

Euromap

3 July 2011

Euromap

0%

<10%

Standard 

GeoTiff

Standard 

GeoTiff

0%

0%

0%

Standard 

GeoTiff

Standard 

GeoTiff

Standard 

GeoTiff

20 January 

2009

28 May 2010

Euromap

1,4032Istanbul

0% 104/174

<10% 104/175

86/162

86/163

105/174

105/175

<10%

Standard 

GeoTiff

Standard 

GeoTiff

Standard 

GeoTiff

Aerial 

coverage 

Paris

London 2

City
Sensor / Year 

Platform

Date / 

Data source
Cloud cover Path/Row Product

No. of 

stereo pairs 
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An overview of the Cartosat-1 scenes selected for this study is given in table 2-6. These data were 

provided within the scope of the DLR scientific data pool by Euromap GmbH, which holds the 

rights for commercial distribution of IRS-P5 data in Europe. High quality DSMs were generated 

by the DFD from the available scenes by fully automated semi-global image matching (D’Angelo 

et al., 2009 and 2010) using mutual information of the acquired images (Hirschmüller, 2008). This 

method is based on general principles of stereo photogrammetry, i.e. the reconstruction of 3D 

physical objects from picture coordinates of two or more overlapping scenes with a known 

viewing geometry and computer stereovision techniques (Albertz, 2007; Jensen, 2007), and has 

been tested against independent ground truth measurements for 18 stereo pairs with a mean 

lateral and vertical accuracy of 6.7m and 5.1m, respectively (D’Angelo, 2010). The final DSMs 

and the input Fore PAN images for the cities under study are presented in figures A4-1 to A4-3 

of appendix 4. Aerial DSM maps of the test sites including photo impressions are displayed in 

figure 2-1. 

 

Due to the 5m grid spacing of the final DSMs, the datasets can be classified as HR products 

(Taubenböck et al., 2012), although they do not allow for extraction of individual objects on 

building level due to spatially varying of quality. For areas occluded from the sensors’ field of 

view due to building density or cloud cover, no height data exists. These holes are filled by 

interpolated 30m resolution digital elevation information from the Shuttle Radar Topography 

Mission (SRTM) using the delta fill algorithm developed by Grohman et al. (2006). In 

combination with spatial resolution induced artefacts, this procedure results in a loss of sharpness 

in building edges (Sirmarcek et al., 2010 and 2012) and spatial variation of data quality. This, so-

called Christo-effect (Fritsch, 1999), is exemplified in figure 2-2 by both profile lines as well as 

DSM views of different locations in Paris.  

 

Although Cartosat-1 derived DSMs are not flawless and do not feature microscopic detail on 

building level, they present a valuable data source for the application at hand. The decisive 

advantage of this dataset is the large-scale aerial coverage at a high spatial resolution, allowing the 

detection of significant physical urban structures such as CBDs in relation to the large-scale built 

environment.  
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Fig. 2-1 Cartosat-1 DSM and photo impression of the three test sites in a) London, b) Paris, and c) Istanbul 
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Fig. 2-2 Cartosat-1 a) PAN fore image (2.5m), b) DSM hillshade view, c) DSM, and d) sample profile graphs of 
different locations in Paris 

2.3 Spatial data sets  

 
To statistically designate CBDs from the surrounding urban structures by physical building 

parameters a highly detailed building reference is needed. In this context, 3D city models have 

proven useful in a variety of urban planning applications (Frueh and Zakhor, 2003). However, 

such models are usually expensive due to the costs of airborne laserscanning campaigns necessary 

and work-intensive maintenance of these datasets, especially for large-scale urban areas (Benner et 

al., 2005). Therefore, it is opted for a combination of spatial datasets with a focus on open source 

availability that allow for a straight-forward compilation of 3D models for the selected inner-city 

test sites (Figure 2-3). 
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Fig. 2-3 Overview of spatial datasets used for 3D city model generation 

2.3.1 Open StreetMap 
 

In the context of detailed urban mapping, crowdsourcing of geospatial data using informal social 

networks and web technology has gained attention in the past decade (Haklay and Weber, 2008). 

Although the accuracy, availability, and completeness of volunteered geographical information 

(VGI) depend on the individual mappers, Open StreetMap (OSM) presents a valuable and cost-

effective data source (Goodchild, 2007). Providing both street networks and information on 

building level – a large databasis exists especially for Paris -, OSM data (2012) is used for the 

determination of building blocks and acquisition of building footprints. Furthermore, significant 

buildings of the urban landscape commonly contain useful height information.   

2.3.2 UKMap building height dataset 
 

In the case of London, a very detailed building dataset is already openly available. LiDAR-derived 

building shapefiles containing detailed height attributes with a vertical accuracy with 95% 

confidence limits of 0.5m for the entire London area are provided by the Geoinformation Group 

of the University of Manchester for teaching, learning, and research purposes (Kitmitto et al., 

2000) (UKMap © The Geoinformation Group, 2012).  

2.3.3 Ikonos-derived building footprints 
 

Unfortunately, not for every city a detailed building database exists. In the case of Istanbul, a 

Ikonos image from 2005 provided by Taubenböck (2008c) is employed as reference for mapping 

the building inventory of the test site. As this VHR optical sensor acquires multispectral 

resolution in four bands and an additional panchromatic band (PAN) at a spatial resolution of 

4m and 1m, respectively, it is very suitable for the derivation of building footprints based on 

cognitive perception (Figure 2-4). 
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Fig. 2-4 True-color Ikonos composite for the test site Levent 

2.3.4 Google products: Earth and Streetview 
 

In the context of 3D city model building, Google products (Google Inc., 2012) are used to fill 

gaps of data availability and inconsistencies due to temporal deviation of the aforementioned 

datasets from the Cartosat-1 acquisition dates. This includes digitalisation of missing building 

footprints from aerial imagery and systematic building height estimation procedure from floor 

counts using Google Streetview which provides area-wide imagery on street level (Dulong et al., 

2010).  
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3. METHODOLOGY 

 
With regard to the conceptual framework presented, the methodological workflow of this 

dissertation is subdivided into five modules: (1) Physical parameterisation of CBDs, (2) 

compilation and analysis of 3D city models, (3) CBD delineation from remotely sensed data, (4) 

accuracy assessment, and (5) cross-city comparison (Figure 3-1). In general, the literature as well 

as earth observation (EO) data and the external spatial datasets described in chapter 2 are used as 

inputs. 

 

In a first stage, physical building parameters that characteristically describe the physical face of 

CBDs are logically derived from the published literature (section 3.1). Subsequently (section 3.2), 

3D city models are generated from the aforementioned external spatial data sources to build a 

reference for statistical CBD designation. This GIS-based procedure includes the compilation of 

building footprints and systematic height estimation. For structural analysis, an additional street 

layer is integrated to determine statistical reference units, in this case building blocks. 

Subsequently, this higher spatial scale is used as an aggregation level for the identified building 

parameters. Calculated on block level, these parameters allow for a statistical differentiation using 

dissimilarity clustering into two characteristic physical classes. These classes are thematically 

described as CBDs and Non-CBD areas and allow for a further structural analysis to examine the 

physical differences by use of within-group and between-group variance as a check for the central 

hypothesis. Furthermore, quantitative thresholds between the two classes are identified.    

 

In the remote sensing analysis (section 3.3), the aforementioned EO datasets and the results from 

structural analysis are used to implement a method for CBD detection and delineation based on 

physical parameters. This modular procedure includes object-based urban footprint classification 

from Landsat scenes and delineation of CBDs from Cartosat-1 DSMs based on a stepwise 

procedure of morphological filtering, hierarchical segmentation and fuzzy-logic classification.  

 

To gain confidence about the transferability and accuracy of the developed method, CBD 

delineation results are assessed using pixel-based confusion matrices for all test sites. 

Furthermore, the spatial detection accuracy is quantified on urban footprint level by a straight-

forward visual comparison using Google Earth. In this context, also the associated subproducts 

are assessed (section 3.4). 
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Finally, the spatial configuration of the detected CBDs is analysed on urban footprint level using 

a set of spatial metrics to detect differences and analogies of CBD configuration across cities 

(section 3.5). 

