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Abstract—This paper addresses stochastic modeling of non-
stationary small scale fading channels. Referring to the WSSUS
assumption for simplified modeling, we model the opposite cases
of scatterers correlated in delay and Doppler frequency. Corre-
lated scatterers can be easily incorporated in a sum-of-sinusoids
based tapped delay line, thus, enabling a simple realization of a
non–stationary channel impulse response.

Index Terms—stochastic modeling, non-stationary, tapped de-
lay line

I. INTRODUCTION

Channel models have been widely used for simulative
performance estimation of wireless systems. In the past,
system performance simulation mainly utilized a Wide Sense
Stationary Uncorrelated Scattering (WSSUS) based channel
model with a constant Power Delay Profile (PDP) and
Doppler Power Spectrum (DPS), the latter often following
the Jakes spectrum shape, see e.g. [1]. Then, the increasing
system bandwidth enabled a higher channel resolution and
motivated efforts for more accurate channel modeling. So,
the geometry based channel models became very popular, see
for example [2]. For navigations systems, which often utilize
sophisticated tracking algorithms, the geometric concept is
very interesting as it accurately emulates the continuous
changes in the propagation channel. The geometry based
models are referred to as stochastic, when a certain geometry
is not exactly reproduced but equivalent scatterers are placed
in the simulated environment. However, the resulting path
delays and Doppler frequencies are entirely determined by the
scatterers positions and by the transmitter (Tx) and receiver
(Rx) movements1.
The same results can be actually achieved by directly placing
scatterers in the delay–Doppler frequency plane. The scatterer
(τ, ν) coordinates can be chosen according to some available
statistics. Then, the correspondence between the scatterers
placement and a simple Tapped–Delay–Line (TDL) model is
straightforward. Especially for the evaluation of an average
system performance of a communication link, a simplified
TDL model is often preferable. However, in a non-stationary
channel, the geometry–based modeling remains accurate,
whereas a WSSUS based TDL neglects the changes in the
channel characteristics. In the latter, slow alteration can be
considered by choosing a new set of fixed channel parameters
for each new data frame, i.e., simulation run. Furthermore, a
non-stationarity can be induced by utilizing tap persistence
matrices to model the limited tap lifetime, see e.g. [3].

1For simplicity, we consider in the following that only Rx moves.

The aim of this paper is to provide a simple generic TDL
channel model though capable of realistic modeling of
non–stationary channels. Our approach bears on the scatterer
based channel representation and the Doppler–variant impulse
response also known as the spreading function. Referring
to the work of Bello [4], we induce the non-stationarity by
incorporating moving and hence correlated scatterers in the
model. For modeling, we draw on the TDL which utilizes
Rice’s sum-of-sinusoids method [5], [6]. Furthermore, we
assume the knowledge of the parameters of the system
involved and the availability of the channel statistics. The
latter can be gained from channel measurements or by
assessing possible environment scenarios. Beside the Rx
velocity, the smallest distance expected between the moving
Rx and the potential reflecting surfaces is also supposed to
be known.

II. TIME VARIANT CHANNEL CHARACTERISTICS

In most description of the multipath propagation channel
the focus is set on the time-varying Channel Impulse Response
(CIR) h(τ ; t), given as a sum of shifted Dirac pulses δ(τ−τ`),
each multiplied by its own fading process a`(t),

h(τ ; t) =
∑
`

a`(t) · δ(τ − τ`(t)). (1)

The simplest channel that exhibits time and frequency selective
behavior is a WSSUS channel [4] characterized by uncorre-
lated channel taps with different propagation delays τ` and
stationary fading processes a`(t). The autocorrelation function
of the channel impulse response characterized by Uncorrelated
Scattering (US) is represented with Dirac pulses on the delay
axis,

Rh(τ`, τk; t, t+ ∆t) = Rh(τ`; t, t+ ∆t)δ(τ` − τk). (2)

In the following, we discuss the channel stationarity by re-
garding only one channel tap h(τ`; t) = a`(t) with a Rayleigh
distributed amplitude. Assuming a finite observation time, one
channel tap can be represented by a sum of NH harmonic
functions with complex Gaussian distributed amplitudes an
and random phases φn,

a`(t) =

NH−1∑
n=0

an · ejφnej2πνnt. (3)

