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German Aerospace Center (DLR)

www.DLR.de  •  Chart 3 Solar Fuels, Niigata University > 3 July 2012



DLR
German Aerospace Center

 Research Institution
 Space Agency
 Project Management Agency
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Research Areas

- Aeronautics
- Space Research and Technology
- Transport
- Energy
- Space Administration
- Project Management Agency
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Locations and employees

7000 employees across 
32 institutes and facilities at

16 sites.

Offices in Brussels, 
Paris, Washington, Singapore, and 
Almería.

Permanent delegation on the 
European Solar Test Centre 
Plataforma Solar de Almería, Spain
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Total income 2010 – Research, operations and 
management tasks (excluding trustee funding from the Space 
Administration / DLR Project Management Agency): € 745 Mio. (¥74 bn)

308

205

43

53

104

44 All values in € million

 Space Research and Technology

 Aeronautics

 Transport

 Energy

 Space Administration / 
DLR Project Management Agency

 Other income / earnings
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National and International Networking
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World

Europe

Germany

Customers and partners: Governments and ministries, agencies and organisations, 
industry and commerce, science and research



Energy
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DLR Energy

DLR Energy Research concentrates 
on: 
- CO2 avoidance by efficiency 

optimisation and renewable 
energies

- synergies within the DLR
- major research specific themes 

that are relevant to the energy 
economy
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Energy Program Themes

- Efficient and environmentally 
compatible fossil-fuel power 
stations
(turbo machines, combustion 
chambers, heat exchangers)

- Solar thermal power plant 
technology, solar fuels

- Thermal and chemical energy 
storage

- High and low temperature fuel 
cells

- Systems analysis and technology 
assessment
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Institute of Solar Research

Department of Solar Chemical Engineering
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DLR Institute of Solar Research
Main Topic:

Solar Thermal Power Plants

140 Persons

5 Departments, 4 Sites

Köln-Porz, Jülich 

Stuttgart

Plataforma Solar de Almería
(Permanent Delegation)

and Office in Almería, Spain

Köln-Porz

Stuttgart

Jülich



Department of Solar Chemical Engineering
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Competences

Development of
components and
processes

and

scientific, technologic and
economic evaluation
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Solar Fuels

 > 20 years experience and
international cooperation

 Processes
 Reforming of NG
 Thermo-chemical cycles

 Sulfur
 metal oxides

 Solar HT electrolysis
 Cracking of methane
 Photo-catalysis

 Products
 H2, syn-gas, methanol, 

FT-Synfuels …

(Roeb, Müller-Steinhagen, Science, Aug. 2010.)

1200°C

800 – 1200 °C

- O2

H2O - O2- H2-MOred

-MOred-MOox

-MOox

Contact DLR: Dr. Martin Roeb, (martin.roeb@dlr.de Tel.: +49(0)2203 601 2673)
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Solar Materials

- High temperature recycling of
waste materials (e.g. aluminium, 
sulfuric acid)

- Development of solar heated
reactors – solar heated rotary kilns

- Development and demonstration of
production processes
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Contact DLR: Dr. Martin Roeb, martin.roeb@dlr.de

Tel.: +49(0)2203 601 2673



Heat Transfer Fluids for CSP

- Accelerated Aging
Degradation rates, and kinetics of gas, water, and other degradation products
formation

- Physico-chemical parameter at high temperatures
Vapor pressure, density, heat capacity, heat conductivity, viscosity, gas 
soluability

- Interaction with power plant components
Hydrogen diffusion, influence of material contacts and impuritieson the aging of
the heat transfer fluids

- Field tests
Authentic and representative samples of heat transfer fluids during power plant 
operation, inline- / atline- / offline-analysis

Contact DLR: Dr. Christian Jung (christian.jung@dlr.de; Tel. +49 (0) 2203 601 2940)
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Photocatalytic Synthesis of Solar Fuels

- Qualification of new photo-catalysts for hydrogen production or the
reduction of CO2