 

Fig. 3-1 Methodical workflow of this study  
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3.1 Literature review – physical parameterisation of CBDs 

 

Large cities are too complex for a universal and holistic structural definition (Taubenböck, 2011). 

For instance, some authors describe the CBD as the most central region of a city (Galster et al., 

2000), whereas others argue that CBDs have long ago abandoned downtown locations and are 

only central in terms of their functional land use (Borruso and Porceddu, 2009). Thus, this study 

focuses on physical features to delineate CBDs. In this context, it is important to first understand 

what makes CBDs different from the surrounding USTs in terms of their morphology. Although 

physical definitions in literature are rather vague and pre-defined thresholds do not exist, 

qualitative statements that characteristically describe the physical face of CBDs can be used to 

logically derive a physical parameterisation on block level.  

 

Most authors who dealt with this concept of urban geography describe the CBD as the part of 

the city which features peak land values and employment densities and thus, the highest buildings 

(e.g. Haggett, 2001; McColl, 2005; Pacione, 2005). In this context, the maximum building height 

presents a distinct indicator for central business land use (Heiken et al., 2003) and can be 

supplemented by the maximum building volume which is commonly highly correlated (Shin, 

2008). Further qualitative statements imply that the CBD is an aerial unit formed by a group of 

buildings, not by an individual object (e.g. Murphey, 1971). Thus, average values of the 

aforementioned measures present a logical addition to the parameter set.  

 

Another parameter commonly used for urban structuring is building density (Wurm and 

Taubenböck, 2011). Although CBDs are generally not recognised to be more densely built-up 

than other parts of the city due to a maximum concentration of transport infrastructure 

(Heineberg, 2001), they do feature a unique density of high-rise buildings, known as the skyline 

(Ford, 1976). Finally, high floorspace densities have been found to be a typical physical feature of 

CBDs (Pan et al., 2008). 

 

This set of parameters reflects the essential physical features of CBDs and is summarised in table 

3-1. Besides these, an additional land cover based feature of CBDs is the fraction of impervious 

surfaces which has been found to be maximal for this type of urban land use (Figure 3-2) (Ridd, 

1995; Wu and Murray, 2003). 
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Tab. 3-1 Overview of the selected building parameters and their calculation on block level 

Building parameter Equation  Variables 

Average building height (m)   
     

    

   
   

   

 (3) 

Ba = Building area; 

Bd = Building density; 

Bh = Building height; 

Bv = Building volume; 

FSD = floorspace density; 

n = number of buildings; 

f = floor count per building; 

Ru = reference unit;  

A = area of the reference unit; 

high = high-rise building (exceeding 

14 floors/50m or defined by 

CTBUH (2011)) 

Maximum building height (m) 
 
      

    
    

    
  (4) 

Average building volume (m³)   
     

     
    

 
   
   

   

 (5) 

Maximum building volume 
(m³) 

      
    

    

    
    

   (6) 

Floorspace density      
        

 
   
   

   

 (7) 

Building density of high-rise 
buildings (%)         

        

   
   

   

 (8) 

 

 

 

Fig. 3-2 Arrangement of urban land use types in the Vegetation-Impervious Surface-Soil model (Ridd, 1995) 
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3.2 Generation and analysis of 3D city models 

3.2.1 Generation of 3D city models 
 

This section covers the generation of 3D models as physical reference datasets for the selected 

test sites. As this part of the study focuses on the statistical designation and detailed structural 

analysis of CBDs vs. Non-CBD areas, the spatial extents of the models were chosen to cover not 

only the CBDs but also surrounding urban structures. Subsequently, the stepwise procedure of 

GIS-based (ESRI, 2011) 3D model building is described.  

3.2.1.1 Compilation of building footprints 

 

For the test sites in London and Paris, rich building inventories from the UKMap height dataset 

and OSM exist. However, these are not complete or fully consistent. Therefore, the associated 

building footprints were randomly checked against up-to-date Google Earth imagery resulting in 

the elimination of incorrect footprints and digitalisation of missing buildings. In the case of 

Istanbul’s test site Levent, building footprints were extracted by manual digitising based on 

cognitive perception of the interpreter. This method features shortcomings in terms of 

repeatability and consistent quality in and across cities (Sliuzas et al., 2008). However, in contrast 

to automated extraction of building objects which is difficult to apply in high-density urban 

environments (Netzband and Rahman, 2009), this form of visual interpretation provides a 

flexible approach when following a standardised digitising protocol. Thus, the high spatial 

resolution and multispectral information provided by Ikonos allowed for the straight-forward 

derivation of one polygon per building (Figure 3-3). Same as for the other test sites, these 

footprints were supplemented by missing buildings from Google Earth-based digitising.  

 

Fig. 3-3 Ikonos false-color composite and digitised building footprints, Levent 
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3.2.1.2 Building height estimation 

 

To supplement the described building footprints by the third dimension, systematic height 

estimation was conducted for buildings not attributed by height information so far. Herein, 

Google StreetView (Google Inc., 2012) which provides aerial views of building façades on street 

level was employed. The indirect derivation of the absolute building height is based on floor 

counts from these views which are directly attributed to the footprints of building façades visible 

from the street view path. In the case of total occlusion, building footprints were attributed with 

the rounded mean floor count of the particular block in which they are located (Figure 3-4). 

 

 

Fig. 3-4 Example of the systemic height estimation for a building block in Paris 

 
In the following, floor counts were converted to values of absolute building height using the 

empirical correlation (r=0.864) found by Wurm et al. (2011) for housing inventories of two 

European cities: 

 

                (9) 

 

where y is the absolute building height and x the number of floors.  
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3.2.1.3 Building block determination 

 

The determination of building blocks presents a crucial step due to the employment as statistical 

reference units in subsequent analyses. The designation is based on the concept of homogeneous 

land-use regions that are made up from the arrangement of individual buildings and open spaces 

(land cover objects) presenting a specific land use type (Zhan et al., 2002; Herold et al., 2002 & 

2003). Streets have been identified as crisp geographic boundaries of these man-made structures 

(Couclelis, 1992; Wurm et al., 2010). Therefore, the determination of building blocks is primarily 

oriented on the street network as the structuring element provided by OSM (Figure 3-5). Further 

criteria are the aerial coverage of Google Streetview to maximise the value of the available 

imagery for height estimation and the visual homogeneity at obvious structural change-overs.    
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Fig. 3-5 Designated building blocks for a) La Defense, b) Levent, and c) Carnary Wharf  
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With regard to the presented procedure, the generated 3D models are not 100% accurate since 

they depend to a high degree on visual interpretation and cognitive perception of the mapper. 

However, they present a close-to-realistic image of the detailed physical real-world structure of 

the test sites and allow for the differentiation of CBDs relative to the surrounding urban 

morphology. Finally, table 3-2 sums up the process of model generation with respect to the 

spatial datasets used and figure 3-6 displays a final 3D block model of La Defense.   

 

Tab. 3-2 Summary of 3D city model building  

 
 
 

 

Fig. 3-6 3D perspective view on the building model of La Defense 

 

 

Carnary Wharf La Defense Levent

No. Of buildings from:

Open StreetMap 4,900

UKMap building height dataset 1,835

Digitisng (Ikonos) 3,695

Digitising (Google Earth) 169 888 34

Total No. of buildings 2,004 5,788 3,729

Total No. of height estimations 169 3,819 3,729

(= buildings not containing height attributes from UKMap or OSM)

Total No. of blocks 81 143 42

Test site area (km²) 6.23 7.09 2.67
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3.2.2 GIS-based aggregation of building parameters 
 

To allow for a statistical designation and systematic structural comparison of the USTs CBD vs. 

Non-CBD, the identified physical parameters are aggregated on a higher spatial level of statistical 

reference units. Based on the designated building blocks and 3D city models presenting a high-

detail physical reference of the test sites, building parameters from section 3.1 are calculated on 

block level using GIS-based spatial join operations. The resulting aggregated parameters are 

exemplified in figure 3-7 for the test site La Defense.  

