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Abstract. Recent studies have shown high resolution satel-
lite imagery to be a powerful data source for post-earthquake
damage assessment of buildings. Manual interpretation of
these images, while being a reliable method for finding dam-
aged buildings, is a subjective and time-consuming endeavor,
rendering it unviable at times of emergency. The present re-
search, proposes a new state-of-the-art method for automatic
damage assessment of buildings using high resolution satel-
lite imagery. In this method, at the first step a set of pre-
processing algorithms are performed on the images. Then,
extracting a candidate building from both pre- and post-event
images, the intact roof part after an earthquake is found.
Afterwards, by considering the shape and other structural
properties of this roof part with its pre-event condition in a
fuzzy inference system, the rate of damage for each candi-
date building is estimated. The results obtained from evalu-
ation of this algorithm using QuickBird images of the De-
cember 2003 Bam, Iran, earthquake prove the ability of this
method for post-earthquake damage assessment of buildings.

1 Introduction

Natural disasters such as earthquakes and floods have the
consequence to affect many people, not only through the
destruction they cause, but also through homelessness, in-
jury and even death (Havidán, 2006). Earthquakes may be
known as the most prevalent natural hazard and many with
different magnitudes, which have caused various losses, have
been recorded throughout history (USGS, visited 2011).
Based on the recorded earthquakes on USGS website, more
than 800 000 fatalities have been reported during the last

decade alone. Even though earthquakes are not predictable
by current technology and therefore no short-term prepared-
ness is possible, any rescue activities that are performed
quickly after an earthquake can decrease the number of fa-
talities. Rapid, accurate and comprehensive knowledge about
the damaged area can, therefore, be very helpful during the
response phase of disaster management. One of the most cru-
cial pieces of information that can be used in the response
phase after a natural disaster is a building damage map that
shows the extent of damage for every individual building or,
on a larger scale, for every district in an urban area.

There are many data sources such as satellite and aerial
images, ground observation and LiDAR that can provide
useful information for damage map generation (Li et al.,
2008; Rezaeian, 2010). Among all available sources, im-
ages are more comprehensive and rapid-access for provid-
ing information about the damaged area. During the last
decade, much of the research has focused on using this data
source for post-earthquake damage assessment, which has
led to image-based damage assessment trending amongst the
hottest topics in photogrammetry and remote sensing (Chini
et al., 2009; Matsuoka and Yamazaki, 2004; Rezaeian, 2010;
Thomas, 2010; Turker and Sumer, 2008). Consequently, dif-
ferent methods and techniques have been reported by re-
searchers, which can be classified based on various criteria.

The first criterion to categorize image-based damage as-
sessment methods is based on the type of input data, which
can be either airborne or space borne. In comparison with
airborne data, rapid access and continuous coverage of satel-
lite images have allowed most researchers to apply these
images for damage assessment (Brunner et al., 2010; Vu
and Ban, 2010; Yamazaki and Matsuoka, 2007); while other
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researchers have used aerial images for damage assessment
(Li et al., 2008; Rezaeian, 2010; Thomas, 2010; Turker and
Sumer, 2008).

One can also categorize damage assessment techniques
based on the type of interpretation, which can be done vi-
sually or automatically. In visual interpretation, a human op-
erator conducts images interpretation. Therefore, proficiency
in working with the image (air/space-borne) increases the re-
liability and trueness of the generated damage map (Reza-
eian, 2010). Although visual interpretation is a reliable tool,
it is subjective and time-consuming (Ogava and Yamazaki,
2000), rendering it less useful at times of emergency. To
eliminate these drawbacks, automatic interpretation of dam-
age is introduced, in which interpretation and analyses based
on pre-knowledge information are done by a computer. In
automatic interpretation, damaged buildings are recognized
by using different clues which are automatically extracted
from the image(s). For example, information from adjacent
pixels, such as edges and texture, were used by Turker and
San (2003).

Alternatively, input images for damage assessment may be
acquired by active sensors. One of the main advantages of
radar images is that they can be used regardless of sunlight
and weather conditions, and in cases of poor weather con-
ditions, they may be the only available data (Matsuoka and
Yamazaki, 2004; Rezaeian, 2010). However, in comparison
with optical images, they are not easy to visually interpret.
In other words, the methods that work based on radar images
cannot precisely evaluate the rate of damage for each indi-
vidual building (Chini et al., 2009; Dong et al., 2011; Mat-
suoka and Yamazaki, 2004; Yamazaki and Matsuoka, 2007).
In Chini et al. (2009), SAR and QuickBird images of the
city of Bam, Iran, were separately applied for damage as-
sessment and the results were compared. In that study, the
datasets included images acquired before and after the De-
cember 2003 earthquake. And, in contrast to SAR images,
QuickBird images provided more accurate results for a sin-
gle building. Furthermore, SAR images, high spatial resolu-
tion optical images and vector map were applied together for
mapping earthquake damage at the block scale (Stramondo
et al., 2006).

Even though a pre-event image by itself does not convey
any information about the damage area, through a compar-
ison with the post-event image, the interpreter (human or
computer) is able to make a better decision about a build-
ing’s condition. In the majority of studies, both pre- and post-
event images have been used in damage assessment (Rejaie
and Shinozuka, 2004). In other studies, however, only a post-
event image has been applied (Dell’Acqua and Polli, 2011;
Kohiyama and Yamazaki, 2005). In these studies, damaged
area is recognized using features which allow for easy differ-
entiation between damaged and intact roofs. For example,
Turker and Sumer (2008) applied watershed segmentation
technique to separate the damaged area from intact build-
ing using aerial images. The method was evaluated using the

aerial images of Golcuk, one of the urban areas strongly hit
by the 1999 Izmit, Turkey, earthquake.

Ancillary data such as vector maps can provide benefi-
cial information in image-based damage assessment. Using a
vector map, the roof prints of the candidate buildings can be
effectively identified in the image and consequently can im-
prove the efficiency, accuracy and performance of the dam-
age assessment process (Chesnel et al., 2008). Fortunately,
vector map data of almost all cities worldwide are available.
However, the different accuracy parameters of objects in a
vector map, such as positional and geometrical, are very im-
portant. In addition, due to the usual changes of urban ar-
eas, the vector map must be a recently-updated version. In
Dong et al. (2011) and Samadzadegan and Rastiveis (2008),
a vector map has been used as auxiliary data along with SAR
and QuickBird images, respectively, for damage assessment
of the 2008 Wenchuan, China, and 2003 Bam, Iran, earth-
quakes.

Regardless of whether or not ancillary data is used, im-
age(s) interpretation may be done at pixel- or object level
(Gusella et al., 2005). In pixel-level approaches, each pixel
is examined as an individual object and is labeled a separate
damage state based on its characteristics. On the other hand,
in object-based approaches, images are firstly segmented into
meaningful regions, which are called image objects, and all
further analyses are performed on these image objects. In
such s case, the rate of damage is separately assigned for each
individual image object. In Kouchi and Yamazaki (2005),
both pixel- and object-level damage assessment of the 2003
Boumerdes, Algeria, earthquake were performed, achieving
more promising results with object-level assessment. The
same result was gained by Matsumoto et al. (2006) in dam-
age assessment of the 2006 Central Java, Indonesia, earth-
quake. Although object-level approaches provide better re-
sults in comparison to pixel-level, setting the appropriate pa-
rameters for generating proper image objects is one of the
main challenges of these methods.