Determination of spectral quantum yields by special lamp technologies, 
Determination of the solar efficiency in our solar test fascilities, 
Evaluation of long term stability, and product quality, optimisation of the
produktivity

- Chemical Engineering
Development of solar receiver-reactors, design of concentrator technologies, scale-
up, and economic evaluation

Contact DLR: 
Dr. Christian Jung (christian.jung@dlr.de; Tel. +49 (0) 2203 601 2940)
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Photochemical Water Treatment

- Untersuchung photochemischer Verfahren (VUV bis solar)
Actinometry of light sources, degradation tetst by photolytic and photo-catalytic
processes; water analytics

- Development of photo-reactors
Solar receiver-reactor technology and photo-reactors for nnovative light sources

- Development of photo-chemical plants
Plants for water treatment with photo-chemical key steps up to demonstration
scale, research on the combination of treatment technology, automation, 
recycling of photo-catalysts, energetic optimisation

Contact DLR: 
Dr. Christian Jung (christian.jung@dlr.de; Tel. +49 (0) 2203 601 2940)
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Solar Fuels
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Solar Chemistry - Basics

- Role models 
- photosynthesis  - use of photons for photochemistry
- burning glass – use of heat for thermochemistry

- Principle in chemical reactions: 
- photochemistry ≠ thermochemistry

- However in some cases there are synergies in chemical processes, 
especially if not only one reaction takes place

- Example: degradation of wastes
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Solar Chemistry instead of Solar Power

- Solar Thermochemistry is efficient because energy conversion steps are
reduced!

- Example: Hydrogen production: H2O → H2 + ½ O2

- Solarchemical: 2 conversions
- Solar radiation – heat – Chemical reaction

- Via solar power: 4 conversions
- Solar radiation – heat – mechanical energy – electrical energy –

chemical reaction
- Solar photo-chemistry uses the light directly without any conversion. 

Photo-chemistry is economical if the reaction needs a large amount of
photons

- Example: Production of Caprolactam an intermediate for Nylon 
Annual production > 200,000 t (by artificial light)
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Solar Fuels – Production pathways

Slide 24 www.dlr.de/

Hydrogen

Fossil Resources Biomass PV

Radiation

Solar Energy

Power

Electrolysis PhotochemistryThermochemistry

Mechanical Energy

Heat

Heat

CO2

Synthetic Fuels

Solar-thermal
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Temperature Levels of CSP Technologies

-Paraboloid: 
„Dish“

-Solar Tower 
(Central Receiver
System)

-Parabolic Trough / 
Linear Fresnel

3500°C

1500°C

390°C

150°C
50°C
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Solar Towers, “Central Receiver Systems” 
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-PS10, PSA CESA-1, Torresol, Spain 
-Solar-Two, Daggett, USA
-Solarturm Jülich, Germany



Annual Efficiency of Solar Power Towers
Power Tower 100MWth

Optical and thermal efficiency / Receiver-Temperature
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Solar Tower Jülich
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Receiver 22.7m² 

(Intratec, Saint-Gobain)

Tower 60m 

(Züblin)

2150 Heliostats á 8.2 m² 

(SHP/AUSRA)

Vessel 9t/h, 30 bar/500°C 

(VKK-Standardkessel)

Thermal storage 1h

Turbine 1.5 MWe 

(KKK-Siemens)



Principle of the solar thermal fuel production

Solar Tower

Heat
Chemical
Reactor

Fuel
-H2
-CO + H2

Energy Converter
-Fuel Cell

-Transportation

-Power Production 

Recourses
-Natural Gas
-Water, CO2

-Industry
-Transportation
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Short-term CO2-Reduction: Solar Reforming
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CO2 Reduction by solar heating of state of the art processes like 
steam methane reforming and coal gasification
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-CO2 Reduction 20 – 50%
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Steam and CO2-Reforming of Natural Gas

Steam reforming: H2O + CH4  3 H2 + 1 CO

CO2 Reforming: CO2 + CH4  2 H2 + 2 CO

Reforming of mixtures of CO2/H2O is possible and common

Use of CO2 for methanol production:

e.g. 2H2 + CO  CH3COH (Methanol)