 

 

Fig. 3-7 Aggregated building parameters on block level, La Defense 
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3.2.3 Dissimilarity clustering 
 

For physical differentiation of CBDs vs. Non-CBD areas, cluster analysis based on the 

observations from the 3D city models, i.e. the aggregated physical building parameters, is used. 

This step is based on the central hypothesis from chapter 1 that CBDs show significant 

differences regarding their morphology compared to other urban structures. In this context, 

cluster analysis is the assignment of a set of observations to groups, called clusters, so that 

observations in the same cluster show a high degree of similarity (Richards and Jia, 2006). With 

this statistical approach, it is aimed at spatial differentiation within the test sites based on physical 

parameters and the identification of typical thresholds for each class.  

 

Partitioning around medoids (PAM) is used to differentiate the two classes CBD and Non-CBD 

on block level. This hierarchical clustering method is advantageous compared to other algorithms 

as it aims to minimise the sum of dissimilarities within clusters based on the structure of the data 

(Reynolds et al., 2006). To obtain comprehensive thresholds between the two thematic classes, 

the clustering is executed across the whole set of building parameters and test sites. In a first step, 

the aggregated data are standardised to avoid dependence on the choice of measurement units 

according to Thomas and Hugget (1980) (eq. 10): 

 

     
    

 
  (10) 

 

where zi is the new value of any sample observation xi, µ is the sample mean, and  is the 

standard deviation of the sampling distribution. Subsequently, a dissimilarity matrix is generated 

which presents the distances between all pairs of observations i and j with the coordinates 

(zi1…,zip) and (zj1…,zjp)  in the 6-dimensional feature space (p=6) based on the Euclidean norm (eq. 

11) (Kaufmann and Rousseeuw, 1990):  

 

                 
 
          

 
              (11) 

 

In the following, the PAM algorithm iteratively determines representative objects for the 

thematic classes. These so-called medoids are meant to present the optimal configuration of 

objects in the feature space by minimising the total dissimilarity within groups (Kaufmann and 

Rousseeuw, 1990). Thus, two clusters are designated by assigning each object (block) to the 

nearest medoid creating groups which can be thematically described as CBD and Non-CBD. This 

clustering procedure was implemented in the statistical computing platform R (Appendix 5). 
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3.2.4 Structural comparison and threshold identification 
 

The straight-forward methodology to delineate CBDs from the surrounding urban structures 

based on cluster analysis implies that a significant difference within the input parameters exits on 

class level. However, the analysis of derived physical characteristics allows for a deeper insight 

into the physical face of CBDs. As a check whether the central hypothesis is generally true, i.e. if 

the CBD can be differentiated from the surrounding urban morphology based on physical 

parameters, the available information allows for a systematic structural comparison on different 

geometric levels: (1) The analysis of structural differences at test site (district) level and (2) the 

analysis of within-group and between-group variance at the level of the spatial areas differentiated 

as the USTs CBDs and Non-CBDs (Figure 1-3). For this reason, the parameters identified in 

section 3.1 are visualised as boxplots on test site and thematic class level. These plots include the 

median, the interquartile range and whiskers as defined by Tukey (1977). Furthermore, parameter 

thresholds are directly derived from class level and visualised using range plots for employment in 

the remote sensing analysis part of this study.  

3.3 Object-based CBD delineation from remotely sensed data 

 

Following this detailed structural analysis, this section presents the method for CBD detection 

and delineation from a combination of Landsat imagery and HR Cartosat-1 DSMs as the central 

part of the remote sensing analysis. This method was implemented using the object-based image 

analysis software eCognition Developer (Trimble GmbH, 2011b) and can be subdivided into four 

basic modules: (1) Urban footprint classification, (2) morphological filtering, (3) hierarchical 

segmentation, and (4) fuzzy-logic classification. In the following, these modules are described in 

sequence. 

3.3.1 Urban footprint classification 
 

Due to the high impervious surface fractions found in CBDs, it is a reasonable decision to use 

the urban footprint of a city as a spatial frame for CBD delineation. However, the high spectral 

variability due to the complex mixture of urban surfaces makes it an explicitly difficult land cover 

to delineate (Jensen, 2007; Weng, 2008) (Figure 3-8).  
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Fig. 3-8 Reflectance characteristics of common urban surfaces (Jensen, 2007) 

 
For urban footprint classification of the Landsat TM scenes a semi-automatic impervious surface 

classification procedure using decision trees was employed. This has been implemented by 

Abelen et al. (2011) as a fixed processing chain in eCognition Architect consisting of a bottom 

region growing technique for the generation of image objects (Benz et al., 2004) and hierarchically  

structured land use classification using a pre-defined feature set (Figure 3-9). Since the urban 

footprint classification is not the central scope of this study, for a detailed description of this 

procedure implemented as an interactive graphical user interface (GUI) it is referred to Abelen 

(2009). 
 

 

Fig. 3-9 Schematic overview of the step-wise hierarchical land cover classification (Taubenböck, 2012) 
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At the geometric level of urban footprints a further thematic differentiation is beyond the data’s 

capabilities. Thus, the following sections describe the extraction of the essential features for 

classification of CBDs from the HR DSMs. 

3.3.2 Morphological filtering  
 

Cartosat-1 DSMs have been tested for the extraction of individual buildings by several 

segmentation procedures including contrast-split, multi-resolution, and canny edge segmentation 

(Trimble GmbH, 2011a). However, due to fuzzy building edges presented in the DSMs, sharp 

building outlines are impossible to detect with high accuracies. Thus, the DSMs do not provide a 

reference for an analysis of physical parameters derived from building level, but are suitable for 

the delineation of CBDs based on the dimension of their physical features relative to the 

surrounding urban environment on pixel level.  

 

In this context, a morphological pre-processing is executed to obtain an accurate measure of the 

above-ground building volume. A classic morphological filtering algorithm to create a normalised 

DSM (nDSM), i.e. a surface representation of objects lying above-terrain, is the morphological 

opening (Haralick et al. 1987; Bochow, 2009). This algorithm is based on the sequential execution 

of a kernel window-based minimum (erosion) and maximum (dilatation) filter s(i,j) (eq. 12 and 13) 

on pixel level of the DSM I(x,y) (Brenner, 2000) followed by an additional median filter to derive 

a smoothened DTM surface. Consequently, the nDSM is calculated as the difference between the 

DSM and the DTM (Figure 3-10) (Figure 3-10). 

 

 
 

 

 

Fig. 3-10 Scheme of the morphologic operations for nDSM generation 

  ⊖ 𝑠   ,   = min
( , ) 𝑠

{ ( +  ,  +  )} 

  ⊕ 𝑠   ,   = max
( , ) 𝑠

{   +  ,  +   } 

(12) 

(13) 
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As the morphological filtering results are sensitive to the kernel size of the moving window (Arefi 

et al., 2009) (Figure 3-11), several kernel sizes are tested in the context of the quality assessment 

of the DTM subproduct by the use of profile lines and basic measures error such as the root 

mean square error (RMSE) compared to a spatial reference.  

 

 

Fig. 3-11 Effect of varying kernel size on the DTM (top) and nDSM (bottom) generation, La Defense; a)-c) kernel 
sizes of 10x10, 50x50, and 100x100 pixels 

3.3.3 Hierarchical Segmentation 
 

The object-based delineation of CBDs underlies a top-down segmentation structure (Figure 3-12) 

(Taubenböck et al., 2010) which reflects the hierarchical structure of cities presented in section 

1.2.2. Starting on pixel level of the nDSM, the highest spatial scale is presented by the urban 

footprint level (L1) which is generated by embedding the urban footprint classification as a 

thematic layer into the segmentation process (1).  