Change detection using stereo images and therefore height
information has been developed (e.g. Chaabouni-Chouayakh
and Reinartz, 2011), but has not been applied for earthquake
monitoring. Also, up to now the availability of stereo data
shortly after an earthquake is very seldom given.

From the aforementioned studies, it can be concluded
that the variety of input images has resulted in numerous
techniques for automatic damage assessment of earthquakes.
However, due to the wide range of uncertainty in recognizing
and classifying damaged buildings, these techniques are up
to now not as accurate as visual interpretation of images. In
other words, they cannot handle this uncertainty as perfectly
as an expert who uses a lot of knowledge during decision
making. Despite the seeming reliability of visual interpreta-
tion, it is not very useful for fast generation of results as in
times of emergency, and the necessity for an accurate auto-
matic method is incontrovertible. In this research, therefore,
we propose a new method based on a fuzzy inference system
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for automatic damage assessment using high resolution satel-
lite imagery. In the following sections, the paper describes
the details of the proposed method and presents results ob-
tained through its implementation.

2 Proposed method

The proposed method in this paper is based on the flowchart
shown in Fig. 1. Both pre- and post- event high resolution
satellite imagery of a damaged area are required for gener-
ating a building damage map. In addition, a relevant vector
map of the area, as ancillary data, is also needed to find the
location of the buildings. As seen in Fig. 1, the initial step
in implementing this method involves the pre-processing of
the satellite images. Selecting a candidate building, building
areas on both pre- and post-event images are extracted us-
ing geo-referencing information. After detecting the initial
roof within pre-event building areas, the intact roofs after
the earthquake are detected in post-event building areas. The
roof detection step is done through a segmentation approach
based on extracted textural information of the building areas.
After that, with the aim of removing noisy pixels, the de-
tected roof data are modified using morphological operators.
Finally, by considering the shape and other structural prop-
erties of the modified roof data in a fuzzy inference system,
the rate of damage for the candidate building is estimated.
The algorithm is executed on each individual building in the
damaged area to create a final damage map. Further details of
the proposed method are described in the following sections.

2.1 Pre-processing

Due to temporal resolution, the pre- and post-event images
from a similar region have different illumination conditions.
Therefore, a set of pre-processing algorithms should be per-
formed on the images. For this purpose, first, atmospheric
and solar illumination effects are eliminated through atmo-
spheric correction of the images. Then, orthorectification of
the images are done to compensate the ground elevation.
Pan-sharpened pre- and post-event images are also created
by fusing the MS (multispectral red, green and blue chan-
nels) and Pan QuickBird images. Next, histogram equaliza-
tion and histogram matching are needed to increase the spec-
tral similarity of the images. Finally, the images are accu-
rately geo-referenced with digital vector map using enough
control points.

2.2 Building areas extraction

Locating a candidate building on the images is an impor-
tant step in the proposed method, and is easily achieved
through the use of geo-referencing information. Using the
geo-referencing information, each point of the map can be
located on the images and vice versa. Therefore, in the first
step of the algorithm, roof corners of a candidate building are
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Figure 1. Flowchart of the proposed method. Pre- and post-event high resolution satellite 3 
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Fig. 1.Flowchart of the proposed method. Pre- and post-event high
resolution satellite images (HRSI) along with vector map are the
input data for generating damage map.

found on both pre- and post-event images and consequently
the building areas are extracted. Increased accuracy of geo-
referencing information leads to more reliable results. Be-
cause accurate geo-referencing of the images is of paramount
importance prior to running the algorithm, the registration er-
rors of the input images should be performed in sub-pixel
level of accuracy. The reader is referred to Richards and
Jia (2006) and Schowengerdt (2007) for a comprehensive
overview of existing methods for geo-referencing of satellite
images.

2.3 Roof detection

In visually interpreting images for damage assessment, an
expert usually evaluates the damage rate of a candidate build-
ing based on the shape and the structure of the remaining
roof on the post-event image. Comparing a roof to its for-
mer condition on the pre-event image renders the interpreta-
tion more explicit and consequently results in more reliable
decisions. The main idea of the proposed method presented
here is to automatically estimate the damage rate for all in-
dividual buildings based on the extracted pre- and post-event
roofs. Therefore, the next step in the implementation of this
method is to extract the roof areas.

Figures 2a and b depict a single building and a city block,
respectively, on an aerial photo. As can be seen from the fig-
ures, several objects such as chimney and cooler may exist
on a roof area. After an earthquake, based on the magnitude
of earthquake and condition of a building, some parts of the
roof might be destroyed. The question here is how to auto-
matically distinguish the roof pixels in building areas?

www.nat-hazards-earth-syst-sci.net/13/455/2013/ Nat. Hazards Earth Syst. Sci., 13, 455–472, 2013
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Table 1. Implemented texture features in texture analysis step. From this list, six selected features which make a better difference between
roofs and non-roof pixels are bold.

Texture
category

1st order Statistical Haralick Gabor Semi-variogram

Implemented
textures

Range
Mean
Standard Deviation
Skewness
Kurtosis

Energy
Entropy
Contrast
IDM
Max. Probability
Homogeneity
Sum Mean
Variance
Cluster Tendency
Correlation
Dissimilarity

Mean
Standard Deviation

Simple-Variogram
Radogram
Madogram

30 

 

  

a b 

 1 

Figure 2. Building area on a 1:4000 scale aerial photo. (a) a single building (b) a city block. 2 
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Fig. 2. Building area on a 1: 4000 scale aerial photo.(a) a sin-
gle building(b) a city block. Several objects such as chimney and
cooler may exist on a roof area. These objects are appeared as spots
on satellite images.

In the proposed method, the extraction of the roof parts
is performed in four consecutive processes of texture analy-
sis, segmentation, roof detection and modification. For this
purpose, first, through different texture analysis techniques,
useful features are extracted to make a better distinction be-
tween the roof and non-roof pixels. Then, using a segmen-
tation technique, the building area is stratified into a number
of segments. Next, the roof segments are recognized, and fi-
nally, for a better understanding of the extracted roofs, they
are modified using morphological operators. These processes
are described in greater detail in the forthcoming sections.

2.3.1 Texture analysis

In this method, a segmentation technique is applied to strati-
fying the building areas into a number of segments. However,
distinguishing roof pixels from other pixels in a building
area may not be accurately possible merely based on spec-
tral information (red, green and blue channels) of the pix-
els. Therefore, other information is needed to be used along

with spectral information for extracting the roof areas. In this
case, textural information is known as a powerful tool in im-
age analysis. A wide range of studies have applied textural
information in image-based damage assessment (Rezaeian,
2010; Vu and Ban, 2010).

In the proposed method, various textures are implemented
and superior texture features are selected manually based on
visual interpretation of the texture images. In other words, a
user, by observing a resulted texture feature and comparing
to the original images, decides to select or omit the texture. A
superior feature here is one that better distinguishes between
roof and non-roof pixels. Once the feature selection is per-
formed, the selected list can be applied to the entire area. To
improve efficacy, one can perform an optimal feature selec-
tion algorithm for finding the best features, which requires an
accurate ground truth.