A stochastic process a`(t) is said to be wide sense stationary
if the first two moments do not depend on the absolute time t.
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Assuming an uniformly distributed phase, φn ∈ [0, 2π], yields

E[ejφn ] = 0, (4)

where E[.] denotes the expectation value, which implies

E[a`(t)] = 0. (5)

In the autocorrelation function

Ra(∆t) = E[a∗` (t) · a`(t+ ∆t)] = (6)

NH−1∑
n=0

NH−1∑
m=0

E[a∗n · am]E[ej[2π(νm−νn)t+2πνm∆t]+j(φm−φn)],

the cross-product cancels out when m 6= n yielding

Ra(∆t) =

NH−1∑
n=0

E[|an|2]E[ej2πνn∆t]. (7)

Thus, the autocorrelation function also does not depend on
time t, hence a`(t) in (3) is wide sense stationary.
Having independent Gaussian distributed amplitudes, it also
follows that E[a∗n · am] = 0 and E[a2

n] = σ2. Under the
assumption of a certain Doppler frequency probability density
function pν(ν), we could also calculate the autocorrelation
function using

E[ej2πνn∆t] =

∫ +∞

−∞
pν(ν)ej2πν∆tdν. (8)

Applying the Fourier transform regarding the time variable
t, we obtain the Doppler variable impulse response or the
spreading function S(τ ; ν),

S(τ ; ν) =

∫ +∞

−∞
h(τ ; t)ej2πνtdt. (9)

Now, from the definition of the delay Doppler power density
and assuming the stationary process a`(t), we obtain

RS(τ`; ν, µ) = (10)∫ +∞

−∞

∫ +∞

−∞
a∗` (t)a`(t+ ∆t)ej2π((µt−νt)+µ∆t)dtd∆t

=

∫ +∞

−∞
Ra(∆t)ej2πµ∆td∆t ·

∫ +∞

−∞
ej2π(µ−ν)tdt

= RS(τ`;µ) · δ(µ− ν).

Thus, the assumption that the fading processes which de-
scribes the time alteration of a channel tap is stationary is
equivalent to the assumption that the scatterers with different
Doppler frequencies generating the corresponding tap process
are uncorrelated. Furthermore, a stationary channel exhibits a
constant dispersion in delay and Doppler frequency described
by the scattering function RS(τ ;µ). However, due to the
receiver movement but also due to the movements of other
objects in the vicinity, the environment and thus the channel
characteristics will change. For the resulting non-stationary
channel, the scattering function does not exist and the instanta-
neous channel dispersion can be best observed in the spreading
function.

Fig. 1. Example of two spreading functions which evaluation intervals are
shifted by 2 seconds

Practically, when we deal with the channel characteristics,
we either have some digital data available from channel
measurements, or we are about to generate subsequent channel
impulse responses by some chosen channel model. The corre-
sponding spreading function can be calculated as the Discrete
Fourier Transform (DFT) of CIR in respect to t within an
observation interval. The observation time determines also the
resulting Doppler frequency resolution.
By observing the subsequent spreading functions, obtained by
calculating the DFT of the CIRs after shifting the observation
interval, reveals the (non-)stationarity of the channel. Figure 1
shows an example of changes observed in the spreading func-
tion when the observation interval is shifted by 2 seconds. The
data used for evaluation were collected in the measurements
at 5.2GHz [7] with a receiver moving at 30km/h.