 

Below, the aggregation level (L2) presents the spatial scale of statistical reference units. In 

contrast to the 3D city models, the problem encountered here is that OSM street networks do 

not present a feasible databasis for transferable designation of building blocks beyond test site 

level due to the manual editing tasks involved. Furthermore, a gap regarding availability of 

alternative datasets of administrative units such as land parcels or inner-city districts still exists for 

European cities (INSPIRE, 2012). Against this background, a chessboard segmentation was 

chosen to create square reference units of 200m cellsize (2). Although not independent from the 
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urban morphology (Herold et al., 2003), these artificial units present the best possible practice 

with regard to the choice of a representative cellsize for building blocks.  

 

By the execution of a further chessboard segmentation, the subobject level (L3) is reached (3). 

This level equals the pixel level and is classified into pixel objects that represent urban structures 

and terrain pixels. Subsequently, this multi-level approach allows for the straight-forward 

aggregation of physical parameters on block level from individual pixel values by the use of 

relational features between those levels (4) (Trimble GmbH, 2011a). In this connection, the area 

classified as built-up on L1 presents the reference for area-dependent measures such as 

floorspace density, whereas subobject terrain pixels present the physical above-ground building 

volume. As mentioned before, Cartosat-1 DSMs do not allow for classification based on physical 

parameters aggregated from individual buildings. Thus, substitutes for the selected building 

parameters on pixel level are used for aggregation on L1 (Table 3-3). Although some of these 

substitutes only present proxies and are associated with a certain information loss, they reflect the 

typical physical features of CBDs. 

 

 

 

Fig. 3-12 Scheme of hierarchical segmentation  

 
By transferring the aggregation level (5), a separate classification level (L1+) is created which 

contains all aggregated parameter values as well as a reference to the urban footprint level in the 

form of an attribute on the existence of subobjects classified as built-up on L1.Subsequently, a 

fuzzy-logic classification procedure is executed to delineate CBDs.  This procedure is described 

in the next section. Finally, classification results are clipped to limit the occurrence of CBDs to 

the urban footprint extent (6).  
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Tab. 3-3 Substitute relational features of physical parameters derived from pixel level 

Building 

parameter 

Pixel-based 

substitute 
Equation 

 
Variables 

Average building 

height (m) 

Pixel-based 

average pixel 

height (m) 

  
    

    

   
   

   

 (14) Pa = Pixel-based area; 

Pd = Pixel-based density; 

Ph = Pixel-based height; 

Pv = Pixel-based volume;  

FSD = Pixel-based 

floorspace density; 

n = number of pixels 

classified as built-up 

structural on L3; 

cf = floor height constant; 

Ru = reference unit; 

U = area of the reference 

unit classified as built-up 

on L1; 

high = pixels exceeding a 

height of 14 floors or 

50m as defined by 

CTBUH (2011)) 

Maximum 

building height 

(m) 

Pixel-based 

maximum height 

(m) 

 

     
    

    

    
  

(15) 

Average building 

volume (m³) 

Pixel-based 

average volume 

(m³) 

     
     

    
 

   
   

   

 (16) 

Maximum 

building volume 

(m³) 

Pixel-based 

maximum volume 

(m³) 

     
     

    

    
    

  (17) 

Floorspace 

density 

Pixel-based 

floorspace density       

  
   

  
    

 
   
   

   

 
(18) 

Building density 

of high-rise 

buildings (%) 

Pixel-based density 

of high-rise 

buildings (%) 

        
        

   
   

   

 (19) 

3.3.4 Fuzzy-logic classification 
 

As mentioned before, a fuzzy-logic approach (Stolz, 1998) is used to classify CBDs on block level 

(L1+). By the use of fuzzy sets, i.e. classes with continuous grades of membership, membership 

values are added to the final classification result (Yager, 1987). For this purpose, it is referred to 

the class thresholds on building and pixel level identified from the structural analysis of the 3D 

city models, as these values represent the comprehensive physical differences of the structure 

type CBD compared to the surrounding’s urban morphology. Here, it is pre-empted that class 

change-overs are not distinct but exhibit a fuzzy transition range between the two classes defined 

by distinct lower and upper thresholds. This is due to the holistic approach of parameter 

combination that makes up the physical face of CBDs. The basic scheme of fuzzy-logic 

classification applied here consists of two rules combined by a logical minimum (AND) operator 

(Figure 3-13):  
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(1) The a priori knowledge about the urban footprint extent is employed as a criterion of 

exclusion by using the existence of subobjects classified as built-up on urban footprint level as a 

hard thresholding rule. (2) Physical parameters aggregated on block level from pixel object level 

are combined via a second minimum operator. In between the identified lower and upper 

thresholds of the transition range, the CBD membership value increases according to a fuzzy 

sigmoidal membership function from zero to one, thus, returning an individual membership 

value for each parameter. To combine these values, again, hard thresholding is used based on the 

logical decision that all blocks must at least meet the lower threshold of the transition range for 

each parameter to be classified as CBD. Finally, the class membership value of each block 

classified as CBD is returned as the minimum membership value of each physical parameter.  
 

 

Fig. 3-13 Scheme of fuzzy-logic classification  
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3.4 Accuracy assessment  

 
In order to assess the transferability of the presented methods, the final CBD delineation and its 

associated subproducts are assessed. 

3.4.1 Urban footprint classifications 
 

To provide a consistent spatial reference for CBD detection, the accuracy of the urban footprint 

as an important subproduct is assessed. Commonly, classification accuracy is determined by 

comparing the classification results with ground-truth data (Richards and Jia, 2006). Since such 

data are not available, the classification accuracy was alternatively assessed by random distribution 

of 100 checkpoints within each class (Built-up/Non built-up/Water) and visual verification using 

Google Earth. The resulting confusion matrices include common measures of accuracy such as 

the Kappa-Index which compares the agreement of the confusion matrix with a chance 

agreement (eq. 20) (Congalton and Green, 2009):  

 

   
               

 
   

 
   

           
 
   

 (20) 

 

with N being the total of checkpoints, r the number of rows, xii the value of row i and column i, 

and x+i and xi+ the row and column totals.   

3.4.2 CBD delineation and detection 
 

As the final product of the presented method, the accuracy of CBD classification is assessed. In 

this context, it is differentiated between spatial delineation and detection accuracy: 

 

The former aims at quantifying the spatial precision of CBD delineation within the three city-

internal test sites. As for the urban footprint, the accuracy is assessed by standard pixel-based 

confusion matrices for the two thematic classes (CBD/Non-CBD) with regard to the statistically 

designated building blocks from analysis of 3D city models. In contrast, the spatial detection 

accuracy reflects the correctness of large-scale CBD localisation on urban footprint level. For this 

purpose all blocks classified as CBDs are visually compared to the urban structures presented by 

Google Earth imagery and 3D models (Google Inc., 2012) to quantify the user accuracy. 

However, this procedure does not allow for the calculation of the producer accuracy.  
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3.5 Cross-city comparison  

 
For cross-city analysis of CBD configuration, a set of spatial metrics, i.e. quantitative, aggregated 

measures that can be used to describe the spatial pattern of cities (Herold et al., 2005; Huang et al., 

2007; Taubenböck et al., 2009), is employed. In this context, adjacent correctly detected blocks 

are merged since they thematically represent one CBD and the selected metrics are calculated 

using GIS (ESRI, 2011).  

 

For straight-forward quantitative comparison, the number of CBDs (n(CBD)), the absolute (AA) 

and relative total CBD area (RA) compared to the spatial extent of the urban footprint are 

analysed. Furthermore, the largest patch index (LPI) as a measure for the dominance of the 

largest CBD is calculated (McGarigal and Marks, 1995). To compare the spatial configuration of 

CBDs across cities (Table 3-4), the mean CBD-to-CBD distance (MD) in combination with the 

nearest neighbour distance (MNND) are analysed as measures of spatial dispersion. Furthermore, 

the CBD density within the historic urban core (CBD-D5) and the mean CBD-to-centre distance 

(MDC) reflect geographic centrality of CBD distribution. For reason of across-city comparability, 

these measures of spatial configuration are normalised by the dimension of the largest urban 

patch of the particular city (Figure 3-14). Finally, spider-charts are used for comparative analysis. 