In this study, 21 features in four categories of statistical,
Haralick, Gabor and semi-variogram textural features were
implemented (see Table 1). From this list, based on visual
observation six features were selected as textural features to
be used along with spectral features in the segmentation pro-
cess (features are formatted in bold in the table). The details
of implementing these features are described below.

First-order statistical features

First-order textural features such as mean and variance are
statistics that are calculated from image values and do not
consider pixel neighborhood relationships. In this research,
mean gray-level of adjacent pixels in a region is consid-
ered as a first-order statistical descriptor to be applied in the
segmentation process. This feature can be calculated using
Eq. (1).

µ=
1

M2

M∑
i

M∑
j

I (i,j) (1)
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Haralick features

Haralick features, which are the well-known and widely used
texture features in image analysis, were proposed by Har-
alick in Haralick et al. (1973). These descriptors consider
the pixel neighborhood relationships and are known as the
second-order statistical features. The basis of the Haralick
features is a two-dimensional co-occurrence matrix. This ma-
trix, P, is a n× n matrix, wheren is the number of gray-
levels within an image. The matrix acts as an accumula-
tor so thatP[i,j ] counts the number of pixel pairs having
the intensitiesi andj . Pixel pairs are defined by a distance
and direction that can be represented by a displacement vec-
tor d = (dx,dy), where dx represents the number of pixels
moved along the x-axis, and dy represents the number of pix-
els moved along the y-axis of an image slice. Many features
can be derived from the co-occurrence matrix, such as en-
tropy, homogeneity, sum mean, variance, correlation, maxi-
mum probability, etc. Among them, “cluster tendency” and
“sum mean” can make a meaningful distinction between in-
tact roof and damaged pixels. These two features, which can
be computed using Eqs. (2)–(3), are therefore selected for
clustering.

Sum Mean=
1

2

M∑
i

M∑
j

(iP [i,j ] + jP [i,j ]). (2)

Cluster Tendency=
M∑
i

M∑
j

(i+ j − 2µ)k P [i,j ]. (3)

Gabor features

For a given imageI (x,y), its discrete Gabor wavelet trans-
form is given by a convolution (Tuceryan and Jain, 1998):

Gmn(x,y)=

∑
s

∑
t
I (x− s,y− t)9∗

mn(s, t), (4)

where s and t are the filter mask size variables,ψ∗
mn is

the complex conjugate ofψmn and m and n specify the
scale and orientation of the wavelet respectively, withm=

0,1, . . . ,M−1,n= 0,1, . . . ,N−1. Here, the mean and stan-
dard deviation of the magnitude of the transformed coeffi-
cients are used in clustering.

Semi-variogram features

Semi-variograms are the basic tool for geo-statistics and have
been used in a wide range of remote-sensing applications
such as damage assessment and change detection (Olmo and
Herńandez, 2006; Sertel et al., 2007). Different texture fea-
tures can be extracted from semivariograms, e.g. simple-
variogram, radogram, etc. (Olmo and Hernández, 2006). In
this case, simple-variogram, which better differentiates be-
tween the roof and object pixels in the pre-event image and
between damage area and the intact roof on the post-event

image, was selected as an applied feature in the segmenta-
tion process. This feature can be calculated using Eq. (5).

γ (h)=
1

2N(h)

N(h)∑
i=1

{DN(xi)−DN(xi +h)}
2, (5)

whereγk(h) is the value of variogram with different vari-
ogram rangeh, DN are the digital values of pixelsxi and
xi +h andN(h) is the number of couple points whose dis-
tance ish in an image region.

All of the aforementioned features are powerful descrip-
tors to be used along with spectral information. However,
other texture features may be considered for damage as-
sessment. For a more comprehensive review on texture
analysis techniques, the reader is referred to Tuceryan and
Jain (1998).

2.3.2 Segmentation

The aim of this step is to apply the above-mentioned features
to distinguish the roof and non-roof pixels. To achieve this,
an image segmentation concept can be applied as a promis-
ing tool. Image segmentation may be defined as the pro-
cess of stratifying a digital image into multiple segments,
in which these segments cover the entire image. Image seg-
mentation has been, and still is, one of the challenging topics
in computer vision, and several segmentation methods, such
as thresholding, dplit-and-merge, region growing, etc., have
been proposed in the literature (Cufi et al., 2001). The reader
is also referred to Zhang (2006) for a good review on the
developed techniques.

Image segmentation can also be performed using cluster-
ing, which is one of the important tools in machine learning
and computer vision. Clustering can be defined as the group-
ing of objects that are similar to each other. During cluster-
ing, objects based on their properties are categorized into
a few clusters, in which similar objects belong to the same
cluster and dissimilar objects are assigned to different clus-
ters. In this research, therefore, based on the extracted spec-
tral and textural information of pixels in a building area, the
objects are divided into a few groups.

Different applications of clustering such as image segmen-
tation and information retrieval have resulted in numerous
techniques for data clustering. These techniques can be clas-
sified into several categories. A good survey of these tech-
niques is available in Jain et al. (1999).

For our intention, the best clustering algorithm is one
which is powerful in handling the uncertainty of distinguish-
ing roof and non-roof pixels. For this purpose, the Fuzzy C-
Means (FCM) method, which is more favorable in compari-
son to the traditional methods such as k-means algorithm at
avoiding local minima, is applied. This method is discussed
at length in the proceeding paragraphs.

Fuzzy c-means (FCM), which is frequently used in com-
puter vision, is a method of clustering that allows one ob-
ject to belong to two or more clusters (Bezdek, 1981). This

www.nat-hazards-earth-syst-sci.net/13/455/2013/ Nat. Hazards Earth Syst. Sci., 13, 455–472, 2013
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method is based on minimization of the objective function
Jm in Eq. (6).

Jm =

N∑
i

C∑
j

umij

∥∥xi − cj∥∥2

. ,1 ≤m<∞ (6)

wherem is a real number greater than 1,xi is thei-th mea-
sured data,uij is the degree of membership ofxi in the clus-
terj , cj is the center of clusterj and||xi−cj ||is the distance
measure between the dataxi and the cluster centercj .

Fuzzy partitioning is performed through an iterative pro-
cess to optimize the objective functionJm. In each iteration,
membershipuij and the cluster centerscj are calculated us-
ing Eqs. (7)–(8):

uij =
1

c∑
k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
m−1

subjected to
c∑
j=1

uij = 1 ∧ uij ∈ [0,1] (7)

cj =

N∑
k=1

umij .xi

N∑
k=1

umij

. (8)

The iteration will continue until the convergence condition
of maxij {|u

(k+1)
ij −u

(k)
ij |}< ε is reached. The aforementioned

steps of FCM algorithm can concisely be composed as fol-
lows:

1. Initialize U = [uij ] matrix,U(0).

2. At k-step, calculate the centers vectorsC(k)= [cj ] with
U(k) using Eq. (8).

3. UpdateU matrix using Eq. (7).

4. If ||U(k+ 1)− U(k)||<ε then STOP; otherwise, return
to step 2.

Based on the preceding paragraphs, by using FCM algo-
rithm the pixels on the building area can be stratified into a
number of clusters. Using textural features along with spec-
tral features causes pixels with similar texture to belong to
the same cluster. Based on the homogeneity of the roof part
of the building area, it can be expected that the clustering al-
gorithm results in grouping of all the roof pixels in the same
cluster. And, with regard to the number of clusters, other pix-
els would belong to other clusters.

