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Preface 
 
The 9th International Modelica Conference is the main event for users, library developers, tool vendors and 
language designers to share their knowledge and learn about the latest scientific and industrial progress 
related to Modelica, to the Modelica Association and to the Functional Mockup Interface. Highlights of the 
conference:  

• 80 regular papers, 22 poster papers, and 6 libraries for the Modelica Library Award. 

• 2 Keynotes. 

• 8 tutorials (3.5 hours each, descriptions). 

• 10 vendor sessions (45 min. each) where the latest news of Modelica and FMI tools are presented. 

• 17 exhibitors in the exhibition area. 

Please note that to some of the papers a Modelica library or model is attached. These files are accessible in 
the electronic proceedings. 

The conference provides also the most important news from the Modelica Association: 

• The new version of the Modelica language version 3.3 was released on May 9, 2012. There are several 
papers and a tutorial at the conference that discusses and demonstrates the new features. 

• The working process of the Modelica Association has been changed and the work is now organized in 
Modelica Association Projects (MAP) with an extended board. More details are given in the presentation 
“Modelica News” on Tuesday, Sept.4, 9:10 – 9:25. 

• The further development of the FMI (Functional Mockup Interface) standard is performed in a MAP. A 
draft version of FMI 2.0 will be available before the conference. An overview of this new version is 
given in a conference paper. In two sessions, applications and tool support for FMI are presented and 
discussed.  

• Since July, the Modelica Association provides an open source FMI compliance checker for FMI 1.0 at 
https://svn.fmi-standard.org/fmi/trunk/Test_FMUs. Its purpose is to check exported FMUs for validity. 
The checker can also produce reference simulation results with a fixed step explicit Euler method. 
Shortly after FMI 2.0 is released, the compliance checker will also be available for FMI 2.0. 

Finally, we want to acknowledge the support we received from the program board and program committee. 
We are grateful for the help by the Modelica Association and Monika Klauer from DLR. Last but not least, 
let us thank all authors for their contributions to these proceedings. We wish all participants an enjoyable and 
successful conference. 
 
 
Weßling, July 20, 2012 
 
 
Martin Otter and Dirk Zimmer 

https://www.modelica.org/events/modelica2012
http://www.functional-mockup-interface.org/
https://www.modelica.org/events/modelica2012/tutorials/tutorials
https://www.modelica.org/events/modelica2012/exhibitors
https://svn.fmi-standard.org/fmi/trunk/Test_FMUs
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Abstract 
The scope of Modelica 3.3 has been extended from a 
language primarily intended for physical systems 
modeling to modeling of complete systems by allow-
ing the modeling of control systems and enabling 
automatic code generation for embedded systems.  

This paper describes the fundamental synchronous 
language primitives introduced for increased cor-
rectness of control systems implementation. The ap-
proach is based on associating clocks to the variable 
types. Special operators are needed when accessing 
variables of another clock. This enables clock infer-
ence and increased correctness of the code since 
many more checks can be done during translation. 

Keywords: Modelica; Synchronous; Control; Sam-
pled Data Systems, Periodic Systems  

1 Introduction 
The scope of Modelica has been extended from a 
language primarily intended for physical systems 
modeling to modeling of complete systems by allow-
ing the modeling of control systems and by enabling 
automatic code generation for embedded systems.  

This paper describes the fundamental synchro-
nous language primitives introduced for increased 
correctness of control systems implementation since 
many more checks can be done at compile time. A 
companion paper (Elmqvist, et.al, 2012) describes 
the state machine features of Modelica 3.3. Yet an-
other companion paper (Otter, et.al, 2012) describes 
a Modelica library, Modelica_Synchronous, which 
supports a graphically oriented approach to synchro-
nous control systems implementation. 

The new language elements follow the synchro-
nous approach (Benveniste et. al. 2002). They are 
based on the clock calculus and inference system 
proposed by (Colaco and Pouzet 2003) and imple-
mented in Lucid Synchrone version 2 and 3 (Pouzet 
2006). However, the Modelica approach also uses 
multi-rate periodic clocks based on rational arithme-
tic introduced by (Forget et. al. 2008), as an exten-

sion of the Lucid Synchrone semantics. Additionally, 
the built-in operators introduced in Modelica 3.3 also 
support non-periodic and event based clocks. 

In the following sections the new language ele-
ments are discussed. Afterwards, in section 5, a ra-
tional is given why they have been introduced by 
comparing the new possibilities with the features of 
Modelica 3.2 to model sampled data systems. 

2 Synchronous Features of Modelica 
The synchronous features of Modelica 3.3 will be 
gradually introduced by means of examples illustrat-
ing how to use them. This paper uses a completely 
textual approach. The companion paper (Otter, et.al, 
2012) describes a Modelica library, Modeli-
ca_Synchronous, which supports a graphically ori-
ented approach to synchronous control systems im-
plementation. 

2.1 Plant and Controller Partitioning 

We will consider control of a mass and spring-
damper system with a force actuator. A Modelica 
model is shown below: 
 
model MassWithSpringDamper 
  parameter Modelica.SIunits.Mass m=1; 
  parameter Modelica.SIunits.TranslationalSpringConstant k=1; 
  parameter  
            Modelica.SIunits.TranslationalDampingConstant d=0.1; 
  Modelica.SIunits.Position x(start=1,fixed=true) "Position"; 
  Modelica.SIunits.Velocity v(start=0,fixed=true) "Velocity"; 
  Modelica.SIunits.Force f "Force"; 
equation  
  der(x) = v; 
  m*der(v) = f - k*x - d*v; 
end MassWithSpringDamper; 
 
A simple discrete-time speed controller can be im-
plemented as follows: 

 
model SpeedControl 
  extends MassWithSpringDamper; 
  parameter Real K = 20 "Gain of speed P controller"; 
  parameter Modelica.SIunits.Velocity vref = 100 "Speed ref."; 
  discrete Real vd; 
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  discrete Real u(start=0); 
equation  
  // speed sensor 
  vd = sample(v, Clock(0.01)); 
 
  // P controller for speed 
  u = K*(vref-vd); 
 
  // force actuator 
  f = hold(u); 
end SpeedControl; 
 
The SpeedControl model extends the continuous-time 
plant model MassWithSpringDamper. The speed control-
ler is a discrete-time controller. The boundaries be-
tween continuous-time equations and discrete-time 
equations are defined by the operators sample and 
hold.  

The sample operator samples a continuous-time 
variable and returns a discrete-time variable. The 
sample rate is specified by the second Clock argument 
to sample. In this case, a periodic clock which ticks 
with a period of 0.01 second is specified.  

Since sample returns a discrete-time result that is 
associated to clock Clock(0.01), the variable vd be-
comes discrete-time and is associated to the same 
clock as well. Variable vd appears in equation 
u = K*(vref-vd) and therefore all time varying variables 
in this equation, i.e., u, must be also discrete-time 
and associated to the same clock. If further equations 
would be present, then all equations in which vd and 
u appear, would be again associated to the same 
clock. This approach to identify the equations be-
longing to the same clock is called clock inference 
and is a key element in the new approach. 

The hold operator converts from discrete-time to 
continuous-time by holding the value between the 
clock ticks. More precisely, the hold(u) operator re-
turns the start value of u if the operator is called be-
fore the first tick of the clock of u. Otherwise, the 
most recently available value of u is returned. 

To summarize, the sample(v..) and hold(..) operators 
define the boundaries between clocked and continu-
ous-time partitions. Equations and variables belong-
ing to the same clocked partition are identified by 
clock inference.  

2.2 Discrete-time State Variables 

More advanced features will be introduced using a 
position controller using an inner P controller and an 
outer PI controller. The first version is using one 
clock: 
 
model ControlledMassBasic 
  extends MassWithSpringDamper; 
  parameter Real KOuter = 10 "Gain of position PI controller"; 
  parameter Real KInner = 20 "Gain of speed P controller"; 
  parameter Real Ti = 10 "Integral time for pos. PI controller"; 

  parameter Real xref = 10 "Position reference"; 
 
  discrete Real xd; 
  discrete Real eOuter; 
  discrete Real intE(start=0); 
  discrete Real uOuter; 
 
  discrete Real vd; 
  discrete Real vref; 
  discrete Real uInner(start=0); 
equation  
  // position sensor 
  xd = sample(x, Clock(0.01)); 
 
  // outer PI controller for position 
  eOuter = xref-xd; 
  intE = previous(intE) + eOuter; 
  uOuter = KOuter*(eOuter + intE/Ti); 
 
  // speed sensor 
  vd = sample(v); 
 
  // inner P controller for speed 
  vref = uOuter; 
  uInner = KInner*(vref-vd); 
 
  // force actuator 
  f = hold(uInner); 
end ControlledMassBasic; 
 
In this model, the sample operator for v does not 
have an associated Clock specification since it is in-
ferred (sample(v) is implicitly associated to clock 
Clock(0.01) because xd is on this clock, and therefore 
eOuter, and therefore uOuter, and therefore vref and 
therefore vd, and therefore sample(v)). 

Since a PI controller is used, it is necessary to in-
troduce a discrete-time state variable for the integral 
part. The operator previous(..) is used to access the 
value of intE at the previous clock tick. Note that due 
to this use of previous(..),intE  becomes a discrete-time 
state and needs to have a start value specified in the 
declaration (at the first clock tick, previous(intE) re-
turns the start value of intE). 

The behavior of the system is shown in the figure 
below: x, xref and xd (upper diagram) and the actua-
tor signal uInner (lower diagram). 

2.3 Base- clocks and Sub-clocks 

A Modelica model will typically have several con-
trollers for different parts of the plant. Such control-
lers might not need synchronization and can have 
different base clocks. Equations belonging to differ-
ent base clocks can be implemented by asynchronous 
tasks of the used operating system.  
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It is also possible to introduce sub-clocks that tick a 
certain factor slower than the base clock. Such sub-
clocks are perfectly synchronized with the base 
clock, i.e. the definitions and uses of a variable are 
sorted in such a way that when sub-clocks are acti-
vated at the same clock tick, then the definition is 
evaluated before all the uses. 

Such sub-clocks can, for example, be used to save 
CPU resources. In some cases, an outer controller of 
a cascade control architecture does not need to be 
evaluated as often as the inner controller. 

When using several clocks, it is convenient and 
clear to declare them. Modelica 3.3 introduces a new 
base type, Clock, for this purpose: 
  Clock cControl = Clock(0.01); 
  Clock cOuter = subSample(cControl, 5); 
 
The subSample operator creates a clock which is a fac-
tor slower; in this case cOuter becomes 5 times slower 
than cControl. The subSample operator can also operate 
on a discrete-time variable and then picks the value 
at every factor clock tick of the clock of this varia-
ble.  

Such clock variables can then be used as argument 
to the sample operator: 
  xd = sample(x, cOuter); 
  vd = sample(v, cControl); 
 
The outer controller now calculates uOuter at the rate 
of cOuter. uOuter is the velocity reference, vref, for the 
inner controller which is compared to the sampled 
velocity measurement, vd. vd has clock cControl, i.e., 5 
times faster than uOuter. Trying to directly calculate 
uOuter-vd would give a clocking error since the se-
mantics is not clear. The user needs to state the intent 
by using a clock conversion operator. In this case 
uOuter needs to be converted to the faster clock by 
using the superSample operator: 
  vref = superSample(uOuter, 5); 

superSample replicates a factor 5 times  the value of 
the variable with the slower clock to have a clock a 
factor faster. 

The simulation results are shown below. Note 
that xd and uOuter have a slower sample rate than uIn-
ner. 

 

2.4 Interval of Clock 

It is possible to inquire the actual interval of a clock 
by using the interval() operator. One example of the 
need is when using difference approximations. As-
sume that no speed sensor is available and the speed 
needs to be estimated from changes of position. A 
first order approximation is shown below. It uses a 
faster sampling of the position, x: 

 
  Clock cFast = superSample(cControl, 2); 

 
  xdFast = sample(x, cFast); 
  vd = subSample((xdFast-previous(xdFast))/interval(), 2); 

 
After approximating the derivative at the higher rate, 
the result is sub-sampled with a factor of 2 to get the 
required rate of vd.  

2.5 Phase of Clock 

To better control the scheduling of calculations, it is 
possible to shift the phase of a clock. For example, 
the calculation of the outer controller code will be 
done before the inner controller code due to the data 
flow. This might give jittering in the actuator signal 
uInner caused by the slight delay due to the computa-
tion time. One way to avoid this is to schedule the 
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outer code to be executed later in the cycle and to 
accept the use of an old value of uOuter. This is ac-
complished in the following way: 
  Clock cOuter = subSample(shiftSample(cControl, 2, 3), 5); 

The shiftSample operator shifts the clock a part of the 
interval. In this case 2/3 of the interval of the clock 
cControl. 

By changing the clock cOuter in this way, the cal-
culation of uOuter will be delayed and will not be 
synchronized to vd. This needs to be compensated by 
using backSample which shifts the clock in the oppo-
site direction to shiftSample: 
  vref = backSample(superSample(uOuter, 5), 2, 3); 

It should be noted that this means that a start value 
must be given to uOuter which is used before the 
clock of uOuter has started ticking. 

The complete model including all aspects dis-
cussed above is given below: 

 
model ControlledMass 
  extends MassWithSpringDamper; 
  parameter Real KOuter = 10 "Gain of position PI controller"; 
  parameter Real KInner = 20 "Gain of speed P controller"; 
  parameter Real Ti = 10 "Integral time for pos. PI controller"; 
  parameter Real xref = 10 "Position reference"; 
 
  discrete Real xd; 
  discrete Real eOuter; 
  discrete Real intE(start=0); 
  discrete Real uOuter(start=0); 
 
  discrete Real xdFast; 
  discrete Real vd; 
  discrete Real vref; 
  discrete Real uInner(start=0); 
 
  Clock cControl = Clock(0.01); 
  Clock cOuter = subSample(shiftSample(cControl, 2, 3), 5); 
  Clock cFast = superSample(cControl, 2); 
equation  
  // position sensor 
  xd = sample(x, cOuter); 
 
  // outer PI controller for position 
  eOuter = xref-xd; 
  intE = previous(intE) + eOuter; 
  uOuter = KOuter*(eOuter + intE/Ti); 
 
  // speed estimation 
  xdFast = sample(x, cFast); 
  vd = subSample((xdFast-previous(xdFast))/interval(), 2); 
 
  // inner P controller for speed 
  vref = backSample(superSample(uOuter, 5), 2, 3); 
  uInner = KInner*(vref-vd); 
 
  // force actuator 
  f = hold(uInner); 
end ControlledMass; 
 

The simulation results are shown below. In particular 
it can be noted how uOuter is shifted 2/3 of the inter-
val on uInner. 

  
An interesting question is when a clock starts to tick. 
In principal there are two useful approaches: A clock 
starts ticking at time = 0 seconds or it starts ticking at 
the simulation start time (or when a device is 
switched on). The synchronous extensions of Model-
ica use the second approach because from the view 
of a hardware device, there is no absolute but only 
relative time.  

Operator y = shiftSample(u, c, r) defines a new clock 
that basically shifts the first activation of the clock of 
y in time c/r*interval(u)  later than the first activation of 
the clock of u. This definition gives not a precise 
time definition because interval(u) is of type Real. Fur-
thermore, it only holds in special cases, such as for 
periodic clocks with a fixed period. The precise time 
definition that holds for all clocks is achieved by 
constructing (conceptually) a clock cBase: 
     Clock cBase = subSample(superSample(u, r), c); 

and the clock of y = shiftSample(u, c, r) starts at the se-
cond clock tick of cBase and y is set to the most re-
cently available value of u. 

In a similar way the operator y = backSample(u, c, r) 
defines a new clock that basically shifts the first ac-
tivation of the clock of y in time c/r*interval(u) before 
the first activation of the clock of u. Similarly to 
shiftSample, the precise time definition is achieved by 
constructing (conceptually) a clock cBase : 
     Clock cBase = subSample(superSample(u, r), c); 
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and the clock of y = backSample(u, c, r) is shifted a time 
duration before the clock of u, such that this duration 
is identical to the duration between the first and se-
cond clock tick of cBase. 

The backSample(..) operator is more critical than the 
shiftSample(..) operator: The clock of v starts before the 
clock of u and therefore a start value for u is needed 
and before the first tick of the clock of u, the operator 
returns this start value. Additionally, there is the re-
striction that the clock of v cannot start before the 
simulation start time.  

On first view, one could have only provided one 
operator to shift the start of a clock forward or back-
ward in time. However, shifting backwards in time 
requires providing a start value, whereas this is not 
the case when shifting forward in time. Since these 
are therefore structurally different cases, it is better 
to use two different operators. 

2.6 Exact Periodic Clocks 

In the previous sections, periodic clocks are defined 
with the Clock(period) constructor, where period is of 
type Real and defines the sample period. The seman-
tics is that two clocks of this kind are not time syn-
chronized to each other. Example: 
  Clock c1 = Clock(0.1); 
  Clock c2 = superSample(c1,3); 
  Clock c3 = Clock(0.1/3); 

Clock c1 and c2 are precisely time synchronized to 
each other and at every third tick of c2, clock c1 ticks. 
However, clock c3 is not time synchronized to c1 or 
c2 and there is no guarantee that c3 ticks at every 
third tick of c1. The reason is that calculations with 
Real numbers are not exact and subject to small nu-
merical errors. 

Alternatively, a periodic clock can be defined 
with the Clock(c,r) operator, where c and r are of type 
Integer, and the fixed sample period is defined as the 
rational number c/r. The semantics is that all clocks 
defined in this way are precisely time synchronized 
to each other. Example: 
  Clock c1 = Clock(1,10);             // period = 1/10 
  Clock c2 = superSample(c1,3);  // period = 1/30 
  Clock c3 = Clock(1,30);             // period = 1/30 

Clocks c1, c2, and c3 are precisely time synchronized 
to each other and at every third tick of c2 and of c3, 
clock c1 ticks. 

An interesting question is which periods can be 
defined with exact periodic clocks? Basically, a peri-
od is defined as the quotient of two Modelica Integer 
numbers, which are usually 32 bit integers. There-
fore, periods in the range 10-9 ... 109 s can be directly 
defined. However, clocks can be sub- and super-
sampled, e.g,  

  superSample(Clock(1, 1000000000) , 1000000000); 

The resulting clock will have a period of 10-18 s. In 
other words, from a Modelica point of view, any pe-
riod that can be represented by a rational number 
with unlimited precision can be defined. In the Mod-
elica 3.3 specification it is stated that “it is required 
that accumulated sub- and super sampling factors in 
the range of 1 to 263 can be handled”. Therefore, eve-
ry tool should support internally at least 64 bit inte-
gers and therefore periods in the range 10-18 ... 1018 s. 

2.7 Clocked When Clause 

Although the new synchronous operators allow de-
fining clocked equations implicitly due to clock in-
ference, it is sometimes still useful to explicitly de-
fine that a group of equations is associated with the 
same clock. In order to not introduce yet another new 
keyword, the already existing when-clause is over-
loaded for this purpose. Example: 
  import Modelica.Utilities.Streams.print; 
equation  
  when Clock(0.1) then 
      x = A*previous(x) + B*u; 
      y = C*previous(x) + D*u; 
      print("Clock ticks at time = " +  String(sample(time))); 
  end when 

If a clock is used in a when-clause then all equations 
in the when-clause are associated with this clock. In 
such a case, the equations in the when-clause can be 
arbitrary equations (recall that for standard when-
clauses with a Boolean condition, all equations in the 
when-clause must have a variable reference on the 
left hand side of every equation, i.e., equations must 
be of the form “x = expr”). 

In the example above, all three equations in the 
when-clause belong to the same partition that is are 
associated to clock Clock(0.1). When-clauses might be 
used to clearly define that equations are associated 
with the same clock. Furthermore, there are excep-
tional cases as in the example above, where it would 
be not possible to associate the print(..) statement to 
Clock(0.1) without a when-clause because no variable 
of the clocked partition is used in the print statement. 
If the clock of the when-clause is defined somewhere 
else and shall be deduced by clock inference, then 
the clock Clock() needs to be used in the when-clause: 
  when Clock() then        // clock is inferred 
      x = A*previous(x) + B*u; 
      y = C*previous(x) + D*u; 
      print("Clock ticks at time = " +  String(sample(time))); 
  end when 

In Modelica 3.3, clocked when-clauses are restricted: 
The condition must be a clock (and not, say a Boole-
an expression of clocks such as “c1 or c2”), an else-
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when part is not allowed, and the clocked when 
clause can only appear in an equation section.  

2.8 Varying Interval Clocks 

It is also possible to define clocks with a varying 
interval between the sampling points. As an exam-
ple, consider  
model VaryingClock 
  Integer nextInterval(start=1); 
  Clock c = Clock(nextInterval, 100); 
 
  Real  v(start=0.2); 
  Real  d = interval(v); 
  Real  d0 = previous(nextInterval)/100.0; 
equation  
  when c then 
    nextInterval = previous(nextInterval) + 1; 
    v = previous(v) + 1; 
  end when; 
end VaryingClock; 

 
It defines a Clock c with varying interval, nextInterval. 
A definition of the form 
     Clock c = Clock(nextInterval, 100) 
states that clock c ticks at the simulation start and 
then every nextInterval/100 seconds, and at every clock 
tick, nextInterval can be newly computed. Since at the 
first clock tick, previous(nextInterval) is equal to the 
start value of nextInterval (= 1), the value of nextInterval 
at the first clock tick is 1+1 = 2, and therefore the 
second clock tick is at 2/100 seconds. The further 
ticks are at 5/100, 9/100 etc. The behavior of the var-
iable v is shown in the following plot: 

 
The variables d = interval(v) and  
 d0 = previous(nextInterval)/100.0 are equal. 

Let us sub-sample v by adding  to the model: 
 
  Real vs3 = subSample(v, 3) ; 
  Real ds3 = interval(vs3); 
 

 
 
As the plot shows, vs3 samples each third point of v. 
We can also super-sample: 
 
  Real vS5 = superSample(v, 5) ; 
  Real dS5 = interval(vS5); 
 

 
 
The 5 super-sampling points are evenly distributed in 
time within the intervals of clock c as shown by the 
plot of dS5. Let us now sub-sample dS5: 
 
  Real vS5s3 = subSample(vS5, 3) ; 
  Real ds3S5 = interval(vs3S5); 
 

 
 
The result is that vS5s3 is every third sample of vS5 
resulting in a more irregular sampling interval. The 
equation vS5s3 = subSample(vS5, 3)  can be expanded as 
vS5s3 = subSample(superSample(v, 5), 3).  

What is the result if we do it in the reverse order, 
vs3S5 = superSample(subSample(v, 3), 5)? For the clock c, 
the time to the next tick is known at the current tick. 
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However, this is not the case for the clock of subSam-
ple(v, 3). The interval to its next tick is the sum of 3 
future intervals of c and only the first term is known. 
The definition of super-sampling does not require the 
intervals of super-sampling to be equidistant in time. 
The definition is instead based on counting ticks. It 
means that vs3S5 =  vS5s3.  

In Modelica, a non-periodic clock can only be in-
troduced by using an explicit clock constructor. The 
factors of sub-sampling or super-sampling must be 
parameter expressions, which mean that neither sub-
sampling nor super-sampling can construct a clock 
with varying interval from a periodic clock. It is also 
required that there must be only one clock construc-
tor, c, in the same base-clock partition if c is a non-
periodic clock. All this means that we can construct a 
new clock c0 that is a super-sampled clock of c, such 
that all other clocks can be modeled as pure sub-
sampling clocks of c0. As we have described, there 
are no issues in making a faster clock c0 by super-
sampling c. The sub-sampling of c0 to implement all 
the sub-clocks is then just a matter of counting ticks 
and picking the nth samples. 

2.9 Boolean Clocks 

It is also possible to define clocks that tick when a 
Boolean expression changes from false to true. For 
example assume that a clock shall tick whenever the 
shaft of a drive train passes 180o. This can be defined 
as (Otter, et.al. 2012): 
           w = der(angle); 
 J*der(w) = tau; 
 when Clock(angle >= hold(offset)+Modelica.Constants.pi) then 
    offset = sample(angle); 
 end when; 

At the simulation start the discrete variable offset has 
a start value of zero. Therefore, the first clock tick 
appears when angle becomes larger as 180o. Then, 
offset is set to the actual angle, and the next clock tick 
appears at another full rotation of the shaft. Note, 
that the Boolean expression is continuous-time, and 
therefore the clocked variable offset cannot be direct-
ly used, but must be casted from a clocked to a con-
tinuous-time variable with operator hold. A typical 
simulation result is shown in the next figure: 

 

Operators subSample, superSample, shiftSample and back-
Sample can also be applied on Boolean clocks. How-
ever, there are restrictions. For example, superSample(..) 
cannot introduce new ticks because the next clock 
tick is not known in advance. Example: 
  Clock u =  Clock(sine(time) > 0); 
  Clock y1 = subSample(u,4); 
  Clock y2 = superSample(y1,2);     // fine y2 = subSample(u,2) 
  Clock y3 = superSample(u, 2);      // error 

2.10 Discretized continuous time 

A partition (i.e., a set of equations) that is marked by 
sample, hold, subSample, superSample etc. operators is 
called a “clocked partitions”. There are two different 
kinds of clocked partitions: 

Clocked discrete-time partition 
This is the type of partition discussed so far, consist-
ing of algebraic equations, potentially using opera-
tors previous(..) and interval(..) in the equations. 

Clocked discretized continuous-time partition 
This is a partition where the operator der(..) is used 
(and then previous(..) and interval(..) must not be pre-
sent). In such a case a set of differential and algebra-
ic equations is marked to be a clocked partition. The 
semantics is that at clock ticks these equations are 
solved with a specified integration method from the 
previous to the next clock tick. The integrator for 
such a partition is propagated (inferred) similarly as 
a clock and therefore it suffices to define it at a few 
places. 
 
This is a powerful feature since in many cases it is 
no longer necessary to manually implement discrete-
time components but it suffices to just build-up a 
controller with continuous-time components and 
then sample the input signals and hold the output 
signals. 

In the following example a continuous-time PI 
controller that gets a reference and a measurement 
signal as input is automatically transformed to a 
clocked partition: 
model ClockedPI 
  parameter Real k; 
  parameter Real T; 
  input Real y_ref; 
  input Real y_mes; 
  output Real u(start=0.0); 
  discrete Real e; 
  discrete Real x; 
  discrete Real ud; 
  Clock c = Clock(Clock(0.1), solverMethod="ImplicitEuler"); 
 
equation  
  // Sampling the inputs 
  e = sample(y_ref,c) - sample(y_mes); 
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  // PI controller 
  der(x) = e/T; 
  ud = k*(x + e); 
 
  // Holding the output 
  u = hold(ud); 
end ClockedPI; 

With the declaration Clock(c, solverMethod), the solver-
Method (defined as String) is associated to clock c and 
the partitions to which this clock is associated are 
solved with the specified solver method (= integra-
tion method). As already mentioned, this feature can 
be used to discretize continuous-time blocks. Also, 
nonlinear plant models can be inverted and the in-
verse model can be discretized and used, say, as 
feedforward controller part in a sampled data con-
troller, see (Otter, et. al. 2012). Furthermore, this 
feature can be utilized for multi-rate real-time simu-
lations where a model is partitioned in different parts 
and these parts are solved with different integration 
methods and step sizes. 

3 Synchronous Operators 
All newly introduced operators of the synchronous 
extension to Modelica have been sketched so far. In 
this section, a short overview of these operators is 
given: 
 
Clock Constructors 
Clock(): Returns a clock that is inferred  
Clock(i,r): Returns a variable interval clock where the 

next interval at the current clock tick is defined 
by the rational number i/r. If i is parameteric, 
i.e., a literal, a constant, a parameter or an ex-
pression of those kinds, the clock is periodic. 

Clock(ri): Returns a variable interval clock where the 
next interval at the current clock tick is defined 
by the Real number ri. If  ri is parametric, the 
clock is periodic. 

Clock(cond, ri0): Returns a Boolean clock that ticks 
whenever the condition cond changes from false 
to true. The optional  ri0 argument is the value 
returned by operator interval() at the first tick of 
the clock. 

Clock(c,m): Returns clock c and associates the solver 
method m to the returned clock . 

 
Base-clock conversion operators 
sample(u,c): Returns continuous-time variable u as 

clocked variable that has the optional argument 
c as associated clock. 

hold(u): Returns the clocked variable u as piecewise 
constant continuous-time signal. Before the 

first tick of the clock of u, the start value of u is 
returned. 

 
Sub-clock conversion operators 
subSample(u,factor): Sub-samples the signal or clock u 

by the integer factor. If factor is not present, it is 
inferred. 

superSample(u,factor): Super-samples the signal or clock 
u by the integer factor. If factor is not present, it is 
inferred. 

shiftSample(u,c,r): Shifts the clock of a signal or clock u 
forward in time. 

backSample(u,c,r): Shifts the clock of a signal or clock u 
backward in time. Before the first tick of the 
clock of u, the start value of u is returned. 

 
Other operators 
previous(u): At the first tick of the clock of u, the start 

value of u is returned. At subsequent clock 
ticks, the value of u from the previous clock ac-
tivation is returned. 

interval(u): Returns the interval between the previous 
and the present tick of the clock to which signal 
u is associated. The interval is returned as a Re-
al number. 

4 Base-clock and Sub-clock  
Partitioning 

Consider the example SpeedControl in section 2.1. The 
variables and equations of MassWithSpringDamper form 
a well-defined continuous-time model together with 
the equation f = hold(u) from SpeedControl if we view u 
as a known input. Similarly the variables and equa-
tions added in SpeedControl when extending from 
MassWithSpringDamper form a well-defined discrete 
system if we disregard the equation f = hold(u), which 
already is used in the continuous time system and if 
we view v, referred in the equation  
vd = sample(v, Clock(0.01)) as a known input. We have 
now decomposed the system in a continuous-time 
partition and in a discrete-time partition. 

For the general case, we observe that the sample 
and hold operators serve an important role as identi-
fying the interfaces between the two kinds of parti-
tions. The first argument of sample identifies inputs to 
discrete-time partitions that must be provided by 
continuous time partitions. Similarly the first argu-
ment of hold identifies inputs to continuous-time par-
tions that must be provided by discrete-time parti-
tions. If the first arguments are expressions, auxiliary 
variables are introduced.  
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The idea of the base-clock decomposition is to 
decompose the variables and the equations into sets 
where the equations only refer to variables of its own 
set if we neglect references of the first argument of 
sample and hold. There are simple algorithms for do-
ing this, for details, see (Modelica Association 2012). 

It must then be possible to classify a partition as 
either continuous-time or discrete-time. Use of previ-
ous, subSample, superSample, shiftSample or backSample or 
appearances of clocks or clock constructors requires 
the partition to be discrete-time. The global variable 
time can only be referenced in a continuous time par-
tition. 

The derivative operator is clearly a continuous-
time operator. However, it may appear in a discrete-
time partition, because there are features to have 
them automatically discretized by defining appropri-
ate solver clocks, see section 2.10. 

The discrete time partitions are further divided in-
to sub-clock partitions by the same procedure while 
treating the first argument of the operators subSample, 
superSample, shiftSample or backSample as known inputs. 

The result of sub-clock partitioning for the model 
ControlledMass in section 2.5 is: 

 
Continuous-time partition: 
  der(x) = v; 
  m*der(v) = f - k*x - d*v; 
  f = hold(uInner); 
 
Discrete-time sub-partition 1: 
  xd = sample(x, cOuter); 
  eOuter = xref-xd; 
  intE = previous(intE) + eOuter; 
  uOuter = KOuter*(eOuter + intE/Ti); 
 
Discrete-time sub-partition 2: 
  xdFast = sample(x, cFast); 
  aux1 = (xdFast-previous(xdFast))/interval(); 
 
Discrete-time sub-partition 3: 
  vd = subSample(aux1, 2); 
  vref = backSample(aux2, 2, 3); 
  uInner = KInner*(vref-vd); 
 
Discrete-time sub-partition 4: 
  aux2 = superSample(uOuter, 5); 

5 Rationale for Clocked Semantics 
This section describes why the synchronous lan-
guage elements have been introduced in Modelica 
3.3, by analyzing the issues of Modelica 3.2 regard-
ing control systems implementation.  

Modelica 3.2 has both continuous-time and dis-
crete-time equations. Discrete-time equations are 
enclosed in when-clauses and are only executed at 
certain events, i.e. these equations are only valid in-

stantaneously, not always. Furthermore, the discrete-
time equations are not general equations, since the 
left hand-side of an equation in a when-clause must 
be a variable reference. It is for example not allowed 
to write in a when-clause: “A*x = b”. The synchro-
nous features of Modelica 3.3 remove this restriction 
and general equations are allowed in clocked parti-
tions and in particular also in clocked when-clauses. 

In order to handle such instantaneous equations, a 
special semantics regarding the definition of varia-
bles was introduced. A variable that is assigned by 
an instantaneous equation keeps its value until the 
next event when it is assigned again (= automatic 
“hold” semantics). This implies that the value of 
such a discrete-time variable could be read at any 
time by another instantaneous equation or continu-
ous-time equation. 

Such semantics can, however, be error prone 
when different discrete-time equations are not cor-
rectly synchronized (see example below). The syn-
chronous features of Modelica 3.3 remove this prob-
lem. 

Periodically sampled control systems can be de-
fined with standard Modelica 3.2 when-clauses and 
the sample operator. For example: 

 
  when sample(0,3) then 
     xd = A*pre(xd) + B*y; 
       u = C*pre(xd) + D*y; 
  end when; 

This approach to define periodically sampled data 
systems has the following drawbacks that are not 
present with the solution using clocks and clocked 
equations described earlier in this paper: 

Sampling errors cannot be detected: 
All current Modelica libraries modeling sampled 
data systems, such as Modelica.Blocks.Discrete, or 
Modelica_LinearSystems2.Controller (Baur, et.al. 
2009) provide a set of blocks where at every block 
instance the sample period has to be defined in some 
way. For example, the following figure shows part of 
a control system modeled with the Modeli-
ca_LinearSystems2 library: 
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At every discrete block (here: sampler1, sampler2, 
PI1) a sampleFactor has to be given defining that the 
block equations are sampled at a multiple of a base 
sampling rate (which is propagated via inner/outer to 
all instances). This factor is shown in the icons (here: 
“2”). If the modeler accidentally gives a different 
number at one of the blocks (e.g., at “sampler1”), 
then this is still a correct Modelica model and a 
translator has to accept it, although this controller is 
erroneous.  

Furthermore note that component “feedback” is 
still a continuous-time model without a when-clause. 
If everything is correctly modeled, the “effect” of the 
above model is that of a sampled data system with 
one periodic sampling rate. However, it is easy to 
make a mistake (e.g. forgetting “sampler1”, or using 
a sampleFactor of 3 at one component), and then the 
resulting model does no longer describe the desired 
controller, but is still a valid Modelica model. 

Worse, there is no easy way for a tool to figure 
out which equations belong to one partition that 
should be downloaded to a hardware device (e.g., 
describes the above figure one controller with one 
sample rate, or three different controllers that are 
connected by the continuous-time block “feed-
back”?). Due to the automatic sample and hold se-
mantics of when-clauses in Modelica, it is not possi-
ble to fix this with Modelica 3.2 language elements. 

With the synchronous language elements parti-
tions are identified that belong to the same clock. 
The sampling rate has to be defined only at one 
place. Sampling errors can be easily detected, since 
then the requirement is violated somewhere that all 
variables in a clocked equation must belong to the 
same clock. 

Unnecessary initial values have to be defined: 
Due to the automatic sample and hold semantics, all 
variables assigned in a when-clause must have an 
initial value because they might be used before they 
are assigned a value the first time. Example: 
  when b then 
    y1 = 2*x; 
  end when; 
  y2 = 2*y1; 

Since the continuous-time equation y2 = 2*y1 is valid 
all the time, including during initialization, a value 
for y1 is needed all the time. The when-clause in the 
example is not active during initialization, and there-
fore an initial value for y1 has to be provided. In gen-
eral, it is too difficult and probably impossible that a 
tool can figure out whether an initial value for a dis-
crete-time variable in Modelica 3.2 is needed or not. 
The only safe way is therefore to provide initial val-
ues for all discrete-time variables, although in reali-

ty, only a small sub-set of the discrete-time variables 
needs an initial value.^ 

With the synchronous language elements this is 
different: Start values are required for the first argu-
ments of some operators (previous, hold, backSample). 
For all other variables, it is guaranteed that a start 
value is not needed for initialization (it might be 
needed as guess value for an iteration variable of a 
nonlinear equation system). 

Inverse models not supported in discrete systems: 
It is not possible to use a continuous-time model in 
when clauses. However, this feature is highly desira-
ble. For example, some advanced controllers use an 
inverse model of a plant in a controller, see (Looye 
et. al. 2005). This powerful feature of Modelica to 
use a nonlinear plant model in a controller is only 
available for continuous-time systems, but not for 
discrete-time systems. With Modelica 3.2, modelers 
therefore have to export an inverse plant model and, 
e.g. Dymola provides the export option to include an 
integration method and treat the exported component 
from the outside as discrete-time system. It is then 
possible to import this discrete-time component in 
another environment, but not in a Modelica model. 
With clocked equations of Modelica 3.3, clocked 
controllers with continuous-time models can be di-
rectly defined in Modelica, see section 2.10. 

Efficieny degradation at event points: 
Simulating a continuous-time plant and a discrete-
time controller in Modelica 3.2 together results in an 
event iteration at a sample instant. A when-clause 
with a sample(..) condition is evaluated exactly once at 
such an event instant. However, the continuous-time 
model to which the sampled data controller is con-
nected will be evaluated typically three times at a 
sample instant: Once, when the sample instant is 
reached, once to evaluate the continuous equations at 
the sample instant, and once when an event iteration 
occurs since a discrete variable v is changed and 
pre(v) appears in the equations. Since a sampled sys-
tem is only evaluated once at a sample instant, i.e., at 
a particular time instant, event iteration should not be 
necessary since the discrete-time variables cannot be 
changed by the event iteration. However, it seems to 
be difficult to figure this out automatically for a 
Modelica 3.2 model and therefore Modelica tools, 
including Dymola, have usually at least one unneces-
sary evaluation of the continuous-time equations at a 
sample instant. 

With clocked equations described in the next sec-
tions a tool does not need to trigger an event itera-
tion, because it is guaranteed that all equations be-
longing to a periodic or non-periodic interval clock 
are evaluated exactly once at an event instant, and 
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variables computed in such a partition cannot be 
used outside of the partition (only with a cast opera-
tor the most recent available value of a clocked vari-
able v can be inquired outside of the clocked parti-
tion, but not previous(v)), and therefore event iteration 
cannot give a different result. Therefore, it is easy for 
a tool to avoid the unnecessary re-evaluation of the 
continuous-time equations at an event triggered by a 
clock. 

6 Conclusions 
We have introduced synchronous features in Modeli-
ca. For a discrete-time variable, its clock is associat-
ed with the variable type. Special operators have to 
be used to convert between clocks. This gives an 
additional safety since correct synchronization is 
guaranteed by the compiler. It would have been very 
hard to correctly implement the last version of the 
example control system without such help from the 
compiler.  
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Abstract 
Based on the synchronous language elements intro-
duced in Modelica 3.3, a library is described to uti-
lize the new features in a convenient way for graph-
ical model definition of sampled data systems. The 
library has elements to define periodic clocks and 
event clocks that trigger elements to sample, sub-
sample or super-sample partitions synchronously. 
Optionally, quantization effects, computational delay 
or noise can be simulated. Continuous-time equa-
tions can be automatically discretized and utilized in 
a sampled data system. This is demonstrated by us-
ing the inverse of a nonlinear plant model in the feed 
forward path of a discrete controller of a mixing unit. 

Keywords: Synchronous models, sampled data sys-
tems, periodic systems, clock, inverse systems 

1 Introduction 
In the Modelica language version 3.3 (Modelica As-
sociation 2012) synchronous language features have 
been introduced to precisely define and synchronize 
sampled data systems with different sampling rates. 
This paper is a companion paper to (Elmqvist et.al. 
2012) which should be first inspected to understand 
why new language elements have been introduced, 
as well as the syntax and semantics of them.  

The new language elements follow the synchro-
nous approach (Benveniste et. al. 2002). They are 
based on the clock calculus and inference system 
proposed by (Colaco and Pouzet 2003) and imple-
mented in Lucid Synchrone version 2 and 3 (Pouzet 
2006). However, the Modelica approach also uses 
multi-rate periodic clocks based on rational arithme-
tic introduced by (Forget et. al. 2008), as an exten-
sion of the Lucid Synchrone semantics. Additionally, 
the built-in operators of Modelica 3.3 also support 
non-periodic and event based clocks1.  

In order to utilize these elements in an actual 
model in a convenient way, a free library “Modeli-
ca_Synchronous” has been developed using a proto-
type of Dymola (Dassault Systèmes 2012) for the 

                                                      
1 A non-periodic clock is defined by a varying interval and 
an event clock by a Boolean condition. 

new language elements. This library is in a prototype 
status. After an evaluation period it is planned to in-
clude this library into the Modelica Standard Library. 
Note, all Modelica libraries designed so far for sam-
pled systems, such as Modelica.Blocks.Discrete, 
Modelica_LinearSystems2.Controller (Baur et. al. 
2009) and Modelica_EmbeddedSystems (Elmqvist 
et.al. 2009) are becoming obsolete and should be 
replaced by this new library. 

In the figure to the right a 
screenshot of the library is 
shown with the first sub li-
brary level. The most im-
portant sub libraries are: 

 Clocks:  
Library of blocks that 
generate clocks. 

 SamplerAndHolds: 
Library of blocks that 
sample, sub-sample, su-
per-sample and hold signals. 

 NonPeriodic: 
Library of blocks that operate on periodically 
and non-periodically clocked signals (the blocks 
depend explicitly on the actual sample interval). 

 Periodic: 
Library of blocks that are designed to operate 
only on periodically clocked signals, mainly de-
scribed by z transforms (the blocks do not ex-
plicitly depend on the sample period, but implic-
itely, since the block parameters need to be de-
signed for one specific sample period). 

In the following subsections, the most important 
blocks are discussed and their usage demonstrated in 
examples.  

2 Clocks 
A “Clock” is a new base data type introduced in 
Modelica 3.3 (additionally to Real, Integer, Boolean, 
String) that defines when a particular partition of 
equations of a model is active. Every variable and 
every equation is either continuous-time or is associ-
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ated exactly to one clock (Elmqvist et.al. 2012). This 
feature is visualized in the figure below where c(ti) is 
a clock that is active at particular time instants and 
r(ti) is a variable that is associated to this clock. A 
clocked variable has only a value when the corre-
sponding clock is active: 

 
Similarly to RealInput, RealOutput etc., clock input 
and output connectors are defined in sub library “In-
terfaces” in order to propagate clocks via connec-
tions: 

Icon Modelica Definition 

 connector ClockInput  = input Clock; 

 
connector ClockOutput = output Clock; 

Sub library “Clocks”, see 
screenshot to the right, de-
fines the following compo-
nents that generate clocks, 
and provide the respective 
clock via its ClockOutput 
connector to other components: 

 PeriodicRealClock defines a periodic clock 
where the period is defined with a Real number 
(e.g. “period = 0.1” for 0.1 s). If clocks are relat-
ed relatively to each other (see section 4), then 
only one of them can be a PeriodicRealClock. 

 PeriodicExactClock defines a periodic clock 
with a resolution defined by enumeration 
“Types.Resolution” (with values “y, d, h, min, s, 
ms, us, ns”) and an integer multiple “factor” of 
this resolution. For example “factor = 3” and 
“resolution = Types.Resolution.ms” defines a pe-
riodic clock with sample period 3 ms. 

 EventClock defines a clock that is active when 
the Boolean input to this component changes 
from false to true. 

The implementation of these clocks is a direct map-
ping to the new clock generators. Example: 

block PeriodicRealClock  
   parameter Modelica.SIunits.Time period; 
   extends Modelica_Synchronous.Interfaces.PartialClock; 

equation  
   y = Clock(period); 
end PeriodicRealClock; 
 
partial block PartialClock  
   parameter Boolean useSolver = true   
         annotation(Dialog(tab="Advanced")); 
   parameter Modelica_Synchronous.Types.SolverMethod 
         solverMethod="External"  
         annotation(Dialog(tab="Advanced",enable=useSolver)); 
   Modelica_Synchronous.Interfaces.ClockOutput y; 
end PartialClock; 

All these clocks have an “Advanced” menu in which 
an optional integration method (such as “explicit Eu-
ler method”) can be associated to the clock, see next 
figure. The effect of such a definition will be ex-
plained below. 

 

3 Sample and Hold 

Within the sub library 
“SamplerAndHolds” 
various blocks are de-
fined to sample, sub-
sample, super-sample 
and hold signals. Since 
Modelica does not have 
generic types, for every 
base type a separate 
sub-library is present, 
such as Sam-
plerAndHolds.RealSig
nals, see screenshot to 
the right. All these 
components define 
boundaries between 
different partitions, 
especially:  

 Sample requires that the input signal is continu-
ous-time. The block samples the input and pro-
vides it as clocked output signal. The equations 
that have a dependency to that output, are col-
lected/grouped into the same clocked partition. 

 Hold requires that the input signal is clocked and 
provides it as continuous-time signal to the out-
put with a zero order hold. Before the first tick of 
the clock that is associated to the input, the out-
put is set to parameter y_start (this value is al-
so displayed in the icon, see Figure 1). 

time t 
t0 t1 t3

r(ti) 

t2

c(ti) 
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 SampleWithADeffects, HoldWithDAeffects 
are similar to Sample and Hold, but provide ad-
ditionally the options to simulate particular ef-
fects, such as noise, signal limitations and quan-
tization effects, as well as computational delays. 

The Sample and Hold blocks have again a direct 
mapping to the corresponding new language ele-
ments. For example, the RealSignals.Sample block is 
implemented as: 

block Sample  
  parameter Boolean useClock=false; 
  Modelica.Blocks.Interfaces.RealInput    u; 
  Modelica.Blocks.Interfaces.RealOutput y; 
  Modelica_Synchronous.Interfaces.ClockInput  
                                                                        clock if useClock; 
protected  
  Modelica_Synchronous.Interfaces.ClockInput c_internal; 
equation  
  connect(clock, c_internal); 
  if useClock then 
    y = sample(u,c_internal); 
  else 
    y = sample(u); 
  end if; 
end Sample; 

With the default option useClock=false, just the 
input u is sampled, y = sample(u), and the clock 
of the output y is deduced by clock inference due to 
the clock definition somewhere else (Elmqvist et.al. 
2012).  

If useClock=true, the input clock connector 
clock is enabled and the clock propagated to this con-
nector is used as clock for the output: 
y=sample(u,clock), see block sample2 in Fig-
ure 1. 

Figure 1 demonstrates all blocks that have been 
discussed so far within an illustrative example mod-
el. This model consists of a load inertia that is driven 
by a torque. The goal is to control the speed of the 

inertia. For this, a feedback controller is provided in 
form of a periodic sampled data system described 
with clocked equations. The reference part is again a 
continuous-time model and provides the desired 
speed of the inertia. 

The boundaries of the feedback controller are de-
fined with components sample1, sample2 and 
hold1 that are instances of blocks Sample and 
Hold respectively. All equations inside this partition 
(“feedback controller”) need to be associated to a 
clock. For this, the Sample block has an optional 
ClockInput connector that can be enabled. In the 
figure, a periodic clock with period 0.1 s is connect-
ed to sample2 and therefore the “feedback control-
ler” partition is active every 0.1 s. Note, it would 
also be fine to connect the clock additionally to sam-
ple1, since associating the same clock definition 
several times to a partition is allowed.  

The PI component is a clocked block from Mod-
elica_Synchronous.NonPeriodic. It is implemented 
as (note, previous(x) defines that x is clocked and 
that the value from the previous clock tick is used; 
interval(u) is the time duration from the previous 
to the actual clock tick as Real number): 

block PI  "From Modelica_Synchronous.NonPeriodic" 
  extends Modelica_Synchronous.Interfaces.PartialClockedSISO; 
  parameter Real k "Gain of continuous PI controller"; 
  parameter Real T "Time constant of continuous PI controller"; 
  output Real x(start=0) "Discrete PI state"; 
protected  
  Real Ts = interval(u) "Sample period"; 
equation  
  x = previous(x) + u*Ts/T; 
  y = k*(x + u); 
end PI; 

This PI controller is parameterized with the coeffi-
cients of a continuous-time PI controller and with the 
actual sample period the coefficients of the discre-
tized (clocked) PI controller are computed. Changing 

Figure 1: Simple drive train with clocked PI controller, samplers, hold and periodic clock. 
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the sample period will therefore result in a similar 
controller behavior. 

It would also be possible to utilize the PI control-
ler from the Modelica_Synchronous.Periodic sub-
library. In this sub-library it is assumed that the 
blocks are utilized only with periodic clocks and the 
block parameters have been designed for a particular 
sample period. The corresponding PI controller is 
implemented as: 

block PI "From Modelica_Synchronous.Periodic" 
  extends  Modelica_Synchronous.Interfaces. 
                                               PartialPeriodicallyClockedSISO; 
  parameter Real kd "Gain of discrete PI controller"; 
  parameter Real Td "Time constant of discrete PI controller"; 
  output Real x(start=0) "Discrete PI state"; 
equation  
  x = previous(x) + u/Td; 
  y = kd*(x + u); 
end PI; 

The PI coefficients kd and Td are designed for a par-
ticular sample period. Changing this sample period, 
without changing kd and Td, will significantly 
change the controller behavior. 

It would also be possible to use a continuous-time 
block, in particular the continuous-time PI controller 
from Modelica.Blocks.Continuous.PI that is basical-
ly implemented as: 

block PI "From Modelica.Blocks.Continuous " 
  parameter Real k=1 "Gain"; 
  parameter Modelica.SIunits.Time T "Time Constant"; 
  extends Modelica.Blocks.Interfaces.SISO; 
  output Real x "State of block"; 
equation  
  der(x) = u/T; 
  y = k*(x + u); 
end PI; 

In this case the PI controller is described by a differ-
ential equation. Since the input signal to this block is 
a clocked signal when present in the block diagram 
of Figure 1, the differential equation is automatically 
discretized by integrating from the previous to the 
actual clock tick with the integration method defined 
in component “periodicClock”. In Figure 1, solver 
“External” is defined (see icon of the clock). This 
means that the solver defined in the simulation envi-
ronment is used to integrate the continuous-time 
block: This might be a variable step-solver with error 
control where the step size is selected such that it hits 
the clock tick always exactly. 

On the other hand, if solverMethod = ”Implic-
itEuler” is selected, then the differential equation of 
the PI component will be discretized with a fixed 
step implicit Euler method. This approach is also 
called “inline integration”. For details, see (Elmqvist 
et.al. 1995). In this case exactly the same result will 
be obtained as with the previous two PI components. 

This approach is very powerful, since every linear or 
non-linear continuous-time block can be utilized in 
the clocked partition. It is therefore in many cases is 
is no longer necessary to derive discretized blocks 
manually as, e.g., done in the Modelica_Linear-
Systems2.Controller library (Baur et.al. 2009). 

Typical simulation results are shown in the next 
figure. Note, here it is clearly visualized by Dymola, 
that the input to hold1 (= hold1.u) is a clocked 
signal. 

 

4 SubSample and SuperSample 
With blocks “SubSample” and “SuperSample” it can 
be defined that a partition is sub- or super-sampled 
with respect to another clocked partition: 

 

At every “factor” ticks of the 
input (here: factor = 2), the 
output ticks and is set to the 
input. 
At every “factor” ticks of the 
output (here: factor = 3), the 
input ticks. The output is set to 
the last available value of the 
input. 

The factor of a sub- or super-sampled partition can 
either be explicitly defined with the block, or it can 
be inferred, since either the factor is defined at an-
other element or exact periods are associated with 
the partitions (see below). In the next figure an ex-
ample is shown, where the signal sample.y is sub-
sampled by a factor of 3 (= subSample.y) and su-
per-sampled by a factor of 2 (= superSample.y). 
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There are now many possible ways to define the 
clocks of time-synchronized partitions. In Figures 2-
Figure 4 on the next page some useful variants are 
demonstrated at hand of a cascade control system for 
a very simple drive system. The goal is that the load 
inertia travels according to the desired reference an-
gle. This angle is defined with block KinematicPTP2 
from the Modelica Standard Library (the reference 
signal is constructed so that it moves from a start to 
an end angle as fast as possible for given maximal 
speed and maximum acceleration). The “slow” con-
troller part is a simple P-controller to control the po-
sition, whereas the “fast” controller part is a PI con-
troller to control the speed. 

In Figure 2 one real periodic clock with a sample 
period of 0.02 s is defined. This clock is then sub-
sampled with a factor of 5 which defines a second 
clock with a sample period of 0.1 s. The “slow” and 
the “fast” controller partitions are separated by the 
super1 block (an instance of SuperSample) and 
therefore it is defined that the output of super1 is 
faster than the input of super1 (the input clock is an 
integer multiple of the output clock). The two de-
fined clocks are associated with sample3 and su-
per1 and therefore the clocks are associated with the 
partitions ”slow controller” and “fast controller”. 
Note, the factor at super1 is inferred to be 5. 

In Figure 3 only one real clock with a sample pe-
riod of 0.02 s is defined. This clock is associated to 
the “fast controller” partition via component su-
per1. Now, in component super1 a factor of “5” is 
defined. This means that the fast partition is 5-times 
faster as the slow partition, and therefore the clock of 
the “slow controller” partition is implicitly defined. 

In Figure 4 two “exact” clocks are defined: One 
clock with a period of 20 ms and one clock with a 
period of 100 ms. These “absolute” clocks are asso-
ciated with the “slow” and “fast” partition respec-
tively. Since component super1 defines that the 
“fast” partition must be an integer factor faster as the 
“slow” partition, an implicit constraint is present, 
that the clocks of the two partitions must have peri-
ods that are an integer multiple of each other. There-
fore, defining 20 ms and 100 ms is fine. However, 

defining periods of 30 ms and 100 ms would result in 
an error, since this constraint is violated. 

The preferred modeling style is a matter of taste. 
Note, the relative definitions of Figure 2 and Figure 
3 have the advantage that parameter factor can still 
be changed after the model is translated (provided a 
tool supports this feature). Instead, in the definition 
of Figure 4 it would be typically no longer possible 
to change the (absolute) periods after translation, 
since there is a constraint between the two defini-
tions (one period must be an integer multiple of the 
other period). 

5 Nonlinear Inverse Models 
Since a long time, Modelica is used to model ad-
vanced nonlinear control systems. Especially, Mod-
elica allows a semi-automatic treatment of inverse 
nonlinear plant models. In the fundamental article 
(Looye et.al. 2005) this approach is described and 
several controller structures are presented to utilize 
an inverse plant model in the controller. This ap-
proach is attractive because it results in a systematic 
procedure to design a controller for the whole operat-
ing range of a plant. This is in contrast to standard 
controller design techniques that usually design a 
linear controller for a plant model that is linearized at 
a specific operating point. Therefore the operating 
range of such controllers is inherently limited. Up to 
Modelica 3.2, controllers with inverse plant models 
can only be defined as continuous-time systems. Via 
the export mechanism of Dymola they could be ex-
ported with solvers embedded in the code and then 
used as sampled data system in other environments. 
However, it is not possible to re-import the sampled 
data system to Modelica. 

The synchronous features of Modelica 3.3 togeth-
er with the Modelica_Synchronous library offer now 
completely new possibilities, so that the inverse 
model can be designed and evaluated as sampled 
data system within Modelica and a Modelica simula-
tion environment such as Dymola. The approach is 
sketched at hand of a simple nonlinear plant model 
of a mixing unit (Föllinger 1998, page 279) and the 
design of a nonlinear feed-forward controller accord-
ing to (Looye et.al. 2005): 

A substance A is flowing continuously into a 
mixing reactor. Due to a catalyst, the substance re-
acts and splits into several base substances that are 
continuously removed. The reaction generates ener-
gy and therefore the reactor is cooled with a cooling 
medium. The cooling temperature Tc(t) in [K] is the 
primary actuation signal. Substance A is described 
by its concentration c(t) in [mol/l] and its tempera-
ture T(t) in [K] according to the following 
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Simple Drive with cascade controller for position and speed control 

 
Figure 2: Two clocks are defined with sub-sampling and partitions with super-sampling. 

 
Figure 3: One clock is defined and the second clock is inferred by the factor of the super-sample block. 

 
Figure 4: Partitions are defined with exact (integer) clocks that need to be compatible to each other. 
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nonlinear differential algebraic equation system: 
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For the given input Tc(t) these are 1 algebraic equa-
tion for the reaction speed (t) and two differential 
equations for c(t) and T(t). The concentration c(t) is 
the signal to be primarily controlled  and the temper-
ature T(t) is the signal that is measured. These equa-
tions are collected together in an input/output block: 

 
The design of the control system proceeds now in the 
following steps: 

5.1 Design of Pre-Filter 

Inverting a model usually means that equations need 
to be symbolically differentiated and that higher de-
rivatives of the inputs are needed (that are usually 
not available). One approach is to filter the inputs, so 
that a Modelica tool can determine the derivatives of 
the filtered input from the filter states. The minimum 
needed filter order is determined by first inverting 
the continuous-time plant model from the variable to 
be primarily controlled (here: “c”) to the actuator 
input (here: “Tc”). This is performed with the help of 
block “Modelica.Blocks.Math.InverseBlockCons-

traints” that allows connecting an external input 
(c_ref below) to an output (c below): 

 
Translating this model will generate the continuous- 
time inverse plant model. However, Dymola gives 
(correctly) an error message: 

 

This message states, that Dymola has to differentiate 
the model, but this requires the second derivative of 
the external input c_ref and this derivative is not 
available. The conclusion is that a low pass filter of 
at least second order has to be connected between 
c_ref and c, for example Modelica.Blocks.-
Continuous. Filter. Only filter types should be used 
that do not have “vibrations” in the time domain for 
a step input. Therefore, parameter analogFilter 
of the component should be selected as “Critical-
Damping” (= only real poles), or “Bessel” (= nearly 
no vibrations, but steeper frequency response as 
“CriticalDamping”). The cut-off frequency f_cut is 
manually selected by simulations of the closed loop 
system. In the example, we use a CriticalDamping 
filter of third order (the third order is selected to get 
smoother signals) and a cut-off frequency of 1/300 
Hz. 

 

Figure 5: Sampled data controller for mixing unit including the inverse plant model. 
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5.2 Design of Controller 

The controller for the mixing unit is shown in Figure 
5. It consists of the filter discussed in the previous 
section. The input to the filter is the reference con-
centration which is filtered by the low pass filter. 
The output of the filter is used as input to the con-
centration c in the inverse plant model. This model 
computes the desired cooling temperature T_c 
(which is used as desired cooling temperature at the 
output of the controller) and the desired temperature 
T (which is used as desired value for the feedback 
controller). This part of the control system is the 
“feed forward” part that computes the desired actua-
tor signal. As feedback controller a simple P-
Controller with one gain is used. 

This controller could be defined as continuous-
time system in previous Modelica versions. Howev-
er, with Modelica 3.3 it is now also possible to de-
fine the controller as sampled data system. For this, 
the two inputs are sampled (sample1 and sample2) 
and the actuator output is hold (hold1). 

The controller partition is then associated with a 
periodic clock (via sample2) that has a sample peri-
od of 1 s and a solverMethod = “ExplicitEuler”. 
Since the controller partition is a continuous-time 
system, it is discretized and solved with an explicit 
Euler method at every clock tick (by integrating from 
the previous to the actual time instant of the clock). 

The controller works perfectly if the same param-
eters for the plant and the inverse plant model are 
used (follows perfectly the filtered reference concen-
tration). Changing all parameters of the inverse plant 
model by 50 % (with exception of ε since the plant is 
very sensitive to it) still results in a reasonable con-
trol behavior as shown by the following simulation 
results (the desired concentration jumps from 0.492 
to 0.237): 

 

The piecewise constant (blue) curve in the upper 
window is the output of the filter (that is, it is the 
desired concentration). The red curve in the upper 
window is the concentration of model mixingUnit, 
which is the concentration in the plant. Obviously, 
the concentration follows reasonably well the desired 
one. By using a more involved feedback controller, 
the control error could be substantially reduced. 

6 Event Clocks –Engine Control 
All previous sections concentrated on periodic 
clocks. However, also non-periodic synchronous 
sampled data systems can be defined with Modelica 
3.3. This is demonstrated at hand of a closed-loop 
throttle control synchronized to the crankshaft angle 
of an internal combustion engine. This system has 
the following properties: 
 Engine speed is regulated with a throttle actuator. 
 Controller execution is synchronized with the 

engine crankshaft angle. 
 The influence of disturbances, such as a change in 

load torque, is reduced. 
The complete system is shown in Figure 6. Block 

 

Figure 6: Sampled data engine controller that is synchronized with the crankshaft angle. 
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speedControl is the discrete control system. The 
boundaries of this controller are defined by sample1 
and hold1. A special element triggeredSpeed 
has the crankshaft angle as input and provides the 
sampled crankshaft speed as output. Additionally, 
the clock associated with the output (and therefore 
also to component speedControl) ticks, at every 
180 degree rotation of the crankshaft angle. This 
special application is implemented in the text layer 
of component triggeredSpeed as: 

 N = der(angle); 
 when Clock(angle >= hold(offset)+Modelica.Constants.pi) then 
      offset = sample(angle); 
     N_clocked = sample(N); 
 end when; 

Here, N is the derivative of the crankshaft angle. 
Whenever this angle becomes larger as 180 degree 
an event clock is activated due to Clock(..). In 
such a case the when-clause becomes active, and the 
speed N is sampled, and the new offset for the next 
event is computed. 

7 Interfaces to External Devices 
Bellmann presented in (Bellmann 2009) a Modelica 
library with capabilities for creating interactive simu-
lation models with advanced (3D-) visualization2. It 
included support for standard input devices such as 
keyboard and joysticks, as well as communication 
mechanisms like UDP or shared memory. These de-
vice interfaces have been adapted to work with the 
Modelica synchronous extensions, and have been 
extended to also support the Linux OS. Furthermore 
additional functionality such as support for Softing 
CAN interface cards3 and the (Linux specific) 
Comedi4 control and measurement device interface 
have been added. In the next figure some of the 
blocks are shown that are currently available in the 
external devices library. 

8 Cyber-Physical Models 
Modelica is designed for modeling of systems con-
taining both physical parts and control systems. It is 
possible to hierarchically assemble a system out of 
smart subsystems, i.e. which includes their local con-
trol systems. 

In (Elmqvist et.al. 2009) it is described how parts 
of the model which is used for evaluating the system 
                                                      
2 Today the visualization part of that library has evolved 
into the commercially available product “Visualization 
Library”, which is distributed by BAUSCH-GALL 
GmbH, http://www.bausch-gall.de/. 
3 Softing AG (2012), http://www.softing.com. 
4 The Comedi project (2012), http://www.comedi.org/. 

architecture and performance can be used for differ-
ent studies and for generation of embedded code. 
The solution in the Modelica_EmbeddedSystems 
library is to introduce generic “communication 
blocks” between the partitions. Such communication 
blocks can then be configured in different ways, for 
example to just contain an ideal Sample block or a 
block with A/D effects. It can also contain a device 
driver for a A/D converter for the input to the dis-
crete-time partition. It is then possible to use the 
code of this partition for embedding to control hard-
ware.  

If instead, the communication block contains a 
D/A converter, for the output of the continuous-time 
partition, the code for the continuous-time partition 
can be used for hardware-in-the-loop simulation. 

The point is that this configuration can be done 
without changing the original model. It is done by 
using redeclarations of the content of the communi-
cation blocks by using a hierarchical modifier in a 
model extending the original model. This approach is 
beneficial with regards of maintaining the original 
model since only one version is needed. 

It is planned that this technique, already evaluated 
in the Modelica_EmbeddedSystems library, is in-
cluded in the Modelica_Synchronous library. 

9 Summary 
A new, free Modelica library is presented that pro-
vides a convenient graphical user interface for the 
synchronous language elements introduced in Mod-
elica 3.3. This library is planned to replace all previ-
ous Modelica libraries designed for sampled data 
systems, since  

 the clocking for a partition needs to be defined 
only at one block (and not at every block of a 
controller), 
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 every continuous-time block (including inverse 
models) can be directly utilized in the clocked 
partition, thereby making it unnecessary in most 
cases to provide a manually implemented dis-
crete-time version, 

 errors to define the sample periods can be de-
tected by the translator (because all variables and 
equations of a clocked partition must be associ-
ated exactly to one clock), 

 more efficient simulation of an overall model 
consisting of plant (= continuous-time) and con-
troller (= clocked partitions), 

 providing the possibility to easily identifying the 
controller part that shall be downloaded to actual 
hardware (because all equations and variables of 
a clocked partition are associated exactly to one 
clock). 
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Abstract 

The scope of Modelica has been extended from a 

language primarily intended for physical systems 

modeling to modeling of complete systems by allow-

ing the modeling of control systems including state 

machines.  

This paper describes the state machines intro-

duced in Modelica 3.3. Any block without conti-

nuous-time equations or algorithms can be a state of 

a state machine. Transitions between such blocks are 

modeled by a new kind of connections associated 

with transition conditions. 

The paper gives the details for building state ma-

chines and includes several examples. In addition, 

the complete semantics is described using only 13 

Modelica equations.  

 

Keywords: Modelica; State Machines; Control;  

1 Introduction 

The scope of Modelica has been extended from a 

language primarily intended for physical systems 

modeling to modeling of complete systems by allow-

ing the modeling of control systems including state 

machines and enabling automatic code generation for 

embedded systems.  

This paper presents state machines in Modelica.  

A companion paper (Elmqvist, et.al, 2012) describes 

the fundamental synchronous language primitives 

introduced for increased correctness of control sys-

tems implementation since many more checks can be 

done at compile time.  

The paper describes language elements to define 

state machines. Any block without continuous-time 

equations or algorithms can be a state of a state ma-

chine. Transitions between such blocks are 

represented by a new kind of connections associated 

with transition conditions. 

The paper gives the details for building state ma-

chines and includes several examples. In addition, 

the complete semantics is described using only 13 

Modelica equations.  

2 States and Transitions 

Modelica State Machines will be introduced gradual-

ly by means of examples. 

Modelica block instances without continuous-

time equations or algorithms can potentially be states 

of a state machine. A cluster of block instances at the 

same hierarchical level which are coupled by transi-

tion equations constitutes a state machine. All parts 

of a state machine must have the same clock. One 

and only one instance in each state machine must be 

marked as initial by appearing in an initialState equ-

ation.  

2.1 A Simple State Machine 

As a first example, consider the trivial state machine 

of Figure 1. 

 

 

Figure 1. A simple state machine 
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An inner variable i is defined in the model which has 

two block instances state1 and state2. In the corres-

ponding block definitions, i is declared as „outer out-

put‟ which means that i is an output from both of the 

blocks. In state1, i is incremented by 2 and in state2, 

i is decremented by 1. How such multiple definitions 

are handled is described below. 

If state1 is active, a transition to state2 is made 

when i>10. If state2 is active, a transition to state1 is 

made when i<1.  

The simulation result is shown in Figure 2. 

 

Figure 2. Plot of v of simple state machine 

 

The Modelica code (without annotations) is: 
 

model StateMachine1 
  inner Integer i(start=0); 
 

  block State1 
    outer output Integer i; 
  equation  
    i = previous(i) + 2; 
  end State1; 
  State1 state1; 
 

  block State2 
    outer output Integer i; 
  equation  
    i = previous(i) - 1; 
  end State2; 
  State2 state2; 
 

equation  
  initialState(state1); 
  transition(state1, state2, i > 10, immediate=false); 
  transition(state2, state1, i < 1, immediate=false); 
end StateMachine1; 

2.2 Merging Variable Definitions 

When a state class uses a variable in an outer output 

declaration, the equations have access to the corres-

ponding variable declared inner. Special rules are 

then needed to maintain the single assignment rule 

since multiple definitions of such outer variables in 

different mutually exclusive states of one state ma-

chine need to be merged.  

In each state, the outer output variables (vj) are 

solved for (exprj) and, for each such variable, a sin-

gle definition is automatically formed: 

v := if activeState(state1) then expr1  

       elseif activeState(state2) then expr2  

       elseif … else last(v) 

 

last() is a special internal semantic operator return-

ing its input. It is just used to mark for the sorting 

that the incidence of its argument should be ignored. 

A start value must be given to the variable if not as-

signed in the initial state. 

Such a newly created assignment equation might 

be merged on higher levels in nested state machines. 

2.3 Defining a state machine 

The following special kinds of connect-equations are 

used to define transitions between states and to de-

fine the initial state: 

transition(from, to, condition, immediate, reset, 

                    synchronize, priority) 

Arguments “from” and “to” are block instances and 

“condition” is a Boolean expression. The optional 

arguments “immediate”, “reset”, and “synchronize” 

are of type Boolean, have parametric variability 

and a default of true, true, false respectively. The 

optional argument “priority” is of type Integer, has 

parametric variability and a default of 1. 

 

This operator defines a transition from instance 

“from” to instance “to”. The “from” and “to” in-

stances become states of a state machine. The tran-

sition fires when condition = true if immediate = 

true (this is called an “immediate transition”) or 

previous(condition) when immediate = false (this 

is called a “delayed transition”).  

 

The argument “priority” defines the priority of fir-

ing when several transitions could fire. priority=1 

is the highest priority.   

 

If reset = true, the states of the target state are reini-

tialized, i.e. state machines are restarted in initial 

state and state variables are reset to their start val-

ues.  

 

If synchronize=true, the transition is disabled until 

all state machines within the from-state have 

reached the final states, i.e. states without outgoing 

transitions.  

initialState(state) 

The argument “state” is the block instance that is 

defined to be the initial state of a state machine. At 

the first clock tick of the state machine, this state 

becomes active. 

State Machines in Modelica 

 

38 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp1207637 

   



 

 

The attributes of transitions are shown graphically as 

illustrated in Figure 3. 

  

Figure 3. Graphical conventions for transitions 

 

A transition has a perpendicular bar representing the 

condition which is close to the destination state for 

an immediate transition, else close to the source 

state. The arrow is filled for a reset transition other-

wise non-filled. A synchronize transition has an “in-

verted fork” at the source state. Priority is shown 

preceding the condition if not equal to one. For the 5 

transitions in Figure 3, the settings are as follows, 

from left to right: 

  immediate  = true, false, true, false, true;  

  reset              = true, true, false, false, true;  

  synchronize  = false, false, false, false, true;  

  priority  = 1, 2, 3, 4, 5.  

 

All transitions leaving the same state must have dif-

ferent priorities.  

It is possible to query the status of the state ma-

chine by using the following operators: 

activeState(state) 

Argument “state” is a block in-

stance. The operator returns true, 

if this instance is a state of a 

state machine and this state is 

active at the actual clock tick. If 

it is not active, the operator re-

turns false.  

It is an error if the instance is not 

a state of a state machine. 

ticksInState() 

Returns the number of clock 

ticks since a transition was made 

to the currently active state. This 

function can only be used in 

transition conditions of state ma-

chines not present in states of 

higher level state machines. 

timeInState() 

Returns the time duration as Real 

in [s] since a transition was made 

to the currently active state. This 

function can only be used in 

transition conditions of state ma-

chines not present in states of 

higher level state machines. 

 

2.4 Immediate and Delayed Transitions 

If we attempt to simulate the state machine in Figure 

1 with transitions having immediate=true, we get the 

error message in Dymola: 
An algebraic loop involving Integers or 

Booleans has been detected. 

The reason is that since the transition conditions 

involve i, the variable defined in the equations, there 

is a cyclic dependency or algebraic loop between the 

update equations for i and the update equations for 

state machine evolution. 

2.5 Conditional Data Flows 

An alternative to using outer output variables is to 

use conditional data flows. Since instances of blocks 

can be used as states of a state machine, the connec-

tion semantics of Modelica has been extended to al-

low several outputs to be connected to one input. 

Consider the combined state machine and data 

flow diagram in Figure 4: 

 

 
Figure 4. Combined state machine and data flow 

diagram 

 

The states are instances of the block: 
 

block Increment 
  extends Modelica.Blocks.Interfaces.PartialIntegerSISO; 
  parameter Integer increment; 
equation  
  y = u + increment; 
end Increment; 

 

with increment values 2 and -1 respectively. The 

outputs are connected to a protected connector called 

i in order to be able to use i in the transition condi-

tions. The connector i is connected to an instance of 

the block: 

 
block Prev 
  extends Modelica.Blocks.Interfaces.PartialIntegerSISO; 
equation  
  y = previous(u); 

state1

state2

a

2: b

3: c

4: d
5: e

add2

sub1

prev
i > 10

i < 1

i
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end Prev; 

 

The connections from the state instances to i in Fig-

ure 4 are handled in a special way. It is possible to 

connect several outputs to inputs if all the outputs 

come from states of the same state machine. In such 

cases, we get the following constraint equations: 

u1 = u2 = … = y1 = y2 = … 

with ui inputs and yi outputs. The semantics is de-

fined as follows. Introduce a variable v representing 

the signal flow and rewrite the equation above as a 

set of equations for ui and a set of assignment equa-

tions for v:  

v := if activeState(state1) then y1 else last(v); 

v := if activeState(state2) then y2 else last(v); 

… 

u1 = v 

u2 = v 

… 

 

The merge of the definitions of v is then made ac-

cording to section „Merging Variable Definitions‟. 

The result of the merge is: 

v = if activeState(state1) then y1  

        elseif activeState(state2) then y2  

        elseif … else last(v) 

… 

Plotting i shows the same behavior as the plot of i of 

the example using inner outer declarations. 

3 Hierarchical State Machine  

Example 

Consider the hierarchical state machine in Figure 5: 

 

 

Figure 5. Hierarchical state machine 

 

The model demonstrates the following properties: 

 state1 is a meta state with two parallel state ma-

chines in it.  

 stateA declares v as „outer output‟. state1 is on 

an intermediate level and declares v as „inner 

outer output‟, i.e. matches lower level outer v by 

being inner and also matches higher level inner v 

by being outer. The top level declares v as inner 

and gives the start value. 

 count is defined with a start value in state1. It is 

reset when a reset transition (v>=20) is made to 

state1. 

 stateX declares the local variable w to be equal 

to v declared as „inner input‟. 

 stateY declares a local counter j. It is reset at 

start and as a consequence of the reset transition 

(v>=20) from state2 to state1. However, the reset 

of j is deferred until stateY is entered by transi-

tion (stateX.i>20) although this transition is not a 

reset transition. This is done by marking that sta-

teY should be reset when making the reset tran-

sition v>=20 and deferring the reset until stateY 

is actually entered. Synchronizing the exit from 

the two parallel state machines of state1 is done 

by using a synchronized transition. 
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The behavior of the state machine can be seen in the 

plots of v and w and i of Figure 6: 

 

Figure 6. Behavior of hierarchical state machine 

4 Adaptive Cruise Control Example 

As a more useful example, we will consider a vehicle 

with adaptive cruise control, i.e. controller that can 

drive the car at a certain speed or follow the car in 

front at a safe distance.  

The example is simplified considerably to be able 

to explain all the details in limited space. And the 

data is just designed for illustrative purposes. 

The vehicle dynamics is described by the follow-

ing model (without annotations): 

 
model Vehicle 
  parameter Real k=5000; 
  parameter Real m=1000; 
  parameter Real loss=5; 
  Modelica.Blocks.Interfaces.RealInput ud; 
  Modelica.Blocks.Interfaces.RealOutput xd; 
  Modelica.Blocks.Interfaces.RealOutput vd; 
 

  Modelica.SIunits.Distance x(start=0, fixed=true); 
  Modelica.SIunits.Velocity v(start=0, fixed=true); 
  Real tau; 
equation  
  der(x) = v; 
  m*der(v) = k*tau - loss*v*abs(v); 
 

  tau = hold(ud); 
  xd = sample(x, Clock(1, 10)); 
  vd = sample(v, Clock(1, 10)); 
end Vehicle; 

 

The power train is considered ideal. 

A vehicle with the cruise control system is shown 

in Figure 7. It has an instance of the vehicle dynam-

ics (with a car icon) with a sampled input ud on the 

left and two sampled outputs (period=1/10 second), 

xd and vd (counting from the top) to the right. 

 

 
Figure 7. Vehicle with adaptive cruise controller 

 

The top level state machine has two modes: normal 

and emergency. Both produces the control signal u 

connected to ud of the vehicle. The normal mode has 

vd and xrel as inputs. xrel is formed as the difference 

between the vehicle position and the position of the 

vehicle in front, available as an input.  

The normal state has three states: manual, cruise 

and follow. The manual state is a simple start up state 

“stepping on the gas” until the desired speed has 

been achieved. The cruise state contains a speed con-

troller implemented as a simple P-controller with 

limitation. 

When the vehicle comes within 100 meters of the 

vehicle in front, follow state is entered. It contains a 

position controller with xref=-100. Since the vehicle 

is essentially a double integrator from throttle to po-

sition, a PD controller is needed. In this case a naïve 

implementation without filtering is shown. When the 

distance is larger than 150 meters, cruise mode is 

reentered. 

The emergency state is entered when the distance 

to the car in front is less than 25 meters independent-

ly in which substate normal is in. Maximum braking 

power (-3) is then applied until the car has stopped. 

When the distance is again 200 meters, the normal 
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state is entered with a reset transition, i.e. the sub-

state of manual of state normal is activated. 

The architecture with two entirely different con-

trollers for speed and position was chosen to illu-

strate the possibility in particular regarding how the 

data flow connections can be used. (Adaptive cruise 

control can also be achieved using a cascade control-

ler with an inner speed loop.) 

A model of a platoon of 5 CruisingVehicles was 

built. The desired speed vref is set as {100, 60, 65, 

50, 25} km/h. The initial speeds are the same except 

for the last car (cruisingVehicle) which is standing 

still. The distances between the cars are 200 meters. 

The results of simulation are shown in Figure 8: 

position on top and velocity below. All cars slow 

down to follow the first car (cruisingVehicle4) at 25 

km/h at a distance of 100 meter. 

 

 
Figure 8. Positions and velocities of vehicles 

in a platoon 

 

The control signals are shown in Figure 9. 

   
Figure 9: Control signals 

  

The implementation of the cruise state shown in Fig-

ure 7 is a bit simplified using a parameter vref for the 

velocity set point. Usually, the triggering of going 

from manual to cruise mode is done by a button. The 

cruise mode is then picking up the current speed and 

uses that as a set point. Such an implementation can 

be made as follows: 

 
model Cruise 
  parameter Real K = 1; 
  Real c, vref; 
  Boolean reinit(start=true) = false; 
  Modelica.Blocks.Interfaces.RealOutput u; 
  Modelica.Blocks.Interfaces.RealInput v; 
equation  
  vref = if previous(reinit) then v else previous(vref); 
  c = K*(vref-v); 
  u = max(min(c, 1),-0.5); 
end Cruise; 

 

This is a general modeling idiom for special treat-

ment when a state is entered. The equation for reinit 

is reinit = false. However, the start value is true, so 

previous(reinit) gives a pulse at the first cycle if a 

reset transition is made to the state. 

So the desired behavior is achieved by a reset 

transition from manual to cruise, but a non-reset 

transition from follow to cruise, since in the last 

case, the stored vref should be used.  

A platoon of 100 vehicles can easily be con-

structed using an array of CruisingVehicles: 

 
model Platoon 
  parameter Integer n=100; 
  CruisingVehicle cruisingVehicle[n](vref=linspace(100, 50.5, n)); 
  Modelica.Blocks.Sources.Constant const(k=10000); 
equation  
  connect(const.y, cruisingVehicle[n].xFront); 
  for i in 1:n-1 loop 
    connect(cruisingVehicle[i+1].xd,  

                  cruisingVehicle[i].xFront); 
  end for; 
end Platoon; 
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This is a good example of how well the state ma-

chine concept is integrated in Modelica allowing to 

use data flows between states, using modifiers for 

parameterization, using redeclare of classes and 

components and using arrays of a mixture of state 

machines and continuous dynamical models. 

5 State Machine Semantics 

This section is not intended for normal users of 

Modelica state machines. It is included since the pre-

cise semantics can be described using only 13 Mod-

elica equations and is thus a convenient reference for 

advanced users and tool developers. 

For the purpose of defining the semantics of state 

machines, assume that the data of all transitions are 

stored in an array of records, t: 

 
record Transition 
  Integer from; 
  Integer to; 
  Boolean immediate = true; 

  Boolean reset = true; 

  Boolean synchronize = false; 
  Integer priority = 1; 
end Transition; 

 

The transitions are sorted with lowest priority num-

ber last in the array. The states are enumerated from 

1 and up. The transition conditions are stored in a 

separate array c[:] since they are time varying. 

The semantics model is a discrete-time system 

with inputs {c[:], active, reset}, outputs {activeState, 

activeReset, activeResetStates[:]} and states 

{nextState, nextReset, nextResetStates[:]}. For a top 

level state machine, active is always true. For sub-

state machines, active is true only when the parent 

state is active. For a top level state machine, reset is 

true at the first activation only. For sub-state ma-

chine, reset is propagated from the state machines 

higher up.  

5.1 State Activation 

The state update starts from nextState, i.e.,what has 

been determined to be the next state at the previous 

time. selectedState takes into account if a reset of the 

state machine is to be done.  
 

  output Integer selectedState =  

    if reset then 1 else previous(nextState); 

 

The integer fired is calculated as the index of the tran-

sition to be fired by checking that selectedState is the 

from-state and the condition is true for an immediate 

transition or previous(condition) is true for a delayed 

transition. The max function returns the index of the 

transition with highest priority or 0. 

 
  Integer fired =  

    max(if (if t[i].from == selectedState then (if t[i].immediate 

    then c[i] else previous(c[i])) else false) then i else 0  

    for i in 1:size(t,1)); 

 

The start value of c is false. This definition would 

require that the previous value is recorded for all 

transitions conditions. Below is described an equiva-

lent semantics which just requires to record the value 

of one integer variable delayed. The integer imme-

diate is calculated as the index of the immediate 

transition to potentially be fired by checking that 

selectedState is the from-state and the condition is 

true. The max function returns the index of the tran-

sition with true condition and highest priority or 0. 
 

  Integer immediate =  

    max(if (if  t[i].immediate and t[i].from == selectedState then 

     c[i] else false) then i else 0 for i in 1:size(t,1)); 

 

In a similar way, the Integer delayed is calculated as 

the index for a potentially delayed transition, i.e. a 

transition taking place at the next clock tick. In this 

case the from-state needs to be equal to nextState: 
 

  Integer delayed =   

    max(if (if not t[i].immediate and t[i].from == nextState  then 

     c[i] else false) then I else 0 for i in 1:size(t,1)); 

 

The transition to be fired is determined as follows, 

taking into account that a delayed transition might 

have higher priority than an immediate: 
 

  Integer fired = max(previous(delayed), immediate); 

 

nextState is set to the found transitions to-state: 
 

  Integer nextState = if active then (if fired > 0 then t[fired].to 

     else selectedState) else previous(nextState); 

 

In order to define synchronize transitions, each state 

machine must determine which are the final states, 

i.e. states without from-transitions and to determine 

if the state machine is in a final state currently: 
 

  Boolean finalStates[nStates] =  

    {max(if t[j].from == i then 1 else 0 for j in 1:size(t,1)) == 0 

     for i in 1:nStates}; 

  Boolean stateMachineInFinalState = finalStates[activeState]; 

 

To enable a synchronize transition, all the stateMachi-

neInFinalState conditions of all state machines within 

the meta state must be true.  
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5.2 Reset Handling 

A state can be reset for two reasons: 

 The whole state machine has been reset from its 

context. In this case, all states must be reset, and 

the initial state becomes active. 

 A reset transition has been fired.  

Then, its target state (and its sub-state machines) 

are reset, but not other states. 

 

The first reset mechanism is handled by the activeRe-

setStates and nextResetStates vectors. The state machine 

reset flag is propagated and maintained to each state 

individually: 
 

  output Boolean activeResetStates[nStates] =  

    {if reset then true else previous(nextResetStates[i])  

    for i in 1:nStates}; 

 

until a state is eventually executed, then its corres-

ponding reset condition is set to false: 
 

  Boolean nextResetStates[nStates] = if active then  

    {if activeState == i then false else activeResetStates[i]  

    for i in 1:nStates} 

 

The second reset mechanism is implemented with 

the selectedReset and nextReset variables. If no reset 

transition is fired, the nextReset is set to false for the 

next cycle. 

5.3 Activation handling 

The execution of a sub-state machine has to be sus-

pended when its enclosing state is not active. This 

activation flag is given as a Boolean input active. 

When this flag is true, the sub-state machine main-

tains its previous state, by guarding the equations of 

the state variables nextState, nextReset and 
nextResetStates.  

5.4 Semantics Summary 

The entire semantics model is given below: 
 

model StateMachineSemantics "Semantics of state machines" 
  parameter Integer nStates; 
  parameter Transition t[:]   

    "Array of transition data sorted in priority"; 
  input Boolean c[size(t,1)]  

    "Transition conditions sorted in priority"; 

  Boolean active "true if the state machine is active"; 
  Boolean reset "true when the state machine should be reset"; 

 
  Integer selectedState = if reset then 1 else previous(nextState); 
  Boolean selectedReset = if reset then true  

      else previous(nextReset); 
 

// For strong (immediate) and weak (delayed) transitions 
  Integer immediate = max(if (if t[i].immediate and t[i].from == 

       selectedState then c[i] else false) then i else 0  

      for i in 1:size(t,1)); 

 
  Integer delayed = max(if (if not t[i].immediate and t[i].from == 

       nextState then c[i] else false) then i else 0 for i in 1:size(t,1)); 

 
  Integer fired = max(previous(delayed), immediate); 
  output Integer activeState = if reset then 1  

      elseif fired > 0 then t[fired].to else selectedState; 
  output Boolean activeReset = if reset then true  

      elseif fired > 0 then t[fired].reset else selectedReset; 
 

// Update states 
  Integer nextState = if active then activeState  

      else previous(nextState); 
  Boolean nextReset = if active then false  

      else previous(nextReset); 
  

// Delayed resetting of individual states 
  output Boolean activeResetStates[nStates] = {if reset then true 

       else previous(nextResetStates[i]) for i in 1:nStates}; 
  Boolean nextResetStates[nStates] = if active then  

      {if selectedState == i then false else activeResetStates[i]  

      for i in 1:nStates}  

      else previous(nextResetStates); 

 
  Boolean finalStates[nStates] = {max(if t[j].from == i then 1 else 0 

       for j in 1:size(t,1)) == 0 for i in 1:nStates}; 

  Boolean stateMachineInFinalState = finalStates[activeState]; 

end StateMachineSemantics; 

6 Comparison to Other State Ma-

chine Formalisms 

State machines needed to be introduced in Modelica 

to enable modeling of complete systems. Several 

attempts have been made: (Mosterman et. al. 1998), 

defines state machines in an object-oriented way 

with Boolean equations. A more powerful state ma-

chine formalism was introduced in StateGraph (Otter 

et. al. 2005). A prototype mode automata formalism 

was implemented (Malmheden et. al. 2008) using a 

built-in concept of modes. Certain problems of po-

tentially unsafe models in StateGraph were removed 

in the StateGraph2 library (Otter et. al. 2009). These 

efforts showed that state machine support must be 

natively supported in the language.  

The presented state machines of Modelica 3.3 

have a similar modeling power as Statecharts (Harel, 

1987) and State Machine Diagrams of SysML (Frie-

denthal 2008).  

The semantics of the state machines defined in 

this paper is inspired by mode automata (Maraninchi 

2002) and basically the same as Lucid Synchrone 3.0 

(Pouzet 2006), or its clone LCM (Logical Control 

Module) (Gaucher et.al. 2009). Some minor proper-

ties are different compared to Lucid Synchrone 3.0, 
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in particular regarding transition conditions. Lucid 

Synchrone has two kinds of transitions: namely 

“strong” and “weak”. Strong transitions are executed 

before the actions of a state are evaluated while weak 

transitions are executed after. This can lead to sur-

prising behavior, because the actions of a state are 

skipped if it is activated by a weak transition and 

exited by a true strong transition. For this reason, the 

state machines in Modelica use “immediate” (= the 

same as “strong”) and “delayed” transitions. Delayed 

transitions are “immediate” transitions where the 

condition is automatically delayed with an implicit 

previous(...).  

Note that safety critical control software in air-

crafts is often defined with such kind of state ma-

chines, such as using the Scade 6 Tool Suite from 

Esterel Technologies (Dormoy 2008) that provides a 

similar formalism as Lucid Synchrone, with minor 

differences such as the ability to associate actions to 

transitions in addition to states. Scade also provides 

synchronize semantics by means of synchronization 

transitions between several parallel sub-state ma-

chines being in states which have been declared fi-

nal. 

Stateflow (Mathworks 2012), while being very 

expressive, suffers from “numerous, complex and 

often overlapping features lacking any formal defini-

tion”, as reported by (Hamon, et.al, 2004). 

The presented Modelica approach has the impor-

tant feature that at one clock tick, there is only one 

assignment to every variable (for example, it is an 

error if state machines are executed in parallel and 

they assign to the same variable at the same clock 

tick; such errors are detected at compile-time).  

Modelica, Lucid Synchrone, LCM and Scade 6 

all have the property that data flow and state ma-

chines can be mutually hierarchically structured, i.e. 

that, for example a state of a state machine can con-

tain a block diagram in which the blocks might con-

tain state machines. 

7 Conclusions 

We have described how state machines can be mod-

eled in Modelica 3.3. Instances of blocks connected 

by transitions with one such block marked as an ini-

tial state constitute a state machine. Hierarchical 

state machines can be defined with reset or resume 

semantics, when re-entering a previously executed 

state. Parallel sub-state machines can be synchro-

nized when they reached their final states. Special 

merge semantics have been defined for multiple out-

er output definitions in mutually exclusive states as 

well as conditional data flows. 
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Abstract 

A new Petri net library, called PNlib, is presented to 

enable graphical hierarchical modeling, hybrid simu-

lation, and animation of processes in life sciences, 

technical applications, among others. In order to 

model these most different processes, a new power-

ful and universally usable mathematical modeling 

concept – xHPN (extended Hybrid Petri Net) – has 

been established. This formalism is used as specifi-

cation for the PNlib (Petri Net library) realized by 

the object-oriented modeling language Modelica. 

The application of the new environment is demon-

strated by three selected examples. The first example 

demonstrates the representation of functional princi-

ples by a model of a Senseo coffee machine and the 

second one is a model of a printing production pro-

cess. The third example presents the applicability of 

modeling business processes. All models are provid-

ed as application cases in the library. 

Keywords: Petri nets; hybrid modeling; xHPN; pro-

cess modeling 

1 Introduction 

The Petri net formalism was first introduced by Carl 

Adam Petri in 1962 for modeling and visualization 

of concurrency, parallelism, synchronization, re-

source sharing, and non-determinism [1]. A Petri net 

is a graph with two different kinds of nodes, called 

transitions and places; thereby, places and transi-

tions are connected by arcs. Every place in a Petri 

net can contain a non-negative integer number of 

tokens. These tokens initiate transitions to fire ac-

cording to specific conditions. These firings lead to 

changes of the tokens in the places. 

In the recent years, Petri nets with their various 

extensions are becoming increasingly popular. They 

have been proven to be a universal graphical model-

ing concept for representing different systems in 

nearly all degrees of abstraction. They support the 

qualitative modeling approach as well as the quanti-

tative one. Furthermore, the processes can be mod-

eled discretely as well as continuously, refer to [2]. 

In addition, discrete and continuous processes can 

also be combined within a Petri net model to so-

called hybrid Petri nets first introduced by David 

and Alla [3]. The Petri net formalism with all its ex-

tensions is so powerful that nearly all other formal-

isms are included. Hence, only one formalism is 

needed regardless of the approach (qualitative vs. 

quantitative, discrete vs. continuous vs. hybrid, de-

terministic vs. stochastic) which is appropriate for 

the respective system. The Petri net formalism is 

easy to understand for researchers from different dis-

ciplines. It is an ideal way for intuitive representing 

and communicating data and new knowledge of 

mechanisms and processes. Furthermore, Petri nets 

allow hierarchical structuring of models and, there-

fore, offer the possibility of different detailed views 

for every observer of the model. 

 
Figure 1: Relationships between the different formalisms 

There are already three Petri net libraries availa-

ble on the Modelica homepage (www.modelica.org). 

The first was developed by Mosterman et al. and 

enables the modeling of a restricted class of discrete 
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Petri nets, called normal Petri nets [4]. The places of 

normal Petri nets can only contain zero or one token. 

Additionally, all arcs have the weight one and exter-

nal signals initiate the firing of transitions. If a con-

flict occurs between two or more transitions, the 

transition with the highest priority fires. Hence, only 

deterministic behavior is represented by this kind of 

Petri net. 

The second Petri net library is an extension of the 

previous one and was developed by Fabricius [5]. 

The places are able to contain a non-negative integer 

number of tokens and can be provided with non-

negative integer minimum and maximum capacities. 

Furthermore, the transitions are timed with fixed or 

stochastic delays. 

The third library, called StateGraph, is based on 

Grafcharts which combines the function chart for-

malism of Grafcet with the hierarchical states of 

Statecharts [6]. The StateGraph library is part of the 

Modelica standard library and was developed by Ot-

ter et al. [7]. 

The relationships between the mentioned con-

cepts are displayed in Figure 1. To enable modeling 

of different systems with Petri nets in Modelica, the 

existing libraries have to be extended by the follow-

ing aspects: 

 Transfer of the discrete Petri net concept to a con-

tinuous one, 

 Support of edges with (functional) weightings, 

 Support of test-, inhibitor, and read arcs, 

 Support of (different) conflict resolutions (ran-

dom decisions), 

 Combination of discrete and continuous Petri net 

elements to hybrid Petri nets. 

2 Extended Hybrid Petri Nets 

The extended Hybrid Petri Net (xHPN) formalism 

comprises three different processes, called transi-

tions: discrete, stochastic, and continuous transition, 

two different states, called places: discrete and con-

tinuous places, and four different arcs: normal, in-

hibitor, test, and read arcs. The icons of the formal-

ism are shown in Figure 2. 

Discrete places contain a non-negative integer quan-

tity, called tokens or marks, while continuous plac-

es contain a non-negative real quantity. These marks 

initiate transitions to fire according to specific condi-

tions and the firings lead to changes of the marks in 

the connected places. 

Discrete transitions are provided with delays and 

firing conditions and fire first when the associated 

delay is passed and the conditions are fulfilled. The-

se fixed delays can be replaced by exponentially dis-

tributed random variables, then, the corresponding 

transition is called stochastic transition. Thereby, 

the characteristic parameter λ of the exponential dis-

tribution can depend functionally on the markings of 

several places and is recalculated at each point in 

time when the respective transition becomes active 

or when one or more markings of involved places 

change. Based on the characteristic parameter, the 

next putative firing time               of the 

transition can be evaluated and it fires when this 

point in time is reached. 

 

Figure 2: Icons of the xHPN formalism 

Both - discrete and stochastic transitions - fire by 

removing the arc weight from all input places and 

adding the arc weight to all output places. On the 

contrary, the firing of continuous transitions takes 

place as a continuous flow determined by the firing 

speed which can depend functionally on markings 

and/or time.  

Places and transitions are connected by normal 

arcs which are weighted by non-negative integers 

and real numbers, respectively. But also functions 

can be written at the arcs depending on the current 

markings of the places and/or time. Places can also 

be connected to transitions by test, inhibitor, and 

read arcs. Then their markings do not change during 

the firing process. In the case of test and inhibitor 

arcs, the markings are only read to influence the time 

of firing while read arcs only indicate the usage of 

the marking in the transition, e.g. for firing condi-

tions or speed functions. If a place is connected to a 

transition by a test arc, the marking of the place must 

be greater than the arc weight to enable firing. If a 

place is connected to a transition by an inhibitor arc, 

the marking of the place must be less than the arc 

weight to enable firing. In both cases the markings of 

the places are not changed by firing.  

The conversion of a discrete to a continuous 

marking is realized by connecting a discrete transi-

tion to a continuous place and the conversion from a 

continuous to a discrete marking is realized by con-

 

(time-)discrete process 
(event)

continuous process 
(flow)

stochastic process
(random event)

Transitions

Places

Arcs

(time-)discrete state 
(integer quantity)
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necting a continuous place to a discrete transition. 

However, the conversion process is always per-

formed by discrete transitions, discrete places can 

only influence the time when continuous transitions 

fire but their marking cannot be changed during the 

continuous firing process. Figure 3 shows examples 

of these two basic principles:  

 T1 can only fire when P1 has more than zero 

marks and P3 has at least one mark (influence), 

 T2 can only fire when P4 has at least one mark 

and P6 has at least 5.4 marks (influence), 

 T3 fires by removing one mark from P7 and add-

ing 1.8 marks to P8 (conversion), 

 T4 fires by removing 0.8 marks from P9 and add-

ing one mark to P10 (conversion). 

 

 
Figure 3: Basic concepts of hybrid Petri nets and marking 

evolution of places    and    achieved by firing    with 

a delay of 1 of the bottom left Petri net. 

It is important to mention that a discrete transition 

fires always in a discrete manner by removing and 

adding marks after a delay is passed regardless of 

whether a discrete or a continuous place is connected 

to it. However, a continuous transition fires always 

by a continuous flow so that a discrete place can only 

be connected to continuous transition if it is input as 

well as output of the transition with arcs of same 

weight. In this way continuous transitions can only 

be influenced by discrete places but discrete mark-

ings cannot be changed by continuous firing. 

Several conflicts can occur when the places have 

to enable their connected active transitions. Possibly, 

a discrete place or a continuous place connected to 

discrete transitions has not enough marks to enable 

all discrete output transitions simultaneously or can-

not receive marks from all active input transitions 

due to the maximum capacity. Then a conflict arises 

that has to be resolved (type-1-conflict, see Figure 

4). 

 
Figure 4: Example of a type-1-conflict; P1 has not enough 

tokens to fire T1 and T2 simultaneously. 

This can be either done by providing the transi-

tions with priorities or probabilities. In the first case, 

a deterministic process decides which place enables 

which transition and in the second case the enabling 

is performed at random; thereby transitions assigned 

with a high probability are chosen preferentially. 

 
Figure 5: Example of a type-2-conflict; the input speed of 

P2 and P3 is not sufficient to fire T5 and T6 with the de-

termined speed. 

Another conflict can occur between a continuous 

place and two or more continuous transitions when 

the input speed is not sufficient to fire all output 

transitions with the respective speed or when the 

output speed is not sufficient to fire all input transi-

tions with the respective speed (type-2-conflict, see 

Figure 5). This conflict is solved by sharing the 

speeds proportional to the assigned maximum speeds 

(cf. [8]). 

 
Figure 6: Example of a type-3-conflict; at time 0, T1 be-

comes active and fires continuously. At time 2, the delay 

of T2 is passed and it becomes firable. At this point in 

time, P3 has a conflict because it cannot fire tokens in T1 

and T2, simultaneously. Hence, T2 takes priority over T1 

and fires. 
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If a conflict occurs between a place and continu-

ous as well as discrete/stochastic transitions, the dis-

crete/stochastic transitions take always priority over 

the continuous transitions (type-3-conflict, see Fig-

ure 6). 

 
Figure 7: Example of a type-4-conflict; at time 0, P3 can 

either enable T1 or T2 but not both simultaneously. This 

conflict can be solved by prioritization of the transitions. 

A last conflict can occur when a discrete place 

has not enough marks to enable all connected con-

tinuous transitions. This is solved by prioritization of 

the involved transitions (type-4-conflict, see Figure 

7). 
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Figure 8: Hybrid modeling of a flush toilet with the aid of 

xHPN formalism 

Figure 8 shows an example of hybrid modeling 

by the xHPN formalism. The model represents a 

flush toilet. A visitor enters the toilet; thereby, the 

time between two visitors is not exactly known so 

that it is modeled by a stochastic transition with an 

exponentially distributed delay (  ). The visitor 

(  ) pushes (  ) the lever (  ) which lifts the flush 

valve flapper (  ). Then the water can flow (  ) 

from the tank (  ) to the bowl (  ) and afterwards 

to the sewer (  ). When the water flows to the bowl, 

the float (  ) sinks in the toilet tank. If the float falls 

below a specific level (inhibitory arc), the tank fill-

valve (    is opened (  ) and new water can flow 

(  ) into the tank. This causes also that the float ris-

es and when a specific level is reached (test arc), the 

tank fill-valve is closed (  ). If the lever has re-

turned to its starting position, the flush valve flapper 

sinks back to the bottom (  ) and no water can flow 

into the bowl anymore. 

3 PNlib 

The advanced Petri Net library, called PNlib, enables 

the modeling of extended hybrid Petri Nets (xHPN). 

It comprises  

 a discrete (PD) and a continuous place (PC), 

 a discrete (TD), a stochastic (TS), and a continu-

ous transitions (TC), and 

 a test (TA), an inhibitor (IA), and a read arc (RA). 

 
Figure 9: Component icons of the PNlib. 

The main package PNlib is divided into the fol-

lowing sub-packages: 

 Interfaces: contains the connectors of the Petri net 

component models. 

 Blocks: contains blocks with specific procedures 

that are used in the Petri net component models. 

 Functions: contains functions with specific algo-

rithmic procedures which are used in the Petri net 

component models. 

 Constants: contains constants which are used in 

the Petri net component models. 

 Models: contains several examples and offers the 

possibility to structure further Petri net models. 

Additionally, the package contains the component 

settings which enables the setting of global parame-

ters for the display and the animation of Petri net 

models. 
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Places, transitions, and arcs are represented by the 

icons depicted in Figure 9. Thereby, the discrete 

place is represented by a circle and the continuous 

place by a double circle. The transitions are boxes 

which are black for discrete transitions, black with a 

white triangle for stochastic transitions, and white for 

continuous transitions. The test arc is represented by 

a dashed arc, the inhibitor arc by an arc with a white 

circle at its end, and the read arc by an arc with a 

black square at its end. 

3.1 Connectors 

The PNlib contains four different connectors:  

PlaceOut, PlaceIn, TransitionOut, and Tran-

sitionIn. The connectors PlaceOut and PlaceIn 

are part of place models and connect them to output 

and input transitions, respectively. Similar, Transi-

tionOut and TransitionIn are connectors of the 

transition model and connect them to output and in-

put places, respectively. Figure 10 shows which con-

nector belongs to which Petri net component model.  

 
Figure 10: Connectors of the PNlib. 

The connectors of the Petri net component models 

are vectors to enable the connection to an arbitrary 

number of input and output components. Therefore, 

the dimension parameters nIn and nOut are declared 

in the place and transition models with the con-

nectorSizing annotation. 

3.2 Places 

The parameters of places are summarized in Table 1. 

If the type-1-conflict is resolved by priorities, the 

corresponding priorities of the transitions are given 

by the indices of the connections, i.e. the transition 

connected to the place with the index 1 has also the 

priority 1, the transition connected to the place with 

the index 2 has also the priority 2 etc. Otherwise, if 

the probabilistic enabling type is chosen, the corre-

sponding probabilities for the transitions have to be 

entered as a vector. Thereby, the first vector element 

corresponds to the connection with the index 1, the 

second to the connection with the index 2 etc. The 

input of enabling probabilities as vectors in the place 

model, and not at the corresponding arcs, is neces-

sary due to the fact that properties cannot be as-

signed to connections according to the Modelica 

Specification 3.2. 

Table 1: Parameters and modification possibilities of dis-

crete (d) and continuous (c) places 

Name 

Description 
Type Default 

startTokens/ 

startMarks 
Marking at the beginning 

of the simulation 

scalar 0 

minTokens/ 

minMarks  
Minimum capacity 

scalar 0 

maxTokens/ 

maxMarks 
Maximum capacity 

scalar infinite 

enablingType 
Type of enabling if type-

1-conflicts occur; the 

priorities are defined by 

the connection indices 

and the probabilities by 

the variables ena-

blingProbIn/Out 

choice/ 

scalar 

Priority 

enablingProbIn 
Enabling probabilities of 

input transitions 

vector fill(1/nIn,nIn) 

enablingProbOut 
Enabling probabilities of 

output transitions 

vector fill(1/nOut,nOut) 

N 
Amount of levels for sto-

chastic simulation 

scalar settings1.N 

restart 

Condition for resetting 

the marking to  

reStartTokens/Marks 

condition 

expres-

sion 

false 

reStartTokens/ 

reStartMarks 
When the reStart condi-

tion is fulfilled, the mark-

ing is set to reStartTo-

kens/Marks 

scalar 0 

The input of enabling probabilities as vector is 

demonstrated by Figure 11. Place P1 is connected to 

the transitions T1, T2, and T3 and the connection to 

T1 is indexed by 1, the connection to T2 is indexed 

by 2, and the connection to T3 is indexed by 3. Thus, 

the corresponding connect-equations are 

connect(P1.outTransition[1], 
T1.inPlaces[1]); 

connect(P1.outTransition[2], 
T2.inPlaces[1]); 

connect(P1.outTransition[3], 
T3.inPlaces[1]); 

The enabling probabilities 0.3 for T1, 0.25 for T2, 

and 0.45 for T3 have to be entered by the parameter 

vector 
enablingProbOut={0.3,0.25,0.45}. 

PlaceOut

PlaceInTransitionIn

TransitionOut
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Figure 11: Input of enabling probabilities. 

The main process in the place model is the recal-

culation of the marking after firing a connected tran-

sition. In the case of the discrete place model, this is 

realized by the discrete equation 

when tokeninout or pre(reStart) then 
  t=if tokeninout then pre(t)+ 

      firingSumIn - firingSumOut else 

      reStartTokens; 

end when; 

whereby pre(t) accesses the marking t immediate-

ly before the transitions fire. To this amount, the arc 

weight sum of all firing input transitions is added 

and the arc weight sum of all firing output transitions 

is subtracted from it. Additionally, the tokens are 

reset to reStartTokens when the user-defined 

condition reStart becomes true. 

The marking of continuous places can change 

continuously as well as discretely. This is imple-

mented by the following construct 

der(t)=conMarkChange; 
when disMarksInOut then 
   reinit(t,t+disMarkChange); 
end when; 
when reStart then 
   reinit(t,reStartMarks); 
end when; 

whereby the der-operator access the derivative of 

the marking t  according to time. The continuous 

mark change is performed by a differential equation 

while the discrete mark change is performed by the 

reinit-operator within a discrete equation. This 

operator causes a re-initialization of the continuous 

marking every time when a connected discrete tran-

sition fires. Additionally, the marking is re-initialized 

by reStartMarks when the condition reStart 

becomes true. 

3.3 Transitions 

The parameters of transitions are summarized in Ta-

ble 2. Thereby, it has to be distinguished between the 

following input types: scalar, vector, scalar function, 

vector function, and condition expression. The input 

of arc weights as vectors in the transition model and 

not at the respective arcs is necessary due to the fact 

that connections cannot be provided with properties 

according to the Modelica Specification 3.2. 

Table 2: Parameters and modification possibilities of dis-

crete (d), stochastic (s), and continuous (c) transitions 

Name 

Description 

Type Part 

of 

Default 

Allowed 
delay 

Delay of timed 

transitions 

scalar d 1 

non-negative 

real values 
h 

Hazard function 

to determine the 

characteristic 

value of exponen-

tial distribution 

scalar or 

scalar 

function 

s 1 

non-negative 

real values 

maximumSpeed 

Maximum speed 
scalar or 

scalar 

function 

c 1 

non-negative 

real values 
arcWeightIn 

Weights of input 

arcs 

vector or 

vector 

function 

d,s,c 1 

non-negative 

integers (d,s), 
non-negative 

real values (c) 
arcWeightOut 

Weights of output 

arcs 

vector or 

vector 

function 

d,s,c 1 

non-negative 

integers (d,s), 
non-negative 

real values (c) 
firingCon 

Firing condition 
condition 

expression 

d,s,c true 

Boolean con-

dition expres-

sion 

The input is demonstrated by the following ex-

amples. Figure 12 shows a discrete Petri net. The 

indices of the connections are written at the arcs 

within square brackets, e.g. the connection     

    has the input index [1] and         has the 

output index [3]. The input of the arc weights dis-

played after the indices to property dialog or as mod-

ification equation is performed by the vector func-

tions  

arcWeightIn = {2*P1.t,4} and  

arcWeightOut = {2,1,5*P1.t},  

whereby the expression P1.t  accesses the current 

marking of P1. Thus, the weights of the arcs 

        and         are functions which de-

pend on the marking of P1. 

 
Figure 12: Input of arc weights. 
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Transitions can also be provided with additional 

conditions that have to be satisfied to permit the ac-

tivation. The condition 
firingCon = time>9.7  

causes that the transition cannot be activated as long 

as time is less than 9.7.  

Figure 13 shows two continuous Petri nets. Transi-

tion T1 has a maximum speed function which de-

pends on the makings of P1 and P2. The input of this 

function to the property dialog or as modification 

equation is performed by the expression 

maximumSpeed = 0.75*P1.t*P2.t, 

whereby P1.t and P2.t accesses the marks of P1 

and P2, respectively. Transition T2 has a maximum 

speed function that depends on time and can be en-

tered by the expression  

maximumSpeed = if time<=6.5 then 2.6 
               else 1.7. 

 
Figure 13: Input of maximum speed functions. 

Based on the current markings of the places, it is 

checked in the transition model by an algorithmic 

procedure if the transition can become active. Dis-

crete transitions wait then as long as the delay is 

passed and stochastic transitions wait till the next 

putative firing time is reached. Based on this infor-

mation, the places enable some of the active transi-

tion to fire. At this point, several conflicts can occur 

which have to be resolved appropriately by the 

methods mentioned in [8] to get a successful and 

reliable simulation. When a transition is enabled by 

all its connected places, it is firable and reports this 

via the connector variable fire to the connected plac-

es. The places recalculate then their markings based 

on this information. 

3.4 Arcs 

xHPNs comprise four different kinds of arcs: normal, 

test, inhibitor, and read arc. The Modelica language 

do not support the assignment of properties to arcs 

that are generated by connect equations. Due to that 

fact, test, inhibitor, and read arcs are realized by 

component models which are interposed between 

places and transitions (see Figure 14); the normal arc 

is simply generated by the connect equation. Test 

and inhibitor arc can be normal arcs simultaneously.  

 

Figure 14: Modeling of normal (top left), test (bottom 

left), inhibitor (top right), and read arcs (bottom right) 

with the PNlib. 

Table 3: Parameters and modification possibilities of test 

and inhibitor arcs (read arcs have no parameters) 

Name 

Description 

Type Default 

Allowed 
testValue 

The marking of the place 

must be greater to enable 

firing of transitions (test 

arc); 

the marking of the place 

must be smaller to enable 

firing (inhibitor arc). 

scalar 1 

non-negative inte-

gers if connected 

to discrete places, 

non-negative real 

values otherwise 

normalArc 

If yes is chosen, then the 

arc is also a normal arc to 

change the marking by 

firing (called double 

arc). 

choice/ 

scalar 

no 

no or yes 

4 Animation and Connection to 

Matlab/Simulink 

A possibility to represent the simulation results of an 

xHPN model is an animation. Thereby, several set-

tings can be made in the property dialog of the set-

tings-box. These settings are global and, thus, affect 

all components of the Petri net model. By using the 

prefixes inner and outer, it is achieved that the set-

tings are common to all Petri net components of a 

model. An animation offers a way to analyze the 

marking evolutions of large and complex xHPNs. 

Figure 15 shows four selected points in time of the 

animation of an xHPN example. All display and an-

imation options are realized with the DynamicSe-

lect annotation. 

To simulate the established xHPN model several 

times with different parameter settings and use the 

arising simulation results for parameter estimation, 

sensitivity analysis, deterministic and stochastic hy-

brid simulation, or process optimization [8], the 

Modelica models in Dymola are connected to 
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Matlab/Simulink. This is realized with the aid of a 

Dymola interface in Simulink and a set of Matlab m-

files utilities [9]. 
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Figure 15: Animation of an xHPN model. 

All markings which should be available in Matlab 

have to be declared with the prefix output on the 

highest level. This is achieved by creating a connect-

or of the output connector at the top of the place 

icon. In the case of discrete places it is an orange 

IntegerOutput connector and in the case of con-

tinuous places it is a blue RealOutput connector. In 

Figure 15 the markings of   ,   ,   , and    are 

available in Matlab. 

5 Application 

The PNlib is so powerful but also so universal and 

generic that it is an ideal all-round-tool for model-

ing and simulation of nearly all kinds of processes, 

such as business processes, production processes, 

logistic processes, work flows, traffic flows, data 

flows, multi-processor systems, communication pro-

tocols, and functional principals. This section gives 

an overview of the different application fields using 

the PNlib. Three selected examples 

 Modeling a Senseo coffee machine, 

 Modeling a printing process, and 

 Modeling a business process 

are part of the PNlib and should demonstrate the 

huge application field. Additionally, the application 

of the PNlib for modeling biological processes is 

shown in [10]. 

 

 

 

 

Figure 16: Hierarchical model of a Senseo coffee machine and simulation results. 

A model of a Senseo coffee machine is presented. The 

main feature of a Senseo coffee machine is that the coffee 

is placed in the machine in a pre-portioned form by so-

called coffee pads. One pad is generally used to make one 

cup of coffee (125°ml) and two pads reach for two cups at 

125 ml or one big cup at 250 ml. After a warm-up time of 

about 60 seconds and the insertion of a coffee pad, the 

coffee can be made. In this warm-up phase, the water is 

heated at 90°C and then pressed with a pressure of about 

1.4 bar within 40 seconds through the pad. In contrast to a 

normal coffee machine that boils the water continuously 

and transports it by its own buoyancy (hot bubbles) up 

into the filter, the Senseo machine heats a portion of water 

completely in a heating chamber and pumps it then 

through the pad. To ensure that the heating chamber in the 

machine is always filled with water, a float is placed in the 
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removable water tank which allows measuring the mini-

mal capacity. If the minimum level is exceeded, the heater 

is turned off. If there is sufficient water level, the next 

portion of water is heated directly after the scalding and 

filling. These functional principles are represented by the 

hierarchically structured model shown in  

Figure 16 and also some simulation results. Addi-

tionally, a detailed description of the model can be 

found in the PNlib. 

The applicability of the PNlib for modeling pro-

duction processes is shown by a model of a printing 

process. It is also modeled hierarchically to provide a 

compact and clear view on the highest level contain-

ing all important facts (see Figure 17). The process 

starts with paper on a role and ends with printed leaf-

lets for supermarkets. During the process, misprints, 

also called maculation, could occur due to several 

reasons. If the worker at the printing machine detects 

these misprints, he presses a button and all incorrect 

exemplars are transferred outward. When the macu-

lation is over, he presses the button again and the 

process is continued. With the help of this model 

several new insights can be detected, e.g. 

 How and when maculation occurs? What are the 

causes and how can maculation be prevented? 

 How much paper is need for the particular order? 

 How long does the order take? … 

Orders

2

Exemplars

31887

Maculation

9623

Paper

49812

Duration

7223

Stop/Start

Maculation Press

maculation

2706

exemplars

21045

orders

2
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11045

 paper

28500

duration

5651

 
Figure 17: Model of a printing process on the highest lev-

el. 

The PNlib can also be used for modeling and simu-

lating business processes. A business processes de-

scribes a sequence of activities or tasks which have 

to be carry out in order to achieve a particular busi-

ness goal e.g. a service or product for a particular 

customer. Figure 18 shows a small part of a business 

process model. The major advantages of this ap-

proach are (1) the hierarchical structure, which pro-

vides a compact and clear view of the processes on 

the highest level, and (2) the simulation and anima-

tion option which enable analyzing and optimizing 

of the processes. A possible question may arise in 

this juncture is, how much employees are needed to 

accomplish the requests and orders of the customers 

or simple how the profit can be maximized. All ques-

tions of this kind can be answered by simulating the 

model with different parameter settings. 
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Figure 18: Part of a business process model. 

6 Conclusions 

A powerful Petri net environment has been devel-

oped for graphical hierarchical modeling and hybrid 

simulation as well as animation of processes from 

most different application fields. Thereby, the math-

ematical modeling concept xHPN serves as specifi-

cation for performing a hybrid simulation. The 

xHPN elements are modeled object-oriented by dis-

crete, differential, and algebraic equations in the 

Modelica language. This allows an easy way to 

maintain, extend, and modify the components. 

Moreover, the connection to Matlab/Simulink of-

fers the whole Matlab power for post-processing the 

simulation results of Modelica models. The Matlab-

based tool AMMod (Analysis of Modelica Models) 

provides already several mathematical methods for 

data pre-processing, relationship analysis, parameter 

estimation, sensitivity analysis, deterministic and 

stochastic hybrid simulation, and process optimiza-

tion [10]. 

The application of the new Petri net simulation 

environment has been demonstrated by a model of a 

Senseo coffee machine, a model of a printing pro-

cess, and a model of a business process. All models 

show the applicability of the xHPN formalism as 

well as graphical hierarchical modeling and hybrid 

simulation with the PNlib.  

A future goal is to provide an open source Petri-

net simulation tool. This demands a further devel-

opment of the open source Modelica-tool OpenMod-
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elica to get the PNlib work with it because some 

Modelica features are not supported so far. 

Moreover, the xHPN formalism as well as the 

PNlib will be extended by fuzzy logic (e.g. [11]) and 

the color concept (e.g. [12]) to enhance the range of 

application fields further. 

Furthermore, the PNlib is already connected to 

VANESA, an open source tool for visualization and 

analysis of networks, in order to enable modeling, 

editing, visualization, and animation of xHPN mod-

els by an easy-to-use interface [13]. This connection 

will be further improved. 
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Abstract 

Many fluids used today in different applications 
show a non-Newtonian behavior. In order to simulate 
this behavior, many different approaches exist but 
are not fully implemented in a simulation program. 
One of the problems with these kinds of simulations 
is the lack of compatibility with existing models. 
This makes the modeling very time consuming. 
In this paper, a simple approach is shown that pro-
vides a general set of equations which can then be 
used to model both Newtonian as well as non-
Newtonian behavior of fluids in the same model in 
Modelica. Since the implementation is in base mod-
els, existing components can easily be used to simu-
late non Newtonian fluids without sacrificing simula-
tion times. 

Keywords: Non-Newtonian; Medium Model; Pres-
sure Drop 

1 Introduction 

In many applications such as food industries, resi-
dential heating and cooling systems, some power 
plants as well as other energy systems, a non-
Newtonian fluid is chosen as the working fluid. The 
non-Newtonian behavior has a great influence on 
both flow as well as heat transfer properties of the 
fluid; therefore, for simulation of such systems, it is 
necessary to have compatible models and compo-
nents with this type of fluids. 

2 Theory 

2.1 The Governing Equations 

Non-Newtonian fluids are fluids in which the viscos-
ity changes with respect to the applied stress. Ac-
cording to the correlation between the shear stress 
and shear rate, fluids can be divided into different 
categories (see Figure 1). 

 
Figure 1: Fluid classification according to shear rate 
and shear stress 

Many available fluids can fully or partly be de-
scribed by Ostwald-de Waele relationship (Power-
law fluids) shown in equation (1). 

 𝜏 = 𝐾𝛾̇𝑛 (1) 

where 
𝜏  : Shear stress [Pa] 
𝐾  : Flow consistency index [Pa.sn] 
𝛾̇  : Shear rate [s-1] 
𝑛  : Flow behavior index 

Flow behavior index “n” as well as flow consistency 
index “K” are among the properties of the fluid and 
are considered constant at a given temperature. 

By “n” equal 1, the Ostwald-de Waele relationship 
describes Newtonian fluid behavior. For n<1, Pseu-
doplastic fluids and for n>1 Dilatant fluids can be 
described. 

2.2 Pressure Drop 

For the calculation of the pressure drop in a pipe, 
when the mass flow rate is known, the dimensionless 
Darcy friction factor “λ” as well as physical 
parameters of the pipe are used according to equation 
(2) [1]. 
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 ∆𝑝 = 𝜆 ∙
𝑙
𝐷
∙
𝜌 ∙ 𝑣2

2
 (2) 

where 
∆𝑝  : Pressure drop [Pa] 
𝜆  : Darcy friction factor 
𝑙  : Length of the pipe [m] 
𝐷  : Diameter of the pipe [m] 
𝜌  : Density of the fluid [kg/m3] 
𝑣  : Flow velocity [m/s] 

In order to calculate the Darcy friction factor, a 
Fanning friction factor “𝑓” has been introduced by 
[2] and is shown in equation (3): 

 𝑓 =
𝜆
4

 (3) 

The Fanning friction factor for the laminar region 
can be calculated from equation (4) and for turbulent 
region from equations (5) and (6) where “𝑅𝑒” corre-
sponds to the Reynolds number. [2, 3, 4] 

 𝑓 =
16
𝑅𝑒

 (4) 

 𝑓 = 0.0014 +
0.125
𝑅𝑒0.32 (5) 

 𝑓 =
0.0791
√𝑅𝑒4  (6) 

2.3 Reynolds Number 

In order to calculate the Reynolds number for Power-
law fluids, [2] also introduces the general Reynolds 
number in equation (7). 

 𝑅𝑒 =
𝑣(2−𝑛) ∙ 𝐷𝑛 ∙ 𝜌

𝛾
 (7) 

where 
 𝛾 = 𝐾′ ∙ 8𝑛−1 (8) 

and  

 𝐾′ = 𝐾 �
3𝑛 + 1

4𝑛
�
𝑛

 (9) 

Note that using n=1, the Reynolds number can be 
simplified to the Reynolds number in Newtonian 
fluids as in equation (10). 

 𝑅𝑒 =
𝜐 ∙ 𝐷 ∙ 𝜌

𝜇
 (10) 

Depending on the fluid, the turbulent region can start 
from Reynolds number between 4000 up to 70,000. 
On the other hand, the boundary Reynolds number 
between the laminar and the transitional region can 
be calculated according to [5] using equation (11). 

 𝑅𝑒𝑙𝑎𝑚 =
6464𝑛

(3𝑛 + 1)2 ∙
(2 + 𝑛)�

2+𝑛
1+𝑛� (11) 

3 Implementation in Modelica 

3.1 Existing Flow Models 

In Newtonian fluids, the viscosity does not depend 
on the applied stress or in other words the volume 
flow rate; hence, it can be calculated within the me-
dium model using just the base properties of the fluid 
such as the pressure and the temperature. 

In existing models in Modelica standard library, at 
each calculation step, the viscosity of the fluid is cal-
culated within the medium model. This is then used 
to estimate the Reynolds number according to equa-
tion (10). By knowing the Reynolds number, the 
flow region can be chosen and the governing equa-
tions for that region are used to calculate the Darcy 
friction factor and then the pressure drop. 

Note that since Reynolds number is a function of 
velocity, the procedure mentioned above is only val-
id when the velocity is known by knowing either the 
mass flow rate or the volume flow rate and the ge-
ometry of the pipe. For this reason, a new set of 
equations are also implemented to calculate the mass 
flow rate in a pipe when the pressure difference be-
tween two pints is the known variable. 

This is helpful for many hydraulic components such 
as pumps which produce a certain pressure differ-
ence and the result will be the flow of the medium; 
therefore, in order to be able to simulate the flow of 
the medium properly, it is also necessary to be able 
to calculate the mass flow rate from the pressure 
drop. 

In this procedure, a second friction factor “λ2” is in-
troduced which is independent of the velocity and is 
shown in equation (12). 

 𝜆2 =
2 ∙ 𝐷3 ∙ 𝜌
𝑙 ∙ 𝜇

∙ ∆𝑝 (12) 

Using the second friction factor, the Reynolds num-
ber can be estimated by the Reynolds number equa-
tion for the laminar region and be corrected if the 
estimation result falls above the turbulent boundary 
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using the equations governing the turbulent region. 
The velocity and the mass flow rate are then calcu-
lated using the Reynolds equation. 

3.2 Non-Newtonian Medium Model 

Since the viscosity of Non-Newtonian fluids cannot 
be calculated using only the base properties, the 
main calculation should be in the flow model. In or-
der to correlate flow model and medium model with 
the smallest change possible, an extra function is 
required in the “Partial Medium Model”. This func-
tion will describe the flow behavior index “n” and is 
written as follow: 

replaceable partial function flowBehaviorIndex 
  extends Modelica.Icons.Function; 
  input ThermodynamicState state "thermodynamic state record"; 
  output Real n "flow behavior index"; 
end flowBehaviorIndex; 

Since the flow behavior index is only a function of 
the states of the fluid such as the temperature, it can 
be defined and calculated in the medium model. By 
adding this partial function for the definition of the 
flow behavior index in the base medium model, im-
plementing the governing equations or tables for all 
the fluid models is made possible. 

In case the fluid is a Newtonian fluid such as water, 
the flow behavior index should be set to the constant 
number of “1”. 

By comparing equations (7), (8) and (10) it can be 
seen that having n=1, the coefficient 𝐾′ is equal the 
dynamic viscosity “𝜇”. This means that the “dynam-
icViscosity” function in the partial medium model 
can also be used to calculate the consistency 
dex 𝐾′. Like the flow behavior index, the consistency 
index does only depend on the base properties of the 
fluid and not the flow parameters. Therefore it can 
also be calculated in the medium model. 

3.3 Non-Newtonian Flow Models 

Having the flow behavior and consistency indices 
from the medium model, the Reynolds number can 
be calculated when the volume flow rate is known 
using the general Reynolds number shown in equa-
tion (7). Using the Reynolds number, the fanning 
friction factor can be calculated using equation (4) 
for the laminar region and equation (6) for the turbu-
lent region. The pressure drop is then calculated with 
the help of equations (2) and (3). 
 

For the transitional region between laminar and tur-
bulent, the laminar region is connected to the turbu-
lent region using a cubic Hermite spline. 

As already discussed in the existing flow models, it 
is necessary to have a function for calculation of 
mass flow with respect to pressure difference in the 
system. Since pressure drop as well as Reynolds 
number and hence the Darcy friction factor are a 
function of velocity which is derived from the mass 
flow rate, here is also not possible to use the general 
Reynolds number and Darcy friction factor directly 
for these calculations. To solve the problem, a varia-
ble which is independent of velocity is introduced in 
equation (13) and is called the modified Darcy fric-
tion factor “𝜆𝑚”. 

 𝜆𝑚 = 𝜆 ∙ 𝑅𝑒�
2

2−𝑛� (13) 

Combining equations (2), (7) and (13), the modified 
Darcy friction factor can be calculated as follow: 

 𝜆𝑚 =
2 ∙ 𝐷�

2+𝑛
2−𝑛� ∙ 𝜌�

𝑛
2−𝑛�

𝑙 ∙ 𝛾�
2

2−𝑛�
∙ ∆𝑝 (14) 

By having a flow behavior index of “1” as for New-
tonian fluids, the modified Darcy friction factor is 
reduced to equation (12). 

When the modified Darcy friction factor is known, 
the Reynolds number can be calculated under the 
assumption that the flow is laminar using equation 
(15) achieved from equations (3), (4) and (13). 

 𝑅𝑒 = �
𝜆𝑚
64
�
�2−𝑛𝑛 �

 (15) 

If the calculated Reynolds number according to 
equation (15) is greater than the turbulent Reynolds 
number, then the Reynolds number is calculated for 
the turbulent region using equation (16) derived from 
equations (3), (6) and (13). 

 𝑅𝑒 = �
0.3164
𝜆𝑚

�
4�𝑛−2𝑛+6�

 (16) 

 
By knowing the Reynolds number, the mass flow 
rate can be calculated as follow: 
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 𝑚̇ =  �
�𝜋4�

2−𝑛
∙ 𝛾 ∙ 𝑅𝑒

𝐷3𝑛−4 ∙ 𝜌𝑛−1
�

1
2−𝑛

 (17) 

The transitional region here is also generated by a 
cubic Hermite spline as before. 

4 Simulation Results 

The specified functions are directly implemented in 
the “detailed wall friction model”. The model is test-
ed for a Paraffin-Water dispersion shown in Figure 2 
with 30% paraffin dispersed in water. The fluid 
shows a pseudoplastic behavior. The dispersed paraf-
fin goes through a phase change at a certain tempera-
ture which not only affects the thermal properties but 
also the flow properties of the fluid. 

 
Figure 2: Paraffin-Water dispersion used as working 
fluid in energy systems 

The measured flow behavior and consistency indices 
at different temperatures for the Paraffin-Water dis-
persion are shown in Figure 3 and are implemented 
in the medium model. 

 
Figure 3: Measured flow behavior and consistency 
indices for Paraffin-Water dispersion1 

                                                      
1 Data provided by Fraunhofer UMSICHT 

To calculate the pressure drop from a known mass 
flow rate, Paraffin-Water dispersion model at 22°C, 
with n=0.5889 and K=0.1877, is used in a simple 
simulation model (consisting of a pipe with a length 
of 1 m and diameter of 0.05 m. The results are 
shown in Figure 4. 

 
Figure 4: Pressure drop of Paraffin-Water dispersion 
with respect to mass flow rate 

The mass flow rate is then calculated in a simple 
simulation model when the pressure difference is 
known for a pipe with 1 m length and 0.05 m diame-
ter and is shown in Figure 5. 

 

 
Figure 5: Mass flow rate of Paraffin-Water disper-
sion with respect to pressure drop  

Since the model can be used for all the fluids gov-
erned by Ostwald-de Waele relationship, the pres-
sure drop is compared for simulations with 3 differ-
ent flow behavior indices and is shown in Figure 6. 
The closer the behavior index to 1 is, the closer the 
fluid behaves as a Newtonian fluid. 
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Figure 6: Comparison between different pressure-
drops in fluids with different flow behavior indices 

4.1 Compatibility 

In all the equations described for the non-Newtonian 
flow, the equations for the Newtonian fluids are de-
rived when the flow behavior index is set to “1”,. 
These are the exact equations which are already im-
plemented in the wall friction model in Modelica 
standard library. Therefore, the same flow model can 
be used for all the existing medium models in all 
existing components without any compatibility is-
sues. 

Since the non-Newtonian flow model is an extension 
to the available flow model in Modelica 3.2, it is also 
compatible with the entire fluid library. This will 
omit the need to design new components just for 
non-Newtonian systems. 

4.2 Simulation Times 

To substitute the existing model for the general flow 
model, it is important to maintain the fast simulation 
speed. Therefore, a simple dynamic simulation is 
done using Paraffin-Water dispersion and water with 
the general model described in this paper and is 
compared to the same simulation setup using water 
and the existing flow models. The CPU times are 
compared in Table 1. 

Table 1: CPU Time comparison between different 
models and fluids 

CPU Time 
Modified Model Existing Model 

Dispersion Water Water 
0.106 s 0.109 s 0.105 s 

It can be seen that although more complicated equa-
tions are used, the solving time stays almost in the 
same range. This will result in simulation times 

which are almost the same as in existing flow models 
in Modelica. 

5 Conclusions 

There are many applications for simulating the be-
havior of non-Newtonian fluids such as food pro-
cessing plants and energy distribution systems. 

In order to implement the non-Newtonian behavior, 
an extra function is added to the base medium model. 
This function describes the flow behavior index of a 
fluid and enables the interaction between the medi-
um model and the flow model. The flow behavior 
index corresponds to the degree of non-Newtonian 
behavior of each fluid. Having the necessary interac-
tion between the models, more general equations 
regarding pressure drops in the system can be im-
plemented. These equations contain both the Newto-
nian as well as non-Newtonian behavior of a fluid.  

Since the changes are in the base models, any other 
component that uses the model directly or indirectly 
can be used for the simulation of both Newtonian 
and non-Newtonian fluids without any additional 
changes and compatibility issues. 

Using the flow behavior index, the non-Newtonian 
behavior of fluids can later be expanded to the heat 
transfer properties of fluids in the Modelica thermal 
libraries. 
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Abstract
HelmholtzMedia is a library for the calculation of fluid
properties. It is implemented in Modelica and pub-
lished under the Modelica license. All thermodynamic
state properties and their partial derivatives are calcu-
lated from a Helmholtz energy equation of state. Fur-
ther properties that can be calculated include surface
tension, viscosity and thermal conductivity.

Keywords: thermodynamic properties, Helmholtz
energy, surface tension, viscosity, thermal conductiv-
ity

1 Introduction
For the simulation and design of power or refrigera-
tion cycles, accurate properties of the working fluid
are indispensable. Themost accurate equations of state
(EoS) available today for a variety of working fluids are
fundamental EoS in terms of Helmholtz energy. From
such EoS all thermodynamic state properties, like pres-
sure 𝑝 or specific entropy 𝑠, as well as all partial deriva-
tives of thermodynamic state variables can be calcu-
lated.

Further properties of interest are surface tension,
viscosity and thermal conductivity. For each of these
properties an independent correlation is necessary.

Both the Helmholtz energy EoS as well as correla-
tions for additional properties have been implemented
in the HelmholtzMedia library. Details of the imple-
mentation are given in the following text.

2 Helmholtz energy fundamental
equation of state

A historical overview over the development of fun-
damental EoS in general is given by [2](in German),
an overview over the functional form used today by
almost all Helmholtz EoS is given by [8]. The inde-
pendent variables of the Helmholtz EoS are temper-
ature 𝑇 and specific volume 𝑣 or density 𝜚. Both
are non-dimensionalised by their critical values. The

Helmholtz energy 𝑓 is non-dimensionalised by the
specific gas constant 𝑅 and the temperature 𝑇 and split
up into an ideal gas part 𝛼0 and a residual part 𝛼r . This
allows for developing a functional form for the two
parts independently.

𝜏 = 𝑇c
𝑇 , 𝛿 = 𝑣c

𝑣 = 𝜚
𝜚c

, 𝛼 = 𝑓
R𝑇 = 𝛼0 + 𝛼r

The functional form for the description of the ideal
part of the Helmholtz energy results from the thermal
equation of state of the ideal gas and a two-fold inte-
gration of the heat capacity of the ideal gas. The heat
capacity of the ideal gas can be described by polynom-
inal terms, by so-called Planck-Einstein terms or by
a combination of the two. Alternatively, hyperbolic
functions can be used, but these have not been imple-
mented so far.

𝛼0(𝛿, 𝜏) = log (𝛿)

+
𝑖=𝑛𝐿

𝑖්=1
𝑙[𝑖,1] log බ𝜏 𝑙[𝑖,2]භ

+
𝑖=𝑛𝑃

𝑖්=1
𝑝[𝑖,1] ⋅ 𝜏𝑝[𝑖,2]

+
𝑖=𝑛𝐸

𝑖්=1
𝑒[𝑖,1] ⋅ log බ1 − exp(𝑒[𝑖,2] ⋅ 𝜏)භ

The functional form for the description of the resid-
ual part of the Helmholtz energy as implemented uses
three groups of terms: polynominal terms, so-called
Benedict-Webb-Rubin terms and Gaussian bell-shaped
terms. For some fluids (e. g. CO2 or water) the func-
tional form contains additional non-analytical terms
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Table 1: Thermodynamic state properties [7]
Property Algorithm

pressure 𝑝 = 𝜚𝑇𝑅 බ1 + 𝛿𝛼r
δභ

entropy 𝑠 = 𝑅 බ𝜏(𝛼0
τ + 𝛼r

τ) − (𝛼0 + 𝛼r)භ
internal energy 𝑢 = 𝑇𝑅 බ𝜏(𝛼0

τ + 𝛼r
τ)භ

enthalpy ℎ = 𝑇𝑅 බ(1 + 𝛿𝛼r
δ) + 𝜏(𝛼0

τ + 𝛼r
τ)භ

Gibbs-energy 𝑔 = 𝑇𝑅 බ1 + (𝛼0 + 𝛼r) + 𝛿𝛼r
δභ

that have not been implemented so far.

𝛼r(𝛿, 𝜏) =
𝑖=𝑛𝑃

𝑖්=1
𝑝[𝑖,1] ⋅ 𝛿𝑝[𝑖,3] ⋅ 𝜏𝑝[𝑖,2]

+
𝑖=𝑛𝐵

𝑖්=1
𝑏[𝑖,1] ⋅ 𝛿𝑏[𝑖,3] ⋅ 𝜏𝑏[𝑖,2] ⋅ exp බ−𝛿𝑏[𝑖,4]භ

+
𝑖=𝑛𝐺

𝑖්=1
𝑔[𝑖,1] ⋅ 𝛿𝑔[𝑖,3] ⋅ 𝜏𝑔[𝑖,2] ⋅ exp [

𝑔[𝑖,6] ⋅ (𝛿 − 𝑔[𝑖,9])2

+𝑔[𝑖,7] ⋅ (𝜏 − 𝑔[𝑖,8])2භ

A short discussion of all terms is given in [13, Section
5], a very comprehensive discussion is given in [7]. The
parameters of the two contributions to the Helmholtz
energy are then fitted to experimental data for each
fluid. Details on the fitting procedure can be found
in [7].

Once the functional form and values for the param-
eters are known, all state properties can be calculated
as simple combinations of the partial derivatives of the
Helmholtz energy1. Algorithms for the calculation of
the state properties are given in [7], an extract is re-
peated in Table 1.

In addition to the state properties, the partial
derivaties of state properties are often needed in engi-
neering applications, for example specific heat capaci-

1The partial derivatives of the Helmholtz energy are abbrevi-
ated as follows:

𝛼0
τ = ว

𝜕𝛼0

𝜕𝜏 ศ𝛿
, 𝛼0

ττ = ว
𝜕2𝛼0

𝜕𝜏2 ศ𝛿
, 𝛼0

τδ = ว
𝜕2𝛼0

𝜕𝜏𝜕𝛿 ศ

𝛼0
δ = ว

𝜕𝛼0

𝜕𝛿 ศ𝜏
, 𝛼0

δδ = ว
𝜕2𝛼0

𝜕𝛿2 ศ𝜏

𝛼r
τ = ว

𝜕𝛼r

𝜕𝜏 ศ𝛿
, 𝛼r

ττ = ว
𝜕2𝛼r

𝜕𝜏2 ศ𝛿
, 𝛼r

τδ = ว
𝜕2𝛼r

𝜕𝜏𝜕𝛿 ศ

𝛼r
δ = ว

𝜕𝛼r

𝜕𝛿 ศ𝜏
, 𝛼r

δδ = ว
𝜕2𝛼r

𝜕𝛿2 ศ𝜏

Table 2: Partial derivatives of state properties [10]
Property Algorithm

ว
𝜕𝑝
𝜕𝜚ศ𝑇

= 𝑇𝑅 බ1 + 2𝛿𝛼r
δ + 𝛿2𝛼r

δδභ

ว
𝜕𝑝
𝜕𝑇 ศ𝜚

= 𝜚𝑅 බ1 + 𝛿𝛼r
δ − 𝛿𝜏𝛼r

τδභ

ว
𝜕𝑠
𝜕𝜚ศ𝑇

= 𝑅
𝜚 බ−(1 + 𝛿𝛼r

δ) + 𝜏𝛿𝛼r
τδභ

෷
𝜕𝑠
𝜕𝑇 ෸𝜚

= 𝑅
𝑇 බ−𝜏2(𝛼0

ττ + 𝛼r
ττ)භ

ว
𝜕𝑢
𝜕𝜚ศ𝑇

= 𝑇𝑅
𝜚 බ𝜏𝛿𝛼r

τδභ

෷
𝜕𝑢
𝜕𝑇 ෸𝜚

= 𝑅 බ−𝜏2(𝛼0
ττ + 𝛼r

ττ)භ

ว
𝜕ℎ
𝜕𝜚 ศ𝑇

= 𝑇𝑅
𝜚 බ𝜏𝛿𝛼r

τδ + 𝛿𝛼r
δ + 𝛿2𝛼r

δδභ

෷
𝜕ℎ
𝜕𝑇 ෸𝜚

= 𝑅 බ1 − 𝜏2(𝛼0
ττ + 𝛼r

ττ)
+𝛿𝛼r

δ − 𝜏𝛿𝛼r
τδභ

ว
𝜕𝑔
𝜕𝜚ศ𝑇

= 𝑇𝑅
𝜚 බ1 + 2𝛿𝛼r

δ + 𝛿2𝛼r
δδභ

ว
𝜕𝑔
𝜕𝑇 ศ𝜚

= 𝑅 බ(𝛼0 + 𝛼r) + (1 + 𝛿𝛼r
δ)

−𝜏(𝛼0
τ + 𝛼r

τ) − 𝜏𝛿𝛼r
τδභ

ties, the thermal expansion coefficient 𝛽, or the isother-
mal compressibility 𝜅. Any partial derivative can be
calculated in a two-step procedure: First, the partial
derivatives with respect to temperature and density, the
independent variables of the EoS, are formed. These
are given in [10] and repeated in Table 2. Second, all
further derivatives with respect to arbitrary state prop-
erties can then be transformed into simple combina-
tions of the partial derivatives with respect to temper-
ature and density, using the rules for Jacobian matrix
transformations.

For example, the partial derivatives of density with
respect to pressure and enthalpy, which are helpful for
transient simulation of power cycles, can be expressed
as

ว
𝜕𝜚
𝜕𝑝ศℎ

=
๙ว

𝜕𝑝
𝜕𝜚ศ𝑇

− ว
𝜕𝑝
𝜕𝑇 ศ𝜚 ว

𝜕ℎ
𝜕𝜚 ศ𝑇

෷
𝜕ℎ
𝜕𝑇 ෸

−1

𝜚 ๚

−1
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and

ว
𝜕𝜚
𝜕ℎศ𝑝

=
๙ว

𝜕ℎ
𝜕𝜚 ศ𝑇

− ෷
𝜕ℎ
𝜕𝑇 ෸𝜚 ว

𝜕𝑝
𝜕𝜚ศ𝑇 ว

𝜕𝑝
𝜕𝑇 ศ

−1

𝜚 ๚

−1

.

More examples are given in [10].

3 Vapor-liquid equilibrium and two-
phase state

The vapour-liquid equilibrium (VLE) of a pure fluid is
characterized by three conditions:

thermal equilibrium: Δ𝑇 = (𝑇 າ − 𝑇 ຳ) = 0
mechanical equilibrium: Δ𝑝 = (𝑝າ − 𝑝ຳ) = 0

chemical equilibrium: Δ𝑔 = (𝑔າ − 𝑔ຳ) = 0.

For a given temperature 𝑇 the equilibrium state can
be determined by simultaneously solving the equation
for mechanical and chemical equilibrium. Using the
relations from Table 1 the mechanical equilibrium can
be rewritten as

Δ𝑝 = 𝜚າR බ1 + 𝛿າ𝛼r
δ(𝛿າ, 𝜏)භ

− 𝜚ຳR බ1 + 𝛿ຳ𝛼r
δ(𝛿ຳ, 𝜏)භ = 0

and the chemical equilibrium as

Δ𝑔 = 𝑇R බ1 + 𝛼0(𝛿າ, 𝜏) + 𝛼r(𝛿າ, 𝜏) + 𝛿າ𝛼r
δ(𝛿າ, 𝜏)භ

− 𝑇R බ1 + 𝛼0(𝛿ຳ, 𝜏) + 𝛼r(𝛿ຳ, 𝜏) + 𝛿ຳ𝛼r
δ(𝛿ຳ, 𝜏)භ = 0

resulting in two equations with 𝜚າ and 𝜚ຳ as two un-
knowns. These two equations can be simplified by
canceling out the constant and purely temperature-
dependent parts and then be solved simoultaneously
using a Newton-Raphson algorithm as described in [1].
A simplified flowchart for this algorithm is shown in
Figure 1. The actual implementation uses dimension-
less, scaled variables and gradients.

Once the VLE and the respective saturation states
are known, all state properties can be calculated using
the vapour mass fraction 𝑥. It is defined as

𝑥 = 𝑚ຳ

𝑚າ + 𝑚ຳ = mass of vapour
mass of liquid + mass of vapour .

Using 𝑚 = 𝑚າ + 𝑚ຳ and 𝑣 = 𝑉/𝑚 this can be re-written
as

𝑥 = 𝑣 − 𝑣າ

𝑣ຳ − 𝑣າ = 1/𝜚 − 1/𝜚າ

1/𝜚ຳ − 1/𝜚າ .

..Specify T.

Guess
𝜚ᄤ and 𝜚"

.

Calculate
Δ𝑝 = 𝑝(𝑇, 𝜚ᄤ) − 𝑝(𝑇, 𝜚")
Δ𝑔 = 𝑔(𝑇, 𝜚ᄤ) − 𝑔(𝑇, 𝜚")

.

Δ𝑝 = 0 and
Δ𝑔 = 0?

.

Calculate better
𝜚ᄤ and 𝜚"
by using

Δ𝑝 and Δ𝑔
and

ึ
𝜕𝑝
𝜕𝜚ื𝑇

and ึ
𝜕𝑔
𝜕𝜚 ื𝑇

.

𝜚ᄤ and 𝜚" found

.

No

.

Yes

Figure 1: Simplified flowchart for finding the vapour-
liquid-equilibrium iteratively, adapted from [1]

Solving for 𝑣 yields

𝑣 = 𝑥𝑣ຳ + (1 − 𝑥)𝑣າ = 𝑣າ + 𝑥(𝑣ຳ − 𝑣າ) .

All other state properties can be calcuted in the same
manner.

In order to calculate the partial derivatives of state
properties within the two-phase region, the derivatives
along the saturation line are needed. The derivatives
of saturation pressure and temperature along the satu-
ration line are given by the Clausius-Clapeyron equa-
tion:

ว
d𝑝σ
d𝑇 ศ = 𝑠ຳ − 𝑠າ

𝑣ຳ − 𝑣າ = 1
𝑇

ℎຳ − ℎາ

𝑣ຳ − 𝑣າ

ว
d𝑇σ
d𝑝 ศ = 𝑣ຳ − 𝑣າ

𝑠ຳ − 𝑠າ = 𝑇 𝑣ຳ − 𝑣າ

ℎຳ − ℎາ .

These derivatives can then be used to calculate arbi-
trary derivatives along the saturation line, and, in a
second step, partial derivaties within the two-phase
state [10].

4 Iterative procedures
So far, it was assumed that temperature 𝑇 and density 𝑑
are known. But the thermodynamic state can as well be
defined by specifying any other combination of two in-
dependent state variables. In engineering applications,
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Figure 2: Simplified flowchart for determination of
density iteration bounds when pressure and tempera-
ture are specified

the known variable combinations often are (𝑝, 𝑇), (𝑝, ℎ)
or (𝑝, 𝑠). When any of these combinations is given, the
corresponding (𝑇, 𝑑) have to be determined iteratively.
Two examples of such iterative procedures are given
below.

4.1 Density as a function of temperature and
pressure

By specifying pressure and temperature, only single-
phase states can be described, because in the two-phase
region pressure and temperature are not independent.
In order to find the density correspondig to the given
pressure in the single-phase region, a residual function
is defined as

𝑅𝐸𝑆(𝜚) = 𝑝 − 𝑝calc(𝜚, 𝑇) .

As 𝑝 = 𝑝(𝜚) is strictly montonic for a given temper-
ature, the residual function is as well strictly mono-
tonic and has one single root. Finding the root of the
residual function is then equal to finding the density
corresponding to the specified pressure. In literature
many algorithms for root finding are known, this li-
brary uses the algorithm byBrent [3]. It is implemented
in theModelica Standard Library as Modelica.Math.
Nonlinear.solveOneNonlinearEquation. The
mandatory input for this algorithm is a residual func-
tion and a lower and upper bound. A flowchart for find-
ing the upper and lower bounds of density is shown in
Figure 2.

Once the density is known, all state properties can
be calculated using the relations given in Table 1 with
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.
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.

Iteratively determine
vapour-liquid equilibrium
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.
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.
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.
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.
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.

𝑝 < 𝑝c

.

ℎ < ℎᄤ

.

ℎᄤ ≤ ℎ ≤ ℎᄥ

.

ℎ > ℎᄥ

.

𝑝 > 𝑝c

Figure 3: Simplified flowchart for determination of
temperature iteration bounds when pressure and en-
thalpy are specified

density and temperature as input. In the following sec-
tion, enthalpy and entropy are needed as a function of
pressure and temperature. These are calculated by first
calculating the density iteratively and then calculating
enthalpy and entropy using temperature and density as
input variables.

4.2 Density and temperature as a function of
pressure and enthalpy

By specifying pressure and specific enthalpy, it is pos-
sible to describe single-phase as well as two-phase
states. If the pressure is below critical pressure, the
first step thus is to determine the vapour-liquid equi-
librium corresponding to the specified pressure. The
algorithm for VLE determination as described in sec-
tion 3 uses temperature as input. When the VLE is to
be determined from a specified pressure, the residual
funtion

𝑅𝐸𝑆(𝑇) = 𝑝 − 𝑝σ,calc(𝑇)

is used. The lower bound and uper bound for the tem-
perature are the triple temperature and the critical tem-
perature. The VLE information is then used to deter-
mine the region and temperature iteration bounds as
shown in Figure 3.

Density and temperature can then be determined us-
ing the Brent algorithm and the residual funtion

𝑅𝐸𝑆(𝑇) = ℎ − ℎcalc(𝑝, 𝑇) ,

where ℎcalc(𝑝, 𝑇) already is an iterative funtion, as de-
scribed earlier.
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5 Ancillary equations
For the determination of the region during the iter-
ative procedures the vapour pressure and the satura-
tion states have to be evaluated. In order to mini-
mize the computational effort, three ancillary equa-
tions are given that are sufficiently precise for a first
region check. Only if the thermodynamic state is very
close to or within the two-phase region the VLE has to
be determined from the EoS for best consistency.

Additionally, the results from the ancillary equations
are used as start values for the iterative determination
of the VLE from the EoS.

5.1 Vapour pressure
The vapour pressure increases sharply with increasing
temperature, as shown in Figure 4. The HelmholtzMe-
dia library uses the vapour pressure equation suggested
by [12]:

ln ว
𝑝σ
𝑝c ศ = 𝑇c

𝑇 ⋅ ් 𝑎𝑖 ว1 − 𝑇
𝑇c ศ

𝑛𝑖
.

This vapour pressure equation can be solved for tem-
perature numerically only.

5.2 Density of saturated liquid and saturated
vapour

Six models are implemented for the saturated density.
These are similar to the models implemented in Ref-
Prop [5]. As before the reduced density 𝛿 and the re-
duced inverse temperature 𝜏 are defined as

𝛿 = 𝜚
𝜚c

𝜏 = 𝑇c
𝑇 .

The reduced density 𝛿 at saturation is calculated in a
two-step procedure:

Θ =
⎧⎪
⎪
⎨
⎪
⎪⎩

ว1 − 𝑇
𝑇c ศ model 1,3 or 5

ว1 − 𝑇
𝑇c ศ

1/3
model 2,4 or 6

and

𝛿 =

⎧⎪
⎪
⎨
⎪
⎪⎩

1 + ් 𝑎𝑖Θ𝑛𝑖 model 1 or 2

exp ෷් 𝑎𝑖Θ𝑛𝑖෸ model 3 or 4

exp ෷𝜏 ් 𝑎𝑖Θ𝑛𝑖෸ model 5 or 6.

Multiplying the reduced density 𝛿 with the critical den-
sity 𝜚c then yields the density 𝜚.

6 Further properties
6.1 Surface Tension
The surface tension 𝜎 between liquid and vapour phase
decreases with saturation temperature approaching the
critical temperature. This is modeled according to [6]:

𝜎 = ් 𝑎𝑖 ว
𝑇c − 𝑇σ

𝑇c ศ
𝑛𝑖

.

6.2 Viscosity
In this library two viscosity models are implemented
that are similar to the models implemented in Ref-
Prop [5]. In both models, the viscosity is split into three
contributions: the dilute gas viscosity 𝜂0, the initial
density viscosity 𝜂1 and the residual viscosity 𝜂r . This
allows for an individual model for each contribution.

𝜂 = 𝜂0(𝑇) + 𝜂1(𝜚, 𝑇) + 𝜂r(𝜚, 𝑇) .

6.3 Thermal conductivity
One thermal conductivity model has been imple-
mented that is similar to the model implemented in
RefProp [5]. The thermal conductivity is split into
three contributions: the dilute gas thermal conductiv-
ity 𝜆0, the residual thermal conductivity 𝜆r and the crit-
ical enhancement contribution 𝜆c. Each contribution is
then individually modeled.

𝜆 = 𝜆0(𝑇) + 𝜆r(𝜚, 𝑇) + 𝜆c(𝜚, 𝑇) .

7 Modelica implementation
This library is compatible to and based on
Modelica.Media [4]. HelmholtzMedia defines a
partial package PartialHelmholtzMedium which
extends from Modelica.Media.Interfaces.
PartialTwoPhaseMedium. All functions available in
the base class are either inherited without modification
or they are modified by implementing a new algorithm.

The Record ThermodynamicState contains den-
sity, temperature, pressure, specific enthalpy, specific
internal energy and specific entropy. Compared to the
base class, specific entropy was added. The Record
SaturationProperties was modified by adding the
states liq and vap.

Where possible, annotation(inverse=…); and
annotation(derivative=…); were used.

For fluids that can be modeled by the implemented
algorithms, adding a new fluid is done by extending
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Figure 4: Vapour pressure as a function of temperature

from PartialHelmholtzMedium and modifying the
parameters for the algorithms. The parameters need to
be copied from the respective publications and saved
in the format used by HelmholtzMedia. RefProp [5]
comes with a comprehensive compilation of these pa-
rameters, so that RefProp licencees could alternatively
copy them from the RefProp fluid files. So far, six
fluids have been implemented: n-Butane, Isobutane,
Isopentane Propane, R134a and Ethanol. The parame-
ters for these six fluids have been copied fromRefProp.

8 Summary and Outlook
The most accurate equations of state (EoS) available
today for a variety of working fluids are fundamental
EoS in terms of Helmholtz energy. The HelmholtzMe-
dia library implements the Helmholtz energy EoS in
a generalized form that makes adding more fluids very
easy. In addition to the equation of state, algorithms for
the calculation of viscosity, thermal conductivity and
surface tension are given, as well as ancillary equations
for saturation properties that speed up iterative proce-
dures. Apart from these ancillary equations, the library
is not optimized for speed.

Possible extensions for future versions include the
addition of non-analytic terms for the residual part of
the Helmholtz energy and hyperbolic terms for the
ideal part of the Helmholtz energy. For viscosity and
thermal conductivity twomore models could be added,
an extended corresponding states model and a model
based on the generalized friction theory.

In order to add accurate EoS for mixtures like the

GERG-2008 model, a template for multi-component
multi-phase media would be necessary. The structure
of Modelica.Media might change in a future version
of the Modelica Standard Library [11].

The library is completely written in Modelica and
released as open-source under the terms of the Model-
ica license. Anybody interested in the library is invited
to contribute; the source code and an issue tracker are
available at [9].
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Abstract

This paper discusses a Modelica library of switching
moving boundary models for two-phase flow heat ex-
changers: evaporators and condensers. The equation-
based object-oriented modeling paradigm has been
considered by means of designing basic models ap-
plying the conservation laws for each flow state: sub-
cooled liquid, two-phase flow and superheated vapor.
Evaporator and condenser models have been devel-
oped by interconnecting the basic models and includ-
ing mechanisms to switch between different configu-
rations: general, flooded and dry evaporators and con-
densers. Finally, simulation results are presented by
an integrity and stability test case.

Keywords: Moving boundary model; switching;
two-phase flow; evaporator; condenser

1 Introduction

Heat exchangers play a very important role in indus-
try; the modeling and control of these elements is
a key part in the process plant control. Two of the
most common discretization approaches used in fluid
dynamic modeling are the finite-volume distributed-
parameter method [21] and the moving-boundary
lumped-parameter method [8]. Dynamic modeling is
always a challenging task in which the trade-off be-
tween accuracy and speed must be evaluated depend-
ing on the purpose of the model. Moving boundary
models are low-order and much faster models than fi-
nite volume models; additionally they can describe the
dynamic behavior of evaporators and condensers with
high accuracy [1]. In the context of real-time simu-
lation, dynamic system optimization and model-based

control, where fast computation is required, the mov-
ing boundary method seems to be appropriate.

The moving boundary method divides the evapora-
tor/condenser in different regions, also called Control
Volumes (CVs), depending on the fluid phase. In each
CV, the lumped thermodynamic properties are aver-
aged; the barrier is not fixed and it may move between
adjacent CVs. The main idea is to dynamically track
the lengths of the different regions [16].

The three basic flow states are: subcooled liq-
uid (SC), two-phase flow (TP) consisting of vapor
and liquid present simultaneously in the same vol-
ume, and superheated vapor (SH) as represented in
Fig. 1. Considering these three basic flow states, com-
pound configurations can be created. Fig. 2 shows
these configurations: general, flooded and dry evap-
orators/condensers.

A state-of-the-art study in moving boundary mod-
els for two-phase flow heat exchangers was previ-
ously presented in [2] together with a new switching
flooded evaporator model. This paper extends previ-
ous work by new switching moving boundary models
for general/dry evaporators and general/flooded/dry
condensers. To the knowledge of the authors, there
are three papers related to moving boundary models
developed using Modelica [17, 27, 13]. The novelty
of this paper is that a strictly object-oriented design is
followed.

(a) (b) (c)

Figure 1: Basic flow states
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(a) General evaporator (b) Flooded evaporator (c) Dry evaporator

(d) General condenser (e) Flooded condenser (f) Dry condenser

Figure 2: Evaporator and condenser configurations

2 Mathematical modeling

This section first describes the assumptions made in
the development of the mathematical models, after
that the governing equations in their general form are
listed, the one-dimensional CV concept is then intro-
duced, and finally the basic and compound models are
explained together with some additional equations re-
quired to complete the models.

2.1 Assumptions

With the aim of developing a low-order model that re-
flects the principal dynamics, a number of assump-
tions have been made: horizontal orientation; one-
dimensional case; constant pipe cross-sectional area;
time-dependent uniform pressure along the evapora-
tor; homogeneous two-phase flow; average properties
and time-dependent uniform heat flux per unit length
in each CV; negligible gravitational forces; negligi-
ble changes in the kinetic energy; negligible viscous
stress; heat conduction and radiation in the fluid and
heat conduction in the pipe wall are also neglected.

2.2 Governing equations

The straightforward way to derive the model equations
is from the time-dependent equations for conservation
laws. Considering the assumptions presented in the
previous section, the differential formulation for the
conservation of mass and energy in the fluid are repre-
sented by Eqs. 1 and 2, respectively [18]. Eq. 3 [18]
defines the conservation of energy in the pipe wall and
Table 1 summarizes the nomenclature.

∂Aρ

∂ t
+

∂ ṁ
∂ z

= 0, (1)

∂Aρu
∂ t

+
∂ ṁh
∂ z

= q̇i, (2)

Awρwcp,w
∂Tw

∂ t
= q̇o− q̇i. (3)

Var. Description Units
t Time [s]
z Spatial coordinate [m]
A Cross-sectional area [m2]
cp Isobaric specific heat capacity [J/(K·kg)]
ṁ Mass flow rate [kg/s]
x Vapor quality [-]
p Pressure [Pa]
Q̇ Heat flow rate [W]
q̇ Heat flux [W/m2]
γ Void fraction [-]
γ̄ Mean void fraction [-]
h Specific enthalpy [J/kg]
h̄ Mean specific enthalpy [J/kg]
h′ h of saturated liquid [J/kg]
h′′ h of saturated vapor [J/kg]
ρ Density [kg/m3]
ρ̄ Mean density [kg/m3]
ρ ′ Density of saturated liquid [kg/m3]
ρ ′′ Density of saturated vapor [kg/m3]
T Temperature [K]
T̄ Mean temperature [K]
ε Pipe roughness [m]
Subs. Description Subs. Description
a Inlet to CV b Outlet to CV
sc Subcooled t p Two-phase
sh Superheated w Pipe wall
i Inner to CV o Outer to CV

Table 1: Nomenclature

2.3 One-dimensional Control Volume

The moving boundary method is based on the divi-
sion of the heat exchanger in different CVs. Fig. 3
represents a CV; the lumped thermodynamic proper-
ties in the CV are averaged and they are uniform but
time-dependent (h̄, T̄ , ρ̄); the pressure (p) is not de-
noted by a mean value, because there is only one
time-dependent pressure value for the entire evapo-
rator. The cross-sectional areas (A,Aw) are constant.
Each CV has three interfaces or boundaries. One is ad-
jacent to the pipe wall where the thermodynamic prop-
erties are also considered in its mean values (T̄w, ρ̄w).
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Figure 3: Control Volume (CV)

The other two interfaces connect to adjacent CVs or
the inlet or outlet boundaries of the heat exchanger. In
Fig. 3 the flow direction is defined by the arrow, so
the inlet flow thermodynamic properties correspond to
the a subscript variables (ρa,ha, ṁa), whereas the out-
let flow thermodynamic properties are defined by the
b subscript variables (ρb,hb, ṁb).

2.4 Basic Volume Models

The derivation of the mass and energy balance equa-
tions for the CV models is not presented due to
space limitation. From the-state-of-the-art study in
two-phase flow moving boundary models useful in-
formation was obtained [2]. The derivation of the
model is analogous to the developed in [16, 17] but
not neglecting the mean void fraction time derivative
(dγ̄/dt), where a new calculation method has been in-
troduced. Additionally, the thermodynamic properties
at the boundaries are not fixed to any particular value,
by means of considering the density or specific en-
thalpy of saturated liquid/vapor, so the basic volume
models can be used in any evaporator/condenser.

2.4.1 One-phase Flow Volume Model

The mass and energy balance equations for the sub-
cooled liquid and superheated vapor CV models are
described by Eqs. 4 and 5 where the subscript cv can
be substituted by sc or sh to consider the particular CV.

A
(

zcv
dρ̄cv

dt
+ ρ̄cv

dzcv

dt

)
+ρaA

dza

dt
−ρbA

dzb

dt

= ṁa− ṁb.

(4)

A
(

ρ̄cvh̄cv
dzcv

dt
+ ρ̄cv

dh̄cv

dt
zcv +

dρ̄cv

dt
h̄cvzcv

)
−Azcv

d p
dt

+Aρaha
dza

dt
−Aρbhb

dzb

dt
= ṁaha− ṁbhb + q̇i,cvzcv.

(5)

2.4.2 Two-phase Flow Volume Model

The mass and energy balance equations for the two-
phase flow CV model are described by Eqs. 6 and 7.
The way the mean void fraction and its time derivative
are calculated is described in [2].

A
(

dzt p

dt
(γ̄ρ

′′+(1− γ̄)ρ ′)+ zt p

(
dγ̄

dt
(ρ ′′−ρ

′)+

γ̄
dρ ′′

d p
d p
dt

+(1− γ̄)
dρ ′

d p
d p
dt

))
+ρaA

dza

dt
−ρbA

dzb

dt

= ṁa− ṁb.

(6)

A
(

dzt p

dt
(γ̄ρ

′′h′′+(1− γ̄)ρ ′h′)+ zt p

(
dγ̄

dt

(
ρ
′′h′′ −

ρ
′h′
)
+ γ̄

dρ ′′

d p
d p
dt

h′′+ γ̄ρ
′′ dh′′

d p
d p
dt

+(1− γ̄)
dρ ′

d p
d p
dt

h′

+(1− γ̄)ρ ′
dh′

d p
d p
dt

))
−Azt p

d p
dt

+Aρaha
dza

dt
−

Aρbhb
dzb

dt
= ṁaha− ṁbhb + q̇i,t pzt p.

(7)

2.5 Heat Exchanger Models

When modeling the compound models (not only one
CV model), additional equations are required besides
the CV governing equations; these equations depend
on the kind of heat exchanger and relate the outlet CV
specific enthalpies with the values at saturation condi-
tions.

2.5.1 Evaporator

If a general or flooded evaporator is considered (cf.
Figs. 2(a) and 2(b)), Eq. 9(a) is required for the sub-
cooled liquid CV, and also the initial value for hb must
be set to h′.

An easy way to accomplish this is to only intro-
duce Eq. 8. However, there is a problem with that
approach if switching moving boundaries models are
considered.

hb = h′. (8)

Suppose that a flooded evaporator is being modeled,
where the outlet fluid is two-phase flow; hb for the
subcooled liquid CV is not a state variable because
it depends on pressure, and therefore Eq. 8 is valid
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and hb is an algebraic variable. However, if the out-
let fluid turns into subcooled liquid due to a change
in the model inputs, Eq. 8 is no longer valid and hb is
a state variable. Such a model is called a variable-
structure model. In a variable-structure model the
number/type of equations or variables can change, on
the other hand a static-structure model implies that the
number of equations as well as the number of alge-
braic and state variables remains the same. Variable-
structure models are not currently supported by most
modeling and simulations tools (including Modelica
tools). Whereas there exist some modeling languages
and tools that support variable-structure models, none
of the existing variable-structure modeling tools sup-
ports the handling of higher-index systems [28]. For
that reason, Modelica is still our preferred modeling
language, but it must be taken into account that only
static-structure models can be simulated.

For this reason, the number of equations must re-
main the same in all different configurations of our
model, and hb for the different CVs must always be
a state variable so its value cannot be fixed to any al-
gebraic variable and neither can ha, because it is con-
nected to hb from the CV to the left, except for the
case of the first CV where the ha value can be freely
establish.

If a general or dry-expansion evaporator is consid-
ered (cf. Figs. 2(a) and 2(c)), Eq. 9(b) is required for
the two-phase flow CV, and also the initial value for hb
must be set to h′′.