III. CORRELATED SCATTERER

When evaluating the spreading function from measurement
data, the scatterer typically do not occur as Dirac pulses,
but exhibit a spread due to the superposition of different
reflections, which arrive at the receiver with similar delays
and Doppler shifts. Beyond this, the finite bandwidth of the
Rx filter causes widening in τ . The widening in Doppler
frequency is caused by the finite observation time. In the case
of moving Rx, significantly noticeable changes in the angle
between the reflected path and the receiver direction manifest
additionally in a wider Doppler frequency of the scatterer [8].
This effect depends on the relative Rx position, Rx heading
and on the observation interval. Furthermore, in a sequence of
subsequent spreading functions, a scatterer caused by the same
reflecting object may change its (τ ; ν) position, amplitude
and shape. Analogously, a sequence of spreading functions
reveals changes in the receiver velocity and heading. It reveals
also reflections that suddenly appear/disappear and indicates
the reflecting objects positions if the corresponding scatterer
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results from a single and not from multiple reflections.
In general, we can assume that two distinct scatterers observed
in one spreading function are caused by distinct reflections
and thus uncorrelated. However, by shifting the observation
interval, we may observe two scatterers in different positions,
however caused by same reflections and thus, correlated in
their amplitudes. Hence, the US assumption becomes void if
the scatterer shift in delay direction exceeds the sampling time
of the system considered for the simulations. Analogously, the
WSS characteristics is related to the scatterer movement in the
Doppler direction.
When Rx moves, the reflecting objects which remain behind
seem to move away, the corresponding scatterers delays in-
crease and Doppler frequencies decrease towards −νmax =
−f · v/c, where c denotes the speed of light and v the Rx
velocity. Conversely, the reflecting objects in front of Rx
get closer and their scatterers move to smaller delays. The
Doppler frequencies change from the maximum value for
frontal reflections to zero when reflections come from beside.
The fastest change in the delay will experience the scatterers of
the reflections which are directly in front or behind the moving
vehicle. Within the time interval T , the maximum change in
delay is given by

δτ = v · T/c. (11)

The fastest change in the angle of arrival of the incoming path,
and thus in the Doppler frequency of a scatterer, occurs when
the receiver is passing by the corresponding reflecting object.
Assuming that the moving vehicle passes by a reflecting
surface at distance d, the maximum change in the scatterer
Doppler frequency within time T is given by

δν =
v2 · f · T
c · d

, (12)

i.e., the resulting change in the Doppler frequency δν is
inversely proportional to the distance between the reflector and
the receiver route. Thus, the closer Rx moves to a reflecting
surface or object, the more noticeable becomes the non–
stationarity of the channel.
During the Rx movement, all persistent scatterers will experi-
ence a shift in delay and in Doppler frequency. In general,
when observed over a longer period of time, the scatterer
position in the (τ, ν) plane describes a parabolic function.
Two limiting cases, given by the frontal and the sideways
reflections, occur rather temporary and can be approximated
with one fixed dimension and another given as a function of
time.
In a scenario where the reflecting object is far ahead/behind
the moving Rx, the corresponding scatterer Doppler frequency
will remained unchanged, approximately at ±νmax, whereas
the change in delay can be modeled as a linear function of
time,

τ(t) = τ(0)∓ t · δτ . (13)

The change in the Doppler frequency of the scatterer related
to the reflecting object the Rx is just passing by can be

Fig. 2. Example of a spreading function with three persistent scatterers
marked with 1,2 and 3

Fig. 3. Change in the spreading function shown in Fig. 2 observed after 2s,
reveling the shift of the three persistent scatterers marked with 1,2 and 3

Fig. 4. Change in the spreading function shown in Fig. 3 observed after 8s,
reveling the shift of the three persistent scatterers marked with 1,2 and 3
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expressed as
ν(t) = ν(0)− t · δν , (14)

while the change in delay is rather negligible.
Figures 2-4 show again examples of the spreading function
evaluated from the measurements in [7]. Three persistent
scatterers are identified in Fig. 2: The one marked by ’1’
represents the direct path from Tx to Rx, the one marked by
’2’ is related to a reflector close to the Tx and the scatterer
’3’ belongs to a reflector which is far behind the moving Rx.
Figure 3 shows the scatterers positions after 2s and Figure
4 again 8s later. Due to the Rx movement towards objects
resulting in scatterers ’1’ and ’2’, their positions shift to
lower Doppler frequencies is noticeable in Figs. 3 and 4.
The third reflector remains far behind Rx, and therefore the
corresponding scatterer position shifts only in delay direction.
However, for a system bandwidth B and thus, delay resolution
∆τ = 1/B, the change in the delay of one scatterer, and
consequently also in the tap delay, will be noticeable only
after M data samples with M > c

v .
A change in the Doppler frequency of one scatterer, on the

other hand, yields an alteration of the tap fading function.
Considering the Doppler frequency being a function of time
(14), the tap fading process becomes

a`(t) =

NH−1∑
n=0

ane
jφnej2π(νn(0)−t·δν)·t. (15)

Calculating the autocorrelation according to (6), we now
obtain

Ra(∆t) =

NH−1∑
n=0

E[|an|2]E[ej2π(νn(0)−∆tδν)∆t]e−j4π∆tδν ·t

(16)
which is now time dependent.