One of the crucial parameters in any clustering is the user
decision on the number of clusters prior to the algorithm.
Here, only two clusters of roof and non-roof pixels are con-
sidered in clustering the pre-event building area. After an

earthquake, based on the magnitude of earthquake and con-
dition of a building, some parts of the roof might be de-
stroyed. Therefore, an additional cluster in clustering of the
post-event building area is considered. In other words, based
on the interpretation of pre- and post-event building areas,
the numbers of clusters should be assigned two and three, re-
spectively. Different alternatives were tested for numbers of
clusters. In all the cases, because the similarity of the roof
pixels they tended to be included in the same clusters and
no changes were appearing on roof clusters; therefore, extra
clusters were included by non-roof pixels. In other words,
the method is not sensitive to the number of clusters. There-
fore, two and three clusters can be considered for pre- and
post-event building area, respectively.

The next step of the roof detection process is to recognize
the pre- and the post-event roof clusters among the resulting
clusters, which is described in the forthcoming section.

2.3.3 Roof recognition

In comparison with supervised classification, which results
in the class label for any object, clustering only groups sim-
ilar objects and gives no information about the cluster label
of the objects. In other words, in the segmentation step, in
which a clustering technique is applied, the pre- and the post-
event roof clusters are not distinguished. This problem for
pre-event building area can be solved based on the fact that
the number of roof pixels is considerably greater than the
other pixels (see Fig. 2). Therefore, the following algorithm
can recognize the roof cluster between two resulting clusters
of the pre-event building area:

pre-event roof cluster== cluster #1;
if size (cluster #2)>size (cluster #1) then

pre-event roof cluster== cluster #2
end
As some parts of the roof might be destroyed after an

earthquake, the abovementioned fact cannot be assumed for
post-event building area. However, it is clear that the textural
and spectral properties of the post-event roof cluster should
be similar to the pre-event roof. In other words, among the
three resulting clusters of the post-event building area, the
closest cluster to the pre-event roof cluster may be the intact
roof cluster. In this case, the Euclidian distance between the
cluster centers in feature space can be considered as the sim-
ilarity measure. However, if the total area of a roof has been
destroved, none of the clusters in the post-event segmentation
should be labeled as roof cluster. Hence, a threshold for the
minimum distance should be assigned, whereby in the case
of exceeding the distance from this threshold, the intact roof
cluster would be assigned as an empty cluster. To sum up,
the intact roof cluster can be recognized using the following
algorithm:
J∗ == argMin {d(Cj ,Cpre−event roof cluster )}, j = 1,2,3
intact roof cluster= cluster #J*
if dJ∗ >threshold then
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intact roof cluster= Ø
end
As can be seen from the above algorithms, by applying the

pre-event image along with the post-event image the intact
roof can be automatically recognized without any training
dataset. This fact can decrease the time of processing, which
is very important for disaster management. Also, the roofs of
the area are not assumed as the same because each intact roof
is recognized using its pre-event roof cluster, and no training
dataset is needed.

2.3.4 Roof modification

The obtained pre- and post-event roof clusters may involve
some meaningless pixels that should be eliminated. The pix-
els of a roof area can be shown as a binary image, in which
the roof pixels are represented by a value of 1 and non-roof
pixels by a value of 0. The binary image simplifies the inter-
pretation as well as modification of the roof areas. As mor-
phological operators are powerful tools to deal with binary
images, the modification of the roof clusters is performed us-
ing these operators. In this case,Openingand Closing are
applied to smooth the extracted roof and to fill unexpected
holes, respectively.

The structural element plays an important role in using
morphological operators. In an urban area, a remained small
roof area is not a meaningful roof and cannot be considered.
So the structural element should be somehow assigned to
eliminate the small areas. Smaller structural elements can-
not eliminate meaningless parts of roof areas. On the other
hand, a bigger structural element may eliminate some mean-
ingful roof areas. Therefore, the structural elements should
be somehow selected so that more reliable results would be
obtained. It should be noted that the spatial resolution of a
satellite image has straight influence on the size of the struc-
tural element. For example, one may consider the area less
than 2 m2 is a meaningless area to be taken into account in
damage assessment. In this case, for an image with 1 m spa-
tial resolution, 2× 2 pixels structural elements can be an ap-
propriate size.

2.4 Damage assessment

One can determine the amount of damage for each candi-
date building using the extracted post-event roof compared
to its initial condition. For instance, the damage degree can
be measured as the relation between the area of the intact roof
and the initial area. This method of damage estimation based
on a single parameter such as area is a rather simplistic pro-
cedure, given that on some occasions the estimated damage
degree might not be in conformity with reality. For example,
if an extracted post-event roof involves a number of small
and meaningless intact roof parts, the sum of all the areas
would result in a high value for the roof area and as a result
the building would get the wrong damage grade.
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Figure 3. A simulated pre- and post- event building areas are depicted by light- and dark-2 

shade areas. Parameters of bounding boxes and minimum area ellipses can be applied to 3 
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Fig. 3.Simulated pre- and post-event building areas are depicted by
light- and dark-shade areas. Parameters of bounding boxes and min-
imum area ellipses can be applied to evaluate the rate of damages.
Where “a” and “b” are the major and minor axes of ellipse “E”, “ ϕ”
is the angular difference between major axes of two ellipses, “B” is
the bounding box and “A” is the roof area. Zero and one indices
indicate pre-event and post-event parameters, respectively.

To avoid this problem, one may only take the biggest roof
part into account during the estimation but this means not
using some parts of information. In another case, a very long
and narrow-shaped post-event roof may results in a high area
and, consequently, low level damage degree of a building,
while the remaining roof may be of low relevance.

Therefore, the damage degree should be estimated based
on a comprehensive observation of the shape and structure of
the post-event roof area, which can be performed using shape
analysis techniques. However, damage assessment based on
these properties is not generally deterministic but is charac-
terized by some level of fuzziness or uncertainty. Therefore,
deterministic analysis of these descriptors may not produce a
trustworthy result and the vague and uncertainty of the prob-
lem should be considered.

Fuzzy theory (Zadeh, 1965), which resembles human rea-
soning in its use of approximate information to generate deci-
sions, is known as a useful tool in dealing with these types of
problems (Cox, 1999; Zimmermann, 1996). In this research,
therefore, a fuzzy rule-based system is introduced in analyz-
ing the shape descriptors. In the following paragraphs, after
describing the structural descriptors, the designed fuzzy rule-
based system is described and implemented.

2.4.1 Shape analysis

Shape analysis may be defined as the process of extracting
structural descriptors which can comprehensively describe
the geometry and shape of a specific area inside an image.
One can get a basic idea about a shape based on a number
of primitive parameters such as area and length to width ra-
tio. A useful shape descriptor for damage assessment should
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Table 2.Applied shape features for evaluating the building damage degree. Where “a” and “b” are the major and minor axes of ellipse “E”,
“ϕ” is the angular difference between major axes of two ellipses, “B” is bounding box and “A” is the roof area. Zero and one indices indicate
pre-event and post-event parameters, respectively.

Name Description Eq.