2.5.2 Condenser

If a general or flooded condenser is considered (cf.
Figs. 2(d) and 2(e)), Eq. 9(a) is required for the two-
phase flow CV, and also the initial value for hb must
be set to h′. If a general or dry condenser is considered
(cf. Figs. 2(d) and 2(f)), Eq. 9(b) is required for the
superheated vapor CV, and also the initial value for hb
must be set to h′′.

dhb

dt
=

dh′

dt
(a),

dhb

dt
=

dh′′

dt
(b). (9)

2.6 Pipe Wall Model

The energy balance equation for each pipe wall CV is
described by Eq. 10. This equation is derived in [27],
where Tw,a and Tw,b are the wall temperature values at
the interfaces. This approach is closer to the practical
situation as it remains continuous and smooth during

the switching between different configurations.

Awρwcp,w

(
dT̄w

dt
+

T̄w−Tw,b

zab

dzb

dt
+

Tw,a− T̄w

zab

dza

dt

)
= q̇o− q̇i.

(10)

2.7 Additional Equations

Some additional equations are required in order to
complete the heat exchanger model. These equations
are not detailed here due to space limitations but they
can be easily found in the literature [16]. The remain-
ing equations are: the heat flow rates between the pipe
wall and the ambient and between the pipe wall and
the fluid and the geometric constraints, i.e., the total
heat exchanger length and the pipe geometry. The pipe
geometry considered in this manuscript has been the
cylindrical geometry.

2.8 Switching

Switching from one configuration to another implies
the disappearance of an existing CV or the appear-
ance of a new one, e.g. when switching from a general
evaporator to a flooded evaporator or vice versa. This
section elaborates how such transitions are captured
by the model. Additional equations for the new CV
may be required. When the CV is active, its govern-
ing equations correspond to the equations described in
Sections 2.4.1 or 2.4.2 depending on the fluid phase;
however a different set of equations is required to de-
scribed the CV in its inactive state. This is also ex-
plained in this section. It is assumed that the appear-
ance or disappearance of a CV can only occur at the
end of the heat exchanger.

2.8.1 Disappearance of a Control Volume

A CV disappears (becomes inactive) when Eq. 11(a)
becomes true, where zmin denotes a threshold that
specifies the minimum length of an active CV. This
value cannot be zero in order to avoid structural sin-
gularities, therefore the CV length must be greater that
zero. The default value for this parameter has been set
to 10−6 m.

2.8.2 Control Volume in an Inactive State

When any of the CVs is inactive, the mass and en-
ergy balance equations (Eqs. 4 and 5 or Eqs. 6 and 7
depending on the CV fluid phase) are substituted by
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Eqs. 11(b) and 11(c), respectively. These equations
guarantee that the CV is inactive and does not act on
the fluid.

zcv < zmin (a), ṁa = ṁb (b),

dha

dt
=

dhb

dt
(c),

dzcv

dt
= 0 (d).

(11)

Moreover, Eq. 9(a) or 9(b) must be substituted by
Eq. 11(d) depending on the inactive CV and on the
kind of heat exchanger considered.

2.8.3 Appearance of a Control Volume

The event triggering the appearance of a CV depends
on the particular CV and also on the kind of heat ex-
changer.

Evaporator. The superheated vapor CV appears (cf.
Figs. 2(a) and 2(c)) when the vapor quality in the two-
phase flow CV becomes greater than 1.0, Eq. 12(a).
The two-phase flow CV appears (cf. Figs. 2(a) and
2(b)) when the outlet specific enthalpy in the sub-
cooled liquid CV becomes greater than the specific en-
thalpy of saturated liquid, Eq. 12(b).

Condenser. The subcooled liquid CV appears (cf.
Figs. 2(d) and 2(e)) when the outlet specific enthalpy
in the two-phase flow CV is lower than the specific
enthalpy of saturated liquid, Eq. 12(c). The two-phase
flow CV appears (cf. Figs. 2(d) and 2(f)) when the
outlet specific enthalpy in the superheated vapor CV
becomes lower than the specific enthalpy of saturated
vapor, Eq. 12(d).

x > 1 (a), hb > h′ (b),

hb < h′ (c), hb < h′′ (d).
(12)

3 Description of the Library

This section describes the Modelica library that imple-
ments the mathematical models previously described,
the MBMs (Moving Boundary Models) library.

3.1 Library Structure and Interfaces

Fig. 4(a) shows the main packages that make up
the MBMs library, and Fig. 4(b) shows the Compo-
nents.Water.MBM package in expanded view, where
the basic and compound models can be seen. The

(a) Packages (b) Components

Figure 4: The MBMs library

former do not support switching, whereas the latter
do. Modelica Fluid and Modelica Thermal ports have
been used throughout in order to define the interfaces
in the MBMs library. This guarantees that the MBMs
library is compatible with any component from the
Modelica standard library 3.2 [20] or from third-party
components that also make use of these interfaces.

3.2 Partial Base Classes

The most remarkable partial base classes in the MBMs
library are: the Volume class, the MultipleVolume
class, the HeatTransferCorrelation class and the Fric-
tionFactor class.

3.2.1 Volume Class

The Volume class defines the fluid and heat ports, the
medium, some additional thermodynamic properties,
as well as the state and geometry of the CV. This class
is the base class for the basic volume models. The
volume class also includes a heat transfer correlation
(HTC) and a friction factor model (FFM).

3.2.2 MultipleVolume Class

The MultipleVolume class defines two or three CVs
that can be redeclared in classes that inherit from it.
The CVs are connected through the fluid connectors,
and this is the base class for all heat exchangers. We
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(a) Icon (b) Component diagram

Figure 5: MultipleVolume base class (3 CVs)

followed strictly an object-oriented design for heat ex-
changers. Figs. 5(a) and 5(b) show the icon and com-
ponent diagram of the 3 CVs MultipleVolume class.

3.2.3 Heat Transfer Correlations and Friction
Factor Models

There are two base classes for heat transfer correla-
tions (HTCs) and friction factor models (FFMs). The
user can inherit from them to define new HTCs or
FFMs. FFMs have been implemented because the
Petukhov and Gnielinski HTCs require a friction fac-
tor which can be caculated from those FFMs, further-
more there are plans for extending the library with
pressure loss. A HTC can be restricted to only one
particular fluid phase (one-phase or two-phase) or to
only one particular process (evaporation or condensa-
tion), if required. Moreover, there are some HTCs for
evaporation and FFMs for smooth and rough pipes, al-
ways considering turbulent flow, already implemented
in the library. They are summarized in Table 2. The
implemented HTCs and FFMs have been also adapted
to switching in order to avoid discontinuities and nu-
merical problems during the simulation. The HTCs
and FFMs have been validated against an independent
implementation [26]. The HTC and FFM can be se-
lected in each CV through the GUI. A test case for the
implemented two-phase flow HTCs is shown in Fig. 6.

3.3 Volume Components

Fig. 7 shows the icons of the subcooled liquid, two-
phase flow and superheated vapor models. These mod-
els inherit from the Volume class and add their partic-
ular equations, although the subcooled liquid and the
superheated vapor models inherit from an intermedi-
ate class in the hierarchy, the OnePhaseVolume class,
because both models share the same equations.
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Chen (1966)

Shah (1982)

Kandlikar (1990)

Gungor−Winterton (1986)

Goebel (1998)

Figure 6: Comparison of two-phase flow HTCs (p = 3
MPa, Q̇ = 5,827 Kw, ṁ = 0.6 kg/s, ε = 3 ·10−5 m)

Heat Transfer Correlations Fluid phase
Ideal any
Constant any
[9] Dittus-Boelter (1930) One-phase
[3] Chen (1966) Two-phase
[22] Petukhov (1970) One-phase
[11] Gnielinski (1976) One-phase
[25] Shah (1982) Two-phase
[14] Gungor-Winterton (1986) Two-phase
[19] Kandlikar (1990) Two-phase
[12] Goebel (1998) Two-phase
Fanning Friction Factor Model Kind of pipe
None -
Constant any
[5] Colebrook (1939) any
[4] Chen (1979) any
Explicit simplified Chen (1979) any
[24] Karman-Prandtl (1930) Rough
[7] Denn (1980) Smooth
[15] Haaland (1983) any

Table 2: HTCs for evaporation and fanning FFMs im-
plemented in the MBMs library

(a) (b) (c)

Figure 7: Volume components
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Evaporator components

3.4 Heat Exchanger Components

Redeclaring the partial Volume classes in the Multi-
pleVolume (2 or 3 CVs) class with the volume com-
ponents: subcooled liquid, two-phase flow and super-
heated vapor models, evaporators and condenser can
be defined.

3.4.1 Evaporator Components

Fig. 8 shows the general, flooded and dry-expansion
evaporator models. The figures on the left represent
the icons whereas the figures on the right are the com-
ponent diagrams, where the partial Volume classes
have been redeclared appropriately.

3.4.2 Condenser Components

For condensers, the situation is the same, but changing
the order of the interconnected basic volumes models.
Fig. 9 shows the general, flooded and dry condenser
icons and component diagrams.

(a) (b)

(c) (d)

(e) (f)

Figure 9: Condenser components

3.5 Pipe Wall Component

The pipe wall component includes the pipe wall model
previously introduced in Section 2.6 adapted to sup-
port switching. The pipe wall component together
with the Volume class depend on the geometry. The
geometry is a partial class. Different geometries can
be implemented by inheriting from the geometry class;
the library already includes a cylindrical geometry
model. Moreover, the pipe wall component inherits
from a partial wall class, so different wall models can
be implemented and used.

3.6 The initialization problem

The initialization problem is always a cumbersome
task and it is especially difficult when considering in-
active CVs in the initialization. For that reason, the
initialization has been taken into account in the de-
sign of the MBMs library; the initialization options
can be establish through the GUI in the initialization
tab of evaporators and condensers. Fig. 10 shows the
initialization options for a switching general evapora-
tor. Here, it can be specified, which CVs are inactive
in the initialization, the initial inlet pressure can be set
as well as the initial outlet temperature (this value is

Session 1B: Thermofluid Systems 

DOI Proceedings of the 9th International Modelica Conference    77 
10.3384/ecp1207671 September 3-5, 2012, Munich, Germany   



 

 

Figure 10: Initialization options for general evapora-
tors

only required when the outlet fluid is two-phase flow),
and it can be specified whether the inlet specific en-
thalpy time derivative is available. Sometimes when
considering experimental data as input, this thermody-
namic property may not be available and cannot be es-
timated, in which case the inlet specific enthalpy time
derivative is set to zero.

4 Simulation

This section shows the simulation of the mathematical
models previously introduced and implemented in the
MBMs library. The medium in these simulations is the
two-phase flow water-steam mixture from the Model-
ica Media library [20]. Dymola 2013 [6] has been the
Modelica tool used for these simulations. The numer-
ical solver used has been DASSL [23] and the relative
tolerance has been set to 10−6. All of the developed
models have been thoroughly tested in integrity and
stability tests, however due to space limitation only a
few can be presented in this article. A simulation test
for a switching flooded evaporator was presented in
[2].

4.1 Model Integrity

The simulation results must be verified and the govern-
ing equations of the model must be validated both in
steady-state and in transient predictions. To this end,
the mathematical model and library implementation
results were compared to those of an independently de-
veloped finite volume model and code from the Mod-
elica Fluid library [10] that belongs to the Modelica
Standard Library 3.2. The Modelica Fluid library has
been meticulously designed and tested and is widely
used in the Modelica community.

Fig. 11 shows the outlet temperature for a test
case considering a switching moving boundary gen-
eral evaporator model from the MBMs library (dashed
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Figure 11: Integrity and stability test

Model CPU-Time (s) State events
MBM 0.87 104
FVM 3 CVs 2.34 45
FVM 10 CVs 6.93 124
FVM 20 CVs 21.4 228
FVM 50 CVs 103 551

Table 3: Simulation statistics

blue line) and finite volume models from the Model-
ica Fluid library considering different numbers of CVs
(3,10,20,50). It can be seen that the simulation results
obtained with the MBMs library are in good agree-
ment with those from the Modelica Fluid library and
that the MBMs library model runs considerably faster
(cf. Table 3), because the finite volume model requires
at least 20 CVs to yield acceptably accurate results.

4.2 Model Stability

Model stability, especially the switching stability, was
checked by holding certain inputs constant during the
simulation while varying sinusoidally others to force
repeated switching. Variations in the heat flow rate,
mass flow rate, inlet specific enthalpy and outlet pres-
sure have been tested. Fig. 11 shows the outlet tem-
perature in a switching general evaporator when vary-
ing sinusoidally the inlet heat flow rate over the pipe
(cf. Fig. 12). The outlet fluid phase changes from sub-
cooled liquid to two-phase flow (constant temperature)
to superheated vapor. Fig. 13 shows the CV lengths
in the moving boundary model where it can be ob-
served, which CVs are inactive during the simulation
(CVs with zero length), the length of the evaporator is
500 m.

Object-Oriented Library of Switching Moving Boundary Models for Two-phase Flow Evaporators … 

 

78 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp1207671 



 

 

0 5 10 15

x 10
4

0

2

4

6

8

10

12

14

16

18
x 10

5

Time (s)

H
e
a
t 
fl
o
w

 r
a
te

 (
W

)

Figure 12: Heat flow rate over the pipe
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Figure 13: Control volume lengths

5 Conclusions

This paper details mathematical moving boundary
models for heat exchangers, considering basic CVs
and compound models: general, flooded and dry evap-
orators and condensers, independent of the two-phase
flow medium. The pipe wall model is also shown. It
is independent of the geometry, particularized for a
cylindrical geometry in this paper. The switching cri-
teria was also introduced allowing the disappearance
of the CVs at the end of the heat exchanger. A new
equation-based object-oriented Modelica library, the
MBMs library, implementing all of the detailed mod-
els has been presented. This library provides models
of different HTCs and FFMs. It also tackles the initial-
ization problem, which is specially tough in the case
of moving boundary models. The mathematical mod-
els and the MBMs library have been tested thoroughly
using integrity and stability tests.

6 Future work

The MBMs library is currently still in its beta version,
and some of the following open tasks will be consid-
ered for future library extensions: pressure drop in
each CV and disappearance of CVs at the beginning
of the heat exchanger. It is planned to use and vali-
date the switching condenser models in the modeling
of a double effect absorption heat pump in the ambit of
the POWER project. The switching evaporator models
are intended to be also validated in the HIBIOSOLEO
project for the development of a direct steam genera-
tion linear Fresnel solar thermal power plant.
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Abstract

Discretization schemes suitable for gas dynamics are
reviewed and applied to the declarative concepts of
Modelica. Here, a suitable connector definition is in-
troduced to enable both robust simulation and higher-
order schemes, which require larger stencils than typ-
ically available on established thermo-fluid dynamics
connectors.

Keywords: Finite volume method, shock waves,
monotone flux, total variation diminishing, essentially
non-oscillatory

1 Introduction

System-level simulation of thermo-fluid dynamics us-
ing Modelica is a wide topic yet relatively mature.
Several authors present applications using the lan-
guage in various technical domains. For instance,
Casella [3, 4] considers power plant simulation, Pfaf-
ferott [20], Tummescheit et al. [36], Richter [24],
and Prölß [21] study applications in sub-critical vapor
compression cycles, Casas [2, 1] addresses air condi-
tioning using desiccant assisted cycles, and Vasel and
Schmitz [40] consider air conditioning using trans-
critical cycles.

In all of the given applications, the governing equa-
tions are adapted to the specifics of the underlying
flow phenomena. With the exception of López [5],
the assumptions are identical for all applications re-
ported in literature. The corresponding flow, which
allows to make these assumptions, is called a low-
speed compressible flow herein. All authors referenced
in the first paragraph assume that the flow is incom-
pressible with respect to the flow phenomena, as it is
low-speed. Density variation is only encountered due
to heat transfer and in lumped parameter components
such as compressors. Density variation due to flow
phenomena is neglected, i.e., the Mach number is typ-
ically below 0.3.

In particular, an analysis of model code revealed
that the difference between static and total pressure is
neglected as the dynamic pressure is considered small
and not of interest. For the given applications in power
plants or vapor compression cycle refrigeration sys-
tems this is reasonable. Only in special devices, which
involve large variations in flow cross-section such as
adapters between different pipe diameters or nozzles,
total pressure is of interest. Total or stagnation en-
thalpy is often treated similarly; the kinetic term v2/2
is neglected. A typical argument is that the order of
magnitude of change in specific enthalpy due to heat
transfer is larger than that of such kinetic terms.

If kinetic terms in pressure and specific enthalpy
are not neglected for such applications and the com-
mon assumption of a steady-state momentum balance
is made then coupled nonlinear algebraic equation sys-
tems arise for density, which is required to establish
flow velocity. These coupled equation systems deteri-
orate simulation performance.

Certain applications involve a different type of flow,
which is called high-speed compressible flow herein.
Kinetic terms and dynamic pressure may not be ne-
glected and have to be included in compressible for-
mulations. Density variation is also encountered with
respect to flow phenomena, in particular dynamic con-
servation of momentum is relevant and also shock
waves may be part of the solution. The Mach num-
ber may be > 0.3 (including the supersonic regime).
The term “gas dynamics” refers to the same type of
flow.

The key theoretical area to enable applications
involving high-speed compressible flow is the dis-
cretization method for the governing equations. The
foundations of numerical solution methods in thermo-
fluid dynamics are well understood. However, in the
framework of equation-based, object-oriented model-
ing languages, only methods suitable for low-speed
compressible flow have been applied. The clas-
sic finite volume method has been studied in par-
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ticular by Tummescheit [35]. Moving boundary
methods have been applied by Jensen [14, 15] and
Tummescheit [35]. Casella [4] proposed a mean den-
sity discretization, which is non-conservative but re-
sults in continuous and continuously differentiable
thermodynamic properties at phase boundaries of two-
phase flow. Prölß and Schmitz [22] discretized the
governing equations for frost formation on heat ex-
changer surfaces.

López [5] proposed an approach to model and simu-
late gas dynamics. Due to robustness issues, which are
certainly linked to deficiencies in the connector defini-
tion used in [5] (c.f. reference [7]), the approach did
not become widely supported. In an attempt to finally
extend the applicability of Modelica also to high-speed
compressible flow and gas dynamics, this paper and
reference [29] contribute to the state of the art in the
following areas.

• Relevant concepts of the theory in numerical so-
lution methods for high-speed compressible flow
are reviewed and translated from the algorithmic
perspective taken in literature to the acausal con-
cepts of equation-based, object-oriented model-
ing languages.

• The elements of discretization schemes are de-
composed in an object-oriented fashion and im-
plemented in a generic library. Object-oriented
concepts are exploited for increased flexibility
such as parametric polymorphism for exchange-
able thermodynamic property models.

2 The governing equations in com-
pact flux form

To address high-speed compressible flow, a compact
flux formulation as described by Toro [34] is consid-
ered. It is posed using conserved variables u and flux
f .

ut(x, t)+ f (u(x, t))x = s(u(x, t)) (1)

u(x, t) =

 ρ

ρv
ρu0

 (2)

f (u(x, t)) =

 ρv
ρv2 + p

v(ρu0 + p)

 (3)

If the cross-sectional area A is supposed to vary
smoothly with time and position, then the following

source term including heat transfer and viscous wall
friction can be used [34].

s(u(x, t)) =

 0
∆p f r

ρ q̇e

− 1
A

dA
dt

 ρ

ρv
ρu0 + p

 (4)

3 Conservative methods

An approach to discretize the governing equations of
thermo-fluid dynamics is now introduced based on
Toro [34]. It is formulated in conserved variables and
therefore called a conservative method.

The use of conservative methods is motivated by
the presence of discontinuities such as shock waves in
the solution of certain problems such as gas dynamics.
Hou and LeFloch [13] have shown that formulations
based on variables other than the conserved ones fail
to correctly predict the solution at shock waves. They
result in wrong jump conditions and thus wrong shock
strength, speed, and location. The theorem of Lax and
Wendroff [17] in turn states that conservative meth-
ods, if convergent, do converge to the weak solution
of the conservation law. Consequently, conservative
methods are an obvious choice if shock waves are po-
tentially contained in the solution.

In this section, the compact formulation of the con-
servation laws introduced in equation (1) is used. The
vector of conserved quantities is denoted by u(x, t) =
(ρ,ρv,ρu0). In order to include weak solutions of (1),
an integral form of the equations is used, a finite vol-
ume method.

As done in several numerical methods, the prob-
lem domain is discretized on a suitable computational
mesh. The control volumes are defined based on a grid
of cell side coordinates on an interval [a,b]

a = x1/2 < x3/2 < .. . < xn−1/2 < xn+1/2 = b (5)

Based on it, cells, cell centers and cell sizes are defined
for i = 1,2, . . . ,n.

Ii =
[
xi−1/2,xi+1/2

]
xi =

1
2

(
xi−1/2 + xi+1/2

)
∆xi = xi+1/2− xi−1/2

(6)

In this notation, xi+1/2 is the coordinate of the right
side of a computational cell Ii with cell center xi. This
grid is colocated. Furthermore, the maximum cell size
is defined as follows.

∆x = max
16i6n

(∆xi) (7)
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The discretization scheme allows to deduce alge-
braic equations or differential algebraic equations that
properly approximate the governing equations. Note
that, in the context of Modelica, the goal is to deduce
differential algebraic equations and thus the equa-
tions have only to be discretized in space, not in time
(“semi-discretized”).

The set of cell centers, which is used in a discretiza-
tion scheme to deduce such equations for each cell, is
called the stencil. For the most simple schemes, the
stencil for cell Ii includes Ii itself and the cells to the
left and to the right,

S (i) = {Ii−1, Ii, Ii+1} (8)

Therefore, equation (1) is integrated over the inter-
val Ii to obtain

du(xi, t)
dt

=s(u(xi, t))− (9)

1
∆xi

(
f
(
u
(
xi+1/2, t

))
− f

(
u
(
xi−1/2, t

)))
Herein, a cell average is used

u(xi, t) =
1

∆xi

∫ xi+1/2

xi−1/2

u(ξ , t)dξ

Equation (9) is approximated by a semi-discretized
conservative scheme, which results in a differential al-
gebraic equation,

dui (t)
dt

= s(ui (t))−
1

∆xi

(
fi+1/2− fi−1/2

)
(10)

Herein, ui (t) is a numerical approximation of the exact
cell average u(xi, t), and fi±1/2 is a numerical flux, an
approximation of the physical flux f

(
u
(
xi±1/2, t

))
.

The remainder of this section is concerned with the
construction of numerical fluxes. All these fluxes con-
sist of a monotone flux and a reconstruction. Practi-
cally, a monotone flux is a flux free of spurious oscil-
lations. Due to Godunov’s Theorem such linear fluxes
are however first-order accurate only. Therefore, these
monotone fluxes are often used together with recon-
structions in order to build higher-order schemes. The
reconstruction provides an approximation of the vec-
tor of conserved variables u (or any other variable of
interest) based on the cell averages. Its higher-order
accuracy yields, together with a first-order monotone
flux, higher-order numerical flux.

3.1 Monotone flux and first-order schemes

A monotone numerical flux is defined using a function
g,

fi+1/2 = g
(

u−i+1/2,u
+
i+1/2

)
(11)

Here, u−i+1/2 is in general an approximation of the vec-
tor of conserved variables at xi+1/2 in the left limit,
and u+i+1/2 in the right limit. Each monotone flux can
be used without reconstruction with the approximation
u−i+1/2 ≈ ui and u+i+1/2 ≈ ui+1. The results are first-
order schemes. Alternatively, any more sophisticated
approach may be used to reconstruct u±i+1/2.

In the following presentation of monotone fluxes,
qr will refer to the right limit q+i+1/2 of a quantity q.
Similarly, q−i+1/2 is abbreviated as ql .

Monotone fluxes are classified as either upwind
methods or central methods. Upwind methods dis-
cretize equations on a mesh according to the direction
of propagation of information on that mesh. Central
methods do not make a distinction based on the direc-
tion of information propagation. Within the upwind
methods, both Godunov-type methods and flux vector
splitting methods are presented based on [34].

3.1.1 Godunov-type Upwind Methods

These methods are also called flux difference splitting
methods or Riemann approach methods. In the general
case, u−i+1/2 6= u+i+1/2, i.e., at position xi+1/2 a disconti-
nuity is present. The original Godunov monotone flux
therefore interpreted this as Riemann problem and pro-
vided the conserved variables at xi+1/2, ui+1/2. This is
the state that will be present instantly at this position
and will remain constant over a time step. Then, the
flux can be evaluated at this position, f

(
ui+1/2

)
. The

result is the Godunov monotone flux.
As the Godunov monotone flux uses the exact so-

lution to the Riemann problem, the resulting method
is computationally relatively expensive and is rarely
used for practical computations. Godunov-type mono-
tone fluxes follow the approach of the Godunov mono-
tone flux but employ an approximate Riemann solver.
This reduces the computational expense significantly
and results in rather accurate monotone fluxes.

Roe’s Monotone Flux: This Godunov-type flux uses
one of the most well-known approximate Riemann
solvers. The approximate Riemann solver is due to
Roe [26] and works as follows. The original Rie-
mann problem is replaced by an approximate Rie-
mann problem, which is solved exactly. The ap-
proximate problem is based on linearized conservation
laws, ut +Alrux = 0.

The linearized problem has to be established for
each combination of governing equations (e.g., Euler
equations) and thermodynamic property model (e.g.,
ideal gas).
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Roe [26] established a methodology using averaged
values such that Alr

(
u+i+1/2−u−i+1/2

)
= Alr (u) fulfills

the given conditions. The vector u is the vector of Roe
average values. For the one-dimensional Euler equa-
tions and ideal gas, the Roe average values are as fol-
lows.

ρ =
ρr +ρl√
ρr +
√

ρl

v =
√

ρrvr +
√

ρlvl√
ρr +
√

ρl

h0 =

√
ρrh0,r +

√
ρlh0,l√

ρr +
√

ρl

and

c2 = (κ−1)
(

h0−
1
2

v2

)
Due to specific properties [26], the linearized sys-

tem can be transformed into a system of independent
transport equations. The data difference ∆u = ur− ul
is projected onto the right eigenvectors of Alr. This
establishes the wave strengths αi. Proper integral rela-
tions allow to establish the numerical flux as

gRoe (ul,ur) =
1
2
( fl + fr)−

1
2

3

∑
i=1

αi |λi|Ki

with eigenvalues λi and right eigenvectors Ki.
For the problem of interest, the wave strengths are

α1 =
1
2c

[∆m−∆ρ (v+ c)]− 1
2

α2

α2 =−
κ−1

c2

[
∆ρ
(
v2−h

)
− v∆m+∆ē

]
α3 = ∆ρ−α1−α2

Here, the data difference ∆m for example refers to
the difference in momentum.

HLLE Monotone Flux: The Harten, Lax and van
Leer [12] monotone flux simplifies the approximate
Riemann problem even further. It neglects the con-
tact surfaces and consequently assumes that between
the shock and the expansion fan only a single homo-
geneous state is present. For hyperbolic systems of
two equations this is correct, but for the Euler equa-
tions addressed herein this is a rough approximation.
Even if the resolution of contact surfaces is poor, this
monotone flux is still a robust and efficient one, whose
accuracy is, on global level, often sufficient.

An advantage of this flux is that it can be applied
easily to different thermodynamic property models.
The approximate Riemann solver of Roe for exam-
ple is not straight-forward to apply to several problems

such as ones involving real gas equations. It is there-
fore a relevant candidate for equation-based, object-
oriented modeling languages applications, as the spe-
cific thermodynamic property models are often fac-
tored out of the component models, in which the dis-
cretized Euler equations are implemented.

The scheme is implemented via an a-priori estima-
tion for the fastest signal speeds and its monotone flux
is defined as

gHLLE (ul,ur) =
c+r f (ul)− c−l f (ur)

c+r − c−l

+
c+r c−l

c+r − c−l
(ur−ul)

Here, the signal speeds are c+r = max(0,vr + cr,v+ c)
and c−l = min(0,vl− cl,v− c) respectively. In these
equations the Roe average velocity v and the Roe av-
erage speed of sound c have been used.

3.1.2 Flux Vector Splitting Upwind Methods

In Patankar [19] for instance, a simple first-order up-
wind scheme in primitive variables was introduced.
Based of the sign of a characteristic quantity (usually,
this is a velocity normal to the cell boundary), any vari-
able on the boundary was established to have either
the value from the left or the right side. In the con-
text of the present approach to conservative methods
and high-speed compressible flow, there is no simple
scheme of this type. This becomes obvious from the
hyperbolicity of the Jacobian ∂ f/∂u and its eigenval-
ues.

In general, the real part of the eigenvalues can have
any sign and a simple one-sided differencing scheme
will be appropriate only if the real parts of all eigen-
values have the same sign. The general system will
however have some eigenvalues with a positive real
part, and one side will be upwind for them, while the
others have a negative sign on the real part and conse-
quently the upwind side will be opposite for them. A
typical way to resolve this problem is to split such a
system into one with a positive real part of the eigen-
values and one with a negative real part and to treat
them separately. These are the flux vector splitting
methods discussed in this section.

The flux vector splitting approach is also called
Boltzmann approach and works as follows [34]. As
before, the Jacobian of the system of nonlinear hyper-
bolic conservation laws (1) is of interest.

A(u) =
∂ f (u)

∂u
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Due to hyperbolicity, it may be expressed as

A = KΛK−1 (12)

Here, Λ is the diagonal matrix of eigenvalues λi of A.
The matrix K is the matrix of right column eigenvec-
tors Ki. The flux vector splitting methods aim at split-
ting the flux f (u) into components f+(u) and f−(u)
based on the following equality.

f (u) = f+(u)+ f−(u)

Following the introduction of this section, the split
fluxes are established such that the eigenvalues ˆ

λ
+
i , ˆ

λ
−
i

of the Jacobian

Â+ =
∂ f+ (u)

∂u
,

Â− =
∂ f− (u)

∂u

fulfill Re
(

ˆ
λ
+
i

)
≥ 0 and Re

(
ˆ

λ
−
i

)
≤ 0.

The Steger-Warming Monotone Flux: In order to
establish such a splitting, the homogeneity property
of (1) may be exploited. If the system of hyperbolic
conservation laws fulfills this property, then

f (u) = A(u)u (13)

like in the linear constant coefficient case. The un-
steady Euler equations fulfill this property and conse-
quently the splitting may utilize the structure exposed
in (12), that is, the splitting may be applied to the di-
agonal matrix Λ. Steger and Warming [30] proposed a
splitting of the eigenvalues λi,

λi = λ
+
i +λ

−
i (14)

Here, λ
+
i ≥ 0 and λ

−
i ≤ 0. Consequently, Λ is split as

Λ = Λ
++Λ

− (15)

Λ± are the diagonal matrices of the split eigenvalues
λ
±
i . This leads directly to the splitting of A.

A = A++A− (16)

where A± = KΛ±K−1. If the property (13) is fulfilled,
one arrives at an expression for the flux splitting.

f (u) = f+(u)+ f−(u) (17)

Here, f±(u) = A±u.

The crucial question is how to choose λ
±
i in (14).

Steger and Warming [30] suggested to use to following
equations.

λ
+
i =

1
2
(λi + |λi|) = max(λi,0) (18)

λ
−
i =

1
2
(λi−|λi|) = min(λi,0) (19)

When exercising this approach, the following Steger-
Warming monotone flux is established.

gSW (u) = f+(u)+ f−(u)

with

f± (u) =
ρ

2κ λ
±
1 +2(κ−1)λ

±
2 +λ

±
3

(v− c)λ
±
1 +2(κ−1)vλ

±
2 +(v+ c)λ

±
3

(h− vc)λ
±
1 +(κ−1)v2λ

±
2 +(h+ vc)λ

±
3


The eigenvalues are given by (18) and (19). The re-
maining variables have to be evaluated according to
the definition of the flux, i.e., for f+(u) the values
from the left such as ρl , ul and for f−(u) the values
from the right such as ρr, ur.

3.1.3 Centered Methods

Schemes, whose support does not depend on the
sign of the characteristic speeds, are called centered
schemes.

The Rusanov Monotone Flux, a local Lax-
Friedrichs Flux: The Lax-Friedrichs flux is one of
the simplest and most approximate methods consid-
ered herein. It was originally developed in the con-
text of finite-difference methods and later applied to
the finite-volume context.

Similarly to the HLLE method, only an expansion
and a compression wave are considered. In the orig-
inal Lax-Friedrichs flux, the speed of each wave was
assumed to be such that it reached the cell boundaries
exactly within a time step ∆t. For uniform grids, each
wave of the global problem therefore had the same
speed, which is an even more approximate solution
than in the HLLE method. As, in the present context,
no fully explicit scheme is employed but the method
of lines, no time step ∆t is defined. For this reason
and to slightly improve accuracy, a local form of the
Lax-Friedrichs monotone flux, the Rusanov monotone
flux [27], is considered. In the Lax-Friedrichs flux,

gLF (ul,ur) =
1
2
( f (ur)+ f (ul))−

1
2

∆x
∆t

(ur−ul)

Session 1B: Thermofluid Systems 

DOI Proceedings of the 9th International Modelica Conference    85 
10.3384/ecp1207681 September 3-5, 2012, Munich, Germany   



 

 

the signal speed ∆x/∆t is replaced by λmax =
max((|v|+ c)l ,(|v|+ c)r). Then, the Rusanov mono-
tone flux is defined as follows.

gRus (ul,ur) =
1
2
( f (ur)+ f (ul))−

1
2

λmax (ur−ul)

First-Order Centered Monotone Flux: The First-
Order Centered Monotone flux (FORCE scheme) [33]
is obtained when replacing the random sampling of
Riemann problems in Random Choice Methods with
deterministic integral averages.

According to Toro [34], for fully explicit schemes,
the result is the arithmetic mean of the Lax-Friedrichs
and Richtmyer [25] fluxes. The Richtmyer flux is a
second-order scheme with constant coefficients and is
thus, according to Godunov’s classic theorem [9], not
monotone and results in spurious oscillations.

For the fully explicit version of the Richtmyer flux,
an intermediate state is first defined,

uRi =
1
2
(ul +ur)+

1
2

∆t
∆x

( f (ul)+ f (ur))

and then the flux is evaluated at it.

gRi (ul,ur) = f (uRi)

Then, the FORCE flux is the arithmetic mean of the
Lax-Friedrichs and Richtmyer fluxes [34]

gForce (ul,ur) =
1
2
(gLF (ul,ur)+gRi (ul,ur))

Again, the local version of the Lax-Friedrichs flux
(the Rusanov flux presented in previous section) and a
local version of the Richtmyer flux are used, is again
obtained by replacing ∆x/∆t with λmax.

After introducing some monotone numerical fluxes,
methods to obtain higher-order approximations of the
solution to (1) are considered.

3.2 Total Variation Diminishing schemes

Godunov’s theorem [9] was mentioned already. It
provides the theoretical foundation to the observation
that linear second-order schemes are more accurate
in smooth regions of a problem solution to (1) than
first-order schemes. Near strong gradients and shocks,
these methods produce spurious oscillations however.
Monotone methods however do not exhibit such spu-
rious oscillations. In case of linear schemes, their lim-
ited first-order accuracy is disadvantageous however.

One option to eliminate or reduce spurious oscilla-
tions for higher-order methods is to introduce artifi-
cial viscosity. This can be tuned such that it is large

enough to suppress oscillations in the neighborhood
of discontinuities and small elsewhere to maintain ac-
curacy. A disadvantage of this approach is however,
that the quantity of artificial viscosity is problem de-
pendent and therefore requires fine-tuning by the user.
This approach is not followed here and instead a less
empirical approach to introduce viscosity is adopted.

Therefore, in order to circumvent the limitations
formulated by Godunov’s theorem, schemes with vari-
able coefficients, i.e., nonlinear schemes, are consid-
ered. Such schemes can adapt themselves to the local
nature of the solution.

Harten [10] defined High-Resolution Methods as
numerical methods with the following properties.

1. Second or higher-order of accuracy in smooth
parts of the solution

2. The solution is free of spurious oscillations.

3. The resolution of discontinuities in the solution
is high, i.e., the number of cells containing the
numerical reproduction of the discontinuity is
smaller in comparison with that of first-order
monotone schemes.

A class of methods fulfilling these properties is that
of Total Variation Diminishing methods [10]. See this
reference for a definition of the total variation. For
brevity, only the case of a smooth function u(t), for
which the total variation is

TV (u) =
∫

∞

−∞

∣∣u′ (x)∣∣dx

and the case of a mesh function un = {un
i } are men-

tioned. For the latter, the total variation is defined as

TV (un) =
∞

∑
i=−∞

∣∣un
i+1−un

i

∣∣
Fundamental properties of the exact solution of the
conservation law (1) such as no creation of new local
extrema lead to the conclusion that the total variation
TV (u(t)) is a decreasing function of time [10]. Conse-
quently, Total Variation Diminishing methods mimic a
property of the exact solution.

For a general scalar conservation law, Harten [10]
provided a theorem on a sufficient condition for a par-
ticular class of nonlinear schemes with two coeffi-
cients to be Total Variation Diminishing (TVD). These
conditions are essentially four inequalities on these
two coefficients. As the coefficients may in general be
data dependent, Harten’s theorem provides a tool for
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the construction of nonlinear schemes that circumvent
Godunov’s theorem stated above.

The classic TVD approach to adaptively switch be-
tween the characteristics of a monotone first-order nu-
merical flux gLO and those of a higher-order constant
coefficient flux gHI is to make the following assump-
tion [32].

gTV D = gLO +ϕ
[
gHI−gLO]

Here, ϕ is a flux limiter function that implements the
adaptive algorithm. Analysis of Harten’s theorem led
to the identification of the Sweby TVD region [32].
In this region, various flux limiters have been defined
such as the well-known limiters Superbee, Minbee,
and Ultrabee.

In the following sections, this approach is not fol-
lowed directly. Instead of flux limiters, slope limiters
are used, which are analogous to the flux limiters.

For the reasons described in section 3.1.3, both an
upwind TVD and a central TVD method are consid-
ered.

3.2.1 A MUSCL Upstream TVD Scheme

Van Leer [37, 38, 39] introduced a higher-order
method along the concept of reconstruction mentioned
in the introduction of this paper. MUSCL stands for
Monotone Upstream-Centered Scheme for Conserva-
tion Laws.

The first-order schemes discussed so far use mono-
tone fluxes directly by assuming piecewise constant
data over the cells Ii, i.e., u−i+1/2≈ ui and u+i+1/2≈ ui+1.
In the simplest MUSCL scheme, piecewise linear lo-
cal reconstructions are used. The reconstruction has
to maintain the integral average, which is trivially ful-
filled for piecewise linear local reconstructions.

First, slope vectors ∆i±1/2 are defined as follows.

∆i−1/2 = ui−ui−1 (20)

∆i+1/2 = ui+1−ui (21)

Strictly speaking, these slopes are not slopes but differ-
ences of the vector of conserved quantities in adjacent
cells. The terminology used in literature is adopted
however and therefore ∆i±1/2 are called slope vectors.
In order to implement a TVD scheme, the approach of
limited slopes described by Quirk [23] is used.

∆̂i =



max[0,
min

(
β∆i−1/2,∆i+1/2

)
,

min
(
∆i−1/2,β∆i+1/2

)
] ∆i+1/2 > 0

min[0,
max

(
β∆i−1/2,∆i+1/2

)
,

max
(
∆i−1/2,β∆i+1/2

)
] ∆i+1/2 < 0

The value β = 1 does, in the scalar case, reproduce
the Minbee flux limiter, and β = 2 the Superbee flux
limiter.

Based on the piecewise linear local reconstruction,

ui (x, t) = ui (t)+
x− xi

∆xi
∆̂i

The values at the extreme points of the cell Ii are es-
tablished.

u+i−1/2 = ui−
1
2

_

∆i (22)

u−i+1/2 = ui +
1
2

_

∆i (23)

In order to finally obtain the second-order accurate
upstream flux, some first-order monotone upstream
flux is employed with the reconstructed values u−i+1/2,
u+i+1/2.

gTV Du
i+1/2 = gmu

i+1/2

(
u−i+1/2,u

+
i+1/2

)
Note that u−i+1/2 is obtained from a reconstruction in
cell Ii, and u+i+1/2 from a reconstruction in cell Ii+1.

3.2.2 A MUSCL Centered TVD Scheme

As mentioned before, also a second-order TVD cen-
tered scheme is introduced. It also follows the concept
of the MUSCL scheme but uses a first-order monotone
centered flux.

This approach is base on a slope limiter ξi, for which
the following equation holds.

∆̂i = ξi∆i

Here, the slope vector of the cells, ∆i, is used.

∆i =
1
2
(1+ω)∆i−1/2 +

1
2
(1−ω)∆i+1/2

This is a weighted average of the side slope vectors
∆i±1/2, see (20) and (21). The weighting parameter has
to fulfill ω ∈ [−1,1]. In computations conducted for
this paper, the value of ω = 0 was used. Additionally,
the ratio ri of the cell side slope vectors is introduced.

ri =
∆i−1/2

∆i+1/2

Then, a slope limiter analogous to the Superbee flux
limiter is [34]

ξsb (r) =


0 r 6 0
2r 0 6 r 6 1

2
1 1

2 6 r 6 1
min(r,ξr (r) ,2) r > 1
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A van Leer-type slope limiter is [34]

ξvl (r) =
{

0 r 6 0
min

( 2r
1+r ,ξr (r)

)
r > 0

A Minbee-type slope limiter is [34]

ξmb (r) =


0 r 6 0
r 0 6 r 6 1
min(1,ξr (r)) r > 1

Above, ξr(r), a TVD region limit that is defined as
follows, was used.

ξr (r) =
2

1−ω +(1+ω)r

As before, the conservative variable vector is ap-
proximated via the limited slope ∆̂i and equations (22)
and (23). Then, the second-order accurate centered
flux is obtained via a first-order monotone centered
flux with the reconstructed values u−i+1/2, u+i+1/2. For
this purpose, the FORCE flux can be used.

gTV Dc
i+1/2 = gForce

i+1/2

(
u−i+1/2,u

+
i+1/2

)
Note again that u−i+1/2 is obtained from a reconstruc-
tion in cell Ii, and u+i+1/2 from a reconstruction in cell
Ii+1.

3.3 Weighted Essentially Non-Oscillatory
schemes

One disadvantage of TVD schemes is that the accu-
racy near discontinuities is reduced. In the schemes
presented above, this was directly visible in the slope
for example. Also, the accuracy necessarily is reduced
to first-order near smooth extrema.

In this section, both Essentially Non-Oscillatory
and Weighted Essentially Non-Oscillatory schemes
are presented, which are self-similar (i.e., there is no
mesh size dependent parameter), uniformly high-order
accurate, yet essentially non-oscillatory for piecewise
smooth functions (i.e., the magnitude of the oscilla-
tions decays with order of accuracy of the scheme).
Piecewise smooth functions are smooth except at
finitely many isolated points. At these points, the func-
tion and its derivatives are assumed to have finite left
and right limits.

The key element of these schemes is the reconstruc-
tion. This is a specific interpolation technique, which
was developed for piecewise smooth functions. It
works by automatically choosing the locally smoothest

stencil, and by that avoiding crossing discontinuities in
the interpolation procedure as much as possible.

The Essentially Non-Oscillatory reconstruction al-
gorithm starts with a stencil containing one or two
cells only. It then adds either the cell to the right or
the one to the left of the stencil, depending on which
results in the less oscillatory interpolant.

Instead of choosing one of the candidate stencils
and discarding the others, Weighted Essentially Non-
Oscillatory reconstruction uses a convex combination
of the interpolant through all candidate stencils.

First, the given two reconstructions are presented
and then it is described how to establish a numerical
flux from the corresponding reconstructions. This sec-
tion is based on Shu [28].

3.3.1 Essentially Non-Oscillatory Reconstruction

Before describing the Essentially Non-Oscillatory
(ENO) reconstruction, an important detail of interpo-
lation methods used for reconstruction has to be ad-
dressed. In section 3.2 it was mentioned that linear in-
terpolation in the MUSCL scheme was uncritical with
respect to maintaining the proper cell average of the
interpolant. In the context of the present methods,
higher-order interpolation is considered and therefore
the interpolant must be established in a way that main-
tains the cell average.

Assume that some function, say, velocity, is con-
sidered. The cell averages vi of that function v(x) are
given on a grid. One is interested in a polynomial pi(x)
of degree k−1 for each cell Ii. This then forms a k-th
order approximation to v(x) in the cell Ii. The poly-
nomial shall be constructed such that its cell average
shall agree with that of the original function vi.

Assume that, additionally to the cell Ii and the order
of accuracy k, one is given a stencil S(i) of k consecu-
tive cells. The stencil is given via the left shift r, i.e.,
the stencil includes r cells to the left and s cells to the
right of Ii, with r+ s+1 = k.

S (i) = {Ii−r, . . . , Ii+s} (24)

In order to preserve the cell average, the interpolant
over the stencil is established via the primitive function
of v(x).

V (x) =
∫ x

−∞

v(ξ )dξ

Then, the interpolant can be established. In computa-
tional implementations, this interpolation step is usu-
ally accelerated via the computation of so-called re-
construction coefficients. This is possible, because one
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is usually not interested in the complete interpolant but
only in values of it at specific stations such as xi+1/2.
Due to the linearity of the mapping from the cell aver-
ages vi to the interpolated values, these reconstruction
coefficients depend on the left shift of the stencil r, the
order k, and the mesh spacing ∆xi, but not on the func-
tion v itself.

The actual ENO approximation is addressed next.
Here, an adaptive stencil is used. This means that the
left shift r is not constant. A left shift r that is constant
over the cells Ii would lead to a fixed stencil approxi-
mation (e.g., a central stencil) for which it was shown
that it leads to spurious oscillations if of order two or
higher with constant coefficients. In ENO approxima-
tion, the left shift is thus established for each cell Ii in
a way that avoids including a cell with a discontinuous
change in the stencil.

Harten et al. [11] showed that a robust criterion to
identify the stencil with the “smoother” interpolant is
to choose the one with the smaller absolute value of
the Newton divided difference.

Recall the definition of the Newton divided differ-
ences. For the primitive function V (x) the 0-th degree
divided difference is

V
[
xi−1/2

]
=V

(
xi−1/2

)
and the general j-th degree divided difference with j≥
1 is defined as

V
[
xi−1/2, . . . ,xi+ j−1/2

]
=

V
[
xi+1/2, . . . ,xi+ j−1/2

]
−V

[
xi−1/2, . . . ,xi+ j−3/2

]
xi+ j−1/2− xi−1/2

Similarly, the divided differences of the cell averages
are

v [xi] = vi

and in general

v [xi, . . . ,xi+ j] = (25)
v [xi+1, . . . ,xi+ j]− v [xi, . . . ,xi+ j−1]

xi+ j− xi

Note that the zeroth degree divided difference of vi is
identical to the first degree divided difference of V (x)
due to the definition of the primitive function.

V
[
xi−1/2,xi+1/2

]
=

V
(
xi+1/2

)
−V

(
xi−1/2

)
xi+1/2− xi−1/2

(26)

= vi

This equality allows to express the divided differences
of V (x) of degree j ≥ 1 by those of vi of degree j ≥ 0.

Taking the derivative of the k-th degree interpolation
polynomial P(x) to approximate V (x), one finds that
only divided difference of vi of degree j ≥ 1 are re-
quired to express p(x).

The ENO approximation thus identifies the
“smoothest” stencil in vi via a stencil of V (x), which
is labeled Ŝ(i). Notice that from the latter the cor-
responding stencil in vi can be identified via (26).
First, the divided differences of the primitive function
V (x) are computed using (26) and, for degrees j ≥ 2,
using (25). Then, the algorithm starts with a two point
stencil in V (x),

Ŝ2 (i) =
{

xi−1/2,xi+1/2
}

This stencil is then consecutively enlarged for l =
2, . . . ,k. From the preceding step the following sten-
cil is known

Ŝl (i) =
{

xi+1/2, . . . ,x j+l−1/2
}

and one of the neighboring points x j−1/2 and x j+l+1/2
is added to the stencil. If∣∣V [x j−1/2, . . . ,x j+l−1/2

]∣∣< ∣∣V [x j+1/2, . . . ,x j+l+1/2
]∣∣

then x j−1/2 is added to Ŝl(i) to obtain Ŝl+1(i). If the
inequality is not fulfilled, then x j+l+1/2 is added to the
stencil.

As soon as the stencil is completely established, La-
grange or Newton interpolation can be used to find the
interpolants. In computational implementations the re-
construction coefficients mentioned at the beginning
of this section are usually used instead. By the choice
of the stencil the left shift r is established. Then, the
proper reconstruction coefficients can be used to in-
stantly establish the interpolated values at the interface
locations.

Figure 1 illustrates the interpolants chosen by Es-
sentially Non-Oscillatory schemes. For the exam-
ple v = {10,10.4,10.25,10,3,2.5,2.25,2} and x =
{1,2,3,4,5,6,7,8} were assumed. First, consider the
resulting interpolant for cell 3. The scheme described
above starts the stencil with this cell and extends it
twice (i.e., order− 1 times) to the left or right. As
described, the schemes includes either neighbor point
that results in a smoother interpolant according to the
criterion of divided differences. For cell 3, the scheme
once selects a cell to the left and once a cell to the right
for inclusion in the stencil. For cell 4 in turn, including
the right cell (cell 5) would lead to rather large gradi-
ents in the interpolant each time. Therefore, the stencil
is extended twice to the left. The interpolant for cell 4
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Figure 1: Third-order ENO reconstruction

is therefore identical to that of cell 3. For cells 5 and
6, the stencil is only extended to points to the right for
similar reasons.

The left limit of v4+1/2 is established based on the
interpolant of cell 4, i.e., v−4+1/2 = 9.84. The right limit
is v+4+1/2 = 3.33.

3.3.2 Weighted Essentially Non-Oscillatory Re-
construction

ENO schemes are uniformly high-order accurate right
up to the discontinuity, which is achieved by adap-
tively switching the stencil used for interpolation.
However, certain properties leave room for improve-
ments [28]:

• The stencil may change near zeros of the solution
even by a round-off error perturbation.

• As the left shift of the stencil may change at
neighboring points, the resulting numerical flux
is not smooth.

• To the reconstruction scheme, 2k− 1 cells are
available. In the end, only k cells are used. This
results in k-th order accuracy when 2k− 1-th or-
der accuracy is theoretically possible in smooth
regions of the solution.

The idea of Weighted Essentially Non-Oscillatory
(WENO) reconstruction is to use a convex combina-
tion of the interpolants through several stencils. If,
however, a candidate stencil contains a discontinuity,
its weight shall be close to zero to mimic the success-
ful properties of ENO schemes.

For each cell Ii k candidate stencils are consequently
available.

Sr (i) = {xi−r, . . . ,xi−r+k−1}

with r = 0, . . . ,k− 1. Using the reconstruction coeffi-
cients, each stencil produces a different reconstruction
of vi+1/2, which is labeled v(r)i+1/2. A convex combina-
tion of these values is used to define the reconstruction
using the WENO method.

vi+1/2 =
k−1

∑
r=0

ωrv
(r)
i+1/2

For stability and consistency, ωr ≥ 0 and
k−1
∑

r=0
ωr = 1

need to be imposed. In smooth regions, these weights
should approximate optimal high-order weights to k−
1-th order, which would imply (2k−1)-th order of the
complete reconstruction scheme. The question is now
what these optimal weights are. In the general case,
this leads to an overdetermined system of equations,
which can be solved, e.g., by using a least-squares al-
gorithm. In the case of a uniform mesh, the equation
system becomes square and an explicit solution can be
computed. Jiang and Shu [16] gave optimal weights
dr for uniform grids and 1 ≤ k ≤ 3. Herein, k = 3 is
considered. For this value of k, the following optimal
weights have been established.

d0 =
3
10

, d1 =
3
5
, d2 =

1
10

Furthermore, Jiang and Shu [16] suggested the fol-
lowing form of the weights

ωr =
αr

k−1
∑

s=0
αs
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for r = 0, . . . ,k−1. Coefficients αr in turn are defined
as follows

αr =
dr

(ε +βr)
2

Here, ε > 0 is introduced to avoid division by zero.
Following Jiang and Shu [16], ε = 10−6 was used in
computations. βr are called smooth indicators in the
given reference and have been defined as follows

βr =
k−1

∑
l=1

∫ xi+1/2

xi−1/2

∆x2l−1
(

∂ l pr (x)
∂xl

)2

dx

This is the sum of the squares of the scaled L2

norms for all derivatives of the interpolation polyno-
mial pr(x) over the interval

(
xi−1/2,xi+1/2

)
. For k = 3,

the result is a 2k−1 = 5-th order accurate reconstruc-
tion.

Figure 2 illustrates Weighted Essentially Non-
Oscillatory reconstruction on the same example as fig-
ure 1. The reconstruction of the left limit of v4+1/2
is considered, i.e., v−4+1/2. For this, the scheme uses
three stencils Sr(4) with increasing left-shift r. The in-
terpolants based on these stencils are illustrated in the
figure. Note the strong gradients in the interpolants us-
ing S0(4) and S1(4). This is also an illustration that the
stencil selection of the ENO scheme shown in figure 1
for cell 4 was reasonable.

The WENO scheme proceeds with the different re-
construction values v(0)4+1/2 to v(2)4+1/2, which are each
marked with a filled circle in figure 2. For this par-
ticular example, the scheme results in weights ω0 =
1.3 · 10−6, ω1 = 15.6 · 10−6, ω2 = 0.999983. This
means, that the interpolant with left-shift r = 2 domi-
nates and v−4+1/2 ≈ v(2)4+1/2.

3.3.3 ENO and WENO numerical fluxes

So far, two different algorithms for the reconstruc-
tion of piecewise smooth functions were introduced.
The question is now how to construct corresponding
higher-order numerical fluxes for the system of hyper-
bolic conservation laws (1) from these reconstructions.

Probably, the easiest way to do this is to apply the
reconstruction to each component of the vector of con-
served variables u separately and thus reconstruct the
left and right limit u±i+1/2 at the location xi+1/2. Then,
a monotone first-order flux can be used to establish
an essentially non-oscillating higher-order numerical
flux.

Shu [28] remarks that only low-order schemes are
highly sensitive to the choice of first-order monotone

flux. This sensitivity decreases with increasing or-
der of accuracy and therefore a simple Lax-Friedrichs
monotone flux is used in the given reference to con-
struct higher-order WENO numerical fluxes.

The given component-wise approach to construct
a numerical flux based on ENO and WENO recon-
structions is simple to implement. Also, the resulting
schemes work reasonably well for many applications,
in particular if the order of the scheme is not high.
Shu [28] mentions “second or sometimes third-order”.

If the order of the scheme is high or a more demand-
ing test problem shall be solved, the following charac-
teristic decomposition is much more robust and should
be implemented instead.

Recall the diagonal decomposition of the Jacobian
of the flux in section 3.1.2 on flux vector splitting, (12).
A change of variables v = K−1u leads to a decou-
pling of the system of conservation laws (1). Then,
the component-wise application of the ENO or WENO
reconstruction is fundamentally justified. The recon-
structed values v±i+1/2 are then transformed back into
the physical space of conserved variables,

u±i+1/2 = Kv±i+1/2

A remaining question is the choice of K, which de-
pends on u, K = K(u). For this purpose, the Roe av-
erages introduced in section 3.1.1 were used, as this
leads to advantageous properties such as the satisfac-
tion of the mean value theorem.

Based on the reconstructed left and right limit u±i+1/2
at the location xi+1/2, a monotone first-order flux is
used again to establish an essentially non-oscillating
higher-order numerical flux.

4 Object-oriented implementation

Two libraries for object-oriented modeling and simu-
lation of gas dynamics were developed for [29] and
this paper. Both were written in Modelica. The first
one is a library specific to ideal gases, which allows
several simplifications and results in little computa-
tional overhead. The second one is a gas dynam-
ics library for generic thermodynamic property mod-
els. These thermodynamic property models are im-
plemented according to the object-oriented interface
MODELICA.MEDIA [6]. This interface had to be ex-
tended with two additional methods to be suitable for
applications in gas dynamics. These and other imple-
mentation aspects are discussed in this section.
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Figure 2: Fifth-order WENO reconstruction

4.1 Ideal gas and generic thermodynamic
property models

A large fraction of the literature on discretization
methods using conservative methods considers ideal
gas equations of state only. Discretizations using real
gas1 equations of state in turn consider non-ideal me-
dia, too. Several articles make assumptions on the
structure of the real gas equations of state however
(e.g,. Liou et al. [18] assume a “general pressure func-
tion” but require that is be explicit in density, specific
internal energy, and mass fractions, and Gallouët et
al. [8] explicitly assume Tammann and van der Waals
equations of state).

In equation-based, object-oriented modeling and
simulation, one aims to encapsulate the equations of
state in separate classes and implement discretization
methods independently using a generic interface. As
the given real gas schemes require structural assump-
tions on the equations of state, too, a generic interface
had to be extended with several methods specific to
these structural assumptions. A clean separation be-
tween discretization scheme and equation of state ap-
pears to be difficult in this case.

A large fraction of the methods described in the pre-
vious section 3 are specific to ideal gases with con-
stant specific heat capacity cp. Specialized Riemann
solvers can be constructed easily for some of these
methods (such as the HLLE method described in sec-
tion 3.1.1). In the context of equation-based, object-
oriented modeling languages, such approximate Rie-
mann solvers had to be exchanged concurrently with
the equations of state. A more practical solution is the

1In this thesis, a real gas is one that is not both thermally and
calorically ideal.

use of centered schemes. These schemes are indepen-
dent of any Riemann solver and can thus be used with
any thermodynamic property model. As described in
section 3.1.3, the support of these schemes does not
depend on the sign of the characteristic speeds. While
the upwind schemes as discussed in sections 3.1.1
and 3.1.2 are more accurate in several cases than their
centered counterparts, they are usually more com-
plex and computationally expensive [34]. Therefore,
in the libraries described herein, monotone and TVD
centered schemes as well as schemes using higher-
order reconstruction with a centered scheme are im-
plemented for general thermodynamic property mod-
els and upwind methods are restricted to ideal gases.

4.2 Generic interface to thermodynamic
property computations

As described above, the object-oriented interface of
MODELICA.MEDIA [6] is used for thermodynamic
property computations. In order to be applicable to
gas dynamics, this interface has to be extended with
two additional methods.

The first extension is required for the conversion
of conserved variables to primitive variables. In the
gas dynamics library for generic equations of state the
primitive variables are velocity v and the thermody-
namic state record of the medium2. For the conver-
sion of the vector u as defined in equation (2) to the
primitive variables an additional setState function
is thus required. From u, density and specific inter-
nal energy can be established. Therefore, a function

2In place of the velocity the mass flow rate could have been
used, too. This selection is ambiguous and was eventually made
for similarity with conventional implementations of gas dynamics.
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setState_duX is used.
The second extension is required for the conversion

of the classic primitive variables {ρ,v, p} to the ones
used in the object-oriented implementation for generic
thermodynamic property computations, the thermody-
namic state record and velocity. This is necessary in
case of a characteristic decomposition such as the one
discussed in section 3.3.3. For this purpose, a func-
tion setState_pdX is required. Note that this is only
required if a gas dynamics library for generic thermo-
dynamic property models shall also be used with ideal
gases.

4.3 Conservative and non-conservative for-
mulations

In order to obtain valid simulation results, the con-
served quantities in the governing equations and the
conservation statements they imply have to make
physical sense [34]. Formulations that are conser-
vative purely in a mathematical sense (i.e., formally,
they can be expressed as (1), but there is no corre-
sponding conservation law in physics) will, in case of
shock waves, result in wrong shock speeds and there-
fore wrong solutions [34].

In the context of equation-based, object-oriented
modeling languages, a simple solution is to explicitly
select the conserved variables themselves as state vari-
ables, i.e., u(x, t). This is done in the gas dynamics
library specific to ideal gases. For ideal gases that are
both thermally and calorically ideal (in particular, cp

is not a function of temperature), all intensive quan-
tities can be established in closed form based on any
two thermodynamic potentials. Therefore, no distinc-
tion between independent and dependent variables is
required for such media.

For generic thermodynamic property models this is
different. In general, such models are explicit in a
number of thermodynamic potentials only (e.g., pres-
sure and specific enthalpy). As long as the physical
flux is not changed, it is then possible to use the inde-
pendent variables of a thermodynamic property model
as state variables instead. This is the approach fol-
lowed in the gas dynamics library for generic thermo-
dynamic property models.

4.4 Inhomogeneous problems

In several references on computational methods for
gas dynamics, fully explicit conservative methods are
considered in contrast to (10). In the context of

equation-based, object-oriented modeling, it is nat-
ural however to use a semi-discretized formulation.
Furthermore, this has advantages for inhomogeneous
problems. No source term splitting schemes [31] are
required for the present approach. With the semi-
discretization (also called method of lines) both the
numeric fluxes and the source term are algebraic ex-
pressions and no further complications arise for inho-
mogeneous problems.

4.5 Library design

In this section, the design of the two gas dynamics li-
braries is sketched. The one considering generic ther-
modynamic property models is emphasized and some
remarks are made on the one specific to ideal gases.
For readability, the code illustrates single-substance
media only. Mass fractions of multiple-substance me-
dia can be covered analogously to the other primi-
tive variables, because they are similarly dominated by
convection.

The connector has to implement the stencil defined
in equation (8). Its length depends on the stencil length
required by the discretization scheme. If the stencil
for a flux computation has to include n cells, then at
least n/2 of these cells are inside the domain modeled
by the respective component and need not be accessed
via the connector. This implies that at most n/2 cells
of the stencil have to be provided by the connector.
Therefore, the connector definition given in listing 1 is
used.

Note the replaceable discretization package
(“Discretization”) in the connector definition in
addition to the replaceable package containing the
thermodynamic property model (“Medium”). A vector
of thermodynamic states and one of velocities of
the given length are defined twice. Different causal
prefixes are used to handle how one component “pre-
scribes” and “reads” which variables3. The library
considering ideal gases only uses density and pressure
vectors in place of the thermodynamic state.

Additionally, information about the computational
mesh has to be included in the connector. In the pro-
posed connector definition, the coordinates of the sides
of the cells are used. They are defined in a local coor-
dinate system, whose origin is set to the side shared by
two components connected together. The coordinate
of this shared side can thus be omitted and the same
number of side coordinates and cell center variables on

3The causal prefixes are used in the acausal modeling language
just to define a nominal causality, not an actual one.
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1 connector Stencil_a
2 "Interface for quasi one-dimensional high-speed flow"
3
4 replaceable package Medium =
5 Modelica.Media.Interfaces.PartialMedium "Medium model";
6
7 replaceable package Discretization =
8 GasDynamics.Discretizations.Partial.PartialDiscretization
9 "Discretization";

10
11 output Medium.ThermodynamicState
12 state_a[Discretization.halfStencilLength]
13 "Thermodynamic state stencil";
14 output SI.Velocity v_a[Discretization.halfStencilLength]
15 "Velocity stencil";
16 output SI.Length x_side_a[Discretization.halfStencilLength]
17 "Cell side coordinate";
18
19 input Medium.ThermodynamicState
20 state_b[Discretization.halfStencilLength]
21 "Thermodynamic state stencil";
22 input SI.Velocity v_b[Discretization.halfStencilLength]
23 "Velocity stencil";
24 input SI.Length x_side_b[Discretization.halfStencilLength]
25 "Cell side coordinate";
26 end Stencil_a;

Listing 1: Connector for high-speed compressible flow

the thermodynamic state and velocity is included. The
side coordinates for Stencil_a are defined strictly
positive; those for Stencil_b strictly negative.

Analogous to the Stencil_a connector definition
in listing 1, a connector Stencil_b is defined. It dif-
fers only in inverted causality prefixes (input instead
of output and vice versa).

The discretization package contains structural pa-
rameters including the stencil length, conversion func-
tions, an exchangeable thermodynamic properties
model, and flux functions. Its interface is defined in
listings 2 to 4.

The structural parameters of a Discretization are its
name, whether it uses equations applicable to ideal
gases, its order of accuracy, and the stencil length.

The conversion functions of a Discretization convert
the set of primitive variables (thermodynamic state
record and velocity) to the vector of conserved vari-
ables as defined in equation (2) and vice versa. Note
that these functions need not be replaceable, because
the implementations are generally valid. Note that in
the second conversion function in listing 3 one of the

additional functions mentioned in section 4.2 is used
(setState_duX()).

The key elements of a Discretization are the flux
functions. Their interfaces are described in listing 4.
For readability, interfaces are defined for both a mono-
tone first-order flux and the arbitrary-order numerical
flux. This allows to clearly separate the reconstruction
and the Riemann solver for instance. In models, only
the arbitrary-order numerical flux is used and therefore
the use of the monotone flux function is optional. The
monotone flux arguments are the left and right ther-
modynamic state and the flow velocities. It returns
the flux vector. The arbitrary-order flux function has a
stencil of thermodynamic states and of velocity as well
as the cell side coordinates as inputs and also returns
the flux vector. The Discretization package also con-
tains a replaceable package implementing thermody-
namic properties. This is not shown in listings 2 to 4.
Discretization packages were implemented using the
Local Lax-Friedrichs flux, Roe’s Riemann solver, the
HLLE Riemann solver, the Steger-Warming flux vec-
tor splitting, the First-Order Centered flux, the Muscl-
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1 partial package PartialDiscretization
2 "Interface for discretization in compact flux form"
3
4 // Description
5 constant String discretizationName =
6 "unusablePartialDiscretization"
7 "Name of the discretization";
8
9 // Type of discretization

10 constant Boolean idealGasOnly = false
11 " = true, if contains specifics of ideal gases";
12 constant Integer order(min=1) = 1
13 "Order of discretization method";
14
15 // Stencil definition
16 constant Integer halfStencilLength = 1
17 "Half of length of stencil for flux f_(i+1/2)";
18 final constant Integer stencilLength = 2*halfStencilLength
19 "Length of stencil for flux f_(i+1/2)";
20
21 // ...
22
23 end PartialDiscretization;

Listing 2: Discretization interface, structural parameters

Hancock TVD scheme with several limiters and mono-
tone fluxes both in upstream and in centered versions,
third- to ninth-order ENO schemes and several fifth-
order WENO schemes with and without characteristic
decomposition.

The implementation of a Discretization is illustrated
for a second-order Muscl-Hancock scheme with a Su-
perbee limiter and a Local Lax-Friedrichs flux in [29]
and omitted here due to space constraints.

4.6 Applications

Results of a Sod-type problem are shown in figure 3.
Here, the results of computations using the Local
Lax-Friedrichs scheme (a first-order monotone cen-
tered method) are compared to those using a fifth-
order WENO scheme (using Roe’s first-order mono-
tone flux and a characteristic decomposition). The fig-
ure illustrates the generally accepted result that proper
higher-order reconstructions lead to higher resolution
of shock waves, expansion fans, and contact discon-
tinuities [34]. That is, such phenomena are smeared
over fewer computational cells.

5 Conclusions

A conceptually meaningful structure for numerical gas
dynamics using Modelica was introduced. The re-
viewed discretization schemes were implemented in
the resulting framework and delivered robust and effi-
cient simulation of the corresponding thermo-fluid dy-
namics problems.

References

[1] W. Casas. Untersuchung und Optimierung
sorptionsgestützter Klimatisierungsprozesse.
PhD thesis, Technical University of Hamburg-
Harburg, Institute of Thermo-Fluid Dynamics,
2006.

[2] W. Casas and G. Schmitz. Experiences with a gas
driven, desiccant assisted air conditioning system
with geothermal energy for an office building.
Energ. Buildings., 37(5):493–501, 2005.

[3] F. Casella and A. Leva. Modelica open library for
power plant simulation: design and experimen-
tal validation. In P. Fritzson, editor, Proceedings

Session 1B: Thermofluid Systems 

DOI Proceedings of the 9th International Modelica Conference    95 
10.3384/ecp1207681 September 3-5, 2012, Munich, Germany   



 

 

1 partial package PartialDiscretization
2 "Interface for discretization in compact flux form"
3
4 // ...
5
6 function primitiveToConserved
7 "Convert primitive variables to conserved variables"
8 input Medium.ThermodynamicState state "Thermodynamic state";
9 input SI.Velocity v "Velocity";

10 output Real u[3] "Vector of conserved variables";
11 algorithm
12 u := {Medium.density(state), Medium.density(state)*v,
13 Medium.density(state)*
14 (Medium.specificInternalEnergy(state) + 1/2*v*v)};
15 end primitiveToConserved;
16
17 function conservedToPrimitive
18 "Convert conserved variables to primitive variables"
19 input Real u[3] "Vector of conserved variables";
20 output Medium.ThermodynamicState state "Thermodynamic state";
21 output SI.Velocity v "Velocity";
22 algorithm
23 v := u[2]/u[1];
24 state := Medium.setState_duX(u[1], u[3]/u[1]-1/2*v*v,
25 Medium.X_default);
26 end conservedToPrimitive;
27
28 // ...
29
30 end PartialDiscretization;

Listing 3: Discretization interface, conversion functions

of the Third International Modelica Conference,
pages 41–50, Linköping, Sweden, 2003.

[4] F. Casella and A. Leva. Modelling of thermo-
hydraulic power generation processes using
Modelica. Math. Comput. Model. Dyn. Syst.,
12(1):19–33, 2006.

[5] J. Díaz López. Shock wave modeling for Mod-
elica.Fluid library using oscillation-free logarith-
mic reconstruction. In Proceedings of the Fifth
International Modelica Conference, pages 641–
649, 2006.

[6] H. Elmqvist, H. Tummescheit, and M. Otter.
Object-oriented modeling of thermo-fluid sys-
tems. In P. Fritzson, editor, Proceedings of the
Third International Modelica Conference, pages
269–286, Linköping, Sweden, 2003.

[7] R. Franke, F. Casella, M. Otter, M. Sielemann,
S.-E. Mattson, H. Olsson, and H. Elmqvist.
Stream connectors—an extension of Modelica
for device-oriented modeling of convective trans-
port phenomena. In F. Casella, editor, Proceed-
ings of the seventh International Modelica con-
ference, pages 108–121, Como, September 2009.

[8] T. Gallouët, J. Hérard, and N. Seguin. Some
recent finite volume schemes to compute euler
equations using real gas eos. Int. J. Numer. Meth.
Fl., 39(12):1073–1138, 2002.

[9] S. K. Godunov. A finite difference method for
the computation of discontinuous solutions of
the equations of fluid dynamics. Mat. Sbornik.,
47:357–393, 1959.

[10] A. Harten. High resolution schemes for hy-

High-Speed Compressible Flow and Gas Dynamics 

 

96 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp1207681 



 

 

1 partial package PartialDiscretization
2 "Interface for discretization in compact flux form"
3
4 // ...
5
6 replaceable partial function monotoneFlux
7 "First-order flux approximation"
8 input Medium.ThermodynamicState state_l
9 "Stencil of thermodynamic states on left (i)";

10 input Medium.ThermodynamicState state_r
11 "Stencil of thermodynamic states on right (i+1)";
12 input SI.Velocity v_l "Velocity in x-dir on left, v_(i)";
13 input SI.Velocity v_r "Velocity in x-dir on right, v_(i+1)";
14 output Real flux[3] "Fluxes f_(i+1/2)";
15 end monotoneFlux;
16
17 replaceable partial function flux "Numeric flux approximation"
18 input Medium.ThermodynamicState state[stencilLength]
19 "Thermodynamic state stencil";
20 input SI.Velocity v[stencilLength] "Velocity stencil";
21 input Real x_side[stencilLength + 1]
22 "Coordinates of cell sides (i-1/2), (i+1/2) etc.";
23 output Real flux[3] "Fluxes f_(i+1/2)";
24 end flux;
25
26 // ...
27
28 end PartialDiscretization;

Listing 4: Discretization interface, flux functions

perbolic conservation laws. J. Comput. Phys.,
49:357–393, 1983.

[11] A. Harten, B. Engquist, S. Osher, and
S. Chakravarthy. Uniformly high order es-
sentially non-oscillatory schemes, III. J.
Comput. Phys., 71:231–303, 1987.

[12] A. Harten, P. D. Lax, and B. van Leer. On up-
stream differencing and Godunov-type schemes
for hyperbolic conservation law. SIAM Rev.,
25(1):35–61, 1983.

[13] T. Y. Hou and P. LeFloch. Why non-conservative
schemes converge to the wrong solutions: Error
analysis. Math. Comput., 62:497–530, 1994.

[14] J. Jensen, J. Jensen, and H. Tummescheit. Mov-
ing boundary models for dynamic simulations of
two-phase flows. In Proceedings of the Second
International Modelica Conference, 2002.

[15] J. M. Jensen. Dynamic Modeling of Thermo-
Fluid Systems with focus on evaporators for re-
frigeration. PhD thesis, Technical University of
Denmark, Department of Mechanical Engineer-
ing, 2003.

[16] G. Jiang and C.-W. Shu. Effcient implementation
of weighted ENO schemes. J. Comput. Phys.,
126:202–228, 1996.

[17] P. D. Lax and B. Wendroff. Systems of conserva-
tion laws. Comm. Pure Appl. Math., 13:217–237,
1960.

[18] M. Liou, B. Leer, and J. Shuen. Splitting of in-
viscid fluxes for real gases. J. Comput. Phys.,
87(1):1–24, 1990.

[19] S. Patankar and D. Spalding. A calculation pro-
cedure for heat, mass and momentum transfer in
three-dimensional parabolic flows. Int. J. Heat.
Mass. Tran., 15:1787–1806, 1972.

Session 1B: Thermofluid Systems 

DOI Proceedings of the 9th International Modelica Conference    97 
10.3384/ecp1207681 September 3-5, 2012, Munich, Germany   



 

 

0 0.2 0.4 0.6 0.8 1
200

400

600

Coordinate x

Te
m

pe
ra

tu
re

T

0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

Coordinate x

V
el

oc
ity

v

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

·105

Coordinate x

Pr
es

su
re

p
Lax-Friedrichs
Weno5

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

Coordinate x

D
en

si
ty

ρ

Figure 3: Comparison of Local Lax-Friedrichs and fifth-order WENO schemes on a Sod-type problem

[20] T. Pfafferott. Dynamische Simulation von
CO2-Kälteprozessen für mobile Anwendungen.
PhD thesis, Technical University of Hamburg-
Harburg, Institute of Thermo-Fluid Dynamics,
2005.

[21] K. Prölß. Untersuchung von Energie- und Mass-
espeicherungsvorgängen in Pkw-Kälteanlagen.
PhD thesis, Technical University of Hamburg-
Harburg, Institute of Thermo-Fluid Dynamics,
2009.

[22] K. Prölßand G. Schmitz. Modeling of frost
growth on heat exchanger surfaces. In Proceed-
ings of the Fifth International Modelica Confer-
ence, 2006.

[23] J. J. Quirk. An alternative to unstructured grids
for computing gas dynamic flows around arbi-
trarily complex two dimensional bodies. Com-
put. Fluid., 23(1):125–142, 1994.

[24] C. C. Richter. Proposal of New Object-Oriented
Equation-Based Model Libraries for Thermody-
namic Systems. PhD thesis, Technical Univer-

sity Braunschweig, Institute for Thermodynam-
ics, 2008.

[25] R. D. Richtmyer and K. W. Morton. Dif-
ference Methods for Initial Value Problems.
Interscience-Wiley, New York, 1967.

[26] P. L. Roe. Approximate Riemann solvers, param-
eter vectors, and difference schemes. J. Comput.
Phys., 43:357–372, 1981.

[27] V. V. Rusanov. Calculation of interaction of non-
steady shock waves with obstacles. USSR J.
Comput. Math. Phys., 1:267–279, 1961.

[28] C.-W. Shu. Essentially non-oscillatory and
weighted essentially non-oscillatory schemes for
hyperbolic conservation laws. Advanced numeri-
cal approximation of nonlinear hyperbolic equa-
tions, 1697:325–432, 1998.

[29] M. Sielemann. Device-Oriented Modeling and
Simulation in Aircraft Energy Systems Design.
PhD thesis, Technical University of Hamburg-
Harburg, Institute of Thermo-Fluid Dynamics,
2012.

High-Speed Compressible Flow and Gas Dynamics 

 

98 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp1207681 



 

 

[30] J. L. Steger and R. F. Warming. Flux vector split-
ting of the inviscid gasdynamic equations with
applications to finite difference methods. J. Com-
put. Phys., 40:263–293, 1981.

[31] G. Strang. On the construction and comparison
of difference schemes. SIAM J. Numer. Anal.,
5(3):506–517, 1968.

[32] P. K. Sweby. High resolution schemes using flux
limiters for hyperbolic conservation laws. SIAM
J. Numer. Anal., 21:995–1011, 1984.

[33] E. F. Toro. On two Glimm-related schemes for
hyperbolic conservation laws. In Proceedings of
the Fifth Annual Conference of the CFD Society
of Canada, pages 3.49–3.54. University of Vic-
toria, Canada, 1997.

[34] E. F. Toro. Riemann Solvers and Numerical
Methods for Fluid Dynamics: A Practical Intro-
duction. Springer, 1997.

[35] H. Tummescheit. Design and Implementation of
Object-Oriented Model Libraries using Model-
ica. PhD thesis, Lund University, Department of
Automatic Control, 2002.

[36] H. Tummescheit, J. Eborn, and K. Prölß.
Airconditioning–a Modelica library for dynamic
simulation of AC systems. In G. Schmitz, editor,
Proceedings of the Fourth International Model-
ica Conference, Hamburg, Germany, 2005.

[37] B. van Leer. Towards the ultimate conservative
difference scheme I. the quest for monotonicity.
Lect. Notes. Phys., 18:163–168, 1973.

[38] B. van Leer. Towards the ultimate conservative
difference scheme II. monotonicity and conser-
vation combined in a second order scheme. J.
Comput. Phys., 14:361–370, 1974.

[39] B. van Leer. Towards the ultimate conservative
difference scheme III. upstream-centered finite
difference schemes for ideal compressible flow.
J. Comput. Phys., 23:263–275, 1977.

[40] J. Vasel and G. Schmitz. Transient simulation
of a direct-evaporating CO2 cooling system for
an aircraft. In 25th International Congress of
the Aeronautical sciences (ICAS), Proceedings of
the, Hamburg, Germany, September 2006.

Session 1B: Thermofluid Systems 

DOI Proceedings of the 9th International Modelica Conference    99 
10.3384/ecp1207681 September 3-5, 2012, Munich, Germany   



 

 

 

High-Speed Compressible Flow and Gas Dynamics 

 

100 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp1207681 



 

 

 

Session 1C Power and Energy  

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics Library Gas Exchange and Exhaust Condition Modeling of a Diesel
Engine using the Engine Dynamics Library

Johan Dahl † Daniel Andersson ‡
†Volvo Group Truck Technology, Control Systems, Gothenburg, Sweden

‡Modelon AB, Lund, Sweden

Abstract

In this paper the newly developed Engine Dynamics
Library is presented. Ever increasing consumer and
regulatory demand for improved fuel economy and
lower emissions forces the engines and Engine After-
Treatment Systems (EATS) to be improved continu-
ously. Since the complete system is very complex,
models are useful in cost effectively developing new
control strategies and select hardware. The library is
based on a mean-value combustion model and the fo-
cus lies on modeling the gas exchange with real-time
like simulation times, useful for engine optimization
and for evaluation of control strategies. The library
contains models of the standard engine components
such as manifolds, pipe, turbines, compressors, valves,
mechanics, etc. Simulation results from Dymola for a
13 L Volvo truck engine demonstrate that the model
captures the transient flow and temperatures and emis-
sion trends, and has sufficient accuracy to be useful in
engine optimization. The physical modeling approach
allows for virtual prototyping by replacing individ-
ual components, which is an important advantage over
black-box modeling. It is shown that the model cap-
tures essential system properties in the gas exchange,
such as non-minimum phase behavior and sign rever-
sal for VGT and EGR valve actuation. The model has
been calibrated using surface fitting of maps and least-
squares estimation of parameters in Matlab, as well as
parameter optimization using JModelica and FMI.

Keywords: Engine modeling; Engine simulation;
Air Gas management

1 Introduction

As the requirements on the engine and EATS become
more strict, a new development process of control
strategies and hardware concept selection is needed as
only using engine test cells and vehicles in the devel-
opment process is too time consuming and expensive.

In the new development process at Volvo, Software-
In-the-Loop (SIL) simulations are used more exten-
sively in the control strategy and hardware develop-
ment. With the introduction of US10 and soon EU6
legislation ultra low on-road emissions are required.
Future emission legislation will also include CO2, N2O
and NO2 [1]. To fulfill these requirements with opti-
mal fuel consumption, the significant interaction be-
tween the engine and EATS must be considered and
control strategies for both components need to be opti-
mized together [2]. This requires good engine models
with accurate modeling of the engine out conditions.
In particular, focus has been on predicting the sensitiv-
ity of the dynamic response and engine exhaust tem-
perature with respect to the air gas management. Is-
sues about control system design or strategy are not in
the scope of this paper. Nevertheless, a good physical
model of the engine provides useful insights for both
the control system designers and hardware selection.
The engine model is also useful for finding suitable
requirements of the EATS system. For example the
emission transient response can be a limiting require-
ment for the needed volumes of the Diesel Oxidation
Catalyst (DOC), Diesel Particulate Filter (DPF) and
Selective Reduction Catalyst (SCR) in order to fulfill
the EU6 emission legislation.
In this paper the Engine Dynamics Library (EDL) is
presented. The library is implemented in Modelica
and consists of mean-value models of standard en-
gine components. The focus of the model has been
on capturing the transient engine response and the en-
gine outlet conditions as these features are important
for the total engine and EATS optimization. Compar-
ison results between test cell measurements and simu-
lation results of a 13 liter Volvo truck engine certified
for the Post New Long-Term (PNLT) emission legis-
lation, introduced in 2009, are presented. The Engine
Dynamics Library is a new commercial library offered
by Modelon.
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2 Engine modeling in Dymola

Today several tools exist in which physical or semi-
physical models can be implemented. Dymola [3],
which is based on the open standard Modelica lan-
guage, was chosen as the tool for developing an engine
model library. The main reasons for choosing Model-
ica are the flexibility, expressiveness and openness of
the language, as compared to domain specific tools,
and the possibility to extend tools and libraries with
in-house IP and know-how. Others have demonstrated
that Modelica is suitable for engine modeling [4, 5],
but the focus has not been on gas exchange modeling
or predicting the exhaust gas temperature entering the
EATS.
The following sections describe EDL and the compo-
nent and medium models that have been implemented.

2.1 Library structure

Figure 1: EDL and sub packages (left), Engines pack-
age (right)

The structure of EDL is shown to the left in Fig. 1.
The library is divided into packages for each physi-
cal component, plus some additional packages for sup-
porting components and classes. There is also a pack-
age named Engines, shown to the right of Fig. 1,

which contains examples of configured engine mod-
els and experiments.
EDL is not based on the Modelica.Media or Mod-
elica.Fluid packages. Medium property models and
base classes for fluid systems modeling are based on
classes in the Modelon Base Library, which is deliv-
ered with EDL. EDL share base classes with Mode-
lon’s Liquid Cooling Library (LCL), Heat Exchanger
Library (HXL) and Vehicle Dynamics Library (VDL),
making them all compatible. The libraries can be used
together for different kinds of vehicle analysis, for ex-
ample EDL, LCL and HXL together forms a powerful
solution for thermal management analysis, and EDL
and VDL can be used together for drivability analysis.

2.2 Cylinder

Figure 2:
Cylinder

The cylinder component (Fig. 2) is based
on a mean value combustion model as
described in [6]. The component bound-
ary conditions are boost pressure and
temperature, exhaust manifold pressure,
engine speed, fuel injection and other
control signals. The empirical correlations described
in the following sections (often 2-dimensional maps)
can easily be replaced by any equation based models,
for example simple qualitative models found in litera-
ture, regression models or neural network models.

Flow model

The cylinder mass flow is modelled by means of a vol-
umetric efficiency defined as:

ṁcharge = ρin ·λ (pBoost ,ωe) ·
Vd

N
· ωe

2π
(1)

where λ is the volumetric efficiency, Vd is the dis-
placed volume, N is the number of revolutions per cy-
cle, pBoost is the inlet manifold pressure and ωe is the
engine rotational speed. λ (pBoost ,ωe) is modelled by
a two-dimensional map obtained from measurements.

Torque model

For the torque model we define brake mean effective
pressure, pme and fuel mean effective pressure, pmϕ ,
as:

pme =
Te ·4π

Vd
pmϕ =

Hl ·mϕ

Vd
(2)

where Te is the engine torque, Hl is the fuel lower
heating value and mϕ is the mass of fuel burnt per
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combustion cycle. The engine efficiency can then be
written as:

ηe = pme/pmϕ (3)

Following the Willans Approximation [6], a torque
model on the following form is implemented:

pme = e(pmϕ ,ωe) · pmϕ − pme0 f (ωe)− pme0g (4)

where the energy conversion efficiency, e is
modelled by a two-dimensional map obtained from
measurements, the mechanical friction, pme0 f , is
mapped from engine speed, pme0g, is the cycle-
averaged pressure difference between inlet and
exhaust manifolds.

Exhaust gas properties

The outlet exhaust gas temperature is mapped from
engine speed and injected fuel. The transferred heat
to the cylinder block is obtained from energy balance
over the component boundaries.
The composition of species in the exhaust gas is mod-
elled by a stoichiometry matrix for the combustion.
Complete combustion of the injected fuel is assumed.
The NOx and soot generation is modelled by a regres-
sion model [7] on the form:

y(t) = φ
T

θ + e(t) (5)

where y = (CNOx,CSoot)
T are the NOx and soot con-

centrations of the exhaust gas, the regressor φ =
(1,u1,u2

1, ...,u
N
1 ,u2, ...)

T contains the first and higher
order terms of the following signals:

• Injected fuel amount, m f

• Fuel injection timing, ζ

• Needle opening angle (controls the fuel injection
pressure), β f

• CO2 concentration in the inlet manifold, CCO2

• Inverse stoichiometric air to fuel ratio, λ−1

• Engine speed, ωe

θ are the model parameters and e is the model error.
In the experiment described in section 3.2, all of the
input signals to the model come directly from model
control signals or boundary conditions, except for the
inlet manifold CO2 concentration and air to fuel ra-
tio. These variables are simulated in the engine sys-
tem model and the simulated values are used as inputs
to the emission model.

2.3 Compressor and turbine

Figure 3: Compressor and VGT

The compressor and variable geometry turbine (VGT)
components (Fig. 3) are both parameterized by maps
for mass flow rate and isentropic efficiency. The
components model a polytropic thermodynamic pro-
cess with mechanical power crossing the component
boundary via a rotational mechanical flange. Quasi-
static balance equations for conservation of substance
mass and energy are used, i.e. storage of mass and
energy is not considered and the outlet properties re-
spond instantly to property changes of the inlet flow.
These equations assume:

• The amount of mass inside the component is
small compared to that in the upstream and down-
stream pipes, which is covered by volume com-
ponents connected to these components.

• The heat capacity of the solid parts are lumped to-
gether with the wall heat capacities of the volume
components connected upstream and downstream
of these components.

• The rotational kinetic energy of the solid parts
is modeled by a separate inertia component con-
nected to the rotational flange connector of these
components.

The mapped isentropic efficiency, ηis, defines the
deviation from an isentropic process [8].

ηis =
hout,isentropic−hin

hout −hin
(Compressor) (6)

ηis =
hout −hin

hout,isentropic−hin
(Turbine) (7)

where hin is the inlet specific enthalpy, hout is the
outlet specific enthalpy and hout,isentropic is the outlet
specific enthalpy of an isentropic process.
The variable geometry turbine is modeled using sev-
eral maps of isentropic efficiency and mass flow rate
for different positions, the properties are interpolated
linearly between the mapped geometry settings. The
turbine model currently contains no compensation for
the upstream pressure oscillations. Internal losses
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from heat transfer to the housing and mechanical fric-
tion are currently modeled as a constant efficiency fac-
tor. The turbo moment of inertia is captured by a sep-
arate inertia component connected between the com-
pressor and turbine components in the engine system
model.

2.4 Heat exchangers

Figure 4:
Heat
exchanger

A quasi-static heat exchanger model with
table based efficiency is implemented
in EDL. It does not contain storage of
mass or energy and the outlet fluid prop-
erties respond instantly to inlet prop-
erty changes. The component has inter-
changeable friction models with different
levels of detail for the primary and sec-
ondary flow channels. A model on the following form
was chosen because it is easily calibrated to fit mea-
sured data:

d p = f · ρ
2
· vn (8)

Here d p is the pressure drop over the channel, f is the
friction factor, ρ is the fluid density, v is the flow ve-
locity and n is a constant. Note that for n = 2, this
corresponds to the Darcy-Weisbach equation for pres-
sure loss due to friction in a pipe. The constants f and
n are chosen to fit measurement data.
The heat transfer is modeled by defining heat ex-
changer efficiency as ε = Q/Qmax. The maximum
transferable heat Qmax is calculated from the heat ca-
pacity flow and inlet temperatures of the two chan-
nels. The model is parameterized by specifying a two-
dimensional map for the efficiency from the mass flow
rates in the two channels.

2.5 Volumes

Figure 5:
Two port
air volume

All fluid mass and energy storage is mod-
elled in volume components by dynamic
mass and energy balance equations. An
ideal mixture is assumed and a number
of different components are available,
which have different port configurations. The volume
models have the option to consider wall heat capac-
ity, heat transfer between fluid and wall (constant heat
transfer coefficient model) and heat transfer to the sur-
roundings. There is a special volume model for the in-
let manifold that can handle incoming flow in a differ-
ent medium model representation by mapping the fluid
species between the mass fraction vectors of the two
medium models. This is necessary if separate models

for air and exhaust gas are used. Outgoing flows from
the volume carry the average medium properties of the
total volume.

2.6 Pipes

Figure 6:
Air pipe
model

The pipe models provided in the library
consider pressure drop due to friction
and optionally also heat transfer effects.
Several friction models can be chosen,
but also here eq. 8 is used. The
heat transfer model is interchangeable as
well, with the options: 1) Constant heat
transfer coefficient, 2) Dittus-Boelter correlation for
forced convection in turbulent flow (Coefficients can
be adjusted by the user). Optionally a dynamic mo-
mentum balance can be used.

2.7 Valves

Figure 7:
Valve
model

There are a number of valve models
available in EDL. The first one is de-
signed to be easily parameterized from
measured data. It defines a flow equa-
tion for the fully opened setting as eq. 8.
The valve characteristics are represented
by means of a relative open area that is
governed by the actuation signal. Lin-
ear, quadratic and tabulated characteristics are avail-
able. The second one is implemented according to
the IEC 534/ISA S.75 standards for valve sizing. It
accounts for fluid compressibility effects, as well as
choked conditions. For the engine model presented in
this paper, the first model is used because it is easier
to parameterize from measurements and choked con-
ditions do not occur under normal operation.
A butterfly type valve model has been implemented as
well, including flap mechanism, torque generation on
the flap by the gas flow and mechanical friction.

2.8 Medium models

The medium property models are implemented as re-
placeable packages with high flexibility, similar to that
of the Modelica.Media package. Ideal gas mixtures
based on the NASA coefficients [9] can be created and
used.
In addition to this, a simplified medium model as-
suming a linear function for specific heat capacity of
temperature, Cp(T ), has been implemented for perfor-
mance reasons. By definition, the specific enthalpy
function, h(T ), will become quadratic in temperature
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under this assumption. In static component models,
the upstream temperature T (h) is calculated from the
specific enthalpy of the inlet fluid connector. An ex-
plicit function for this calculation greatly improves
simulation performance for system models with sev-
eral such components, as the non-linear systems of
equations can be reduced or completely avoided. The
medium models are compatible, so all component
models can carry any of the medium model types.
Available in EDL are some pre-defined mixtures, used
as air or exhaust gas models. The components in-
cluded are CO2, H2O, O2, N2 and Ar for both NASA
and linear Cp(T ) models. Also a single component
dry air model is provided. To model emissions, some
pre-defined exhaust gas mixtures include trace compo-
nents for NOx, Soot, HC and CO. The trace compo-
nents are assumed to be carried by fluid flow but don’t
affect the thermodynamic properties of the fluid.

2.9 Mechanical

Basic rotational mechanical components are available
in EDL, such as inertia and ideal gear models. The
mechanical connectors of the turbo components and
cylinder component are compatible with the mechani-
cal components in the Modelica Standard Library.

3 Engine system model

A 13 liter Volvo engine certified for the Post New
Long-Term (PNLT) emission legislation has been
modeled using EDL. The engine is equipped with vari-
able geometry turbine, exhaust gas recirculation gov-
erned by a valve, throttle, EGR cooler, intercooler and
unit injectors. The purpose of the simulation model
is to perform similar experiments that are performed
in engine test cells, where the engine is mounted to an
electrical dynamometer which directly controls the en-
gine speed.

3.1 Model description

The engine system model is configured as shown in
Fig. 8. The upper left connector is the air inlet connec-
tor that should be connected externally to a component
defining air temperature and pressure boundary condi-
tions. The components in the air path are connected
to represent the engine system design, indicated with
light blue in the figure. First there is a pipe component
modeling the pressure drop over the air filter (1). Then
follows compressor (2), intercooler (3) and throttle (4)

Figure 8: Engine system model with: Air filter (1),
Compressor (2), Intercooler (3), Throttle (4), Turbo in-
ertia (5), Inlet manifold (6), Cylinder block (7), Drive
shaft (8), Exhaust manifold (9), EGR valve (10), EGR
cooler (11), Venturi (12), VGT (13), Muffler (14),
Heat transfer (15, and more)

components, each separated by volume components.
The compressor is connected to an inertia model (5)
that is also connected to the VGT component (13).
The throttle in the lower left is connected to the inlet
manifold component (6). This is a volume model that
also accounts for the thermal mass of the wall and heat
transfer between the gas and wall. The inlet manifold
has two more connectors for gas (orange). One is con-
nected to the cylinder block and the other is the inlet
for EGR gas.
The cylinder block (7) has a rotational connector for
the drive shaft that is connected to an external connec-
tor to the right in the figure (8). It is also possible to en-
able a support connector for the reactive torque, but it
is not used here. There are real input signal connectors
for injected fuel, injection timing and needle opening
angle. The exhaust gas port is connected to the exhaust
manifold (9), which is also a volume model including
thermal mass of the wall. There is an outlet port for
the exhaust gas recirculation path that is connected di-
rectly the the EGR valve (10). This is connected to a
volume and then to the EGR cooler (11) and venturi
(12). The venturi component is a pure sensor model
that does not affect the gas flow rate or properties. The
EGR gas path is then fed back to the inlet manifold.

Session 1C: Power and Energy 

DOI Proceedings of the 9th International Modelica Conference    105 
10.3384/ecp12076101 September 3-5, 2012, Munich, Germany   



 

 

For each volume model there is a unique pressure and
temperature state introduced. As a consequence of the
model layout the flow through the EGR valve is cal-
culated from the pressure difference between the ex-
haust manifold and EGR volume components. The
pressures are calculated during model simulation by
means of numerical integration.
The exhaust manifold is also connected to the turbine
component (13). Additionally, the turbine has an in-
put signal for varying the geometry, a rotational flange
connector and an outlet gas connector. The turbine
component calculates a torque that is generated on the
flange. Thus, the turbo rotational speed is obtained
during simulation by integration of the dynamic mo-
mentum equation introduced in the inertia component,
with torque terms from the turbine and compressor
components. After the turbine the gas is fed to a vol-
ume model and then a pipe model that accounts for the
pressure drop over the muffler (14).
The volume model in the exhaust path has a thermal
connector (red square) that holds the wall temperature
of the exhaust pipe. This is connected to a heat trans-
fer component (15) that contains a linear heat transfer
equation. This is also connected to an external heat
connector where the ambient temperature should be
provided as boundary condition. Such heat transfer
components are also used to cover heat transfer be-
tween the cylinder block and coolant water, and be-
tween cylinder block and inlet manifold. The coolant
path is indicated with dark blue connections. The set
of connector variables in the air, gas and water con-
nectors are identical. Only the color differ for a clearer
visual model representation.

3.2 Simulation model

The engine model described above can be used in var-
ious simulation models or virtual experiments. Sim-
ulation models are created by instantiating the engine
model and assigning values or signal to boundary con-
ditions and input control signals. The following sig-
nals from the engine electrical control unit (EECU) are
set as input signals:

• Injected fuel, injector timing and needle opening
angle (controls the fuel pressure)

• VGT, EGR valve and throttle positions

The following physical boundary conditions are set:

• Engine coolant temperature and mass flow rate

• Ambient air temperature and pressure

Figure 9: Simulation model of the engine in a test
cell. The engine component corresponds to the engine
model as shown in Figure 8.

• Engine driveshaft speed

This experiment is set up in Dymola, as shown in
Fig. 9. The centered engine icon represents the engine
model as shown in Fig. 8. The components with ta-
ble icons are used to read signals from the engine test
cell measurements from an external file. The engine
component need not be connected directly to source
components, but could be used in larger system mod-
els together with drive line, vehicle dynamics, coolant
system or exhaust after treatment system models.

4 Calibration

The calibration is done component by component.
The benefit with this approach is that it is possible
to change a component and only recalibrate the new
component without needing to recalibrate the whole
systems. Validation is performed both component by
component and for the overall system using steady-
state and dynamic data. The exhaust gas thermal dy-
namics is calibrated using an exhaust gas path sub-
system model.
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4.1 Static correlations

The calibration of the static engine correlations is
performed in Matlab using steady state measurement
data. Flow model parameters for pipe, valve and heat
exchanger models are calibrated with a Least-Squares
method using static engine screening data. For the
compressor and VGT the maps supplied by the man-
ufacturer were used. Heat exchanger measurements
were also supplied separately, and not identified from
the screening data. The maps for energy conversion
efficiency, volumetric efficiency and exhaust gas tem-
perature used in the cylinder component were cali-
brated using the surface fitting tool gridfit [10]. The
calibration data for this component consisted of a par-
tial load map collected from an engine test cell. For
the valves, one dimensional look-up tables for relative
open area from the control signal were created. Some
results from the calibration procedure are presented in
the following figures. Fig. 10 shows the fitted surface
for volumetric efficiency together with measurements.
Fig. 11 shows the measured mass flow rate through the
intercooler at different pressure drops together with a
calibrated model using equation 8. Fig. 12 shows the
fitted look-up table for throttle relative open area.

Figure 10: Volumetric efficiency map, fitted map and
measured data

4.2 Emission model

The linear regression model is calibrated by least
squares estimation [7]. For calibration, the initial 10
minutes of the dynamic JE05 cycle, further described
in section 5, were used. The remaining 20 minutes are
then used for validation of the calibration result. The

Figure 11: Intercooler flow friction model

Figure 12: Throttle relative open area
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4.3 Parameter optimization in JModelica.org

JModelica.org [11] has been used for optimization of
model parameters for heat transfer and thermal dy-
namics in the exhaust gas path. The method used is the
derivative free Nelder-Mead simplex method [12, 13].
Derivative free methods do not require that the model
provides derivatives of the objective function with re-
spect to tuner variables. That makes them well suited
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for optimization of more complex models, and model
modifications for optimization purposes are not nec-
essary. The following parameters were optimized to
obtain the best possible result for the exhaust gas tem-
perature during transient cycles:

• Thermal conductance between exhaust gas and
wall

• Heat capacity of the exhaust pipe wall

• Thermal conductance between the wall and the
surrounding air

The dynamic exhaust gas temperature response,
presented in Fig. 23, is very different from the instan-
taneous outlet gas temperature from the quasi-static
VGT model. This is both due to thermal mass of
the metal parts, and heat transfer to the surrounding
air. The heat capacity and thermal conductances men-
tioned above model the dynamic exhaust temperature
response from the VGT outlet temperature. The initial
10 minutes of the JE05 cycle were used for parameter
optimization. The remaining 20 minutes are then used
for validation of the calibration result.

5 Validation

The models have been validated, both by individual
component experiments, and by complete engine sys-
tem simulation. The used data was collected from an
engine test cell and consisted of partial load map data
and of the Japanese emission cycle, JE05. The JE05
cycle is one of the legislation requirements in the Post
New Long-Term (PNLT) legislation.

5.1 Turbo model validation

The turbo model with rotational speed as dynamic
state was validated separately with boundary condi-
tions from a partial load map. An experiment model
is set up where a compressor and VGT component are
connected with an inertia model in between. Upstream
and downstream pressure and temperatures and VGT
position are prescribed and the resulting mass flow
rate, outlet temperature and rotational speed are val-
idated for the compressor and turbine models. Fig. 13
shows a comparison of the turbo flow rates. In Fig. 14
the turbo model outlet temperatures are shown.

Figure 13: Turbo model validation. Top: Exhaust flow
rate [kg/s], simulated (solid) and measured (dashed).
Bottom: Air flow rate [kg/s], simulated (solid) and
measured (dashed)

Figure 14: Turbo model validation. Top: Turbine out-
let temperature [K], simulated (solid) and measured
(dashed). Bottom: Compressor outlet temperature
[K], simulated (solid) and measured (dashed)

5.2 EGR model validation

The EGR valve model is validated with part load map
data. Upstream and downstream pressures are pre-
scribed and the simulated EGR flow rate is compared
to measurements. The result is presented in Fig. 15.

5.3 Verification of non-minimum phase and
sign reversal

An engine equipped with VGT and EGR valve
has some essential system properties such as non-
minimum phase behavior in the intake manifold pres-
sure and a non-minimum phase behavior and a sign re-
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Figure 15: EGR flow model validation. EGR flow
[kg/s], simulated (solid) and measured (dashed)

versal in the compressor flow [15]. Fig. 16 shows that
the the model captures the non-minimum phase behav-
ior between the EGR valve position, uegr, change and
inlet manifold pressure, pin.

Figure 16: Dynamic verification of the non-minimum
phase between uegr and pin using steps. Operating
point: ωe = 1500 rpm, Te = 670 Nm, uvgt = 0.5 ra-
tio.

Fig. 17 shows that the model capture the non-
minimum phase behavior between the VGT position,
uvgt , and the compressor mass flow ṁc. Notice that
initially the DC gain between uvgt and ṁc is negative
but after a while it becomes positive. This phenom-
ena is even better seen in Fig. 18 where the uvgt is

slowly changed from complete opened vanes towards
closed position. As the sweep is performed slowly and
the other operating conditions are kept constant, the
results can be regarded as steady state results.

Figure 17: Dynamic verification of the non-minimum
phase between uvgt and ṁc using steps. Operating
point: ωe = 1500 rpm, Te = 670 Nm, uegr = 1 ratio.

Figure 18: Slow sweep of the uvgt from fully open to-
wards closed position. Operating point: ωe = 1500
rpm, Te = 670 Nm, uegr = 1 ratio.
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5.4 Dynamic validation

The engine system model is validated with JE05
boundary conditions using the experiment setup in
Fig. 9. The cycle is 1830 seconds long and the simu-
lation time for the whole cycle was 735 seconds (2.5x
faster than real-time) on a standard laptop. The JE05 is
a very transient cycle which contains mostly city driv-
ing with some high way driving. The engine speed
variations during the complete cycle are shown in Fig.
19 and the load variations are shown in Fig. 20.

Figure 19: JE05 engine speed [rpm]

Figure 20: JE05 engine torque [Nm]

The resulting full cycle exhaust gas temperature is
shown in Fig. 21 and NOx emissions are shown in
Fig. 22. Both the modeled exhaust temperature and
the NOx emission captures most of the behavior. The
modeled exhaust temperature differs from the mea-
sured temperature in the end of the JE05 cycle. The
temperature before the VGT capture the temperature
behavior correct also in the end of the cycle this indi-
cate that there are still heat transfer effects that need to
be incorporated in the model.

Figure 21: Complete model validation. Exhaust
gas temperature [K], simulated (solid) and measured
(dashed)

Figure 22: Complete model validation. Exhaust NOx
concentration [kg/kg], simulated (solid) and measured
(dashed)

Figures 23 - 27 show simulation results for engine
torque, mass flow rates and exhaust gas temperature
from a part of the cycle (750 - 1000 s). The exhaust gas
temperature is measured in the pipe 1 meter after the
turbine. As can be seen in Fig. 23 the model captures
most of the behavior. Figures 24 - 26 show that the
model captures the dynamics of the exhaust, EGR and
air mass flows. The ERG flow in Fig. 25 shows a
small time lag of the measured flow compared to the
simulated. This is likely due to a time lag in the EGR
flow sensor.

Figure 23: Complete model validation. Exhaust
gas temperature [K], simulated (solid) and measured
(dashed)
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Figure 24: Complete model validation. Exhaust
gas flow rate [kg/s], simulated (solid) and measured
(dashed)

Figure 25: Complete model validation. EGR flow rate
[kg/s], simulated (solid) and measured (dashed)

Figure 26: Complete model validation. Air flow rate
[kg/s], simulated (solid) and measured (dashed)

Figure 27: Complete model validation. Engine torque
[Nm], simulated (solid) and measured (dashed)

The model captures most of the dynamics of the en-
gine torque, but for the idling part (e.g. 850-890s)
there is an offset between modeled and measured

torque (Fig. 27). The difference may be explained
by the fact that the friction or the pumping loss mea-
surements which the model is based on are not correct
in this region.

Fig. 28 shows the NOx emissions. The black-box
model succeeds to capture the behavior. The NOx lev-
els are quite close to the measured level in steady state
operation, and the peaks are often quiet close to the
measured level regarding timing and level. The NOx
level was measured by a Horiba system, which isn’t
capable of measuring fast transients and the measure-
ments can be regarded as a filtered values.

Figure 28: Complete model validation. Exhaust NOx
concentration [kg/kg], simulated (solid) and measured
(dashed)

6 Discussion

The components in the 13L Volvo PNLT engine are
primarily modeled by a physical first-principle ap-
proach. The selected inputs for the emission model
does not capture the effect of the wall temperature and
a next step can be to parametrize a cylinder wall tem-
perature model in order to model the effects of cold
starts. The current simple emission model captures
most of the transient effects and in order to further im-
prove the transient optimization based on the models
the accuracy needs to be improved. Instead of assum-
ing CO2 in the exhaust manifold based on stoichio-
metric combustion, it can be added as an output of the
emission model. This may improve the estimation of
the CO2 in the inlet manifold which is one of the inputs
to the emission model. There exists several data driven
emission models with similar computational complex-
ity that would be interesting to compare against [16].
The plan for the future is that EDL will be ex-
panded with more combustions model options, includ-
ing cycle-resolved in-cylinder behavior. By introduc-
ing the effects of pressure pulses and improving the
internal loss model, the turbo model can also be fur-
ther improved.
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JModelica.org was used for the optimization of param-
eters for the heat transfer and thermal dynamics and
Dymola was used to export the FMU model. JModel-
ica has extended the Modelica language for increased
optimization functionality. The derivative-free sim-
plex method used worked very well for parameter op-
timization for a model of this complexity without re-
quiring any model modifications. Other tools also ex-
ists that can perform calibration using similar meth-
ods, for example the model calibration feature in Dy-
mola or Isight. Isight was also tested for the same op-
timization task and the simplex method available there
gave equivalent results to JModelica regarding opti-
mization time and result.
The simulation speed is about 2.5 times faster than
real-time using the Dymola integrated Radau solver.
This is a variable step-length solver, and the fast aver-
age simulation speed does not guarantee that the cur-
rent model can be used in applications with hard real-
time requirements, but this was not in the scope for
this model. For hard real-time simulations, fixed-step
solvers must be used. This introduces harder require-
ments on the model regarding fast dynamics and func-
tion evaluation time.
As the models of the PNLT engine managed to cap-
ture the engine out conditions and the dynamical be-
havior in the air gas path, the model can be used to
develop engine control strategies that reduce the re-
quirement on the EATS. With transient control strate-
gies that reduce transient emissions, the EATS vol-
umes (e.g. DOC, DPF and SCR) may be reduced. Also
by adapting the engine control strategies based on the
condition of the EATS (e.g. temperature, aging and
poisoning) the EATS volumes may be reduced. The
fuel cost of the different engine control actions de-
pends significantly on the engine hardware and each
has an optimal trade-off between fuel cost and prod-
uct cost. Engine models based on EDL together with a
SIL environment which includes the control strategies
is a powerful approach in the investigation of finding
the optimal trade-off.

7 Conclusions

In this article it has been demonstrated that the newly
developed Engine Dynamics library and Dymola can
be used for simulation of the gas exchange, transient
flow and temperatures and emission trends for a 13L
Volvo PNLT engine. All components and parame-
ters have been calibrated component wise without any
global compensation. Calibration data comes from

an engine screening where measurements are made to
isolate the different components. Therefore a compo-
nent can be replaced without any need of a new com-
plete engine screening, allowing for virtual prototyp-
ing of new concepts. This is an important advantage
compared to black-box modeling of the complete en-
gine, which would require a complete new screening
when changing a single component. Finding param-
eter values for the heat transfer and thermal dynamic
in the exhaust that matches measurements is an opti-
mization problem that has been solved using JModel-
ica. The parameters were successfully optimized re-
sulting in good estimation of the exhaust temperature
dynamics. The models captured the essential system
properties in the gas exchange such as non-minimum
phase behavior and sign reversal. As the exhaust mass
flow, exhaust temperature and emissions were shown
to be well captured the model can be used in order to
evaluate control strategies of the air gas management
and to find a trade-off between fuel-economy, transient
response, engine emissions and EATS requirements.
The system identification of the NOx emissions gave
good results in the operating area of the JE05 cycle and
captured the trends. This indicates that the selected in-
puts to the emission model contain most of the entities
that affect the emissions. Using variable step-length
solvers, the engine model simulates faster than real-
time for the JE05 cycle. This is a very transient cycle,
and therefore the expectation is that other transient cy-
cles will also simulate with real-time like simulation
times.

References

[1] T. Johnson Diesel Emissions in Review, SAE
Technical Paper 2011-01-0304, 2011.

[2] R. Cloudt and F. Willems. Integrated Emission
Management strategy for cost-optimal engine-
aftertreatment operation, SAE Technical Paper
2011-01-1310, 2011.

[3] Dymola User Manual, Volume 1, Lund, 2011

[4] J. Batteh, M. Tiller and C. Newman. Simulation
of Engine Systems in Modelica, Proceedings of
the 3rd Modelica Conference, Linköping, Swe-
den, 2003.

[5] A. Picarelli and M. Dempsey. Investigating the
Multibody Dynamics of the Complete Powertrain
System, Proceedings of the 7th Modelica Confer-
ence, Como, Italy, 2009.

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics … 

 

112 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076101 



 

 

[6] L. Guzzella and C.H. Onder. Introduction to
Modeling and Control of Internal Combustion
Engine Systems, 2nd edition, 2010. ISBN 978-
3-642-10774-0.

[7] R. Johansson. System modeling & Identification,
2009. ISBN 0-13-482308-7.

[8] HIH Saravanamuttoo, GFC Rogers and H Cohen.
Gas Turbine Theory, Fifth Edition, 2001. ISBN
978-0-13-015847-5.

[9] B.J. McBride, M.J. Zehe and S. Gordon. NASA
Glenn Coefficients for Calculating Thermody-
namic Properties of Individual Species. NASA
report TP-2002-211556, 2002.

[10] J. D’Errico. Understanding GRID-
FIT, 2006. Available for download at
http://www.mathworks.com/matlabcentral/
fileexchange/8998 (last accessed 20120228).

[11] J. Åkesson, K-E. Årzén, M. Gäfvert, T. Bergdahl
and H. Tummescheit. Modeling and Optimiza-
tion with Optimica and JModelica.org - Lan-
guage and Tools for Solving Large-Scale Dy-
namic Optimization Problems, Computers and
Chemical Engineering, 34:11, pp. 1737-1749,
November 2010

[12] S. Gedda. Calibration of Modelica models us-
ing derivative-free optimization, Master’s thesis
2011:E46, Lund University, Faculty of Engineer-
ing, Centre For Mathematical Sciences, Mathe-
matics, 2011.

[13] S. Gedda, C. Andersson, J. Åkesson and S. Diehl.
Derivative-free Parameter Optimization of Func-
tional Mock-up Units. In 9th International Mod-
elica Conference, 2012.

[14] MODELISAR(07006). Functional Mock-up In-
terface for Model Exchange Available for
download at: http://www.functional-mockup-
interface.org/ (last accessed 20120228).

[15] J. Wahlström and L. Eriksson. Modeling of a
diesel engine with VGT and EGR capturing
Sign Reversal and Non-minimum Phase Behav-
ior. Proceedings of the Institution of Mechanical
Engineers, Part D, J. of Automobile Engineering,
Volume 225, Issue 7, July 2011.

[16] M. Grahn and T. McKelvey. MA Structure and
Calibration Method for Data-driven Modeling of

NOX and Soot Emissions from a Diesel Engine.
SAE Technical Paper 2012-XX-0351, 2012.

Session 1C: Power and Energy 

DOI Proceedings of the 9th International Modelica Conference    113 
10.3384/ecp12076101 September 3-5, 2012, Munich, Germany   



 

 

 

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics … 

 

114 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076101 



 

 

Library for First-Principle Models of Proton Exchange Membrane Fuel Cells in Modelica 

Library for First-Principle Models of Proton Exchange Membrane
Fuel Cells in Modelica

Kevin L. Davies Christiaan J.J. Paredis Comas L. Haynes
Georgia Institute of Technology

Atlanta, Georgia USA

Abstract

This paper describes the architecture and key equa-
tions of FCSys, a library to model proton exchange
membrane fuel cells (PEMFCs) in Modelica. The mo-
tivating goal of this work is to reconcile many of the
published models of PEMFCs and combine them in a
reconfigurable PEMFC model that is effective for a va-
riety of uses. It is necessary to distill equations from
fuel cell literature into forms that at once capture the
essence of the physical interactions, are conducive to
the physical modularity of the device, and work within
the constraints and take full advantage of the Modelica
language.

Since the behavior of PEMFCs depends on both
advection and diffusion, a suitable alternative to the
Modelica Fluid library and the stream concept is nec-
essary. The proposed solution uses a “mixing” scheme
based on the exponential of the Péclet numbers for
each transport process. Storage and transport pro-
cesses are co-located in each subregion of a rectilin-
ear grid—all in the same base model. The Onsager
formulation is used, whereby the effort and flow rate
are conjugates of the entropy flow rate associated with
energy transfer.

The implementation is modular. It allows species to
be enabled independently for each region. In addition,
the geometric axes may be independently enabled (up
to 3D) and shearing (transverse momentum) may be
optionally included. Chemical/electrochemical inter-
actions are communicated in a fully acausal manner
through expandable connectors.

This paper focuses on the motivation, background,
and approach. Future publications will describe the
ongoing work to calibrate, validate, and utilize the
model for particular case studies. The library is made
available as open source.
Keywords: PEMFC; three dimensional; fluid dynam-
ics; electrochemistry; heat transfer; advection; diffu-
sion; momentum; Onsager

1 Introduction

In certain power applications, fuel cell (FC) systems
are preferable because they can convert fuel energy
to work more efficiently than internal combustion en-
gines and have energy-to-power ratios that can be eas-
ily adapted, unlike batteries. A FC system can be refu-
eled quickly like an internal combustion engine (ICE)
system, or it can be designed to recharge like a battery
by operating in electrolysis mode [4]. Of the various
fuel cell technologies, PEMFCs are best suited to meet
the power-cycling and packaging requirements of ve-
hicles and portable devices.

However, the cost and durability, and to a lesser ex-
tent, size and weight, of PEMFCs are not yet adequate
to justify their use beyond niche devices and select
demonstrations. Much work is being done to investi-
gate the modes of failure and degradation, develop new
materials and structures, improve manufacturing pro-
cesses, and design better systems [26]. Mathematical
models of PEMFCs are being used to help understand
the relevant physical phenomena, study the effects of
design choices, and perform model-based control. The
breadth of these goals has led to a multitude of special-
ized models.

PEMFCs have a solid polymer-based electrolyte
(the PEM) and operate at low temperatures (typically
below 100 ◦C). As shown in Figure 1, a single-
cell PEMFC has few core components: PEM, elec-
trodes, gas diffusion layers (GDLs), and flow plates
[14]. However, most applications require a higher
electrochemical potential difference than a single-cell
PEMFC can provide; therefore, two or more cells are
joined back-to-back to form a PEMFC stack.

A PEMFC operates on the electrochemical energy
released by the reaction of hydrogen and oxygen to
produce water (Eq. 1c). Its PEM (electrolyte) controls
the reaction by selectively passing protons while act-
ing as a barrier layer to hydrogen, oxygen, and elec-
trons (see Fig. 1). This forces the reaction to occur
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Figure 1: Layers of a single-cell PEMFC and the pri-
mary paths of hydrogen (H2), oxygen (O2), protons
(H+), electrons (H+), and water (H2O) during normal
operation
in two sub-reactions: the hydrogen oxidation reaction
(HOR) whereby hydrogen is consumed and protons
and electrons are produced (Eq. 1a) and the oxygen
reduction reaction (ORR) whereby oxygen, protons,
and electrons are consumed and water is produced (Eq.
1b). In order to complete the full reaction, the elec-
trons must traverse an external path. The path is pro-
vided by an external load which can harness the energy
of the net reaction.

2 (H2→ 2 H++2 e−) (1a)

4 H++4 e−+O2→ 2 H2O (1b)

2 H2 +O2→ 2 H2O (1c)

A broadly applicable PEMFC model library would
need to contain models that are physically representa-
tive, meaning their predictions of behavior match re-
ality (i.e., accuracy) and their structure corresponds
to the physical domain. The PEMFC model library
should approximate the dynamic voltage-current re-
sponse of actual cells at nominal operating conditions
and varying large signal electrical currents (e.g., [27,
p. 3787, Figs. 2b and 2c]). It should capture the oper-
ational effects of design parameters including compo-
nent sizes and material properties (for hardware analy-
sis and design) and should be capable of linearization
(for control analysis and design). It should be able to
describe relevant phenomena including electrochemi-
cal reactions, chemical/electrochemical transport, heat
transport, and heat generation. It should have variable
fidelity, that is, degree of spatial, dynamic, or behav-
ioral detail. Finally, it should be modular, meaning its
components can be interconnected in various ways to
build models of larger systems. Unfortunately, how-
ever, no current PEMFC model library can provide
these features and capabilities over the required range
of operating conditions.

2 Related work

For reasons elaborated later, the acausal formalism
and the Modelica language in particular is ideal for
a dynamic, variable-fidelity, modular, and systems-
oriented model of a PEMFC. There are hundreds of
published PEMFC models [28], yet most of these use
computational fluid dynamics (CFD) or causal (signal-
based) models. Only four acausal, dynamic, and cell-
level FC models are known to have been published;
three are of PEMFCs and one is of a solid oxide fuel
cell (SOFC).

Rubio et al. openly shared a 1D (through-the-cell)
declarative PEMFC model which includes electro-
osmotic drag, double layer capacitance, variable
choice of assumptions, and detailed diffusion with
pore and species interactions (Knudsen flow and
Maxwell-Stefan eqs.). However, the model is isother-
mal, does not include heat generation or a model of
the flow plate, and only interacts with its surround-
ings electrically (no external thermal or fluid termi-
nals) [22, 23].

Davies and Moore published a quasi-2D (through-
the-cell and along-the-channel) declarative PEMFC
model which includes material and heat transport and
storage, electro-osmotic drag, and variable choice of
assumptions. However, the models of the cell’s lay-
ers are not defined in a physical manner; for example,
the electrode layers do not include chemical transport
(only reactions and charge transport) [7, 8]. The last
published version was based on the Modelica Fluid li-
brary [9]. As a result, it raised concerns (at the 7th

Modelica Conference) and had issues related to the in-
tegration of advection and diffusion, since Modelica
Fluid offers a solution that is limited to purely advec-
tive flow.

McCain et al. implemented the model of McKay
et al. [18] (mentioned previously) within a declara-
tive formalism in order to linearize the model for con-
trol studies. However, the sub-models of the chemical
species do not interact except in the flow plates and the
PEM [17].

Salogni and Colonna published a 1D (along-the-
channel) declarative model of a SOFC. It is well-
constructed, but since it treats each anode-to-cathode
section of the cell as a integrated unit, its modularity
does not resolve the physical layers of the cell [24].

A related approach is chemical bond graphs. Bond
graphs have been used for decades to chemical reac-
tions [5] and even applied to fuel cells [3, p. 355].
They are physical (in terms of energy) and are useful
to trace causality, but they are not acausal. According
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to Cellier, bond graphs have not yet been successfully
applied to problems in fluid dynamics. The reason is
that fluid systems require mass conservation in addi-
tion to energy conservation [5, p. 331].

3 Architecture

The present model is described in differential alge-
braic equations (DAEs). Spatial variances are repre-
sented in terms of differences rather than derivatives.
As stated by Mattiussi [15, pp. 2–3], this representa-
tion has three advantages: (i) it provides a unified per-
spective that is appropriate for many theories, (ii) it
directly correlates the discretization of the physical re-
gion and the structural properties of the applied theo-
ries, and (iii) it is based on intuitive geometrical and
physical concepts that help distinguish the numerical
methods (e.g., finite difference method, finite volume
method, and finite element method) from the under-
lying theories. In addition, powerful modeling tools
(e.g., Dymola [12]) exist that can solve a model for
the imposed causality, partition a dynamic model into
the most numerically efficient systems of algebraic
equations (i.e., resolve algebraic loops through tear-
ing), perform index reduction (i.e., eliminate structural
singularities), and linearize a model. Ultimately, this
can result in a flexible and robust model that simulates
quickly.

Table 1 summarizes the four base types of connec-
tors that are used in the Modelica implementation.
Figure 2 shows the hierarchy of the connectors, with
the lowest level at the bottom. The flows of the ma-
terial, linear momentum, and energy connectors are
the rates of those quantities. The flow variable of the
volume connector is the volume itself (not the vol-
ume flow rate). This allows the volume connector to
be used to impose additivity of volume or Amagat’s
law—that the sum of the total volume of the region is
the partial volumes of the species evaluated at the to-
tal pressure [20]. The effort variable is chosen such
that the product of effort and the rate of the quan-
tity is the entropy flow rate associated with the energy
transfer. This approach is convenient for representing
behavior in terms of Onsager reciprocal relations [1],
as shown below. However, it departs from the tradi-
tional approach of power conjugate variables, which
are generally used in the Package Modelica (excep-
tions include the rotational, translational, and thermal
libraries) [19].

The physical quantities and units are represented
using the approach described in [10]. Using that ap-

Energy MaterialMomentumVolume

Inert

Interaction

Chemical Boundary

Figure 2: Hierarchy of the connectors
proach, the gas constant and the Faraday constant are
both normalized to one. This simplifies the expression
of the equations and allows electrons to be described
in the same manner as other electrochemical species.

The model contains multiple rectilinear subregions
of fixed length (and volume). Each subregion is an
instance of the model shown in Figure 5b. Each of
the region’s six faces contains a bus connector (ex-
pandable). The bus may be populated with a sub-bus
for each chemical or electrochemical species present
in the region. Optionally, the sub-buses may be first
grouped into buses for the mixtures or phases. By de-
fault, the length of the vector of momentum connectors
is one—representing only normal velocity and force.
However, the transverse directions may be included as
well; the models adapt accordingly.

environment

a

cell

anSource caSource

anSink caSink

an
E

nd

caE
nd

testProfiletestProfile

Figure 3: Diagram of a test model that imposes bound-
ary conditions on the cell

In addition to the connectors, the subregion model
may contain instances of models to represent species,
reactions, and the total volume. A species model de-
scribes the advection, diffusion, and storage of mate-
rial and momenta for a single electrochemical species
(e−, H+, H2, H2O, N2, or O2). The species model con-
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Within Icon(s) Name/Quantity Flow Effort

Volume
Volume Pressure per temperature
V [L3] P/T [N L−3]

Linear momentum
Force Velocity per temperature
ṁΦΦΦ [M L T−2] φφφ/T [N T L−1 M−1]

Energy
Power Reciprocal of temperature
U̇ [L2 M T−3] 1/T [N T2 L−2 M−1]

Material
Current Chemical potential per temperature
Ṅ [N T−1] µ/T [1]

Table 1: Summary of connectors used in the models. The dimensions are noted in terms of mass (M), length
(L), time (T), and particle number (N). Since the gas constant and the Faraday constant are both normalized to
one, charge and thermodynamic temperature are not taken to be independent dimensions.

anFP

anGDLanGDL anCLanCL pEMpEM caCLcaCL caGDLcaGDL

caFP

anFPX caFPX

anFPPosY caFPPosY

caFPNegYanFPNegY

Figure 4: Diagram of a quasi-2D cell
nects to the boundaries and the interaction connector.
Optionally, the species models may be nested within a
mixture models, in which case the connections to the
boundaries are indirect. The species, mixture, and sub-
region models allow the Cartesian axes to be enabled
independently (by parameter), as long as one axis is
enabled. As such, the boundary bus connectors of the
subregion and mixture models are conditional. The ar-
ray of boundary connectors in the species model has
size {2, 1}, {2, 2}, or {2, 3}, where the first index
represents the face (1 or 2) and the second index rep-
resents one of the enabled axes.

The species are connected through the expand-
able interaction connector. In the connection, each
species’s chemical connector is named by the chem-
ical formula of the species. The inert connector is
simply named “inert.” In order to prevent nonlinear
systems of equations, the connection among species is
mathematically direct. Each of the species interacts
as if all other species were the same. For instance,
each gaseous species interacts equally well with other
gaseous species as with the solid. Stated alternatively,
the species are “colorblind,” which, in the case of vol-
ume, is consistent with the basis of Amagat’s law [29].
While this is a strong assumption, it can be alleviated
by choosing smaller regions, especially where the sub-
region boundaries are at or near the phase boundaries.

A reaction model exchanges material, momentum,
and energy among multiple species. The reaction

models may be used to model chemical or electro-
chemical reactions. In the chemical case, no material,
momentum, or energy is stored. Then, the reaction
model simply imposes the stoichiometric constraints
(conservation of material), momentum rate balances
(without loss), and energy rate balance. Chemical po-
tentials, velocities, and temperatures, are equal in the
chemical reaction model. There is no irreversibility;
all of the loss is included in the instances of the species
model. In the case of an electrochemical reaction, the
electrochemical double-layer capacitance is included
to account for the electrostatic potential. In the case
of the HOR, electrons and protons are stored in equal
amounts. Since there is no loss in the reactions mod-
els, the net reactions may be partitioned according to
convenience, with no mathematical effect. For exam-
ple, the ORR (Eq. 1b) is modeled as the net PEMFC
reaction (Eq. 1c) and the HOR in reverse (Eq. 1a).
Since H2 is not present in the cathode according to the
model, it is only an intermediate step without storage
and without loss. If additional species are present and
interacting (e.g., H2O2), they must be included as in-
stances of the species model and joined with the ap-
propriate side-reactions.

At the top level of the subregion, an instance of the
volume model is included. It connects to the “inert”
sub-connector of the interaction bus to subtract the to-
tal volume of the region. Since volume is the flow vari-
able, the partial volumes of the species must sum to the
total volume.

Multiple instances of the subregion model are ar-
ranged and connected in up to three dimensions to
create a region. Figure 5a shows a region, where the
subRegions icon represents a 3D array of subregions.
The layers of the PEMFC are regions. They are con-
nected as shown in Figure 4 to create the cell model.
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positiveY
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positiveZ

(a) Region or layer

volume

gasgraphiteionomer

HOR

negativeX positiveX

negativeY

positiveY

negativeZ

positiveZ

interaction

(b) Subregion

H2H2ON2O2

H2_O2_H2O

negativeX positiveX

negativeY

positiveY

negativeZ

positiveZ

interaction

(c) Gaseous mixture. Others are mixtures
are graphite and ionomer.

Figure 5: Diagrams of low-level models
At the top/test level of the model, shown in Figure 3,
an instance of the cell model is connected to models
that impose boundary conditions.

4 Equations

4.1 Physical characteristics

The thermodynamic properties are implemented using
the approach of McBride et al. [16], which gives spe-
cific heat capacities at constant pressure as seventh-
order polynomials of temperature. These are the corre-
lations which are used for ideal gases in the Modelica
Media library. The pressure-volume-temperature cor-

relations are implemented using the virial equation of
state in the form that is explicit in specific volume [11].
That way, incompressible species and ideal gases can
be represented by the same equation with only changes
to the constants.

The generalized resistivities for material, momen-
tum, energy, and volume are gathered from a mul-
titude of sources. First, the rigid-sphere assumption
may be used from kinetic theory [21]. Second, the cor-
relations of NASA Glenn (formerly Lewis) are imple-
mented where available for the momentum and ther-
mal resistivity (from viscosity and thermal conductiv-
ity) [25, 25]. Finally, property tables may used to set
parameters (e.g., [13]). The implementation allows
any of these options.

4.2 Species Model

Material is exchanged or transported into port i accord-
ing to equation 2a, where A j, L j and ΦΦΦ j are the length
and linear momentum along the axis of transport, re-
spectively. The generalized material resistivity is ΓN .
The effective cross-sectional area is the product of the
geometric cross-sectional area (A j) and a factor (k) that
accounts for roughness, porosity, tortuosity, and simi-
lar properties of the solid structure through which the
transport occurs. The parameters β are the Onsager
coupling coefficients. By Onsager reciprocal theory,
the coefficients β i j equals β j i, where i and j are in-
dexes to the quantities selected according to the theory
[1]. The other variables in the equation are efforts and
flows from Table 1.
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 (3c)

The factors of the form (1+ exp(±ΦΦΦ jΓ/kA j)) ac-
count for mixed advection and diffusion. The argu-
ment to the exponential is the Péclet number (Pe),
which is ratio of advective to diffusive flow. In the
case that the advective flow is in the positive direction,
the argument will be negative for the negative-facing
boundary and positive for the positive-facing bound-
ary. The factor can be interpreted as adjusting the
length of diffusive transport according to the extent of
drift current or bulk velocity. In the case that there is
no bulk velocity, the factor is two; the length from the
center of the region to the port is half of the length of
the subregion along that axis. Under isothermal condi-
tions, the equations reduce to Fick’s law (in the case of
chemical species) and Ohm’s law (in the case of elec-
trons or holes). In the case that Pe→ ∞, the effort at
the positive-facing boundary is equal to the value in
the bulk of the region. That is, properties are prop-
agated in the downstream direction. Meanwhile, the
relationship between the effort of the negative-facing
boundary is related to the effort in the bulk of the re-
gion by pure diffusion with the full length of the sub-
region. The relationships reverse when advective flow
is in the opposite direction.

The exchange and transport equations for volume,
momentum, and energy are similar to that for material.

If there is only diffusion, then the transport equations
for transverse momentum, if included, reduce to the
case of Couette flow. The transport equation for en-
ergy reduces to thermal conduction when there is no
advection and the other efforts are uniform. It is dif-
ferentially equivalent to Fourier’s law. Otherwise, the
case is thermal convection—combined advection and
diffusion.

In the case of exchange rather than transport, the
A/L factor is combined as characteristic length (L?).
It must be calibrated by parameter identification or de-
termined empirically.

The exchange equation for momentum, like the
Stefan-Maxwell equation, describes the drag forces
between species traveling at different velocities
through a mixture [2, p. 538]. However, this approach
more manageable. As stated by Cussler, the “Stefan-
Maxwell equation is almost never used because it is
difficult to solve mathematically, even in the simplest
cases” [6].

The Onsager formulation allows gradient of one
type of effort to affect the flow rate of quantities be-
sides its conjugate pair. Advection is described in this
manner; the same gradient that drives material flow
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also drives other flows.i The difference in velocity nor-
mal to the face is coupled to the material flow rate in a
reciprocal manner as the difference in chemical poten-
tial is coupled to the momentum flow rate.

The exchange/transport equations allow there to be
storage within the region, even due to transport along
a single axis, because the rates into two faces is not
necessarily equal and opposite. In the case of pure dif-
fusion, the rate of intake is proportionally to the second
gradient of the effort. The rate balance or conservation
equations are given by Equation 3. Einstein notation
is used in the summations of the energy rate balance.
The form of the energy equation follows from the On-
sager approach [1].

5 Discussion

The exchange and transport parameters are cast in
terms of resistivity instead of conductivity so that in-
dex reduction may be initiated by setting the resis-
tance(s) to zero as final. A typical assumption is
that all species (at least within a mixture) are at the
same temperature. In addition, the total pressures of
the species are expected to be the same after a very
short time. If liquid water is added, it may be ap-
propriate to assume that it is in equilibrium with the
water vapor. With these assumptions, the number of
degrees of freedom reduces to that given by Gibbs’
phase rule. It states that the number of thermodynamic
degrees of freedom is equal to two plus the number
of species minus the number of phases [20], [1, pp.
24–49]. In the case of the assumptions that have been
mentioned, the natural thermodynamic state variables
would be temperature (the same for all species) and
the particle numbers of each chemically independent
species or group of species in phasic equilibrium. In
the model, index reduction generally introduces non-
linear equations and there is a performance tradeoff
between fewer states and fewer nonlinear equations.

6 Conclusion

The architecture and equations for the PEMFC model
library have been described at a high level. The imple-
mentation is modular and flexible. The same approach
would support other electrochemical devices such as
batteries. The library is being refined and tested. Re-
sults will be given and discussed in a future publication

iThe factor which includes the exponential only amplifies or
attenuates the effect of an effort gradient on its own conjugate.

after validation and calibration.
The library is being made available as open source

and should appear on the Modelica website (www.
modelica.org). Collaboration would be welcomed.
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Nomenclature

Symbols

A Area [L2]
c Specific heat capacity [1]
U Energy [L2 M T−2]
k Area factor [1]
L Length [L]
m Specific mass [1]
mΦΦΦ Linear momentum [L M T−1]
N Particle number [N]
P Pressure [M L−1 T−2]
Pe Peclet number [1]
T Temperature [L2 M N−1 T−2]
t Time [T]
V Volume [L3]
v Specific volume [L3 N−1]
a Global acceleration [L T−2]
β Onsager coupling coefficient [misc.]
Γ Generalized resistivity [L T N−1]
µ Chemical potential [L2 M N−1 T−2]
ΦΦΦ Particle number times velocity [L N T−1]
φφφ Linear velocity [L T−1]

Accents

˙ Flow rate of [×T−1]

Superscripts

? Effective or characteristic

Subscripts

i of index i
j of index j
N of material
P at constant pressure
V of volume
ΦΦΦ of linear momentum
U of energy
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Abstract

This paper introduces a new Modelica package called
RailwaySystem Library that provides the capabilities
of simulating the energy flow in electrical railway net-
works on which a fleet of railway vehicles is running.
The focus of the library is set upon the interaction of
the vehicle and its energy infrastructure, so that energy
management aspects may be investigated from a holis-
tic point of view taking the vehicle and the energy sup-
ply by the electric power grid into account. However
this intention substantially relies on the provision of
reliable data of the infrastructure, on the railway net-
work and its power grid. To this purpose the library
refers to an open XML-based data format dedicated
to railway IT applications. Furthermore, the library
is supposed to be used together with arbitrary compo-
nent libraries to model the energy subsystems such as
the vehicle or the power station.

1 Introduction

As public transport in general, railway transport as
well has to cope with increasing demands on the re-
duction of energy consumption and CO2 emission.
This fact motivates activities of the DLR project Next
Generation Train [1] regarding energy management in
railway vehicles and recently led to the implementa-
tion of the Modelica RailwaySystem Library. This
package provides the capabilities of simulating the en-
ergy flow in electrical railway networks on which rail-
way vehicles are running.

From the modeling point of view two specific prob-
lems had to be taken into account. Railway vehicles
may be interpreted as energy sources or sinks that are
moving in an inhomogeneous network, see e.g. [2].
The network consists of catenaries or third rails that
are supplied by power stations and may or may not be
separated in isolated sections. Depending on the num-

ber and the instantaneous position and running state of
the vehicles different types of flows may occur in par-
allel: energy may flow from power station to vehicle,
or vice versa or from one vehicle to another vehicle.

As a second important aspect, the evaluation of the
energy consumption of a vehicle is of course a func-
tion of the track characteristics such as length, slope,
radius, positions of power station etc. so that data on
the infrastructure topology and properties are required
[3]. To this purpose, the library provides access to ex-
ternal infrastructure data, that are filed using the rail-
way markup language railML R©. This is a XML-based
data format, advanced by the railML.org initiative [4]
and licensed under creative commons conditions (CC
By 2.0) [5].

The initial implementation in this paper is dedicated
to consider energy consumption due to conduction
losses, traction and auxiliary systems such as heating,
ventilating and air-conditioning systems in DC urban-
railway-networks. cp. e.g. [6]. However the simula-
tion framework of the Railway System library does
not introduce any restrictions on the modeling of the
energy subsystems and is open for further extensions.
In particular, the Railway System Library is supposed
to be used together with component libraries such as
the AlternativeVehicles [7] or the PowerTrain Library
[8].

2 RailML R© Data Interface

The non-profit railML.org initiative [4] is a consortium
of railway companies, software and consulting firms,
and academic institutions, that jointly define and ad-
vance a common data standard to be used in different
railway simulation tools, see e.g. [9]. The addressed
fields of applications are rather comprehensive and
among others concern operation planning of rolling
stock, resource planning of railroads, design of timeta-
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bles, event and delay handling. As a consequence, the
XML data standard railML R©contains subschemas for
three main areas: infrastructure, timetable, and rolling
stock.

Compared to the scope of the railML.org initiative
the piece of work to be presented here only covers spe-
cific aspects since it is focused on energy consump-
tion. The initial implementation only considers data
regarding track topology and geometry. The following
section of an railML R©file that specifies a track section
of 2.7 km length is supposed to serve as an illustrative
example:

<track id="t4">
<trackTopology>

<trackBegin pos="0" id="b4">
<macroscopicNode ocpRef="PS3" />

</trackBegin>
<trackEnd pos="2700" id="e4">

<macroscopicNode ocpRef="PS5"/>
</trackEnd>

</trackTopology>
<trackElements>

<radiusChanges>
<radiusChange id="rC4"

pos="0" radius="900"/>
<radiusChange id="rC5"

pos="400" radius="0"/>
</radiusChanges>
<gradientChanges>

<gradientChange id="gC4"
pos="0" slope="5" />

<gradientChange id="gC42"
pos="1000" slope="0"/>

</gradientChanges>
</trackElements>

</track>

The data set above specifies that the track starts as a
curve with 900 m radius which changes to a straight
track after 400 m. The gradient at the beginning of the
track section is 5 per mill and changes after 1 km to
be horizontally aligned. Note that every data element
is specified by a XML-file-wide unique identifier id,
which is required for later referencing that element.

Each Modelica model that wants to access
railML R©data has to contain an instance of the Mod-
elica railML R©class, see Fig. 1, and has to provide an
XML file name as parameter. The railML R©instance
manages an external object that contains a Document
Object Model (DOM) [10] tree of the XML data. The
railML R©instance may be addressed by the inner/outer

mechanism so that other model components may eas-
ily acquire information from the railML R©data.

During initialization of the Modelica model the
XML-file is read using the XML parser library expat
[11] published under MIT license [12] together with
the wrapper scew [13] available under LGPL license
[14]. Both open source tools are written in C and
therefore may easily be compiled and bound together
with translated Modelica code by every Modelica sim-
ulation environment such as OpenModelica, Dymola
or SimulationX. As well from the legal point of view
these two libraries may be distributed with a Modelica
library as long as they are delivered as a self-contained
code library which is not mixed up with other C-code.

During initialization a railML R©object is instanti-
ated and the DOM tree is built up by the two parser
tools. In addition every track element found in the
railML R©data is assigned to an integer index number
and a mapping of each index number to the XML-wide
unique track id is organized.

3 Specific Modeling Issues

Fig. 1 presents a trivial network in order to give a
first impression of the main modeling components of
the RailwaySystem Library that are shortly introduced
now.

3.1 Connectors

The library defines the following three connectors.
The first one is an aggregation of the 3D-mechanical
connector frame and the electrical connector pin and
is tailored to connect catenary sections. The following

Figure 1: Diagram layer of a trivial network with 3
tracks, 4 power stations and 1 vehicle.
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presentation will reveal that the capabilities of the 3D
multibody framework are hardly exploited. Neither
force or torques balances nor rotations are so far in-
volved in the modeling approach of the library. How-
ever future applications may also consider longitudi-
nal dynamics of train sets e.g. during braking or driv-
ing up-hill scenarios. In view of such use cases the
3D-mechanical connector frame are employed as de-
scribed below:

connector frame_pin
"supposed to connect catenary

sections mechanically and
electrically"

import Modelica.Mechanics.
MultiBody.Interfaces.Frame;

import Modelica.Electrical.
Analog.Interfaces.Pin;

Frame frame;
Pin pin;

end frame_pin;

Two other connectors are defined in order to pro-
vide the capability of attaching vehicles to the cate-
nary. These connectors only differ in the prefix of the
local position variable s, which is an output quantity
on the vehicle side, while it is an input variable from
the point of view of the catenary.

connector slidingContact_a
"catenary side of catenary -

pantograph connection"
extends RailwaySystem.

Interfaces.frame_pin;
input Real s "local position"

end slidingContact_a ;

connector slidingContact_b
"pantograph side of catenary -

pantograph connection"
extends RailwaySystem.

Interfaces.frame_pin;
output Real s "local position"

end slidingContact_b ;

In particular the definition and the purpose of the
variable s is further motivated and explained in the fol-
lowing three sections.

3.2 Vehicle

The Vehicle model is a base class and supposed to be
extended in order to characterize the energy system of
a railway vehicle. The energy system itself may be
arbitrary complex and may be modelled using com-
ponents from the Standard Modelica library together

with components from commercial libraries such as
the AlternativeVehicles [7] or the PowerTrain Library
[8].

Important parameters of the Vehicle model are
tracksToPass and tracksPassOver:

• The parameter tracksToPass, e.g. tracksToPass=
{5,2,3} in Fig. 1, is an integer vector containing
the indices of the tracks the vehicle is supposed
to run on. The order of the indices corresponds to
the sequence of the tracks.

• The real vector tracksPassOver, e.g.
tracksPassOver={0, 3200, 6800, 9800} in
Fig. 1, specifies points on the path of the vehicle,
at which one track is left and the following is
entered.

Important transient variables of the vehicle model
are trackIndicator and the real quantities s and S:

• The boolean vector trackIndicator is of the same
length as tracksToPass. One and only one ele-
ment of trackIndicator is true, namely the ele-
ment that is associated to the track the vehicle is
currently running on.

• The variable s defines a specific point on the
track, the vehicle is currently running on. It is
a local, track-specific variable on contrary to S.

• The variable S is a global vehicle-path-specific
quantity. In the present implementation S is pre-
defined as a function of time, so that motion of
the vehicle along its path is preset e.g. as a result
of the timetable. Alternatively it is also possible
to give the velocity profile as a function of S and
evaluate S = S(t) accordingly.

The following table again summarizes the important
variables explained above:

parameters
tracksToPass track indices
tracksPassOver specific path points

transient variables
s local track position
S global path position
trackIndicator boolean track switch

From the purely structural point of view a vehicle
instance is connected to all catenary sections that are
listed in the parameter vector tracksToPass using the
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sliding contact connector classes, see Sec. 3.1. How-
ever by employing ideal closing switches from the
Standard Modelica.Electrical library it is guaranteed
that only that electrical connection is closed to which
the corresponding value of trackIndicator is set to true.

In order to access the railML R©data and provide in-
formation on the e.g. the current gradient, the cur-
rent values of s and trackIndicator together with track-
sToPass are interpreted and passed to appropriate C-
functions that extract data from the DOM tree.

3.3 Catenary

The Catenary model represents a track segment
parametrized with the local length coordinate s. Its ge-
ometrical and electrical properties such as radius, gra-
dient and electric resistance vary as a function of s.
The integer parameter ID specifies the index to access
the RailML database so that the necessary information
on the track segment given by the RailML database
may be acquired.

A sliding contact connector serves as an interface
between vehicle and track and the current value of s
denotes the current local position of the vehicle. Since
the Vehicle instance as well as the Catenary instance
both rely on the value s, the definition of the two con-
nectors slidingContact_a and slidingContact_b in Sec.
3.1 considers the exchange of this variable.

The two other frame_pin connectors are supposed to
connect different catenary sections. Future versions of
the RailwaySystem Library will include the capability
to automatically instantiate and connect all track sec-
tions found in the railML R©database, so that the mod-
eling of a complex network structure is substantially
facilitated. So far the network structure is to be built
up by manually instantiate and connect Catenary ob-
jects.

Note that variants of the Catenary model class are
available that consider more than one vehicle running
along the same track.

3.4 PowerStation and Origin

The PowerStation model is used to introduce trans-
former substations along the track that serve as voltage
supply sources.

The railML R©data only contains relative informa-
tion like track lengths specifying the distances to travel
form one point to another. In order to be able to set up
an at least schematic animation of the traveling vehi-
cles one absolute position has to be defined. This is
done by the Origin model class.

Figure 2: Plot of the variables s and S as a function of
time.

3.5 Exemplary Simulation Sequence

In order to present the general simulation set-up of the
RailwaySystem Library the simulation sequence of the
trivial network shown in Fig. 1 will now be explained.
The considered vehicle parameters are:

• tracksToPass= {5,2,3},

• tracksPassOver={0, 3200, 6800, 9800},

• S = 20 m/s · t

where tracksToPass and S are specified by user in-
put, while the values of tracksPassOver are gener-
ated by a function that gains information from the
railML R©object during initialization.

According to the upper plot of Fig. 2, the vehicle
leaves the first catenary section after 160 s, and the
second after 340 s. This corresponds to the length of
3200 m and 3600 m of the first (ID = 5) and the sec-
ond catenary (ID = 2) and the constant velocity of 20
m/s. The plot below shows the value of s seen from the
catenary_2 point of view. As long as the vehicle is not
running on this catenary or track section, respectively,
s is set to zero.

Fig. 3 demonstrates that the value of the first ele-
ment of the vector trackIndicater is set to true as long
as the vehicle is moving along the catenary specified
by the first element of trackToPass. This applies for
the second and the third element of trackIndicater ac-
cordingly.

The vector trackIndicater controls a vector of elec-
trical switches so that the vehicle energy system is
linked to that catenary or track section only, the ve-
hicle is currently running on.

In summary, it is the general idea of the simulation
set-up that the vehicle instance gathers all information.
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Figure 3: Plot of the boolean variable vehi-
cle.trackIndicater.

The vehicle "knows" where, on which track or cate-
nary section it is currently running and it is enabled to
access the railML R©data to acquire infrastructure in-
formation accordingly. The vehicle hooks itself up to
the current catenary section in order to manage its own
energy supply.

4 Application Example

The example model in Fig. 4 presents a small DC-
powered urban light-rail network supplied by six
power stations where two vehicles are running on six
tracks.

Today power stations in DC-powered light-rail net-
works use rectifiers to provide a load-dependent con-
trol of the DC voltage. That means within the
valid limits the output voltage is freely adjustable [2].
Therefore it is feasible to model the power stations as
constant voltage sources. The nominal voltage used
in this case is 750 V which is typical for DC-powered
urban light-rail networks.

At a given load the traction current of the railway
vehicle depends on the input voltage of the vehicle and
thus of the specific position on the track [6]. For this
reason the voltage drop alongside of the catenary has
to be considered. Taking the resistance load per length
into consideration, the voltage drop along the catenary
can be calculated according to the length between the

feeding point at the traction substation and the panto-
graph of the vehicle.

The basis for the calculation of the energy flow
within the given network is the simulation of the ve-
hicle trajectory. Based on the available nominal power
of the vehicle and the tractive force at starting the trac-
tive force-to-velocity characteristic is calculated. Thus
the maximum available traction force can be calcu-
lated depending on the actual velocity. Depending on
basic parameters of the vehicle e.g. weight, rolling
resistance or aerodynamic resistance the driving resis-
tance of the vehicle can also be calculated for each
given velocity.

In addition specific parameters of the track resulting
from curves, gradients or tunnel (provided via RailML
data) lead to additional resisting forces that need to be
considered. The movement of the vehicle is simulated
by applying all resulting forces to a point mass. From
the movement of this mass all necessary data for cal-
culation of the electric network can be derived. The
calculated mechanical power is used to derive the elec-
trical power consumption of the vehicle. This power
consumption is needed to calculate the traction cur-
rent during simulation of the electrical network. The
vehicle trajectory is performed for a predetermined ve-
locity profile corresponding to the tracks to pass.

To simulate the energy flow within this network the
vehicles are modeled as variable current sources us-
ing the actual required electric power consumption as
input. In this way it is possible to calculate the re-
sulting current sharing based on the electric power re-

Figure 4: Diagram layer of the network.
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quirement of the vehicles, the supply voltage and the
voltage drop alongside of the catenaries.

As an example Fig. 5 shows the resulting voltage at
the pantographs as well as the traction currents of two
vehicles on their pass through section 2 of the exem-
plary network shown in Fig. 4. The first vehicle (red
curves in Fig. 5) enters this section at about t = 115 s.
It enters the section at a velocity of 40 km/h. Since the
scheduled velocity in this section is 80 km/h the ve-
hicle accelerates until it reaches the allowed velocity
at about t = 132 s. This acceleration is associated to
high traction forces resulting in a strongly increasing
traction current.

Due to the increasing current the voltage at the pan-
tograph drops during the acceleration to about 700 V.
At approximately t = 183 s the traction current is again
significantly increasing. At this specific point the gra-
dient of the track changes from 0 to 30h. This gra-
dient abruptly increases the resisting force. To keep
the scheduled velocity the traction force has to be in-
creased as well resulting in a higher required mechan-
ical and consequently electrical power consumption of
the vehicle.

The traction current remains high until the gradi-
ent changes again from 30 to 0hat approximately
t = 257 s. Fig. 5 presents the voltage at the pantograph
to jump up to 650 V during this passage.

Figure 5: Simulation result of the voltages of both ve-
hicles as a function of time.

The second vehicle (blue curves in Fig. 5) enters
this section at about t = 30 s later already at a veloc-
ity of 80 km/h so that there is no further acceleration
needed. When the second vehicle approaches the gra-
dient change its traction current increases for the same
reasons as mentioned before. At this point in time both
vehicles have a high power consumption that leads to
an additional voltage drop in the whole section. The
voltage at the pantographs of both vehicles then drops
significantly under 600 V which is critical since the
minimum permitted voltage in DC-powered light rail
networks with a nominal voltage of 750 V is 500 V.

To investigate the influence of energy storage de-
vices as part of an energy management of railway net-
works a basic model of an electric double layer capac-
itor a so called Super Cap was also included within the
vehicle model.

The Figures 6 and 7 each compare two different sce-
narios for the usage of these Super Caps. Fig. 6 shows
the voltage drop at the pantograph of one vehicle pass-
ing the same section as shown in Fig. 5 as well as
the state of charge of the Super Cap for two different
cases.

Initially the vehicle is at rest and then accelerates up
to 80 km/h. It stops at the end of the section. The Fig. 6
demonstrates the influence on the voltage drop during
acceleration if state of charge is at 100% at starting
time. In the sequence the voltage does not drop until

Figure 6: Simulation results presuming two different
initial states of the Super Cap.
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Figure 7: Simulation results associated to two different
regimes for the use of Super Caps in operation.

the Super Cap is fully discharged at about t = 17 s.
Until that point in time the full traction power is pro-
vided by the energy storage and no current is flowing
between substation and vehicle.

When the vehicle starts braking at the end of the
section, the Super Cap is fully charged and the stored
energy can be used for the next run. Considering the
same vehicle trajectory as in Fig. 6 Fig. 7 delineates
another exemplary regime to employ an energy storage
device. The Super Cap may not only be used to pro-
vide energy for acceleration but may also be exploited
in order to ensure voltage stability. Fig. 7 presents the
Super Cap not to be discharged until the voltage drops
below 650 V. As soon as the voltage drops below this
threshold the required electrical power is provided by
the energy storage and for about 17 s the traction cur-
rent is fully supplied through the Super Cap. This way

Figure 8: Schematic animation of the simulation.

a temporary voltage drop below critical values can be
avoided.

Fig. 8 depicts an animation of the scenario when
one vehicle is running along Track 3, while the other is
moving between Power Station 3 and 5 at Track 4. The
height of the red bars positioned close to each power
station illustrate the instantaneous current provided by
the associated power station.

The given examples have shown in principle that
future investigations of energy flows within complex
electric networks including the consideration of en-
ergy storage devices can be done using standardized
data sets in Modelica.

5 Conclusions and Outlook

In the course of the DLR project Next Generation
Train the RailwaySystem Library will be used in order
to evaluate the energy reduction potential of an energy
managément system that takes the vehicle energy sys-
tem and the power supply infrastructure into account.

Future versions of the RailwaySystem Library
will include the capability to automatically instan-
tiate and connect all track sections found in the
railML R©database, so that the modeling of a complex
network structure is substantially facilitated.
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Abstract 

The use of modeling paradigms for physical systems 
can in some instances be stretched to reach other 
domains. This paper presents one such example: it 
describes the design of a Modelica library that im-
plements economic models to be used for the pur-
pose of energy management. The design principles 
of this library such as the use of pseudo-physical 
connectors are outlined and examples for managing 
energy sources and loads are discussed. 
Keywords: Energy management, Load management, 
Economic models, Object-oriented modeling. 

1 Introduction 

This paper presents the modeling of energy man-
agement tasks by the use of economic models. In this 
approach, each provider of energy and each consum-
er is characterized by a specific cost function. A 
global market or a set of local markets then decide 
about the distribution of energy flow. 

To this end, a new Modelica library has been de-
veloped. It supports the modeler in the design of his 
or her energy distribution system and derives an (at 
least partly) optimal solution for the distribution 
based on the provided cost functions. 

The library is not coupled to any specific physical 
domain. All its components concern energy in its 
most abstract form. In fact, many energy manage-
ment tasks involve multiple physical domains and 
therefore a domain-specific approach would be of 
limited value. 

The library is currently split into two sub-libraries 
that are geared towards different application do-
mains: source management and load management. It 
is still under development and currently not publicly 
available. 

2 Economic Models for Energy Man-
agement 

2.1 State of the Art 

The links between models and theories used in mi-
cro-economics and typical tasks of an energy man-
agement function are very close. In both cases, there 
is a set of providers and a set of consumers. The con-
sumers pay a price of a utility depending on the 
availability or production of the providers. The main 
difference is the type of the utilities. In micro-
economics this is typical any kind of product, for an 
energy management the utility is power or energy.  

The application of economic models for a power 
management is already demonstrated in [9]. An en-
ergy manager based on economic models for the 
electrical system of automobiles, especially for hy-
brid cars, has been studied in [1] and [6]. Additional-
ly, available methods for energy management of air-
craft electrical systems can be found in [8]. 

The main idea behind this market-oriented ap-
proach is the usage of power p over price v functions 
for each source/provider and consumer/load as illus-
trated in Figure 1.  

 
p = f(v) 

 
These functions describe how much price a load is 
able to pay for a dedicated power and how much 
power a source will provide for a certain price re-
spectively. These functions could be determined by 
e.g. the efficiency or the priority of a component.  

Since p denotes the outflowing power, the cost 
functions are typically positive for sources and nega-
tive for loads. 

Subsequently for all sources and loads the sum-
functions are calculated as shown in Figure 2. The 
intersection of load and source sum-functions deter-
mines the current price and thus the power of each 
component. 
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Figure 1: Cost-functions of single loads and sources. 
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Figure 2: Sum-functions and equilibrium. 
 
The advantage of such an approach is the integration 
of different relevant aspects like efficiency of the 
sources or availability of the consumers for an ener-
gy manager in one single characteristic cost function. 
Furthermore, this enables the modeling of sources 
and consumers in an object-oriented way and thus an 
easy set-up of an energy management function of a 
dedicated system within an early stage of design. 

2.2 Limitations 

To guarantee the existence of a unique intersection 
of load and source cost-functions, these have to be 
monotone and continuous. If this restriction is not 
maintained, one has to guarantee with other means 
that a stable intersection can be found in either case. 

In addition, economic models are best suited for 
finding an optimal solution at one specific time in-

stant, but not for optimizing the energy consumption 
predictively regarding dynamic influences. For this 
case, further means are needed that have to be inte-
grated to these models. 

2.3 Scientific Contributions of this paper 

Based on the described state of the art, this paper 
demonstrates the implementation of a market-
oriented energy management library in Modelica. 
Therefore the library including its components and 
the working principles are outlined in the following 
sections.  

New concepts for dealing with non-monotone 
cost functions of sources are introduced. For this 
task, several rounds of negotiation are being used. 
Multiple negotiation rounds are also used for dealing 
with switchable and continuous loads in one system 
to reach a maximum availability of loads. 

The modeling of energy systems is not confined 
to models for sources and loads. Hence also further 
components like limiters or transformers are consid-
ered that modify the cost-functions in a dedicated 
way. 

3 Fundamental design of the library 

The goal of this paper is to describe how such eco-
nomical models for energy management can be 
modeled in a truly object-oriented way. The idea is 
that energy distribution systems can be assembled 
from basic components such as producers and con-
sumers. Also the modeler shall not be directly con-
cerned with the cost functions. Instead the cost-
functions should be derived by parameters such as 
efficiency or priority levels. 

To this end, a Modelica library has been devel-
oped. In this section, we present its common inter-
face and the most basic components. 

3.1 Connector design 

The connector of the energy management library is a 
so-called pseudo physical connector. This means that 
it mimics the characteristics of classic physical con-
nectors without describing actual physical quantities. 
In concrete terms: the connector contains a pair of a 
potential variable and a flow variable just like a 
physical connector. In this way, we profit from the 
advanced support of physical connectors (like the 
check of balanced models) in Modelica. 

The potential variable of the connector is the 
price per watt [$/W] and the flow variable is the 
power outflow [W]. A positive value for the power 
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outflow is typical for a source. Consequently con-
sumers have negative values of their flow variable. 
Similar pairs have already been suggested during the 
1970s in [2] and [3] and enable a more natural mod-
eling than sheer System Dynamics for Modelica [5]. 

The product of the potential variable and the flow 
results in the amount of money that is transmitted 
through the connector (negative values represent 
costs, positive values represent income). The money 
is of course virtual and not related to any real curren-
cy. 

A connection between a set of connectors thus 
represents an ideal market where all participants pay 
or receive an equivalent price for an equivalent 
product. 

 
Listing 1: Code of the power socket. 
 
connector Socket  

 
  parameter Integer n=1; 

 
  PricePerWatt price[n]; 
  flow SI.Power power[n]; 

 
end Socket; 
 

 
Listing 1 presents the Modelica code of the connect-
or. Evidently, price and power represent not scalars 
but vectors of a parameterized size n. The reason for 
this is explained in section 4.6. For the moment, let 
us continue by pretending these are scalars. We 
simply assume: n=1. 

3.2 Icons 

A component of the library may represent a source 
of energy, a consumer, a transformer of energy or 
redistributors. 

These are all components that also occur in many 
physical domains such as electric systems. However, 
since this library shall be domain independent, no 
symbols of such libraries shall be used.  

There are only a few domain neutral symbol lan-
guages. One of them is bond graphs. For our purpose 
bond graphs [4] are however too low-level and too 
technical. For instance there is no distinction be-
tween a source and a sink in bond graphs. 

Another set of icons has been developed for the 
Energy Systems Language developed in the field of 
ecology by Howard T. Odum [7]. It is also not di-
rectly usable for our purpose, but at least the abstract 
forms used in this language inspired the design of 
our set of symbols that is listed in Table 1. 

 

Table 1: Icons used for energy management. 

          

Source / Producer 

         

Sink / Consumer / Load 

          

Waste 

        

Transformer 

         

Split 

         

Limiter 

          

One-way  

 
A source can represent a source of fuel or an energy 
producer such as a power plant. The sink is its coun-
terpart element. It mostly represents a consumer. The 
waste element is a special case for the sink that ena-
bles the system to waste energy. 

Energy can be transformed into other forms by 
imposing further costs using a transformer. The split 
element can be used to distribute energy into differ-
ent branches. For instance in a combined heat and 
power plant 40% of the power is electricity and the 
remaining 60% are available as heating power. 

The components one-way and limiter are ex-
plained in section 4.4 and section 5.2 respectively. 

3.3 Example 

Given the set of components, it is now possible to 
compose an energy distribution system. Figure 3 
shows the model diagram of an example system. 
Here, two sources are available: one for heating and 
one for electricity. Two consumers model the respec-
tive demand. In addition there is the possibility to 
use electricity for heating. A waste element ensures 
that energy can be dumped in the unlikely case that 
the electricity demand may fall below the idle power 
output of the electricity generation plant. 
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Figure 3: The model diagram of an example market. 

3.4 Solving the non-linear systems of equations 

All component models contain a description of their 
cost function that expresses the price as function of 
the power. The connection of this components leads 
then to (typically) non-linear equation systems. If all 
cost functions are strictly monotonic increasing or 
decreasing, there will be a unique solution. 

Depending on the cost-function and the specific 
connection structure, a simulation software such as 
Dymola might be able to solve this non-linear equa-
tion system, but in some practical examples this 
turns out not to be the case.  

Hence we have developed an auxiliary controller 
unit that regulates the price v on the market by a 
simple differential equation. The controller may 
compensate for any lack or excess of power p. It in-
creases the market price in case of a power outflow 
(p > 0) due to a lack of power and decreases the price 
in case of a power inflow (p < 0) due to excess of 
power. 
 

dv/dt ∙ T = p 
 
where T is an arbitrary time constant. 

 
This controller is typically applied to a connection 
set. In the diagram of Figure 3, it is depicted as grey 
“$” placed in a circle. With this element, it is possi-
ble to find the solution in robust way by approaching 
steady state. The drawback of such a controller is 
that it makes the system potentially stiff and requires 
implicit solvers such as DASSL for the efficient 
simulation of the system. 

The application of such a controller could proba-
bly be avoided if there exists a Modelica language 
construct to suggest suitable tearing variables. 

4 Application Domain: Source Man-
agement. 

4.1 Motivation 

In this application domain, we want to fulfill a given 
consumer demand by using the most efficient com-
bination of sources available. Hence the cost func-
tions take into account the efficiency of sources and 
subsequent processes of energy transformation. 

4.2 Derivation of cost functions 

In this scenario, the consumer demand is regarded as 
a given that is required to be fulfilled at any cost. 
Hence modeling the cost function of a consumer is 
very simple: A consumer is the equivalent to an ideal 
flow sink. Prescribing the flow variable for any po-
tential price per watt while leaving the price to be 
determined by other parts of the system: 

 
p = ‐demand 

 
The waste element is a special case of a consumer. 
An ideal waste element is similar to an ideal diode. It 
is a sink of zero flow for prices above zero and con-
sumes arbitrary amounts of energy at a price of zero. 
A price below zero means that the producers would 
have to pay for their energy to be consumed. Alt-
hough this actually occurs in real markets, the waste 
element can be used to prevent such cases.  

 
s = if (s > 0) then p else v; 
0 = if (s > 0) then v else p; 

 
where s is a curve parameter 
 

 
Figure 4: Cost function of a waste element. 
 
Modeling sources is a little more difficult. The price 
shall reflect the efficiency of energy use. The sim-
plest case is a source of constant efficiency. In the 
ideal case, this source stipulates the price for any 
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arbitrary power output to be the inverse of the effi-
ciency:  
 

v = 1/efficiency 
 
No real source of energy is unbounded. All sources 
have a maximum capacity and many of them have an 
idle power output beyond which their production 
cannot decrease. These limitations can be modeled 
by a step function. 
 

Power 
[W]

ideal source

ideally limited source

regularized limited source

idle power

max. power

Price [$/W]0
 

Figure 5: Cost function of different source models. 
 
Finally, a split element can be used to model the sep-
aration of power into distinct branches by a fixed 
fraction. It distributes the power inflow pin into two 
power outflows pout1 and pout2 by a given fraction R. 
The split element is connected to markets with a dif-
ferent price per watt. The price per watt of the power 
inflow vin is then the weighted mean of the two out-
flow prices: vout1 and vout2. Here are the correspond-
ing equations to relate the three connectors: 
 

pin + pout1 + pout2 = 0; 
pout1 ∙ (1‐R) = pout2 ∙ R; 

vin = vout1 ∙ R + vout2 ∙ (1‐R); 
 

4.3 Regularizing the cost functions 

For the numerical solution, it is advantageous if all 
cost functions are continuous and strictly monotonic 
functions. Then a unique solution is guaranteed in 
case the total demand can be met. But the curves for 
the ideal limiter or the ideal waste element substan-
tially differ from this requirement. They represent 
multi-valued functions that are also strictly monoton-
ic increasing or decreasing. Indeed their modeling 
would require the use of parametric curves such as 
for ideal diodes. To avoid this effort and the resulting 

numerical problems, a regularization scheme is ap-
plied.  
The regularization is indicated by the grey curves in 
Figure 4 and Figure 5. For its realization, a mixture 
of sigmoid and exponential functions is used. The 
precise realization is somewhat arbitrary and also of 
no particular importance and hence has been omitted 
here.  

The regularization is of course a further potential 
cause of stiffness and/or implies a loss of precision. 
The trade-off between precision and stiffness can be 
set by fudge parameters. These are provided globally 
by an outer model so they do not have to be set of 
each element individually. 

4.4 Example 1: A combined power generator 

 
Figure 6: Model diagram of a combined power generator 
and two corresponding consumers for electricity and 
thermal energy (heat). 
 
