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ABSTRACT

Tomographic synthetic aperture radar (SAR) imaging has
been recently formulated in a wavelet-based compressed
sensing (CS) framework. This paper reviews the underly-
ing sparsity-driven algorithms for single-channel as well
as polarimetric tomography, and discusses its applicabil-
ity in terms of ambiguity rejection, physical validity, ac-
quisition geometry, and required a priori knowledge. In
addition, we present a comparison with traditional non-
parametric spectral estimators by using L-band data ac-
quired by the Experimental SAR (E-SAR) sensor of the
German Aerospace Center (DLR).
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1. INTRODUCTION

With the advent of nonlinear spectral estimators, tomo-
graphic artifacts due to unfavorable sampling conditions
have been substantially mitigated. In fact, these methods
have allowed for super-resolution imaging not only with
a limited number of baselines but also with nonideal ac-
quisition geometries. Cases in point are the well-known
adaptive [1–4] and subspace-based spectral estimators
[5–7, 4, 8]. Additional examples include the singular-
value decomposition (SVD) method [9], along with its
variants [10]. Alternative approaches have focused on
estimating the backscattered power and scattering cen-
ter of different scattering mechanisms by extending the
concept of synthetic aperture radar (SAR) interferome-
try [11]. Also, compressed sensing (CS) inversion tech-
niques have been recently adapted for SAR tomography
[12–17]. This paper reviews the mechanics together with
experimental results of two of these CS methods, in par-
ticular those based on wavelet expansions [16, 17] (from
now on referred to as WCS methods), and discusses their
applicability to forested areas in terms of ambiguity rejec-
tion, physical validity, acquisition geometry, and required
a priori knowledge.

2. WCS FOR SAR TOMOGRAPHY

For the sake of simplicity, we will first restructure the
conventional multibaseline model. To this end, let Ci,j ∈
CM×M be the multibaseline covariance matrix result-
ing from M parallel passes [18, 19] and two polarimet-
ric channels i and j at a specific azimuth–range posi-
tion, with 1 ≤ i, j ≤ 3. For example, i and j could
denote the hh and hv channels, respectively. Also, let
A ∈ CM×N denote a steering or sensing matrix, ob-
tained by computing the phase rotations due to the dis-
tance between M sensor positions and N targets dis-
tributed along the cross-range direction [6]. Then, we can
define ci,j = vec(Ci,j) ∈ CM2

(column-major vector-
ization) and the functions to row(·) and to col(·), which
take a linear index corresponding to ci,j as an argument
and return the row and column indices corresponding to
Ci,j , respectively. Consequently, if we let Xk indicate
the row of any matrix X , we can construct Φ ∈ CM2×N

by computing

Φ` = Ato row(`) � conj(Ato col(`)) (1)

for all 1 ≤ ` ≤ M2, where � indicates element-wise
multiplication. Note that the remainder of Section 2 will
build only upon ci,j and Φ.

2.1. Single-Channel WCS

As thoroughly developed in [16], the WCS reconstruc-
tion of the cross-range power distribution p ∈ RN≥0, for a
specific polarimetric channel i, can be carried out directly
as follows:

min
p̃
‖Ψ p̃‖1 subject to

∥∥Φ p̃− ci,i
∥∥
2
≤ ε (2)

where Ψ ∈ RN×N is a suitable wavelet basis and ε can
be used to control the trade-off between sparsity in Ψ and
model mismatch. In accordance with the definition of
p, the optimization has to be carried out over the set of
nonnegative real numbers.



2.2. Polarimetric WCS

When either dual-polarized or fully polarimetric mea-
surements are available, the WCS reconstruction not only
provides the backscattered power for each channel but
also is able to recover polarimetric statistics for a specific
cross-range position [17]. The basic method proceeds as
follows:

1) Construct D ∈ CM2×9 such that

D = [ c1,1 c2,1 · · · c3,3 ] (3)

2) Compute the best rank-2 approximation of D by
means of the SVD and denote it D2.

3) Take the adjoint of the resulting right singular vectors
and form V ∈ C2×9.

4) Perform the following optimization

min
β̃

∥∥∥β̃∥∥∥
2,1

subject to
∥∥∥ΦΨT β̃V −D2

∥∥∥
F
≤ ε (4)

where β ∈ RN×2, Ψ ∈ RN×N is a wavelet basis, and
ε is an upper bound on the model mismatch. Also,
suitable constraints should be added in order to ensure
that every row of ΨT β̃V (when rearranged in a 3-by-
3 matrix) results in a positive-semidefinite matrix (see
[17] and the references therein).

5) Compute Z̃ = ΨT β̃V .

The output of this algorithm is then Z̃ ∈ CN×9, and thus
provides second-order polarimetric statistics forN cross-
range positions, which can be reshaped into the well-
known 3-by-3 coherency matrix [20].