 

Tab. 3-4 Overview of spatial configuration metrics 

Metric 
Abbrev. 
(unit) 

Equation  
Normalisation 

variables 
Further  

variables 

Relative mean CBD-to-

CBD distance 

 

 

MD  

(%) 

   

 
    

 
   

 
 
   

 
    

 
(21) 

Dmax= Max. urban 

footprint extent;  

ACBD = Total area 

covered by 

CBDs; 

n = number of 

CBDs detected; 

dmin =Nearest 

Neighbour  

CBD-to-CBD 

distance; 

dc = CBD-to-centre 

distance; 

dij = distance 

between CBD i 

and CBD j; 

i/j = 1,…,n CBDs 

Relative mean CBD-to-

CBD nearest neighbour 

distance 

 

MNND 

(%) 
   

       
 
   

 
    

 
(22) 

Dmax= Max. urban 

footprint extent;  

CBD density in relation 

to the built-up area in a 

5km circle around the 

historic centre 

CBD-D5 

(%) 
   

        

        

 (23) 

AUFP-5km = Built-up 

area within the 

5km radius; 

Relative mean CBD-to-

centre distance 

MDC  

(%)     

     
 
   

 
      

 
(24) 

Dc-max = Max. centre-

to-urban footprint 

edge distance; 
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Fig. 3-14  Calculation scheme of spatial configuration metrics  

 

 

 



4. ANALYSIS AND RESULTS 42 

 

4. ANALYSIS AND RESULTS  

 
This chapter presents the analysis and results of this study which are subdivided into two 

sections: Thematic results of section 4.1 include the analysis of the 3D city models and final 

classification products from remote sensing analysis, as well as the cross-city comparison.  To 

gain confidence about the transferability of the presented methods and the consistency of the 

thematic results, the methodological evaluation of section 4.2 covers the accuracy assessment of 

CBD delineation from remotely sensed data and the related subproducts.  

4.1 Thematic results 

4.1.1 Analysis of 3D city models 
 

The results from analysis of the 3D city models (Figure 4-2) present not only a high-detail 

physical reference for the remote sensing analysis but also a test for the central hypothesis, and 

thus, the conceptual foundation of this study. These results originate from the statistical 

differentiation of the classes CBD and Non-CBD on block level (Figure 4-1) and include the 

structural comparison, as well as the identification of parameter thresholds on class level.  
 

  
Fig. 4-1 Clustering results on block level 
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Fig. 4-2 3D perspective on the building models for the three test sites 
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4.1.1.1 Structural comparison 

 
The differentiation of CBDs and Non-CBD areas by dissimilarity clustering on block level 

implies a significant difference between the six building parameters selected. However, not only 

do the derived physical characteristics allow for a deeper insight into the physical face on CBDs 

and the identification of quantitative thresholds but they also present a test for the central 

hypothesis of this study. Thus, the subsequent analysis compares the classes CBD and Non-CBD 

based on the selected parameter set using within- and between-group variance across test sites.  

 
Maximum/average height (Figure 4-3): These parameters do not show considerable differences 

across test sites. However, CBDs feature significantly higher building heights compared to the 

urban surrounding. The within-group variability is lower among Non-CBD areas revealing a 

higher degree of homogeneity of the surrounding urban morphology and underscoring the 

variance between the two classes. Beyond this, CBDs exhibit a high vertical variability with peak 

values of average and maximum height at Carnary Wharf. 

 

 
 

  

Fig. 4-3 Boxplots illustrating a) average and b) maximum building height on class and test site level 
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Maximum/average volume (Figure 4-4): Due to high correlation of building height and volume, 

maximum and average volume show homogenous distributions similar to those of the 

aforementioned parameters across test sites. Significantly higher building volumes are found in 

CBDs of all sites, whereas lower within-group variabilities of Non-CBD areas are significantly 

exceeded by the variance between the two classes. Furthermore, the highest variability and 

absolute values of the average volume are found for Carnary Wharf and La Defense owing to the 

high spatial accumulation of voluminous buildings within these CBDs (Figure 4-2).   

 

 
 

 

Fig. 4-4 Boxplots illustrating a) average and b) maximum building volume on class and test site level 

 

Floorspace density/density of high-rise buildings (Figure 4-5): Again, this pair of parameters are very 

homogenous across the test sites with the lowest values identified for Levent due to the more 

disperse spatial distribution of high-rise buildings (Figure 4-2). On class level, considerable higher 

values of both parameters are found in CBDs of all sites due to the concentration of high 

buildings with large floorspaces. Besides that, the distinctly lower within-group variability of 

Non-CBD areas is clearly exceeded by the between-group variance of these parameters.    
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Fig. 4-5 Boxplots illustrating a) floorspace density and b) density of high-rise buildings on class and test site level 

 
These structural analyses support the central hypothesis of this study by comparison of the 

classes CBD and Non-CBD. Although CBDs are by no means homogenous due to high within 

class variabilities, a constantly higher between-group variance compared to the within-group 

variance of the surrounding urban structures is obvious. This means that CBDs are more similar 

to each other across cities than to the more homogenous urban surrounding.  
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4.1.1.2 Threshold identification 

 

By applying the two-class unsupervised clustering process to all observations across cities, 

comprehensive quantitative thresholds for object-based CBD delineation from remote sensing 

data are approximated. Due to the complexity of urban morphology, a holistic approach of 

parameter combination was preferred instead of consideration individual parameters that 

illuminate only a part of the complete picture of CBDs. As a consequence, the between-class 

transition of parameter values is not entirely disjunct (Figure 4-6), encouraging the decision for a 

fuzzy-based classification approach. The presented plots include the extrema of each parameter 

with regard to class range as well as the transition range representing the area of overlap. As 

Cartosat-1 DSMs do not allow for an analysis on the level of individual buildings, further 

thresholds for substitute physical parameters were derived from pixel level of each class.  

 

In line with the high similarity of CBDs across cities, all transition ranges where found to be 

smaller than the absolute range of the class CBD. However, the range of transition varies across 

parameters as some, such as average height or floorspace density, feature more distinct class 

change-overs than others. Table 4-1 summarises the lower and upper values of the transition 

range for each building parameter and its pixel-based substitute. Except for physical volumes, 

only minor deviations exist between values derived from pixel and building level for the lower 

thresholds that are decisive for the classification of CBDs. Overall, the uniform criteria derived 

from the analysis of 3D city models should allow for a transferable and thus, comparable 

localisation of CBDs on urban footprint level.  

 

Tab. 4-1 Upper and lower thresholds of the transition range derived from building and pixel level 

  

Lower 

Threshold

Upper 

Threshold

Lower 

Threshold

Upper 

Threshold

Average height (m) 24.78 42.00 24.37 59.82

Maximum height (m) 36.00 126.00 36.00 126.00

Average volume (m³) 20,996 93,635 609 1,495

Maximum volume (m³) 74,948 541,422 900 3,150

Floorspace density 1.77 4.53 1.75 4.02

Density of high-rise buildings (%) 2.30 17.94 2.30 17.94

Building level Pixel level
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Fig. 4-6 Range plots showing the absolute and the transition range (red) of a) average height, b) maximum height, c) 
average volume, d) maximum volume, e) floorspace density, and f) density of high-rise buildings of both thematic 

classes derived from building (left) and pixel level (right) 

4.1.2 CBD delineation results 
 

The final delineation results based on the aforementioned parameter thresholds on urban 

footprint level are displayed in figure 4-7. The determined membership values for each block are 

shown in figure 4-8 as the minimum of membership of all physical parameters. The maps show 

that for all cities the CBDs of the selected test sites are detected with maximum membership 
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values identified for La Defense and Carnary Wharf. With regard to the thematic interpretation, 

the accuracy of these results needs to be assessed in terms of their spatial delineation and 

detection (section 4.2.3).  