IV. CHANNEL MODEL

We assume that all parameters needed for the generation
of the channel function are available, i.e., chosen accord-
ing to some statistics. Thus, the tap amplitudes and delays,
number of scatterers per tap, the Doppler shift and spread
of each scatterer are set. In the TDL model, the `-th tap,
`=0,. . . ,NL−1, is described by the delay τ`, the amplitude A`
and an independent fading process a`(iT ) with |a`(iT )| = 1,
where iT denotes the i-th time sample. The channel output
is the sum of weighted delayed copies of the channel input
signal x(iT ),

y(iT ) =

NL−1∑
`=0

A` · α`(iT ) · x(iT − τ`). (17)

A non-stationary channel is commonly described with time
variant tap amplitudes and delays, {A`(iT )}, {τ`(iT )}. Fol-
lowing the idea of a constantly moving scatterer, the change
in the scatterer delay can be expressed as

τ(iT ) = τ(0)∓ i · δτ , (18)

taking the minus sign for the scatterer with a large positive
Doppler shift and plus sign for the scatterer with a large
negative Doppler shift.
Using Rice’s representation of a random process that follows
the normal distribution from [5], [6], which is often referenced
as the sum-of-sinusoids method (see e.g. [9]), we model
α`(iT ) by

α`(iT ) =

NH−1∑
n=0

C`,ne
j
(

2πν`,niT+ϕ`,n

)
. (19)

Here, the amplitudes C`,n are determined by the power spec-
trum w(ν`,n),

C`,n =
√

2w(ν`,n)∆ν`, (20)

and ϕ`,n is a random phase angle distributed uniformly over
the range (0, 2π). NH and ∆ν` are chosen such that they cover
the frequency range of interest, hence,

∆ν` =
4σν`
NH

and ν`,n = νD` +

(
n− NH

2

)
∆ν`, (21)

where the Doppler shift νD` and the Doppler spread 2σν` of
the `-th tap are chosen according to some statistics. According
to [9], [10], this method yields a good approximation of the
Gaussian PSD already for a moderate number of harmonics
NH , e.g. NH = 25, but the drawback is that the resulting
fading process repeats with the period 2/∆ν` = NH/2σν`.
However, this is of no concern as long as this period exceeds
the simulation interval.
Furthermore, one tap can be composed of few scatterers, i.e.,
reflections from distinct objects. Assuming that the `-th tap
is composed of NS(`) uncorrelated scatterers with different
Doppler shifts ν(s)

D` and spreads σ(s)
ν` , the corresponding fading

coefficient α` is computed as follows:

α`(iT ) =

NS(`)−1∑
s=0

NH−1∑
n=0

C
(s)
`,ne

j
(

2πν
(s)

`,n
iT+ϕ

(s)

`,n

)
. (22)

Drawing on the depiction of the moving scatterer, the non-
stationarity can be simply incorporated in the model by setting

ν
(s)
` (iT ) = ν

(s)
` (0)− i · δ

ν
(s)

`

. (23)

Furthermore, the choice of δν according to (12) concerns only
the scatterers with an initial Doppler shift close to zero. For
all other scatterers, the Doppler increment can be neglected
or an adequately small value can be taken.

V. CONCLUSION

In this paper, we show a simple way of stochastic modeling
of non-stationary channel based on the idea of moving and
thus correlated scatterers. We propose to model the change
in delay and Doppler frequency of scatterers as a linear
function of time, assuming that the simulation interval is
short enough. Hereby, the scatterer with a small Doppler shift
is expected to exhibit a change in the Doppler frequency and
the scatterer with a high Doppler shift will rather experience
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a delay altering. Furthermore, the relative movement of a
scatterer in delay direction during an observation interval
of interest depends only on the transmitter/receiver velocity
and is often negligible. The relative movement of a scatterer
on the Doppler axis depends also on the carrier frequency
and on the distance from the sideways reflecting objects and
thus becomes more noticeable when the latter is small. The
moving scatterer model can be easily incorporated in the sum-
of-sinusoids based TDL model for small scale fading channels.
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