Figure 6 presents the example of a combined power 
generator of electricity and heat. Up to 60% of the 
thermal energy can be converted into electricity. This 
is modeled by a combination of a split element and a 
one-way component that acts like a diode: power can 
only flow in one direction. 

The loss in conversion between thermal and elec-
tric energy is modeled by a transformer component. 
Both consumer models stipulate the total power de-
mand that is varying over time. 

For the simulation, the electric consumption is 
constantly decreasing from 250 kW to 100 kW. The 
demand of thermal energy is constantly increasing 
from 50 kW to 500 kW. The impact on the price can 
be observed in Figure 7.  It contains the simulation 
result for the price per Watt for both consumers. 

Due to the initial high demand for electricity, the 
consumers of thermal energy do not have to pay any-
thing at all (the price is actually even slightly below 
zero because of the regularization of the waste ele-
ment). The generation of electric energy produces 
sufficient heat as side product.  
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During the simulation, the demand shifts towards 
the need for thermal energy. Then the bill needs to 
be split. Electric energy still remains more expensive 
than thermal energy because it needs to be converted 
(at loss) from thermal energy and the combined pro-
ducer can control how much of that needs to be con-
verted. 

This example demonstrates how the cost-function 
of a more complex source like a combined generator 
can be modeled in a true object-oriented way by 
combining simple components. 

 

 
Figure 7: Price development of thermal energy (red) and 
electric energy (blue). 

4.5 Treatment of non-monotonic cost-functions 

The presumption that the cost function is strictly 
monotonic increasing is not realistic for a large set of 
power generators. Many of them have an ideal oper-
ating range that does not start at idle power. This 
means that when these generators are used for low 
power output they can be very inefficient. The mul-
tivalued cost-function of Figure 8 represents such a 
characteristic curve. 

The solution of systems with such cost functions 
can be numerically very difficult and often there are 
multiple equilibriums in the market. Finding the op-
timal equilibrium is a very demanding optimization 
problem that in general cannot be handled in poly-
nomial time. Hence a robust handling of such non-
monotonic cost function requires a good solution 
strategy. 

 

Price [$/W]

Power
[W]

0
 

Figure 8: A non-monotonic, multi-valued cost function 
(red) and a corresponding monotonic, single-valued hull 
curve (grey). 
In this paper, we propose a bullying strategy. It re-
flects a behavior that also exists in real markets. Big 
players, in our case large and potentially very effi-
cient power generators, compete for a contract. They 
pretend to be more efficient than they actually are. 
When the order finally turns out to be too small to be 
efficiently handled by the big player, the contracts 
are handed over to small players by issuing sub-
contracts. The final point of equilibrium is hence 
determined in several rounds of negotiation: first the 
big players then the smaller players. 

In our library such a bullying strategy is imple-
mented by creating hull curves in multiple rounds of 
negotiation. Figure 8 shows the effective cost-
functions for our producer. However, in the first 
round of negotiation this curve is not used but the 
grey hull curve instead.  

The hull curve must be monotonic increasing and 
must always be greater or equal than the effective 
cost curve. Within these constraints, it should be as 
low-valued as possible. In those sections where the 
hull curve does not coincide with the effective cost 
curve, the producer is hence pretending to be more 
efficient than he actually is.  
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Figure 9:  A new hull curve is generated for the non-
monotonic cost-function based on the previous market 
solution (v1, p1). 
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Since all participants in the market use monotonic 
hull curves, a solution can easily be found. If the so-
lution (v1, p1) is now placed in a section where the 
hull curve does not coincide with the effective cost 
curve, the correspondent producer has to “reveal” its 
effective costs (v1’, p1) in the second round of nego-
tiation.  

 
To this end, a new hull curve is generated. Again it 
must be monotonic increasing. But the solution of 
the first round now splits the hull curve in two parts: 
  

 For v < v1’, the curve must again be greater or 
equal than the part of the effective cost curve 
that is lower than p1 and within these con-
straints as low-valued as possible.  

 For v >= v1’ the curve must be greater or equal 
to than the effective cost curve or equal to p1, 
again, as low-valued as possible. 
 

Figure 9 illustrates such a new hull curve for a given 
market equilibrium. The procedure can be iterated 
for several rounds of negotiation. In general, this 
iteration scheme cannot be proven to approximate 
the optimal solution, but since each hull curve will 
be smaller valued than its predecessor the process is 
at least bound to converge. 

In practice, however, this iteration scheme has at 
least shown to work very well. Therefore let us illus-
trate it by an example. 

 

4.6 Example2: Non-monotonic behavior. 

 

Figure 10: Two sources compete for one consumer. The 
consumer demand is rising at a constant rate. 

 
 

In this example, two generators compete to fulfill the 
power demand of one source. One small generator 
that is rather inefficient and limited to a small ca-
pacity and a large generator that is very efficient for 
high-load values and very inefficient for low load 
values. The small generator shall thus be used to 
overcome the efficiency gap of the large one. 

Price [$/W]

Power
[W]

0
 

Figure 11: Sketch of the two cost functions for the large 
(red) and small (green) generator. 
Figure 11 sketches the two cost functions and Figure 
10 displays the corresponding model diagram. To 
enable several iterations for the final solution, the 
price per watt and the power have been implemented 
as vectors (see Section 3.1). By the parameter n, the 
number of iterations can be determined. In this case, 
we choose n=4. This means that the model contains 
now 4 parallel market models that each represents 
one round of negotiation. 

During simulation the power demand is increas-
ing with a constant rate. Figure 12 and Figure 13 
presents the results of the simulation for the different 
rounds of negotiation. We can see the produced 
power of each generator.  

Clearly, in the first round (blue), the large genera-
tor pushes aside its smaller counterpart. But in the 
following rounds of negotiation, the small generator 
can make its point. The resulting final behavior (ma-
genta) almost leads to a discrete switch as soon as 
the large generator becomes more efficient as its 
smaller counterpart. The simulated results reflects an 
almost optimal behavior. 
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Figure 12: Power output of the large generator for differ-
ent rounds of negotiation (round 1: blue, round 2: red, 
round 3: green, round 4: magenta). 

 
Figure 13: Power output of the small generator for differ-
ent rounds of negotiation (round 1: zero valued, round 2: 
red, round 3: green, round 4: magenta). 

5 Application Domain: Load Man-
agement 

5.1 Motivation 

A typical load management (e.g. as applied in the 
electrical system of an aircraft) can cut and reconnect 
loads depending on its priority. The priorities can 
directly be translated into prices. Thus low priority 
loads just pay low prices for a certain amount of 
power whereas high priority loads pay high prices.  

The goal is to get a stable, object-oriented load 
management function. Thus it is possible to get an 
implementation very quick and enable an early inte-
gration of the function into design process of system 
to be controlled. Furthermore, modular functionality 
like dealing with switchable and continuous loads in 
one system can easily be added. 

5.2 Derivation of cost functions 

Other than source management, the model of a typi-
cal source for load management looks rather differ-
ent. The focus is on maximum availability of loads 
and stability, not on energy efficiency. A source 
function as illustrated in Figure 14 is implemented 
having linear segments in three areas. 

In area I, all loads are on. So there is no special 
requirement on the function rather than being mono-
tone and continuous. Area III defines the maximum 
power capacity of the generator by means of a con-
stant value. In this area all controllable loads shall be 
off. Within area II, cutting of switchable loads and 
decreasing of continuous loads take part.  

 

Price [$/W]

Power
[W]

I II III

0
 

Figure 14: Cost-function of a source having three areas: I 
– all loads on, II – shedding, decreasing loads with respect 
to its priority, III – all controllable loads off. 
As shown in Figure 15 the cost-functions of switcha-
ble and continuous loads are quite equal in principle.  
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Figure 15: Negated cost functions and control signals of 
switchable loads (left) and continuous loads (right). 
They consist of a full-power area, a linear decreasing 
area, and a zero-power area. The main difference is 
the slope of the function. The following inequation 
applies: 
 

slope(switchable loads) >> slope(continuous loads)  
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Furthermore, the control signal is different for the 
two types of loads. All switchable loads receive an 
off-signal, if the current price is not within full-
power area whereas all continuous loads receive a 
continuous power signal as determined in the cost-
function.  Since the location of the linear decreasing 
segment is determined via the priority of the loads 
and a global market model prescribes the location of 
the areas I, II, and III it can be guaranteed that this 
linear segment lies entirely in area II. 

As the switchable loads are cut at the linear de-
creasing segment, one must avoid having two loads 
with the same priority. Otherwise both loads will be 
cut, even if not needed. Thus, each load should have 
its own priority. 

If there are switchable and continuous loads in 
one system, multiple rounds of negotiations can be 
used to determine the power inflow for the continu-
ous loads. This is done via setting a price in a first 
negotiation round using all cost-functions as de-
scribed previously for calculating the control signals 
for the switchable loads. A second and final negotia-
tion round for the continuous loads can then use the-
se discrete control signals and assume all cost-
functions of the switchable loads to be constant in all 
three areas (on or off). Thus less generator-capacity 
is wasted. 

In typical load management systems, there are 
usually additional restrictions rather than the availa-
ble generator capacity (e.g. a feeder that limits 
transmitted power or current to a set of loads). This 
can be modeled easily by means of a limiter as 
shown in Table 1. On the output plug, a price can be 
increased if a prescribed limit is exceeded. The pre-
ferred implementation includes qualitatively the 
same cost-function as for the generator (see Figure 
14). At the output plug, a maximum function is ap-
plied that defines either the price at the input plug 
(i.e. from the price coming from the generator) or the 
price of the limiter. This ensures compliance with the 
restriction as well as an optimal availability of high 
priority loads. 
  

5.3 Example 

Figure 16 shows a simple setup of a load manage-
ment model consisting of one source, three feeders 
(limiters) and six different loads. The model is set up 
in the same way like the corresponding physical 
electrical system  
 

 
Figure 16: Example of a load management model having 
one source, 3 feeders and 6 loads (mixed continuous and 
switchable). 
After specifying the nominal values for the source 
(generator) and the feeders as well as setting the pri-
ority of the loads, the load management function is 
ready to be used. Depending on actual power de-
mand (input not illustrated in the figure), loads will 
be shed, reconnected, or reduced to comply with all 
restrictions of the source and limiters. 

6 Conclusion and future work 

This work represents our first approach towards a 
market-oriented modeling of energy-management 
tasks using a Modelica library. The current results 
look promising and demonstrate the principal func-
tionality of the library. It can be used both for source 
and load management and also more difficult tasks 
such as non-monotonic cost functions can be reason-
ably well handled. 

Although, we have analyzed only rather small 
systems so far, the simulation performance was al-
ways very good. We expect thus that the approach is 
also for feasible for larger systems with hundreds of 
generators and consumers. 

One mayor advantage of having an energy man-
agement function directly implemented in Modelica 
is the easy coupling to the physical system it shall 
control. This enables an improved development pro-

Session 1C: Power and Energy 

DOI Proceedings of the 9th International Modelica Conference    141 
10.3384/ecp12076133 September 3-5, 2012, Munich, Germany   



 

 

cess of the system in conjunction with its control 
function and thus early optimization of both. 

In case of source management, certain tasks need 
to be approached in order to create a solution that is 
more intuitively applicable for engineers. The import 
of characteristic curves (based on real data) for the 
efficiency of generators shall be supported by the 
library. In addition, the library needs to be tested at a 
larger set of more realistic examples. Further future 
potential concerns the modeling of dynamic charac-
teristics. Power generators typically cannot increase 
their output power at any arbitrary rate. Also storage 
components like batteries have a dynamic pricing of 
their energy.  

In case of load management, further functionality 
like variable cost functions shall be added to the li-
brary by allowing variable priorities. This enables a 
more flexible energy management, since the im-
portance and availability of a load can change during 
operation. In addition, sources like generators can 
often be overloaded due to their heat capacity. Thus 
they shall also influence the cost function dynamical-
ly. Furthermore, additional elements like switches 
can be added to allow adaption of the management 
function in case of a network re-configuration. 

One further major step is to combine both sub-
libraries in a suitable way. This means to manage 
priorities of the loads as well as energy efficiency by 
one cost function. To this end, a more elaborated 
determination of price according to load priority, 
energy efficiency, and further restrictions is needed. 
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Abstract 

Devices based on piezoelectric materials have tradi-

tionally been modeled in PDE simulation software. 

These simulations are expensive to create and run. In 

this paper it is shown that lumped-parameter models 

of such devices can provide good fidelity with low 

computational cost. Modelica models of supporting 

components, along with a system-level model of a 

linear piezoelectric stepper motor are presented. The 

simulation results show good agreement with pub-

lished experimental results. Future research is pro-

posed based on the components and model. 

Keywords: Piezoelectric, Linear Motor, MapleSim 

1 Introduction 

Piezoelectric materials experience mechanical 

stress under the influence of an electric field and, 

inversely, produce an electric field with the applica-

tion of a mechanical stress. Materials that exhibit the 

piezoelectric effect are used in diverse applications, 

including a variety of sensors and actuators, and spe-

cifically in stepper motors. Detailed PDE simulations 

of these materials are achievable using simulation 

software such as COMSOL, but lumped-parameter 

models suitable for component- and system-level 

simulations are rare. Developing piezoelectric mate-

rials models in Modelica makes modeling and simu-

lation at the system-level possible. A resulting li-

brary of parametrically-defined component models, 

like motors and actuators, would increase the effi-

ciency of modeling and simulating piezoelectric de-

vices routinely deployed in new engineering designs. 

In this research, Modelica components imple-

menting piezoelectric material properties, electrostat-

ic forces, and time-varying frictions were developed 

and integrated into a device-level model of a linear 

piezoelectric stepper motor. The model is parametric 

and extensible: the parameters can be changed to suit 

application-specific requirements, and nonlinear ef-

fects can be easily included. 

MapleSim is a Modelica-based system-level 

modeling and simulation platform provided by 

Maplesoft [1]. MapleSim simulation results matched 

those in [2] when similar values were implemented. 

Most importantly, the relative execution speed of the 

model permits multi-parameter optimizations not 

possible in full PDE simulations. This is demonstrat-

ed via the investigation of the effects of the motor 

clamp voltage on velocity using a compiled MapleS-

im procedure in Maple. Future work is then de-

scribed. 

1.1 Related Work 

To the authors’ knowledge, there is no formal Mod-

elica library available for piezoelectric materials. 

However, there have been a variety of disparate 

works that have implemented piezoelectric models in 

a lumped-parameter framework. For example, a 

MEMS library and airbag deployment example in-

cluding piezoelectric elements were implemented in 

VHDL-AMS in [3] and [4], respectively. Lumped-

parameter models of piezoelectric devices derived 

from high-order FEM models, are presented in [5], 

but are not Modelica-specific implementations. They 

would retain some of the discretized nature of the 

original FEM models and would therefore be further 

away from the benefits of using Modelica. In [6], 

bond graph and equivalent circuit methods are used 

to model piezoelectric motors. Finally, several tool-

independent lumped-parameter physics-based mod-

els are presented in Chapter 6 of [7]. 

2 Linear Motor Operation 

Figure 1 shows the configuration and operation of 

the linear motor. The operation is similar to other 

slip-stick motors, but is unique in that an electrostat-

ic clamp is used to aid the “stick” portion of the cy-
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cle. Periodic waveforms are applied to extend and 

relax the piezoelectric material along its longitudinal 

direction, pushing the lead weight along with it. The 

electrostatic clamp is active during the extension part 

of the cycle to prevent the motor assembly from 

slipping along the surface. An abrupt voltage is ap-

plied to the piezoelectric material when it is in its 

extended state and the clamp is deactivated to cause 

the assembly to retract towards its new center of 

mass, moving it forward. 

 
Figure 1: Linear motor configuration and operation. 

a) The electrostatic clamp is activated. b) The piezo-

electric material extends longitudinally with an ap-

plied voltage, moving the center of mass to the right. 

c) The clamp is deactivated. d) The piezoelectric 

voltage is quickly removed to cause a snapping mo-

tion, breaking the static friction between the motor 

assembly and the surface. The assembly retracts to-

wards its new center of gravity, moving forward. 

To model this in MapleSim via Modelica, several 

new components were needed: A 1D model of the 

piezoelectric material which couples the electrical 

and translational domains, an electrostatic clamp that 

also couples the electrical and translational domains, 

and a time-varying friction model. Their develop-

ment is described next. 

3 Component Models 

In the following sections, variables indicated in bold 

face correspond to port variables. Numbers in brack-

ets preceding an equation (like ( ), for example) 

indicate equations that appear in the final Modelica 

component. 

These components were first created as MapleS-

im Custom Components, which directly implement 

their governing equations developed in Maple. Es-

sentially, the equations are written unsimplified and 

MapleSim automatically rearranges and manipulates 

them as needed. Upon creation of the component, 

Modelica code is auto-generated which was then 

manually further modified. 

3.1 Piezoelectric Material Model 

The development of a 1D piezoelectric model relied 

heavily on Chapter 6 of [7]. The full tensor solution 

was reduced to the (3,3) direction to select the longi-

tudinal translational mode of operation. Losses and 

nonlinearities, such as hysteresis, were neglected as a 

first-order approximation. Such effects can be easily 

included in the core equations, or included externally 

using Modelica Standard Library components. Max-

well’s equations were accordingly simplified. Refer 

to Figure 2 for referencing of the port variables. 

 
Figure 2: Through- and across-variable references 

for the piezoelectric component. 

In one dimension, the traction (stress) of a piezoe-

lectric material is 

           
where T is the traction, c

D
 is the mechanical stiffness 

of the material, S is the mechanical strain, h is a pie-

zoelectric coupling coefficient with units of V/m, 

and D is the electrical displacement field. Neglecting 

inertia, the forces at either end of a slab of length l 

and area A of this material are 

       |   ,        |    
noting that traction is referenced positive in the ten-

sile direction. Therefore 
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The strain can be approximated by taking the first 

derivative of the material’s displacement in Eulerian 

coordinates, , so that 

  
  

  
 

and therefore 
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The D field can be replaced with the charge, Q, as 

follows: 
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where Jdisp is the displacement current and I is the 

electrical current. Noting that  
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Therefore, 
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( )        
To incorporate inertia, one-half of the calculated 

mass is placed on either side of the piezoelectric ma-

terial. It is calculated from its density, , length and 

area. Damping could also be included in these equa-

tions, but was not necessary for this particular analy-

sis. 
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Finally, the terminal voltage, V, can be calculated as 

the integral of the electrical field,  , as 

  ∫     
 

 

 

Since   can be defined as a function of D and S via 

           
where e is the (3,3) element of the piezoelectric 

stress matrix. It can be defined as 

       

where    is the electrical permittivity of the piezoe-

lectric material under constant strain conditions. 

Therefore, 

  
 

  
     

 

    
   

  

  
 

and 

  ∫ (
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where 

( )        . 

3.2 Electrostatic Force Model 

An electrostatic force model was implemented that 

couples the electrical and translational domains. Un-

like in the piezoelectric model which did incorporate 

a linear stress-strain relationship, the stress-strain 

relationship of the dielectric material under the influ-

ence of the applied electrostatic force was not in-

cluded. It is present in the system-level model as a 

translational spring. This decision was made so that 

the component could be easily modified as needed. 

For example, more accurate models would use a 

translational spring-damper to incorporate losses, 

and keeping it outside the electrostatic force compo-

nent facilitates this change. Refer to Figure 3 for ref-

erencing of the port variables. 

 
Figure 3: Through- and across-variable references 

for the electrostatic force component. 

Neglecting edge effects, the force between two 

plates of a parallel capacitor and current are 
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where 

( )         
and 

( )        . 
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3.3 Smooth Time-Varying Friction Model 

The purpose of this model was twofold: First, a time-

varying friction was needed where the normal force 

and coefficients were time-dependent. This was due 

to the electrostatic clamp changing the applied nor-

mal force. Second, whereas the standard friction 

model is discontinuous when transitioning from stat-

ic to dynamic, a continuous model would produce 

similar results and would speed simulation time by 

avoiding events. It also eliminated the need to pro-

vide scaling information to the solver to detect 

events within such a narrow band of operation. Refer 

to Figure 4 for referencing of the port variables. 

 
Figure 4: Through- and across-variable references 

and input signals for the time-varying friction com-

ponent. 

Beginning with the smooth friction model, a sum 

of two hyperbolic tangents was used to create the 

approximation. 

( )  (       )         (    ) 
                                 (     )      (    )  

In its intended usage, x would be the relative ve-

locity, A1 would be the static friction, and (A2 – A1) 

would be the dynamic friction. The coefficients c1 

and c2 are chosen so that c1 > c2, which gives the de-

sired function shape. An example is shown in 

Figure 5 and its similarity to the basic discontinuous 

friction model should be noted. 

Similarly, a smooth step-like function was used to 

ensure that when non-positive normal force is ap-

plied, there is no resultant “negative” friction. Such a 

function was implemented using 

( )  ( )  
 

 
(    (    )   ) 

and an example plot is shown in Figure 6. 

Using these smooth equations, the friction model 

is then implemented as 

( )            

( )      
     
  

 

( )                          (       ) 
( )                           

                               (       ) 
( )   (                             )

   (    ) 
where d is the damping coefficient. 

 

 
Figure 5: Example plot of the smooth friction model 

for parameters: A1 = 10, A2 = 5, c1 = 10000, 

c2 = 2500. 

 
Figure 6: Example plot of the smooth step function 

for the parameter c3 = 10000. 

4 Slip-Stick Motor Model 

The three new Modelica components were assem-

bled in MapleSim along with library 1D translational 

and signal components to create the overall model, 

shown in Figure 7. 

F -F
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μstatic μdynamic

Fnormal d
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Figure 7: The MapleSim schematic of the parametrically-defined linear motor model. 

The model was defined parametrically, using the 

parameters summarized in [2] as nominal values. 

Amazingly, the results matched quite well just by 

using the physical parameters and using some basic 

assumptions on the undocumented parameters, in 

particular, the characteristics of the driver wave-

forms. For example, it is stated in [2] that step sizes 

of 0.07 – 1.1 μm were observed for piezoelectric 

voltages of 60 – 340 V. The MapleSim model 

achieved 0.061 – 0.371 μm step sizes for the same 

applied voltages without any tuning or optimization 

of the unknown parameters. Adjusting the magnitude 

of the clamp voltage and frequency cutoff of the fil-

ters are two of the easiest was of changing the step 

size to help it match the experimental results. There-

fore, the MapleSim model represents a reasonable 

approximation to the system behavior without the 

burden of a full PDE solution. 

4.1 MapleSim Model and Preliminary Results 

As stated previously, the model matches the experi-

mental results quite well and provides additional de-

grees of freedom to back-fit to the available data. 

Figure 8 and Figure 9 show the applied driver signals 

and resulting motor motion, respectively. A compari-

son to the results in [2] shows good qualitative and 

numerical agreement. 

 
Figure 8: 1 kHz clamp (green) and piezoelectric (red) 

drive voltage signals. The slight overshoot is due to a 

low-pass filter set to 10 kHz to limit discontinuities 

present in the simulation. 

Session 1D: Electromagnetic Systems I 

DOI Proceedings of the 9th International Modelica Conference    147 
10.3384/ecp12076143 September 3-5, 2012, Munich, Germany   



 

 

 
Figure 9: Plots of the position (red) and velocity 

(green) versus time of the linear motor. 

4.2 Platform for Optimization 

One of the goals of this research is to demonstrate 

the value of system-level models of devices that tra-

ditionally have only been modeled in PDE software. 

As an example of the execution speed and optimiza-

tions possible, consider the results in Figure 10, and 

further summarized in Figure 11. They show the po-

sition versus time and velocity versus Vclamp results 

for 100 simulations, respectively. When comparing 

to the results presented in Fig. 10 in [2], it can be 

seen that the results are quite consistent. 

 
Figure 10: Position versus time plots for Vclamp values 

from 0 to 1000 V. The nominal value, 

Vclamp = 500 V, is shown in blue. 

 
Figure 11: Calculated average velocity values for 

various Vclamp. Note how the electrostatic clamp im-

proves the speed of the motor by preventing reverse 

motion during extension of the piezoelectric materi-

al. 

The per-simulation execution time was 63.8 ms 

on a modest Intel Core2 Duo CPU running at 

2.80 GHz. Similar results would take a tremendous 

amount of time in PDE simulation software. Though 

the PDE results would arguably be more accurate, 

the marginal accuracy is of questionable value in 

light of the orders of magnitude increase in simula-

tion time. 

5 Conclusions and Further Research 

This paper has demonstrated the creation of a linear 

piezoelectric stepper motor in MapleSim. To pro-

duce the motor model, three new components were 

created and their derivations were documented. Ini-

tial results correlate well with published experi-

mental results, indicating that lumped-parameter sys-

tem-level models may provide a new platform for 

development and optimization of such devices. 

The follow-up research currently underway in-

volves multi-parameter optimizations in a multi-

threaded, multicore architecture in Maple. The goal 

would be to demonstrate that fast MapleSim models 

can be used to optimize for goals like motor speed 

and power consumption, as well as to more accurate-

ly fit the experimental data. This will be accom-

plished directly in Maple via its threads and grid 

computing capabilities, and in Optimus, a global op-
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timization and design-of-experiments package by 

Noesis [8]. 

Using the piezoelectric material model as a start-

ing point, further developments include a full multi-

body (6 DoF) model of the material behavior. It is 

created using the full tensor description of the piezo-

electric material. This will enable the development of 

novel devices using torsional modes, and a more ac-

curate look into the behavior of existing devices, like 

the motor presented in this paper. 
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Abstract 

Modelica models for transient simulation of magnet-

ic hysteresis are currently being developed at Tech-

nische Universität Dresden. This paper gives an 

overview about the present state of the work. Two 

hysteresis models have been implemented so far in 

Modelica and are currently optimised and tested: the 

rather simple but efficient Tellinen model and the 

more complex and accurate Preisach model. Utilisa-

tion of the Tellinen model together with components 

of the Modelica.Magnetic.FluxTubes library is ex-

emplarily shown with transient simulation of a three-

phase autotransformer. Additionally, an efficient im-

plementation of the Preisach model is described and 

a first comparison between the Tellinen and the clas-

sical Preisach hystesis model is presented. It is 

planned to include the developed hysteresis models 

into the above-mentioned FluxTubes library after 

their further optimisation and validation with own 

measurements. These models will especially allow 

for the estimation of iron losses and for accurate 

computation of saturation behaviour during Modeli-

ca-based design of electromagnetic components and 

systems. This becomes increasingly important with 

the growing requirements regarding energy efficien-

cy and mass power densities of such systems. 

  

Keywords: magnetic hysteresis, lumped magnetic 

network; hysteresis model; Tellinen; Preisach; iron 

losses; Modelica.Magnetic.FluxTubes library 

1 Introduction 

The Modelica.Magnetic.FluxTubes library included 

in the Modelica Standard Library [1] is intended for 

rough design and system simulation of magnetic 

components and devices, e.g. actuators, motors, 

transformers or holding magnets [2, 3]. This library 

is based on the well-established concept of magnetic 

flux tubes, which enables modelling of magnetic 

fields with lumped networks [4]. 

At present, ferromagnetic hysteresis is not consid-

ered in the above-mentioned library. However, the 

prediction of losses due to static (ferromagnetic) and 

dynamic (eddy current) hysteresis becomes more and 

more important during the design of electromagnetic 

components. This is due to the increasing demands 

on energy efficiency of electromagnetic systems and 

due to increasing power densities of those systems. 

Prominent examples for this engineering trend are 

electromobility and more electric aircraft, where the 

necessity of high mass power densities and loss 

power minimisation are obvious. 

In general, the reliable prediction of hysteresis-

related losses with lumped magnetic network models 

is difficult and demanding and has been a topic of 

research for a long time. Simplified empirical equa-

tions for loss calculation, e.g. the well-known 

Steinmetz formula [5] are based on time-harmonic 

flux densities of known magnitude and frequency 

[6]. The delayed penetration of magnetic fields into 

bulk and laminated ferromagnetic materials can be 

approximated in lumped magnetic networks with 

Cauer circuits [7].  

Transient simulation of magnetic hysteresis in 

lumped magnetic network models is possible with 

dedicated hysteresis models. Well-known such mod-

els are for example the phenomenological one pub-

lished by Preisach in 1935 [8], the physical model 

developed by Jiles and Atherton [9] or the compara-

tively simple model developed by Tellinen [10]. 

Those models are currently analysed at Technische 

Universität Dresden, and selected hysteresis models 

are implemented in Modelica for inclusion into the 

Modelica.Magnetic.FluxTubes library.  

The Tellinen hysteresis model and the Preisach mod-

el have been implemented and are currently tested 

and optimised. Theory and Modelica implementation 

of these two models and their utilisation in compo-

nents of the Modelica.Magnetic.FluxTubes library 

will be presented in the following sections. It must 

be noted that this is a report about work in progress 

rather than a final presentation of the projected Mod-

elica.Magnetic.FluxTubes library extension. Both 
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implemented hysteresis models are still subject to 

optimisation and validation, e.g. with measurements. 

2 The Tellinen Hysteresis Model 

2.1 Theory 

The hysteresis model developed by Tellinen is thor-

oughly described in [10]. The big advantage of this 

model is its simplicity. Thus, it is well suited for fast 

simulations when used in lumped magnetic network 

models. It works without information about the his-

tory of the magnetic field strength H in ferromagnet-

ic components and can completely be configured 

with the limiting increasing and decreasing branches 

λi(H) and λd(H), respectively, of the limiting hystere-

sis loop of a ferromagnetic material (Figure 1). 

 

Figure 1: Limiting increasing and decreasing branch 

λi(H) and λd(H), respectively, of a hysteresis loop 

with magnetic polarization J and magnetic field 

strength H (a) and corresponding slope functions 

ρλi(H) and ρλd(H) (b). 

Together with the corresponding slope functions 

ρλi(H) and ρλd(H) the actual slope ρj at the operating 

point O(h, j) can be determined as 
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 (1) 

Thus, the time–based slope of j can be easily com-

puted at every integration step to 

   

  
 
  

  
 
  

  
   

  

  
  (2) 

Hence the slope of the magnetic flux density db/dt of  

   

  
 (     )  

  

  
 (3) 

µ0 is the slope db/dh of the limiting hysteresis loops 

within the saturation region. 

2.2 Implementation in Modelica 

The Tellinen model described above was integrated 

into a reluctance element of the Modelica.Mag-

netic.FluxTubes library, and can thus similarly 

be used in electromagnetic network models (in [2] 

the magnetic library is explained in detail). The re-

luctance model can be configured with the cross sec-

tion and the length of a ferromagnetic core and the 

limiting hysteresis loop of the core material. On the 

one hand hysteresis loops can be defined by the hy-

perbolic tangent function and definition of the three 

parameters JS (saturation polarization), JR (rema-

nence) and HC (coercivity) (see Figure 1a).  On the 

other hand table data can be used to define the in-

creasing and decreasing hysteresis branches. Thus, 

almost arbitrary hysteresis loops can easily be im-

plemented and also easily be derived from measure-

ments. In addition a small experimental library was 

built using exemplary table data of some common 

ferromagnetic materials (Figure 2). 

 

Figure 2: Exemplarily simulated limiting hysteresis 

loops: curve 1 described by a hyperbolic tangent 

function and curves 2 to 4 described by tabular B(H) 

data extracted from [11]. 
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2.3 Autotransformer as an Example 

The implemented Tellinen hysteresis models were 

tested with a simple electromagnetic network model 

of a three-phase autotransformer. A sketch of the EI-

shaped ferromagnetic core of the transformer with 

indicated corresponding network elements is shown 

in Figure 3a and the complete electromagnetic net-

work model in Figure 3b. 

 

Figure 3: Sketch of a three-phase autotransformer 

with an EI-shaped ferromagnetic core (a) and corre-

sponding simple electromagnetic network model 

with hysteresis elements representing the transformer 

core (b). 

 

Figure 4: Simulated magnetic flux densities B vs. 

magnetic field strength H of the three hysteresis 

elements Rmag1 (blue), Rmag2 (red) and Rmag3 

(green) representing the three transformer legs.  

 

Transient oscillations of the magnetic flux densities 

in the three transformer legs after power-on are ex-

emplarily shown in Figure 4. Selected corresponding 

voltages and currents are depicted in Figure 5. 

 

Figure 5: Results of the autotransformer simulation: 

source voltage V1.v and voltage drop RL1.v of load 

resistance (a), magnetic flux densities of the three 

hysteresis elements Rmag1.b to Rmag3.b (b) and 

source currents V1.i to V3.i. 

3 The Preisach Hysteresis Model 

3.1 Overview on the Classical Preisach Model 

In this section a very short overview on the classical 

Preisach model is given. More detailed information 

on this model can be found e.g. in [12]. The Preisach 

model describes the behaviour of an output signal j(t) 

in dependence on an input signal h(t) and on its his-

tory. Here, j(t) and h(t) are the magnetic polarisation 

of a ferromagnetic material and the magnetic field 

strength, respectively. The model assumes an infinite 

set of elementary hysteresis operators γαβ. The opera-

tors’ output     ( ) can only hold the polarisation 

values of -1 or +1 dependent on the upper and lower 

switching limits α and β, on the input signal h(t) and 

on its history. The behaviour of γαβh(t) is shown in 

Figure 6. It is defined as 
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Figure 6: Elementary Preisach operator γαβ (hyster-

on). 

The upper switching limit of each operator is always 

greater than or equal to the lower limit (α ≥ β). Thus, 

the switching limits α and β span a right triangular 

region, often referred to as Preisach plane (Figure 7). 

 

Figure 7: Preisach plane. 

For each point (α, β) on this plane exactly one ele-

mentary hysteresis operator γαβ exists with upper and 

lower switching limits α and β, respectively. The 

Preisach distribution function P(α, β) gives a weight 

to all operators in the region α ≥ β and is 0 out of that 

region. Thus, the output polarisation j(t) of the sys-

tem results in 

 
 ( )     ∬ (   )      ( )    

   

 (5) 

(JS saturation polarisation). An exemplary Preisach 

distribution function is shown in Figure 8. 

 

Figure 8: Exemplary Preisach distribution function 

P(α, β) defined over the Preisach plane (α ≥ β). 

The Preisach plane can be divided into two regions 

S+ and S- in which all operator outputs γαβh(t) are in 

+1 and -1 state, respectively (Figure 7). Together 

with Eq. (5) this leads to 

 ( )    ( ∬  (   )    

  ( )

 ∬  (   )    

  ( )

)   (6) 

With the integral of P(α, β) over the region α ≥ β  

∬ (   )    

   

 ∬  (   )    

  ( )

 ∬  (   )    

  ( )

   
(7) 

being equal to 1, Eq. (6) leads to 

 ( )     (  ∬  (   )    

  ( )

  )  (8) 

3.2 Implementation in Modelica 

In general, the double integral of applied Preisach 

distribution functions P(α, β) cannot be expressed 

analytically. For that reason the numerical solution 

of Eq. (8) at every iteration step would be very com-

putationally expensive. Thus, a more efficient calcu-

lation method has to be found in order to implement 

applicable magnetic network components in  

Modelica.  

The evolution of both regions S+(t) and S-(t) due to a 

varying input signal h(t) can easily be visualized in 

the Preisach plane (Figure 9) [12]. The hypotenuse 

of the Preisach plane defines the α = β line. The in-

put signal h(t) moves as a point along that line if 

αmin < h(t) < αmax. 
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Figure 9: Geometric interpretation of the time-based 

evolution of the regions S+(t) and S-(t) in dependence 

on the input signal h(t). 

Starting from negative saturation (all operators are in 

-1 state and the whole Preisach plane is filled out by 

the S- region) an increasing input moves a horizontal 

line L (border between S- and S+) towards the posi-

tive direction of the α-axis, expanding the S+ region 

(Figure 9a). When h(t) changes direction the maxi-

mum value is stored in α1 and L is extended by a ver-

tical line moving towards negative direction of the β 

axis, hereby shrinking again the S+ region (Figure 

9b). If h(t) increases again, the point (α1, β1) is fix 

and β1 is also stored. Dependent on the course of the 

input signal a corresponding number n of corner 

points (αi, βi) must be stored. Figure 9c and d show 

the wiping out of stored points when h(t) becomes 

larger than the α value of any stored point (αi, βi). 

Then this point can be deleted since it doesn’t con-

tribute any longer to the border between S+(t) and 

S-(t). A similar event occurs when h(t) becomes 

smaller than the last stored βi value. Dependent on 

the number n of stored points, the region S+, over 

which P(α, β) must be integrated, becomes more and 

more complex. However, it can be shown that there 

is a single triangular region Sdif (dotted triangles in 

Figure 9a to d) for which applies 

 

 

  
∬  (   )    

  ( )

 
 

  
∬  (   )    

    ( )

  (9) 

Thus, Eq. (8) and (9) lead to 

   ( )

  
      

 

  
∬  (   )     

    ( )

 (10) 

Sdif belongs to S+ for increasing h(t) and to S- for de-

creasing h(t). It’s hypotenuse is part of the α = β line 

of the Preisach plane and thus Sdif can be written as 

difference of the two regions S1 and S2, both having 

their lower left vertexes at the point (αmin, βmin) 

(Figure 10). This allows to evaluate the integral of 

P(α, β) over the region Sdif by two integrals with the 

same lower integration limits αmin and βmin respec-

tively: 

∬ (   )    

    

 ∫ ∫  (   )    

   

      

   

      ⏟                
∬  (   )
  

    

 ∫ ∫  (   )     

   

      

   

      ⏟                  
∬  (   )
  

    

 

(11) 

With αmin = βmin= const., Sdif is completely defined by 

the integration limits α´2, β´1, β´2. Figure 10 shows 

the integration limits for increasing and decreasing 

h(t) respectively and their variation due to a change 

of the input signal h(t). 

 

Figure 10: Integration limits         and    of the 

region Sdif for increasing (a) and decreasing (b) input 

signal h(t). 

From the integral 

 

  (     )  ∫ ∫  (   )    

  

      

  

      

 (12) 

and Eq. (11) follows 
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With Eq. (10) and (13) one obtains 
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(  (       )     (       ))  (14) 

In the Preisach hysteresis model implemented in 

Modelica, the integral IP of the Preisach distribution 

function P(α,β) is numerically computed only once 

at the start of a simulation run for discrete grid points 

and stored in a two-dimensional array AIP. All values 

of IP between the grid points of AIP can then be ob-

tained by bilinear interpolation of adjacent AIP val-

ues. This is an enormous reduction of the computa-

tional effort, namely from the numerical solution of 

the double integral of P(α, β) to two table look-ups 

and bilinear interpolations of IP values in the array 

AIP (see Eq. (14)). Figure 11 shows the values of AIP 

for the exemplary Preisach distribution function de-

picted in Figure 8. 

 

Figure 11: Array data AIP of the integral of the 

Preisach distribution function P(α,  β) shown in Fig-

ure 8. 

3.3 First Simulation Results 

A simple network model of an inductor with a closed 

ferromagnetic core was used for first tests of the im-

plemented Preisach hysteresis model (Figure 12). 

 

Figure 12: Simple electromagnetic model of an in-

ductor with closed ferromagnetic core for testing of 

the Preisach hysteresis model. 

Simulation results, especially the simulated B(H) 

hysteresis of the iron core, are shown in Figure 13. 

The increasing exponential sine voltage causes grow-

ing hysteresis loops. The resulting B(H) loops are not 

centered around the origin, because the flux density 

B of this simulation starts for H = 0 A/m at negative 

remanence. 

 

Figure 13: Simulation results of the inductor model: 

source voltage expSine.v and flux density ironCore.b 

in the core (a) and B(H) plot of the growing  hystere-

sis loops in the iron core (b). 

4 Model Comparison 

To show the different behaviour between the classi-

cal Preisach and the Tellinen hysteresis model two 

simulations were carried out. An identical magnetic 

field strength H(t) was applied to the input of both 

hysteresis elements, which were configured to have 

equal limiting hysteresis loops. The models output 

characteristics B(H) were then plotted together in 

one diagram. In the first simulation a decreasing ex-

ponential sine wave was used as input signal. The 

corresponding simulation results are shown in Figure 

14. Only small differences in the models output are 

obvious. The different behaviour can be seen more 

clearly in the results of the second simulation, in 

which a slightly more complex input signal of two 

superposed sine waves of different amplitude and 

frequency (Figure 15a) was applied. The B(H) char-

acteristics in Figure 15b show the deviation between 

both models, especially in the region of the minor 
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loops. In contrast to the Tellinen model, the minor 

loops of the classical Preisach model are closed. 

 

 

Figure 14: B(H) characteristics of the Preisach and 

the Tellinen hysteresis model for a decreasing expo-

nential sine wave input signal H(t). 

 

 

Figure 15: Output of the Preisach and Tellinen model 

(b) for the identical input signal (a). 

Due to the significantly higher computational effort 

for the Preisach model the network simulation with 

the Tellinen model performs a lot faster. Dependent 

on the fineness of the mesh of the discretised 

Preisach integral, a simulation with one Preisach 

hysteresis element takes about 3 to 8 times as long as 

a similar simulation with a Tellinen hysteresis net-

work element. 

5 Summary and Outlook 

Two different magntic hysteresis models have been 

implemented in Modelica: the simple but efficient 

model developed by Tellinen and the more accurate 

but complex Preisach model. For latter model, a par-

ticular simple and efficient Modelica implementation 

was derived, hereby reducing the effort for numerical 

calculation of a double integral over portions of the 

Preisach plane to two bilinear interpolations in a ta-

ble. 

Utilisation of the Tellinen model together with com-

ponents of the Modelica.Magnetic.FluxTubes library 

was exemplarily shown with transient simulation of 

a three-phase autotransformer.  

With further work, the developed hysteresis models 

will be optimised and tested. Estimation of hysteresis 

losses from simulated hysteretic behaviour will be 

implemented. Those simulated iron losses will be 

provided to a conditional heat port and thus can be 

input to subsequent thermal simulations, e.g. with 

models built from Modelica.Thermal.Heat-

Transfer. Further improvements of the developed 

hysteresis models will focus on proper initialisation 

as well as on numerical stability and computational 

efficiency. If reasonable, the well-known Jiles-

Atherton model of magnetic hysteresis will be also 

implemented. All implemented hysteresis models 

will be compared with regard to behaviour, accuracy 

and computation time.   

For model validation, measurements of the magnetic 

properties of selected magnetically soft materials 

according to EN 60404 are planned. A measurement 

setup utilising a highly accurate electronic fluxmeter 

is currently realised. With data obtained from these 

measurements, the materials sublibrary of Modeli-

ca.Magnetic.FluxTubes will be extended and im-

proved. For the Preisach hysteresis model a corre-

sponding parameter identification needs also to be 

developed for fitting the model behaviour to litera-

ture or measured hysteresis data. 

Session 1D: Electromagnetic Systems I 

DOI Proceedings of the 9th International Modelica Conference    157 
10.3384/ecp12076151 September 3-5, 2012, Munich, Germany   



 

 

6 Acknowledgement 

The authors would like to thank the Clean Sky Joint 

Technology Initiative for funding of the presented 

work within Project No. 296369 MoMoLib “Modeli-

ca Model Library Development for Media, Magnetic 

Systems and Wavelets”. 

References 

[1] Modelica Association, Modelica Standard Li-

brary, https://www.modelica.org/libraries/-

Modelica (May 11, 2012). 

[2] T. Bödrich and T. Roschke, A Magnetic Li-

brary for Modelica, in Proc. of the 4th Interna-

tional Modelica Conference, 2005, pp. 559–

565. 

[3] T. Bödrich, Electromagnetic Actuator Model-

ling with the Extended Modelica Magnetic Li-

brary, Proc. of 6th Int. Modelica Conf., Biele-

feld, Germany, March 3-4, pp. 221–227, 2008. 

[4] H. Roters, Electromagnetic Devices. New York: 

John Wiley & Sons, 1941. 

[5] C. Steinmetz, Hysteresis loss, Electrician 26, p. 

261 ff., 1891. 

[6] T. Roschke, Entwurf geregelter elektromagneti-

scher Antriebe für Luftschütze, ser. Fortschritt-

Berichte VDI. VDI Verl., 2000. 

[7] D. Ribbenfjärd, Electromagnetic Modelling 

Including the Electromagnetic Core, Ph.D. dis-

sertation, KTH Royal Institute of Technology, 

Stockholm, 2010. 

[8] F. Preisach, Über die magnetische Nachwir-

kung, Zeitschrift für Physik A Hadrons and Nu-

clei, vol. 94, pp. 277–302, 1935. 

[9] D. Jiles and D. Atherton, Theory of Ferromag-

netic Hysteresis, Journal of Magnetism and 

Magnetic Materials, vol. 61, no. 1–2, pp. 48 – 

60, 1986. 

[10] J. Tellinen, A Simple Scalar Model for Magnet-

ic Hysteresis, IEEE Transactions on Magnetics, 

vol. 24, no. 4, pp. 2200 – 2206, July 1998. 

[11] Soft Magnetic Cobalt-Iron-Alloys, Vacuum-

schmelze GmbH, 2001, http://www.vacuum-

schmelze.com/fileadmin/docroot/medialib/-

documents/broschue-ren/htbrosch/Pht-

004_e.pdf (05.21.2012). 

[12] I. Mayergoyz, Mathematical Models of Hyste-

resis and their Application. Elsevier, 2003. 

 

Magnetic Hysteresis Models for Modelica 

 

158 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076151 



 

 

Motor Management of Permanent Magnet Synchronous Machines 

Motor Management of Permanent Magnet Synchronous

Machines

Anton Haumer Christian Kral

AIT Austrian Institute of Technology GmbH

Giefinggasse 2, 1210 Vienna, Austria

a.haumer@haumer.at christian.kral@ait.ac.at

Abstract

In this paper the principle of loss and current related

motor management of permanent magnet synchronous

machines is demonstrated. For this purpose a simpli-

fied Modelica model of an interior permanent magnet

machine synchronous machine drive is presented.

In this model copper, core and friction losses are

considered. Simulations then used to determine

operating points of minimum current demand and

losses, respectively. Based on simulation results some

basic insights into motor management are presented.

General aspects of motor management modeling are

then discussed.

Keywords: Permanent Magnet Synchronous Machine,

Field Oriented Control, Optimization of Field Current

1 Introduction

Due to the rising demand on mobility together with

contradictions such as climate change and scarce re-

sources a rising variety of electric and hybrid electric

vehicles is currently offered. For such vehicles high

torque densities and efficiencies of the electric drive

are demanded. In particular the total losses of the

electric drive shall be as low as possible considering

a given derive cycle.

Nowadays, three types of electric machines are com-

monly used:

• induction machine with squirrel cage

• electrically excited synchronous machines

• permanent magnet (PM) synchronous machine

Typically, asynchronous induction machines are very

reliable due to the robust design of the squirrel cage.

However, they need a magnetizing current component

to excite the magnetic field. Electrically excited syn-

chronous machines have a separate field winding in

the rotor which – for vehicle applications – is usually

supplied through slip rings. For induction and electri-

cally excited synchronous machines, additional cop-

per losses arise due to the currents required for excit-

ing magnetic field. In permanent magnet synchronous

machines the magnetic field is mainly excited by the

permanent magnets. Rare earth magnets have a high

energy density and show thus a very high torque and

power density.

In the base speed range of either machine, voltage

is more or less linearly proportional to speed. Since

the voltage is limited by the available battery volt-

age, higher speeds can only be realized by reducing

the magnetic field in the machine – this is the field

weakening range. In induction and electrically excited

synchronous machines this measure is performed by

reducing the field current. In permanent magnet syn-

chronous machines, the permanent magnets cannot be

switched off. In order to yet operate the machine in the

field weakening range, a current component has to be

controlled such way that it counteracts the field caused

by the permanent magnet.

For all kinds of machines, one and the same mechani-

cal operating point can be accomplished by different

combinations of field and torque generating current

components. So obviously, there exists a certain po-

tential of operating an electric drive such way that the

total current or losses, respectively, are as low as pos-

sible [1, 2, 3]. In this paper the case of a permanent

magnet synchronous machine drive is investigated in

order to reveal some basic insights on optimal motor

management [4].

In particular, the two optimization cases are investi-

gated. First, minimum losses of the machine are ex-

amined, since low losses represent a high efficiency of
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the machine and thus enable higher energy utilization.

Second, minimum current are investigated, since the

maximum current is limited by the power electronics

and current also influences the total losses of the power

converter.

2 Field Oriented Control of PM Ma-

chine

The functional principles of induction and syn-

chronous machines are the same: if we feed three si-

nusoidal currents i1, i2 and i3 with a time phase shift

of 120° to three windings in the stator that are spaced

by 120° at the circumference, we achieve a magnetic

field wave in the air gap of constant amplitude, rotating

with an angular velocity dependent on the frequency of

the currents. The rotating magnetic field can be repre-

sented by a complex current space phasor,

i =
2

3

(

i1 + ai2 + a2i3
)

(1)

where

a = ej
2π
3 (2)

The zero component

i0 =
1

3
(i1 + i2 + i3) (3)

is usually avoided by normal drive designs since it has

no effect on power exchange with the rotor. The cur-

rent space phasor (1) and the zero component (3) can

be interpreted as a linear transformation of the three

winding current i1, i2 and i3. Rotating the current

space phasor (1) into a rotor fixed coordinate frame,

it can be represented by current components of the d

and q axis,

ir = ie−jγ = id + jiq, (4)

see Fig. 1, where γ is the angle between stator and

rotor frame. The space phasor transformation can be

applied to voltages and flux linkages as well to model

the machine behavior. The flux linked with the stator

winding can be determined by

Ψ = ΨPM + Lmdid + jLmqiq, (5)

see Fig. 2, where the flux of the permanent magnet,

ΨPM, is aligned with the d axis.

The number of pole pairs, p, is defined by the repe-

tition of the stator winding along the circumference.

Since the rotor is equipped with a permanent magnet

Figure 1: Transformation for the current phasor from

the stator to the rotor frame, considering the transfor-

mation angle γ

Figure 2: The total stator flux linkage phasorΨ is com-

posed of the flux of the magnet ΨPM and the inductive

components due the total main inductance and current

components

arrangement showing the same number of pole pairs, it

is evident that the rotor will try to align in the rotating

magnetic field. Thus it is useful to decompose the sta-

tor current space phasor into a component aligned with

the rotor poles, id, and a perpendicular component, iq
(pointing to the pole gap). Having information about

the rotor orientation – and therefore about the field ori-

entation – it is possible to control the field current id
and the torque generating current iq independent from

each other – similar as in DC machines.

2.1 Torque Generation

The electromagnetic torque generated in the air gap

of a PM machine is a reaction between magnetic flux

linked with the stator winding, Ψ , and the conjugate

complex current space phasor:

τel = −

3p

2
Im (Ψ i∗) (6)

Taking into account the nature of the permanent mag-

net synchronous machine with different magnetic con-

ductances in the direction of the poles (d-axis) and in

direction of the pole gaps (q-axis), we obtain:

τel =
2p

3
(ΨPMiq + (Lmd − Lmq) idiq) (7)
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In this equation, Lmd and Lmq are the total main in-

ductances in the d and q axis, respectively, represent-

ing the magnetic reluctances of these axes. For mag-

netically isotropic machines with Lmd = Lmq the

electromagnetic torque is directly proportional to the

product of the magnetic flux linkage of the permanent

magnet, ΨPM, and the current in the q axis. The per-

meability of permanent magnets is almost equal to air.

Thus, magnetically isotropic machines typically have

the magnets mounted on the surface of the rotor, see

Fig. 3a.

It is evident from (7) that for machines with differ-

ent magnetic reluctances in d and q axis an additional

torque component arises – the reluctance torque. This

torque component is proportional to the product of the

d and q axis current and the difference between the in-

ductances of the d and q axis. An anisotropic rotor

configuration is shown in Fig. 3b interior permanent

magnets. In order to gain a higher reluctance torque it

is desirable to make the difference between the induc-

tances of the d and q axis as large as possible.

Even though surface mounted permanent magnet syn-

chronous machine reveal a certain potential for min-

imizing losses [5, 6], the potential is much higher

in case of interior mounted permanent magnet syn-

chronous machines [7, 8, 9, 10, 11].

2.2 Losses

In order to minimize current consumption or losses,

respectively, the total losses of the PM machine have

to be taken into account. For the investigated machine,

ohmic losses, core losses and friction losses are con-

sidered.

Ohmic losses (copper losses) are directly proportional

to the total stator winding resistance, Rs, and the sum

of the squared winding currents,

PCu = Rs(i
2
1 + i22 + i23) =

3

2
Rsisi

∗

s. (8)

Core losses are usually separated into eddy current

losses and hysteresis losses [12, 13]. Some models

even take excess losses into account, but these losses

are usually inherently considered by the eddy current

loss model. In the presented paper machine models of

the Modelica Standard Library (MSL) 3.2 are used, so

hysteresis losses are not taken into account. The total

core losses are thus modeled dependent on the voltage

induced by the flux Ψ, linked with the stator winding,

Pc =
3

2
Gc

(

dΨ

dt

)2

. (9)

(a) surface magnets (b) interior magnets

Figure 3: Permanent magnet rotor configurations

Friction torque is modeled as a power of rotor speed –

represented by parameter af . Friction losses are thus

determined by

Pf = Pf,ref

(

Ω

Ωref

)af+1

, (10)

where Ω is the mechanical angular rotor speed and in-

dex ref indicates a reference point.

Due to the great dependency of torque from the current

components id and iq in (7), a high potential for saving

current and losses, respectively, is obvious.

2.3 Voltage Induction

The induced voltage under stationary operating condi-

tions is given by

v = jωΨ = jω (ΨPM + Lmdid)− ωLmqiq. (11)

For zero current in the q axis, the induced voltage

solely depends on the flux linkage due to the perma-

nent magnet and the current of the d axis and the elec-

trical angular speed,

ω =
Ω

p
. (12)

For zero current in both axes the induced voltage rises

linearly with speed ω. When the induced voltage ex-

ceeds the maximum voltage, determined by the avail-

able battery voltage, the field has to be weakened in or-

der to further increase speed. This can be achieved by

injecting a negative d axis current component which

reduces the total flux linked with the stator winding,

see (5).

3 Modelica Model of the Drive

Fig. 4 shows the Modelica model used for investigat-

ing the motor management of the drive. A permanent

magnet synchronous machine model – taken from the
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Figure 4: Modelica model of the drive

MSL 3.2 – is fed by a signal current source. This sim-

plification represents an idealized supply case without

modeling the details of a power inverter. This way

pulse width modulation (PWM) specific effects are

not taken into account, since the reference values of

the d and q axis current are directly injected into the

machine after an inverse space phasor transformation,

i.e., calculating the instantaneous three phase currents

(block currentController).

The shaft of the machine is coupled by an ideal speed

source. An angle sensor is used to feed back the angle

between stator and rotor frame, γ, to the inverse space

phasor transformation.

The field exciting current, id, is varied linearly within a

given range; the block limitVoltage ensures that

the actual terminal voltage does not exceed the avail-

able DC voltage source, representing the battery volt-

age of an electric or hybrid electric vehicle. The q cur-

rent component is determined by a integral controller

which is fed by the difference between desired and ac-

tual torque. The integral time of this controller is very

small such that control specific effects are negligible

in the performed investigation.

A certain point of operation as well as the range for

optimization are determined by

• torque,

• speed, and

• the range for varying the current component id.

Output variables of the investigated model are the to-

tal current consumption and the total machine losses.

In the presented paper the optimum point of opera-

tion is determined manually by either varying speed or

parameter value unit

number of pole pairs

nominal frequency 50 Hz

nominal RMS voltage per phase 100 V

nominal RMS no load voltage per phase 75 V

nominal torque 180 Nm

nominal stator resistance per phase 0.03 Ω

nominal stator stray reactance per phase 0.1 Ω

nominal main reactance per phase, d axis 0.3 Ω

nominal main reactance per phase, q axis 0.6 Ω

nominal core losses 500 W

Table 1: Machine parameters used for the analysis of

the motor management
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Figure 5: Losses at 25% nominal torque, motor op-

eration, speed variation 10-25-50-75-100% nominal

speed

torque, and fixing the remaining parameters and vari-

ables, respectively. This way characteristic curves are

obtained, see section 4. The machine parameters used

for the analysis are presented in Tab. 1.

4 Simulation Results

In this chapter simulation results at different loads,

both for motor and generator operation, and differ-

ent speeds at varying direct axis current are summa-

rized. The optimal d axis currents for minimal ma-

chine losses is indicated in the figures.

Fig. 5 shows at 25% nominal torque – motor operation

– that machine losses rise with rising speed, due to the

increase of core losses. Fig. 6 extends the trend to field

weakening. Since only eddy current losses are taken

into account, core losses are nearly constant. Decreas-

ing the q axis current demand (limitation of torque

proportional to the inverse of speed) decreases copper
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Figure 6: Losses at 25% nominal torque, motor opera-

tion, speed variation 100-110-120-130-150% nominal

speed
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Figure 7: Losses at 100% nominal torque, motor op-

eration, speed variation 10-25-50-75-100% nominal

speed

losses, whereas increasing the d axis current – in order

to limit the stator voltage – increases copper losses.

The trend depends strongly on the actual machine pa-

rameters, i.e., inductances and reference losses.

Fig. 7 and Fig. 8 show the same dependencies, but at

100% nominal torque – motor operation. Since for

higher torque demand and therefore higher current the

influence of copper losses is higher, losses decrease

in the field weakening region with rising speed. Ad-

ditionally it can be observed that a variation of the d

axis current is limited by the need of field weakening

to avoid exceeding the voltage limit.

Fig. 9 and Fig. 10 depict the same dependencies at

100% nominal torque, but for generator operation,

with only small differences compared to motor oper-

ation.

Additionally to determining the optimal d axis cur-

rent for minimum machine losses, minimum total cur-
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Figure 8: Losses at 100% nominal torque, motor op-

eration, speed variation 100-110-120-130-150% nom-

inal speed
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Figure 9: Losses at 100% nominal torque, generator

operation, speed variation 10-25-50-75-100% nominal

speed
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Figure 10: Losses at 100% nominal torque, genera-

tor operation, speed variation 100-110-120-130-150%

nominal speed
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Figure 11: Total current consumption at 100% nomi-

nal torque, motor operation, speed variation 10-25-50-
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Figure 12: Total current consumption at 100% nomi-

nal torque, motor operation, speed variation 100-110-

120-130-150% nominal speed
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Figure 13: Total current consumption at 100% nomi-

nal torque, generator operation, speed variation 10-25-

50-75-100% nominal speed
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Figure 14: Total current consumption at 100% nom-

inal torque, generator operation, speed variation 100-

110-120-130-150% nominal speed
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Figure 15: Losses at 125% nominal torque, motor op-

eration, speed variation 10-25-50-75-100% nominal

speed

rent is analyzed. The total current consumption for

100% nominal torque in motor operation is depicted

in Fig. 11, showing increasing total current for rising

speed. This is due to the fact that losses – including

rising core losses – have to be covered by electric ac-

tive power consumption. For the field weakening re-

gion – depicted in Fig. 12 – decreasing losses lead to

decreasing electric power consumption and therefore

decreasing current consumption.

Fig. 13 and Fig. 14 show the same dependencies at

100% nominal torque, but for generator operation.

The main difference compared with motor operation

results from the fact that core losses cause a braking

torque, which reduces the demand for electric torque.

In the region of constant magnetic field this leads to

decreasing current demand at rising speed.

Fig. 15 shows at 125% nominal torque – overload mo-

tor operation – that machine losses rise with rising
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Figure 16: Losses at 125% nominal torque, motor op-

eration, speed variation 100-110-120-130-150% nom-

inal speed

speed, due to the increase of core losses. Fig. 16 ex-

tends the trend to field weakening. For speed above

nominal speed a high d axis current demand can be

noticed. The optimum for each speed can be found at

the minimum d axis current that is sufficient to limit

stator voltage.

5 Discussion

The presented simulation results rely on a simplified

model of a permanent magnet synchronous machine.

Based on the obtained results, one could implement an

interpolation table, for controlling the optimum d and

q axis current in a real application. In this case for

a particular speed, torque and available battery volt-

age, the optimum d and q axis currents have to be pre-

calculated and stored in such interpolation table.

However, in a real drive application, some even more

complex effects arise which have to be considered

properly. In the following the most relevant effects are

be discussed:

• The main field inductances are non-linearly de-

pendent on currents due to the saturating charac-

teristic of the core [14]. Additionally, the flux

contributions with respect to the d and q axis are

not fully magnetically decoupled as suggested in

(5). Therefore, cross saturation effects may have

to be taken into account [15].

• The ohmic losses are temperature dependent. In

order to correctly estimate ohmic losses or the op-

timal d and q axis currents, temperature has to be

either measured or estimated. Temperature, how-

ever, complicates setting the optimum operating

point in an online application, since an additional

dimension of variability – for picking the opti-

mum d and q axis currents – is added.

• In a real application, the contribution of hystere-

sis loss may have a significant impact on the exact

total core losses. However, this is can be accom-

plished by modifying the core loss equation (9)

according to [13].

• In the proposed model, eddy current losses of the

permanent magnets are not taken into account.

Such losses most likely have to be considered in

a real application, sometimes even if the magnets

are segmented [16].

• The PWM supply of the power inverter gives rise

to certain voltage harmonics which in turn influ-

ence the total core losses. In the proposed eddy

current model high frequency skin effects with re-

spect to the core flux are not taken into account.

However, in particular, PWM related voltage har-

monics give rise to additional hysteresis losses

due to minor hysteresis loops [17].

• More precisely, in order to maximize the total

efficiency of an electric or hybrid electric vehi-

cle, the total losses of the machine and the power

converter and the battery have to be minimized,

considering all actual current limits and temper-

atures. In particular the system optimization is

a great challenge due the interdependency of the

individual losses from the control variables and

the (time dependent) limits.

6 Conclusions

The concept of optimizing the field current or the

losses of an anisotropic permanent magnet syn-

chronous machine has been demonstrated using a sim-

plified Modelica model. Simulation results have been

presented for the base speed and the field weakening

region. In the performed investigations the maximum

available voltage of the battery is taken into account.

Limitations of the presented model are discussed and

compared to real drive applications.
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Abstract

For the design of electrical machines the magnetic cir-
cuit has to be modeled. If only the winding layout or
the stack length of the motor is changed a complete
FEA analysis mostly is not necessary. In this case
Modelica is well suited to model the magnetic circuit
for quasi-stationary simulations. A new library based
on existing standard libraries MagneticQS is presented.
An induction motor example under no-load conditions
shows the basic concept of this library. To enhance and
improve the library new models for different types of
machines and the possibility of an integral simulation
independent from the load conditions is planned.

Keywords: electrical machines; magnetic library;
quasi-stationary magnetic circuits

1 Introduction

Up to now the Modelica Standard Library (MSL) con-
tains two packages with different magnetic connectors.
Both are subpackages of Modelica.Magnetic: Flux-
Tubes [1] and FundamentalWave [7]. The Modelica
concept of providing one potential and one flow vari-
able is implemented here by using the magnetic volt-
age Vm (A) and the magnetic flux Φ (Vs). The vari-
ables in the FluxTube-package are of type Real. The
change of the magnetic flux with respect to time leads
to an induced voltage. This package is suitable for all
types of transient induction problems. The Fundamen-
talWave-package provides the same variables but they
are of type Complex. These connectors are used for
modelling multiphase electric machines in transient
operation. The machines presented in this package are
identical from the outside behaviour to the machines
in Modelica.Electrical.Machines. The user has
the choice between transforming the electrical stator
quantities to space phasors (Modelica.Electrical.
Machines) or to the magnetic circuit (Modelica.Ma-

gnetic.FundamentalWave). The equivalence of both
models is shown in Modelica.Magnetic.Fundamen-
talWave.Examples.BasicMachines.AIMC_DOL.

2 Why another magnetic library?

When designing electric machines the first step is to
find a proper geometry. This means to find the best
shape for stator and rotor slots, the diameter of the ma-
chine and the stack length. Once the winding layout is
defined the magnetic circuit can be calculated to deter-
mine the magnetizing curve of the machine. This it-
erative design process means either using a FEA tool
or analytical algorithms. After defining the geometry
of the machine there are still many options to devi-
ate from this in day-to-day business, e. g. the winding
layout can be changed or the quality of the lamina-
tions. In this case the FEA mostly is not suitable due
to its complexity. This is why Modelica is very helpful
to implement a magnetic circuit that is based on algo-
rithms known from the literature but a lot more flexible
and clearly described.

These quasi-stationary problems can hardly be sim-
ulated with the two existing magnetic packages. Since
MSL 3.2 there is the Modelica.Electrical.Quasi-
Stationary package available which unfortunately
has no connection to the magnetic domain yet. The
goal of this paper is to introduce a new magnetic li-
brary MagneticQS which is similar to the existing ones
but takes into account some special requirements for
the design of electric machines.

3 Basic concept

The connectors of MagneticQS contain complex vari-
ables so that they are equal to the connectors of Fun-
damentalWave. The difference is that the law of in in-
duction is also defined in a complex way. Instead of
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saying vind ∼ dΦ/dt the quasi-stationary representa-
tion vind ∼ jωΦ is used. The transformation between
electric and magnetic domain is done by the Electro-
MagneticConverter. Listings 1 and 2 show the differ-
ence of this converter taken from FluxTubes and Ma-
gneticQS.

Listing 1: FluxTube converter

model ElectroMagneticConverter
SI.Voltage v;
SI.Current i(start = 0,

stateSelect=StateSelect.prefer);
SI.MagneticPotentialDifference V_m;
SI.MagneticFlux Phi;
parameter Real N(start=1) "Number of

turns";
equation

v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

V_m = port_p.V_m - port_n.V_m;
0 = port_p.Phi + port_n.Phi;
Phi = port_p.Phi;

// converter equations:
V_m = i * N; // Ampere 's law
N * der(Phi) = -v; // Faraday 's law

end ElectroMagneticConverter;

Listing 2: MagneticQS converter

model ElectroMagneticConverter
SI.AngularVelocity omega =

der(port_p.reference.gamma);
SI.ComplexVoltage v;
SI.ComplexCurrent i;
SI.ComplexMagneticPotentialDifference V_m;
SI.ComplexMagneticFlux Phi;
parameter Real N(start=1) "Number of
turns";
equation

v = p.v - n.v;
Complex(0,0) = p.i + n.i;
i = p.i;

V_m = port_p.V_m - port_n.V_m;
Complex(0,0) = port_p.Phi + port_n.Phi;
Phi = port_p.Phi;

// converter equations:
V_m = i * N; // Ampere 's law
N * j*omega*Phi = -v; // Faraday 's law

// Frequency equations
Connections.branch(p.reference ,

port_p.reference);
p.reference.gamma =

port_p.reference.gamma;
Connections.branch(n.reference ,

port_n.reference);
n.reference.gamma =

port_n.reference.gamma;
end ElectroMagneticConverter;

The main equations are the same for both libraries.
The only change is that MagneticQS contains complex
variables. The specific characteristic of the Modelica.
Electric.QuasiStationary has to be taken into ac-
count: The frequency needs also to be considered and
transported from one domain to another.

Figure 1: MagneticQS library layout

Once again the differences of the three magnetic li-
braries (see section 2) should be clarified in the fol-
lowing listing:

• FluxTubes

– Flux and magnetic voltage are of type Real
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– Derivative of flux used in Faraday’s law
– Link to electrical domain via Modelica.

Electric.Analog.Basic
– Best choice for transient magnetics (e. g.

moving actuators)

• FundamentalWave

– Flux and magnetic voltage are of type Com-
plex

– Derivative of flux used in Faraday’s law
– Link to electrical domain via Modelica.

Electrical.Machines.SpacePhasors
– Best choice for space-phasor magnetics

(e. g. transient operation of electrical ma-
chines)

• MagneticQS

– Flux and magnetic voltage are of type Com-
plex

– Angular frequency used in Faraday’s law
(no derivative of flux)

– Link to electrical domain via Modelica.
Electric.QuasiStationary

– Best choice for quasi-stationary magnet-
ics (e. g. magnetic circuits in electrical ma-
chines)

4 Complex permeability

As long as ideal reluctances are considered the fre-
quency has no impact on the magnetic flux and po-
tential. The magnetic circuit acts as a coil (in air)
and consumes reactive power. For the calculation of
iron losses the frequency and the geometry of the flux
path haven to be taken in to account. If losses are
present the magnetic two-pole not only consumes re-
active power but also produces heat (active power).
Therefore a heat port is added like it is known from
an ohmic resistance in the MSL.

The iron losses consist of two parts: hysteresis and
eddy current losses. It is quite common to define the
iron losses as the sum of both parts depending on the
square of the flux density [5]:

Pfe = kfe ·P15 ·
(

f
50Hz

)kfreq

·
(

B
1T

)2

mfe. (1)

kfe is a correction coefficient that depends on the
type of machine (synchronous, asynchronous, DC)
and the part of the magnetic circuit (tooth or yoke).
P15 is listed in standards (e. g. IEC 60404-8-4 [2]) and
is also given in material certificates by the lamination

Table 1: Examples for laminations according to IEC
60404-8-4 [2]

Lamination Thickness P15 P10
mm W/kg W/kg

M270-50A 0.50 2.7 1.1
M400-50A 0.50 4.0 1.7
M800-65A 0.65 8.0 3.6

manufacturer. This value specifies the losses per kg in
W and is determined for 50 Hz and 1.5 T. As an alter-
native also P10 (50 Hz, 1 T) can be used. Typical val-
ues are given in table 1. If the frequency differs from
50 Hz the exponent kfreq (determined emperically) cor-
rects the losses.

In the quasi-stationary domain it is also possible to
define the relative permeability as a complex number.
Hence the real part describes the magnetic behaviour
and the imaginary part describes the losses [3]:

µ
r
= µ

′− jµ ′′. (2)

Consequently the reluctance becomes a complex mag-
netic impedance:

Zm = Rm + jωLm. (3)

For a cuboid it can be calculated from the geometry (l:
length, A: cross section):

Zm =
l

µ0µ
r
A
. (4)

Thus for the magnetic resistance and the magnetic in-
ductance one can write:

Rm =
l

µ0A
· µ ′

µ2
r
, (5)

Lm =
l

µ0A
· µ
′′

µ2
r
. (6)

In analogy to electric circuits the effects of resis-
tance and inductance change: The magnetic resistance
Rm leads to reactive power (corresponds with µ ′),
whereas the magnetic inductance Lm produces losses
(corresponds with µ ′′).

µ ′ is defined by the approximation function for the
magnetizing curve explained in the FluxTubes-library.
In most cases Lm and µ ′′ are unknown but Pfe is known
so that an additional equation based on the power bal-
ance is needed to calculate them:
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Table 2: Data of example motor [4]

Nominal power Pn 11 kW
Nominal voltage Un 380 V
Nominal frequency fn 50 Hz
No. polpairs p 2
No. stator slots Z1 36
No. rotor slots Z2 28
Stator winding factor ξ1 0.945
No. turns per phase w1 168
Stack length lstack 160 mm

Lm =
Pfe

ω2 ·Φ2 . (7)

These equations are part of the model MagneticQS.
Shapes.Cuboid. Up to now only one type of shape
is implemented: the cuboid. Since every part of
electrical machines (e. g. yoke, tooth) is simplified
when modelling magnetic circuits to a rectangular
shape this is not a limitation at this early stage of
the library. However for further developements other
shapes might be useful.

5 Example: Induction machine un-
der no-load condition

In order to verify the proposed implementation an in-
duction machine is modeled under no-load condition.
The motor design is taken from [4]. Table 2 shows the
nominal data of the motor, the geometry is given in
figure 2.

According to the calculation in [4] the magnetic cir-
cuit is divided into five parts:

• stator yoke,
• stator teeth,
• airgap,
• rotor teeth,
• rotor yoke.

For analytical calculations (in contrast to FEA) some
special restrictions and simplifications apply:

• The field strength in the stator yoke is strongly
nonlinear. Therefore either an additional magne-
tizing curve for this part of the magnetic circuit is
given or a reduction factor [5].

• The flux density in the airgap depends on the
width of the stator and rotor slot openings. The
airgap length is increased by the so called Carter-
Factor.

Figure 2: Stator and rotor geometry [4]

• The magnetic behaviour of the rotor shaft is han-
dled by defining one third of the diameter as iron
[4] so that the rotor yoke is enlarged.

• Stray inductances are not taken into account. This
approximation is only valid under no-load condi-
tion.

The MagneticQS-representation is shown in figure 3.
Each magnetic impedance is a MagneticQS.Shapes.
Cuboid. In accordance to [4] only stator yoke and
tooth produce losses which is feasible due to the very
low frequency in the rotor. In comparison with the cal-
culations in [4] the following deviation has to be men-
tioned: The book neglects the stator resistance which
is quite common when calculating magnetic circuits
by hand.

The connection of the electrical and magnetic do-
main is performed by the model MagneticQS.Basic.
ElectroMagneticConverterS which is adapted to ro-
tating electrical machine but still based on the con-
verter presented in section 2:

V m = j · I1 ·
3
√

2 ·ξ1 ·w1

p ·π
, (8)

−U1 = ωΦ · ξ1 ·w1√
2

. (9)

Table 3 shows the simulation results for the magnetiz-
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Figure 3: Induction machine no-load example

Table 3: Simulation results (Indices: y: yoke, t: tooth,
cu: stator resistance)

Calculation I1 Pcu Py Pt
A kW kW kW

by hand [4] 5.19 0.00 192.05 85.55
MagneticQS 5.20 31.87 190.97 85.14
MagneticQS, R1 = 0 5.23 0.00 191.88 85.39

ing current and the losses.
When neglecting all losses the example shows the

same results as in [4]. By introducing losses in Ma-
gneticQS slight deviations (see second row of table 3)
become present. This proofes that the simplifications
for hand calculations are valid. The minor influence of
the stator resistance is shown in the third row of table
3.

The results show that MagneticQS is well suited for
the magnetic circuit implementation of electric ma-
chines. In comparision with analytical hand calcula-
tions it is e. g. no more necessary to calculate the mag-
netic behaviour and the losses in two steps. Magnetic-
QS delivers an integral solution for magnetic circuits in
quasi-stationary mode.

6 Summary and future work

This article presents a new magnetic library called Ma-
gneticQS. It is based on existing libraries but intro-

duces complex variables. The purpose is a clear phys-
ical modelling of quasi-stationary magnetic circuits.
These are needed in the design phase of electrical ma-
chines. The library is designed similar to the exist-
ing ones in the MSL. To fulfil the requirements on
physical modelling a complex permeability is also in-
troduced. The simulation results show that the new
library is well suited to assist the design process for
electrical machines. The next step for developing the
library is to test different types of machines under load
conditions and compare the results with analytical al-
gorithms and FEA. Once this goal is achieved an in-
tegral electrical machine magnetic circuit model can
be implemented that can be used independently from
the state of the machine (no-load, load) which is a
great advantage in comparison with existing analytical
models. Additional research is needed to find general
approaches that eliminate the restriction mentioned in
section 5.

References

[1] Bödrich T. Electromagnetic Actuator Modelling
with the Extended Modelica Magnetic Library.
Modelica 2008 Conference, Bielefeld, Germany,
pp. 221-227, March 3-4, 2008.

[2] IEC 600404-8-4 Magnetic materials - Part 8-4:
Specifications for individual materials - Cold-
rolled non-oriented electrical steel sheet and strip
delivered in the fully-processed state. 1998.

[3] Coey J-M-D. Magnetism and Magnetic Materi-
als. 2009.

[4] Vaske P, Riggert J-H. Elektrische Maschinen
und Umformer Teil 2: Berechnung elektrischer
Maschinen (Calculation of electrical machines).
1974.

[5] Pyrhönen J, Jokinen T, Hrabovcova V. Design
of Rotating Electrical Machines. John Wiley &
Sons. 2008.

[6] Richter R. Elektrische Maschinen Band 1 (Elec-
trical machines part 1). 3rd edition. Birkhäuser
Verlag. 1967.

[7] Kral C, Haumer A. The New FundamentalWave
Library for Modeling Rotating Electrical Three
Phase Machines. Modelica 2011 Conference,
Dresden, Germany, March 20-22, 2011.

Session 1D: Electromagnetic Systems I 

DOI Proceedings of the 9th International Modelica Conference    171 
10.3384/ecp12076167 September 3-5, 2012, Munich, Germany   



 

 

 

An approach for modelling quasi-stationary magnetic circuits 

 

172 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076167 



 

 

Session 2A: FMI Standard I 

Functional Mockup Interface 2.0: The Standard 

Functional Mockup Interface 2.0: The Standard 
for Tool independent Exchange of Simulation Models 

 
T. Blochwitz1, M. Otter2, 

 J. Akesson3, M. Arnold4, C. Clauß5, H. Elmqvist6 
M. Friedrich7, A. Junghanns8, J. Mauss8, D. Neumerkel9, H. Olsson6,, A. Viel10 

Germany: 1ITI GmbH, Dresden; 2DLR Oberpfaffenhofen; 4University of Halle, 5Fraunhofer  
IIS EAS, Dresden; 7SIMPACK, Gilching; 8QTronic, Berlin;9Daimler AG, Stuttgart; 

Sweden: 6Dassault Systèmes, Lund; 3Modelon, Lund; 

France: 10LMS  Imagine,  Roanne 
 

Abstract 

The Functional Mockup Interface (FMI) is a tool 
independent standard for the exchange of dynamic 
models and for Co-Simulation. The first version, 
FMI 1.0, was published in 2010. Already more than 
30 tools support FMI 1.0. In this paper an overview 
about the upcoming version 2.0 of FMI is given that 
combines the formerly separated interfaces for Mod-
el Exchange and Co-Simulation in one standard. 
Based on the experience on using FMI 1.0, many 
small details have been improved and new features 
introduced to ease the use and increase the perfor-
mance especially for larger models. Additionally, a 
free FMI compliance checker is available and FMI 
models from different tools are made available on 
the web to simplify testing. 
Keywords: Simulation; Co-Simulation, Model Ex-
change; Functional Mockup Interface (FMI); Func-
tional Mockup Unit (FMU); 

1 Introduction 

The Functional Mockup Interface (FMI) standard 
version 1.0 (see [1]) was published in 2010 as one 
result of the ITEA2 project MODELISAR, see Fig-
ure 1. In a short time after this first release several 
modeling and simulation tools started to support 
FMI. Today, more than 30 tools support FMI 1.0, 
and it is heavily used in industrial and scientific pro-
jects, not only in the automotive sector. 

 
Figure 1: Improving model-based design between OEM and 

supplier with FMI. 

The MODELISAR project ended in Dec. 2011. The 
maintenance and further development is now per-
formed by the Modelica Association in form of the 
Modelica Association Project FMI (see 
https://www.modelica.org/projects). FMI was initiat-
ed and organized by Daimler AG with the goal to 
improve the exchange of simulation models between 
suppliers and OEMs. The further FMI development 
is performed by 16 companies and research institutes 
(see Annex). The FMI project is open for FMI inter-
ested persons1 and for (Modelica and non-Modelica) 
tool vendors supporting FMI. 

In this article an overview about the upcoming 
version 2.0 of FMI is given. This new version com-
bines the formerly separated interfaces for Model 
Exchange and Co-Simulation in one standard. The 
specification document was clarified which increases 
the compatibility of implementations. New features 
ease the use and increase the performance especially 
for larger models. 

                                                      
1 Members of the MA project FMI need not be Modelica As-

sociation members, with exception of the project leader. 
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2 The Functional Mock-Up Interface 

2.1 Main Design Ideas 

The FMI 2.0 standard consists of two main parts: 

1. FMI for Model Exchange:  
The intention is that a modeling environment can 
generate C-Code of a dynamic system model in 
the form of an input/output block, see Figure 2,  
that can be utilized by other modeling and simu-
lation environments. Models (without solvers) 
are described by differential, algebraic and dis-
crete equations with time-, state- and step-
events.  

2. FMI for Co-Simulation:  
The intention is to couple two or more models 
with solvers in a co-simulation environment. The 
data exchange between subsystems is restricted 
to discrete communication points. In the time be-
tween two communication points, the subsys-

tems are solved independently from each other 
by their individual solver. Master algorithms 
control the data exchange between subsystems 
and the synchronization of all slave simulation 
solvers. The interface allows standard, as well as 
advanced master algorithms, e.g., the usage of 
variable communication step sizes, higher order 
signal extrapolation, and error control.  

 

y 

v 0 0, ,inital values (a subset of ( ))t tp v

t time 
p parameters of type T 
u inputs of type T 
v all exposed variables 
y 
T 

outputs of type T 
Real, Integer, Boolean, or String 

 FMU instance  
(model exchange or co-simulation) 

u 

Figure 2: Data flow between the environment and the FMU 
Blue/red arrows: Information provided by/to the FMU. 

 
Figure 3: Complete XML schema of upcoming FMI 2.0 (but without attributes and without time synchronization). 

Enclosing Model 
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2.2 Distribution 

A component which implements the FMI is called 
Functional Mockup Unit (FMU). It consists of one 
zip-file with extension “.fmu” containing all neces-
sary components to utilize the FMU either for Model 
Exchange, for Co-Simulation or for both: 

1. An XML-file contains the definition of all varia-
bles of the FMU that are exposed to the envi-
ronment in which the FMU shall be used, as well 
as other model information. It is then possible to 
run the FMU on a target system without this in-
formation, i.e., with no unnecessary overhead.  

2. A set of C-functions is provided to execute mod-
el equations for the Model-Exchange case and to 
setup and run the slaves for the Co-Simulation 
case. These C-functions can either be provided 
in source and/or binary form. Binary forms for 
different platforms can be included in the same 
model zip-file. 

3. Further data can be included in the FMU zip-file, 
especially a model icon (bitmap file), documen-
tation files, maps and tables needed by the mod-
el, and/or all object libraries or DLLs that are 
utilized. 

2.3 Description Schema 

All information about a model and a co-simulation 
setup that is not needed during execution is stored in 
an XML-file called “modelDescription.XML”. The 
benefit is that every tool can use its favorite pro-
gramming language to read this XML-file (e.g., C, 
C++, C#, Java, Python) and that the overhead, both 
in terms of memory and simulation efficiency, is re-
duced. The XML-file is defined by an XML-schema 
file called “fmiModelDescription.xsd”. In FMI 2.0, 
the XML-file contains the information both for 
Model-Exchange and for Co-Simulation. 

In Figure 2, the complete XML schema definition 
is shown. All parts are the same for the two FMI-
cases, with exception of the elements “Mod-
elExchange” and “CoSimulation” that contain defini-
tions specific to the respective case. If either one or 
both of the two elements are present in the XML file, 
then the respective C-functions are available in the 
zip-file (usually in binary form as DLL for Win-
dows, and/or as shared object for Linux or Mac). 
Another essential difference to FMI 1.0 is the new 
element “ModelStructure” that exposes and provides 
more details of the model structure. 

2.4 C-Interface 

The execution interface of FMI 2.0 consists of three 
header files that define the C-types and –interfaces. 
The header file “fmiTypesPlatform.h” contains all 
definitions that depend on the target platform: 
#define fmiTypesPlatform "standard32" 
#define fmiTrue  1 
#define fmiFalse 0 
#define fmiUndefinedValueReference 
               (fmiValueReference)(-1) 

typedef void*        fmiComponent; 
typedef void*  fmiComponentEnvironment; 
typedef void*        fmiFMUState; 
typedef unsigned int fmiValueReference; 
typedef double       fmiReal   ; 
typedef int          fmiInteger; 
typedef char         fmiBoolean; 
typedef const char*  fmiString ; 
typedef char         fmiByte; 

The underlined, blue type definitions have been new-
ly introduced into FMI 2.0. This header file must be 
used both by the FMU and by the target simulator. If 
the target simulator has different definitions in the 
header file (e.g., “typedef float fmiReal” in-
stead of “typedef double fmiReal”), then the 
FMU needs to be re-compiled with the header file 
used by the target simulator. The header file plat-
form, for which the model was compiled, as well as 
the version number of the header files, can be in-
quired in the target simulator with FMI functions. 

The type fmiValueReference defines a handle 
for the value of a variable: The handle is unique at 
least with respect to the corresponding base type 
(such as fmiReal) besides alias variables that can 
have the same handle. All structured entities, such as 
records and arrays, are “flattened” into a set of scalar 
values of type fmiReal, fmiInteger etc. A 
fmiValueReference references one such scalar. 
The coding of fmiValueReference does not need 
to be exposed by the modeling environment that 
generated the model. The data exchange is per-
formed using the functions fmiSetXXX(...) and 
fmiGetXXX(...). XXX stands for one of the types 
Real, Integer, Boolean, and String. One argument of 
these functions is an array of fmiValueReference, 
which defines which variables are accessed. The 
mapping between the FMU variables and the 
fmiValueReferences is stored in the model de-
scription XML file. 

For simplicity, a “flat” structure of variables is 
used. Still, the original hierarchical structure of the 
variables can be retrieved, if a flag is set in the 
XML-file that a particular convention of the variable 
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names is used. For example, the Modelica variable 
name “pipe[3,4].T[14]” defines a variable 
which is the (3.4) element of an array of records 
“pipe” of vector T (“.” separates hierarchical levels 
and “[...]” defines array elements). 

Header-file “fmiFunctionTypes.h” contains 
typedef definitions of all function prototypes of an 
FMU. When dynamically loading the DLL or shared 
object of an FMU, these definitions can be used to 
type-cast the function pointers to the respective func-
tion definition. Example for a definition in this head-
er file: 
  typedef fmiStatus fmiSetTimeTYPE 
               (fmiComponent, fmiReal); 
This header file was newly introduced in FMI 2.0 to 
ease the dynamic loading. 

Finally, header file “fmiFunctions.h” contains the 
function prototypes of an FMU that can be accessed 
in simulation environments. This header file includes 
the other two header files from above. Example for a 
definition in this header file: 
  DllExport fmiSetTimeTYPE fmiSetTime; 

The goal is that both textual and binary represen-
tations of models are supported and that several 
models using FMI might be present at link time in an 
executable (e.g., model A may use a model B). For 
this to be possible the names of the FMI-functions in 
different models must be different or function point-
ers must be used. To support the first variant macros 
are provided in “fmiFunctions.h” to build the 
actual function names by using a function prefix that 
depends on how the FMU is shipped. Typically, 
FMU functions are used as follows: 
// FMU is shipped with C source code,  
// or with static link library 
#define  FUNCTION_PREFIX MyModel_ 
#include "fmiFunctions.h" 
< usage of the FMU functions > 

// FMU is shipped with DLL/SharedObject 
#define  FUNCTION_PREFIX 
#include "fmiFunctions.h" 
< usage of the FMU functions > 

If an FMU is shipped with C source code, or with a 
static link library, then a function that is defined as 
“fmiGetReal” is changed by the macros to the ac-
tual function name “MyModel_fmiGetReal”. The 
function prefix is hereby defined in the XML file. A 
simulation environment can therefore construct the 
relevant function names by generating code for the 
actual function call. In case of a static link library, 
the name of the library is MyModel.lib on Windows, 
and libMyModel.a on Linux, in other words the 
function prefix attribute is used as library name. 

If an FMU is shipped with a DLL/SharedObject, 
the constructed function name is “fmiGetReal”, in 
other words it is not changed. A simulation environ-
ment will then dynamically load this library and will 
explicitly import the function symbols by providing 
the FMI function names as strings. The name of the 
library is MyModel.dll on Windows or MyModel.so 
on Linux, in other words the function prefix attribute 
is used as library name. 

An FMU can be optionally shipped so that it ba-
sically contains only the communication to another 
tool. This is particularly common for co-simulation 
tasks. In FMI 1.0, the function names are always pre-
fixed with the model name and therefore a 
DLL/Shared Object has to be generated for every 
model. FMI 2.0 improves this situation since model 
names are no longer used as prefix in case of 
DLL/Shared Objects: Therefore one DLL/Shared 
Object can be used for all models in case of tool 
coupling.  

3 New Features of FMI 2.0 

In this section the main new features introduced by 
FMI 2.0 are sketched. Note, also many other minor 
improvements have been introduced, based on the 
experience in using FMI 1.0. Especially: 
• When instantiating an FMU, the simulation envi-

ronment must report the absolute path to the 
FMU resource directory also in Model Ex-
change, in order that the FMU can read all of its 
resources (for example maps, tables, ...) inde-
pendently of the "current directory" of the simu-
lation environment where the FMU is used. 

• Enumerations have an arbitrary (but unique) 
mapping to integers (in FMI 1.0, the mapping 
was automatically assigned to 1,2,3,...). 

• When enabling logging, log categories can be 
defined, so that the FMU needs to only generate 
logs of the defined categories (in FMI 1.0, logs 
had to be generated for all log categories and 
they had to be filtered afterwards).  

• Explicit alias/antiAlias variable definitions have 
been removed, to simplify the interface: If varia-
bles of the same base type (such as fmiReal) 
have the same valueReference, they have 
identical values. A simulation environment may 
ignore this completely (this was not possible in 
FMI 1.0), or can utilize this information to more 
efficiently store results on file.  

• Continuous state variables are explicitly listed as 
FMU variables, and an ordering is introduced for 
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them, as well as for inputs, and outputs in the 
XML file, in order that not an (arbitrary) order is 
selected by the simulation environment. This is 
essential, for example when linearizing an FMU, 
or when providing "sparsity" information (see 
below). 

3.1 Unification of FMI for Model Exchange 
and Co-Simulation 

In FMI 1.0 the Model Exchange and Co-Simulation 
interfaces were defined in two different documents. 
The XML-description and function definitions were 
slightly different. In version 2.0 both interfaces are 
combined in one document and unified. Now one 
FMU can implement both interfaces at the same 
time. The presence of the “ModelExchange” or “Co-
Simulation” elements in the XML-description indi-
cates which interface is implemented. Which inter-
face is used by the environment is decided by calling 
the appropriate instantiation function (fmiInstan-
tiateModel or fmiInstantiateSlave). 

In this way the distributed use case (see [1]) 
which was applicable for Co-Simulation in FMI 1.0 
only is supported in the Model Exchange case too. In 
this use case only the ability of a tool to evaluate the 
model equations is used, not its solver. 

3.2 Classification of Interface Variables 

Variables exposed by the FMU are now categorized 
in a slightly different way in FMI 2.0: 

Attribute “causality” is an enumeration that defines 
the causality of the variable. Allowed values are: 
• parameter: An independent variable that must 

be constant during simulation. 
• input: The variable value can be provided from 

another model. 
• output: The variable value can be used by an-

other model. The algebraic relationship to the 
inputs is defined in element ModelStructure. 

• local: Local variable that is calculated from other 
variables. It is not allowed to use the variable 
value in another model 

Attribute “variability” is an enumeration that de-
fines the time dependency of the variable, in other 
words it defines the time instants when a variable 
can change its value. Allowed values are: 
• constant: The value of the variable never chang-

es. 
• fixed: The value of the variable is fixed after 

initialization. 
• tunable: The value of the variable is constant 

between externally triggered events due to 

changing variables with causality = "parameter" 
or "input" (see explanation below). 

• discrete: The value of the variable is constant 
between internal events (= time, state, step 
events defined implicitly in the FMU). 

• continuous: No restrictions on value changes. 
The new value “tunable” introduced in FMI 2.0 al-
lows a modeling environment to expose independent 
parameters that can be manually “tuned” during sim-
ulation (for example, during simulation a modeler 
might change the gain of a PID controller, or the 
load mass of a drive train in order to quickly improve 
the design).  

“Tuning a parameter” during simulation does not 
mean to “change the parameter online” during simu-
lation (since this might introduce Dirac impulses). 
Instead, this is a short hand notation for: 
1. Stop the simulation at an event instant (usually, a 

step event, in other words after a successful inte-
gration step). 

2. Change the values of the tunable parameters. 
3. Compute all parameters that depend on the tuna-

ble parameters. 
4. Resume the simulation using as initial values the 

current values of all variables and the new values 
of the parameters. 

With this interpretation, changing parameters online 
is “clean”, as long as these changes appear at an 
event instant. 

3.3 Save and Restore of FMU state 

An FMU has an internal state consisting of all values 
that are needed to continue a simulation. This inter-
nal state consists especially of the values of the con-
tinuous states, discrete states, iteration variables, pa-
rameter values, input values, file identifiers and 
FMU internal status information. With newly intro-
duced (optional) functions, the internal FMU state 
can be copied and the pointer to this copy is returned 
to the environment. The FMU state copy can be set 
as current FMU state, in order to continue the simu-
lation from it. This feature introduced in FMI 2.0 can 
be for example used: 
• For iterative co-simulation master algorithms 

(get the FMU state for every accepted communi-
cation step; if the follow-up step is not accepted, 
restart co-simulation from this FMU state). 

• For nonlinear Kalman filters (get the FMU state 
just before initialization; in every sample period, 
set new continuous states from the Kalman filter 
algorithm based on measured values; integrate to 
the next sample instant and inquire the predicted 
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continuous states that are used in the Kalman fil-
ter algorithm as basis to set new continuous 
states). 

• For nonlinear model predictive control (get the 
FMU state just before initialization; in every 
sample period, set new continuous states from an 
observer, initialize and get the FMU state after 
initialization. From this state, perform many 
simulations that are restarted after the initializa-
tion with new input signals proposed by the op-
timizer). 

Furthermore, the FMU state can be serialized and 
copied into a byte vector. This can, for example be 
used to perform an expensive steady-state initializa-
tion, copy the received FMU state in a byte vector 
and store this vector on file. Whenever needed, the 
byte vector can be loaded from file, can be deserial-
ized and the simulation can be restarted from this 
FMU state, in other words from the steady-state ini-
tialization. 

3.4 Dependency Information 

In FMI 1.0 only the dependencies of outputs on in-
puts could be defined by the element “DirectDe-
pendency” in the XML-description. In FMI 2.0 this 
information and the dependencies of outputs w.r.t. 
state variable and of derivatives w.r.t. inputs and 
state variables can be provided using the element 
“ModelStructure”. Under this element ordered lists 
of inputs, derivatives (with their associated state var-
iable names) and outputs are provided. At each out-
put and derivative additional attributes define the 
dependency on inputs and state variables. Not only 
the dependency itself but also the kind of dependen-
cy is defined here. It can be indicated whether the 
dependency is nonlinear, fixed (the dependency 
is linear, the factor is constant after initialization) or 
discrete (the factor might change after events). 
Using this information a tool can decide at which 
stage of the solution process the respective entries of 
the Jacobian matrices are to be retrieved. 

The dependency information of outputs can be 
utilized for detection of algebraic loops when FMUs 
are connected with other parts of a model. In addi-
tion to that dependency information is necessary for 
usage of sparse matrix techniques on Jacobian matri-
ces. 

Assume for example that the following equations 
are defined: 

1 1 2
2

2 2 1 2 1 3

3 3 1 3 1 2 3

1 2 3

( )
( ) 3 2 3
( , , , , )

( , )

x f x
d x f x p x u u
dt

x f x x u u u
y g x x

   
   = + ⋅ ⋅ + ⋅ + ⋅   
      
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where u1 and u2 are continuous-time inputs (variabil-
ity=”continuous”), u3 is a discrete-time input (var-
iability=”discrete”), and p is a fixed parameter 
(variability=”fixed”). The structure of these equa-
tions can then be defined optionally in the following 
way in the XML file: 
<ModelStructure>  
   <Inputs> 
     <Input name="u1"/> 
     <Input name="u2"/> 
     <Input name="u3"/> 
   </Inputs> 
 
   <Derivatives> 
     <Derivative name="der(x1)" state="x1" 
       stateDependencies="2" 
       inputDependencies="" /> 
     <Derivative name="der(x2)" state="x2" 
       stateDependencies="1 2" 
       stateFactorTypes ="nonlinear fixed" 
       inputDependencies="1 3" 
       inputFactorTypes ="fixed fixed" /> 
    <Derivative name="der(x3)" state="x3" 
        stateDependencies="1 3" /> 
   </Derivatives> 
 
   <Outputs> 
     <Output name="y"  
        stateDependencies="2 3"  
        inputDependencies="" /> 
   </Outputs> 
</ModelStructure> 

3.5 Jacobian Matrices 

Partial derivatives of FMU variables with respect to 
inputs or state variables (Jacobian matrices) are 
needed for implicit integration methods, for lineari-
zation of FMUs, or for usage in extended Kalman 
filters. Especially for large models the numerical 
computation of Jacobian matrices is time consuming. 
For that reason FMUs can optionally provide func-
tions to retrieve partial derivatives (complete Jacobi-
ans) or directional derivatives of some variables 
w.r.t. some others. 

The sparsity pattern defined under “ModelStrucu-
tre” (see section above) can be utilized for efficient 
data storage and matrix operations on sparse Jacobi-
ans. FMI does not define a specific storage schema. 
The calling environment is free to use its own sche-
ma by the following approach. The environment has 
to provide a function pointer to a call back function 
setMatrix as argument of fmiGetPartialDe-
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rivatives. The FMU calls this function to set re-
spective matrix elements.  

The FMU internally is free to use efficient nu-
merical methods for Jacobian computation, use a 
symbolically deduced algorithm or automatic differ-
entiation.  

3.6 Precise Time Event Handling 

The details of precise time event handling in FMI 
were still under discussion before the editorial dead-
line of this paper. Hence we cannot present a detailed 
description here. The development work is compli-
cated since several aspects have to be considered: 
• The synchronous features of Modelica 3.3 [2] 

should be supported. 
• FMI should also be useable by tools that do not 

support synchronous time event handling. 
• The time event handling is to be defined in a 

way that allows backward compatible exten-
sions. 

3.7 Improved Unit Definitions 

The unit definitions have been improved in FMI 2.0: 
The tool-specific unit-name can optionally be ex-
pressed as function of the 7 SI base units and the SI 
derived unit “rad”. It is then possible to check units 
when FMUs are connected together (without stand-
ardizing unit names as needed in FMI 1.0), or to 
convert variable values that are provided in different 
units (for the same physical quantity). In the specifi-
caiton it is sketched how to utilize this information 
for connection checks, dimensional checks, or unit 
propagation. The trick is to treat the derived unit 
“rad” either as “rad” (for connection checks and unit 
propagation) or as “1” (for dimensional checks) de-
pending on the situation. 

4 Examples 

In this section two examples are shown that demon-
strate the structure of the XML file and especially 
how FMUs can be connected together. The use case 
is an often occurring situation where two FMUs shall 
be connected that have a mechanical interface. 

4.1 FMU as Force Element 

In the first example, FMU 1 consists of a  one-
dimensional rotational drive train with an inertia that 
is connected to a rotational spring/damper system 
and the end point of the spring/damper system shall 
be used as interface of this FMU, see next figure: 

 
In multi-body system terminology, this is called a 
“force element”. Typically, FMU 1 would be a com-
plicated device, e.g., a controlled electrical motor 
with a gearbox, but the essential part is the force el-
ement at the interface. The inputs to FMU 1 are the 
angle phi and the angular velocity w of the end point 
of the spring/damper system. The output would be 
the torque generated by the spring/damper. It is cal-
culated with the simple equation  
   torque = c*(phi - inertia.phi) +  
            d*(w – inertia.w) 

where c is the spring and d is the damper constant. 
This FMU is then connected to a multi-body sys-

tem FMU, for example a robot, and drives a revolute 
joint. The FMU 2 provides phi and w as output 
(from the relative joint coordinates) and gets the 
torque as input. 

The XML-file of FMU 1 has the following structure: 
<?XML version="1.0" encoding="UTF-8"?> 
<fmiModelDescription 
  XMLns:xsi="http://www.w3.org/2001/.." 
  xsi:noNamespaceSchemaLocation="fmiModel.." 
  fmiVersion="2.0" 
  modelName="FMU_Coupling.DriveTrain_TorqueAtEnd" 
  guid="{a4976b5c-b9f7-432a-9dd3-e80bafaac060}" 
  generationTool="..." 
  generationDateAndTime="2012-07-15T12:52:13Z" 
  variableNamingConvention="structured" 
  numberOfEventIndicators="0"> 
 
  <ModelExchange 
    modelIdentifier="FMU_0Coupling_..." 
    canGetAndSetFMUstate="true" 
    providesPartialDerivativesOf_Derivative 
                     Function_wrt_States="true" 
    ... 
    providesDirectionalDerivatives="true"/> 
 
  <CoSimulation 
    modelIdentifier="FMU_0Coupling_..." 
    canHandleVariableCommunicationStepSize="true" 
    canHandleEvents="true" 
    canInterpolateInputs="true" 
    canSignalEvents="true" 
    canGetAndSetFMUstate="true" 
    .../> 
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  <UnitDefinitions> 
    <Unit name="N.m"> 
      <BaseUnit kg="1" m="2" s="-2"/> </Unit> 
  </UnitDefinitions> 
 
  <TypeDefinitions> 
    <SimpleType 
      name="Modelica.SIunits.Torque"> 
      <Real quantity="Torque" unit="N.m"/> 
    </SimpleType> 
    ... 
  </TypeDefinitions> 
 
  <DefaultExperiment startTime="0.0" 
    stopTime="1.0" tolerance="0.0001"/> 
 
  <ModelVariables> 
    <ScalarVariable 
      name="torque" 
      valueReference="335544320" 
      description="Torque in flange" 
      causality="output"> 
      <Real 
        declaredType= 
         "Modelica.Blocks.Interfaces.RealOutput" 
        unit="N.m"/> 
     ... 
  </ModelVariables> 
 
  <ModelStructure> 
    <Inputs> 
      <Input name="phi"/> 
      <Input name="w" derivative="1"/> 
    </Inputs> 
    <Derivatives> 
      <Derivative 
        name="der(inertia.phi)" 
        state="inertia.phi" 
        stateDependencies="2" 
        inputDependencies=""/> 
      <Derivative 
        name="der(inertia.w)" 
        state="inertia.w"/> 
    </Derivatives> 
    <Outputs> 
      <Output name="torque" 
       inputDependencies="1 2" 
       inputFactorKinds="fixed fixed"/> 
    </Outputs> 
  </ModelStructure> 
</fmiModelDescription> 

Most of the elements should be self-explanatory. The 
interesting part for the connection is element 
“ModelStructure” at the end. Output torque de-
pends on the first and the second input, i.e. on phi 
and w. Furthermore, the attributes fixed define that 
the inputs enter the equation for the output with fixed 
linear factors: 

torque = p1*phi + p2*w + f(..) 

where p1 and p2 are constants that are fixed after 
initialization. Additionally, for input w the attribute 
derivative = ”1” is defined. The meaning is that 
w is the derivative of the first input, i.e. of phi. This 
derivative information for inputs and outputs is es-
sential in order that a coupling tool can check that an 
input is really the derivatives of another input by 
checking the derivative attributes of the outputs from 
another FMU.  

The XML-file for FMU 2 looks similar. We will 
concentrate only on the ModelStructure element: 
  <ModelStructure> 
    <Inputs> 
      <Input name="torque"/> 
    </Inputs> 
    <Derivatives> 
      ... 
    <Outputs> 
      <Output 
        name="phi" 
        stateDependencies="1" 
        inputDependencies=""/> 
      <Output 
        name="w" 
        derivative="1" 
        stateDependencies="2" 
        inputDependencies=""/> 
    </Outputs> 
  </ModelStructure> 

The important point is that empty inputDependen-
cies lists are defined for the outputs. This means 
that the outputs phi and w do not directly depend on 
the input torque. As a result, when connecting FMU 
2 to FMU 1, the outputs phi and w are provided by 
FMU 2. FMU 1 computes its output torque that is 
an input to FMU 2. Since the FMU 2 outputs do not 
depend on this input, there is no algebraic loop and 
the computation is simple. 

4.2 FMUs with Coupling Constraint 

The second example is the more often occurring 
case, but is more involved. FMU 1 is again a one-
dimensional rotational drive train, but ends this time 
with a rotational inertia, see next figure: 

 
Since FMU 1 is connected to a joint of FMU 2, the 
coupling leads to a constraint equation that states that 
the angle of the revolute joint of FMU 2 is identical 
to the angle of inertia2 in FMU 1. It is well-
known that such a model cannot be transformed by 
purely algebraic transformations into a state space 
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form (this is a so called higher index system2), and 
that the first and second derivatives of this constraint 
equation is needed. For this reason, FMU 2 provides 
the angle phi of the revolute joint, its first derivative 
w (the angular velocity) as well as its second deriva-
tive a (the angular acceleration) to FMU 1. In turn 
FMU 1 provides the reaction torque to FMU 2. The 
“ModelStructure” elements of the two FMUs have 
now the following structure: 

FMU 1: 
  <ModelStructure> 
    <Inputs> 
      <Input name="phi"/> 
      <Input name="w" derivative="1"/> 
      <Input name="a" derivative="2"/> 
    </Inputs> 
    <Derivatives> 
      ... 
    <Outputs> 
      <Output 
        name="torque" 
        inputDependencies="3" 
        inputFactorKinds="fixed"/> 
    </Outputs> 
  </ModelStructure> 

FMU 2: 
  <ModelStructure> 
    <Inputs> 
      <Input name="torque"/> 
    </Inputs> 
    <Derivatives> 
      ... 
    <Outputs> 
      <Output 
        name="phi" 
        stateDependencies="1" 
        inputDependencies=""/> 
      <Output 
        name="w"  
        derivative="1" 
        stateDependencies="2" 
        inputDependencies=""/> 
      <Output 
        name="a" 
        derivative="2" 
        stateDependencies="1"/> 
    </Outputs> 
  </ModelStructure> 

The ModelStructure of FMU 1 states that its output 
torque depends on its 3rd input a and that a enters 
with a fixed factor. Therefore, the following equation 
is present: 
     torque = J*a + f1(<states>) 

where J is a constant quantity that is fixed after ini-
tialization (this is the inertia of component iner-
tia2) and f1(..) is an additional functional de-
pendency of the states of the FMU, but not of its in-
puts. 

                                                      
2 Simulating such a higher index system of index 3 directly 

will usually fail with an error message of the integrator that 
there is no convergence. 

The ModelStructure of FMU 2 states that it’s 3rd 
output a depends on all of its inputs, i.e. on torque 
(since no inputDependencies attribute is defined): 

a = f2(torque, <states>) 

Therefore, when the two FMUs are connected to-
gether an algebraic loop in the angular acceleration a 
and in the reaction torque appears. The environ-
ment has therefore to either use a differential-
algebraic equation solver, or has to solve a non-
linear algebraic loop over the two FMUs. The latter 
case can be improved by using Jacobian information: 

As will be explained below, it is possible to com-
pute the factor J once after initialization and the term 
f1 at every model evaluation (which turns out to be a 
cheap operation for a drive train). It is then only nec-
essary to solve a nonlinear algebraic loop over FMU 
2 and the simple equation of FMU 1. Additionally, 
the Jacobian of the FMU 2 equation can be comput-
ed. Since for all mechanical systems the FMU 2 
equation depends linearly on the unknowns, a non-
linear solver will converge with the provided Jacobi-
ans within one step. 

An often occurring situation is that FMU 1 is im-
ported into a multi-body program and coupled to a 
joint. In such a case, the multi-body code gets the 
information about the linear equation of FMU 1. 
Since the multi-body program has to solve a linear 
equation system in the accelerations and in the forc-
es/torques of its mechanical system, just the simple 
linear equation of FMU 1 has to be added and in eve-
ry model evaluation only one linear equation system 
has to be solved. 

To summarize, the coupling in this example be-
comes more complicated and linear or non-linear 
equation systems have to be solved. This is relatively 
cheap provided the information about linear depend-
encies and/or Jacobians are utilized. 

The partial derivatives of output variables with 
respect to input variables can be computed with 
function fmiGetDirectionalDerivative. For the 
case of one output variable y as function of states x 
and of one input u, this function assumes an equation 
of the form: 

( ( ), ( ), )=y g t u t tx  
The function calculates: 

∂
∆ = ∆

∂
gy u
u

 

where the seed Δu is given as an explicit input argu-
ment. Therefore, calling fmiGetDirectionalDe-
rivative for the output torque with respect to in-
put a and with Δa=1, the function will return the par-
tial derivative, that is J. The value of f1 is computed 
by providing an input a=0 and computing the output 
torque, that is torque = f1(<states>). Similari-
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ly, the partial derivative of the FMU 2 equation can 
be computed. 

As a final remark: When FMU 1 is modeled in 
Modelica, then the derivative relationships between 
the inputs of the FMU must be defined, otherwise a 
Modelica translator cannot process the model. There 
is no direct Modelica language element available to 
define this. However, with component Modeli-
ca.Mechanics.Rotational.Sources.Move from the 
Modelica Standard library this relationship is ex-
pressed (based on language elements to express that 
a function is a derivative of another function). 

5 Increasing Quality of FMI Imple-
mentations 

The FMI project provides an infrastructure to in-
crease the quality and compatibility of implementa-
tions in different tools. A repository of FMUs gener-
ated by different tools and reference results are pub-
lically available at the svn server: 

https://svn.fmi-standard.org/fmi/trunk/Test_FMUs 
In this way tool vendors are able to cross check their 
implementations in an easy way. We hereby would 
like to ask tool vendors that export FMUs, to provide 
FMUs of their tools by sending an email with the 
FMUs to info@fmi-standard.org. 

Additionally, the Modelica Association contract-
ed the development of an open source FMI compli-
ance checker. This tool is now available for FMI 1.0 
in source code, and as executable for Windows and 
Linux under the svn address from above. It will be 
available for FMI 2.0 soon after FMI 2.0 is released. 

6 FMI Usage 

FMI is used in industrial and scientific projects by 
several companies and research institutions: 

In all new gearbox projects for Mercedes-Benz 
passenger cars FMI is used for software-in-the-loop 
simulations [3]. Control software and FMUs coming 
from different modeling environments run in closed-
loop in the virtual ECU tool Silver on Windows PC 
in order to validate, test and debug control software. 

Before FMI, vehicle models had to be imported 
through various vendor and version specific import 
procedures into Silver. This was expensive and error 
prone. Thanks to the FMI, these bridges have now 
been replaced by a uniform import interface, increas-
ing thereby the cost-benefit ratio of simulation in this 
domain. 

In mechatronic gearshift simulations for commer-
cial vehicles at Daimler AG FMI is utilized twice 
[4]. At first controller software is connected to a de-
tailed 1D powertrain model in SimulationX. After-
wards this model is exported as FMU and imported 
to the multibody system simulation tool Simpack. 
There it is connected to a detailed truck model. This 
allows the holistic simulation and optimization of the 
shifting comfort. 

At IFP Energies Nouvelles, FMI for Model Ex-
change is used to parallelize the execution of com-
plex internal combustion engine models in the tool 
xMOD (see [5]). The models have around 100 - 300 
state variables, with integration step-sizes that can 
reach some microseconds. Their use is mainly in-
dented to validate engine controls. The final target is 
to enable the execution in real-time, for hardware in 
the loop simulations. 

In [6], an algorithm is implemented for deriva-
tive-free optimization implemented in Python and 
applied to parameter optimization of FMUs is intro-
duced. The FMUs are loaded and simulated using the 
PyFMI package (http://www.pyfmi.org). The opti-
mization algorithm is applied to a Volvo truck en-
gine to identify model parameters based on meas-
urement data from a test cycle. 

In [7] the FMI based co-simulation master from 
Fraunhofer is used to develop, implement and test 
sophisticated algorithms for the co-simulation of 
FMUs generated by Dymola. 

Dassault Systèmes uses FMI for academically 
trainings. Student teams work with CATIA V6 and 
define both a 3D CATIA representation of a NXT 
robot as well as the controller software. Practically, 
the real robot has sensors and actuators and is piloted 
from a smartphone remote command, while the FMU 
based logical control is executed in a CATIA ses-
sion. All these items are FMI and Bluetooth connect-
ed. 

The solution has been delivered to Georgia Insti-
tute of Technology and University of Detroit Mercy 
(US High Schools), also related to a cooperation 
with Ford Motors Foundation. 

In the field of modeling and simulation of build-
ing energy systems FMI is also used. In [8] FMI is 
utilized to connect a building model with a Modelica 
model of the heating system. 

In 2012, the International Energy Agency, under 
the implementing agreement on Energy Conserva-
tion in Buildings and Community Systems, approved 
the five-year Annex 60 proposal "New generation 
computational tools for building and community en-
ergy systems based on the Modelica and Functional 
Mockup Interface standards." Eleven countries are 
expected to participate in sharing, developing and 
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deploying free open-source contributions for model-
ing and simulation of energy systems of buildings 
and communities, based on Modelica and Functional 
Mockup Interface standard. 

The Lawrence Berkeley National Laboratory 
(LBNL) released an FMI for co-simulation import 
interface in version 7.1 of the EnergyPlus building 
simulation program. Work is also in progress to ex-
port EnergyPlus as a FMU for Co-Simulation. UC 
Berkeley and LBNL have been developing JFMI, a 
Java Wrapper for FMI for Co-Simulation and Model 
Exchange. JFMI will be used to integrate an FMI 
import interface in Ptolemy II, a software environ-
ment for design and analysis of heterogeneous sys-
tems.  

The Institute for the Sustainable Performance of 
Buildings has been developing a web-based eLearn-
ing tool, Learn Green Buildings 
(http://learngreenbuildings.org), in which a Web in-
terface communicates with an FMU for Co-
Simulation that computes the dynamic response of 
building energy and control systems. The tool will 
allow students to interactively operate a simulated, 
realistic building system, to test energy-saving 
measures and to explore the effects of faults in 
equipment and controls. 

7 Conclusions and Outlook 

FMI is an established standard for Model Exchange 
and Co-Simulation. The upcoming version 2.0 im-
proves the compatibility of implementations by a 
clarified specification. New features increase usabil-
ity and performance especially for large models. 

This version will be stable for the next years. If 
necessary, minor backwards compatible releases will 
be available to improve and clarify the specification 
and to support new features. Current development 
tasks are the exchange of structured data and arrays 
of variable size and support of the new synchronous 
features of the Modelica language [2]. 

The further development of FMI is organized un-
der the hood of the Modelica Association. The FMI 
Modelica Association Project is of course open for 
non Modelica tool vendors and organizations. From 
the 16 members of the FMI Steering Committee and 
Advisory Group, only five are Modelica Tool ven-
dors.  

Companies and organizations which are interest-
ed to contribute to FMI development or request fea-
tures are invited to contact the FMI project via  
info@fmi-standard.org. 
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Abstract

Derivatives, or Jacobians, are commonly required by
numerical algorithms. Access to accurate Jacobians
often improves the performance and robustness of al-
gorithms, and in addition, efficient implementation of
Jacobian computations can reduce the over-all exe-
cution time. In this paper, we present methods for
computing Jacobians in the context of the Functional
Mock-up Interface (FMI), and Modelica. Two pro-
totype implementations, in JModelica.org and Open-
Modelica are presented and compared in industrial as
well as synthetic benchmarks.

Keywords: FMI; Analytic Jacobians; Automatic
Differentiation; JModelica.org; OpenModelica;

1 Introduction

Algorithms for solving computational problems nu-
merically often require access to derivatives, or ap-
proximations thereof. Examples include simulation
algorithms, where implicit integration schemes use
derivative information in Newton type algorithms, op-
timization algorithms, where derivatives are used to
compute search directions, and steady-state solvers.
The quality of the derivatives typically affects perfor-
mance and robustness of such algorithms. Often, the
execution time is strongly affected by the calculation
time of Jacobians.

During the last two years, the Functional Mock-up
Interface 1 (FMI) standard has had a strong impact
amongst software tools for modeling and simulation.
The goal of the standard is to promote model reuse and
tool interoperability by providing a tool and language
independent exchange format for models in compiled
or source code form. Following the introduction of

1https://fmi-standard.org/

FMI 1.0 in January 2010, the next version of the stan-
dard, FMI 2.0, will support sparse Jacobians, in order
to enable increased efficiency of algorithms supporting
FMI. The target of this extension is to provide deriva-
tive information for two different use cases of Func-
tional Mock-up Units (FMUs). The first use case is
simulation of a single FMU. In this case, sparse Ja-
cobians for the model equations enable increased effi-
ciency of iterative integration algorithms. The second
use case is the composition of multiple FMUs, poten-
tially blended also by elements from a modeling lan-
guage such as Modelica, where directional derivatives
are useful in order to efficiently construct Jacobians
for systems of equations spanning several FMUs.

In this paper, we describe methods for generating
sparse Jacobians and directional derivatives to fulfill
the corresponding requirements of FMI 2.0. The meth-
ods are described in the context of compilation of
Modelica models into FMUs, although the employed
techniques are generally applicable to other model de-
scription formats. Two prototype implementations,
one in OpenModelica2 and one in JModelica.org3 are
presented. The implementations of sparse Jacobians in
the respective tools are compared based on industrial
benchmark models.

The paper is organized as follows. In Section 2,
material on FMI, Jacobians and differentiation tech-
niques are provided. Section 3 describes two different
implementations of sparse Jacobians in JModelica.org
and OpenModelica respectively. Benchmark results
are provided in Section 4, and the paper ends with a
summary and conclusions in Section 5.

2http://www.openmodelica.org
3http://www.jmodelica.org
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2 Background

2.1 The Functional Mock-up Interface

FMI emerged as a new standard resulting from the
ITEA2 project MODELISAR, in 2010. The standard
is a response to the industrial need to connect differ-
ent environments for modeling, simulation and control
system design. Commonly, different tools are used for
different applications, whereas simulation analysis at
the system integration level requires tools to be con-
nected. FMI provides the means to perform such inte-
grated simulation analysis.

FMI specifies an XML format for model interface
information and a C API for model execution. The
XML format, specified by an XML schema, contains
information about model variables, including names,
units and types, as well as model meta data. The
C API, on the other hand, contains C functions for
data management, e.g., setting and retrieving param-
eter values, and evaluation of the model equations.
The implementation of the C API may be provided in
source code format, or more commonly as a compiled
dynamically linked library.

FMI comes in two different flavors: FMI for Model
Exchange (FMI-ME) [2] and FMI for Co-Simulation
(FMI-CS) [3]. FMI-ME exposes a hybrid Ordinary
Differential Equation (ODE), which may integrated
stand-alone or which may be incorporated in a com-
posite dynamic model in a simulation environment.
The FMI-ME C API exposes functions for computa-
tion of the derivatives of the ODE, and accordingly,
in FMI-ME the integration algorithm is provided by
the importing application. FMI-CS, on the other hand,
specifies that the integration algorithm is included in
the FMU, and the FMU-CS C API provides functions
for integrating the dynamics of the contained ODE for
a specified period of time.

The FMI standard is supported by several model-
ing and simulation tools, including Dymola, Simula-
tionX, JModelica.org and OpenModelica. Also, there
are FMI interfaces to MATLAB, National Instruments
Veristand and several additional tools.

FMI 2.0 is a unification of the Model Exchange
and Co-simulation standards and contains several im-
provements. One of those are the sparse Jacobians,
which are also topic of this paper. The sparse Jacobian
interface in FMI 2.0 consists of three different parts:

• A C API function for evaluation of directional
derivatives of the model equations.

• A C API function for evaluation of sparse Jaco-

bian matrices corresponding to the ODE repre-
sentation of an FMU.

• A section in the XML document contained in an
FMU providing the incidence pattern for the Ja-
cobian matrices.

In this paper, algorithms for generating this function-
ality are discussed.

2.2 Causalization of DAEs

In the first step of the compilation process in a Model-
ica tool chain, a compiler front-end transforms Model-
ica source code into a flat representation, consisting
essentially of lists of variables, functions, equations
and algorithms. Based on this model representation,
symbolic operations such as alias elimination and in-
dex reduction are applied, in order to reduce the size
of the model and to ensure that the resulting Differen-
tial Algebraic Equation (DAE) is of index 1. In this
section, we outline the following steps that are of par-
ticular relevance for the generation of Jacobians. In
particular, the causalization procedure, i.e., transfor-
mation of an index-1 DAE into an equivalent ODE, as
required by the FMI standard, is discussed.

FMI specifies Jacobians and directional deriva-
tives with respect to the continuous model equations.
Therefore, without lack of generality, and for clarity of
the presentation, only the continuous part of the DAE
is considered in the following.

We consider index-1 DAEs in form of

F(ẋ(t),x(t),u(t),w(t)) = 0, t ∈ [t0, t f ]

x(0) = x0
(1)

where ẋ(t) ∈ Rnx are the state derivatives, x(t) ∈ Rnx is
the state, u(t) ∈ Rnu are the inputs and w(t) ∈ Rnw are
the vector of algebraic variables. The initial conditions
of DAE state is given by x0. Introducing z = (ẋ w),
denoting the unknowns of the DAE, and v = (x u), de-
noting the known variables, the DAE written

F(z,v) = 0 (2)

The conceptual idea of DAE causalization commonly
used in Modelica tools is then to compute the inverse
relationship of F

z = G(v), (3)

and the ODE may then be written

ẋ = f (x,u)

y = h(x,u)
(4)
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where y are the outputs of the system. Note that the
algebraic variables are considered to be internal to
the ODE in this representation. In general, there is
no closed expression for the functions f and g, but
rather, iterative techniques, e.g., Newton’s method, is
employed to solve algebraic loops for z.

Modelica models are typically of large scale but
sparse in the sense that each model equation contains
references only to a small number of equations. In or-
der to exploit this structure, graph algorithms can be
employed. Two commonly used algorithms that are
used for this purpose are matching algorithms, e.g., the
Hopcroft Karp algorithm, and Tarjan’s algorithms for
computing strong components, [4]. The result of Tar-
jan’s algorithm is then used to permute the variables
and equations of the DAE into Block Lower Triangu-
lar (BLT) form.

Let us consider a DAE with five equations and five
unknowns, i.e., F ∈ R5 and z ∈ R5, where the DAE
equations are given by

F1(z1,z5,v) = 0

F2(z3,v) = 0

F3(z1,z2,z3,z4,v) = 0 (5)

F4(z1,z3,z5,v) = 0

F5(z2,z5,v) = 0

Note that the variables v = [x,u] are known and need
not be considered in the following analysis. The de-
pendence of the z-variables can be shown in the fol-
lowing incidence matrix,

z1 z2 z3 z4 z5
F1 ∗ 0 0 0 ∗
F2 0 0 ∗ 0 0
F3 ∗ ∗ ∗ ∗ 0
F4 ∗ 0 ∗ 0 ∗
F5 0 ∗ 0 0 ∗

(6)

A * in the incidence matrix at row i and column j de-
notes that the residual function Fi contains a reference
to the variable z j. Application of the BLT procedure,
now yields the following DAE system

z3 z1 z5 z2 z4
F2 1 0 0 0 0
F4 1 1 1 0 0
F1 0 1 1 0 0
F5 0 0 1 1 0
F3 1 1 0 1 1

(7)

The implicit DAE system (5) is now given by a se-
quence of assignment statements and implicit systems

of equations

z̄1 := g1(v)

F̄2(z̄1, z̄2,v) = 0

F̄3(z̄2, z̄3,v) = 0

z̄4 := g4(z̄1, z̄2, z̄3,v)

(8)

where z̄1 = z3, z̄2 = (z1 z5)
T , z̄3 = z2, z̄4 = z4. The

functions g1 and g2 corresponds to explicit solutions
of the corresponding DAE equations, whereas F̄2 =
(F4 F1)

T and F̄3 = F5 corresponds to implicit (systems
of) equations that require iteration. It is typical for
Modelica models to contain only a small number of
implicit systems of equations and a large number of
trivial, e.g., linear equations that may be solved sym-
bolically.

For a general DAE, the BLT procedure results in a
sequence of scalar and non-scalar equation blocks on
the form

F̄1(z̄1,v) = 0
...

F̄i(z̄1, ...,zi,v) = 0
...

F̄b(z̄1, ...,zb,v) = 0

(9)

where the unknown of each residual F̄i is z̄i. Further,
some of the residual functions may be solved explicitly
by symbolic manipulation and the remaining blocks
needs the to be solved by iterative methods.

Computation of the sequence of solved and non-
solved blocks (9), given values of the known variables
in v then produces the corresponding state derivative
and algebraic vectors contained in z. Accordingly, the
DAE has been causalized in to an ODE on the form
(4).

2.3 Computation of Jacobians

The Jacobian of a vector valued function f (x) ∈ Rm,
x ∈ Rn is given by

∂ f
∂x

=


∂ f1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

· · · ∂ fm
∂xn

 (10)

A useful tool when computing Jacobians is directional
derivatives. The directional derivative of a vector val-
ued function f (x) is defined by

d f =
∂ f
∂x
·dx, (11)
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where dx ∈ Rn represents the direction in which the
directional derivative, denoted d f ∈ Rm, is evaluated.
dx is also referred to as a seed vector.

In the following, directional derivatives will be used
extensively to construct Jacobians. A straight forward,
although naive, approach to construct a Jacobian from
directional derivative evaluations is as follows. Using
the identity matrix I of dimension n, and the unit vec-
tors e1 . . .en we have that

∂ f
∂x

=
∂ f
∂x

I =
∂ f
∂x

(
e1, . . . en

)
=(

∂ f
∂x · e1 . . . ∂ f

∂x · en

)
. (12)

Using this relation, a Jacobian with n columns may be
constructed from n evaluations of directional deriva-
tives. In Section 2.7, an overview of methods to ex-
plore sparsity to improve efficiency in this respect will
be given.

There are three widely used methods for computing
Jacobians, namely finite difference methods, symbolic
differentiation and automatic (or algorithmic) differ-
entiation.

2.4 Finite Difference Approximation

In the finite difference method, a numerical approxi-
mation of the directional derivative of a vector valued
function f is calculated using the formula

∂ f (x)
∂x
· ei =

f (x+ eih)− f (x)
h

. (13)

where h is the increment. On one hand, even if the
increment is chosen optimal in nature of that method is
an accuracy error ε , which is the sum of εt + εr where
εt is the truncation error and εr the round-off error. The
truncation error εt |ḣ̇ f (x)| is the result of the Taylor-
series truncation. The round-off error εr ε f | f (x)/h|
where ε f is the fractional accuracy ε f ≥ εm depends
on machine accuracy εm. On the other hand, it is easy
to implement and also almost applicable.

2.5 Symbolic Differentiation

In general the “calculus” of symbolic derivatives is
done by difference quotients. where the derivative of a
function is the limit

∂ f
∂x

= lim
h→0

f (x+h)− f (x)
h

(14)

difference quotients. This is also the way the basic dif-
ferentiation rules are found. From a practical view the

“calculus” of the symbolic derivatives is done by ap-
plying basic differentiation rules and table of deriva-
tives for common functions on the expressions to find
the formulas for the derivatives. Since a Modelica
model results during the compilation in symbolic ex-
pressions which are manipulated to simplify the orig-
inal system. So it is quite typical for a Modelica Tool
to use symbolical methods also for the differentiation.
Finding the symbolic formula may take time, space
and a symbolic kernel for simplifications, but once de-
termined it’s fast to evaluate them [7]. A further draw-
back is that symbolic differentiation is not applicable
on algorithms (with for-loops and branches).

2.6 Automatic Differentiation

Automatic Differentiation (AD) is a method for com-
puting derivatives with machine precision, which is
applicable to expressions as well as algorithmic func-
tions [1]. The key idea in AD techniques is to prop-
agate derivative information through a sequence of
atomic operations, which is represented by an expres-
sion graph. Computation of a sequence of AD oper-
ations results in the evaluation of a directional deriva-
tive with respect to a given seed vector.

There are two different modes of operation of AD—
forward and reverse. The forward mode AD is con-
ceptually simple, and is based on forward propagation
of values and derivatives through an expression graph.
The result of a forward AD sweep is a vector corre-
sponding to the Jacobian multiplied by the seed vector.
Commonly, Jacobian matrices are constructed from a
number of forward AD evaluations.

The reverse AD technique is more involved than the
forward mode, and includes a forward and a backward
evaluation sweep over the expression graph, and the
result is a vector corresponding to the seed vector mul-
tiplied by the Jacobians. This mode of operation is
particularly useful in the case of scalar functions that
depends on many independent variables—in this case,
reverse AD is referred to the cheap gradient computa-
tion. Reverse AD is also commonly used to construct
higher-order derivatives, e.g., Hessian matrices in op-
timization applications.

Implementation of AD tools comes two different
flavors: Operator Overloading (OO) and Source Code
Transformation (SCT). In OO tools, the expression
graph is represented by data structures that are repeat-
edly traversed during forward and reverse mode eval-
uations. This strategy has been popularized by tools
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such as CppAD4 and ADOL-C5 which both enable
AD to be applied to C code with minor modifications.
Tools in this category are typically based on operator
overloading, e.g., in C++, to construct a data structure
referred to as a tape, which is then used as a basis for
derivative computations. Tools based on the SCT ap-
proach, on the other hand, generate code that, when
executed, compute derivatives. The ADIFOR6 pack-
age falls into this category.

In this paper, forward mode AD using the SCT tech-
nique will be used. The remainder of this section will
therefore focus on explaining this methods.

A key to understanding forward AD, is the observa-
tion that expressions can be evaluated, and differenti-
ated, by considering a sequence of atomic operations.
The elementary arithmetic operations can be differen-
tiated by applying the derivation rules

d
dx

(u(x)± v(x)) =
du
dx
± dv

dx
d
dx

(u(x)v(x)) = u(x)
dv
dx

+ v(x)
du
dx

d
dx

(u
v

)
=

v(x)du
dx −u(x) dv

dx
v(x)2

In addition, the chain rule

d
dx

φ(u(x)) =
dφ

du
du
dx

applies to the elementary arithmetic functions, such as
sin, cos etc.

In the following example, we illustrate how these
building blocks are used to apply the forward AD tech-
nique. We consider the function

f (x1,x2) = x1 · x2 + sin(x1), (15)

for which we would like to compute the directional
derivative according to relation (11). Assuming the
seed vector dx = (1 0)T , it follows that

d f =
∂ f
∂x

dx =
(

∂ f
∂x1

∂ f
∂x2

)
·
(

1
0

)
=

∂ f
∂x1

. (16)

Using the seed vector in (16), f (x) will be differenti-
ated with respect to x1.

The expression graph corresponding to the function
in (15) is shown in Figure 1.

In the figure, the leaves represent the independent
variables and the root node represents the function it-
self.

4http://www.coin-or.org/CppAD/
5http://www.coin-or.org/projects/ADOL-C.xml
6http://www.mcs.anl.gov/research/projects/adifor/

x1 1 x2 2

sin 3 × 4

+ 5

f (x1,x2) 6

Figure 1: Expression graph of the function (15)

A forward AD sweep is performed as follows. The
computation sequence starts at the independent vari-
ables. Intermediate variables, vi:s, are introduced to
hold the value of each node, and in addition, variables
for the derivative values of each node, di, are intro-
duced. The expression of a particular variable vi is
given by the corresponding node type, i.e., arithmetic
operation, and the derivative value, di, is given by dif-
ferentiation of the same operation. Application of this
procedure to the function (15) gives the following se-
quence of operations.

v1 := x1

d1 := dx1

v2 := x2

d2 := dx2

v3 := sin(v1)

d3 := d1 · cos(v1)

v4 := v1 · v2

d4 := d1 · v2 + v1 ·d2

v5 := v3 + v4

d5 := d3 +d4

v6 := v5

d6 := d5

The variable v6 now holds the value of the function it-
self and d6 holds the value of the directional derivative.
Note that the evaluation is done for particular values of
the independent variables, in this case x1 and x2, and
seed values, dx1 and dx2. Note that auxiliary variables
v1, v2, d1 and d2 are introduced here for clarity.

2.7 Exploiting Sparsity

Modelica models, also after the causalization proce-
dure described above, are often sparse, i.e., each equa-
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tion of a model depends only on a fraction of the to-
tal number of variables. Exploiting sparsity of Mod-
elica models can be done in two different contexts.
Firstly, the efficiency of computation of Jacobian ma-
trices based on directional derivative evaluations can
be much improved by considering sparsity. This strat-
egy is called compression and will be described briefly
in this section. Secondly, a simulation environment
importing an FMU providing sparse Jacobians may
utilize this information to improve the performance of
numerical algorithms. A typical example of such al-
gorithms are sparse linear solvers, e.g., UMFPACK7,
CSparse8 and PARDISO9. This usage is, however, not
related to the procedures required to generate Jaco-
bians, and it is therefore beyond the scope of this pa-
per.

As noted above, a naive method for evaluation di-
rectional derivatives to generate Jacobian matrices is
to simply make one such evaluation for each column
of the Jacobian, with seed vectors corresponding to the
unit vectors of appropriate dimension. If the Jacobian
is sparse, however, the number of evaluations can be
drastically reduced, by observing that several columns
can be computed in a single directional derivative eval-
uation if the sparsity patterns of these columns do not
overlap. As an example, consider the incidence ma-
trix (6). Here, we note that columns four and five does
not contain overlapping entries, and they can therefore
be computed by one single directional derivative eval-
uation with the seed vector chosen as the sum of the
corresponding unit vectors. Note also that this strat-
egy is applicable to all three differentiation methods
described above: finite differences, AD and symbolic
differentiation.

While this strategy is simple to implement, comput-
ing a column grouping of minimal size is well known
to be an NP-hard problem—this problem corresponds
precisely to the graph coloring problem [5, 6]. There
are, however, efficient algorithms capable of comput-
ing practically useful approximations of the optimal
solutions. Specific algorithms will be discussed in
Section 3.

7http://www.cise.ufl.edu/research/sparse/

umfpack/
8http://people.sc.fsu.edu/~jburkardt/c_src/

csparse/csparse.html
9http://www.pardiso-project.org/

3 Computation of Jacobians for
Modelica Models

In Section 2.2, it was shown how a DAE is transformed
into an ODE by means of the BLT transformation. In
this section, methods for computing the Jacobians of
the resulting ODE (4) are presented. We consider

∂ z
∂v

=

(
∂ ẋ
∂v
∂y
∂v

)
=

(
∂ ẋ
∂x

∂ ẋ
∂u

∂w
∂x

∂w
∂u

)
=

(
A B
C D

)
(17)

In this section, we present two methods for comput-
ing the matrices A, B, C and D by means of direc-
tional derivatives. One of the methods, which is im-
plemented in JModelica.org, relies on a forward AD
implementation in an SCT setting, whereas the other
method, which is implemented in OpenModelica, re-
lies on symbolic differentiation and symbolic expres-
sion simplification. In addition, an algorithm for com-
puting the sparsity pattern of the Jacobian matrices,
which is common for both methods, is presented.

The key idea in this section is the following. Differ-
entiating the DAE (2) yields the relation

∂F
∂ z

dz+
∂F
∂v

dv = 0, (18)

where dv is the input seed vector and dz works as the
directional derivative of the relation (3) with respect to
the direction dv. By solving the system of equations
(18) for a particular seed dv, the directional derivative
of the DAE is obtained. It is important to note that
the system of equations to be solved is linear in the
unknowns, dz, and thus does not require iteration.

The Jacobian matrices are then constructed from re-
peated evaluation of directional derivatives. In addi-
tion, coloring algorithms and compression is used to
reduce the number of directional derivative evaluations
in both implementations.

Evaluation of Jacobians based on the compression
of the columns requires access to sparsity pattern, as
stated in Section 2.7. The determination of the spar-
sity pattern for a Modelica model could be done by
means of graph theory. Since the non-zero values in
a Jacobian expresses which output variable has a con-
nection to which input variable. Thus the determina-
tion problem could be formulated as a st-connectivity
problem in a directed graph, where input variables are
the sources and the output variables are the sinks. The
st-connectivity is a decision problem that asks if the
vertex t is reachable from the vertex s, particular which
output variable is connected to which input variable.
Specific algorithms for this purpose will be discussed
below.
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3.1 Implementation of Directional Deriva-
tives in JModelica.org

The performance of the approach outlined above can
be improved significantly by exploiting the BLT struc-
ture described in Section 2.2. In particular, forward
AD may be applied directly to the sequence of compu-
tations given in (9). In the implementation in JModel-
ica.org, C code corresponding to a forward AD sweep
over the sequence of BLT blocks is generated. The
symbolic expression graphs in the compiler is a ba-
sis for the code generation. As noted in Section 2.2,
there are two kinds of blocks produced by the BLT
transformation, i.e solved equation blocks and non-
solved equation blocks requiring iterative numerical
solution. Below, we explain how directional deriva-
tives are propagated in these two cases.

3.1.1 Propagation of Directional Derivatives in
Equation Blocks

For blocks corresponding to solved equation blocks of
the form

z̄i := gi(z̄1, . . . , z̄i−1,v) (19)

it is straight forward to apply the forward AD ap-
proach. In this case, AD code is simply generated bas-
ing on the expression graph for gi, in order to produce
the directional derivative

dz̄i =
∂gi

∂ z̄1
dz̄1 + . . .+

∂gi

∂ z̄1−i
dz̄i−1 +

∂gi

∂v
dv. (20)

Note that the input seed dv and the directional deriva-
tives for previous blocks, z̄i, . . . z̄i−1 are known at this
point in the computation sequence. Commonly, the ex-
pression gi does not depend on all previous vectors of
unknowns, z̄1, . . . , z̄i−1, a property which is exploited
in the implementation.

For a block corresponding to a system of equations,
the block residual is given by

F̄i(z̄1, . . . ,zi,v) = 0. (21)

In order to compute the directional derivative, dz̄i, for
such a block, the residual equation is differentiated to
yield

∂ F̄i

∂ z̄1
dz̄1 + · · ·+

∂ F̄i

∂ z̄i
dz̄i +

∂ F̄i

∂v
dv = 0 (22)

which in turn gives the linear system

∂ F̄i

∂ z̄i
dz̄i =−

i−1

∑
k=1

∂ F̄i

∂ z̄k
dz̄k−

∂ F̄i

∂v
dv (23)

to be solved for dz̄i. All Jacobians in this relation are
generated to C code using forward AD. Note that the
system Jacobian of the linear system (23) is provided
also to the Newton solver that computes the solution
of the system of equations (21). Therefore, this code is
reused in the computation of the directional derivative
of the block.

3.1.2 Computation of Sparsity Patterns

Computation of sparsity patterns for the Jacobian ma-
trices A, B, C and D is a non-trivial problem, because
of the sequence of operations required to compute the
state derivatives x and the algebraic variables w. In
comparison, computation of the Jacobian matrix of a
DAE system (2) is straightforward and can be done by
simply collecting references to unknown variables in
each residual equation. As noted above, the problem
of computing sparsity patterns for the ODE Jacobian
is a connectivity problem, where the dependencies of
the dependent variables z of the independent variables
contained in v need to be computed.

The BLT form of the DAE offers means to compute
the required sparsity patterns for the ODE Jacobians.
While the general form of a block in the BLT sequence
is

F̄i(z̄1, ...,zi,v) = 0, (24)

particular blocks typically do not depend on all vari-
ables in z1, . . .zi and in v. In order to reflect this situa-
tion, we introduce the notation

F̃i(z̃i,zi, ṽi) = 0, (25)

where z̃i contains the variables in the z vector upon
which the equation block residual F̃i depends. ṽi is de-
fined correspondingly. As a first approximation, which
will be relaxed in the following, we assume that all
variables solved for in the block i, i.e., zi, depends
on all variables in z̃i and in ṽi. Clearly, this relation-
ship defines the direct dependency of zi on ṽi. Now,
the dependency of zi on the variables contained in
ṽ1, . . . , ṽi−1 is given implicitly by z̃i. The connectiv-
ity graph of the BLT form reveals these dependencies.
Edges in this graph corresponds to non-zero entries in
the lower left part of the transformed incidence matrix,
below the block diagonal. In the connectivity graph,
dependency information is propagated top-down in the
sequence of blocks. For each block, the complete set
of variables in v upon which the block depends is col-
lected from the predecessors in the dependency graph.

For a block consisting of a system of equations, the
assumption that all variables solved for in the block,
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zi, depends on all variables in z̃i may lead to an over-
estimation of the sparsity pattern. Specifically, since
the sparsity pattern of the inverse of a sparse matrix
may also be sparse, the computation may result in non-
zero entries which are in fact structural zeros. In or-
der to take this into account, the sparsity pattern of
the inverse of the corresponding block Jacobian may
be computed, [8]. The result of this analysis is then
taken into account when variable dependencies are
computed. Note that this analysis remains to be im-
plemented in JModelica.org

3.2 Implementation of Directional Deriva-
tives in OpenModelica

The directional derivatives in OpenModelica are gen-
erated basically by setup a new symbolic equation sys-
tem inside the OMC with the differentiated equations.
This system contains the desired partial derivatives dz̄
as unknowns, the seed vector dv̄ and all other variables
from the original system are considered as known. The
resulting equation system is the desired one as in equa-
tion (18).

This approach differs from the previously published
procedure (see [10]), in a way that now each equation
is derived only once. This leads to linearity in the com-
pilation time and in the generated code size.

All methods mentioned in section 2 are used for
the differentiation of the original system. Equations
are differentiated symbolically, algorithm sections and
Modelica functions without an derivative annotation
are differentiate by the forward AD approach and ex-
ternal functions, where nothing else is possible, are
differentiated numerically.

The generated equation system is then optimized
like the original system. In detail it is transformed
to an explicit form with the BLT machinery of Open-
Modelica, further expression-based simplification are
done and some common sub-expressions are filtered.
The resulting equation system is then written to the C-
Code.

For the purpose of generating the four matrices in
(17) for each matrix one new equation system is gener-
ated with the corresponding variables. Note therefore
the original system is filtered for the necessary equa-
tions.

The exploration of the sparsity pattern for a fast
evaluation of the compressed Jacobians is applied on
the generated directional derivatives. A detailed de-
scription of the algorithms used for that task in Open-
Modelica can be found in [9].

3.3 Comparison of Implementations

The implementations in OpenModelica and in JMod-
elica.org share common characteristics, but there are
also differences. Both algorithms are based on gen-
eration of C code that evaluates directional deriva-
tives, which in turn are used to compute Jacobians.
Also, both algorithms rely on compression for reduc-
ing the number of directional derivative evaluations.
The computation of sparsity patterns for the ODE Ja-
cobians also proceeds in the same manner.

The main difference between the implementations
is rather the way in which the directional derivatives
are generated. In the JModelica.org implementation,
the same BLT structure as for the underlying ODE is
used. Code generation is done by traversing the BLT
structure in a separate code generation pass and for-
ward AD code is then generated for solved equations
and systems of equations, as described in 3.1. In the
OpenModelica implementation, on the other hand, a
new data structure containing all model equations in
symbolically differentiated form is first constructed.
The symbolic kernel of the compiler is then invoked to
simplify the differentiated equations, and a new BLT
structure is computed prior to code generation.

Both approaches have advantages and disadvan-
tages. In the JModelica.org implementation, no new
data structures are created, which reduces memory
consumption. Also, since the same BLT structure as
for the underlying ODE is used, Jacobians for systems
of equations corresponding to algebraic loops are gen-
erated. These, in turn are useful also in case of apply-
ing iterative techniques to solve algebraic loops. The
main advantage of the OpenModelica implementation
is that symbolic simplifications done by the compiler
can yield simpler code that is faster to execute. Also,
since a new BLT computation is done, properties of
the new, differentiated system of equations may be ex-
plored in order to further speed up Jacobian computa-
tions.

4 Benchmarks

Three different aspects are considered in the bench-
marks presented in this section, namely, i) model com-
pilation time, ii) generated code size, and iii) Jaco-
bian evaluation time. In the case of model compila-
tion time, both the time spent in the respective Model-
ica compilers, OpenModelica and JModelica.org, and
the time spent in the C compiler, gcc in both cases,
when compiling the generated code is measured. This
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measure seems to be the most interesting for the user,
since both phases are included in the model compila-
tion time from a user’s perspective. As for the size
of the generated code, only the size of the code that
is generated by the Modelica compilers is measured,
i.e., no code originating from run-time systems or sim-
ilar is included. Finally, the time for 1000 Jacobian
evaluations is measured and the mean evaluation times
are reported. In all benchmarks, the system Jacobian,
i.e., the Jacobian of the derivatives with respect to the
states, is evaluated.

It is worth noting that the benchmarks in this sec-
tion does not only reflect the particular details of the
respective Jacobian evaluation strategies. In particu-
lar, the measurements are biased by other code op-
timization strategies in the compilers, including alias
elimination, symbolic processing, tearing, and the ef-
ficiency of non-linear solvers used to solve algebraic
loops. In addition, the compilation time measure-
ments, the optimization and debugging flags supplied
to the respective C compilers influence the result.

All measurements in this paper are performed
on a 64-bits architecture computer having one Intel
Q9550@2.83GHz CPU and 16 GB of RAM. It runs
Ubuntu 12.04 Linux, kernel 3.2.0-25.

4.1 Combined Cycle Power Plant

The first benchmark is a model of a combined cycle
power plant model, see Figure 2. The model con-
tains equation-based implementations of the thermo-
dynamic functions for water and steam, which in turn
are used in the components corresponding to pipes and
and the boiler. The model also contains components
for the economizer, the super heater, as well as the
gas and steam turbines. The model has 10 states and
131 equations. For additional details on the model,
see [11].

The benchmark results are shown in Table 1. As can
be seen, the model compilation times and the file sizes
are similar. Both implementations obtained six col-
ors for the Jacobian, i.e., 6 directional derivative eval-
uations were required to compute the Jacobian. The
Jacobian evaluation time does, however, differ in a
way that the OpenModelica implementation performs
faster.

4.2 Synthetic Benchmarks

In order to analyze the scalability properties of the re-
spective implementations, synthetic benchmark mod-
els were automatically generated. The underlying as-

Figure 2: Modelica component diagram for a com-
bined cycle power plant.

Table 1: Benchmark results for combined cycle power
plant.

Generation [s] Code size [kB] Jac eval
Tool No Jac Jac No Jac Jac time[ms]
OM 2.98 3.87 519 711 0.018
JM 3.64 5.92 266 456 0.090

sumption of the synthetic models is that a single Mod-
elica equation contains references to fixed maximum
number of variables, a number which does not in-
crease with model size. This assumption is realistic,
given that Modelica models are typically constructed
from a large number of simple component models,
where the equations in each component are local in the
sense that they refer mainly variables in the same, or
neighboring, components. Another important feature
of Modelica models are algebraic loops, or implicit
systems of equations, which require iterative solution
techniques. Therefore, the synthetic benchmark mod-
els contain implicit systems of equations, composed
from linear and non-linear terms, in the form of sin
functions, terms.

Three suits of benchmark models were constructed,
using different assumptions on the number of variable
references in a single equation. This aspect was quan-
tified by the sizes of the implicit systems of equations,
where sizes of two, four and eight, respectively, were
used to generate the benchmark models. Within each
suite of benchmark models, four different models of
increasing size were constructed, essentially by dou-
bling the number of variables while keeping the size
of all the implicit equation systems constant. For de-
tailed statistics and structural analysis of the models
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Table 2: Statistics and structural analysis of the syn-
thetic models. #N denotes the number of variables,
#N-z. denotes the number of reported non-zero ele-
ments and #Col. denotes the number of colors result-
ing from the coloring algorithms. #N-z. and #Col. are
equal in both implementations.

#N #States #Alg. loops #N-z. #Col.
1-1 22 4 9 7 2
1-2 42 8 17 21 4
1-3 82 16 33 47 4
1-4 162 32 65 104 4
2-1 40 4 9 7 2
2-2 76 8 17 21 4
2-3 148 16 33 53 4
2-4 292 32 65 117 4
3-1 76 4 9 7 2
3-2 144 8 17 21 4
3-3 280 16 33 53 4
3-4 552 32 65 117 4

consider table 2. Note that for both implementations,
the number of non-zero elements and the number of
colors produced by the respective coloring algorithms
are equal.

Table 3: Benchmarks of synthetic models for Open-
Modelica

Generation [s] Code size [kB] Jac. eval.
No Jac. Jac. No Jac. Jac. time [ms]

1-1 0.57 1.3 41 121 0.008
1-2 0.87 2.0 72 225 0.033
1-3 1.51 3.7 134 435 0.068
1-4 2.82 7.4 260 860 0.142
2-1 0.88 2.1 64 208 0.017
2-2 1.51 4.1 114 393 0.067
2-3 2.75 7.5 218 781 0.144
2-4 5.36 15.5 429 1569 0.308
3-1 2.22 6.6 117 457 0.048
3-2 4.20 13.7 219 889 0.198
3-3 8.45 27.7 432 1789 0.421
3-4 17.02 56.9 857 3583 0.873

The results in terms of model compilation time, gen-
erated code size, and Jacobian evaluation time for the
different models are shown in Tables 3 and 4, for
the OpenModelica and the JModelica.org implemen-
tations respectively. Figures 3, 4, and 5 depict the
corresponding results graphically. Each curve corre-
sponds to one benchmark suite. As can be seen from
the tables, all three measures exhibit essentially lin-

Table 4: Benchmarks of synthetic models for JModel-
ica.org

Generation [s] Code size [kB] Jac. eval.
No Jac. Jac. No Jac. Jac. time [ms]

1-1 1.02 1.88 36 138 0.037
1-2 1.24 3.16 54 247 0.089
1-3 1.78 5.71 93 484 0.163
1-4 3.16 10.71 171 957 0.316
2-1 1.37 4.39 61 388 0.104
2-2 2.04 8.17 102 737 0.334
2-3 3.44 15.35 187 1435 0.673
2-4 6.42 31.52 360 2843 1.269
3-1 3.05 15.65 146 1371 0.558
3-2 5.28 30.33 264 2581 2.078
3-3 9.93 63.49 511 5146 4.027
3-4 19.66 136.05 1009 10315 8.827

ear complexity for a fixed size of the algebraic loops.
This result is the key to scalability of the methods. The
smallest model in each benchmark suite deviates from
the linear trend for Jacobian evaluation time, which is
due to the fact that fewer colors are needed in these
cases.

While model compilation time and generated code
size without Jacobians are similar in all cases for
OpenModelica and JModelica.org, the corresponding
numbers with Jacobians differ. The difference in code
size is due to the fact that JModelica.org relies on
generation of forward AD code, without simplifica-
tions, which results in verbose code. Also, inherent in
the forward AD strategy is that both the model equa-
tions in their original form and the directional deriva-
tives are evaluated simultaneously. In comparison,
the OpenModelica implementation differentiates the
equations symbolically and then applies symbolic sim-
plification. In this case, the resulting expressions that
are generated are simpler, and also, no additional code
is generated for the original model equations.

In terms of execution speed, the OpenModelica im-
plementation performs faster. The main reason for this
is that the application of forward AD in the JModel-
ica.org implementation results in more verbose code,
and also the model equations, along with the direc-
tional derivatives, are evaluated.

It is worth noting that either the effect of different
versions of LAPACK/BLAS, used to solve linear sys-
tems in both implementations, nor the the influence
of different compiler optimization and debugging flags
have been considered in the benchmarks. Rather, the
performance experienced by users has been reported.
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Both implementations may be further optimized in
these respects in order to improve compilation and
execution times. Therefore, the reported benchmarks
do not solely measure the efficiency of the respective
methods described in the paper, but are rather biased
with the details of the particular implementations.

Figure 3: Model compilation time with Jacobians.

Figure 4: Generated code size with Jacobian.

5 Conclusions

In this paper, the generation of Jacobians for ODEs
originating from DAEs, in particular Modelica mod-
els, has been discussed. The algorithmic machinery
employed consists of known methods and algorithms,
such as numerical, symbolic, and automatic differen-

Figure 5: Execution time for one Jacobian evaluation

tiation, as well as graph theoretic methods such as the
BLT transformation. Two methods, sharing similari-
ties as well as differences have been presented. One
of the methods is a straight forward application of
forward automatic differentiation and generation of C
code, which results in functions for the evaluation of
directional derivatives, which in turn are used to com-
pute Jacobians. The other method relies mainly on
symbolic differentiation and makes use of symbolic
simplification algorithms in a Modelica compiler to
generate directional derivative functions. Both meth-
ods provide sparsity patterns for the ODE Jacobians,
and they both make efficient use of sparsity in order
to reduce the number of directional derivative evalua-
tions, a technique referred to as compression.

The two approaches are implemented in JModel-
ica.org and OpenModelica, respectively, and com-
pared in an industrial benchmark as well as in several
synthetic benchmarks. Both implementations show
linear growth in key measures such as model compi-
lation time, generated code size and execution time,
under realistic assumptions on model structure. In
terms of execution speed, the method relying on sym-
bolic differentiation and symbolic processing, as im-
plemented in OpenModelica, performed faster.

Memory consumption in the model compilation
step was not included in the benchmarks, because of
the inherent difficulties in accurately measuring this
quantity. Indeed, this measure would have been an in-
teresting addition to the benchmarks presented in this
paper, especially since the two methods take different
approaches to generate directional derivatives. How-
ever, measurements of memory consumption is left for
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future work.
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Abstract

Model-based online applications such as soft-sensing,
fault detection or model predictive control require rep-
resentative models. Basing models on physics has
the advantage of naturally describing nonlinear pro-
cesses and potentially describing a wide range of op-
erating conditions. Implementing adaptivity is essen-
tial for online use to avoid model performance degra-
dation over time and to compensate for model imper-
fection. Requirements for identifiability and observ-
ability, numerical robustness and computational speed
place an upper limit on model complexity. These con-
siderations motivate that models for online use should
be balanced-complexity, physically based with online
adaption possible.

Despite potential benefits, the effort required to im-
plement balanced-complexity models, particularly at
large scales, may deter their use. This paper presents
techniques used in the design of balanced-complexity
models. A Modelica-based approach is chosen to
reduce implementation effort by interfacing exported
Modelica models with application code by means of
the generic interface FMI. The suggested approach is
demonstrated by parameter estimation for a process
of offshore oil production: a subsea well-manifold-
pipeline production system.

Keywords: modeling, process control, process mod-
els, process simulators, offshore oil and gas pro-
duction, Modelica, subsea production, multiphase
flow, balanced-complexity models, nonlinear model-
predictive control, FMI

1 Introduction

In this paper the term online model refers to a model
that tracks the state of a process over time and is im-
plemented with adaptivity. Adaptivity in this paper can
refer to either state estimation, parameter estimation,

or both.
Applications that can benefit from online models in-

clude online simulators for “what-if” and look-ahead
analysis, data reconciliation, soft-sensors, fault detec-
tion, advisory decision support systems, (nonlinear-)
model predictive control (nMPC) and real-time op-
timization. Such applications have in common that
real-time computations are performed on a model that
hopefully represents the process with sufficient ac-
curacy. Evaluating and comparing multiple simula-
tion scenarios internally within real-time requirements
place conditions on computational speed. Algorithms
that evaluate models at different combinations of in-
puts, states and parameters place requirements on nu-
merical robustness.

Unless the process is time-invariant and the fitted
model matches the process perfectly, the model’s abil-
ity to track process states will degrade over time. For
industrial processes, both time-variation and model
imperfections must be expected, which makes adaptiv-
ity a crucial factor in the maintenance of model-based
online applications. Adaptivity can also be exploited
to simplify aspects of modeling for online use, to be
discussed.

Identifiability and observability considerations
place limits on how many states and parameters that
can be uniquely adapted to a given set of measure-
ments of a process. As a consequence, adapting all
the parameters and states that are uncertain or time-
varying in complex models will often be an ill-posed
problem for the available set of measurements. Some
authors have suggested converting full-complexity
engineering simulators into online models, see for
instance [11], but few references are found in the
literature of the use of such models for the online
applications listed above.

Balanced-complexity models in this paper refer to
models based mainly on physics which are specifically
designed to adhere to requirements set by online use
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for identifiability, observability, numerical robustness
and computational speed. In control literature many
references to purpose-built online models are found,
some recent applications related to process control and
oil and gas applications are; industrial batch process:
[14], thin-rim oil reservoirs: [13] and [15], riser slug-
ging in multiphase flows: [9] and drilling: [7].

Balanced-complexity models cited in the literature
are usually quite small in scope, and for the applica-
tions listed above they typically describe a particular
piece of equipment or a specific phenomenon of inter-
est in a subsection of a larger plant. Often such mod-
els found in the literature are small-scale, on the or-
der of 10 states or less and are feasible to hand-code.
There may be synergies to monitoring and control-
ling large plants in a unified manner instead of as a
series of smaller subsystems, a recent discussion of
this idea applied to subsea fields is found in [1]. A
balanced-complexity model of such larger systems can
have hundreds of states, for instance when modeling
an entire offshore processing plant, see [16]. At this
scale, balanced-complexity models become challeng-
ing to code and maintain manually, and it can be chal-
lenging to re-use code and to collaborate on model
design. Large-scale in this paper refers to balanced-
complexity models which attempt to describe large
systems, and where challenges related to the scale of
the model can potentially deter their use.

Modelica has several advantages that can aid in
the synthesis of large-scale balanced-complexity mod-
els for online use. First, Modelica is declarative and
equation-based, meaning that models are expressed
by writing differential and algebraic equations, and
Modelica compilers interpret these equations into al-
gorithmic code (usually to the C programming lan-
guage). Second, Modelica is object-oriented and sup-
ports building larger models by connecting smaller
sub-models. Third, Modelica supports collecting sub-
models into libraries that can be shared, re-used and
combined as needed. Fourth, most Modelica environ-
ments support exporting models with functional-mock
up interface(FMI), to be discussed in Section 3.

An earlier reference to work on interfacing trans-
lated Modelica code with online control applications is
found in [8]. A reference to a similar vendor-specific
approach is found in [6]. Several authors have con-
sidered interfacing translated Modelica code with op-
timization algorithms offline, see for instance [10] and
[2] for trajectory planning in power plant control.

This paper is to a large extent motivated by de-
velopment of nMPC for offshore oil and gas produc-

tion, however much of the discussion is independent
of process and application. The excitation resulting
from normal operation in offshore oil and gas fields
can be very low as documented in [3], and this moti-
vates the use of physical modeling and nNMPC, as this
approach has reduced need for excited data, see [5].
Some recent applications of nMPC to smart wells are
[12], who used a full reservoir simulator as a process
model, and [15] who took a balanced-complexity mod-
eling approach. Earlier references to work on large-
scale balanced-complexity modeling for offshore oil
and gas production are found in [8], which considered
the topside processing system, and in [16] which con-
sidered a well-pipeline-riser-processing system.

Despite the widespread use of balanced-complexity
models reported in control engineering literature, the
idea that models for online use should be purpose-built
is not widely accepted by industry practitioners with
backgrounds in other engineering disciplines. Moti-
vated by this observation, the first purpose of this pa-
per is to present argumentation for the use of balanced-
complexity models and then present techniques used
in their design. Secondly, this paper discusses how
Modelica can be used to simplify the process of syn-
thesizing large-scale balanced-complexity models and
to integrate them in online applications.

The paper is structured as follows: Section 2 out-
lines techniques for the design of balanced-complexity
models. Next, Section 3 discusses techniques for inter-
facing models written in Modelica with control appli-
cations. Section 4 presents a case study of using Mod-
elica to build a large-scale balanced-complexity model
of an offshore processing plant for state estimation.

2 Synthesis of balanced-complexity
models for online use

2.1 The purpose dictates the model

Modeling is to map a real world object into a sim-
pler representation - in this context, into a set of equa-
tions. It is the modeler’s choice which of the real ob-
ject’s properties and features the model should mimic.
Emphasis on the purpose of the model leads naturally
to a set of required model properties. Including de-
tails not contributing to fulfilling the model’s purpose
adds computational load, degrades identifiability and
increases challenges of robustness.

Example 1. If the purpose of a model based tool is
to control the pressure in a gas tank, it is sufficient to
model the pressure with the ideal gas law (or poten-

Designing models for online use with Modelica and FMI 

 

198 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076197 

   



 

 

tially modified with a compressibility factor), lumping
all gas components into one pseudo-component. How-
ever, if the purpose is to control e.g. the CO2 fraction,
one needs to include a component balance and have
at least two components: CO2 and the ‘remaining’-
component.

2.2 Techniques for developing balanced-
complexity models

This section introduces some techniques that can be
useful for developing balanced-complexity models.
The techniques are illustrated with examples from an
in-house Modelica library developed for online use
(see Section 3):

Adaptivity: Candidate adaptivity parameters have
significant influence on the solution, yet are
known to be difficult or complicated to model
with accuracy and/or are slowly time-varying.
Which parameters to adapt is determined by anal-
ysis of the equation set, literature and by com-
parison with real-world data. Adaptivity has the
ability to reduce model complexity as it may re-
duce the need for complex empirical correlations
in the equation set.

Example 2. Modeling multiphase flow in
pipelines is complex, as key parameters such as
pressure drop coefficients and gas-liquid velocity
distributions depend on many factors that may be
difficult to describe accurately with experimen-
tal correlations, and as these parameters may also
vary with time. The ratio of gas velocity to liquid
velocity in multiphase flow can depend on many
factors such as flow-regime, Reynolds-numbers,
incline angles or others. By choosing the slip fac-
tor, the ratio of gas velocity to liquid velocity, as
an adaption parameter the challenge of accurately
modeling this ratio is mitigated. As modeling the
gas-liquid velocity distribution can be complex
and can add to model uncertainty, the resulting
online model with adaption in slip ratio need not
be less accurate than offline counterparts.

Example 3. Centrifugal compressor models are
static and based on compressor maps of poly-
tropic head versus volumetric rate, parameterized
in compressor speed. The compressor maps sup-
plied by equipment vendors may be subject to
inaccuracies and slow changes over time due to
wear and tear. A single adaption parameter is
introduced to linearly scale the compressor map.

Thereby inaccuracies and time-varying effects in
the compressor can be adjusted for in online com-
pressor models.

Explicit models: Deriving model equations from
physics often results in models which are
differential-algebraic equations sets (DAEs).
Solving such equation sets can be both time con-
suming and subject to numerical stability issues.
It is desirable to re-formulate such models as or-
dinary differential equation sets (ODEs) to im-
prove numerical speed and stability. Especially
implicit algebraic equations requiring dedicated
solvers should be avoided. Simple algebraic re-
lations can often be solved by rearranging equa-
tions. Artificial dynamic variables can be intro-
duced in more challenging cases to break alge-
braic loops.

State selection: Another key to avoid implicit equa-
tions is to formulate the problem explicitly in
terms of states. State variables should be se-
lected so that other dependent properties can be
calculated explicitly. This is a common chal-
lenge particularly when calculating thermody-
namic properties. For instance, if thermodynamic
relations are explicit in pressure and temperature,
pressures and temperatures should be chosen as
states. The Modelica language has support for
setting preferred state variables while still formu-
lating derivatives using other variables. A Mod-
elica compiler will automatically differentiate the
differential equations in order to change the state
variables to the preferred set, see [4].

Smoothing: When models are used in conjunction
with optimization algorithms it is important that
they are continuous and differentiable. To ensure
this property, all equations used must be analyzed
with regard to smoothness before use, and where
needed, artificial transition functions can be in-
cluded to enforce smoothness.

Right level of detail: For efficient models, the level
of detail for a specific phenomenon in the model
should match the importance of that particular
phenomenon. As discussed in Section 2.1, phe-
nomena which do not contribute to fulfill the pur-
pose of the model should be left out, illustrated
by the example below:

Example 4. A common approach in process
simulators is to model hydrocarbon fluids with a
multi-component mixture, often with 10 or more
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components. The high number of components
leads to a large number of thermodynamic state
variables. For phase equilibrium calculations the
common approach is to use iterative algorithms
for solving the resulting equation set.

A multiphase medium in an in-house model li-
brary is implemented using a low number of com-
ponents: The gas phase normally contains only
one high and one low molecular weight compo-
nent. This is sufficient to make any gas mix-
ture with an average molecular weight between
the two components. A similar approach is taken
with the oil/condensate phases, optionally with a
water component to be used if water content in
oil/condensate is of interest. In addition to the
low number of state variables resulting from this
approach, an advantage is that a phase equilib-
rium in a two component mixture can always be
calculated explicitly. This is considered as a suf-
ficient level of detail for the purposes of pressure
and level control.

Utilize operational conditions: Knowledge of the
operational conditions for which the model is ap-
plied can simplify the model considerably. It
is unnecessary to include descriptions of oper-
ational conditions which will never occur. For
example, if it is known that the model will be
used for a process with strict temperature control,
it will be a good approximation to drop the en-
ergy balance and use constant temperature in the
model.

Pre-computation of properties: A common model
simplification technique is to tabulate complex
relations, for instance thermodynamic properties.
In this way, complex calculations can be pre-
computed, and when used online models can ac-
cess the ready solutions. If tables are used, at-
tention should be paid to the selection of table
interpolation algorithm as to avoid non-smooth
derivatives of the interpolated functions. Since
searching through large tables is time consuming,
simple function approximations is a good alterna-
tive.

Data-driven modeling: Data from operation of a
process can be used for selecting the right model.
Process data with excitations can reveal hints of
what model structures can emulate the process.
One could either look for a physical phenomenon
giving the same response as the data, or consider

introducing a semi-empirical model component
which replicates the observed response. For em-
pirical equations, care should be taken when ex-
trapolating.

3 Efficient large-scale modeling by
the use of Modelica

The approach to efficient large-scale modeling consid-
ered in this paper is outlined in Figure 1. The ap-
proach is based on implementing the Functional-mock
up interface (FMI)1 in software used in online control
applications. An FMI-standard model component is
shared as a functional mock-up unit (FMU).

Figure 1: Flow of information between models
(rounded edges) and applications (straight edges).

Since the translation from Modelica to FMI is done
by a compiler, and as all low-level code to interface
model and online application is model-independent
and re-usable, the transition from Modelica to online
applications can be made in a matter of minutes. This
framework supports an iterative modeling work flow,
as repeating the conversion from model to application
multiple times is not workload-intensive.