RoofsAreaRatio theAreaofthePost−eventRoof
theAreaofthePre−eventRoof

A1
1+A

2
1

A0

BoundingBoxRatio theAreaof theBoundingBoxAroundthePost−eventRoof
theAreaof theBoundingBoxAroundthe Pre−eventRoof

B1
B0

BoundingBoxFilling theAreaof thePost−eventRoof
theAreaof theBoundingBoxAroundthePost−eventRoof

A1
1+A

2
1

B1

EllipseFilling theAreaof thePost−eventRoof
theAreaof theminimumAreaEnclosingEllipseof thePost−eventRoof

A1
1+A

2
1

E1

MajorAxisRatio ThemajorAxisof theEnclosingEllipseAroundthePost−eventRoof
TheMajorAxisof theEnclosingEllipseAroundthePre−eventRoof

a0
a1

MinorAxisRatio TheMinorAxisof theEnclosingEllipseAroundthePost−eventRoof
TheMinorAxisof theEnclosingEllipseAroundthePre−eventRoof

b0
b1

DirectionStability 1− AngularDifferenceofMajorAxes 1− ϕ
90◦

either provide comprehensive information about the structure
of the intact roof area or be able to measure differences be-
tween pre- and post-event roof areas.

Simulated pre- and post-event roof areas for a sample
building are shown in Fig. 3. As can be seen, many shape
features can be extracted from a roof area. A very basic pa-
rameter to show the value of damage is the ratio of the post-
event roof area to the pre-event roof area ((A1

1 +A2
1)/A0). A

higher value of this parameter indicates a smaller change of
the roof, and consequently a lower degree of damage.

The ratio of the bounding boxes’ area (B1/B0) can simi-
larly measure the change of the roof. However, this feature
is not always compatible with reality. For example, when
the intact roof includes separated small parts, the area of the
post-event bounding box would be high. Therefore, to show
the compactness of the post-event roof area, another measure
is needed along with bounding boxes ratio. For this purpose,
bounding box filling of the post-event roof can be used. This
feature can be calculated by the ratio of the post-event roof
area to the area of the bounding box ((A1

1 +A2
1)/B1). High

value of bounding box filling means the bounding box ra-
tio can be applied as the same as roofs area ratio in damage
assessment.

The minimum area enclosed ellipses around the roofs can
also provide useful information for damage assessment. The
more similar the two ellipses are, the lower level of damage.
Two ellipses can be compared using their structural param-
eters, such as major and minor axes. In this research, major
axes ratio(a1/a0), minor axes ratio(b1/b0) and direction sta-
bility (1 −ϕ/90) are applied for describing the value of dam-
age (see Fig. 3). Similar to the bounding box ratio, which is
applied along with bounding box filling feature, ellipses sim-
ilarity measures should be applied along with a complemen-
tary feature. Here, the ellipse filling measure ((A1

1+A2
1)/E1)

can be applied as a good feature. A more compact and unit
post-event roof area is more meaningful to be considered in

damage assessment. All the applied descriptors used in this
research are listed in Table 2.

All the above-mentioned descriptors are very helpful for
damage assessment, and by using these descriptors, an ex-
pert can precisely estimate the damage degree. However, the
main goal of all damage assessment techniques is to increase
the level of automation in damage degree estimation of build-
ings. In other words, these parameters should be automati-
cally analyzed by a computer for rapid damage assessment.
Such an analysis is not totally deterministic and involves a
level of uncertainty. Therefore, a powerful decision making
system that is able to resemble an expert’s thought process
in handling the uncertainty is required. For this purpose, a
fuzzy rule-based system, which is known as a proper tool for
handling uncertainty in solving problems, is applied for ana-
lyzing the shape features.

2.4.2 Damage assessment using a fuzzy decision making
system

Every decision making process is not generally deterministic
but is usually characterized by some level of fuzziness or un-
certainty. Yet traditional decision making systems do not pro-
vide a good mechanism for coping with uncertainty. Fuzzy
set theory, which was triggered by these considerations, pro-
vides a conceptual framework for solving non-deterministic
problems in an ambiguous environment. In this research, we
use a fuzzy rule-based system for analyzing the extracted
shape features during the damage assessment process. Here,
firstly a general structure of the fuzzy rule-based system is
described and then more detail of the designed fuzzy deci-
sion making system for damage assessment is presented.

A fuzzy rule base (or fuzzy system) used for decision mak-
ing is generally comprised of three principal steps of fuzzifi-
cation, inference and defuzzification, as shown in Fig. 4. The
first step, fuzzification, involves division of the input feature
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Figure 4: Basic architecture of fuzzy rule-based system includes fuzzification, inference and 2 
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Fig. 4.Basic architecture of fuzzy rule-based system includes fuzzi-
fication, inference and defuzzification.

space into fuzzy subspaces, each specified by a fuzzy mem-
bership function. Fuzzy rules are then generated from each
fuzzy subspace. The second step, inference, requires the cal-
culation of the strength of each rule being triggered. The final
step, defuzzification, aggregates all triggered rules and gen-
erates a non-fuzzy output.

Fuzzification

The purpose of fuzzification is to partition the feature space
into fuzzy subspaces and generate rules for each fuzzy sub-
space. Note that all fuzzy subspaces normally overlap each
other to some degree. To carry out the process of fuzzifica-
tion, one must first define membership functions in order to
calculate the membership grade for the input elements. Al-
though the fuzzy membership function can take any form
(as long as the function can map the inputs onto the range
[0,1]), four kinds of fuzzy membership functions, known as
monotonic, triangular, trapezoidal, and bell shaped, are the
most frequently used in fuzzy rule base experiments (Tso
and Mather, 2009). The selection of membership functions
and the width of each fuzzy subspace are certainly case de-
pendent.

In this research, seven extracted shape features from shape
analysis step as input variables, and the degree of damage as
output variable, are considered for damage assessment. De-
pending on the sensitivity of the variable, an expert assigns
a number of linguistic labels to each variable (input/output),
which reflect an interactively carried- out examination of all
possible values of the variables. In practice, this assignment
is mostly a mixture of expert knowledge and examination of
the desired input–output data.

Inference

Fuzzy sets and fuzzy operators are the “subjects” and “verbs”
of fuzzy logic (Samadzadegan et al., 2005). In order to cre-
ate a useful statement, complete sentences have to be for-
mulated. Conditional statements, IF–THEN rules, are state-
ments that make fuzzy logic useful. A single fuzzy IF–THEN
rule can be formulated according to:
IF x is A; THEN y is B.

A andB are linguistic labels defined by fuzzy sets on the
range of all possible values ofx andy, respectively. The IF
part of the rule “x isA” is called antecedent, the THEN part
of the rule “y isB” is called consequent. The antecedent is an
interpretation that returns a single number between 0 and 1,
whereas the consequent is an assignment that assigns the en-
tire fuzzy set B to the output variabley. The antecedent may
integrate several inputs using logical AND and OR operators.

Fuzzy reasoning with fuzzy IF–THEN rules enables lin-
guistic statements to be treated mathematically. For exam-
ple, for estimating the damage degree of a building, one of
the IF–THEN fuzzy rules might be the following: IFRoof-
sAreaRatiois VeryLargeAND BoundingBoxFillingis Filled
AND EllipseFilling is Filled, THEN DamageDegreeis Neg-
ligibleDamaged. This example reveals an important aspect
of fuzzy reasoning, which is that the rule base should include
observations of the important descriptors. Moreover, it re-
flects the fact that people may formulate similar “fuzzy state-
ments” to characterize how they perceive negligible damage
degree.