 

 

Fig. 4-7 CBD classification results for a) London, b) Paris, and c) Istanbul 
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Fig. 4-8 CBD classification results including membership values for a) London, b) Paris, and c) Istanbul 
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4.1.3 Cross-city comparison 
 

The interpretation of the spatial configuration of the correctly detected CBDs (section 4.3.2.3) 

across cities presents a difficult task due to two reasons: (1) CBDs are a type of planned formal 

settlements. Therefore, a comprehensive interpretation of the spatial arrangement of this UST 

commonly requires expert knowledge on the urban planning context of the particular city or 

region. (2) CBDs are defined and delineated based on purely physical characteristics. Thus, the 

spatial CBD configuration can only be interpreted as an arrangement of urban structure types 

indicating city-internal centres but cannot be directly related to functional arrangement of urban 

land use.  

 

Across cities, the number of CBDs is relatively similar ranging between 22 detected districts for 

London and 25 for Istanbul (Figure 4-9). The total CBD area is averaging at around 6km² for all 

cities. When looking at the relative CBD coverage, a higher value is found for Istanbul compared 

to the other cities, contrasting its lower LPI of CBDs. Thus, Istanbul does not feature an 

extensive dominant CBD such as La Defense in Paris or the financial district in the City of 

London which in turn, indicate the supremacy of these global cities with regard to international 

business. Although Istanbul features the largest number, a dominant CBD cannot be identified 

indicating the coexistence of multiple centres in the polycentric urban landscape (Ciraci and 

Kundak, 2000).   

 

Comparing the spatial configuration of CBDs, Istanbul exhibits the highest mean CBD-to-CBD 

distance but the lowest nearest neighbour distance. Thus, Istanbul’s urban footprint level is 

characterised by disperse spreading of spatially clustered centres, whereas London and Paris show 

a more regular distributions of CBDs. Furthermore, Istanbul exhibits the lowest building density 

by CBDs within the urban core area and a high mean CBD-to-centre distance. In contrast, CBDs 

in London and Paris are located geographically more central with moderate mean distances to the 

historic centre.  

 

Overall, these values reflect the nature of urban growth in the investigated cities.  London and 

Paris, as rather monocentric and marginally growing metropolitan regions (Halbert, 2006; 

Taubenböck et al., 2012), exhibit a more regular planned distribution of CBDs in geographically 

central locations with dominant and specialised centres. In contrast, the sprawling nature of 
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urban growth and the high-density building including informal settlements (Seger and Palencsar, 

2010) in Istanbul directs construction of CBDs to the remaining open spaces of the polycentric 

urban landscape. The spider chart clearly reveals these differences and analogies across  cities. 

 

 

Fig. 4-9 Spider-charts presenting spatial metrics for cross-city comparison 

4.2 Methodological evaluation 

4.2.1 Accuracy of urban footprint classifications 
 

The accuracy assessment of Landsat TM classifications (Figure 4-10) provides a degree of 

confidence about the employment of the urban footprint as a spatial reference for CBD 

delineation. For all classified images high overall accuracies between 88% and 95% were 

achieved. Furthermore, the Kappa-Index as a more robust measure ranges from 0.83 to 0.92 

0

25

50
n(CBDs)
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LPI
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CBD-D5

MDC

London

Paris

Istanbul

Legend:
n(CBDs) = number of CBDs; 
AA = absolute area covered by CBDs (km²); 
RA = relative area covered by CBDs (‰); 
LPI = largest patch index (%); 
MD = relative mean CBD-to-CBD distance (%);  
MNND = relative mean CBD-to-CBD nearest neighbor distance (%);
CBD-D5 = CBD density in relation to the built-up area in a 5km circle around the centre (%); 
MDC = relative mean CBD-to-centre distance (%)
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indicating that the obtained results are significantly better than chance (Table 4-2). Overall, the 

final urban footprint classifications allow for a correct delineation of built-up areas as a reliable 

spatial frame for CBD delineation despite their limited geometric potential.  
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Fig. 4-10 Urban footprint classifications for a) London, b) Paris, and c) Istanbul 
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Tab. 4-2 Confusion matrices of urban footprint classifications 

 
 

 
 

 
 

 

a) London 2011 Built-Up Non Built-Up Water Row Total

Built-Up 94 6 0 100

Non Built-Up 15 83 2 100

Water 0 1 99 100

Column Total 109 90 101 300

Overall Accuracy 92.00 Kappa-Index 0.88

Producer Accuracy Omission

Built-Up 86.24 Built-Up 13.76

Non Built-Up 92.22 Non Built-Up 7.78

Water 98.02 Water 1.98

User Accuracy Commission

Built-Up 94.00 Built-Up 6.00

Non Built-Up 83.00 Non Built-Up 17.00

Water 99.00 Water 1.00

b) Paris 2006 Built-Up Non Built-Up Water Row Total

Built-Up 83 15 2 100

Non Built-Up 9 88 3 100

Water 0 5 95 100

Column Total 92 108 100 300

Overall Accuracy 88.67 Kappa-Index 0.83

Producer Accuracy Omission

Built-Up 90.22 Built-Up 9.78

Non Built-Up 81.48 Non Built-Up 18.52

Water 95.00 Water 5.00

User Accuracy Commission

Built-Up 83.00 Built-Up 17.00

Non Built-Up 88.00 Non Built-Up 12.00

Water 95.00 Water 5.00

c) Istanbul 2006 Built-Up Non Built-Up Water Row Total

Built-Up 94 6 0 100

Non Built-Up 7 93 0 100

Water 0 3 97 100

Column Total 101 102 97 300

Overall Accuracy 94.67 Kappa-Index 0.92

Producer Accuracy Omission

Built-Up 93.07 Built-Up 6.93

Non Built-Up 91.18 Non Built-Up 8.82

Water 100.00 Water 0.00

User Accuracy Commission

Built-Up 94.00 Built-Up 6.00

Non Built-Up 93.00 Non Built-Up 7.00

Water 97.00 Water 3.00
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4.2.2 Evaluation of morphological filtering results 
 

Beside urban footprint classification, a further important working stage is presented by the 

generation of nDSMs as a representation of the above-ground building volume for CBD 

delineation. In this context, DTMs as the decisive subproduct of the morphological filtering 

process are assessed. For this purpose, a 5m digital terrain model of 1.5m vertical accuracy 

provided by Bluesky (2012) for the test site in London was used. Table 4-3 exhibits measures of 

error from the difference image (Filtered DTM - Reference DTM) including RMSE with regard 

to different kernel sizes tested. The results show the minimum deviations for a kernel window 

size of 10x10 pixels. Although minimum and maximum deviations range between -14m and 12m, 

the RMSE of 2.81 in combination with a close-to-zero mean error reveals that the filtering results 

are good enough for the representation of the above-ground building volume in its correction 

dimension. 

 

Tab. 4-3 Statistical evaluation of the produced DTM in relation to varying kernel size, Carnary Wharf 

 
 

In addition to these descriptive statistics, profile graphs of the filtered and the reference DTMs 

are displayed in figure 4-11 for the optimum kernel size. With respect to Cartosat’s geometric 

capabilities, the profiles show that the algorithm is generally able to detect bare-earth surface 

from the input DSM and in turn, allow for the generation of reliable nDSMs in spite of local 

deviations of up to 5m. To gain further confidence about the selected kernel size, an advanced 

DTM evaluation for all test sites has been carried out with regard to reference DTMs generated 

using hierarchical image filtering from Cartosat-1 stereo images by Arefi et al. (2009). In this 

context, similar optimum kernel sizes ranging between 5 and 10 pixels and very consistent 

profiles were found confirming the accuracy of the proposed method.  