Aside from the advantages of Modelica listed in
Section 1, a benefit of designing models in a Modelica
environment is that sub-modules can be imported from
multiple external sources. The ability to import mod-
ules as FMUs means that the process owner, equip-
ment suppliers or others can supply proprietary mod-
els as pre-compiled FMUs. This also opens an avenue
for suppliers of process simulators to export their mod-
els seamlessly into control applications, provided they
implement support for export of models as FMUs. For
the reasons mentioned in Section 1, it will still be ad-
vantageous for such models to be designed with the
techniques discussed in Section 2.

When designing large-scale models, it is often de-
sirable to model selected subsystems or components

1see http://www.modelisar.com/
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Figure 2: Overview subsea-pipeline-riser-separator system as implemented in Dymola, with piping (solid),
handles to the estimator via FMI (dashed), and PI-control (dashdot).

of the larger system using empirical models, for in-
stance fitted curves or state-space models inferred
from data. An efficient manner of incorporating such
sub-models in a larger Modelica-based framework is
to express empirical models in the Modelica language.
Exporting empirical models in Modelica-form is a task
that can be automated by software for system iden-
tification. The modular buildup of Modelica allows
such exported models to be seamlessly integrated with
physics-based Modelica models.

4 Case-study: Estimation of gas-oil
ratio in offshore oil and gas produc-
tion

The aim of this case study is to illustrate that a large-
scale balanced-complexity model which has been de-
signed along the principles outlined in Section 2 can
be implemented efficiently by the methods outlined in
Section 3. The case considered is stylized in that for
demonstration purposes, the estimator used has a rel-
atively low number of fitted parameters and measure-
ments.

The system considered is shown in Figure 2, and
consists of the joint production of oil, gas and water

from two different wells. The fluids from the wells are
mixed in a subsea template before traveling along a
horizontal pipeline, through a vertical riser, into a top-
side manifold before reaching the topside processing
plant. The production rates from the two wells are not
measured directly, yet these flow rates are of great in-
terest as they determine production revenues and the
feed rates to which the process plant must adapt.

There is a significant static pressure drop from the
reservoir to the sea bead (elevation often being of order
thousands of meters) and from the sea bed to the float-
ing production unit (elevation often of order hundreds
of meters). The static pressure dropdepends on the ra-
tio of gas-to-liquid, and as the proportion of total pro-
duction that is water is often fairly constant, it should
be possible to infer about the gas-oil ratio by model-
ing its relationship to pressure in well and pipeline.
Since pressure in the pipeline depends on the settings
of chokes on each well and upstream of the separator,
these chokes must also be modeled.

A typical full-complexity multiphase pipe flow sim-
ulator could for the well-pipeline-separator system
considered have hundreds or thousands of control vol-
umes, and a full-complexity thermodynamic model
could have on the order of 20 states for each control
volume. Thermodynamic relations would in a full-
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complexity model depend on implicit relations, and a
large number of different empirical closure relations
for different conditions would be used in multiphase
flow models.

From our perspective such a full-complexity model
would be unsuitable for the purposes of estimating
gas-oil ratio online, due to the issues mentioned in
Section 1.

4.1 Modeling

Modules from an in-house Modelica library were used
and put together with the aim of finding the right level
of detail to achieve the desired goal of estimating gas-
oil ratio. It was elected to model flow as a two-phase
flow, lumping oil and water flows into a single liquid
flow. Modules describing wells, horizontal and verti-
cal pipelines and chokes were combined to create the
large-scale model. Each of these modules were origi-
nally designed by combining first-principles with em-
pirical closure relations from the literature that were
revised for simplicity, to obtain smoothness and to
avoid implicit relations. The number of different clo-
sure relations was kept as low as possible, and the
resulting models were validated module-for-module
against real-world data. The modules include han-
dles for introducing adaptivity as needed through ad-
justable parameters such as gas-liquid velocity ratios,
valve coefficients and friction factors. Adapting the
mentioned parameters was omitted here for simplicity.

Some examples of the balanced-complexity princi-
ples in the current case-study follows:

• Exclude flashing. From experience and analysis
of real-world data similar to this case, the flash-
ing (evaporation of dissolved gas in the oil) as
the pressure drops in the pipeline is not expected
to be significant relative to amount of free gas.
Excluding flashing from the model was therefore
judged to be the right level of detail.

• Few discrete mixing volumes. Riser and
pipeline models are finite-volume spatial dis-
cretizations of the underlying partial-differential
flow equations, and the number of discrete vol-
umes for each of these modules are design param-
eters that the user should select at design while
evaluating resulting model accuracy. It is our
experience that no fine discretization is required
for estimators such as considered here to work.
Lumping pipeline submodels into two or even
just one volume is often found to be the right level
of detail. For each volume in each sub-model, a

mass-balance equation is formulated and a sim-
plified thermodynamic relation with a low num-
ber of components that is smooth and explicit, as
described in Example 4, was used.

• Limiting the scope of the model. The three-
phase separator model uses a thermodynamic
equilibrium equation for flashing/vaporization, in
combination with a mass balance that takes in
account separator geometry. Since the estima-
tor considers the portion of the offshore oil and
gas system spanning from wells to the separa-
tor, it was not considered necessary to model fur-
ther downstream process equipment for the de-
sired estimator, motivated by the concept of the
purpose dictating the model.

All the models were expressed in equation-form in
the Modelica language, and the translation capabilities
of Dymolawere used to convert this equation-based
model into an imperative, C-language code that is suit-
able for online use. The model shown as drawn by
Dymolais shown in Figure 2. That the imperative
code of the model is generated rather than hand-coded
directly is useful for iteratively deciding the right level
of detail in the model. The degree of model detail is
easily adjustable in the high-level, modular, equation
based language Modelica, from which multiple esti-
mators based on different low-level implementations
of the model in C can be compared.

4.2 Estimation

Simulations were done for a model with only a sin-
gle node for pipeline and riser. The resulting model
has 48 states, Dymolachoosing five states (pressure
+ 4 component mass fractions) for each of the nodes:
well 1, well 2, subsea manifold, pipeline, riser, topside
manifold and inlet separator.

Pressures at the topside separator (y1) and subsea
manifold (y2) were chosen as outputs. Parameters
were chosen as gas-oil ratios of well 1 (θ1) and well
2 (θ1). Choke openings of valves on well 1 (u1), well
2 (u2) and the topside valve (u3) are varied during the
simulation. The estimator used is a recursive Extended
Kalman Filter (EKF). The model was implemented in
Modelica, compiled as an FMU using Dymola, and
interfaced with a generic and re-usable recursive Ex-
tended Kalman Filter (EKF).

The dataset considered is synthetic, generated by
simulating a copy of the model where the gas-oil ra-
tios of both wells were set equal to 811. Noise of 2%
of average amplitude was added to both pressures.
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Figure 3: Simulation results. Top subplot shows measured and estimated separator pressures. Subplot 2 shows
measured and estimated line pressures. Subplot 3 shows relative choke opening of wells 1 and 2 (u1 and u2)
and of the topside valve (u3). Subplot 4 shows recursive estimates of gas-oil ratios of wells 1 and 2 compared
with the true value.

4.3 Simulations

Estimated and measured pressures and estimated gas-
oil ratios for wells 1 and 2 are shown in Figure 3. The
initial estimate for the gas-oil ratio of well 1 was set
to 1200, while the actual gas-oil ratio for both wells
is 811. The inaccurate initial estimate of gas-oil ra-
tio resulted in an offset between measured and mod-
eled pressures, which the estimator attempts to correct
during simulation. The excitation shown in Figure 3
made it possible to uniquely determine gas-oil ratios
for both wells from the data set, and as the simulation
progresses, the estimated gas-oil ratios move toward
the real value of 811.

4.4 Discussion

The main contribution of this case study is the technol-
ogy and workflow used to implement an online model
including Kalman Filter estimators. The solution was
implemented in a low-level language suitable for on-
line use, yet no line of low-level code was manually
written. The model used has 48 states, and manu-
ally implementing low-level model code would be a
challenging task already at this scale if you consider
that modeling requires several design iterations, col-
laboration among multiple designers, code-reuse and
code validation. Our experience indicates that the
approach could accommodate working efficiently on

Session 2A: FMI Standard I 

DOI Proceedings of the 9th International Modelica Conference    203 
10.3384/ecp12076197 September 3-5, 2012, Munich, Germany   



 

 

much larger models as well.

5 Conclusion

Balanced-complexity modeling is an approach to bring
physics-based models online while adhering to re-
quirements for online use. Modelica and FMI have
advantages that aid the development of such systems:
efficient model development; reuse of models; and ef-
ficient integration with other software. By calling at-
tention to this topic it is hoped for an increasd recogni-
tion for online applications with purpose-built models
developed with Modelica and FMI.
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Abstract

Complex multi-disciplinary models in system dynam-
ics are typically composed of subsystems. This mod-
ular structure of the model reflects the modular struc-
ture of complex engineering systems. In industrial ap-
plications, the individual subsystems are often mod-
eled separately in different mono-disciplinary simula-
tion tools. The Functional Mock-Up Interface (FMI)
provides an interface standard for coupling physical
models from different domains and addresses prob-
lems like export and import of model components in
industrial simulation tools (FMI for Model Exchange)
and the standardization of co-simulation interfaces in
nonlinear system dynamics (FMI for Co-Simulation),
see [8]. In November 2011, the third β -version of
FMI for Model Exchange and Co-Simulation v2.0 was
released [13] that supports advanced numerical tech-
niques in co-simulation like higher order extrapolation
and interpolation of subsystem inputs, step size con-
trol including step rejection and Jacobian based lin-
early implicit stabilization techniques. Well known
industrial simulation tools for applied dynamics sup-
port Version 1.0 of this standard and plan to support
the forthcoming Version 2.0 in the near future, see the
“Tools” tab of website [8] for up-to-date information.
The renewed interest in algorithmic and numerical as-
pects of co-simulation inspired some new investiga-
tions on error estimation and stabilization techniques
in FMI for Model Exchange and Co-Simulation v2.0
compatible co-simulation environments. The present
paper extends recent results from [3] on reliable er-
ror estimation and communication step size control
in the framework of FMI for Model Exchange and
Co-Simulation v2.0. Based on a strict mathematical
analysis, we study the asymptotic behaviour of the lo-
cal error and two error estimates that may be used to

adapt the communication step size automatically to the
changing solution behaviour during time integration.
These theoretical results are illustrated by numerical
tests for a (linear) quarter car model and provide a ba-
sis for future investigations with more complex cou-
pled engineering systems.

Keywords: FMI; error estimation; step size control

1 Introduction

Co-simulation is a rather general approach to the simu-
lation of coupled technical systems and coupled physi-
cal phenomena in engineering with focus on instation-
ary (time-dependent) problems. From the mathemati-
cal viewpoint, co-simulation results in a class of time
integration methods for coupled systems which are de-
scribed by time dependent ordinary differential equa-
tions (ODE) or differential algebraic equations (DAE).
In that context, we consider r ≥ 2 coupled subsystems
in nonlinear state-space form

ẋi = fi(t,xi,ui),

yi = gi(t,xi,ui),

}
i = 1, . . . ,r, t ∈ [tstart, tstop]

(1a)

with the state vectors xi, inputs ui and outputs yi. The
subsystems are coupled by input-output relations

ui = ci(y1, . . . ,yi−1,yi+1, . . . ,yr), (i = 1, . . . ,r),
(1b)

see [12]. Summarizing all components in vector form,
we get a coupled system in the more compact form

ẋ = f(t,x,u),
y = g(t,x,u), u = c(y),

(2)

with x = (xT
1 , . . . ,xT

r )
T , . . .
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The simulation time interval is split by a grid of
communication points tstart = T0 < T1 < .. . < TN =
tstop, where the data exchange between the subsystems
is restricted to these discrete points. In each communi-
cation step Tn→ Tn +Hn =: Tn+1, (n = 0, . . . ,N−1),
with communication step size Hn, the subsystems are
solved separately and independently from each other.

Since the update of the inputs u is restricted to the
time discrete communication points, these terms have
to be approximated by signal extrapolation for the cur-
rent communication step Tn→ Tn+1

ū(t)≈ u(t), t ∈ [Tn,Tn+1],

where the approximation ū(t), is based on information
u(Tn−ι), (ι = 0, . . . ,k) from k+ 1 previous communi-
cation points.

This leads to the new coupled problem for t ∈
[Tn,Tn +Hn]

˙̄x(t) = f(t, x̄, ū),
ȳ(t) = g(t, x̄, ū).

(3)

The coupled system (3) is composed of subsystems
that are solved separately from each other, where we
get the numerical solution x̄(t)≈ x(t) and ȳ(t)≈ y(t),
(t ∈ [Tn,Tn+Hn]). Typically, different time integration
methods and / or different (micro) step sizes are used in
the individual subsystems resulting in a multi-method
and / or multi-rate method for the coupled system.

Following Jackson [10], the time integration meth-
ods to solve the coupled system (3) are called modular
to underline the modular structure of the approach.

In practical applications, usually constant commu-
nication step sizes Hn := H with n = 0, . . . , N−1 are
used, since the simulation results and the behavior
of the underlying integration methods can reliably be
controlled. Further gains in efficiency and robustness
of numerical co-simulation techniques are expected
by variable communication step sizes Hn := Tn+1−Tn

that are adapted automatically to the solution behavior
(communication step size control).

2 Estimation of the local error

For a reliable communication step size control an er-
ror estimate EST for the local error of the numerical
solution is needed and is compared to user defined er-
ror bounds (tolerances), since for coupled systems (2)
without algebraic loops the global error is bounded by
a multiple of the maximum local error [3].

Richardson extrapolation is a time-consuming but
reliable way to estimate local errors in ODE and DAE

time integration and considers two (small) consecu-
tive communication steps of size Hn = Hn+1 = H from
Tn→ Tn +H =: Tn+1 and Tn+1→ Tn +2H =: Tn+2. To
get an estimate for the local error, the solution of these
two steps is compared with a second numerical solu-
tion that is computed for a (large) communication step
Tn→ Tn+2H =: Tn+2. Substantial savings of comput-
ing time result from an algorithmic modification of the
Richardson extrapolation that is tailored to the FMI co-
simulation framework. Both approaches will be stud-
ied theoretically (by an asymptotic error analysis) as
well as practically (by numerical tests for a quarter car
benchmark problem). For the theoretical analysis, we
neglect the discretization errors in the subsystems that
should be kept small in a practical implementation by
appropriate settings of error tolerances.

To keep the notation compact, we restrict the the-
oretical analysis of the local error estimates to pure
polynomial signal extrapolation in all subsystems [3].
Consider the polynomial ū(t), that interpolates the an-
alytical solution u(t) of (2) at the k+1 equidistant pre-
vious communication points Tn−ι , (ι = 0, . . . ,k). The
approximation error of this interpolating polynomial
ū(t) is for all t ∈ [Tn,Tn +H] bounded by [7]

ū(t)−u(t) =−u(k+1)(Tn)

(k+1)!

k

∏
ι=0

(t−Tn−ι)

+O(Hk+2).

(4)

In the first (small) communication step Tn→ Tn+H
(first step of the error estimation by Richardson ex-
trapolation) we have to solve system (3) starting from
x̄(Tn) = x(Tn). Linearization shows that the error in
the state and output vectors satisfy

˙̄x(t)− ẋ(t) = An(x̄(t)−x(t))+Bn(ū(t)−u(t))+

+O(Hk+2),

ȳ(t)−y(t) = Cn(x̄(t)−x(t))+Dn(ū(t)−u(t))+

+O(Hk+2),

where the system matrices An, Bn, Cn, Dn denote the
Jacobians fx, fu, gx, gu evaluated at x = x(Tn), u =
u(Tn). Up to higher order terms, the error in the state
vector is given by the solution of a linear time invariant
system for t ∈ [Tn,Tn +Hn] and may be expressed as

x̄(t)−x(t) = exp(An(t−Tn))

= 0︷ ︸︸ ︷
(x̄(Tn)−x(Tn))

+
∫ t

Tn

exp(An(t− s))Bn(ū(s)−u(s))ds

+O(Hk+3).

(5)
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With (4) and (5) and the substitution σ := (s−Tn)/H,
Hdσ = ds the error of the output vector is

ȳ(Tn+1)−y(Tn+1) =

−CnBn
u(k+1)(Tn)

(k+1)!

∫ 1

0

k

∏
ι=0

(σ + ι)dσ︸ ︷︷ ︸
=: γk

Hk+2

−Dnu(k+1)(Tn)︸ ︷︷ ︸
=: δk

Hk+1 +O(cDHk+2 +Hk+3)

with constant cD, which is set to cD = 0 if ∂g/∂u≡ 0
and cD = 1 otherwise.

In the next (small) communication step Tn +H →
Tn +2H the input function is substituted by a polyno-
mial ¯̄u(t) that interpolates c(ȳ) at t = Tn +H and u(t)
at t = Tn−ι , (ι = 0, . . . ,k−1).

The error in the output vector ¯̄y(Tn+2) is then given
by

¯̄y(Tn+2)−y(Tn+2) =

−2γkHk+2

−
(

δk +(k+1)DnLnδk

)
Hk+1

+O(cDHk+2 +Hk+3)

(6)

with Ln = ∂c/∂y(Tn).
For error estimation by Richardson extrapolation,

we consider in time interval [Tn,Tn + 2H] a second
numerical solution for the output vector ỹ(Tn+2) and
input function ũ(t) that is defined by the interpola-
tion polynomial for data points (Tn−2ι ,u(Tn−2ι)), (ι =
0, . . . ,k). Analogously to the first step we get the error

ỹ(Tn+2)−y(Tn+2) =−γk(2H)k+2−δk(2H)k+1

+O(cDHk+2 +Hk+3).
(7)

In ODE and DAE time integration, the comparison
of the numerical results for a double-step with (small)
step size H and a single (large) step with step size 2H
allows to estimate the leading term of the local error
[9]. For modular time integration, this error estimate
is given by [11]

ESTRich :=
¯̄y(Tn+2)− ỹ(Tn+2)

(1−2k+1)
.

The comparison of (6) and (7) shows

¯̄y(Tn+2)−y(Tn+2) = ESTRich

+
(k+1)2k+1

(1−2k+1)
DnLnδkHk+1

+O(cDHk+2 +Hk+3).

Here we can see, that in the context of co-simulation,
Richardson extrapolation may give asymptotically
wrong results if DnLnδk 6= 0, i. e. , for coupled systems
with direct feed-through in at least one subsystem.
If there are no subsystems with direct feed-through
(∂g j/∂u j ≡ 0, ( j = 1, . . . ,r)), ESTRich reproduces all
components of the local error in the output variables
correctly up to higher order terms.

In the ITEA2 project MODELISAR, several modi-
fications of error estimate ESTRich were tested [15] to
reduce the large extra effort for computing ỹ. Here we
use ū(t) = ũ(t) for t ∈ [Tn,Tn +H] such that the inter-
mediate results x̄(Tn+1) and x̃(Tn+1) coincide. From
the view point of numerical efficiency, it would be fa-
vorable to use one and the same approximation ū(t) of
the input function u(t) for both numerical solutions in
the first communication step Tn → Tn +H and to re-
strict the use of different input functions to the second
communication step, i. e. , to t ∈ [Tn+1,Tn+2].

In that way, co-simulation may proceed with a large
communication step Tn → Tn + 2H of size 2H that is
temporarily interrupted at t = Tn+1 to provide input
data ȳ(Tn+1) and c(ȳ(Tn+1)) for the second numeri-
cal solution to be used for error estimation. Alterna-
tively, a small communication step Tn → Tn +H may
be completed in the classical way and the two differ-
ent numerical solutions on time interval [Tn+1,Tn+2]
are evaluated in parallel. With this second strategy, no
subsystem solver has to go backward in time and the
practical implementation might be simplified.

According to [3] the error estimate is then given by

ESTmod :=
¯̄y(Tn+2)− ȳ(Tn+2)

(1− pk)
,

where pk is given for constant (k = 0), linear (k = 1)
and quadratic (k = 2) extrapolation by

p0 = 2,

p1 = 14/5,

p2 = 32/9.

To demonstrate the estimation of the local error and
the communication step size control in co-simulation,
we use a low dimensional linear benchmark problem.
The quarter car model which goes along a road pro-
file is defined by a one-dimensional oscillator with two
mass points mc and mw for the chassis and the wheel.
Both masses are coupled by a spring-damper element
with spring constant kc and damping constant dc, see
Figure 1. Moreover, the connection between wheel
and road is represented by a spring-damper element
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with constants kw and dw. For typical parameter values
(see below), the eigenfrequency of subsystem wheel is
ten times larger than the one of subsystem chassis.

The displacements of the mass points are given by
ηc, ηw and the profile of the road is defined by a time
dependent function z(t). For numerical tests we use
the following parameter configuration:

mw

mc

dckc

z(t)

ηc

ηw

dwkw

Figure 1: Quarter car model.

wheel mass mw = 40kg,
chassis mass mc = 400kg,
wheel spring kw = 150000Nm−1,
chassis spring kc = 15000Nm−1,
wheel damper dw = 0Nsm−1,
chassis damper dc = 1000Nsm−1,

initial values at t = 0

ηc(0) = 0

η̇c(0) = 0

ηw(0) = 0

η̇w(0) = 0

and excitation function

z(t) :=

{
0, t < 0,
0.1, t ≥ 0

to get the system in motion. The equations of motion
are given by

mcη̈c(t) = kc(ηw(t)−ηc(t))+dc(η̇w(t)− η̇c(t)),

mwη̈w(t) = kw(z(t)−ηw(t))+dw(ż(t)− η̇w(t))

− kc(ηw(t)−ηc(t))−dc(η̇w(t)− η̇c(t)).

For co-simulation this system is split into two subsys-
tems (chassis and wheel) of the form

ẋ1 = f1(x1,u1),

y1 = g1(x1,u1),

u1 = y2,

ẋ2 = f2(x2,u2),

y2 = g2(x2,u2),

u2 = y1

with the state vectors x1 = (ηc, η̇c)
T and x2 =

(ηw, η̇w)
T , right hand sides of the subsystems f1 =

(η̇c, η̈c)
T , f2 = (η̇w, η̈w)

T , inputs u1, u2 and outputs
y1, y2. We consider a displacement-displacement
and a displacement-force coupling [5]. For the
displacement-displacement coupling the input and
output vectors are given by

u2 = y1 = x1,

u1 = y2 = x2.

In the case of displacement-force coupling, the output
of the second subsystem (wheel) is defined by the cou-
pling force of the spring-damper element between the
two masses mc and mw which is also the input of the
other subsystem (chassis):

u2 = y1 = (ηc, η̇c)
T ,

u1 = y2 = kc(ηw(t)−ηc(t))+dc(η̇w(t)− η̇c(t)).

In that case, the subsystem wheel has a direct feed-
through of its input, ∂g2/∂u2 6= 0.

Figs. 2 and 3 show the local errors for the quarter car
benchmark and illustrate that the new error estimate
ESTmod is as reliable as the classical estimate ESTRich.

3 Variable communication step sizes

The communication step size control in co-simulation
is an extension of the step size control in classical time
integration methods for ODEs [9].

In the context of co-simulation, the error estimator
EST should estimate in each consecutive communi-
cation step Tn → Tn+1 → Tn+2 all errors in the slave
outputs ¯̄yn+2 := ¯̄y(Tn+2), that result from the solution
of (3) by a numerical time integration method with ap-
proximated slave inputs ū(t), t ∈ [Tn,Tn+1] and ¯̄u(t),
t ∈ [Tn+1,Tn+2]. We consider the scalar error indicator

ERR :=

√√√√ 1
m

m

∑
j=1

(
EST j

ATOL j +RTOL j| ¯̄y j
n+2|

)2

(8)

with the vector

¯̄yn+2 := ( ¯̄yT
1,n+2, . . . , ¯̄yT

r,n+2)
T ∈ Rm,
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Figure 2: Benchmark Quarter car - co-simulation for
a coupled system (2) without feed-through: Local er-
ror (“5”) and error estimates ESTRich (“◦”), ESTmod
(“×”). Constant (k = 0, upper plot) and linear extrap-
olation (k = 1, lower plot).

that contains all outputs of the r≥ 2 subsystems at t =
Tn+2. The error indicator (8) shows whether the com-
munication step size H = Hn was sufficiently small to
meet some user defined error bounds ATOL j, RTOL j

or not. Analogously to the classical approach [9] a
communication step is accepted, if ERR ≤ 1. When
ERR > 1, then the estimated error was too large and
the communication step has to be repeated with a
smaller step size to meet the accuracy requirements.

The ratio between the error indicator ERR and its
optimal value 1.0 may be used to define a posteriori an
“optimal” communication step size

Hopt := αHn

(
1

ERR

)1/P

with P = k + 1 if there exist subsystems with direct
feed-through, otherwise P = k+2, a safety factor α ∈
[0.8,0.9] to reduce the risk of a rejection of the next
communication step if the current step was accepted
and k denoting the approximation order of the signal
extrapolation for slave inputs ū(t). Note, that Hopt is
always smaller than the current communication step
size Hn if the error estimate EST exceeds the given
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Figure 3: Benchmark Quarter car - co-simulation for
a coupled system (2) with feed-through: Local er-
ror (“5”) and error estimates ESTRich (“◦”), ESTmod
(“×”). Constant (k = 0, upper plot) and linear extrap-
olation (k = 1, lower plot).

tolerances (ERR > 1).
In practical applications the step size is not allowed

to increase nor to decrease too fast [9]. Therefore, pa-
rameters θmin ∈ [0.2,0.5] and θmax ∈ [1.5,5] are used
to restrict the step size change. It is clear that choosing
both parameters too small may increase the computa-
tional work. Moreover, choosing them too large can
increase the risk of rejected steps. The resulting com-
munication step size is given by

Hopt = Hn ·min{θmax,max{θmin,α · (1/ERR)1/P}}.

4 Generic implementation scheme in
FMI 2.0

The Functional Mock-up Interface (FMI) for Model
Exchange and Co-Simulation v2.0, see [2, 8], is a
standard for the coupling and exchange of models and
simulator coupling. A component implementing the
FMI is called Functional Mock-up Unit (FMU). It
consists of C-functions in source code or preprocessed
binaries (like dll or shared object) and an XML
description file, that contains all static information
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for calling the FMU [4]. The C-functions are called
to set and get values in the FMU (FMI-functions
fmiSetReal and fmiGetReal). If the FMU is used
for simulator coupling it contains the full model and a
simulator (slave). The slave is controlled by a function
fmiDoStep [13] to process one communication
step. With this FMI-function the computation of a
communication step in a slave is started with the
input parameters currentCommunicationPoint
(current communication point Tn of the
master), communicationStepSize (step
size Hn of the communication step) and
noSetFMUStatePriorToCurrentPoint. The Pa-
rameter noSetFMUStatePriorToCurrentPoint
is true (fmiTrue) if the FMI-function
fmiSetFMUState will no longer be called for
time instants prior to currentCommunicationPoint.
This is an important information for a slave, that
is able to reject communication steps, since the
FMU states have to be restored to the last accepted
communication point in that case. With the flag
noSetFMUStatePriorToCurrentPoint the slave
can use this information to flush a result buffer. For
the Richardson extrapolation based step size control
the master has to repeat the simulation from the last
accepted communication point, that means it has to
save and restore the FMU states to this point for the
computation of the reference solution to estimate the
error or if a step was rejected because the step size
was too large. fmiGetFMUState makes a copy of
the internal FMU state and returns a pointer to this
copy and fmiSetFMUState copies the content of
the previously copied FMUstate back and uses it as
current new FMU state.

A generic implementation scheme for a double
step Tn→ Tn+1→ Tn+2 with Richardson extrapolation
based communication step size control is given by:

(A) tcurr = Tn. Get slave states slavei,n, (i = 1, . . . ,r),
calling fmiGetFMUState for all r slave FMUs.

(B) Define subsystem inputs ũi(t) providing
derivatives dlũi/dt l(Tn), (l = 0, . . . ,k) by
fmiSetRealInputDerivatives.

(C) Perform large communication step
Tn → Tn + 2H = Tn+2 calling fmiDoStep
for all r slave FMUs and get outputs ỹ(Tn+2) by
fmiGetRealOutputDerivatives.

(D) Reset all slave FMUs to state slavei,n, (i =
1, . . . ,r), calling fmiSetFMUState.

(E) Define subsystem inputs ūi(t) providing
derivatives dlūi/dt l(Tn), (l = 0, . . . ,k) by
fmiSetRealInputDerivatives.

(F) Perform first small communication step Tn →
Tn + H = Tn+1 calling fmiDoStep for all
r slave FMUs and get outputs ȳ(Tn+1) by
fmiGetRealOutputDerivatives.

(G) Evaluate ¯̄u(Tn+1) = c(ȳ(Tn+1)) and define
subsystem inputs ¯̄ui(t) providing deriva-
tives dl ¯̄ui/dt l(Tn+1), (l = 0, . . . ,k) by
fmiSetRealInputDerivatives.

(H) Perform second small communication step
Tn+1 → Tn+1 +H = Tn+2 calling fmiDoStep for
all r slave FMUs and get outputs ¯̄y(Tn+2) by
fmiGetRealOutputDerivatives.

(I) Evaluate error estimate ESTRich, error indicator
ERR and optimal communication step size Hopt.

The function fmiDoStep returns fmiOK if the com-
munication step was computed successfully until its
end. fmiDiscard is returned if the slave computed
successfully only a subinterval of the communication
step, which may occur if the communication step size
is too large and the simulation should be repeated
with a smaller one. fmiError will be returned by
fmiDoStep if the simulation of the communication
step could not be carried out at all.

The capabilities of a slave are de-
scribed in the XML file. A capability flag
canHandleVariableCommunicationStepSize
set to true indicates, that a slave is able to accept
variable communication steps, which is important to
implement a master with communication step size
control. The complete interface description can be
found in [13].

5 Numerical test for the FMI com-
patible master

For developing and testing new master algorithms,
a master prototype was implemented by Fraunhofer
IIS/EAS and Halle University [4, 6]. This master sup-
ports basic functions of FMI for Co-Simulation ver-
sion 1.0, see [14], and has implemented several so-
phisticated master algorithms like communication step
size control and the rejection of communication steps.

To use the Fraunhofer master with the given FMUs
the compiled C-code of the master has to be linked
to the slaves binaries, which may even be C-code that
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Figure 4: Benchmark Quarter car, displacement-
displacement coupling. Error indicator and commu-
nication step size of the simulation with Richardson
extrapolation based step size control with the Fraun-
hofer master.

is compiled with the master. The resulting executable
consists of the master and the slaves.

For the numerical tests with the Fraunhofer master,
the quarter car benchmark with the two slaves “chas-
sis” and “wheel” is implemented in Dymola. We ap-
ply the communication step size control strategy from
Section 3 with error estimates ESTRich and ESTmod
and study the influence of the order k of signal ex-
trapolation and of the coupling strategy (displacement-
displacement vs. displacement-force). From a prac-
tical viewpoint constant (k = 0), linear (k = 1) and
quadratic (k = 2) signal extrapolation are most inter-
esting since higher order extrapolations increase the
risk of numerical instability, see also [1]. In all nu-
merical tests, the error tolerances for slave FMUs are
chosen two orders of magnitude smaller than the mas-
ter tolerances ATOL j, RTOL j in (8).

Since the current implementation of the Fraunhofer
master is limited to constant extrapolation with er-
ror estimation by Richardson extrapolation, only these
numerical results are depicted in Figure 4 for the
displacement-displacement coupling.

Extending these results, we will also consider the
numerical simulations in a MATLAB-based test envi-
ronment for the verification of the theoretical analy-
sis. The numerical test for variable communication
step sizes with error estimates ESTRich and ESTmod
for constant (k = 0) and linear (k = 1) extrapolation
is depicted for the two coupling strategies in Figures 5
and 6 within the simulation time interval t ∈ [0,4]. The
simulation results for Richardson extrapolation and its
modification are identical for k = 0, where the small
differences in Table 1 are caused by implementation
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Figure 5: Benchmark Quarter car, displacement-
displacement coupling. Number of step rejections, er-
ror indicator and communication step size of the sim-
ulation with error estimates ESTRich and ESTmod.

Session 2A: FMI Standard I 

DOI Proceedings of the 9th International Modelica Conference    211 
10.3384/ecp12076205 September 3-5, 2012, Munich, Germany   



 

 

0 1 2 3 4
10

−6

10
−4

10
−2

10
0

10
2

t [s]

 

 

21 121 211 21 211 121 21 211
  k=0, Richardson extrapolation

0 1 2 3 4
10

−6

10
−4

10
−2

10
0

10
2

t [s]

 

 

21 121 211 21 211 21 211 211
  k=0, mod. Rich. extrapolation

0 1 2 3 4
10

−6

10
−4

10
−2

10
0

10
2

t [s]

 

 

31111111121111111211113 1 2111112 211111 21112 211112 111111 12111 211
  k=1, Richardson extrapolation

0 1 2 3 4
10

−6

10
−4

10
−2

10
0

10
2

t [s]

 

 

4111111111111111111111212111111311 2111111 111111112 1211111 11111111 1111111 121111 1211
  k=1, mod. Rich. extrapolation

error indicator
communication step size H
rejected step

Figure 6: Benchmark Quarter car, displacement-force
coupling. Number of step rejections, error indicator
and communication step size of the simulation with
error estimates ESTRich and ESTmod.
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Figure 7: Benchmark Quarter car, displacement-
displacement coupling. Global error of the simulation
with constant step sizes compared to variable steps
based on error estimates ESTRich and ESTmod.

issues, since the first (small) Richardson step is saved
and therefore the inputs at t = Tn +H have to be in-
terpolated which causes problems if in the big step
Tn→ Tn+2 only one micro step is taken.

The global error of the numerical solution with
step size control is very well controlled to a mean
value of 10−4, see Figure 7, which corresponds to
the predefined error bounds ATOL j = RTOL j = 10−4

for displacement-displacement coupling (in the case
of displacement-force coupling we use ATOL j =
RTOL j = 10−3). In the transient phase t ∈ [0,0.5] very
small communication steps are chosen and at later sim-
ulation time, the algorithm uses larger communication
steps than in the beginning, since the subsystems be-
have slower and the distance between two communica-
tion points for an update of the subsystem inputs is in-
creased. In time intervals, where the larger mass of the
chassis has a strong influence on the wheel by chang-
ing the direction of motion, this is also triggered by
the communication step size control resulting in a re-
duction of the step size such that the error bounds are
met (see slow oscillation of the communication step
size and also the rejected steps in Figure 5, where the
communication steps are repeated with smaller step
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size). In the transient phase, we can see that the er-
ror is greater than the pre-defined error bound of 10−4.
In this phase smaller steps should be taken, which is
triggered correctly by the step size control algorithm.
If we compare the simulation results with communi-
cation step size control with ESTRich and ESTmod to
the simulation with constant communication step size
H = 10−3 (with a micro tolerance in the subsystems
of 10−6) in Figure 7 and Table 1, we can see, that
the global error for constant extrapolation is decreas-
ing during the simulation because the step size is not
adapted to the solution behaviour. The accuracy is
raised, if higher order extrapolations are used. We
can also compare the computing times and see that
the master algorithm with communication step size
control is much faster resulting in a high efficiency
(nearly the same mean global error in the simulation
time interval compared to constant step sizes with con-
stant extrapolation), even with Richardson extrapola-
tion, where in every communication step the simula-
tion is performed at least twice. Using the modifica-
tion ESTmod or a higher order of extrapolation (k≥ 1)
further improves the simulation results and the com-
puting time. This is a nice example for the advan-
tage of controlling the step size compared to the brute
force approach of using always constant communica-
tion step sizes.

Furthermore, we observe in Table 1 if we use a mi-
cro tolerance of 10−8 in the subsystems for the simu-
lation with constant step sizes H = 10−3 that the com-
putation time is growing. Moreover, the accuracy of
the simulation is improved, since the influence of the
discretization error of the solution of the subsystems
is reduced. The simulation with step size control with
micTOL=1e-6 on the other hand is robust and reliable
and controls the error of the simulation results to the
predefined tolerance of macTOL=1e-4, even if the in-
fluence of the discretization error of the subsystems is
not neglected.

6 Conclusions

We have discussed the error estimation in co-
simulation by classical Richardson extrapolation and
by a modified algorithm for a reliable communication
step size control based on an extension of the step size
control of classical time integration. The local error of
the simulation is estimated very well by these strate-
gies.

The communication step size control was applied to
a benchmark problem from vehicle dynamics which

Table 1: Benchmark Quarter car - Simulation results
for the displacement-displacement coupling.

k error time [s] steps rej
H = 1ms, 0 8.922E-004 33.335 4000 0
micTOL=1e-6 1 4.094E-004 29.295 4000 0

2 4.138E-004 31.022 4000 0
H = 1ms, 0 5.301E-004 51.280 4000 0
micTOL=1e-8 1 6.049E-005 43.364 4000 0

2 1.967E-005 43.073 4000 0
Rich. EP, 0 1.050E-003 28.361 1610 18
micTOL=1e-6, 1 3.197E-004 10.379 402 20
macTOL=1e-4 2 3.180E-004 7.050 210 20
Mod. Rich. EP, 0 1.061E-003 19.712 1612 19
micTOL=1e-6, 1 3.317E-004 7.057 413 16
macTOL=1e-4 2 2.735E-004 4.835 218 17

was implemented in a master prototype that is com-
patible to FMI for Co-Simulation v1.0. We have seen
that communication step size control is possible, reli-
able and can improve the performance of the master
algorithm significantly, especially the computing time
and accuracy.

References

[1] M. Arnold. Stability of sequential modular time
integration methods for coupled multibody sys-
tem models. J. Comput. Nonlinear Dynam.,
5:031003, 2010.

[2] M. Arnold, T. Blochwitz, C. Clauß, T. Neidhold,
T. Schierz, and S. Wolf. FMI-for-CoSimulation.
In The International Journal of Multiphysics.
Special Edition: Multiphysics Simulations. Ad-
vanced Methods for Industrial Engineering. Se-
lected contributions from 1st Fraunhofer Multi-
physics Conference, pages 345–356, Brentwood,
Essex, UK, 2011. Multi-Science Publishing Co.
Ltd.

[3] M. Arnold, C. Clauß, and T. Schierz. Nu-
merical aspects of FMI for Model Exchange
and Co-Simulation v2.0. In P. Eberhard and
P. Ziegler, editors, Proc. of The 2nd Joint Inter-
national Conference on Multibody System Dy-
namics, Stuttgart, Germany, May 29 - June 1,
2012, ISBN 978-3-927618-32-9, 2012.

[4] J. Bastian, C. Clauß, S. Wolf, and P. Schnei-
der. Master for Co-Simulation Using FMI.
In C. Clauß, editor, Modelica Association,
Linköping: 8th International Modelica Confer-

Session 2A: FMI Standard I 

DOI Proceedings of the 9th International Modelica Conference    213 
10.3384/ecp12076205 September 3-5, 2012, Munich, Germany   



 

 

ence 2011 : Dresden, Germany, 20-22 March
2011, Dresden: Fraunhofer IIS / EAS, 2011.

[5] M. Busch and B. Schweizer. Numerical stabil-
ity and accuracy of different co-simulation tech-
niques: Analytical investigations based on a 2-
DOF test model. In Proc. of The 1st Joint Interna-
tional Conference on Multibody System Dynam-
ics, May 25–27, 2010, Lappeenranta, Finland,
2010.

[6] C. Clauß, M. Arnold, T. Schierz, and J. Bas-
tian. Master zur Simulatorkopplung via FMI.
In X. Liu-Henke, editor, Tagungsband der
ASIM/GI-Fachgruppen STS und GMMS, Wolfen-
büttel, 23.02.-24.02.2012, Ostfalia Hochschule
für Angewandte Wissenschaften, Wolfenbüttel,
2012.

[7] P. Deuflhard and A. Hohmann. Numerical Anal-
ysis in Modern Scientific Computing: An Intro-
duction. Number 43 in Texts in Applied Mathe-
matics. Springer, 2nd edition, 2003.

[8] FMI. The functional mockup interface. http://
www.functional-mockup-interface.org/.

[9] E. Hairer, S.P. Nørsett, and G. Wanner. Solv-
ing Ordinary Differential Equations. I. Nonstiff
Problems. Springer–Verlag, Berlin Heidelberg
New York, 2nd edition, 1993.

[10] K. Jackson. A survey of parallel numerical meth-
ods for initial value problems for ordinary differ-
ential equations. IEEE Transactions on Magnet-
ics, 27:3792–3797, 1991.

[11] R. Kübler. Modulare Modellierung und Sim-
ulation mechatronischer Systeme. Fortschritt-
Berichte VDI Reihe 20, Nr. 327. VDI–Verlag
GmbH, Düsseldorf, 2000.

[12] R. Kübler and W. Schiehlen. Two methods of
simulator coupling. Mathematical and Com-
puter Modelling of Dynamical Systems, 6:93–
113, 2000.

[13] Modelisar. Functional Mock-up In-
terface for Model Exchange and Co-
Simulation v2.0 Beta 3. http://www.
functional-mockup-interface.org/
specifications/FMI_for_ModelExchange_
and_CoSimulation_v2.0_Beta3.pdf,
November 2011.

[14] Modelisar. Functional Mock-up Inter-
face for Co-Simulation. http://www.
functional-mockup-interface.org/
specifications/FMI_for_CoSimulation_
v1.0.pdf, October 2010.

[15] H. Olsson. Private communication within FMI
2.0 development, June 2011.

Co-simulation with communication step size control in an FMI compatible master algorithm 

 

214 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076205 



 

 

Session 2B: Numerical Methods 

On the Formulation of Steady-State Initialization Problems in Object-Oriented Models of Closed Thermo-Hydraulic Systems 

On the Formulation of Steady-State Initialization Problems
in Object-Oriented Models of Closed Thermo-Hydraulic Systems

Francesco Casella
Dipartimento di Elettronica e Informazione, Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milano, Italy
casella@elet.polimi.it

Abstract

The object-oriented formulation of steady-state initial-
ization for models of closed thermo-hydraulic systems
yields singular problems, due to system-wide struc-
tural issues. The paper proposes how to solve this
problem in an object-oriented fashion, by means of an
additional component that helps to uniquely determine
the initial conditions of the system. A method based
on the analysis of the null space of the Jacobian of
the initialization problem and on suitable annotations
is also proposed to provide the end user with meaning-
ful, high-level, context-relevant diagnostic messages,
in case the singular problem arises. This diagnostic
method can also be applied to other cases, such as
closed systems with constant density fluid and elec-
trical circuits lacking a ground connection.

Keywords: Thermo-hydraulic system modelling,
Initialization, User-friendly error diagnostics

1 Introduction

Dynamic modelling of thermo-hydraulic systems in
Modelica is becoming increasingly popular in many
application fields: energy conversion systems, air con-
ditioning and ventilation plants for civil and airborne
applications, etc.

The steady-state initialization of such models is
well-known to be a critical issue. The two typical al-
ternatives available to practitioners are:

• set the initial values of all the state variables to
estimates of the steady-state one (the exact value
is not known a priori), then simulate a relaxation
transient until a steady-state is reached;

• set the initial derivatives of all the state variable
to zero and let the tool numerically solve for the
exact steady-state values.

The first choice has the advantage that finding a con-
sistent initial state is numerically easy, so the simu-
lation always starts, but the ensuing transient can be
problematic, because of potentially large swings of
flow variables that can require a very long simulation
time and possibly lead to solver failures.

The second choice is more appealing: if the solver
converges, the time spent to solve the steady-state
initialization problem is typically much lower than
the time spent simulating the (meaningless) relaxation
transient. However, there are three categories of issues
that can prevent getting the desired initial state:

1. the initialization problem is well-posed, but a so-
lution is not found because of convergence failure
of the iterative solver (typically, the initial guess
values are not close enough to the solution);

2. the initialization problem is structurally well-
posed, but the values of some parameters are such
that a physically valid solution does not exist;

3. the initialization problem is not structurally well-
posed, e.g., it is singular.

Recently proposed improvements [7, 4] based on
simplified models and homotopy transformations,
have been proved effective to enhance the likelyhood
of convergence (issue 1.) and also to point out prob-
lems stemming from the wrong parametrization of the
model (issue 2.). However, they do not address issue
3. at all.

If the thermo-hydraulic system under consideration
is closed, i.e., it does not exchange mass with the out-
side world, initialization problems where all compo-
nents are set up for steady-state initialization turn out
to be singular. The singularity arises at the system
level, so it doesn’t take place if parts of the closed sys-
tem are first tested separately, with suitable boundary
conditions that make the system an open one, but only
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when the final closed system is assembled. This be-
haviour can be puzzling for inexperienced users.

The goal of this paper is to propose an elegant,
object-oriented way to completely determine the ini-
tial conditions for closed systems, as well as a method
based on numerical analysis and suitable annotations
to issue meaningful diagnostics when such system-
level singularities do arise, guiding the end-user to-
wards the solution of the problem.

The paper is structured as follows: in Section 2,
the structure of steady-state initialization problems in
closed circuits is analysed; in Section 3, an object-
oriented solution to the problem is proposed and then
applied in Section 4 to two case studies. Section 5 dis-
cusses how a tool can report the singularity to the end
user in a meaningful way, while Section 6 ends the pa-
per with concluding remarks.

2 Singular initialization problems of
closed systems

Consider a generic closed thermo-hydraulic system.
Dynamic models of such a system contain mass bal-
ance equations of three kinds. The first corresponds to
mass balances inside control volumes where the stored
mass can change over time:

dMi

dt
= ∑

j
wi, j, i = 1, . . . ,Nd , (1)

where Mi is the mass contained within the i-th vol-
ume, wi, j are the flow variables of its fluid ports, i.e,
all the mass flow rates crossing the component bound-
ary through the ports assumed positive when entering,
and Nd is the number of control volumes having such
dynamic balances. The second kind corresponds to
mass balances inside components where the change
over time of stored mass is neglected:

0 = ∑
j

wi, j, i = Nd +1, . . . ,Nd +Ns, (2)

where wi, j has the same meaning as above, and Ns is
the number of control volumes with such static bal-
ances. The third kind corresponds to the mass bal-
ance equations formulated over infinitesimally small
control volumes spanning each connection set of fluid
ports, which are automatically generated by the com-
piler:

0 = ∑
m

wk,m, k = 1, . . .Nc (3)

where Nc is the number of connection sets and, for the
k-th connection set, wk,m are the flow variables of all
the ports belonging to it.

It is essential to note that both in (1) and (2), all
mass flow rates appearing in the mass balance equa-
tions correspond to flow through the ports. Thus,
source and sink components, which represent flows
exchanged between the system and the outer world,
are explicitly excluded. The system is closed, as it
cannot exchange mass with the outer environment, but
only with other components belonging to it.

Assume now one wants to initialize the system in
steady state. In an object-oriented formulation of the
system model, which is formed by connecting com-
ponent models through their ports, one typically se-
lects a steady state initialization option for each com-
ponent, possibly via some system-level default op-
tion which is passed to all the components via in-
ner/outer constructs. This approach is followed by
the Modelica.Fluid library [6]. This option adds an
steady-state initial equation for each control volume
with dynamic mass balance:

dMi

dt
= 0, i = 1, . . . ,Nd . (4)

The system of equations (1)-(4) is always singular,
because its equations are not linearly independent.

Proof: the sum of all dynamic balance equations (1)
minus the sum of all initial equations (4) plus the sum
of all static balance equations (2) yields

0 = ∑
i=1...Ns+Nd , j

wi, j. (5)

On the other hand, the sum of all connection equations
(3) yields

0 = ∑
k=1...Nc,m

wk,m. (6)

Now, each flow variable in the right-hand-side of (5)
belongs to one and only one connection set (for un-
connected ports, default connection sets are automati-
cally generated). Therefore each variable appearing in
(5) appears once and only once in (6). It follows that
the difference between equation (5) and (6), which is
a non-trival linear combination of (1)-(4), gives

0 = 0. (7)

Hence, equations (1)-(4) are not linearly independent
and thus the system is singular, q.e.d.

The physical interpretation of this singularity is that
the initial conditions (4) do not give any information
on the total amount of mass contained in the system at
initialization.
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3 Object-oriented formulation of
well-posed initialization problems

3.1 Mathematical formulation

One way to make the initialization problem non-
singular is to avoid the initial equation (4) for one
of the control volumes in the circuit, substituting it
with some other equation that makes the problem well
posed. This is convenient for those systems where one
component has the specific purpose of enforcing the
pressure at some point of the circuit.

For example, closed pressurized circuits contain-
ing liquid water usually feature dedicated components
which determine the pressure level of the system and
accommodate the thermal expansion of the fluid: ac-
cumulators in domestic heating systems, pressurizers
in cooling circuits for PWR nuclear reactors, etc. In
this case, the initial conditions for those components
are not given as (4), but rather by specifying the initial
value of the pressure (and possibly of other variables,
depending on the actual level of detail of the model).

Unfortunately, this approach is not always conve-
nient for two reasons. One is that some closed systems
that use a compressible fluid as working medium may
not contain such a specialized component. The other
one, which is more fundamental, is that the extra ini-
tial condition which is needed to make the initializa-
tion well-posed might refer to the entire system and
not just to a specific component. For example, it is of-
ten the case that refrigeration circuits must be initial-
ized so that the total mass of the fluid contained in the
circuit, also known as the charge, has a certain value.

In this paper, a modular approach is proposed to
solve this issue. The idea is to add an extra compo-
nent to the system model which contains the equation

0 = wNd+Ns+1,1 +wb, (8)

where wNd+Ns+1,1 is the flow variable of the only port
of this additional component and wb is an unknown
parameter, as well as an extra initial equation to com-
pletely determine the initial state, such as, e.g.

p = pstart (9)

(where p is the port pressure and pstart a known pa-
rameter), or, e.g.,

∑
i

Mi = Mstart (10)

where Mstart is again a known parameter.

Including this extra component to the system adds
two more equations, e.g., (8),(9) or (8),(10), and two
more unknowns, wNd+Ns+1,1 and wb, to the initializa-
tion problem, which thus remains balanced.

If (8) is added to the set of static mass balance equa-
tions (2), equation (5) will change to

0 = wb + ∑
i=1...Ns+Nd+1, j

wi, j, (11)

and the difference between (11) and (6) will now yield

0 = wb (12)

as the term wb is not a flow through a port, so it is not
cancelled out. Therefore, the mass balance equations
and initial equations are no longer linearly dependent,
and the value of the flow rate wb potentially entering
the system will be computed to be zero during initial-
ization, so the additional component will have no ef-
fect on the model during simulation.

It is not trivial to prove that the initialization prob-
lem will be non-singular in general. The user building
the model should select the extra initial condition (e.g.,
(9) or (10)) so that the corresponding system of equa-
tions uniquely determine the initial state of the system,
based on his understanding and expertise.

If a compressible fluid model is employed, typi-
cally (9) is a good choice, leading to a numerical prob-
lem which is easier to solve than the one obtained by
adding (10).

3.2 Modelica formulation

The Modelica code of the initialization component is
now presented, based on the mathematical formulation
laid out in the previous sub-section, in order to be com-
patible with the Modelica.Fluid library.

model ClosedSystemInitializer

replaceable package Medium =

Modelica.Media.Interfaces.PartialMedium;

parameter Medium.AbsolutePressure p_start;

final parameter Medium.MassFlowRate

w_b(fixed = false) = 0;

Modelica.Fluid.Interfaces.FluidPort_a

port(redeclare package Medium = Medium ,

m_flow(min = 0),

p(start = p_start));

Modelica.Blocks.Interfaces.RealInput

initialConditionResidual;

equation

0 = port.m_flow + w_b; // Mass balance

port.h_outflow = 0;

port.Xi_outflow = zeros(Medium.nXi);

initial equation

0 = initialConditionResidual;

end ClosedSystemInitializer;
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Figure 1: Brayton cycle plant model.

When instantiating the model, the extra initial con-
dition can be specified by connecting a RealExpres-
sion block containing its residual to the component’s
input port.

Note that the min annotation on the fluid port speci-
fies that the fluid will never flow out of it, so the values
of the stream variables h_outflow and Xi_outflow

(which must be given in order to get a balanced model)
are never actually used outside the component itself,
when computing the incoming stream quantity via the
inStream() operator [6]. Therefore, once the initial
solution of the problem has been found, in particular
w_b = 0, this additional component has no influence at
all on the remaining equations of the closed system.

In order to improve the convergence of the solver
when (10) is used as initial condition, it might be pos-
sible to use a homotopy transformation, where the sim-
plified initial equation is (9). The initial equation sec-
tion is correspondingly changed to:

initial equation

0 = homotopy(

actual = initialConditionResidual ,

simplified = port.p - p_start);

4 Example applications

4.1 Brayton cycle for power generation

Advanced energy conversion cycles are being consid-
ered for high-temperature heat sources, such as cen-
tral receiver solar plants and IV generation nuclear
plant, using supercritical CO2 as a working medium
and a closed Brayton cycle configuration [1, 5], featur-
ing two separate compressors to achieve optimal effi-
ciency of the overall cycle. The object diagram of the
plant model is shown in Fig. 1. In order to control
the pressure levels in the system, in particular at the
main compressor inlet, it is possible to add or remove

mass from two points of the circuit, through appro-
priate sub-systems which are modelled here as ideally
controlled flow rate sources or sinks. When the plant
model is considered together with the pressure con-
troller model in a closed-loop configuration, then a full
steady-state formulation of the initialization problem,
as in (4), is well-posed, because the pressure level (and
thus the mass) of the fluid contained in the circuit is de-
termined implicitly by the controller to be equal to the
set point.

During the control system design phase, though, it
is usually necessary to analyse the dynamic behaviour
in open loop around equilibrium points, which in this
case means there is no pressure controller and both
flow rates are set to zero, so that the system is effec-
tively closed.

In this case, a convenient way to make the ini-
tialization problem well-posed is to connect the
ClosedSystemInitializer component at the com-
pressor inlet, so that it sets the initial pressure at that
point. This condition, together with the flow charac-
teristics of the turbo-machines and with the thermal
interaction with the heat source and sink, uniquely de-
termines the amount of gas contained in the system
and the pressure and temperature distribution.

The model was set up using the ThermoPowerLight
library, which is a simplified version of the Ther-
moPower library [2, 3] currently under development
for optimization studies, and successfully solved us-
ing Dymola 2013.

4.2 Refrigeration cycle

Refrigeration systems are usually carefully sealed, in
order to avoid leaks of refrigerant fluid to the environ-
ment, so they always qualify as closed system. The
static and dynamic behaviour of the system is heavily
influenced by the amount of refrigerant which is ini-
tially loaded in the system (the charge).

A simple model of a refrigeration circuit, built with
the ThermoPower library, is shown in Fig. 2. Ho-
mogeneous flow and constant heat transfer coefficients
are assumed for simplicity; pressure losses along the
condenser and evaporator are lumped at the pipe ends.

The initialization problem has been set up by adding
an extra condition specifying the total mass contained
in the condenser and evaporator pipes. In order to
avoid convergence problem, homotopy-based initial-
ization is performed, starting from a simplified model
where the condenser inlet pressure is fixed. The model
was successfully initialized in steady-state using Dy-
mola 2013.
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Figure 2: Refrigeration cycle plant model.

5 Diagnostics of ill-posed initializa-
tion problems

This section addresses the problem of giving end-users
meaningful feedback in case they do not specify the
initialization problem correctly and fall into the singu-
lar case presented in Sect. 2.

The situation with currently available Modelica
tools is not satisfactory. The complete steady-state ini-
tialization problem is usually large (hundreds or thou-
sands of unknowns, depending on the degree of de-
tail of the model) and strongly non-linear. The pres-
ence of linearly dependent equations makes its Jaco-
bian singular. As a consequence, during iterations the
unknowns, which typically include pressures, temper-
atures and specific enthalpies of control volumes in the
model, will fluctuate wildly, causing repeated out-of-
bounds errors from the fluid property calculation func-
tions, until the solver eventually gives up. The error
messages typically shown to the end user will point to
these out-of-bounds errors and, possibly, to the very
high condition number of the Jacobian. By no means
this diagnostic information points explicitly to the ac-
tual root cause, which has been shown in Sect. 2.

One possible solution to this problem is sketched
in the remainder of this Section, based on numerical
analysis and suitable annotations in the model library.

5.1 Numerical identification of singular sub-
systems

Let the initialization problem be formulated in residual
form (as it is usually the case if nonlinear solvers are
to be employed):

F(x, ẋ,v, p) = 0 (13)

where x ∈ ℜn is the vector of state variables, v ∈
ℜm is the vector of algebraic variables, and p ∈ ℜq

is the vector of unknown parameters (having the at-
tribute fixed =false). The analysis of under- and
over-constrained initialization problems, though ex-
tremely interesting, is outside the scope of this pa-
per, so it is assumed here that the initialization prob-
lem is square, i.e., the function returning the residuals
of the dynamic and initial equations of the system is
F : ℜn×ℜn×ℜm×ℜq→ ℜ2n+m+q. Define the vec-
tors of unknowns

z =


x
ẋ
v
p

 , (14)

z ∈ ℜ2n+m+q, and let Fz be the Jacobian matrix of the
function F with respect to z. The ill-posed initializa-
tion problem described in Section 2 leads to a singular
Jacobian, since it is shown there that there exist a non-
zero vector v such that

Fzv = 0 (15)

having non-zero entries (plus/minus one) only in cor-
respondence to the mass balance equations and initial
equations. If many disconnected closed systems exist
in the model, then there will be a corresponding num-
ber of linearly independent vectors v j that satisfy eq.
(15). Note that there might also be other such vectors
because of other parts of the problem being singular
on there own. The set of linearly independent v j’s sat-
isfying eq. (15) spans the so-called nullspace or kernel
of Fz.

It is now possible to identify the set(s) of linearly de-
pendent equations in the initialization problem by nu-
merically computing the nullspace of the Jacobian Fz,
i.e. a set of orthonormal vectors v j that forms a basis
for the nullspace. For each of these vectors, all entries
whose absolute value is greater than a suitable small
threshold identify the equations in the initial problem
that are part of a singular subsystem, which can be re-
ported to the end-user.
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The selection of the threshold might be critical, be-
cause due to numerical approximations, the zero en-
tries will actually have a small non-zero value, and
it might not be trivial to avoid false positives or false
negatives. It is then essential to use a state-of-the-art
numerically robust algorithm to compute the orthonor-
mal basis of the nullspace of Fz, with the lowest pos-
sible effect effect of numerical rounding errors on the
result.

Since the sum of square of the elements of each ba-
sis vector is one, it is expected that there will be a sharp
difference between the elements that correspond to the
involved equations (which will have order of magni-
tude of one) and the other ones (which will have order
of magnitude of machine ε , around 10−16 for double
precision arithmetic). Some experimentation in real-
life-sized test cases is however necessary to fine tune
such a method, but this has not been possible yet for
the lack of available implementation of the method in
Modelica compilers.

Another issue to be taken care of is the proper han-
dling of cases when N > 1 disconnected closed sub-
systems are present in the model. In this case, the ba-
sis of the nullspace will contain N orthonormal vec-
tors, but there is no guarantee that the non-zero entries
of one of them will only refer to one sub-system. The
reason of this fact is that the orthonormal basis of the
nullspace is not unique, as other perfectly valid bases
can be found by taking one and multiplying its vectors
by an orthogonal matrix, i.e., obtaining a basis which
is rotated with respect to the previous one. It is then
possible that the basis vectors which are obtained from
the SVD decomposition are linear combinations of the
ones that each refer to one singular sub-system.

However, once that these basis vectors v1, . . . ,vN

have been found for the null space, obtaining vec-
tors whose non-zero entries point to one sub-system
is fairly straightforward, by means of a pivoting algo-
rithm. The idea is to look for linear combinations of
the originally found vectors that have the least possi-
ble number of non-zero entries. A possible sketch of
the algorithm is:

1. Build the matrix M = [mi, j] = [v1 v2 . . . vN ].

2. Look for the rows with more than one element
having absolute value greater than the threshold;
if none are found, stop.

3. If at least row one is found, select among them
the elements mi, j and mi,k which have the largest
absolute value, such that |mi, j| ≥ |mi,k|.

4. Subtract column j multiplied by mi,k/mi, j from
column k.

5. Go to step 2.

When the algorithm terminates, the elements above
threshold of each column of M correspond to the sin-
gular equations of just one sub-system.

Last, but not least, it is essential to point out that
the proposed analysis must be performed on the full
initialization problem (13), prior to any optimization
such as alias elimination, symbolic simplification, and
BLT partitioning of the problem. Such optimizations
make it easier and more efficient to solve the prob-
lem from a numerical point of view, but effectively de-
stroy the structural information that is required to issue
meaningful diagnostic errors to the end user.

For example, equations (4) could be used to stat-
ically determine that the initial values of the mass
derivatives are zero, so these equations could be elimi-
nated from the set of initial equations and all instances
of dMi

dt could be replaced by zeros in equation (1). Ob-
viously, this makes it impossible to point out to the
root cause of the problem, which lies in the equations
(4). It is of course possible to first try solving the prob-
lem with all optimizations active, and only if that fails,
generate the Jacobian Fz of the full problem and eval-
uate it using the values of the unknowns thus found.

As a final remark, although these methods can be
fairly expensive in terms of CPU load, the computa-
tion is only performed once after the initialization has
failed, and a waiting time of a few seconds (or even of
a minute or two) is largely preferrable to quickly get-
ting diagnostic output that gives no meaningful infor-
mation in order to trace the root cause of the problem.

5.2 High-level error diagnostics for the user

It is possible to infuse in the model additional expert
knowledge from the modeller, which can further help
the end user to identify the root cause of the singu-
larity. In the case under consideration, thanks to the
analysis carried out in Section 2, the expert library de-
veloper knows that a bad choice of steady-state ini-
tial equations will lead to a singular problem, in which
those equations will form a singular sub-system. It
would then be possible to annotate those equations
with meaningful error messages, that will be reported
to the end-user in case they are found to be part of such
a singular sub-system, e.g.:

initial equation

der(M) = 0
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annotation(PartOfSingularSystemError =

"Ill-posed initial conditions for closed

system.\n Please connect a

ClosedSystemInitializer component to

the system to completely specify the

initial state");

Instead of just reporting the raw set of equations
which form a singular subsystem, the tool could report
their associated error annotation strings, that would
help even an inexperienced user to fix the problem
quickly. A hot link to the documentation of the
ClosedSystemInitializer, e.g. marked-up using
a modelica:// URL, could lead with one click to a
documentation page that explains the problem in more
detail, and possibly even link to this paper on the Web
for further information. Note that annotations on equa-
tions are allowed by the Modelica language grammar,
though they have never been used so far for any defi-
nite purpose.

5.3 Application to other cases

The mechanism proposed in this Section could also
be used for diagnostic purposes in other situations that
suffer of the same syndrome, namely, a sub-set of the
system equations being singular due to the system-
wide structural issues.

A first example is models of thermo-hydraulic sys-
tems with constant density fluid, which is a modelling
assumptions sometimes used if the working medium
is liquid and one is not interested in the very fast pres-
sure dynamics, nor in the thermal expansion and buoy-
ancy effects. In this case, the sets of equations (1) and
(4) are empty, and all the mass balance equations of
the control volumes that make up the system are con-
tained in set (2). The linear combination of equations
mentioned in Section 2 still yields 0 = 0, so the sys-
tem is singular. In this case, however, the singular-
ity does not involve the initial equations, so both the
initialization problem and the simulation problem are
singular. An annotation could then be applied to the
static mass balances of the components using incom-
pressible fluid, e.g. with error message "Closed sys-
tem with constant density fluid yields singular system
of equations. Please add a component such as pres-
surizer or accumulator to determine the pressure in the
circuit uniquely".

Another example is the well-known case of elec-
trical circuits with missing ground component. In
this case, the system of dynamic equations is singu-
lar because the pin voltages are not uniquely deter-
mined. Various solutions have been proposed, based
on structural analysis, to issue meaningful diagnos-

tic messages to the end user. Using the numerical
method proposed in this paper, it would suffice to
add the PartOfSingularSystemError annotation to
the equation v = p.v - n.v contained in the OnePort
partial model, e.g. with error message "Electrical cir-
cuit without ground connection yields singular system
of equations. Please connect a ground component to
the circuit where appropriate".

6 Conclusions

Models of closed thermo-hydraulic circuits can lead to
singular steady-state initialization problems due their
system-wide structure. This paper proposes a way
to solve this problem in an object-oriented fashion,
by means of an additional component that helps to
uniquely determine the initial conditions of the sys-
tem.

A method based on the analysis of the null space
of the Jacobian of the initialization problem is also
proposed to provide the end user with meaningful,
high-level, context-relevant diagnostics, by suitably
annotating those equations that might potentially lead
to such singular problems. This allows the library
designer to infuse expert knowledge about potential
system-level issues, helping inexperienced end-users
to pin-point the root cause of the problem easily, con-
trary to the current state-of-the-art with existing tools,
that will output hard-to-understand low-level numeri-
cal diagnostic messages.

The proposed method for high-level singular system
diagnostics can also be applied to other cases, such as
closed circuits with constant-density fluid, or electrical
circuits lacking a ground connection.
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Abstract

An evolution of the recently introduced operator
homotopy() is proposed, which further improves the
solution of difficult initialization problems. The back-
ground and motivation for this approach are discussed
and it is demonstrated how to apply it for electrical
and fluid systems. The key difference to the earlier ap-
proach is the supporting theory, which guarantees that
the method converges globally with probability one.

Keywords: Initialization, DAE, homotopy, nonlin-
ear equations

1 Introduction

A dynamic model describes how the state variables
and thus the entire system behave over time. The state
variables define the current condition of the model
and have to be initialized when simulation starts. For
this purpose, Modelica provides language constructs
to define initial conditions such as initial equation sec-
tions [12]. The resulting constraints and all equations
and algorithms that are utilized during the simulation
form the initialization problem. Based on its solution,
all variables, derivatives and pre-variables are assigned
consistent values before the simulation starts.

Mathematically, the resulting problem is an initial
value problem for a differential algebraic equation sys-
tem (DAE) with dim(f) = nx+nw equations:

f(ẋ,x,w, t) = 0, x(t) ∈ Rnx, w(t) ∈ Rnw, t ∈ R

Here, x is the vector of state variables and w is the
vector of algebraic unknowns. For simplicity of the
discussion, we assume that the DAE has no hybrid part
and is index-reduced, i.e. it has index 1, which means
that the following expression is regular:[

∂ f
∂ ẋ

∂ f
∂w

]

Note that all the following results still hold for hybrid,
higher index DAEs with small adaptations. Initializa-
tion means to provide consistent initial values for ẋ0,
x0, w0 so that the DAE is fulfilled at the initial time t0.
Since these are 2 ·nx+nw unknowns and the DAE has
nx + nw unknowns, additional nx equations must be
provided which are called "initial equations" in Mod-
elica:

g(ẋ0,x0,w0, t0) = 0, dim(g) = nx

The most often used initial equations are:

g(ẋ0,x0,w0, t0) = ẋ0 = 0

that is, steady-state initialization.
The result is usually a nonlinear system of algebraic

equations, which has to be solved numerically. This
does not always work right away for industrial prob-
lems as the commonly employed gradient-based lo-
cal algorithms [2, 10, 3], such as the damped Newton
method, provide local convergence only (even when
using globalizations such as trust regions).

Modelica allows users to describe any model math-
ematically, which makes it highly flexible and pow-
erful for simulation of heterogeneous multi-domain
physical systems. However, this also means that no
knowledge of the mathematical character of the prob-
lem equations can be introduced into the solver. In-
stead, an algorithm has to work on a general numerical
problem (in contrast to domain-specific algorithms for
nonlinear problems).

As a result, the success to solve initialization prob-
lems of state-of-the-art implementations of Modelica
tools depends on the choice of iteration variables and
the guess values for these variables defined with the
start attribute. As a result it may become difficult
for a library developer to provide a robust initializa-
tion capability.

Since a model becomes useless whenever initializa-
tion fails, and the current state-of-the-art is not fully
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satisfactory in this regard, we conclude that more re-
liable and robust methods are needed for a wider ap-
plication of the Modelica modeling language by prac-
titioners.

In a previous paper, we introduced a homotopy
operator in [19]. It maps homotopy(actual =
..., simplified = ...) to λ · actual +(1− λ ) ·
simpli f ied. Successful application examples were
given for electronic circuits and multibody systems
in [19] and for power plants in [1].

This homotopy operator is typically used to simplify
governing equations of components, sweep boundary
conditions and the like. The advantages of this ap-
proach are that the concept is simple and easy to under-
stand. Also, it was successfully tested on relevant test
cases. It has certain limitations however, in particular
that the homotopy map is hard-wired into the language
specification, that convergence is based on heuristics,
and that a naive application can lead to singular prob-
lems (e.g., with a singular Jacobian at λ = 0).

The objective of this contribution is thus to pro-
pose a more powerful homotopy operator, which can
be used as the original one, enables a declarative def-
inition of arbitrary homotopy maps, and allows global
convergence via probability-one homotopy, an estab-
lished method from topology.

2 Theory

2.1 Definitions

We first define a generic nonlinear algebraic problem
with a vector of unknowns z = [ẋ0;x0;w0] and residu-
als F = [f;g].

Then, a homotopy is a continuous deformation from
one map to another via the homotopy map ρ(z,λ ).
The homotopy map is a map with one higher dimen-
sion as it additionally depends on λ , the homotopy
or continuation parameter. The corresponding under-
determined system of equations ρ(z,λ )= 0 can be fol-
lowed using continuation algorithms.

Homotopy maps are carefully constructed such that
for one value of the homotopy parameter, e.g., λ = 0,
the equation system is easy to solve and for another
value, e.g., λ = 1, the equation system is the one of
interest, i.e., F(z) = 0.

Then, the root finding procedure works a follows.
A curve (z,0) is followed from ρ(z,0) = 0 along
ρ(z,λ ) = 0 until λ = 1 as ρ(z,1) = F(z). This curve
{z|ρ(z,λ ) = 0} is called the root curve ρ−1(0).

Root curves have to be followed numerically and

therefore they must not contain singularities such as
bifurcations or divergence to ±∞. Also, they must not
be closed loops without crossing λ = 1 (so called iso-
lae).

2.2 Probability-one homotopy

It is possible to prove that a problem satisfies these
requirements using a particular type of homotopy
method called probability-one homotopy. This method
allows to avoid running into one of the ill-posed traces
and thus delivers global convergence. It requires pos-
ing the problem equations F and ρ in a particular fash-
ion and was used with vast success in domain-specific
simulation to resolve the convergence issues motivat-
ing this paper, in particular in analog electronic circuit
simulation [14, 24, 16].

Informally, the key elements of probability-one ho-
motopy are

• A well-defined random element to guarantee the
full rank of the Jacobian matrix of ρ ,

• A boundedness argument, and

• An embedding, which essentially corresponds to
the simplifications of component governing equa-
tions applied in [19, 1].

In order to summarize the supporting theory,
transversality to zero [26] is defined.

Definition 1. Let U ⊂ Rm and V ⊂ Rn be open sets,
and let ρ : U× [0,1)×V →Rn be a C2 map. ρ is said
to be transversal to zero if the Jacobian matrix ∂ρ has
full rank on ρ−1(0).

Here, n = nx+ nw holds. In the definition, an ad-
ditional parameter dependency on a random vector
a ∈ Rn is shown. This is the random element men-
tioned above. The Jacobian matrix of ρ is ∂ρ . It is a
n× (2n+1) matrix and can be written as concatena-
tion of three sub-matrices.

∂ρ =
[

∂ρ

∂a
∂ρ

∂λ

∂ρ

∂z

]
(1)

Similarly to ρ−1(0) introduced above, we can now
consider ρ−1

a (0) as a set of root curves. Formally, we
define it as follows.

ρ
−1
a (0) = {(a,λ ,z) |a ∈ Rn,

0≤ λ < 1,

z ∈ Rn,

ρ (a,λ ,z) = 0}
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The following theorem, which is based on differen-
tial geometry and the Parametrized Sard’s Theorem,
is a generic formulation of probability-one homotopy
methods.

Theorem 1. Let F : Rn→ Rn be a C2 map, ρ : Rn×
[0,1)×Rn→Rn a C2 map, and ρa (λ ,z) = ρ (a,λ ,z).
Suppose that

1. ρ is transversal to zero, and, for each fixed a ∈
Rn,

2. ρa (0,z) has a unique nonsingular solution z0,

3. ρa (1,z) = F(z).

Then, for almost all a∈Rn, there exists a zero curve Γa

of ρa emanating from (0,z0), along which the Jacobian
matrix ∂ρa has full rank. If, in addition,

4. ρ−1
a (0) is bounded, then Γa reaches a point

(1,z∗) such that F(z∗) = 0. Furthermore, if
∂F(z∗) has full rank, then Γa has finite arc length.

This theorem is due to Watson [26] and is therefore
called Watson’s Theorem in this work. In order to ap-
ply this theorem, homotopy maps are constructed to
meet prerequisites (2) and (3) by design. Prerequisite
(1) may be trivial to verify for some homotopy maps
and harder for others, in which λ and a are involved
nonlinearly. According to [27], prerequisite 4 may be
hard to verify and often is a “deep result” as (1)–(4)
holding implies the existence of a solution to F(z) = 0.

A remark is in order on the statement of probabil-
ity one. This characteristic of the theorem is inherited
from the Parametrized Sard’s Theorem and is moti-
vated by probability of failure being 0 in the sense of a
Lebesgue measure. Figuratively speaking, this means
that the set of points leading to failure forms at most
an n− 1 dimensional manifold inside n-dimensional
space, that is, it does not occupy any “volume”.

Informally, Watson’s Theorem can be understood as
a statement on the probability of singularities along a
continuation path. A bifurcation for instance may oc-
cur on a problem fulfilling this theorem. But a random
variation of the parameter vector a will be sufficient
to avoid the singularity on a following attempt (with
probability one). On problems with more than one so-
lution, this choice of a determines what solution the
homotopy map converges to.

A number of additional theorems on probability-one
homotopies are reviewed in [18]; herein, the given one
shall suffice.

3 Implementation in Modelica Tools

3.1 Convergence proofs

For applications, the key issue is to show how a prob-
lem satisfies the given theorem. While some appli-
cations successfully utilize general physical principles
such as conservation of energy (see [23] for instance),
research by the authors [18] shows that it is not possi-
ble to generalize such proofs to arbitrary physical do-
mains. This was mentioned in reference [19] already.
Instead, problem-specific arguments are used in this
contribution. They are introduced together with ho-
motopy maps below.

Conceptually, they work via a general no-gain prop-
erty, as exposed by, e.g., electric resistors, diodes,
and transistors, and via saturation (an amplifier for in-
stance has a constant gain only until the amplified sig-
nal reaches the supply voltage).

3.2 Declarative definition of arbitrary homo-
topy maps

Modelica is meant to allow a declarative problem de-
scription. That is one in which no information has to
be provided on how to solve the problem. Instead, the
problem itself is described. The solution algorithms
are encapsulated in the language compilers and simu-
lators.

In order to be useful for practitioners, the notion of
problem-specific homotopy maps has to be integrated
into simulation tools. The goal was thus to extend the
declarative description to homotopies.

Using Modelica, one structures a model in terms of
classes and objects. Therefore, it is proposed to spec-
ify a homotopy map ρa (z,λ ) on the level of the equa-
tion set of the model classes, too.

In order to implement the suggested approach, it
is proposed to utilize a built-in operator, lambda()1.
Any expression involving λ , which describes the
problem-specific homotopy map, can be written using
the operator lambda(). It is used for each occurrence
of variable λ . This operator may return a value in [0,1]
during the numeric solution of algebraic equation sys-
tems and strictly 1 during the generation of simula-
tion results. If the operator lambda() is used with-
out an argument then a single-phase homotopy map
is implemented. If integer arguments are used then a

1Note that the previously proposed operator can be expressed
using this operator. Furthermore, except for the cases with multi-
stage homotopies, the previously proposed homotopy-operator
can be used since lambda()=homotopy(simplified=0,
actual=1).
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homotopy map is implemented, which consists of n
phases, where n is the maximum over all arguments
of the operator lambda(). For example, when using
lambda(1) and lambda(2), then a homotopy map is
implemented in which λ1 values are first swept from 0
to 1. After this is finished, λ2 values are swept from
0 to 1. λ has to be swept from 0 to 1 during these se-
quential continuation runs of λi in order to infuse the
random element required by theory2.

In order to simulate a given model efficiently, Mod-
elica tools may apply symbolic preprocessing steps. A
step that has to be considered in the context of homo-
topy is equation sorting. A typical example of a sort-
ing algorithm used for equation-based, object-oriented
modeling languages is the Block Lower Triangular
(BLT) transformation [6], using a graph-theoretical al-
gorithm by Tarjan [21]. Conceptually speaking, the
continuation must be applied to the equation set as a
whole. That is, all the equations that are either directly
or indirectly influenced by the homotopy operator have
to be solved simulatenously.

Note that if any of the probability-one homotopy
theorems, such as the one introduced before, is ful-
filled, then a large fraction of potential problems is
avoided. For example, no singular Jacobian matrix at
λ = 0 can arise.

3.3 Test implementation

In order to validate the methodology, a test implemen-
tation was developed. It was based on the Modelica
compiler Dymola R© in versions 7.3 and 6.1. This test
implementation utilized the LOCA continuation algo-
rithms of Trilinos [8] and had the following properties.

• It provided three options for the treatment of the
suggested homotopy operator. Normally, it was
expanded according to a homotopy map. Al-
ternatively, reduced equation sets were obtained
by inlining the homotopy expression assuming
λi = 1.0 or λi = 0.0. In the latter case, maxi-
mum structural simplification of the equation sys-
tem resulted.

• The user was able to manually prescribe whether
to use homotopy initialization or not. This was

2When using the homotopy operator with integer arguments,
several distinct continuation runs have to be started as the trajec-
tories will in general not be smooth at the joining point of traces
in any λi and λi+1 . In general, the trajectories will be continuous
but not differentiable. Even if a continuation algorithm manages
to “hop over” such a joining point, starting continuation separately
may be more efficient.

an important feature for library development and
debugging, and may be useful for users, too.

• Verbose information on the homotopy was op-
tionally provided, which was useful for library
development and debugging. In particular, the
homotopy traces were visualized. Like this, it
was possible to reconstruct what happened dur-
ing the solution of the simplified problems and
the homotopy transformation.

Several implementation aspects such as automatic
scaling and solver configuration via XML files have
been described in [20, 18] and equally apply to this
solver implementation.

4 Application Examples

As mentioned in the introduction, the use of
probability-one homotopy is particularly well-
developed in the area of analog electronic circuit
simulation [23, 24, 25, 14, 13, 9, 7, 22, 11, 17, 29, 16].
First application examples are thus based on this
work.

4.1 Operational amplifier µA741

The first example is an operational amplifier, which
was discussed in [19] already. It uses bipolar junc-
tion transistors. Results are presented on probability-
one homotopy using two different homotopy maps, the
variable stimulus and the variable gain method. They
are introduced next.

4.1.1 Variable Stimulus

Melville et al. [14] proposed the Variable Stimulus
Probability-One Homotopy. Its homotopy map is as
follows.

ρ (z,λ ) = (1−λ )G(z−a)+F(z,λ ) (2)

Here, the residual equations F(z,λ ) are posed in the
nodal analysis form [4] and the node voltages of the
nonlinear elements are multiplied by λ . Therefore, the
influence of the nonlinear elements is removed from
the circuit at λ = 0.0 and a linear circuit has to be
solved. The matrix G defines the leakage from voltage
sources of value a. These voltage sources and the as-
sociated vector a provide the random element needed
in the probability-one approach. The leakage matrix G
is a diagonal matrix with coefficients Gleak.
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In order to substantiate that the Variable Stimulus
Homotopy is globally convergent, Melville et al. [14]
utilize Watson’s Theorem as stated in section 2.2.
Their arguments are as follows.

• The homotopy map (2) is twice continuously dif-
ferentiable if and only if the device models used
to assemble the residual equations in nodal form
F(z) are sufficiently smooth. It is assumed that
this is fulfilled.

• The homotopy map ρ is transversal to zero as
∂ρ/∂a in (1) is a diagonal matrix with entries
−(1−λ ) · Gleak. For λ < 1, this matrix has full
rank.

• ρa(z,0) has a unique non-singular solution, be-
cause for λ = 0 the circuit consists of resistors
and voltage sources only. Such a linear problem
has a unique non-singular solution.

• ρa(z,1) = F(z) because the leakage circuitry is
removed completely at λ = 1 and each nonlinear
device model is stimulated by the actual voltage.

• The zero set ρ−1
a (0) is bounded due to the no-

gain property of the actual circuit and any par-
tially stimulated circuit with leakage circuitry.

Additionally, Melville et al. [14] make the engineer-
ing assumption that the Jacobian of ρa has full rank at
the solution z∗.

This Variable Stimulus Homotopy can be imple-
mented on analog circuits using the proposed homo-
topy operator. First, a model of a NPN bipolar junction
transistor is provided (see listing 1).

Here, three functions iCollectorNpn(),
iEmitterNpn(), and iBaseNpn() are used to
establish the collector, emitter, and base currents
respectively. In order to implement the leakage
circuitry, a model instance of a class is attached to
each connection set (see listing 2).

Note the negative sign in front of the summation of
the currents of the pins. This is necessary as the nodal
analysis form [4] summarizes the currents going into
the components attached to a node.

According to the experiments of Melville et al. [14],
the solution trajectories of this homotopy are “much
smoother” than those of the generic homotopy maps
mentioned in section 2.1 of [19]. Additionally, “the
action is spread out evenly over all values of λ”.

4.1.2 Variable Gain

Melville et al. [14] also proposed the Variable Gain
homotopy, which is similar to the Variable Stimulus
homotopy but addresses bipolar transistors differently.
Instead of multiplying the terminal voltages of all non-
linear elements by λ , the forward current gain αF and
the reverse current gain αR are multiplied by λ . The
simplified problem with αF = 0 and αR = 0 therefore
consists of resistors, voltage sources, and diodes only.

ρ (z,λ ) = (1−λ )G(z−a)+F(z,λα) (3)

Again, the residual equations F(z,λα) are posed in
the nodal analysis form [4]. Due to the diodes, the
leakage circuitry is not necessary to avoid floating
nodes. However, it is still included in this homotopy to
provide the random element to avoid bifurcations [14].

Originally, the Variable Gain homotopy was im-
plemented as a two-stage procedure. First, the Vari-
able Stimulus homotopy was used to solve the λ = 0
problem of the Variable Gain homotopy. Then, con-
tinuation was started on the Variable Gain homotopy
map (3) and the actual problem was solved. Today,
Variable Gain Homotopy is commonly understood as
what was originally labeled the “hybrid approach” in
reference [14]. A local gradient-based algorithm is
used to solve the λ = 0 problem and the continuation is
applied directly on the Variable Gain homotopy map.
The robust convergence of a local gradient-based al-
gorithm on the λ = 0 problem is justified by Melville
et al. [14] in case of norm-reducing algorithms (algo-
rithms using so-called globalizations) by the work of
Duffin [5]. The single-stage procedure is “two to three
times faster than using homotopy alone” [14].

In order to show that the Variable Gain Homotopy
is globally convergent, Melville et al. [14] again utilize
Watson’s Theorem. Their arguments are as follows.

• As before, the homotopy map (3) is twice con-
tinuously differentiable if and only if the device
models used to assemble the residual equations in
nodal form F(z) are sufficiently smooth. Again,
it is assumed that this is fulfilled.

• The homotopy map ρ is transversal to zero as
∂ρ/∂a in (1) is a diagonal matrix with entries
−(1−λ ) · Gleak. For λ < 1, this matrix has full
rank.

• ρa(z,0) has a unique non-singular solution, be-
cause for λ = 0 the circuit consists of resistors,
voltage sources, and diodes only. Duffin [5]
proved that such a problem has a unique solution.
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1 model NPN
2 // Connectors
3 Modelica.Electrical.Analog.Interfaces.Pin C "Collector";
4 Modelica.Electrical.Analog.Interfaces.Pin B "Base";
5 Modelica.Electrical.Analog.Interfaces.Pin E "Emitter";
6
7 // Parameters
8 parameter Real af = 0.995 "Forward current gain";
9 parameter Real ar = 0.5 "Reverse current gain";

10
11 equation
12 C.i = iCollectorNpn(
13 lambda()*B.v, lambda()*C.v, lambda()*E.v, af, ar);
14 E.i = iEmitterNpn(
15 lambda()*B.v, lambda()*C.v, lambda()*E.v, af, ar);
16 B.i = iBaseNpn(
17 lambda()*B.v, lambda()*C.v, lambda()*E.v, af, ar);
18 end NPN;

Listing 1: NPN transistor model using variable stimulus

• ρa(z,1) = F(z) because the leakage circuitry is
removed completely at λ = 1 and each nonlin-
ear device model uses the nominal forward and
reverse current gains.

• The zero set ρ−1
a (0) is bounded as Melville et

al. [14] showed. This is due to the results of [28],
which showed that bipolar transistors exhibit the
no-gain property as long as the absolute values of
the current gains remain less than or equal to one.

This Variable Gain Homotopy can be implemented
on analog circuits using the proposed homotopy oper-
ator. Again, a model of a NPN bipolar junction tran-
sistors is given (see listing 3).

As before, three functions iCollectorNpn(),
iEmitterNpn(), and iBaseNpn() are used to estab-
lish the collector, emitter, and base currents respec-
tively. Instead of the terminal voltages, the current
gains are multiplied with λ . The leakage circuitry
can be implemented using model instances of the class
listed in section 4.1.1 and is not repeated here.

According to Melville et al. [14], this is their fastest
converging homotopy map. In particular, “the time re-
quired to solve a system of operating point equations
with this homotopy [map] is not more than two to three
times slower than the time required to solve the same
equations by less widely convergent methods”.

4.1.3 Results

Figure 1 shows robustness profiles [20] of both
homotopy-based solvers and a local gradient-based al-
gorithm [15] for comparison. A robustness profile, in
essence, shows the probability of convergence over the
quality of a start iterate. The probability of conver-
gence Pconv is estimated by sampling. The quality of
the start iterate in turn is measured by a scaled dis-
tance of the start iterate z̃ to the next solution s̃ j. Al-
gorithms, which deliver constantly full probability of
convergence, i.e., Pconv = 1, independently of the qual-
ity of the start iterate, are called globally convergent
herein.

4.2 Inverter Chain

This example involves Metal-Oxide-Semiconductor
Field-Effect Transistors (MOSFETs). The circuit it is
based on is not found in practical devices, however, it
can be scaled via the number of inverters in the chain.
For the results discussed here, n = 50 inverters were
used. For MOSFETs, the ATANSH homotopy is cur-
rently state of the art.

4.2.1 Arc-Tangent Shichman-Hodges

The Arc-Tangent Shichman-Hodges or ATANSH
model was proposed by Roychowdhury and
Melville [16, 17] for probability-one homotopy
and large-scale integrated circuits of metal-oxide
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1 model ElectricalNode
2 // Connectors
3 parameter Integer n=0 "Number of pins"
4 annotation(Evaluate=true, Dialog(connectorSizing=true));
5 Modelica.Electrical.Analog.Interfaces.Pin pin[n] "Pin array";
6
7 // Parameters
8 parameter Real Gleak "Leakage";
9 parameter Real a "Random source voltage";

10
11 equation
12 0 = -sum(pin[:].i) + (1.0 - lambda())*Gleak*(pin[1].v-a);
13 for i in 1:n-1 loop
14 pin[i].v = pin[i+1].v;
15 end for;
16 end ElectricalNode;

Listing 2: Electrical node class
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Figure 1: Robustness profiles [20] for Operational
Amplifier 741 (60/60/1000 samples per bin)

semiconductor field-effect transistors. Conceptually,
it is similar to the Variable Gain homotopy in that it
varies key nonlinearity in component models. The
ATANSH model uses two homotopy parameters λ1
and λ2. Parameter λ1 influences the drain–source
driving point characteristic without affecting the gain.
Parameter λ2 in turn controls the transfer characteris-
tic, i.e., the gain, without affecting the driving point
characteristic.

ρ (z,λ ,λ1,λ2) = (1−λ )G(z−a)+F (z,λ1,λ2) (4)

The ATANSH MOS homotopy model is a single-
piece model. The drain–source current Ids is given via

the following equation [16].

Ids =
β

2
[
V ′gs
(
Vgb,Vdb,Vsb,λ2,λ1

)]2 (5)

·h(Vdb−Vsb,λ1)

Roychowdhury and Melville [16, 17] remark that
their probability-one homotopy map is a heuristic. In
an attempt to justify its success, Watson’s Theorem as
stated in section 2.2 is considered.

• The homotopy map (4) is twice continuously dif-
ferentiable if and only if the device models used
to assemble the residual equations in nodal form
F(z) are sufficiently smooth. For the given MOS
model this is fulfilled.

• The homotopy map ρ is transversal to zero as
∂ρ/∂a in (1) is a diagonal matrix with entries
−(1−λ ) · Gleak. For λ < 1, this matrix has full
rank.

• ρa(z,0) has a unique non-singular solution, be-
cause for λ = 0 the circuit consists of resistors,
voltage sources, and simplified MOS transistors
only. At λ1 = 0 and λ2 = 0 the simplified MOS
devices become two-terminal almost-linear resis-
tors. It is a reasonable engineering assumption
to assume that such a problem has a unique non-
singular solution.

• ρa(z,1) = F(z) because the leakage circuitry is
removed completely and each MOS device model
is restored to its original form.
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1 model NPN
2 // Connectors
3 Modelica.Electrical.Analog.Interfaces.Pin C "Collector";
4 Modelica.Electrical.Analog.Interfaces.Pin B "Base";
5 Modelica.Electrical.Analog.Interfaces.Pin E "Emitter";
6
7 // Parameters
8 parameter Real af = 0.995 "Forward current gain";
9 parameter Real ar = 0.5 "Reverse current gain";

10
11 equation
12 C.i = iCollectorNpn(
13 B.v, C.v, E.v, lambda()*af, lambda()*ar);
14 E.i = iEmitterNpn(
15 B.v, C.v, E.v, lambda()*af, lambda()*ar);
16 B.i = iBaseNpn(
17 B.v, C.v, E.v, lambda()*af, lambda()*ar);
18 end NPN;

Listing 3: NPN transistor model using variable gain

• The zero set ρ−1
a (0) is bounded due to the no-gain

property of the actual circuit and the simplified
one with leakage circuitry and simplified MOS
device models.

Additionally, one can make the engineering as-
sumption that the Jacobian of ρa has full rank at the
solution z∗.

This MOS model for probability-one homotopy can
be implemented using the proposed homotopy oper-
ator. Listing 4 illustrates this on an n-channel MOS
transistor.

Function idsNchannel() implements equation (5)
for this type of transistor. Note how the lambda()
operator is used as described in section 3.2 with an in-
teger argument. As Roychowdhury and Melville [16]
first ramp λ2 and then λ1, their homotopy is imple-
mented using λ2 =lambda(1) and λ1 =lambda(2).
The leakage circuitry can be implemented using model
instances of the class listed in section 4.1 and is not re-
peated here.

Roychowdhury and Melville [16, 17] report that lo-
cal gradient-based algorithms are two to three times
faster than the ATANSH homotopy on average if they
converge. They additionally provide data to show
however that the ATANSH homotopy took “consider-
ably less time to obtain the DC operating point of the
circuit than conventional methods took to give up” on
their test cases. This illustrates that the extra wall time
is an acceptable price to pay for robust convergence on
large-scale problems.

4.2.2 Results

See figure 2 for results on using probability-one ho-
motopy methods3 and on using local gradient-based
algorithms in comparison.
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Figure 2: Robustness profiles [20] for Inverter Chain
(60/1000 samples per bin)

3The ATANSH homotopy map cannot be compared to the vari-
able gain or variable stimulus homotopy maps. The reason is that
they are specific to a type of transistor, either the MOSFET or the
BJT.
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1 model NMOS
2 // Connectors
3 Modelica.Electrical.Analog.Interfaces.Pin G "Gate";
4 Modelica.Electrical.Analog.Interfaces.Pin D "Drain";
5 Modelica.Electrical.Analog.Interfaces.Pin S "Source";
6 Modelica.Electrical.Analog.Interfaces.Pin B "Bulk";
7
8 equation
9 // Drain-source current according to ATANSH

10 D.i = idsNchannel(G.v-B.v, D.v-B.v, S.v-B.v,
11 lambda(1), lambda(2));
12 S.i = -D.i;
13 // Gate, source
14 G.i = 0;
15 B.i = 0;
16 end NMOS;

Listing 4: MOS-FET model using ATANSH

4.3 Air distribution network

In this section, a basic but robust probability-one ho-
motopy for thermo-fluid dynamic applications with
unidirectional flow is introduced and applied to an Air
Distribution test case. This is a thermo-hydraulic ex-
ample with pipes transporting gases under wall friction
and heat transfer, heat loads in cabin volumes, fans and
so on. More details are given in [18].

4.3.1 Unidirectional Thermofluid Probability-
One Homotopy

The notion of a nodal approach for probability-one ho-
motopy is adopted. Therefore, the mass and energy
balances are addressed in this context. Pressure is a
potential variable and thus the established approach
of leakage circuitry used in sections 4.1.1, 4.1.2, and
4.2.1 can be applied trivially. Therefore, the compo-
nents implementing the mass balance in the homotopy
map are written in nodal form as follows.

ρhyd (zhyd,zth,λ ) = (6)

(1−λ )Ghyd (ahyd− zhyd)+Fhyd (zhyd,zth,λ )

The subscript in ρhyd (zhyd,zth,λ ) refers to the mass
balance as hydraulic part. Consequently, zhyd = p,
i.e., the vector of unknowns of this part of the homo-
topy map is the vector of unknown pressures. Ghyd
is the hydraulic leakage, ahyd is the vector of pres-
sure values introducing the random element required
by probability-one homotopy. The vector of residual
equations Fhyd (zhyd,zth,λ ) for the hydraulic part are

the mass balances, that is the sums of the connection
set mass flow rates. Of course these residual equa-
tions also depend on zth, the vector of thermal un-
knowns. These can be either temperatures or specific
enthalpies. As it does only matter to the model of ther-
modynamic properties which one is used and all equa-
tions can be transformed accordingly, it is assumed
without loss of generality that they correspond to tem-
perature, i.e., zth = T.

For the thermal part the situation is more involved.
As the temperatures or specific enthalpies zth are not
potentials (note that their values are not equal over all
connectors in a connection set in the general case), a
mechanistic application of the concept to the energy
balance will fail. A modified nodal homotopy map
component for the energy balance is written in the di-
mension of a specific enthalpy. It can equally be used
with and without conduction (analogeous to the leack-
age in the hydraulic part). .

ρth (zhyd,zth,λ ) =(1−λ )Gth (ath− zth) (7)

+Fth (zhyd,zth,ath,λ )

Here, the thermal node value zth is used in the spe-
cific enthalpy computation. The mass flow rate leav-
ing the connection set is the sum of the mass flow rates
over the outlet connectors plus the mass flow rate due
to leakage in equation (6). The superscripts ± on the
mass flow rates indicate that they have been limited to
a positive or negative epsilon flow using a C2 regular-
ization.
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The residual equations involving λ are as follows.

Fth (zhyd,zth,ath,λ ) =(1−λ )hpT (ahyd,ath) (8)

+λ

∑
inlets

ṁ+
i ·hi

∑
inlets

ṁ+
i

−hpT (zhyd,zth)

The homotopy map has been established in terms of
the connection set equations. Optionally, one may cre-
ate embeddings in the device models. For wall friction
correlations, a convex combination of a secant approx-
imation through some operating point and the actual
wall friction correlation was successfully tested. Heat
transfer may be established equally based on secant
approximations or even zero heat transfer at λ = 0.

In order to substantiate that the thermo-fluid homo-
topy is globally convergent, theorem 1 (Watson’s The-
orem) is applied. The arguments are as follows.

• The homotopy map based on components (6)
and (7) is twice continuously differentiable if and
only if the device models used to assemble the
residual equations in nodal form F(z) are suffi-
ciently smooth. It is assumed that this is fulfilled.

• The homotopy map ρ is transversal to zero as
∂ρ/∂a with a = [ahyd;ath] in (1) contains a di-
agonal matrix with entries−(1−λ ) ·G with G =[
Ghyd ;Gth

]
if a conductance is used. If the con-

ductance is not used, i.e., Gth = 0, then ∂ρ/∂a
contains −(1−λ ) ·Ghyd for the hydraulic part.
For the thermal part, ∂ρ/∂a contains (1−λ )cp.
In any case ∂ρ/∂a and the Jacobian (1) have full
rank for λ < 1.

• The homotopy map ρa(z,0) has a unique non-
singular solution, because for λ = 0 the circuit
consists of adiabatic linear pressure loss models
and boundary conditions only. Such a problem
has a unique non-singular solution.

• ρa(z,1) = F(z) because the balance equations are
restored completely at λ = 1 and each device
model exposes the actual behavior.

• For the hydraulic part, the zero set ρ−1
a (0) is

bounded due to the no-gain property of the pres-
sure loss correlations. See [18] for further details.
For the thermal part, the zero set is bounded due
to the Second Law of Thermodynamics4.

4At a first glance, one could argue that going from λ = 0 to
λ = 1 is not necessarily “forward” in time. However, the Second
Law is used here on a set of steady-state problems. Therefore, no
issues arise from the “direction” of time.

The code for a model class to be instantiated in each
connection set is given in listing 5. This node model
implements the homotopy map on the thermodynamic
balance equations of mass and energy, in particular,
equation (6) in lines 30 and 31 and equation (7) in
lines 42 to 47. The implementation of the device mod-
els is straight-forward. As an example, in listing 6,
the steady-state part of a simple dynamic pipe model
is presented (the transient equations do not matter for
initialization and are thus omitted for readability).

4.3.2 Results

Figure 3 shows a robustness profile for the result-
ing unidirectional thermo-fluid dynamics probability-
one homotopy. The results illustrate that the pro-
posed homotopy map and the probability-one homo-
topy method provide robust convergence, even in light
of large variations of the start iterate and random vec-
tor.
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Figure 3: Robustness profiles for Air Distribution
(60/1000 samples per bin)

5 Conclusions

The key result is that the theoretically predicted global
convergence of probability-one homotopy can be real-
ized in practice. This can be inferred from figures 1
to 3.

The associated coercivity proofs and the construc-
tion of underlying embeddings are rather involved
however and require considerable understanding and
a substantial investment in engineering time.
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1 model ThermoFluidDynamicsNode
2 replaceable package Medium = PartialPureSubstanceMedium;
3
4 // Connectors
5 parameter Integer nInlets = 0 "Number of inlets"
6 annotation(Evaluate=true, Dialog(connectorSizing=true));
7 parameter Integer nOutlets = 0 "Number of outlets"
8 annotation(Evaluate=true, Dialog(connectorSizing=true));
9 Modelica.Fluid.Interfaces.FluidPort_a inlet[nInlets](

10 redeclare package Medium = Medium);
11 Modelica.Fluid.Interfaces.FluidPort_b outlet[nOutlets](
12 redeclare package Medium = Medium);
13
14 // Parameters
15 parameter Medium.AbsolutePressure a_hyd "Random pressure";
16 parameter Medium.Temperature a_th "Random temperature";
17 parameter Real G_hyd "Leakage in hydraulic part"
18
19 // Variables
20 Medium.AbsolutePressure p "Pressure in node";
21 SI.MassFlowRate m_flow_plus[nInlets] "Limited inlet flow";
22 equation
23 // Hydraulic part
24 for i in 1:nInlets loop
25 inlet[i].p = p;
26 end for;
27 for i in 1:nOutlets loop
28 outlet[i].p = p;
29 end for;
30 0 = (1-lambda())*G_hyd*(a_hyd - p) +
31 sum(inlet[:].m_flow) + sum(outlet[:].m_flow);
32
33 // Thermal part, no conductance
34 for i in 1:nInlets loop
35 // Hypothetical case
36 inlet[i].h_outflow = Medium.h_default;
37 end for;
38 for i in 1:nOutlets loop
39 // Actual case
40 outlet[i].h_outflow = Medium.h_pT(p, T);
41 end for;
42 0 = ((1-lambda())*Medium.h_pT(a_hyd, a_th) +
43 lambda() * sum({
44 m_flow_plus[i]*
45 inStream(inlet[i].h_outflow) for i in 1:nInlets}
46 )/sum({m_flow_plus[i] for i in 1:nInlets}) -
47 Medium.h_pT(p, T));
48 m_flow_plus[:] = f(inlet[:].m_flow, ...);
49 end ThermoFluidDynamicsNode;

Listing 5: Thermo-fluid dynamics node class
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1 model Pipe
2 replaceable package Medium = PartialPureSubstanceMedium;
3
4 // Connectors
5 Modelica.Fluid.Interfaces.FluidPort_a port_a[nInlets](
6 redeclare package Medium = Medium);
7 Modelica.Fluid.Interfaces.FluidPort_b port_b[nOutlets](
8 redeclare package Medium = Medium);
9

10 // Parameters
11 parameter SI.Length diameter "Pipe inside diameter";
12 parameter SI.Length length "Pipe length";
13 parameter SI.Length Delta "Surface roughness";
14 final parameter SI.Area heatTransferArea =
15 Modelica.Constants.pi*diameter*length;
16 parameter SI.Temperature T_amb "Ambient temperature";
17 parameter SI.Pressure dp_nominal "Nominal dp";
18
19 // Variables
20 SI.SpecificEnthalpy dh "Change of h over device"
21 SI.CoefficientOfHeatTransfer kc;
22 Real effectiveness "NTU effectiveness";
23 SI.Density rho "Upstream density";
24 SI.DynamicViscosity eta "Upstream dynamic viscosity";
25 SI.SpecificHeatCapacity cp "At constant pressure";
26 SI.ThermalConductivity lambda "Thermal conductivity";
27
28 equation
29 // Static mass balance
30 port_a.m_flow + port_b.m_flow = 0;
31
32 // Static energy balance
33 port_b.h_outflow = inStream(port_a.h_outflow) + dh;
34 port_a.h_outflow = Medium.h_default;
35
36 // Static momentum balance
37 m_flow =
38 lambda()*wallFriction_mflow_dp(dp, ...) +
39 (1-lambda())*dp/dp_nominal*
40 wallFriction_mflow_dp(dp_nominal, ...);
41
42 // Heat transfer
43 kc = heatTransfer_kc_mflow(m_flow, ...);
44 effectiveness = 1-exp(-(kc*heatTransferArea/(cp*m_flow)));
45 dh = lambda()*effectiveness*cp*(T_amb - state.T);
46
47 // Auxiliary equations for thermodynamic,
48 // transport properties
49 // ...
50 end Pipe;

Listing 6: Pipe model using UTP
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Abstract

This article describes an extension of the OpenMod-
elica Compiler that translates regular Modelica mod-
els into a simpler language, called Micro–Modelica
(µ–Modelica), that can be understood by the re-
cently developed stand–alone Quantized State Sys-
tems (QSS) solvers. These solvers are very efficient
when simulating systems with frequent discontinu-
ities. Thus, strongly discontinuous Modelica models
can be simulated noticeably faster than with the stan-
dard discrete time solvers.

The simulation of two discontinuous models is
analyzed in order to demonstrate the correctness
of the proposed implementation as well as the
advantages of using the QSS stand-alone solvers.

Keywords: OpenModelica, Quantized State
Systems, Micro–Modelica, efficient simulation,
discontinuous systems

1 Introduction

There are numerous reasons to desire efficient sim-
ulation of hybrid dynamical systems. Nowadays
the attention is focused on various aspects of par-
allelizing the simulation process, while keeping un-
touched the heart of any simulation pipeline, namely
the numerical solver. Indeed, for most researchers
and practitioners, the problem of defining an effi-
cient, general-purpose DAE solver is considered to be
solved, with DASSL being the default method for all
commercial simulation tools. Besides DASSL, there
exists a vast variety of solvers targeting different sim-
ulation requirements and families of models.

We argue that the attention should be drawn again

to the "basics" and question the underlying assump-
tion of time discretization that traditional solvers
use. Already at the end of the nineties, Zeigler in-
troduced a new class of algorithms for numerical in-
tegration based on state quantization and the Dis-
crete Event Simulation (DEVS) formalism [18]. Im-
proving the original approach of Zeigler, Kofman de-
veloped a first-order non-stiff Quantized State Sys-
tem (QSS) algorithm in 2001 [16], followed later
by second- and third-order accurate non-stiff solvers,
called QSS2 [13] and QSS3 [15], respectively. Cur-
rently, the family of QSS methods includes also stiff
system solvers (LIQSS [17]) as well as solvers for
marginally stable systems (CQSS [5]).

There is now plenty of evidence that the QSS
solvers offer several advantages over the classical
approaches [17, 7, 15, 14]. QSS methods allow
for asynchronous variable updates, a feature par-
ticularly suited to real-world sparse systems where
a significant reduction of the computational costs is
achieved. Furthermore, QSS algorithms inherently
provide dense output, i.e., they do not need to it-
erate to detect the discontinuities. They rather pre-
dict them. This feature, besides improving on the
overall computational performance of these solvers,
enables real-time simulation. Finally, QSS solvers
come with theoretical global error bounds that other
solvers lack [4] and recently parallel version of QSS
methods have been developed [3].

Originally, QSS algorithms were implemented un-
der DEVS simulation engines such as PowerDEVS
[2]. While these implementations were correct, some
features of the DEVS engines introduced a large over-
head. Recently, a family of stand–alone QSS solvers
were developed in order to overcome this issue [6].
The new solvers achieve a speed-up of one order of
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magnitude over DEVS implementations.
The stand–alone QSS solvers simulate models de-

scribed in a C language interface that contains the
ODEs and zero crossing functions as well as addi-
tional structural information needed by the QSS al-
gorithms. The C interface can be automatically gen-
erated from a simple ODE description by a tool de-
veloped for that purpose.

Modelica [10, 11] is a multi-domain, modern lan-
guage for modeling of complex physical systems. It
is an object-oriented language built on acausal mod-
eling with mathematical equations and designed to
effectively support modular libraries and a standard-
ized model exchange.

There are various commercial environments, such
as Dymola, along with open-source implementations,
such as OpenModelica [9], that support the Model-
ica language specification. All of these tools take
as input a Modelica model and perform a series of
preprocessing steps (model flattening, index reduc-
tion, equation sorting and optimization). An opti-
mized DAE representation of the original system is
achieved and efficient C++ code is generated to per-
form the simulation.

There have been previous attempts to simulate
Modelica models with QSS algorithms. In [8, 7] an
interface between OpenModelica and PowerDEVS
(OMPD interface) has been implemented and ana-
lyzed taking a first step towards using QSS solvers in
the simulation of general Modelica models. The in-
terface allows the automatic transformation of large-
scale models to the DEVS formalism in a suitable
way, thus enabling simulation in the PowerDEVS en-
vironment using QSS methods. However, as this in-
terface uses a DEVS engine it suffers from the previ-
ously mentioned overhead issues.

In this work, we extended the OpenModelica Com-
piler (OMC) in order to automatically translate regu-
lar Modelica models into a subset of the Modelica
language called µ–Modelica. Then, we developed
a tool that automatically generates the C interface
structure needed by the stand–alone QSS solver from
the µ–Modelica description and simulates it. That
way, our work enables Modelica users to exploit the
benefits of QSS solvers directly from the OpenMod-
elica environment without any further knowledge, us-
ing them just like any other traditional solver.

We also conducted an extensive comparative per-
formance analysis between the QSS solvers and
OpenModelica DASSL over two discontinuous mod-
els. The results show a noticeable improvement in

terms of simulation time and robustness.
The article is organized as follows: Section 2 pro-

vides a brief description of the components needed
for the solver. Section 3 uncovers the details behind
the implemented stand–alone QSS solver, while in
Section 4 specific simulation results of two example
models are presented and discussed. Finally Section
5 concludes this study, lists open problems and offers
directions for future work.

2 Background

2.1 QSS Simulation

Consider a time invariant ODE system:

ẋ(t) = f(x(t)) (1)

where x(t) ∈Rn is the state vector. The QSS method,
[16], approximates the ODE in Eq. 1 as:

ẋ(t) = f(q(t)) (2)

where q(t) is a vector containing the quantized state
variables, which are quantized versions of the state
variables x(t). Each quantized state variable qi(t) fol-
lows a piecewise constant trajectory via the following
quantization function with hysteresis:

qi(t) =
{

xi(t) if |qi(t−)− xi(t)|= ∆Qi,
qi(t−) otherwise.

(3)

where the quantity ∆Qi is called quantum. In other
words, the quantized state qi(t) only changes when
it differs from xi(t) more than ∆Qi. In QSS, the
quantized states q(t) are following piecewise con-
stant trajectories, and since the time derivatives, ẋ(t),
are functions of the quantized states, they are also
piecewise constant, and consequently, the states, x(t),
themselves are composed of piecewise linear trajec-
tories.

Unfortunately, QSS is a first-order accurate
method only, and therefore, in order to keep the simu-
lation error small, the number of steps performed has
to be large.

To circumvent this problem, higher-order methods
have been proposed. In QSS2 [13], the quantized
state variables evolve in a piecewise linear way with
the state variables following piecewise parabolic tra-
jectories. In the third-order accurate extension, QSS3
[15], the quantized states follow piecewise parabolic
trajectories, while the states themselves exhibit piece-
wise cubic trajectories.
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QSS methods have Linearly Implicit counterparts
(LIQSS1, LIQSS2 and LIQSS3) [17]. The LIQSS
methods are explicit (they do not invert matrices or
perform iterations) but, under certain conditions, they
can efficiently integrate stiff systems.

2.2 Stand–Alone QSS Solvers

The stand–alone QSS solver [6] is a tool that imple-
ments the complete QSS family of algorithms with-
out using a DEVS engine.

The tool is composed by two main modules:

1. The simulation engine that integrates the equa-
tion ẋ = f(q, t) assuming that the quantized state
trajectory q(t) is given.

2. The solvers that given x(t), effectively calculate
q(t) using the corresponding QSS algorithm.

An important feature of QSS methods is that state
variables are updated at different times. Thus, at each
simulation step, only some components of f(q, t) are
evaluated. In consequence, the simulation engine re-
quires the model to be described so that each compo-
nent of f(q, t) can be evaluated separately. Similarly,
each zero crossing condition must be given by a sep-
arate function together with the corresponding event
handler. In addition, structural information describ-
ing the dependencies between variables and equa-
tions must be provided.

All the simulation framework, including the simu-
lation engine, the solvers and the models are written
in plain C.

Since it is very uncomfortable for an end-user to
describe a model providing all this information, the
QSS solver tool includes a translator that generates
the C interface with all the structural information
from a regular ODE description.

This ODE description can have the following com-
ponents:

• ODEs of the form ẋ j = f j(x,a,d, t) where x are
continuous state, a are algebraic and d are dis-
crete state variables

• Algebraic equations of the form a j =
g j(x,a,d, t) with the restriction that a j can
only depend on a1,··· , j−1.

• Zero crossing functions of the form z j =
h j(x,a,d, t).

• Associated to each zero crossing function, two
handlers (one for positive and the other for neg-
ative crossings) where discrete as well as con-
tinuous state variables can be updated.

This description is processed by a parser that com-
putes all the structure, including

• the incidence matrices from continuous and dis-
crete state variables to ODE equations,

• the incidence matrices from continuous and dis-
crete state variables to zero crossing functions,

• the incidence matrices from handlers to ODE
equations and zero crossing functions.

This information is then used by a code generator that
produces the C interface describing the model.

3 Simulation of Modelica Models
with Stand–Alone QSS Methods

As we mentioned above, the stand–alone QSS solver
has a tool to extract the structural information from
a simple ODE description. In order to exploit this
feature, we first developed a language called µ–
Modelica and then we extended the stand–alone QSS
parser so it understands this language and converts
it into the ODE description used by the stand–alone
QSS solver.

Then, we extended the OMC so that it generates
µ–Modelica models from regular Modelica models.

In this way, regular Modelica models can be auto-
matically simulated by the stand–alone QSS solvers.

In Figure 1 we see the complete compilation and
simulation process involved.

Figure 1: Pipeline of the compilation/simulation pro-
cess

Below, we first introduce the µ–Modelica lan-
guage and then we describe the translation process
from Modelica to µ–Modelica
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3.1 The µ-Modelica subset

The language µ–Modelica was defined to be a sub-
set of Modelica as close as possible to the ODE de-
scription accepted by the stand–alone QSS solver. µ–
Modelica contains only the necessary Modelica key-
words and structures to define an ODE based hybrid
model.

The µ-Modelica language has the following re-
strictions:

• The model is in a flat form, i.e. no classes are
allowed.

• All variables are Real and there are only three
classes of variables: continuous states (x[]),
discrete states(d[]) and algebraics (a[]).

• Parameters also belong to class Real and they
can have arbitrary names.

• Equations are given in explicit ODE form.

• An algebraic variable a[i] can only de-
pend on previously defined algebraic variables
(a[1:i-1]).

• Discontinuities are expressed only by when

clauses inside the algorithm section. Con-
ditions on when clauses can only be relations
(<,≤,>,≥) and, inside the clauses, only as-
signment of discrete state variables (d[]) and
reinits are allowed.

This restricted language is not meant to be used by
an end user, but only as an intermediate language be-
tween OpenModelica and the QSS solver. The end
user is supposed to use the complete Modelica lan-
guage and then use the OMC to get a µ-Modelica
file.

3.2 Simulating µ–Modelica models with the
stand–alone QSS solver

As we mentioned above, the QSS solver includes a
parser that extracts all the structural information from
an ODE representation.

This parser was extended in order to understand µ–
Modelica language. After this extension, the parser
performs the following actions:

• It recognizes Modelica keywords for parame-
ters, and discrete states.

• It takes equations of the form
der(x[i])=expr(), generating the corre-
sponding ODE and structural information.

• It recognizes clauses of the form
when expr1>expr2 then, generating a
zero crossing function zc=expr1-expr2

with a handler for the positive crossing
containing the expressions that are found
inside the clause. If it then finds a clause
elsewhen expr1<expr2 then, it generates
the handler for the negative crossing.

• It also generates the structural information cor-
responding to the zero–crossing functions and
the handlers.

3.3 Converting Modelica models to µ-
Modelica

In order to complete the process to simulate regular
Modelica models with the stand alone QSS solver, we
added a new output target for the OMC to generate µ-
Modelica models.

Most of the work is done by what OMC already
does without any modification: It first simplifies
expressions, sorts the equations and transforms the
DAE into an ODE, producing the necessary code for
solving the algebraic loops. It also recognizes zero
crossing conditions.

Thus, we take the structures generated by OMC
and process them as follows:

1. Find the continuous state variables (those where
the der operator is used), algebraic variables
(those solved in the ODE equation that are
not states), and discrete state variables (those
defined as discrete, including Integer and
Boolean variables.). Boolean variables are re-
placed by real valued variables where 1.0 is true
and 0.0 is false.

2. Parameter names are changed replacing dot(s)
for underscore(s). This is done for all identifiers.

3. Continuous state, discrete state and algebraic
variables (Real x[], Real d[], Real a[])
are defined and code is generated with their ini-
tial values.

4. In each equation of the ODE section, each ap-
pearance of continuous state, discrete state and
algebraic variables is replaced by their corre-
sponding µ–Modelica alias x[], a[] or d[].
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5. If the equation is part of an algebraic loop, an ex-
ternal solving C function is generated and a call
to that function is generated in the µ-Modelica.

6. For each zero crossing function, when and
elsewhen clauses are generated. The extra
elsewhen is necessary to assign different val-
ues to the discrete state variable associated with
the crossing function.

7. when clauses are emitted also replacing continu-
ous states, algebraic and discrete state variables
in the condition and in the body of the clause.

8. sample operators are expanded using an extra
discrete state variable.

9. elsewhen clauses are emitted as regular when in
the algorithm section.

For example a model of a bouncing ball in Model-
ica:

model bball1

Real y(start = 1),v,a;

Boolean flying(start = true);

parameter Real m = 1;

parameter Real g = 9.8;

parameter Real k = 10000;

parameter Real b = 10;

equation

der(y) = v;

der(v) = a;

flying = y>0;

a = if flying then -g else -g -

- (b * v + k * y)/m;

end bball1;

would be translated to µ-Modelica as follows:

model bball1

constant Integer N = 2;

Real x[N](start=xinit());

discrete Real d[1](start=dinit());

Real a[1];

parameter Real m = 1.0;

parameter Real g = 9.8;

parameter Real k = 10000.0;

parameter Real b = 10.0;

function xinit

output Real x[N];

algorithm

x[2]:= 1.0 /* y */;

x[1]:= 0.0 /* v */;

end xinit;

function dinit

output Real d[1];

algorithm

d[1]:=(1.0) /* flying*/;

end dinit;

/* Equations */

equation

der(x[2]) = x[1];

a[1] = -d[1] * g + (1.0 - d[1]) *

(((-b) * x[1] + (-k) * x[2]) / m - g);

der(x[1]) = a[1];

algorithm

/* Discontinuities */

when x[2] > 0.0 then

d[1] := 1.0;

elsewhen x[2] < 0.0 then

d[1] := 0.0;

end when;

end bball1;

We see easily that the model has two continuous
states, one algebraic and one discrete state variable
together with a discontinuity on x[2] that updates the
discrete state.

When the original Modelica model contains an al-
gebraic loop, it will be detected by OMC and µ-
Modelica will include a piece of code of the form

...

function fsolve15

input Real i0;

input Real i1;

output Real o0;

output Real o1;

output Real o2;

external "C" ;

end fsolve15;

...

equation

...

(a[1],a[2],a[3])=fsolve15(x[2],d[1])

together with a C function that solves the loop us-
ing GNU Scientific Library (GSL) [12].

This call indicates that variables a[1:3] are com-
puted by a simple C external function, so the QSS
parser treats it as a regular function for obtaining the
structural information.

In the mentioned external function we improved
what was done by OMC taking into account a feature
of linear algebraic loops. A linear algebraic equation
usually has the form A · z = b (with z being the un-
known), where A usually depends on discrete state
variables only. Thus, when the change in the contin-
uous state variable only affects the term b, then it is
not necessary to invert matrix A in that step.
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4 Examples and Simulation Results

In this section we analyze the results obtained using
the tools presented in this work.

4.1 Benchmark Framework

As benchmark problems we focused on two systems
exhibiting heavily discontinuous behavior, namely a
buck converter and a DC-DC buck interleaved cir-
cuit. All models were constructed using the Model-
ica Standard Library 3.1 and can be downloaded from
[1].

For each of the examples we used the modified
OMC (r11645) to generate the corresponding µ-
Modelica model and then the QSS solver to simulate
them. In each case, we compare the run-time effi-
ciency and accuracy of the QSS methods against the
standard DASSL solver of OpenModelica v1.8.1.

In order to measure the execution time for
each simulation algorithm, the reported simula-
tion time from each environment was used. Al-
though OpenModelica provides several ways to
measure the CPU time needed for simulation (in-
cluding a profiler) we observed significant dif-
ferences in the reported timings. After con-
sulting the OpenModelica developers we finally
used time ./model_executable -lv LOG_STATS

to measure the pure simulation time. We note here
that the timing results obtained this way are signifi-
cantly smaller than the "official" simulation time re-
ported in the OMShell or the profiler. Therefore, the
speedups we get can be considered to be rather con-
servative.

Testing has been carried out on a Dell 32bit desk-
top with a quad core processor @ 2.66 GHz and 4 GB
of RAM and in a Intel i7-970 (32 bits) @ 3.20GHz
and 2 GB of RAM.

The measured CPU time should not be considered
as an absolute ground-truth since it will vary from
one computer system to another, but the relative or-
dering of the algorithms is expected to remain the
same.

Calculating the accuracy of the simulations can
only be performed approximately, since the state tra-
jectories of the models cannot be computed analyt-
ically. To estimate the accuracy of the simulation
algorithms for a given setting, reference trajectories
(tref,yref) have to be obtained. To this end, the
LIQSS2 solver was used with a tight tolerance of
10−7.

To calculate the simulation error, each simulated

+
-

R
=10

C
=0.0001

L=0.00015

R1C1

L1
0

1

T=0.0001

Figure 2: Buck Circuit

trajectory was compared against the reference solu-
tion. To achieve this goal, we forced all solvers to
output points on the same equidistant grid obtaining
simulation trajectories (tref,ysim) without changing
the integration step. Then, the normalized mean ab-
solute error is calculated as:

error =
mean(|ysim−yref|)

mean(|yref|)
(4)

4.2 Buck circuit

In Figure 2, a DC-DC converter circuit, known as
Buck Circuit, is sketched. The circuit has two contin-
uous state variables, namely the current through the
inductor L1 and the voltage across the capacitor C1.
The presence of the switch introduces hybrid behav-
ior to the system. For the simulation error we focus
on the C1.V state variable. The model was simulated
for 0.01 sec. and the ground-truth trajectory can be
seen in Fig 3.
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Figure 3: Buck Circuit - Simulation

Initially we simulated the model in OMC using the
default number of 500 output points. We observed
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that the DASSL solver in OMC fails to detect and
handle correctly the events. On the other hand, when
we forced OMC to output more points the error de-
creases because the extra evaluation needed to gener-
ate the output forces DASSL to re-evaluate the zero
crossing functions, thus detecting the events. This is
why we compared OMC’s native DASSL solver with
different precisions and different number of output
points against the QSS solver using the stiff LIQSS2
and LIQSS3 methods. The results are summarized in
Table 1.

Indeed we observe that for 500 output points the
DASSL solver in OMC doesn’t manage to reduce the
achieved error when tightening the precision require-
ments, a clear sign that it fails to simulate correctly
the model. When the output points are increased to
10000 the OMC results get closer to the ground-truth
trajectory and the error is reduced.

Therefore, it makes sense to compare the runtime
efficiencies for the case of 10000 points where we
clearly see that QSS methods are more efficient than
DASSL in OMC. To perform the simulation for an
achieved error of the order of 10−5, LIQSS3 required
12 msec while DASSL needed 74 msec Therefore,
the use of the LIQSS3 solver instead of the stan-
dard DASSL in OpenModelica speeds up the sim-
ulation by a factor of 6x. The achieved reduction in
both simulation accuracy and time is depicted graph-
ically in Fig. 4. The results are plotted in a log-log
plot where the closer the lines are to the origin the
better the corresponding algorithm performs.

Performing an internal comparison between the
QSS methods, we see that the third-order LIQSS3
method is slightly more efficient than LIQSS2, es-
pecially when the tolerance requirement, thus the
achieved error, gets smaller. This is expected, since
the LIQSS2 solver needs to take smaller steps com-
pared to LIQSS3 to reach the desired accuracy (e.g.
for an error of 10−6 LIQSS2 needs 53391 steps while
LIQSS3 only used 11314). Thus, we can conclude
that the third-order LIQSS3 algorithm should be
preferred for practical applications. We see also
that as QSS algorithms provide dense output, the
number of output points does not affect the simula-
tion timings.

Finally, another characteristic of the QSS methods
is evident from the obtained results. We verify that in
general DASSL performs significantly less steps than
any of the QSS methods. However, each one of these
steps is much more complicated and time-consuming
than the ones performed in a QSS solver, as it in-

volves -in general- estimation of the whole function
f(·). On the other hand, each step in QSS updates
one state variable, therefore requiring the evaluation
of the corresponding fi(·). As the simulated systems
get bigger, more complex and sparse, evaluating fi(·)
is much more efficient than the global f(·).
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Figure 4: CPU time vs Error for the buck converter
model (10000 output points)

4.3 Interleaved DC-DC Circuit

Figure 5 depicts the model of an interleaved buck
converter. This circuit is similar to the buck converter
analyzed above but it contains several switching sec-
tions that are activated at different times in order to
reduce the output voltage ripple. In this case, we con-
sider a circuit with four branches.

To build this model, all the components were taken
from the MSL 3.1, except for the booleanDelay that
implements a boolean delay that outputs its received
boolean input after a fixed period T. The delay has no
memory, i.e. when an input is received, any sched-
uled output is cancelled and overwritten by the new
input.
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Figure 5: DC-DC interleaved circuit

We have simulated this model for 0.01 sec. again
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Table 1: This table depicts the simulation results of various solvers for the buck converter circuit for a requested
simulation time of 0.01 sec. The comparison performed includes required CPU time (in msec), number of steps
taken, as well as the simulation accuracy relative to the reference trajectory obtained with LIQSS2 and tolerance
of 10−7.

500 output points 10000 output points
CPU time Steps Simulation CPU time Steps Simulation

(msec) Error (msec) Error

QSS

LIQSS3 10−2 4 3351 5.84E-03 4 3351 5.83E-03
LIQSS3 10−3 8 4163 7.31E-04 8 4163 7.32E-04
LIQSS3 10−4 12 6804 4.60E-05 12 6804 4.61E-05
LIQSS3 10−5 20 11314 1.07E-06 20 11314 1.08E-06
LIQSS2 10−2 4 3863 7.83E-03 4 3863 7.84E-03
LIQSS2 10−3 8 6715 1.32E-03 8 6715 1.32E-03
LIQSS2 10−4 12 18519 1.15E-04 12 18519 1.15E-04
LIQSS2 10−5 32 53391 6.42E-06 32 53391 6.42E-06

OpenModelica
DASSL 10−3 22 4273 3.56E-03 70 5249 2.66E-04
DASSL 10−4 28 5636 3.17E-03 72 5955 1.75E-04
DASSL 10−5 32 7781 3.28E-03 74 7623 2.40E-05

focusing on the capacitor voltage, getting the simu-
lated trajectory seen in Fig 6. The same experiments
as for the buck circuit case were performed and listed
in Table 2 where we made the same comparisons as
in the previous example (Sec 4.2).
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We see from Fig. 7 that for obtaining a mean error
of the order of 10−3 OpenModelica’s DASSL takes
488 msec while it takes LIQSS2 12 msec and 60 msec
for LIQSS3. This shows 40x and 8x speedups for
LIQSS2 and LIQSS3. The difference in timings be-
tween LIQSS2 and LIQSS3 is because the implemen-
tation of LIQSS3 is not yet completely optimized and
some problems are still present. Also, when asking
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leaved model (10000 output points)

the QSS solver for 10000 number of output points,
neither the error nor the number of steps changes be-
cause of the dense output.

In Figure 8 we show the different steady state val-
ues obtained with different setups. We see that the
discontinuity detection of OMC is heavily influenced
by the number of output steps. Here we included
Dymola 6.0 result in order to provide a generally-
accepted ground-truth solution. We note here that no
timing measurements were conducted with Dymola.

5 Conclusion and Future Work

In this article, the integration of the novel stand-
alone QSS solvers in the OpenModelica environment
is presented and analyzed. The implementation has
been tested successfully for both correctness and ef-
ficiency in simulating real-world Modelica models.
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Table 2: This table depicts the simulation results of various solvers for the DC-DC interleaved circuit for a
requested simulation time of 0.01 sec. The comparison performed includes required CPU time (in msec),
number of steps taken, as well as the simulation accuracy relative to the reference trajectory obtained with
LIQSS2 and tolerance of 10−7.

500 output points 10000 output points
CPU time Steps Simulation CPU time Steps Simulation

(msec) Error (msec) Error

QSS

LIQSS3 10−2 32 18396 1.32E-02 32 18396 1.32E-02
LIQSS3 10−3 60 33426 7.31E-04 60 33426 7.31E-04
LIQSS3 10−4 48 29408 1.57E-04 48 29408 1.57E-04
LIQSS3 10−5 64 39951 6.48E-06 64 39951 6.48E-06
LIQSS2 10−2 12 10715 4.08E-03 12 10715 4.08E-03
LIQSS2 10−3 20 29082 3.63E-04 20 29082 3.63E-04
LIQSS2 10−4 56 73218 1.26E-04 56 73218 1.26E-04
LIQSS2 10−5 128 198001 8.80E-06 128 198001 8.80E-06

OpenModelica
DASSL 10−3 310 14421 4.96E-02 428 17571 2.37E-02
DASSL 10−4 363 22375 5.03E-02 442 18574 2.37E-02
DASSL 10−5 496 31387 5.41E-02 488 23625 5.57E-03
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Figure 8: Comparison of the final steady state for dif-
ferent setups

Comparisons on two example models were per-
formed, demonstrating the increased efficiency of
the stiff LIQSS solvers over the default DASSL
solver of OpenModelica. Consistent speedups were
achieved and the required CPU time was reduced
up to 40 times. Furthermore, for the two systems
simulated we observed that the default DASSL solver
failed to generate the correct results if we didn’t force
many output points. Increasing the number of output
points, though, means increasing the number of steps
taken by the DASSL algorithm, thus the computation
time. On the other hand, not only the QSS solvers

simulated correctly the models at all setups but, be-
cause of the dense output they inherently generate,
the number of steps taken remains constant regard-
less of how many output points are requested.

However, there still remain open problems to be
addressed in the future. First of all, our proposed so-
lution was tested on few examples. A larger set of
models has to be simulated and tested for correctness,
as well as efficiency, of the implementation. In par-
ticular, we should focus on large-scale hybrid mod-
els because their dynamics should uncover the power
and efficiency of QSS methods. To this end, the µ-
Modelica has to be extended to handle more complex
systems.

An interesting line of research could be the utiliza-
tion of the µ-Modelica language as an intermediate
language to enable other tools to include Modelica
models. Its simplicity makes the burden on the com-
piler a lot lighter.

The ultimate goal is to integrate the family of QSS
solvers (by use of the µ-Modelica translation step)
in OpenModelica as native solvers. To achieve this
the QSS solver should generate output results in the
format expected by the OpenModelica environment.
Finally, we need to note that work is also ongoing on
improving the QSS solver itself.

Session 2B: Numerical Methods 

DOI Proceedings of the 9th International Modelica Conference    245 
10.3384/ecp12076237 September 3-5, 2012, Munich, Germany   



 

 

6 Acknowledgments

This work was in part funded by CTI grant
Nr.12101.1;3 PFES-ES and supported by the
OPENPROD-ITEA2 project.

References

[1] Modelica models for download at.
http://www.fceia.unr.edu.ar/~fbergero/modelica2012.

[2] F. Bergero and E. Kofman. Powerdevs: a tool
for hybrid system modeling and real-time sim-
ulation. SIMULATION, 2010.

[3] F. Bergero, E. Kofman, and C. F. E. A novel
parallelization technique for DEVS simulation
of continuous and hybrid systems. Simulation,
2012. In press.

[4] F. E. Cellier and E. Kofman. Continuous System
Simulation. Springer-Verlag, New York, 2006.

[5] F. E. Cellier, E. Kofman, G. Migoni, and
M. Bortolotto. Quantized State System Simu-
lation. In Proceedings of SummerSim 08 (2008
Summer Simulation Multiconference), Edin-
burgh, Scotland, 2008.

[6] J. Fernandez and E. Kofman. Implementación
autónoma de métodos de integración numérica
qss. Technical report, FCEIA - UNR, Rosario,
Argentina, 2012.

[7] X. Floros, F. Bergero, F. E. Cellier, and E. Kof-
man. Automated Simulation of Modelica Mod-
els with QSS Methods : The Discontinuous
Case. In 8th International Modelica Con-
ference 2011, Dresden, Germany, Linköping
Electronic Conference Proceedings, pages 657–
667. Linköping University Electronic Press,
Linköpings universitet, 2011.

[8] X. Floros, F. E. Cellier, and E. Kofman. Dis-
cretizing Time or States? A Comparative Study
between DASSL and QSS. In 3rd International
Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools, EOOLT, Oslo,
Norway, October 3, 2010, pages 107–115,
2010.

[9] P. Fritzson, P. Aronsson, H. Lundvall, K. Nys-
trom, A. Pop, L. Saldamli, and D. Broman. The

OpenModelica Modeling, Simulation, and De-
velopment Environment. Proceedings of the
46th Conference on Simulation and Modeling
(SIMS’05), pages 83–90, 2005.

[10] P. Fritzson and P. Bunus. Modelica - A General
Object-Oriented Language for Continuous and
Discrete-Event System Modeling and Simula-
tion. In Annual Simulation Symposium, pages
365–380, 2002.

[11] P. Fritzson and V. Engelson. Modelica - a uni-
fied object-oriented language for system mod-
eling and simulation. In E. Jul, editor, ECOOP
’98 - Object-Oriented Programming, volume
1445 of Lecture Notes in Computer Science,
pages 67–90. Springer Berlin / Heidelberg,
1998. 10.1007/BFb0054087.

[12] M. Galassi. GNU Scientific Library Reference
Manual, third edition, 2009.

[13] E. Kofman. A Second-Order Approximation for
DEVS Simulation of Continuous Systems. Sim-
ulation, 78(2):76–89, 2002.

[14] E. Kofman. Discrete Event Simulation of Hy-
brid Systems. SIAM Journal on Scientific Com-
puting, 25:1771–1797, 2004.

[15] E. Kofman. A Third Order Discrete Event Sim-
ulation Method for Continuous System Sim-
ulation. Latin America Applied Research,
36(2):101–108, 2006.

[16] E. Kofman and S. Junco. Quantized-state sys-
tems: a DEVS Approach for continuous sys-
tem simulation. Trans. Soc. Comput. Simul. Int.,
18(3):123–132, 2001.

[17] G. Migoni and E. Kofman. Linearly Implicit
Discrete Event Methods for Stiff ODEs. Latin
American Applied Research, 2009. In press.

[18] B. P. Zeigler and J. S. Lee. Theory of Quan-
tized Systems: Formal Basis for DEVS/HLA
Distributed Simulation Environment. En-
abling Technology for Simulation Science II,
3369(1):49–58, 1998.

Simulating Modelica models with a Stand-Alone Quantized State Systems Solver 

 

246 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076237 



 

 

Fast Simulation of Fluid Models with Colored Jacobians 

Fast Simulation of Fluid Models with Colored Jacobians

Willi Brauna Stephanie Gallardo Yancesb Kilian Linkb Bernhard Bachmanna

aUniversity of Applied Sciences Bielefeld, Bielefeld, Germany
bSiemens AG, Energy Sector, Erlangen

Abstract

The industrial usage of the open-source Modelica tool
OpenModelica was limited so far for power plant ap-
plications, due to the performance of large fluid sys-
tems. This paper presents some efforts to improve the
simulation time on benchmark fluid models proposed
by Siemens Energy. The main aspects presented here
to achieve a faster simulation are an efficient evalu-
ation of the jacobian matrix by a coloring technique,
that exploits the sparsity pattern of a modelica model.
Therefore the techniques are scratched and applied to
benchmark models provided by Siemens Energy.

Keywords: OpenModelica, Fluid Simulation,
Benchmark, Simulation, Jacobian, Coloring, Sparsity-
Pattern, DASSL

1 Introduction

In power plant applications, detailed analysis of the
dynamic behaviour of heat recovery steam generators
result in very large fluid systems.

Modelica is the preferred modeling language for dy-
namic simulations within Siemens Energy [5] due to
its applicability for multi-domain modeling of phys-
ical systems, the high degree of maintainability of
Modelica models and the possibility of rapid develop-
ment of new components in Modelica.

The commercial tool Dymola is mainly used for
modeling and simulation. The open-source Modelica
enviroment OpenModelica for industrial and academic
usage is getting more and more an alternative and
has the large benefit that it is freely available. Fluid
modeling with Openmodelica was limited by missing
implementation of some special features like Model-
ica.Media. The OpenModelica compiler flattens now
the complete Modelica.Media library. Nevertheless
the missing functions are still replaced in all bench-
mark models by external libraries. In order to make
OpenModelica an established Modelica tool, the ac-
curacy and performance have to be comparable with

Dymola.

The aim of the current paper is to present the im-
provement of the simulation time for special bench-
mark fluid models using an efficient technique to eval-
uate jacobians. The benchmark fluid models are devel-
oped by Siemens AG, Energy Sector, using the com-
mercial Modelica environment Dymola. Siemens En-
ergy has presented fluid models before, which are suit-
able for the benchmark of the accuracy and the perfor-
mance of a Modelica Tool. The complexity of these
models have been further refined to build up realis-
tic plant models like used in daily business and to
reach model sizes which are suitable for performance
tests. On the other hand University of Applied Sci-
ences Bielefeld has developed techniques to generate
symbolic jacobians in OpenModelica before ([4],[3]).
The derivatives are useful for simulating a model as
well as for the sensitivity analysis or the optimization
of models. Further, jacobians are necessary to support
the next FMI1 version 2.0 [1]. In the work before it
was not possible to show improvements for the sim-
ulation. This can be explained mainly by the model
size we had tested our implementation on, this was
caused by the fact that the generation of symbolic ja-
cobians was not applicable to large scale models. This
is solved by generating generic partial derivatives and
utilise them to compute the full jacobains. Here we
catch up and apply the generation of symbolic jaco-
bians on large scale models provided by Siemens En-
ergy [6].

The paper is structured as follows: In section 2 the
usage of the jacobian for the simulation purpose is
specified. Further, the coloring and the determination
of the sparsity pattern are stated and the application of
the coloring to the solving process is described. In sec-
tion 3 there are given some information about the used
benchmark fluid models. Whose perfomance is mea-
sured in section 4. Section 5 summarizes the results of
this paper and gives proposals for future work.

1http://fmi-standard.org/
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2 Jacobian for Simulation

A Modelica model is typically translated to a basic
mathematical representation of differential and alge-
braic equations (DAEs), before being able to simulate
the model. Further, these DAEs are transformed to
ODEs (ordinary differential equations) with an alge-
braic part, which is the starting point.(

ẋ(t)
y(t)

)
=

(
h(x(t),u(t), p, t)
k(x(t),u(t), p, t)

)
(1)

The jacobian of interest for simulation purpose con-
sists of partial derivatives of the ODE-Block h with
respect to the states.

JA =
∂h
∂x

=


∂h1
∂x1

. . . ∂h1
∂xn

...
. . .

...
∂hn
∂x1

. . . ∂hn
∂xn

 (2)

For solving equation 1 with an integration method like
DASSL, the derivatives are needed with respect to the
states x(t) [7]. After all, DASSL uses the iteration ma-
trix

M =
∂h
∂x

+ c j ∗ ∂h
∂ ẋ

(3)

for solving a nonlinear system in each step by a modi-
fied newton method. This matrix M is almost the same
as the partial derivatives with respect to the states be-
side the c j∗ ∂h

∂ ẋ part. But that part is the identity matrix
multiplied with a scalar value calculated by DASSL.
By default DASSL calculates the iteration matrix M
by means of numerical finite differentiation. Therefore
it is necessary to evaluate the ODE function h n+ 1
times. However, it is also possible to equip DASSL
with an user-specific routine that provides manually
calculated iteration matrix M. Considering issues of
performance, the calculation of M is the most criti-
cal part. In table 1 are summarized the results for one
simulation of two different benchmark models (see 3),
where are denoted ts as simulation time, Jevals as num-
ber of jacobain evaluations and Jtime as time of evalu-
ation of the jacobian Jevals times. One can see that the
calculation of the jacobian matrix takes the major time
of the simulation time.

N x eqns
19 231 942

N x eqns
10 140 826

ts Jevals Jtime ts Jevals Jtime

10.8 111 9.7 2.4 69 1.4

Table 1: Simulation times vs. Jacobian evaluations

So at that point it’s possible to reduce the DASSL
solving time. It is quite evident that this could be tack-
led by exploiting the sparse structure of a Modelica
Model. One approach which uses the sparsity pattern
to reduce the amount of ODE-function calls is the par-
titioning of columns in colors and calculating them at
once [2]. Additionally the matrix M can be determined
in a symbolic way and combined with the coloring ap-
proach.

Therefore we test 4 different methods to calculate
the jacobians:

• finite difference approximations.

• finite difference approximations with coloring.

• symbolical jacobian generated by OpenModelica.

• symbolical jacobian generated by OpenModelica
with coloring.

For the numerical approximation of the jacobian the
forward finite differentiation is used, where h is deter-
mined by DASSL and it depends on x, ẏ, current step
size.

ẏ =
f (x+h)− f (x)

h
(4)

The symbolical jacobians are generated within the
OpenModelica compiler (for more details see [3],[1]).

2.1 Coloring Jacobians

The coloring of a matrix means first of all to color
columns that have no non-zero-elements in the same
row. Thus, the starting point for coloring is the sparsity
pattern of a matrix. The determination of the sparsity
pattern of a Modelica model is described in the next
section 2.2.

Assuming the matrix J with it’s sparsity pattern is
given as:

J =


j11 0 0 0 j15
0 j22 j23 0 0
j31 j32 0 0 0
0 0 j43 0 j45
0 0 0 j54 j55

 (5)

In this matrix J for example the columns 1 and 3 and
also the columns 2 and 4 have no shared non-zero
elements in the rows. Thus, this columns could be
calculated at once, since they are structural orthogo-
nal. Finding those structural orthogonal rows could
be done by re-formulating the problem as graph col-
oring of a bipartite graph. The bipartite graph G =
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((V1,V2),E) consists of vertexes V1,V2, where V1 are
all rows and V2 are all columns. And for every non-
zero element an edge ei is defined between the in-
volved row and the corresponding column, vice versa.
For the matrix above the corresponding bipartite graph
is drawn in figure 1.

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

Figure 1: Bipartite graph G

Next step is coloring the column vertexes with the
minimum number of colors, so that no row vertex has a
connection to columns with the same color. This prob-
lem is well-known as NP-hard [2], but for the current
purpose it’s not very critical to find the optimum, so a
fast approximation is well-suited. Therefore a modi-
fied partial distance-2 coloring algorithm for bipartite
graphs is used as suggested also in [2]. In our tests it
reveals a good performance meaning that the solution
was really close to the chromatic number χ(G,V2),
which describes the optimal solution. This observa-
tion could be done since there exists a lower bound for
χ(G,V2). It is also shown in [2] that χ(G,V2) ≥ ∆V1
is true. This sounds intuitional for the reason that the
minimal partition size depends on the maximum num-
ber of non-zero elements in the rows. The time com-
plexity for the algorithm is O(|E| ∗∆V1), where ∆V1 is
the maximum degree of the vertex vi ∈ V1. For exam-
ple in the jacobian above, it’s easy to see that there are
several possible solutions as shown in figure 2.

After a coloring C of the columns is found, it’s pos-
sible to apply it to the calculation of the jacobians.
Now all columns with the same color are structural or-
thogonal and can be calculated at once. Therefore the
expected speed up for the calculation is speedup= |V2|

C .

2.2 Sparsity Pattern

The sparsity pattern for JA (see equation (2)) of a
Modelica Model could also be determined by means
of graph theory, because roughly spoken the sparsity

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

Figure 2: Bipartite graph G

pattern expresses which output variable has a connec-
tion to which state. So this could be formulated as a
st-connectivity problem in a directed graph. The st-
connectivity is a decision problem that asks if the ver-
tex t is reachable from the vertex s. A directed graph
is also naturally used in a Modelica tool for the sorting
of the equations with the tarjan algorithm. For exam-
ple if one has a system with 5 equations, and 5 states
a directed graph for sorting could look like the one in
figure (3).

f1 |z4 f5 |z3

f3 |z5

f4 |z1

f2 |z2

Figure 3: Directed graph for sorting the example sys-
tem

f1 |z4 f5 |z3

f3 |z5

f4 |z1

f2 |z2

x1

x2

x3

x4

x5

Figure 4: Expanded directed graph for sorting the ex-
ample system

For the ordinary sorting task by tarjan only the un-
knowns are considered, since the states are assumed to
be known. So for the determination of sparsity pattern
one would need to expand the graph by the states. This
is done in the way that every equation vertex gets an
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additional incoming connection by the states that are
present in it. Finally the directed graph could look like
the one in figure (4).

The sparsity pattern in equation (6) could than be
obtained by finding all reachable vertexes for every
state. For every connection that could be found the
corresponding element is unequal zero. Finding the
reachable vertexes for one state results in one column
of the sparsity pattern.

J =


∗ 0 ∗ 0 ∗
0 ∗ 0 0 0
0 ∗ 0 ∗ ∗
0 0 0 0 ∗
0 0 0 0 ∗

 (6)

However, the determination of the sparsity pattern
via st-connectivity would require to traverse the whole
graph for every state, what is of course not applicable
for a large system. Thus one could benefit from the
already sorted system and also use additional informa-
tion from the adjacency matrix. For example consider
the following possible sorted adjacency matrix (7) for
the system above with the expansion about the states
and the equation where they occur.

z1 z3 z4 z2 z5 x1 x2 x3 x4 x5
f 4
f 5
f 1
f 2
f 3


1 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0 0 0
0 1 0 1 1 0 0 0 1 0


(7)

In this BLT-sorted adjacency matrix we consider
row after row and propagate the dependent states
downwards to every equation. The accumulation of
the non-zero elements is arranged in an array of lists
for every equation. For the first equation we just add
the dependent states x5 to the corresponding list. For
the second equation there are no direct dependencies,
but we need to propagate the dependencies for the in-
volved variables. In this case for the variable z1 which
occurs in the first column the lists of f5 and f4 are
joined. For the next row it is necessary to add the
direct dependent variables x1,x3 and union them with
the indirect dependencies from variable z3 and so on.
This approach results in algorithm with a complexity
that depends on the amount of non-zero elements. Our
tests indicate even a logarithmic dependence for non-
zero elements. Thus the sparsity pattern can be deter-
mined efficiently.

3 Benchmark Fluid Models

The first benchmark model (see figure 5) consists of
three heated pipes in a row. The first pipe in flow di-
rection is connected to a water source which supplies
the liquid flow. The one-dimensional energy, mass and
momentum balances are discretized in flow direction.
The number of nodes which represent the connection
between the discrete elements is N. The heated metal
wall of the pipe represents a cylindrical metal wall
with L numbers of layers.

Figure 5: Pipes benchmark model

Figure 6: Heat exchanger benchmark model

The central part of our second more complex bench-
mark is an evaporator model (see figure 6) with paral-
lel tube rows. A parallel flow evaporator consists of
several heated tubes connected by an internal splitter
at the inlet and an internal mixer at the outlet. For each
of the Nl (number of parallel layers) exists a subaggre-
grate which also models the gas-side, using a simple
quasi stationary pressure drop. The water and steam
flow and the inner heat transfer is modeled using the
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N x eqns colors
19 231 942 79

N x eqns colors
50 603 2430 203

N x eqns colors
100 1203 4830 403

method steps F-Eval J-Eval time steps F-Eval J-Eval time steps F-Eval J-Eval time
num 922 27184 111 10.8 1014 72854 118 85.3 1058 144874 119 372.3

numC 922 8929 94 4.5 1023 26914 124 38.4 1064 46835 112 144.2
sym 937 1539 103 8.5 976 1643 119 65.2 1052 1732 126 287.2

symC 937 1539 103 4.3 976 1643 119 30.3 1052 1732 126 139.3
Dymola 783 8772 90 1.6 915 23453 106 11.3 1035 43707 103 53.4

Table 2: Simulation time for Tube3Test

N x eqns colors
40 500 2986 95

N x eqns colors
80 980 5866 175

N x eqns colors
160 1940 11626 335

method steps F-Eval J-Eval time steps F-Eval J-Eval time steps F-Eval J-Eval time
num 492 38192 75 23.3 537 79131 80 94.7 542 140390 72 436.5

numC 516 10841 106 9.9 505 13810 75 27.3 596 28595 83 152.4
sym 544 774 74 44.9 536 726 77 176.7 556 752 83 792.1

symC 544 774 74 11.9 536 726 77 42.8 556 752 83 206.8
Dymola 359 7306 69 7.36 387 12531 67 22.4 408 23964 69 142

Table 3: Simulation times for HeatExchanger

pipe model. The outer heat transfer is assumed to be
constant. This model is suitable for building up huge
systems with many states since the number of tube lay-
ers of the evaporator can be adapted easily. Compared
to a complete and detailed heat recovery steam gener-
ator model the model in figure 6 is still small. This
justifies the requirement to improve the performance
to use in future OpenModelica for power plant simu-
lations.

4 Performance Measurements

The performance measurements are done on a work-
station machine(Intel CPU Q9550 @ 2.83GHz). For
the time measurements we run the simulation five
times take the mean, in addition the initialization pro-
cess is deducted. Here are depicted the results for the
benchmark models 3 with the four modes described
above in OpenModelica. Additionally, the results are
compared to Dymola. For all simulation was chosen a
tolerance of 1e−6, which is propagate in OpenModel-
ica as absolute and relative tolerance. This may be one
reason for the difference in the steps performed by the
Integrator.

In the top of the tables 2 and 3 are stated the model
details, where the variable N is used for resizing the
model resulting in numbers of states, equations for
the ODE-function and the colors. The method called

“num” calculates the jacobians numerically and the
method “sym” performs it symbolically. The addi-
tional “C” marks that the coloring is applied to these
methods.

First, it can be stated that the simulation time is ef-
fected a lot by the coloring as expected. The factor is
a bit lower than expected due to the different number
of steps and thus a different number of jacobian eval-
uation in each simulation. This can be considered as
numerical artefacts which are propagated and then in-
duce small differences in the step-size chosen by the
integrator. This effect can’t be observed for the sym-
bolic solution. Further, it can be stated for the numer-
ical solution the amount of ODE-function evaluation
is reduced dramatically and it tends to be close to Dy-
mola. This suggests that Dymola uses a similar tech-
niques.

5 Conclusions

The aim of this paper was to show that one key element
for a Modelica Tool to perform a fast simulation is the
exploiting of the sparsity pattern for the determination
of jacobians. Therefore it is necessary to determine the
sparsity pattern and partition the jacobians calculation
in order to reduce the evaluation time. This is realized
by graph theoretical means in OpenModelica. Further
it was shown on the presented benchmark models that
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the effect is significant, moreover this feature pushes
OpenModelica further to an efficient simulation envi-
ronment for relevant industrial problems.
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Abstract 

This article aims to describe a modular system level 
modeling approach for the thermal behavior of an 
automotive cabin. The model is parameterized with 
geometric and physical data. At the end a set of 6 
parameters is used to calibrate the model with two 
measurement data sets: one for a passive heat up and 
active pull down and one for a cold heat up. The pro-
cedure can be used as a recipe for developing own 
models of the same kind which may be used in inte-
grated thermal management studies.  

Keywords: automotive cabin; calibration; thermal 
simulation; air conditioning; integrated thermal 
management   

1 Introduction 

The assessment of the thermal behavior of an auto-
motive cabin as a part of the whole vehicle becomes 
more and more important while the air conditioning 
system is not just responsible to cool and heat the 
passenger compartment but also has to condition 
other sensitive parts. Alternative, energy-saving ve-
hicle concepts require innovative concepts to manage 
multiple heating and cooling loads. This has to be 
achieved by thoroughly optimizing many factors: 
e.g., energy consumption, component utilization as 
well as life-time reduction and last but not least pas-
senger comfort. 

 

Simulation models are required to allow a system-
wide analysis on a conceptual level. The Modelica 
technology offers a multi-domain platform which 
allows users to combine different physical systems in 
order to predict their interaction. Such a configura-
tion is for instance given by a combination of air 
conditioning cycle, air distribution system and cabin. 

 

Automotive air conditioning cycles were modeled 
using Modelica since 2000 using different free and 
commercial libraries (ThermoFlow, ThermoFluid, 
ACLib [2], AirConditioning [3] and TIL by TLK-
Thermo GmbH). The AirConditioning library is used 
by many European companies since 2004 and has 
become a standard tool for German automotive com-
panies. In order to model the interaction between the 
vapor compression cycle and the cabin a modular 
and flexible model for the cabin was missing, 
though. Therefore, XRG Simulation decided to de-
velop such an approach in the EuroSysLib-D project 
[1] which is provided by the resulting HumanCom-
fort library. This model can be directly connected to 
open Modelica.Fluid air distribution models or to the 
AirConditiong library (version 1.8 and higher). 

 

Tools for the thermal simulation of automotive cab-
ins are THESEUS-FE [4], EXA PowerFLOW and 
PowerTHERM, which use CFD approaches for their 
models. Those models easily count up to some 
10.000 nodes in order to capture the complex interior 
geometry and the required grid size for transient 
simulations. A coupling of CFD cabin models to air 
cycle models is possible by using simulator interfac-
es like TISC by TLK-Thermo GmbH. 

 

Other system level models were developed by: 
IFT/TLK-Thermo [5], Baumgart et al. [6], Mezrhab 
[7] and others. The Modelica model of IFT/TLK-
Thermo works with a single air volume and multiple 
walls and windows. Moreover, the cabin model of 
Baumgart is using multiple volumes and irradiating 
numbers for its surfaces. 

 

2 Physical Cabin Modeling 

The HumanComfort library[1] enables very flexible 
modular layouts for modeling physical effects. Any 
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HumanComfort automotive cabin model may inte-
grate the following physical entities in arbitrary 
numbers: 
 

• Partitions (opaque or transparent) for multi-
layer wall setups 

• Air volumes 
• Air exchange models and/or flow models 
• Internal load models (e.g., passengers, waste 

heat) 
• Irradiation balance models 
• Internal surfaces 
• Thermal comfort models 
• External boundary conditions (e.g., climate, 

air leakage) 
 
The following physical effects are modeled by the 
component models of the library: 
 

• Heat transfer by convection 
• Heat transfer by conduction 
• Heat transfer by direct and diffuse irradia-

tion, distinction between short wave and 
long wave irradiance  

• Convective mass transfer 
• Condensation of moisture 
• Carbon dioxide emission and balance for re-

circulation air controls 
 

The assessment of parameters starts with geometrical 
parameters. The required discretization of the cabin 
model with regard to number of air volumes, walls 

and wall layers depends on the desired resolution for 
temperature (and other states). Focusing on air tem-
peratures the following layouts are appropriate: 
 

• Single air volume for pure convective driv-
en simulations (e.g. during air conditioning 
operation) 

• 2 air volumes in top/bottom layout if a pre-
conditioning of the cabin during which the 
AC system is switched off has to be simu-
lated 

 

 
Fig. 2 Automotive cabin layout 

 
A single air volume approach for a very popular 
middle class sedan car (Fig. 2) is shown in Fig. 1. 
The model consists of external wall partitions that 
are exposed to external boundary conditions on the 
outside for the ceiling, the floor, the left side wall, 
the right side wall and two smaller parts for the left 
and right opaque top hull part. Windows are divided 
into windscreen, two side windows left, two side 
windows right and rear window. Furthermore, inter-

nal surfaces were integrated for the panel, the fire-
wall, two front seats, the rear bench and trunk shelf.   

Fig. 1 HumanComfort Modelica cabin model - Single volume approach 
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Since only a single air volume is considered the air 
distribution modeling is very simple. A single design 
inlet and a single design outlet were integrated. 
Please note that a more complex distribution requires 
additional volumes and flow models that calculate 
mass flow rates between nodes. Nevertheless, even 
the single volume approach can be easily extended 
by more inlets and outlets (see Fig. 3), if required by 
the measurement setup since the fluid flow connector 
is according to Modelica.Fluid specification includ-
ing the stream connector concept.  
 
The 2-volume approach shown in Fig. 3 was created 
starting from the single volume approach. The upper 
volume is displaying the air state in the head area of 
the car. The bottom volume is standing for the aver-
age air state in the space below the windowed cabin 
area. Thus, the convective heat transfer connections 
of the walls have to consider the location of the parti-
tion (top or bottom). The convective heat transfer 
connectors are represented by the red and gray con-
nectors while the radiation connectors are full red in 
Fig. 1 and Fig. 3. Additional elements are required 
for the flow exchange between the top and the bot-
tom volume. For demonstration reasons air spaces 
have been integrated into the ceiling and side walls 
in order to simulate air temperatures here as well. 

 
 
 
 
A partition is modeled as a flat but inclined wall with  
one-dimensional parameters. It may consist of up to 
9 layers with independent properties. The outer heat 
transfer is due to irradiance and convective heat  
transfer. Optional one can also determine a heated-
layer for wall heating (e.g. for seat heating). Fig. 4 
explains how geometry parameters are specified. The 
azimuth angle of a wall describes the horizontal di-
rection of the outside, ambient surface normal. A 
south bound direction is defined to have an angle of 
0°. Furthermore, the user has to specify the tilt angle 
(or zenith angle) between horizontal plain and the 
walls surfaces. If the zenith angle is 0° or 180° the 
azimuth angle is meaningless. For surfaces with sig-
nificant curvature it is straightforward to separate the 
wall section into parallel partition models. 
 
It is usually not easy to determine properties of the 
multi-layered cabin walls. Another challenge is de-
fined by the later calibration of the cabin model since 
the physical parameters of each layer are potentially 
uncertain. Therefore, it may be a better approach to 
calculate average properties for a compound of mate-
rials and calibrate three property parameters for a 
wall. 
 

Fig. 3 HumanComfort Modelica cabin model - 2 air volume approach 
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Fig. 4 Partition model orientation parameterization 

The average heat capacity can be found by:  
 

���� � ∑�� ∙ 	�∑	�  

with  

cavg  average heat capacity [J/(kg.K)]  
ci specific heat capacity for material 
 fraction [J/(kg.K)]   
M i mass of material fraction [kg]  

The average density with respect to thermal behavior 
follows from: 
 
 


��� � ∑	�	�
�
  
with  

ρavg  average density [kg/m³] 
V tot total volume of compound [m³]  
 

The average thickness of the compound in the sense 
of heat conduction is defined by: 

 

���� � �
�
��� 

with  

savg average thickness of compound [m] 
AHT projected heat transferring area [m2] 

In order to determine the average heat conductivity 
of a compound one can choose from two approaches 
that will be detailed subsequently.  
 
Approach 1 “ideal one-dimensional layers“ 

 

���� � � 1∑ ����� ∙ �
�
 
with 

λavg average heat conductivity [W/(m.K)] 

λi heat conductivity of material fraction 
         [W/(m.K)] 
si average thickness of one ideal layer 
         [m] 
stot total thickness of compound 
         [m] 
  

Approach 2   “measurement” 

 

���� � ������� ∙ ��� � ��� ∙ ���� 

with 
 �� oi heat flow rate from outside to inside 
  [W] 
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Ti Average inside surface temperature 
     [K]  
To Average surface temperature on  
  outside [K] 

It has to be pointed out that the main contribution to 
the heat conduction of cabin hulls is defined by insu-
lations and air. A detailed model of air gaps inside 
doors and ceilings is also possible to create with 
HumanComfort library (see Fig. 3). 

Typical values for materials found in automotive 
cabins are listed in the Tab. 1 below. 
 
Tab. 1 Material thermal property data 

Material ρ  
[kg/m³] 

λ 
[W/(m.K)] 

c 
[J/(kg.K)] 

Tin (Steel) 
Insulation 
Carpet 
Glass 
Plastic 

7800 
60 
750 
2500 
1300 

58 
0.047 
0.072 

1 
0.21 

480 
1680 
1000 
800 
1470 

 
Window partitions are characterized by further pa-
rameters for emissivity and absorption of irradiance. 
Those parameters are usually well known although 
there might be also manufacturers who provide the 
solar heat gain coefficient (SHGC) instead. This fac-
tor does not distinguish between the temporary inter-
nal and external heat transfer coefficients which is a 
problem, when boundary conditions change. Thus, 
the experimental heat transfer coefficients have to be 
known in addition.  
                                                          
Typical values for short wave transmission factors 
τsw, short wave absorption factors αsw and long wave 
emission factors εlw of different single pane glasses 
are given in Tab. 2 (refer also to [8]). Those factors 
have a considerable impact on the heat load of a cab-
in. 
 
Tab. 2 Window irradiance transmission, absorption and 
emission data 

Glass τsw  
[-] 

αsw 
[-] 

ε lw 

[-] 
Clear 
Green 
IR 

0.84 
0.60 
0.50 

0.08 
0.32 
0.41 

0.91 
0.80 
0.80 

 
Such factors are also required for opaque internal 
and external surfaces as part of the cabin hull (see 
Tab. 3). 
 

Tab. 3 Hull surface irradiance factors 

Hull  αsw 
[-] 

εlw 

[-] 
White 
Dark blue 
Black 
Internal 

 0.30 
0.80 
0.99 
0.80 

0.85 
0.90 
0.98 
0.80 

 

2.1 Boundary Conditions for Simulation 

Measurements from an experimental facility were 
supplied for two experiments at different boundary 
conditions: 
 

1. Passive heat up and pull down scenario at 
45°C ambient temperature and 1000 W/m² 
vertical, direct irradiation (summer), refer to 
Fig. 5 to 7  

2. Heat up scenario at -20°C ambient tempera-
ture (winter), refer to Fig. 8 to 10  

 
The passive heat up and active pull down scenario 
starts with a passive preconditioning of the cabin. 
This is achieved by radiant heaters installed above 
the cabin. After one hour of heating the driver enters 
the car and starts the engine as well as the AC sys-
tem. The driving cycle started after the precondition-
ing consists of three speed intervals: 1. 32 km/h,  
2. 0 km/h (idle), 3. 64 km/h. The driver introduces a 
sensible heat flow rate of at least 80 W as well as a 
moisture input of 6.5 g/h.  

 
Fig. 5 Boundary conditions for passive heat up and active 
pull down simulation - Speed, ambient temperature and heat 
flow rate of passengers 

 It is important to understand that the car is located in 
an artificial experimental setup and will not move 
during all driving cycles. Instead, the air velocity of 
the surrounding air is changed accordingly. During 
the passive heat up the vehicle is actually exposed to 
a small air flux to prevent overheating on some ex-
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ternal surfaces. The exact wind speed is unfortunate-
ly not known but was assumed to be small. Another 
large impact on the car’s heat balance is imposed by 
walls of the experimental facility which emit long 
wave radiation.    
 
The air distribution system of the car is equipped 
with six measurement sensors for air temperature: 
 

• (Front) Face Center 
• (Front) Face Side (Left & Right) 
• Face Rear 
• Foot Front 
• Foot Rear 
• Defrost 

 
The mass flow rate of air is recalculated from the fan 
characteristic assuming a certain fixed distribution 
between the outlets. 
 
During pull down in summer only the upper outlets 
are used and foot outlets are closed. The total mass 
flow rate of air sums up to constant 550 kg/h. Note 
that the air temperature measured during passive heat 
up is due to heat dissipation only. 
 

 
Fig. 6 Outlet air temperatures for passive heat up and active 
pull down – no outflow for time less than 0 sec. 

 

 
Fig. 7 Outlet mass flow rate of air distribution system for 
passive heat up and active pull down 

In case of the winter scenario a preconditioning of 
the cabin model is not required, since all partitions 
are having nearly the same temperature slightly 
above -20°C. Here, the driving cycle is simpler:  
1. 50 km/h, 2. 0 km/h (idle). 

 
Comparing Fig. 9 with Fig. 10 reveals that the air 
temperature of the rear face outlet is nearly constant 
until 500 sec although a mass flow rate is shown by 
the measurement. This deviation from a plausible 
physical behavior indicates that the Face Rear Outlet 
is just opened at that time point in order to prevent 
passenger’s exposition to cold draft. It is assumed 
that the total mass flow rate is correct though. Never-
theless, in order to create correct energy balances it 
was decided to consider just those outlets which had 
a temperature larger than -19°C. The total mass flow 
was evenly distributed across the remaining open 
outlets. 

 

 
Fig. 8 Boundary conditions for active heat up - Speed, ambi-
ent temperature and heat flow rate of passengers 

 
Fig. 9 Outlet air temperatures for active heat up 
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Fig. 10 Outlet mass flow rate of air distribution system for 
active heat up 

 

3 Calibration Process of the Cabin 
Model 

3.1 Comments on Planning Measurements for 
Calibrating Cabin Models 

 
There are some pitfalls in using cabin temperature 
measurements for calibration of cabin models. A 
general problem is to define correct boundary condi-
tions of the cabin. Especially, the air temperature 
measurement has to provide at least all temperatures 
at the virtual outlets of the air distribution system as 
well as the exhaust/return air inlet since a considera-
ble heat transfer is taking place in the usually not 
insulated air channels. The effect of temperature 
gains on the heat load in recirculation mode can be 
up to 20%. 

 

For multi-volume approaches it is helpful to know 
approximately the actual mass flow distribution by 
the air distribution system, since it can become labo-
rious to determine active air outlets at each time 
point (see section 2.1).   

 

3.2 Calibration Results 

 
The calibration process of the HumanComfort model 
is required in order to determine important, unknown 
parameters that have a large impact on the thermal 
behavior of the cabin. Those are usually: 

 

• Internal and external heat transfer coeffi-
cients 

• Emission and absorption factors of internal 
and external surfaces (in this case known) 

• The average number of reflections between 
internal surfaces until the remaining rest of a 
portion of external short wave irradiance is 
reflected to ambience (decay of short wave 
irradiance) 

 

The influence of the cabin hull (ignoring windows) is 
small on the static heat transfer. Nevertheless the 
cabin hull walls should not be ignored during transi-
ent simulations due to their large heat capacity which 
causes high heat flow rates to the cabin air in air 
conditioning or heating mode. 

 

In this study it was possible to calibrate convective 
heat transfer and heat transfer due to solar irradiation 
separately since in the winter case simulated on a test 
facility solar irradiation was not present. Thus, a two 
step calibration is performed starting with the as-
sessment of the heat transfer coefficients. After-
wards, a calibration of the radiation model’s parame-
ters was carried out. In order to simplify the calibra-
tion process it was decided to work with average 
heat transfer parameters. Since there is in all cases a 
strong variation of air velocity present, a generic heat 
transfer model in the following form was used: 
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The parameters αconst and γ were fitted by using the 
XRG’s ModelOptimizer optimization tool to obtain a 
minimum integral deviation from the average cabin 
air temperature. ModelOptimizer offers both global 
and local optimization schemes so that a global op-
timum can be found. 