Both technologies can be driven by solar energy as shown in the projects: 
CAESAR, ASTERIX, SOLASYS, SOLREF…
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Solar Methane Reforming – Technologies

- Reformer heated externally 
(700 to 850°C)

- Optional heat storage 
(up to 24/7) 

- E.g. ASTERIX project

- Irradiated reformer tubes (up to 
850°C), temperature gradient 

- Approx. 70 % Reformer-h
- Development: CSIRO, Australia 

and in Japan; Research in 
Germany and Israel

- Australian solar gas plant 
in preparation

- Catalytic active direct 
irradiated absorber

- Approx. 90 % Reformer-h
- High solar flux, works only 

by direct solar radiation
- DLR coordinated projects: 

Solasys, Solref; Research in 
Israel, Japan

decoupled/allothermal -indirect (tube reactor) Integrated, direct, 
volumetric

Source: DLR
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Project Asterix: Allothermal Steam Reforming of 
Methan

- DLR, Steinmüller, CIEMAT
- 180 kW plant at the Plataforma Solar de Almería, Spain 

(1990)
- Convective heated tube cracker as reformer
- Tubular receiver for air heating
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Pilot Scale Solar Chemical Reactors - SolarGas
Experimental set-up of the 200 kW SolarGas reactor

Source: R. McNaughton et al., CSIRO, Australia

Top view of DCORE reactor (right) layout of entire integrated reformer and HRU
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Direct heated volumetric receivers:
SOLASYS, SOLREF (EU FP4, FP6)
- Pressurised solar receiver,

- Developed by DLR
- Tested at the Weizmann 
Institute of Science, Israel

- Power coupled into the process 
gas: 220 kWth and 400 kWth

- Reforming temperature: 
between 765°C and 1000°C

- Pressure: SOLASYS 9 bar,  
SOLREF 15 bar

- Methane Conversion:
max. 78 % (= theor. balance)
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Potential Solar sites
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Suitable locations for CSP in Northern Africa
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Natural Gas Pipeline Grid and Natural Gas Fields
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Suitable locations for solar reforming - Example Algeria and Tunisia

- 50 km distance to pipelines
- Acceptable DNI
- Available Land

kWh/m²/y

-Pipelines 
-Fields
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Long-term: Water splitting processes
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Solar Pathways from Water or CO2 to Hydrogen
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Carbon Monoxide
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Carbon Monoxide

Solar Pathways from Water or CO2 to Hydrogen
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Promising and well researched Thermochemical Cycles
Steps Maximum Temperature 

(°C)
LHV Efficiency 

(%)

Sulphur Cycles
Hybrid Sulphur (Westinghouse, ISPRA Mark 11) 2 900 (1150 without 

catalyst)
43

Sulphur Iodine (General Atomics, ISPRA Mark 16) 3 900 (1150 without 
catalyst)

38

Volatile Metal Oxide Cycles
Zinc/Zinc Oxide 2 1800 45

Hybrid Cadmium 1600 42

Non-volatile Metal Oxide Cycles
Iron Oxide 2 2200 42

Cerium Oxide 2 2000 68

Ferrites 2 1100 – 1800 43

Low-Temperature Cycles
Hybrid Copper Chlorine 4 530 39
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45

Efficiency comparison for solar hydrogen production 
from water (SANDIA, 2008)*

Process T
[°C]

Solar plant Solar-
receiver
+ power 
[MWth]

η 
T/C 

(HHV)

η Optical η 
Receiver

η
Annual 

Efficiency
Solar – H2

Elctrolysis (+solar-
thermal power)

NA Actual 
Solar tower

Molten 
Salt 
700

30% 57% 83% 14%

High temperature 
steam electrolysis

850 Future 
Solar tower

Particle 
700

45% 57% 76,2% 20%

Hybrid Sulfur-
process

850 Future 
Solar tower

Particle 
700

51% 57% 76% 22%

Hybrid Copper 
Chlorine-process

600 Future 
Solar tower

Molten 
Salt
700

49% 57% 83% 23%

Nickel Manganese 
Ferrit Process

1800 Future 
Solar dish

Rotating 
Disc 
< 1

52% 77% 62% 25%

*G.J. Kolb, R.B. Diver SAND 2008-1900
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2004:

First solar thermochemical 

Η2 production

2008:

Pilot reactor (100 kW)

2005:

Continuous Η2 production

Hydrosol technology scale-up

DLR solar furnace

PSA solar tower
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Pilot-plant in operation since March 2008
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Modelling-Control
Software
(Labview®)

Hydrogen Production
Model

Modelling of the pilot plant - Overview Modelling:

Temperature
Model
(Matlab/Simulink®)

Heliostatfield-
Simulation Tool
STRAL (C++)Insulated Power (#1)

Parameter

Parameter

Temperature (#2)

Parameter

Hydrogen Amount (#3)
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Modelling – Temperature model:

KFQ aKQ

Collecting formulas of the heat flows (simplified balance!)

Heat flows: heat radiation, heat conduction and convection

HSQ aFQ
KFQ

aKQ

KKQ

GaBaQ
KGaQ

aFQ

GBQ



Modelling – Temperature model:

First Verification of open loop control system

Temperatures East (23.04.2009)
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Pilot Plant arranged on the research platform of 
the ST Jülich (artist view)
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Carbon Monoxide

Solar Pathways from Water or CO2 to Hydrogen



Sulphur-Iodine Process
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H2OOxygen
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The thermochemical cycles covered in HycycleS
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H2SO4 decomposition in 2 steps 

1.   Evaporation of liquid sulfuric acid (400°C)

-SiSiC foam

-SiSiC honeycomb

-Absorbers
:

-2.   Dissociation of sulfur trioxide (850°C)
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 Performance of long-term corrosion campaigns 
(SO2, SO3 rich, boiling H2SO4) and post-exposure mechanical testing and inspection

 mainstream materials SiC-based as well as brazed samples
 SiC based materials retained suitable for the intended application since they are not 

affected significantly by the SO2-rich, SO3-rich and boiling sulphuric acid exposures.

Stability of construction materials

High temperature 
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 ‘In-house’ synthesized materials (metal oxide based) with high catalytic activity in
terms of SO2 production from H2SO4:

 Coating of active materials in small- & large-scale SiSiC monoliths or fragments

 Satisfying stability of samples coated with ‘in-house’ materials under ‘long-term’
operation

 Derivation of an empirical kinetic model

 Evaluation of the employed materials chemical stability
 Extraction of an SO3 dissociation mechanism
 CrFe oxide identified as the most suitable catalyst

Advanced catalysts and coatings for H2SO4 decomposition
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CuAl2O4‐coated SiSiC fragments (kinetic model for decomposer 
design)

Exp. campaign Ea (kJ/mol) A (h‐1) dn (mm)*

No. 1 240.3 5.6*1012 1‐4

Example of Catalyst qualification: CuAl2O4

WHSV
kX  )1ln(

RT
Ea

eAk
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 Durability tests performed at “high” space velocity values
 After initial deactivation, catalyst shows < 5% loss of activity (100hrs on stream)
 Change of colour observed, due to phase separation phenomena
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Design of multi-chamber solar reactor

Front view of evaporator (left) 
and decomposer

Rear view

H2SO4

SO3 + H2O

SO2 + O2 + H2OSolar radiation
(focus 2)

Solar radiation
(focus 1) honeycomb

foam



Solar reactor for sulfuric acid decomposition

H2SO4  SO3 + H2O

SO3  SO2 + ½ O2

850°C

400°C

750°C 650°C
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Operation in our solar furnace in Cologne 



Overview of test series in solar furnace

Catalyst Fe2Cr2O4

Evaporator solar

Number of experiments 19

Sulfuric acid concentration w% 94

Sulfuric acid flow rate ml/min 1…8

Mean honeycomb temperature °C 650…850

Residence time s 0.3…1

Weight hourly space velocity 1/h 0.6…4.7
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Thermodynamic equilibrium of H2SO4 
decomposition 