Formulating the rules is more a question of the expertise of
an operator than of a detailed technical modeling approach.
Given the rules and inputs, the degree of membership to each
of the fuzzy sets has to be determined. For the above exam-
ple, the input variables are:RoofsAreaRatio, BoundingBox-
Filling and EllipseFilling, and the output variable isDam-
ageDegree.

If the membership grades are equal to one (i.e. the rule
condition is fully satisfied), the THEN clause in the rule
should be fully adopted (i.e. with full strength). On the other
hand, if the rule condition is only partially satisfied, the
THEN clause should be partially weighted. Two weighting
approaches, known as multiplication and minimization, are
commonly used.

In addition, the rules being triggered can be numerous
because the fuzzy membership functions normally overlap.
Hence, a feature value falling within the overlap area will
simultaneously trigger several rules. Since the result of rule
aggregation is a membership function, a defuzzification pro-
cess has to be implemented in order to obtain a deterministic
value.

Defuzzification

Several kinds of defuzzification strategies, such as the center
of gravity and mean of maximum, have been suggested in the
literature (Zimmermann, 1996). The most applied defuzzifi-
cation method is to calculate the center of gravity, which de-
termines the center of the area under the aggregated output
function. The center-of-gravity method for discrete data can
be calculated from the following equation:

center-of-gravity=

∑n
s=1 s×µ(s)∑n
s=1µ(s)

, (9)
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Figure 5. Data set after pre-processing step. (a). Pre-event QuickBird Image (b). Post-event 1 

QuickBird Image (c). Pre-event Vector map including buildings layer. 2 
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Fig. 5. Dataset after pre-processing step.(a) Pre-event QuickBird Image 1.(b) Post-event QuickBird Image.(c) Pre-event vector map
including buildings layer.

wheren is the number of elements of the sampled mem-
bership function, andµ(s) is the membership grade of mea-
surements.

Because these fundamentals of fuzzy logic are well de-
scribed in textbooks, we do not want to go into the theoretical
background at this point. For a comprehensive study of fuzzy
logic, please refer to Zimmermann (1996) and Cox (1999).

Using these three steps (fuzzification, inference, and de-
fuzzification), one eventually reaches a deterministic value
for the damage degree. Finally, regarding this value, each
building can be represented by a specific color on a map in
order to generate a damage map.

3 Experiments and results

To assess the efficiency of the proposed damage assessment
method, two high resolution satellite images and 1: 2000 rel-
evant vector map of the city of Bam, Iran, are used. The be-
fore and after 26 December 2003 Bam earthquake images

were acquired on 30 September 2003 and 3 January 2004,
respectively, by the QuickBird satellite.

In the pre-processing step, the images were atmospheri-
cally corrected using the FLAASH atmospheric correction
module of the ENVI® image processing software pack-
age and the images were orthorectified by means of the
SRTM Digital Terrain Model to compensate for the ground
elevation. Then, pan-sharpened images were created using
wavelet fusion technique. Also, histogram equalization and
histogram matching were performed to increase the spec-
tral similarity of the images. Next, the images were pre-
cisely registered to the map using 15 well distributed control
points. The residuals of 10 well distributed check points did
not exceed 43 and 48 cm on pre- and post-event images, re-
spectively. Moreover, the co-registration accuracy of the im-
ages was measured by comparing check points coordinates
on both images, where 7 cm of RMS was observed. Finally,
a 2500× 1900 pixels area, including 1136 buildings, was
selected as the test area. The QuickBird images after pre-
processing step and the applied vector map of the test area
are shown in Fig. 5.
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Figure 6. Extraction of building areas of a candidate building (shown by blue line on the 2 

vector map) from images by using geo-referencing information. 3 
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Fig. 6. Extraction of building areas of a candidate building (shown
by blue line on the vector map) from images by using geo-
referencing information.

After pre-processing, the algorithm is executed on every
building in the test area. Using available geo-referencing in-
formation, corner points of a candidate building are located
on both images and the building areas are extracted. Figure 6
shows the process of building areas extraction for a sample
candidate building.

In order to detect the roof areas based on the segmenta-
tion technique, textural information along with spectral in-
formation of pixels are applied. In this research, among the
21 implemented texture features, six features (bold in Ta-
ble 1) were selected to be used along with spectral features
in the segmentation step. The textural features for each pixel
were extracted using its 3× 3 neighborhood pixels in the
panchromatic images; however, a greater size such as 5×5 or
7×7 may be applied. During Gabor features extraction, a fil-
ter bank consisting of Gabor filters with three scales and four
rotations were considered.

Except for the semi-variogram feature, all the textural fea-
tures assign a higher value for roof pixels and a lower value
for non-roof pixels. However, we applied the inverse value of
this feature to make the simple-variogram feature consistent
with the other features. The extracted features are applied in
the segmentation step to distinguish the roof and non-roof
pixels.

Number of clusters is one of the most crucial parameters
in clustering. Here, the smallest acceptable numbers of clus-
ters, two and three clusters for pre- and post-event building
areas, were considered. Because of the similarity of the roof
pixels extra clusters involve non-roof pixels. In other words,
the numbers of clusters do not considerably influence the
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Figure 7. Roofs detection process results for a sample building. (a) Building area (b) 1 
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Fig. 7. Roofs detection process results for a sample building.
(a) Building area (b) Segmentation(c) Roof area recognition
(d) Modification.

results and only small changes appear in the final damage
degree. Therefore, considering these clusters numbers, FCM
algorithm was executed on both pre- and post-event building
areas. The segmentation results of the sample building are
depicted in Fig. 7. As can be seen, the roof segment on the
pre-event building is absolutely greater than the other cluster
and can be easily distinguished. By calculating the Euclidian
distance of the cluster center of this segment and the post-
event roof cluster, the post-event roof cluster can be distin-
guished. The maximum accepted difference for the distance
is considered as 0.2, and upon exceeding this threshold the
building is labeled as a totally damaged building.

Moreover, the modifications of the extracted roofs are per-
formed using opening and closing morphological operators.
One of the most important parameters in this step is the size
of the structural element. In this paper, based on the spatial
resolution of QuickBird images (0.61 m), 2× 2, 3× 3, 4× 4
and 5×5 square type structural elements were considered, in
which more promising results was observed by applying 3×3
square type (equal to 1.83×1.83 m2). In Fig. 7, the modified
roof of the sample building is depicted. As can be seen, af-
ter modification, noisy roof pixels and holes are successfully
cleared from the roofs.

Once the roofs are detected, the shape analysis steps are
executed to extract proper features that can help to estimate
the damage degree. For this purpose, the bounding box and
the minimum area enclosing the ellipse around the roofs are
found. The bounding box may be found using minimum and
maximum coordinates of roof pixels. In this research, the
minimum area enclosing the ellipse was calculated based on
the Khachiyan algorithm (Khachiyan and Todd, 1993). In
calculating this ellipse, one may use only the edge pixels of a
roof area to simplify the calculation because inside pixels of
the roof area do not influence the parameters of the ellipse.

In this research, the seven shape features ofRoofsArea-
Ratio, BoundingBoxRatio, BoundingBoxFilling, MajorAxes-
Ratio, MinorAxesRatio, DirectionStabilityandEllipseFilling
are calculated through shape analysis of pre- and post-event
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Table 3.Linguistic variables and labels for the fuzzy-based damage assessment process.