 

The external air velocity cext is equal to the vehicle 
speed while the internal air velocity cint shows a huge 
variation across the cabin. In order to simplify the 
calibration process an average velocity in an arbi-
trary cross section of the cabin has been chosen: 
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The calibration process yielded different values for 
both measurements due to smaller uncertainties. In 
the winter case external heat transfer coefficients 
turned out to be lower than in the passive heat up and 
pull down case. A very small deviation for both cas-
es was found with the same parameters: 

 

• αconst  = 7.0  [W/(m2.K)] for internal and 
external heat transfer, 

• γext  = 0.5  [J/(m³.K)], 
• γint  = 40.0  [J/(m³.K)], 
• Integer number of reflections for short wave 

irradiance in top node: 1, 
• Integer number of reflections in bottom 

node: 3. 
 
The number of reflections was calibrated by compar-
ison of heat transfer coefficients for different settings 
in the heat up and pull down case.  

 

 
Fig. 11 Calibration result for winter case – comparison of 
average air temperature 

 

 
Fig. 12 Calibration result for passive heat up and active pull 
down – comparison of average air temperature 

In Fig. 11 and Fig. 12 the result for the average air 
temperature inside the cabin is shown. The integral 
deviation of the squared temperature difference is 
3790 [K²s] in the heat up case and 6140 [K²s] in the 
passive heat up and active pull down case, which 
corresponds to an average deviation of approx. 0.9 to 
1.2 K. During heat up the temperature slope is cap-
tured in a good way. For  both cases there are higher 
deviations present at the end of each cycle. In the 
heat up case the temperature deviation starts to in-
crease at 1800 sec when the car speed is decreased to 
0 km/h. It was not possible to find heat transfer coef-
ficients that could display the measured behavior 
though. Thus, this deviation could also be due to 
wrong assumptions or interpretations of the meas-
urements. In the passive heat up and pull down case 
a static deviation of approximately 2 K is present in 
always every speed interval when the AC is on. An 
exclusive calibration for this case yielded better re-
sults with higher heat transfer coefficients. But since 
both cases required a small deviation average heat 
transfer coefficients were chosen.  Nevertheless, the 
static temperature deviation is not larger than 1.5 K, 
again. 

 

 
Fig. 13 Seat temperature for the active heat up case 

 

 

 

An interesting auxiliary variable (which was not cal-
ibrated) is the seat temperature provided for both 
measurements (refer to Fig. 13 and 14). The plot re-
veals that the temperature slope shows in general a 
comparable plot. It has to be stated that the position 
of the measurement sensor inside the seat was not 
known. During the calibration it was found that the 
internal heat transfer coefficient had a large impact 
on both plots. The coefficients that were determined 
at the end of the calibration process yielded a good 
solution which indicates a successful calibration 
again.  
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Fig. 14 Seat temperature for the passive heat up and active 
pull down case 

4 Conclusions 

The models in XRG’s HumanComfort library was 
successfully used for thermal automotive cabin simu-
lations. The models consider all kinds of thermal 
heat transfer which is mandatory for using the model 
in different applications. Due to its modular design 
the user can easily and quickly exchange compo-
nents and modify the layout for his needs. Coupling 
to other Modelica libraries, e.g. for modeling air dis-
tribution systems or air conditioning systems is pos-
sible since Modelica.Fluid compatible interfaces 
were used. The modeling process for a single car can 
be done within one day including parameterization 
with data provided.  
 
This article was aiming to present a way to calibrate 
an efficient system level model such that it achieves 
a comparable accuracy as for more complex ap-
proaches (refer to [4]) with much less effort. The 
time to model the cabin and calibrate it takes approx-
imately two weeks or even less when starting from a 
template. Furthermore, it was shown that a calibra-
tion has to take at least two different cases into ac-
count: one case with and one without external short 
wave irradiance (winter and summer case). The 
measurements should include a broad range of vehi-
cle speeds and inlet air low rates. With regard to the 
last point the distribution and amount of air has to be 
identified as accurate as possible. 
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Abstract 

The increasing electrification of the drive train in the 
automotive environment leads to higher require-
ments for automotive systems and their design. 
Therefore, a computer based methodology to support 
the engineer in the design phase of car concepts, 
components and control algorithms is desirable. All 
relevant sections of a vehicle development process, 
e.g. longitudinal and lateral dynamics, thermal man-
agement or the power supply should be considered. 
Due to this necessity a new holistic vehicle library is 
developed at the Forschungsgesellschaft 
Kraftfahrwesen mbH Aachen (fka) and Institute of 
Automotive Engineering (ika) of RWTH Aachen 
University. The introduced holistic method is applied 
exemplarily on architecture with the traction battery 
as thermal storage to determine the potential of such 
a design on the overall efficiency and to analyse dif-
ferent operational strategies. 

Keywords: thermal management; vehicle simulation; 
traction battery, electric vehicle, range extender, 
thermal storage, control strategy 

1 Introduction 

Due to ecologic and economic reasons, the overall 
efficiency and the emissions, both local and global, 
of individual mobility have to be improved. An in-
creased electrification of the drive train is currently 
being considered as a promising approach for reduc-
ing both the energy demand and the emissions. 
However, an increased electrification of the drive 

train, i.e. replacing or partly substituting the internal 
combustion engine, implies the integration of new 
components as well as a higher number of energy 
conversion units. 

The augmented number of components, as well as 
their diverging requirements and operating condi-
tions will clearly increase the complexity of electri-
fied car architectures. On the thermal side for exam-
ple, the integration of temperature sensitive compo-
nents, e.g. lithium ion batteries, may imply more 
complex cooling circuit architectures, as the relevant 
operating temperatures clearly differ to those of an 
electric machine or an internal combustion engine. 
On a mechanical level for example, there are several 
possibilities to couple an internal combustion engine 
and an electric machine: e.g. parallel and serial hy-
brids. 

Furthermore the increased efficiency of the electric 
machine compared to the internal combustion en-
gine, will also increase the complexity of both the 
architecture and the operation strategies. For battery 
electric vehicles (BEV) for example, the cabin has to 
be heated by means of electric energy, as in general 
no or little waste heat is available at a sufficiently 
high temperature level. Thus, for highly electrified 
concepts the cabin heating will directly influence the 
drive train, the power net and the design of the con-
trol strategies. To minimise the used electric energy 
heat pump systems and improved heating control 
strategies are possible alternatives (cf. e.g. [1]). 

 

The given examples clearly show that a strongly in-
creased complexity has to be expected for the design 
phase of future cars. Currently an overall design ap-

DOI Proceedings of the 9th International Modelica Conference    263 
10.3384/ecp12076263 September 3-5, 2012, Munich, Germany    

 

 

 

 

 

 

 

 

 

 

   



 

 

proach is missing. In general different and mostly 
incompatible tools are applied for different design 
tasks and the overall design process is strongly hier-
archic. Up to now such a top-down approach was 
practicable, as the correlation of the energy flows 
was minor. In general the internal combustion en-
gine, as the core energy conversion unit, implicated 
the design of most other units, e.g. the cooling cir-
cuit. 

Furthermore, the different energy forms, chemical, 
mechanical, electrical and thermal, are increasingly 
correlated for electrified car concepts. The higher 
complexity as well as the necessity of a holistic ap-
proach requires new tools to support the engineer in 
the design process. 

2 Library description 

The holistic model library developed at 
Forschungsgesellschaft Kraftfahrwesen mbH Aachen 
(fka) and Institute of Automotive Engineering (ika) 
of RWTH Aachen University (cf. [2])  takes into 
consideration all energetic (mechanical, electrical, 
thermal and chemical) and logical (sensors, actors 
and control units) flows including dynamic boundary 
conditions (e.g. drive cycles, ambient conditions) of 
automotive concerns. It follows a layer based level 
approach. Basically the modeling library is struc-
tured as illustrated in Fig. 1. 

 

 

Fig. 1: The four level structure of the holistic tool 

 

2.1 Base Level 

At the lowest level generalized elements are imple-
mented which can easily be adapted due to the object 
oriented modeling property of inheritance or instan-
tiation. On the base level the following packages are 
implemented. All elements on that level are not 
computable and are combined later on the compo-
nents level.  

 

• ThermalLib 
• ElectricLib 
• MechanicLib 
• StateModelLib 
• Utilities 

 
The ThermalLib contains all base classes of thermal 
concern. Based on a general volume element with   
generalized mass and energy balances and proper-
ties, a fluid and a solid element are derived and used 
for all calculations. Secondly the geometric infor-
mation of these elements is defined.  

For a fluid element the dynamic momentum bal-
ance is calculated. A variable modeling depth of 
pressure drop calculation method may be adapted by 
choosing a flow model. A heat transfer model calcu-
lates the coefficient of heat transfer and provides the 
necessary interface to e.g. the surrounding ambient. 
For the solids variable geometries are implemented 
based on a solidElement, so that new models can 
easily be generated on the components level. This is 
illustrated in Fig. 1 where a standardized shell ele-
ment is used for electric machine housing, the tube 
of a heat exchanger or a cylindrical battery cell.  

 
The other packages contain e.g. voltage sources 
(ElectricLib), inertias (MechanicLib) or general 
mathematical functions (Utilities).  
   
The StateModelLib uses both a model based and a 
function based approach, wherein data of literature 
or specific measured fluids can be chosen.  

For physical values thermal, fluid, electric and 
mechanical connectors are defined using the flow 
and stream properties. For the logical signals ex-
pandable connectors are used. 

Interfaces are provided, so that the library stays 
compatible with the Modelica Standard Library con-
nectors (cf. [3], [4]) and the Vehicle Interface Li-
brary (cf. [5]). 

  

Base
level

Component
level

System
level

Overall level
e.g. vehicle
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2.2 Component Level 

At the components level a variable number of base 
elements are combined to generate models to a cho-
sen level of design. At present the components level 
has the following structure: 

 
• HydraulicComponents 
• DriveTrainComponents 
• PassengerCabinComponents 

 
E.g. tubes, valves, heat exchangers or pumps are el-
ements of the Hydraulic Components, whereas gears, 
clutches, electric machines, internal combustion en-
gines or the traction battery are part of the 
DriveTrainComponents. The different kinds of car 
body types are integrated e.g. in the Passenger 
CabinComponents. All the components inherit from 
the lower base class level as described above.  
Fig. 2 demonstrates the approach of the library by 
the example of the traction battery. It consists of the 
electrical model, a thermal model and a Battery 
management system (BMS). All sub models are im-
plemented as replaceable models. Depending on the 
issue to be investigated the level of detail may be 
chosen for the single models. However, for the de-
tailed component design, e.g. the exact shape of the 
cooling duct of a battery pack, a strongly increased 
level of detail, i.e. a strongly discretised modelling of 
the coolant flow, is needed, to judge both the heat 
transfer and the pressure losses as Thermal model 
(cf. Fig. 2). For the electric model a modeling ap-
proach using manufacture data map or a more de-
tailed calculation on the chemical level may be cho-
sen. The BMS may be simulated as a single Read-
Only system or more intelligent systems including a 
control unit may be chosen. 
The single models are linked via standardized con-
nectors. For sensor models expandable connectors of 
the Modelica Standard Library (cf. [3]) are used.  
 

 

Fig. 2: Modeling approach of the traction battery 

 

2.3 System 

At the system level the interactions of energy and 
signal flow between all components are implement-
ed. The thermal fluid part of the system level is ex-
emplarily shown for the low temperature cooling 
circuit of a battery electric vehicle in Fig. 3: 

 

 

Fig. 3: schematic diagram of a battery cooling circuit 

Fig. 4 shows the respective exemplary Modelica 
model of the configuration, including electrical, 
thermal and logical signals. 

 

 

Fig. 4: Examplary model of the battery circuit  

 

2.4 Overall Level 

The vehicle level combines all vehicle sub models 
such as the power train, the respective cooling cir-
cuits, the power supply and the passenger cabin.  
Beside the global boundary conditions, such as the 
driving cycle, the route profile, ambient conditions 
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or initial conditions a control block which consists of 
the driver and the ECU manages all concerns of con-
trol. 

 

 

Fig. 5: schematic view of the overall level 

 

3 The traction battery as thermal 
storage for range extended vehicles 

In this chapter an application example is given for 
the use of the holistic vehicle simulation model ap-
proach.   

A major challenge for electrified vehicles is to cover 
the heating demand for the passenger cabin in an 
efficient way. As stated in Bouvy et al., (cf. [6]) the 
application of a heat pump system in combination 
with a preheated traction battery as heat source pro-
vides an efficient solution for passenger cabin heat-
ing, leading to higher range. In most cases the heat 
losses of the battery and the thermal capacity are not 
high enough to cover the heat demand of the passen-
ger cabin so the battery cools down. To avoid an un-
derrun of a critical minimal cell temperature an addi-
tional electric heater needs to be switched on so the 
overall energetic benefit is rather low. Regarding a 
range extended electric vehicle the waste heat of the 
internal combustion engine may, besides providing 
the heat for the passenger cabin, be used to reheat the 
battery. By this, the overall efficiency of this cogene-
ration (i.e. producing heat and power) unit may be 
maximized. Bouvy et al. (cf. [7]) have shown the 
important benefit of a cogeneration unit on the effi-
ciency of passenger cars. 

 

3.1 System architectures 

For this paper two system architectures are discussed 
for a BEV with a range extender unit.   

The first one represents a state of the art range ex-
tender design. The cooling circuit of the range ex-
tender is connected to the heating and ventilation and 
air conditioning unit (HVAC) so its waste heat may 
be used for cabin heating. An additional heat pump 
system is not considered in this scenario and thermal 
peak loads are covered by a high voltage electric 
heater. The operation strategy of the range extender 
is SOC controlled: it starts when the SOC reaches 
20 % and is turned off at a value of 30 % (Charge 
Sustaining – Mode). The schematic vehicle architec-
ture is illustrated in Fig. 6.  

 

 

Fig. 6: Vehicle architecture 1 

For the second architecture the internal combustion 
engine cooling circuit is connected to the battery 
cooling circuit by a fluid/fluid heat exchanger (cf. 
Fig. 7). Due to this design the battery can be ther-
mally charged. A heat pump system is considered 
using the battery as heat source to provide an energy 
efficient heating of the passenger cabin when the 
internal combustion engine is turned off. The opera-
tion strategy of the range extender is thermally con-
trolled by a two level controller. To keep the cell 
temperatures of the traction battery within an optimal 
range, the two temperature margins are set to 20°C 
and 30°C. This operation strategy guarantees high 
coefficients of performance (COPs) of the heat pump 
system and an excessive cool down of the battery is 
avoided.   

For both architectures the thermal peak loads of the 
passenger cabin heating demand are covered by an 
electric high voltage heater (5 kW). 
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Fig. 7: Vehicle architecture 2 

3.2 Simulation setup 

In this analysis both layouts have a 44 kW range
tender unit, an 80 kW ASM electric engine and a 
lithium-ion-battery with a nominal capacity of 
8.6 kWh (about 40 km BEV range determined on the 
basis of the NEDC). The data are chosen according 
to Hartmann and Renner (cf. [8]).  

The defined vehicle has a cabin volume of 3
a surrounding window surface of about 2 m
determination of the cabin heat demand a single pa
senger is assumed and the HVAC is controlled by 
the passenger cabin air temperature accor
Strupp and Lemke (cf. [10]).  

All simulations are performed for a Central Eur
pean winter scenario with an ambient temperature of 
0 °C and solar radiation values according to Strupp 
and Lemke (cf. [10]). At simulation start all thermal 
masses are in equilibrium at ambient condition. The 
battery is conditioned to allow regenerative braking 
immediately at the beginning of the simulation ride 
(5 consecutive NEDCs). The preconditioning is pe
formed by a 5 kW externally supplied electric heater.

More detailed information concerning model depth 
and simulation setup can be found in Bouvy et al. 
(cf. [9]). 

3.3 Operational strategies 

For the first architecture the battery is
charged (SOC= 90%) and thermally
so that a min. cell temperature of 5 °C is reached
The internal combustion engine only operates 
“Charge sustaining modus”. The internal combustion 
engine is operated with the power correspondi
the lowest specific fuel consumption to charge the 
battery. If an SOC of 30% is reached
tender is deactivated (state of the art operation of a 
range extender).  

For the second architecture a thermal operation 
strategy is applied. The battery is 

 

In this analysis both layouts have a 44 kW range ex-
tender unit, an 80 kW ASM electric engine and a 

battery with a nominal capacity of 
kWh (about 40 km BEV range determined on the 

basis of the NEDC). The data are chosen according 

The defined vehicle has a cabin volume of 3 m3 and 
a surrounding window surface of about 2 m2. For the 
determination of the cabin heat demand a single pas-
senger is assumed and the HVAC is controlled by 
the passenger cabin air temperature according to 

re performed for a Central Euro-
pean winter scenario with an ambient temperature of 

°C and solar radiation values according to Strupp 
At simulation start all thermal 

rium at ambient condition. The 
tioned to allow regenerative braking 

ately at the beginning of the simulation ride 
(5 consecutive NEDCs). The preconditioning is per-
formed by a 5 kW externally supplied electric heater. 

concerning model depth 
setup can be found in Bouvy et al. 

battery is electrically 
thermally preconditioned, 

so that a min. cell temperature of 5 °C is reached. 
only operates in the 

The internal combustion 
operated with the power corresponding to 

the lowest specific fuel consumption to charge the 
. If an SOC of 30% is reached, the range ex-

(state of the art operation of a 

thermal operation 
 thermally condi-

tioned similar to variant 1 but a lower SOC is 
to enable electric and thermal charging from the b
ginning on. A reduced operating 
extender is chosen, in order to better fit the power to 
heat ratio to demand (cf. [7], 

 
Variant Operational 

Strategy 

1st  Without using 
battery as the
mal storage 

2nd  Using battery as 
thermal storage
Without battery 
preheating 

Tab. 1: Investigated variants 

In Fig. 8 the Dymola model of the overall system 
level is shown for the analysed szenario

 

 

Fig. 8: overall system level in Dymola

 

4 Simulation Results

Fig. 9 shows the dynamic profile of the average cell 
temperatures. After the preconditioning phase 
thermally operated range extender of variant 2 is 
turned on. At beginning the thermostatic valve of the 
internal combustion engine i

tioned similar to variant 1 but a lower SOC is chosen 
to enable electric and thermal charging from the be-

. A reduced operating power of the range 
in order to better fit the power to 

, [11]).  

Operational Range Ex-
tender Control 
Strategy 

Without using 
battery as ther-

SOC controlled 
Pmech = 19000 
W 

Using battery as 
thermal storage 
Without battery 

Thermally con-
trolled 
Pmech = 10000 
W 

 

the Dymola model of the overall system 
nalysed szenarios. 

 

: overall system level in Dymola 

Simulation Results 

shows the dynamic profile of the average cell 
temperatures. After the preconditioning phase the 
thermally operated range extender of variant 2 is 

At beginning the thermostatic valve of the 
internal combustion engine is closed until the ther-
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mal masses are heated up. Afterwards the waste heat 
is used both for cabin heating and to thermally 
charge the traction battery to a temperature of 30°C. 
When reaching the threshold the engine is turned off 
and the heat pump system cools down the traction 
battery by providing the heating demand for the pas-
senger cabin.  
For variant 1 the battery slowly heats up due to 
charge/discharge losses.    
 
 

 

Fig. 9: average cell temperature for the simulated 
variants 

Fig. 10 visualizes the time dependent state of charge 
curve.  Variant 1 is operated purely electrically in the 
charge depleting mode until the defined SOC of 
20 % is reached. Subsequently the range extender is 
turned on after and the battery is charged again to a 
SOC of 30 % (charge-sustaining).  

 

 

Fig. 10: State of charge of each variant 

 

The operating times vary due to the power require-
ment for the drive cycle as seen in the velocity pro-
file in Fig. 11.  

In the second variant the engine is turned off at about 
23 minutes. Over the whole ride the SOC is deplet-
ing because of the thermally controlled operation 
strategy. At the end of the ride the electric charge of 
the battery remains at about 50 %. Using this strate-
gy the operation intervals of the range extender are 

nearly constant except for the first operation interval. 
Here the battery heating starts from the thermal pre-
conditioning level (5°C) and must consequently be 
operated for a longer time. Afterwards the varying 
heat transfer due to the vehicle velocity is rather low 
so a thermally stationary state is reached.  

 

 

Fig. 11: Range extender operation 

Next, the time dependent heat flow rate distributions 
of the different heating components are discussed. In 
the analysis it is assumed, that the electrical PTC 
heater has an efficiency of 100 %, so the electric 
demand and the heat flow rate are the same. When 
the internal combustion engine is not operated, its 
cooling circuit pump is switched off and the remain-
ing heat is not used. This is illustrated in Fig. 12. 

 

 

Fig. 12: Passenger cabin heating 1st variant 

Regarding variant 2, Fig. 13 shows that due to the 
high temperature level of the battery´s coolant circuit 
high COP-values are reached by the heat pump sys-
tem so an efficient cover of the passenger cabin is 
achieved while operating purely electrically. 
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Fig. 13: Passenger cabin heating 2nd variant 

Furthermore, an energetic evaluation of both systems 
is performed. For the sake of comparability, the 
amount of used primary energy is evaluated for the 
two variants. In order to evaluate the overall effi-
ciency the overall energy input has to be accumulat-
ed. For the discussed variants two different kind of 
energy forms are used, fuel and electric energy from 
the grid.  For this analysis a primary energy factor of 
1.26 is chosen for the fuel (cf. [12]) and 2.6 for elec-
tric energy (cf. [13]). This approximately corre-
sponds to the energetic supply situation in Germany. 

 

 

Fig. 14: Primary energy demand for both variants 

The results show primary energy saving up to 12 % 
for architecture 2 in combination with a thermal op-
erational strategy. Thus, for the considered winter 
scenario the benefit of a cogeneration approach in 
combination with a heat pump and a thermal storage 
is clearly stated out. 

5 Conclusion 

The increasing complexity of actual and future vehi-
cle leads to the need of a holistic modeling develop-
ment tool taking into account all the classical auto-
motive disciplines such as longitudinal dynamics, 
electric system or thermal management but also their 
connection vis-à-vis. Such a holistic library is cur-
rently being developed at Forschungsgesellschaft 
Kraftfahrwesen mbH Aachen (fka) and Institute of 

Automotive Engineering (ika) of RWTH Aachen 
University and was presented in the paper.  

 

An application example was given of the traction 
battery as a thermal storage of range extended elec-
tric vehicles. In the example the benefit of an en-
hanced cogeneration is shown. A further advantage 
of such an approach is that the traction battery will 
mostly be operated in an optimal temperature range 
and thus, best charge/discharge efficiencies and life-
times are reached if the range is wisely chosen. 
However, the influence of this control strategy on the 
battery’s lifetime has to be investigated further on. 
Due to the scalability of the model library a highly 
detailed model to determine lifetime strategies of the 
battery could be chosen for that or/and experimental 
could be carried out. 
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Abstract 
 

This paper presents a model to estimate the solar 

radiation under clear sky conditions over stationary, 

moving as well as flying objects. For the latter it is 

important to predict the peak solar irradiance under 

clear sky condition to calculate maximum possible 

solar thermal loading. In this paper results of 

irradiation over surface on ground and over aircraft 

windows and windshields at cruise altitude are 

presented. Another model implemented, calculates 

the view factor between two or more surfaces. 

Determination of the long-wave radiant heat 

exchange between two or more surfaces or heat 

exchange with a surface itself requires a view factor 

matrix. There are several analytical solutions 

available to calculate view factors for simple and 

known configurations. Many building simulation 

programs estimate the view factors in a simplified 

way, especially when complex geometries are 

involved. The simplified approach may result in high 

errors of surface temperatures, which can further 

cause error in energy balance and estimation of 

comfort level. The purpose of creating this model is 

to calculate view factors between complex 

geometries. The view factor matrices of an enclosed 

space and of a geometry with openings on its 

surfaces are presented in this paper. A sensitivity 

analysis of a view factor matrix is also presented. 

 

Keywords: Solar radiation modeling, View factor 

calculation, Modelica models, Long-wave radiant 

heat exchange 

 

1   Introduction 
 

Methods to predict solar radiation have a wide range 

of applications such as: 

 

 Calculation of cooling loads for air conditioners 

 Solar heat load on buildings, automobile, aircraft 

 Material deterioration under sunlight 

 Solar thermal power generation 

 

Absorption and scattering of a solar beam in the 

atmosphere lead to attenuation of solar radiation. The 

outer space provides almost complete vacuum due to 

which there is no attenuation of solar radiation in the 

outer space. The main sources of absorption and 

scattering are atmospheric gases and aerosol in the 

atmosphere respectively. The longer the path 

travelled by a solar beam through the atmosphere 

before reaching the surface, the greater is the 

likelihood that more of it will be scattered or 

absorbed [1].  Especially for aircrafts the impact of 

solar radiation at cruise altitude can be high as 

radiation at cruise altitude can go up to 1200 W/m².  

A further objective of this research work is to 

simulate long-wave radiant heat exchange between 

complex geometries. Thus the view factors between 

these geometries have to be determined. Calculation 

of view factors is a quite complex process, as it 

requires solving a double area integral. There are 

several analytical solutions available to calculate 

view factors for simple and known configurations 

[2]. In the procedure presented here a pre-processor 

does the triangular surface meshing and creates a file 

in stl-format which serves as input for the Modelica 

model. The results of different geometries are 

presented in this paper 

 

2   Solar Radiation Model 
 

The solar radiation model can be used to predict 

clear sky solar radiation over stationary surfaces like 

building façades or parked automobiles, moving 

surfaces like vehicles following a predefined path, as 

well as flying surfaces like aircraft during climb, 

cruise and descent.  

 

There are two basic models: 

 

 Sun position model  

 Surface radiation model 
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2.1 Sun position model 

 

The sun position model is the global solar model 

which calculates the position of the sun in the sky at 

a particular time and at a particular location on the 

earth [6][7]. This information and the surface 

orientation are inputs to the surface irradiation 

model.  Both models are set as an inner outer system, 

so there is no need of physically connecting them.  

The input parameters for the global solar model 

depend on the type of application. If it is a stationary 

model, then the input parameters are longitude, 

latitude, altitude, standard time longitude, ground 

albedo, single scattering albedo, thickness of 

precipitable water [cm], ozone content of the 

atmosphere [cm NTP] and forward scatterance. 

Meaningful default values are implemented to allow 

simulations even if the user lacks some of this 

information (see Figure 1). Apart from above 

mentioned parameters the modeller must select the 

modelling approach from a drop down menu. There 

are three modelling approaches implemented to 

estimate radiation. If visibility data is not available 

the modeller can select between a modified Pinazo 

model [3][4] and a hybrid model for estimating 

global solar radiation [5]. If visibility data is 

available, the model will calculate angstrom’s 

turbidity from this visibility data. Figure 1 shows the 

parameter window of the global sun position model 

for stationary surfaces. 

 

 
Figure 1 : Parameterization of stationary global sun 

position model 

In case of moving or flying objects, the modeller has 

to use the mobile global sun position model. As 

location of a vehicle and orientation of surfaces are 

constantly changing, this information is set as input. 

Figure 2 shows the model block of the mobile global 

sun position model. All the variables changing with 

time are in the transition profile which is connected 

to the global model. 

 

 
Figure 2 : Mobile sun position model connected with 

a flight profile 

From the location, the day of the year and time of the 

day, the sun position model calculates the position of 

the sun in the sky and extraterrestrial radiation. From 

the altitude and the sun position in the sky, the model 

calculates the air mass. To determine the solar beam 

attenuation and irradiation on a horizontal surface, 

the model calculates absorption and scattering of a 

solar beam. The direct normal irradiance for a clear 

sky [3][4] is expressed as  

 

gowarscon tttttIEI ......9751.0                              (1)                                 

 

where Eo is the earth’s orbit eccentricity correction 

factor; Isc is the solar constant (1367 W/m
2
); tr, ta, tw, 

to and tg are the transmittance due to Rayleigh 

scattering, aerosol absorption and scattering, water 

vapour, ozone and other gases absorptions 

respectively.  

 

To determine the direct solar radiation on horizontal 

surfaces using equation (1) it is necessary to know 

the value of Angstrom’s turbidity coefficient. The 

model implemented will calculate angstrom’s 

turbidity by three different methods. The modeller 

can select the method from a parameter window. If 

the horizontal visibility is known, the model 

computes the value of ß (Angstrom’s turbidity 

coefficient) by equations (2) or (3) [9]:  
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


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.01162.0.
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a  (2) 

 

Equation (2) proves to be accurate enough when the 

value of particle size distribution exponent a is 1.3. 

For the values of a different to 1.3 equation (3) 

proves to be more accurate. 
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
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Where 

Vis=Horizontal visibility [km] 

F = 2.3575E
-02

, 

G = 9.387E
-03

 and 

H = 0.278863 

 

Equation (2) and (3) do not cover visibilities in fog. 

During fog, the size of the particles becomes very 

big hence none of these equations are applicable in 

that condition. The estimation of diffuse radiation is 

done by using modified Pinazo model [4]. 

 

2.2 Surface radiation model 

 

Two types of surface models are implemented here, 

one is for stationary surfaces and the other is for 

moving as well as for flying surfaces. The modeller 

has to define the surface orientation of each surface 

in the surface model parameter window. If the 

surface is moving, then modeller has to give the 

initial surface orientation in the surface model and 

the change in surface orientation with time in the 

global model. The surface model reads the change in 

surface orientation from the global system and 

calculates the solar incident angle on each surface for 

each time step. Figure 3 shows the parameter 

window of the surface radiation model 

 

 
Figure 3: Surface radiation model parameter window 

Four different radiation models are implemented [6]. 

The modeller has to select one of the following 

radiation models from the drop down menu, 

 

 Isotropic model: All diffuse radiation is 

uniformly distributed over the sky dome.  

 Circumsolar model: The effect of circumsolar 

radiation and horizon brightening is taken into 

account.  

 Iso-circumsolar model: The portion of the diffuse 

radiation is treated as circumsolar and the 

remaining portion is treated as isotropic. 

 Horizon brightening model: In addition to 

isotropic diffuse and circumsolar radiation, the 

Reindl model also accounts for horizon 

brightening.  

When the model calculates clear sky radiation, the 

results of circumsolar model and isotropic model are 

the same. All four models are implemented to use 

under clear sky conditions as well as under overcast 

conditions. The surface radiation model can further 

be connected to wall models and/or window models. 

  

3 Estimated solar radiation  
 

3.1 Stationary surface at ground 

 

Figure 4 shows a comparison between estimated 

solar radiation under clear sky conditions and the 

measured solar radiation. The measured data shown 

in the figure 4 were taken from Fraunhofer IBP’s 

weather station for the 10
th
 of September 2011 [8]. 

 
Figure 4 : Comparison of estimated radiation with 

measured radiation (top) and difference in measured 

and estimated radiation (bottom) 

 

For almost the whole day, there were no clouds in 

the sky except for some time between 7 am and 

9 am, where one can see a larger deviation between 

measured and simulated beam radiation. This 

difference can be reduced if the cloud factor is 

known. The current model can calculate overcast 

conditions if the cloud factor is known in advance. 

For the clear sky condition, the difference between 

simulated and measured beam radiation is less than + 

20 W/m
2
.  
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3.2 High altitude solar radiation 

 

At cruise altitudes, solar radiation intensity is much 

higher because the solar beam has to travel less 

distance in the atmosphere. 

 

 
Figure 5 : Ground level and high altitude solar 

radiation 

 

Figure 5 shows the difference between the solar 

radiation on a horizontal surface at ground level (in 

Holzkirchen, Fraunhofer IBP, Germany) and at 

cruise altitude of 35,000 ft. Results shown are for the 

spring time. During hot summer days, solar radiation 

at cruise altitude can go up to 1200 W/m
2
. 

 

3.3 Solar radiation on aircraft 

 
Solar heating can contribute significantly to thermal 

loads of an aircraft, especially when flying at high 

altitudes. Solar radiation affects e.g. aircraft cockpits 

directly through the windshield and cabins through 

windows. Heat dissipated by internal heat sources 

and heating by direct solar radiation has an adverse 

effect on thermal comfort of passengers, cabin crew 

and pilots which requires considerable amount of 

cooling air in the cabin and in the cockpit. When the 

aircraft is on ground at some hot and humid place the 

effect of solar heating is significant. While the 

aircraft is on ground, temperature of the surfaces 

exposed to direct solar radiation are typically 20 K 

higher than ambient temperature, depending on the 

thermal capacity of the surface material and 

geographic location. Figure 6 shows the global sun 

position model and environment model connected 

with a flight profile. It also shows a wall structure 

model and window model connected with the surface 

orientation model. 

 
Figure 6 : Model to simulate solar radiation on an 

aircraft 

 

The model shown in the figure 6 reads the flight 

profile (longitude, latitude, altitude, time, day of the 

year) and accordingly calculates the irradiation on 

differently oriented surfaces of the aircraft skin. The 

assumption of clear sky condition is fairly accurate 

and viable to use at cruise altitude, as there are not 

much clouds present at this altitude. Environmental 

parameters such as ambient pressure, ambient 

temperature, humidity, skin temperature etc. are 

implemented as functions depending on the flight 

profile.  

 

The surface orientation model for the aircraft 

fuselage is a discretised cylinder model. The 

cylindrical surface is discretized into a number of 

rectangular strips where each strip has a different 

surface orientation and each strip is an individual 

surface which will calculate its new orientation as 

per its initial position and the given flight profile. 

The incident angle for each surface is different. This 

cylindrical surface model is then further connected to 

the window and wall model.  

 

Figure 7 shows the solar irradiation on aircraft 

windows and windshield.  The simulation is done for 

a flight from Munich international airport to 

Johannesburg international airport. There are several 

assumptions made such as: flight duration is 10 h 

30 min, departure time from Munich is 7 am, 

duration of taxing at departure airport and at arrival 

airport is ignored, initial take-off and approach is 

ignored. The simulation is done for 21-March, 21-

June and 21-Dec. It is assumed that the flight takes 

30 min to reach cruise altitude and 45 min for 

descent and initial approach. The time to reach cruise 

altitude depends on the several factors like type of 

aircraft, weight of aircraft, allowable angle of attack 

and angle of turn etc. The flight profile considered 

here cannot be applied as a standard profile; it is 
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purely based on close approximation. The cruise 

altitude considered for this simulation is 39,370 ft. 

 

 
Figure 7 : Incoming solar radiation on window and 

windshield outer surface. 

 

While observing the figure 7, one should keep in 

mind that when it is winter in the northern 

hemisphere, it is summer in the southern hemisphere. 

The three dates considered in the simulation 

represent the summer solstice, winter solstice and 

equinox. The results shown in the figure 7 can be 

considered as irradiance over the outer surface of 

windshield and window, and not as the amount of 

irradiance entering into cockpit and cabin. The 

window and windshield will absorb some of the solar 

radiation, some of the radiation will be reflected and 

the remaining will be transmitted. 

 

4 View Factor Model  
 

4.1 Basics 

 

View factors between two surfaces are dependent on 

the geometry of the surfaces and their orientation. 

The view factor can be interpreted as the fraction of 

diffusive radiant heat exchange between surface i 

and surface j. The view factor between two 

infinitesimal surface elements dAi and dAj is defined 

by equation (4).  [10][11] 

 

ji

ji

AjAii

ij dAdA
rA

F  
2.

cos.cos1




 

(4) 
 

 

Equation (4) is the general equation of a view factor 

between surface i and surface j, as shown in figure 8, 

where r is the distance between the centres and cosθi 

and cosθj are the directional cosines. Cosθi and cosθj 

can be determined by using following equation [11]. 

 

 
Figure 8: View factor between two infinitesimal 

surface elements 
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Where x,y,z are the coordinates of a centre of the 

element under consideration. When discretizing 

surfaces i and j with triangular elements to solve 

equation (4) the distance r is determined from the 

centres of the triangles. The areas of the elements are 

determined using the parallelogram theorem. The 

discretization yields equation (7) : 

 

ji

ji

i

ij dAdA
rA

F .
.

cos.cos1
2




 (7)                   

 

Once Fij is known one can calculate Fji from equation 

(8): 

 

jijiji FAFA ..   (8)                   

 

4.2 Modelling approach  
 

A pre-processor is used to create a triangular surface 

mesh and to store it as .stl-file. This file is the input 

for the Modelica model described here. The model 

reads vertex and normal vector of each triangular 

facet from the .stl-file and creates both coordinate 

matrix and normal vector matrix. In the next step, the 

model will calculate the centres of each triangle, the 

distance r for each triangle with all the other 

triangles and similarly directional cosines for each 

triangle. The ‘area function’ call in the model will 

calculate area of each triangle. The ‘view factor’ 

function call in the model will calculate the view 

factor of each triangle with all the other triangles.  
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Finally the ‘sum view factors’ function call will give 

the final view factor of the whole surface with all the 

other surfaces. Summation of view factors is done as 

shown in the equation (7). All of the above functions 

are implemented in a view factor model. The 

modeller has to give only the .stl-file for each 

surface.  

 

5 Application of view factor model 
 

5.1 Closed geometry 

 

The accuracy of the model is dependent on the 

meshing size. With finer meshing the accuracy of 

results is improved. If the meshing is coarse, the 

results are less accurate but the model will take less 

computational time.  

 

 
Figure 9 : Closed geometry (box) 

 

Figure 9 shows a rectangular box with 6 surfaces. 

The box is 1 m long, 0.5 m high and 0.5 m wide. It is 

easy to solve the double area integral (DAI) for this 

geometry and that is the reason why such simple 

geometry is considered, so that the results of the 

Modelica model can be compared with the DAI 

solution. There are 6 surfaces of the box. Each 

surface of the box can see the other surface, so there 

will be 6x6 view factors but none of the surface can 

see itself as all the surfaces are flat surfaces hence 

there will be 6x6 view factors with a zeros on the 

diagonal of the view factor matrix. Table 1 shows the 

result of the Modelica model and the actual view 

factor values calculated by DAI and their 

comparison.  

 

 

 

 

 

 

Table 1 : Comparison of view factors of a box 

meshed into 4000 triangles. 

 

    
1 

e  

% 
2 

e  

% 
3 

e  

% 

1 
Modelica 0.000 

0.00 
0.119 

2.23 
0.244 

1.19 
DAI 0.000 0.116 0.241 

2 
Modelica 0.238 

2.21 
0.000 

0.00 
0.238 

2.21 
DAI 0.233 0.000 0.233 

3 
Modelica 0.244 

1.19 
0.119 

2.23 
0.000 

0.00 
DAI 0.241 0.116 0.000 

4 
Modelica 0.238 

2.21 
0.069 

0.03 
0.238 

2.21 
DAI 0.233 0.069 0.233 

5 
Modelica 0.286 

0.19 
0.119 

2.23 
0.244 

1.19 
DAI 0.286 0.116 0.241 

6 
Modelica 0.244 

1.19 
0.119 

2.23 
0.286 

0.19 
DAI 0.241 0.116 0.286 

    
4 

e  

% 
5 

e  

% 
6 

e  

% 

1 
Modelica 0.119 

2.23 
0.286 

0.19 
0.244 

1.19 
DAI 0.116 0.286 0.241 

2 
Modelica 0.069 

0.03 
0.238 

2.21 
0.238 

2.21 
DAI 0.069 0.233 0.233 

3 
Modelica 0.119 

2.23 
0.244 

1.19 
0.286 

0.19 
DAI 0.116 0.241 0.286 

4 
Modelica 0.000 

0.00 
0.238 

2.21 
0.238 

2.21 
DAI 0.000 0.233 0.233 

5 
Modelica 0.119 

2.23 
0.000 

0.00 
0.244 

1.19 
DAI 0.116 0.000 0.241 

6 
Modelica 0.119 

2.23 
0.244 

1.19 
0.000 

0.00 
DAI 0.116 0.241 0.000 

 

Results shown in table 1 are for a box meshed into 

4000 triangles. The maximal error is 2.23 % for F12, 

F32, F52, F62, F14, F34, F54 and F64. The minimal error 

is 0.03 % for F24 and F42.  

 

Table 2 shows the similar results as table 1 but with 

a bit finer meshing. The maximal error in table 2 is 

0.57 % and the minimal error is 0.01 %.  

 

Table 2 : Comparison of view factors of a box 

meshed into 6000 triangles. 

    
1 

e  

% 
2 

e  

% 
3 

e  

% 

1 
Modelica 0.000 

0.00 
0.117 

0.52 
0.242 

0.57 
DAI 0.000 0.116 0.241 

2 
Modelica 0.234 

0.49 
0.000 

0.00 
0.234 

0.49 
DAI 0.233 0.000 0.233 

3 
Modelica 0.242 

0.57 
0.117 

0.52 
0.000 

0.00 
DAI 0.241 0.116 0.000 

4 
Modelica 0.234 

0.49 
0.069 

0.01 
0.234 

0.49 
DAI 0.233 0.069 0.233 
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5 
Modelica 0.286 

0.08 
0.117 

0.52 
0.242 

0.57 
DAI 0.286 0.116 0.241 

6 
Modelica 0.242 

0.57 
0.117 

0.52 
0.286 

0.08 
DAI 0.241 0.116 0.286 

    
4 

e  

% 
5 

e  

% 
6 

e  

% 

1 
Modelica 0.117 

0.52 
0.286 

0.08 
0.242 

0.57 
DAI 0.116 0.286 0.241 

2 
Modelica 0.069 

0.01 
0.234 

0.49 
0.234 

0.49 
DAI 0.069 0.233 0.233 

3 
Modelica 0.117 

0.52 
0.242 

0.57 
0.286 

0.08 
DAI 0.116 0.241 0.286 

4 
Modelica 0.000 

0.00 
0.234 

0.49 
0.234 

0.49 
DAI 0.000 0.233 0.233 

5 
Modelica 0.117 

0.52 
0.000 

0.00 
0.242 

0.57 
DAI 0.116 0.000 0.241 

6 
Modelica 0.117 

0.52 
0.242 

0.57 
0.000 

0.00 
DAI 0.116 0.241 0.000 

 

For a box with 8000 triangles (see table 3) the error 

is even less. The maximal error for a box meshed 

into 8000 triangles is 0.086 % and the minimal error 

is 0.00 %. It is obvious that the error can be reduced 

by fine meshing but it would be interesting to see the 

effect of fine meshing on the computation time. 

Table 3 summarized results and indicates the needed 

computation time on an computer with – ‘Intel ® 

Core ™ i5, M 520@2.40 GHz, 2.92 GB RAM, 

Window 32-bit’ 

 

Table 3 : Result summary for view factor calculation 

No of 

Triangles 

Max 

Error 

[%] 

Min 

Error 

[%] 

Total 

error of 

closed 

geometry 

[%] 

Computati

on time 

[min] 

4000 2.233 0.030 1.10 34 

6000 0.566 0.013 0.40 86 

8000 0.086 0.000 0.05 170 

 

The geometry under consideration is symmetric. The 

computation time for non-symmetric geometries can 

be even higher. The meshing size is the defining 

factor one has to define as per the level of accuracy 

required and computational time.  

 

5.2 Geometry with openings  

 
Figure 10 shows the geometry with openings on 

surface 1 and surface 2. The geometry shown in 

figure 10 is meshed into 4000 triangles. The results 

of a Modelica model are shown in table 4.  

 
Figure 10 : Geometry with openings 

 

The size of the rectangular box is the same as it was 

in the closed geometry. Therefore, only view factors 

concerning surface 1 and surface 2 will be different 

while all other results will be the same.  The size of 

the opening on surface 1 is 0.2m x 0.2m and on 

surface 2 is 0.2m x 0.4m.  

 

Table 4 : View factor matrix for the geometry with 

openings on surface-1 and surface-2 

  1 2 3 4 5 6 

1 0.000 0.215 0.240 0.240 0.068 0.240 

2 0.107 0.000 0.246 0.274 0.127 0.246 

3 0.101 0.207 0.000 0.244 0.119 0.286 

4 0.101 0.230 0.244 0.000 0.119 0.244 

5 0.057 0.213 0.238 0.238 0.000 0.238 

6 0.101 0.207 0.286 0.244 0.119 0.000 

 

6 Conclusion & Future Work 
 

A step towards better modelling of radiative heat 

transfers with Modelica has been taken in the 

presented work. An overview of the solar irradiation 

modelling for stationary, moving and flying surfaces 

is outlined in this paper. Comparison with weather 

data for a clear day shows that results of estimated 

clear sky radiation at ground level are accurate. A 

further model has been developed to determine the 

view factor between differently oriented surfaces. 

Comparison with an analytical solution shows that 

the accuracy increases with the number of surface 

elements used to discretize surfaces. For the future, 

we intend to include a model which can calculate 

obstructed view factors as well. Computational time 

is also an area of scrutiny where we intend to 

investigate solutions allowing for higher speed. 

These developments will allow for better modelling 

Session 2C: Climate Systems I 

DOI Proceedings of the 9th International Modelica Conference    277 
10.3384/ecp12076271 September 3-5, 2012, Munich, Germany   



 

 

of radiative heat transfers when considering thermal 

management in stationary and mobile spaces. 
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VEPZO – Velocity Propagating Zonal Model for the prediction of airflow pattern and temperature distribution in enclosed spaces 

VEPZO – Velocity Propagating Zonal Model for the prediction of air-
flow pattern and temperature distribution in enclosed spaces 
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Abstract 

This paper presents the VEPZO-model (VElocity 
Propagating ZOnal model), the first three dimen-
sional airflow model for indoor spaces that has been 
implemented in Modelica. The model predicts air-
flow and temperature distribution in a room. The 
main feature of the VEPZO model is that each zone 
has a characteristic velocity depending on entering 
and leaving airflows. This characteristic velocity is 
propagated into space ensuring the propagation of 
driving airflows. The VEPZO model can be inter-
faced to other models of the Modelica.Standard li-
brary. In an application example a displacement ven-
tilation in a twin-aisle aircraft cabin is investigated. 
The temperature in the occupied zones is predicted 
between 20.6 and 23.0 °C. 

Keywords: zonal model, airflow modeling, Modelica 

1 Introduction 

Accurate energetic modeling of buildings and vehi-
cles requires the consideration of included air. In a 
multizone model the air in a room or zone is consid-
ered perfectly mixed. Air exchanges occur between 
rooms or with the environment. This approach is im-
plemented in the “Buildings” library [1]. If a higher 
level of detail is needed, the zonal model is an alter-
native that can be implemented in Modelica. A zonal 
model divides a room into typically 10 to 100 zones 
exchanging air through flow paths. At the last Mod-
elica conference Bonvini and Leva [2] presented an 
implementation of a two-dimensional zonal model. 
In parallel to their work another Modelica-based 
zonal model, VEPZO (Velocity Propagating Zonal 
Model) has been built at the Fraunhofer-Institute for 
Building Physics. Former zonal models have some 
drawbacks that make them unsuitable for the use in 
Modelica. The airflow is supposed to rest in the 
zones and to move in the flow models. Once air en-
ters a zone, its velocity is dissipated. Therefore, the 

zonal formulation is not valid in areas with driving 
flows due to jets or plumes [3]. Here, Inard et al. [4] 
suggest using jet-, plume- or thermal boundary layer 
correlations to compute the amount of air entrained 
from the surrounding “normal” zones. A Modelica 
implementation of this suggestion would require the 
model to change its set of equations during runtime 
to be able to switch from the zonal model to a corre-
lation model where needed. However, this feature is 
currently not provided by Modelica. Furthermore, 
the flow models are based on the Bernoulli-equation 
resulting in a square root function of the pressure 
difference. At zero pressure difference, the square 
root is numerically unstable due to its infinite gradi-
ent. Therefore, the following modifications have 
been made in the VEPZO model: 

 Calculation of the acceleration or decelera-
tion of the airflow between two adjacent 
zones with a viscous loss model 

 Introduction of the length of an airflow path 
into the zonal equations 

 Use of the airflow velocity as a property in 
the zones 

Bonvini and Leva [2] use a similar approach, how-
ever the VEPZO model differs from their implemen-
tation in the following points: 

 Use of Modelica.Media-models for air prop-
erties computation 

 Use of stream-connectors 
 A flow model connects to two zones only 

and not to adjacent flow models 
 Three dimensions implemented 
 Viscosity is a parameter with value 0.001 

 

2 Implementation of the VEPZO 
model 

The two main components of the VEPZO model are 
a zone model and a flow model (Figure 2). The zone 
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(cube) and the flow (grey rectangle) models are con-
nected by ports (rhombs) to form a room. These 
ports allow the exchange of relevant information be-
tween the flow and the zone model: 

 
Figure 1: Implementation of connector, position and 
velocities contain coordinates and characteristic ve-
locity of zone, dv_perp is the gradient of characteris-
tic velocity perpendicular to flow direction, 
sum_d2v_perp_weighted is a quantity used for vis-
cosity computation 

 

The flow models have two ports to connect adjacent 
zones. Each zone has six ports, one for each bounda-
ry. A Boolean parameter is assigned to each port to 
make the distinction whether the port is connected to 
a flow model or whether it is adjacent to a room 
boundary surface. Furthermore, each zone has a heat 
port (red square) allowing heat exchanges with mod-
els of other components like e.g. heat sources or 
walls. Air properties are computed from Modeli-
ca.Media. Depending on the application, the air 
model can be changed from dry to moist air. Even 
pollutants could be taken into account. 

 
Figure 2: VEPZO model in x-z direction (y not 
shown); cubes: zones; grey rectangles: flows; 
rhombs: airflow ports; red solid squares: heat ports. 

The main task of the zone model is to compute the 
mass and enthalpy balance and air properties (densi-
ty, enthalpy, pressure, temperature, etc) using air 
models of Modelica.Media. Furthermore it deter-
mines a characteristic velocity and viscous losses. 
The main task of the flow model is to compute the 
airflow rate between two adjacent zones. Further-
more, the flow models are used to calculate the ve-
locity gradient needed for the calculation of viscous 
losses. The governing equations will be more pre-
cisely described in the following sections. 

 

2.1 Zone model 

The mass and energy conservation are implemented 
in the VEPZO model in the same way as in former 
zonal models. Air contained in a zone i of volume Vi 
with density ρi and specific enthalpy hi is assumed to 
be perfectly mixed. In the zones, the dynamic con-
servation of mass (Equation ( 1 )) and enthalpy 
(Equation ( 2 )) are implemented. The mass conser-
vation takes into account the amount of air mi,j ex-
changed with adjacent zones and airflows provided 
by various sources or sinks msource,i (ventilation, 
openings, etc.) in zone i. When steady state is 
reached the sum of all exchanged airflows in a zone 
becomes zero. Mass flows are defined as flow varia-
ble and enthalpies as streams. This ensures the prop-
er sign attribution to flows an enthalpy selection de-
pending on flow direction. Heat flows Q due to con-
vection to walls or heat sources contained in the zone 
are added to the thermal energy balance. 
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A new feature of the VEPZO model is that a charac-
teristic velocity vector (u,v,w) is assigned to the 
zones. Knowing the mass flow and its direction 
across each of the zone’s surfaces, the flow velocity 
across these surfaces is determined: uleft, uright, vfront, 
vback, wbottom, wtop for the left, right, front, back, bot-
tom and top surfaces. If a zone is adjacent to a wall, 
the mass flow and velocity across the corresponding 

replaceable package Medium = Modelica.Media.Air.SimpleAir
  Modelica.SIunits.Pressure p; 
  Records.Position position; 
  Records.Velocities velocities; 
  flow Modelica.SIunits.MassFlowRate mdot; 
  stream Modelica.SIunits.SpecificEnthalpy h; 
  stream Modelica.SIunits.Density d; 
  stream Modelica.SIunits.MassFraction Xi[Medium.nXi]; 
  stream Real ExtraProperty[Medium.nC]; 
  Real dv_perp[2]; 
  Real sum_d2v_perp_weighted; 
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surface are considered to be zero. For each Cartesian 
direction the flow pattern is checked. If air flows 
through the zone, the entering velocity is assigned to 
the characteristic velocity component. If air enters 
from both sides, the difference of the velocities is 
assigned. If air leaves on both sides, zero is assigned 
(shown for x-direction in Figure 3 and Table 1)). 
Iterating this procedure for all Cartesian directions 
yields the characteristic velocity of a zone. 

 

 
Figure 3: Assignment of characteristic velocity to a 
zone, dotted arrows: airflow across zone boundaries, 
solid arrow: characteristic velocity of zone. Left: 
flow through the zone, case a) left to right, case b) 
right to left, Middle: Air enters zone from both sides, 
Right: Air leaves zone on both sides 

 

Table 1: Assignment of characteristic velocity com-
ponents of a zone 

Flow through zone Characteristic  

velocity 

left → right uleft 

right → left uright 

left and right → zone uleft – uright 

zone → left and right 0 

 

The zone shares the information about its character-
istic velocity with the flow models surrounding it. 
This enables the VEPZO model to propagate the air-
flow velocity throughout the room without needing 
special correlations like jets or plumes. 

 

2.2 Flow model 

Two adjacent zones are connected by a flow model 
computing the exchange of air between them. The 
VEPZO model uses flow models in x-, y- and z-
directions. The assumption of the VEPZO model is 
that air only flows along these specific directions. A 
new feature of the flow model used in the VEPZO 
model is that the length of a flow path is taken into 
account. 

The air densities ρ considered in the flow models are 
the average densities of the air contained in the adja-
cent zones. The use of the actualStream-notation for 

the density showed to result in longer simulation 
times. Furthermore, density differences in indoor 
applications are not considered important enough to 
introduce a major error to the simulation when aver-
aging. 

 

2.2.1 Geometrical properties of the flow model 

Figure 4 shows the definition of zones and flows in 
the z-direction. Two zones i,j of height Δzi, Δzj and 
equal ground area A = Δx·Δy are connected by the 
flow model “Flow_ij”. The flow model is of area A 
and height Δzij. This height is equal to the distance 
between centres of zone i and j. The definition of 
flow models in the x- and y-direction is analogous. 

 

 
Figure 4: Definition of zones and flows in z-
direction. 

 

2.2.2 Forces acting on flow path 

The flow model computes the airflow acceleration or 
deceleration from the forces acting on it. These forc-
es are briefly described. 

 

Pressure difference 

Air contained in each zone has a certain pressure. 
When two zones of common surface A are connected 
by a flow model they process their pressure infor-
mation pi and pj. The flow model calculates the re-
sulting force FP (Equation ( 3 )). 

 ijP ppAF  ( 3 )
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Momentum difference 

The characteristic velocity vectors of adjacent zones 
are processed to the flow model. According to the 
flow direction (x, y or z) the flow model chooses the 
proper component of the velocity vectors (ui, vi, wi 
and uj, vj, wj) to compute the force FM resulting from 
the momentum difference between the adjacent 
zones (Equation ( 4 ) for x-direction). 

 2
i

2
jx,M uuAF   ( 4 )

 

Gravitational forces 

Gravitational force FG only occurs in the z-direction. 
For the x- and y-direction, this force is zero. To 
compute the gravitational force, the area and length 
of the flow path are considered according to Figure 
4. 

ijG zAgF   ( 5 )

 

Viscous forces 

The viscous forces act parallel to the flow direction. 
In the selected approach of the VEPZO model, flows 
are connected and exchange information with zones 
only. However, to calculate the shear stress, an in-
formation exchange between parallel flow models 
would be necessary. To avoid connections between 
the flow models, viscous losses are calculated in the 
zone models but used in the flow models. 

The characteristic velocity vector provided by zones 
enables the flow model to calculate the gradient of 
the two velocity components perpendicular to the 
flow model direction. For example, a flow model in 
z-direction can deliver the variation of the character-
istic velocities ui, uj and vi, vj along the height Δzij 
(Figure 5). If a wall is adjacent to the zone, the ve-
locity at the wall is assumed to be zero. Therefore, 
the gradient is equal to the characteristic velocity 
divided by half the distance of the zone’s centre from 
the wall. Equation ( 6 ) provides an overview of gra-
dient calculations in x-direction.  
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Figure 5: Computation of velocity gradient if lower 
wall of zone i is a wall 

 

The gradient information is transmitted from the 
flow model to the zone model. In the zone model this 
gradient causes shear stresses on its boundaries. 
Summing these shear stresses along the boundaries 
yields the viscous forces FV,x, FV,y, and FV,z in the 
zones (µ: dynamic viscosity of air): 
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Because the flow model covers half of the length of 
each adjacent zone (Figure 4) the resulting viscous 
force in the flow model is the sum of half of the vis-
cous forces in the zones. 

 j,Zone,Vxi,Zone,VxFlow,Vx FF
2

1
F   ( 8 )

 

2.2.3 Computation of airflow between zones with 
viscous loss model 

The forces acting on a flow path are summed up. 
This yields the acceleration of the portion of air con-
tained in the flow path connecting two zones. 

Flow,Vxx,MPij FFF
dt

du
xA   ( 9 )
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By this procedure, the distance between two zones 
and the area of the flow path are introduced into the 
model. The total loss along a flow path therefore be-
comes independent from the number of zones. Fur-
thermore, no square root function is needed and nu-
merical problems due to an infinite derivative do not 
occur. 

The mass flow is obtained straightforward from the 
velocity in a flow path. This mass flow information 
is then transmitted to the zone model. 

uAmx   ( 10 )

 

2.2.4 Modifications for non-cubic boundary zones 

The idea of zonal modelling is to decompose a space 
into rectangular elements. However, if the modelled 
space is non-rectangular, non-cubic zone elements 
might be needed at boundaries. For this, a zone type 
similar to the standard zone type described in the 
previous sections is introduced where the sizes of 
each of the six boundaries surfaces, the zone’s vol-
ume, its centre of gravity and its characteristic 
lengths can be entered manually to better match the 
actual geometry. For other geometries such as trian-
gles, not needed sides of the element are attributed a 
very small size slightly above zero.  

 

2.2.5 Estimation of model coefficients 

In the viscous loss model, the viscosity is used as a 
parameter to tune the model. Similar to the idea of 
using a turbulent viscosity to take into account loss-
es, an apparent viscosity is used instead of the dy-
namic viscosity. During implementation of the VE-
PZO model, µ = 0.001 Pa·s produced results that are 
in good accordance at steady state with case studies 
presented in previous publications [5-7]. Transient 
results have not been validated yet. 

 

3 Investigation of a novel aircraft 
cabin ventilation 

In this application example of the VEPZO model a 
novel ventilation system for an aircraft cabin will be 
investigated. 

In current cabin designs air is supplied by ceiling 
inlets and extracted by slots in the dado-area on the 
left and right side of the cabin (Figure 6). This venti-
lation design leads to mixing ventilation.  

 
Figure 6: Cabin mixing ventilation air supply and 
extraction 

 

In this paper a displacement ventilation is investigat-
ed where air is supplied by the aisle (60%), dado 
(20%) and side (20%) inlets. The total airflow rate is 
0.5 kg/s. 

 
Figure 7: Cabin displacement ventilation air supply 
and extraction 

 

3.1.1 Aircraft cabin ventilation – Model 

The implemented aircraft cabin model is derived 
from the Airbus A310 mock-up placed in the Fraun-
hofer Flight Test Facility [8] and represents a 9.3 m 
long and 5.3 m wide cross-section of the fuselage 
including the crown area, stowage bins, cabin, left 
and right triangle areas, cargo compartment and bilge 
(Figure 8). The air volume of the cabin is modelled 
by the VEPZO model, the air volumes of other com-
partments are modelled by a thermal capacitor with 
the appropriate thermal mass. 

The cabin is subdivided into 5 x 3 zones in the lower, 
occupied zone and into one zone for the upper part. 
In depth, the cabin is divided into three zones. The 
air supplies at the side, aisle and dado openings are 
modelled as mass flow sources. The ceiling outlet is 
modelled as a fixed pressure of 750 hPa correspond-
ing to cabin pressure at flight altitude. The tempera-
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ture of supplied air flows is controlled by the tem-
perature in the adjacent zones (side and dado) or the 
average temperature in the occupied zone (aisle) 
(Table 2).  

 

 
Figure 8: Fuselage section: blue arrows: in-
lets/outlets, red lines: zone limits in VEPZO model, 
black lines: walls 

 

Table 2: Temperature setpoints and control locations 

Inlet Contol by Setpoint
Side Adjacent zone 22 °C 

Dado Adjacent zone 21 °C 

Aisle Average in occupied zone 22 °C 

 

Walls are modelled by a succession of heat capaci-
tances and heat resistances from the Modeli-
ca.Thermal library. Three materials (Table 3) are 
used in five wall layouts (Table 4) to model fuselage 
enclosures. Walls in the cabin are further decom-
posed into facets according to the size of the adjacent 
zones. These facets exchange convective heat with 
the air volumes. For the radiation model, surface 
temperatures of the facets of one wall are averaged. 
Radiation is calculated between these averaged wall 
surfaces using a radiation model suggested by Wetter 
et al. [9]. In other compartments, walls are not fur-
ther decomposed into facets but exchange convective 
heat with the air node and radiative heat with other 
walls in the compartment.  

Further admitted parameters (heat source intensities, 
convective heat transfer coefficients, long wave 
emissivity of surfaces, outside air temperature) are 
shown in Table 5. 

 

 

 

 

Table 3: Material Parameters 

Material Density 
(kg/m³) 

Specific Heat 
Capacity 
(J/kg·K) 

Thermal 
Conductivity 
(W/m·K) 

Aluminium 2700 835 235 

Lining 1000 1500 0.16 

Polyimide 1.2 1006 0.04 

 

Table 4: Wall models 

Name Layers Used for 

Aluminium 
Aluminium: 
3 mm 

Outside Wall Bilge
Cabin Floor 
Cargo Floor 

Thin Lining Lining: 3 mm Stowage bin 

Thick Lining Lining: 10 mm 
Walls Car-
go/Triangle 

Cabin Outside 
Wall 

Aluminium: 
3 mm 
Polyimide: 
80 mm 
Lining: 5 mm 

Outside Walls 
Cabin 

Other Outside 
Wall 

Aluminium: 
3 mm 
Polyimide: 
80 mm 

Outside Walls 
Crown and Trian-
gle 

 

Table 5: Heat flow related parameters 

Parameter Value 
Convective Heat Transfer Coefficient 5 W/m²·K 

Long Wave Emissivity of surfaces 0,95 

Outside Air Temperature -27 C 

Heat dissipation by passengers 

…by radiation 
…by convection 
(…total) 

 

72 x 37,5 W
72 x 37,5 W
(5400 W) 

Heat dissipation by lights 

…by radiation 
…by convection 
(…total) 

 

1000 W 
1000 W 
(2000 W) 

 

3.1.2 Aircraft Cabin Ventilation – Results 

The simulation takes 31.9 s to converge on an Intel® 
Core™ i5 CPU @ 2.35 GHz 2.98 GB Ram comput-
er. The simulation time is set to 10000 s as steady-
state is achieved by then. “Radau IIa – order 5 stiff” 
is used to solve the equations. Figure 9 shows the 
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resulting supply and exhaust temperatures, tempera-
tures in the zones and in the other compartments. 

 
Figure 9: Results for cabin displacement venitlation 
system (Temperatures of zones in °C) 

 

The warmest point in the occupied zone is just below 
the middle overhead bin. Here, air supply openings 
providing fresh air are relatively far away but heat 
production by passengers is relatively high. In spite 
of these adverse effects, the temperature is still in a 
comfortable range. Under the left and right overhead 
bins the lateral air supply avoids that the tempera-
tures further raises compared to the zone below.  

 

4 Conclusion 

This paper presents the VEPZO model, a zonal mod-
el implemented in Modelica. The model makes use 
of and can be interfaced to models of the Modelica-
Standard libraries. Compared to former zonal mod-
els, the VEPZO model is better suited for use in the 
Modelica environment. 

In the shown application example the VEPZO model 
is used to estimate the impact of a displacement ven-
tilation system in a two-aisle aircraft cabin. The sim-
ulation time is acceptable. 

The use of Modelica to solve this problem showed to 
be advantageous as many of the auxiliary compo-
nents (walls, air in other compartments, air proper-
ties in zones) are modeled with predefined models 
allowing the research engineer to concentrate on the 
core of the development, in this case the VEPZO 
model. 
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Abstract

Synchronization is a core component in the automo-
tive powertrain. It uses friction and locking elements
to synchronize the occurring speed difference during
gear shifting. The optimization of this shifting process
is of high interest in respect to fuel consumption
and comfort considerations. Moreover, for the
model-based calibration of automated transmissions,
detailed simulation models of the synchronization
system are also necessary. Highly accurate models
allow simulation of nonlinear effects having a major
influence on the shifting process. Currently, with less
detailed models only rough estimations of the shifting
process are possible, it has a reduced meaning for the
precise calibration.

This paper uses a popular double clutch transmission
(DCT) as the research object and presents the detailed
hydro-mechanical synchronization model. Firstly, an
introduction to the theory of the synchronization is
given. Subsequently, a Modelica R© based synchro-
nization model consisting of hydro-mechanic actua-
tors and gear shifting synchronizers is presented. Fi-
nally, these modules are discussed in detail and eval-
uated based on different simulations. A comparison
with measurement data from a test bench is also in-
cluded in the end.
Keywords: synchronization; hydraulic; gear shifting;
double clutch transmission; physical modeling; auto-
motive

1 Introduction

Due to the location of the synchronization in the au-
tomotive powertrain, this system has a crucial influ-

ence on the shifting quality. The shifting quality can
be judged by:

• the duration of the shifting process
• the changes of vehicle longitudinal acceleration

during shifting (shifting jerk)
• the oscillation to the powertrain
• the acoustic phenomena like shifting or impact

noise

With conventional, less detailed models of the syn-
chronization containing simple clutch elements as syn-
chronization [1, 2], only three stages of the synchro-
nization process is modeled:

• neutral position
• friction phase (synchronization)
• engaged position

In this paper a more complex simulation model of the
synchronization is derived to describe certain detailed
nonlinear phenomena during shifting (see section 2).
Such a detailed modeling of synchronization is nec-
essary for the model based calibration. The purpose
of this calibration process is the adaption of control
parameters to improve the shift quality between
successive shifts. Furthermore an in-depth model
provides the user with a fundamental understanding of
the components composition principle and the system
working function.

A 7-speed DCT with dry clutches is used here as the
research object. For this transmission, a dynamic sim-
ulation model of the hydro-mechanical synchroniza-
tion system is derived. This model could be used for
the function development within the V-development
process [3].
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Fig. 1: Hydraulic system plan [4, 5]

In section 2 the basic components of the hydro-
mechanical actuators are introduced and the synchro-
nization process is described in detail. Then section 3
presents the simulation results of the physical model.
The test bench measurements from an AMT with sim-
ilar synchronization components are also compared.
Finally, a summary and further research objectives are
concluded.

2 Modeling

The whole synchronization system is divided into 2
parts: hydraulic and mechanical components. The hy-
draulic components are mainly supplying required oil
pressure and flow while the remaining components are
used to perform the mechanical actuator behavior and
the synchronization process.

2.1 Hydraulic Components

The hydraulic subsystem consists of:

• a hydraulic pump
• magnetic valves
• gearshift cylinders

Hydraulic fluid is pumped from the tank to the
pressure accumulator where it is stored under high
pressure. The pump is controlled by a bang-bang
controller which guarantees a pressure level between
40 and 60 bars [4]. When the oil circuit has got

enough power to drive the gearshift cylinders, the
magnetic valves will control pressure and flow of
relevant branches.

There are mainly two types of magnetic valves in-
cluded: pressure-control valves and flow-volume
valves. The pressure-control valves are used to sup-
ply the corresponding sub-gearboxes under constant
pressure levels. The flow-volume valves are used to
control the movement of the gearshift and clutch actu-
ator cylinders. The hydraulic plan is depicted in Figure
1, in which each flow-volume valve controls the left
chamber of a gearshift cylinder while its right cham-
ber is controlled directly by a pressure-control valve.

2.2 Mechanical Components

2.2.1 Synchronizer and Actuation Module

Synchronizers reduce speed difference through fric-
tion and locking elements during the gear shifting
process. In this paper, a widely used single-taper
synchronizer based on the "Borg-Warner" system
(refer to [6]), shown in Figure 2, is used as a detailed
example for the synchronization process.

The components of the synchronization are named
(compare [7]):

1 idler gears with needle bearings
2 synchronizer hub with selector teeth and friction
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Fig. 2: Draft of the synchronization [6, 7]

During the synchronizing process, the selector fork
supplies the gearshift force FS for synchronization as
the resultant of 4 forces exerted upon it: Shifting force
FC from the hydraulic cylinder, locking force Flml from
the detent pin, bearing friction F f l , and acceleration
force Fal , as expressed in Equation 1. The mechanic
diagram of the shift actuator is presented in Figure 3.

FS = FC −Flml −Ff l −Fal (1)

FC FS p

Flml
F f l

FS
Fal=ml al

FS

α

µ f t d m
s

d K
S

detent pin

bearing

FN

3 2

Fig. 3: Force diagram of shift actuator [7]

The detent pin showed in Figure 3 is designed to sup-
port the gearshift movement and guarantee determined
positions. During the gearshift process from the neu-
tral position to a shifted position, the detent pin intro-
duces a counter force to the movement of the selec-
tor fork at the beginning and accelerates the fork af-
ter synchronization. This force characteristic can be

calculated by Equation 2 and is depicted in Figure 4.
The locking force depends on the spring force FSp, the
ramp angle γ relative to initial basis and the friction
angle δ F acting against the movement direction [7, 8]

Flml = FSp tan(γ +δF) (2)
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Fig. 4: Contour of ramp profile

The gearshifting process can be divided into five
stages according to the gearshift position, speed
difference, actuation forces and torques [6]. This
classification is based on the assumption that at the
beginning the gearshift sleeve is in the neutral position
(see Figures 2, 3 and 5):

Stage 1: Gearshift force FS causes an axial move-
ment of the gearshift sleeve 5 and triggers the
gearshifting process. The movement stops when the
synchronizer ring blocks the gearshift sleeve.

Stage 2: The axial force is transmitted from the
gearshift sleeve to the synchronizer ring 3 , resulting
in a friction torque TR which is much larger than the
gearing torque TZ . At this stage the speed difference
between the idler gear and transmission shaft will be
reduced to zero.

Stage 3: When the speed difference is close to zero,
the friction torque TR vanishes. At this moment the
synchronizer ring turns back to release the gearshift
sleeve.

Stage 4: The gearshift sleeve begins to move until it
encounters the synchronizer hub’s 2 external gearing.
Speed difference increases again as the synchronizing
torque diminishes.

Stage 5: The whole synchronization process is
completed as soon as the gearshift sleeve toothing
engages the synchronizer hub’s gearing. The power
flow is transmitted from the transmission shaft 6 to
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the gear 1 .

Figure 5 shows the synchronization process with lock-
ing of the synchronizer ring and synchronizer hub.
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TZ

Fig. 5: Synchronizing process

2.2.2 Status Determination Module

This module is created based on Modelica R©, it uses
these 3 factors as mentioned above: the gearshifting
position, difference speeds, actuation force and
torque, to determine the synchronization process
(Figure 6 shows the flowchart of status determina-
tion). The appropriate calculations of the friction
torque TR and gearing torque TZ are also realized here.

The detailed torque values are changed according to
the synchronization stages: The friction torque TR,
given by Equation 3 (applied to stages 1 and 2), is
calculated through the gearshift force FS, the number
of friction surfaces j and some other geometric val-
ues. The gearing torque TZ , expressed as Equation
4 (used in stages 2 and 3), is calculated by gearshift
force FS, clutch diameter dKS, teeth angle β and fric-
tion µ lt between gearshift sleeve and synchronization
ring [7, 9, 10].

TR = jFS
dms

2
µ

sinα
(3)

TZ =
FSdKS

2

(
cos β

2 −µltsin β

2

sin β

2 +µltcos β

2

)
(4)

neutral
position

Stage 1

Stage 2 Stage 3

Stage 4

Stage 5

ssync<s<shub

FS>0

s=ssync

|ω1 − ω2| > 0
FS>0

s=ssync

|ω1 − ω2| = 0
FS>0

s>sneutral

FS>0
s≥shub

FS>0

FS<0

Fig. 6: Flowchart for status determination

2.2.3 Assembly of mechanical submodules

The mechanical subsystem consists of the 3 parts de-
scribed above (compare Figure 7).

1) The gearshifting displacement part, used to sim-
ulate the movement of the selector fork

2) The synchronization part, functioning to simu-
late the synchronization process between syn-
chronizer ring and synchronizer hub

3) The synchronization status determination and
torques calculation part, working to deter-
mine the synchronization stages, calculate cor-
responding friction forces, and coordinate the
gearshifting displacement part with the synchro-
nization part

2.3 Modeling Result

Figure 8 shows the relevant physical model. The hy-
draulic components are modeled with hydraulic li-
brary HyLib R© [11], the mechanical components with
Modelica Standard Library (MSL) [12] and some new
created blocks based on Modelica R©. In order to
simplify the model structure and improve the model
portability, subsystems are built here. For example,
Gear_Selector is used as a subsystem block, which
stands for all mechanical components (see Figure 7).
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Fig. 8: Synchronization model

3 Testing

In order to verify this dynamic model’s rationality and
effectiveness, the following testing steps are carried
out:

1) testing of the hydraulic model

2) testing of the mechanical model

3) testing of the whole hydro-mechanical model

4) comparison of the simulation results with real
AMT test bench measurements

During testing, the dynamic model is driven under an
open-loop control. Step- and constant-signals are used
for stimulations (see Figure 8).

3.1 Hydraulic Model

The hydraulic supply circuit is first examined against
measurement data from real DCT. In this process all
magnetic valves are closed, only the oil pump is work-
ing. Simulation result, shown in Figure 9 depicts a
small model error in comparison to the measurement
data, the normalized root mean square error (NRMSE)
of eNRMS = 4.9%. From beginning the pump is kept
working until hydraulic pressure reaches the required
value. Then the pump stops to wait for restart when
pressure level drops, as the result of leakage in the
whole hydraulic system, below a predefined threshold
value.
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Figure 10 shows the movement simulation of the hy-
draulic gearshift cylinder. In this simulation, the
pressure-control valve (VP1 in Figure 1) is controlled
by a constant value while the flow-volume valve
(GSV2 in Figure 1) is controlled by a stimulation sig-
nal, as shown in Figure 10 (b). Figure 10 (a) shows
change of oil pressures during this process, in which
P1 denotes the oil pressure from the hydraulic pump,
P2 the hydraulic pressure in the right cylinder cham-
ber and P3 the pressure in the left chamber. P2 is
controlled by VP1 and the control current is constant;
hence P2 keeps a almost constant pressure value dur-
ing this process. Figure 10 (b) shows the flow rate into
the left cylinder chamber (denoted by q, see Figure 1)
and the control signal for the flow-volume valve. The
constant control signal of GSV2 (from 0.5 to 1s, from
1.5 to 2.1s) leads to a constant flow rate during the
movement of the gearshift cylinder. The displacement
process of the cylinder from the middle to right end
and reverse is displayed in Figure 10 (c).
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Fig. 10: Simulation results of hydraulic cylinder

3.2 Mechanical Model

This subsection describes the testing of the mechan-
ical model and states that a correct synchronization
process can be achieved. Therefore, the typical
movement behavior (fast-slow-fast) and the results of
the synchronization state determination are examined
both.

In Figure 11 the upshifting simulation results are de-
picted, and its state shows that the model works as ex-
pected. Even the speed difference increases due to the
missing connection between the toothing of the syn-
chronizer hub and ring in stage 4 is also reproduced.
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Fig. 11: Simulation results of synchronization

Self-return, an important characteristic of the detent
pin (refer to Figure 4), is also tested, see Figure 12.
The behavior when shifting force FC vanishes behind
the synchronization point (24mm, upshifting synchro-
nization point is 18mm) is shown on the left-hand side,
and the right-hand side shows the behavior of self-
return in front of the synchronization point (15mm).

3.3 Hydro-Mechanical Model

Figure 13 shows different synchronizing processes un-
der different working pressures. Synchronization time
is reduced as expected when oil pressure increases.

3.4 Comparison with Measurements

Finally, the simulated synchronization process is com-
pared with test bench measurement data from an auto-
mated manual transmission (AMT) system (compare
[13]) having similar synchronization components. The
AMT shifting valves are driven by constant currents
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and the DCT model shifting valves are driven by step
signals. Figure 14 shows the comparison between
the representative simulated and the measured shift-
ing processes. The simulation result has a normalized
root mean square error (NRMSE) of eNRMS = 1.5%. It
can be stated that the presented model reproduces the
characteristic details of the shifting process (pre-sync,
locking, unlocking, turning hub and engagement).
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4 Summary and Outlook

This paper gives a detailed introduction to the synchro-
nization process and presents a dynamic Modelica R©

model for the hydro-mechanical actuation and syn-
chronization system based on a popular DCT. This
model has following features:

1) Gives a detailed representation of the synchro-
nization process with 5 stages instead of sim-
ple 3 stages. Additionally in-depth reflection of
the nonlinear dynamic system is also presented.
This could provide a good reference for shifting
quality optimization and more reliable standard
for the model-based calibration.

2) Reveals the phenomenon that speed difference
increases after the synchronization process be-
cause of power interruption in this stage. This
is important to judge shift quality control strate-
gies because during this phase serious problems
as tooth breaking and shifting noise may occur.

3) Presents the user a fundamental understanding
of the components composition principle and the
system working function.

4) Shows that the tested hydraulic and mechani-
cal modules have a good modularity for other
similar system setups only through parameters
changes.

5) Provides a good platform for the model-based
calibration and function development.

Based on this dynamic simulation model, follow-up
researches become possible: such as the integration of
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a clutch system (refer to [14]) and an appropriate con-
trol algorithms into a complete transmission model.
The further important research field of model-based
calibration on AMTs and DCTs in order to optimize
shifting quality can also be identified.
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Abstract 

The Powertrain Dynamics Library (PTDynamics) 
has been developed using a new approach to model-
ling the mechanics of rotating MultiBody systems.  
This paper will highlight the recent developments 
within the PTDynamics library with a focus on the 
dynamic torque converter and wet clutch models that 
enable the prediction of the launch feel of automatic 
and dual clutch transmission equipped vehicles. Two 
examples are presented: one that compares the effect 
of oil temperature on the initial launch of a vehicle 
with a dual wet-clutch transmission; and a second 
that compares the behaviour of steady state and dy-
namic torque converter models. 
Keywords: powertrain dynamics, driveability, dy-
namic torque converter, wet clutch, automatic 
transmission, dual-clutch transmission 

1 Introduction 

The transmission and driveline of a vehicle have a 
large influence on the customer driving experience 
and perception of quality, as well as the efficiency 
and performance of the vehicle. The influence of 
hybridization within a vehicle has greatly increased 
the architecture variants available to vehicle manu-
facturers and consequently has complicated the se-
lection of the most efficient hardware solution.  

The Powertrain Dynamics (PTDynamics) library 
has been developed as a commercial Modelica li-
brary to aid evaluation of the many technology and 
topology options. It also provides the capability to 
model powertrain systems in sufficient detail to sup-
port the design and validation of the associated con-
trol systems and to optimize the vehicle’s response to 
driver inputs.  

The initial application of the library has been the 
transmissions and drivelines within automotive ap-
plications but it can be applied to any powertrain 
system. This paper explores some of the recent addi-
tions to the library that are used in the simulation of 
vehicle transients such as initial launch, tip-in and 

tip-out and gear shifting. Two examples are present-
ed illustrating how the new additions enhance the 
level of detail that can be included in models to pre-
dict the initial launch of vehicles with automatic and 
dual clutch transmissions. 

2 Powertrain Dynamics Library 

2.1 Overview 

Transmission and driveline systems comprise a 
number of key components that influence their dy-
namic behaviour and efficiency. The PTDynamics 
library has been developed to provide models for all 
of these components and assemblies as easy to use 
MultiBody models.  The design objective is to make 
it easy to assemble a MultiBody powertrain model 
and achieve good simulation performance and results 
without having to develop a detailed knowledge of 
Modelica. 

The range of components included in the first 
version of the PTDynamics library and the funda-
mental approach used to model the mechanics are 
described in [1].  This range of components is con-
tinually enhanced and refined with this paper de-
scribing some of the more significant recent devel-
opments.  

2.2 Dynamic torque converter 

In automatic transmissions the engine and gearbox 
are coupled by a torque converter.  This is typically 
modelled using the steady state performance curves 
for the torque converter that relate speed ratio, torque 
ratio and capacity factor (k-factor, MPC2000, or c-
factor), see Figure 1 for an example of these curves.  
These curves are readily available from the torque 
converter manufacturers and make it relatively easy 
to implement a steady state torque converter model.  
Most simulation tools only offer this type of steady 
state torque converter model that works well for 
drive cycle studies but is inadequate for the simula-
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tion of transient events such as launch, tip-in, tip-out 
or gear shifting.   

The problem is that models based on these curves 
cannot capture the transient behaviour of the torque 
converter which has a significant impact on the driv-
ing experience.  During large transient events such as 
initial launch, gear shifting and driver tip-in and tip-
out events the transient response of the torque con-
verter has an impact on the vehicle response and the 
perception of performance experienced by the driver.   

A dynamic torque converter model has been im-
plemented to overcome this problem and enable the 
torque converters fluid inertia and stator dynamic 
behaviour to be included in simulations.  The model 
is based on the nonlinear lumped parameter model 
derived in Hrovat and Tobler [3] that describes the 
converter dynamics. It has been implemented to fit 
within the PTDynamics framework for a torque con-
verter model which means that the user can very eas-
ily switch between an existing steady state torque 
converter model and the new dynamic torque con-
verter model.   

The basic layout of a 3 element torque converter 
is shown in Figure 2 with the key parts identified.  
The impeller is connected to the engine, the turbine 
is connected to the gearbox and the stator is connect-

ed to the gearbox housing via a one-way clutch.  En-
ergy is transferred between these 3 components by 
the hydraulic fluid within these control volumes (im-
peller, stator, turbine).  

The moment-of-momentum equation is applied to 
each of these control volumes and relates the rota-
tional velocity of the mechanical components and the 
torque to a fluid flow velocity along the torque con-
verter rotational axis. This results in a single first 
order state equation for each element and for the im-
peller this gives the following equation:  
 

���� � � ���	� 
 	�
����� � �� �� tan�� ������ �
�� �� tan���	 � ��     (1) 

 
This equation relates the speed of the impeller 

(ωi), torque on the impeller (τi), its radii at the centre 
of its outlet port (Ri), the angle of the blade surface 
to the normal (αi) and the fluid volume flow rate (Q) 
is related to the conditions at its input from the sta-
tor.  The state equations for the turbine and stator are 
of a similar form.  

The fluid state equation links the relationship be-
tween the fluid volume flow rate (Q) and the me-
chanical inertia velocities (ωi,t,s) using a conservation 
of momentum energy balance given by: 

 

������ � � ���� � � ���� �	� � ���
� 	� 
 	�������� �

������ � ������ � ������� � ������� � �������� �
�� �� 	���� tan �� � �� tan��� � �� �� 	���� tan�� ��� tan��� � �� �� 	���� tan �� � �� tan��� �  �(2) 

 
Where the pL term represents the losses in the 

familiar form of shock losses from non-ideal flow 
conditions and fluid friction losses. These are de-
fined as shock velocity coefficients (Csh,i,t,s) and a 
fluid friction factor (f). 

 
 � 
 �

� !"#�	��$�%,�'�%,�� � $�%,�'�%,�� �
$�%,�'�%,�� � � �(

� 	!"#�	��'�∗� � '�∗� � '�∗��(3) 

 
These equations fully characterize the dynamic 

behaviour up to sufficiently large frequencies 
(~50Hz) to model fast transient phenomena occur-
ring during throttle steps and rapid speed ratio 
changes.  

Due to the ‘free body’ formulation approach tak-
en, the model relies upon knowing some key internal 
geometry parameters of the torque converter; most 
notably the radii and blade angles that are not nor-
mally quoted/released by torque converter manufac-
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Figure 1: Steady state torque converter performance 
curves (speed ratio, torque ratio and k-factor) 

Figure 2: Schematic of a 3 element torque converter 
showing the fluid flow direction in the driven condition 
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tures.  These parameters have to be calibrated before 
the dynamic model can be used and this is done in 
two stages using the Optimisation toolbox available 
for Dymola. 

The first stage of the optimization process is to 
tune the model parameters so that the dynamic 
torque converter model accurately predicts the steady 
state performance.  This is achieved by running the 
torque converter under steady state conditions and 
comparing the quoted steady state performance 
curves with the simulation results.  After the optimi-
sation of the parameters to match the steady state 
response, additional experimental data captured un-
der transient driving conditions is required to cali-
brate the dynamic response of the torque converter 
model.  This approach does allow the user to tune 
these design parameters to obtain good agreement 
with experimental data. 

2.3 Wet clutches 

Wet clutches are key components in both automatic 
and dual-clutch transmissions and a new model for 
predicting the torque response of a wet clutch pack 
has been developed. The torque across a wet clutch 
is a direct function of automatic transmission fluid 
(ATF) film thickness, pressure distribution and as-
perity pressure at the interface. The model calculates 
the total torque across the wet clutch as the sum of 
the hydrodynamic torque and asperity torque. 

The hydrodynamic torque is created early in the 
clutch engagement phase through fluid shear with 
the hydraulic pressure supporting the normal load 
and preventing physical contact of the clutch plates.  
As the film thickness decreases to a similar magni-
tude to the surface roughness of the friction plates, 
the asperities of the friction material make contact, 
supporting the normal load on the clutch and reduc-
ing the fluid hydrodynamic torque to zero. The as-
perity torque then determines the total torque trans-
fer. It is these phenomena that heavily influence the 
torque characteristics during a clutch engagement.  

The hydrodynamic torque is based on the ATF 
film thickness (h) calculated using an approximate 
Reynolds equation for a rough and permeable sur-
face which has been shown to be very similar to the 
full modified Reynolds equation [4]. The contribu-
tion of the hydrodynamic pressure (ξ), material per-
meability (δ), surface roughness (g) and the real con-
tact area (Ared) is given by: 

 

                    
*%+
*� 
	,�%+�-�%+�.�%+�/�%+��012 3ℎ56               (4) 

The normalized oil film thickness ℎ5 
 ℎ ℎ78  is used 

directly in the hydrodynamic torque calculation: 

 

   9% 
 :	;(�<( �<(�� = = >?@01A
% BCBCD	>E>F

�G
7    (5) 

 
where h0 is the steady state oil film thickness, and 
the pressure and shear stress flow factors (ϕf, ϕfs) 
from Patir and Cheng [5] account for flow between 
rough surfaces. The kinematic viscosity of the fluid 
(µ) is calculated using the ASTM D341 standard [6] 
as:  
 
           log. log	�: � 0.7� 
 N � O	log	�9�   (6) 
 
where A and B are two coefficients calculated from 
two known viscosity-temperature operating points of 
the ATF.  

The asperity torque is calculated from the friction 
coefficient (µf), number of friction surfaces (Nf), 
clutch radii (ri,ro), and the applied pressure (Pa).   

             9P 
	:(;( = = B�QPCBCD	>E>F
�G
7           (7) 

The applied pressure on the asperities on a rough 
surface is considered to be proportional to the area in 
contact and the Young’s modulus of the friction ma-
terial.  

 Due to the dependency on the ATF film thick-
ness on clutch torque, under multiple engagements 
the time taken for the oil film to be replenished after 
an engagement would affect the torque profile for the 
next engagement. 

As no description for this film replenishment 
phase seems to be available in published literature, 
an exponential rise time has been introduced to in-
clude the effects of multiple engagements on the oil 
film thickness with a parameter riseTime to describe 
the time taken for the film thickness to return to its 
pre-engagement full film thickness (h0): 
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 ST%U
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This models ability to account for the hydrody-

namic torque contribution enables the significant 
thermal effects to be accounted for within the torque 
response in wet clutches; a common cause for nega-
tive feedback on dual clutch transmissions particular-
ly in low temperatures at initial launch due to the 
high oil viscosity. This also provides a more detailed 
description of the real system to enable calibration of 
control strategies during clutch slip control and en-
gagement. 

The availability of parameter data for the clutches 
of interest such as the lining thickness and permea-
bility as well as the availability of a thermal model 
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that can account for the thermal performance of the 
system are the two significant limiting factors for the 
prediction of wet clutches.  

2.4 Aggregated shafts 

In the PTDynamics library, an aggregated shaft 
method has been developed to model the cardan 
shafts and joints within a driveline. The kinematic 
relationship of the shaft and its associated joints is 
described using a single aggregated joint between the 
two ends.   Figure 3 shows an example of a shaft 
with a joint such as a constant velocity joint at each 
end of the shaft.  Using this approach the shaft itself 
can be considered to have a fixed or variable length. 

 

 
Figure 3: Diagram of an aggregated shaft with a joint at 
each end 

This approach is consistent with the aggregated joint 
approach in the Modelica MultiBody library [7] 
where the removal of the constraint equations elimi-
nates the nonlinear equations generated and the mo-
tion equations are solved analytically to enhance the 
simulation performance.  Figure 4 shows how this is 
implemented in the PTDynamics library with the 
degrees of freedom for both joints being modelled in 
the special joint shown at the bottom of the diagram. 

 

 
Figure 4: Internal diagram of an aggregated shaft model 

One problem that can be introduced by these aggre-
gated joints is that the MultiBody frames in the relat-
ed connectors can appear to be rotated at 180 degrees 
relative to one another.  This would make any result-
ing rotation that is tracked in the flange connector 
appear to be in the wrong direction at this point in 
the model (see [1] for further details on the basic 
Rotation3D methodology).  To handle this we use 
special blocks that resolve the rotation direction in 
the flange connector to make sure that it is consistent 
with the orientation of the bearingFrame wherever 
such a rotation is possible in a component model.   
The resolve rotation blocks are used at both ends of 
the aggregated shaft model.  

The topology of the shaft model can remain con-
stant for both plunging and fixed length shafts with a 

simple replacement of the shaft joint at the bottom of 
the diagram shown in Figure 4.  

The torsional compliance of the shafts in the 
driveline play a key role in the longitudinal response 
of the vehicle, with the driveshafts and propshafts  
often containing the largest proportion of the total 
compliance within the system.  A compliance model 
is therefore included within the central shaft compo-
nent and within both joints as shown in Figure 3. 
This compliance model can be configured to be Rig-
id, Linear, Linear with Backlash, Nonlinear and 
Nonlinear with plastic deformation to cover the dif-
ferent use cases and model fidelities required for 
driveline testing. 

To aid bringing simulation earlier into the design 
cycle and extend the usability of the library, a num-
ber of shaft options have the ability to estimate the 
mechanical properties (stiffness, mass and inertia) by 
entering simple geometry and material properties. 
This can ease the burden of knowing many parame-
ters not available early in the design stage and where 
simple torsion theory using geometry can yield rea-
sonably accurate results. 

3 Vehicle Systems 

The components described have been used to model 
two different powertrain configurations. Built using 
the templates provided in the PTDynamics library, 
they maintain the same high level vehicle architec-
ture but they represent very different physical sys-
tems. The template approach is based on the Vehi-
cleInterfaces library [2]. Within the PTDynamics 
library this architecture structure has been extended 
to provide templates for common transmission and 
driveline arrangements. 

Two different powertrain architectures are con-
sidered: first, a mid-engined rear wheel drive trans-
axle vehicle with a dual clutch transmission; second, 
a front-engined rear wheel drive vehicle with an au-
tomatic transmission and torque converter. 

These examples both represent a car with a mass 
of 1500kg using a chassis model with pitch, bounce 
and roll degrees of freedom as well as the longitudi-
nal motion.  A mean-value engine model developed 
using the Engines Library [1] is used in both cases: 
for the four-wheel drive vehicle we use a V6 engine 
and for the rear-engined vehicle an inline 4 cylinder 
engine is used. The engine and transmission assem-
blies are mounted in the vehicle body using an elas-
tomeric mount with a linear force-displacement 
characteristic. 
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3.1 The Transmission 

The transmissions are built using templates from the 
PTDynamics library as shown in Figure 5. These 
templates split the gearbox into 3 main sub-systems, 
the engagement device, the gearset and the gear se-
lection mechanism.  An engagement device in the 
form of a clutch assembly or torque converter sits 
between the engine and the gearset.  The gearset in-
cludes the gears, shafts, bearings and synchronisers 
or clutches used to engage different gears. The gear 
selection mechanism defines the actuation system 
that translates the driver movement of the hand lever 
or control system gear demand into actuation of a 
clutch or synchroniser.  This system architecture 
suits many applications commonly seen in automo-
tive transmissions.  

The dual clutch transmission comprises two 
concentric wet clutches with a three shaft type 
gearset as shown in Figure 6. Simple synchroniser 
models for each gear are included to enable the gear-
box to be used to run tests in different gears but the 
detailed shift dynamics are not currently included 
and will be introduced in a future development of the 
PTDynamics library. 

The automatic transmission is a 6 speed gearbox 
consisting of a front Epicyclic and a rear Ravigneaux 
gearset with 2 brakes and 3 clutches to control the 
overall gear ratio (see Figure 7).  The gearset is cou-
pled to the engine via a torque converter.  The speed 
and torque dependent losses are lumped for conven-
ience and based on the current gear signal. Where the 
data is available the losses can be distributed to the 
appropriate bearings and gear mesh models.   

3.2 The Driveline 

A range of templates for commonly occurring 
driveline configurations are provided in the PTDy-
namics library.  The example in Figure 8 illustrates 
one of the four wheel drive templates that is availa-
ble.  In this case the driveline includes a central dif-
ferential that is mounted to the transmission case.  
The front and rear differentials are independently, 
elastically mounted within the vehicle body.  All of 
the components are replaceable so that the user can 
select the appropriate model for their application. 

 

 

 
 

Figure 5: Automatic transmission used in the vehicle 
model 
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Figure 7: Dual clutch transmission 3 shaft gearset 

Figure 6: Gearset model for the automatic transmission 
model 
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4  Results 

4.1 Test definition 

The two powertrain examples were used to model a 
vehicle launch from standstill in 1st gear.  In these 
tests the engine starts at idle speed and we are inter-
ested in the vehicle longitudinal response which is 
what the driver will experience.  We will focus on 
the behaviour and influence of the engagement de-
vices (i.e. torque converter and wet clutch) on the 
longitudinal acceleration.  

4.2 Vehicle with dual clutch transmission 

The vehicle model used for these experiments is a 
mid-engined car with a 7 speed dual-clutch transmis-
sion and integrated rear differential.  The model in-
cludes all effects that influence the initial launch of 
the vehicle such as the power-unit mounting system, 
tyre slip, suspension (including the fore-aft compli-
ance) and the torsional compliance of all the shafts.   

This example will look at the effect of oil temper-
ature on the initial pull-away of the vehicle.  With 
the oil in the wet clutch at the normal operating tem-
perature the pull-away of this type of vehicle will be 
calibrated to deliver the acceleration profile that best 
matches the brand image of the manufacturer.  This 
could result in a very smooth pull-away or be cali-
brated to give a more aggressive start with a higher 

jerk at the start of the launch.  However the start is 
calibrated, the aim for the manufacturer is for this to 
be consistent at all operating temperatures of the 
clutch.  At low temperatures though, this becomes 
more difficult to achieve due to the change in viscos-
ity of the oil.  This change is usually obvious to the 
driver because the launch will not be as smooth and a 
lot of effort with the calibration is required to mini-
mise the effect.  

The launch test is a gentle acceleration with the 
driver requesting a small amount of the available 
engine torque resulting in the vehicle accelerating to 
just 20kmh in 5 seconds.  Figure 9 shows the results 
of this pull away for the cold and warm gearbox 
tests.  In the case of the warm pull away the accelera-

Figure 8: Four wheel drive driveline template with cen-
tre differential 

Figure 9: Comparison of pullaway with warm and cold oil 
in the wet clutch.  Top is the driver accelerator demand; 
2nd plot is the engine and gearbox input speeds; 3rd is the 
longitudinal acceleration; and bottom is the clutch demand 
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tion builds very smoothly.   
With the cold gearbox though a smooth pull-away 

is not achieved even though the clutch demand is 
significantly reduced due to the low oil temperature.  
The bottom plot in Figure 9 shows the change in the 
clutch demand between the warm and cold oil tem-
peratures. Despite the large reduction in the clutch 
demand during the first 0.2s, when the oil tempera-
ture is low we still get a relatively large acceleration 
as soon as the clutch pressure begins to rise.  This is 
due to a large amount of torque that gets generated as 
soon as the fluid layer begins to be compressed re-
sulting in a torque spike and corresponding longitu-
dinal acceleration.  

How the driver judges the driveability perfor-
mance of a vehicle is often related to 3 objective var-
iables: delay time; peak acceleration and jerk [8].  
Looking at these 3 objective measures using Figures 
9 and 10 we can interpret the vehicle response and 
compare the cold and warm performance.  There is 
no change in delay time but there is a big increase in 
the jerk (See Figure 10) and a related change in the 
acceleration profile (see Figure 9).  For the cold pull-
away event, the jerk is 2.5x higher than with a warm 
clutch.  This will all effect the drivers perception of 
how smooth the car is. 

To cope with the low oil temperature the clutch 
engagement profile has to be reshaped as well as re-
ducing the actual applied pressure during the early 
phases of the engagement. 

 
Figure 10: Longitudinal jerk during pullaway 

4.3 Vehicle with automatic transmission 

The vehicle model used for these experiments is a 
front-engined, rear-wheel drive vehicle.  It is fitted 
with a 6 speed automatic transmission with a torque 
converter and lock-up clutch. The model includes all 
effects that influence the initial launch of the vehicle 
such as engine and differential mounting systems, 
tyre slip, suspension (including the fore-aft compli-
ance) and the torsional compliance of all the shafts.   

The torque converter model can be easily 
changed between a steady state model and the cali-
brated dynamic model.  This analysis focuses on the 
detailed differences in the vehicle response due to 

the use of a steady state and dynamic torque convert-
er model.  

The experiment is a launch from rest with the 
driver releasing the brake pedal and then applying 
the accelerator pedal.  The rate of pedal actuation is 
the same in both tests and the engine is running at 
idle speed with first gear engaged in the transmission 
at the start of the test.  Therefore the only difference 
between the two tests is the torque converter model. 

Figure 11 shows the normalised driver pedal posi-

Figure 11: Pullaway comparing the steady state and dy-
namic torque converter models.  Top: driver demands; 2nd

plot is the impeller and turbine speeds with the dynamic 
model results in dashed lines; 3rd is the longitudinal accel-
eration; Bottom is the longitudinal jerk 
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tions (top graph) aligned with the impeller and tur-
bine speeds (middle graph) and the vehicle longitu-
dinal acceleration (bottom graph).   

The longitudinal acceleration of this vehicle can 
be broken down into two phases.  Phase 1 occurs 
between 5.0 and 7.0s while the brakes are slowly 
released and phase 2 begins as the driver steps across 
from the brake pedal to the accelerator pedal.  

During phase 1 the acceleration profile is domi-
nated by the release characteristics of the brake sys-
tem.  This is because while the vehicle is held sta-
tionary the torque converter is applying torque to the 
gearbox input.  As soon as the friction torque in the 
brakes reduces below a certain level the vehicle will 
will start to creep forward.  This model includes a 
very simple brake system and so the brake pedal re-
lease profile is modified to limit the acceleration dur-
ing phase 1.  

Phase 2 of the launch is where we see the differ-
ences between the steady state and dynamic torque 
converter models.  At this stage in the test the driver 
is quickly applying the accelerator pedal to demand 
100% torque from the engine and it is during the 
time 7.5 to 8.0s that we see the effect of the torque 
converter model on the results.   

With the dynamic torque converter model we see 
an increased delay between the driver demand and 
the vehicle acceleration combined with an increase 
in the jerk once the dynamic model starts to acceler-
ate.  Both of these metrics are known to influence the 
drivers perception of driveability [8].   

Accurate prediction of these driveability metrics 
together with other measurements such as fuel usage, 
emissions and thermal effects enable the launch 
strategy within the engine control software to be ad-
justed and calibrated to deliver the desired balance 
between vehicle performance feel, fuel economy and 
emissions. 

5 Conclusions 

An overview of the developments made within the 
Powertrain Dynamics Library is presented and fo-
cused on the prediction of initial launch for two 
types of vehicle. In the first case, the effect of oil 
temperature on the initial launch of a dual wet-clutch 
transmission equipped vehicle is presented followed 
by a look at how a dynamic torque converter model 
can improve the accuracy of the initial launch predic-
tion of an automatic transmission equipped vehicle.   

Two key areas for transmission modelling have 
been addressed through the introduction of more de-
tailed wet clutch models and a dynamic torque con-
verter model.  These enable more dynamic driving 

events such as launch and gear shifting to be mod-
elled and accurately predicted using Modelica based 
models. 
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Abstract

The object of this paper is to present an universal
model that describes the gear contact between two
gears in a planar environment. The model includes
elastic effects between the gear wheels. Using this
model it is possible to create arbitrary spur gear con-
nections as well as all kinds of epicyclic gearing
configurations by supplying the proper external con-
straints. The presented model is implementated in the
Modelica language and Dymola is used for the simu-
lations.
Keywords: Elasticity, Gearbox, Epicyclic Gearing,
System Modeling

1 Introduction

Gear transmissions are widely used in almost all engi-
neering applications. These range from cheap plastic
consumer printers, aircraft actuators up to high pre-
cision positioning drive systems. The design of these
transmissions is dependent on the application. This de-
sign process ranges from "‘looking up a standard gear
in a catalog and hope it will work"’ up to detailed dy-
namic analysis using Finite Elements Methods.
At the moment gear research is mainly focused on the
understanding of gearboxes. Özgüven and Houser [4]
wrote a model review in 1988, Parey and Tandon [6]
did the same in 2003. These works present a good
overview of the work done up till that time. More re-
cent works can be sorted into 3 groups:

1. Rigid models or simple elastic systems with only
rotational degrees of freedom [7, 3]

2. Coupled torsional and transversional elastic
models[9, 1, 8, 5]

3. Self excited gears models; gear eccentricitiy,
transmission errors and stiffness variations [3, 1,
9, 5]

Some of these mentioned works have friction effects
included. Most of the recent works include a full
transversional-torsional coupled model including ei-
ther detailed friction effects or self excitation. There
is a clear trend on an increasing model detail and com-
plexity.
However, all the models above, are not flexible when
gearing configurations like compound planetary gears
or even more exotic configurations are used. In the
pre-design stage of such a gearbox, reduction ratios as
well as internal vibrations are usually important. In
this paper a model will be presented that can simu-
late arbitrary elastic gearbox configurations by relying
on a planar library. This approach makes it very easy
to evaluate several model configurations without a lot
of design work. To keep the simulation time low, the
presented model does not include any friction effects,
since they are often not directly necessary in the pre-
design stage.

2 Gear Forces and Equations

In this chapter the forces and torques on the gear
wheels are evaluated. Since these forces and torques
differ for internal- and external toothing, these aspects
are treated as separate cases.

2.1 Force and Moment balance of external
toothing

In Figure 1 a schematic overview of two gear wheels
in contact are shown. The rotation of the gear wheels
are φA and φB, shown by the angles to the body-fixed
red and blue markers on the gear wheels.
The gear ratio is defined by:

rA

rB
=−i (1)

This ratio is constant for each gear angle and position.
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φA

φB
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Figure 1: Schematic overview of two gearwheels in
contact. The blue and red line are fixed markers on the
gear wheels. In the figure φ̇A > 0 and Gear A drives
Gear B.

Figure 2 shows a free body diagram of the two gears
in contact. The forces of only one contact point are
displayed.

rA

rB

Fn

Fn

x

y

φGear

FyA

FxA
FyB

FxB

Gear A

Gear B

Figure 2: Free body diagram of the two gearwheels
from Figure 1.

Using Figure 2, it is possible to create the torque and
force balances of each gear wheel for external toothing
configurations. These forces and torques are resolved
in the fixed coordinate system shown in Figure 2. The
use of a fixed coordinate system and gear angle φgear

makes it possible to use the contact model also in more
complex gear systems (e.g. all kinds of Epicyclic gear-
ing configurations).

τA = FnrA (2)

τB = FnrB (3)

FxA =−sin(φgear)Fn (4)

FyA = cos(φgear)Fn (5)

FxB =−FxA (6)

FyB =−FyA (7)

φA

αA

αB

φB

r B

r A

Gear A

Gear B

Figure 3: Schematic overview of two gearwheels in
contact. The blue and red line are fixed markers on the
gear wheels. In the figure ωA > 0 and Gear A drives
Gear B.

2.2 Force and Moment balance of internal
toothing

Just like in Section 2.1, the force and moment balance
can be created by examining Figure 3 together with
Figure 4:

τA = FnrA (8)

τB =−FnrB (9)

FxA =−sin(φgear)Fn (10)

FyA = cos(φgear)Fn (11)

FxB =−FxA (12)

FyB =−FyA (13)

3 Meshing distance

To keep track how the gear wheels move with respect
to each other, the mesh distance xmesh is introduced.
This distance is defined as the distance the gear has
traveled through the meshing point and can be calcu-
lated for both gear wheels. For the complete descrip-
tion of the mesh position the following assumption is
postulated:

Assumption 1 The mesh contact position is on the di-
rect connection between the center of gear A and B at
a distance rA from the center of A
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Figure 4: Free body diagram of the two gearwheels
from Figure 3.

This assumption is valid for all cases in which the de-
formation of the tooth is small. In all engineering ap-
plications this must be the case for gearwheels under
normal loading conditions.

3.1 Mesh Distance External Toothing

For external toothing the mesh distance can be cal-
culated as follows using the geometry and definitions
from Figure 1.

xmesh,A = φArA−φgearrA (14)

xmesh,B =−φBrB +φgearrB (15)

From this equation it becomes clear that the mesh dis-
tance (xmesh,A or xmesh,B) can be constant although the
gear wheels are rotating. This is the case if φA = φgear

or φB = φgear. This is not only a theoretical implica-
tion; in e.g. bicycle gear hubs this is often the case.
The difference between the mesh positions is the elas-
ticity of the gear contact:

∆AB = xmesh,A− xmesh,B (16)

Assuming the meshing position is always halfway the
elastic deformation, together with using the equations
14 to 16 the mesh velocity is:

vmesh = ẋmesh,A−
∆̇AB

2
(17)

3.2 Mesh Distance Internal Toothing

The same analysis method can be applied to the inter-
nal toothing:

xmesh,A = φArA−φgearrA (18)

xmesh,B = φBrB−φgearrB (19)

The difference between the mesh positions is as men-
tioned above the elasticity of the gear contact:

∆AB = xmesh,A− xmesh,B (20)

Assuming the meshing position is always halfway the
elastic deformation, together with using the equations
18 to 20 the mesh velocity is:

vmesh = ẋmesh,A−
∆̇AB

2
(21)

4 Gear Wheel Coupling

The gear wheels A and B are coupled by a spring-
damper combination. This yields:

Fn = ∆ABc(φgear,φA,φB)+ ∆̇ABd(φgear,φA,φB) (22)

In this equation c(φgear,φA,φB) is the angle dependent
spring constant and d(φgear,φA,φB) is the angle depen-
dent damping constant.

4.1 Position Dependent Stiffness

The angle dependency can be used to simulate a non
constant tooth stiffness. The total tooth stiffness is the
combined stiffness of both gearwheels. Since the cir-
cumference of a gearwheel is periodic by definition,
the following assumption can be postulated:

Assumption 2 The position dependent stiffness and
damping of a gearwheel can be described by a Fourier
decomposition.

One of the most basic forms of Assumption 2 is a sin-
gle harmonic with zero phase offset that represents the
tooth of the gear wheel. The stiffness over the circum-
ference of a gearwheel can therefore be written as:

cA(γA) = cconst + c∆,A sin(2πntooth,AγA) (23)

cB(γB) = cconst + c∆,B sin(2πntooth,BγA) (24)

In this equation γA is the angle which describes the po-
sition of the material on the gear wheel. The stiffness
at the contact position however, is dependent on which

Session 2D: Mechanic Systems I 

DOI Proceedings of the 9th International Modelica Conference    305 
10.3384/ecp12076303 September 3-5, 2012, Munich, Germany   



 

 

part of the gearwheel is in contact. The local stiffness
can be obtained for an external gear by using:

γA = φA−φgear (25)

γB =−φB +φgear (26)

Substituting Equations 25 and 26 into Equations 23
and 24 leads to the stiffness at the contact position.

ccont,A = cconst + c∆,A sin(2πntooth,A(φA−φgear))
(27)

ccont,B = cconst + c∆,b sin(2πntooth,B(−φB +φgear))
(28)

An internal gear configuration would yield:

γA = φA−φgear (29)

γB = φB−φgear (30)

leading to a contact stiffness of:

ccont,A = cconst + c∆,A sin(2πntooth,A(φA−φgear))
(31)

ccont,B = cconst + c∆,B sin(2πntooth,B(φB−φgear))
(32)

The overall stiffness can be calculated by putting both
springs in series:

c =
(

1
ccont,A

+
1

ccont,B

)−1

(33)

5 Modelica Implementation

The presented gear contact model must be supplied by
constraints in the x, y and φ direction (standard planar
constraints). The Planar library from D. Zimmer [11]
is used to supply these constraints. Features like (rota-
tional) bearings, connection rods, inertias e.g. are all
represented. The library will be used to create the total
gearbox setup.
Implementation of the gear model in Modelica is
straightforward using the sections above. The gear
model is implemented with 2 planar interface connec-
tors; each with 3 degrees of freedom (x,y,φ ). These
connectors are the connections to the gearwheels A and
B. To sense the total revolution angle φgear (φgear ∈R),
the atan3 function is modified to supply a continuous
and differentiable angle.
In Figure 5 the icons of the gear models are shown. No
inertia’s or constraints are included in the model.
Using the planar library, it is possible to create all kind
of different gear configurations. Everything between

Figure 5: Modelica Icon of the inner and outer gear-
wheel connections

Figure 6: Spur Gear in Dymola

simple spur gears models (Figure 6 and 7) up to com-
plex epicyclic gearing configurations (Figure 8 and 9)
is easily generated. In these models, the gearbox mod-
els (Figure 5) are defined as described in this paper, all
other components are components of the planar library
(see [11]).

6 Simulation Results

6.1 Eigenfrequency Analysis

Using the Modelica LinearSystems2 library, it is pos-
sible to create a Bode-Diagram of a linear system.
Since a linear spring and damper are used for the con-
tact stiffness, is is possible to use this toolbox. Using
an eigenfrequency analysis it is possible to check the

Figure 7: Spur Gear in Dymola
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Figure 8: Epicyclic Gear

Figure 9: Epicyclic Gear

behavior of the models.

6.1.1 Spur Gear Analysis

A Single Input Single Output (SISO) system of a sim-
ple spur gear model (as shown in Figure 6) is gener-
ated by applying a torque input on gearwheel A, and
using as output the angular position of gearwheel B.
The Bode-Diagram of this system 1 is shown in Fig-
ure 10. In the diagram a clear peak can be found
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Figure 10: Bode-Diagram of the spur gear from Figure
6

at 0.225 Hz. This is exactly the expected frequency

ω =

√
k
m

2π
=

√
2
1

2π
∼= 0.225. The stiffness k = 2 N

m and
mass m = 1kg have to be used since the system is a
symmetrical system using only one spring (see e.g.
[2]). Lowering of the eigenfrequency due to damping
can be neglected due to the low damping coefficient.

6.1.2 Epicyclic Gear Analysis

A SISO system is created by defining an input torque
on the sun (middle (blue) gear in Figure 9), as output
the angular position of the carrier (grey structure). The
Ring (red) is fixed, thereby eliminating vibrations of
the ring structure. Each small planet is coupled to the
planet rotating on the same axis. All bodies have the
following properties: Mass 1 kg, Inertia 1 kgm2. All
gear connections have a stiffness of 1 N

m , and a damp-
ing coefficient of 1e-3 Ns

m . The radius of the sun is

1The bodies have a rotational inertia of 1 kgm2, the spring con-
stant of the gear is 1 N

m , and a damping coefficient is 1e-3 Ns
m . Both

gearwheels have a radius of 1m.
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1m, the connecting planet has a radius of 0.5m. The
other gear part of the stepped planet has a radius of
1m. The ring has a diameter of 2.5m. Using this set
up, a Bode-Diagram is made (see Figure 11). When
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Figure 11: Bode-Diagram of the epicyclic gear from
Figure 8

evaluating the Bode diagram, two peaks and a single
dip can be found in the magnitude diagram. These
features correspond to the 3 eigenfrequencies of the
system. The fact that only 3 peaks can be found in the
Bode diagram is due to the fact that the planets all have
the same masses and stiffnesses. When the stiffness of
one of the Sun-Planet gear connections is lowered to
0.5 N

m , another peak and dip in the magnitude diagram
occurs, since now one of the planets will swing in an
other frequency as the others (see Figure 12).

6.2 Internal vibrations

In Section 4.1 the possibility of an internal excitation
of the gear through varying stiffness is shown (to sim-
ulate gear mesh effects). A demonstation of this ex-
citation is shown for a simple spur gear. Gear A is
accelerated from 0 rad

s to 1 rad
s with a constant acceler-

ation. A radius of 1m and 10 teeth for both gearwheels
are assumed for this calculation. The constant tooth
stiffness in the simulation is 1 N

m , the stiffness ripple on
both wheels is assumed to be 0.1%. Using a damping
coefficient of 0.2 Ns

m this yields a lightly damped sys-
tem with a damping ratio ς ≈ 0.071. In Figure 13 the
elastic deformation (∆AB) of the gear is shown.
In Figure 13 also shows that the system is excited by
the internal mesh stiffness variation. The response of
the system is the largest when the eigenfrequency of
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Figure 12: Bode-Diagram of the epicyclic gear from
Figure 8 with reduced stiffness of one of the gear con-
tacts.

Figure 13: Time simulation of an elastic spur gear with
increasing velocity.

the system approximates the excitation by the stiffness
variation.

7 Conclusion

In this paper a model is presented to describe the con-
tact between two gear wheels. Using an external pla-
nar library, it is possible to model arbitrary gear con-
figurations ranging from simple spur gears up to com-
plex epicyclic gear configurations. An option to simu-
late gear meshing effects by varying the stiffness of the
gear contact is presented. The presented models make
it possible to analyze complex gear configuration by
means of time simulations as well as eigenfrequency
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analyses. The presented simulation results show the
power of the method, and illustrate the capability of
the model.

Acknowledgements I thank Martin Otter for his
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brary.
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Abstract

An improved model having new, more realistic, prop-
erties is constructed with use of previously imple-
mented approach for building up a model of the spur
involute gear dynamics. First of all, an algorithm for
contact tracking of cylindrical surfaces directed by in-
volutes was rearranged. This algorithm is “simply”
reduced to tracking the two involutes. A result is that
common line normal to these contact curves always
coincides with the line of action. This property permits
obtaining direct simple formulae for contact computa-
tions.

A backlash in gearbox is also taken into account in
the model under consideration. This means that a loss
of contact between the teeth is possible as gearwheels
rotate. This may then cause an appearance of a contact
patch during the reversal. Furthermore, a dynamical
reasons may force the mesh process to return to the
former mode of the forward stroke and so fourth. All
such scenarios for switching modes are implemented
in the model in a unified way.

A time overlapping of contacts between teeth pairs
is used to ensure the mesh reliability. This property is
also implemented in the described dynamical model.
New contact of the next pair of teeth arises and starts
its motion along the line of action before the old con-
tact leaves this line at the point of teeth disengage-
ment.

Keywords: spur gear; involute; mesh properties;
tracking algorithm; mesh ratio; multiple contact;
backlash

1 Introduction

One can highlight two poles among all approaches to
computer modeling and simulation of the gear dynam-
ics. Computational algorithms of high accuracy are

relocated at one end of the corresponding scale. These
algorithms take into account elasto-plastic properties
of the material that the contacting bodies are made of,
plus a variety of boundary conditions of different types
[1]. Such high accuracy simulation models simultane-
ously require significant computational resources. One
might point out different simplified models, see e. g.
[2], on the other end of the scale. These models pro-
vide the highest efficiency.

The compromise model presented in [3] might be
improved upon in a way so as to take into account es-
sential properties of real gear: (a) backlash, (b) contact
multiplicity. The latter property is always provided in
real gears in order to prevent jamming in teeth. In ad-
dition, the contact tracking algorithm turned out to be
simplifiable and simultaneously essentially accelerate-
able in the case of the involute mesh. For definiteness,
we use the Johnson [4] model for the cylindrical bod-
ies contact as was previously done [3] for the case of
spur mesh.

2 Preliminaries

Using methodics [5, 6] previously developed for com-
puter modeling of the rigid bodies 3D-motions let us
consider planar motion for bodies of cylindrical shape,
denoted asA andB in our case, in the plane orthogonal
to generatrix of cylinders. We connect this plane with
an additional bodyC, see Figure 1, an auxiliary frame
OCxyz of coordinates is assumed to be rigidly con-
nected with that latter body in a way such that cylin-
drical generatrix is always orthogonal to the axisOCz.
One might express this latter requirement using the
following geometrical conditions:kα = kC (α = A,B),
wherekα (α = A,B,C) are the unit vectors defining
the axesOαz connected with the bodiesα = A,B. To
ensure the motion of the bodies in the plane parallel
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to the planeOCxy let us require a fulfillment of yet
two more algebraic conditions for the bodiesA andB
z-coordinates:zOA = const, zOB = const. All the coor-
dinates are given with respect to (w. r. t.) the system
OCxyz.

Figure 1: Coordinate systems for the model: (a) base
frame of referenceO0x0y0z0; (b) the gearbox hous-
ing coordinate systemOCxyz; (c) the pinion coordi-
nate systemOAxAyAzA; (d) the gear coordinate system
OBxByBzB

One can easily implement algebraic equations enu-
merated above in implicit form. To fix the bodiesA
andB w. r. t. the bodyC one can use, for instance, con-
straints of the joint type [5, 6]. In this case the body
C itself performs arbitrary 3D-motions being regarded
as a convective motion w. r. t. certain inertial frame of
reference. Thus calling the bodyC as the reduction-
gear housing is quite natural, if the bodiesA andB are
models of gearwheels. After the reduction to the plane
OCxyperformed above building up a technique for the
cylindrical bodies using 2D-geometry properties [3] is
quite natural as well.

Note that all the bodiesA, B,C in the model perform
their 3D-motions according to the spatial dynamics
of rigid body encapsulated in the corresponding base
class. And relative cylindrical symmetry of bodiesA
andB w. r. t. the bodyC is kept due to the reaction
forces between them. These forces are generated dy-
namically in an acausal mode due to kinematical con-
straints encapsulated in a contact class, rather a tem-

plate, being further constructed in this paper.

3 Account of the backlash

First of all, let us simplify and as a consequence essen-
tially accelerate a performance of the previously im-
plemented algorithm of the contact tracking for two
involute surfaces of the teeth pair at the contact for the
spur gear meshing. Such a simplification allows us
building up the mesh model quite easily for the mesh
ratio greater than one, and simultaneously accounting
for the backlash.

As was found earlier [3] that in the case of the in-
volute mesh the sought pointsPA andPB, see Figure 1,
lying both on the perpendicular common for involutes
of gearwheels teeth in vicinity of contact, are located
simultaneously on the mesh line of actionKAKB, see
Figure 2. Evidently, the common perpendicular men-
tioned above also coincides with the line of action
KAKB. Thus, from the geometric point of view the
pointPA lies permanently in time on the intersection of
the gearwheel tooth involute and the lineKAKB. Simi-
lar statement takes place for the pointPB: it lies on the
intersection of the gearwheelB tooth involute and the
same line of actionKAKB.

Figure 2: Gear mesh for forward stroke

Thus in case of involutes computing coordinatessA

andsB of pointsPA andPB respectively on the strait
line KAKB replacing a cumbersome algorithm using
differential-algebraic equations is sufficient for contact
tracking. One can compute coordinatessA, sB with an
extremely simple procedure, see Figure 3.

Let the coordinatessA, sB denote the distances from
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Figure 3: Contact tracking coordinates

the respective pointsKA, KB. We assume values ofsA,
sB at these source points being set to zero. Thus for
sA + sB ≥ L = |KAKB| a contact takes place, and for
sA + sB < L the contact is absent. In the first case the
depthh of the bodies mutual penetration is computed
by the simple formulah = L− sA− sB ≤ 0. Left ar-
rows in Figure 3 show a direction in which the contact
patch moves for the forward mode and as pinion ro-
tates clockwise.

When computing the valueh the pair of teeth being
in contact is under analysis. In case of forward stroke
we assume for definiteness that the wheelA, pinion,
rotates clockwise while the wheelB, gear, supposed to
rotate counterclockwise. The anglesϕA, ϕB of rota-
tion of the bodiesA, B respectively are defined by the
axis OCx of the gearbox housing and by the axes be-
ginning from bodies’ pointsOA, OB and going through
the points of their base circles where corresponding in-
volutes “grow”, see Figure 2.

Furthermore, if the wheelA, for definiteness, rotates
such that the angleϕA appears outside its admissible
limits (being defined below) then the model generates
an event corresponding to fulfilment of the condition
ϕA /∈ [ϕAmin,ϕAmax]. In such a case the values of angles
ϕA = ϕ−A , ϕB = ϕ−B are to be automatically corrected
according to equations (we assume that contact of the
forward stroke exists currently):

ϕ+
A = ϕ−A +m∆ϕA, ϕ+

B = ϕ−B −m∆ϕB

for the case ofϕA < ϕAmin and equations:

ϕ+
A = ϕ−A −m∆ϕA, ϕ+

B = ϕ−B +m∆ϕB

for the case ofϕA > ϕAmax. Here∆ϕA, ∆ϕB are an-
gular widths per one tooth of the wheelsA andB re-
spectively;m is the mesh multiplicity (the least integer
greater than the mesh ratio). Note that the anglesϕA

andϕB are not exactly the bodies angles of rotation.

They are indeed the angles of rotation for wheels’ teeth
w. r. t. the axisOCx. These teeth are supposed to lie
currently in the zone of possible contact. This zone is
defined by the conditionϕA ∈ [ϕAmin,ϕAmax].

Formulae from above have to simply switch con-
tact in the same sense as it was arranged in [3]. The
following approximate rule is used: at the very same
moment when the contact patch “instantly vanishes”
behind an upper or lower limits of admissible segment
[ϕAmin,ϕAmax] this patch should appear immediately
on the other end of the same segment. For simplicity
the wheelA is considered as a “leading” object respon-
sible for the event generation process.

Thus a current contact object of the model “jumps”
to the next pair of teeth overm−1pairs being currently
in contact if the object individual angleϕA of tooth
rotation goes out of its admissible limits. Recall that
m is the mesh multiplicity, and in general we assume
m≥ 1.

Limit valuesϕAmin, ϕAmax for angle of inclination
of an involute at contact for the current pair of teeth
are computed with natural restrictions being imposed
on the contact area. Minimal valueϕAmin corresponds
to the final pointb of contacting along the line of ac-
tion for the case of forward stroke, see Figure 2. One
can see easily that the valueϕAmin is computed by the
formula

ϕAmin = αw− |KAa|+ |ab|
rAb

, (1)

corresponding to the selection of pointsa andb where
the contact process of starts and ends respectively. One
might find details for such matching in [3]. Hereαw is
the pressure angle, andrAb is the wheelA base circle
radius. Equation (1) has a simple geometrical expla-
nation, see Figure 4. Indeed, consider the pinion base
circle. Its arc length from the pointKA downwards to
the position corresponding to the angleϕAmax should
be equal to the segment[KA,b] length according to the
known involute property. This circumstance leads im-
mediately to property (1). We recall that the pointb on
the gear mesh line of action defines the position where
contact patch vanishes.

If the wheel A angular positionϕA = ϕAmin cor-
responds to the instant for contact finishing then the
angleϕA = ϕAmax has to correspond to this process
beginning for the current pair of teeth. One easily
sees that the assumptionϕAmax = ϕAmin + m∆ϕA has
to hold.

Similarly, obtaining formulae for computation of
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Figure 4: Limit angleϕAmin

the pointsPA, PB coordinatessA, sB as

sA =
{

rAb(αw−ϕA) for ϕA < αw,
0 for ϕA ≥ αw,

sB =
{

rBb(αw +π−ϕB) for ϕB < π+αw,
0 for ϕB ≥ π+αw,

whererBb is the wheelB base circle radius, is not very
difficult.

One has to provide additional contact (between
wheelsA and B) objects to take into account all the
possible contacts of teeth pairs if the mesh ratio is
greater than one. To simulate the gearbox forward
stroke one has to provide generallym instances of such
contact objects.

Furthermore, clearly, if contact of teeth in the for-
ward stroke vanishes then it is almost evident that con-
tact of reversal arises. This latter arises between the
teeth pair closest to contact lost before and being lo-
cated through the tooth trough on the involutes of the
teeth sides previously unused in the forward stroke
mode.

To simulate the reversal one has to use line of action
derived from the line of Figure 2 by mirroring it w. r. t.
the axis connecting pointsOA andOB. All the mesh
geometric properties considered for the forward stroke
are mirrored for the case of reversal. In particular, co-
ordinatessA andsB for this case have expressions

sA =
{

rAb(αw +ϕA) for ϕA >−αw,
0 for ϕA ≤−αw,

sB =
{

rBb(αw−π+ϕB) for ϕB > π−αw,
0 for ϕB ≤ π−αw.

Note that what we have meant under “the forward
stroke” or “reversal” is not a kinematical property
whether to rotate clockwise or counterclockwise but
it is a dynamical property switching into work/contact
between driving/driven surfaces of teeth. Thus, we

will see the forward stroke in cases of the pinionA
clockwise accelerated and counterclockwise deceler-
ated rotation. Similarly, reversal takes place in general
if pinion A accelerates when rotating counterclock-
wise and decelerates simultaneously rotating clock-
wise. Simplifying formulations let us call the rotation
with line of action shown in Figure 2 as the forward
stroke. Likewise, the rotation with line of action mir-
rored w. r. t. the axisOAOB of Figure 2 be called as
reversal. The reversal requires correct switching be-
tween pairs of teeth, as well as, it was implemented
for the forward stroke.

When contacting in reversal mode switching of the
teeth pairs takes place if the contact patch leaves the
segmenta′b′ of line of actionK′

AK′
B, see Figure 5, or

by the pointa′ or through the pointb′. For that one has
to apply the same relations as above replacing the seg-
ment[ϕAmin,ϕAmax] of admissible values for the angle
ϕA by the segment[ϕ′Amin,ϕ

′
Amax] for the angleϕ′A such

thatϕ′Amin =−ϕAmax, ϕ′Amax =−ϕAmin.

4 Case of multiple contact

Previously mesh ratio was supposed equal to one in
the simplified model of the gear mesh [3]. This means
that exactly at the moment of contact loss at the point
b new contact at the pointa arises. Such an arrange-
ment leads frequently to a low reliability of a gear-
box as well-known however in practice, mostly due
to jamming caused by manufacturing errors. Due to
this reason ensuring a reliable gearbox work one pro-
vides overlapping for time intervals of contacts in teeth
pairs. Namely, new contact at the pointa arises earlier
than the current contact vanishes at the pointb.

Let us return to the example being analysed in [3]
where a virtual setup for computational experimenting
was constructed, see Figure 6 and also Figure 1 for ge-
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Figure 5: Gearmesh for reversal mode

ometry of the whole construct. This setup consists of
two gearwheels: pinionA and gearB. For simplicity
we assume the gearbox housingC fixed w. r. t. the
base body of a whole multibody system. Furthermore,
origin OC of an inertial frameOCxyzof reference coin-
cides with the pinionA center where the revolute joint
which connects bodiesA andC is located. The gear
B center locates on the horizontal axisOCx. There ex-
ists the second revolute joint connecting the bodyB
and auxiliary sliderS. The sliderS in turn may freely
slip w. r. t. the bodyC along the axisOCx. This slip-
ping however is decelerated by a spring of very large
stiffness. The spring connects the bodiesC andS thus
providing a compliance between the bodiesB andC
through the intermediate sliderS. This compliance has
direction along the lineOAOB connecting the wheels
centers and coinciding with the axisOCx. Such a con-
struct prevents static indefiniteness in the model for the
case of the rigid point-contact in the gearmesh of the
wheelsA andB.

We define in the model the following independent
parameters:

• zA = 20 is number of the pinion teeth;

• zB = 30 is number of the gear teeth;

• rA = 0.2m is the pinion pitch circle radius.

Other (dependent) geometric parameters are com-
puted as follows

• n = zB/zA is the transmission ratio;

• rB = nrA is the gear pitch circle radius;

• ∆γA = 2π/zA, ∆γB = 2π/zB are the pitch angles of
the pinion and gear.

For further definition of the gear mesh choosing the
pressure angle value is important. This value has to
satisfy the conditionαw > αwinf , whereαwinf = inf αw

is the lower bound for all possible pressure angles
which are admissible by parameters selected above.
One can compute this bound according to the formula

αwinf = arctan
2π

zA(1+n)
.

The lower bound obtained above is a simple conse-
quence of the mesh natural condition

|−−−→KAKB|> |−→ab|.

For definiteness let us choose the value

αw = 2.8αwinf .

Furthermore, with the help of the pressure angle
value and the value of the transmission ratio we can
compute all the geometric parameters needed shown
in Figure 2. Firstly of all one can obtain radii of base
circles as

rαb = rα cosαw (α = A,B).

Then one can compute full length of the line of action
in the following way

|−−−→KAKB|= rA(1+n)sinαw.

At the same time, the length of any segment of con-
tact[a,b]⊂ (KAKB) along this line is exactly the length
of the base circle arc corresponding to the pitch angle
∆γA or ∆γB for any wheel of the gearbox. Thus we
have

|−→ab|= rαb∆γα (α = A,B).

One easily computes the distance between wheels
centers asL = rA + rB. For computing initial condi-
tions in the model performing additional calculations
is necessary. Suppose for definiteness that the coor-
dinate systemOCxCyCzC has its origin at the pointOA

of the pinionA center:OC = OA, so that these points
initial absolute coordinates coincide. Thus

rOC = rOA = (0,0,0)T ,

and the initial position of the gear center is defined by

rOB = (L,0,0)T .
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Figure 6: Virtual setup for computational experiments

Initial positions of the pointsKA andKB are com-
puted by vector formulae

rKA = rOA + rAb(cosαw,sinαw,0)T ,

rKB = rOB− rBb(cosαw,sinαw,0)T

being deduced easily. Furthermore, a directing vector
for the line of action is defined as

−−−→
KAKB = rKB − rKA.

So that the contact starting pointa initial position may
be defined as

ra = rKA +
1
2

(
|−−−→KAKB|− |−→ab|

) −−−→
KAKB

|−−−→KAKB|
,

and the initial position for the pointb of contact finish-
ing as

rb = ra +
|−→ab|
|−−−→KAKB|

−−−→
KAKB.

Let us take into account that the distance between
the pointsa andOB is exactly equal to the addendum
circle radiusrBa for the wheelB, and the initial dis-
tance from the pointb to OA is equal to the addendum
circle radiusrAa for the wheelA. Namely

rAa = |rb− rOA| , rBa = |ra− rOB| .

To ensure overlapping of the mesh cycles for wheels
with transmission ration = 3/2 let us consider the
case withzA = 22 and zB = 33 providing the same
transmission ratio. Note that the real angular widths
∆ϕA = π/11 and∆ϕB = 2π/33 for teeth become less
than their nominal, pitch, widths∆γA = π/10 and
∆γB = 2π/30.

Simultaneous coexistence of two contacts in the
model obtained requires, both in the forward stroke
and in reversal, the use of four contact objects in the
mesh computer model — two for the forward stroke

plus two for reversal. Visual model of the experimen-
tal setup is represented in Figure 7. HereContactf1
andContactf2 are objects for the forward stroke,
and Contactb1 and Contactb2 are ones for re-
versal. Thus as a result models for the pinion, the left
wheel objectLeftWheel , and gear, the right wheel
objectRightWheel , each has four input ports for in-
formation about wrenches arising at patches of an elas-
tic contacts. ObjectPlatform simulates dynamics
of the base body (absolute world), gearbox housingC
(relative world), having a predefined motion, resting in
our case. Thus two mentioned worlds coincide for the
model of Figure 7.

Figure 7: The testbench visual model

Note that each contact object mentioned above
works virtually independently. Coordination of their
on/off switching is achieved using proper and correct
selection of initial conditions for the state variables in-
side contact objects. In case of our dynamical example
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these conditions are defined in the following way.
Angular velocities of wheels are assumed to be zero.

For definiteness we also suppose that the bodyA axis
OAxA goes through the involute root point lying on the
pinion base circle. This involute defines exactly the
tooth surface, and initially it goes through the pointa
thus starting a contact. Likewise, the axisOBxB of the
wheelB initially goes through the gearB involute root
point.

At initial instant of time one pair of the wheelsA
andB teeth is supposed to have contact at the pointa,
see Figure2, with a zero depth of mutual penetration.
For definiteness this contact is supposed to be in the
forward stroke mode. One can easily conclude from
Figure 2 that in initial position of teeth for angles of
inclination ϕA, ϕB of radius vectors for the involute
root points, lying on the base circles, the equations

ϕA
f1
0 = atan2(ay,ax)−θA,

ϕB
f1
0 = atan2(ay−yCB,ax−xCB)−θB,

(2)

whereθA, θB are the pointa polar angles on teeth in-
volutes, hold. These angles are computed in the form

θA =

√
|a|2− r2

Ab

rAb
−arccos

(
rAb

|a|
)

,

θB =

√
|a− rCB|2− r2

Bb

rBb
−arccos

(
rBb

|a− rCB|
)

.

Thus wheels initial angles of inclination in the ob-
ject Contactf1 are defined by formulae (2). Fur-
thermore, for the mesh ratio being greater than one if
one pair of teeth starts contact at the pointa then an-
other neighbour pair being ahead of the previous one
will have a contact somewhere on the segment[a,b].
This latter contact is supposed to be defined in the ob-
ject Contactf2 . Initial values of auxiliary angles
ϕA, ϕB defining the angles of involute rotation for the
forward stroke (or reversal) and being respectively in
segments[ϕAmin,ϕAmax], [ϕBmin,ϕBmax] are to be dis-
tanced from the angles of the objectContactf1 ex-
actly by the tooth angular width (which is smaller than
the angular pitch of the gear mesh under simulation).
Namely, the following formulae

ϕA
f2
0 = ϕA

f1
0 −∆ϕA, ϕB

f2
0 = ϕB

f1
0 −∆ϕB, (3)

are to be satisfied.
An initial data selection for the objects

Contactb1 , Contactb2 servicing the rever-
sal is not so evident. Indeed, involutive surfaces of the
teeth pair being tracked by the objectContactb1

will be situated on the same teeth as the surfaces
being tracked by the objectContactf2 . The only
difference is that they should be relocated on other
sides of the teeth mentioned, see Figure 2. So from
geometrical point of view contact of reversal being
tracked by the objectContactb1 on initial stage
of motion should be located between the contacts
of the forward stroke being tracked by the objects
Contactf1 andContactf2 .

Note that for a particular tooth the radius vectors of
the involute root points (lying on the base circles) of
its two sides rotate w. r. t. each other exactly by an
angular width of one tooth without accounting for the
tooth trough. Note that all angular widths are to be
counted along the arcs of the base circle. Denote these
angular widths of teeth bytAwid, tBwid. Then one can
compute initial data in the objectContactb1 by the
formulae

ϕA
b1
0 = ϕA

f2
0 + tAwid, ϕB

b1
0 = ϕB

f1
0 + tBwid.

Let us remark here that really at the initial in-
stant of the computational experiment the objects
Contactb1 , Contactb2 generate zero-valued
wrenches of contact forces. All this is due to the
contacts absence for reversal mode though objects
Contactb1 , Contactb2 always continue to track
the pointsPA, PB inside each of them.

The objectContactb2 of the second contact for
the reverse mode has the following initial data for the
involute angles of inclination (rather angles of incli-
nation of their root points radius vectors for the case
m= 2)

ϕA
b2
0 =

{
c for c > ϕAmin,
d for c≤ ϕAmin,

wherec = ϕA
f1
0 −2∆ϕA + tAwid, d = ϕA

f1
0 + tAwid and

ϕB
b2
0 =

{
q for c > ϕAmin,
r for c≤ ϕAmin,

whereq = ϕB
f1
0 +∆ϕB+ tBwid, r = ϕB

f1
0 −∆ϕB+ tBwid.

In the latter equations we take into account the fact
that for the case of the mesh multiplicity for the rever-
sal mode there exist several possibilities, two in our
example, of contact implementations along the line of
actionK′

AK′
B, see Figure 5.

Ensuring the initial data selection from above in the
objects of contact we thus automatically provide cor-
rect switching of modes of contact inside the objects
and correct tracking for involutes contact switching
in the process of wheels rotation. The built up mesh
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model provides a possibility to simulate motions of
any type in the gearbox with any combination for con-
tact between teeth. This model enables us able to con-
struct effectively the gearboxes virtual prototypes of
any complexity for the case of the spur involute gear.

5 Behavioral Model of Contact
Object

Let us return to the gearbox visual model presented
in Figure 7. It has been built with the help of ear-
lier proposed [5, 6] technologies for constructing the
physically–oriented models. For each physically im-
plemented contact of the model there exists one ob-
ject of visual model, see Figure 7. Meanwhile, from
the functional viewpoint there is no difference how
contacts of specific type, Nos. 1 and 2 for the for-
ward stroke and Nos. 1 and 2 for reversal, are redis-
tributed over an array of unified contact objects. Thus,
the same class code is able “to play a role” of contact
of any type within the spur involute gear model. In
virtue of the circumstances outlined above organizing
an array for all four contact objects in virtual model
is reasonable. There should also be an array of four
connectors reserved for transmitting data of wrenches
from contact objects to objects of bodies, the wheels
LeftWheel , RightWheel in Figure 7. In this case
corresponding wrench ports are to be really arrays of
ports [7] in objectsLeftWheel andRightWheel .

Figure 8: Base template for contact model

Note that according to the approach previously im-

plemented in [8] contact objects have a class being
a template which has four class parameters responsi-
ble for implementation of: (a) geometry of surfaces
at contact; (b) model of normal elastic contact forces;
(c) model of normal viscous forces; (d) model of tan-
gent (ususally friction) forces. Visual representation
of base template with empty sockets for the above four
parameters see in Figure 8. The final derived class is
shown in Figure 9 with mentioned sockets filled, ac-
tually redeclared, respectively by the following model
parameters: (a) involute cylinder – involute cylinder;
(b) the Johnson contact model for cylindrical bodies;
(c) non-linear normal viscous model; (d) simplified
Coulomb model of friction for tangent forces.

Figure 9: Final derived class for contact model of the
example

The anglesϕA, ϕB of the wheels relative rotation
are fundamental properties of the contact model under
consideration. The angleϕA is defined clearly in Fig-
ure 4. The angleϕB has a similar sense for the wheel
B. These angles remain always bounded throughout
simulation: ϕα ∈ [ϕαmin,ϕαmax] (α = A,B). Simul-
taneously for derivatives the equationsϕ̇α(t) ≡ ψ̇α(t)
are fulfilled almost everywhere fort ∈ [t0, t1] wheret0
is the starting instant of the simulation process,t1 is
the instant of the simulation finish. Here the values
ψα (α = A,B) are assumed angles of the gearwheels
rotation w. r. t. the gearbox housing. The variables
ψα (α = A,B) are defined by dynamical equations of
the model. In general the angleψα(t) may grow or
decrease infinitely. At the same time the anglesϕα(t)
always remain bounded. The property described above
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Figure 10: Dynamical transmission error

is implemented using the technique of event process-
ing.

Namely, in usual mode ifϕα(t) ∈ [ϕαmin,ϕαmax]
then we assume that the valueϕα(t) satisfies the dif-
ferential equation

dϕα

dt
=

dψα

dt
(α = A,B), (4)

where the derivative is supposed to be expressed de-
pending on state variables of the problem. When one
of the events:ϕα(t) < ϕαmin or ϕα(t) > ϕαmax occurs
then the initial condition of Cauchy problem is cor-
rected immediately in the corresponding differential
equation of the system (4) at the instantt = t∗ of the
event according to the formula

ϕα(t∗) =





ϕαmax for ϕα(t∗−) = ϕαmin and
ϕ̇α(t∗−) < 0,

ϕαmin for ϕα(t∗−) = ϕαmax and
ϕ̇α(t∗−) > 0.

The technique of event processing outlined above
provides us with the correct model for simulating

physical switching for teeth at contact for the gearbox
model simulation.

6 Numerical experiments

To verify an improved model of the gearbox numer-
ical experiments were performed similar to those of
the work [3]. Graphs for the dynamical transmission
error (DTE) and value of the normal elastic force at
contact were under verification. For DTE the current
model clarifies the time dependence tracking as it has
been done in [9, 10] instants for increasing/decreasing
of the contact multiplicity. One can observe splashes
of the value under observation, DTE here, as it was
observed also in [9, 10] at these moments, see graph
of DTE in Figure 10.

The DTE graph for the previous model from [3] is
represented here by the blue curve (variable DTE1):
the mesh multiplicity is equal to one, and then the teeth
contacts overlapping is absent. The red curve (variable
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Figure 11: Normal forces at contacts

DTE2) corresponds to the case of the mesh multiplic-
ity being equal to two. In this case there are time in-
tervals for two simultaneously existing contacts, see
subplot zoomed in in Figure 10. Interval of two con-
tacts begins with the left splash. Then DTE instantly
decreases because total contact stiffness increases with
two contacts. Right splashes correspond to the instant
of the old contact vanishing. Then only new contact
remains. Anyway, in the case under description there
exists an overlapping in time for contacts. And yet an-
other observation: as one can also see from the graph
an effect of overlapping causes a systematic shift of
the mesh cycle. Indeed, total duration of each individ-
ual contact mesh cycle remains the same as it was in
case of unit multiplicity. At the same time the period-
icity in meshing for the case of two contacts becomes
shorter by the duration of ovelapping interval.

When exploring a behavior of the normal elas-
tic force we can observe yet another interesting phe-
nomenon. Usually following an engineering tradition

one applies the so-called restricted formulation of dy-
namical problem with multiple contacts: for comput-
ing the normal elastic forces at each contact one sim-
ply divides the total elastic force by the number of con-
tacts being currently in action, see for instance [9, 10].
In our current approach, on the contrary, we com-
pute normal elastic force at each contact individually
from dynamics and with the use of the Johnson contact
model. So one may say that we have implemented so-
to-speak unrestricted problem for teeth contact of the
spur involute gear. The normal contact force behavior
along the mesh cycle is shown in Figure 11.

In the Figure 11 one exhibits the time dependence
for elastic forces being generated in two different con-
tact objects of the model. One assumes in the case
under analysis that the constant accelerating torque
acts upon the pinionA, while the gearB is under the
torque of viscous resistance which is proportional to
the value of the wheel angular velocity. The graph
presents us yet another interesting, though quite nat-
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ural, observation: an engineering approach which has
been described above is indirectly verified by the exact
dynamical model with an unrestricted contact model
– values of normal elastic forces for contacts concur-
rently existing turned out to be almost identical. This
observation takes place at least for the case of large
contact stiffness corresponding to the steel our gear-
wheels are supposed to be made of.

7 Conclusions

Comparing results obtained in [3] with results of cur-
rent work we can highlight the following properties:

1. The model is capable of simulating both the for-
ward stroke and reversal of the gearbox taking
into account a possibility of backlash between
teeth.

2. The model is capable of simulating the involute
mesh with multiple contacts.

3. The most effective, for the case of involute as
tooth profile, contact tracking algorithm is imple-
mented in the model. All this is due to differ-
ential or algebraic equations were excluded from
the model, and only direct computations were in
use.

4. To ensure an accuracy of the model of contact the
most suitable implementation turned out to be an
array of contact objects. Coordination of their be-
havior is provided by proper selection of initial
conditions for the object variables.
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Abstract
ncDataReader2 [1] is an open-source solution for the 
efficient  interpolating  access  to  external  data  sets. 
The library of C-functions can be used with different 
applications and works well with Modelica. Data sets 
can be easily accessed as continuous functions using 
different  interpolation  and  extrapolation  methods. 
The  application  range  covers  reading  generated  or 
measured data, the integration of simulation results 
from Modelica or other systems and the validation, 
parametrization  and  optimization  of  models  using 
external  data.  Data  sources  may  be  local  files  or 
remote servers. Using the netCDF file format [2], the 
DAP network protocol [3] and different optimization 
approaches the data access can be surprisingly fast, 
even  for  large  remote  files  with  many  variables 
containing millions of values.

1 Introduction
Getting external data into a simulation model is an 
important task for a lot of applications: buildings and 
energy  plants  are  exposed  to  weather  factors, 
complex models need to be validated with measured 
values  and  some  simulations  require  results  from 
other simulation runs.

The  access  conditions  can  vary  significantly.  A 
dense grid of data can be interpolated in small or in 
large  intervals,  and  so  can  a  wide  grid.  A  large 
dataset  may  be  evaluated  only  in  one  point  to 
compute  initial  values  or  interpolated  a  million 
times,  moving  backward,  forward  or  randomly  on 
the x-axis.  For some of these conditions and small 
amounts  of  data  the  Table-like  classes  of  the 
Modelica Standard Library are a good choice, but for 
different  application  scenarios  the  ncDataReader2 
offers some real advantages:

• very fast, even with large amounts of data

• load on demand (only needed data is  read and 
processed)

• low  memory  consumption  (adjustable,  suitable 
for embedded simulations)

• clever caching mechanisms, tunable for different 
access characteristics

• different interpolation and extrapolation methods

• offset and scaling of values for unit conversion 
and memory-efficient storage

• API1 (ANSI C) and data files work the same way 
in Modelica systems and other applications

• data  can  be  accessed  locally  or  with  a  highly 
efficient network protocol (DAP)

Although used mainly for 1D data sets  the library 
includes  basic  support  for  variables  depending  on 
two  dimensions  (scattered  3D-points)2.  This  paper 
will focus on the 1D functions.

1.1 History and Development
The  development  of  the  file  reader  library  started 
more  than  10  years  ago  as  a  tool  for  the  DAE 
simulation  system  SMILE.  Until  now  it  was 
constantly  improved  and  tested  with  SMILE  [5], 
ANSYS  CFX  [6],  the  Modelica  systems 
OpenModelica  and  Dymola  and  with  proprietary 
applications. 

ncDataReader2 is  open-source software,  everybody 
is invited to use and improve it under the terms of 
the GNU LGPL [7].

1 API - Application Programmers Interface: the data and 
functions available for the programmer

2 using the csa library from [4]

Accessing External Data on Local Media and Remote Servers 
Using a Highly Optimized File Reader Library

Dipl.-Ing.
Jörg Rädler

Dipl.-Ing. Manuel 
Ljubijankic

Prof. Dr.-Ing. Christoph 
Nytsch-Geusen

M.Sc.Dipl.-Ing.(Fh) 
Jörg Huber

Berlin University of the Arts / Universität der Künste Berlin (UdK)
Hardenbergstrasse 33, 10623 Berlin, Germany

jraedler@udk-berlin.de manuel@udk-berlin.de nytsch@udk-berlin.de jhuber@udk-berlin.de

DOI Proceedings of the 9th International Modelica Conference    323 
10.3384/ecp12076323 September 3-5, 2012, Munich, Germany    

 

 

 

 

 

 

 

 

 

 

   



 

 

1.2 netCDF – the file format
netCDF is a binary file format3 and a program library 
developed  for  large  amounts  of  multi-dimensional 
geoscientific  data.  The  big  advantage  over  other 
formats is the ability to access pieces of data without 
reading whole data sets or even whole files. netCDF 
files are self-describing and may contain structured 
data of different dimensions. This makes a very good 
format to archive numerical data and a perfect base 
for a file reader used in DAE  simulations.

1.3 Interpolation and Extrapolation
ncDataReader2  includes  the  interpolation  methods 
Akima  (most  used),  linear,  discrete  and  smoothed 
steps4 (see figure 1). Akima interpolation is a cubic 
method  that  gives  smooth  results  (C1-continuity) 
without  the  tendency  to  overshoot.  In  contrast  to 
classical  cubic  spline interpolation  the  points  have 
only  local  influence,  which  perfectly  complements 
the local access in netCDF. To get an interpolated 
value only some of the neighbouring points have to 
be  read  and  processed  after  the  search  for  the 
matching interval.

Extrapolation methods are implemented as periodic 
or natural (depending on the interpolation method).

3 Recent versions of the netCDF format are based on the 
HDF5 file format which is now used in MATLAB and 
many other applications.

4 Adjustable continuous approximation of discrete 
characteristics with C1-continuity, using linear parts 
and sin()-functions. Strictly speaking this is no real 
interpolation since the points are often not hit.

1.4 Tuning and Optimization
Variables may be fully loaded at initialization time, 
loaded in chunks of a specific size or as single values 
on demand. Three different caches may be enabled 
and changed in size:

• a  lookup  cache  stores  results  of  the  interval 
search,

• a parameter  cache  holds  the  parameters  of  the 
linear or cubic function of an interval  (both for 
successive requests of nearby values) and

• a value cache contains the last computed values 
(for successive requests of the same values).

The effect  of  these optimizations  strongly depends 
on the access characteristics but may give a speedup 
factor of 100 and more in some cases.

The methods for interpolation and extrapolation as 
well as all parameters regarding loading, scaling and 
caches  are  preset  to  reasonable  default  values.  All 
settings  may  be  adjusted  using  attributes  in  the 
netCDF file or with the C API (full  API only, see 
below).

Performance Example

The effect of clever using the optimization methods 
can  be  demonstrated  with  the  example  BigFile 
contained in the library. A data file with a size of 
840 MB contains 10 variables each with 10 million 
random  values.  A  Modelica  class  integrates  the 
interpolated values of two of these variables (Akima 
method) over a sub-range of the abscissa. The result 
of the 500000 time steps is written to the result file.

With  OpenModelica  using  default  settings  on  a 
common  PC5 the  program  finishes  in  about  5 
seconds!  This  includes  the  complete  run  with 
initialization,  data  reading,  more  than  one  million 
interpolations, numerical integration and writing of 
the results. Some other approaches would need much 
longer just to load the data file.

This performance is  achieved by a combination of 
the lookup and parameter caches and by loading the 
data in chunks on demand.

5 OpenModelica 1.8.1, Ubuntu Linux,
Intel Core2 Duo E7200@2.53GHz, 4GB RAM

Fig 1: Interpolation methods
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2 Modelica API
ncDataReader2 offers a full API and a so called easy 
API. The latter limits the configuration options and 
requires compliance to some restrictions, but it can 
be used in Modelica without writing C code. The full 
API is slightly faster and offers access to all options, 
but  uses  data  types  not  available  in  Modelica. 
Therefore it requires adapted external functions and 
a bit more programming.

Both  methods  require  the  prior  installation  of  the 
libraries  ncDataReader2  and  netCDF  (which  may 
depend on  other  libraries).  The  names  of  the  files 
actually  needed  depend  on  the  operating  system, 
simulation software and compiler6. 

Most Linux distributions already contain the required 
packages  for  netCDF.  For  Windows  precompiled 
files (.dll, .lib, .h) are provided by the developers.

The structure of the different APIs  and libraries is 
shown in figure 2.

6 The search for files by the compiler on Windows 
systems may be confusing. Copy all files to the current 
working directory if in doubt.

2.1 Easy API
The  Modelica  package  NcDataReader2 contains 
definitions of all functions of the easy API. A very 
basic example demonstrates the  usage:

Two functions of this package are used here: 

• ncEasyGetAttributeDouble reads  a 
scalar attribute to initialize a. The first and third 
arguments  are  the  names  of  the  file  and  the 
attribute. The second argument may be a variable 
name or  empty  (to  use a  global  file  attribute). 
Similar  functions  exist  for  attributes  of  integer 
and string types.

• ncEasyGet1D returns the interpolated value of 
the  variable  v1 at  the  point  time.  A  similar 
function for 3D-points exists.

model NcEasyTest
 import nc = NcDataReader2.Functions;
 parameter String fn = "etest.nc";
 Real t;
 Real a = nc.ncEasyGetAttributeDouble(
    fn, "", "start_value");
 equation
 t = nc.ncEasyGet1D(fn, "v1", time);
 der(a) = t;
end NcEasyTest;

Fig 2: Different ways of using ncDataReader2 with Modelica and other applications

Modelica ModelModelica Model ANSYS
CFX

ANSYS
CFX

ncDataReader2 library 
interpolation, extrapolation, caching, data handling
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At the first call to ncEasyGet1D the file is opened, 
the  abscissa  and  dimensions  of  the  variable  are 
determined,  optional  attributes  are  evaluated  and 
internal  data  structures  are  created  and  stored  for 
later use. Subsequent calls with the same file name 
and variable name reuse these structures.  Different 
variables  depending  on  different  abscissas  in 
different files can be used at the same time.

2.2 Full API
The full API can only be used in C, not in Modelica. 
To utilize this API wrapper functions are required to 
hide  the  complexity  from  Modelica.  The  function 
definitions are split up in two parts:

a) A C-file which defines wrapper functions with 
simple interfaces (arguments and return values) 
to be used in Modelica. Inside these functions the 
full API may be used. A common case is to have 
one  function  with  initialization  code  and  one 
small  function  for  each  variable  to  return  the 
interpolated  values.  This  can  usually  be  done 
within a couple of lines. All settings and options 
of  the library may be changed in this file.

b) A Modelica file containing mappings of the C-
functions  to  Modelica  functions  (usually  1:1). 
This includes the number and types of arguments 
and return values.

Although these steps  are  quite simple,  an example 
would be too big to show here. Please have a look at 
the example in NcDataReader2.Examples.FullAPI.

3 Preparation of Files
Converting data into the netCDF format may be the 
hardest  task  for  users  without  prior  knowledge  of 
netCDF. There exists  no general graphical tool for 
this  job,  but  besides  command  line  tools  for  the 
conversion  of  an  ASCII-based  format  there  are 
libraries  for  all  major  programming  languages  (C, 
C++, Java, Python, Perl, Octave, MATLAB, …) and 
platforms. 

A new project [8] from Microsoft Research provides 
a .NET-API, a graphical data viewer, command line 
tools  and  a  plug-in  for  MS  EXCEL  to  read  and 
manipulate netCDF files on Windows systems.

The favourite method of the authors is scripting in 
Python.  A  lot  of  file  formats  can  be  read  with 

Python, and consistency checks and unit conversions 
may  be  included  in  a  script.  The  conversion  of  a 
simple CSV file can be done within 7 lines of Python 
code. This method works on all platforms.

When using  a  DAP server  the  conversion  may be 
omitted entirely for some file formats.

4 Data Server with DAP
DAP  is  a  protocol  for  the  transport  of 
multidimensional  gridded data  over  networks.  It  is 
based  on  HTTP,  but  allows  the  request  and  the 
transport  of  specific  parts  of  a  file  in  different 
formats. DAP servers are able to serve requests like 
“send  me  the  values  1500...2000  of  the  variable  
'temperature' in the file 'data.mat' converted to CSV  
format”.  Clients  can browse and request  data with 
ease and efficiency. Data formats are converted on 
demand by the software (supported formats depend 
on the actual implementation).

Since  newer  versions  of  the  netCDF  library 
implement  the  client  side  of  the  DAP protocol,  a 
DAP server can be used with ncDataReader2 like a 
local  file,  just  by  replacing  the  file  name with an 
URI. 

For Modelica users this combination offers a lot of 
options.  External  data  used  by  simulations  can  be 
hosted  on  different  servers  worldwide.  During 
simulation,  only  the  actually  needed  parts  are 
transferred to the simulation system. This ensures the 
up-to-dateness  and  the  consistency  of  data  across 
simulations  and allows the cooperation of different 
institutions without sending complete files.

4.1 DAP server at the UdK
A new server  at  the  Berlin  University  of  the Arts 
(UdK)  was  installed  for  this  purpose.  It  provides 
different kinds of data to a research group:

• Weather files for different locations worldwide, 
generated  with  METEONORM  [9] and 
converted to netCDF (see 5.1).

• Data  from  the  monitoring  of  a  photovoltaic 
system located at  the UdK main  building.  The 
data is  read from the monitoring hardware and 
stored in netCDF files  in regular intervals  (see 
5.3).
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• Results  from  different  simulations  of  the 
research group.

The  server  runs  on  common  PC  hardware  using 
Linux,  Apache and the Pydap [10] software. 

5 Current Applications in Research

5.1 Reading Weather Files
Data  sets  with  weather  parameters  were  the  first 
application  for  the  data  reader  and  still  are  most 
used.  Thermal  building simulation  and simulations 
of  solar  systems require  reliable  information about 
the  environmental  conditions  as  functions  of  time. 
These conditions include:

• temperature, pressure and moisture of the air,

• wind speed and direction,

• direct and diffuse radiation, cloud cover.

For  the  evaluation  of  the  radiation  on  different 
surfaces the position of the sun is needed, which can 
be calculated from the latitude, longitude and time 
zone of the location.

All this information can be easily stored in a netCDF 
file. Over the years some conventions regarding the 
file structure, the units  and the names of variables 
and attributes have evolved and proved to be useful.

All  this  data is  read and processed by a Modelica 
class (DataWeatherNetCDF). With the file name or 
URI  as  a  parameter  of  this  class  the  complete 
environmental  conditions of a location may be set 
and  changed.  The  contained  quantities  and  some 
derived  quantities  are  available  as  continuous 
functions of time. Common problems like negative 
radiation values caused by the cubic interpolation are 
handled. For different oriented surfaces the radiation 
values  will  be  converted  by  a  helper  class 
(RadiationTransformer).  All  these  classes  are  now 
part  of  the  new Modelica  library  BuildingSystems 
[11] which is developed by the authors.

Generating Files

The files may be created from different data sources. 
The authors mainly used weather information from 
the  TRY/Testreferenzjahr  [12] and  data  sets 
generated with the application METEONORM. The 
latter  let  the  user  define  own  ASCII-based  export 
formats, which can be easily converted to netCDF by 

a Python script. Our script now includes consistency 
checks,  unit  conversions,  preparation  for  periodic 
extrapolation and much more.

With  this  method  a  library  of  weather  files  for 
different locations is  built  and expanded. The files 
reside on the DAP server (see 4.1) and are accessible 
by the whole research group. Data for new locations 
or  new  conditions  can  be  generated  and  made 
available within minutes.

The time grid of most data files is equally spaced in 
hourly  steps  covering  one  year,  but  the  software 
stack  (DAP,  netCDF,  ncDataReader2,  Modelica 
classes) works perfectly with different and variable 
steps and in other scales.

5.2 Loose Coupling of ANSYS CFX with 
Dymola

A  research  project  at  the  UdK  covers  the  co-
simulation of a solar thermal plant. For pre-studies of 
a  use  case  the  ncDataReader2  is  used  for  loose 
coupling.  It  reads  the  results  of  a  Modelica 
simulation into the boundary conditions of a CFD7 
simulation with ANSYS CFX.

The main components of the plant are:

• an evacuated tube collector,

• a hot water storage and 

• an external plate heat exchanger, transferring the 
produced thermal energy from the solar loop to 
the storage loop. 

By using a two-point-controller the solar pump and 
the  storage  pump  are  simultaneously  switched  on. 
The  system  is  modelled  with  Modelica,  most 
components  are  based  on  the  Modelica  library 
BuildingSystems for  thermo-hydraulic  network 
simulation.  The  weather  data  is  provided  by  the 
technology described in the previous section. 

The storage model (marked in Fig. 3) can be either 
implemented in Modelica (1D) or in CFX (3D). The 
co-simulation of Modelica and CFX is described in 
[13].  It  gives  more  accurate  results  regarding  the 
details of the storage, but it runs much slower than 
the pure Modelica simulation.

Additionally  stand-alone  CFX  simulations  of  the 
storage component were needed in the project. One 

7 Computational Fluid Dynamics
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of the questions to answer was the best resolution of 
the grid for the 3D model under typical conditions in 
the solar system. A high resolution will slow down 
the  simulations,  a  wide  grid  will  not  reach  the 
desired  accuracy.  A complete  co-simulation  model 
proved to be too slow to study this point in detail.

For  a  transient  stand-alone  CFX simulation  of  the 
thermal  storage  some  boundary  conditions  are 
necessary  to  describe  the  installation  situation.  It 
would  be  possible  to  generate  the  time-dependant 
conditions with C-functions emulating the behaviour 
of the whole system, but the effort for this would be 
enormous. At this point it's much more comfortable 
to use the results from the system simulation with the 
simple storage model implemented in pure Modelica.

Dymola  creates  a  result  files  in  MATLAB format 
during  the  simulation.  The  structure  of  this  file  is 
quite complex, but can be read and converted with 
different  tools.  One  is  the  Python  package  DyMat 
[14] which  directly  exports  variables  to  different 
formats including netCDF. 

The CFD model needs values for three quantities:

• inlet mass flow,

• inlet temperature,

• outlet pressure.

The time series for these variables can now be saved 
in a netCDF file. 

ANSYS-CFX  provides  an  API  to  implement 
dynamic conditions as Fortran functions. Since it is 
possible  (but  tricky)  to  call  C-functions  from this 
Fortran-API, ncDataReader2 can be used from this 
API with a small wrapper file to provide the values 
as interpolated functions of time.

The complete workflow is now:

a) Run  simulations  in  Modelica  using  the  pure 
Modelica storage model.

b) Convert the required results from the mat-file to 
netCDF format using DyMat.

c) Run  CFX  simulation  of  the  complex  storage 
model,  reading  boundary  conditions  from  the 
netCDF file using ncDataReader2 and a Fortran 
wrapper.

Fig 3: Modelica view of the co-simulation model of the solar thermal plant
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With  this  technology  a  stand-alone  ANSYS-CFX 
simulation for the thermal storage can be started with 
dynamic  adapted  boundary  conditions  after  each 
time step. Thus the CFX model is embedded in the 
same environment as the Modelica storage model in 
the  system  simulation  for  the  solar  thermal  plant 
before.

This made it possible to research and tune the CFX 
model  with  respect  to  grid  resolution  and  other 
parameters  under  typical  conditions.  Similar 
conditions appear in the real co-simulation which is 
the main topic of the research project [15].

5.3 Parametrization of the Model of a 
Photovoltaic Plant

The ncDataReader2 was used for the integration of 
measured data from a real photovoltaic (PV) system 
into a simulation model of the system. The complete 
field  has  an  electrical  power  output  (peak)  of 
15.5 kW and is located on the roof of the UdK Berlin 
main building. The measured values such as air and 
module  temperature,  solar  irradiation,  electrical 
output are used as climate boundary conditions of the 
Modelica  system model  and  as  comparison  values 
for the model validation (see Fig. 5 and 6).

The Modelica model was configured by the use of 
the BuildingSystems library. One of the three strings 
of  the  photovoltaic  field  was  modelled  by  the 
assumption of 22 serial connected PV modules. Each 
module (Type TSM-PC05) has a peak performance 
of about 230 W, so the total peak performance of the 

Fig 4: Storage model: a) Modelica connection component  for the 3D model, b) grid of the CFX model, 
c) example of a temperature field using boundary conditions from the Modelica simulation

Inlet:
mass-flow
temperature

Outlet:
pressure

Fig 5: Photovoltaic system on the roof of the UdK  
main building with sensors for solar irradiation,  

wind speed, temperatures of air and modules

Fig 6: Model of the photovoltaic          
system, modelled with the          
BuildingSystems library         
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string is about 5.060 W. The simplified model of a 
PV module of the  BuildingSystems library was used, 
which works with an electrical one-diode model and 
an empirical thermal approach for the calculation of 
the  cell  temperature,  depending  on  the  air 
temperature of the cell environment [16].

Figure  7  shows  the  measured  and  the  simulated 
values  (temperatures,  voltage,  current  and  electric 
power) of the string of 22 PV modules during three 
summer days. All quantities have similar values for 
the real PV plant and for its simulation model. The 
cell  temperature runs up two 20°C higher than the 
environment air temperature. Also the string voltage 
values are similar during the sunshine, in which the 
simulated  values  are  higher  than  the  measured 
values, the same goes for the current.  After  sunset 
the values  of the simulation model are greater than 
zero,  which  is  only  a  result  of  the  modelling 
approach. 

During  the  first  two  days  the  generated  electrical 
power reaches the peak power for a short period. The 
collapse of the calculated electrical power during the 
morning  hours  is  caused  by  a  shading  of  the 
radiation  sensor.  The  simulated  performance  drops 

because  of  the  measured  radiation,  but  the  real 
measured performance is not affected. The position 
of the sensor will be moved to a better place in the 
future.

It is typical for a one-diode model that the voltage 
and current  values  are  higher than the real  values, 
because a part of the internal losses of the PV cells is 
neglected. Therefore a constant correction factor is 
used in this model for the calculation of the power 
from the voltage and current. This factor is a model 
parameter  that  depends  on  the  real  qualities  of  a 
module (materials and construction). Unfortunately it 
can not be derived easily from the properties that are 
usually known.

With simulations using measured values of the real 
system this factor can be approximated. For the three 
days  of  the  shown  configuration  a  value  of  0.82 
proved to be ideal to bring the calculated electrical 
power close to the real (measured) values.

The plant  is  monitored permanently and all  values 
are archived on a data server (see 4.1). This makes it 
possible to adjust the correction factor of the model 
with  simulations  using  recent  measurements.  This 
task can even be done fully automated.