3. EXPERIMENTAL RESULTS

For analysis purposes, we used fully polarimetric multi-
baseline L-band data acquired by the Experimental SAR
(E-SAR) airborne sensor of DLR during a campaign near
Dornstetten, Germany, in 2006. Twenty-one passes were
performed at approximately the same altitude with hor-
izontal baselines of about 20 m. The center frequency
used was 1.3 GHz and the nominal altitude above ground
was about 3200 m [19]. The resolutions were 0.66 m and
2.07 m in azimuth and range, respectively. Also, two
different constellations were considered (see Fig. 1) em-
ploying: C1) all 21 passes and C2) a subset of these con-
sisting of 10 irregular passes.

3.1. Single-Channel WCS Experiments

First, we selected contiguous azimuth positions at a range
distance of 4501.61 m and took a 4 × 14 m2 azimuth–
range window. As a result, we obtained tomographic

(a)

(b)

Figure 1. Horizontal baseline distribution for: (a) all 21
passes, and (b) a subset consisting of 10 passes

slices as a function of azimuth and height of dimen-
sions 176 m by 40 m, respectively. In Fig. 2, we used
Fourier beamforming. Fig. 2a and 2b display the nor-
malized sum of the power distribution throughout polari-
metric channels using constellations C1 and C2, respec-
tively. Likewise, as presented in Fig. 3, we carried out
the reconstruction with Capon’s beamformer. Alterna-
tively, Fig. 4 shows the results obtained using a variant of
single-channel WCS (see equation (16) in [16]) based on
cspan = c1,1 +c2,2 +c3,3 so as to directly recover the po-
larimetric span [16]. The wavelet basis corresponded to a
Daubechies Symmlet wavelet with 4 vanishing moments
and 3 levels of decomposition.

3.2. Polarimetric WCS Experiments

Lastly, for the polarimetric WCS case, we selected sev-
eral azimuth positions at a range distance of 4816.30 m
and computed the covariance matrices ci,j for all 1 ≤
i, j ≤ 3 by taking a 20 × 20 m2 estimation window. Ac-
cordingly, we obtained slices as a function of azimuth and
height of dimensions 300 m by 40 m, respectively. Fig. 5
shows the normalized reconstructed profiles for the hh,
vv, and hv channels using constellation C2 and a conven-
tional Fourier inversion of the rearranged rank-2 approx-
imation of D in (3). Fig. 6 presents tomograms found
by the polarimetric WCS method using the same wavelet
basis as in Section 3.1

4. DISCUSSION

The tomograms shown in this paper, which are in line
with the analysis reported in [16, 17], emphasize the
ambiguity-rejection capabilities of WCS as well as its
ability to recover the complete cross-range power distri-
bution with few highly irregular passes. A direct (and
desirable) result is the increase in the height of ambiguity
(see Fig. 4). In addition, the polarimetric WCS method
provides high resolution while attaining physical validity
(in terms of positive semidefiniteness), a property that is
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Figure 2. Span of tomogram obtained by Fourier beamforming as a function of azimuth and height (176 m by 40 m) using
a 4 × 14 m2 window with: (a) 21 and (b) 10 passes. Range distance: 4501.61 m.

(a)

(b)

Figure 3. Span of tomogram obtained by Capon’s method as a function of azimuth and height (176 m by 40 m) using a
4 × 14 m2 window with: (a) 21 and (b) 10 passes. Range distance: 4501.61 m.
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Figure 4. Span of tomogram obtained by single-channel WCS as a function of azimuth and height (176 m by 40 m) using
a 4 × 14 m2 window with: (a) 21 and (b) 10 passes. Range distance: 4501.61 m.
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Figure 5. Tomographic slices in the (a) hh, (b) vv, and (c) hv channels (300 m by 40 m) obtained by a conventional
Fourier inversion using a 20 × 20 m2 window and 10 passes. Range distance: 4816.30 m.
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Figure 6. Tomographic slices in the (a) hh, (b) vv, and (c) hv channels (300 m by 40 m) obtained by the polarimetric
WCS method using a 20 × 20 m2 window and 10 passes. Range distance: 4816.30 m.



commonly sacrificed by most super-resolution estima-
tors. Nevertheless, special consideration should be given
to the following points:

1) A reduction in aliasing-like artifacts entails a nonde-
terministic acquisition geometry [16], which might
require extensive simulations prior to planning cam-
paigns that rely on very few baselines. This down-
side could be alleviated by having a large tomographic
aperture with a few small approximately regular base-
lines, in addition to few large highly irregular ones.
Nonetheless, when several passes are available, the
natural deviations from the ideal tracks seem to pro-
vide the required randomness for ambiguity rejection
(see, for example, Fig. 4a).

2) Large tomographic apertures with very sparse base-
lines can reduce the usable swath [16], since the ver-
tical wavenumber at the near range intrinsically ex-
periences higher variations [21]. Hence, this kind of
sparse constellation and wide-swath airborne tomog-
raphy are bound to be conflicting requirements, unless
simpler models that make additional assumptions are
used.

3) As WCS inherently estimates the cross-range
backscattered power simultaneously for all heights
in a defined observation space, it is important to
choose an appropriate range of heights. However,
this a priori knowledge is also implicitly critical for
conventional estimators, as the maximum height is an
important parameter for appropriate campaign design
[19].
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