Linguistic variables Linguistic labels

Input

RoofsAreaRatio Very Small, Small, Medium, Large, Very Large
BoundingBoxRatio Very Small, Small, Medium, Large, Very Large
BoundingBoxFilling Not Filled, Moderately Filled, Filled
EllipseFilling Not Filled, Moderately Filled, Filled
MajorAxesRatio Very Small, Small, Medium, Large, Very Large
MinorAxesRatio Very Small, Small, Medium, Large, Very Large
DirectionStability Not Parallel, Nearly Not Parallel, Nearly Parallel, Parallel

Output DamageDegree Negligible Damage, Moderate Damage, Substantial Damage, Heavy Damage, Complete Damage
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Figure 8. Extracted shape features through shape analysis of the roof area for the sample 2 

building. 3 
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Fig. 8. Extracted shape features through shape analysis of the roof
area for the sample building.

roof areas. Figure 8 shows the extracted shape features for
the sample building.

Extracted shape features are applied as input variables of
the fuzzy inference system for estimating the damage degree,
which is the output of the fuzzy system. A number of linguis-
tic labels are assigned to each variable (input/output), which
reflect an interactively carried-out examination of all possible
values of the variables. Linguistic labels of input and output
variables of our damage assessment FIS are listed in Table 3.

In this step, a membership function can be defined for
each linguistic variable. Accurate definition of the member-
ship functions is of high importance in any fuzzy decision
making system. The shape and the values of the membership
functions should be accurately defined by an expert based
on his/her experience in damage degree estimation. Here,
trapezoidal- and triangular-shaped functions were applied.
These membership functions, depicted in Fig. 9, are defined
to the system based on user experience. In this figure, mem-
bership functions of input and output variables are also de-
picted.

In order to import user knowledge in the fuzzy reasoning
system, 85 rules are constructed. Some of the employed IF–
THEN rules are shown in Table 4. Here, Mamdani FIS, one

of the most commonly used fuzzy engines, is used for mak-
ing decisions using fuzzy rules. In this table two examples
are given for each damage degree.

By applying the designed fuzzy decision making system
for the sample building, a damage degree of 44.20 % was es-
timated. To evaluate the proposed method, the resulted dam-
age value may be compared with manually-estimated dam-
age degree by an expert. For this purpose, here the meaning-
ful parts of the post-event roof area were manually detected
and extracted by an expert for calculating the damage degree.
For the sample building, which is shown in Fig. 10b, a dam-
age value of 40.05 % was obtained by an expert. As can be
seen, this roof is close to the resulted post-event roof from
the algorithm (see Fig. 10a and c). The difference between
the two resulted damage degrees for this building is 4.15 %,
or about 10 % of the damage degree, which shows the ability
of this method in assessing the damage value of this sample
building.

The process of the proposed damage assessment method
for three sample buildings with IDs 7, 150 and 541 are also
shown step-by-step in Fig. 11. As can be seen from the table,
the algorithm has successfully assessed the damage degree
for these buildings.

According to the degree of damage, buildings can be cate-
gorized into different levels of damage for a better represen-
tation of damage map. Here, five degrees of damage were
considered: 0–20 % damaged (shown by dark green), 20–
40 % damaged (shown by light green), 40–60 % damaged
(shown by yellow), 60–80 % damaged (shown by light red),
and 80–100 % damaged (shown by dark red). The final re-
sulting damage map was generated by implementing the pro-
posed algorithm on the test area, which is depicted in Fig. 12.
In the resulted damage map of the test area, a majority of
buildings are labeled by fourth grade damage, while a minor-
ity are labeled as first grade.

Unfortunately, no field observation dataset was available
for evaluating the results. Therefore, accuracy assessment of
the proposed damage assessment technique was carried out
using 325 randomly selected buildings, which had their pre-
and post-event roofs manually measured by an expert. Dis-
tribution of these buildings is shown in Fig. 13.
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Fig. 9.Membership functions of the input and the output linguistic variables.
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Figure 10. Final damage assessment results of the candidate building. (a) Result of the 2 
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Fig. 10.Final damage assessment results of the candidate building.
(a) Result of the proposed method.(b) Manually extracted roof by
an expert.(c) Superimposed roofs on the post-event image.

In this research, two different accuracy investigations were
performed to assess the quality of the proposed method. In
the first investigation, the manually extracted post-event roof
of checked buildings and their counterpart, resulting from the
proposed algorithm, were compared. Minimum, maximum
and average of differences were 0, 34 and 9 pixels, respec-
tively. Moreover, the mode of the differences was 6, showing
that for most of the buildings the extracted post-event roof
area from the algorithm was almost equal to their visually
extracted roof area. In Fig. 14, some of the checked build-
ings with different damage degrees are illustrated. As can be
seen, the algorithm has successfully extracted different post-
event roof areas.

The confusion matrix is used as an indication of the
properties of a classification which contains the number of
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Table 4.Fuzzy rules for estimating damage degree of a building.

Sample fuzzy Rules

– IF RoofsAreaRatiois VeryLargeAND BoundingBoxFillingis Filled AND EllipseFilling is Filled, THEN DamageDegree
is NegligibleDamage.

– IF RoofsAreaRatiois VeryLargeAND MajorAxesRatiois VeryLargeAND MinorAxesRatiois VeryLargeandDirection-
Stability is Parallel AND EllipseFilling is Filled, THEN DamageDegreeis NegligibleDamage.

– IF RoofsAreaRatiois Large AND BoundingBoxFillingis Filled AND EllipseFilling is Filled, THEN DamageDegreeis
ModerateDamage.

– IF RoofsAreaRatiois VeryLargeAND BoundingBoxRatiois VeryLargeAND BoundingBoxFillingis ModeratelyFilled
AND EllipseFilling is ModeratelyFilled, THEN DamageDegreeis ModerateDamage.

– IF RoofsAreaRatiois MediumAND BoundingBoxFillingis Filled AND EllipseFilling is Filled, THEN DamageDegreeis
SubstantialDamage.

– IF RoofsAreaRatiois LargeAND BoundingBoxRatiois LargeAND BoundingBoxFillingis ModeratelyFilledAND Ma-
jorAxesRatiois LargeAND EllipseFilling is ModeratelyFilled, THEN DamageDegreeis SubstantialDamage.

– IF RoofsAreaRatiois SmallAND BoundingBoxFillingis Filled AND EllipseFilling is Filled, THEN DamageDegreeis
HeavyDamage.

– IF RoofsAreaRatiois MediumAND BoundingBoxRatiois MediumAND BoundingBoxFillingis NotFilled AND Ma-
jorAxesRatiois MediumAND MinorAxesRatiois MediumAND EllipseFilling is NotFilled, THEN DamageDegreeis
HeavyDamage.

– IF RoofsAreaRatiois VerySmallAND BoundingBoxFillingis Filled AND EllipseFilling is Filled, THEN DamageDegree
is CompleteDamage.