Fig 7: Comparison of measured and simulated values for three summer days:

a) cell temperature: simulated (blue), measured (red); measured air temperature (green)
b) string voltage: simulated (blue), measured (red)
c) string current: simulated (blue), measured (red)
d) string power: simulated (blue), measured (red)
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6 Conclusions and Outlook
The library  was used for  more than 10 years  in  a 
wide  range  of  applications.  It  can  be  used  with 
Modelica  and  other  systems  to  access  data  in 
different ways. In combination with a DAP server it 
offers the remote access to different data sources.

The most used application today is reading weather 
data in Modelica simulations of buildings and solar 
systems. But it  is  easy to use the library for other 
purposes and with different software packages.

Although  the  library  is  in  a  stable  state  there  are 
some possible improvements for the future:

• better integration with Modelica runtime systems 
(e.g. error handling and reporting),

• supplying  information  on  derivatives  of 
functions for improved integration performance,

• implementing  optimizations  for  special  cases 
like equally spaced grids,

• providing  better  tools  for  the  conversion  and 
preparation of data files,

• possibly  including  the  library  and  its 
dependencies  in  Modelica  systems  (Dymola, 
OpenModelica, jModelica) to avoid the complex 
installation process on the different platforms by 
the user,

• finding a better name for the project. :-)
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Abstract 

Fuel tanks in fighter aircraft have an irregular shape 
which is given by a detailed CAD model. To simu-
late a fuel system with sufficient amount of detail to 
solve the design issues, necessary geometrical in-
formation need to be given in a compact and compu-
tationally fast form. A function approximation using 
radial basis functions is suggested and compared 
with some other methods. The complete process 
from production scale CAD model to system simula-
tion model is considered.  
Keywords: aircraft design; fuel systems simulation; 
geometrical representation; surrogate model; radial 
basis functions 

1 Introduction 

A  fighter  aircraft  fuel  system  is  a  system  of  many  
parts.  Fuel  fills  up large parts  of  the aircraft  not  oc-
cupied with other equipment and the many different 
systems of the aircraft often pass through the tanks. 
To keep control of the center of gravity the tanks are 
divided into smaller parts and are interconnected by 
pipes. Fuel is pumped between the tanks to a collec-
tor tank which has a negative g-load compartment to 
enable the aircraft to fly inverted. The tanks are also 
pressurized to avoid evaporation of the fuel at high 
altitudes.  

When designing aircraft fuel systems several is-
sues demand detailed simulation models for analysis. 
The most important are 

  Is it possible to provide the engine with fuel 
with enough pressure regardless of what pi-
lot maneuvers and equipment faults that oc-
cur? 

 Can  the  amount  of  accessible  fuel  be  cor-
rectly determined at all times? 

 Can the structural strength of the hull and all 
installation parts be estimated with good 
precision?   

When  these  problems  are  solved,  questions  re-
lated to optimization of weight, fuel consumption, 
and heat storing capabilities as well as other issues 
need to be considered. 

The fuel system simulation models needed to de-
scribe  the  system  tend  to  be  large  (~400  state  vari-
ables, ~16000 time-varying variables) due to the 
high number of parts involved. The combination of 
fuel (incompressible fluid) and pressurization air 
(compressible fluid) and the necessity to handle both 
fast time constants (as when a tank get full) and slow 
time constants (heat storage) make the models stiff 
and a bit awkward to work with. Still, the informa-
tion gained from using the simulation models more 
than pays off the work spent to keep the models ex-
ecutable and is seen as a prerequisite for successful 
fuel  system  design  work  at  Saab  Aeronautics.  A  
theoretical background on fuel system design can be 
found in  [1] and how Dymola and other simulation 
tools are used in the system design process is de-
scribed in  [2] and  [3]. 
In the past few years the idea of bringing geometrical 
information from CAD models into simulation mod-
els has gone from a distant dream to something actu-
ally achievable. To investigate if it was possible to 
get better accuracy of the fuel tank representation in 
the simulation models used, a study  [4] was made to 
show the feasibility of extracting geometrical infor-
mation from CAD models, do a function approxima-
tion of the data and then use the function in a tank 
model in Dymola. The work is not yet finalized to 
the level of inclusion in production processes, but the 
major steps and an evaluation of results are done. 
The intention is that the accuracy of the simulation 
models shall meet the measurement precision de-
mands on the aircraft, and to improve the efficiency 
of the loads computations while simulation times are 
kept at the same level as before.  
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This  can  be  done  using  two  types  of  model  im-
provements. First, the geometrical representation of 
the  fuel  tanks  is  changed  from  a  simple  two-
dimensional square box to a full three dimensional 
representation of the complex geometry. Next, the 
aircraft model is changed from a point model where 
all accelerations act on the same point to a rigid body 
where accelerations in each tank depend on both the 
accelerations in the aircraft’s center of gravity and 
the torque acting around it. 

 
In this paper the major steps of the procedure will 

be discussed as well as later results showing that the 
process  [4] can be scaled to full production size CA-
TIA models as well as full size fuel simulation mod-
els. 

2 Assumptions 

A  typical  fighter  plane  fuel  tank  has  a  complicated  
shape;  an  example  is  shown  in  Figure  1.  It  is  made  
up of many non-convex surfaces and even internal 
parts where bulky equipment is immersed in fuel. 
Due to the high order of complexity, describing the 
details of the fuel tank geometry in a simulation 
model is not feasible at the moment. 

 
Figure 1 Typical body fuel tank shape, which is one of 
several different basic shapes. Note that equipment is 
immersed in fuel and fills up space within the tank. 

It is assumed that the case is semi-static, such that 
the fuel surface is perpendicular to the acceleration 
vector of the tank at each time instant and that there 
is no fuel sloshing. Although a bit contradictory, it is 
also assumed that the fuel undergoes enough slosh-
ing so that all fuel surfaces of the different compart-
ments  within  the  same  tank  are  at  exactly  the  same  
height, as if they were connected beneath the surface 
(which often is the case). 

The information needed to perform a fuel system 
simulation is, given the orientation of the accelera-
tion vector, the center of gravity of the fuel in a par-
ticular  tank  and  the  position  of  a  point  on  the  fuel  
surface. Both these vectors depend on the volumetric 
amount of fuel in the tank which is connected to the 
fuel mass state variable through the temperature de-
pendent density. This means that it is enough to have 
a function that transforms the four variables 
fuelVolume and the 3D acceleration vector to the six 
variables given by the two 3D vectors representing 
the point on the fuel’s surface and the fuel’s center of 
gravity. The means to represent this function could 
be a  table,  but  the assumption has been made that  a  
function approximation would be both faster and less 
memory consuming.  

3 Geometric data transformation 

The first prerequisite for a fuel system simulation is 
the extraction of the geometric data from CATIA.  

3.1 Extraction of geometric information 

Each fuel tank in the Jas 39 Gripen has its own CAD 
model, and an analysis extracting the center of grav-
ity (CG) and fuel surface data needs to be performed 
on each of them. The analysis itself consists of a 
macro written in VBScript. An early version of it can 
be found in  [4]. In a nutshell, the steps of the analy-
sis are as follows: 

 Transforming the original fuel tank into a 
“dumb” solid, without construction history 
or identifiable individual features. This is 
done in order to reduce the file size, which 
affects the analysis time considerably. 

 Creating the 2 bodies for the analysis: a “ref-
erence” body for comparison purposes and a 
“fuel” body on which the actual analysis will 
be performed. The dimensions of the “refer-
ence” body are recorded and saved. 

 Creating the required elements for the analy-
sis: the acceleration vector line, the section-
ing plane perpendicular to the line which 
will split the “fuel” body in steps of pre-set 
length and the measurements on the “fuel” 
body which will update every time the body 
is sectioned. 

 Performing the actual analysis. For each ac-
celeration vector orientation in the aircraft’s 
maneuverable range, the fuel body is split in 
steps of around 10 liters. For each split the 
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values of the resulting fuel volume, center of 
gravity and of the position of a point on the 
fuel’s surface are saved to a text file. 

3.2 Function approximation of data 

The CATIA step generates around 20,000 to 40,000 
distinct  data  entries  for  each  fuel  tank,  with  10  pa-
rameters each. Although numerous, these are not 
enough since the simulation needs the CG and sur-
face point coordinates for other acceleration vectors 
and volumes, as well. Therefore, a data interpolation 
step is required. To do the interpolation using Dy-
mola interpolation tables would be feasible with a 
small amount of data in a low-dimensional case, but 
the high dimension and the amount of data calls for 
other methods. In this case the data interpolation is 
done using a parameterized function approximation 
called radial basis functions (RBF) networks. They 
are thought to be one of the best ways of approxima-
tion multi-variate scattered data, due to their excel-
lent approximation properties  [5], although in some 
cases vulnerable to the Runge phenomenon  [8]. In 
short, they can be visualized as an "input - process - 
output" system. The input is the data generated from 
CATIA - the X, Y, Z orientations of the acceleration 
vector, the fuel volume, the X, Y, Z coordinates of the 
fuel surface and the corresponding ones of the tank's 
center of gravity. The output is a function, s, which 
can give a good approximation of the data for inputs 
different than the ones where the value of the exact 
function is known. The approximating function is 
defined using fewer points than the ones available in 
the input data (points which will be called centers). 
This means that a data reduction with maintained 
generalization ability is done. For visualization, see 
Figure 2. 

 
Figure 2 The Gaussian functions at the selected centers 
(dash-dotted) and the resulting approximating func-
tion (solid) based on the input data (points). In this 

plot, the Runge phenomenon is visible at the right edge 
of the interval (the solid line drops), but it might also 
be a part of the explanation for the drop of the curve 
around x=5. 
The middle layer, the so-called "process", is defined 
using the RBF functions themselves. The approxi-
mating function xxkfWWxs i

ni
i

...2
1  is 

given by a weighted sum of a uni-variate function f 
with the Euclidian distance between the xi  and x as 
argument, where x are  the  points  at  which  the  ap-
proximation function is calculated, and xi are  the  
centers with respect to which the function is defined. 
The weighting factor Wi is associated to each center 
xi.  It  is  determined  such  that  the  error  between  the  
approximating function and the input data is mini-
mized. The scaling factor k  influences the support 
area of the function f.  
The centers are selected using the orthogonal for-
ward regression algorithm, presented in  [6] and  [7]. 
They could be selected at random, but the algorithm 
uses the modified Gram-Schmidt orthogonalization 
procedure to select the centers which minimize the 
error in the least-squares sense. The benefit of using 
the modified Gram-Schmidt method is that the re-
sulting approximation is sparse in parameters. It 
starts from a large set of potential centers - basically, 
all the data resulting from the CATIA analysis, filter-
ing  them  until  the  error  sinks  below  a  specified  
threshold. To be able to handle the very large data 
sets an approach where the data sets are divided into 
smaller pieces and the results recomputed several 
times is used, see  [4]. When all data is processed, the 
algorithm returns the selected centers and their cor-
responding  weights  and  writes  them  to  a  file  to  be  
used in the dynamic simulation in Dymola. 

All RBF networks work according to the same 
principles. The differing factor is the function f, 
which makes up the linear combination defining the 
approximating function s. The ideal for the fuel tank 
problem, which is local and almost smooth in its na-
ture, is to have a function with local support, so that 
new input data would not influence points situated 
far  from  it.  Several  possible  functions  have  been  
tested to determine which ones are good choices with 
respect  to  sparseness  of  the  parameters  in  the  ap-
proximation and computational speed in the Dymola 
implementation. The typical number of parameters 
of the approximation is in the range 300 to 3000, a 
data reduction of a factor 100 to 1000. 
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A standard choice of a Gaussian function, see Figure 
2, seems to fit the fuel tank problem best. There were 
concerns regarding computational effectiveness in 
Dymola as the exponential function is not considered 
cheap so other choices were considered.  
Using xxr i , the investigated options were 

 the inverse quadratic function, 

21
1
kr

rf  

 the inverse multiquadric function, 

21

1

kr
rf  

 the rational quadratic, 2

2

1
1

r
rrf  

  Wendland's functions, 

otherwise
orrrrrf

,0
)5.0(1,151 5

 

They all give less sparse results and need both more 
memory to store parameters and more multiplica-
tions to compute s(x). Also B-splines outside a RBF 
framework have been considered, but do not fit ide-
ally to high-dimensional non-latticed data.  

3.3 Tank model implementation 

Implementing the radial basis functions in the exist-
ing tank model of the commercial library Aircraft-
FluidSystems (developed mainly by Modelon AB 
and partly by Saab Aeronautics) was a simple task. 
The only modification needed was the replacement 
of the existing distance computation between the 
position of the fuel surface and the tank ports of the 
connected pipes. This is now done using a scalar 
product and the approximating function s(x). 

The change in the acceleration vector definition 
brought by viewing the aircraft as a rigid body in-
stead of a point mass was also straightforward. 

4 Results 

4.1 Influence on accuracy 

A comparison between two fuel system simulations 
performed using the old two-dimensional tank repre-
sentation and two simulations incorporating the new 
three-dimensional representation is presented in [4]. 
Both  the  2D  and  3D  simulations  are  performed  for  
two levels of accuracy of the CATIA analysis. The 
results show that there is only a minor difference in 
the system simulation precision between the two 

CATIA  target  sampling  accuracies  of  18  and  12  li-
ters.  Compared  to  the  CAD  measurements  of  three  
different points for several acceleration vectors, the 
simulations resulted in an error of 3.3 kg for the 18 l 
precision (with a maximum error of 10 kg) and a 3.1 
kg error for the 12 l precision (with a maximum error 
of 6 kg). For the two-dimensional tank representation 
the same average difference is 42 kg (with a maxi-
mum of 89 kg). It then follows that a three-
dimensional representation of a moderate size makes 
a large improvement in the simulation accuracy of 
the fuel measurements. Comparison with a real fuel 
tank is not achievable since the tanks are not yet 
built, but it has been shown earlier that ‘fuel meas-
urements’ in CAD models correspond well with fuel 
sensor calibration measurements in built tanks. 
This accuracy improvement affects all parts of the 
fuel system simulation model, as the fuel flow 
through pumps and pipes depends on the fuel level in 
each tank. 

4.2 Influence on simulation times 

A comparison between the different possible kernel 
functions revealed that the initial choice of the Gaus-
sian was the correct one. The evaluated functions, 
along with their training, computation times in 
MATLAB  and  simulation  times  in  Dymola  for  a  
simple test model are given in Table 1. All the simu-
lations are performed on the same tank, with the 
same parameters (the scaling factor k=0.8 where nec-
essary and the error threshold set at 5 mm). The 
MATLAB computation time take only computation 
of the function s(x) into account, while the Dymola 
simulation time also involves computations of all 
other equations necessary for a tank, two pipes and 
two sources in a test case.  
Table 1 Comparison of training and simulation times 
for different kernel functions 

Function Training 
time, s 

MATLAB 
computation 

time, s 

Dymola 
simulation 

time, s 
Gaussian 36.63 0.84 157 
Inverse 

quadratic 
58.85 1.12 190 

Inverse mul-
tiquadric 

139.26 4.15 161 

Rational 
quadratic 

63.57 1.11 155 

Wendland, r 
< 1.0 mm 

218.13 2.93 158 

Wendland, r 
< 0.5 mm 

318.08 2.95 176 
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As for the variation of the Gaussian function with 
its defining parameters, simulations showed that 
there are optimum values of the scaling factor and of 
the error threshold. Any values different from these 
optimal ones lead to extended simulation times, 
without a significant improvement in accuracy. For 
the simulations with an error value of 0.01 mm, the 
MATLAB training time was between 3000 and 
4000s, while for errors of 1 mm it dropped to several 
hundreds of seconds. The Dymola simulation results 
are summarized in Table 2. If the Runge phenome-
non influences the function approximation, the simu-
lation times easily grow a factor 10 or more, so care 
must be taken to avoid it. 
Table 2 Dymola simulation times for different Gaus-
sian settings 
Settings Dymola simulation time, s 
k = 0.05, err= 0.01 166 
k=0.4, err = 0.01 182 
k = 0.8, err = 0.01 177 

 
When a complete fuel system simulation model with 
four three-dimensional tank representations is com-
pared to the same model having two-dimensional 
tank  representations  the  times  in  Table  3  are  
achieved. The translation/compilation time depends 

strongly on the number of defining parameters re-
quired by the function approximation, which is a rea-
son to use sparse representations. The simulation 
time only grows by a factor 3, which is considered to 
be successful, given the higher accuracy of the re-
sults. The comparison case is representative of a 
typical simulation analysis.  
Table 3 Comparison of simulation times 
 Translation/compilation 

time (min) 
Simulation 
time (min) 

2D tank 1.5 10 
3D tank 10.5 30 

 

4.3 Influence on system insight 

An animation of the tank models was implemented 
in order to identify what can be achieved, see Figure 
4. This addition proved to be worthwhile from the 
very first simulations. The insight into the system 
behavior it provides shortens the time to learn the 
system. It is also a fast means of finding errors. For 
instance, one of the easiest errors to perform and 
most difficult to find is orienting the acceleration 
vector the wrong way. This can easily occur since 

Figure 3 Visualization/animation of the fuel system using graphics from CATIA and simulation  re-
sults from the fuel system simulation model. The green and black surfaces show the fuel level in the 
tanks. The yellow arrows show the acceleration vector for each tank and the colored balls show inlets 
and outlets of pipes for different purposes. 
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different departments use different coordinate sys-
tems and boundary conditions for simulations have 
many different sources. But in the animation this 
error is easily detected. 

5 Conclusions 

A full geometrical representation of fuel tanks at a 
given accuracy tailor made to accommodate fuel sys-
tem simulation is no more a distant dream but a fully 
achievable task. The work has shown that 

 it is possible to achieve an appropriate level 
of accuracy for all intended design studies,  

 it is important to get a sparse representation 
(to keep the translation/compilation time 
down),  

 several different choices of radial basis func-
tions  are  usable  and  that  the  Gaussian  is  
comparable to the others with respect to 
simulation time, but give more sparse repre-
sentations,  

 care is needed to avoid the Runge phenome-
non  [8] (which may slow down simulations 
considerably when the fuel level is close to a 
pipe end), and  

 using RBF as function approximation keeps 
simulation times in the same level of magni-
tude as the simple and much less accurate 
2D square box approximation previously 
used. 
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Abstract

This paper introduces a scheme for testing artificial
intelligence algorithms of autonomous systems using
Modelica and the DLR Visualization Library. The
simulation concept follows the ’Software-in-the-loop’
principle, whereas no adaptations are made to the
tested algorithms. The environment is replaced by an
artificial world and the rest of the autonomous system
is modeled in Modelica. The scheme is introduced and
explained by using the example of the ROboMObil,
which is a robotic electric vehicle developed by the
DLR’s Robotics and Mechatronics Center.

Keywords: Simulation of Artificial Intelligence
Agents; Autonomous Systems; Software-in-the-Loop;
DLR Visualization Library; ROboMObil

1 Introduction

The variety of autonomous systems, or also known
as artificial intelligence agents (AIA), can range from
small toys like Lego mindstorms to full-sized robotic
cars like the ROboMObil (ROMO)[1]. In all cases
an agent consists of three essential parts: sensors, the
core artificial intelligence for the agent’s functionality,
and actuators [2]. The agent perceives its current en-
vironment through its sensors, interprets it and plans
the next actions to reach its goal before acting upon
the environment through its actuators. For a sufficient
simulation of an autonomous system the bidirectional
connection of an agent to its environment must be con-
sidered.
In the past decade several open source simulation envi-
ronments for autonomous systems, mostly for robots,
have been launched due to increasing computational
power and decreasing hardware costs, which have
made the use of autonomous (mobile) robots feasible
for education.
Published in 2001, the socket-based device server
Player in combination with the multi-robot systems

simulator Stage [3] was widely used in academia and
industry. Player provides simple TCP sockets to exter-
nal devices like sensors and actuators. Player is lan-
guage neutral and uses the UNIX abstraction of de-
vices being considered as files. Stage is a simulation
environment for multiple robots with computationally
cheap, but in terms of fidelity only sufficient models.
The linear scaling with the population of the simulated
world was very important. It is a 2D simulator for in-
door scenarios. The simulated sensors are rather sim-
ple laser range finders or sonar than complex sensors
like cameras.
In 2003 Gazebo [4] was released to satisfy the need
for a 3D simulation environment for Player. It enables
the simulation of cameras, uses rigid body models, and
still works, despite the increased complexity, with sim-
ulating several autonomous systems concurrently.
Nowadays the Robot Operating System ROS [5] is the
most popular environment for connecting algorithms,
sensors, and actuators of robot systems. Many func-
tions and drivers were adopted from Player. Moreover,
it also uses interfaces to Stage for 2D and to Gazebo
for 3D simulations.
Microsoft’s Robotics Developer Studio [6] is a free,
but not open source, development suite using user
friendly techniques for visual programming, easy par-
allelization, and debugging via web-interfaces. It is
equipped with a DirectX based Visualization, its own
rigid-body physics engine, and provides interfaces to
commercial products from FischerTechnik, iRobot,
Lego etc.
Furthermore, there are also several commercial robot
simulators like the Virtual Robot Experimentation
Platform V-Rep [7] or Webots [8].
Proprietary simulation environments were developed
for larger projects like Junior - Stanford’s robotic car
for the DARPA Urban Challenge [9]. That proprietary
software can be adapted to special demands, which are
not completely fulfilled by generalized tools like the
ones named before.
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All of the mentioned simulation environments use
physics engines like Bullet Physics Engine [10] or
Open Dynamics Engine [11], which have a strong
gaming or computer animation background and pro-
vide rigid body modeling and collision detection.
They try to reach a fast computation while providing a
sufficient accuracy of the physics. Modelica provides
several advantages being able to model complex phys-
ical systems containing e.g. flexible-bodies, electrical
and hydraulic components. To be used for the sim-
ulation of artificial intelligence agents Modelica has
to be extended by an advanced visualization like the
DLR Visualization Library [12]. The combination of
Modelica with the DLR Visualization Library creates
a powerful tool for an efficient development of com-
plex physical agent and environment models.
Our motivation for the presented scheme is a bidirec-
tional autonomous systems simulation, which com-
bines complex Modelica models of the ROMO with
the artificial intelligence system used in the real vehi-
cle.
The remaining chapters are organized as followed:
The second chapter provides an overview of our simu-
lation concept. Chapter three gives a detailed explana-
tion of the used tools and interfaces. Afterwards, the
results of a simple example will demonstrate the func-
tionality of the AIA simulation scheme. Finally, we
will conclude with a brief summary and outlook.

2 Concept of the AIA Simulation

The main target for the proposed scheme is a
’Software-in-the-Loop’ simulation, which means that
no changes are made to the algorithm that should be
tested. In order to test the artificial intelligence of
an autonomous system the perception, planning, and
control algorithms are kept and its hardware and the
environment are simulated. The system’s hardware
is substituted by a Modelica model, where the detail
of the model varies depending on the purpose of the
simulation. It can range from a rigid body model to
an overall system model containing electrical, flexible,
hydraulic, thermal, and tire (sub-)models.
The second step is the replacement of the environ-
ment by using the DLR Visualization Library, which
extends Modelica by an advanced visualization and
interactive simulation. Standard sensors for velocity,
torque etc. are part of the basic Modelica library, but
complex perception sensors like cameras require this
advanced visualization for a sufficient simulation. The
algorithms tested with this scheme and also their inter-

faces to the rest of the autonomous system do not have
to be changed. Hence, the algorithms have to run out-
side the Modelica environment during the simulation,
which is made possible by the interactive interfaces
provided by the DLR Visualization Library.
The proposed simulation scheme using the example of
the ROMO is depicted in Figure 1. The main distinc-
tion is made between the autonomy hardware and the
simulation hardware. Both can run on the same PC,
but the hardware of the autonomous system usually
consists of several connected processing units. The in-
tention is to follow the ’Hardware-in-the-Loop’ prin-
ciple and to connect the AIA system to a simulation
PC.
The primary perception sensors of the ROMO are
cameras, which are widely used in modern au-
tonomous systems, as they provide a great variety of
information [13]. A typical cycle of the scheme starts
with the virtual cameras taking images of the simu-
lated environment. The images and other sensor data is
packed according to the SensorNet format and passed
into the shared memory of the autonomy hardware.
The interface from the Visualization library to Sensor-
Net is described later in detail. Different algorithms
that process and interpret those data can access the
shared memory concurrently. The processed data is
passed to the planning module both directly and via
a module that updates the environment representation.
The planned trajectory and other control data is passed
via an interactive interface to the Modelica model.
Sensors are triggered and the controller gets its refer-
ence input. In this example the vehicle dynamics con-
troller is nested in the simulation module, since it does
not run on the same hardware as the autonomous driv-
ing components in the real vehicle. With the controller
commanding the actuators the ROMO model moves in
the virtual world and the loop is closed.
Such a ’Software-in-the-loop’ scheme for autonomous
systems has several advantages. It is possible to test an
algorithm under reproducible settings, which is usu-
ally not the case in reality. The camera-based percep-
tion is very sensitive to changing light conditions. Ad-
ditionally, it is difficult to keep relative positions and
velocities of objects the same in every test. The re-
producibility is also desirable for comparing different
algorithms and an essential requirement for reverse en-
gineering.
Moreover, algorithms can be tested with optimal con-
ditions. At the very beginning of an algorithm de-
velopment it is helpful to see if the general concept
is working while neglecting sensor and actuator noise
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Figure 1: ROMO AI-Simulation Concept

and other disturbing influences. After the basic func-
tionality has been proven the noise can be increased
step by step to test different levels of robustness.
Another advantage is the adjustable level of abstrac-
tion. Autonomous driving software can be evaluated
firstly with a simple model of the system’s dynamics.
Limitations of actuators can be neglected, sensors can
be considered as all knowing and physical constraints
can be softened. During the development process the
model complexity can be raised to achieve a more re-
alistic behavior of the simulated system. Furthermore,
the developer can build a virtual world according to
his needs. New types of sensors and systems can be
modeled that do not exist yet. The preparation and
execution of tests done by the simulation scheme is
much faster than tests in reality. The simulation can
be run faster than real time causing less costs and pos-
ing no harm for people and equipment. Nevertheless,
there is still the need for tests with the real system, but
their frequency can be considerably decreased. Hence,
the ’Software-in-the-Loop’ principle is very helpful
for rapid prototyping.

3 Combining Virtual Reality with
Perception

An essential part of the proposed simulation concept
is the link between 3D simulation provided by the
DLR Visualization Library and image processing al-
gorithms, which utilize SensorNet for image data dis-
patching.

3.1 The DLR Visualization Library

The DLR Visualization Library is an extension to
Modelica for 3D visualization of simulations. It is
composed of two parts: a Modelica library and a stan-
dalone program.
The library part defines Modelica multi-body elements
which do not influence the simulation’s physics but
are used for configuration of the simulation’s visual-
ization. The visualization is then displayed in a sepa-
rate application called SimVis. An example of this can
be seen in Figure 2. On the left it shows a Modelica
model using the DLR Visualization Library library and
on the right the corresponding visualization in SimVis.
The DLR Visualization Library library provides a
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Figure 2: A Modelica model of the ROMO and the corresponding visualization

wide range of 3D objects from simple elements like
boxes and gearwheels to complex 3D files to objects
defining the representation like Head-Up-Displays
showing variables or camera positions both in the 3D
environment and their images on the screen.
From a technical perspective this is achieved by uti-
lizing Modelicas C language interface to establish a
TCP/IP connection between the simulation and the
SimVis application, transmitting information about the
configuration of the 3D elements to be displayed [12].

3.2 SensorNet

Modern robotics applications often use cameras and
require the real-time analysis of images. The problem
for this application is twofold:
First the amount of data is immense. For example a
single VGA camera generates about 640 ·480 ·3Byte ·
30Hz = 28MByte/s of raw data. Moreover, recent
video compression methods, e.g. mpeg4 or divx, are
computational expensive and also degenerates the im-
age quality and therefore should be avoided in image
processing tasks. Additionally, robots interact with
their environment. Therefore, real-time restrictions
apply to the image processing. The time from image
acquisition to a possible reaction has to be minimized.
This requires extremely efficient dispatching of image
data which is achieved by the communication frame-
work SensorNet. It is designed to provide sensor
data, e.g. from cameras, with low latency to multiple,
concurrent applications. Therefore, previous concepts
on local real-time communication via shared memory
[14] and on unified description of camera and range
sensor data [15] are combined and extended in the
SensorNet data streaming concept. In detail, a ring
buffer on a shared memory in conjunction with a sig-
naling mechanism is used to distribute data from a
server process to multiple client processes with low

latency (<100 µs). The interface also comprises data
type metadata that allows for type checking. Further,
predefined, unified data types are used, e.g. color im-
age or depth image, and act as a abstraction layer. As
a result, sensors of same type can easily be exchanged
by just replacing the server process. Data can be dis-
tributed across system borders by connecting shared
memories on the different systems with UDP- or TCP-
based data transfer. Additionally, a separate TCP-
based configuration channel allows for setting and get-
ting parameters, e.g. camera shutter time, without in-
fluencing real-time data streaming.

3.3 Interface

Acquiring images with real cameras under controlled
conditions is not always feasible as described above.
The intention is to reuse the existing solutions for 3D
simulation and image data dispatching.
The DLR Visualization Library cameras are designed
for displaying images on screen. Since Modelica is an
object-oriented language the new camera model is de-
rived from the existing solution and extended by addi-
tional parameters. The cameras are by default aligned
within the 3D environment using rigid body transfor-
mations and displayed either in the SimVis window or
full screen. In both cases the camera resolution is de-
termined as a ratio of either the window size or the
screen size for easier portability from one PC to an-
other. In contrast real cameras have a fixed resolution
in pixels. The simulation therefore requires this reso-
lution as new parameter. Likewise the image data is
always displayed on screen in RGB format, yet cam-
eras often use different formats. This implementation
currently supports two alternative formats: YUV and
grayscale. Furthermore, SensorNet needs a name for
the shared memory object to identify a specific camera
and a role for the camera in a stereo setup. If the cam-
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era is part of a stereo setup, both cameras use the same
shared memory object. One camera has to be set as
master and one camera has to be the slave. Both im-
ages will then be acquired simultaneously and put in
the same shared memory object, whenever the master
camera is triggered.
With these additional parameters set up in the DLR Vi-
sualization Library, SimVis can also reuse the majority
of its existing camera implementation. The main dif-
ference lies in the render target. Normal cameras ren-
der to a frame buffer that is then displayed on screen.
For the simulated cameras the render target is redi-
rected to a frame buffer object (FBO), which is not
displayed but read back to the main memory. Thereby,
the image is rendered the same way but off-screen and
accessible by the application as a data array in RGB
format. This image data first has to be converted to the
desired image format. Conversion into YUV is carried
out using the following equation per pixel:

Y = 0.299R+0.587G+0.114B

U = 0.493(B−Y )

V = 0.877(R−Y )

This equation is also applicable for conversion in
grayscale by only using the Y component describing
the pixels luminance [16]. The preprocessed image is
then packed into one of SensorNets default image for-
mats, a time-stamp corresponding to the current simu-
lation time is added and the image is released. Releas-
ing an image in the SensorNet context makes it avail-
able for other applications. The primary focus lies on
image interpretation algorithms that are part of an ar-
tificial intelligence agent.

4 Experimental Results

The proposed scheme is evaluated by a simple exam-
ple, in which a testing environment for a vision based
control (VBC) platooning algorithm is created.
The basic idea is that the ROMO follows a preceding
car, while using only a front stereo camera pair for per-
ception. Initially, the ROMO has only an image of the
back of the target car, which was taken from an appro-
priate distance for following.
After the platooning mode is activated the ROMO tries
to find the target car in the current camera image. Ana-
log to vision based robot control [17] the goal is to see
the target object in the same size and at the same an-
gle as in the reference image. Therefore, the ROMO
tries to reach and hold the very same relative position

in which the initial image was taken. The target posi-
tion can also be made velocity dependent for keeping
the minimum safety clearance.
A simulation model in Dymola is created. First, the
ROMO’s top front camera pair, refer to Figure 3, is
modeled by using the DLR Visualization Library’s
SensorNet camera class, which was developed for the
proposed simulation scheme, with the appropriate pa-
rameterization. They are attached at their respective
positions to a 3D geometry model of the ROMO,
which is extracted from CAD. An overall model of the
ROMO containing all actuators, sensors, the electrical
systems etc. can be used, but the example focuses on
the perception part, which is the main interest in this
paper. Buildings, streets, and a surrounding land-

Figure 3: The DLR’s ROboMObil

scape are placed in the virtual environment. For this
the DLR Visualization Library provides an integration
block for common 3D files like the ’.3ds’ format. The
target car consists of an animated 3D model bound
to a trajectory block that moves the object within the
virtual world. Now the simulation is started and im-
ages are sent to the shared memory via SensorNet.
The AIA algorithms receive a notification that new im-
ages are available and begin to run. First, a SensorNet
implementation of the DLR’s 3D reconstruction algo-
rithm, called Semi-Global Matching (SGM)[18], cal-
culates depth information out of the two images from
the stereo camera. The result can be seen in Figure
4, whereas the left part shows the scene recorded by
the stereo cam and the right part a visualization of the
depth values. The color value of every pixel is set ac-
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Figure 4: Semi Global Matching applied to the virtual images
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Figure 5: Matching features for estimating the relative position: (a) At target position (b) 4 meters deviation in
camera direction

cording to the depth value at that point. Small values
are colored red and with increasing depth they go from
orange to green to blue. Black parts of the depth image
are either too far away like the sky or cannot be recon-

structed. This is often the case in regions with homo-
geneously textured surfaces, where the reconstruction
algorithm cannot find matching points in both images.
After calculating the depths the SGM writes a struc-
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ture consisting of a rectified actual image, a quality
map, and the depth image back into the shared mem-
ory. This structure is accessed by the VBC car fol-
lowing algorithm, which starts with running a feature
detection algorithm, e.g. AGAST [19], on the actual
image. A descriptor for matching is calculated for ev-
ery feature point and the 3D coordinates of every fea-
ture point are determined using the depth image from
SGM. The keypoints of the target image with their de-
scriptors and 3D values are available a priori and so
descriptors are compared to find matches in both im-
ages. The results can be seen in Figure 5, whereas the
right is the target and the left one is the current camera
image of the simulation. Matching keypoints are con-
nected with a green line. Besides the markings there
is no color in Figure 5, as the feature detection works
with grayscale images. At least four matching key-
points are randomly selected. By using their respective
3D coordinates the rotation matrix R and translation
vector T between the current keypoints and the target
keypoints are calculated. The quality of the estimated
R,T is measured by applying R,T to all keypoints of
the current image that have matches. After that they
are projected back into the 2D image space and the
distance to their matching points in the target image
is measured and summed up over all keypoints. The
whole procedure is repeated with other sets of features
until the quality of R,T is sufficient or a certain num-
ber of iterations is exceeded and the best iteration will
be kept.
The preceeding car in the simulation starts at the tar-
get relative position and moves four meters in the cam-
era’s z direction, whereas the ROMO remains station-
ary. The matches at the beginning can be seen in Fig-
ure 5a and that the end of the movement is depicted
in Figure 5b. The number of found correspondences
decreases during the movement. This is normal on the
one hand due to the changed perspective, but on the
other hand it is additionally disadvantaged here by the
simple textures, which lead to weak feature points. In-
correctly matched or too few feature points can disturb
the results of the algorithm immensely.
Nevertheless, the simulation has shown the general
functionality of the algorithm as can be seen in Fig-
ure 6. The z value of the deviation to the goal posi-
tion changes from 0 to 4000mm, while the target car
moves in z-direction. The deviaton to the real position
can be due to badly chosen feature points, depth mea-
surement errors, or imprecise calibration of the virtual
cameras. Based on the computed rotation and trans-
lation a trajectory can be calculated and fed back into

the Modelica simulation via a TCP/IP channel to con-
trol the simulated ROMO in its virtual environment.
In this early state of the algorithm’s development the
AIA simulation scheme is very helpful to identify
weaknesses and increase robustness before tests with
the real ROMO are possible.
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Figure 6: The deviation to the relative target position.
z is in camera direction

5 Conclusions and Future Work

This paper presents a scheme for testing artificial intel-
ligence algorithms for autonomous systems according
to ’Software-in-the-loop’ and ’Hardware-in-the-loop’
principles. Existing multi-physics models are com-
bined with the actual artificial intelligence algorithm
that do not have to be adapted for the simulation. This
is achieved by extending the DLR Visualization Li-
brary by an interface to the sensor data management
tool SensorNet, which is utilized in real autonomous
systems in DLR’s Robotics and Mechatronics Center.
The capability of the concept is proven by a short ex-
ample, in which the translation and rotation to a lead-
ing vehicle are determined by a vision based car fol-
lowing algorithm.
In further developments more sensor types, which are
typically used in autonomous systems like a dGPS
aided Inertial Measurement Unit (IMU), will be mod-
eled. Camera models can be extended with more re-
alistic effects such as lens distortions. Moreover, we
plan to use virtual objects with more complex textures
to generate more realistic virtual pictures. In order to
validate the simulation results they have to be com-
pared to those using data taken from vehicle tests.
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Abstract

This contribution deals about the development steps
of an embedded controller. The activities of the role
function developer are explained for the simple exam-
ple traffic light controller. The method of virtual inte-
gration is explained to establish short feedback loops.

Keywords: embedded systems; simulation; model-
ing; short feedback loops; co-simulation; virtual inte-
gration; Vee-Model; systems engineering

1 Introduction

The behavior of a dynamic system is in general too
complex to treat by theory or formulas. Several sim-
ulation methods have been established for analyzing
such systems. The virtual integration method is con-
ducted on a model to gain knowledge about the (in-
tended) real system behavior. This abstraction typ-
ically allows to focus on the main properties of the
studied multi-domain system and their effects. These
components require specific domain solvers for me-
chanical, electrical, etc. components. In this con-
text, the term co-simulation has been established. The
virtual integration is based on co-simulation and de-
scribed in [7, 10]. There is a rather huge literature
on the Vee-Model and systems engineering, see e.g.
[1, 6, 12, 9, 4]. For more general introduction see,
e.g., [5, 15, 16].

In the following, we demonstrate how to develop a
control algorithm for an embedded controller design-
ing the entire system - both the plant and the control
components - with the modeling language Modelica.
This approach allows us the modeling and simulation
of the entire system, and thus the validation of the de-
sign decisions in an early phase of the development.

2 Model Example

Traffic is in general a good example for dynamic sys-
tems. The planning of traffic flow includes among oth-
ers the avoiding of traffic jams and the optimization of
traffic flows. No wonder that traffic planing is a cur-
rent political issue as the article Guck mal, wer da fährt
in the Süddeutsche Zeitung of May 15th 2012 shows.
According to this article, the traffic of a city like Mu-
nich is controlled by more than 1.000 traffic lights. All
these traffic lights serve to control the traffic and ar-
range for all traffic participants in some sense optimal
traffic flow and an acceptable (system) behaviour.

Figure 1: The typical sequence of coloured lights, see
table 1.

Figure 1 explains the typical European sequence of
coloured lights, see, e.g., [14].

traffic light meaning
red light do not cross
red and yellow light prepare to cross
green light cross
yellow light if safe to do so, stop

Table 1: The typical sequence of coloured lights and
their meanings.
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A signal timing plan is a graphical representation of
the traffic light phases for the correspondings traffic
lights, similar to a so-called GANTT chart, see also
Figure 2.

Figure 2: A typical signal timing plan is a graphical
representation of the traffic light phases similar to a
GANTT chart.

Traffic engineering programs like LISA+, see Fig-
ure 3, facilitate a planning processand are especially
developed for intersections with a large number of sig-
nal groups and traffic lights, see, e.g., see [13].

Figure 3: The GUI of the software package LISA+ for
the planning of a specific traffic scenario.

Although the analysis of such systems of traffic
lights contains a number of interessting (non-linear)
mathematical taks, we simplify the considered task to
a single two crossing road intersection. The main rea-
son for this is that we can better study the phases of
the development process for such a simple example.

In this report we therefore restrict to the following
model example: a simple intersection of two roads
with four traffic lights, see Figure 4. According to the
wind rose, the lanes are denoted by North, East, South,
and West.

Figure 4: A simple road junction serves as for this pa-
per sufficiently model example where the road crosses
a north-south direction with a road in east-west direc-
tion.

We describe and study in the following sections a
workflow with its development phases for an embed-
ded control system for the traffic lights, using among
other the environment design, modeling and simula-
tion language Modelica and its modeling and simula-
tion tool Dymola.

3 The Development Phases

The development phases of the Vee-model that are
considered in this paper are, see Figure 4, [17]: sys-
tem level requirements, system design, module design,
module implementation, module integration and test
and finally system integration and test on an embed-
ded controller.

Figure 5: The Vee-model and its development phases.
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3.1 System Level Requirements

In this development phase we formulate the require-
ments to the system and with that to the controller to
be developed.

For this purpose, we define the waiting time Wi of
a single vehicle crossing as the time from arrival at
the intersection to the crossing of the intersection and
with that leaving the system. We define the total wait-
ing time by the overal sum W = ∑Wi and formulate
with that the first requirement to the intended control
algorithm:

∆W :=Wnew−Wold →min, (1)

where Wnew denotes the overall waiting time of all ve-
hicles after and Wold before the considered cycle of
green phases. Although Wnew and Wold are hard to
measure, the difference ∆W , however, is not: the dif-
ference is depending on the number of vehicles cross-
ing the intersection in the considered green phase cy-
cle. This first requirement has the consequence that
control algorithms with so-called vacant green phases
are rated worse.

Let us now assume a scenario with high traffic rate.
In this case, there exists a simple strategy to avoid va-
cant green phases by just not switching the priority
lane. A controller that serves only one direction has
no vacant green time and therefore fulfills the first re-
quirement.

We formulate therefore a second requirement to pre-
vent this undesirable behavior:

Both directions are to be served periodically. (2)

We denote the green times tNorthSouth and tEastWest for
the two directions, the minimum green time by and tmin

and the circulation time tClock by the sum of all traffic
lights phases. Therefore holds

0 < tmin ≤ tNorthSouth, tEastWest < tClock (3)

and with that 2 · tmin ≤ tClock.

3.2 Outlook: Additional Requirements from
Functional Safety

Finally, note that there are additional requirements e.g.
from functional safety:

1. emergency control mode: Traffic lights from the
major roads turn off and the traffic lights from the
side streets blink yellow. This indicates that the
proper operation of the traffic lights is not guar-
anteed and supports on the other hand the given
traffic signs.

2. secure on the electrical level: If a light source
is out of order, so none of the directions may be
given the green signal to avoid a so-called hostile
green and it should, if possible, the red signal be
given.

These two additionally requirements stemming from
the functional safety are not in the scope of this paper
and will therefore not be considered in the following.

3.3 System Design

The considerations so far motivate to model the entire
traffic system as a controlled system composed by two
components for

• the plant component consisting of four lanes and

• the controller component calculating the duration
of the green times tNothSouth and tEastWest by an ex-
plicit computation rule from given numbers of the
traffic members provides by the plant component.

Finally, we describe the interfaces. The interfaces
between the plant and the controller component are
given by six real values: four numbers of vehicles in
the waiting queues nNorth, nEast , nSouth, and nWest and
the two green phase values tNorthSouth and tEastWest .

Figure 6: The composition of the system in Modelica.
The symbol above right in the controller indicates the
atomic exectution behavior of the controller compo-
nent.

The definition of the components and its interfaces,
modeled in Modelica see Figure 6, is the first fun-
damental design decision, see the library SAFEDIS-
CRETECONTROL in [11].
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3.4 Module Design and Implementation

3.4.1 Component Plant

The component plant simulates an intersection of two
roads, which runs in a north-south and an east-west
direction, see again Figure 4. The four waiting queues
are named by the facing directions North, East, South
and West. We suppose a simple growth model for the
population of the four lanes

ṅ =

{
c− cOut if corresponding lane has green
c else,

(4)
where n≥ 0 denotes nNorth,East,South and nWest and c≥
0 represent the uniform growth constant, and cOut the
additionally decay constant of the waiting queues in
the green phase of the corresponding lane representing
the number of vehicles passing the intersection.

The two opposite lanes are governed by two oppos-
ing traffic lights with the same signal sequence. Note
that we neglect in the following the modeling of the
yellow phase and it holds for the green time phases

tNorthSouth + tEastWest = tClock. (5)

3.4.2 Component Controller

The component controller realizes roughly speaking a
mapping from R4 to R2 fullfilling the requirements (1)
and (2) - consequently, there exists an infinite number
of implementations!

A very simple first strategy to fulfill the require-
ments is distribute the available time tClock equally to
both green phases

tNorthSouth = tEastWest = tClock/2, (6)

see also Figure 7 for the implementation in Modelica.
We initialize the component controller with red

lights for both directions.

3.5 Module Integration and Test

In this phase, we validate the module designs and their
implementations by so-called Model-in-the-loop sim-
ulations before we move on to the next development
phase. Therefore, we analyse given use cases and test
the controll algorithm by virtual integration.

We set for the module test phase the following gen-
eral parameters:

• the minimim green time tMin = 10[s],

• the circulation time tClock = 150[s], and

Figure 7: The implementation of the equations (6) for
the symmetric strategy in Modelica.

• the initial numbers of vehicles in the waiting
queues nNorth = nSouth = 100[1] and nEast =
nWest = 50[1].

3.5.1 First Use Case: Equally Busy Lanes

In this use case, we assume that both roads north-south
and east-west are equally frequented and chose the fol-
lowing use case specific parameters

• the growth constants cEastWest = cNorthSouth =
1
[1

s

]
and

• decay constant of the waiting queues cOut =
2.2
[1

s

]
.

Because it holds for the growth and decay constants

cEastWest + cNorthSouth ≤ cOut , (7)

there may pass more vehicles through the intersection
than new ones join in the waiting queues. We therefore
expect a good controller to reduce the waiting queues
over time.

Figure 8 shows the signal time plan corresponding
to Figure 2. The evolution of vehicle values nNorth =
nSouth and nEast = nWest in the waiting queues is given
in the Figure 9.

This Model-in-the-loop simulations confirms the
symmetric control strategy as expected. We therefore
study a further asymmetric use case to test our first im-
plementation.
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Figure 8: The signal time plan of the first use case.

Figure 9: The evolution of vehicle values nNorth =
nSouth and nEast = nWest in the waiting queues for the
first use case.

3.5.2 Outlook: System Simulation

As an outlook, we mention here, that Modelica pro-
vides further tools for simulations like a full system
simulation. The toolbox Modelica3D allows to visual-
ize the full intersection. Figure 10 provides a picture
of a movie produced by Modelica3D. For further de-
tails see [3, 2].

3.5.3 Second Use Case: Main and Secondary
Road

We change the first use case only slightly and then sim-
ulate a scenario in which the north-south road is less
traveled than the east-west road and assume the fol-
lowing parameters

• the growth constants cEastWest = 2
[1

s

]
,

cNorthSouth = 0.2
[1

s

]
and

• decay constant of the waiting queues cOut =
2.2
[1

s

]
.

This time, as many vehicles arrive at the intersec-
tions as may pass through the intersection. We expect

Figure 10: This picture of a movie produced by Mod-
elica3D shows the behavior of the system example in-
tersection. The waiting queues are visualized by boxes
with hights depending on the length of the correspond-
ing waiting queue.

a good controller not to increase the number of vehi-
cles in the waitings queues.

The evolution of vehicle values nNorth = nSouth and
nEast = nWest in the waiting queues is again given in
the Figure 11.

Figure 11: The evolution of vehicle values nNorth =
nSouth and nEast = nWest in the waiting queues for the
second use case.

This time, we observe that the North-south road
drops to 0 and remains constant, where as the East-
west road linear increases. The constant green phase
ratio

tNorthSouth : tEastWest = 1 : 1 (8)

obviously does not reflect the asymmetric vehicle
growth ratio

cNorthSouth : cEastWest = 1 : 10 (9)

good enough. This undesirable behavior motivates an-
other requirement for the implementation of the con-
troller algorithm.
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3.5.4 Additional Requirement on System Level

We introduce two key indicators:

• the ratio of the waiting queues defined by

rwq := (nNorth +nSouth)/(nEast +nWest) (10)

and

• the ratio of the green phases given by

rgh := tNorthSouth/tEastWest . (11)

We assume that the longer the green phases, the
more vehicles may pass the intersection. In the sense
of the customers of the intersection, we therefore ad-
ditionally require

rwq ≈ rgh. (12)

3.5.5 Module Design and Implementation for the
alternative Controller

In this section, we develop a second, alternative con-
troller, and solve therefore the system of equations
(5) and (12) to fullfill mathematical exact the require-
ments. We define the load distribution for the two
roads

λ :=
nEast +nWest

nNorth +nEast +nSouth +nWest
. (13)

The value λ = 0 = 0% reflects no traffic in east-west
direction and consequently minimum green time for
east-west and λ = 1 = 100% correspondingly for the
other direction. Then, keeping in mind the mimimum
green time requirement (3), this yields to

tEastWest = min(tClock− tMin,max(tMin,λ · tClock))

tNorthSouth = tClock− tEastWest ,
(14)

see also Figure 12 for the implementation in in Mod-
elica.

The so designed controller has the following desir-
able properties:

λ = 0 : tEastWest = tMin,

λ = 1 : tEastWest = tClock− tMin
(15)

with corresponding

tNorthSouth = tClock− tEastWest . (16)

Figure 12: The implementation of the alternative con-
trol algorithm given by (14) in Modelica.

Figure 13: The signal time plan the alternative control
algorithm given by (14) in Modelica.

3.5.6 Module Test and Integration of the alterna-
tive Controller

Figure 13 shows the results of the Model-in-the-loop
simulation of the second implementation of the con-
troller for the second use case.

Figures 14 and 15 present the evolution of the num-
ber of vehicles and the green phases.

The alternative controller responds to the asymmet-
ric load much better. After a transient phase the ratio
of the green phase 1 : 10 reflects the ratio of the loads
1 : 10 almost perfectly.

3.5.7 Regression of the First Use Case

Also the first use case can be controlled by the alter-
nate controller. Although it produces, in contrast to the
first controller, a small oscillation, but remain limited
to vehicle values.

A simple validation shows that the second controller
also produces the expected behaviour for the first use
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Figure 14: The evolution of the numbers of vehicles
for the second use case main and secondary road with
the second implementation of the controller.

Figure 15: The evolution of the green phases for the
second use case main and secondary road with the
second implementation of the controller.

case, see Figure 16.

3.6 System Integration and Test

In the last phase of the system development, we in-
tegrate the validated control algorithm in an evalu-
ation board (MicroController with 80 MHz, 512KB
Flash, 32KB RAM, USB) and development environ-
ment MPLAB Version 8.84 from Microchip Technol-
ogy Inc., see Figure 17.

The presented approach differs from the method de-
scribed in [8], where the control system is executed
part on a PC, and part on a microcontroller board.

The relevant code fragment of the from Dymola
produced file dsmodel.c can easily be identified for
this specific controll development and integrated in the
environment of the microcontroller code. This trans-
formation can be performed automatically by a phyton
script.

The Processor-in-the-loop simulations reflect in de-

Figure 16: The evolution of the vehicle numbers for
the first use case with the second controller, compare
with Figure 9.

Figure 17: The PIC32 Starter KIT for the Processor-
in-the-loop simulations showing the green LED repre-
senting the green traffic light.

tail the observed Model-in-the-loop results.

4 Conclusion

The application of the virtual integration has many ad-
vantages because it allows the observation of the be-
havior of a fully integrated system in an early devel-
opment phase. Realistic tests in the early phase of
development by virtual integration enables compre-
hensive evaluation of the interaction of a) functions,
b) components, c) tools, and d) decision makers and
allows a seamless, continuous development process.
The method virtual integration allows therefore inte-
gration of new technologies and domains.

The following questions arises: How can we sys-
tematically identify other development-related interac-
tions? This remains for future work.
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Abstract 

Advances in the development of electric vehicles 

challenge existing test methodologies and tools. In 

particular, hardware-in-the-loop test rigs to verify 

electric motor controllers require real-time drivetrain 

emulation with response times in the order of one 

microsecond. Field-programmable gate arrays can 

fulfill these requirements due to their high parallel-

ism and the possibility to realize efficient and pre-

dictable I/O interfaces. We present an integrated 

methodology which translates Modelica models to 

VHDL hardware designs. Our methodology com-

bines well-engineered algorithms from Modelica 

compilation and high-level synthesis for hardware. 

We demonstrate its capabilities using the example of 

a DC motor which was synthesized and implemented 

on a Xilinx Virtex-5 device. 

Keywords: FPGA; High-level synthesis; VHDL; 

Hardware-in-the-Loop; Real-time 

1 Introduction 

Recent movement towards electric vehicles im-

poses new challenges on the development of 

drivetrains. Especially the verification of electric 

motor controllers (EMCs) using the hardware-in-the-

loop (HiL) test methodology requires real-time simu-

lation of the functional environment with low laten-

cies. An EMC is an integrated device, consisting of 

an electronic control unit (ECU) and a power stage. 

The ECU implements current, acceleration and/or 

speed control and safety functions whereas the pow-

er stage generates the motor currents.  The test rig 

wires the EMC to an emulator, as shown in Figure 1. 

An electric motor emulator (EME) emulates an elec-

trical motor under real conditions, including position 

feedback and other sensor signals. If needed, a power 

stage recreates the original currents and voltages.  

 

 
Figure 1: EMC test bed schematic  

 

Due to the dynamic electric behavior of the mo-

tor, the model iteration rate has to be in the order of 

one microsecond. Since such real-time requirements 

are hard to meet using software solutions, HiL emu-

lators of electric machines typically involve a field-

programmable gate array (FPGA) which carries out 

time-critical computations. FPGAs are highly paral-

lel reconfigurable hardware circuits which are well-

suited for high-performance real-time computations. 

However, their programming model is fundamentally 

different from general-purpose computing. This fact 

makes current modeling environments lack an inte-

grated flow from model to hardware. Although Mod-

elica has proven to be an effective language for de-

scribing electric hybrid drivetrains [1], there is cur-

rently no tool support for compiling Modelica to 

FPGAs. 

Our contribution tries to close this gap. We pro-

pose an integrated methodology for compiling Mod-

elica models to an FPGA configuration. The imple-

mentation is realized and validated using Simula-

tionX. Our approach combines well-known method-

ologies from both differential-algebraic equation 

(DAE) processing and high-level synthesis (HLS). 

We employ inline integration to obtain a compact 

calculation rule which can be efficiently mapped to 
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hardware. Moreover, we incorporate parametrizable 

circuit templates (so-called IP cores) to solve com-

mon subproblems during the mapping process. 

Our paper is organized as follows: Section 2 in-

vestigates related work from commercial and aca-

demic perspective. Section 3 gives a short explana-

tion of FPGA functionality and the programming 

model. Based on the specifics of FPGA operation, 

section 4 states the requirements to achieve an inte-

grated, automated design flow from model to hard-

ware. Section 5 explains these implications on model 

entry. In section 6, we discuss the overall design 

flow from Modelica to hardware. Section 7 presents 

the characteristics of an exemplary direct current 

(DC) motor model which was translated to hardware. 

Finally, section 8 concludes the paper and gives an 

outlook to future work. 

2 State of the Art 

Electric motor controllers used in automation and 

automotive applications combine controller and 

power stages in one device. Testing and verifying 

EMCs in an HiL environment is challenging, since 

the behavior of the electric motor must be rebuilt 

true to original. Otherwise, the EMC would diagnose 

a malfunction and enter failure mode. The interface 

between the EMC and HiL system can be realized on 

a mechanical, electric power, or signal level [2]. 

On the mechanical level, the original electric mo-

tor is connected to the EMC. Another motor is 

flanged and applies the mechanical load, computed 

online by a simulation model. Such dynamometer 

test stands (as shown in Figure 2) are expensive to 

build, hard to control, and not flexible in usage. 

 

 
Figure 2: Dynamometer test stand 

 

Interfacing on the signal level requires cutting the 

connection between the controller and power stage. 

This “cracked ECU” approach requires knowledge of 

controller internals. The behavior of the electric mo-

tor and its load is computed by a fast microprocessor 

or an FPGA device. The computed current-sensing 

signals are fed back to the ECU along with other 

simulated sensor signals (shown in Figure 3). This 

approach excludes the power stage from test and ver-

ification.  

 

 
Figure 3: Cracked ECU test bed 

 

When interfacing at the electric power level, the 

electric current is generated by special power elec-

tronics and fed back to the power stage of the unit 

under test. This methodology is referred to as Power 

Hardware-in-the-Loop (P-HiL). The SET EME real-

izes this methodology, reproducing proper power 

loads [3] without rotating parts (see Figure 4). The 

interface to the EMC is identical to the real motor. It 

consists of the motor phases and position sensor sig-

nals (e.g. resolver), if needed. Its applications vary 

from small servo controls with less than 100 W to 

electric power trains with several 100 kW. A wide 

range of motor types and rotor position interfaces is 

supported. 

 

 
Figure 4: Electric motor emulator test bed 

 

To achieve realistic emulation behavior, high 

switching frequencies of the EME power amplifiers 

are needed. This is especially important when operat-

ing at high rotational speeds and to emulate dynamic 

behavior, such as speed ramps. Hence, for these use 

cases special power amplifiers with application-

dependent switching frequencies up to 800 kHz are 

deployed. Controlling the power amplifier requires 

input/computation/output latencies of 1.25 µs. 

Both the cracked ECU approach and P-HiL typi-

cally rely on FPGA-based implementations of the 

motor simulation. In absence of a suitable toolchain 

these models are commonly coded by hand, using a 

hardware description language (HDL). Examples 
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include a commercial model of inverter and perma-

nent magnet synchronous machine (PMSM) [4], a 

DC motor [5], a squirrel-cage induction machine [6] 

and a generic implementation which covers an ex-

haustive set of AC motor types [7]. Yet, there is no 

general agreement on the type of arithmetic: most 

models incorporate fixed point arithmetic [5-7] 

whereas one contribution relies on floating point [4]. 

The development of such models is generally error-

prone and time-consuming, especially if complex 

models (e.g. a nonlinear model of synchronous mo-

tors) or detailed drivetrains, including clutches and 

rigid end stops, must be realized. 

In reference [8], HDL Coder from The Math-

works was used to implement a Simulink DC motor 

model on an FPGA. This toolchain is restricted to 

Simulink models without continuous states. User 

interactions and reformulation of the model are nec-

essary to achieve a fast and synthesizable FPGA de-

sign. A similar approach is presented in [9]. The au-

thors create a Matlab/Simulink model of a permanent 

magnet synchronous machine using the Xilinx Sys-

tem Generator (XSG) blockset. Again, the method-

ology requires the engineer to model at the hardware 

level. Reference [10] presents an approach to gener-

ate fixed point code from Modelica. It is capable of 

exporting Mitrion-C code for FPGA applications, but 

no details are given on how the transformation to-

wards an FPGA design works, and no FPGA imple-

mentation is presented. 

3 FPGA Fundamentals 

3.1 Overview 

An FPGA is an integrated digital circuit whose func-

tionality is programmable after manufacturing. To 

achieve programmability, FPGAs generally provide 

configurable combinatorial logic blocks and memory 

elements. These can be wired in a large variety of 

ways. By combining both primitives – logic and 

memory – it is theoretically possible to recreate any 

digital circuit. Recent FPGAs are computationally 

equivalent to roughly 20 million logic gates. Most 

devices provide additional built-in macro cells for 

frequent tasks, such as hardware multipliers and stat-

ic RAM. 

3.2 Programming FPGAs 

In most cases, a hardware description language 

(HDL), such as VHDL and Verilog is used to de-

scribe the intended digital circuit. Vendor-specific 

toolchains transform the described design into a 

netlist representation, map it to device primitives, 

optimize the geometric placement of that mapping 

and finally produce a programming file which con-

figures the FPGA. 

HDLs also define control-flow statements, which 

in fact turn them into general-purpose programming 

languages. However, these constructs are primarily 

intended for simulation/verification purposes and are 

mostly not supported for circuit modeling. A HDL 

description is said to be synthesizable, if it is possi-

ble to represent it by a functionally equivalent netlist. 

Therefore, synthesizability is a mandatory prerequi-

site to FPGA configuration. Particularly, analog-

mixed signal extensions of VHDL (VHDL-AMS 

[11]) are generally not synthesizable. 

3.3 Example 

The following example is kept in VHDL and il-

lustrates the impact of a specific notation on the syn-

thesized circuit. Assume that we want to transform 

the following computation into a digital circuit: 

          

If we encode all operands using a fixed point rep-

resentation, there is a straightforward VHDL transla-

tion of the given calculation rule: 

r <= a * b + c * d; 

This implementation implicitly prescribes a com-

binatorial, fully-spatial realization. Synthesis infers a 

circuit which consists of two multipliers and one ad-

der. Although this is the fastest possible realization, 

it may miss a design goal: Embedded in a synchro-

nous design, this circuit may drop the achievable 

clock rate because of its combinatorial path. This can 

be avoided by buffering multiplication results in in-

termediate registers. If we need to save FPGA re-

sources, a longer computation time might be ac-

ceptable. In this case, the calculation can be de-

scribed as finite state machine (FSM): 

   Compute: process(Clk) 
  begin 

    if (rising_edge(Clk)) then 

      case state is 

        when Mul1 => tmp1 <= A * B; 

                     state <= Mul2; 

        when Mul2 => tmp2 <= tmp1; 

                     tmp1 <= C * D; 

                     state <= Add; 

        when Add =>  R <= tmp1 + tmp2; 

                     state <= Mul1; 

      end case; 

    end if; 

  end process; 

This implementation spreads the computation 

across three clock cycles. Since at most one multipli-

cation happens per clock step, synthesis will share 
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resources: the novel circuit requires only one multi-

plier instead of two. 

Changing the computation to floating point 

arithmetic requires the designer to use either special 

libraries or to interface the design with an IP core. IP 

cores are pre-built circuit templates with well-

defined functionality which are either supplied by 

the device manufacturer or third-party vendors. This 

option usually provides better performance and de-

tailed hardware tuning parameters. IP cores are also 

available for advanced mathematical operators, such 

as division, square-root and trigonometry. 

High-level synthesis (HLS) is a field of research 

which addresses automated transformation of formal 

behavioral descriptions (mostly C/C-like program-

ming languages) to hardware [12]. The transfor-

mation is constrained by requirements, such as re-

source consumption and time. Despite commercial 

tools are available, their success is limited. This is 

not only due to their high asset costs but also due to 

the user’s uncertainty with respect to the quality of 

results [13]. Their effectiveness varies strongly with 

problem domain and coding style. Our contribution 

exploits the ideas of high-level synthesis. By tailor-

ing its methodologies to the specific area of physics 

simulation we get a domain-specific approach which 

is able to meet our resource and timing requirements. 

4 Requirements 

The intended application imposes several implica-

tions on the chosen approach and equation pro-

cessing. The following subsections discuss them in 

more detail. 

4.1 Inline integration 

Typical code generation from Modelica relies on a 

software infrastructure which distinguishes solver 

and model. The solver is in control of the overall 

simulation and employs callback functions to trans-

fer control to the model-specific evaluation of deriv-

atives. A tight interaction with strong data dependen-

cies connects the solver and model components. This 

interaction is entirely time-multiplexed, exposing 

only little potential to parallelize [14]. Establishing a 

spatial distinction between solver and model on the 

FPGA would produce hardly any benefit. Thus, it is 

preferable to synthesize a self-contained calculation 

rule which encompasses the overall computation to 

carry out one integration step. This technique is 

called inline integration [15]. 

4.2 Real-time execution 

During real-time computation, two conditions must 

be fulfilled: First, the computation time to perform a 

single integration step must be bounded and predict-

able. Second, the integration step size must have a 

lower bound. Since data acquisition and output of an 

HiL emulator usually happen at a fixed sample rate, 

it is even desirable to employ a fixed-step integration 

method.  

Moreover, Modelica events must be used with 

care. Due to the fixed step size, the precise time in-

stance of state events cannot be localized. Events are 

shifted to the end of the current integration step. In 

our case, this should not lead to problems because 

the step size used on a FPGA device is small com-

pared to common processor-based HiL systems. 

At event instances, a Modelica simulator carries 

out event iteration. The model is recomputed at the 

same time instance until discrete variables do not 

change anymore. The number of necessary event 

iteration steps cannot be predicted. Hence, the real-

time condition might be violated. For that reason the 

model should be built in such a way that avoids 

event iterations. The Modelica compiler should rec-

ognize if the model requires event iterations (e.g. due 

to algebraic loops over discrete variables) and inform 

the user. 

Implicit integration methods as well as algebraic 

constraints can necessitate the solution of non-linear 

systems of equations during simulation. Since such 

systems are usually solved by numerical methods, it 

is not guaranteed that the solution algorithm con-

verges within a bounded number of iterations. There-

fore, non-linear systems of equations should be 

avoided by the model. Ultimately, Modelica allows 

for embedding arbitrarily complex algorithms into 

any computation. It is the designer’s duty to ensure 

that they have bounded execution times. 

4.3 Choice of arithmetic 

PC-based simulations usually rely on IEEE 754 

floating point data types. Although this type of 

arithmetic can be implemented on an FPGA, it has 

weaker performance and higher resource consump-

tion compared to equally-sized fixed point data. The 

situation changes if an adequate fixed point represen-

tation would require disproportionately large word 

sizes. FPGAs support “uncommon” word lengths 

(which are not powers of two). An appropriate syn-

thesis flow should exploit these facts and support 

both – possibly mixed – floating point and fixed 

point arithmetic operators. 
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4.4 Sustaining domain-specific knowledge 

A key challenge is to identify the level of abstraction 

at which a preprocessed model should be handed 

over to the hardware-centric synthesis flow. Physical 

computations involve many subproblems which can 

be directly mapped to IP cores. Examples are math-

ematical operators, such as sine/cosine, square-root 

and the absolute value function. Calls to such func-

tions should be preserved in order to give the synthe-

sis flow a chance to adopt dedicated hardware com-

ponents. Another example is the solution of linear 

equation systems, which is necessary to simulate 

models with algebraic loops. In the past, numerous 

high performance linear solvers for FPGAs were de-

veloped [16-19]. To enable their usage, model pre-

processing should keep linear systems instead of in-

serting a specific solver algorithm. 

4.5 Minimizing computation effort 

Compiler optimizations, such as common sub-

expression elimination and exploiting algebraic iden-

tities are particularly important when targeting 

FPGAs. Device resources are limited, and each addi-

tional operation will affect either performance or 

area. Conversely, the slimmer design will fit on the 

smaller and cheaper device. Although it is possible 

to generate FPGA solvers for linear or nonlinear 

equation systems, avoiding such systems helps to 

keep the design compact. 

5 FPGA-Aware Modeling 

As implied by the special capabilities and limitations 

of FPGAs, the user should adhere to certain model-

ing guidelines when designing models for FPGA 

execution. Violating them can cause the translation 

to fail or lead to bloated hardware designs. We im-

plemented a Modelica library prototype which con-

tains frequently used elements for modeling electri-

cally driven drivetrains and takes these aspects into 

account. Using this library and considering some 

modeling guidelines will lead to synthesizable de-

signs faster than using the general purpose Modelica 

Standard Library or the SimulationX libraries. Figure 

5 shows the structure of the library. 

Special considerations were necessary for the dry 

friction model. Real-time motor emulation requires a 

robust friction model that reproduces correct stiction 

behavior. Usage of the friction element should nei-

ther result in a combined discrete continuous system 

of equations nor cause event iteration. By combining 

friction behavior with inertia, the resulting friction 

torque and the new discrete state can be computed 

explicitly. The solution of a system of equations and 

event iteration become obsolete. This approach is 

used by the library elements “Inertia with Friction” 

and “Clutched Inertias.” 

Further systems of equations can be avoided, if 

some modeling guidelines are obeyed. For example, 

an inertia element should be placed between ele-

ments which introduce a torque to the system (spring 

dampers, motors, loads). Inertia elements should not 

be strung together. These rules do not restrict the 

model features which can be represented by the li-

brary. Only the way in which models are to be built 

up is slightly constrained. If the rules are violated 

and systems of equations persist, the Modelica com-

piler generates appropriate warnings. 

6 Compilation and Synthesis 

Figure 6 illustrates the overall design flow which is 

implemented by our software prototype. The follow-

ing subsections explain the procedure step-by-step. 

Figure 5: Screenshot of the library structure 

Session 3B: Embedded and Real-Time Systems 

DOI Proceedings of the 9th International Modelica Conference    359 
10.3384/ecp12076355 September 3-5, 2012, Munich, Germany   



 

 

6.1 Preparation of the model 

First, the interface of the model is to be specified. 

The user selects inputs, outputs and parameters 

which shall be available on the FPGA. Inputs, out-

puts and parameters will become VHDL ports of the 

generated hardware design unit. 

6.2 Modelica compilation 

Most stages of the compilation process are not 

specific to FPGA code generation. Some steps after 

flattening (step 2) of the Modelica model are specific 

according to the requirements of Section 4. In order 

to reduce the complexity of the resulting VHDL 

code, loops of known and constant range are un-

rolled, and equations of higher dimension are ex-

panded. Furthermore, equations and variables which 

do not influence the selected model outputs are re-

moved. Functions are inlined since function calls 

would bloat the hardware by requiring an execution 

stack. 

Since state events cannot be precisely located an-

yway, all conditions are covered implicitly by the 

noEvent(…) function. Algebraic loops containing 

discrete variables would require event iteration. This 

case is detected by the SimulationX Modelica com-

piler which displays an appropriate message. The 

integration formulas for computing the values of 

continuous states from their derivatives are intro-

duced in an early stage of the compilation process. 

This enables symbolic simplifications on these parts 

of the algorithm too. We use Euler’s forward integra-

tions method, which is a good compromise between 

computational effort and stability.  

The SimulationX compiler produces either C 

code or a bytecode representation for simulation. We 

extended its capabilities to generate an XML-based 

assembler-like intermediate representation to be pro-

cessed by the FPGA-centric tooling. The instruction 

set was chosen to match hardware capabilities. For 

example, op-codes for common mathematical opera-

tors exist which allow fixed point and floating point 

operands of arbitrary sizes. The resulting behavioral 

description basically contains two procedures: 

 Initialization part 

 Iteration part 

The initialization part is an algorithm which com-

putes initial variable values from all model parame-

ters. It may also perform some non-trivial computa-

tion, such as iteration to find consistent state values. 

Since it is executed only once (at the beginning of 

the simulation), it is not time critical. The iteration 

part contains the actual computation which is per-

formed during simulation. It is a function of model 

inputs and state, transforming those quantities into 

output and new state. This algorithm gets iterated for 

each time step and therefore must have a predictable 

and bounded execution time. 

6.3 Scheduling 

When mapping an algorithm to hardware, three fun-

damental tasks need to be distinguished: 

 Scheduling assigns execution time (i.e. clock 

tick) to each instruction. 

 Allocation determines which hardware func-

tional units (FUs) to instantiate and in which 

quantities. For each instruction there must be 

at least one FU which can execute it. 

Figure 6: Overall model compilation and synthesis flow 
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 Binding assigns each instruction to a FU. It 

must ensure that no two instructions are as-

signed to the same FU at the same time. It 

should also account for interconnection costs 

which are induced by its choice. 

Superscalar processors perform scheduling and bind-

ing dynamically (allocation is determined by manu-

facturing). They analyze the incoming instruction 

stream for data dependencies and schedule them au-

tomatically. A tremendous amount of logic is re-

quired to achieve such functionality. Recreating su-

perscalarity on an FPGA is not a viable option. In-

stead, a static schedule is pre-computed. Another 

advantage is that execution time is completely pre-

dictable. 

Our prototype employs the force-directed sched-

uling algorithm (FDS, [20]). FDS is a time-

constrained approach which exploits instruction-

level parallelism. Its input is a control-/data-flow 

graph (CDFG) and a time constraint. Upon success, 

it returns a schedule which heuristically minimizes 

the amount of required FUs. Generous time con-

straints lead to fewer FUs and therefore reduce re-

source consumption. Figure 7 shows the scheduled 

CDFG of a DC motor model. The model itself will 

be introduced in Section 7. Each rectangle depicts a 

variable/constant load/store instruction whereas each 

circle depicts an arithmetic operation. In the given 

example, multiplication was configured to last three 

cycles, addition/subtraction two cycles. 

6.4 Allocation and binding 

Allocation and binding are downstream stages to 

scheduling. The schedule determines the minimum 

amount of FU instances of each kind which are re-

quired. It does not prescribe which instance will ac-

tually execute a specific instruction. Binding multi-

ple staggered instructions to the same FU is called 

resource sharing. Obviously, sharing is desirable, 

since it helps to reduce the area of the overall hard-

ware design. On the negative, it can lead to perfor-

mance degradation. Input multiplexers will be neces-

sary to select from different operands. They increase 

the combinatorial delay and may affect the clock 

rate. If the operand sources get placed at far-off chip 

locations, routing delays will further drop the clock 

rate. 

We employ a heuristic to tackle the problem. Our 

algorithm sequentially assigns each instruction to an 

FU by either allocating a new FU instance or reusing 

a previously allocated one. In case of reuse, assign-

ments that reuse existing interconnect are preferred. 

If reusing any previously allocated FU would require 

overly large multiplexers, a new FU is allocated in-

stead. 
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Figure 7: Scheduled and bound CDFG of a DC 

motor with quadratic friction 
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The result of allocation/binding the DC motor CDFG 

is shown in Figure 7: Characters inside diamonds 

enumerate the FU instances which the operations 

were mapped to. The operating point was set to spare 

resource sharing in favor of performance. Moreover, 

the outcome suggests that the binding procedure was 

able to identify the most economic candidates for 

resource sharing: The multiplications in control steps 

1 and 7 are mapped to the same hardware multiplier. 

This is reasonable, since both operations share the 

common operand h. 

The set of instantiable FUs is provided by an IP 

core repository. It must hold an according FU type 

for each kind of instruction. The repository is assem-

bled from hand-written cores as well as vendor-

specific IP cores. The latter are shipped with the 

FPGA toolchain and provide off-the-shelf implemen-

tations of complex arithmetic units, such as floating 

point operators, trigonometric operators and square-

root. 

6.5 Interconnect allocation 

Once the complete instruction stream is scheduled 

and bound to appropriate FU instances, an intercon-

nect network is constructed. It is responsible for 

routing operational results to their target FUs. The 

schedule may also require the network to buffer in-

termediate results. This happens if a result is not pro-

cessed within the same clock step it was produced. 

Thus, the interconnect network is composed of mul-

tiplexers and flip-flops. 

We developed an incremental merging heuristic 

which considers both register count and multiplexer 

size. An initial solution is constructed by assigning 

each instruction outcome to an individual storage 

register. Afterwards, register pairs are iteratively se-

lected and merged whereby the merging decisions 

try to balance the multiplexer sizes of the overall 

interconnect structure. 

6.6 Control path construction 

The control path is a hardware unit which con-

ducts the temporal interaction of all data path com-

ponents. This includes asserting handshake signals 

and setting an input selection for each multiplexer. 

After the scheduling, allocation/binding and inter-

connect allocation steps have been completed, the 

control path is completely specified in its behavior. It 

just needs to be expressed by an explicit implementa-

tion. In the scope of this contribution, an FSM repre-

sentation was chosen. Each control step of the 

schedule constitutes one state. A VHDL process 

steps the state forward with each rising clock edge. 

Another combinatorial process computes appropriate 

settings for handshake signals and multiplexers, 

based on the current state. FSM descriptions are rec-

ognized by FPGA synthesis tools. These try to infer 

an optimal hardware representation for the given 

FSM. To support optimal inference, we represent the 

state variable using a VHDL enumeration data type. 

This gives VHDL synthesis a chance to choose an 

optimal state encoding [21]. 

6.7 Source code generation 

The generated design involves VHDL source code, 

but also parameterization scripts for vendor-specific 

IP cores which were instantiated from the IP core 

repository. Although our approach is conceptually 

independent of device technology, the generated de-

sign is technology-dependent if it involves vendor-

specific IP cores. So far, Xilinx FPGAs are support-

ed. 

7 Results 

 
Figure 8: Sample model 

 

We demonstrate the transformation process using the 

model of a DC motor (Figure 8). The motor is con-

nected to an inertia and a load torque with quadratic 

dependency on speed. This is the typical behavior of 

a fan. The voltage at the voltage source (V.v) is 

used as input, current (V.i) and motor speed 

(J.om) are the outputs. 

The generated VHDL code is synthesizable on an 

FPGA. All Real variables of the Modelica model 

are represented by fixed point numbers with 32 bits 

precision at inputs and outputs. Intermediate results 

are processed at higher precision. The proportioning 

into integral and fractional part was done individual-

ly for each quantity, with respect to its range of val-

ues. Figure 9 compares the output values of the 

VHDL code to the simulation results, using the Euler 

forward method and a step size of 1 µs. The motor is 

fed by a voltage jump of 12 V. The simulation re-

sults are reproduced with sufficient accuracy. Minor 

deviations are caused by the fixed point representa-

tion of the variables in VHDL. 
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Figure 9: Simulation results (red) and FPGA re-

sults (blue) 

 

To achieve synchronized data transfer, the design 

unit is equipped with additional handshake signals. 

These signals control initialization and model 

evaluation. Figure 10 shows the basic structure of the 

resulting hardware design unit. Model initialization 

and evaluation are separated into two individual 

FSMs which share a register bank. Asserting the 

Init signal causes the initialization procedure to 

capture and preprocess all parameters. This includes 

precomputing the reciprocals of moment of inertia 

(J_J) and rotor coil inductivity (L). Since division is 

a costly hardware operation, this step improves 

runtime performance. 
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Figure 10: Architectural overview of the genera-

ted hardware design unit 

Figure 11 shows the interplay of all handshake sig-

nals. Once the initialization is complete, model eval-

uation is controlled by the signals NextStep and 

NextStepDone. As noted in Section 3, the latencies 

of arithmetic operators are design parameters and 

affect computation time, clock rate and chip area. 

Although low latencies reduce the overall computa-

tion time, this usually comes at the cost of clock rate.  

 

  

Figure 11: Initialization and runtime behavior of 

the design unit 

 

The goal was integrate the generated design into 

SET’s EME hardware. Due to the hardware require-

ments, the design must achieve a clock rate of 100 

MHz on a Virtex-5 LX110 device and complete any 

model evaluation within 1 µs. Consequently, the 

schedule of the overall computation (an example is 

given in Figure 7) must not exceed 100 clock cycles. 

Using three different configurations, we generated 

corresponding design variants. 

 

Table 1: Characteristics of the generated designs 

Lmul Ladd Ltot Slice usage Fmax (MHz) 

1 1 17 5% 89 

3 2 30 6% 105 

9 3 43 6% 102 

Table 1 summarizes the characteristics of the 

generated designs. The columns depict, from left to 

right: 32×32 bit multiplication latency, 32 bit addi-

tion latency, schedule length of model evaluation, 

slice usage and maximum achievable clock rate after 

placing and routing the design on the target device. 

Slice usage is an approximate measure of the chip 

area which is consumed by the hardware design. 

Although the first variant provides the fastest 

computation time, it does not reach the target fre-

quency of 100 MHz. The remaining two alternatives 

are both viable. However, the second option is supe-

rior compared to the third one. It provides an overall 

input/output latency of 400 ns at 100 MHz, including 

handshake-induced wait cycles. This is more than 

sufficient to meet the requirement of 1 µs. 

8 Conclusions and Outlook 

The toolchain approach described in this document 

will allow the efficient realization of flexible electric 

motor emulators. The combined model of motor and 

drivetrain is built using the FPGA-aware Modelica 

library. The resulting model is automatically trans-

formed to an FPGA design. The FPGA controls the 
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EME hardware. Although the computation needed to 

accomplish a DC motor simulation is manageable, its 

hardware implementation introduces many new de-

grees of freedom: architecture, scheduling, resource 

allocation and binding, parameterization of arithme-

tic data types and corresponding hardware operators. 

Designing such hardware manually is a complex and 

time-consuming task. If the first draft does not meet 

the design goals, alternative implementations need to 

be explored, multiplying the effort. This contribution 

will allow an EME operator to model an application 

using SimulationX and link it directly to the hard-

ware – even with moderate FPGA knowledge. 

One of the next steps in our joint research project 

is the semi-automatic determination of the optimum 

fixed point representation for the model variables. A 

compromise between accuracy and occupied FPGA 

resources is to be found. It is also conceivable to re-

alize a hybrid approach which combines fixed and 

floating point arithmetic in a single model, based on 

cost/accuracy tradeoffs. 

Another field is the convenient subdivision and 

numerically robust reconnection of sub models. This 

becomes eminent as soon as a complex model ex-

ceeds FPGA resources. In this case, slow sub models 

could be computed on a microprocessor, and only 

the fast parts run on the FPGA.  

The presented work is not restricted to electric 

motor emulation. It would be highly interesting to 

evaluate it for implementing sophisticated control 

algorithms on FPGA devices, based on Modelica 

models. 
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Abstract

Increasingly, innovative functionality in embedded sys-
tems is realized by connecting previously autonomous
embedded systems. This requires real-time communi-
cation and coordination between these connected sys-
tems. Modelica and the StateGraph2 library provide
a good environment for modeling embedded systems
including controllers and physics. However, it lacks
appropriate support for modeling the communication
and coordination part.

In this paper, we present an extension to the State-
Graph2 library that enables modeling asynchronous
and synchronous communication and rich real-time
constraints. We illustrate our extension of the State-
Graph2 library by modeling and simulating two minia-
ture robots driving in a platoon.

Keywords: StateGraph2, Modelica Library, Coordi-
nation, Asynchronous Communication, Real-Time

1 Introduction

Embedded software is an important part of today’s life.
For example, there were about 30 embedded micropro-
cessors per person in developed countries in 2008 and
current cars include up to 70 electronic control units
with about 1GB of software [4].

One reason for the increasing trend of embedded
systems is the introduction of coordination between
previously autonomous systems. As a result complex
systems of systems arise to realize functionality which
cannot be achieved by each system alone [12]. Again,
the car industry is an example where vehicles com-
municate with other vehicles in order to extend the
car’s vision to areas obstructed by other vehicles [15].
This coordination requires an intensive communication
between the systems under real-time constraints.

The embedded software is subject to very high qual-

ity requirements as often embedded systems are safety-
critical systems where faults can result in severe conse-
quences, e.g., injuries or loss of peoples’ lives. Thus,
faults of the system have to be avoided as much as pos-
sible. Currently, the rate of defects from mechanical
parts decreases while the defect rate in electrical parts
including software increases [4].

Therefore, appropriate validation and verification ac-
tivities, e.g., simulation, have to be employed to detect
and remove all faults. Model-driven development ap-
proaches allow to perform these activities already on
the model level in early phases of development. Thus,
on the one hand, a verification approach can exploit the
abstraction provided by the model to improve the scal-
ability and, on the other hand, verification can already
be performed early in the process where no implemen-
tation yet exists.

Modelica is an object-oriented, declarative, multi-
domain modeling language for describing and simu-
lating models which represent physical behavior, the
exchange of energy, signals, or other continuous-time
interactions between system components as well as
reactive, discrete-time behavior. Modelica uses the
hybrid differential algebraic equation formalism as a
sound mathematical representation. Furthermore, ma-
ture compilation and simulation environments for Mod-
elica exist.

However, Modelica in version 3.2 and particularly
the StateGraph2 library lack appropriate support for the
sketched case of modeling the real-time coordination
between autonomous systems as this coordination is
often realized by communication using asynchronous
messages and complex state-based behavior [12].

In this paper, we present a Modelica library for mod-
eling communication under hard real-time constraints.
Our library extends the StateGraph2 library by provid-
ing support for (1) synchronous and asynchronous com-
munication and (2) rich modeling of real-time behavior.
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These extensions are based on our previous work on
the MECHATRONICUML modeling language [2] and
ModelicaML [11].

In the next section, we present our running example.
We discuss the limits of the StateGraph2 library with
respect to this scenario in Section 3. Our extension to
the StateGraph2 library is described in Section 4. We
formally define our extension in Section 5. In Section 6,
we present the Modelica model of our scenario using
our library extensions. After a discussion of related
work in Section 7, we conclude and give an outlook on
future work in Section 8.

2 Running Example

This section presents our test platform for evaluating
real-time coordination scenarios. We present a concrete
real-time coordination scenario of a platoon drive as
the running example for the paper.

2.1 Intelligent Miniature Robot BeBot

The test platform is a wheeled mobile robot known as
BeBot [7]. It is a miniature mobile robot developed at
Heinz Nixdorf Institute and has been used in various
research projects, e.g., [8]. The BeBot is powered by
two DC-motors with integrated encoder.

To use this mobile robot in a simulation environment,
a model of the BeBot is developed in Dymola. Basi-
cally, the hardware model of the mobile robot can be
categorized into three main groups. The first group con-
sists of its casing and electrical circuit boards. All these
components are modeled as a rigid body in Dymola. In
addition, the shape model from the MultiBody library
is used to visualize these components in the animation.
The second group comprises the wheels of the robot.
Under the assumption of pure rolling, these wheels are
represented by a pair of wheels with a common axle
whereby each wheel is individually controlled. The
third group is made of two DC-motors. Each of these

Figure 1: Intelligent Miniature Robot BeBot
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Figure 2: Model of BeBot Mobile Robot in Dymola

motors is represented using a model of a DC-motor.
In this model, friction is taken into consideration to
provide realistic behavior for the motor. As shown in
Figure 2, these components are connected accordingly
to create a simple model of the BeBot.

To control the movement of the mobile robot, the ve-
locities of the wheels have to be controlled. Therefore,
a speed controller is designed to control the rotation
velocity of each wheel. The controller is a PI-controller
with anti-wind-up function and it ensures that each
wheel rotates at a desired velocity.

2.2 BeBot Platoon Scenario

The scenario consists of two BeBots (see Figure 3).
They communicate wirelessly with each other and have
a distance sensor at their front. Both have the same
software specifications. The BeBots drive on a straight
way in the same direction. The front-driving BeBot
transports a heavy good to the furthermost place of
delivery. The rear-driving BeBot transports several
small goods and has to deliver them to several stations.
As the front-driving BeBot is heavier than the rear-
driving BeBot, its cruising speed is slower than the
cruising speed of the rear-driving BeBot. To optimize
the energy consumption, BeBots may form a platoon,
i.e., the rear-driving BeBot drives in the slipstream of
the front-driving BeBot.

During platooning, a collision could occur if the
front-driving BeBot must brake very hard (e.g., due
to an obstacle on the street) and the rear-driving Be-

Figure 3: Platoon Scenario with Two BeBots

A Modelica Library for Real-Time Coordination Modeling 

 

366 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076365 

   



 

 

Bot does not know beforehand that it must brake. To
avoid a collision, the front-driving BeBot commands
the rear-driving BeBot by sending an asynchronous
brake-message to perform a brake maneuver. The
brake-message is transmitted to the rear-driving BeBot
that is going to brake as soon as it gets this message.
This delivery time is safety-critical, because the front-
driving BeBot brakes after that time and braking must
not result in a collision. A precondition to coordinate
such braking behavior is that a BeBot must know if an-
other BeBot is driving behind. Therefore, besides the
braking message also messages for starting and ending
a platoon are required.

The behavior specification of this scenario can be
modeled with statecharts, e.g., to distinguish if a BeBot
drives in a platoon or not. By using Dymola, the State-
Graph2 library is the first choice. However, the next
section shows the limits of StateGraph2 for modeling
the behavior of this real-time coordination scenario.

3 Limits of StateGraph2

StateGraph2 [9] is a Modelica library for state-based
modeling. It provides the three main classes Step, Tran-
sition, and Parallel for modeling statecharts. The class
Step models discrete system states, the class Transition
models state changes, and the class Parallel models
hierarchical and parallel states.

Statecharts are used to describe the behavior of reac-
tive systems. The reactions of such systems are based
on their current internal state and the external input.
Formalisms for Mealy machines, Harel’s statecharts [5],
and most common automata-based formalisms support
events that can be used for a message-based commu-
nication. However, StateGraph2 does not have syn-
tactical constructs. Different steps or transitions can
only communicate via shared variables. In real systems,
this is not possible when the systems are distributed
and have no access to shared memory. The need of
shared memory makes it difficult to reuse components
as they depend on their environment and not only on
their interface description. Therefore, a message-based
mechanism is very important. This may be either an
asynchronous or a synchronous communication.

StateGraph2 has only a limited support to specify
timing behavior. Only the execution of transitions can
be delayed. The variable waitTime of a Transition spec-
ifies the time a transition waits before it fires when its
guard evaluates to true. If during the waiting period
the guard evaluates back to false, the transition does
not fire. Therefore, the construct delayedTransition of

StateGraph2 can be misinterpreted, because the seman-
tics includes more than a simple delay. In contrast to
StateGraph2, Timed automata [1] use clocks to store
time independently of a concrete state. Clocks can be
read and reset in any state and upon firing of a transition.
Therefore, this concept is more flexible for specifying
timing behavior. To conclude, the variable waitTime
alone is too limited to describe real-time behavior.

A modeling language for the software of mecha-
tronic systems that supports hierarchical statecharts as
well as synchronous and asynchronous communication,
and clocks is MECHATRONICUML [2]. The formal
behavior definition of this language is based on timed
automata [1]. Therefore, our extensions of the State-
Graph2 library are based on concepts of MECHATRON-
ICUML. The next section explains these extensions.

4 Real-Time Coordination Library

As stated above, adequate modeling constructs for syn-
chronous as well as asynchronous communication and
for real-time behavior are essential for modern em-
bedded systems. Here, we consider synchronous and
asynchronous communication to be a message-based
communication where the former means that the sender
always waits as long as the receiver is not able to con-
sume the message. The latter means that the sender
does not wait on a reaction of the receiver and proceeds
with its execution that, in particular, might include
sending further messages. For asynchronous commu-
nication, this implies that the receiver has to have a
message buffer which is sufficiently large to prevent
loss of messages.

This section introduces our extended version of the
StateGraph2 library, called real-time coordination li-
brary. In particular, Section 4.1 introduces synchro-
nization ports and synchronization connectors for syn-
chronous communication. Section 4.2 shows Messages
and Mailboxes for asynchronous communication. Fi-
nally, Section 4.3 describes Clocks, Invariants and
Clock Constraints for the modeling of real-time be-
havior according to time automata [1].

4.1 Synchronization Connectors and Ports

For the modeling of synchronous communication, we
extended transitions by synchronization ports (sync
ports). Sync ports sub-divide into sender sync ports
and receiver sync ports. A sender sync port of one tran-
sition is connected to a receiver sync port of another
transition by a synchronization connector. We repre-
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sent a sender sync port as a non-filled orange circle, a
receiver sync port as a filled orange circle and a syn-
chronization connector as an orange line. In Figure 4,
a synchronization connector connects the sender sync
port of transition t1 with the receiver sync port t2.

t1 t2

FrontPlatoon

NoPlatoon

Front

Regular

BeBot_SW_Main

!front

Platoon

?front

Platoon

Figure 4: Synchronization Ports and Connectors

A transition that is connected via its sender or re-
ceiver sync ports to the receiver or sender sync ports
of other transitions is allowed to fire if it is able to
fire together with at least one of the connected transi-
tions. For the example in Figure 4, this means that t1 is
allowed to fire if t2 is able to fire and vice versa.

We now give a detailed explanation of how the fir-
ing of transitions with synchronization is implemented.
The implementation is presented with help of the de-
pendency graph in Figure 5.

First, the necessary conditions for firing each of the
transitions (without synchronization) have to be sat-
isfied, i.e., the preceding generalized step has to be
active, the condition of the transition must hold and the
optional condition port of the transition must be set. If
all of these conditions hold, the property preFire of each
of the transitions will evaluate to true.

Furthermore, if an after time is specified for the tran-
sition it must have expired. The after time construct is
new and replaces the delay (wait) time from the origi-
nal version of the StateGraph2 library. It differs from
the delay time in that at least the after time must have
expired to let the transition fire. In contrast, the seman-
tics of the delay time is that the delay time must have

receiving transition

receiver sync
port

preFire

fire_ready_r

fire_r

sending transition

se
nd

er
 s

yn
c

po
rt

fire_ready_s

fire_s

preFire

Figure 5: Dependency Graph of Conditions for Firing
of Transitions with Synchronization

expired after the transition is fireable in order to let the
transition fire. We introduced the after time semantics
because it might happen that for two transitions that
need to synchronize the time instants in which they are
allowed to fire might not match due to their delay time.

If preFire of the sending transition, i.e., the transition
whose receiver sync port is connected to the synchro-
nization connector, is true, the signal fire_ready_r of
the receiver sync port is set to true. If for the sending
transition, i.e., the transition whose sending sync port is
connected to the synchronization connector, holds that
preFire is true and it receives the signal fire_ready_r over
its sender sync port then the signal fire_ready_s of its
sender sync port is set to true. If the signal fire_ready_s
is true in the receiving transition the signal fire_r of
the receiver sync port is set to true. Finally, if fire_r
is recognized to be true in the sending transition the
signal fire_s of its sender sync port is set to true and
both transitions are ready to fire.

4.2 Messages and Mailboxes

For the modeling of asynchronous communication, we
introduce two new components named Message and
Mailbox. Each instance of the Message component has
two purposes. On the one hand, it defines a certain mes-
sage type by specifying an array of formal parameters
which might be of type Integer, Boolean or Real. As
an example one message type might be defined by the
array (Integer[2],Boolean[1],Real[1]). The parameter
array of a message type is also called its signature. On
the other hand, an instance of the Message component
is responsible for sending a message whenever a con-
nected transition fires. A transition is able to signal to a
Message component instance to send a message if the
firePort of the transition is connected to the condition-
Port of the Message component instance.

As a visualization example consider the message
type confirm in Figure 6. The purple connector connects
the firePort of the transition t1, displayed as a non-filled
purple triangle, to the conditionPort of confirm where
the conditionPort of confirm is represented by a purple
triangle. Additionally, confirm has exactly one Integer
parameter that is determined by the yellow connector
that originates at the port cruisingSpeed and connects to
the Integer valued input port of confirm represented by
a yellow filled circle.

For each message type exists exactly one instance
of the Mailbox component with the same signature.
The message type sends its messages to the Mailbox
instance. To specify which message type belongs to
which Mailbox instance the message_output_port of the
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message type is connected to the mailbox_input_port of
the Mailbox instance.

A Mailbox instance defines a finite FIFO queue
where the size of the queue is settable at design time. In
order to let a transition receive a certain message from
such a queue its transition_input_port is connected to
the mailbox_output_port of the Mailbox instance. Then,
the transition is allowed to fire if the Mailbox instance
signals that at least one message is present. As an exam-
ple for the visual representation consider the Mailbox
instance confirmBox in Figure 6 that is connected to the
transition t2 by a connector.

If two extended StateGraph2 models are included in
different component instances they might still commu-
nicate asynchronously across the boundaries of these
component instances with the help of delegation ports.
Therefore, one component defines an output delega-
tion port and the other defines an input delegation port.
Both delegation ports are connected. Then, the com-
ponent instance containing the message type connects
the message type to the output delegation ports and the
component instance containing the Mailbox instance
connects the Mailbox instance to the input delegation
port. As an example consider Figure 6 which shows
two extended State Graph models in two separate com-
ponent instances communicating over delegation ports
that are displayed as envelopes with gray triangle.

Synchronous and asynchronous communication can
be combined at one transition. Besides the synchroniza-
tion conditions the Mailbox instance additionally has
to signal to the transition that at least one message is
available.

4.3 Clocks, Invariants and Clock Constraints

For the modeling of real-time behavior according to
timed automata, we extended the StateGraph2 library

    front:BeBot_SW

t1

        rear:BeBot_SW

t2

confirm ConfirmBox

FrontPlatoon

NoPlatoon PlatoonProposed

RearPlatoon

cruisingSpeed

BeBot_SW_Main BeBot_SW_Main

Figure 6: Message Types and Mailbox Instances

by three components named Clock, Invariant and Clock-
Constraint. Clocks are real-valued variables whose
values increase continuously and synchronously with
time. Clocks might be reset to zero upon activation of a
generalized step or firing of a transition. An invariant is
an inequation that specifies an upper bound on a clock,
e.g., c < 2 or c <= 2 where c is a clock. Invariants are
assigned to generalized steps and are used to specify
a time span in which this generalized step is allowed
to be active. A clock constraint might be any kind of
inequation specifying a bound on a certain clock, e.g.,
c > 2, c >= 5, c < 2, c <= 5 where c is a clock. Clock
constraints are assigned to transitions in order to restrict
the time span in which a transition is allowed to fire.

As an example consider Figure 7. The example con-
sists of a clock c, an invariant clockValue <= bound and
a clock constraint clockValue >= bound where bound is
a positive integral number given as a parameter. Clocks
are displayed as a rectangle containing a clock icon,
invariants are displayed as rectangles containing the
corresponding inequation and a transition icon. Clock
constraints are displayed as rectangle containing the
corresponding inequation and a step icon. The clock
which is used by an invariant or a clock constraint is
connected via its y port with the clockValue port of the
invariants and clock constraints.

When the generalized step PlatoonProposed is acti-
vated, the clock c is reset to zero, which is accomplished
by connecting the activePort (non-filled purple triangle)
of PlatoonProposed to the u port (non-filled purple cir-
cle) of the clock. The invariant is assigned to the step
PlatoonProposed by the connector originating at the ac-
tivePort of PlatoonProposal leading to the conditionPort
(filled purple circle) of the invariant. It means that Pla-
toonProposed is allowed to be active if c has a value
less or equal to bound. The transition t1 is assigned
the clock constraint by connecting the firePort of the
clock constraint with the conditionPort of t1. The clock

t1

Platoon

Proposed

clockValue <= 

bound

NoPlatoon

clockValue <= 

bound

Invariant

c

y

Figure 7: Clocks, Invariants and Clock Constraints
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constraint means that t1 is allowed to fire if c has a
value greater or equal to time bound.

5 Formal Definition of the Library

This section covers the formal definition of an extended
StateGraph2 model. The Real-Time Coordination li-
brary extends the structure of the model given in [9]
by synchronization connectors, mailboxes, clocks, in-
variants and clock constraints whereas the former two
are required for synchronous and asynchronous com-
munication resp. and the latter three are used for the
specification of real-time behavior analogously to time
automata [1]. Due to the possibility of synchroniza-
tion of two transitions, we altered the delay time of a
transition to an after time, which has slightly different
semantics.

For the definition of the semantics we give an inter-
pretation algorithm that is analogous to the one given
in [9]. Additionally, consider the added elements, i.e.,
when a generalized step is active the corresponding in-
variant must not be violated. Further, when a transition
fires its clock constraint must be satisfied, it must be
able to synchronize, and to receive the required mes-
sages.

We present the structure in Section 5.1 and introduce
an interpretation algorithm that defines the semantics
in Section 5.2.

5.1 Structure

The extension is represented by the following tuple

Ext := (Sync,MBox,C, INV,CC)

where Sync denotes the set of synchronization connec-
tors required for synchronous communication. Let Msg
be the set of messages used for asynchronous commu-
nication. Then MBox : Msg→ N determines for each
message how often it is available in its corresponding
mailbox. The real-time extension is covered by the set
C of clocks, the set Inv of invariants and the set CC of
clock-constraints.

As said before, the set of messages results from all
possible combinations of message parameters. We ab-
stracted from message parameters here, simply saying
that there exists a set of distinct messages. Further-
more, in the implementation of our extension there
exists the MailBox component for the realization of
asynchronous communication. Since the number of
messages included in a certain mailbox suffices to be
able to determine whether a transition that requires
such a message is able to fire, we abstracted from the

mailboxes here in form of the MBox function. The
following definition consists of elements that where
already defined in [9]. For the sake of completeness,
we describe and list them.

With the help of our extension Ext, we define an
extended StateGraph2 model (ESGM) Γ as follows:

Γ := (Vc,G,T,GI,GE ,Ext)

where

• Vc is a set of Boolean expression as defined in [9].
• G is a set of generalized steps G = {g1,g2, . . .}

A generalized step gi is defined as a 7-Tuple

gi = (Γs, I,O,S,R, Invgi ,RESETgi)

where
− Γs is a possibly empty set of sub-graphs Γs =
{γ1,γ2, . . .}. A sub-graph γi ∈ Γs is again an
ESGM. Note that this recursive definition allows
an arbitrary deep nesting of ESGMs.

− I is a vector of in (entry) ports I = [i1, i2, . . .]. An
in port is a connection point incoming transitions
of gi are connected to.

− O is a vector of out (exit) ports O = [o1,o2, . . .].
An out port is a connection point outgoing transi-
tions of gi are connected to.

− S is a possibly empty vector of suspend ports
S = [s1,s2, . . .]. A suspend port is a connection
point outgoing transitions of gi are connected to.
The difference to out ports is that the active gener-
alized steps of sub-graphs of gi are stored for later
restore.

− R is a possibly empty vector of resume ports R =
[r1,r2, . . .]. A resume port is a connection point
ingoing transitions of gi are connected to. The
difference to in ports is that the active generalized
steps of sub-graphs of gi that were active when gi

was left by a suspend port are restored.
− Invgi ⊆ Inv is a set of invariants. An invariant

describes that a clock must never exceed a certain
bound when the generalized step is active. It is
denoted as an inequation of the form c≤ n, where
c ∈ C is a clock and n ∈ N is a natural number
(including zero).

− RESETgi ∈C is a set of clocks that are to be reset
to zero when the generalized step is activated.

A generalized step that has in and out ports but no
other ports and no sub-graphs, i.e., I 6= /0, O 6= /0 and
R = S = Γs = /0 is called step. A generalized step
that has resume ports, suspend ports or sub-graphs,
i.e., R 6= /0, S 6= /0 or Γs 6= /0 holds, is called parallel
step.

• T is a set of transitions T = {t1, t2, . . .}. A transition
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ti ∈ T is defined by the 10-tuple

ti = (pIR
ti , pOS

ti ,Cti ,Ati ,CCti ,Rti ,S
R
ti ,S

S
ti ,M

R
ti ,M

S
ti )

where
− pIR

ti is a connected port of an in or resume vector
of a succeeding generalized step gi ∈ G.

− pOS
ti is a connected port of an out or suspend vector

of a preceding generalized step gi ∈ G.
− Cti ∈Vc is the fire condition associated with ti.
− Ati ∈ R is the after time associated with ti. Note,

that we consciously chose the name after time
instead of delay time as in the original definition
in [9] since the semantics of the after time will be
different from the one of the delay time.

− CCti ∈ CC are the clock constraints associated
with ti.

− Rti ∈C are the clocks to be reset when ti fires.
− MR

ti ⊆Msg is the message that must be received
when ti fires.

− MS
ti ⊆Msg is the message that is sent when ti fires.

− SR
ti ⊆ Sync is the synchronization connector that

has to be set by another transition when ti fires.
− SS

ti ⊆ Sync is the synchronization connector that is
set if ti is firable.

We further define that a transition might have at most
one message that is to be received and at most one
message that is to be sent, i.e., |MR

ti | ≤ 1 and MS
ti ≤ 1

resp., and at most one synchronization connector
over which a signal is sent or received, i.e., |SR

ti |+
|SS

ti | ≤ 1.
• GI ⊆ G contains the initial generalized step of Γ.
• GE ⊆ G contains the exit generalized step of Γ.

As a well-formedness constraint, we assume that
every ESGM has exactly one initial state and at most
one exit state, i.e., |GI| = 1 and |GE | ≤ 1. Further-
more, we assume that the uppermost ESGM Γ =
(Vc,G,T,GI,GE ,Ext), i.e., that ESGM that is not em-
bedded by any other ESGM, does not have an exit
generalized step, i.e., GE = /0.

5.2 Interpretation Algorithm

1. Activate the initial generalized step g ∈ GI . If g
has sub-graphs, then recursively activate the initial
generalized steps of all of its embedded sub-graphs.

2. Determine the set Tf ireable of all transitions ti that
satisfy:
− its condition Cti is true,
− the required after time Ati has passed,
− its in or resume port pIR

ti is set to true,
− if its preceding generalized step has sub-graphs,

the exit generalized steps of all of these sub-

graphs are recursively activated
− if MR

ti 6= /0 and m ∈ MR
ti is the message to be re-

ceived by ti, the Mailbox of m contains at least
one message, i.e., MBox(m)> 0.

− there exists no other transition t j ∈ Tf ireable that
has the same preceding generalized basic step
and has higher priority than ti where the priority
results from the index of the transition in the port
vector (see [9]).

3. For all ti ∈ Tf ireable do:
i. if SS

ti 6= /0 and s ∈ SS
ti is the synchronization con-

nector of ti for sending a signal, set s to true
4. Determine the set Tsyncable of all transitions ti ∈

Tf irable that satisfy:
− either SR

ti = /0 or
− if SR

ti 6= /0 and s ∈ SR
ti is the synchronization con-

nector of ti, ti is set to true
5. For all ti ∈ Tsyncable fire ti as follows:

i. Deactivate the preceding generalized step g of
ti. If gi includes sub-graphs deactivate these sub-
graphs recursively.

ii. Activate the succeding generalized step g′ of ti. If
g′ includes sub-graphs activate these sub-graphs
recursively as follows:
− if ti is connected to g′ by a resume port, the

generalized steps of g′ and of all sub-graphs of
g′ that where active the last time g′ was active
are recursively activated

− else, activate all initial generalized steps of g′

and its sub-graphs recursively.
iii. if MR

ti 6= /0 and m ∈ MS
ti is the message to be re-

ceived by ti, then take one message out of the the
Mailbox of m, i.e., MBox := (MBox\{(m,d)})∪
{(m,d−1)} where d ∈ N is the amount of mes-
sages in the mailbox before ti fires.

iv. if MS
ti 6= /0 and m ∈MS

ti is the message to be sent
by ti, then put one message into the Mailbox of m,
i.e., MBox := (MBox \ {(m,d)})∪ {(m,d + 1)}
where d ∈ N is the amount of messages in the
mailbox before ti fires.

6. Goto 2.

6 Case Study

This section shows how we modeled the platoon sce-
nario. First, we used the StateGraph2 library in com-
bination with our Real-Time Coordination library to
specify the discrete software. Then, we connected the
software model with the simulation model of the BeBot
hardware that we have presented in Section 2.1. This
section shows an excerpt of our model. The complete
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model is delivered within our Real-Time Coordination
library.

Figure 8 shows the discrete behavior specifica-
tion that we modeled as class BeBot_SW in Dy-
mola. We used the Step components and the Parallel
component from the StateGraph2 library. From the
Real-Time Coordination library, we used the Transi-
tion components, the Message components, the Mail-
box components, and the DelegationPort components.
We omit guards, connection lines between synchroniza-
tions, and timing constraints.
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Figure 8: Platoon Scenario Behavior Modeled

The interface of the class BeBot_SW defines three in-
coming parameters: the distance to a BeBot, that drives
in front, the cruisingSpeed of the BeBot, and bebotStop
that defines if the BeBot has to stop. The outgoing
parameter is the speed of the BeBot. Furthermore, five
asynchronous messages are defined that can be sent
and received: StartPlatoon to propose to start a platoon,
Confirm to confirm the start proposal, EndPlatoon to
command the end of the platoon, Stop to command
a rear-driving BeBot to stop, and Drive to inform a
rear-driving BeBot that it no longer has to stop.

Within BeBot_SW, two parallel branches were de-
fined. The first branch handles the platoon activation
and deactivation and consists of the steps NoPlatoon,
PlatoonProposed, and FrontPlatoon. The second branch
handles the coordinated braking within a platoon and
consists of the steps Regular (a BeBot has no limita-
tions regarding braking), Front (a BeBot has first to
inform the rear-driving BeBot before braking), and
Rear (a BeBot must brake when the front-driving Be-
Bot commands it). The synchronization between the
two branches is realized by using synchronous commu-
nication, e.g., if step FrontPlatoon is activated, then step
Front will also be activated at the same time. Among
others, this class contains a timing constraint that the
state PlatoonProposed is no longer active than 50ms.

Figure 9 shows the two connected instances front and

rear of the class BeBot_SW. Furthermore, it shows two
instances of the BeBot hardware model (see Figure 2)
and how they are connected with the software models.
The instance distance of the class Distance calculates the
distance of the rear BeBot to the front BeBot. We do
not display the connections to the inputs cruisingSpeed
and stop.
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Figure 9: Platoon Scenario Instance Model

Figures 10 and 11 show the results of a simulation
run of the model. Figure 10 shows the asynchronous
messages that were sent between the rear- and the front-
driving BeBot. Figure 11 shows the speed result of
both BeBots during a performed simulation. Right at
the start, the rear-driving BeBot speed was higher. As
the distance had reached a size where a platoon was
needed, the rear-driving BeBot sent the message Start-
Platoon. At time 8.6, the rear-driving BeBot received
the message Confirm(1) so it had adjusted its speed to
1. At time 25, the stop input of the rear-driving BeBot
raised to 1. Therefore, the rear-driving BeBot ended
the platoon by sending the message EndPlatoon and
stopped for 10s. Then the rear-driving BeBot started
again to close the gap by driving faster and to start a
new platoon.

front:BeBot_SWrear:BeBot_SW

Figure 10:
Sequence Diagram

Figure 11:
Simulation Plot

Figure 12 shows the 3D view of the simulation run.
The left shows the moment when the rear BeBot drives
faster than the front BeBot and the right shows when
both BeBots drive in the platoon with the same speed.
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Figure 12: 3D View of Simulation

7 Related Work

This section presents some other approaches for model-
ing discrete state-based behavior for simulating hybrid
cyber-physical systems. We focus on the capabilities to
model and simulate real-time properties and constraints
of the behavior, synchronize parallel behavior, and to
communicate via asynchronous messages.

7.1 SimulationX

SimulationX supports an own representation of state
machines which follows the model of UML state ma-
chines but only implements a limited subset [3]. Sim-
ulationX state machines have no support for parallel
behavior and therefore no support of synchronizations.
The asynchronous signals have no support for an ar-
bitrary number of parameters and are lost when the
receiver is not enabled to consume them immediately.
They have no concept of a mailbox for storing messages.
SimulationX supports only limited timing support. Its
time events only react to an expression which is rela-
tive to the active state time of the transition which is
triggered by the after event. It is not possible to model
time invariants as first class entities. As SimulationX
supports Modelica, it is possible to port the concepts
that we present in this paper to SimulationX.

7.2 ModelicaML

ModelicaML is a UML Profile [13] which extends
UML Classes and Properties with Stereotypes for Mod-
elica. Therefore, it is possible to model with UML
Classes as in Modelica. Further, ModelicaML defines
a mapping of UML state machines and simple internal
events to plain Modelica algorithmic code [14]. For
more complex messages it is possible to use external
C-functions [11]. A code generation algorithm does
the mapping of UML state machines to Modelica code
automatically. In contrast to the State Graph2 exten-
sion presented in this paper it is hard to edit the state
machine behavior directly in Modelica because it is
encoded in a complex algorithm. Further, ModelicaML
has no support for synchronization of parallel behavior

from different regions as presented in Section 4.1. Mod-
elicaML supports only rudimentary timing behavior as
first class entity with its AFTER-macro [14]. This con-
struct is a transition guard relative to the active time of
a state. ModelicaML also does not support time invari-
ants of states. As ModelicaML supports Modelica, it
is possible to port the concepts that we present in this
paper to ModelicaML.

7.3 MATLAB/Simulink, Stateflow

MATLAB provides the custom modeling language
Stateflow for state based behavior. Stateflow has in-
terfaces to the Simulink environment. Stateflow has
some drawbacks for modeling communication proto-
cols with real-time requirements between distributed
systems. For clocks, helping elements from Simulink
to count time-ticks are needed. Stateflow also has no
concept of asynchronous, message-based communica-
tion with mailboxes for sent and received messages.
Stateflow events are not buffered by the receiver and
could be lost if the receiver is busy. It is possible to
encode asynchronous message-based communication.
Therefore, you need a complex combination of several
linked Simulink and Stateflow blocks, which is hard to
maintain manually [6, 10].

8 Conclusions and Future Work

Today, autonomous embedded systems are increasingly
connected to each other to realize new innovative func-
tionality, e.g., in the case of vehicle-to-vehicle commu-
nication to realize platooning.

We presented an extension of the StateGraph2 library
that enables modeling a real-time communication and
coordination between autonomous embedded systems
by providing library elements for asynchronous and
synchronous communication as well as real-time con-
straints. We modeled two miniature robots that drive in
a platoon with our library to simulate it.

We plan to make several additions to our library.
Asynchronous message exchange between autonomous
systems may suffer from message loss or message de-
lays. Therefore, we plan to enable modeling different
probabilistic quality of service characteristics, e.g., mes-
sage delays and message losses. The new Modelica ver-
sion 3.3 have built-in support of finite state machines,
which makes the StateGraph2 library obsolete. How-
ever, the new built-in finite state machines does not
support asynchronous message-based communication,
so we suggest to use our extensions for asynchronous
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message-based communication. The integration is up
to further research.

With respect to tool chains, we want to implement
automatic transformations from MECHATRONICUML
to the presented extended StateGraph2 library. This
allows us to reap the benefits from formal verification
by model checking, which is possible for models of the
MECHATRONICUML [2], and integrated simulation
including feedback controllers and physics by using
Modelica. Finally, we will use our library in several
other case studies, including a de-centralized industrial
dough mixing system.
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Abstract

When an Integrated Development Environment (IDE)
is developed, the support for multiple views of the
same document is often essential. An example of this
is Modelica models, where it should be possible to
view and edit the same model in both its textual and
graphical representation.

One implementation of Modelica is the open source
platform JModelica.org. It contains the Eclipse-based
JModelica.org IDE, providing a text editor for Model-
ica code based on the Eclipse platform.

In this paper, we present an implementation of a
graphical editor for the JModelica.org IDE. Several
challenges arising when implementing a graphical ed-
itor for Modelica models are discussed. Amongst
others, the difficulties in rendering Modelica dia-
grams and how to interact with existing frameworks
in Eclipse are covered. Also, a method for preserving
the formatting of a modified source code file is pre-
sented, which is essential when the model is altered in
the graphical editor.

The presented implementation is compared to other
open source software (OSS) implementations of Mod-
elica editors.

Keywords: AST; JModelica.org; Eclipse; GEF;
Graphical Editing; Icon Rendering; Preserved File
Formatting; Pretty Printing

1 Introduction

Simulation and optimization of dynamic systems is be-
coming a standard tool in several industrial branches.
The trend is mainly driven by the demand for de-
creased product time to market and shortening the de-
velopment time, by substituting system prototyping
for simulation. Modelica is one of many domain spe-

cific languages developed with the goal to meet the
demand of such model-based design languages.

One implementation of the Modelica language is
the JModelica.org platform [1]. It contains a Mod-
elica compiler as well as an Integrated Development
Environment (IDE) for Modelica code. Currently, a
comprehensive text editor for editing Modelica source
code is available in the JModelica.org IDE [2], allow-
ing the developer to define new models based on equa-
tions and existing models. The JModelica.org IDE is
implemented using the Eclipse framework1 which is a
modular, extensible application framework for IDEs.

In this paper, we present an implementation of a
graphical editor for Modelica in the JModelica.org
platform which will complement the textual editor, al-
ready available in the JModelica.org IDE. The editor is
implemented as an Eclipse plugin using the Graphical
Editing Framework (GEF)2 which is a framework for
creating graphical editors, developed for the Eclipse
platform. The graphical editor communicates and
modifies Modelica models through an abstract syntax
tree (AST). It also features preserved file formatting
in the JModelica.org IDE. The work presented in this
paper is the result of two master’s theses [3, 4], con-
ducted at Modelon AB.

This paper is outlined as follows. In Section 2,
a brief background of the JModelica.org platform is
given and the compiler construction framework Jas-
tAdd [5] is introduced. The Eclipse project and the
Graphical Editing Framework (GEF) are also intro-
duced in this section. In Section 3, a comparison to
similar OSS tools is presented. The implementation
of the graphical editor is discussed in Section 4 and
Section 5 summarizes this paper.

1http://eclipse.org
2http://eclipse.org/gef
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2 Background

2.1 JModelica.org

JModelica.org is an open source project for optimiza-
tion and simulation of complex dynamic systems. The
JModelica.org platform includes compilers for Mod-
elica and the Modelica language extension Optim-
ica [6], as well as an integration to the simulation pack-
age Assimulo [7]. An interface to the compilers and
simulation and optimization algorithms is available in
Python, which enables scripting of the typical model-
ing and optimization activities.

Also part of the JModelica.org platform is an IDE
for Modelica. The JModelica.org IDE is implemented
as a plugin in Eclipse using the JModelica.org compil-
ers and the JastAdd framework. The IDE provides tex-
tual editing support such as syntax highlighting, code
folding, code outline, brace matching and error check-
ing of models.

2.2 Eclipse

The Eclipse Foundation is an open source community
whose aim is to produce open development platforms
with comprehensive extension frameworks3. The IDE
is heavily modularized so that it is possible to add, re-
move and extend functionality with a small amount of
code and without altering any core source files. The
modularization also makes it possible to create dif-
ferent bundles, including different editors and views.
For instance, there is the Eclipse Software Develop-
ment Kit (SDK) that includes a comprehensive Java
Development Tool (JDT) for Java development and
also the C++ Development Tool that is an IDE for C
and C++. These are two different development envi-
ronments with different functionality, yet they still use
the same base IDE and base functionality.

2.3 GEF

The Graphical Editing Framework (GEF) is one of
the most popular frameworks for graphical editing in
Eclipse and it is also the one used for the editor in this
paper4. GEF is a rather complicated system with many
design patterns and classes. When developing graphi-
cal editors using GEF, the developer has to define two
types of classes, EditParts and EditPolicies.

EditParts is the most basic part of GEF. These
classes join the document model with the view. There

3http://eclipse.org
4http://eclipse.org/gef

Model EditParts Figures
Domain Specific GEF Domain Draw2D Domain

Figure 1: View of the document model, EditPart and
figure tree and their linkage.

is usually a one to one representation between doc-
ument model nodes and EditPart classes. The view is
represented by figures. Normally, figures also map one
to one with EditParts, see Figure 1.

EditPolicies handle the interaction with the user, the
Eclipse framework and the underlying model. For ex-
ample, the graphical editor specifies an EditPolicy that
determines what should happen when the user tries to
move a component. If the move is valid, it will cre-
ate a move command that alters the model component
definition.

An EditPolicy specification usually only handles a
single task or a group of related tasks. Using this pat-
tern means that the user interaction is separated from
the EditParts. Instead, the interaction is handled by
EditPolicies installed on EditParts. This enables dif-
ferent EditParts with similar behavior to use the same
EditPolicies, which reduces code complexity. It is also
convenient for the developer, since it allows for grad-
ually extending the functionality with new features.

2.4 JastAdd

JastAdd5 is an open source meta-compilation system
that is used for compiler generation and other pro-
grams that have the need to analyze code. It provides
means to define attribute grammars [8], and introduces
the possibility to use aspect-oriented programming
(AOP) when constructing a compiler. With aspects,
the source files describe a certain behavior or function-
ality, rather than objects in object-oriented program-
ming (OOP). In other words, the behavior for several
different objects may be defined in the same aspect.

JastAdd code is organized in abstract grammar files
and aspect files. These source files are collected and
the functionality from the aspects is woven into Java
files before they are finally compiled.

The JastAdd project provides a framework for sup-
porting IDEs based on Eclipse [2]. It consists of a
generic IDE plugin with supporting classes and default

5http://jastadd.org
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aspects for attributes. The attributes provide common
services such as code folding and code outline. The
main parts of the generic IDE plugin are the builder
and the registry. When the Eclipse framework needs a
build, it triggers the builder. The builder then delegates
the work to a compiler. When the compiler is done, it
provides an AST for files or projects. These ASTs are
cached in the registry.

2.5 Graphical Annotations

In this paper, Modelica annotations, or more specifi-
cally graphical annotations, will play an important part
since they are used for representing a model and its
components graphically. A graphical editor uses the
information in the graphical annotations when render-
ing icons and diagram. The editor also modifies anno-
tations when the user makes changes in the graphical
editor.

Listing 1: Code example of graphical annotations in
the three different locations permitted.
model LowPass

. . .
Analog . B a s i c . R e s i s t o r R1
a n n o t a t i o n ( P l acemen t ( t r a n s f o r m a t i o n (

e x t e n t ={{−25 , −25} ,{25 , 25}} ,
o r i g i n ={−25 , 50}

) ) ) ;
. . .

equat ion
. . .
connect ( R1 . n , p2 )
a n n o t a t i o n ( L ine ( p o i n t s = . . . ) ) ;
. . .
a n n o t a t i o n (

I co n (
c o o r d i n a t e S y s t e m ( e x t e n t = . . . ) ,
g r a p h i c s = { . . . }

)
) ;

end LowPass ;

There are three locations where graphical annota-
tions may appear:

(a) Directly after a component definition. If specified,
it will define how that component should be ren-
dered, size and origin.

(b) Directly after a connect statement. If specified,
it will define how the connection should be ren-
dered, line points and its color.

(c) At the end of a model definition. If specified, it
will define how the icon and diagram of the model
should be drawn.

Examples of the three different locations are illustrated
in Listing 1.

3 Related Work

There are several approaches to formatting preserva-
tion and graphical Modelica editing. In this section, a
comparison will be given to some of the popular open
source alternatives.

3.1 Formatting Preservation

OpenModelica6 is another open source initiative based
on Modelica. The OpenModelica environment also
has procedures for preserving formatting. Peter Fritz-
son et al. describes these procedures as an initiative to
preserve comments and indentation when refactoring
Modelica code [9].

OpenModelica stores the text representation of the
code in a separate tree, which has the same structure
as the original AST. In this way, they are able to avoid
cluttering the AST with text positions. The text rep-
resentation is created piece-wise when needed. The
nodes in this separate tree stores the text positions and
have a one-to-one mapping with the nodes in the AST.

While the solution for preserving formatting pre-
sented in this paper also aims to do most of the work
when it is actually needed, it does more work in the
parsing process. The position of the nodes and the ac-
tual formatting text and type is extracted during pars-
ing. This data is then associated to the source AST.
This makes the AST slightly more memory consum-
ing at first, compared to the OpenModelica solution.

The most significant difference between the two so-
lutions is that in JModelica.org, the formatting always
resides in the source AST while OpenModelica stores
it in a separate tree. Although this makes the source
AST in JModelica.org more verbose, the advantage is
that modifying the source AST does not require any
synchronization with a second tree.

Maartje de Jonge and Eelco Visser have also pre-
sented an algorithm for preserving the original layout
of source code when modifying an AST [10]. Their al-
gorithm relies on text reconstruction and origin track-
ing. The algorithm stores a reference to the leftmost
and rightmost token in the stream for each node in the
AST, which in turn holds the corresponding start and
end offset. When the AST is to be modified, the nodes
and their positions in the new tree are traced back to

6http://openmodelica.org
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their origin. The text can then be reconstructed from
this origin.

The algorithm also comes with an intelligent heuris-
tic for associating comments with the correct node.
Cases such as block comments, comments before and
after a line of code, inside comma separated lists, code
removed by commenting and multi-line comments be-
side multiple statements are discussed. Suggestions
how to handle most of these cases are also described.

The solution presented in this paper is less involved
than the algorithm by de Jonge and Visser, but still
covers the realistic cases threated in this paper. All
comments in the source code that are located on the
right-hand side of a node, but before a line break or
the next node, are associated with that node. Any com-
ments that follow are considered to belong to the next
node, and so forth. It is important to remember that
comments are meant for people, not machines, to read
and interpret. Thus, there are no predefined rules for
how to relate comments to code and it is practically
impossible to perfect such an algorithm.

As the JModelica.org IDE is an Eclipse plugin it
is worth mentioning how the Eclipse Java Develop-
ment Tools (JDT) handles changing the AST. The
Eclipse JDT has an API for refactoring code using the
AST [11]. When AST nodes are added, removed or
replaced in JDT, these operations are translated into
text edits which can then be applied to the original
source. This is a very different approach than ours,
as this means that the original AST is never touched
by JDT. Instead the source text is edited and the AST
is then updated from that source. In JModelica.org,
such an approach would require a total recompilation
of the code with every AST modification as there is
currently no way to incrementally compile the source
code. This would thus not be an adequate solution, as
it would most likely make the editor very slow.

3.2 Graphical Modelica Editors

OMEdit is an editing front-end to the OpenModelica
compiler. It contains tools for model creation, diagram
editing, icon editing, simulation, plotting, documenta-
tion view and text editing mode. The editor was de-
veloped as part of a thesis by Asghar, Syed Adeel and
Tariq, Sonia in 2010 [12, 13].

OMEdit uses the CORBA interface to communicate
with OpenModelica. CORBA is supplied by Open-
Modelica and allows for interaction between an appli-
cation and its AST. OMEdit uses it to retrieve and store
information such as: model structure, annotation, doc-
umentation, simulation and graph plotting.

OMEdit is mainly developed in C++ and relies on
QT7 for graphical UI handling and rendering of graph-
ical primitives. QT is an cross platform framework that
allows the developer to rapidly develop Graphical User
Interface (GUI) based applications that work on mul-
tiple platforms. It also has support for multiple target
languages like C++ and JavaScript.

Compared to the graphical editor presented in this
paper, OMEdit is more comprehensive. It defines a
complete IDE with text editor, parameter view, simu-
lation view and graphical editor.

There are some significant differences between the
two graphical editors, besides the programming lan-
guage. OMEdit uses QT to generate a GUI, as op-
posed to GEF that is used for the graphical editor in
this paper. GEF and QT provide the same basic func-
tionality but for different programming languages and
platforms. However, QT has more extensive support
for the graphical features that are specified in Model-
ica than GEF. QT also takes care of all transformation
and rendering of graphical primitives.

Performance wise there are some small differences
between the two graphical editors. When adding and
removing components a noticeable lag is present in
OMEdit editor while it happens instantly in JMod-
elica.org editor. This is most likely a result of the
CORBA interface and the fact that OMEdit does not
operate directly on the AST.

OMEdit also lacks some basic features like an undo
and redo stack. This is likely due to that support for
this is missing in QT. This feature is something that
was supported by GEF and is one of the essential fea-
tures in the graphical editor described in this paper.

SimForge8 is another open source toolkit that is
abased on OpenModelica. It offers similar features as
the JModelica.org IDE and OMEdit. It has a text editor
as well as a graphical editor that allows for both dia-
gram and icon editing. Additionally it has a parameter
editor that allows for modification of component val-
ues. The SimForge project has been inactive for some
time and there is also a lack of information about the
implementation and the frameworks used. Therefore,
no thorough comparison is given in this paper.

7http://qt.nokia.com
8http://trac.ws.dei.polimi.it/simforge/
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4 Implementation

4.1 Compiler Architecture

The JModelica.org compiler is divided into two parts,
front-end and back-end. The front-end is responsible
for parsing, AST building, error checking and flatten-
ing of Modelica models. The front-end builds three
ASTs, the source AST, the instance AST and the flat
AST.

Source Tree Instance Tree Flat Tree

Instantiate FlattenCompile

Figure 2: The three ASTs and the different compila-
tion stages.

Source AST is the first AST that is built. It is almost
a direct translation of the Modelica model into a
tree. The source AST is necessary when calculat-
ing the instance tree.

Instance AST is instantiated from the source AST.
All component declarations has been resolved
and expanded with the contents of their classes.

Flat AST is the flattened version of the model. It is
reduced from the instance tree and consists of a
list of equations and variables.

A brief overview of the three ASTs can be seen in Fig-
ure 2.

4.2 Graphical Editor

Graphical 
Editor

JastAdd IDE

JModelica.org 
Compiler GEF

Eclipse

Figure 4: An overview of the interaction between the
graphical editor and the other components.

An overview of the design and the different com-
ponents that the graphical editor relies on is shown in
Figure 4. The graphical editor communicates with the
JModelica.org compiler to retrieve graphical annota-
tions as well as Modelica class structure. All editing is
saved back into the source and instance AST and the

icon structure. The icon structure is an abstraction of
the structure that is used when representing Modelica
annotations in the source AST. It is built to resemble
the structure of a graphical annotation as it is defined
in the Modelica specification. GEF is an obvious com-
ponent that the editor relies heavily on. GEF helps the
editor with synchronization between the EditParts and
icon structure in the compiler. It is also responsible for
interaction with the Eclipse framework and low level
rendering of graphics in the editor. The graphical edi-
tor also has some direct interaction with Eclipse, such
as the ability to open a component for modification
of parameters on sub components. The JastAdd IDE
framework is used as an interface to the JModelica.org
compiler when compiling classes.

4.2.1 EditParts

When constructing a GEF editor, it is important to
make a good design between EditParts and the under-
lying document model. Normally, there is one Edit-
Part class for each document model node. The graph-
ical editor presented in this paper is no exception and
uses one EditPart class for each icon structure node.
For example, the icon structure node Rectangle is rep-
resented by a RectangleEditPart. The RectangleEdit-
Part handles all the rendering and interaction with the
graphical user interface (GUI). By using EditPolicies,
it is possible to alter the behavior and control what
happens when the rectangle is moved or resized. Sim-
ilarly, there will be one EditPart class for each node
type in the icon structure, specifying the behavior of
that node.

4.2.2 Rendering

Once an EditPart has been produced from the icon
structure, it creates an appropriate figure and populates
it with the correct attributes from the icon structure.
For example, the rectangle mentioned in Section 4.2.1
will populate its figure with width, height and rotation.
It will also set line color, line pattern and fill color.

It can sometimes be troublesome to render Modelica
models in GEF. Modelica supports both rotation and
scaling of graphics whilst GEF does not support rota-
tion and has limited support for scaling. In the graphi-
cal editor this is solved by transforming the points that
the graphical object consists of. The transformation is
done using Euclidean transformations, that are built hi-
erarchically over the component structure of the Mod-
elica model.
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Figure 3: Screen shot of the graphical editor.
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(a) Modelica
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(b) SWT

Figure 5: Difference between Modelica and GEF coor-
dinate system with positive direction indicated by ar-
rows on the axis.

Finally, when rendering models it is important to
convert between the handedness of the coordinate sys-
tems used by Modelica and GEF respectively. Model-
ica uses a right-hand coordinate system, see Figure 5a
while GEF uses left-hand coordinate system, see Fig-
ure 5b. If no consideration is taken to handedness the
resulting image will be upside down. The solution is
simple, once all transformations are done the image is
flipped along the y-axis.

4.3 AST Communication

Changes made by the user in the graphical editor has to
be propagated back into the icon structure and under-
lying source AST. These propagations can be divided
into two categories, annotation editing and structural
editing.

4.3.1 Annotation Editing

Some graphical changes, such as moving or resizing
components, are localized and only affects annotations
in the code. Most of the operations performed while
graphically editing a model falls into this category.
Since this kind of change only affects the source AST,
it is simple to perform.

4.3.2 Structural Editing

Structural editing is a more complicated type of edit-
ing operation which is performed on the AST. It oc-
curs when a component or a connection is added to
or removed from the model. The main challenge is
that both the source and instance tree must be updated
consistently. In the current implementation, the com-
ponent or connection is first added to the source tree.
The instance tree then instantiates a new component or
connection from the source node, resulting in a con-
sistent result for the currently opened model, see Fig-
ure 6. Removing a component is performed in the re-
verse order as opposed to adding. First, the component
or connection is removed from the instance tree and
then in the source tree.

There are, however, side effects that are not handled.
If the edited model is used as a component in another
model and that other model is also open, the latest
changes will not appear until that model is reloaded.
A possible solution is to sense when a structural edit
has occurred and in that case reload the editor. An-
other solution is to propagate any changes in a model
to all instances of the same model.
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Figure 6: The steps taken when adding a component.

4.4 Preserved Formatting

Consider the graphical editor as currently described
in this paper. When the editor changes the model,
it does so by modifying the source AST. Eventually
these changes need to be displayed in a source code
editor or saved to a file. The source AST would then
have to be printed back to text format. All informa-
tion that is significant to the compiler and the graph-
ical editor resides in the AST. It does not, however,
traditionally carry any knowledge about how the code
was originally formatted. Information that is valuable
for the developer, such as indentation and comments
would effectively be lost if the AST was simply pretty
printed. Somewhere along the way, the information
about the original formatting needs to be gathered and
stored in the AST so that the original source code can
be reprinted.

4.4.1 Scanner and Parser

The scanner is the part of the compiler that finds pat-
terns in the code and converts them to a series of to-
kens given to the parser. Those tokens are then con-

verted to a source AST by the parser using the gram-
mar of the language. The issue about preserving for-
matting, as described in the paragraph above, is solved
by letting the scanner add spaces, line breaks and com-
ments to a data structure. Most parentheses are im-
plicit by the Modelica language, but expressions need
special care regarding this. The developer might sur-
round expressions by parentheses to explicitly mark
precedence. This could, for the sake of readability,
be done even when it would already be implicit. The
parser collects these parentheses and stores them in re-
spective expression.

When the parsing is finished, a reference to the data
structure is added to the nodes in the AST. Later, when
the AST is about to be presented in text format, for ex-
ample, when it should be saved to a file, the informa-
tion in the data structure is propagated downwards in
the AST. At this stage each node gets the formatting
related to the node, as the data structure is emptied.
After this, the AST is finally printed in text format,
where every node has its formatting preserved.

4.4.2 Reading Formatting

As has been mentioned earlier, formatting such as in-
dentation and comments are put in a data structure by
the scanner. Some, but not all parentheses should also
be collected. The parser has, unlike the scanner, the
syntactic information to distinguish which parentheses
are significant. That is, which parentheses belong to
expressions and which do not. However, the parser has
no access to the formatting data structure, so it stores
the parentheses directly in the expressions.

When the data structure has been populated by the
scanner, it contains a list of scanned formatting items.
A formatting item is an object that contains some ba-
sic part of the formatting. It contains the actual string
data that should be output when the AST is printed. A
formatting item also has information about what type
it is, for example line break or comment. When a for-
matting item has been scanned it is called a scanned
formatting item. A scanned formatting item holds the
same information as a regular formatting item, but
with some information about its origin added. This
makes it possible to find its original line and column in
the source code. Table 1 shows some typical scanned
formatting items.

Before the formatting items in the data structure are
used by the AST, some of them are merged. The ones
that are adjacent to each other are merged into new,
larger formatting items of mixed type. As an example,
the two last items in Table 1 would be merged into a
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Table 1: The data in some scanned formatting items.

Scanned Formatting Item
Formatting Item

Start End Type Data
(1, 6) (1, 6) WHITE_SPACE ” ”

(1, 19) (1, 19) LINE_BREAK ”\n”
(2, 1) (2, 4) WHITE_SPACE ” ”
(2, 9) (2, 9) WHITE_SPACE ” ”

(2, 13) (2, 13) WHITE_SPACE ” ”
(2, 14) (2, 29) COMMENT ”// Text\n”

mixed formatting item. This way each AST node only
needs to be associated with one formatting item that
can be seen as a prefix, or left-hand side, and one as
suffix, right-hand side.

4.4.3 Storing Formatting in the AST

The formatting items are not added to the AST nodes
during parsing. Instead they are added during an ex-
tra pass when the method for formatted print is called.
This approach naturally comes with its advantages and
drawbacks.

Approach One of the main reasons for the chosen
approach, is to keep the parser as separated from the
implementation of this feature as possible. A parser
can be complicated enough to begin with. Further-
more, if it turns out that there are any special cases
that need to be taken care of, or if parts of the parser
need to be rewritten it could become cumbersome and
expensive to implement and maintain the code.

Initially, another reason for this approach was that
some AST nodes might be rewritten and removed
when the AST is being accessed. This means that they
are replaced with other nodes to make the AST more
suitable for semantic analysis [14]. Their formatting
would then effectively also disappear. However, this
issue is not completely solved by adding the format-
ting to the AST at a later stage. There are some AST
nodes in JModelica.org that are deleted during rewrites
that both can come from an explicit keyword or be im-
plied by the Modelica language specification. As an
example, members of a Modelica class can be spec-
ified to have public or protected visibility9, but their
default visibility type is public [15]. A public visibil-
ity clause is thus an AST node that can come both from
a keyword or the language specification. This clause
is removed during a rewrite, and its child nodes get

9Using the keywords public and protected respectively.

their visibility by assigning them visibility type child
nodes. The fact whether the keyword appeared in the
source code or not, and if so then where it appeared,
still needs to be stored.

The solution presented in this paper comes with a
drawback. It is more intense for the CPU to add the
formatting to the AST on-demand, rather than in the
parser. Firstly, the data structure needs some prepara-
tions. Secondly, all AST nodes need to be associated
with their corresponding formatting items. This means
that the line and column numbers for AST nodes and
formatting items need to be compared. It is worth
noting, though, that the result from this pass can be
cached. This means that consecutive prints of the AST
do not need this pass and no more clock cycles are
used for this.

Figure 7: The process for storing formatting in the
AST.
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Preparations Figure 7 shows the main steps of how
the formatting is added to the AST. The first step is to
prepare the formatting information from the parsing to
be propagated downwards in the tree. The parentheses
that were collected to the expressions during parsing
are added to the data structure. After that, the format-
ting items that are adjacent are merged as mentioned
in Section 4.4.2. To have a more logical division be-
tween the formatting items that should be considered
prefix or suffix to an AST node, this algorithm is not
greedy. This lack of greed means that merged format-
ting items that span over multiple lines are split into
two items on the first line break, instead of always be-
ing merged into one. An example of this can be seen
in Figure 8. After these preparations, the AST nodes
can use the data structure to get their formatting items.

Prefix formatting
Suffix formatting
Inside formatting

Legend:

Figure 8: A screenshot highlighting the different for-
matting items with boxes. Note that the comments
regarding r1 and r2 are not merged into one single
mixed item.

Propagation During the propagation, the nodes in
the source AST check so that they do not already have
a cached result. This happens if the AST already has
been reprinted earlier. If they do not have any cached
formatting, their formatting is calculated. This is done
by going through the data structure filled with format-
ting items and checking whether they are adjacent to
the current AST node, that is, whether their end line
and column match the AST node’s starting position
and vice versa. In this way, each AST node gets two
formatting items, one on its left-hand side (prefix) and
one on its right-hand side (suffix).

Special Cases If there for some reason are any for-
matting items left in the data structure when the prop-
agation is done, these still need to find their place in
the AST. This can happen, because the merging of ad-
jacent formatting items sometimes generates two for-
matting items instead of one as described earlier. If

the source code in a file ends with multiple line breaks,
only the first one would be added without an extra step.

There are also some AST nodes that contain format-
ting information inside of them. These nodes usually
contain whitespaces at places where they are atomic.
They are atomic in the sense that they have no child
nodes that can use the whitespace as prefix or suffix
formatting. These final formatting items left in the
data structure are also added.

Finally, a default formatting is set to AST nodes that
have been added through another way than during the
parsing of the code. Currently, this means AST nodes
that have been added by the graphical editor. When
this is done, the rest of the implementation is more or
less a traditional pretty printer, which of course also
prints the formatting information in the AST nodes.

5 Summary and Conclusions

In this paper, an approach for implementing a graph-
ical editor for Modelica built upon the Eclipse frame-
work using GEF, was presented. How GEF can be
used to make a clear, yet extensible design for the
graphical editor has been discussed. Some of the com-
mon pitfalls when integrating systems that describe the
same information in different ways, in this case inte-
grating a graphical editor into an existing source code
editor, were discussed.

This paper also describes a way to store formatting
from an original source in the AST. In the proposed
solution, the formatting information is added to the
source AST after parsing. Then in a later pass, the
information is associated with its corresponding node.
Finally, the modified AST can be reprinted with pre-
served formatting.

The graphical editor in JModelica.org supports ba-
sic model editing such as adding, removing and con-
necting components. Common graphical editing fea-
tures such as rotation of components and grid snap-
ping are also available. Future development include
a parameter dialog for modifying of parameters and
improved graphical editing support such as manhat-
tanized connections.
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Abstract

This paper presents a complete case study that takes
a real Fuel Display System element used in Scania
Trucks and applies an unified process for modelling
system requirements together with the system itself
and verifying these requirements in a structured man-
ner. In order to achieve this process the system is mod-
eled in Modelica, and requirement verification sce-
narios are specified in ModelicaML and verified with
the vVDR (Virtual Verification of Designs against Re-
quirements) approach.

Keywords: system modeling; requirement verifica-
tion; ModelicaML

1 Introduction

As electronic systems become increasingly complex,
so do the requirements that they must fulfill, both in
terms of functionality and safety. Thus, maintaining
the conformity between the system requirements and
the system implementation manually becomes increas-
ingly difficult and unproductive. The goal of this pa-
per is to investigate on the basis of a real case study
the integration of modeling based techniques for re-
quirement expression with the actual implementation
and the formalization of the requirement verification
process.

The case study presented in this paper is a compo-
nent of a Scania System Model used in real trucks.
Scania is one of the leading manufacturers of heavy
trucks and buses, operating in over 100 counties with
over 35,000 employees and more than 110 years of
history.

The Modelica language was chosen to model the
system. Modelica is non-proprietary, object-oriented,

equation based language for modeling multi-domain
complex physical systems.

2 An Integrated Modeling Approach

2.1 Requirement Specification in the Indus-
trial Context

The presence of Electrical and Electronic(E/E) Sys-
tems in vehicles has been increasing rapidly since the
early 1970s, coming to cover a wide range of applica-
tions. Today’s vehicles use around 30 Electronic Con-
trol Units (ECUs) for small cars and 80 ECUs for high-
end luxury cars and this number keeps growing.

In order to simplify system representation, a con-
cept called SESAMM (Scania Electrical System Ar-
chitecture Made for Modularization and Maintenance)
for SCANIA Truck and Bus electrical systems was de-
veloped [6]. However, with this approach the require-
ments are still kept separate from the system design.

The traditional document-based approach means
that all the requirements and design information are
written in document form, using natural language
and graphics. Although it can be regularized, the
document-based approach has fundamental limita-
tions. Traceability and consistency are hard to ensure,
since the information is spread out over different doc-
uments. Maintenance and reuse are also an issue, and
since part of the documents is written in natural lan-
guage, so is accuracy.

The goal of this work therefore, is to integrate the
description of the system requirements into the system
modeling process, thus benefitting from all the advan-
tages of model-based ingeneering.
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2.2 ModelicaML

ModelicaML [1] is an UML [2] profile and a language
extension for Modelica. The main purpose of Mod-
elicaML is to enable graphical system modeling using
the standardized UML notation together with the mod-
eling and simulation power of Modelica. ModelicaML
defines different views (e.g., composition, inheritance,
behavior) on system models. It is based on a subset of
UML and reuses some concepts from SysML. Mod-
elicaML is designed to generate Modelica code from
graphical models. Since the ModelicaML profile is an
extension of the UML meta-model it can be used as an
extension of both UML and SysML. A tool suite for
modeling with ModelicaML and generating Modelica
code can be downloaded from [3].

2.3 Virtual Verification of Designs against
Requirements(vVDR)

vVDR (Virtual Verification of Designs against Re-
quirements) is a method that enables model-based de-
sign verification against requirements. The first ver-
sion of the vVDR method and an example of its appli-
cation are illustrated in [8] using ModelicaML. Mod-
elicaML supports all Modelica constructs and, in addi-
tion, supports an adapted version of the UML state ma-
chine and activity diagrams for behavior modeling as
well as UML class composition diagrams for structure
modeling. This enables engineers to use the simula-
tion power of Modelica combined with a standardized
graphical notation for the creation of system models.
The main vVDR method steps are:

1. Formalize Requirements: This step explains
how to formalize requirements for design verifi-
cation and how to determine which requirements
can be verified using this method.

2. Select or Create Design Model to be verified
against Requirements: This step clarifies what
properties a system design model needs to have
in order to be suitable for this method.

3. Select or Create Verification Scenarios: This
step describes what the required properties of a
verification scenario are.

4. Create Verification Models: This step explains
what a verification model consists of and how it
can be created.

In order to enable guidance and automation, vVDR
introduces the concept of a requirement model, a

design alternative model and a verification scenario.
Each of these models is needed in order to create a ver-
ification model. In a scenario-based approach, a verifi-
cation model will comprise one design alternative that
is to be verified against a set of requirements by run-
ning one verification scenario as illustrated in Figure
1. Moreover, some additional models may be required.
For example, a dedicated calculation model might be
needed when the required data cannot be provided by
the design model if such calculation is not part of the
design.

!

Figure 1: Different models form a Verification Model

Moreover, vVDR anticipates different roles for dif-
ferent tasks, that are most likely to involve differ-
ent people. Each role requires specific skills and de-
fines the responsibility for different modeling artifacts.
For example, the formalization of requirements is per-
formed by a requirements analyst. This person is in
charge of requirements elicitation and negotiation. In
vVDR this person is also in charge of formalizing the
requirements for verification purpose because they are
the most familiar with the requirements and, by for-
malizing them, they will reduce the probability of mis-
interpretation. The formalization of designs (i.e. the
modeling of different design alternatives or versions)
is done by the system designer, and the formalization
of scenarios as well as the verification itself is done by
a tester.

In vVDR a notion of clients, mediators and
providers is introduced (see Figure 2). The concept
is called Value Bindings [7] and allows capturing of
relations that allow determining how different models
should be bound when they are combined into veri-
fication models. The basic idea for the definition of
bindings is the following:

• Each model that requires data from other models
should express this need by creating a new medi-
ator or by subscribing to an already existing one.

• Each mediator must have defined providers so
that the correct binding code for the clients can
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be derived.

Figure 2: Clients, mediators and providers relations
example

The defined relations are used to compose verifica-
tion models automatically.

3 Methodology

The classification of requirements is important since it
affects the requirement selection and verification pro-
cess. However, there is no consensus in the field of
requirement classification. The common sense divides
the requirements into functional and non-functional,
based on whether they answer the question of “what
the system does” or that of “how the system behaves
with respect to some observable attributes like perfor-
mance, usability, maintainability, etc.”, respectively.
However, in the practice, it turns out that a more de-
tailed classification of non-functional requirements is
needed. Martin Glinz [5] proposed a taxonomy for
both functional and non-functional requirements.

Figure 3: Requirement classification

Figure 3 illustrates the taxonomy proposed by Mar-
tin Glinz. In this view, non-functional requirements
can be classified as performance requirements, specific
quality requirements and constraints. Following is a
definition for each category:
Function Requirement is a requirement that de-
scribes the system’s reaction to input stimuli.

Performance is a requirement to specify the timing,
velocity etc. inside a desired tolerance.
Specific Quality Requirement is a requirement that
specifies the quality the system should have like ef-
ficiency, security, reliability, usability, maintainability
etc.
Constraint is a requirement that constrains the solu-
tion space beyond what is necessary for meeting the
given function, performance and specific quality re-
quirements.

Not all the requirements are fit to be verified by the
simulation model. Some require additional judgment
from the stakeholder. For instance, the Specific Qual-
ity Requirement which specifies the quality of the sys-
tem like reliability, maintainability etc., needs to be
verified based on the experience of a stakeholder. In
contrast to that, the functional and performance re-
quirements which consist of mathematical expressions
or boundaries are more suitable to be selected for the
dynamic requirement verification process. This is the
type of requirement we will concentrate on in this
case-study.

3.1 Requirement Formalization

This is the first step of the vVDR method. The main
goal of this step is to translate textual requirement
statements into formal models that can be processed
by computers and determine whether a particular re-
quirement is suited to be verified with this method.

In vVDR, a requirement is formalized by first iden-
tifying the quantifiable properties mentioned in the re-
quirement statement and then establishing the relation-
ship between them in order to express when this re-
quirement is evaluated and violated.

3.2 Design Model

In this step, a design model that needs to be veri-
fied against requirements is created. Since the design
model will be bound with verification scenario and re-
quirement in next steps, it should be able to provide
corresponding input to requirement model. This is
effectively accomplished by inspecting the mediators
that indicate what data in required and of what type the
values should be. When building the design model, the
modeler associates the providers for each mediator.

In addition to the analysis of the mediators that need
providers from the design model at hand, the designer
should indicate what the potential stimuli (clients) of
this system design model are, that can be set by sce-
narios (i.e. providers from the scenario models). In
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order to do so, the designer subscribes the compo-
nents that are to be stimulated to existing mediators or
creates new mediators respectively. The correspond-
ing providers will be defined in verification scenarios
whose creation is explained in the next section. This
approach is detailed in [7].

3.3 Verification Scenario

Verification scenarios are models that capture a spe-
cific course of actions which stimulate the design
model in order to cause a particular reaction. Veri-
fication scenarios are created based on requirements
with the intention to verify design against require-
ments. One scenario can be used to verify multiple
requirements and one requirement is usually verified
using multiple scenarios to increase the confidence in
the verification results due to the independence of the
scenarios. After creating the verification scenario, it
is bound with the designed system and requirements
which need to be verified.

3.4 Verification Model Generation

After creating the design model, requirement model
and verification scenario, this step is for binding these
models in ModelicaML in order to generate executable
Modelica code. By using the defined clients, medi-
ators and providers, verification models can now be
created automatically by determining valid combina-
tions of scenarios and requirements for a selected sys-
tem design model.

3.5 Requirement Verification

To express requirement violation, the attribute “status”
of type Integer is used, which is created by default for
each requirement. The meaning of its value is the fol-
lowing:

• 0 means requirement is not evaluated

• 1 means requirement is evaluated and not violated

• 2 means requirement is evaluated and violated

Now, the verification model generated from Mod-
elicaML in the previous step can be simulated in the
Modelica simulation environment. And based on the
verification result, the tester will be able to analyse the
system design based on the verification result.

4 A Case Study: Fuel Level Display

The case study introduced in this chapter is a Fuel
Level Display System (Figure 4), used in Scania
Trucks for indicating the fuel level of the truck.

Figure 4: Dash board on Truck

The fuel level system, UF18, has two functionali-
ties:

• fuel level estimation, which is presented as a per-
centage of the tank that is full. The fuel level
should be displayed continuously and work for
different vehicle types (truck, bus) and engine
types (gas, diesel);

• fuel level warning, which is activated when the
fuel level drops below a predefined value, when
activated the low level fuel warning should alert
the driver by some visible symbol.

These functionalities are represented by two allocation
elements, AE201 and AE202 respectively.

4.1 System Architecture

The technical architecture of the Fuel Level Display
System is schematized in Figure 5. Three ECUs com-
municate with each other through CAN-Buses. EMS
(Engine Management System) sending the fuel con-
sumption by the engine to COO (Coordinator System)
which estimates the fuel level in the tank and evaluates
the low fuel level warning. After processing in COO,
a signal carries the estimated fuel level in the tank and
the low fuel level warning to ICL (Instrument Cluster
System). The gauge and bulb in ICL will indicate to
the driver how much fuel is left in the tank.

4.2 Requirement Selection and Classification

In Scania, the requirements for UF18, AE201 and
AE202 are described in different technical documents
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Figure 5: The technical architecture of FLD is com-
posed of three ECUs : Coordinator ECU(COO), En-
gine Management System(EMS) and Instrument Clus-
ter System(ICL).

respectively. These documents are very extensive, so
a subset of elements has been selected for modeling in
this case study [4].

UFR18_1 The indicated fuel level shall not
deviate more than ± 5% from
the actual volume in the tank.

UFR18_4 The low fuel level warning shall
warn one time when the esti-
mated fuel level reaches below a
limit of the measurable volume
in the tank. The limit should
be 10% for tank sizes below and
equal to 900 Liters and 7% for
larger tanks.

Based on the requirement classification presented
in Section 1, UFR18_1 is a performance requirement
that specifies the tolerance of the indicated fuel level.
The other requirement UFR18_4 is a functional re-
quirement describes how the low fuel level warning
behaves with respect to the estimated fuel level.

4.3 Requirement formalization

The next step is to formalize the following requirement
statement “UFR18_1: The indicated fuel volume shall
not deviate more than ±5% from the actual volume in
the tank.” The quantifiable properties are the:

• Indicated fuel volume (of type Real)

• Actual volume in tank (of type Real)

• And the tolerance of ±% (constant of type Real
and the value 0.05)

Note, that there is no precondition that defines when
this requirement is valid, i.e., this requirement shall
not be violated at any time. A possible precondition
could be that this requirement is only valid as long as

the truck is on. In this case the additional quantifiable
property identified would be the fact that the truck is
on, i.e. “truck is on (of type Boolean)”.

Since this requirement should be checked at all
times we only need to express when it is violated or
not violated as follows:

status = if abs(indicatedFuelLevel
- actualVolumeInTank) >

actualVolumeInTank * tolerance
then 2 else 1

The code sets the attribute status to 2 (i.e. eval-
uated and violated) or 1 (evaluated and not violated)
depending on whether the absolute value of the differ-
ence between the indicated fuel level and actual fuel
level in tank is greater than the allowed tolerance or
not.

Consider another requirement statement:
“UFR18_4: The low fuel level warning shall
warn one time when the estimated fuel level reaches
below a limit of the measurable volume in the tank.
The limit should be 10% for tank sizes below and
equal to 900 liters and 7% for larger tanks.” The
quantifiable properties that are mentioned in this
statement are:

• Estimated fuel level (of type Real)

• Warning active (of type Boolean)

• Limit (constant of type Real)

• Size of the tank (constant of type Real)

Again, there is no precondition for this requirement
so it shall not be violated at any time. To express the
violation we could define the status to be:

status = if (estimatedFuelLevel
< sizeOfTank * limit)

and not warningActive
then 2 else 1

All identified properties are inputs that are to be set
to the corresponding data from other models, for ex-
ample the design model or models that capture the de-
sign parameters.

4.4 Design Model

In this section, a design model is written in Model-
ica. Figure 6 illustrates the breakdown of the fuel
level display system. It consists of four levels from
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Figure 6: Breakdown of System Design

SESAMM to hardware and software. In the software
domain, the application software is implemented in
C code generated from the Simulink model through
Real-time Workshop(RTW).

Figure 7: Second level of the system

Figure 7 shows the class diagram of the second
level, different ECUs connecting with each other
through different CAN-Buses. SESAMM uses dif-
ferent colors of CAN-Buses in order to distinguish
between the most safety crucial ECUs and the less
safety crucial ECUs. Furthermore, the port lo-
cated on the top-right of the model carries the
indicatedFuelLevel and warningActive calcu-
lated by the Simulink model.

Figure 8: Joint Simulation in Dymola and Simulink

The Design model and the Simulink model are sim-

ulated through a built-in Dymola-Simulink interface
as shown in Figure 8. The interface provides the
Simulink model with two inputs, fuel rate from the En-
gine Management System and the fuel level which is
measured by a sensor.

4.4.1 Verification Scenario

Figure 9: Verification Scenario

After having designed the system, the next step is
to create a verification scenario (Figure 9) in order to
verify whether the designed system fulfills the require-
ments. For the fuel level display system, the verifica-
tion scenario describes how the fuel level in the tank
decreases with respect to time. In addition, by inspect-
ing the mediators that represent the need for simulation
of the design models, the tester will define correspond-
ing providers that are associated with the mediators.

Figure 10: Simulation Result of Scenario Model

In this case study, a verification scenario describes
the fuel level in the tank decreasing from 20% to 0%
of the capacity of the tank. The verification scenario
provides two inputs to the design model, Fuel level and
Fuel Volume. Fuel level represents the fuel level mea-
sured by the sensor which consists of a noise signal
caused by the shaking of tank during driving. The fuel
volume represents the ideal fuel volume in the tank. In
Figure 10, the blue line represents the fuel level and the
red line represents fuel volume. By using this verifica-
tion scenario, UFR18_1 and UFR18_4 can be verified
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at the same time.

4.5 Verification Model Generation

Figure 11: Verification Models Generation

In ModelicaML, the verification model can be gen-
erated by binding the design model, to the verifica-
tion scenario and the requirements. By using the de-
fined clients, mediators and provider verification mod-
els can now be created automatically by determining
valid combinations of scenarios and requirements for
a selected system design alternative model [7] as illus-
trated in Figure 11. The generated verification models
comprise the components that are bound correctly and
are ready to be simulated.

Figure 12: Verification Model in Modelica Simulation
Environment

Figure 12 shows the package when the importing
verification model to the Modelica simulation environ-
ment. The package ModelicaMLModel was created
in ModelicaML. It consists of a Verification Model, a
Scenario Model and a Requirement Model. The veri-
fication model binds other models together and simu-
lates the results.

4.6 Requirement Verification

The verification result of requirement UFR18_1 is
shown in Figure 13 and the verification result of re-
quirement UFR18_4 is illustrated in Figure 14. As
mentioned previously, there is no precondition for
these two requirements, so they should be evaluated
during the whole verification process.

Figure 13: Verification Result of UFR18_1

Figure 13 shows the verification result of the Total
Fuel Level element. The red line represents the ac-
tual volume in the tank and it decreases progressively
from 20% to 0%. The blue line shows the indicated
fuel level from the Instrument Cluster System. Finally,
the green line shows the requirement status. The sta-
tus starts at 1 which means the requirement is eval-
uated and not violated until around 20000 seconds.
From around 20000 seconds, the status changes to 2
which means that the requirement is evaluated and vi-
olated. So the corresponding requirement UFR18_1
is fulfilled in the first 20000 seconds, then it violated
until the end of the simulation.

Figure 14: Verification Result of UFR18_4

Figure 14 shows the verification results of the Low
Fuel Level Warning element. The blue line shows the
indicated fuel level from Instrument Cluster System
which decreases progressively from 20% to around
0%. The green line shows the threshold at which the
low fuel level warning must be enabled. The black
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status line illustrates that the requirementUFR18_2 is
violated during 10541 second to 10776 second.

Figure 15: Requirement Violation

Figure 15 is the monitor that shows whether the test
is passed or not. As we can see from picture, the is test
passed in the first 10541 seconds since both require-
ments are not violated. After 10541 seconds, require-
ment UFR18_4 is violated which means that the test
fails.

5 Conclusion and Future Work

This case study illustrates the approach to formalizing
requirements from document-based format through
the vVDR methodology, and generating verification
scenarios to test whether the system fulfills these re-
quirements.

The reasons for choosing vVDR approach are its re-
quirements formalization approach, its scalability and
the level of possible automation. The way require-
ments are formalized detects inconsistencies or in-
completeness of requirements, it allows expressing re-
quirements monitors using the same formalisms that
are used to formalize designs or scenarios, and it
allows determining which requirements can be ver-
ified using simulations. This is possible based on
the knowledge which design models are or will be
in place. The generation of verification models, pro-
vided by the vVDR approach and its implementation
in ModelicaML, automates the process of solving the
combinatorial task to select scenarios that are appro-
priate to stimulated a given design alternative model
and all requirements that can be verified by running
this scenario. For a small number of requirements,
scenarios and design alternatives this approach may be
overdone. However, assuming a large number of these
artifacts in a real-life project the provided automation
is expected to significantly improve the process effi-
ciency.

The goal is to further investigate and generalize the

modelling methodology in the industrial context, by
applying to to larger test cases and formalizing the
process. This work is part of a larger project on a in-
tegrated toolchain from documentation formalization
through to requirement verification and fault tolerance
analysis.
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Abstract 

New multi-core CPU and GPU architectures promise 

high computational power at a low cost if suitable 

computational algorithms can be developed. However, 

parallel programming for such architectures is usually 

non-portable, low-level and error-prone. To make the 

computational power of new multi-core architectures 

more easily available to Modelica modelers, we have 

developed the ParModelica algorithmic language ex-

tension to the high-level Modelica modeling language, 

together with a prototype implementation in the 

OpenModelica framework. This enables the Modelica 

modeler to express parallel algorithms directly at the 

Modelica language level. The generated code is porta-

ble between several multi-core architectures since it is 

based on the OpenCL programming model. The im-

plementation has been evaluated on a benchmark suite 

containing models with matrix multiplication, Eigen 

value computation, and stationary heat conduction. 

Good speedups were obtained for large problem sizes 

on both multi-core CPUs and GPUs. To our 

knowledge, this is the first high-performing portable 

explicit parallel programming extension to Modelica. 

 

Keywords: Parallel, Simulation, Benchmarking,  

Modelica, Compiler, GPU, OpenCL, Multi-Core 

1 Introduction 

Models of large industrial systems are becoming in-

creasingly complex, causing long computation time for 

simulation. This makes is attractive to investigate 

methods to use modern multi-core architectures to 

speedup computations. 

Efficient parallel execution of Modelica models has 

been a research goal of our group for a long time [4], 

[5], [6], [7], involving improvements both in the com-

pilation process and in the run-time system for parallel 

execution. Our previous work on compilation of data-

parallel models, [7] and [8], has primarily addressed 

compilation of purely equation-based Modelica models 

for simulation on NVIDIA Graphic Processing Units 

(GPUs). Several parallel architectures have been target-

ed, such as standard Intel multi-core CPUs, IBM Cell 

B.E, and NVIDIA GPUs. All the implementation work 

has been done in the OpenModelica compiler frame-

work [2], which is an open-source implementation of a 

Modelica compiler, simulator, and development envi-

ronment. Related research on parallel numeric solvers 

can for example be found in [9].  

The work presented in this paper presents an algo-

rithmic Modelica language extension called ParModeli-

ca for efficient portable explicit parallel Modelica pro-

gramming. Portability is achieved based on the 

OpenCL [14] standard which is available on several 

multi-core architectures. ParModelica is evaluated us-

ing a benchmark test suite called Modelica PARallel 

benchmark suite (MPAR) which makes use of these 

language extensions and includes models which repre-

sent heavy computations. 

This paper is organized as follows. Section 2 gives a 

general introduction to Modelica simulation on parallel 

architectures. Section 3 gives an overview of GPUs, 

CUDA and OpenCL, whereas the new parallel Modeli-

ca language extensions are presented in Section 4. Sec-

tion 5 briefly describes measurements using the parallel 

benchmark test suite. Finally, Section 6 gives pro-

gramming guidelines to use ParModelica, and Section 7 

presents conclusions and future work. 

2 Parallel Simulation of Modelica 

Models on Multi-Core Computers 

The process of compiling and simulating Modelica 

models to sequential code is described e.g. in [3] and 

[12]. The handling of equations is rather complex and 

involves symbolic index reduction, topological sorting 

according to the causal dependencies between the equa-

tions, conversion into assignment statement form, etc. 

Simulation corresponds to "solving" the compiled 
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equation system with respect to time using a numerical 

integration method. 

Compiling Modelica models for efficient parallel 

simulation on multi-core architectures requires addi-

tional methods compared to the typical approaches de-

scribed in [3] and [12]. The parallel methods can be 

roughly divided into the following three groups: 

 Automatic parallelization of Modelica models. Sev-

eral approaches have been investigated: centralized 

solver approach, distributed solver approach and 

compilation of unexpanded array equations. With 

the first approach the solver is run on one core and 

in each time-step the computation of the equation 

system is done in parallel over several cores [4]. In 

the second approach the solver and the equation sys-

tem are distributed across several cores [5]. With 

the third approach Modelica models with array 

equations are compiled unexpanded and simulated 

on multi-core architectures. 

 Coarse-grained explicit parallelization using com-

ponents. Components of the model are simulated in 

parallel partly de-coupled using time delays be-

tween the different components, see [11] for a 

summary. A different solver, with different time 

step, etc., can be used for each component. A relat-

ed approach has been used in the xMOD  tool [26].  

 Explicit parallel programming language constructs. 

This approach is explored in the NestStepModelica 

prototype [10] and in this paper with the ParModeli-

ca language extension. Parallel extensions have 

been developed for other languages, e.g. parfor loop 

and gpu arrays in Matlab, Visual C++ parallel_for, 

Mathematica parallelDo,  etc.   

3 GPU Architectures, CUDA, and 

OpenCL 

Graphics Processing Units (GPUs) have recently be-

come increasingly programmable and applicable to 

general purpose numeric computing. The theoretical 

processing power of GPUs has in recent years far sur-

passed that of CPUs due to the highly parallel compu-

ting approach of GPUs.  

However, to get good performance, GPU architec-

tures should be used for simulation of models of a regu-

lar structure with large numbers of similar data objects. 

The computations related to each data object can then 

be executed in parallel, one or more data objects on 

each core, so-called data-parallel computing. It is also 

very important to use the GPU memory hierarchy ef-

fectively in order to get good performance. 

In Section 3.1 the NVIDIA GPU with its CUDA 

programming model is presented as an influential ex-

ample of GPU architecture, followed by the portable 

OpenCL parallel programming model in Section 3.2. 

3.1 NVIDIA GPU CUDA – Compute Unified 

Device Architecture 

An important concept in NVIDIA CUDA (Computer 

Unified Device Architecture) for GPU programming is 

the distinction between host and device. The host is 

what executes normal programs, and the device works 

as a coprocessor to the host which runs CUDA threads 

by instruction from the host. This typically means that a 

CPU is the host and a GPU is the device, but it is also 

possible to debug CUDA programs by using the CPU 

as both host and device. The host and the device are 

assumed to have their own separate address spaces, the 

host memory and the device memory. The host can use 

the CUDA runtime API to control the device, for ex-

ample to allocate memory on the device and to transfer 

memory to and from the device. 

 

Figure 1. Simplified schematic of NVIDIA GPU 

architecture, consisting of a set of Streaming 

Multiprocessors (SM), each containing a number of Scalar 

Processors (SP) with fast private memory and on-ship 

local shared memory.  The GPU also has off-chip DRAM. 

The building block of the NVIDIA CUDA hardware 

architecture is the Streaming Multiprocessor (SM). In 

the NVIDIA Fermi-Tesla M2050 GPU, each SM con-

tains 32 Scalar Processors (SPs). The entire GPU has 

14 such SMs totaling to 448 SPs, as well as some off-

chip DRAM memory, see Figure 1. This gives a scala-

ble architecture where the performance of the GPU can 

be varied by having more or fewer SMs. 