Kernel Min. Max. Mean Std. Dev. RMSE

3 -9.45 24.25 4.22 2.64 4.98

5 -10.11 17.54 3.23 2.43 4.04

10 -14.02 12.43 0.23 2.48 2.81

20 -18.81 7.59 -0.57 2.91 2.97

30 -26.32 7.06 -2.19 3.45 4.09

40 -26.33 4.76 -3.42 3.88 5.20

50 -26.67 3.67 -4.43 4.16 6.08

75 -26.33 3.07 -6.93 4.80 8.43

100 -26.32 3.02 -8.60 5.19 10.05

150 -28.29 2.87 -12.13 5.36 13.23

200 -28.29 2.87 -14.66 5.15 15.52



4. ANALYSIS AND RESULTS 57 

 

 

 

Fig. 4-11 DTM quality assessment by profile lines, Carnary Wharf (kernel size: 10x10 pixel) 

 

4.2.3 Accuracy of object-based CBD delineation  

4.2.3.1 Spatial delineation accuracy  

 

The spatial delineation accuracy is assessed to determine the precision of the final CBD 

classification within the selected test sites compared to the statistical delineation of CBDs by 

dissimilarity clustering. Across test sites, the overall accuracies range between 83% and 86% 

(Table 4-4). Furthermore, the Kappa-Index constantly exceeds a value 0.38 in comparison to a 

chance agreement. These numbers indicate a high accuracy of the overall classification on test site 

level. However, delineation results feature increased errors of omission, especially for CBDs, 

resulting in considerable lower producer accuracies ranging between 63% and 77%. Furthermore, 
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relatively high errors of commission across test sites lead to low user accuracies between 31% and 

67%. These shortcomings in terms of spatial precision result predominantly from the choice of 

square units as building blocks and emphasise a distinct problem of scale inherited in the 

designation of suitable statistical reference units for parameters aggregation. Although the 

delineated areas are not found to be overly precise regarding their form, CBDs are generally 

correctly delineated from the surrounding urban environment.  

 

Tab. 4-4 Confusion matrices of spatial CBD delineation for a) Carnary Wharf, b) La Defense, and c) Levent 

 

 
 

 

 

a) London CBD Row Total

CBD 12,873 41,401

Non-CBD 3,942 193,004

Column Total 16,815 234,405

Overall Accuracy 86.15 Kappa-Index 0.38

Producer Accuracy Omission

CBD 76.56 CBD 23.44

Non CBD 86.89 Non CBD 13.11

User Accuracy Commission

CBD 31.09 CBD 68.91

Non CBD 97.96 Non CBD 2.04

Non-CBD

28,528

189,062

217,590

b) Paris CBD Non-CBD Row Total

CBD 47,145 70,832

Non-CBD 22,507 212,723

Column Total 69,652 283,555

Overall Accuracy 83.70 Kappa-Index 0.56

Producer Accuracy Omission

CBD 67.69 CBD 32.31

Non CBD 88.93 Non CBD 11.07

User Accuracy Commission

CBD 66.56 CBD 33.44

Non CBD 89.42 Non CBD 10.58

23,687

190,216

213,903

c) Istanbul CBD Row Total

CBD 9,528 22,189

Non-CBD 5,510 84,501

Column Total 15,038 106,690

Overall Accuracy 82.97 Kappa-Index 0.41

Producer Accuracy Omission

CBD 63.36 CBD 36.64

Non CBD 86.19 Non CBD 13.81

User Accuracy Commission

CBD 42.94 CBD 57.06

Non CBD 93.48 Non CBD 6.52

Non-CBD

12,661

78,991

91,652
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4.2.3.2 Detection accuracy 

 

The spatial detection accuracy presents a check whether the blocks classified as CBDs reflect the 

typical physical feature of CBDs based on a visual comparison. Overall, 134 of 177 blocks 

detected across cities reflect structures in line with the physical features of CBDs resulting in a 

total user accuracy of 76% and an error of omission of 24% (Table 4-5). Examples of correctly 

detected blocks from this aerial evaluation and include the Milbank Centre (2), the City (3), and 

St George Wharf (5) for London (Figure 4-12), the commercial centre (2), the national library (3), 

and the shopping district at the Tour Monteparnasse (5), for Paris (Figure 4-13), as well as the 

high-rise residential district Atasehir (3), Sisli Plaza (4), and Maslak CBD (5) for Istanbul (Figure 

4-14). Between cities, constantly high accuracies are evident in London and Paris whereas 

Istanbul features a higher error of commission of 33%. This can be attributed to the more 

complex urban terrain in Istanbul inducing morphological errors. However, the overall high 

detection accuracies confirm the transferability of the presented method and the applied 

thresholds across cities. 

 

Tab. 4-5 Aerial evaluation of the detection accuracy 

 
 

Absolute Percentage (%) Absolute Percentage (%) Absolute Percentage (%) Absolute Percentage (%)

Number of 

blocks detected
57 100.00 54 100.00 66 100.00 177 100.00

User      

Accuracy
45 78.95 45 83.33 44 66.67 134 75.71

Erros of 

commission
12 21.05 9 16.67 22 33.33 43 24.29

London Paris Istanbul Total



4. ANALYSIS AND RESULTS 60 

 

 

Fig. 4-12 Aerial evaluation map, London 
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Fig. 4-13 Aerial evaluation map, Paris 
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Fig. 4-14 Aerial evaluation map, Istanbul 
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5. MAIN FINDINGS  

 
In order to present the main findings of this study, it is referred to the research questions defined 

in section 1.3 of this dissertation. 

 

(1) For the delineation of CBDs as an UST from the surrounding urban morphology, physical 

parameters were logically derived from qualitative statements of the published literature. This 

parameter set includes average and maximum values of building height and volume, building 

density of high-rise buildings, as well as floorspace density. This holistic approach of 

parameter combination allows for a comprehensive representation of the physical face of 

CBDs across cities. 

 

(2) Structural analyses by comparison of CBDs and Non-CBD areas derived from 3D city 

models on district level reveal significant differences regarding the classes’ physical features. 

With regard to all selected parameters, the analysis of within- and between-group variance 

clearly shows that CBDs are – across cities - more similar to each other than to the more 

homogenous urban environment. This confirms that CBDs can be differentiated from the 

surrounding urban morphology due to its physical characteristics and thus, the central 

hypothesis of this study. 

 

(3) In order to delineate CBDs from the surrounding urban morphology based on physical 

parameters, the combination of multispectral Landsat images and HR DSMs provide the 

required physical features. Cartosat-1 stereo sensors have proofed to be particularly suitable 

for the generation of large-scale and high-resolution DSMs covering extensive urban 

agglomerations. Although the extraction of individual buildings is beyond the data’s 

geometric capabilities, the above-ground building volume is presented in its correct 

dimension on pixel level for the spatial delineation of CBDs. 

 
(4) The remote sensing analysis of this study presents a method for CBD delineation in large-

scale urban environments. This method includes the extraction of the urban footprint from 

multispectral Landsat scenes as a spatial frame for CBD delineation, followed by a stepwise 

semi-automatic procedure of morphological filtering, hierarchical segmentation and fuzzy-

logic classification of Catosat-1 DSMs. Using the same set of physical parameters, a straight-

forward classification rule, and comprehensive class thresholds across cities, this method 
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provides a transferrable approach towards CBD detection and delineation for large-scale and 

complex urban environments.  

 
(5) By applying the presented method to three European megacities, CBDs are detected with a 

producer accuracy of 75.71% and spatially delineated with overall accuracies exceeding 

82.97%. Furthermore, delineation results are significantly better than chance indicated by the 

Kappa Index ranging between 0.38 and 0.56. However, due to the choice of artificial square 

reference unites for the aggregation of physical parameters, classification results are not 

highly precise which is reflected by relatively high errors of commission and omission. 

Nevertheless, for applications of urban risk analysis or large-scale urban planning, CBDs are 

generally correctly delineated. Furthermore, the high overall accuracies confirm the 

transferability of the applied method and thresholds. 

 
(6) Spatial metrics paint a characteristic picture of the spatial configuration of CBDs across cities 

which can be attributed to the nature of urban growth. London and Paris exhibit regular 

distributions of CBDs in geographically central locations and comparatively large dominant 

CBDs in line with the coordinated way of urbanisation. In contrast, the sprawling nature of 

urban growth and high-density building of fast-changing Istanbul, forces the construction of 

clustered CBDs to remaining open spaces in non-central locations of the polycentric urban 

landscape.  

 
In this context, also the limitations of datasets and the presented method must be discussed. 