– IF RoofsAreaRatiois SmallAND BoundingBoxRatiois SmallAND BoundingBoxFillingis NotFilled AND EllipseFilling
is NotFilled, THEN DamageDegreeis HeavyDamage.

elements that have been correctly or incorrectly classified
for each class (Rokach, 2010). It can be seen on its main
diagonal the number of observations that have been correctly
classified for each class; the off-diagonal elements show the
number of observations that have been incorrectly classified.
Based on the values of the confusion matrix, one can calcu-
late a set of parameters such as overall accuracy and kappa
coefficient to describe the classification results.

Using visually extracted post-event roof areas, damage
value for each checked building was calculated and assigned
pre-defined damage grades. Considering the resulted damage
grade as a reference data and comparing to the algorithm re-
sults, a confusion matrix as another accuracy investigation
was obtained, with an overall accuracy of 90.46 % and a
kappa coefficient of 86.68 % using our method. The result-
ing confusion matrix is shown in Table 5.

As can be seen from Table 5, the reference data includes
only four buildings in the first degree of damage, with all
of them being successfully labeled by the proposed method.
However, one extra building from the second degree of dam-
age has mistakenly been labeled as the first degree of dam-
age. Also, the confusion matrix shows that the algorithm did
not produce very strong results in differentiation between

fourth and fifth classes, while this is also often difficult for
manual interpretation. On the other hand, the average user
or producer’s accuracy in the table proves the ability of this
damage assessment method.

Logically, post-event roof boundary should be inside the
pre-event boundary. However, this may not always happen.
As can be seen from Fig. 14, in some cases the red bound-
ary, which is the post-event roof boundary, exceeds the blue
boundary. This may happen for two reasons, namely registra-
tion error or collapsed roof. In this research, this error, which
has a mild effect on the final result, is not considered.

In comparison with previous studies, high promising re-
sults were obtained from the implementation of the proposed
method. For example, In Chesnel et al. (2008), damage as-
sessment of the Bam and Boumerdes earthquakes using post-
event QuickBird images were performed through SVM clas-
sification method. The test area of the Bam earthquake in-
cluded 2168 buildings. In that study, average performances
close to 75 % when four damage classes were discriminated,
up to 90 % for an intact/damaged detection, were reported.
In another study, (Rezaeian, 2010), three different classifi-
cation algorithms were applied for damage assessment of
the Bam earthquake using QuickBird image. The dataset
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Figure 11. Output results with detail about damage assessment for three candidate buildings 2 
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Fig. 11.Output results with detail about damage assessment for three candidate buildings.

included 890 buildings, where 79 % overall accuracy and
67 % kappa coefficient were reported. In these studies, they
used a training dataset for training their algorithm. On the
one hand, the collection of a training dataset is time con-
suming and reduces the level of automation. On the other
hand, using the same dataset for the whole area is only ap-
plicable for cities in which roof buildings are the same. This
may be one of the causes for not achieving better results. In
the proposed method, however, this drawback was handled
by using the pre-event image. In this case, each roof area
on the post-event image is automatically detected based on
its pre-event information and no training dataset is needed.
Moreover, none of the previous works took the shape and
structural properties of the intact roofs into account during
damage value estimation. As our results show, considering
shape information causes a more realistic damage degree.

4 Conclusions

In this research, a new automatic method for post-earthquake
damage assessment using pre- and post-event high resolution
satellite images has been presented. In the proposed algo-
rithm, after pre-processing of the satellite images, building
areas are extracted using a 1: 2000 vector map. Then, intact
roofs of candidate buildings are extracted through a cluster-
ing algorithm by applying textural and spectral information.
Finally, analysis of structural information of the intact roof
areas using a fuzzy inference system allows for estimation of
the degree of damage.

By evaluating the proposed method using the available
dataset of the city of Bam, Iran, 90.46 % overall accuracy
and a kappa coefficient of 86.68 % were obtained. These re-
sults prove the capability and high ability of this method for
building damage map creation using high resolution satellite
images.
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Table 5.Confusion matrix obtained by considering the manually observed damage grade as reference data and comparing it to the algorithm
results. In this algorithm, overall accuracy of 90.46 %, kappa coefficient of 86.68 %, average producer accuracy of 94.25 % and average user
accuracy of 86.80 % were obtained.

Confusion Matrix
Algorithm

0–20 % 20–40 % 40–60 % 60–80 % 80–100 % Rows Omission Producer
Total Error Accuracy

Reference

0–20 % 4 0 0 0 0 4 0 1
20–40 % 1 27 1 0 0 29 0.07 0.93
40–60 % 0 4 67 1 0 72 0.07 0.93
60–80 % 0 0 7 105 4 116 0.09 0.91
80–100 % 0 0 0 13 91 104 0.12 0.88

Columns Total 5 31 75 119 95 325

Commission Error 0.25 0.14 0.11 0.12 0.04

User Accuracy 0.75 0.86 0.89 0.88 0.96
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Figure 12. Final damage map of the test area using the proposed method. Depending on the 2 
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Fig. 12. Final damage map of the test area using the proposed
method. Depending on the damage degree, each building is shown
by a specific color. Five degrees of damage are considered: 0–20 %
damaged (shown by dark green), 20–4 % damaged (shown by light
green), 40–60 % damaged (shown by yellow), 60–80 % damaged
(shown by light red) and 80–100 % damaged (shown by dark red).

Compared to the same studies, the results are promising.
Considering shape and structural information of the intact
roof during damage assessment of the buildings, which was
presented here for the first time in damage assessment, pro-
vides a realistic damage assessment and consequently more
accurate results. Also, applying a pre-event image to elimi-
nate the necessity of training dataset collection, which is a
time consuming process, increases the level of automation
in damage assessment. Moreover, using a fuzzy rule-based
decision making system in damage assessment to handle the
uncertainty is another selling point of the proposed method.

The inability to recognize totally collapsed buildings in
cases when the roof has completely fallen down but is not
fully destroyed may be one of the main drawbacks of this
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Figure 13. Distribution of check buildings (blue shaded) in the test area 3 

  4 

Fig. 13. Distribution of accuracy-checked buildings (blue shaded)
in the test area.

algorithm. This can be handled by using post-event DSM
of the area. The proposed algorithm needs an accurate and
updated vector map, which is available for almost all cities
around the world, to locate buildings on the images. How-
ever, this method for areas where the vector map is outdated
may not obtain reliable results. Therefore, the future stud-
ies may go into the way of not using vector map, in which
case buildings may be recognized only from a pre-event im-
age and located on the post-event image using co-registration
information. Nonetheless, comparing a building from a post-
event image to its counterpart on the pre-event image is the
main reason for the case-independency of the algorithm. In
other words, by accurately pre-processing images and using
appropriate features in clustering, the algorithm should be
reliable for other high resolution satellite imagery. Accord-
ingly, the algorithm could be tested using various datasets
with the same or different high spatial resolution sensor in
future studies.
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Fig. 14.Comparison of visually extracted intact roof area with their corresponding area extracted using the proposed method.

The textural features applied in this research were selected
based on the previous studies in this field. As these features
have an important role in extracting roof areas, considering a
wide range of texture features and performing an optimal fea-
tures selection algorithm for damage assessment are strongly
recommended. Accurate definition of membership functions
is of high importance in the proposed method, which was
done based on user experience. Applying automatic meth-
ods such as Adaptive Neuro-Fuzzy Inference system (AN-
FIS) for tuning membership functions will likely obtain bet-
ter results. Finally, applying other decision making systems
such as Neural Networks for analyzing shape features should
also be considered.
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