To be able to take advantage of this architecture a 

program meant to run on the GPU, known as a kernel, 

needs to be massively multi-threaded. A kernel is just a 

C-function meant to execute on the GPU. When a ker-

nel is executed on the GPU it is divided into thread 

blocks, where each thread block contains an equal 

number of threads. These thread blocks are automati-

cally distributed among the SMs, so a programmer 
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need not consider the number of SMs a certain GPU 

has. All threads execute one common instruction at a 

time. If any threads take divergent execution paths, 

then each of these paths will be executed separately, 

and the threads will then converge again when all paths 

have been executed. This means that some SPs will be 

idle if the thread executions diverge. It is thus im-

portant that all threads agree on an execution path for 

optimal performance. 

This architecture is similar to the Single Instruction, 

Multiple Data (SIMD) architecture that vector proces-

sors use, and that most modern general-purpose CPUs 

have limited capabilities for too. NVIDIA call this ar-

chitecture Single Instruction, Multiple Thread (SIMT) 

instead, the difference being that each thread can exe-

cute independently, although at the cost of reduced per-

formance. It is also possible to regard each SM as a 

separate processor, which enables Multiple Instruc-

tions, Multiple Data (MIMD) parallelism. Using only 

MIMD parallelism will not make it possible to take full 

advantage of a GPU’s power, since each SM is a SIMD 

processor. To summarize: 

 Streaming Multiprocessors (SM) can work with dif-

ferent code, performing different operations with 

entirely different data (MIMD execution, Multiple 

Instruction Multiple Data). 

 All Scalar processors (SP) in one streaming multi-

processor execute the same instruction at the same 

time but work on different data (SIMT/SIMD exe-

cution, Single Instruction Multiple Data). 

3.1.1 NVIDIA GPU Memory Hierarchy 

As can be seen in Figure 1 there are several different 

types of memory in the CUDA hardware architecture. 

At the lowest level each SP has a set of registers, the 

number depending on the GPU’s capabilities. These 

registers are shared between all threads allocated to a 

SM, so the number of thread blocks that a SM can have 

active at the same time is limited by the register usage 

of each thread. Accessing a register typically requires 

no extra clock cycles per instruction, except for some 

special cases where delays may occur. 

Besides the registers there is also the shared (local) 

memory, which is shared by all SPs in a SM. The 

shared memory is implemented as fast on-chip 

memory, and accessing the shared memory is generally 

as fast as accessing a register. Since the shared memory 

is accessible to all threads in a block it allows the 

threads to cooperate efficiently by giving them fast ac-

cess to the same data.  

Most of the GPU memory is off-chip Dynamic 

Random Access Memory (DRAM). The amount of off-

chip memory on modern graphics cards range from 

several hundred megabytes to few gigabytes. The 

DRAM memory is much slower than the on-chip mem-

ories, and is also the only memory that is accessible to 

the host CPU, e.g. through DMA transfers. To summa-

rize:  

 Each scalar processor (SP) has a set of fast registers. 

(private memory) 

 Each streaming multiprocessor (SM) has a small lo-

cal shared memory (48KB on Tesla M2050 ) with 

relatively fast access. 

 Each GPU device has a slower off-chip DRAM 

(2GB on Tesla M2050) which is accessible from all 

streaming multiprocessors and externally e.g. from 

the CPU with DMA transfers. 

3.2 OpenCL – the Open Computing Language 

OpenCL [14] is the first open, free parallel computing 

standard for cross-platform parallel programming of 

modern processors including GPUs. The OpenCL pro-

gramming language is based on C99 with some exten-

sions for parallel execution management. By using 

OpenCL it is possible to write parallel algorithms that 

can be easily ported between multiple devices with 

minimal or no changes to the source code.  

The OpenCL framework consists of the OpenCL 

programming language, API, libraries, and a runtime 

system to support software development. The frame-

work can be divided into a hierarchy of models: Plat-

form Model, Memory model, Execution model, and 

Programming model. 

 

Figure 2. OpenCL platform architecture. 

The OpenCL platform architecture in Figure 2 is simi-

lar to the NVIDIA CUDA architecture in Figure 1: 

 Compute device – Graphics Processing Unit (GPU) 

 Compute unit – Streaming Multiprocessor (SM) 

 Processing element – Scalar Processor (SP) 

 Work-item – thread 

 Work-group – thread block 

The memory hierarchy (Figure 3) is also very similar: 

 Global memory – GPU off-chip DRAM memory 
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 Constant memory – read-only cache of off-chip 

memory 

 Local memory – on-chip shared memory that can be 

accessed by threads in the same SM 

 Private memory – on-chip registers in the same 

 

Figure 3. Memory hierarchy in the OpenCL memory 

model, closely related to typical GPU architectures such 

as NVIDIA. 

The memory regions can be accessed in the following 

way: 

Memory Regions  Access to Memory  

Constant Memory All work-items in all work-groups 

Local Memory All work-items in a work-group 

Private Memory Private to a work-item 

Global Memory All work-items in all work-groups 

3.2.1 OpenCL Execution Model 

The execution of an OpenCL program consists of two 

parts, the host program which executes on the host and 

the parallel OpenCL program, i.e., a collection of ker-

nels (also called kernel functions), which execute on 

the OpenCL device. The host program manages the 

execution of the OpenCL program.  

Kernels are executed simultaneously by all threads 

specified for the kernel execution. The number and 

mapping of threads to Computing Units of the OpenCL 

device is handled by the host program.  

Each thread executing an instance of a kernel is 

called a work-item. Each thread or work item has 

unique id to help identify it. Work items can have addi-

tional id fields depending on the arrangement specified 

by the host program.  

Work-items can be arranged into work-groups. Each 

work-group has a unique ID. Work-items are assigned 

a unique local ID within a work-group so that a single 

work-item can be uniquely identified by its global ID 

or by a combination of its local ID and work-group ID. 

 

Figure 4. OpenCL execution model, work-groups 

depicted as groups of squares corresponding to work-

items. Each work-group can be referred to by a unique ID, 

and each work-item by a unique local ID. 

The work-items in a given work-group execute concur-

rently on the processing elements of a single compute 

unit as depicted in Figure 4. 

Several programming models can be mapped onto 

this execution model. OpenCL explicitly supports two 

of these models: primarily the data parallel program-

ming model, but also the task parallel programming 

model 

4 ParModelica: Extending Modelica 

for Explicit Algorithmic Parallel 

Programming 

As mentioned in the introduction, the focus of the cur-

rent work is an extension (ParModelica) of the algo-

rithmic subset of Modelica for efficient explicit parallel 

programming on highly data-parallel SPMD (Single 

Program Multiple Data) architectures. The current 

ParModelica implementation generates OpenCL [14] 

code for parallel algorithms. OpenCL was selected in-

stead of CUDA [15] because of its portability between 

several multi-core platforms. Generating OpenCL code 

ensures that simulations can be run with parallel sup-

port on OpenCL enabled Graphics and Central Proces-

sor Units (GPUs and CPUs). This includes many multi-

core CPUs from [19] and Advanced Micro Devices 

(AMD) [18] as well as a range of GPUs from NVIDIA 

[17] and AMD [18].  

As mentioned earlier most previous work regarding 

parallel execution support in the OpenModelica com-

piler has been focused on automatic parallelization 

where the burden of finding and analyzing parallelism 

has been put on the compiler. In this work, however, 

we have decided to leave this responsibility to the end 

user programmer. The compiler provides additional 

high level language constructs needed for explicitly 

stating parallelism in the algorithmic part of the model-

ing language. These, among others, include parallel 

variables, parallel functions, kernel functions and paral-
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lel for loops indicated by the parfor keyword. There are 

also some target language specific constructs and func-

tions (in this case related to OpenCL). 

4.1 Parallel Variables 

OpenCL code can be executed on a host CPU as well 

as on GPUs whereas CUDA code executes only on 

GPUs. Since the OpenCL and CUDA enabled GPUs 

use their own local (different from CPU) memory for 

execution, all necessary data should be copied to the 

specific device's memory. Parallel variables are allocat-

ed on the specific device memory instead of the host 

CPU. An example is shown below: 

function parvar 

protected 

  Integer m = 1000;       // Host Scalar 

  Integer A[m,m];         // Host Matrix 

  Integer B[m,m];         // Host Matrix 

// global and local device memories 

  parglobal Integer pm;   // Global Scalar 

  parglobal Integer pA[m,m];// Glob Matrix 

  parglobal Integer pB[m,m];// Glob Matrix 

  parlocal  Integer pn;    // Local Scalar 

  parlocal  Integer pS[m]; // Local Array 

end parvar; 

The first two matrices A and B are allocated in normal 

host memory. The next two matrices pA and pB are 

allocated on the global memory space of the OpenCL 

device to be used for execution. These global variables 

can be initialized from normal or host variables. The 

last array pS is allocated in the local memory space of 

each processor on the OpenCL device. These variables 

are shared between threads in a single work-group and 

cannot be initialized from hast variables. 

Copying of data between the host memory and the 

device memory used for parallel execution is as simple 

as assigning the variables to each other. The compiler 

and the runtime system handle the details of the opera-

tion. The assignments below are all valid in the func-

tion given above 

 Normal assignment - A := B  

 Copy from host memory to parallel execution de-

vice memory - pA := A 

 Copy from parallel execution device memory to 

host memory - B := pB 

 Copy from device memory to other device memory 

– pA := pB 

Modelica parallel arrays are passed to functions on-

ly by reference. This is done to reduce the rather expen-

sive copy operations. 

4.2 Parallel Functions 

ParModelica parallel functions correspond to OpenCL 

functions defined in kernel files or to CUDA device 

functions. These are functions available for distributed 

(parallel) independent execution in each thread execut-

ing on the parallel device. For example, if a parallel 

array has been distributed with one element in each 

thread, a parallel function may operate locally in paral-

lel on each element. However, unlike kernel functions, 

parallel functions cannot be called from serial code in 

normal Modelica functions on the host computer just as 

parallel OpenCL functions are not allowed to be called 

from serial C code on the host. Parallel functions have 

the following constraints, primarily since they are as-

sumed to be called within a parallel context in work-

items: 

 Parallel function bodies may not contain parfor-

loops. The reason is that the kernel containing the 

parallel functions is already distributed on each 

thread. 

 Explicitly declared parallel variables are not al-

lowed since execution is already taking place on the 

parallel device. 

 All memory allocation will be on the parallel de-

vice's memory.  

 Nested parallelism as in NestStepModelica [10] is 

not supported by this implementation. 

 Called functions must be parallel functions or sup-

ported built-in functions since execution is on the 

parallel device. 

 Parallel functions can only be called from the body 

of a parfor-loop, from parallel functions, or from 

kernel functions. 

Parallel functions in ParModelica are defined in the 

same way as normal Modelica functions, except that 

they are preceded by the parallel keyword as in the 

multiply function below: 

parallel function multiply 

  input parglobal Integer a; 

  input parlocal Integer b; 

  output parprivate Integer c;  // same as 

output Integer c; 

algorithm 

   c := a * b; 

end multiply; 

4.3 Kernel Functions 

ParModelica kernel functions correspond to OpenCL 

kernel functions [14] or CUDA global functions [16]. 

They are simply functions compiled to execute on an 

OpenCL parallel device, typically a GPU. ParModelica 

kernel functions are allowed to have several return- or 

output variables unlike their OpenCL or CUDA coun-

terparts. They can also allocate memory in the global 

address space. Kernel functions can be called from se-

rial host code, and are executed by each thread in the 
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launch of the kernel. Kernels functions share the first 

three constraints stated above for parallel functions. 

However, unlike parallel functions, kernel functions 

cannot be called from the body of a parfor-loop or from 

other kernel functions. 

Kernel functions in ParModelica are defined in the 

same way as normal Modelica functions, except that 

they are preceded by the kernel keyword. An example 

usage of kernel functions is shown by the kernel func-

tion arrayElemtWiseMult. The thread id function 

oclGetGlobalId() (see Section 4.5) returns the integer 

id of a work-item in the first dimension of a work 

group. 

kernel function arrayElemWiseMultiply 

  input Integer m; 

  input Integer A[m]; 

  input Integer B[m]; 

  output Integer C[m]; 

protected 

  Integer id; 

algorithm 

  id := oclGetGlobalId(1); 

  // calling the parallel function 

multiply is OK from kernel functions 

  C[id] := multiply(A[id],B[id]);  // 

multiply can be replaced by A[id]*B[id] 

end arrayElemWiseMultiply; 

4.4 Parallel For Loop: parfor 

The iterations of a ParModelica parfor-loop are execut-

ed without any specific order in parallel and inde-

pendently by multiple threads. The iterations of a par-

for-loop are equally distributed among available pro-

cessing units. If the range of the iteration is smaller 

than or equal to the number of threads the parallel de-

vice supports, each iteration will be done by a separate 

thread. If the number of iterations is larger than the 

number of threads available, some threads might per-

form more than one iteration. In future enhancements 

parfor will be given the extra feature of specifying the 

desired number of threads explicitly instead of auto-

matically launching threads as described above. An 

example of using the parfor-loop is shown below: 

// Matrix multiplication using parfor loop  

parfor i in 1:m loop 

  for j in 1:pm loop 

    ptemp := 0; 

    for h in 1:pm loop // calling the  

    // parallel function multiply is OK 

    // from parfor-loops 

      ptemp := multiply(pA[i,h], pB[h,j]) 

               + ptemp;  

    end for; 

    pC[i,j] := ptemp;  

  end for; 

end parfor; 

ParModelica parallel for loops, compared to normal 

Modelica for loops, have some additional constraints: 

 All variable references in the loop body must be to 

parallel variables. 

 Iterations should not be dependent on other itera-

tions i.e. no loop-carried dependencies. 

 All function calls in the body should be to parallel 

functions or supported built-in functions only. 

4.5 Executing User-written OpenCL Code 

from ParModelica. 

There are also some additional ParModelica features 

available for directly compiling and executing user-

written OpenCL code: 

 oclbuild(String) takes a name of an OpenCL source 

file and builds it. It returns an OpenCL program 

object which can be used later. 

 oclkernel(oclprogram, String) takes a previously 

built OpenCL program and create the kernel speci-

fied by the second argument. It returns an OpenCL 

kernel object which can be used later. 

 oclsetargs(oclkernel,...) takes a previously created 

kernel object variable and a variable number of ar-

guments and sets each argument to its correspond-

ing one in the kernel definition. 

 oclexecute(oclkernel) executes the specified kernel. 

All of the above operations are synchronous in the 

OpenCL jargon. They will return only when the speci-

fied operation is completed. Further functionality is 

planned to be added to these functions to provide better 

control over execution. 

4.6 Synchronization and Thread Management 

All OpenCL work-item functions [20] are available in 

ParModelica. They perform the same operations and 

have the “same” types and number of arguments. How-

ever, there are two main differences: 

  Thread/work-item index ids start from 1 in Par-

Modelica, whereas the OpenCL C  implementation 

counts from 0. 

  Array dimensions start from 1 in Modelica and 

from 0 in OpenCL and C. 

For example oclGetGlobalId(1) call in the above 

arrayElemWiseMultiply will return the integer ID of 

a work-item or thread in the first dimension of a work 

group. The first thread gets an ID of 1. The OpenCL C 

call for the same operation would be 

ocl_get_global_id(0) with the first thread obtain-

ing an ID of 0. 
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In addition to the above features, special built-in 

functions for building user written OpenCL code di-

rectly from source code, creating a kernel, setting ar-

guments to kernel and execution of kernels are also 

available. In addition parallel versions of some built-in 

algorithm functions are also available. 

5 Benchmarking and Evaluation 

To be able to evaluate the relative performance and 

behavior of the new language extensions described in 

Section 4, performing systematic benchmarking on a 

set of appropriate Modelica models is required. For this 

purpose we have constructed a benchmark test suite 

containing some models that represent heavy and high-

performance computation, relevant for simulation on 

parallel architectures. 

5.1 The MPAR Benchmark Suite 

The MPAR benchmark test suite contains seven differ-

ent algorithms from well-known benchmark applica-

tions such as the LINear equations software PACKage 

(LINPACK) [21], and Heat Conduction [23]. These 

benchmarks have been collected and implemented as 

algorithmic time-independent Modelica models.  

The algorithms implemented in this suite involve ra-

ther large computations and impose well defined work-

loads on the OpenModelica compiler and the run-time 

system. Moreover, they include different kinds of for-

loops and function calls which provide parallelism for 

domain and task decomposition. For space reasons we 

have provided results for only three models here.  

Time measurements have been performed of both 

sequential and parallel implementations of three mod-

els: Matrix Multiplication, Eigen value computation, 

and Stationary Heat Conduction, on both CPU and 

GPU architectures. For executing sequential codes gen-

erated by the standard sequential OpenModelica com-

piler we have used the Intel Xeon E5520 CPU [24] 

which has 16 cores, each with 2.27 GHz clock frequen-

cy. For executing generated code by our new OpenCL 

based parallel code generator, we have used the same 

CPU as well as the NVIDIA Fermi-Tesla M2050 GPU 

[25].  

5.2 Measurements 

In this section we present the result of measurements 

for simulating three models from the implemented 

benchmark suite. On each hardware configuration all 

simulations are performed five times with start time 

0.0, stop time of 0.2 seconds and 0.2 seconds time step, 

measuring the average simulation time using the 

clock_gettime() function from the C standard li-

brary. This function is called once when the simulation 

loop starts and once when the simulation loop finishes. 

The difference between the returned values gives the 

simulation time. 

All benchmarks have been simulated on both the In-

tel Xeon E5520 CPU (16 cores) and the NVIDIA Fer-

mi-Tesla M2050 GPU (448 cores). 

5.3 Simulation Results 

The Matrix Multiplication model (Appendix A) pro-

duces an M×K matrix C from multiplying an M×N ma-

trix A by an N×K matrix B. This model presents a very 

large level of data-parallelism for which a considerable 

speedup has been achieved as a result of parallel simu-

lation of this model on parallel platforms. The simula-

tion results are illustrated in Figure 5 and Figure 6. The 

obtained speedup of matrix multiplication using kernel 

functions is as follows compared to the sequential algo-

rithm on Intel Xeon E5520 CPU: 

 Intel 16-core CPU  – speedup 26 

 NVIDIA 448-core GPU – speedup 115 

 

Figure 5. Speedup for matrix multiplication, Intel 16-core 

CPU and Nvidia 448 core GPU. 

The measured matrix multiplication model simulation 

times can be found in Figure 6. 

 

 

Figure 6. Simulation time for matrix multiplication, Intel 

1-core, 16-core CPU, NVidia 448 core GPU. 

The second benchmark model performs Eigen-value 

computation, with the following speedups: 

 Intel 16-core CPU  – speedup 3 
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 NVIDIA 448-core GPU – speedup 48 

 

Figure 7. Speedup for Eigen value computation as a 

function of model array size, for Intel 16-core CPU and 

NVIDIA 448 core GPU, compared to the sequential 

algorithm on Intel Xeon E5520 CPU. 

The measured simulation times for the Eigen-value 

model are shown in Figure 8. 

 

Figure 8. Simulation time for Eigen-value computation as 

a function of model array size, for Intel 1-core CPU, 16-

core CPU, and NVIDIA 448 core GPU. 

The third benchmark model computes stationary heat 

conduction, with the following speedups: 

 Intel 16-core CPU  – speedup 7 

 NVIDIA 448-core GPU – speedup 22 

 

Figure 9. Speedup for the heat conduction model as a 

function of model size parameter M, Intel 16-core CPU 

and Nvidia 448 core GPU, compared to sequential 

algorithm on Intel Xeon E5520 CPU. 

The measured simulation times for the stationary heat 

conduction model are shown in Figure 10. 

 

Figure 10. Simulation time (seconds) for heat conduction 

model as a function of model size parameter M, for 1-core 

CPU, 16-core CPU, and 448 core GPU. 

According to the results of our measurements illustrat-

ed in Figure 5, Figure 7, and Figure 9, absolute 

speedups of 114, 48, and 22 respectively were achieved 

when running generated ParModelica OpenCL code on 

the Fermi-Tesla M2050 GPU compared to serial code 

on the Intel Xeon E5520 CPU with the largest data siz-

es.  

It should be noted that when the problem size is not 

very large the sequential execution has better perfor-

mance than the parallel execution. This is not surpris-

ing since for executing even a simple code on OpenCL 

devices it is required to create an OpenCL context with-

in those devices, allocate OpenCL memory objects, 

transfer input data from host to those memory objects, 

perform computations, and finally transfer back the 

result to the host. Consequently, performing all these 

operations normally takes more time compared to the 

sequential execution when the problem size is small. 

It can also be seen that, as the sizes of the models 

increase, the simulations get better relative performance 

on the GPU compared to multi-core CPU. Thus, to ful-

ly utilize the power of parallelism using GPUs it is re-

quired to have large regular data structures which can 

be operated on simultaneously by being decomposed to 

all blocks and threads available on GPU. Otherwise, 

executing parallel codes on a multi-core CPU would be 

a better choice than a GPU to achieve more efficiency 

and speedup. 

6 Guidelines for Using the New Par-

allel Language Constructs 

The most important task in all approaches regarding 

parallel code generation is to provide an appropriate 

way for analyzing and finding parallelism in sequential 

codes. In automatic parallelization approaches, the 

whole burden of this task is on the compiler and tool 

developer. However, in explicit parallelization ap-

proaches as in this paper, it is the responsibility of the 

modeler to analyze the source code and define which 
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parts of the code are more appropriate to be explicitly 

parallelized. This requires a good understanding of the 

concepts of parallelism to avoid inefficient and incor-

rect generated code. In addition, it is necessary to know 

the constraints and limitations involved with using ex-

plicit parallel language constructs to avoid compile 

time errors. Therefore we give some advice on how to 

use the ParModelica language extensions to parallelize 

Modelica models efficiently: 

 Try to declare parallel variables as well as copy as-

signments among normal and parallel variables as 

less as possible since the costs of data transfers from 

host to devices and vice versa are very expensive. 

 In order to minimize the number of parallel varia-

bles as well as data transfers between host and de-

vices, it is better not to convert forloops with few it-

erations over simple operations to parallel for-loops 

(parfor-loops). 

 It is not always useful to have parallel variables and 

parfor-loops in the body of a normal for-loop which 

has many iterations. Especially in cases where there 

are many copy assignments among normal and par-

allel variables. 

 Although it is possible to declare parallel variables 

and also parfor-loops in a function, there are no ad-

vantages when there are many calls to the function 

(especially in the body of a big for-loop). This will 

increase the number of memory allocations for par-

allel variables as well as the number of expensive 

copies required to transfer data between host and 

devices. 

 Do not directly convert a for-loop to a parfor-loop 

when the result of each iteration depends on other 

iterations. In this case, although the compiler will 

correctly generate parallel code for the loop, the re-

sult of the computation may be incorrect. 

 Use a parfor-loop in situations where the loop has 

many independent iterations and each iteration takes 

a long time to be completed. 

 Try to parallelize models using kernel functions as 

much as possible rather than using parfor-loops. 

This will enable you to explicitly specify the desired 

number of threads and work-groups to get the best 

performance. 

 If the global work size (total number of threads to 

be run in parallel) and the local work size (total 

number of threads in each work-group) need to be 

specified explicitly, then the following points 

should be considered. First, the work-group size 

(local size) should not be zero, and also it should 

not exceed the maximum work-group size supported 

by the parallel device. Second, the local size should 

be less or equal than the global-size. Third, the 

global size should be evenly divisible by the local 

size. 

 The current implementation of OpenCL does not 

support recursive functions; therefore it is not pos-

sible to declare a recursive function as a parallel 

function. 

7 Conclusions 

New multi-core CPU and GPU architectures promise 

high computational power at a low cost if suitable 

computational algorithms can be developed. The 

OpenCL C-based parallel programming model provides 

a way of writing portable parallel algorithms that per-

form well on a number of multi-core architectures. 

However, the OpenCL programming model is rather 

low-level and error-prone to use and intended for paral-

lel programming specialists. 

This paper presents the ParModelica algorithmic 

language extension to the high-level Modelica model-

ing language together with a prototype implementation 

in the OpenModelica compiler. This makes it possible 

for the Modelica modeler to directly write efficient par-

allel algorithms in Modelica which are automatically 

compiled to efficient low-level OpenCL code. A 

benchmark suite called MPAR has been developed to 

evaluate the prototype. Good speedups have been ob-

tained for large problem sizes of matrix multiplication, 

Eigen value computation, and stationary heat condition. 

Future work includes integration of the ParModelica 

explicit parallel programming approach with automatic 

and semi-automatic approaches for compilation of 

equation-based Modelica models to parallel code. Au-

totuning could be applied to further increase the per-

formance and automatically adapt it to varying problem 

configurations. Some of the ParModelica code needed 

to specify kernel functions could be automatically gen-

erated. 
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Appendix A. Serial Matrix Multiply 
 

model MatrixMultiplication 

  parameter Integer m=256 ,n=256 ,k =256; 

  Real result ; 

algorithm 

  result := mainF (m,n,k); 

end MatrixMultiplication ; 

 

function mainF 

  input Integer m; 

  input Integer n; 

  input Integer k; 

  output Real result ; 

protected  

  Real A[m,n]; 

  Real B[n,k]; 

  Real C[m,k]; 

algorithm 

   // initialize matrix A, and B 

  (A,B) := initialize (m,n,k); 

   // multiply matrices A and B 

  C := matrixMultiply (m,n,k,A,B); 

  // only one item is returned to speed up 

  // computation 

  result := C[m,k]; 

end mainF; 

 

function initialize 

  input Integer m; 

  input Integer n; 

  input Integer k; 

  output Real A[m,n]; 

  output Real B[n,k]; 

algorithm 

  for i in 1:m loop 

    for j in 1:n loop 

      A[i,j] := j; 

    end for; 

  end for; 

  for j in 1:n loop 

    for h in 1:k loop 

      B[j,h] := h; 

    end for; 

  end for; 

end initialize ; 

 

function matrixMultiply 

  input Integer m; 

  input Integer p; 

  input Integer n; 

  input Real A[m,p]; 

  input Real B[p,n]; 

  output Real C[m,n]; 

  Real localtmp ; 

algorithm 

  for i in 1:m loop 

    for j in 1:n loop 

      localtmp := 0; 

      for k in 1:p loop 

        localtmp := localtmp +(A[i,k]* 

                    B[k,j]); 

      end for; 

      C[i,j] := localtmp ; 

    end for; 

  end for; 

end matrixMultiply; 

 

Appendix B. Parallel Matrix-Matrix 

Multiplication with parfor and Kernel 

functions 
 

model MatrixMultiplicationP 

  parameter Integer m=32,n=32,k=32; 

  Real result; 

algorithm 

  result := mainF(m,n,k); 

end MatrixMultiplicationP ; 

 

function mainF 

  input Integer m; 

  input Integer n; 

  input Integer k; 

  output Real result ; 

protected    

  Real C[m,k]; 

  parglobal Real pA[m,n]; 

  parglobal Real pB[n,k]; 

  parglobal Real pC[m,k]; 

  parglobal Integer pm; 

  parglobal Integer pn; 

  parglobal Integer pk; 

   // the total number of global threads  

   // executing in parallel in the kernel 

  Integer globalSize [2] = {m,k}; 

   // the total number of local threads  

   // in parallel in each workgroup 

  Integer localSize [2] = {16 ,16}; 

algorithm 

  // copy from host to device 

  pm := m; 

  pn := n; 

  pk := k; 

  (pA ,pB) := initialize(m,n,k,pn ,pk); 

 

  // specify the number of threads and 

  // workgroups 

  // to be used for a kernel function 

  // execution 

  oclSetNumThreads(globalSize, localSize); 

  pC := matrixMultiply(pn ,pA ,pB ); 

 

  // copy matrix from device to host  

  // and resturn result 

  C := pC; 

  result := C[m,k]; 

 

  // set the number of threads to  

  // the available number 

  // supported by device 

  oclSetNumThreads(0); 

end mainF ; 

 

 

function initialize 

  input Integer m; 

  input Integer n; 

  input Integer k; 

  input parglobal Integer pn;     

  input parglobal Integer pk; 

  output parglobal Real pA[m,n]; 

  output parglobal Real pB[n,k];         

algorithm 
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  parfor i in 1:m loop 

    for j in 1: pn loop 

      pA[i,j] := j; 

    end for; 

  end parfor; 

  parfor j in 1:n loop 

    for h in 1: pk loop 

      pB[j,h] := h; 

    end for; 

  end parfor ; 

end initialize ; 

 

parkernel function matrixmultiply 

  input parglobal Integer pn; 

  input parglobal Real pA [: ,:]; 

  input parglobal Real pB [: ,:]; 

  output parglobal Real pC[size(pA,1), 

size(pB,2)]; 

protected   

  Real plocaltmp ; 

  Integer i,j; 

algorithm 

  // Returns unique global thread Id value 

  // for first and second dimension 

  i := oclGetGlobalId (1); 

  j := oclGetGlobalId (2); 

  plocaltmp := 0; 

  for h in 1: pn loop 

    plocaltmp := plocaltmp + (pA[i,h] *  

                 pB[h,j]); 

  end for; 

  pC[i,j] := plocaltmp; 

end matrixmultiply; 
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Abstract 

Aiming to the design challenge of modern mecha-

tronic products, this paper presents a method to sim-

ulate the coupled rigid-flexible system in MWorks. 

Firstly, the component mode synthesis (CMS) tech-

nique is introduced and the Craig-Bampton method 

is adopted to build the flexible-body model. The 

general flexible-body model named FlexibleBody is 

developed based on the standard MultiBody library 

in Modelica, which describes the small and linear 

deformation behavior (relative to a local reference 

frame) of a flexible-body that undergoes large and 

non-linear global motion. In the model, the modal 

neutral file (MNF) is introduced as a standard inter-

face to describe the constraint modes. Secondly, the 

model is used to construct a library of boom system 

of concrete pump truck and the simulations covering 

the expanding and folding process are carried out 

based on both the rigid multibody and the coupled 

rigid-flexible system models. Finally, the influence 

to dynamics performance of the boom system is ana-

lyzed and the conclusion is drawn. The method in 

this paper provides an effective approach to build 

unified model and simulate flexible-body in multi-

domain engineering systems. 

Keywords: rigid-flexible system; concrete pump 

truck; MWorks 

1 Introduction 

Much industrial equipment is mechatronic and con-

tains high-speed, lightweight, and high-precision 

mechanical system. In these mechanical systems one 

or more structural components often need to consider 

the deformation effects for design analyses. The in-

tegrated design and simulation of the mechatronic 

systems with flexible bodies make the multidiscipli-

nary challenge. When designing such a mechatronic 

system, the performance requirements must be satis-

fied and the strength of the system must be guaran-

teed. Therefore, stress and deformation of machine 

components have to be predicted in the design pro-

cess. 

The increasing computational power of current com-

puter enables to model a multibody system as 3D 

deformable body using the finite element method. 

The flexible multibody dynamics is the subject con-

cerned with the modeling and analysis of constrained 

deformable bodies that undergo large displacements 

and rotations. DLR® FlexibleBodies Library
 [1, 2]

 pro-

vides the general flexible model so that users can 

simulate the elastic deformation of flexible-body in a 

modal synthesis way, in which the standard input 

data (SID) 
[3, 4]

 file should be offered by a third-party 

software. In SID file, Guyan reduction and Ritz ap-

proximation are adopted. The Rayleigh–Ritz method
 

[4]
 chooses an approximate form for the eigenfunc-

tion with the lowest eigenvalue. In the Guyan reduc-

tion method
 [4]

, a set of user-defined master nodes are 

retained and the remaining set of slave nodes are re-

moved by condensation. Only stiffness properties are 

considered during the condensation, and inertia cou-

pling of master and slave nodes are ignored. Based 

on an improved Craig-Bampton method
 [5-8]

, 

MSC.ADAMS® adopts the modal neutral file 
[9]

, 

which can be exported by some finite element soft-

ware, to drive the animation of the flexible body. 

The MNF is a binary file that contains the location of 

nodes and node connectivity, nodal mass and inertia, 

mode shapes, generalized mass and stiffness for 

mode shapes. The mode shapes in modal neutral file, 

which contain the interface constraint modes, are 

revised effectively after modal truncation. So the 

Craig-Bampton method is more accurate and has 

been widely used in engineering 
[10-14]

. But the soft-

ware, just like ADAMS, mainly focuses on modeling 

and simulation of the pure mechanical system and 

lacks support of multi-domain physical systems. In 

order to model and simulate the mechatronic prod-

ucts composed of mechanical, electronic, hydraulic, 

and control engineering systems, the co-simulation 
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should be performed with other software such as 

Matlab/Simulink®, LMS.AMESim®, etc. 

In this paper, the FlexibleBody model is developed 

based on the component mode synthesis (CMS) and 

the improved Craig-Bampton method
 [9, 11]

. An exter-

nal C function MNFParser is programmed to get the 

mode shapes data in the model. The finite element 

analysis (FEA) results can then be incorporated into 

a part model by superimposing the flexible-body de-

flection on the motion of rigid-body. The postproces-

sor tool in MWorks
 [15]

 is also improved to support 

the nephogram animation of the deformation. As an 

example, a boom system library of the concrete 

pump truck is developed. And the simulations cover-

ing the expanding and folding process are carried out 

based on both the rigid multibody and the coupled 

rigid-flexible system models. The simulation results 

are compared and it shows the coupled rigid-flexible 

system is more conformable with the actual boom 

system. 

2 The Flexible-Body Model 

To build the model of flexible-body based on CMS, 

the mode shapes data in MNF is provided by third-

party finite element analysis (FEM) software. So the 

MNF file needs to be parsed. Then the equations of 

coupled elastic deformation and rigid body are estab-

lished. To animate the deformation of flexible-body, 

the postprocessor needs to have the ability to show 

nephograms. The whole process in MWorks is 

shown in Figure 1. 

Multi-domain 
Modeling

Computation

PostProcessor

M
w

o
rks

FlexibleBody

MnfParser

deformation nephograms

Parse MNF file

Calculate Invariants 
and Damping 

Coefficient

Parameters

Variables

Initial Equations

Equations
Mass, Inertia tenser, 
Node coordinate,  etc.

MNF file name

Import geometry file

Render nephograms

Color legend bar

 CAE software: Ansys, 
Nastran, etc.

MNF file

Initial algorithm

 
Figure 1: Development process of flexible-body in 

MWorks 

2.1 Theoretical Background 

In this paper, only small, linear body deformations 

relative to a local reference frame are considered, 

while that local reference frame indicates large, non-

linear global motion. 

The discretization of a flexible component into a fi-

nite element model represents the infinite number of 

degree of freedom (DOF) with a finite element. The 

basic premise of modal superposition is that the de-

formation behavior of a component with a very large 

number of nodal DOF can be captured with a much 

smaller number of modal DOF. This reduction in 

DOF is called modal truncation. 

The linear deformations of the nodes of this finite 

element mode, u , can be approximated as a linear 

combination of a smaller number of translational 

mode shapes matrix 
[9]

,  1 2, , ,T T T TM  Φ . 

 1 1

1

+ + + =
M

T T T TM M Ti i

i

q q q  


  u Φ q Φ q  (1) 

Where 
TΦ  and q  are the truncated mode shapes ma-

trix and the truncated modal coordinates respectively. 

M  is the number of mode shape, and 

 1 2, , ,
T

Mq q qq  is the modal coordinates. 

Similar to equation(1), as the body deforms, every 

node rotates through small angles relative to its ref-

erence frame. These angles are obtained using a 

modal superposition
 [9]

. 

 
1

M

R R Ri i

i

q


   θ Φ q Φ q  (2) 

Where  1 2, ,R R R RM  Φ  is the slice of rotational 

mode shapes matrix. 

In the studies referring to [3, 4], the eigenvectors of 

an unconstrained system be used. Eigenvectors are 

found to provide an inadequate basis in system level 

modeling. To improve the accuracy of the system 

model, the CMS 
[3]

 techniques are adopted, the most 

general methodology is Craig-Bampton method
 [5]

. 

The Craig-Bampton method
 [5, 6]

 allows the user to 

select a subset of DOF which are not to be subject to 

modal superposition. These boundaries DOFs (or 

attachment DOFs) are preserved exactly in the 

Craig-Bampton modal basis. There is no loss in reso-

lution of these DOF when higher order modes are 

truncated
 [7, 8]

. 

The system DOF in Craig-Bampton method are par-

titioned into boundary DOF, 
Bu , and interior DOF, 

Iu . Two sets of mode shapes are defined, as follows 
[9]

:  

Constraint modes: These modes are static shapes 

obtained by giving each boundary DOF a unit dis-

placement while holding all other boundary DOF 
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fixed. The basis of constraint modes completely 

spans all possible motions of the boundary DOFs, 

with a one-to-one correspondence between the modal 

coordinates of the constraint modes and the dis-

placement in the corresponding boundary DOF, 

C Bq u . 

Fixed-boundary normal modes: These modes are 

obtained by fixing the boundary DOF and computing 

an eigensolution. There are as many fixed-boundary 

normal modes as the user desires. These modes de-

fine the modal expansion of the interior DOF. The 

quality of this modal expansion is proportional to the 

number of modes retained by the user. 

The relationship between the physical DOF and the 

Craig-Bampton modes and their modal coordinates is 

illustrated by the following equation. 

 
CB

IC IN NI

    
     

     

I 0 qu
u

Φ Φ qu
 (3) 

Where I , 0  are identity and zeros matrices, respec-

tively. 
ICΦ  is the physical displacements of the inte-

rior DOF in the constraint modes. 
INΦ  is the physi-

cal displacements of the interior DOF in the normal 

modes. 
Cq  is the modal coordinates of the constraint 

modes. 
Nq  is the modal coordinates of the fixed-

boundary normal modes. 

The generalized stiffness and mass matrices corre-

sponding to the Craig-Bampton modal basis are ob-

tained via a modal transformation.  

2.2 FlexibleBody Model 

The governing differential equation of flexible-body
 

[9, 15]
, in terms of the generalized coordinates is: 

 
1

2

T T

g

    
         

    

M ψ
Mξ Mξ ξ ξ Kξ f Dξ λ Q

ξ ξ
 (4) 

Where,  

,ξ,ξ ξ  are the generalized coordinates of the flexible-

body and their time derivatives. 

    , 1, ,

T T

i i M
x y z q  


 ξ x ψ q  

M  is the mass matrix.  

K  is the generalized stiffness matrix.  

gf is the generalized gravitational force.  

D  is the modal damping matrix.  

Ψ  is the algebraic constraint equations.  

λ   is the Lagrange multipliers for the constraints.  

Q  is the generalized applied forces. 

 
Figure 2: The position vector to a deformed point P  

on a flexible body 

The instantaneous location of a point that is attached 

to a node, P , on a flexible body, B , is the sum of 

three vectors, showing in Figure 2. 

 
p p p  r x s u  (5) 

Where 

x  is the position vector from the origin of the ground 

reference frame to the origin of the local body refer-

ence frame of the flexible body. 

ps  is the position vector of the undeformed position 

of point P  with respect to the local body reference 

frame of body B . 

pu  is the translational deformation vector of point P , 

the position vector from the point’s undeformed po-

sition to its deformed position. It is also expressed in 

the local body coordinate system. The deformation 

vector is a modal superposition, 
P TPu Φ q . Where 

TPΦ  is the slice from the modal matrix that corre-

sponds to the translational DOF of node P .  

The general flexible-body model based on CMS is 

developed according to the following processes.  

(1) Defining the parameters: MNF file name, mass, 

inertia, mode shape, set of selected mode, etc. 

(2) Setting the variants and default values: modal 

coordinates and first-order derivate, second-

order derivate, velocity, acceleration, etc. 

(3) Configuring the initial algorithm: Call 

MNFParser function (refer to 2.3 MNF File Par-

ser) to get the mass, inertia, mode shape, stiff-

ness matrix, invariants, damping coefficient, etc. 

(4) Setting the initial equations: just like the equa-

tions in Body model in Multibody library. 

(5) Describing the equations: Force and torque bal-

ance equation, and equation (4)  are defined. 

With modal coordinates, the deformation of the 

flexible-body equation (1) , (2),  (4) and (5). 

This approach consists of the Body model in Multi-

Body library. The general FlexibleBody model is 

shown in Figure 3.  
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Figure 3: Icon of the FlexibleBody model 

The FlexibleBody model encapsulates the complexi-

ty of details into a black box that we can use modu-

larly without considering the detailed implementa-

tion at the top level. 

2.3 MNF File Parser 

The mode shapes data are needed to build the flexi-

ble-body model with modal synthesis method, and 

the MNF is adopted to express these data, which is 

generated by CAE software such as ANSYS®, NAS-

TRAN® etc. 

Modal neutral file is a platform-independent binary 

file. The information in a MNF includes geometry 

(locations of nodes and node connectivity), nodal 

mass and inertia, mode shapes, generalized mass and 

stiffness for mode shapes, which is listed in Table 1. 
Table 1: Information in MNF 

Block information 

Header 
date, program name and version, title, 

MNF version, units 

Body properties 
mass, moments of inertia, center of 

mass 

Interface points Reduced stiffness and mass matrices 

Interface modes User requests the number of modes 

Constraint modes Interface constraint modes 

According to its data structure, an external C func-

tion “MNFParser” is programed to parse the MNF 

file and to obtain the quality, inertia tensor, eigen-

values, modal shapes matrix, etc. 

To reduce the simulation time, the nine inertia invar-

iants
 [9]

 are calculated beforehand from the N  nodes 

of the finite element model based on each node’s 

mass, undeformed location coordinates in the com-

ponent modes.  

And the default damping coefficients are calculated 

according to the modal frequency. 

 1% damping for all modes with frequency low-

er than 100. 

 10% damping for modes with frequency in the 

100-1000 range. 

 100% critical damping for modes with frequen-

cy above 1000. 

The MNFParser also provides nodes coordinates and 

element faces of the FE model to the postprocessor 

for rendering deformation nephograms. 

3 Modeling and Simulation of the 

Coupled Rigid-flexible Boom Sys-

tem  

The concrete pump truck has become a kind of in-

dispensable machinery equipment in construction 

industry. It pumps concrete continuously sent by 

concrete mixer truck to the pouring site. The boom 

system is generally composed of mechanical, hy-

draulic and control subsystems, and the multi-

domain modeling and simulation is necessary for the 

design and validation of this system. The modeling 

and simulation process of boom system in MWorks 

is shown in Figure 4. 

Concrete Pump 
Truck Arm System 

Modeling

Multi-domain Library
· Mechanical system
· Hydraulic system
· Control system

Compile & Simulate

· Set algorithm, simulation time, 
tolearance

· Compile
· Simulate

PostProcessor
· View Animation
· View Plots

Compare 
Simulation Result 
and Experiment

· Input Experiment Data
· Superimpose test data on plots

Model Verification

Rigid-flexible 
Coupling Dyanmics 

Simulation

· Define Flexible Bodies
· Rigid-flexible Coupling Dynamics 

Analysis

Design of 
Experiment & 
Optimization

· Design Sensitivity Studies
· Design of Experiments
· Optimization

MNF File of Arm

 
Figure 4: The modeling and simulation workflow of 

booms system of concrete pump truck 

3.1 Library of Boom System  

The hierarchical multi-domain library of boom sys-

tem is developed based on the standard Modelica 

library and the hydraulic library developed by Su-

zhou Tongyuan Software & Control Technology 

Company. Its structure is shown in Figure 5.  
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Figure 5: Structure of the booms library 

The boom system library includes mechanics, hy-

draulic, and control subsystem library. The boom 

system model can be conveniently constructed by 

dragging and dropping based on the library.  

3.2 Simulation of Rigid Boom System 

The booms of concrete pump truck must expand and 

fold regularly while working. The working loads 

should be analyzed to ensure the safety. The control 

system should also be designed to satisfy the casting 

needs. 

The hierarchical structure of the boom system model 

is established based on the MultiBody library, shown 

in Figure 6. 

Mechanical system

Derricking cylinder

Hydraulic system

Control system

Chassis model

 
Figure 6: Hierarchical model of the booms system 

Base on the system model, the various working con-

ditions can be simulated by modifying the parame-

ters of the control and hydraulic systems, and the 

work loads of each boom, flow quantity and pressure, 

impact loads in the hydraulic system and the reliabil-

ity of control system can also be analyzed. For ex-

ample, the expanding and folding process of the 

boom_4 is simulated and the result is shown in Fig-

ure 7. 
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Boom_4Boom_4

Boom_5Boom_5

Trajectory of 

CM in Boom_5

Trajectory of 

CM in Boom_5

Cylinder_4Cylinder_4

Displacement of flange_b in Cylinder_4

Force of flange_b in Cylinder_4

Flow of port_B in Cylinder_4  
Figure 7: The expanding and holding process of the boom_4 

3.3 Simulation of the Coupled Rigid-flexible 

Boom System 

There will be a large elastic deformation on each 

boom in the actual working process. This not only 

has a great impact on the casting work, but also re-

duces the safety performance of the system. So it is 

necessary to take the elastic deformation into consid-

eration for improving the accuracy of the system 

model. 

3.3.1 Modal Analysis of the Booms 

The modal neutral files of booms are needed to per-

form the coupled rigid-flexible dynamic analysis. So 

it’s necessary to take modal analysis for each boom. 

We use the ANSYS software to compute the modals. 

The analysis workflow is as follow: 

(1) Inputting the material parameters: The elastic 

modulus, Poisson's ratio, and density are set to 

FE model. The material properties determine the 

spring stiffness and damping. 

(2) Meshing the model: The solid45 element is se-

lected to mesh the solid geometry. And the 

mass21 element is selected to mesh the key 

points set up on the central axis of the hinge 

hole. 

(3) Configuring the rigid region: The rigid regions 

are established about the interface node and 

nodes on the cylinder faces respectively. 

(4) Generating the MNF: Run the ADAMS macros, 

choose the interface nodes, specify the mode 

order numbers to expand, then generate modal 

neutral file of each boom. 

The finite element models of booms are shown in 

Figure 8.  

 
(a) Boom_1 

 
(b) Boom_2 

 
(c) Boom_3 

 
(d) Boom_4 

 
(e) Boom_5 

Figure 8: FE model of booms 

We set twenty modes to extract for each boom. Then 

we can get fifty modes in the MNF. The modes from 

first to sixth are rigid modes, approximately to zero. 

Because there are five fixed interface points in each 

boom, and thirty constraint modes of six degrees of 

freedom are extracted. We choose a sufficient num-

ber of modes to represent the boom so that the fre-

quency range is able to deactivate eigenmodes based 

on the frequency or the energy criterion. Some natu-

ral frequencies of the booms are listed in Table 2. 
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Table 2: Natural frequency of booms 

Nat. 

Freq. 
Boom_1 Boom_2 Boom_3 Boom_4 Boom4 

1-6 0 0 0 0 0 

7 25.8302 35.5842 33.0956 49.3527 8.7492 

8 36.3539 48.4689 49.3527 22.1214 11.1239 

9 52.8219 76.9397 49.3527 53.6334 23.7672 

10 74.1143 89.2075 49.3527 60.5197 30.3335 

11 75.6471 90.2372 49.3527 81.8889 47.3777 

12 81.2592 94.7992 49.3527 85.3635 56.8012 

… … … … … … 

3.3.2 Replacement of the FlexibleBody Model 

The rigid parts of booms shown in Figure 6 are re-

placed by FlexibleBody model with respective pa-

rameters, as shown in Figure 9. So the model of the 

mechanical system is converted from the rigid multi-

body to the coupled rigid-flexible system. 

Replaced by FlexibleBody model with respective parameters

 
Figure 9: The coupled rigid-flexible mechanical system 

3.3.3 Simulation of Coupled Rigid-flexible 

Boom System  

The expanding and folding process of boom_5 is 

simulated, as shown in Figure 10. 

Flexible 

Boom_4

Flexible 

Boom_4

Flexible 

Boom_5

Flexible 

Boom_5

Trajectory of 

CM in Boom_5

Trajectory of 

CM in Boom_5

Cylinder_5Cylinder_5

Displacement of flange_b in Cylinder_5

Force of flange_b in Cylinder_5

Deformation of Boom_5  

Figure 10: The process of expanding and folding boom_5 

The modal coordinates of each boom are show in 

Figure 11. The modal coordinates q[1] - q[6] are cor-

responding to 7
th
 - 12

th
 modes respectively. Obvious-

ly, the value of modal coordinate q[1] is the biggest 

one in each boom. It indicates that the 7
th
 mode con-

tributes most energy to the flexible-body. And the 

values of other modal coordinates are smaller and 

smaller, indicating less energy contribution. The var-

iation tendency is complied with the modal superpo-

sition theorem
 
and energy criterion 

[11]
. 

 
(a) Boom 1 
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(b) Boom 2 

 
(c) Boom 3 

 
(d) Boom 4 

 
(e) Boom 5 

Figure 11: Modal coordinates of booms 

With the powerful post-processor in MWorks, the 

deformation color contour of boom_4 and boom_5 

are shown in Figure 12. 

 
(a) t= 10.44s 

 
(b) t = 12.84s 

 
(c) t = 100.20s  

Figure 12: Nephograms of the deformation in booms 

The obvious vibration can be found in simulation 

result of the coupled rigid-flexible dynamics. And in 

the actual working process, the vibration does exist 

in the expanding or the holding process. The impact 

on hydraulic and control system can be analyzed for 

the elastic deformation of each boom. So compared 

with a rigid model, the coupled rigid-flexible model 

has higher accuracy, and is more close to the actual 

system. 

3.4 Simulation Comparation between Rigid 

and Coupled Rigid-flexible Boom System 

3.4.1 Comparation of Simulation Results 

The Figure 13 shows the simulation results, in com-

parison coupled rigid-flexible multibody with rigid 

multibody, of boom_3 ~ boom_5 expanding and 

holding together.  

Modelling and Simulation of the Coupled Rigid-flexible Multibody Systems in MWorks 

 

412 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076405 



 

 

Rigid boom system Coupled rigid-flexible boom system  
Figure 13: Comparation of rigid system and coupled rigid-flexible system 

 
Figure 14: Flow in hydraulic cylinder port_A of boom_4 

 

Figure 15: Force in flang_b of boom_4 
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Figure 14 shows the flow in hydraulic cylinder 

port_A of boom_4. Figure 15 shows the force in 

flange_b of boom_4. There are obvious differences 

between rigid and the coupled rigid-flexible boom 

system, especially at the reversing point: the former 

changes gently, but the latter changes dramatically, 

which are due to elastic deformation of flexible 

booms. 

 
Figure 16: Length of boom_4 

 
Figure 17: Length of boom_5 

Figure 16 and Figure 17 show the length of boom_4 

and boom_5 respectively. The length of the rigid 

boom is a constant value, while the length curve of 

the flexible boom is shown a relatively evident fluc-

tuation, especially when the motion state changed, 

deformation peak appears. The maximum force of 

each hinge point is larger than the rigid body simula-

tion results, when boom system changes the motion 

state.  

3.4.2 Comparation of Calculation Efficiency 

The finite element method is apt for discretizing the 

arbitrary complicated geometry. But with gigantic 

nodes in large scale and complex system, the compu-

tation is heavy. FEA is too inefficient for system lev-

el modeling and is incapable of analyzing large mo-

tion. Moreover, the coupled rigid-flexible system is a 

strong nonlinear system, especially integrated with 

hydraulic and control subsystem.  

Although introducing great number of variables and 

equations, component mode synthesis saves time and 

processing resources by breaking up a single large 

problem several reduced-order problems via sub-

structuring.  

The calculation time for coupled rigid-flexible boom 

system is more than double for rigid boom system in 

the test cases. There are several influence factors for 

calculation time. 

(1) The number of nodes. Too many DOFs can 

mean unacceptably long computation time. 

(2) The number of modes. If a mode does not con-

tribute to the response of the flexible component 
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during a simulation, it could be disabled to save 

computation time. 

(3) The modal damping coefficients. The bigger 

modal damping coefficient is helpful to control 

the integration step by suppressing the resonance 

response respect to the corresponding natural 

frequency. 

4 Conclusions 

By introducing the CMS technique and the improved 

Craig-Bampton method, the FlexibleBody model has 

been constructed based on the standard MultiBody 

library in this paper. The boom system of concrete 

pump truck is modeled and simulated in MWorks, 

which is composed of a coupled rigid-flexible mech-

anism, a hydraulic and a control subsystem. Numeri-

cal results are compared and discussed with respect 

to efficiency and accuracy. 

The FlexibleBody model can be easily incorporate 

flexibility into system models. This optional add-on 

module interface with several commercial finite ele-

ment applications to accurately define component 

flexibility, and it has an easy-to-use interface that 

allows engineers to quickly convert rigid parts to 

flexible ones. 

The simulation process is illustrated by boom system 

of concrete pump truck applications. However, it can 

be applied to design any mechanical system such as 

classical or compliant mechanisms, deformable 

structures and more general to solve most mechani-

cal dynamics problems. 
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Abstract

Beam theories are extensively used for simulation of
helicopter rotor blades. The predominant deployment
of composite materials in rotor blade development de-
mands for complex theories that are able to describe
the elastic behavior of anisotropic and nonhomoge-
neous materials. In this paper a Modelica library is
presented which is capable of simulating extensional,
torsional and flexural deformation and the couplings
between those degrees of freedom. The structural dy-
namic model is based on cross-sectional analysis.

Keywords: flexible structures; rotating beams; heli-
copter rotor design; cross-sectional analysis

1 Introduction

The non-linear static and dynamic analysis of bent
and twisted beams is of major importance for many
engineering disciplines. Especially for helicopter ro-
tor applications beam models are used to simulate its
dynamic behavior. Since helicopter rotor blades are
made of composite structures and materials that may
be anisotropic or nonhomogeneous the long and slen-
der beam structure is subject to non-classical effects
such as transverse shear deformation, geometric non-
linearities, cross-sectional warping, and elastic cou-
pling [4]. Thus classical beam theories limited to
isotropic materials and simple cross-sectional geome-
tries may not be applicable in rotorcraft analysis codes.
Some vibration phenomena in particular with signifi-
cant bending-torsion coupling require adequate mod-
eling. Therefore a sophisticated beam theory has been
implemented to Modelica which has extensively been
tested in practical applications such as the CAMRAD
II [7] rotorcraft analysis code and been proven to pro-
vide satisfactorily results [8]. One of the key features
of modern beam theories is the cross-sectional analy-
sis. It splits the problem into a two-dimensional analy-
sis of the cross-section and the one-dimensional beam

kinematics. The two-dimensional analysis provides
the structural and inertial parameters that can be set
at any number of points on the beam. Hence the in-
fluence of anisotropy and inhomogeneity can be taken
into account and these methods are not limited to spe-
cific materials. The one-dimensional analysis provides
the elastic equations of motion to calculate the kine-
matics of the beam. The main advantage of this ap-
proach as opposed to three-dimensional finite element
analysis is the significant reduction of computational
effort. It allows the calculation of elastic beam be-
havior in multi-body environments as well as real time
applications.

2 Modeling Capabilities

The flexible beam library is a Modelica package to
model elastic motion of beam-like structures repre-
sented by axial, bending, and torsion deflection of a
beam with arbitrary cross-sectional geometry. To at-
tach the beam model to the simulation environment the
standard Modelica frame connector from the Multi-
Body library is used. In addition to the connectors at
each end of the beam an arbitrary number of frames
on the beam axis may be defined to connect to other
system components such as joints, sensors, or force el-
ements. Figure 1 shows an exemplary setup with two
beam segments connected in series. The user has the
ability to define an arbitrary number of cross-sectional
properties along the beam axis including the stiffness
parameters and inertial properties. Those parameters
can be obtained by NABSA [5] or VABS [1], which
are both 2D cross-sectional analysis tools for general
nonhomogeneous and anisotropic beam sections in-
cluding warp and twist.
The library features two options to model the beam:

1. An Euler-Bernoulli beam theory for isotropic
beam materials with St. Venant torsion.

DOI Proceedings of the 9th International Modelica Conference    417 
10.3384/ecp12076417 September 3-5, 2012, Munich, Germany    

 

 

 

 

 

 

 

 

 

 

   



 

 

x

y

Figure 1: example beam setup

2. A beam theory for anisotropic or composite ma-
terials including transverse shear deformation.

The effects of cross-section warping and transverse
shear are included in the section structural properties.
Their effect on inertial forces and interface geome-
try is neglected, warp variables are expressed in terms
of strain measures. The undeflected beam axis is as-
sumed to be straight within the component. Thus a
beam geometry defined by initial curvature or kinks
must be split into several straight beam components.
Also the theory requires the integration of beam prop-
erties along the beam axis which is implemented as
Gaussian integration. Hence structural and inertial
properties must not vary rapidly along its length.

3 Beam Theory

The motion of the beam element is represented by the
rigid body motion of a reference frame at one end of
the beam and an elastic motion relative to this frame.
Due to this decomposition it is possible to superim-
pose an arbitrary large motion of the reference frame,
which will be treated in a correct manner, by a small
elastic motion approximated to the second order. The
representation of the elastic deformation is based on
references [7, 6]. The reference frame defines the co-
ordinate system B at the origin of the undeflected beam
axis. This axis extends on the positive x-axis of sys-
tem B from x = 0 to x = l. The elastic motion of a
point on the beam axis is described by four parame-
ters; namely the constant position x on the undeflected
axis plus the elastic elongation u as well as the bending
deflections v and w that cause a rotation of the cross-
section. Additionally the parameter θ is used to de-
scribe the rotation around the beam axis (see Fig. 2).
The tangent of the cross-section at this point is rotated
by the angles β and ζ around the y and z axes respec-

yE

xE

zE

x

y

z

u v
w
θ EB

I

~p~s

~r

Figure 2: motion of the beam

tively produced by bending deflection, which can be
obtained by sinβ = w′ and sinζ = v′ for second or-
der approximation1. That leads to the transformation
matrix CEB(x) between the origin of the beam and the
bent and twisted axes of the coordinate system E at
position x of the beam axis. Euler angles are used to
describe the rotation CEB = XθY−β Zζ , where X ,Y , and
Z are the rotation matrices around the indexed angles
respectively.

3.1 Cross-Section Motion

To describe the motion of an arbitrary point on the
cross section the previous definition needs to be ex-
tended by the effects of transverse shear and warping.
Thus the vector r from the origin of the beam relative
to a point on the cross-section is constructed by:

a) the constant axial position x and the elongation
u = ue +U , where ue is due to elastic elongation
and U is the elongation due to bending deflections

b) the transverse shear deformation rotating the
cross-section with ν around the z-axis and with
ω around the y-axis

c) the elastic transversal deformation v and w

d) the rotation θ = φ + θC/I +Θ around the x-axis,
where φ is the elastic torsion, θC and θI is the
pitch of the structural and inertial principal axes
respectively, and Θ is the rotation due to bending
deflections

e) the position of the point on the rotated cross-
section represented by the coordinates η and ζ

and the warping displacements W

1the notation (·)′ is used for the derivative with respect to x
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Figure 3: shape functions for ue and φ

So the vector r with respect to the coordinate system B
can be written as:

r =

x+u
v
w

+C

0
η

ζ

+C

W1
W2
W3

 (1)

with

C = (Z−νYω)CEB (2)

3.2 Discretization

The variables of elastic deformation ue,v,w, and φ de-
pend on position and time. To descretize these vari-
ables they are separated into space-dependent shape
functions h(x) and time-dependent amplitudes q(t).
Thus

ue = hT
u (x)qu(t) v = hT

v (x)qv(t)

w = hT
w(x)qw(t) φ = hT

φ (x)qφ (t)

Here h and q are vectors of length Nu,Nv,Nw and Nφ

where N denotes the degree of freedom for each elas-
tic variable. If N = 0 for all degrees of freedom, the
elastic beam degrades to a rigid body.
To keep the elastic motion separated from the rigid
body motion, appropriate shape functions have to be
chosen. Therefore the shape functions need to satisfy
the boundary conditions h(0) = 0 for elongation and
torsion as well as h(0) = h′(0) = 0 for bending. This
beam element employs algebraic polynomial shape
functions as used in CAMRAD II; they are depicted
in figure 3 for elongation and torsion as well as figure
4 for bending.
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Figure 4: shape functions for v and w

3.3 Equations of Motion

The equations of motion are derived from Hamilton’s
Principle:

δ

∫
L dt = δ

∫
(T −U +W )dt = 0 (3)

where L is the Lagrangian, T the kinetic energy, U
the strain energy, and W the work of external loads.
Those terms will be explained in detail in the following
sections. The strain energy is given by the product of
stress σ with the strain ε integrated over the volume of
the beam:

δU =
∫

δε
T

σ dΩ (4)

Next, the work of the external loads can be ex-
pressed by integrating the body forces b, surface forces
tS and discrete forces F :

δW =
∫

δ pT bdΩ+
∫

δ pT tS dΓ+δ pT F (5)

where p is the position vector of a point on the beam
relative to the inertial system (cf. fig. 2). Here sur-
face forces tS will be discretized and can therefore be
treated as discrete forces F . The only body force for
the beam model is gravity, which will be treated as in-
ertial force using d’Alembert’s principle.

The kinetic energy can be obtained from the integral
over density ρ and the absolute beam velocity ṗ:

δT = δ

∫ 1
2

ρ ṗ2 dΩ (6)

Using partial integration in time with δ p = 0 at tinitial
and tfinal without loss of generality this can be ex-
pressed as (respecting gravitational forces g as inertial
force):

δT =
∫

δ pT (−p̈+g)ρ dΩ (7)
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3.4 Kinetic Energy

Equation (7) can be split into two integrals using the
mass per length m:

−δT =
∫∫

δ pT (p̈−g)ρ dmdx (8)

with p = s+CIBr, where s is the vector from the in-
ertial system to the beam origin and r is the vector
described in equation (1). The corresponding virtual
displacement δ p can further be written as (with δψ as
the virtual rotation of the beam origin)2:

δ p =δ s−CIBr̃δψ
BI +CIB

δ r

=CIB [I −r̃ RT
u RT

v RT
w RT

φ

](
δ s∗ δψBI δqu δqv δqw δqφ

)T

=CIBRT
δq (9)

Here Ri represents the Jacobian of the placement r
with respect to the degrees of freedom u,v,w, and φ .
Inserting (9) in (8) the kinetic energy becomes

−δT = δqT
∫∫

RCIB(p̈−g)dmdx = δqT M (10)

where M is the resulting mass matrix. By differentiat-
ing p twice the vector p̈ becomes

p̈ =CIB
(

s̈+ ˜̇ωr+2ω̃ ṙ+ r̈+ω ṡ+ ω̃ω̃r
)

(11)

Neglecting warping and transverse shear effects on in-
ertia equation (1) can be written as:

r = xEB +CEB

0
η

ζ

= xEB +(Y−β Zζ )
T

 0
ηb
ζb

 (12)

Here ηb and ζb identify the cross-section point, rela-
tive to the section principle axes at θI that are bent but
not twisted. Thus the motion of a point on the cross-
section is evaluated by

r =

x+u
v
w

+

−Sζ

Cζ

0

ηb +

−SβCζ

−Sβ Sζ

Cβ

ζb (13)

Consistent with the second order approximation and(
η̇b

ζ̇b

)
= θ̇

(
−ζb
ηb

)
≈ φ̇

(
−ζb
ηb

)
(14)

this can be reduced to (15) and derived twice:

r =

x+u
v
w

+

−v′

1
0

ηb +

−w′

0
1

ζb (15)

Now equation (15) can be derived twice and thus in-
serted in equation (11).

2In this paper the notation ( ·̃) will be used to denote the cross-
product matrix

3.5 Strain Energy

The strain energy δU (cf. eq. (4)) is derived from the
Green-Lagrange strain tensor, which is obtained by the
basis vectors of the undistorted and distorted beam and
can be written as

fmn =
1
2
(Gmn−gmn) (16)

where gmn = gmgn and Gmn = GmGn are the metric
tensors in terms of the curvilinear coordinates ym =
(x,η ,ζ ) of the undistorted and distorted beam, respec-
tively. The basis vectors are defined as gm = ∂ ri/∂ym

and Gm = ∂ r f /∂ym with

ri =

x
0
0

+X−θC

0
η

ζ

 (17)

and r f = r as defined in equation (1). The Green-
Lagrange tensor fmn in curvilinear coordinates needs
to be transformed into a stress tensor γkl in local rect-
angular coordinates in order to apply the constitutive
law. Thus the local Cartesian basis zk with the unit
vectors ek = (e1,g2,g3) is introduced. The transfor-
mation is then given by [10]:

fmn = γkl
∂ zk

∂ym

∂ zl

∂yn
(18)

with

∂ zk

∂ym
= ekgm =

 1 0 0
−θ ′Cζ 1 0
θ ′Cη 0 1

 (19)

The transformation results in the relations γ11 = f11 +
2θ ′C(ζ f12−η f13), γ12 = f12 and γ13 = f13. With the
assumption of small strain, γmn = εmn, where ε is lin-
ear in the strain measures. Then, after neglecting all
bending and warping terms of higher order as well as
warping in y- and z-direction the required strain ε is:

ε11 =
1
2
(G11−g11)+2θ

′
C(ζ ε12−η13)

≈ u′e−κzη +κyζ + 1/2φ ′2(η2 +ζ
2)

+2θ
′
C(ζ ε̄12−ηε̄13)+θ

′
Cφ
′(ζ λη −ηλζ )

(20)
2ε12 = G12−g12 ≈ 2ε̄12 +(λη −ζ )φ ′ (21)

2ε13 = G13−g13 ≈ 2ε̄13 +(λζ +η)φ ′ (22)

In this expression the warping function W1 = λφ ′ has
been used.

In order to relate the strain ε to the stress σ used
in equation (4) terms for section loads are needed.
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Assuming small strain, the sections loads can be ex-
pressed as linear combinations of the force strain mea-
sure γ and the moment strain measure κ (see ref. [6]):

γ =CT

1+u′

v′

w′

−
1

0
0

=

 ε̄11
2ε̄12
2ε̄13

 (23)

κ = K− k (24)

with K̃ =CTC′, k̃ = XθC X ′−θC
, and k =

(
θ ′C 0 0

)T . It
can be shown that Kx = θ ′C + φ ′, so κx = φ and γx =
ε̄11 = u′e. Thus the second order approximation for γ

and κ is:

γ = Xθ

(
u′e −ν −ω

)T (25)

κ = Xθ

(
φ ′ −w′′−ω ′ v′′+ν ′

)T (26)

For brevity the detailed derivation of the strain mea-
sures is omitted here, the reader is advised to refer to
references [9] and [7]. The strain equations can now be
inserted into the strain energy terms from Hamilton’s
principle. The stress is determined from strain by the
constitutive law σi j = Ei jklεkl , while only stresses act-
ing perpendicular to the cross-section are taken into
account. Thus only σ11,σ12 and σ13 remain in the en-
ergy equations. Now equation (4) can be written in
terms of section loads (forces Fi and moments Mi):

δU =
∫∫

δε
T

σ dAdx (27)

=
∫ l

0

[
Fxδu′e +Fy2δ ε̄12 +Fz2δ ε̄13 (28)

+Mxδφ
′+Myδκy +Mzδκz

]
dx (29)

By integration of
∫

dAδεEε the section loads can be
obtained from stress and hence related to the strain
measures. In a next step the transverse shear forces are
eliminated from the equations, the shear strain how-
ever will still be considered in the material parameters.
That leads to the matrix of cross-sectional elastic con-
stants S:

Fx

Mx

My

Mz

=


Suu Suφ +

1
2 φ ′Suuk2

P Suw Suv

Sφu +φ ′Suuk2
P Sφφ Sφw Sφv

Swu Swφ Sww Swv

Svu Svφ Svw Svv




u′e
φ ′

κy

κz


(30)

These factors are required input data for the
anisotropic beam model and can be obtained from the
previously named beam analysis softwares in section
2. Here k2

P is the nonlinear coupling factor, which is
the square of polar radius of gyration about the beam
axis. For the isotropic model the matrix S reduces to:

EA θ ′CEAk2
T + 1

2 φ ′EAk2
P

θ ′CEAk2
T +φ ′EAk2

P GJ
EAzC 0
−EAyC 0

EAzC −EAyC

0 0
EIzz +EAz2

C −EAyCzC

−EAyCzC EIyy +EAy2
C

 (31)

Where yC and zC is the horizontal and vertical off-
set of the tension center and k2

T the extension torsion
coupling factor.

4 Examples

Calculations of the developed anisotropic flexible
beam library have been compared to experimental
measurements of the Princeton beam test as well as
CAMRAD II simulation results. The static and dy-
namic behavior of the beam element has been evalu-
ated for deflections, rotations and eigenfrequencies of
the beam.

4.1 Static Deflection - Princeton Beam Test

The Princeton beam test [2] is an experimental study
of the large static deformation of a cantilevered beam
under gravity tip load. It involved an 20x0.5x0.125
inch aluminum beam with a rectangular cross-section.
The beam root is rotated around its principle axes so
that the tip load is oriented at various angles. Static
bending deflections of the tip have been measured as
a function of tip load. The softer bending direction
is called flap, the stiffer direction chord. The beam
is fixed at the root in a way that at zero degrees rota-
tion angle gravitational force deflects the beam chord-
wise. To compare the experimental results with the
implemented beam model a different number of beam
segments has been used. The cross-sectional data has
been taken from reference [3]. Figure 5 shows the re-
sulting bending deflection in parts of the beam length
in flap direction. Figure 6 shows the corresponding
results in chord direction.

It can be seen that significant nonlinear effects oc-
cur with increasing tip loads. Using one or two beam

Session 3D: Mechanic Systems II 

DOI Proceedings of the 9th International Modelica Conference    421 
10.3384/ecp12076417 September 3-5, 2012, Munich, Germany   



 

 

0 15 30 45 60 75 90
0

0.2

0.4

0.6

root pitch (deg)

fla
p

be
nd

in
g

de
fle

ct
io

n
w /

L

1lbs one segment
2lbs two segments
3lbs four segments
4lbs

Figure 5: Princeton beam test: Comparison of flap-
wise tip bending deflection of measured and calculated
(marks = experimental data)
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Figure 6: Princeton beam test: Comparison of chord-
wise tip bending deflection of measured and calculated
(marks = experimental data)
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Figure 7: Vertical deflection of the Princeton beam at
different tip speeds v[m s−1]

segments the simulation is not capable of reproducing
the experimental results due to the second order ap-
proximation. Using four beam segments however the
large nonlinear deformation is captured by the rigid
body motion, which is exact. In that case the simula-
tion gives good results for flap and chord deflection.

4.2 Dynamic Behavior

To validate the dynamic behavior of the library a can-
tilever beam segment is rotated around its vertical axis
at root using different tip speeds v = Ωr, with Ω as
the rotational speed. The transversal deflections in
x,y,z-direction as well as the rotation angles θ ,−β ,ζ
around the x,y,z axis respectively are measured with
ten virtual sensors at equally spaced positions along
the principal axis. To test the isotropic behavior cross-
sectional data from the Princeton beam test have been
used. In order to analyze the anisotropic characteris-
tics of the beam these parameters are expanded with
structural and inertial coupling factors. This way more
than 35 test beams have been created to vary all possi-
ble input parameters and compared the virtual Model-
ica measurements to CAMRAD II simulation results.
Exemplary figure 7 depicts the vertical deflection of
the isotropic Princeton beam. It can be shown, that the
deviations between the two simulation softwares for
all isotropic and anisotropic test cases are smaller than
the predefined numerical tolerance of e = 10−5.

In rotorcraft analysis a widely used tool is a fan
plot. They show the relation between the rotary speed
and the eigenfrequency of a rotor. Again results are
compared to CAMRAD II. The eigenfrequencies of
the Modelica simulation are obtained using the "lin-
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Figure 8: Fan plot of the first five eigenfrequencies
for the Princeton beam. Abscissa: normalized eigen-
frequency ωe; Ordinate: normalized rotary speed Ω;
reference speed Ωref = 380 rad s−1

earizeModel" function and extracting the eigenvalues
with the Linear Systems Toolbox. Figure 8 shows the
variation of the first five eigenfrequencies at different
rotary speeds normalized with the reference speed of
Ωref = 380 rad s−1. For all frequencies it can be shown
that the results of both simulation software match per-
fectly.

4.3 Animation

The implemented anisotropic flexible beam library is
capable of visualizing the deformations of the beam.
For this purpose the Modelica surface visualizer from
the MultiBody library is employed. Thus all standard
features such as colors, transparency etc. are avail-
able. To make small deformations visible an amplifi-
cation factor has been implemented which exaggerates
all deformations and rotations of the beam segment in
the animation window. To save computational power
the resolution of the animation can be reduced or com-
pletely disabled. An example of the animation is pre-
sented in figure 9. Here four flexible beam elements
are used to simulate a helicopter rotor blade (shown
with exaggerated amplitudes), yet the consideration of
aerodynamic forces is ongoing work.

Figure 9: Animation of four elastic beam segments
used as helicopter rotor blades

5 Conclusions

This paper presents a structural dynamic library to
model anisotropic and nonhomogeneous elastic beams
in Modelica. It is capable of simulating nonlinear ex-
tensional, torsional and flexural deformation and the
couplings between those degrees of freedom. Using
cross-sectional modeling theory the user is able to pro-
vide different varying material parameters along the
beam principal axis. The results correlate with ex-
perimental beam measurements as well as other beam
simulations software. To model large nonlinear defor-
mation multiple beam segments can be connected in
series.
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Abstract 

Replacing hydraulic primary flight control actuators 
by electromechanical actuators imposes the problem 
of reduced reliability. This problem may be over-
come by using redundant actuators what in turn in-
creases the system complexity. The appropriate re-
dundancy level and component mapping must be 
assessed. In specific failure cases the system must be 
reconfigured in order to maintain the specified per-
formance level to meet aircraft safety regulations. 
The assessment of the system’s reaction upon such 
kind of scenarios is however a complicated task and 
must be supported by modeling and simulation. 
Therefore, modeling and simulation of such a fault-
tolerant electromechanical system in Modelica is 
described in this paper. Sample simulation results are 
presented and discussed. 
 
Keywords: electromechanical actuator; redundancy; 
faultl-tolerance; over-determined kinematics; heli-
copter; swashplate; flight controls;  

1 Introduction 

A general trend in aviation is to replace hydraulic 
subsystems like primary flight control actuators by 
electromechanical devices. However, substituting a 
hydraulic actuator by an electromechanical actuator 
(EMA) has the disadvantage of reduced component 
reliability. This accompanies two major challenges. 
First, in order to meet aircraft safety regulations 
higher degrees of redundancy are needed for the uti-
lization of EMAs. Moreover, in the case a redundant 
actuator jams mechanically, it must be disconnected 
from the swashplate to maintain controllability of the 

remaining actuators and the ability to position the 
entire swashplate. 
The system under investigation is therefore specified 
to provide fail-operative behavior for major mechan-
ical failures and dual-fail-operative behavior for 
combinations of any other failures. This requires cer-
tain degrees of redundancy of all system parts and 
meaningful mapping of the components in order to 
allow for failures while maintaining function and 
performance. Furthermore, suitable means for failure 
detection, failure isolation and system reconfigura-
tion are needed. 

2 System architecture and compo-
nent failures 

 
Figure 1: Swashplate actuation system 
 
The concept investigated comprises four vertically 
arranged and equidistantly spaced actuators for the 
operation of a three degree of freedom helicopter 
swashplate, each of them containing two motors (see 
figure 1, blue cylinders). The system operates against 
aerodynamic forces caused at the rotor blades and 
exerted on the rotating upper ring of the swashplate 
through pitch links. The stationary lower ring of the 
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swashplate is positioned by the four EMAs. All actu-
ators are simultaneously active to achieve a mini-
mum of nominal loading. The provided redundancy 
allows for the malfunction of one actuator unit, the 
three remaining EMAs safely continuing control of 
the swashplate with reduced performance. 

2.1 Swashplate actuator 

Each swashplate actuator consists of two electric 
motors in torque-summing configuration and a me-
chanical drive train. The latter comprises a two-stage 
gearbox, ballscrew and nut assembly, and an output 
piston to the swashplate attachment. The variety of 
conceivable mechanical failure modes can be catego-
rized into two types of mechanical failures to be tak-
en into account, namely fracture and jamming of the 
drive train. 
For monitoring and control purposes each single ac-
tuator drive path is equipped with an absolute posi-
tion sensor and two cut force sensors. Moreover, 
each of the two electric motors per actuator features 
sensors for angular position, phase currents, and 
temperature.  

2.2 Disconnect device 

Under all flight conditions, the swashplate must be 
controllable in three degrees of freedom, i.e. collec-
tive, pitch, and roll (see e.g. [1]). As mentioned, the 
risk of a mechanical jam must be considered which 
can be caused, for instance, by wear or debris. To 
avoid the swashplate getting stuck due to a single 
jammed actuator, fail-safe degradation of the overall 
actuation system is needed. For this reason, each ac-
tuator is fitted with a disconnect device, decoupling 
the output shaft from the mechanical drive train [2]. 
After disconnection of one actuator the swashplate is 
still safely controlled by the remaining three actua-
tors. However, the time needed for disconnection is 
critical regarding stability and stress and therefore 
imposes strict requirements on failure detection and 
disconnect activation. 

2.3 Electric motor 

The most common design for electrically driven 
flight surface actuators is a permanent magnet syn-
chronous motor (PMSM) fed by pulse-width modu-
lated (PWM) inverters. This is due to the superior 
torque and power density of such devices. 
The most common faults are device failure within 
the inverter and open and/ or short circuit failures in 
the motor windings. This failures typically lead to a 
loss of motor output torque (open circuit failure or 

inverter failure) or a drag torque induced by short-
circuit currents. 

2.4 Power supply 

The electric power sources driving the motors are 
also critical components of the overall system. The 
required power supply reliability is ensured by a 
multi power bus configuration. The system has four 
independent power supplies, each being connected to 
one actuator control electronics (ACE) unit. The 
failure cases considered include a loss of power sup-
ply output power, and out-of range output voltage. 

2.5 Redundancy and component mapping 

The maximum accepted probability of catastrophic 
events of an aircraft system is 1x10-9h-1 [3]. To meet 
this figure several subsystems must be redundant and 
the connections of subsystems must be designed 
such that a single failure results in minimum system 
degradation. 
Regarding the overall drive train a static redundancy 
approach is followed, i.e. all actuators are simultane-
ously active. Each is driven by two fully independent 
paths of torque generation, comprising electric mo-
tors, power supply busses, power electronics, and 
control computers. In order to minimize system deg-
radation after a failure the two motors of a single 
actuator are controlled by different ACE units. 
Moreover, each actuator has a different combination 
of motor control electronics assignment in order to 
avoid the loss of two entire actuators after two ACE 
failures. 
 

 
Figure 2: System architecture 
 
Figure 2 shows the applied component mapping. The 
boxes on the left-hand side represent the topology of 
the dual-lane computers, namely swashplate control 
computer (SPCC) and actuator control electronics. 
Since motor control responsibilities are split and 
mapped to all four ACEs, they are operating in an 
active/active configuration. The SPCC functions can 
be assumed to be functionally integrated in a flight 
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control computer (FCC) in a master/slave configura-
tion and therefore its topology will be adopted. Three 
SPCCs are depicted being the minimum viable de-
gree of redundancy. An ACE additionally contains 
power stages for motor operation and disconnect de-
vice activation, respectively (see triangles in figure 
2). In addition to the two motors (circles), each main 
rotor actuator (MRA) comprises a disconnect device 
(DD) equipped with dual activation path, two cut 
force sensors (CFS) and a single position sensor 
(PS). As can be seen from the respective color cod-
ing, the disconnect device is controlled by two ACEs 
different to those assigned to the two motors of an 
actuator. This is to allow for disconnection even after 
both motors were lost due to ACE malfunctions to 
decouple dead rotary inertia. 

3 Control and monitoring 

In this paragraph the control and monitoring ap-
proach is briefly introduced. A more detailed de-
scription can be found in [4]. 
 

 
Figure 3: Control architecture 

3.1 Control architecture 

The presented actuator arrangement causes over-
determined kinematics, since four actuators are used 
to control the three degrees of freedom of the heli-
copter swashplate (collective, pitch, and roll). A con-
trol approach is used which is based on transforming 
the four actuator position signals into three position 
parameters, derived from a method introduced by 
[5]. Control is performed by means of a cascaded 
PID architecture comprising current, speed and posi-
tion loop for each of the three directions (figure 3). 
Eight motor position signals provide position feed-
back (two resolvers per actuator; the absolute posi-
tion sensor on actuator level is used for monitoring 
only). By means of a regression plane the actual 
swashplate position is determined and transformed 
into respective actual collective, pitch, and roll val-
ues. The three force/torque set values are trans-
formed back into four actuator torque set values, i.e. 
one per actuator. Hence, each two motors per actua-
tor receive a common torque command. By this set-

up force fighting between single actuators is exclud-
ed by design for nominal conditions. This approach 
based on coordinate transformations is a simple and 
powerful method, which is however threatened if 
specific failures are not detected.  

3.2 Monitoring architecture 

In order to mitigate the effects of the component 
failures described above, the system must be fitted 
with appropriate monitoring. As a general philoso-
phy, simple mechanisms are desired. Therefore, most 
of the monitoring algorithms rely on redundancy of 
information and signal comparison. Complex health-
monitoring and the associated knowledge database 
are avoided. In addition, the control functionality is 
totally decoupled from fault-detection algorithms for 
its continuous operation. In other words, control 
loops are never influenced by ongoing fault detection 
processes, unless an unambiguous decision was 
made by the monitoring part.  
There are three reconfigurations designed to be au-
tomatically executed by the system, namely isolation 
of faulty position signals, disconnect device activa-
tion, and motor shutdown. For this purpose, the mon-
itoring subsystem supervises the sensor signals of all 
actuators, compares redundant information and gen-
erates trusted signals fed to the controllers. Five 
monitors are continuously assessing parallel tasks: 
 
 Sensor monitor 
 Actuator positioning monitor 
 Swashplate positioning monitor 
 Jam monitor 
 Motor monitor 

 
An additional decision layer evaluates the opinions 
of the independent monitors and initiates the respec-
tive reconfiguration. In case a faulty position signal 
is detected, the respective signal is permanently iso-
lated by excluding it from the regression plane com-
putation by means of a validity factor (see also [4]). 
The disconnect device is activated via the respective 
power stages (see figure 2) if a mechanical jam was 
unambiguously detected. Motor failures are typically 
detected internally by their dedicated control elec-
tronics.  

4 Model implementation 

4.1 General modeling approach 

For model implementation the Modelica [6] based 
simulation software Dymola [7] is used. The overall 
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system simulation model is shown in figure 4. With-
in the blue dotted frame the system components are 
located (top down order): The lower swashplate (in-
cluding the inertias of the upper swashplate and the 
rotor blades) and the respective actuator hinges at the 
helicopter strucure, the array of actuators, and the 
control and monitoring blocks. Control (green) and 
monitoring (orange) loops are depicted. Inputs to the 
system are aerodynamic forces, power supply and 
position commands. On the bottom of figure 4 the 
system parameters are illustrated, assigned to the five 
categories mechanical drive train (MDT), power 
stages and motors (PSM), position commands (POS), 
external forces (FORCE), and failure injection 
(FAIL). 
 

 
Figure 4: Top layer of system simulation model 
 
A major idea of the simulation model is to investi-
gate not only one specific system design, but to al-
low for comparison of the performance of several 
concepts against each other. One important goal of 
the model therefore is easy generation of models of 
concept variants. Therefore, for instance the number 

of actuators is a model parameter in order to allow 
for variation of the actuator redundancy. The actua-
tors are grouped in an array of components with the 
respective connectors. Figure 5 illustrates concepts 
comprising three, four, and five actuators, respec-
tively. 
 

 
Figure 5: Swashplate actuation design variants 
 
Apart from the Modelica Standard Library no other 
publically available model library has been used. 
Class parameterization is applied for the handling of 
different models of the same component (e.g. drive 
train with and without friction) and of predefined 
sets of parameters, e.g. aerodynamic loads, command 
inputs, and failure cases. Via inheritance fully pa-
rameterized simulation experiments were stored, thus 
facilitating the handling of the large number of simu-
lation test cases to be assessed. The Modelica feature 
of arrays of components proved to be an essential 
advantage for the implementation of redundant com-
ponents. In the following paragraphs the global mod-
el components are described. 

4.2 Electromechanical actuator 

As mentioned, an electromechanical actuator 
consists of a mechanical drive train (including 
disconnect device), two motors and a power inverter. 
The disconnect device implementation is based on 
constraint forces rather than friction: In connected 
state, internal forces are computed which inhibit 
relative movement of the disconnect device input 
and output connections. After activation no more 
force is transmitted, both parts move independently. 
The EMA failure cases, namely drive train jamming 
and drive train fracture, are modeled by activation of 
a brake and deactivation of a clutch. 
For assessment of the effects of mechanical losses in 
the drive train two implementations have been 
realized: Friction forces and torques may degrade the 
overall system dynamics und must therefore be 
contained in the simulation model. For investigation 
of the effects of mechanical losses on power 
consumption an efficiency model has been 
implemented as an alternative, avoiding the 
numerical issues and computational load of friction 
models. 
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4.3 Motor and inverter 

The inverter and motor models are built according to 
the functional modeling layer specifications [9]. This 
allows for improvement of the overall system model 
computational efficiency by exclusion of high fre-
quency switching behavior and reduction of the mo-
tor and associated controls model based on the prin-
ciples described in [8]. Motor controls are imple-
mented using standard space vector control struc-
tures with a decoupled control of the current flux- 
and torque components. 

4.4 Monitoring and control 

The monitoring concept and the control algorithm 
have been described above. Both are implemented in 
single model components connected to the array of 
actuator components. In contrast to the real system 
implementation the simulation model does not con-
tain redundant computers. The effect of an ACE 
computer failure can be emulated by switching off 
the respective power supply. Swashplate control 
computer (SPCC) topology and failure detection are 
outside the scope of this paper. The monitoring algo-
rithms are implemented as a sampled block as it 
would be implemented in flight hardware. Even 
though an analogue implementation would be prefer-
able for simulation performance reasons, a sampled 
implementation is required for future hardware-in-
the-loop simulations. 

4.5 Aerodynamic forces 

The aerodynamic forces acting on the swashplate 
and its actuators are given as a sequence of signals 
assigned to a matrix of flight conditions, e.g. stabiliz-
ing, high rate pull up, 30° turn with severe turbu-
lences, etc.  

4.6 Power supply mapping 

The power supplies are mapped to motors according 
to the assignment illustrated in figure 2: Each power 
unit supplies two motors containing to different ac-
tuators. Thus the failure of a single power unit does 
not cause loss of a whole actuator. A dedicated map-
ping algorithm allows automated mapping of the pa-
rameterized power supplies and actuators. It is im-
plemented as variable loops of connect statements. 

4.7 Failure injection 

The simulation model covers a set of relevant failure 
cases, as they were already introduced above. Table 

1 shows a summary of the most relevant component 
failures and indicated the manner of injection. Each 
injection is parameterized via setting of a pair of 
time/ value. Since not all combinations of failures 
and fail sequences are relevant, predefined sets of 
parameterizations have been defined as parameter 
records. All of them are collected in a failure record 
on the top model hierarchy, while class parameteri-
zation allows activation of specific fail cases. 
 

 
Table 1: Component failures covered in the current 
model 

5 Simulation results 

Validation of the system behavior requires a large 
amount of simulation test cases to be performed. 
Those are implemented by means of a dedicated test 
case library which can be re-run on demand. This 
allows for comparability, consistency and easy re-
production of the total set of test cases. This chapter 
presents a short selection of simulation results of the 
most relevant failure cases.   

5.1 Motor failure 

Figure 6a shows the response of the system to a col-
lective position demand signal injected at t=0.5s. 
Both motors of actuator 1 need the same current (fig. 
6b) and deliver the same torque (fig. 6c). At 0.6s a 
winding short circuit failure of motor 1 occurs. Mo-
tor 2 now draws more current and delivers nearly 
double torque, whereas faulty motor 1 shows short-
circuit current but only a small braking torque, while 
the actuator speed is maintained. At t=1s the position 
demand is satisfied, the motors continuously reduce 
speed. Consequently, the speed dependant short-
circuit current of motor 2 almost disappears after 
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1.5s. Motor 2 keeps the actuator in steady state. For 
this simulation the motor monitoring was deactivated 
in order to check the actuator performance in the 
case of a motor failure. 
 

 
Figure 6: Actuator response on motor short circuit 
failure 

5.2 Power failure 

Figure 7a shows the response of the system to a col-
lective position demand signal injected at 0.5s. All 
power units deliver the nominal voltage of 270V, all 
motors draw the same current. At t=0.6s a first pow-
er supply fails. Motor 2 of actuator 1 and motor 1 of 
actuator 2 subsequently draw no more current (and 
deliver no torque). Motor 1 of actuator 1 and motor 2 
of actuator 2 compensate for this loss, i.e. draw the 
double current while the actuator speed is main-
tained.  
At t=1.1s a second power supply fails, thus only 4 
out of 8 motors of the overall system remain active. 
In figure 7c motor 1 of actuator 1 represents the 4 
operative motors, the other three of which are not 
displayed for transparency reasons. The demanded 
position is maintained, but the system behaves more 
sensitively. Damping of the current oscillations 
caused by the second power unit failure requires al-
most one second. The system remains operational 
with reduced performance. 

 
Figure 7: System response on single and double 
power failure 

5.3 Mechanical jam 

For the jamming scenario the following critical con-
dition is simulated: A sudden friction force causes 
instantaneous jamming, i.e. unability of displace-
ment. This exposes the system to the most stringent 
requirement regarding detection time. The discon-
nect device must be activated rapidly to maintain 
control stability and limit mechanical stress. 
Figure 8 shows the respective simulation results. The 
swashplate performs a collective movement of 
0.05m starting at t=0.5s with maximum speed 
vmax=100mm/s. At t=0.7s a mechanical jam is inject-
ed at actuator 1 (fig. 8a, blue lines). Current com-
mands immediately change, expecting mainly actua-
tor 1 to compensate for the position control devia-
tion. This effect highlights the dependency of the 
controller on sophisticated jam detection: Of all ac-
tuators the failed one is powered most, which in turn 
weakens the remaining operative EMAs. The meas-
ured forces however illustrate that actuator 2 and 4 
(pink line) sustain almost the full loads, while actua-
tors 1 and 3 do not contribute significantly.  
The low measured force at actuator 1 however con-
tradicts to the high commanded current. This effect 
is used for jam detection by means of an internal 
torque residual. At t=0.9s the disconnect device, rep-
resented by an idealized mechanical clutch, is acti-
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vated. The converging position signals show that 
horizontal swashplate attitude is recovered within 
0.2s. Subsequently, for geometrical reasons, actua-
tors 2 and 4 are in charge of sustaining the 
swashplate loads, while actuator 3 draws current just 
for stabilization. The motors of the failed actuator 
are shut down. 
 

 
Figure 8: System response on mechanical jam 
 

5.4 Position signal failure 

Detection and isolation of a failed position sensor is 
a very important task, since the measured positions 
are the only signals directly influencing the control 
loops. Via the regression plane, a non-detected posi-
tion sensor failure would lead to faulty feedback to 
the position and speed loop. 
Figure 9 depicts signals related to a position sensor 
failure and its detection. Again, a collective 
swashplate movement of 0.05m is commanded at 
t=0.5s with full specified speed. Resolver 1 at actua-
tor 1 fails due to freeze at t=0.6s. This measured val-
ue is however be taken into account for the feedback 
calculation of the swashplate position.  
As can be seen from figure 9a, the false position val-
ue leads to an increasing diversion of the swashplate 
from the horizontal plane. In the swashplate position-
ing monitor the distance of each measured position 
to the overall reference plane is calculated based on 
the Hesse normal form. Figure 9b shows that the 
faulty sensor 1 deviates faster than the others. After 
exceeding a predefined deviation threshold, this is 

considered a sensor failure. To avoid that temporary 
disturbances may lead to a false decision, several 
confirmation cycles are performed (see figure 9c). At 
t=0.8s the decision is confirmed and resolver 1.1 is 
isolated. As an immediate effect, all remaining posi-
tion signals perfectly fit to the plane calculated with-
out the failed signal (see figure 9b). Horizontal atti-
tude of the swashplate is recovered and maintained 
as shown in figure 9a. 
 

 
Figure 9: System response on position sensor failure 

6 Conclusion 

The presented paper introduced a safety-critical ap-
plication of electromechanical actuators. The accom-
panied challenges of such system were described and 
a summary of relevant failure cases was given. 
Modelica is considered a suitable means for model-
ing of this kind of system including the specific 
characteristics, such as redundancy, mapping, fault 
injection, failure detection, and reconfiguration. Ex-
emplary simulation results depicted the system re-
sponse on specific relevant failure cases. It was 
shown that performance and reconfiguration behav-
ior are as expected. 
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Abstract

This paper presents a survey on matching algorithms
which are required to translate Modelica Models.
Several implementations of matching algorithms are
benchmarked on a set of physical models from me-
chanical systems in ODE and DAE representation.
The major part of algorithms is based on the Aug-
menting Paths Method and one algorithm is based on
the Push-Relabel Method. The algorithms are imple-
mented in the programming language C and Meta-
Modelica. In addition two cheap matching algorithms
are used to jump-start the advanced matching process.

Keywords: matching; index reduction; modelimark

1 Introduction

A major benefit of Equation based Object Oriented
modeling Languages (EOOL) like Modelica is the
possibility of acausal modeling. It increases the
reusability of models and simplifies the description
of physical systems. In order to simulate an acausal
model, all equations have to be transformed and sorted
yielding a causal model description. The process of
transforming equations into assignments is thus called
causalization. The main task of causalization is to
match each equation to a variable. It is one of the most
important challenges of any EOOL compiler.

Most models from EOOL give rise to very large and
sparse differential algebraic equation (DAE) systems
[19],[20],[25]. The challenge of the matching process
is therefore to transform the model into an ordinary
differential equation (ODE), so that it can be solved
through the application of standard numerical time in-
tegration algorithms.

Pantelides [21] provides an algorithm to get a

so called perfect matching, transforming the system
to block lower triangular form (BLT) providing all
necessary information to apply index reduction and
thereby transforming a DAE into an ODE. Driven
by the need of numerical stability several index re-
duction algorithms have been developed in the past
[16],[18],[19],[20],[25],[27].

There are other matching algorithms next to those
presented by Duff [4]. They can be divided into differ-
ent classes of worst case time complexities. The most
common complexities are shown in Figure 1 12.

Figure 1: Typical worst case complexities of matching
algorithms [9]

Since more powerful computers allow for larger
models with more equations, a future challenge will
be to optimize the scaling of EOOL compilers with re-
spect to model size. As shown in [11] the effort of
state of the art EOOL compilers is proportional to the

1n: Number of Equations
2τ: non zero entries in the Adjacency Matrix
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second or even the third power of the number of equa-
tions, depending on the model structure. Thus it is
worth studying how the combination of matching and
Pantelides Algorithm can be further optimized.

The next section provides a brief introduction to
matching theory and index reduction. It is followed by
an overview on selected matching algorithms based on
augmenting paths and the push relabel technique. Sec-
tion 4 discusses the possibility to combine the match-
ing algorithms with index reduction by looking at
some examples. A comparison of runtimes of all these
algorithms is presented in section 5 followed by a dis-
cussion and concluding remarks in section 6.

2 Theory of Matching and Index Re-
duction

2.1 Matching Theory

The aim of this section is to give an introduc-
tion to the general definitions of matching algo-
rithms. For further information, the reader is referred
to [5],[6],[8],[9],[2],[10]. As mentioned above and
shown in detail by Elmqvist [10] matching algorithms
are provide the information how a system of equations
can be transformed symbolically into a system of as-
signments. The mathematical idea behind this, is to
transform the system into block lower triangular (BLT)
form and to solve it by a simple forward substitution
process [5]. As Duff proposed in [5] the transforma-
tion to BLT form is split into two stages:

• Match each equation to a variable and transform
the problem description into a directed graph

• Find a traversal of the directed graph which
means to sort the equations and identify algebraic
loops

For the second step Tarjan’s Algorithm [26] is very ef-
ficient and offers time linear complexity with respect
to the number of equations [6]. To understand the first
step one has to look at the Adjacency Matrix of a sys-
tem of equations. The rows of the Adjacency Matrix
correspond to the equations whereas the columns cor-
respond to the variables of the system. The Adjacency
Matrix has an entry (=1) at row i and column j, iff
equation i contains variable j. The number of en-
tries in the Adjacency Matrix is denoted with τ . For
a nonsingular system, the matching algorithm finds an
unsymmetric permutation which produces a zero-free
main diagonal. The set of all nonzero entries on the

main diagonal is called a transversal. A set containing
the maximum number of nonzero elements is called a
maximum transversal. A simple example is shown in
Figure 2.

a)
b+ c = 0

a = 10
a+ c = 2

b)

 0 1 1
1 0 0
1 0 1

c)

 1 0 0
1 1 0
0 1 1


Figure 2: Equation System (a) with Adjacency Matrix
(b) and permuted matrix in BLT form (c) from match-
ing highlighted in boldface.

The Adjacency Matrix can also be presented as a bi-
partite graph with one set of nodes representing equa-
tions (green) and another representing variables (yel-
low). The edges of the graph represent the nonzero
entries in the Adjacency Matrix. For the simple exam-
ple presented above in Figure 2 the bipartite graph is
shown in Figure 3.

Figure 3: Bipartite graph for the example from Figure
2

A set of matched equations and variables is called
matching or assignment block. If no additional
matches can be found, the matching is called maxi-
mum. In case of a square matrix the matching is com-
plete (perfect) if all equations are matched. In case of
a non-square matrix the matching is complete if either
all equations or all variables could be matched. A se-
quence of connected nodes is called path. If each of
the nodes on a path belong to the matching, then it is
called an alternating path relative to an assignment. If
the alternating path has an unmatched equation at one
end and an unmatched variable at the other end it is
called a augmenting path. In such a case the matching
could be increased by one if all assignments from the
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path are removed from the matching and all other as-
signments from the path are added. This procedure is
called reassignment or rematching [8].

Figure 4: Matched Bipartite graph for the ex-
ample from Figure 2 with alternating path M=
{(2,a),(3,c),(1,b)}

2.2 Index Reduction

In case of a DAE system with differential index vd > 1
[[27], Definition 2.1] no complete matching can be
found. If the system is not structurally singular an ap-
propriate symbolical index reduction algorithm must
be employed to reduce the differential index vd to at
least one.

As mentioned in [27] and [25] several symbolical
methods for index reduction are available. The graph-
theoretical algorithm from Pantelides with improve-
ments from Soares and Secchi [25] is most commonly
used.

Pantelides’ approach is to find a minimal struc-
turally singular (MSS) subsets of equations. The equa-
tions of the subset are differentiated and replaced by
their derivatives. The algebraic variables which get
derived with respect to time in the process are marked
as states and only their derivatives are considered for
the next matching cycle. With the criterion, that the
number of new equations generated through differen-
tiation must not exceed the number of variables in the
new subset, structural singular systems are detected
and the algorithm terminates with an error. Due to the
removed algebraic relations between the dynamic vari-
ables of the system and the algebraic variables marked
as states the calculated results will be unusable. Ap-
propriate algorithms to cover this issue are presented
by several authors [16],[18], [19],[20].

3 Matching Algorithms

Since Pantelides’ Algorithm does not rely on a par-
ticular matching algorithm, it is worth comparing dif-
ferent algorithms within that context. Guided by
[9],[14],[24] a set of promising matching algorithms
has been selected. While the majority of algorithms is
based on a search for augmenting paths, one algorithm
is employs a push-relabel strategy, designed for maxi-
mum flow problems [12],[14]. Since bipartite match-
ing is a special case of the maximum flow problem,
push-relabel might be well suited to solve the match-
ing problem [14].

3.1 Augmenting Paths Based Algorithms

3.1.1 DFS

The depth first search based matching algorithm (DFS)
applies a depth first search on each unmatched column
to find an augmenting path. To avoid double visits an
array of size m - the number of rows - is used. The
augmenting path can be retrieved from the stack of the
DFS. The stack is used to backtrack after visiting all
nodes and has the same size as the number of columns
n. To improve the performance, an additional array of
size n is used to keep the information of the last vis-
ited row for each column. In summary the algorithm
needs 2n+m additional space to the memory for stor-
ing the assignments. Please note, that only the Adja-
cency Matrix but not its transpose is required, since
the algorithm traverses only from columns to rows.

3.1.2 BFS

The breadth first search based matching algorithms
(BFS) use a breadth first search for each unmatched
column to find an augmenting path. The additional
space consumption of a good implementation is n+
2m. A queue of size n is needed to store the columns
to visit next as well as an array of size m to mark the
visited rows. The augmenting path is stored in an ad-
ditional array of size m, saving the parent column to
each row. Analogous to the DFS only the Adjacency
Matrix is need for BFSB.

3.1.3 MC21A

The MC21A algorithm is based on a DFS with an ad-
ditional look ahead mechanism. The look ahead mech-
anism first checks all rows of a column for an un-
matched variable before going deeper. Implementing

Session 4A: Language and Compilation Concepts II 

DOI Proceedings of the 9th International Modelica Conference    435 
10.3384/ecp12076433 September 3-5, 2012, Munich, Germany   



 

 

the look ahead mechanism requires an additional ar-
ray of size n for the check. In total the implementation
needs 3n+m additional space.[4][7]

3.1.4 PF

The algorithm by Pothen and Fan (PF) is very much
alike MC21A. The difference lies in the usage of the
visited flag. A PF phases starts with a queue of size
n of all unmatched columns. On each column a DFS
with look ahead is applied. The flag visited is not re-
set after the search. The column is dequeued if it is
matched. The PF phases are applied until all columns
are removed from the queue. The additional space is
4n+m and again only the Adjacency Matrix is need
for PF.[23]

3.1.5 PF+

PF+ is a simple extension to PF by [9]. To decrease
the sensitiveness of the algorithm for row and column
permutations the traversal direction of the rows alter-
nates. The additional space consumption is 4n+m as
in PF.[9][14]

3.1.6 HK

The algorithm by Hopcroft and Karp (HK) is orga-
nized in phases comprising two parts. The fist part
is a BFS from all unmatched columns to assign level
numbers to the rows. The level numbers indicate the
shortest path length from a row to an unmatched col-
umn. In the second part the level numbers are used
to increase the assignments with a DFS. It is only al-
lowed to traverse columns with decreasing level num-
bers. The additional space consumption is 2n + 2m
(stack(m),queue(n),nextcol(m),levels(m)). Note, since
HK uses both BFS and DFS both the Adjacency Ma-
trix and its transposed are required.[13][3]

3.1.7 HKDW

HK modified by Duff and Wiberg (HKDW) adds a
third part to the HK phase. The third part is a DFS
in the full graph for each remaining unmatched row
to increase the matching. The flag visited is not reset
between two DFS in part three. The additional space
consumption with 2n+ 2m is similar to HK because
the additional DFS needs no further memory. [8]

3.1.8 ABMP

The algorithm by Alt et al. (ABMP) is organized
in two phases. The fist phase increases the match-
ing by a sophisticated search procedure combining
BFS and DFS. This phase is performed until the lower
bound on the shortest augmenting path length exceeds
a suitable value. Alt et al. suggest to use the bound
L =

√
τlogn/n.[9] The additional space consumption

is 2n+2m.[1]

3.2 Push Relabel Based Algorithms

Push Relabel Algorithms are developed to solve the
problem of maximum flow in networks. The idea be-
hind is not to find augmenting paths but to search and
augment together. Based on a set of rules specula-
tive augmentations are performed by unmatching and
matching.[14][24]

3.2.1 PR

A detailed description of the implemented push relabel
algorithm can be found in [14]. The algorithm uses the
same mechanism like PF+ to traverse the adjacency
list in alternating order called fairness. The push order
to select active columns for pushing is first-in-first-out
(FIFO). The additional space consumption is 2n+m
(row label(m),column label(m),queue(m)) and the Ad-
jacency Matrix as well as its transposed are need.

3.3 Heuristic Based Algorithms

Next to the systematic algorithms discussed above,
there are algorithms based on heuristics which are de-
signed to increase the performance of a matching pro-
cess. They are called cheap matching and their ben-
efits strongly depend on the structure of the problem.
Thus they are used as an initial guess or jump-start. In
[9] a comprehensive overview on cheap matching al-
gorithms is given. Based on the results from [9] two
heuristics are selected for testing. The frequently used
and the best one.

3.3.1 Cheap Matching

The cheap matching algorithm traverses all columns
and matches the first unmatched row in the adjacency
list of the column. The complexity of the algorithm is
O(n+ τ).
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3.3.2 KS Rand Cheap Matching

The cheap matching algorithm by Karp and Sipser in-
troduces a heuristic based on constructing a smaller
graph through two rules and a random matching. More
information can be found in [9].

3.4 Adaptability for Index Reduction

The matching algorithms discussed above can be clas-
sified based on their behaviour when encountering sin-
gular systems. While the simple matching algorithms
terminate as soon as a single node cannot be assigned,
the advanced algorithms terminate with a non empty
set of unassigned nodes. Some of them allow the set
to be collected in a post processing step.

• Simple Matching Algorithms

– DFSB
– BFSB
– MC21A

• Advanced Matching Algorithms

– PF
– PF+
– HK
– HKDW
– ABMP
– PR

In the original paper of Pantelides, the matching al-
gorithm MC21A by Duff was used. MC21A belongs
to the group of simple algorithms. Hence no changes
have to be made to the Pantelides Algorithms for sim-
ple matching algorithms.

In case of a simple matching algorithm the MSS
subset contains exactly one unmatched equation. The
other equations of the subset are found by a search in
the matched graph starting from the variables of the
unmatched equation. During the search, each variable
is visited only once. For all presented simple algo-
rithms the search to get the MSS subset is not an extra
step, it is found by storing the visited equations in each
phase of the algorithm.

In case of an advanced matching algorithm, a search
in the matched graph is necessary for each equation
to get the MSS subsets. Each subset has to fulfil the
criterion, that the number of new equations generated
by differentiation must not exceed the number of vari-
ables in the new subset. Hence, obtaining the MSS
subset is more costly compared to simple algorithms
as the search is an extra step.

4 Measurements on Examples

Since there is no comparison of matching algorithms
in the field of Modelica known to the author an ex-
tensive survey has been conducted. Therefore each
matching algorithm has been implemented into the
OpenModelica compiler (OMC) 3. In order to be com-
patible with both simple and advanced matching algo-
rithms the Pantelides index reduction had to be reim-
plemented modifying the interfaces and the compi-
lation process. Since there exists only little experi-
ence about the runtime efficiency and comparability of
MetaModelica [22], in which the OMC is written, an
external C implementation of freely available match-
ing algorithms [15] has been embedded as well.

The aim of this paper is to compare the computa-
tional effort of the matching algorithms with and with-
out index reduction using selected examples. In addi-
tion the influences of the programming language and
the usage of a cheap matching algorithm are investi-
gated.

All measurements were accomplished using a Win-
dows 7, 64 Bit System with Intel Core i7 860, 2.80
GHz and 8.0 GB RAM.

4.1 Examples

To do an extensive comparison of matching algorithms
scalable Modelica models are needed. Since the au-
thor is mainly concerned with multi body systems, the
following mechanical models will be used:

• chain structure Figure 5 (a)

• tree structure Figure 5 (b)

• grassland structure Figure 5 (c)

• kinematic loops 5 (d)

The models are based on the Model-
ica.Mechanics.Multibody library (MSL 3.1), the
Planar Mechanics Library from DLR4 and PyMbs
[17]. PyMbs5 is a Python based multi body tool to
generate the equations of motion from a description
similar to Modelica.Mechanics.Multibody. PyMbs
generates efficient flat Modelica code which places
very low demands on the EOOL compiler. Hence no
index reduction step is necessary and one obtaints a
benchmark for pure matching. The reason to use three

3www.openmodelica.org
4http://www.robotic.de/339
5http://sourceforge.net/projects/pymbs/
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(a) Rope (b) MultiRope (c) Wheel

(d) FourBarLinkage

Figure 5: Example Models

different descriptions is to study the influences of the
way a model is set up.

In addition to the four models, most examples from
the Modelica.Mechanics package are used for the
comparison with index reduction.

4.2 Results for Pure Matching

The results for pure matching on the rope model are
presented in Figure 6 and Figure 7. Most of the al-
gorithms show a linear relationship between effort and
model size. The represented model size is the num-
ber of equations the matching algorithm operates on.
Note, that this is the reduced size of the model. Be-
cause it was important for the benchmarks to be com-
parable with the usual modelling process all steps, for
example the detection of simple equations like a = b
and a = constant are performed before matching.

Figure 6: Results from Rope examples, MetaModelica
implementation

Figure 7: Results from Rope examples, C implemen-
tation

The PF+ algorithm is the fastest, while the simple
DFS algorithm needs the most time. The PR algorithm
is the second fastest, only beaten by PF+. While the
MetaModelica implementation suggests that the push
relabel algorithm seems to be very efficient, results
from the C implementation show a different picture
7. Here the PR scales non-linear and needs the most
time. Again, the DFS is slowest and the PF+ is the
fastest augmentation path based algorithm. Generally
speaking, the C implementation is around ten times
faster than the MetaModelica implementation, includ-
ing the time to pass the incidence Matrix (SetM) and
to return the assignments (GetAss) as shown in Fig-
ure 7. Copying the Incidence Matrix and returning the
Assignments takes twice the time needed to match the
system using the PF+ algorithm, rendering the overall
time similar to the fastest MetaModelica implemen-
tation. Figure 8 and Figure 9 show the results for
the MultiRope model. Again, PF+ is the fastest, DFS
needs most time and the C implementation is around
10 times faster.

Figure 10 show the results for the wheel example.
Here some algorithms scale non-linear in time and a
few scale linear. Still, PF+ is one of the fastest algo-
rithms and DFS needs the most time.

The results for the kinematic loop model are shown
in Figure 11. Here, the fastest algorithm is HK closely
followed by HKDW. Nonetheless, PF+ still belongs to
one of the fastest algorithms.

In summary the fastest overall algorithm in case of
pure matching is the PF+ algorithm. It scales linear in
time for all test cases and therefore seems well suited
for large scale systems.
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Figure 8: Results from MultiRope examples, Meta-
Modelica implementation

Figure 9: Results from MultiRope examples, C imple-
mentation

4.3 Results for Matching and Index Reduc-
tion

The result for the rope model is shown in Figure 12
and 13. Again PF+ is one of the fastest algorithm
and scales linear in time. Since all other models do
not show a mentionable difference their results are not
shown explicitly. Please note, that due to the lower
demands on the EOOL compiler, the OMC manages
to process models of up to 200 bodies when described
with PyMbs. The upper boundary for the MSL lies at
around 50 bodies.

In addition to the models presented above Figure
14 shows the results for the examples included in the
package Modelica.Mechanics. The results are pre-
sented with a logarithmic time axis. The grey curves

Figure 10: Results from Wheel examples, MetaMod-
elica implementation

Figure 11: Results from FourBarLinkage examples,
MetaModelica implementation

represent linear relationships between time and num-
ber of equations. The suffix Ext marks the C imple-
mentation. Because some models have roughly equal
numbers of equations, the graph looks quite scattered.
Again, PF+ is one of the fastest algorithm and scales
linear in time.

4.4 Results for Cheap Matching

The results from the usage of heuristic algorithms are
shown in Figure 15 and 16 for the cheap matching and
in Figure 17 and 15 for the KS cheap matching al-
gorithm. It can be seen that especially the BFS and
DFS MetaModelica implementations benefit from the
usage of a cheap matching algorithm. The time saved

Session 4A: Language and Compilation Concepts II 

DOI Proceedings of the 9th International Modelica Conference    439 
10.3384/ecp12076433 September 3-5, 2012, Munich, Germany   



 

 

Figure 12: Results from Rope MSL examples, Meta-
Modelica implementation

Figure 13: Results from Rope PM examples, Meta-
Modelica implementation

for both algorithm is around 80%.

5 Conclusion

An extensive survey has been conducted by the author
to find the best suited matching algorithm for EOOL
compilers. Several real life models have been used for
testing. It was found that that the PF+ algorithm per-
formed best on almost all models.

Moreover, it has been found that the PF+ algorithm,
although it has a non-linear worst case time complex-
ity, scales linear for the models tested within this sur-
vey. This makes it ideally suited for the application in
large scale models. Unfortunately, further increase in
model size, to support that claim, was hindered due to

Figure 14: Results from Matching with Index Reduc-
tion for Modelica.Mechanics Example Models

Figure 15: Results from Rope MSL examples, Meta-
Modelica implementation

the memory consumption of the OpenModelica com-
piler. Future work will aim at increasing the manage-
able model size and rerun the benchmarks.

It could also be shown that MetaModelica seems not
to be well suited for such algorithms since the C im-
plementation is at least 10 times faster. Maybe some
further language and compiler features could decrease
the time difference to a natural C implementation. The
main difference of implementation is caused by the
storage of the Adjacency Matrix. The C implementa-
tion uses an array to store the values and an additional
array to store the column indices. In MetaModelica
the matrix is stored as an array of lists. To traverse
the lists in MetaModelica recursive function calls are
needed whereas the c implementation simply stores
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Figure 16: Results from Rope MSL examples, C im-
plementation

Figure 17: Results from Rope MSL examples, Meta-
Modelica implementation

the needed indices for the traversal in arrays.
Since the implementation is freely available in the

OpenModelica Compiler, the survey may be extend
with models from other physical domains.
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Abstract 
The high abstraction level of equation-based object-
oriented languages (EOO) such as Modelica has the 
drawback that programming and modeling errors are 
often hard to find. In this paper we present static and 
dynamic debugging methods for Modelica models and 
a debugger prototype that addresses several of those 
problems. The goal is an integrated debugging frame-
work that combines classical debugging techniques 
with special techniques for equation-based languages 
partly based on graph visualization and interaction. 

To our knowledge, this is the first Modelica debug-
ger that supports both transformational and algorithmic 
code debugging. 

 
Keywords: Modelica, Debugging, Modeling and 

Simulation, Transformations, Equations, Algorithmic 
Code, Eclipse 

1 Introduction 
Advanced development of today’s complex products 
requires integrated environments and equation-based 
object-oriented declarative (EOO) languages such as 
Modelica [8][12] for modeling and simulation. The 
increased ease of use, the high abstraction, and the ex-
pressivity of such languages are very attractive proper-
ties. However, these attractive properties come with the 
drawback that programming and modeling errors are 
often hard to find. 

To address these issues we present static (compile-
time) and dynamic (run-time) debugging methods for 
Modelica models and a debugger prototype that ad-
dresses several of those problems. The goal is an inte-
grated debugging framework that combines classical 
debugging techniques with special techniques for equa-
tion-based languages partly based on graph visualiza-
tion and interaction. 

The static transformational debugging functionality 
addresses the problem that model compilers are opti-
mized so heavily that it is hard to tell the origin of an 
equation during runtime. This work proposes and im-
plements a prototype of a method that is efficient with 
less than one percent overhead, yet manages to keep 
track of all the transformations/operations that the 
compiler performs on the model. 

Modelica models often contain functions and algo-
rithm sections with algorithmic code. The fraction of 
algorithmic code is increasing since Modelica, in addi-
tion to equation-based modeling, is also used for em-
bedded system control code as well as symbolic model 
transformations in applications using the MetaModelica 
language extension. 

Our earlier work in debuggers for the algorithmic 
subset of Modelica used high-level code instrumenta-
tion techniques which are portable but turned out to 
have too much overhead for large applications. The 
new dynamic algorithmic code debugger is the first 
Modelica debugger that can operate without high-level 
code instrumentation. Instead, it communicates with a 
low-level C-language symbolic debugger to directly 
extract information from a running executable, set and 
remove breakpoints, etc. This is made possible by the 
new bootstrapped OpenModelica compiler which keeps 
track of a detailed mapping from the high level 
Modelica code down to the generated C code compiled 
to machine code. 

The dynamic algorithmic code debugger is opera-
tional, supports both standard Modelica data structures 
and tree/list data structures, and operates efficiently on 
large applications such as the OpenModelica compiler 
with more than 100 000 lines of code.  

The attractive properties of high-level object-
oriented equation-based languages come with the 
drawback that programming and modeling errors are 
often hard to find. For example, in order to simulate 
models efficiently, Modelica simulation tools perform a 
a large number of symbolic manipulation in order to 
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reduce the complexity of models and prepare them for 
efficient simulation. By removing redundancy, the gen-
eration of simulation code and the simulation itself can 
be sped up significantly. The cost of this performance 
gain is error-messages that are not very user-friendly 
due to symbolic manipulation, renaming and reordering 
of variables and equations. For example, the following 
error message says nothing about the variables in-
volved or its origin: 
Error solving nonlinear system 2 
time = 0.002 
residual[0] = 0.288956,  x[0] = 1.105149 
residual[1] = 17.000400, x[1] = 1.248448 

It is usually hard for a typical user of the Modelica tool 
to determine what symbolic manipulations have been 
performed and why. If the tool only emits a binary exe-
cutable this is almost impossible. Even if the tool emits 
source code in some programming language (typically 
C), it is still quite hard to know what kind of equation 
system you have ended up with. This makes it difficult 
to understand where the model can be changed in order 
to improve the speed or stability of the simulation. 
Some tools allow the user to export the description of 
the translated system of equations [18], but this is not 
enough. After symbolic manipulation, the resulting 
equations no longer need to contain the same variables 
or structure as the original equations.  

This work proposes and develops a combination of 
static and dynamic debugging techniques to address 
these problems. The static (compile-time) transforma-
tional debugging efficiently traces the symbolic trans-
formations throughout the model compilation process 
and provides explanations regarding to origin of prob-
lematic code. The dynamic (run-time) debugging al-
lows interactive inspection of large executable models, 
stepping through algorithmic parts of the models, set-
ting breakpoints, inspecting and modifying data struc-
tures and the execution stack. 

An integrated approach is proposed where the origin 
mapping provided by the static transformational de-
bugging is used by the dynamic debugger to relate run-
time errors to the original model sources. To our 
knowledge no other open-source or commercial 
Modelica tool currently supports static transformational 
debugging or algorithmic code debugging.  

The paper is structured as follows: Section 2 the 
background and related work, Section 3 analyzes 
sources of errors and faults, Section 4 proposes an inte-
grated static and dynamic debugging approach, Section 
5 presents the static transformational debugging meth-
od and implementation, whereas Section 6 presents the 
algorithmic code debugging functionality. Conclusions 
and future work are given in Section 7. 

2 Background and Related Work 

2.1 Debugging techniques for EOO Languages 

In the context of debugging declarative equation-based 
object-oriented (EOO) languages such as Modelica, 
both the static (compile-time) and the dynamic (run-
time) aspects have to be addressed. 

The static aspect of debugging EOO languages 
deals with inconsistencies in the underlying system of 
equations: 

 
1. Errors related to the transformations of the models 

to an optimized flattened system of equations suit-
able for numeric solution, e.g. symbolic solutions 
leading to division by a constant zero stemming 
from a singular system of equations, or (very rare-
ly) errors in the symbolic transformations them-
selves. 

2. Overconstrained models (too many equations) or 
underconstrained models (too few equations). The 
number of variables needs to be equal to the equa-
tions is required for solution.  

The dynamic (run-time) aspect of debugging EOO lan-
guages addresses run-time errors that may appear due 
to faults in the model: 

1. model configuration: when the parameters values 
and start attributes for the model simulation are in-
correct. 

2. model specification: when the equations and algo-
rithm sections that specify the model behavior are 
incorrect. 

3. algorithmic code: when the functions called from 
equations return incorrect results. 

Methods for both static and dynamic (run-time) debug-
ging of EOO languages such as Modelica have been 
proposed earlier [6][7]. With the new Modelica 3.0 
language specification, the static overconstrained/ 
underconstrained debugging of Modelica presents a 
rather small benefit, since all models are required to be 
balanced. All models from already checked libraries 
will already be balanced; only newly written models 
might be unbalanced, which is particularly useful if 
new models contain a significant number of unknowns. 

Regarding dynamic (run-time) debugging of models 
[6] proposes a semi-automated declarative debugging 
solution in which the user has to provide a correct di-
agnostic specification of the model which is used to 
generate assertions at runtime. Moreover, starting from 
an erroneous variable value the user explores the de-
pendent equations (a slice of the program) and acts like 
an “oracle” to guide the debugger in finding the error. 
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3 Sources of Errors and Faults 
There are a number of sources of errors and faults in a 
simulation system. Some errors can be recovered auto-
matically by the system, whereas others should be re-
ported and allow the users to enter debugging mode. 
An error can also be a wrong value pointed out manual-
ly by a user. 

Every solver employed within a simulation system 
at all levels should be equipped with an error reporting 
mechanism, allowing error recovery by the master 
solver, or error reporting to the end-user in case of irre-
coverable error: 

• the ODE solvers 
• the functions computing the derivatives and the al-

gebraic functions given the states, time, and inputs 
• the functions computing the initial states and the 

values of parameters 
• the linear equation solvers 
• the nonlinear equation solvers 

If some equation can be solved symbolically, without 
resorting to numerical solvers, then the symbolic solu-
tion code should be equipped with diagnostics to han-
dle errors as well.  

In the next section we give causes of errors that can 
appear during the model simulation. 

3.1 Errors in the evaluation of expressions 

During the evaluation of expressions, faults may occur 
due to the following causes: 

• Division by zero 
• Evaluation of non-integer powers with negative ar-

gument 
• Functions called outside their domain (e.g.: sqrt(-1), 

log(-3), asin(2)). For non built-in functions, these 
errors can be triggered by assertions within the algo-
rithm, or by calls to the pre-defined ModelicaError() 
function in the body of external functions. 

• Errors manifesting as computed wrong value of 
some variable(s), where the error is manually point-
ed out by a user or automatically detected as being 
outside min/max bounds. 

3.2 Assertion violations in models 

During initialization or simulation, assertions inside 
models can be triggered when the condition being as-
serted becomes false. 

3.3 Errors in the solution of implicit algebraic 
equations 

During initialization or simulation of DAE systems, 
implicit equations (or systems of implicit equations, 
corresponding to strong components in the BLT de-
composition) must be solved. In the case of linear sys-
tems, the solver might fail because there is some error 
in evaluating the coefficients of the A matrix and of the 
b vector of the linear equation Ax = b, or because said 
problem is singular. In the case of nonlinear equations 
f(x) = 0, the solver might fail for several reasons: the 
evaluation of the residual f(x) or of its Jacobian gives 
errors; the Jacobian becomes singular: the solver fails 
to converge after a maximum number of iterations. 

3.4 Errors in the integration of the ODEs 

In OpenModelica, the DAEs are brought to index-1 
ODE form by symbolic and numerical transformation, 
and these equations are then solved by an ODE solver, 
which iteratively computes the next state given the cur-
rent state. During the computation of the next state, e.g. 
by using Euler, Runge-Kutta or a BDF algorithm, er-
rors such as those reported in section 3.1, 3.2, 3.3 might 
occur. Furthermore, the solver might fail because of 
singularity in the ODE, as in the case of finite escape 
time solutions, or of discontinuities leading to chatter-
ing. 

4 Integrated Debugging Approach 
In this section we propose an integrated debugging 
method combining information from a static analysis of 
the model with dynamic debugging at run-time. 

4.1 Integrated Static-Dynamic Debug Method 

This method partly follows the approach proposed in 
[6][7] and further elaborated in [3]. However, our ap-
proach does not require the user to write diagnostic 
specifications of models. Also, the approach we present 
here can also handle the debugging of algorithmic code 
using classic debugging techniques.  

An overview of this debugging strategy is presented 
in Figure 1. In short, our run-time debugging method is 
based on the integration of the following: 

1. Dependency graph visualization and interaction. 
2. Presentation of simulation results and modeling 

code. 
3. Mapping of errors to model code positions. 
4. Execution-based debugging of algorithmic code. 

A possible debugging session might be as follows. 
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During the simulation phase, the user discovers an error 
in the plotted results, or an irrecoverable error is trig-
gered by the run-time simulation code. In the former 
case, the user marks either the entire plot of the variable 
that presents the error or parts of it and starts the de-
bugging framework. The debugger presents an (IDG) 
interactive dependency graph with respect to the varia-
ble with the wrong value or the expression where the 
fault occurred. The dependency edges in IDG are com-
puted using the transformation tracing that is described 
in Section 5. The nodes in the graph consist of all the 
equations, functions, parameter value definitions, and 
inputs that were used to calculate the wrong variable 
value, starting from the known values of states, pa-
rameters and time. 

The variable with the erroneous value (or which 
cannot be computed at all) is displayed in a special 
node which is the root of the graph. The IDG contains 
two types of edges: 

1. Calculation dependency edges: the directed edges 
labeled by variables or parameters which are inputs 

(used for calculations in this equation) or outputs 
(calculated from this equation) from/to the equa-
tion displayed in the node.  

2. Origin edges: the undirected edges that tie the 
equation node to the actual model which this equa-
tion belongs to. 

The user interacts with the dependency graph in several 
ways:  

• Displaying simulation results through selection of 
the variables (or parameters) names (edge labels). 
The plot of a variable is shown in a popup window. 
In this way the user can quickly see if the plotted 
variable has erroneous values.  

• Displaying model code by following origin edges. 
• Invoking the algorithmic code debugging subsystem 

when the user suspects that the result of a variable 
calculated in an equation which contains a function 
call is wrong, but the equation seems to be correct. 

Using these interactive dependency graph facilities the 
user can follow the error from its manifestation to its 
origin. Note that in most cases of irrecoverable errors 
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Figure 1. Integrated debugging approach overview. 
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arising when trying to compute a variable, the root 
cause of the error does not lie in the equation itself be-
ing wrong, but rather in some of the values of previous-
ly computed variables appearing in it being wrong, e.g., 
because of erroneous initialization or parameterization.  

The proposed debugging method can also start from 
multiple variables with wrong values with the premise 
that the error might be at the confluence of several de-
pendency graphs. 

Note that the debugger can handle both data de-
pendency edges (e.g. which variables influence the cur-
rent variable of interest), and origin edges (edges point-
ing from the generated executable simulation code to 
the original equations/parts of equations contributing to 
this code). Both are computed by the transformational 
debugger mentioned in Section 5. 

5 Static Transformational Debugging 
Transformational debugging is a static compile-time 
technique since it does not need run-time execution of a 
model. The method keeps track of symbolic transfor-
mations, can explain and display applied transfor-
mations, and compute dependence edges between the 
original model and the generated executable code. 

5.1 Common Operations on Continuous Equa-
tion Systems 

In order to create a debugger adapted for debugging the 
symbolic transformations performed on equation sys-
tems, its requirements should be stated. There are many 
symbolic operations that may be performed on equation 
systems. The following descriptions of operations also 
include a rationale for each of them, since it is not al-
ways apparent why perform certain operations are per-
formed. There are of course many more operations that 
can be performed than the ones listed below, which are 
however deemed most important, and which the de-
bugger for models translated by the OpenModelica 
Compiler [11] should be able to handle. 

5.1.1 Variable aliasing 

An optimization that is very common in Modelica 
compilers is variable aliasing. This is due to the con-
nection semantics of the Modelica language. For exam-
ple, if a and b are connectors with the effort-variable v 
and flow-variable i, a connection (2) will generate alias 
equations (3) and (4). 
connect(a, b)  (2) 
a.v = b.v     (3) 
a.i + b.i = 0 ⇒ b.i = -a.i  (4) 

In a result-file, this alias relation can be stored instead 
of a duplicate trajectory, saving both space and compu-
tation time. In the equation system, b.v may be substi-
tuted by a.v and b.i by -a.v, which may lead to fur-
ther optimizations of the equations. 

5.1.2 Known variables 

Known variables are similar to alias variables in that 
you may perform variable substitutions on the rest of 
the equation system if you find such an occurrence. For 
example, (5) and (6) can be combined into (7). In the 
result-file, you no longer need to store a value for each 
time step; once is enough for known variables (which 
have values that can be computed statically at compile-
time), parameters and constants. 
a = 4.0   (5) 
b = 4.0 – a + c    (6) 
b = 4.0 – 4.0 + c    (7) 

5.1.3 Equation Solving 

If the tool has determined that x needs to be solved for 
in (8), we need to symbolically solve the equation, pro-
ducing a simple equation with x on one side as in (9). 
Solving for x is not always straightforward, and it is not 
always possible to invert user-defined functions such as 
(10). Since x is present in the call arguments and the 
function cannot be inverted or inlined, it is not possible 
to solve the equation symbolically, so it is necessary to 
resort to a numerical non-linear solver during runtime. 
15.0 = 3.0*(x + y)   (8) 
x = 15.0/3.0 - y    (9) 
0 = f(3*x)    (10) 

5.1.4 Expression Simplification 

Expression simplification is a symbolic operation that 
does not change the meaning of the expression, while 
making it faster to calculate. It is related to many dif-
ferent optimization techniques such as constant folding. 
The order in which arguments are evaluated may be 
changed (11). Constant subexpressions are evaluated 
during compile-time (12). Non-constant subexpressions 
may be rewritten (13) and functions may be evaluated 
fewer times than in the original expression (14). It is 
also possible to use special knowledge about an expres-
sion in order to make it run faster (15) and (16). 

and(a,false,b) ⇒ false               (11) 
4.0 – 4.0 + c ⇒ c                    (12) 
max(a,b,7.5,a,15.0) ⇒ max(a,b,15,0)  (13) 
f(x) + f(x) + f(x) ⇒ 3*f(x)          (14) 
if cond then a else a ⇒ a            (15) 
if cond then false else true ⇒ cond  (16) 
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5.1.5 Equation System Simplification 

It is of course also possible to solve some equation sys-
tems statically. For example a linear system of equa-
tions with constant coefficients (17) can be solved us-
ing one step of symbolic Gaussian elimination (18), 
generating two separate equations that can be solved 
individually after causalization (19). A simple linear 
equation system as (17) may also be solved numerically 
using e.g. LAPACK [1] routines. 
[1, 2; 2, 1] * [x; y] = [4; 5]        (17) 
[1, 2; 0,-3] * [x; y] = [4; -3]       (18) 
x = 2; y = 1;                         (19) 

5.1.6 Differentiation 

Symbolic differentiation [16] is used for many purpos-
es. It is used to expand known derivatives (20) or as 
one operation in index reduction. Jacobian matrices 
have many applications, e.g. to speed up simulation 
runtime [14]. The matrix is often computed using au-
tomatic differentiation [14][16] which combines sym-
bolic differentiation with other techniques to achieve 
fast computation. 

der(t^2, t) = 2*t                   (20) 

5.1.7 Index reduction 

In order to solve DAE’s numerically, discretization 
techniques and methods to numerically compute de-
rivatives are used (often referred to as solvers). Certain 
DAE’s need to be differentiated symbolically to enable 
a stable numeric solution. The differential index of a 
general DAE system is the minimum number of times 
that certain equations in the system need to be differen-
tiated to reduce the system to a set of ODEs, which can 
then be solved by the usual ODE solvers, Chapter 18 in 
[8]. While there are techniques to solve DAE’s of high-
er index than 1, most of them require index-1 DAE’s 
(no second derivatives). This makes it more convenient 
to reformulate the problem using index reduction algo-
rithms, Chapter 18 in [8]. One such technique uses 
dummy derivatives [15]; this is the algorithm currently 
used in the OpenModelica Compiler. 

5.1.8 Function inlining 

Writing functions to do common operations is a great 
way to reduce the burden of maintaining code. When a 
function call is inlined (21), it can be treated as a macro 
expansion (22) and may increase the number of sym-
bolical manipulations that can be perform on an expres-
sion such as (23). 
2*f(x, y)/pi                         (21) 
2*pi*((sin(x+y)+cos(x+y-y)/pi        (22) 
2*(sin(x+y) + cos(x))                (23) 

5.2 Debugging 

The choice of techniques for implementation of a de-
bugger depends on where and for what it is intended to 
be used. Translation and optimization of large applica-
tion models can be very time-consuming. Thus it would 
be good if the approach has such a low overhead that it 
can be enabled by default. It would also be good if er-
ror messages from the runtime could use the debug in-
formation from the translation and optimization stages 
to give more understandable and informative messages 
to the user. 

A technique that is commonly used for debugging is 
tracing. The simplest way of implementing tracing is to 
print a message to the terminal or file in order to log the 
operations that you perform. The problem here is that if 
an operation is rolled back, the log-file will still contain 
the operation that was rolled back. The data also need 
to be post-processed if the operations should be 
grouped by equation.  

A more elegant technique is to treat operations as 
metadata on equations, variables or equation systems. 
Other metadata that should already be propagated from 
source code to runtime include the name of the compo-
nent that an equation is part of, which line and column 
that the equation originates from, and more. Whenever 
an operation is performed, the operation kind and in-
put/output is stored inside the equation as a list of oper-
ations. If the structure used to store equations is persis-
tent this also works if the tool needs to roll back execu-
tion to an earlier state. 

The cost of adding this meta data is a constant 
runtime factor from storing a new head in the list. The 
memory cost depends a lot on the compiler itself. If 
garbage collection or reference counting is used, the 
only cost is a small amount to describe the operation 
(typically an integer and some pointers to the expres-
sions involved in the operation). 

5.3 Bookkeeping of Operations 

5.3.1 Variable Substitution 

The elimination of variable aliasing and variables with 
known values (constants) is considered as the same 
operation that can be done in a single phase. It can be 
performed as a fixed-point algorithm where substitu-
tions are collected which record if any change was 
made (stop if no substitution is performed or no new 
substitution can be collected). For each alias or known 
variable, merge the operations stored in the simple 
equation x = y before removing it from the equation 
system. For each successful substitution, record it in the 
list of operations for the equation. 
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The history of the variable a in the equation system 
(24) could be represented as a more detailed version 
(25) instead of the shorter (26) depending on the order 
in which the substitutions were performed.  
a = b; b = -c; c = 4.5                (24) 
a = b ⇒ a = -c ⇒ a = -4:5            (25) 
a = b ⇒ a = -4.5                      (26) 

In equation systems that originate from a Modelica 
model it is preferable to see a substitution as a single 
operation rather than a longer chain of operations 
(chains of 50 cascading substitutions are not unheard of 
and makes it hard to get an overview of the operations 
performed on the equation, even though sometimes all 
the steps are necessary to understand the reason for the 
final substitution). 

It is also possible to collect sets of aliases and select 
a single variable (doing everything in one operation) in 
order to make substitutions more efficient. However, 
alias elimination may still cascade due to simplification 
rules (27), which means that you need a work-around 
for substitutions performed in a non-optimal order. 

a = b - c + d ⇒ a = b - b + d  
⇒ a = d  (27) 

Thus, we compare the previous operation with the new 
one and if we detect a link in the chain, we store this 
relation. When displaying the operations of an equation 
system, it is then possible to expand and collapse the 
chain depending on the user’s needs. 

5.3.2 Equation Solving 

Some equations are only valid for a certain range of 
input. When solving an equation like (28), you assert 
that the divisor is non-zero and eliminate it in order to 
solve for x. We record a list of the assertions made (and 
their sources for traceability). An assertion may be re-
moved if we later determine that it always holds or if it 
overlaps with another assertion (29). 

x/y = 1 ⇒ x = y (y != 0)             (28) 
y!=0, 4.0 < y < 8.0 ⇒ 4.0 < y < 8.0  (29) 

5.3.3 Expression Simplification 

Tracking changes to an expression is easy if you have a 
working fixed-point algorithm for expression simplifi-
cation (record a simplification operation if the simplifi-
cation algorithm says that the expression changed). 
However, if the simplification algorithm oscillates (as 
in 30) it is hard to use it as a fixed-point algorithm. 

2*x ⇒ x*2 ⇒ 2*x ⇒ ...  (30) 

The simple solution is to use an algorithm that is fixed 
point, or conservative (reporting no change made when 

performing changes that may cause oscillating behav-
ior). Finding where this behavior occurs is not hard for 
a compiler developer (simply print an error message 
after 10 iterations). If it is hard to detect if a change has 
actually occurred (due to changing data representation 
to use more advanced techniques), one may need to 
compare the input and output expression in order to 
determine if the operation should be recorded. While 
comparing large expressions may be expensive, it is 
often possible to let the simplification routine keep 
track of any changes at a smaller cost. 

5.3.4 Equation System Simplification 

It is possible to store these operations as pointers to a 
shared and more global operation or as many individual 
copies of the same operation. It is preferable to store 
this as a single global operation (see Figure 2) since the 
only cost is only some indirection when reading the 
data. It is also recommended to store reverse pointers 
(or indices) from the global operation back to each in-
dividual operation as well, so that reverse lookup can 
be performed at a low cost. 

 
Figure 2. Sharing Results of Linear System Evaluation. 

As the tool we are using performs only limited simpli-
fication of these strongly connected components, we 
are currently limited to only recording evaluation of 
constant linear systems. As more of these optimizations 
are added to the compiler, they will also need to be 
traced and support added for them in the debugger. 

5.3.5 Differentiation 

Whenever we perform symbolic differentiation in an 
expression, e.g. to expand known derivatives (31), we 
record this operation in the equation. OpenModelica 
currently does not eliminate this state variable as in 
(32), but if it did the operation would also be recorded. 

der(x) = der(time) ⇒ der(x) = 1.0   (31) 
der(x) = 1.0 ⇒  
  x = time + (xstart-timestart)        (32) 

5.3.6 Index reduction 

For the index reduction algorithm, any performed sub-
stitution is recorded, source information is added to the 
newly introduced dummy derivative variable, and the 
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operations are performed on the affected equations. As 
an example for the dummy derivatives algorithm, this 
includes differentiation of the Cartesian coordinates 
(x; y) of a pendulum with length L (33) into (34) and 
(35). After the index reduction is complete, further op-
timizations such as variable substitution (37), are per-
formed to reduce the complexity of the complete sys-
tem. 
x^2 + y^2 = L^2                       (33) 
der(x^2 + y^2) ⇒ 2*(der(x)*x + der(y)*y)  
                                      (34) 
der(L^2) ⇒ 0                          (35) 
2*(der(x)*x + der(y)*y) ⇒ 2*(u*x + v*y) 
                                      (36) 

5.3.7 Function inlining 

Since inlining functions may cause a new function call 
to be added to the expression, functions are inlined un-
til a fixed point is reached (with a maximum depth to 
avoid problems with recursive functions). Expressions 
are also simplified in order to reduce the size of the 
final expression. When inlining calls in an equation 
have been completed, this is recorded as an inline oper-
ation with the expression before and after. 

5.4 Presentation of Operations 

Until now the focus has been on collecting operations 
as data structured in the equation system. What is it 
possible to do with this information? During the trans-
lation phase, it can be used directly to present infor-
mation to the user. Assuming that the data is well struc-
tured, it is possible to store it in a static database (e.g. 
SQL) or simply as structured data (e.g. XML). That 
way the data can be accessed by various applications 
and presented in different ways according to the user 
needs for all of them. The current OpenModelica proto-
type only outputs text at present; in the future this in-
formation will be presented in the origin edge intro-
duced in Section4.  

The number of operations stored for each equation 
varies widely. The reason is that when a known varia-
ble x is replaced with, e.g., the number 0.0, one may 
start removing subexpressions. One then ends up with a 
chain of operations that loops over variable substitu-
tions and expression simplification. The number of op-
erations performed may scale with the total number of 
variables in the equation system if the the number of 
iterations that the optimizer may take is not limited 
[17]. This makes some synthetic models very hard to 
debug. The example model in Listing 1 performs 1 + 2 
+ … + N substitutions and simplifications in order to 
deduce that a[1] = a[2] = … = a[n]. 

 

Listing 1. Alias Model with Poor Scaling 
model AliasClass_N 
  constant Integer N=60; 
  Real a[N]; 
equation 
  der(a[1]) = 1.0; 
  a[2] = a[1]; 
  for i in 3:N loop 
    a[i] = i*a[i-1]-sum(a[j]  
           for j in 1:i-1); 
  end for; 
end AliasClass_N; 

Using a real-world example, the Engine1a model from 
the Modelica MultiBody library, [12], the majority of 
equations have less than 10 operations (Figure 3), 
which is a manageable number to go through if one 
needs to debug a model and to find out which equations 
are problematic. 

 
Figure 3. The number of symbolic operations performed 

on equations in the Engine1a model. 

5.5 Runtime supported by static information 

In order to produce better error messages during 
runtime, it is beneficial to be able to trace the source of 
the problem. The toy example in Listing 2 is used to 
show the information that the augmented runtime can 
display when an error occurs. The user should be pre-
sented with an error message from the solver (linear, 
nonlinear, ODE or algebraic does not matter). Here, the 
displayed error comes from the algebraic part of the 
solver. It clearly shows that log(0.0) is not defined and 
the source of the error in the concrete syntax (the 
Modelica code that the user may influence) as well as 
the name of the component (which may be used as a 
link by a graphical editor to quickly switch view to the 
diagram view of this component). The symbolic trans-
formations performed on the equation are also dis-
played, which can help debug the model better. 

 

Static and Dynamic Debugging of Modelica Models 

 

450 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076443 



 

 

Listing 2. Runtime Error 
Error: At t=0.5, block1.u = 0.0 is not in 
the domain of log (>0) 
Source equation: [Math.mo :2490:9-2490:33] 
y = log(u) 
Source component: block1 (MyModel 
Modelica.Blocks.Math.Log) 
Flattened equation: block1.y = log( 
block1.u) 
Manipulated equation: y = log(u) 
<Operations> 
variable substitution: log(block1.u ) = 
log(u) 
<Depending on equations (from BLT)> 
u <:link> 

Currently we are working on extending the information 
we collect during the static analysis to build the Interac-
tive Dependency Graph from Figure 1, Section 4.  

6 Dynamic Debugging 

6.1 Using the Algorithmic Code Debugger 

The debugger part for algorithmic Modelica code is 
implemented within the OpenModelica environment as 
a debug plugin for the Modelica Development Tooling 
(MDT) which is a Modelica programming perspective 
for Eclipse. The Eclipse-based user interface of the new 
efficient debugger is depicted in Figure 4. 

 
Figure 4. The debug view of the new efficient algorithmic 

code debugger within the MDT Eclipse plugin. 

The algorithmic code debugger provides the following 
general functionalities: 

• Adding/Removing breakpoints. 
• Step Over – moves to the next line, skipping the 

function calls. 
• Step In – steps into the called function. 
• Step Return – completes the execution of the func-

tion and comes back to the point from where the 
function is called. 

• Suspend – interrupts the running program. 
• Resume – continues the execution from the most re-

cent breakpoint. 
• Terminate – stops the debugging session. 

It is much faster and provides several stepping options 
compared to the old dynamic debugger because the old 
debugger was based on high-level source code instru-
mentation which made the code grow by a factor of the 
number of variables. The debug view primarily consists 
of two main views: 

• Stack Frames View 
• Variables View 

The stack frame view, shown in Figure 5, shows a list 
of frames that indicates how the flow had moved from 
one function to another or from one file to another. 
This allows backtracing of the code. 

 
Figure 5. The stack frame view of the debugger. 

 
Figure 6. The variable view of the new debugger. 

It is possible to select the previous frame in the stack 
and inspect the values of the variables in that frame. 
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However, it is not allowed to select any of the previous 
frames and start debugging from there. 

Each frame is shown as <function_name at 
file_name:line_number>. 

The Variables view (Figure 6) shows the list of var-
iables at a certain point in the program. It contains four 
columns: 
• Name – the variable name. 
• Declared Type – the Modelica type of the variable. 
• Value – the variable value. 
• Actual Type – the mapped C type. 

By preserving the stack frames and the variables it is 
possible to keep track of the variables values. If the 
value of any variable is changed while stepping then 
that variable will be highlighted yellow (the standard 
Eclipse way of showing the change). 

6.2 Dynamic Debugger Implementation 

In order to keep track of Modelica source code posi-
tions, the Modelica source-code line numbers are in-
serted into the transformed C source-code. This infor-
mation is used by the Gnu Compiler GCC to create the 
debugging symbols that can be read by the Gnu debug-
ger GDB [10]. 

Through the bootstrapped OpenModelica Compiler 
[4] the line number information is propagated all the 
way from the high level Modelica representation to the 
low level intermediate representation and the generated 
code. 

This approach was developed for the symbolic 
model transformation debugger described in [5] and is 
also used in this debugger. 

 
Figure 7. Dynamic debugger flow of control. 

Consider the Modelica code shown in Figure 8: 

 
Figure 8. Modelica Code. 

The OpenModelica Compiler compiles this HelloWorld 
function into the C source-code depicted in Figure 9. 

 
Figure 9. Generated C source-code. 

The generated code contains blocks which represent the 
Modelica code lines. The blocks are mentioned as 
comments in the following format /*#modelicaLine 
[modelica_source_file:line_number_info]*/. 

This information is now used to generate debug 
symbols that are recognized by GDB. The generated C 
source-code is used by a small Perl script to create an-
other version of the same source-code with different 
line number blocks, see Figure 10. 

 
Figure 10. Converted C source-code. 

The converted C source-code contains a line number 
mapping between the generated C source-code and the 
actual Modelica source-code in the GDB specific for-
mat. Examine the lines starting with #line in Figure 10. 

The executable is created from the converted C 
source-code and is debugged from the Eclipse-based 
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Modelica debugger which converts Modelica-related  
commands to low-level GDB commands at the C code 
level. 

The Eclipse interface allows adding/removing 
breakpoints. The breakpoints are created by sending the 
<-break-insert filename:linenumber> command to 
GDB. At the moment only line number based break-
points are supported. Other alternatives to set the 
breakpoints are; <-break-insert function>, <–break-
insert filename:function>. 

These program execution commands are asynchro-
nous because they do not send back any acknowledge-
ment. However, GDB raises signals; 
• as a response to those asynchronous commands. 
• for notifying program state. 

The debugger uses the following signals to perform 
specific actions: 
• breakpoint-hit – raised when a breakpoint is 

reached. 
• end-stepping-range – raised when a step into or step 

over operations are finished. 
• function-finished – raised when a step return opera-

tion is finished. 

These signals are utilized by the debugger to extract the 
line number information and highlight the line in the 
source-code editor. They are also used as notifications 
for the debugger to start the routines to fetch the new 
values of the variables. 

The suspend functionality which interrupts the run-
ning program is implemented in the following way. On 
Windows GDB interrupts do not work. Therefore a 
small program BreakProcess is written to allow inter-
rupts on Windows. The debugger calls BreakProcess 
by passing it the process ID of the debugged program. 
BreakProcess then sends the SIGTRAP signal to the 
debugged program so that it will be interrupted. Inter-
rupts on Linux and MAC are working by default. 

The algorithmic code debugger is operational and 
works without performance degradation on large algo-
rithmic Modelica/MetaModelica applications such as 
the OpenModelica compiler, with more than 100 000 
lines of code. 

The algorithmic code debugging framework graph-
ical user interface is developed in Eclipse as a plugin 
that is integrated into the existing OpenModelica 
Modelica Development Tooling (MDT). The tracking 
of line number information and the runtime part of the 
debugging framework is implemented as part of the 
OpenModelica compiler and its simulation runtime. 

The algorithmic code debugger currently supports 
the standard Modelica data types including arrays and 
records as well as all the additional MetaModelica data 

types such as ragged arrays, lists, and tree data types. It 
supports algorithmic code debugging of both simula-
tion code and MetaModelica code. 

Furthermore, in order to make the debugging practi-
cal (as a function could be evaluated in a time step sev-
eral hundred times) the debugger supports conditional 
breakpoints based on the time variable and/or hit count.  

The algorithmic code debugger can be invoked from 
the model evaluation browser and it breaks at the exe-
cution of the selected function to allow the user to de-
bug its execution. 

7 Conclusions and Future Work 
We have presented static and dynamic debugging 
methods to bridge the gap between the high abstraction 
level of equation-based object-oriented models com-
pared to generated executable code. Moreover, an 
overview of typical sources of errors and possibilities 
for automatic error handling in the solver hierarchy has 
been presented. 

Regarding static transformational debugging, a pro-
totype design and implementation for tracing symbolic 
transformations and operations has been made in the 
OpenModelica Compiler. It is very efficient with an 
overhead of the order of 0.01%. 

Regarding dynamic algorithmic code debugging, 
this part of the debugger is in operation and is being 
regularly used to debug very large applications such as 
the OpenModelica compiler with more than 100 000 
lines of code. The user experience is very positive. It 
has been possible to quickly find bugs which previous-
ly were very difficult and time consuming to locate. 
The debugger is very quick and efficient even on very 
large applications, without noticeable delays compared 
to normal execution. 

A design for an integrated static-dynamic debugging 
has been presented, where the dependency and origin 
information computed by the transformational debug-
ger is used to map low-level executable code positions 
back to the original equations. Realizing the integrated 
design is work-in-progress and not yet completed. 

To our knowledge, this is the first debugger for 
Modelica that has both static transformational symbolic 
debugging and dynamic algorithmic debugging. 
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Abstract

Fueled by the continuous, rapid progress within micro-
electronics, ever more intelligent and intricate func-
tions are realized in mechatronic systems. To control
the complexity associated with such designs, model-
based control design methods are increasingly adapted
in industry. Despite Modelica’s obvious suitability to
efficiently create appropriate high fidelity system mod-
els, the utilization of Modelica for developing discrete
control functions is not yet wide spread. Adoption of
Modelica for this task offers the potential for a seam-
less development methodology from the logical virtual
model down to the technical system architecture, with
corresponding traceability and maintainability bene-
fits.

This contribution will specifically address this po-
tential and propose a Modelica sub- and superset ade-
quate for use within the development of safety-relevant
control applications.

Keywords: embedded systems; functional safety;
simulation; code generation; compiler; formal meth-
ods; validation; verification

1 Introduction

Model-based design has emerged as a standard devel-
opment approach for the design of embedded systems.
Its original promise to provide a more rapid and eco-
nomic development process is confirmed in industrial
practice [5].

More and more embedded software components
are specified in models representing the so-called
high-level application that is then automatically trans-
formed (usually via embedded C-code) into binary
code that is executable on the embedded target: Fig-

ure 1 shows a typical model-based development en-
vironment where the specification model is first de-
signed using a next generation high-level, domain-
oriented modeling tool. These specification models
are typically enriched with implementation details and
converted to so-called code generation models. A code
generator converts the code generation model into C-
code that a cross compiler translates to object code.
The different object codes, including legacy and ba-
sic software code are then finally linked to a binary to
be executed by an embedded target. This approach re-
duces the implementation effort and time, especially in
iterative development workflows. Model-based devel-
opment methods have a significant impact on the de-
velopment process and the development environment
with its tools.

With the increase of applications, and along with
that of software size and complexity, model-based ap-
proaches have found their way into safety-relevant ap-
plications, especially in the aerospace and automotive
domains. This evolution has thrust the safety impact
of model-based development, especially with regard
to high-level modeling and code generators, into the
spotlight.

As described above, for practical purposes the pro-
cess of the generation of the executable program from
the model is mainly based on two development tools:
the code generator and the cross compiler (including
the cross linker). From an abstract point of view, this
concatenation of these two compilers is again a (sys-
tem) compiler, and can be treated by the same theory
as a compiler that would translate directly from the
code generation model to the executable code, see Fig-
ure 2. In the following all such translation tools will
be denoted abstractly as development tools.

The generated C-code can be seen as intermediate
representation of the model, because it is both output
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Figure 1: The generic build process for a model-based
development toolchain with an automatic code gener-
ator (from [14]). The shaded parts indicate the tools
and artifacts affected by what is later referred to as the
development tool (code generator and cross compiler).

of the code generator as well as input to the cross com-
piler for the target. This perspective of the develop-
ment tool is of central significance, because there is
no need to perform any qualification activities on such
internal representations as long as the C-code is only
used as input to the cross compiler and is not further
manipulated or used in any other activities that need
to rely on the readability of the C-code. As a conse-
quence no C-code reviews are needed in this case. This
approach opens up the possibility to perform reviews
on the model level. A main topic of this contribution
is addressing the conditions that need to be established
to allow such model level reviews.

Development tools may inject systematic faults into
the executable program. Increasing the functional
safety in this context means to minimize erroneous

Code Generation Model 
(Using Proposed Modelica Sub- 

and Superset)

Function
C-Code

Object-Code

Binary

Code Generator
-  Lexical Analysis and Parsing
-  Elaboration
-  Equation Transformation

-  Code Generation

Cross-Compiler

Cross-Linker

System 
Compiler

Figure 2: The concatenation of a code generator and
a (cross) compiler can be treated as a (system) com-
piler that directly transforms from the code genera-
tion model to the executable (target) code. The Fig-
ure indicates that the system compiler is based on the
proposed Modelica sub- and superset. Note that this
system compilation process may be realized signif-
icantly different than a compilation process used in
order to create simulation executables of models (see
Section 4.2.5).

outputs of the development tools due to malfunctions
and/or reliably detecting those erroneous outputs when
they occur.

One method to gain confidence in a software devel-
opment tool, is the validation of the software tool by a
validation suite, which comprises a test suite specif-
ically designed to exercise the development tool in
ways that would provoke any systematic malfunctions.

In order to design a suitable modeling language,
powerful development tools as well as an efficient and
effective validation suite, it is important to understand
precisely the role of translators and what the valida-
tion suite is intended to demonstrate. We therefore in-
troduce some definitions in the context of a validation
suite in Section 5, together with a discussion of the
role of language structure and complexity.

For both the validation of the input language and
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the transformation process, we have to cope with the
curse of complexity. It is therefore of crucial impor-
tance to keep the language of the code generator mod-
els as simple and well-defined as possible, especially
with regards to the number and complexity of basic
constructs in the language, while also minimizing the
number and complexity of performed transformation
rules in the code generation process. This is especially
true of transformation rules stemming from optimiza-
tion rules. On the other hand the language so defined
still has to be suitable for human consumption, so that
the complexities of the code generation process are not
just offloaded to the programmer.

Up to now the use of Modelica in embedded sys-
tems development is usually restricted as a modeling
language for the physical plant dynamics. This can be
attributed to:

1. A somewhat too limited expressiveness in mod-
eling discrete controller functions.

2. The lack of a flexible, seamless development ap-
proach from the controller model comprising the
logical functions to the technical system architec-
ture (i.e., code running on the target platform).

3. And last but not least because safety-relevant
software functions need means to achieve a high
assurance level, which is not supported with cur-
rent Modelica.

When discussing the use of Modelica in the con-
text of control application, often advanced control con-
cepts based on inverted plant dynamics are described
[18], [19], [3]. Some Modelica tools are capable of au-
tomatically synthesising such controllers and generate
code for them. This usually requires fairly sophisti-
cated symbolic manipulation capabilities by the tool.
For example, it may require to differentiate a subset of
the equations, select appropriate states and solve the
resulting system of differential and algebraic equations
numerically.

However, the intrinsic complexity in the resulting
control algorithms imposes an additional burden if the
topmost design goal is in providing high assurance
control systems. For the following discussion it is
therefore assumed that the design trade-off is biased to
prefer high assurance control over high performance
control systems.

The aim of the paper is to study impacts of a safety-
relevant development process (relying on validated
tools) to high-level, domain-oriented modeling lan-
guages. In particular it proposes a sub- and superset

of the modeling language Modelica suitable for such
safety-relevant software development activities. To il-
lustrate the development using the proposed language
elements a showcase library (referred to as SAFEDIS-
CRETECONTROL library) is presented and applied at
an exemplary use case.

2 Development Roles

Model-based development is an established method in
the development of safety-relevant products. As seen
above, especially the two transformations code gener-
ation and cross compilation play an important role. To
ensure that the benefits of this approach have full ef-
fect the working mode of the development tools needs
to be well understood.

The intended software development process, and
hence the development environment, has to provide a
balance between controlled process steps and flexibil-
ity of user access: On the one hand, the user may not
be restricted too much and must still have principal
control over all development activities – too many re-
strictions reduce the acceptance and thus also the pro-
ductivity and quality of the work. On the other hand,
too few restrictions lead to error-prone development
practices, and ultimately to preventable faults in the
software.

Various stake-holders participate in the develop-
ment in different roles with different requirements and
expectations. A suitable Modelica sub- and superset
will have to support at least the following roles in the
development process:

Role 1 - Developer of the Embedded Control Sys-
tem. This role requires a sufficiently expressive mod-
eling language with sound language elements with
clear semantics to design and test the intended func-
tionality.

Role 2 - Tool Developer. This role requires the pre-
cise definition of the input modeling language: There
should be no unclear corner cases in the semantics.
The language should be efficiently compilable to tar-
get code.

Role 3 - Reviewer for Functional Safety. This role
requires a clear and unambiguous description of the
functionality, including all semantically relevant mod-
eling details in compact form for efficient reviews. It
should be possible to determine coverage at the model
level, and allow for tracing of requirements to the rel-
evant model parts.

Role 4 - Tool Qualifier. This role requires a suffi-
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ciently small number of modeling elements with clear
semantics as well as clear, ideally highly localized
composition rules, in order to establish a validation
suite for the development tool. The boundaries of
the development tools, i.e., input and output nota-
tions, have to be clearly defined. Automated pro-
cesses should ideally be separately testable, to mini-
mize complexity. For more details again see Section 5.

These different roles have partly coincident — se-
mantic aspects — and partly contradictory — expres-
siveness of the language — requirements to the devel-
opment process and with that to the development tools
and their modeling languages.

3 Requirements for a Safety Ori-
ented Modelica Sub- and Superset

In this section we study the requirements of the above
introduced roles to modeling language, to the develop-
ment enviroment and their tools, and a validation suite
for safety-relevant developments.

We will see later in this contribution that these re-
quirements can be met only by specific restrictions and
extensions of the modeling domain language. This fi-
nally leads us to the introduction of a sub- and superset
of Modelica based on these requirements, that is sim-
ple in order to facilitate high assurance designs, yet
expressive enough to allow modeling of many control
strategies of practical relevance.

The textual representation of the Modelica language
defines the full semantics of a given model, therefore
we will begin with the requirements to the textual rep-
resentation.

3.1 Requirements to the Textual Representa-
tion

At a first glance, we argue that functional reviews
should be done at the textual Modelica language level,
since the language semantics are specified at the tex-
tual level and graphical representation may hide im-
portant details. However, of course the graphical level
provides an abstraction that eases comprehension of
the intended model semantics and is hence an ex-
tremely valuable supplementary to the textual review.
We therefore describe in the following section addi-
tional requirements to the graphical representation de-
signed to avoid any hidden important details in the
graphical representation. It is then left to the reviewer
and his preferences either to perform a textual or a
graphical review.

We start with a coincident requirement for the roles:

Requirement 1 - Formally Sound Language Set.
The language sub- and superset must be formally
sound, so that validation and verification methods
e.g. formal methods can be supported. Required by
Roles 1, 2, 3, and 4

Requirement 2 - Minimum Expressiveness of the
Language Set. The language sub- and superset must
have enough expressiveness to allow the clear and con-
cise specification of discrete open- and closed-loop
control algorithms and their related support logic. Re-
quired by Roles 1 and 2.

Requirement 3 - Target Data Types and Opera-
tions. The language should provide a mechanism that
allows to extend its data types and operations to sup-
port fundamental data types and operations available
on the embedded target platform. Required by Roles 1
and 2.

Requirement 4 - Target Code Generation. The lan-
guage should permit automatic generation of target
platform C-code1 that is: a) efficient, b) avoids un-
safe constructs2, c) is traceable3, and d) integrates
smoothly into embedded systems software architec-
tures. Required by Roles 1, 2, and 1.

Requirement 5 - No Continuous-Time Dependen-
cies. The language must not have dependencies to
continuous-time system solver functionalities running
in the background. Required mainly by Roles 1 and 2.

Requirement 6 - Compile Time Analysis. The lan-
guage should allow compile time analysis of important
properties in order to reject dubious programs (missing
initial values, type checking, clock analysis, detection
of cyclic definition that result in algebraic loops, etc.).
Required mainly by Roles 1 and 3.

Requirement 7 - Modular Code Generation. The
language must support modular code generation, i.e.,
within a model composed by connecting several
blocks it must be possible to generate a transition func-
tion for each block definition and by composing them
together produce the overall transition function. Re-
quired mainly by Roles 1 and 3.

1Automatic C-code generation is stipulated, since C-code is the
most popular language for targeting embedded systems and (cer-
tifiable) compilers are available. However direct-to-binary code
generators are not precluded by this, and similar though not iden-
tical concerns arise for those cases.

2For example by conforming to coding standards like
MISRA AC AGC [17].

3Given a fragment of the automatically generated C-code it
must be possible to trace it back to the model elements that caused
its generation.
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Requirement 8 - Modular Initialization. As a con-
sequence of Requirement 7 also initialization of (state)
variables must be supported in a modular manner, i.e.,
initial values of (state) variables in modular blocks de-
duced during compile time analysis must not depend
on the environment enclosing the block. Furthermore,
if initial values can not be uniquely determined from
the given constraints and set start values code gen-
eration shall abort with an error message. Required
mainly by Roles 1, 3 and 4.

Requirement 9 - Tangible Fixation of Automati-
cally Deduced Properties. In order to ensure repro-
ducibility of code generation and reviewability4, it
must be possible to fixate all properties of a model
that influence code generation in a tangible, review-
able form. In particular it must be possible to fix-
ate initial values that are automatically deduced by a
tool, so that code generation will always use the fix-
ated values instead of recalculating those values on the
fly at the time of code generation. Required mainly by
Role 3 and 4.

Requirement 10 - Manual Block Scheduling. Man-
ual scheduling of block execution (as opposed to
scheduling based on automatic causality analysis)
must be possible on an optional basis. Required
mainly by Role 1.

The following requirement is mainly motivated by
the role of a tool qualifier and typically holds the most
potential for discussion with the other roles, especially
with the role developer:

Requirement 11 - Restricted Language Scope. To
ease tool validation the language should be as sim-
ple and clear as possible. This shall be achieved by
restricting the scope of the Modelica language to a
(preferably small) sub- and superset relevant for the
addressed problem domain, i.e, suitable for the imple-
mentation of the blocks in the SAFEDISCRETECON-
TROL library. Particularly, simplicity and clarity of the
language sub- and superset is to be preferred over fea-
ture richness. Required mainly by Role 4.

As already mentioned above, in the following sec-
tion we describe additional requirements to an optional
graphical representation in order to perform a fully
equivalent review on the graphical representation.

4Note that this requirement also enables separate validation of
code generator and property-deduction code, since the fully fix-
ated model provides the checkable interface between both pro-
cesses.

3.2 Additional Requirements to the Graphi-
cal Representation

In computer science, semantics of a textual or graph-
ical language refers to the meaning of programs writ-
ten in it. Although the semantics of Modelica are de-
scribed on a textual language level, Modelica provides
standardized annotations for the graphical representa-
tion of models [10].

The main idea is that a library developer uses the
textual Modelica language to code basic functionali-
ties in components that are annotated with a graphical
illustration, while an application/model developer (li-
brary user) works on a graphical level by just dragging,
dropping and connecting the library components in or-
der to compose the intended functionality.

How can we now avoid that not obvious or even hid-
den details in the graphical representation prevent the
reviewers from performing an efficient and effective
graphical review? In this section we therefore formu-
late additional requirements to the graphical represen-
tation that enable both developers (Role 1) and review-
ers (Role 3) to entirely work at a graphical level.

Within Section 4.4 a conceptual library design (de-
noted SAFEDISCRETECONTROL library) is briefly
presented that complies to the requirements stated in
this section. In combination with adherence to the
rules formulated in Section 4.3.2 the usage of such a
library could then enable both, developers and review-
ers, to entirely work at a graphical level.

We start with the graphical pendant to the textual
requirement 1:

Requirement 12 - Intuitive Block Semantics.
Blocks from SAFEDISCRETECONTROL and their
compositions should not exhibit any behaviour which
would be deemed surprising or non-obvious by a do-
main expert. Required by Roles 1, 2, 3, and 4.

The restriction on blocks reflects the textual require-
ment 11:

Requirement 13 - Restricted Set of Allowed Blocks.
A high-level application model is only allowed to be
composed from a set of thoroughly tested and val-
idated basic blocks defined in the SAFEDISCRETE-
CONTROL library. Required mainly by Roles 3 and
4.

Requirement 14 - Data Flow Semantic. Block dia-
grams with data flow semantic are used at the graphical
level. Required by Roles 1, 2, 3, and 4.

Requirement 15 - Graphical Level Code Reviews.
Code reviews of models should be feasible as far as
possible at the graphical level. Consequently, any se-
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mantics associated with the blocks from SAFEDIS-
CRETECONTROL and their compositions should be
completely evident by inspecting the graphical dia-
gram layer, i.e., apart from clearly marked exceptional
cases there should be no cases where the semantics
of a model is not entirely and uniquely understand-
able from inspection of the block diagram. Required
mainly by Role 3.

Requirement 16 - Block Testability. Any block
within SAFEDISCRETECONTROL must be designed,
so that extensive testing of the block is easily possi-
ble, i.e., simple, lean designs are preferred over so-
phisticated, complex designs. Note that this also im-
plies that when balancing modeling comfort of blocks
against simplicity, the bias is towards simplicity. Re-
quired mainly by Roles 3 and 4.

Requirement 17 - Composition Testability. Com-
positions of blocks from SAFEDISCRETECONTROL

must again result in a block that is suitable for exten-
sive testing, e.g., by restricting the number of inputs
and outputs that are allowed for a block. Required
mainly by Role 3 and 4.

Requirement 18 - Traceability. Compositions of
blocks from SAFEDISCRETECONTROL must result in
generated code that can be traced back to the blocks
in the model, in order to easily perform, e.g., code
coverage analysis on the target level but mirror back
the results onto the model level. Required mainly by
Role 3.