First, as Cartosat-1 DSMs do not allow for an analysis of the built environments on the level of 

individual buildings, substitute physical parameters are employed on pixel level that are associated 

with a certain degree of information loss. Nevertheless, these parameters reflect the distinct 

physical features of CBDs in their correct dimension relative to the urban surrounding. Second, a 

considerable limitation is presented by the use of artificial square blocks as statistical reference 

units as street network data do not present a feasible databasis for transferable CBD delineation 

in large-scale cities due to consistency and availability of data. Consequently, the alternative 

choice for grid-based structuring induces scale-dependent errors of precision of the final 

classification. However, this approach presents the best possible practice at the current state of 

data availability. Finally, a decisive limitation is related to the basic conceptual approach of this 

study. By the definition of the CBD as an UST based on purely physical characteristics a direct 

relation to the urban land use cannot be established. This decision is based on the capabilities of 

remote sensing measuring the physical face of cities and justified by limited data availability of 



5. MAIN FINDINGS 65     

 

socioeconomic variables from large-scale land use surveys. In fact, this very lack of data is the 

reason for a distinct research gap towards delimitation of CBDs and the main motivation of this 

study.  
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6. CONCLUSION 

 

Definitions of CBD as a mental construct are fuzzy and mostly qualitative. This study has 

introduced a conceptual framework to classify and define measurable physical parameters to 

delineate CBDs from a morphological point of view. In this context, remote sensing has proved 

to be an up-to-date and area-wide data provider capable for the structuring of large-scale, 

dynamically changing, and complex urban areas. For CBD delineation based on physical 

parameters, HR DSMs from the Indian satellite Cartosat-1 have proven to be particularly useful 

as they feature large aerial coverage and availability at a high geometric resolution and thus, allow 

for the extraction of the decisive physical attributes.  

 

With regard to urban risk analysis and land use based disaggregation of exposure data, the 

presented approach can be seen as a reasonable step forward to support CBD delineation, 

especially in combination with more widely available spatial datasets such as socioeconomic 

variables on postcode level in the future. Furthermore, large-scale urban planning can benefit 

from the presented method and results as they indicate an important part of the functional 

arrangement of cities. However, to gain further confidence about the transferability of this 

approach, the presented method and the applied thresholds need to be evaluated for a larger 

number of test sites.   

 

The study at hand clearly reveals that further research for urban structuring is on demand. The 

structural reflection of urban areas by remote sensing is one perspective of urban analysis. As a 

visual representation of socio-economic influence, population pressure, political actions and 

many more, the physical structure is a distinct indicator for urban land use. However, due to the 

number and diversity of influencing variables, interdisciplinary approaches may allow for a deeper 

insight and understanding of the functional arrangement of cities in the future.  
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Appendix 1 – Geography Research Ethics Screening Form 
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Appendix 2 – Geography Risk Assessment Form 
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Appendix 3 – Landsat datasets  

 

Fig. A3-1 Landsat TM scene, London, 2011 
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Fig. A3-2 Landsat TM scene, Paris, 2006 
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Fig. A3-3 Landsat TM mosaic, Istanbul, 2003 
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Appendix 4 – Cartosat-1 datasets 

 

Fig. A4-1 Cartosat-1 DSM and PAN Fore image mosaic, London 
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Fig. A4-2 Cartosat-1 DSM and PAN Fore image mosaic, Paris  
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Fig. A4-3 Cartosat-1 DSM and PAN Fore image mosaic, Istanbul 



 

Fig. A4-3 Cartosat-1 DSM and PAN Fore image mosaic, Istanbul 
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Appendix 5 – Partitioning around medoids (R: source code) 

 
install.packages("foreign") 
install.packages("Cairo") 
install.packages("vegan") 
install.packages("cluster") 
install.packages("tree") 
install.packages("QuantPsyc") 
 
library(foreign) 
library(Cairo) 
library(vegan) 
library(cluster)  
library(tree) 
library(QuantPsyc) 
 
# Set working directory 
setwd ("E:/klotz_martin/Dissimilarity") 
 
# Read input table 
data <- read.table("E:/klot_ma/08_Dissimilarity/BuildingParamters.csv", header=TRUE, sep=";") 
 
# Z-Transformation of variables 
data.z <- as.data.frame(Make.Z(data[,c(3:ncol(data))])) 
 
# Generate subset (Building parameters in columns 1-6) 
data.sub <- as.data.frame(data.z[,c(1:6)]) 
 
 
### Cluster analysis ### 
 
# Generate Dissimilarity Matrix 
data.diss <- daisy(data.sub, metric="euclidean", stand=T) 
 
# Clustering (PAM) 
data.pam <- pam(data.diss, 2, diss=T, metric="euclidean", stand=F) 
 
# Join clustering results with input data 
data$dispam <- data.pam$clustering 
 
### Visualistation (Boxplots) ### 
 
boxplot(data$Max_height~data$CITY, ylab = "Maximum height (m)") 
boxplot(data$Max_vol~data$CITY, ylab = "Maximum volume (m³)") 
boxplot(data$Avg_vol~data$CITY, ylab = "Average volume(m³)") 
... 
 
 
### Export ### 
write.dbf(data, file="BuildingParameters_clustered.dbf") 
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Appendix 6 – Advanced DTM evaluation 

 

 

Tab. A6-1 Advanced statistical evaluation of the produced DTM in relation to varying kernel size, Carnary Wharf 

 

Fig. A6-1 Advanced DTM quality assessment by profile lines, Carnary Wharf (kernel size: 5x5 pixel) 

Kernel Min. Max. Mean Std. Dev. RMSE

3 -28.32 28.27 0.74 3.41 3.49

5 -31.23 28.22 -0.25 3.17 3.17

10 -33.97 27.19 -1.62 2.92 3.34

20 -36.21 24.21 -4.06 3.10 5.10

30 -40.44 24.16 -5.67 3.47 6.65

40 -43.89 24.03 -6.91 3.93 7.94

50 -43.89 24.02 -7.91 4.27 8.99

75 -42.89 19.69 -10.41 5.11 11.58

100 -43.89 19.42 -12.10 5.60 13.30

150 -43.89 15.25 -15.61 5.89 16.67

200 -43.89 5.80 -18.14 5.58 18.97
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Tab. A6-2 Advanced statistical evaluation of the produced DTM in relation to varying kernel size, La Defense 

 

Fig. A6-2 Advanced DTM quality assessment by profile lines, La Defense (kernel size: 5x5 pixel) 

 

 

Kernel Min. Max. Mean Std. Dev. RMSE

3 -18.58 68.11 1.51 4.36 4.61

5 -21.25 68.04 -0.23 4.19 4.18

10 -26.23 68.01 -2.14 4.20 6.64

20 -30.20 64.97 4.87 4.51 8.23

30 -30.39 64.27 -6.59 4.93 9.58

40 -39.18 60.50 -7.86 5.48 9.54

50 -45.78 60.38 -9.14 6.16 11.00

75 -47.28 52.94 -11.99 7.19 13.96

100 -49.98 45.44 -14.31 8.08 16.40

150 -51.48 34.91 -17.87 9.60 20.27

200 -52.80 26.39 -21.57 10.54 24.00
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Tab. A6-3 Advanced statistical evaluation of the produced DTM in relation to varying kernel size, Levent 

 

Fig. A6-3 Advanced DTM quality assessment by profile lines, Levent (kernel size: 10x10 pixel) 

 
 

Kernel Min. Max. Mean Std. Dev. RMSE

3 -51.04 49.07 0.47 5.60 7.67

5 -53.55 48.69 -1.36 5.58 8.93

10 -56.71 44.92 -4.05 5.89 7.14

20 -63.73 34.13 -8.83 7.36 11.49

30 -67.70 30.63 -12.84 8.99 15.67

40 -76.86 24.25 -16.28 10.30 19.26

50 -79.59 21.88 -19.22 10.88 22.07

75 -79.59 19.64 -24.90 11.76 27.53

100 -83.79 19.64 -29.43 12.59 32.00

150 -84.06 19.64 -38.11 13.48 40.41

200 -102.83 19.64 -45.70 15.94 48.39