H2SO4 dissociation completed at about 550°C

80% of SO3 decomposed at 850°C

40% of SO3 decomposed at 650°C

Source: Noglik et al., 2009
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Conversion of SO3 in honeycomb
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Solar reactor as H2SO4 decomposer

- Development and operation of a 
scalable prototype

- FEM analysis
- trouble-free operational > 200 h
- conversions > 80 %
- reactor efficiency > 25 %

- Continuum model of foam vaporiser
- Computer tomography

- Modelling of SO3 decomposition
- Validation with experimental 

data
- Control procedure for scale-up solar 

tower system

0 1 2 3 4 5 6 7
0

10

20

30

 reactor (Fe2O3 catalyst)
 net (Fe2O3 catalyst)

 
[%

]

Vacid [ml/min]

Thomey et al, IJHE 2012

Noglik et al, IJER 2010

Haussener et al, ASME-JHT 2009



Scale-up of the solar HyS process
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Implementation into a Solar Tower

Solar Fuels, Niigata University > 3 July 2012www.DLR.de  •  Chart 67



Techno-economics

 Flowsheet for solar HyS process refined and 
completed 

 All Components including the solar field were 
sized for a nuclear HyS and SI process and 
a solar HyS process

 Investment, O&M cost, production cost were 
analysed
 6-7 €/kg(H2) for HyS
 optimistic scenarios lead to 3.5 €/kg(H2)

 50 MW solar tower plant for hydrogen 
production by HyS cycle defined and 
depicted

 Thorough safety analysis was carried out for 
respective nuclear and solar power plants

By-product revenues

Decomposer investment

Plant life

Electrolyser investment

Discount rate

Electricity cost

Electrolyser replacement

6 8 10 12
Production cost of hydrogen [€/kg]

Start-up expenses

Interests
Periphery

Storage
General facilities

Contingencies

Electrolyser 
replacement

50%
26%

4%

5%

 Equipment

 Electrolyser replacement

 Contingencies

 General facilities

 Storage

 Periphery (Land & Piping)

 Interests

 Start-up expenses

9%
2%

2%

2%

Equipment

Lebros et et al, IJHE 2010
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Carbon Monoxide

Solar Pathways from Water or CO2 to Hydrogen



High temperature electrolysis process
Temperature in the range 
of 600°C to 900°C are 
required to drive the 
electrolyser.
Electricity and heat are 
supplied to the 
electrolyser to drive the 
electro-chemicals 
reactions. 
The waste heat from the 
H2 and O2 gas streams 
existing the cell is used 
to evaporate water.
The H2O stream is 
further heated by the 
second Heat exchanger 
to raise the temperature 
of the electrolyser. 

 2
22 2 OHeOH

eOO 2
2
1

2
2 

222 2
1 OHOH 
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Economic analysis

Key parameters of the hydrogen production cost with the a concentrating 
solar  installation coupled to a high temperature electrolyser: 

Efficiency of the plant

Efficiency of the solar installation

Electricity consumption of the electrolyser

Site of the plant (annual solar irradiation, availability of water, 
connection to the electricity and gas grit

Investment

Lifetime of the plant
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Thermal conductivity of working fluids
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Flow diagram of the coupling of the solar power 
tower with the electrolyser
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Flow diagram of the coupling of the parabolic dish 
to the electrolyser
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Flow Diagram of the coupling of the parabolic 
trough to the electrolyser

Feed 
Water

Sensible heat storage
for pre-heating

Latent heat storage
for evaporation

Sensible heat storage
for super-heating

Power Block

Electrolyser
Block

Parabolic Trough Collectors

Pre-heating Evaporation Super-heating
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Conclusion and Outlook
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Future Solar Thermal Plants – more than power!

Production of solar fuels (renewable H2 and CH4 / CH3OH),
Recycling of CO2, Power Production and Desalination (H2O)

CO2

H2O

Sea water

Desalinated 
Water

CH4, CH3OH 

H2

Heat

Power
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Thank you very much for your attention!
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