4 Proposal for a Safety Oriented
Modelica Sub- and Superset

The aim of this section is to introduce a sub- and su-
perset of Modelica that is simple in order to facilitate
high assurance designs, yet expressive enough to al-
low modeling of many control strategies of practical
relevance.

4.1 Terminology

The following list defines some key terms used subse-
quently.

Basic Blocks Blocks that have no inner instance of
other blocks are subsequently referred to as basic
blocks. These blocks may only contain parame-
ters, connectors and (textual) equations.

Composite Blocks Blocks that are (graphically) com-
posed from other blocks are subsequently re-

ferred to as composite blocks. These blocks may
only be composed from other blocks connected
by connect(..,..) equations. Therefore they
do not contain any other textual equations.

Clocks Clocks provide an activation signal or clock
signal used for synchronous scheduling of a set
of equations activated by that clock signal. They
recently entered the Modelica language standard.

Clock Blocks Special basic blocks containing clocks
that provide a clock signal are subsequently re-
ferred to as clock blocks.

Atomic Blocks Blocks which are executed as a single
unit (akin to a function call with input and output
arguments) are referred to as atomic blocks.

4.2 Superset: Language Extension Proposal

To meet the requirements defined in Section 3 it is not
sufficient to solely restrict the language elements to a
subset of the current Modelica 3.3 standard specifica-
tion. In addition it is necessary to extend the language
elements, effectively forming a superset of the current
language.

This section proposes several language extensions
by

1. Explaining the perceived limitation of Modelica
3.3 that needs to be addressed.

2. Proposing a language extension that overcomes
the limitation.

4.2.1 Data Types Extension

Modelica 3.3 [10, Section 12.9] specifies the following
data type mapping to C:

Modelica data type Default mapping to C

Real double
Integer int
Boolean int
String const char*
Enumeration int

Embedded processors often need finer control about
the used data type5. Again it is necessary to make a
trade-off between feature completeness and validation
costs. Validation effort will raise for every supported

5E.g., for increased memory efficiency or because the embed-
ded system simply doesn’t provide efficient support for that data
type, e.g., an embedded system with a FPU (Floating Point Unit)
that supports only single precision floating point arithmetic.
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data type. In effect it needs to be checked whether
the savings gained by supporting a particular data type
(e.g., because a cheaper electronic control unit (ECU)
can be used) outweighs the additional costs in (tool)
validation.

The following section will propose a rather general
mechanism to extend the standard Modelica data types
with more low-level hardware encoding information.
Note that although the SAFEDISCRETECONTROL li-
brary presented in Section 4.4 only supports a subset
of the listed data types, the extension to additional data
types is straight forward. However, the associated ad-
ditional validation effort for any additional supported
data type is considerable.

4.2.2 Proposal for Data Type Extension

The relevant part of the Modelica specification defin-
ing the basic data types is [10, Section 4.8]. The nota-
tion in the specification is adapted to extend the defini-
tion of the Real, Integer and Boolean data types6.
The following predefined enumeration types are used
for the definition.

type PlatformType = enumeration(
UInt8 "8-bit unsigned integer",
SInt8 "8-bit signed integer",
UInt16 "16-bit unsigned integer",
SInt16 "16-bit signed integer",
UInt32 "32-bit unsigned integer",
SInt32 "32-bit signed integer"
);

type PlatformRealType = enumeration(
Float "IEEE 754 single precision

floating type",
Double "IEEE 754 double precision

floating type",
);

Using the definitions above the predefined types of
Modelica are extended with the additional attribute
platformType. The rationale for not supporting an
attribute is given in the corresponding footnote. Note
that the types are defined with Modelica syntax al-
though they are predefined, fundamental data types in
Modelica.

type Real
RealType value; /* Accessed

6In this work the dedicated support of fixed-point arithmetic is
not (yet) considered. Note that if fixed-point arithmetic is required
it is possible (though not convenient) to use the proposed Model-
ica language extensions to implement and validate custom basic
blocks that provide the required functionality.

without dot-notation */
parameter StringType quantity;6

parameter StringType unit;
parameter StringType displayUnit;6

parameter RealType min=-Inf, max=+Inf;
parameter RealType start = NaN;7

parameter BooleanType fixed;8

parameter RealType nominal;9

parameter StateSelect stateSelect;10

parameter PlatformRealType platformType
= PlatformRealType.Double;

end Real;

type Integer
IntegerType value; /* Accessed
without dot-notation */

parameter StringType quantity;6

parameter IntegerType min=-Inf, max=+Inf;
parameter IntegerType start = +Inf;7

parameter BooleanType fixed;8

parameter PlatformType platformType
= PlatformType.Sint32;

end Integer;

type Boolean
BooleanType value; /* Accessed
without dot-notation */

parameter StringType quantity;6

parameter BooleanType start = false;7

parameter BooleanType fixed;8

parameter PlatformType platformType
= PlatformType.Sint32;

end Boolean;

Note that the values of the variables may not be di-
rectly manipulated in memory and consequently there
are no access routines.

4.2.3 Activation of Discrete-time Equations in
Modelica

Before the recently released Modelica 3.3 language
standard the activation of discrete-time equations was
either due to time events or state events.

6Omitted for the sake of language simplification
(Requirement 11).

7If no start value is given, the start value is deduced (in com-
pliance with Requirement 8) during compile time analysis.

8The Attribute "fixed" cannot be applied on clocked discrete-
time variables. It is true for variables to which the previous()
operator is applied, otherwise false [10, Section 16.9].

9Nominal values are only useful in the context of numerical
solvers. They have no relevance in our targeted discrete applica-
tions.

10Only useful for solving (continuous) differential equation sys-
tems.
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Time events are scheduled by the solver along a
global simulation time line. Time is a (physical)
real number (as opposed to the principle of multi-
form time12 adapted by synchronous languages) that
steadily increases during execution (simulation) of a
Modelica model. The global simulation time can be
accessed anywhere in a Modelica model by the built-
in variable time13.

State events are detected by the solver if a variable
(controlled by the solver) experiences a zero-crossing.

The event handling approach of Modelica works
well for simulating a plethora of hybrid system mod-
els, but it has shortcomings if embedded systems code
shall be generated from a Modelica model. The pre-
requisite that an “omniscient” solver “running in the
background” detects and schedules events in order
to activate the evaluation of a set of equations im-
pedes straightforward integration into external envi-
ronments.

In order to allow smooth integration of code gener-
ated from Modelica into embedded systems software
projects, Modelica needs to allow external code to
simply cause the evaluation of a set of (discrete-time)
Modelica equations (without the internal participation
of a hybrid systems solver that tries to detect whether
the equations shall be evaluated or not). Nikoukhah
and Furic [11] provide a notable discussion about the
missing feature of external activation in context of us-
ing Modelica models within the Scicos14 modeling en-
vironment which similarly applies to using Modelica
models in embedded systems software projects.

To allow external activation of Modelica models
Nikoukhah and Furic propose in [11] to add an Event
type to the Modelica language and discuss the ele-
ments and semantics needed to integrate that new type
in a general and backwards compatible way15.

The latest Modelica 3.3 language standard added
synchronous language elements particularly targeted
at the implementation of control systems [10, Chapter
16, Synchronous Language Elements]. They add clock
activation as a third way of activating discrete-time

12The multi-form time principle states that any sequence of
events can be considered as a time scale for the reactive system
that perceives these events.

13Note that at the beginning of Section 4.2 it is stated that the
built-in variable time is not supported for the SAFEDISCRETE-
CONTROL library.

14Scicos is a graphical dynamical system modeler and sim-
ulator with support for continuous and discrete time models
(http://www.scicos.org/).

15An early draft version of this document actually proposed an
activation mechanism inspired by the proposal of Nikoukhah and
Furic.

equations that largely solves the hitherto criticised de-
ficiencies.

Another notable advantage of clock activation in
comparison to activation through the traditional state
and time events mechanism is the support of clock in-
ference. It is no longer necessary to explicitly prop-
agate an event to all (block) instances that contain
equations that should be activated by that event. The
property of a variable that is explicitly associated with
a clock is propagated to other variables that are related
with that variable through equation relations. The us-
age of variables associated with different clocks within
the same expression requires special clock conversion
operators, otherwise it is a model error. This increases
the modeling comfort and protects against modeling
errors related to unconscious combination of signals
sampled at different points in time.

The following section will use a subset of the
synchronous language elements as a base to realize
a mechanism that, sloppily speaking, allows to call
blocks as functions. On the one hand the proposal
will restrict the allowed set of synchronous language
elements to a subset (for language simplification rea-
sons), on the other hand it will introduce a slight ex-
tension in order to satisfy two use cases:

1. Allow smooth integration of generated code into
external environments, e.g., AUTOSAR author-
ing environments.

2. Allow manual scheduling of block execution as
depicted in Figure 3.

The requirement to allow manual scheduling of
block activation might appear strange, since a program
can figure out the “correct” activation sequence easily
from the data flow. However interaction with external
software components, as well as execution time and
real-time requirements, can place additional restric-
tions on the activation sequence that can not be deter-
mined by data flow only. Therefore, manual schedul-
ing can be necessary. Additionally, if discussing a
safety-relevant design with authorities it can often be
beneficial to document that a human being has thought
of the correct activation sequence rather than a ma-
chine.

4.2.4 Proposal for Atomic and Priority Based Ac-
tivation

Conceptually, the atomic block definition in Sec-
tion 4.1 yields the semantic depicted in Figure 4.
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Figure 3: Manual scheduling of blocks.

Since an atomic block is executed as single unit it is
required that all equations within the block must be ac-
tivated from the same clock signal. However, it is pos-
sible that a block internally subsamples a clock signal
and provides it as an output. Note that due to clock in-
ference it is not necessary to provide an explicit clock
input to every atomic block within a diagram as long
as a unique clock can be inferred for it.

Atomic Blocks Currently there is no language sup-
port for treating a block as atomic according to our def-
inition. To mitigate that deficiency the prefix atomic
is proposed. The atomicity of a block is defined at the
instance declaration.

atomic BlockModule a;

Akin to the execution of algorithms in Modelica
models, an atomic block can be conceptually viewed
as an atomic vector-equation (potentially with internal
state) that maps its inputs to outputs, e.g.,

(out1,out2,...) = BlockModule(in1,in2,...);

Figure 5 further illustrates the difference between
conventional and atomic block semantics.

Clock Priorities To allow manual scheduling of
blocks it is proposed to extend the subSample(u,
factor) operator with an (optional) additional inte-
ger argument denoting the priority of a clock:

subSample(u, factor, priority)

BlockModuleInputs Outputs

Clock
Input

Clock
Outputs

Figure 4: Conceptual atomic MIMO-block with data
inputs and outputs, as well as one clock signal input
(for activating the block) and (potential) several sub-
sampled clock signal outputs.

u2

u1 y1

y2Feedthrough

y1=u1

y2=u2

Figure 5: Trivial feedthrough block. If declared
atomic, it is required that input signals u1 and u2 are
active at the same clock ticks allowing to conceptually
transform the block to a (periodically called) function
(y1,y2) = Feedthrough(u1,u2) (the block hier-
archy is maintained at execution level). If not declared
atomic, u1=y1 and u2=y2 are allowed to be active at
completely unrelated points in time (the block hierar-
chy is flattened, see Section 4.2.5)!

Values assigned to priority must be positive (in-
cluding zero), lower values indicate a higher priority.
If omitted, the argument defaults to "priority = 0".
The priorities are always relative to the source clock
signal.

An example implementation for the scheduler block
in Figure 3 is given below.

block Scheduler
input Clock clk;
output Clock clk1;
output Clock clk2;
output Clock clk3;
equation

clk1 = subSample(clk,1,1);
clk2 = subSample(clk,1,2);
clk3 = subSample(clk,1,3);

end Scheduler;

The semantics is that the equations activated by a
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higher priority clock must be executed first16. Note
that due to the relative nature of clock priorities stated
above, it is not possible that a clock has a higher ab-
solute priority than the input clock. Furthermore, in
order to uniquely associate every variable with one
clock a subSample(u)17 operator needs to be present
between the block connection shown in Figure 3.
That has not been depicted to keep the diagram well-
arranged.

Direct Block Activation The following language
extension proposal is not essential to meet the re-
quirements, however it supports more clearly arranged
models.

The current language standard does not allow to di-
rectly assign a clock to a block with the semantics that
all equations and variables in the scope of that block
are marked to be part of the same base-clock parti-
tion. Therefore, the designated way to execute clocked
equations within a controller block is by providing the
clocking information at the inputs of that block and
rely on clock inference. If the block needs several in-
puts that may result in a diagram like depicted in Fig-
ure 6.

Figure 6: The designated way to execute clocked equa-
tions within a controller block using Modelica 3.3 is by
providing the clocking information at the inputs of that
block (by using the sample(u, c) operator and pass-
ing in the clock by the second argument) and rely on
clock inference to forward the clocking information.

A tentative more explicit mechanism would be to in-
troduce a built-in attribute “clock” for block classes
that allows to assign a clock to a block. The semantics
would be, that any variable and equation enclosed by

16The execution order of equations which are activated by
clocks with equal priority is determined by the (standard) causality
analysis algorithms of the Modelica tool.

17If the arguments "factor" and "priority" are not provided
or zero, they are inferred.

the block would be associated with the assigned clock,
e.g.,
block Controller
input Real u;
output Real y;

equation
u = y;

end Controller;

model Environment
Clock clk = Clock(0.5);
Real s = sin(time);
// associate c.u and c.y with clk
Controller c(clock=clk);

equation
c.u = sample(s);

end Environment;

However, in order to keep extensions to the official
Modelica standard at a minimum this extension is not
part of the proposed Modelica superset.

Clock Blocks and Interaction with the Physical
Environment Clock blocks provide clock signals.
They are source blocks, since they need no input
to provide a clock signal as output. In order to
convert between continuous-time (physical environ-
ment) and clocked discrete-time signals the operators
sample(u) (continuous-time variable u converted to
discrete-time) and hold(u) (zero-order hold conver-
sion of discrete-time variable u to continuous-time) are
needed.

Note that according to Section 4.3, Rule 9 clock
blocks as well as the conversion operators may not
be part of the high-level application intended for code
generation. They are elements needed to simulate
the execution of the high-level applications within the
simulation tool (depicted in Figure 7). Or formulated
differently, they are idealized models of the environ-
ment that will execute the high-level application run-
ning on the ECU, e.g., a periodic scheduler of an op-
erating system that activates the high-level application
task.

Since clock blocks, sample(u) and hold(u) reside
outside the high-level application they are not part of
the Modelica sub- and superset proposed for code gen-
eration!

The Modelica Specification [10, Section 16.3] de-
fines several overloaded Clock(..) constructors. A
simple clock source block is modeled below.
block PeriodicClock
parameter Real sampleRate = 0.1;
output Clock y = Clock(sampleRate);
end PeriodicClock;
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Figure 7: Simulation of a high-level application model
using a clock block to model the execution of the ap-
plication by its environment, e.g., by an operating sys-
tem scheduler.

Calling a Block as a Function Combining the pro-
posed priority based clock activation with modular
code generation (Section 4.2.6) fulfils the requirement
to “call blocks as functions” (stated in Section 4.2.3).

To exemplify, assume B1, B2 and B3 from Fig-
ure 3 have the annotation Inline=false and the man-
ual scheduler is modeled by assigning appropriate pri-
orities to the clock signals. A tool could generate fol-
lowing (conceptual) C-code.

double EnclosingBlock_B2_y = 0;

void EnclosingBlock(double u,
double* y1, double* y2) {

double B1_y1, B1_y2;
double B2_y, B3_y;
B3(EnclosingBlock_B2_y , &B3_y);
B1(u, &B1_y1, &B1_y2);
B2(B1_y1, B3_y1,

&EnclosingBlock_B2_y);
*y1 = EnclosingBlock_B2_y;
*y2 = B1_y2;

}

4.2.5 Typical Modelica Code Generation

The typical Modelica code generation process differs
significantly from the automatic target code generation

intended for safety related applications. This section
will give a short overview over the typical code gen-
eration process in order to better appreciate and un-
derstand the proposal for simplified and modular code
generation presented in Section 4.2.6.

Compiling Modelica code usually involves substan-
tial code transformation. Figure 8 gives an overview
of the compilation and simulation process as described
by Broman [4, p. 29].

Modelica 
Model

AST

Lexical Analysis 
and Parsing

Hybrid DAE

Elaboration

Executable

Simulation 
Result

Equation 
Transformation & 
Code generation

Simulation

Compile 
Time

Run time

Compiler 
front-end

Compiler 
back-end

Figure 8: Outline of a typical compilation and simula-
tion process for a Modelica language tool [4, p. 29].

The different phases are:

Lexical Analysis and Parsing This is standard com-
piler technology.

Elaboration Involves type checking, collapsing the
instance hierarchy and generation of connection
equations from connect-equations. The result is a
hybrid DAE (consisting of variable declarations,
equations from equations sections, algorithm sec-
tions, and when-clauses for triggering discrete-
time behaviour).

Equation Transformation This step encompasses
transforming and manipulating the equation sys-
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tem into a representation that can be efficiently
solved by a numerical solver. Depending on the
intended solver the DAE is typically reduced to
an index one problem (in case of a DAE solver)
or to an ODE form (in case of numerical integra-
tion methods like Euler or Runge-Kutta).

Code generation For efficiency reasons tools typi-
cally allow (or require) translation of the residual
function (for an DAE) or the right-hand side of
an equation system (for an ODE) to C-code that
is compiled and linked together with a numerical
solver into an executable file.

Simulation Execution of the (compiled) model.
While execution the simulation results are typi-
cally written into a file for later analysis.

In the context of code generation for safety relevant
systems the typical processing of Modelica models has
two problems:

1. In the Elaboration phase the instance hierar-
chy of the hierarchically composed model is col-
lapsed and flattened into one (large) system of
equations , which is subsequently translated into
one (large) chunk of C-code inhibiting modular-
isation and traceability at the C-code level. That
conflicts with Requirements 7, 8 and 18.

2. In the Equation Transformation phase the
equations are extensively manipulated, optimized
and transformed on the global model level. The
algorithms used in this step are the core elements
that differentiate the tools (quality of implemen-
tation). Although the basic algorithms are docu-
mented in the literature, the optimized algorithms
and heuristics used in commercial implementa-
tions are a vendor secret. The lack of trans-
parency and simplicity exacerbates tool qualifi-
cation efforts.

Therefore, the compilation process for simulation
may be significant different to the target code compi-
lation process depicted in Figure 2. Not only because
different compilers are used, but also because the tar-
get code generator may (need to) be an entirely dis-
tinct piece of software that may share only minimal to
no amounts of code with the simulation code genera-
tor. In particular the target code generator depicted in
Figure 2 is only required to understand the sub- and
superset of the Modelica language intended for (dis-
crete) software application models.

4.2.6 Proposal for Simplified and Modular Code
Generation

In the context of safety related function development
it is proposed to

1. Use simplified and transparent equation transfor-
mation algorithms for block diagrams.

2. Support modular code generation for blocks.

Simplified Transformation Algorithms The com-
plexity in the compilation process of Modelica models
is mainly due to acausal18, physical modeling. Trans-
forming typical physical models in a form that can be
efficiently solved by a numerical solver requires ad-
vanced symbolic manipulation techniques.

However, the proposed Modelica subset allows for a
hugely simplified compilation. Recall, that compared
to full Modelica, the following restrictions apply to the
block diagram subset of Modelica proposed in this pa-
per:

• Modelica block diagrams allow only causal con-
nections between blocks.

• Only difference equations are permitted by the
proposed language subset (the der(..) operator
is not available in the proposed language subset).

Transforming these equations to (causal) serial code
is completely feasible by resorting to well known, pub-
lished algorithms19 without needing additional expert
knowledge to perform challenging tasks like index re-
duction (which is needed for almost all physical Mod-
elica models of practical relevancy). Therefore, to in-
crease the transparency of the transformation process
it is proposed to use plain and open transformation al-
gorithms suitable for the targeted Modelica subset.

Modular Code Generation Modular, or separate,
code generation for blocks improves traceability
within a code generation process, a key requirement
when developing safety related functions [2, 1, p. 75].

The aim of modular code generation is to produce a
transition function for each block definition and com-
pose them together to produce the main transition
function. However, flattening each block and manipu-
lating the corresponding equation system on the global

18The term acausal in Modelica is somehow similar to what is
referred in computer science as descriptive.

19For example by employing basic “Modelica” algorithms for
causalization of an equation system into a block lower triangular
form [12, 15, 6].
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level usually allows to generate a better optimized,
more efficient code. Consequently, a trade-off between
efficiency and traceability is required [1, p. 75].

Instead of collapsing the instance hierarchy, as typ-
ically done within the Elaboration phase, it is pro-
posed to provide an option that preserves the modular-
ity of an instantiated block.

The Modelica specification already knows of anno-
tations that can influence code generation [10, Section
18.3]:

code_annotation:
annotation"(" codeGenerationFlag "="
{ false | true } ")"

codeGenerationFlag:
"Evaluate" | "HideResult" | "Inline" |
"LateInline" | "GenerateEvents"

Within the specification the effect of the flag
"Inline" is limited to function declarations. We pro-
pose to extend that scope in order to use the flag to
annotate block instances and block declarations that
have been declared “atomic”. An annotation at the
block instance takes precedence over an annotation at
the block declaration. If the flag is not explicitly set it
defaults to Inline=false.

Therefore, for the example from Figure 9 the decla-
ration to enforce separate code generation for the block
instance writes:

atomic BlockModule blockModule
annotation(Inline=false);

BlockModule

u y

A B

Figure 9: For every block it must be possible to option-
ally state whether the modularity of the block instance
used in a composition is to be preserved at source code
level.

For the BlockModule example from Figure 9 a C-
function with suitable input and output data structures
could be generated in way similar to

void BlockModule(inBlockModule_u *u,
outBlockModule_y *y);

The internal state variables of the block (if any) could
be either part of the output data structure, or alterna-
tively could be provided as a third argument to the
function.

A common alternative approach is to use global
variables with a suitable naming scheme to avoid

variable clashes for input, output, and state variables
which results in functions with a void signature, e.g.,

void BlockModule(void);

If a suitable communication mechanism exists the
code may also instead of directly accessing the vari-
ables use the communication interfaces provided by
the run-time environment, e.g.,

void BlockModule(void) {
inBlockModule_u u =

get_inBlockModule_u();
outBlockModule_y y;
/* .. */
set_outBlockModule_y(y);

}

Clarity may improve if for initialization or reset of
state variables an additional, dedicated function is gen-
erated.

Additional Remarks on Code Generation A de-
tailed discussion about automatic target code gener-
ation by Modelica tools is out of scope of this arti-
cle. With no doubt the user needs to have more influ-
ence on the code generation than the options given by
the proposal above. Customized control over some as-
pects of the code generation might be provided within
the model in form of Modelica annotations (standard-
ized or tool specific) or also at completely different
locations and in different forms.

4.3 Subset: Reducing Language Complexity

The practice of defining modeling or coding stan-
dards for safety-relevant software projects is well es-
tablished20. This section proposes several rules for the
development of safety-relevant control applications,
akin to a modeling standard, in order to reduce the
complexity of the language.

The rules restrict the allowed language elements,
and hence define a language subset.

4.3.1 Textual Language Rules

To meet the requirements defined in Section 3 it is not
sufficient to solely restrict the language elements to a
subset of the current Modelica 3.3 standard specifica-
tion. In addition it is necessary to extend the language

20An example is the functional safety standard IEC 61508-3,
in which the use of coding standards is highly recommended for
SIL 3 and above [9]. Several coding/modeling guides published
by The Motor Industry Software Reliability Association (MISRA)
provide standards specifically targeted (but not limited) at the au-
tomotive industry, the most famous one being MISRA C [16].
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elements, effectively forming a superset of the current
language.

A language extension capable of meeting the re-
quirements is proposed in Section 4.2. The following
rule definitions require that this extension is available.

Rule 1 - Clocked Variables Exclusivity. Occurring
variables and equations must be part of (discrete-time)
clocked partitions. Note that this restriction implies
that all allowed high-level applications have a purely
time-discrete nature.
Rationale: Clocked variables and equations were in-
troduced in Modelica 3.3 to provide improved support
for implementation of (discrete-time) control systems.
Trace: Requirement 4, 5.

Rule 2 - Reduced Set of Keywords. Table 1 repro-
duces the keywords from the Modelica specification
[10, Section 2.3.3]. Keywords that are not allowed
in the proposed Modelica subset are stroked through.
The semantics of the remaining elements are main-
tained appropriately21.
Rationale: Language simplification.
Trace: Requirement 11.

Rule 3 - Reduced and Restricted Set of Operators.
The available Modelica operators are slightly reduced
(no .* ./ .+ .-) and the arithmetic operators
are restricted to scalar types (see Table 2).
Rationale: Language simplification.
Trace: Requirement 11.

Rule 4 - Reduced Set of Built-in Functions and Op-
erators with Function Syntax. Table 3 specifies the
subset of supported built-in functions and operators
with function syntax defined in [10, Section 3.7 and
Chapter 10, 16 and 17].
Rationale: Language simplification.
Trace: Requirement 11.

Rule 5 - Supported Data Types. The scalar data
types Boolean, Real and Integer are fully sup-
ported and extended to support more fine grain con-
trol about the underlying hardware encoding in Sec-
tion 4.2.1. Enumeration is not supported, the sup-
port of String is limited to parameter values and con-
stants. Array support is limited. Most (overloaded)
operators and built-in functions related to arrays are
not supported (see Table 2 and 3).
Rationale: Language simplification, as well as in-
crease of language expressiveness to satisfy common

21Note that the reason for excluding a keyword is not because it
would be unsafe to allow it. The reasons for excluding keywords
is to reduce the complexity of the language as much as possible
down to a set of (indispensable) core elements.

data type requirements from the embedded systems
domain. Functionality provided by the array opera-
tors and built-in functions, e.g., scalar product, can be
programmed by using the scalar operators and loops.
Trace: Requirement 4, 11.

Rule 6 - No Support of Built-in Variable time. The
built-in variable time (see [10, Section 3.6.7]) is not
supported.
Rationale: Physical time is a quantity of continuous
system simulation and therefore not supported in the
time-discrete language subset. If an absolute wall-
clock time is needed in the application logic, it has to
be passed in from the external environment as a (Real)
input signal.
Trace: Requirement 5.

Table 1: Reduced set of allowed Modelica keywords.
algorithm discrete false loop record
and each final model pure
annotation else flow not redeclare
assert elseif for operator replaceable
block elsewhen function or return
break encapsulated if outer stream
class end import output then
connect enumeration impure package true
connector equation in parameter type
constant expandable initial partial when
constrainedby extends inner protected while
der external input public within

Table 2: Reduced set of allowed operators
Operator Group Operator Syntax

postfix array index opera-
tor:

[]

postfix access operator: .
postfix function call: funcName(..)
exponentiation: ˆ
multiplicativea: * / .* ./
additivea: + - +expr -expr .+ .-
relational: < <= > >= == <>
unary negation: not expr
logical and: and
logical or: or
array range: expr : expr

expr : expr : expr
conditional: if expr then expr else expr
named argument: ident = expr

a Note that contrary to [10, Section 3.4] the arithmetic
operators ˆ * / + - are limited to operate on
scalar types only and the elementwise operators .* ./
.+ .- are not available.

4.3.2 Additional Graphical Representation Rules

The following rules establish a modeling standard for
the graphical representation of Modelica models, tar-
geting the requirements formulated in Section 3.2, to
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Table 3: Reduced set of built-in functions and built-in
operators with function syntax

Numeric Functions
and Conversion
Functions

abs(v) sign(v)
sqrt(v) Integer(e)
String(..)

Event Triggering
Mathematical
Functionsa

div(x,y) mod(x,y)
rem(x,y) ceil(x)
floor(x) integer(x)

Built-in Mathematical
Functions and
External Built-in
Functions

sin(x) cos(x)
tan(x) asin(x)
acos(x) atan(x)
atan2(x,y) sinh(x)
cosh(x) tanh(x)
exp(x) log(x)
log10(x)

Derivative and
Special Purpose
Operators with
Function Syntax

der(expr) delay(..)
cardinality(c) homotopy(..)
semiLinear(..) inStream(v)
actualStream(v) spatialDistribution(..)
getInstanceName()

Event-Related
Operators with
Function Syntax

initial() terminal()
noEvent(expr) smooth(p, expr)
sample(s,i) pre(y)
edge(b) change(v)
reinit(x, expr)

Synchronous
Language Elements

Clock() Clock(..)b

previous(u) sample(u, c)b

hold(u)b subSample(..)
superSample(..) shiftSample(..)
backSample(..) noClock(u)
interval(u)

State Machinesc
transition(..) initialState(state)
activeState(state) ticksInState()
timeInState()

Array Dimension and
Size Functions

ndims(A) size(A,i)
size(A)

Dimensionality
Conversion Functions

scalar(A) vector(A)
matrix(A)

Specialized Array
Constructor
Functions

identity(n) diagonal(v)
zeros(..) ones(..)
fill(..) linspace(x1,x2,n)

Reduction Functions
and Operators

min(..) max(..)
sum(..) product(..)

Matrix and Vector
Algebra Functions

transpose(A) outerProduct(v1,v2)
symmetric(A) cross(x,y)
skew(x)

Array Constructor
and Concatination

array(..) cat(..)

a No events are triggered from these functions for the
proposed language subset (see [10, Section 16.8.1]).

b Only the “Inferred Clock” operator variant Clock() is
supported. The other Clock(..) constructors as well as the
sample(u,c) and hold(u) operators are not part of the
language subset proposed for embedded target code
generation (see Section 4.2.4 “Clock Blocks and Interaction
with the Physical Environment”).

c Present proposal excludes state machines (see Rule 7).

enable development and reviews to be conducted en-
tirely on the graphical level.

Rule 7 - Block Diagrams Only. The present proposal
focuses on the support of block diagrams and excludes
state diagrams.
Rationale: This is to limit the required effort and asso-
ciated complexity. Introduction of expressive state dia-
grams that integrate naturally with block diagrams and
allow generation of efficient and safe code is a huge ef-
fort in its own.
Trace: Requirement 14.

Rule 8 - Causal Connectors Exclusivity. Only
causal Connectors are allowed.
Rationale: Corollary to Rule 7

Rule 9 - Atomic Blocks for High-level Application.
The use of atomic blocks is suggested for the top-
level hierarchies of a model that shall be automatically
translated into embedded C-code.
Rationale: Enables a clean and clear execution model,
as well as an obvious translation of a block to a func-
tion call (see Section 4.2.6).
Trace: Requirements 4, 7, 8, 12, 15, 16, 17, 18.

Rule 10 - Basic/Composite Block Exclusivity.
Blocks need to be either basic blocks or composite
blocks. Mixing of textual equations with (graphical)
block instances is not allowed.
Rationale: Mixing textual equations with graphical
block instances in one block can be very confusing
since a modeler may expect that the semantics of a
composite block can be entirely deduced from the
graphical level.
Trace: Requirement 15.

Rule 11 - Semantical Unambiguousness at Graphi-
cal Layer. The semantics of a composite block must
be completely understandable at the graphical layer.
Rationale: This is required since otherwise code re-
views can not be done at the graphical level.
Trace: Requirement 12, 15.

Rule 12 - Scalar Signal Extraction via “(De)mux”
Only. Direct scalar signal connections from and to
array connectors are not allowed. Intermediate
“(De)mux” blocks must be used when scalar signals
shall be connected with array connectors.
Rationale: Improves clarity and understandability of
models.
Trace: Requirement 12, 15.
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4.4 The SAFEDISCRETECONTROL Library

The conceptual SAFEDISCRETECONTROL library
provides a restricted set of modeling blocks compliant
with the requirements formulated in Section 3. Fig-
ure 10 gives an overview about the structure of the li-
brary.

Figure 10: Structure of the SAFEDISCRETECONTROL

library. Note that the Environment package contains
blocks for modeling the environment in which the
modeled high-level application is executed. However,
these blocks may not be part of a high-level applica-
tion (software) model.

As may be expected, the library has to duplicate
many blocks found in the Modelica.Blocks stan-
dard library. However, it also needs to provide a user
friendly access to the elements from the language su-
perset, e.g., extended data types. Figure 11 shows a
block for adding two integer signals that includes a
choices menu to further specify the integer platform
type to be used.

Figure 12 shows a traffic light controller modeled
with the SafeDiscreteControl library. The con-
troller is motivated by the example described in [13].

Figure 11: Integer addition block with extended data
type support.

The controller’s output are the interval lengths of the
green phases, respectively for the north-south and the
east-west direction. Note that an atom icon in the up-
per right corner provides the visual information that
the block has been declared atomic.

The inside of the controller composite block is de-
picted in Figure 13. Semantically relevant information
like data types or vector valued signals (e.g., between
the multiplex and summation blocks) are clearly visi-
ble.

Adherence to the modeling rules described in Sec-
tion 4.3.2 in combination with an adequate library al-
lows to comply with the graphical level requirements
formulated in Section 3.2. As a consequence, high-
level application development (Role 1), as well as the
model reviewing (Role 3), could be done entirely at
the graphical level for the presented example.

Please note the presented SAFEDIS-
CRETELIBRARY is a conceptual library that was
created to check whether it is feasible to model typical
discrete control algorithms and their related support
logic solely with the use of the proposed sub- and
superset of the Modelica language. It is therefore not
a library that is available or usable for production
purposes!

5 Validation Suites

In order to more clearly understand the role of vali-
dation suites in the qualification of development tools,
the following section will provide formal definitions
of relevant terms and a formalized description of the
interplay between development tools and validation
suites. Additionally this theoretical framework allows
us to specify the relationship between specification
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Figure 12: Model of a dynamic traffic light controller
including the physical plant model of an intersection of
two roads. The controller adjusts its timing and phas-
ing to meet changing traffic conditions. Atomicity of
the controller composite block is denoted by the atom
symbol in the upper right corner. Data types are visible
at the input and output connectors.

models in Modelica and code generation models in the
proposed sub- and superset of Modelica.

5.1 Definitions

We define

• M as the set of all valid input models of the in-
tended development tool chain suitable for code
generation, i.e. in our case the set of models valid
in the proposed Modelica sub- and superset.

• M̃ ⊂ M as the set of models given by a defined
language subset for which the tool chain is to be
validated22,

• M̂ ⊂ M̃ as the set of all test models of a validation
suite,

• Sm as the set of all valid stimuli for a given model
m ∈M, and

• Ŝm ⊂ Sm the set of all test stimuli of a validation
suite for a given model m ∈ M̂,

22Trivially M̃ can be M, though in practice the language is usu-
ally further subset to work around known defects in the code gen-
erator, elide unused language constructs or avoid language con-
structs not suitable for the intended application domain.

Figure 13: Inside the traffic light controller composite
block. All semantically relevant information is visible
at the graphical level.

and further the evaluation function

evalmil : M×Sm→ Rm

of a model by a theoretical simulator (Model-in-the-
Loop), where Rm is the set of possible results of a given
model m ∈M.

We are interested in the proper functioning of a de-
velopment toolchain (DT) consisting of an automatic
code generator (ACG), compiler (C), assembler (A)
and linker (L) for a target (t), so that

DTt : M→ Bt = Lt ◦At ◦Ct ◦ACGt

is the translation function of a model m ∈ M into a
binary Bt executable on target t.

Due to possible differences in the representations
of stimuli and results between host and simulation
(Sm,Rm) vs. target and executable (S′m,R

′
m) we also

define mappings

g : Sm→ S′m

h : R′m→ Rm

converting between the different representations. Ide-
ally S′m = Sm and R′m = Rm and thus g = idSm and
h = idRm .23

Finally
evalbilt : Bt ×S′m→ R′m

is the evaluation function of the binaries b ∈ Bt on the
target t by the processor (Binary-in-the-Loop).

23The mappings g and h are typically defined as component-
wise mappings on the underlying algebraic data types.
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5.2 The Task of a Validation Suite

We require from a correct development toolchain that

∀m ∈ M̃ : ∀sm ∈ Sm :

d(evalmil(m,sm),h(evalbilt (DTt(m),g(sm)))) = 0

for a given metric d : Rm×Rm→ R.
Excluding the impact of d it is to be shown that the

diagram in Figure 14 commutes.

Sm
evalmil(m) //

g

��

Rm

S′m
evalbilt (bt) // R′m

h

OO

DTt

��

Figure 14: The diagrams shows the interaction of the
defined sets and mappings.

Since it is generally not feasible to demonstrate this,
the task of the validation suite is to gain confidence
in the validity of this assertion by demonstrating the
validitiy of the assertion only for the set of test models
and test stimuli, i.e.

∀m ∈ M̂ : ∀sm ∈ Ŝm :

d(evalmil(m,sm),h(evalbilt (DTt(m),g(sm)))) = 0

and ensuring through a suitable selection of the subsets
M̂ ⊂ M̃ and Ŝm ⊂ Sm, and additional measures of qual-
ity assurance, like e.g. fault-injection, that the gener-
alisation to m ∈ M̃ and sm ∈ Sm is defensible.

5.3 Structure of the Sets M and Bt

The preceding analysis makes no reference to the
structure of the sets of valid models M and the set of
executable binaries Bt . We will analyse these sets in
the following through the lens of the theory of alge-
braic specifications ([7, 8]).

In this context these sets are the sets of all terms with
variables corresponding to their underlying signatures
ΣM or ΣBt . The sets of stimuli Sm or S′m are then the sets
of all possible values of the variables for given terms
in M and Bt .

The evaluation functions evalmil or evalbilt are corre-
spondingly extended evaluation functions for a given
ΣM- or ΣBt -algebra, realized by the simulator or the
target processor t.

The function DTt is thus a transformation of terms
from M = TΣM into terms of Bt = TΣBt

. A closer exam-
ination of the resulting properties of the functions DTt ,
g, h, evalmil and evalbilt , especially with the means of
category theory of the categories defined by ΣM and
ΣBt and their corresponding algebras can be helpful:
The structure of the sets M = TΣM and Bt = TΣBt

has
particular influence on the selection of the test sets M̂
and Ŝm, since the structure of these sets also affects the
internal structure of the definition of the function DTt

to be tested.
In the test strategy of a validation suite, as described

in [14], this observation among other considerations
motivates the introduction of specific test areas dealing
with the structure of the programming language, e.g.
test areas 1 basic constructs of language, 2 combined
constructs of language, and 4 inner equivalence, as
well as the structure of the transformation process, e.g.
6 internal structure of the code generator.

Obviously the complexity of the structure, espe-
cially the number and kind of different language con-
structs as well as the number of different ways of com-
bining them and any non-local effects, will determine
to a large degree the size of the required test sets. Im-
portantly this relationship due to combinatorial size
explosion is at minimum quadratic or cubic, and pos-
sibly exponential in complexity. Therefore all effort
should be expended to keep the language subset and
the complexity of the language semantics as small and
simple as possible.

5.4 The Relation between Specification Mod-
els and Code Generation Models

We assume in the following that the specification
model of Figure 1 is a program in the language Mod-
elica and the code generation model is a program of
a possible subset of the proposed sub- and superset of
the language Modelica for safety-relevant control ap-
plications. Then if we define

• M as the set of all valid Modelica models

there exists a mapping r : M→M for every model m∈
M to a corresponding Modelica model m ∈M. Thus

M̃ = r(M̃)

is the subset of valid specification models correspond-
ing to the set of code generation models expressible in
the validated language subset.

Conversely, the left-unique, left- and right-total re-
lation

p⊆ M̃× M̃ = {(m,m) ∈ M̃× M̃ : r(m) = m}
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represents the mapping between specification and
code generation models.

The reason for p not being right-unique or func-
tional is indicative of the freedom of choice of the
developer in their implementation, for example in the
choice of implementation data types, which are usu-
ally left open in the specification model.

If we restrict this freedom of choice by e.g. us-
ing a strict mapping of the data types24 and provid-
ing other default implementation choices, we obtain a
right-unique relation and with that a bijective mapping
function

p′ : M̃→ M̃

with

∀m∈ M̃ :∃m∈ M̃ : (m,m)∈ p∧ p′(m)=m∧m= r(p′(m)).

With corresponding definitions for the functions g :
Sm → Sm and h : Rm → Rm we expand the diagram
from Figure 14 for the evaluation function evalspec :
M×Sm→ Rm, see Figure 15.

Sm
evalspec(m) //

g

��

Rm

Sm
evalmil(m) //

g

��

Rm

h

OO

S′m
evalbilt (bt) // R′m

h

OO

p′

��

DTt

��

Figure 15: The diagram extends the diagram of Fig-
ure 14 with the interaction of the level of the specifi-
cation model.

This diagram should commute, too, if needed taking
into account a suitable (pseudo-)metric d : Rm×Rm→
R. For other models m′ ∈ M with (m,m′) ∈ p and
m′ 6= m the diagram in Figure 15 may commute with
suitable mappings g, h and a (pseudo-)metric for suit-
able stimuli.

Taken together these characteristics make it possi-
ble to produce a set of validated tools for both the code
generation from code generation models and the trans-
formation from specification to code generation mod-
els, so that the probability of fault injection along those
two (independent) transformations can be minimized.

24We map e.g. all double in the specification models to double
in the code generation model, etc.

6 Conclusion

The article presented a general set of requirements that
need to be imposed on a high-level, domain-oriented
modeling language and its development tools in order
to use it for the development of safety-relevant appli-
cations. Based on these requirements the suitability
of using Modelica within a safety related development
process was further analyzed and a sub- and superset
of the Modelica language was proposed that seems ca-
pable of satisfying the formulated requirements.

As a preferred method of choice to gain confidence
in software development tools the use of a validation
suite was proposed and a formal description of the role
of a validation suite within a tool qualification effort
was given. The precise understanding of the task and
effort needed to qualify a tool (based an the valida-
tion suite method) is necessary to appreciate the im-
portance of minimizing number and complexity of the
allowed language elements.

A prototypical development of a block diagram li-
brary (denoted SAFEDISCRETECONTROL) based on
established data flow semantics was started in order to
test the suitability of the proposed language set to sat-
isfactorily model typical control applications. The first
analysis is very encouraging. Currently, there are ap-
proximately 60 candidates of blocks and their param-
eters for the intended SAFEDISCRETECONTROL li-
brary. This is comparable to the number of blocks and
parameters of already successful validation projects
for comparable modeling languages and their develop-
ment tools, so that the implementation of a validation
suite for this language set seems eminently possible.

The next task will be to demonstrate the practical
suitability of the proposed sub- and superset (which
comprises less than half of the language elements
of the Modelica Standard 3.3) for real applications.
While it will likely become necessary to enhance or
modify the language set based on the practical lessons
learned, it will remain of crucial importance, to limit
the number of the blocks in the SAFEDISCRETECON-
TROL library as much as possible:

Experience with validation suites for other model-
ing languages has shown, that for a language with
around 90 basic building blocks, the test sets of the
test areas dealing mainly with language structure (i.e.
test areas 1 basic constructs of language, 2 combined
constructs of language, and 4 inner equivalence, see
again [14]) already comprise around 223 000 test out-
puts. Asuming only quadratic or cubic growth, an in-
crease of a mere 10 % in blocks and parameters will
result in an increase of approximately 20–30 % in val-
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idation effort. A strong release management process
on the SAFEDISCRETECONTROL library with an ideal
limit of about 50 basic building blocks therefore seems
advisable.

It should be noted that tool qualification is most ef-
fective when performed in an early phase of the de-
velopment process: Errors in development tools are
usually hard to detect and analyse in normal develop-
ment, and the effects of work-arounds and tool limita-
tions can have a huge impact on the efficiency of the
development process when introduced at a late stage
of development. Tool qualification should therefore be
concluded prior to the start of the development project.
Ideally, tool qualification efforts start even before the
language definition is finalized: When language con-
structs and definitions are viewed through the lens of
tool qualification, error-prone or hard to test constructs
and corner cases are highlighted, and improvements
can still be adopted. By the concurrent creation of a
test suite, interpretation of the language definition can
be clarified and harmonized between possible imple-
mentations. For this reason we would welcome further
work in this area even at this early stage of language
set definition.

The authors hope that, on the one hand this contri-
bution sheds some light on the requirements and in-
tricacies that need to be faced when considering the
usage of Modelica for safety related applications, and
on the other hand hope to stimulate further discussion
on the rationale and possible approaches to employing
Modelica in this field.
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Abstract

Many studies for which simulation is necessary in-
clude the presence of control systems. While plenty
of Modelica libraries are nowadays available to accu-
rately represent the plant, the same is not so true as
for the control elements, since industrial ones are en-
dowed with a number of functionalities – and often
present system- or even vendor-specific peculiarities
– that are not represented by the typical blocks (e.g.,
based on transfer functions) offered by the existing li-
braries. This paper is an attempt to start filling the gap
and provide an efficient solution, structured and organ-
ised in such a way to be easily understood by control
specialists, and to ease information transfer between
simulation studies and implementation.

Keywords: industrial controllers, simulation

1 Introduction

In many simulation studies, control plays a relevant
role. Sometimes this is because the study is precisely
aimed at setting up the control system for the plant at
hand, but in many other situations, even if control syn-
thesis is not the main goal of the study, the behaviour
itself of the modelled object depends significantly on
the operation of some controls. As such, quite often
the representation of the control system deserves sub-
stantially the same accuracy as the representation of
the physical plant (in the broad sense of the term).

At present, numerous Modelica libraries are avail-
able to represent plants with a virtually arbitrarily ac-
curacy, but the same is not true – at least, to the best of
the authors’ knowledge – for controllers. To appreci-
ate that, the interested reader could for example throw
a glance at the PID block as provided by any control
environment, be it targeted to a PLC, a DCS, or what-
ever. Most likely, he/she will see something similar to
the two examples shown in figure 1.

Apparently, such blocks are more articulated than
for example the PID of the Modelica Standard Library

Figure 1: Two examples of PID blocks as sen in typical
industrial control tools.

(MSL)—as by the way real-life control systems do ex-
hibit a number of peculiarities that are not accounted
for in “textbook” representation, see e.g. [9]. The re-
marks just made are in no sense meant to be a criti-
cism, it is worth stating; nonetheless they evidence that
for the simple controller representations of the MSL
(or analogous ones) to be adequate, some conditions
are necessary. Summarising, and sticking to the PID
example,

• the specific form of the controller (let alone the
detailed operation of the control algorithm) must
not be relevant for the problem,

• and the operation of typical elements of industrial
controllers, such as tracking and locks, must not
be of concern either.

If this is the case, MSL-like representations are per-
fectly adequate. If on the contrary either this is not the
case in the simulation scenarii to be considered, or one
wants to describe the control system so as to be capa-
ble of simulating the controlled plant in its entire set
of operating modes, the same representations cannot
serve the desired purpose.

For the reasons above, and after several years during
which the authors and their group have been develop-
ing ad hoc solutions for individual cases, the decision
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Figure 2: An overview of the library structure.

was recently taken to put all of that knowledge and
Modelica code together in a structured manner.

The result is the library described in this paper,
which is organised as follows. Section 2 presents and
motivates the most qualifying characteristics of the li-
brary. Section 3 presents the library structure giving
just a quick overview, as the library documentation
provides full detail on the matter. Section 4 reports
some simulation examples, these too available in the
library, to evidence and further motivate its distinc-
tive characters previously discussed. Finally, in sec-
tion 6 some conclusions are drawn, and future work is
sketched out.

2 Main characteristics of the library

To fulfil the requirements envisaged in section 1, it is
first necessary to include both modulating and logic
control elements.

For modulating elements, it is required to account
for the typical representations of the major control
blocks – see e.g. [8, 3] for how many forms a PID can
take – and the typical realisations of the main nonlin-
ear functionalities: for example, taking again the PID
as example, antiwindup can be realised internally or
by reading back the applied control from the actuator.
Also, logic functionalities need incorporating, such as
tracking and the possibility of preventing the control
signal from increasing or decreasing, which is of great
usefulness in cascade controls. Finally, different al-
gorithmic realisations (e.g., positional or incremental)
need considering, since in some cases they can affect

the behaviour of the element, especially if controller
parameters can be modified online as is the case for
gain-scheduling blocks.

For logic elements, the typical set available in
SCADA-like products needs representing, including
timers, counters, sequencers, and so forth.

Then, it would be advisable that the modelled con-
trol elements allow for variable-step simulation, to
avoid obliging the analyst to use the library only with
fixed-step solution, which could be unacceptably in-
efficient in more than one case. As such, the choice
was made to provide both a time-driven and an event-
driven version of the same element wherever this is
possible, and research is underway to extend this cov-
erage to the whole library.

Moreover, in a view to good acceptance and wide
utilisation, care was taken to give the library elements
a look and feel as similar as possible to what a user
of SCADA (or analogous) tools expects to see. This
was not pursued up to its extreme consequences, but is
definitely a peculiarity.

Finally, an initial set of autotuning controllers is in-
cluded, building on previous research see e.g. [1, 5, 7,
6]; this is meant both to ease control setup in simula-
tion, and to help the user familiarise with that technol-
ogy, and the underlying theory.

3 The library structure

The library is organised into subpackages; a list of the
major ones is given below.
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• Logical, that contains all logical elements,
timers, counters, and so forth.

• MathOperations, including the necessary opera-
tors for real and integer numbers (which is some-
times very useful to correctly represent the oper-
ation of some industrial blocks).

• LinearSystems, where some blocks are con-
tained that can be used to easily close loops to test
controllers. Part of those blocks are also related to
well known controller benchmarks, see e.g. [2];
of course this subpackage is provided basically
for convenience and to obtain a self-contained li-
brary, but many alternatives can be used.

• Controllers, where both modulating and logic
control blocks are represented, in three basic (and
interchangeable) manners: (a) as continuous-
time equations, (b) as equations but evolving
by events, and (c) – when multiple assignments
could not be avoided, although research to solve
this is underway – as algorithms.

• Applications, that contains a quite large set of
examples to better understand and use the library.

Figure 2 shows an overview of the library struc-
ture. Readers that are familiar with control systems
and control theory will easily get familiar with the li-
brary and its structure (just by observing the library
components); non experienced user will find further
details into the included documentation.

3.1 Interfaces

Figure 3: Interface for a generic controller. The in-
put/output connector evidenced in yellow are always
present, the other ones can be conditionally selected.

Each model/block/controller contained into the In-
dustrial Control Library can be connected together

Table 1: This table contains the definition of the in-
terface of a generic controller with its conditional in-
put/output connectors.

Name Description Conditional?

SP Set Point NO
PV Process Variable NO
CS Control Signal NO
TR Track Reference YES
TS Track Signal YES

Bias Bias signal YES
ATreq Automatic Tuning request YES

with other models ones through its standard connec-
tors, defined in the Modelica Standard Library. In
each subpackage, an ad-hoc partial interface model
has been defined in order to improve the readability
of the code, and reduce as much as possible the num-
ber of code lines spent for non specific purposes. Fig-
ure 3 shows the interface of a generic controller. The
input/output connectors of such a block can be con-
ditionally selected through various boolean flags as
shown in table 1. With these conditional connectors
a controller can be used even if it does not use all its
features, without connecting dummy inputs to it and
thus increasing the clarity of the control scheme. The
interfaces and the variables of the models have been
named according to the standard terminology in the
field of control systems. The interested reader that is
not familiar with this topic can find more information
in [4].

4 Simulation examples

This section contains a small sample of the examples
contained in the library, to show the possible usage
of some models, and also evidence the usefulness of
adopting the proposed representation.

4.1 Zero crossing count

This examples uses some blocks of the Logical sub-
package, as shown in figure 5. More in detail, the sig-
nal represented by y(t) = sin(t) is compared with to
z(t) = 0. Each time the signal crosses the reference,
the boolean output of the comparison block rises. The
rising edges are counted by the digital counter, in the
period comprised between t = 2.2 and t = 10.2. Figure
5 reports the Set and Reset Count signals, while figure
6 shows the behaviour of the counter value.
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Figure 4: Scheme of the zero crossing count model.

Figure 5: Zero crossing signal, Set count signal and
Reset count signal.

4.2 PID with bias and tracking mode

In this example the second order process defined as

P(s) =
(1+15s)

(1+2s)(1+10s)
(1)

is controlled by a PID regulator, to track given step Set
Point signal, and reject a load disturbance acting on the
process input (as shown in figure 7). Two controllers
are compared, namely a PID and a PID with bias in-
put. Figure 8 reports the Set Point (blue line), the
Process Variable of the process without control (red),
controlled with the PID (green) and the PID with bias

Figure 6: Counter value.

Figure 7: Classic PID controller: without bias signal
(top) and with bias signal (bottom).

Figure 8: Set Point (blue), Process Variable without
control (red), with a PID controller (green) and with a
biased PID controller (magenta).

(magenta). The PID rejects the disturbance just via
the feedback path, that makes its action slower. On the
contrary, the PID with bias acts immediately, thanks to
its feed forward character.

Carrying on to representing the tracking mode op-
eration (see figure 9), an example is shown with the
process defined in (1), still controlled by a PID. Figure
10 shows the Set Point, the process variable and the
tracking switch signal, while figure 11 shows the con-
trol signal, the track reference and the integral action
of the controller. The Tracking mode starts at t = 40s,
before the controller has led the process variable to the
Set Point reference. When the Tracking mode starts,
the control signal becomes equal to the track reference
(as shown in figure 11). In this case the track signal
decreases and then increases, moving the process vari-
able in a neighbourhood of the set point. When the
tracking mode is enabled, the integrator does not inte-
grate the error signal, rather is managed in such a way
to be consistent with the track reference. Thus, the
transition from the tracking mode to the automatic one
is bumpless.
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Figure 9: PID with Track Switch ans Track Reference
signals

Figure 10: Set Point (blue), Process Variable (red), and
Track Switch signal (green).

Figure 11: Control Signal (blue), Track Reference Sig-
nal (red) and Integral action (green).

Figure 12: Set Point (blue), Process Variable without
control (green), process Variable with PID (red) and
PV with TDO PID (magenta)

Figure 13: Control Signal (blue) and CS of TDO PID
(red)

4.3 Time Division Output controller

The process (1) is here controlled with a Time Divi-
sion Output PID. Such an actuation scheme is used to
have an on/off actuator behave like a modulating one,
and is quite typical when either the actuator cannot
be partialised, or doing so would unacceptably reduce
its efficiency. The controller, implemented in its digi-
tal algorithmic form, first computes the control signal,
and then converts it into the duty cycle of a rectangu-
lar wave of assigned period. Figure 12 contains the Set
Point reference (blue), the Process Variable of a pro-
cess without control (green), the Process Variable of a
digital PID (red) and the Process Variable of a TDO
PID (magenta). Since the TDO control signal changes
continuously, the relative process variable has a sort
of ripple, however the overall behaviour is essentially
the same as the digital PID without TDO. The control
signals computed by the two controllers are shown in
figure 15.

4.4 Cascade control with increment and
decrement locks

This examples compares two cascade control schemes,
one with and one without increment/decrement locks.
When two controllers are connected together in a cas-
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Figure 14: Cascade control schemes: a) without incre-
ment/decrement locks – b) with increment/decrement
locks.

Figure 15: Cascade control with and without incre-
ment/decrement locks – outer set point and process
variable, inner set point.

cade control scheme, the inner controller typically reg-
ulates the actuator, while the outer one provides the
Set Point reference for the inner one. Since the inner
controller acts on the plant, its Control Signal has to
be limited, and AntiWindup is in order, but in general
it is not possible for the outer controller, to know the
values for which the inner regulator saturates.

Such a problem can be avoided by using the PID in
its incremental form, using the Increment/Decrement
lock feature, and creating an external (logical) loop be-
tween the controllers, as shown in figure 14.

If the inner regulator saturates, its satHi signal be-
comes true. Connecting this signal to the forbidIncre-
ment input of the outer controller, avoiding a useless
and potentially dangerous increase of its Control Sig-
nal (that is the Set point of the inner controller that sat-
urated). With such a scheme, the mentioned inter-loop
windup-like effect can be avoided.

In figures 15 and 16, that show the results, the
green line is the CS of the outer controller with
Increment/Decrement lock, while the black one is
the output of the outer controller without Incre-
ment/Decrement lock. The black line shows a windup
like effect that turns in a slower reaction when the Set

Figure 16: Cascade control with and without incre-
ment/decrement locks – inner control.

Figure 17: Modelica diagram of a level control
scheme. The two subsystems (the control system and
the process to be controlled) are evidenced with differ-
ent background colors.

Point changes at time t = 30.

4.5 A level control case

In this example, models from the presented library are
used together with models from the MSL. The aim of
this example is to show the usefulness of the presented
models, and how they can be easily integrated and con-
nected with others. For this purpose, the chosen exam-
ple refers to the problem of controlling the water level
in a tank. The water level is the process variable, and
the system (see figure 17) is composed of a tank and
a pipe connected to a valve, that discharges water to
the atmospheric pressure. The valve actuator is simply
represented by a first order system with unity gain.

The control system is composed of a measurement
part and a control (stricto sensu) one. Concerning the
measurement part, the pressure sensor measures the
absolute pressure at the bottom of the tank. The mea-
sured pressure pm is subtracted from the atmospheric
pressure p0, and then divided by the gravity accelera-
tion g and the water density ρ , in order to obtain the
water level

l =
pm− p0

ρg
(2)

The PI controller, given the level measurement and
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Figure 18: Set Point water level reference, Process
Variable and valve position command

Figure 19: Set Point water level reference, Process
Variable and valve position command (discrete time
controller, T s = 5 s)

the set point, computes its control action, i.e., the pre-
scribed valve position, limited between CS ∈ [0,1] in
order to avoid windup effects (thus CSmin = 0 and
CSmax = 1). The tank is 2m height, and the water
level at time t = 0 is L = 1 m. In the first phase the
controller is required to maintain the level at the initial
value (SP= 1 m), while at t = 1200 s the level set point
has a steep variation (SP = 0.5 m). The controller has
to act on the valve in order to decrease the water level
to the desired value. A disturbance, represented by a
water mass flow rate entering the tank, becomes dif-
ferent from zero at time t = 3600 s. Figure 18 shows
reference, water level and valve position command.

The simulation can be performed at an initial stage
assuming that the controller is a continuous time one
(T s = 0), and the math operations are in double pre-
cision (FixedPoint = false). In such a phase, it is thus
possible to concentrate on the controller design (not on
implementation-related facts).

As a further stage, one could introduce more details
in order to simulate a more realistic system. At first
it is possible to introduce the time discretisation, and
investigate the effects of the sampling time. Figure
19 shows the simulation results with a sampling time
T s = 5 s.

Figure 20: Set Point water level reference, Process
Variable and valve position command (discrete time
controller, T s = 5 s and Fixed Point math operations)

An additional level of detail can be the introduction
of fixed point math operations. In this example, a num-
ber of bit Nbit = 24 was chosen, which means that the
integer number that can be represented are comprises
between MIN =−8388609 and MAX = 8388608. At
a first stage, the measured pressure have to be sub-
tracted of the ambient one. In the worst case, the
higher pressure value that can be read as input from
the math operation block is 101325+1000 ·9.81 ·2 =
120945, that is more or less two orders of magnitude
less than the higher integer number MAX . This means
that input numbers can be multiplied by a scale factor
comprised between 10 and 50. In this case the scale
factor has been chosen as sFactor = 20. In a similar
way, the scale factor for the division can be chosen (In
this case, sFactor = 500). Note that a large number of
bits is required because the pressure variation is small
with respect to its absolute value. Using such a mod-
elling approach, it is possible to estimate the amount
of bits required, and to directly test the correctness of
the design strategy. Figure 20 shows that the numerical
errors due to a wrong design are visible on the Control
Signal.

5 Towards Modelica 3.3

The recent definition of the version 3.3 of the Mod-
elica language introduces new elements for describing
synchronous behaviours, and also new elements suited
to define synchronous state machines. This evolution
is primarily made to ease the activity of modelling re-
alistic control algorithms.

These evolutions will introduce some advantages in
the development of models that are pure discrete or
logical, since a standardised framework for develop-
ing such models will help in the design, creation and
maintenance of models in which many of these com-

Session 4B: Control 

DOI Proceedings of the 9th International Modelica Conference    483 
10.3384/ecp12076477 September 3-5, 2012, Munich, Germany   



 

 

ponents are connected together. Considering elements
that can be either continuous time or discrete time, and
which events are not regular but can be dynamically
driven; however, it is not yet clear if this language evo-
lutions will fit also such model characteristics, that (as
shown) are of great importance for tailoring the simu-
lation burden to the needs of the addressed study.

The last interesting point that has not yet been con-
sidered, but in the authors’ opinion should be, is the
introduction of the Fixed Point arithmetic. The pre-
sented library takes into account this problem and it
is managed in a preliminary and simplified way, pro-
viding a solution just for simple cases. The introduc-
tion of a new type of variable with its specific oper-
ations will be an important step in the direction of a
really control (and control synthesis) oriented simula-
tion tool.

6 Conclusions and future work

A Modelica library for industrial controllers was pre-
sented, with several peculiar features, and some exam-
ples were shown to illustrate its potentialities.

In the authors’ opinion the library can significantly
help the analyst who has to address studies where a
precise control representation plays a relevant role—
more frequent a case than one may expect at a first
glance, by the way. The presented library in the first
place responds to such a demand, and in addition
tries to preserve the advantages of variable-step sim-
ulation when possible—a matter on which further re-
search is however underway. The library is by def-
inition extensible, so that one may even want to in-
clude the exact (i.e., code replica) representation of
some block of interest, employing those already re-
alised as a starting point. Implicitly, then, the library
has also a didactic value, since the user can see how
several concepts are actually put to work. Some ex-
amples were reported to show the library operation.
All of these – plus others omitted here for space rea-
sons – are available in the library itself (available at
http://home.dei.polimi.it/leva/download.html), for the
convenience of the interested reader.

Future activity (apart from the already mentioned
one related to simulation efficiency) will be directed at
expanding the library in all its sections, including the
autotuning one, and to extensively use it in simulation
studies. The community is encouraged to use, improve
– and correct if necessary – the library, and feedback
would be highly appreciated by the authors in order to
continuously improve the results.
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Abstract

Modelica3D is a platform-independent, free Model-
ica library for 3D visualization. Its implementation
is based on a message-passing architecture. Through
its loosely-coupled architecture, Modelica3D can be
combined with different rendering-tools. It is also
highly extensible and scalable.

Keywords: 3D Graphics, Library, Platform Inde-
pendence, Free Software, Structural Dynamics, Loose
Coupling, Message Passing

1 Introduction

Simulation results in Modelica are usually visualized
using two-dimensional plots. System states are shown
as functions over time or each other. While this is of
course a very natural way to approach the presenta-
tion of simulation results, it is not sufficient in some
aspects:

In Modelica, simulation-models are composed of
reusable software fragments. Thus an interesting
quantity might not be present directly, but in form of a
relation between multiple system states (e.g. distances
between different objects). The solution is to either
change the model, post-process the simulation results,
or to switch to a more complex visualization method.

Additionally, a simulation might be used to drive
interactive real-time simulators (e.g. for training pur-
poses) or to present certain facts to a non-simulation
audience. In both cases the usage of 3D graphics
might lower the barrier significantly for team mem-
bers, which are not as familiar with the simulation as
the responsible engineer. Therefore it is important that
the visualization aspects can be controlled from within
the simulation environment. On the other hand visual-

ization experts (and expert-tools) are necessary to cre-
ate realistic and usable 3D-graphics. The Modelica3D
library aims to provide a solution for these require-
ments.

1.1 Contribution

In this paper we will demonstrate how a visualization
library (called Modelica3D) can be implemented by
using only standard Modelica features. The library it-
self is available under a free software license. We will
show how a tight coupling between the library and
the rendering-tool can be avoided. This loose cou-
pling allows the visualization of structural dynamic
systems. Additionally, we show how the underlying
message-exchange API makes the Modelica3D API
both flexible and extensible. Finally, an example is
given, demonstrating the scalability of Modelica3D to
industrial models.

Finally, the method proposed here is not limited to
3D-graphics. The same means could be used to control
e.g. sound output or any other simulation feedback. In
that way, Modelica3D demonstrates how simulations
can control effects beyond their simulation environ-
ment.

The rest of the paper is organized as follows: First,
we will discuss the state-of-the-art of 3D visualiza-
tion in the Modelica ecosystem. Then, a technical
overview over Modelica3D’s architecture is presented.
This includes a discussion of the overall design as
well as solutions to overcome some Modelica-specific
limitations. Second, we will show how Modelica3D
can be used to simulate an existing library (Model-
ica.MultiBody) to achieve tool-independent state-of-
the-art visualization. As a second use-case a recently
developed technique for finite-state structurally dy-
namic systems is extended with Modelica3D visual-
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ization. Finally, we will evaluate the library by imple-
menting a large-scale industrial model visualization.

2 State of the art

During the last 10 years different approaches were
tested to integrate scene descriptions of 3D bodies in
the Modelica language or to support 3D visualizations
by the Modelica simulation tools.

The first fundamental analysis and conceptual work
in this field was done by Engelson [3]. Two alternative
ways were discussed for the integration of 3D object
information in Modelica: First, the definition of a ba-
sic set of “graphical” Modelica classes, which make a
representation of primitive 3D objects (e.g. triangle,
sphere) and position operations with this objects (e.g.
translation, rotation) in user defined physical models
possible. Second, the direct integration of the 3D ob-
ject information as “graphical annotations” into the
physical models self.

Another approach of a annotation concept for the
embedding of 3D geometries in Modelica was devel-
oped from [5], where specialized 3D annotations for
model classes and objects and a standardized descrip-
tion of 3D geometries and the related body topolo-
gies (in this case the X3D standard) were combined.
Within the tool specific approaches, individual ways
for the 3D information integration were done by the
software developers. The greatest disadvantage con-
sists in the incompatibility of the 3D models, caused
by the use of vendor specific 3D information.

The simulation tool SimulationX from ITI supports
both for his own Modelica libraries and also for user
written Modelica libraries the visualization and anima-
tion of 3D objects. With the help of an 3D editor tool,
the 3D information is stored in the physical Modelica
models and also in related non standardized annota-
tions. The 3D editor supports the definition of sim-
ple and complex bodies, which are constructed by the
combination of standard 3D primitives and also spe-
cialized objects such as gears and spiral springs.

The simulation tool Dymola from Dassault Sys-
temes supports for selected Modelica libraries the vi-
sualization and animation of 3D-objects, mainly for
the MultiBody-Library. For this, specialized visualiza-
tion classes for 3D primitives were introduced. Fur-
ther, complex 3D geometries, based on external def-
initions of 3D-shapes via dxf-files are utilized. The
MultiBody package of the Modelica Standard Library
uses data structures defined in Modelica.Services to
calculate a complete continuous time model of the 3D

visualization geometry. This approach does not allow
for effect-events (e.g. deformations, material changes).

The visualization framework SimVis for 3D mod-
elling and simulation with Modelica was developed by
the German DLR [2]. On the modelling side, a new
developed ExternalDevices-library represents the base
for the 3D visualization and interactivity. For the sim-
ulation experiments three different types of input de-
vices (keyboard, joystick, 3D space mouse) supports
the direct 3D interaction by the user. The technical
base on SimVis is OPENGL and OPENSceneGraph.
Different use cases were analysed within SimVis such
as flexible body simulation, energy flow simulation,
Head-Up-Display simulations, hybrid cars and robot
simulation.

3 Modelica3D

In this section we discuss the architecture of Model-
ica3D and the design decisions that lead it. As Mod-
elica3D is a purely non-physical library, there are no
modeling concerns (e.g. reusable and understandable
components) that need to be addressed. Instead, Mod-
elica3D focuses solely on effects outside of the simula-
tion. Thus, we could focus on general software design
principles and the goals motivated earlier.

3.1 Design Decisions

First of all, Modelica3D should be platform indepen-
dent: Only methods that are part of the Modelica Spec-
ification [1] should be used. This rules out the devel-
opment in form of an extension to an existing platform
and a solution based on vendor-specfic annotations.
Any tool that follows the specification should be able
to use Modelica3D directly. During the development
we used OpenModelica [4].

Model C-API

<<interface>>
Modelica3DBack-end

Figure 1: Modelica3D architecture

Instead, Modelica3D must be shippable as a library.
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This library must contain a layer of Modelica-Code,
which allows access to the 3D API from any model.
On the other hand, extensions which cannot be ex-
pressed in Modelica need to be implemented in a lan-
guage that is supported through Modelica’s external
function interface. Since only C and Fortran are cur-
rently specified, C is a natural choice, being the “lin-
gua franca” of platform independent development.

The second important requirement was loose cou-
pling between front-end (the simulated model) and
back-end (the rendering-tool). While with the choice
of C as implementation language, several options for
accessing rendering-tools exist, directly linking the
back-end would cause several drawbacks:

• Only few back-ends can be used as a library.
Even if they do (e.g. OpenSceneGraph), the
viewer usually requires a lot of additional fea-
tures (user interface, inputs, file management).
Providing those features to a Modelica model in a
platform independent implementation would re-
quire lots of additional work for each back-end
and thus only allow very few implementations.

• A fixed C API would not only put an additional
burden on developers who want to extend the li-
brary. It would also of hinder the maintenance,
since every back-end would effectively require
it’s own C-library (including it’s own bugs). Ide-
ally the parts written in C should be as small as
possible instead, leaving the lion’s share of work
to Modelica and back-end experts.

• Linking works only locally. In times of dis-
tributed computing it seems unreasonable to de-
mand simulations running on the same physical
machine as visualization.

So instead of directly linking 3D API functions into
a Modelica model, we chose to use interprocess com-
munication (IPC). That way, front-end as well as back-
end can run as dedicated processes while sending re-
spectively receiving messages. Any back-end needs to
implement a common interface (which is simply the
set of messages accepted).

Because visualization should not influence the sim-
ulation results, the communication between front- and
back-end is unidirectional. In our design this allows a
further simplification of the message-exchange proto-
col: Since the front-end does not expect any messages
from the back-end, the communication can work syn-
chronously. This also fits into the event-driven model-
ing style of Modelica. Note, that by using time-events

Partially filledPartially filled

new Message

sendMessage
add Parameter

Figure 2: modbus message lifecycle

for the event handling, the effect on the simulation per-
formance can be minimized by the simulation tool, as
discussed e.g. in [8].

3.2 Implementation

With the design decisions settled, the first task was
to implement an extensible, synchronous, platform-
independent IPC layer in Modelica. Instead of rein-
venting the wheel, we chose to use an existing IPC
solution and wrap around it’s C-interface. Because of
it’s availability, maturity, and simple C-API, the choice
fell on dbus, the current de-facto standard for IPC on
Linux [7] 1.

The first part of Modelica3D is thus a thin Modelica
wrapper around dbus, called modbus. Modbus allows
creation and sending of arbitrary messages as External
Objects. Message objects can be allocated, equipped
with parameters and send over a connection.

Since modbus only uses very few of features of
dbus (only one-to-one communication, uniform, stati-
cally known messages etc.), this implementation could
be considered overhead and in a sense it certainly
is. On the other hand, the implementation itself be-
comes rather simple: Currently it consists of 96 lines
of Modelica- and 216 lines of C-Code. In case a faster
solution is needed, modbus should be trivial to port
to whatever IPC-mechanism seems appropriate. Addi-
tionally, this strategy makes it unnecessary to store and
continuously calculate the 3d geometry. Depending
on the scene, this might yield significant runtime and

1It has been ported to windows, too.

Session 4C: Handling Simulation Output 

DOI Proceedings of the 9th International Modelica Conference    487 
10.3384/ecp12076485 September 3-5, 2012, Munich, Germany   



 

 

memory improvements over methods like the Multi-
Body visualization.

To further reduce the size of the interface (and make
it more convenient to implement), all methods pro-
vided by the Modelica3D API accept named param-
eters and allow to emit some of them (using defaults
instead). Internally modbus implements this by stor-
ing the parameters in a dbus map-object. This yields
some further overhead (dbus’ internal type-checking
becomes quite useless), but allows more selective up-
dates on graphical objects (e.g. it would be possible to
only change the Z-axis location of an object without
even knowing its X- and Y-axis locations).

Method name Description
loadSceneFromFile Loads a complete scene

from a file
createMaterial Create a material primitive
applyMaterial Use a material on an object
createBox Create a box primitive
createBoxAt Create a box primitive, with

a given orientation
createSphere Create a sphere primitive
createCylinder Create a cylinder primitive
createCylinderAt Create a cylinder primitive,

with a given orientation
createCone Create a cone primitive
createConeAt Create a cone primitive,

with a given orientation

Table 1: Modelica3D setup-methods

3.3 Alternatives

As already mentioned, the choice of dbus for message
exchange was mainly due to pragmatic reasons. Any
other platform-independent IPC solution might suffice
as well. Albeit, there is a fundamentally different de-
sign that needs some discussion. In certain settings,
every message exchange, no matter how lightweight,
may cause a too big delay:

Consider a real-time system running at 60 or more
fps and visualizing large sets of objects (e.g. a scene
in a game engine). Since synchronous message ex-
change requires at least 2 context switches, and a
context switch is rather costly [6], we can estimate
a theoretical upper limit of 105 simultaneously ani-
mated objects. Any practical limit will of course be
much smaller, since not only context switches are re-
quired. Basically, this means, that, independent of the

visualization or simulation complexity, a system com-
posed of some thousands of objects that shall be visu-
alized, cannot be rendered in real-time, when message-
passing is used.

So instead of sending lots of small messages about
the state of each object, front- and back-end could use
shared memory to exchange large chunks of data very
fast. Unfortunately, such a solution is hardly plat-
form independent and more complicated to implement
(since both sides would need to synchronize their ac-
cess on that data). But since it is obviously a useful
design alternative, further research seems to be appro-
priate.

3.4 Data structures and operations

Modelica3D comes only with a very small set of data
structures. Next to the already mentioned modbus ob-
jects, it provides a system state record, a controller
model and a definition of object-ids. The system state
basically only combines a modbus context object with
a connection and a counter for the current frame. The
controller in turn wraps the state and provides a sam-
pled boolean signal depending on a selected framerate.
It also modifies the state’s frame counter according to
the current time and can send a stop-message to the
back-end at the end of simulation time.

Method name Description
rotate Change an object’s orienta-

tion
moveTo Change an object’s location
moveZ Move along the Z-axis only
scale Change the size of an object
scaleZ Scale along the Z-axis only
setAmbientColor Sets the ambient color value

of a material
setDiffuseColor Sets the diffuse color value

of a material
setSpecularColor Sets the specular color value

of a material
setMatProperty Changes a given (named)

material property

Table 2: Modelica3D modification-methods

Id-objects are currently only heap-allocated strings.
But on demand, they might be easily exchanged with
a more complex internal implementation (e.g. if the
library would want to implement hashing or collect
statistics on the objects).
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Most methods in the Modelica3D API fall into two
distinct groups: There are operations that describe the
setup of a scene (table 1) and operations that modify
a scene dynamically (table 2). The difference between
them is that the latter ones need a frame number, which
works as a logical clock that describes, when such a
modification takes effect, while the former ones are
always interpreted once at the beginning of the ani-
mation. The only exception from that pattern is the
stop-operation. Sending this message tells the client
to stop listening for further messages.

The set of currently implemented operations is
rather small. But due to the design of Modelica3D,
additional operations might be added by simply ex-
tending the package (and at least one backend). No
recompilation of the C-library is required.

Listing 1: moveTo-method in Modelica
function moveTo

input State state;
input Id id;
input Real p[3];
input Integer frame=state.frame;
output String r;

protected
Message msg = Message(TARGET ,
OBJECT , INTERFACE , "move_to");

algorithm
addString(msg , "reference",

getString(id));
addReal(msg , "x", p[1]);
addReal(msg , "y", p[2]);
addReal(msg , "z", p[3]);
addInteger(msg , "frame", frame);
r := sendMessage(state.conn , msg);

end moveTo;

Implementing an operation in Modelica is not dif-
ficult. Listing 1 shows the moveTo function is im-
plemented. It consists of allocating a message object
(from the dbus-connection constants for the target and
the dbus-interface and the method’s name), adding pa-
rameters to that message, and finally sending it. Fur-
ther operations should follow that pattern.

3.5 Back-ends

Currently, Modelica3D contains two back-end imple-
mentations. They demonstrate two distinct kinds of vi-
sualization tools. The first tool, blender [11], is a 3D-
modeling tool which can render high-quality movies.
Blender provides a python interpreter for scripting pur-
poses. Thus it was a natural choice to implement the
back-end parts in python.

Listing 2: moveTo-method in blender
@mod3D_api(reference = defined_object ,

frame = positive_int)
def move_to(self , reference ,

x=None , y=None , z=None ,
frame=1, immediate=False):

o = data.objects[reference]
context.scene.frame_set(frame=frame)
if immediate:

o.keyframe_insert('location ',
frame=frame - 1)

if (x != None):
o.location.x = x

if (y != None):
o.location.y = y

if (z != None):
o.location.z = z

o.keyframe_insert('location ',
frame=frame)

return reference

Listing 2 shows the implementation of the moveTo-
method in the blender back-end. The mod3D_api-
decorator is responsible for lifting a python function
into a dbus-method. That lifting is (due to the uniform
signature) the same for all back-end methods. Addi-
tionally certain runtime checks might be added (e.g.
checking if a given object-reference actually exists, a
number is positive etc.).

Since blender provides access to it’s internal
data representation (data.objects), the rest of the
method is straight-forward. It directly changes the ob-
ject’s coordinates (if provided by the client) and in-
serts an animation key-frame (allowing for interpo-
lated movement, if necessary).

The other back-end was implemented using Open-
SceneGraph [9], a free 3D-engine. Unlike blender, it
does not provide modeling facilities. Instead, its scope
is fast, real-time rendering. That way we demonstrate
how Modelica3D might also be used in interactive ap-
plications2.

4 Usage

In this section we show, how Modelica3D can be used
to visualize different kinds of simulations. First, we
will show how Modelica3D can handle state-of-the-art
visualizations on the basis of the MultiBody library.
Second we will describe the visualization of a simple,
structurally dynamic system.

2The graphical output, the input needs to be handled with some
other tool or library.
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Figure 3: MultiBody visualization-class structure

4.1 Visualizing MultiBody

As mentioned earlier a popular (if not the most pop-
ular) method of visualization comes with the Model-
ica Standard Library: All models from the MultiBody
library can be visualized according to their geometri-
cal structure. Since a 3D-mechanical library naturally
contains information about the location and relative ro-
tation of objects, visualization is straight-forward.

This makes the MultiBody library a good example
of how Modelica3D can be used in such existing com-
plex hierarchies. In this use-case, all visualization in-
formation culminates in one class, the PartialShape
(Figure 3). That class basically consists of the shape
parameters (length, material etc.) and a translation ma-
trix. This gives us an insertion point of where to insert
the Modelica3D functionality. In a first step, we in-
troduced a controller object into this class, to hold the
Modelica3D context information. Since this controller
needs to be unique among all shapes, it is naturally
marked as outer (Listing 3).

Listing 3: Additional fields of PartialShape
outer M3D.Controller m3d_control;
Id id;
Id mat;
String res;
discrete Real[3] pos;
modcount.Context initContext

= modcount.Context();

Additionally an object-id is added for both the
shape’s material and geometry. The variable pos holds
the current position (resolved from the translation ma-
trix), while res captures the result of each operation
(ensuring that they are evaluated at least once). Finally
a modcount-context object is used to ensure singleton
evaluation of message generation. With those fields
present, the animation dynamics can easily be imple-
mented by when-algorithms:

Listing 4: PartialShape algorithmic dynamics
when initial() and

modcount.get(initContext) <> 1 then
id := shapeDescrTo3D(m3d_control.state ,

shapeType , length , width , height ,
lengthDirection);

mat := M3D.createMaterial
(m3d_control.state);

M3D.setAmbientColor(m3d_control.state ,
mat , color[1] / 255, color[2] / 255,
color[3] / 255, 1.0 , 0);

M3D.setSpecularColor(m3d_control.state ,
mat ,
specularCoefficient * color[1] / 255,
specularCoefficient * color[2] / 255,
specularCoefficient * color[3] / 255,
1.0 , 0);

M3D.applyMaterial(m3d_control.state ,
id , mat);

modcount.set(initContext , 1);
end when;

when m3d_control.send and
modcount.get(initContext) == 1 then

pos := r + Frames.resolve1(R, r_shape);
res := M3D.rotate(m3d_control.state ,

id , R.T , m3d_control.state.frame);
res := M3D.moveTo(m3d_control.state ,

id , pos , m3d_control.state.frame);
end when;

Figure 4: MultiBody visualization with
Gtk+/OpenSceneGraph back-end

In this example we omitted some dynamics like
changing lengths or colors, since this is unused in
ourexample models (all shapes basically remain con-
stant during simulation). If necessary, those details can
be added here easily. Also messages are always sent,
even if there is no movement on every frame. A more
sophisticated implementation could detect a relevant
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change in the model and decide whether or not to up-
date the visualization state.

With this small extension, we were able to simulate
and visualize the examples from the standard library
with the OpenModelica simulation tools (Figure 4).
Thus we successfully demonstrated that by only using
standardized techniques, we could visualize complex
models.

4.2 Variable-structure modeling

A variable-structure model is a model which can con-
sist of different systems of equations (with different
numbers of equations) and different variables depend-
ing on the simulation time. This is of interest, when a
model has different levels of detail. Another applica-
tion is to change the model’s behavior described by a
different set of equations.

Simulation engines like Dymola, SimulationX and
OpenModelica do not support such changes. To over-
come this drawback and still be able to use common
simulation engines for the simulation of a model, a
Python framework was introduced in [10]. This frame-
work allows the user to specify a variable-structure
model. The user can specify an arbitrary number of
models and switches between these models. The user
also has to specify how the new model should be ini-
tialized with the end values of the old mode.

For now the simulation engines Dymola, OpenMod-
elica and Simulink are integrated in the framework.
But the framework is implemented in such a way that
other environments can be added quite simply. After
specifying the model the Framework starts to simu-
late the first model in the chosen simulation environ-
ment. The model needs a stop condition which spec-
ifies when another model should be used and defines
the next model. The framework uses this information
to switch to the next model and initialize this model
with the correct values.

We demonstrate this approach with a simple bounc-
ing ball model. This model could of course be mod-
eled without the variable-structure approach, but it is
used for didactic purposes for the modes are easy to
understand and the results are good to visualize.

This model consists of two separate modes. The
first is the common falling mass model which is valid
as long as the ball does not touch the ground. As
soon as it touches the ground the ball is modeled as
a spring/damper system and therefore the elastic de-
formation of the model and the bouncing back off the
ground can be modeled easily. As soon as the ball
leaves the ground again the falling mass model is used

Free fallFree fall

Spring/DamperSpring/Damper

stoptime

stoptime

height < radius

spring length > radius

Figure 5: Statechart of the bouncing ball variable-
structure model

again. Figure 5 shows a statechart with the two modes
and the switching condition is presented.

Simulating this model with the framework and plot-
ting the center of the ball results in the plot shown in
figure 6. Here it can be seen, that the center point of the
ball reaches below the radius (1.0) of the ball. This ef-
fect is caused by the elasticity of the ball in the spring/-
damper mode.

Figure 6: Center point of the bouncing ball model

A simulation of a variable-structure model with the
Python framework starts simulations of the different
modes sequentially. To be able to visualize such sim-
ulation results using Modelica3D, the models describ-
ing the states of the system need to fulfill two require-
ments:

First, they need to work on a common scene. Set-
ting up such a scene is trivial: Either by directly load-
ing it into the rendering tool at start or by creating a
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Figure 7: Ball in free-fall mode

dedicated initial state that handles all setup commands
from the Modelica3D API. Here the decision of us-
ing IPC instead of direct linking pays off: Since the
rendering tool runs only once, no special treatment for
structurally dynamic systems is necessary. Second, all
models need to know which parts of the scene they
modify. In our example, both models need to know
the name of the ball. This visualization interface can-
not be statically checked.

Listing 5: Free-fall visualization

algorithm
when initial() and

modcount.get(initContext) <> 1 then
ball := M3D.objectId("Ball");
modcount.set(initContext , 1);

end when;
when m3d_control.send and

modcount.get(initContext) == 1 then
M3D.moveZ(m3d_control.state ,
ball , h, m3d_control.state.frame);

end when;

In our example, we took a simple approach to mod-
eling: The scene consists only of a plane representing
the ground and a sphere for the ball. Camera and some
lighting is added by blender. In free-fall mode, the
only thing to change is the location of the sphere on
the Z-axis (Listing 5). On-ground, we model the com-
pression of the ball by scaling and moving the sphere
along the Z-axis.

Since the python framework controls the activation
and deactivation of the states (by extending the phys-
ical models with terminal-conditions etc.), this ap-
proach works seamlessly: Figure 7 shows the ball
falling towards the plane. The compression is captured
in figure 8. Naturally, the true visual effect of bounc-
ing can not be shown in single images, but only when
viewing the whole animation.

Figure 8: Ball compressed

5 Evaluation

We evaluated a development version of Modelica3D
(enhanced with the ability to group objects on the
back-end for simpler handling of complex scenes) in a
case study of a solar-thermal hydraulic system, which
is integrated in the structure of a building envelope.
For this objective, several sub-steps had to be realized.

5.1 Modelica3D extensions of the physical
models

First, the component models of the library Build-
ingSystems 3 were extended with the ability to have
a representation within a 3D scene and to show val-
ues such as temperatures, pressures or mass flow rates.
Figure 9 shows this extension procedure for the ex-
ample of a 1D-segmented thermal hydraulic model of
a tube. The new model class PipeStraightVis3D was
derived from the existing physical model class PipeS-
traight and from a general model class for 3D repre-
sentation ModelVis3D.

The model extension comprises the definition of
the shape of the 3D sub-primitives (here the cylinder
pieces of the segmented fluid volume), the combina-
tion of them in a common container, the definition of
the material (the appearance in the 3D scene) incl. the
link to the sub-primitives, the alignment and merging
of the sub-primitives to the common 3D representation
and the mapping of the physical values to a graphical
representation within the 3D model (in this case the
fluid temperature of each fluid segment).

On a next level, several 3D-extended tube models
and a 3D-extended pump model were combined to a
simple thermal hydraulic loop. Figure 10 shows the
2D diagram of the Modelica system model on the left
and the corresponding 3D animated scene on the right.

3http://www.modelica-buildingsystems.de

Modelica3D - Platform Independent Simulation Visualization 

 

492 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076485 



 

 

Figure 9: Extending a physical model for the use in
Modelica3D

5.2 Case study of a solar thermal system

As the first complex application of the 3D visualiza-
tion method, a solar thermal system for warm water
production was used (Figure 10 left). The components
of the solar thermal system are two evacuated tube col-
lectors with a total aperture area of 6.34 m2 and a hot
water storage with a volume of 400 liters. The roof
collector is aligned to the south and tilted with an an-
gle of 30°. An external plate heat exchanger transfers
the produced thermal energy from the solar loop to the
storage loop. With the help of a two-point-controller
the solar pump and the storage pump are switched on,

Figure 10: 2D and 3D representation of a thermal hy-
draulic loop

if the collector outlet temperature is 4K higher than
the temperature in the lower part of the storage. As
climate boundary conditions weather data from Ham-
burg (Germany) were used.

In the simulation scenario a load process for the
thermal water storage over a time period of 24 h dur-
ing a summer day were calculated. At the beginning of
the load process the fluid temperatures in the collector,
in the pipes and in the storage was set to 20 °C. Figure
10 (right) shows the described solar thermal system as
a graphical 2D diagram, based on the "3D-extended"-
components of the BuildingSystem-library.

Figure 11 illustrates the simulated transient load
process for the summer day, described by the most
important system variables such as the solar irradia-
tion on the collector, the mass flow rate of the storage
pump, the collector outlet temperature and the storage
temperature at the bottom.

Figure 11: Simulated load process of the solar thermal
system

For a clear representation within a 3D scene, the
model of the solar thermal system was embedded in
the 3D model of a building envelope. The 3D building
envelope was modeled as a pure geometrical represen-
tation without any physical behavior. In this manner,
realistic geometries and positions of different technical
components of the solar thermal system (tube lengths
and diameters, the required space of the storage and
the collectors etc.) can be visualized. Figure 12 shows
a snapshot of a the visualized transient load process
of the storage during the hours before noon during a
summer day in Hamburg. The different colors illus-
trate the temperatures of the fluid within the collec-
tor model, the tubes and the warm water storage from
cold (blue) to warm (green). Because the collectors
are serial connected and the cold fluid enters at first the
left collector, the temperature gradient within the seg-
mented collector model increases from left two right.
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Figure 12: 3D-scene of the solar thermal system

5.3 Results

The result of the evalution can be summarized as fol-
lows:

• The developed method allows a performant rep-
resentation of 3D scenes with a large quantity of
animated graphical 3D elements.

• It is possible to represent complex 3D scenes with
the unchanged Modelica code in different 3D en-
vironments (eg. Blender and OpenSceneGraph)

• A 3D modeling editor for a time efficient and
correct configuration of complex 3D Modelica
scenes is absolutely necessary

6 Conclusion

Modelica can be extended too support 3D-
visualization of experiments. That extension can
completely be implemented in form of a library
by only using already standardized techniques. By
choosing a loosely coupled, distributed architecture,
the extension can support different back-ends and
itself be extended easily. Additionally, innovative
use-cases as variable-structure modeling are supported
by this approach.

6.1 Obtaining Modelica3D

A public version of Modelica3D can is pub-
lished under the terms of the GNU General
Public License. The project page can be found
at https://mlcontrol.uebb.tu-berlin.de/
redmine/projects/modelica3d-public.
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Abstract 
This paper describes a proposal for a standard to 
store the results of dynamic systems simulations in 
form of time series data persistently on file. The rea-
sons to develop such a standard are explained, as 
well as the decision to use the HDF5 file format as a 
basis. The meta-information to be stored on file is 
mainly deduced from the Functional Mockup Inter-
face standard. Two variants are analyzed: Storing the 
meta-data either with a set of tables or in a hierarchy. 
Usability and performance measurements are utilized 
for the selection. 

Keywords: Simulation Results; File Format; Time 
Series; Standard; HDF5; MTSF, FMI 

1 Introduction 
Many simulation programs store their simulation 
results in an own specific file format. However, 
modelers have to utilize simulation results from dif-
ferent tools in different ways, e.g. plotting in compa-
ny specific formats, comparing the data with results 
from another simulation program or computing FFTs 
(Fast Fourier Transforms). Since often one tool is not 
suited for all these tasks, users or tool vendors have 
to implement API functions to access the result data 
from other programs. This is time consuming and 
has to be adapted when the format changes. Every 
program stores different information. Some store 
only the results, other more information such as units 
and names of signals. Many programs provide an 
open export of ASCII or CSV files, which makes 
data access easy. However, information supplied in 
these formats is not complete, reading the files is 
inefficient and storing and retrieving large amounts 
of data is not practical. 
 
These issues exist since decades for almost all simu-
lators in many physical domains. Many simulators 
offer a more or less mighty environment for result 
evaluation. But this is not their main development 
goal. Scripting tools such as Matlab [M12], Scilab 
[TSC12] or Python [P12a] are better suited to auto-
mate plotting of results with fine control of the lay-
out, to generate standardized result evaluation re-

ports, to perform signal processing (e.g. FFT), to 
compare with measurements, to run Monte Carlo 
simulations, or to perform optimizations over many 
simulations etc. The basic problem is then how to 
connect a simulation with a scripting environment. 
With a standardized time series file format, the ap-
proach from Figure 1 simplifies the task a lot, since 
simulation environments could generate files in this 
format and scripting tools could read files in this 
format directly.   

 
Figure 1: Standard time series file format and its interac-
tion with tools. 

In 2010, version 1.0 of the FMI (Functional Mockup 
Interface) standard was developed for the low level 
exchange of models and for co-simulation [MC10]. 
More than 30 tools support this standard already. 
Further progress can be achieved if these programs 
would support, at least optionally, the same result 
file format. For example, this would make it practical 
to automatically compare results of the same FMI 
model in different environments, and therefore the 
FMI import and export between tools could be tested 
in a much better way. 
 
A standardized file format for simulation results 
would also be helpful for the Modelica community: 
More and more different Modelica simulators come 
to the market. Many components, models and librar-
ies are developed in Modelica. They might be used 
in different simulators. It is necessary to compare 
results computed by different simulators automati-
cally. In particular, the Modelica Association plans 
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to supply reference results for all simulation models 
available in the Modelica Standard Library [MA10]. 
This is only practical, if the Modelica tool vendors 
agree on a standardized result file format. Apart from 
testing, it might be desirable to collect results e.g. of 
all slaves in a co-simulation environment in one file.  

1.1 Time Series Data 

The basic purpose of the proposed file format is the 
efficient and compact storage of time series data, as 
shown in Table 1: The first column contains the val-
ues of the independent variable, usually time (but 
might be also another quantity, e.g. frequency), 
whose values must be monotonically increasing. A 
discontinuity occurs, if a value appears several times 
(here: at 0.4). Variable 𝑣 is an example of a variable 
that depends on time t. 
 
Table 1: Example for time series data. 

Time 𝒕 Variable 𝒗 Variable 𝒘 … 
0.0 2.8   
0.2 3.2   
0.4 5.1   
0.4 7.2   
0.5 6.9   
0.6 5.5   

If the variable is a continuous-time variable, then 
𝑣 = 𝑣(𝑡) is a continuous function and there exist 
also values of 𝑣 between the tabulated points. Such 
intermediate points can be computed by interpolation 
of the tabulated values. If the variable is a discrete-
time variable, then 𝑣 is computed by a sampled data 
system at the values of the provided time instants. A 
value between the time points is not defined for 𝑣. If 
necessary, 𝑣(𝑡) with 𝑡𝑗 < 𝑡 < 𝑡𝑗+1 can be associated 
with the previous value 𝑣(𝑡𝑗) (= hold-semantics). 

1.2 Name of the Standard 
Results from the numerical integration of time de-
pendent differential algebraic equations with discrete 
variable changes are typical time series. Since the 
standard shall be discussed, finalized and released by 
the Modelica Association, it is proposed to call it 
“Modelica Association Time Series File Format”, 
shortly MTSF. This name is also used as the current 
extension of the corresponding files (e.g. robot.mtsf). 

2 Selection of Basic Data Format 
As a first step we collected requirements for such a 
file format and evaluated several existing formats 
against these requirements [BP11].  

2.1 Requirements for the Result Format 
A format for a time series file should fulfill the fol-
lowing requirements: 
• Small and huge amounts of data (more than 10 

GBytes) must be written fast and efficiently. 
• Extraction of data from small and huge files 

must be fast. 
• The format must be an internationally accepted 

standard. 
• The standard has to be open. 
• The format has to be also accepted by simulator 

developers outside of the Modelica community. 
• It has to be future proof, which means stable 

support by the developers of the standard is ex-
pected and it has to be supported by many tools. 

• The format should handle at least all data types 
of the FMI standard 1.0 [MC10] and the coming 
FMI standard 2.0 [MC12]. 

• It should be possible to add more data, if desired 
(e.g. diagrams of the model). 

• APIs to standard programming languages like 
C, C++ and Fortran should exist. 

• It should be easily accessible from scripting 
programs such as Matlab, Python, and others. 

2.2 HDF5 Format 
HDF, HDF4 and HDF5 (Hierarchical Data Format) 
[THG12a] are a set of file formats and libraries de-
signed to store and organize large amounts of numer-
ical data, originally developed at the NCSA (Nation-
al Center for Supercomputing Applications at the 
University of Illinois). In 2005, the Hierarchical Data 
Format group was spinning off from NCSA as a non-
profit corporation to ensure continued development 
of HDF technologies and the continued accessibility 
of data currently stored in HDF [NCS+12]. The HDF 
format, libraries and associated tools are available 
under a liberal BSD-like license. HDF is supported 
by many commercial and non-commercial software 
platforms, including Java, Matlab, IDL and Python. 
 
The freely available HDF distribution consists of an 
API to access HDF files (implemented in C, with 
layers for C++, Fortran and Java), command line 
utilities, test suite sources, and the Java-based HDF 
Viewer to directly inspect HDF files. The currently 
existing two versions HDF4 and HDF5 differ signif-
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icantly in design and API. The newer, more powerful 
HDF5 format consists of a hierarchy of objects 
where the leave objects are arrays. The dimensions 
of an array need not be known in advance and may 
be even constructed incrementally (as it naturally 
occurs in simulations). Many native data types are 
supported including all C data types. Furthermore, 
data can be compressed and graphics as well as vid-
eos can be stored. On the HDF web page applica-
tions with terabyte file sizes are reported 
(http://www.hdfgroup.org/why_hdf).  

In [P10] a good overview of the features of HDF5 is 
given. It is suggested to use HDF5 to store simula-
tion data. The reference highlights the following fea-
tures of HDF5: The tree structure for convenient 
storage of data; HDF is a numerical aware middle-
ware; the files and APIs allow portability, maintain-
ability, compatibility of the user software; the open-
ness of the software and the trustworthiness of the 
support.  

2.3 Alternatives to HDF5 
In order to handle efficiently large result data, only 
binary formats seem to be suitable. In principal also 
zipped xml-files might be applicable, but there seems 
to be still quite a large overhead to store and retrieve 
structured numerical data in such a format. 
 
There exist also other open source binary file for-
mats, in particular: 

• NETCDF1 from UCAR (University Corporation 
for Atmospheric Research). The latest version of 
NETCDF is a subset of HDF5 and the NETCDF 
files are therefore compatible to HDF5 (see 
“Format Descriptions” in  
http://en.wikipedia.org/wiki/NetCDF). 

• CDF2 from NASA. The CDF format is not com-
patible to HDF5. CDF seems to be also widely 
used and is, e.g. supported in Matlab and Python. 
CDF supports a set of arrays, but it does not sup-
port an object hierarchy. In this respect the 
HDF5 format is more powerful. 

 
Another alternative could be to not base the design 
on a general purpose file format, but on a special 
binary format dedicated solely to time series data: 

• Such a format could be newly designed and im-
plemented. However, it would be a large effort 
to develop, implement and support an API that 

                                                      
1 http://www.unidata.ucar.edu/software/netcdf 
2 http://cdf.gsfc.nasa.gov 

writes time series data in a subset of a HDF5-like 
data structure. Therefore we decided to not fol-
low this approach. 

• Another option would be to use one of the for-
mats of ASAM (Association for Standardisation 
of Automation and Measuring Systems) [A12]. 
ASAM was founded in 1998 as an initiative of 
German car manufacturers with the goal of offer-
ing a platform for the development of universal 
standards such as MCD-2 MC, MDF, HIL 
V1.0.1 and ODS. A standard like ASAM MDF 
(Measurement Data Format) can be compared to 
the MTSF approach. It is designed to store and 
retrieve data from measurements. This standard 
is widely used in automotive industry. HDF5 and 
ASAM standards are, e.g., compared in [PA11]. 
There exists no open source API from ASAM to 
read and write data. The standard texts are avail-
able for ASAM members (with expensive mem-
bership fees for industrial partners) or can be 
bought for a pricey fee. For these reasons, 
ASAM standards seem to be not suited as gen-
eral exchange format for time series result data 
between many tools. 

Since all requirements of section 2.1 are fulfilled by 
the HDF5 format and there seems to be no equally 
suitable competitor, we decided to base the MTSF 
format on HDF5. Once the base file format is decid-
ed, the important question is what data to store? Our 
main target is to store simulation result data from 
tools that support the FMI standard [MC10, MC12]. 
Therefore, the time series data and associated meta-
information to be stored is based on this standard. 

3 Structure of the File Format 
The basic structure of an MTSF file is shown by 
means of an example using screen shots from 
HDFView [THG12b]. The example file is based on 
the numerical integration of a Functional Mockup 
Unit (FMU) [MC10] by the open source simulator 
PySimulator [PHH+12]. The FMU was generated by 
Dymola [DS12] from the model Modeli-
ca.Mechanics.Multibody.Examples.Systems.Rob

otR3.fullRobot of the Modelica Standard Library 
[MA10]. The complete hierarchy of the result file is 
shown in Figure 2. 
 
On the top level, the file shows two groups named 
ModelDescription and Results. ModelDescription 
contains the meta-information of the variables. The 
time series data of these variables is stored under 
Results. In order to read the result data of one or 
more variables, parts of the ModelDescription in-
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formation has to be inquired in order to determine 
the location where the result data is stored. 

 
Figure 2: HDF5 hierarchy of the example result file. 

The root directory has an attribute mtsfVersion that 
contains a string value for the version of the underly-
ing MTSF format, see Figure 3. All groups and da-
tasets from Figure 2 are described in the next subsec-
tions. 

 
Figure 3: HDF5 attribute on root level of the result file. 

3.1 Model Description 
The HDF5 group ModelDescription contains a set of 
attributes (see Figure 4) which give (optional) infor-
mation about the source of the model used for the 
experiment. The information is based on the coming 
FMI 2.0 definition [MC12]. 
 

 
Figure 4: HDF5 attributes of group ModelDescription in the 
example result file. 

 

Variables 
The HDF5 dataset ModelDescription/Variables (see 
Figure 6) defines the variables whose data is stored 
in the file. The HDF5 type definitions of the dataset 
Variables are displayed in Figure 5:  
• name contains the names of the respective varia-

bles.  
• simpleTypeRow defines the data type and the 

unit of the variable by providing the row index 
of the related simple type in dataset ModelDe-
scription/SimpleTypes (see below). For example 
simpleTypeRow = 33 means that the type is de-
fined in row 33 of SimpleTypes which means 
Modelica.SIunits.Angle (see Figure 8).  

• causality and variability are HDF5 enumerations 
and provide information about the nature of the 
variable. 

• description is a short description string of the 
variable.  

• objectId and column provide the information 
where the data is stored for this variable (more 
details are given in section 3.2). 

• negated is introduced to enable negated alias 
variables. It can only have the values 0 for false 
or 1 for true. The value 1 indicates that the val-
ues for this variable (stored in the data matrices 
under Results) have to be negated. 

 
Figure 5: HDF5 variable types for the columns of the da-
taset ModelDescription/Variables in the example result file. 

Instead of objectId and column it would also be pos-
sible to use an HDF5 region reference. This is a 
HDF5 link to the region of a data matrix, in our cas-
es, e.g. a column of one of the matrices under Re-
sults/Continuous. A typical region reference looks 
like 0:3396963{ (0,685)-(599,685) } in HDFView 
where 3396963 is the HDF5 object id of the matrix. 
The region is selected by row 0 up to row 599 of 
column 685. The drawback of the region reference is 
that it is not supported to link to a whole column of a 
matrix. The row indices of the region have to be 
specified, too. Because the number of result points is 
generally not known before a simulation, the row 
indices of the region reference have to be updated at 
the end of the simulation process, which is quite an 
overhead if many variables are present. 
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Simple Types 

 
Figure 7: HDF5 variable types for the columns of the da-
taset ModelDescription/SimpleTypes in the example result 
file. 

The dataset SimpleTypes (see Figure 8) contains a 
definition of the simple data types used in the varia-
ble description. The HDF5 data type definition of the 
columns is depicted in Figure 7. The simple data 
type can optionally have values for the string fields 
name and quantity. dataType is an HDF5 enumera-
tion that specifies the basic data type (for example 
Real has the value 1). The default value for unitOrE-
numerationRow is −1 (means no row) and for rela-
tiveQuantity it is 0. The relativeQuantity can only 
have values of 0 or 1 that represent false or true (this 
is only relevant if unit conversion takes place) If 
dataType is equal to 5 (= Enumeration) the value of 
unitOrEnumerationRow corresponds to a row in the 
dataset ModelDescription/Enumerations, otherwise 
to a row in the dataset ModelDescription/Units. 

Units 
Each simple data type can have a unit and several 
display units. Display units for one simple data type 
can be defined by using a row block in the dataset 
Units, see Figure 9 and Figure 10. A unit can have 
three different modes: base unit, display unit or de-
fault display unit. The value of unitOrEnumera-
tionRow has to correspond to a row in Units with 
mode = 0 (BaseUnit), if there is a unit definition. If 
some display units apply for this base unit, they have 
to be listed in the rows below the base unit. Each 
mode of the display units can be 1 (DisplayUnit) or 2 
(DefaultDisplayUnit). Only one display unit may 
have mode = 2. If no display unit has mode = 2, the 
base unit is used as default display unit. The base 
unit can only have mode = 0. If there is no unit (and 
no enumeration) for a simple data type, then the val-
ue for its unitOrEnumerationRow is equal to −1 (de-
fault value). 

For example, the simple data type Time (see row 56 
in Figure 8) is a Real data type with a unit that is de-
fined in column 33 of the dataset Units. Here the 
base unit is s and the display units are defined by 
rows 34 up to 37 in the dataset Units (Figure 9). So, 
the display units are: ms, min, h and d with corre-

Figure 6: Dataset Variables in group ModelDescription of the example result file. 

Figure 8: HDF5 dataset ModelDescription/SimpleTypes in the example result file. 
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sponding values for factor and offset in the style of 
FMI 2.0 [MC12]. The default display unit is s. This 
allows, e.g. a plotting program to display the results 
in different units by using the conversion factors 
stored in the Units group. 

 
Figure 9: HDF5 dataset ModelDescription/Units in the ex-
ample result file. 

 
Figure 10: HDF5 variable types for the columns of the da-
taset ModelDescription/Units in the example result file. 

Enumerations 
The dataset ModelDescription/Enumerations (see  
and Figure 12) lists all enumerations that are defined 
in the model variables, i.e. variables of type Integer 
that can have only a small number of Integer values 
and a string is associated with every value. A plot 
program may then use the enumeration name instead 
of an integer to mark the value in an axis. The value 
of unitOrEnumerationRow corresponds to a row in 
the dataset ModelDescription/Enumerations, if the 
data type of a simple type is equal to 5 (= Enumera-
tion). Enumerations do not have units, so there is no 
conflict with unit definitions. 

 
Figure 11: HDF5 variable types for the columns of the da-
taset ModelDescription/Enumerations in the example re-
sult file. 

The row of Enumerations that corresponds to uni-
tOrEnumerationRow has to have firstEntry = 1. The 
firstEntry column marks a new row block of enu-
merations. Each enumeration has a name and an in-
teger value and may have a separate description 

string for example, the simple type StateSelect is an 
enumeration type with unitOrEnumerationRow = 7, 
it means in row 7 of Enumerations the defining 
enumeration block starts from “never” (1) up to “al-
ways” (5). Values for enumeration types are stored 
as integer. 

 
Figure 12: HDF5 dataset ModelDescription/Enumerations 
in the example result file. 

3.2 Time Series Results 
The numeric data associated with the defined varia-
bles is stored under Results. The HDF5 attributes of 
Results in Figure 13 include the most important pa-
rameters for the simulation experiment. ResultType 
defines the kind of the experiment, here: Simulation. 
The other attributes depend on the value of Re-
sultType. For example, a result type Measurement 
has other attributes than a result type Simulation, but 
the attributes are standardized. The values of the at-
tributes are optional with empty strings as default. 
Standardized attributes are necessary to exchange the 
attributes between different tools. 
  

 
Figure 13: HDF5 attributes of group Results in the exam-
ple result file. 

The experiment may provide several time series un-
der Results. Example names for the time series are 
Continuous for continuous-time variables, Discrete 
for discrete-time variables which change their values 
only at events, and Fixed for variables that do not 
depend on an independent variable (constants and 
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parameters). Additional groups might correspond to 
different clocks (e.g. a group for a periodic sample 
rate of 2 ms and a group for a periodic sample rate of 
7 ms). 

The group names of the time series can be freely 
chosen. Every time series (corresponding to a sepa-
rate HDF5 group) may be associated with an inde-
pendent variable. Therefore, each time series group 
has the attributes independentVariableRow and in-
terpolationMethod. For example the attribute defini-
tions of groups Continuous and Discrete are shown 
in Figure 14. 

 
Figure 14: HDF5 attributes of the groups Re-
sults/Continuous and Results/Discrete in the example re-
sult file. 

The value of independentVariableRow is the row 
index in the dataset ModelDescription/Variables and 
defines the variable that is used as independent vari-
able for the relevant data. In our example the inde-
pendent variable of Continuous is variable Time that 
has a row index of 0. The independent variable of 
Discrete is variable DiscreteTime that has a row in-
dex of 1. For group Fixed the index independentVar-
iableRow is equal to −1 in order to indicate that the 
variables are constant and do not depend on an inde-
pendent variable. 

The value of interpolationMethod is linear, constant 
or clocked and indicates how the numeric data values 
corresponding to the time series have to be interpret-
ed. Linear means that piecewise linear interpolation 
is suggested between the given points. Constant 
means that the value of a variable for a point of time 
is held constant until the next point of time. Clocked 
means that no interpolation should be applied and 
only the values at the stored time points should be 

shown in a plot. Typically, linear is applied for con-
tinuous-time variables, constant for discrete-time 
variables that have an explicit value between event 
points, and clocked for sampled variables. 

All time series data under a group like Continuous 
are stored in matrices. The column of such a matrix 
corresponds to one or more model variables and the 
row corresponds to the values of the independent 
variable. All elements of a matrix have the same 
HDF5 data type and the name of this data type is 
used as name of the matrix. In Figure 2, there are 
three matrices under Discrete of the types 
H5T_NATIVE_DOUBLE, H5T_NATIVE_INT32, and 
H5T_NATIVE_INT8. These are HDF5 data types and 
mean the matrices have a 64 bit floating type, a 32 
bit integer type and an 8 bit integer type, respective-
ly. In the latter matrix, the data of Boolean variables 
is stored as value 0 or 1. A basic Boolean type is not 
available in HDF5. 

 
Figure 16: Parts of the dataset Results/Discrete/ 
H5T_NATIVE_INT32 from the example result file. 

Parts of the matrix Results/Discrete/H5T_NATIVE-
_INT32 are shown in Figure 16. Each column of the 
matrix contains the numeric data of one or more dis-
crete integer variables. The time values for the data 
are stored in a column of the matrix Re-
sults/Discrete/H5T_NATIVE_DOUBLE (see Figure 
15). The column index is given in column of Mod-
elDescription/Variables for the independent variable 
DiscreteTime. In the example file the column index 

Figure 15: Parts of the dataset Results/Discrete/H5T_NATIVE_DOUBLE from the example result file. 
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is 0. So the first column of Discrete/H5T_NATIVE-
_DOUBLE represents the time for all discrete varia-
bles. All matrices of a time series group have the 
same number of rows: They are based on the same 
independent variable values. 

4 Performance Tests with Python, 
Dymola and Matlab 

We used Python 2.7 [Py12] to implement a test envi-
ronment for writing and reading MTSF files. The 
Python(x,y) distribution (version 2.7.2.1) [P12b] in-
cludes the HDF5 interface h5py (version 2.0.1) 
[H12], which provides high level interface functions 
in Python for HDF5 files. In a second step, reading 
MTSF files by Matlab [M12] is tested. 

4.1 Hierarchical Variables Concept 
In the initial design phase of the MTSF format a dif-
ferent (alternative) format has been investigated than 
presented in Section 3. In this section we shortly ex-
plain this alternative format (called hierarchical var-
iables concept), because it seems to be straightfor-
ward to save hierarchically structured variables in a 
HDF5 group hierarchy. However, the performance 
measurements in Section 4.2 and 4.4 indicate that the 
table-based approach of section 3 is better. 

 
Figure 17: Parts of the HDF5 hierarchy using the hierar-
chical variables concept for the example result file. 

 

The one to one mapping of hierarchical variable 
names to HDF5 groups and datasets is the main dif-
ference to the MTSF format presented in Section 3. 
For example, for the variable axis1.accSensor.w 
the dataset ModelVariables/axis1/accSensor/w in 
Figure 17 contains all the necessary information 
about the variable. The ModelDescription group (see 
Section 3.1) with its compound datasets is not pre-
sent in this concept. 

For first testing purposes the deepest dataset for each 
variable is only a 1x1 dataset containing an HDF5 
object reference to one of the matrices under e.g. 
Results/Continuous. The numeric data for the varia-
ble is stored in one of the columns of the referenced 
matrix. The column index is stored as attribute to the 
reference dataset. It would also be possible to use an 
HDF5 region reference instead of the object refer-
ence and the column index. The resulting files sizes 
would only differ slightly. 

Additional information (data type, unit, etc.) of each 
variable can be stored as further attributes. Some 
attribute examples are listed in Figure 18. To get the 
whole information included in the MTSF format of 
Section 3, much more attributes (or dimensions of 
the dataset) would be necessary. We have not 
worked it out so far. 

 
Figure 18: Some HDF5 attributes of each hierarchical vari-
able dataset. 

The advantage of the hierarchical variables concept 
is the hierarchical mapping of the model variable 
names and the HDF5 groups / datasets in the Model-
Variables tree. Therefore, HDFView shows automat-
ically a tree of the model variables when browsing 
through the groups. The main disadvantage of the 
hierarchical concept is the possibly large number of 
HDF5 objects building the ModelVariables tree. In-
tuitively, this is similar to a file system: Reading or 
writing 10 files (corresponds to the MTSF format of 
Section 3) is more efficient than reading or writing 
10000 files (corresponds to the hierarchical variables 
concept) in which the same data is stored. 

In the next subsection we compare the files that re-
sult from the two different concepts: hierarchical 
storage of variable information vs. the final MTSF 
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format of Section 3 with few HDF5 compound da-
tasets in ModelDescription. 

4.2 File Sizes 

In MTSF files the HDF5 compression of objects with 
the gzip algorithm can be used which is very effec-
tive for the meta-information, whereas compression 
with gzip in the hierarchical variable concept is tech-
nically not possible. The reason is that the meta-
information of one variable of the hierarchical con-
cept is stored in an HDF5 group, and HDF5 does not 
support compression of such an object. 

The binary result file of the Modelica modeling and 
simulation environment Dymola [DS12] is used as a 
reference to compare the file sizes generated in 
HDF5. This proprietary storage format of Dymola is 
very compact. Dymola stores variables with different 
names and same data (so called alias variables) just 
once. Dymola also stores negated alias variables, i.e. 
the numeric data of two variables a = −b only once. 
If b is stored, for variable a only the information is 
stored that it has the values of –b. This aliasing 
method is also used in the MTSF and in the hierar-
chical format. 

As the performance measurements below indicate, 
storing many (more than 1000) objects in HDF5 with 
standard options is very storage consuming. The 
storage requirements can be considerably reduced by 
using the following two options [THG11]: 
• For the storage strategy of objects the option 

Compact (in Python: h5py.h5d.COMPACT) 
should be used, instead of Contiguous or 
Chunked. This option leads to storing the raw 
data of small datasets in the header of the da-
taset. 

• In HDF5 1.8.0 an optional mechanism is intro-
duced to store groups much more efficiently by 
using a fractal heap and indexed with an im-
proved B-tree. In order to activate this feature, 
the version number in which the HDF5 file is 
generated needs to be specified by the option 
H5F_LIBVER_LATEST. In Python, the file has 
to be opened by h5py.File(..., libver= 

”latest”). 

The full robot model (see section 3) is used as test 
case. This model has about 7000 variables, where 
2500 are parameters and constants, 800 variables are 
time varying and the other variables are alias or ne-
gated alias variables. For the performance test 500 
fixed grid result points and 2∙50 varying grid result 

points due to 50 state events are taken into account. 
Discrete variables are only stored at event points, but 
continuous variables are stored at grid and event 
points, here at 600 points. This gives the sizes of the 
files in Table 2. 
 
Table 2: File sizes of the RobotR3 example for 500 grid 
points and different formats. The first column of Relative 
Size is normalized to the result of the Dymola format. The 
second column is normalized to the results of the MTSF 
format. 

Format Raw MB 
Relative 

Size 
Hierarchical variables 
format with standard 
options 

HDF5 27.6 5.11 7.46 

Hierarchical variables 
format with options 
compact and latest 

HDF5 7.4 1.37 2.00 

Dymola format MAT 5.4 1.00 1.46 

MTSF format HDF5 3.7 0.69 1.00 

The MTSF format results in a file size that is just 
half of the file size of the HDF5 hierarchical varia-
bles format, so it is clearly superior. Furthermore, the 
MTSF format gives about 30% smaller file size with 
respect to the Dymola file, although more meta in-
formation is stored than in the Dymola file. 
 
Table 3: File sizes for 5000 grid points and different for-
mats. The first column of Relative Size is normalized to the 
result of the Dymola format. The second column is normal-
ized to the results of the MTSF format. 

Format Raw MB 
Relative 

Size 
Hierarchical variables 
format with standard 
options 

HDF5 54.1 1.56 1.79 

Hierarchical variables 
format with options 
compact and latest 

HDF5 33.8 0.98 1.12 

Dymola format MAT 34.6 1.00 1.15 

MTSF format HDF5 30.2 0.87 1.00 

 
For result files with increasing number of result 
points, the relative differences between the different 
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approaches is decreasing, which can be seen in Table 
3 for 5000 fixed grid result points and 2∙50 varying 
grid result points at events. The reason of a decreas-
ing difference are the file size dominating data ma-
trices that are identical at least in the HDF5 files. 

4.3 Writing and Reading of Large Files 

The previous tests evaluated writing of HDF5 files. 
If the HDF5 file becomes very large, it can no longer 
be read in one piece. Reading files which are larger 
than the main memory is slow, as virtual memory 
paging has to be used. The question arises how this 
is handled. In Dymola, and many other simulation 
programs, reading a result file requires to read it 
completely in to memory and then the file sizes that 
can be handled are restricted by the respective main 
memory. Here the power of the HDF5 format is ap-
plied. It is possible to read just a specified column of 
a matrix, without reading the whole matrix. Internal-
ly, the HDF5 matrix is split into chunks (= smaller 
matrices) and only the relevant chunks are read 
[THG11]. 

Performance of writing and reading some parts of a 
huge matrix depends on amongst others the sizes of 
the chunks. Because it is not fixed what parts of re-
sult matrices are read after writing, the chunking de-
tails are not specified for an MTSF file. 

 
Table 4: File sizes and performances of writing and read-
ing MTSF files. 

# Rows  MB GB    

6∙103 766 35.5 0.03 0.5 0.15 0.02 

6∙104 766 352 0.34 5.9 0.23 0.06 

6∙105 766 3517 3.4 62.2 0.84 0.2 

6∙106 766 35160 34 1109 4.9 1.2 

3.6∙107 766 210410 205 11400 25.5 1.9 

In Table 4 experiments with the full robot model on 
a solid state disk (on a system with an Intel Xeon 
X5550 @ 2.67 GHz processor) are documented. The 
number of time points has been increased to get large 
HDF5 files. Performance of reading two columns 
(time and one model variable) of the matrix Re-

sults/Continuous/H5T_NATIVE_DOUBLE into Py-
thon is documented in column Reading 1. Perfor-
mance of reading the last row of the matrix (final 
value of all variables) is shown in column Reading 2. 
We did not investigate how different chunk sizes 
influence the result. It is clear that a fine tuning can 
improve the numbers in Table 4. 

This test proves to be able to write data to and read it 
from result files beyond 200 GB in acceptable time. 
Further tests should verify the handling of huge files. 
Using HDFView, the structure of large files can be 
inspected without problems. Only for the 205 GB 
file, HDFView is slowing down. 

4.4 Reading by Matlab 

Matlab [M12] is one of the most commonly used 
scripting tools in engineering applications. Therefore 
it has to be simple and fast to read data from MTSF 
files in Matlab. The test concentrates on reading the 
names of all variables of a result file. Using this list 
of variables a variable tree browser could be generat-
ed. We investigate reading two files of the full robot 
model. One file is according to the proposed MTSF 
format (see Section 3), the other file follows the hi-
erarchical variables concept (see Section 4.1). 
  
Table 5: Time for reading all variable names in different 
formats. For the hierarchical variables concept we distin-
guish between a format that includes HDF5 enumerations 
in attributes of HDF5 datasets and replacing them by sim-
ple integer values. 

Matlab function 

Hierarchical 
Variables 
Concept MTSF 

Enum. Integer 

h5info Error 75 s 0.1 s 

hdf5info (outdated) 13 s 5.5 s 0.1 s 

Matlab 2011b offers the high level functions h5info 
for reading the structure of an HDF5 file and h5read 
for reading one dataset. To get the names of all vari-
ables for the hierarchical variables concept one has 
to read the tree structure of the HDF5 group Model-
Variables. We use h5info for it. Apparently, Matlab 
is not able to read enumeration attributes in HDF5 
datasets. Therefore, we generated a new result file 
and replaced enumerations by simple integer values. 
The elapsed time for reading the different files are 
listed in Table 5. Using the outdated Matlab function 
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hdf5info we were able to reduce the elapsed time 
for the hierarchical variables concept. 

The MTSF file contains only a few HDF5 groups 
and datasets, whereas the file of the hierarchical var-
iables concept includes many (small) groups and ob-
jects. So it seems evident that reading the result file 
structure is faster for the MTSF file. To get all varia-
ble names from a MTSF file one has to read the da-
taset ModelDescription/Variables. Using the Matlab 
command h5read('fullRobot.mtsf', '/Model-

Description/Variables') the information is avail-
able. The execution time for this command is 0.02 s. 
In summary, reading the variable names from the 
MTSF file is much faster than for the hierarchical 
variables concept. These preliminary tests with 
Matlab also clearly indicate that the proposed file 
format is better suited than the hierarchical variables 
concept. Furthermore, the Matlab h5read m-file does 
not support region references. Besides the other 
drawbacks discussed in Section 3.1, it is therefore 
advisable to not use region references in HDF5 files, 
if the files should be read by Matlab. 

5 Conclusions 
A standard for time series result files typically gen-
erated by dynamic model simulations is proposed. 
The standard is based on the HDF5 file format be-
cause HDF5 offers many features to flexibly and 
efficiently store data. In test cases huge files larger 
than 200 GB are successfully written and read. We 
hope to come into discussion with all persons who 
are interested in a standard result file format. The 
goal is to define an internationally well accepted 
standard that is supported by many tool vendors. 
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Abstract 

The Modelica realization of two memristor modeling 
approaches is presented which is compatible to the 
Modelica Electrical Analog Library. Circuit exam-
ples of some basic cases of application are simulated. 
Comparisons with published simulation results show 
the correctness of the numerical realizations. The 
models are the base of a Memristor Model Library.  
Keywords: Memristor, window function, modeling, 
pinched hysteresis, resistive switches, numerical 
simulation of electronic devices 

1 Introduction 

The memristor is a special kind of resistor with 
memory. Therefore, the term “memristor” is com-
posed by parts of both words “memory” and “resis-
tor”. The theoretical concept of a memristor was 
published first in 1971 by Leon O. Chua [3]. After 
Strukow et alt. [5] observed that certain nanoscale 
devices with thin semiconductor layers can be de-
scribed as memristors, an intensive investigation 
started on both how a memristor works and how it 
can be utilized in electronic circuits. Since then, the 
memristor has a wide attention in the research com-
munity of electrical engineers, physicists, and biolo-
gists. Recent investigations are mainly focused on 
resistive random access memories. The advantage of 
memristors (or more general of memristive devices) 
is to store information without any power soure to be 
needed. This could open a new paradigm in power 
saving computation as well as low power storage. 
Other fields of research are neuromorphic systems, 
memristor circuits theory, and applied analog 
memristor circuits. It can be expected that further 
interesting fields of both research and application 
will be opened up in future.  
 

Simulation has been applied since the very beginning 
of integrated circuit development, so it does for 
memristor circuits. Therefore, memristor modeling 
became necessary, and simulation models were pub-
lished which can be used in different simulation 
tools. E.g. MATLAB models use a state equation 
based approach, but models for SPICE need a com-
bination of built-in SPICE models which realize the 
memristor behavior.  
 
This paper deals with the adaption of published 
memristor models to Modelica. It is the first step 
towards the general aim to create a library for 
memristors, and memristive systems (memcapaci-
tors, meminductors, memristive systems with more 
than one state [6]). The library will allow to investi-
gate memristor applications on the one hand on cir-
cuit level, and on the other hand in the context of 
arbitrary Modelica applications. In section 2 two dif-
ferent models are presented. Simulation results using 
Dymola are shown in section 3. 

2 Model Approaches 

Once memristor measurement data were available 
several model approaches were elaborated, and 
adapted to the data. Two very basic models are pre-
sented in this section. 

2.1 A Basic Model Approach on Varying Re-
sistance 

Basing on the physical device structure the authors 
of [1], [2], [5] introduce a memristor model as a re-
sistor with varying resistance MEMR  

 
)()()( tixRtv MEM=     (1) 

 
which depends on x linearly and changes between 

ONR  and OFFR  :   
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The structure of such a device is depicted in figure 1 
and consists of a partly doped 𝑇𝑖𝑂2-layer which is 
together with the undoped part sandwiched between 
two Pt-electrodes. With w being the length of the 
doped region (Figure 1), and D  the total length of 
doped and undoped region, the state x  is defined as 
 

Dwx /=     (3) 
 
The doped region is highly conducting ( ONR ) 
whereas the undoped region is less conducting  
( OFFR ). Taking into account the length of both re-
gions equation (2) represents a series connection of 
the actual resistances of both the doped and undoped 
region. 

 

 

Figure 1 Physical Memristor Schematic 

The state equation (4) describes the speed of the 
boundary movement, which depends on the current 

)(ti , the resistance ONR  of the doped region, the 

dopant mobility vµ  and a window function )(xf : 
 

)()(2 xfti
D
R

dt
dx ONvµ=    (4) 

 
The so-called window function establishes a nonlin-
ear drift behavior of the device and hence provides a 
second order approximation to the real device. Ac-
cording [3] one possible window function is  
 

p
Jog xxf 2)12(1)( −−=    (5) 

 
whereas the authors of [1] propose an improved win-
dow function Biof  which overcomes sticking of x  at 
0 or 1 whenever x  reaches one of these values. The 
proposed window function depends on both x  and 
the sign of the current )(ti  : 

 
p

Bio tistpxxf 2))(((1)( −−−=   (6) 
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  (7) 

 
The equations (1) to (7) are the base for writing a 
simulation model. One possibility is constructing a 
SPICE subcircuit out of SPICE basic components 
(macromodeling) according to [1]. This subcircuit 
could be copied to Modelica using the Modeli-
ca.Electrical.Spice3 package. A more convenient 
way is using the declarative behavioral modeling 
capability of Modelica. This leads straight forward to 
the following model, called Memristor_Biolek2009: 
 
 

model Memristor_Biolek2009 
import ME = Modelica.Electrical; 
import SI = Modelica.SIunits;  
extends  
      ME.Analog.Interfaces.OnePort; 
parameter SI.Resistance RINIT, RON,  
                     ROFF; 
parameter SI.Length D;  
parameter Real muev; 
parameter Integer P; 
SI.Resistance       
      RMEM(start=RINIT,fixed=true); 

SI.Length w;  

Real x, k, f; 
equation  
RMEM = RON*x +ROFF*(1-x); 

x = w/D; 

v = RMEM*i; 
der(x) = k*i*fBio; 
k = (muev*RON)/(D^2); 

//fJog = 1-(2*x-1)^(2*P); 

fBio = 1 - (x - stp(-i))^(2*P); 
end Memristor_Biolek2009 

 
The special sign function is 
  

function stp 
input Modelica.SIunits.Current i; 
output Real value; 
algorithm  
  value:=if (i<0) then 0 else 1; 
end stp; 
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An icon, default values for parameters as well as as-
sertions complete the model. 

2.2 An Improved Approach 

The authors of [6] propose an improved approach 
with more parameters than the model already pre-
sented which can be better adapted to given memris-
tor characteristics, e.g. measured data. 

Like the Memristor_Biolek2009 model this mod-
el has a state variable )(tx  for calculating the con-
ductivity according to 
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with 1a , 2a , and b  being adjustable parameters. The 
state equation for x  is: 
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=    (9) 

Whereas )(tg  is a threshold function which ensures 
a state changes only if thresholds are exceeded: 
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The window function )(xf expresses the effect that 
it is harder to change the state near the boundaries, 
taking into account the polarity. Parameters are in-
troduced to be able to fit to measured values. 
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The equations (8) to (13) can be formulated in Mod-
elica as they are. This leads to the second memristor 
model, called Memristor_Yakopcic2011: 
 
 

model Memristor_Yakopcic2011 
import ME = Modelica.Electrical; 
import SI = Modelica.SIunits;  
extends  
ME.Analog.Interfaces.OnePort; 
parameter Real Ap, An; 
parameter SI.Voltage Vp, Vn; 
parameter Real xp, xn, ap, an; 
parameter SI.Current a1, a2; 
parameter Real xinit; 
parameter SI.InversePotential b; 
Real gV, fx, wp, wn; 
Real x( start=xinit, fixed=true); 
equation  
i = if(v>=0)then a1*x*sinh(b*v) 
          else a2*x*sinh(b*v); 
gV = if(v>Vp)then Ap*(exp(v)- 
                  exp(Vp))  
   elseif (v<-Vn) then  
          -An*(exp(-v)-exp(Vn)) 
   else 0; 
fx = if(v>0 and x>= xp) then 
          exp(-ap*(x - xp))*wp 
   elseif (v>0 and x<xp) then 1 
   elseif (v<0 and x<=1-xn) then 
             exp(an*(x+xn-1))*wn 
   else 1; 
wp = (xp - x)/(1 - xp) + 1; 

wn = x/(1 - xn); 

der(x) = gV*fx; 
end Memristor_Yakopcic2011 

 

3 Test And Application Examples 

3.1 Memristor Characteristic Using One Input 
Voltage Pulse  

The first example shows the Memristor_Biolek2009 
characteristic using a simple voltage pulse. 

 

 

Figure 2 Memristor test circuit 

RINIT RON ROFF D muev p 
11000 100 16000 1e-8 1e-14 10 
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If the above mentioned parameters are used, the 
voltage pulse of Figure 3 causes the current-voltage 
hysteresis of Figure 4. The reason for the hysteresis 
is increasing of the doped region length as long as a 
positive current is flowing which increases the over-
all resistance.   Figure 5 shows the change of the 
state x  which influences the resistance. This illus-
trates that the state is the “memory” of the memris-
tor. The initial state is caused by the initial value 
RINIT. No special hysteresis model is used, only 
changing the state causes the hysteresis. 

 

 

Figure 3 Single voltage pulse 

 

 

Figure 4  Current-Voltage Hysteresis 

 

 

Figure 5  State change due to the voltage pulse 

3.2 Memristor Characteristic Using Sinusoidal 
Input Voltage 

To compare the Memristor_Biolek2009 characteris-
tic with the results published in [1] a circuit like in 
Figure 2 is simulated using a sinusoidal voltage input 
(1.2 V amplitude, 1 Hz). The memristor parameters 
are the same as in the example 3.1. Figure 6 shows 
both the input voltage, and the resulting current.  

 

 

Figure 6 Input voltage and current (raised by 100), with 
RINIT=11000 Ohm 

This result differs slightly from the result published 
in [1] depicted in Figure 7 due to initial transient ef-
fects. In the steady state which can be reached by 
changing the initial resistance to RINIT=11500 or by 
simulating over a long time period the published re-
sults are reached (Figure 8, Figure 9). The reason for 
these differences in initialization can depend on dif-
ferent numerical algorithms, and on different error 
bounds. This has to be investigated in future. 

 
 

 

Figure 7 Reference result according to Figure 6, published in 
[1] (input voltage and current) 

 

 

Figure 8 Input voltage and current (raised by 100), with 
RINIT=11500 Ohm 

 

 

Figure 9 Current-voltage characteristics (current raised by 
100), with RINIT=11500 Ohm 
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Due to the Memristor_Biolek2009 model, formula 
(7), the window function )(xf  is discontinuous. Ac-
cording to (4) jumping of )(xf  influences the de-
rivative of x  but not x  itself. Therefore, such dis-
continuities did not yet lead to simulation difficulties 
in the investigated examples. 

3.3 Memristor Characteristic Using Multiple 
Input Voltage Pulses  

The simple circuit according to Figure 2 is used to 
check the characteristic of the Memris-
tor_Jakopcic2011 model. The results are compared 
with Fig. 4 in [5]. The memristor model parameters 
are: 

ap an Ap An Vp Vn 
1 4 0.1 10 0.9 0.2 
xp xn a1 a2 b xinit 

0.15 0.25 0.076 0.06 3 0.001 
 
The following simulation results (Figure 10, Figure 
11) achieved with Dymola are the same as in the ref-
erence simulation. The memory effect can be seen. 
According to this first check the model seems to be 
correct. 

 
Figure 10 Current-voltage characteristic (current raised by 
50), Jakopcic2011 model 

 

 

Figure 11 Current-voltage hysteresis, Jakopcic model 

3.4 Graetz Rectifier Circuit 

Figure 12 shows a Graetz rectifier circuit which uses 
memristors instead of diodes. It is easily combined 
using the presented memristor_Yakopcic2011 model 
as well as MSL components. The memristor parame-
ters are the same as in the previous section. 

 

 

Figure 12 Graetz circuit using memristors 

Both the rectified and the original voltage can be 
seen in Figure 13. Deeper investigation shows that 
the amplitude of the rectified voltage depends on the 
amplitude of the input voltage as well as on the fre-
quency. Higher frequency causes smaller rectified 
voltage amplitudes. If the input voltage is too high 
the simulation fails. The reasons of that seems to be 
extremely increasing of exponential functions. 
Therefore, the model must be improved in future to 
become more stable. 
 

 

Figure 13 Input voltage, and rectified voltage 
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4 Conclusions 

Two memristor models developed from given 
memristor model equations are presented. Simple 
tests show the correctness of the models compared 
with published simulation results. In some cases 
small differences occur that have to be investigated 
in future. Tests with different simulation tools are 
still necessary, which cover extreme application sce-
narios. 
 
The Modelica approach of memristor modeling is 
promising. The memristor models can easily be 
combined to existing models of the Modelica Stand-
ard Library. It is planned to develop a package with 
numerical stable, and well tested models of memris-
tors, and of other memristive systems like mem-
capacitors, meminductors, or systems with more than 
one states. This will allow to study memristors and 
memristor application circuits in a convenient way. 
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Abstract 

In more electric aircrafts (MEA) the electric pow-

er network is important for the reliability. To prevent 

severe faults it is the key issue to identify the faults 

in the early stage before a complete failure happens. 

In this paper an early stage fault detection method 

using wavelet multi-resolution analysis (MRA) for a 

regulated buck DC-DC converter is studied. Specifi-

cally, the electrolyte input capacitor is diagnosed. 

The study was carried out using simulation with 

Modelica / Dymola. The fault features that were ex-

tracted from different levels of wavelet decomposi-

tion provided clear information for both fast and 

slow occurring faults. This method showed signifi-

cant advantages compared with filter techniques. It is 

concluded that wavelet transform is a suitable tool 

for early stage fault detection of the power electron-

ics in MEA. In addition, the simulation language 

Modelica provides a convenient possibility for the 

quick design of fault detection strategy. 

Keywords: power electronics; DC-DC converter; 

fault detection; wavelet; Modelica; Dymola 

1 Introduction 

1.1 Motivation 

The concept of More Electric Aircraft (MEA) is 

attracting increasing interest in the aircraft industry 

not only because of its potential in energy optimiza-

tion, but also due to its significant advantages con-

cerning weight, maintenance requirements, liability 

and passenger comfort [1]. For this, the electrical 

power distribution network is playing a more im-

portant role and facing increasing challenges in the 

prognosis and accurate localization of faulty units in 

an even more complex power network. In order to 

obtain maximum flight reliability and minimum 

maintenance efforts, advanced failure analysis tech-

nologies shall be applied to ensure correct and quick 

fault detection and isolation. It is well known that an 

output voltage regulated DC/DC power converter 

supplying constant power loads could de-stabilize 

the network stability due to the degraded perfor-

mance of its input filter. The sensitivity study of in-

put filter parameters concerning the network stability 

addressed in [2] reveals that the observation of de-

graded degree of the capacitor in the input filter can 

significantly increase the network reliability.  

1.2 State of the art 

Reviewing the considerable development of fault 

diagnosis techniques and many successful applica-

tions attached to them in the last time [3] [4] [5], 

power systems keep a challenge for fault detection. 

For overcoming this challenge intelligent methods 

like artificial neural networks have shown their pos-

sibilities in this field [6]. Besides, the analytical 

model based technology is also obtaining more atten-

tion [7] [8] [9]. 

Signal-based methods, e.g. Fourier transform and 

wavelet transform, also provide other possibilities to 

perform the fault detection and isolation. With the 

rash development of the new mathematical tool, 

wavelet transform [10], a great amount of studies 

have been done in different fields for fault detection. 

Some attempts have also been made in power elec-

tronics for fault detection [11] [12]. The implementa-

tion of wavelet transform for the post processing of 

Modelica simulation data has been seen, for exam-

ple, in a study of vehicle steering, where wavelet 

transform was carried out in the software Matlab for 

calculating power spectra [13].  
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1.3 Main contributions 

Modelica was developed as a free, object-oriented 

and equation-based modeling language. It has signif-

icant benefits such as easy reusability of models and 

multi-domain modeling capability. In combination 

with the simulation environment Dymola, a conven-

ient platform is provided to the complete model-

based design and the integration of MEA systems 

[14]. In contrast to the excellent performance in 

modeling and simulation, Modelica only supports 

limited signal analysis features [15], which are actu-

ally crucial for the fault analysis and virtual testing 

activities in the verification and validation phase of 

the system development.  

This work focuses on the fast design of a fault de-

tection strategy of on board power supply units in 

MEA with wavelet transform using Modelica simu-

lation. To realize this, a wavelet library for Modelica 

is being developed. Multi-Resolution Analysis 

(MRA) of wavelet technology is applied to detect the 

failure of electrolyte capacitors in a very early stage.  

In addition, the design process using Modelica 

simulation shows high flexibility and efficiency. It is 

possible to identify the most important failure fea-

tures and helps to design a effective fault detection 

strategy within only a short time. 

2 Wavelet transform 

2.1 Definition 

Wavelet transform could be considered as a fur-

ther development of Fourier transform, or more pre-

cisely, of short time Fourier transform (STFT) [16]. 

Using STFT, people try to localize the signal chang-

ing with time by selecting suitable time window. 

This transformation, however, is limited in time-

frequency resolution capability due to the uncertainty 

principle. Wavelet transform overcomes this prob-

lem. This transform is defined as [10]: 

           
 

    
   

   

 
 

          
      

 

  
. (1) 

It is described as the wavelet transform of the 

square-integrable function, f, using wavelet function, 

ψ, at dilation (or scale), a, and position (or transla-

tion), b. The bar above function, ψ, stands for conju-

gation. For the given a and b, the transform result is 

a single real number, a wavelet coefficient. 

Obviously wavelet transform is the integral of the 

multiplication of the signal, f, with a wavelet func-

tion, ψ. It has the same form as the STFT. However, 

not like STFT, where only sine and cosine functions 

are used for the transformation, wavelet transform 

uses different wavelet functions, which can be se-

lected according to the specific problems from a 

principally unlimited set. Nevertheless, the wavelet 

function must fulfill some conditions; namely, it 

must be an orthonormal function. The precise math-

ematical description of orthonormality is easily 

found in almost every book about wavelet transform, 

e.g. [10], and is not repeated here. 

Parameter, a, defines the width and height of the 

wavelet function, ψ. A smaller scale, a, makes ψ nar-

rower; thus the wavelet represents fast changes and 

the transform focuses on the high frequency compo-

nents of the signal. Parameter, b, shifts the wavelet 

function along the time axis, so that the transform 

represents different locations of the signal. Using 

different values of scale, a, and position, b, it is able 

to observe the signal at different position and in dif-

ferent frequency range with only one transformation. 

Thanks to these special properties, wavelet transform 

is especially suitable for analyzing changing pro-

cesses. 

Two forms of wavelet transform are available. 

They are continuous wavelet transform (CWT) and 

discrete wavelet transform (DWT). In CWT both 

scale and position parameters are continuous real 

values. CWT expresses the signal changes in contin-

uous details. It is more suitable for visual examina-

tion. In this work only DWT is used, which will be 

described in more detail in the next section. 

2.2 Discrete wavelet transform 

In DWT only discrete values of the scale and lo-

cation parameters are used. The values are selected 

in a discrete form, namely 

       
 

           , (2) 

where         and      . The transform re-

sults, i.e. the wavelet coefficients, are therefore also 

discrete.  

In the numeric calculation of DWT, an extra scal-

ing function, in addition to the wavelet function, is 

used to carry out a complete and efficient DWT. The 

scaling function represents the low frequency com-

ponents of the signal. It is orthogonal to its own dis-

crete translations and to all wavelet functions. The 

wavelet and the scaling functions with the discrete 

scaling and translation parameters build a complete 

orthogonal basis of the Hilbert space. The DWT is 

thus another representation of the time signal.  

As an example, Figure 1 shows the form of the 

third order Daubechies scaling and wavelet functions 

and their Fourier transforms [17]. 
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Figure 1: The third order Daubechies scaling and wavelet func-

tions (a) and their Fourier transforms (b) 

 

 

From the Fourier transforms it can be seen that 

the scaling function covers lower frequency range 

while the wavelet function stretches in a higher fre-

quency range. From this point of view, DWT is actu-

ally the division of the time signal into different fre-

quency bands. Thus, it is straightforward to under-

stand that the calculation of DWT is realized using 

filter banks. In inverse DWT the calculation is simi-

lar. This process is illustrated in Figure 2. 

 

 
 Figure 2: DWT and inverse DWT calculation using filter banks 

 

DWT transforms the original sequence in two 

new series:  

(1) the approximation coefficients, cA(k), represent-

ing the low frequency components, obtained us-

ing the low pass filter for decomposition, hd0, 

and  

(2) the detail coefficients, cD(k), representing the 

high frequency components, obtained using the 

high pass filter for decomposition, hd1.  

The symbol ↓2 means down sampling. The opera-

tion is to delete one from every two adjacent coeffi-

cients, in order to remove the redundant information. 

The inverse DWT carries out the reversed operation. 

The operator, ↑2, expands a coefficient series by in-

serting a zero between every two adjacent elements. 

After that the two series pass through the filter bank, 

and added together to get the original signal. 

2.3 Multi-resolution analysis 

Considering the DWT process shown in Figure 2, 

sequence, cA(k), which represents the low frequency 

components can be further divided into a lower fre-

quency part and a higher frequency part inside the 

frequency range of cA(k). This process is repeated 

and a series of coefficient sequences representing 

different frequency ranges is obtained, as shown in 

Figure 3: 

 
Figure 3: Multi-resolution analysis using DWT 

 

This is the wavelet multi-resolution analysis 

(MRA). The output of this operation, cD1, cD2, …, 

cDn and cAn, are different levels of DWT coeffi-

cients, representing the signal components from 

higher to lower frequencies. Here the original signal 

is treated as the lowest level of approximation coef-

ficients. This analysis provides a convenient tool to 

observe different frequency components of the signal 

depending on time. 

2.4 Wavelet analysis for fault detection 

Wavelet transform is a powerful tool in signal 

processing for the detection of changing events. This 

feature is suitable for fault detection since a fault in a 

system can be treated as a deviation compared to the 

normal state.  

When a fault occurs, specific changes will appear 

in the sensor signal. Usually, it is known that the 

fault signal is located in a certain frequency range, 

but the exact frequency is often unknown or not con-

stant. This problem can be handled with wavelet 

MRA. For that, the signal containing fault infor-

mation is firstly decomposed in several levels. And 

in one or more levels, where the fault signal frequen-

cy is located, faults features will be observed.  

3 Wavelet fault detection in a MEA 

power network system 

Based on the properties of wavelet transform in 

signal processing, this new mathematic tool is used 

for fault detection in a MEA power network system 

in this study. Specifically, the MRA is used here to 

detect the capacitance drop of the input capacitor in a 

DC-DC buck converter for the early stage failure. 

3.1 The problem 

The buck converter is described with the diagram 

shown in Figure 4. 
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Figure 4: Diagram of the Buck converter under study 

 

The converter operates in constant load power 

mode by keeping a constant output voltage, which is 

adjusted through the duty cycle of the pulse width 

modulation (PWM) switching signal, which operates 

with a constant frequency. Based on the converter 

property the system is sensible to the value changes 

of the components on the input side, where the input 

capacitor, Cin, is especially critical because it is usu-

ally an electrolyte type, which has significantly low-

er feasibility and shorter lift time compared with oth-

er components. Base on this reason, the early fault 

detection is focused on Cin. 

Four parameters of the circuit can be convenient-

ly measured by voltage and current sensors. They 

are, referring to Figure 4, Uout, Iout, Iin and Uin, 

ordered from higher to lower ease of availability. 

Since the load is pure resistive constant load, the 

output current signal will contain the same infor-

mation as the output voltage. And Uout will be used 

any way for the controller as feedback, the equip-

ment of a sensor for output current is therefore not 

necessary, at the least for fault detection. 

Since a stable output voltage is the control objec-

tive of the circuit, the influence of Cin would be 

compensated by the controller very quickly. As a 

consequence only very few fault information would 

be propagated to the output side. The fault detection 

using Uout is therefore not feasible.  

The input voltage is not a good signal for fault 

detection, too, since it actually measures the input 

power supply voltage, which is normally a voltage 

source with very low impedance and thus hardly be 

influenced by Cin.  

The input current is the last possibility; and it is 

actually also a suitable signal for fault detection. The 

reason is, for example, if its capacitance drops, it 

means the energy capacity of the input circuit is re-

duced. In order to keep a constant energy flow to the 

load, which is regulated by the controller, Cin would 

have to be charged and discharged more deeply. This 

will be reflected in the input current with larger fluc-

tuation. This estimation will be showed later in the 

result section. 

If an electrolyte capacitor approaches it life end, 

its capacity would reduce slowly within a certain 

time. However, sharp reduction or changing of ca-

pacitance might also occur. For fault detection, espe-

cially for early stage fault diagnosis, both stepping 

type and slow changing of capacitor fault should be 

considered. 

3.2 Extraction of fault information 

The first step is the extraction of the fault infor-

mation from the sensor signals. Supposing the meas-

ured signal is 

              , (3) 

where x(k) is the signal in normal operation state, 

and g(k) the additional signal in fault condition.  

Using wavelet technology, the sensor signal f(k) 

is decomposed with MRA using wavelet function, ψ, 

to obtain wavelet coefficients in n levels: 

                    
 
    , 

             
               

 
   , 

(4) 

where Di{.} represents the detail coefficients, and 

Ai{.} stands for approximation coefficients. The term 

Di{.} with smaller index, i, represents higher fre-

quency components, namely faster changing signals. 

The signal, x, in the normal operation condition is 

composed of the average value of the battery current, 

which changes very slow, and the ripples caused by 

the PWM controlling, which have a constant fre-

quency defined by the controller. The slower com-

ponents are transformed to the approximation coeffi-

cients, An{x}; and the components with PWM fre-

quency, which are higher frequency components, is 

transformed to the very low level of Di{x}. 

On the other hand, the fault signal, i.e. the infor-

mation of the reduction of Cin, is reflected by the 

fluctuation of the input current. As it is known that 

the fluctuation frequency is actually the PWM fre-

quency, most of the fault information is contained in 

the PWM components, which means the lower levels 

of detail coefficients, Di{g}. Depending on the fault 

occurrence rate, complex fluctuation could take 

place. This information will be carried by the PWM 

frequency, too, but its own frequency components 

are visible in other levels of Di{g}.  

In any circumstance few information will be pre-

sent in very low frequency range, i.e. in An{g}. 

Therefore, we can extract the fault information from 

the input current signal simply by isolating some 

levels of detail coefficients, Di{f}. Of course, the 

PWM information will also be involved. It has to be 

removed before the faults can be identified. Since 

this frequency is known and it always has a very 

high value, these components can be easily sup-

pressed with low pass filter or band stop filter. 

Controller
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Lout
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R
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3.3 Fault identification 

After all irrelevant information is excluded the fi-

nal fault information is represented with a single val-

ue, changing according to the failure rate. The fault 

can be simply identified by comparing it with a 

known threshold.  

4 Design of a fault detection strategy 

using Modelica 

Because of the aforementioned superior proper-

ties, Modelica simulation and wavelet transform 

were selected for the quick design of a fault detec-

tion strategy for the power system in MEA. Since 

wavelet transform is not available in the standard 

Modelica libraries, a solution have to be found. A 

seemingly direct solution would be the use of a se-

cond software tool, which provides wavelet analysis 

capacity, such as Matlab from MathWorks. Some 

practical reasons were faced, however. Firstly, the 

use of such commercial software requires expensive 

licenses. Secondly, a single program both for simula-

tion and data analysis is very desirable during the 

work in order to have an integrated working process 

and to avoid interfacing between two programs. It is 

therefore more favourable to have the wavelet analy-

sis  inside Modelica. In addition, this brings further 

advantages in that the library can be a common tool 

of Modelica, so that higher work efficiency will be 

achieved in a long term. 

4.1 Model of the power supply 

The buck converter shown in Figure 4 is realized 

with a Dymola model in Figure 5.  

 
Figure 5: The Dymola model of the Buck converter for MEA 

 

The voltage controller is a proportional-integral 

regulator. The output voltage is set as 4.3 V. The 

PWM frequency is defined with the trapezoidal 

source as 50 kHz. The component fault is simulated 

by reducing the value of the input capacitor, Cin, 

with a ramp source. By setting the ramp, different 

changing rate of the component value can be simu-

lated. The input current is measured by a current sen-

sor, which is explicitly put in the model only for 

clarity, since the current values could actually be 

read out directly from the corresponding compo-

nents, e.g. Rin or Lin. Other parameters are listed in 

Table 1 

 

Table 1: Parameters of the buck converter 

Parameter Description  Value 

E Voltage source 54 V 

Uref Reference output voltage  4.3 V 

Lout Output inductance  29 μH 

Cout Output capacitance  40 μF 

Rload Load resistance 1.568 Ω 

Lin Input filter inductance  10 μH 

Cin Input filter capacitance  10 μF 

Rin Input resistance 0.025 Ω 

Kp Propotional controller gain  0.06 

Ki Integral controller gain  4.9 

4.2 Wavelet transform in Modelica 

The structure of the wavelet toolbox developed 

for Modelica is shown in Figure 6. At the moment of 

this report the wavelet library is under development 

within the frame of Clean-Sky project organized by 

European Union. It is expected to be a general 

Modelica library with wavelet transform and some 

related functionality for different signal processing 

purposes. This library is used for post processing of 

the simulation result data and cannot be embedded 

into simulation models. So far the core library func-

tions have been realized and wavelet DWT and 

MRA can be implemented for the reported work. 

 

Figure 6: Structure of the intended Modelica wavelet library (the 

functions with dark background will be designed depending on 

the work process) 
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4.3 Process for simulation and fault detection 

As mentioned in the problem description (section 

3.1) the input current signal is used for fault detec-

tion. At first the model will be simulated with differ-

ent reduction rates of the Cin capacitance. The re-

duction rates were selected between 1 and 100 ms 

with a capacitance drop from 10 to 8 μF, correspond-

ing to 20% capacitance loss. With this fault level the 

system can still operate normally. However, a 20% 

reduction indicates a high possibility of a complete 

failure of the capacitor in the near future. The reduc-

tion is applied at 0.1 s after the startup of the simula-

tion so that the system can achieve a stable state be-

fore the faults could occur. 

After simulation, the data segment containing the 

fault event will be read out from the simulation result 

data file. It is converted to equidistant time series 

with a sampling rate of 200 kHz. Equidistant sam-

pling is the requirement of wavelet transform and 

most other signal processing methods. The fault de-

tection process is illustrated in Figure 7. 

 
Figure 7: Process for simulation and fault detection using wave-

let transform 

 

To simulate the real world, a white noise signal 

with normal distribution is added on the input current 

signal. After that, MRA is applied on the data. The 

wavelet function used here was the third order 

Daubechies function shown in Figure 1. The detail 

coefficients in the DWT result are extracted and their 

absolute values are calculated since only the magni-

tude of the DWT coefficients contains fault infor-

mation. To remove the high frequency PWM com-

ponent, second order Butterworth low pass filter is 

used. The filter cut off frequency is set as 0.5 kHz, 

much lower than that of the PWM frequency, in or-

der to suppress a large part of the noise signal, too. 

After this step, different fault features can be visually 

identified and suitable fault detection methods can be 

established. 

4.4 Results 

The tests with different parameters were carried 

out. Figure 8 and Figure 9 give two examples with 

slow and fast changing faults, respectively. Since all 

fault features mainly present in the first three levels 

of the wavelet decomposition, only these coefficients 

are shown in the figures. 

It was noticed that the fault features differed sig-

nificantly between fast and slow changing rates. For 

the changing rates faster than 5 ms, a pulse feature 

appeared in almost every level of the wavelet detail 

coefficients. This is well seen in Figure 8, where 

20% capacitance drop took place within 1 ms. In the 

first MRA level the feature magnitude changed from 

55 to 70 mA with the fault. In the other two higher 

levels the fault event was extra present with pulses. 

The magnitude of the pulses increased with the 

changing rate. The pulses appeared in other higher 

decomposition level, too. However, in level three it 

was significantly higher than those in other levels. 

For the fault with 1 ms dropping time, as shown in 

Figure 8, the pulse peak reached almost 100 mA in 

level 3. The simulation showed that for the dropping 

time up to 5 ms, the peak height reduced linearly to 

about 20 mA.  

For the changing rates slower than 5 ms, the fault 

features were only significant in the lowest level of 

the wavelet MRA coefficients. Figure 9 shows an 

example, where the 20% capacitance drop took 100 

ms time. Now only the first wavelet decomposition 

level contained a fault feature: the feature magnitude 

changed from about 55 to 70 mA linearly with the 

reduction of the capacitance. This was the same as 

the level 1 feature in fast changing faults. For even 

lower changing rates this linear relationship was al-

ways present. Not like in the case of fast changing 

fault, no significant features were observed in other 

decomposition levels. 

Based on the simulation study, the following fault 

detection strategy can be defined for early stage fault 

detection of the input capacitor, Cin: 

 

(1) In wavelet decomposition level one, if the fea-

ture magnitude exceeds 70 mA, a capacitance 

reduction of 20% of Cin is detected.  

 

(2) In wavelet decomposition level three, if the 

pulse value exceeds 20 mA, the event implies a 

fast drop of the Cin capacitance. The pulse peak 

value could be used to estimate the capacitance 

changing rate. 
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Figure 8: Signals in the detection of a capacitance drop fault 

within 1 ms using wavelet transform. (a) Cin capacitance (μF); 

(b) input current signal, Iin (mA); (c-e) detail wavelet coeffi-

cients in MRA from Level 3 to level 1 (mA); (f-h) fault features 

contained in detail wavelet coefficients of level 3 to level 1 

(mA). 

 

 

 

 

 

 

 

 
Figure 9: Signals in the detection of a capacitance drop fault 

within 100 ms using wavelet transform. (a) Cin capacitance (μF); 

(b) input current signal, Iin (mA); (c-e) detail wavelet coeffi-

cients in MRA from Level 3 to level 1 (mA); (f-h) fault features 

contained in detail wavelet coefficients of level 3 to level 1 

(mA). 
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4.5 Comparison with filter technique 

The wavelet fault detection method was com-

pared with the traditional filter technique, which was 

processed according to the procedure as shown in 

Figure 10.  

 

 
Figure 10: Process for simulation and fault detection using filter 

technique 

 

The process is similar to that using wavelet trans-

form. The differences are:  

(1) Instead of wavelet decomposition for removing 

the low frequency normal operation signal, a se-

cond order Butterworth high pass filter was 

used. Its cut off frequency was optimized at fc = 

10 kHz to keep as much as possible fault infor-

mation in high frequency range. 

(2) The output of the high pass filter is a single one 

dimensional time vector, not as in the wavelet 

decomposition, where multiple vectors are ob-

tained. 

 

The fault features obtained using both methods 

for different fault occurrence rates are compared in 

Figure 11. It shows significant advantages of the 

wavelet method over the traditional filter method.  

For the fast changing faults, the faults were ex-

pressed with both linear change of the feature magni-

tude and much sharper pulses in the wavelet method. 

In Figure 11a the pulse peak in the wavelet method 

reached about 80 mA from the base line, while the 

filter method only showed a peak value of about 10 

mA. 

For the slow changing faults, shown in Figure 11a 

and b, although no significant peaks were observed 

in the higher decomposition levels using wavelet 

transform, the features in the first level were still 

clearer than that obtained with the filter method. In 

the wavelet method, the features showed a difference 

from 55 to 72.5 mA with a relative change of about 

32%, while the filter method gave a difference from 

34 to 42.5 mA with a difference of only about 25%. 

 

 

 

 

Figure 11: Comparison of the fault features between wavelet 

method and filter method for (a) 1 ms, (b) 10 ms and (c) 100 ms 

fault occurrence rate (black solid line --- level 1 wavelet; blue 

dashed line --- level 3 wavelet; red solid line --- filter method) 

5 Conclusion and discussion 

This work described a method for early fault de-

tection of important electric components in power 

supply systems for more electric aircraft (MEA) us-

ing wavelet transform. The special properties of 

wavelet transform suit this method well for changing 

signal analysis. The simulation study using Modelica 

under the environment Dymola illustrated its superi-

or feasibility for the detection of fast changing faults, 

which was significantly better than the traditional 

filter technique. For the slow changing faults, the 

wavelet method also gave a significant feature and 

provided clearer information than the filter tech-

nique. Based on these advantages, the wavelet fault 

detection method is expected to achieve satisfied 

detection of early faults. 

In this study, a specific wavelet library for 

Modelica is being developed, which possesses the 

basic functionality of wavelet analysis, including 

wavelet transform and inverse transform, wavelet 

decomposition and reconstruction for multi-

resolution analysis, and other related functions. The 

work proved the feasibility of the implementation of 

wavelet analysis in Modelica. 

More work is being done in this topic, including 

further development of the Modelica wavelet library 

and experimental study of the fault detection with a 
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real buck inverter. For a real system, detailed optimi-

zation of the fault detection strategy has to be carried 

out, such as trying other wavelet functions, observ-

ing more changing rates, studying the detection with 

expanded fault ranges, and considering the faults in 

more electrical parts. 
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Abstract 

A new simulation and analysis environment in Py-
thon is introduced. The environment provides a 
graphical user interface for simulating different 
model types (currently Functional Mockup Units and 
Modelica Models), plotting result variables and ap-
plying simulation result analysis tools like Fast Fou-
rier Transform. Additionally advanced tools for line-
ar system analysis are provided that can be applied to 
the automatically linearized models. The modular 
concept of the software enables easy development of 
further plugins for both simulation and analysis. 
Keywords: PySimulator; Python; Simulator; FMI; 
FMU; Modelica; Plugin; Simulation; Analysis; Lin-
ear System Analysis 

1 Introduction 

In this article the open source environment PySimu-
lator1 is introduced and its design is discussed. The 
central idea is to provide a generic framework  
• to perform simulations with different simulation 

engines in a convenient way, 
• organize the persistent storage of results,  
• provide plotting and other post-processing fea-

ture such as signal processing or linear system 
analysis, and 

• export simulation and analysis results to other 
environments. 

1.1 Design 

From an end-user’s point of view, PySimulator con-
sists of a convenient graphical user interface so that 
all these operations can be defined mostly with the 
mouse. This is similar to many other, usually com-
mercial, simulation environments. 

                                                      
1 PySimulator builds on other Python packages with dif-
ferent license conditions. The most restrictive used is 
LGPL. Non-GUI functions are under the BSD license. 

However, the major innovation is that PySimulator is 
constructed as a plugin system: Nearly all operations 
are defined as plugins with defined interfaces. Sever-
al useful plugins are already provided, but anyone 
can extend this environment by his/her own plugins 
and there is no formal difference to plugins already 
provided by the authors of the paper. 

Introducing a new plugin means to copy a template 
and adapt it by writing Python code. Hereby it is 
possible to build upon the results of other plugins 
and provide own results to other plugins. All plugin 
functionality available via the graphical user inter-
face shall also be easily accessible in Python scripts. 
This will allow a modeler to define and automatical-
ly execute Python scripts. 

1.2 Related Work 

There are several existing Python packages that aim 
to simulate dynamic systems of standardized physi-
cal models like Modelica or FMI [MC10]:  
• The software package BuildingsPy [LBN+12] 

provides functions in Python to start simulations 
of Modelica models in Dymola [DS12]. Fur-
thermore the result file can be read to process the 
signals. 

• The OMPython package [GFR+12] interfaces 
the OpenModelica environment with Python. 
Hence, many functionalities of OpenModelica 
can be controlled by Python scripts. 

• The packages PyFMI and Assimulo [AAF+12] 
provide Python interfaces for calling functions of 
a general Functional Mock-Up Unit. Moreover, 
sophisticated numerical integration algorithms 
are interfaced or implemented in Assimulo. The 
user mainly interacts with the packages by Py-
thon scripts. A graphical user interface for plot-
ting simulation results is currently available. 

These packages concentrate the functionalities on a 
specific type of model and simulation engine and do 
not provide a wide range of post-processing features. 

DOI Proceedings of the 9th International Modelica Conference    523 
10.3384/ecp12076523 September 3-5, 2012, Munich, Germany    

 

 

 

 

 

 

 

 

 

 

   



 

 

Also, the license conditions are partially restrictive 
since, e.g., GPL is used. In the Python package index 
(http://pypi.python.org) about 130 Python simulation 
packages are listed. Most of these packages are dedi-
cated to the simulation of specific models (like neu-
ron networks, biological systems, discrete event sys-
tems) or are low level generic packages that require 
to define a model as Python code (like Assimulo, 
pyDDE, ScipySim).  

2 Architecture and GUI 

The environment PySimulator is implemented in 
Python and depends on several Python packages. 
The Graphical User Interface (GUI) is built by Py-
Side [P12], a Qt-Interface to Python. Plotting fea-
tures are realized by integrating Chaco [E12] into the 
Qt [NC12] framework. 

The main GUI of PySimulator (see Figure 1) has a 
menu bar on the top, the Variable Browser, a plot-
ting area and an Information output window. The 

menu bar shown in Figure 2 provides functionalities 
for opening models, opening and conversion of result 
files, running the simulation and starting analysis 
tools. In the Variable Browser all models and simu-
lation results are managed to get access to the varia-
bles, their attributes and their numeric data. Struc-
tured plots show the numeric data in the plotting ar-
ea. 

 
Figure 2: Menu bar of PySimulator GUI. 

The environment is intended to provide features for 
two kinds of users. In a first step the user interactive-
ly works with the graphical user interface by loading 
models, simulating them, plotting variables, applying 

 

Figure 1: Main Graphical User Interface of PySimulator. 
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analysis tools and inspecting the results. An ad-
vanced user can profit from Python’s scripting fea-
tures because it is possible to load, simulate and ana-
lyze models by API function calls in custom scripts. 

The implemented software is structured as shown in 
Figure 3. Some main modules are hosted in the top 
level directory PySimulator. Under Plugins all code 
and data of plugins is organized. Plugin interfaces 
for model simulators and simulation analysis tools 
are provided. This plugin concept leads to very mod-
ular software that can be easily extended by further 
plugins. In the following subsections the main GUI 
elements and the modular plugin structure are pre-
sented. 

 
Figure 3: Main directory structure of PySimulator. 

2.1 Model and Result Management 

A central element of the PySimulator GUI is the 
Variable Browser, see Figure 1. It can show several 
variable trees of different models. Such a variable 
tree is either generated by opening a simulation re-
sult file, or by opening a model. To open a model the 
Simulator plugin has firstly to be selected in the 
menu Open Model (see in Figure 2; for more details 
see Section 3). Secondly the model file itself is to be 
specified. Each top level item in the Variable Brows-

er has an ID number followed by a colon and the 
name of the model. The ID number also marks vari-
ables uniquely in plot windows.  

By selecting Open Result File the user can load a 
result file of different formats into the Variable 
Browser. In such a case there is no model to be simu-
lated and the item is displayed in grey color like 
items number 3 and 6 in Figure 5. Currently two re-
sult formats are supported: the proposed standard 
time series file format MTSF [PBO12] in HDF5, and 
the binary format generated by Dymola’s [DS12] 
simulation executable in Matlab 4 format [M12]. 

 
Figure 5: Top level items in the Variable Browser. Black 
color: Model and result file; grey color: only result file. 

For each top level item an information text window 
(tool tip) is displayed when the user holds the mouse 
pointer some moment over the name of the item. The 
text informs about properties of the model. Its struc-
ture depends on the model type. An example for an 
FMU [MC10] is displayed in Figure 4. 

After opening a model the variable tree is construct-
ed according to the names of all model variables. 
New tree branches are introduced by variable names 
containing dots ‘.’ representing a hierarchy or 
squared brackets ‘[‘, ‘]’ representing arrays. The unit 

Figure 4: Variable Browser with information text (on the right) for the FMU model. 

Session 5A: Simulation Tools 

DOI Proceedings of the 9th International Modelica Conference    525 
10.3384/ecp12076523 September 3-5, 2012, Munich, Germany   



 

 

of the variable is shown if there is any. The values of 
independent parameters or the initial values of state 
variables may be edited in the Variable Browser e.g. 
for 1:clutch.cgeo or 1:clutch.fn_max. Further-
more, variables to be plotted can be defined before 
the numerical integration starts. The attributes of 
each variable depending on the model or result file 
type can be displayed by opening the leaf in the vari-
able tree, e.g. for the variable 1:clutch.a_rel in 
Figure 4. 

During the numerical integration of a model a result 
file is generated that is associated with the model. A 
context menu Results for the top level items in the 
Variable Browser informs about the associated result 
file, see Figure 6. By selecting the context menu 
Model one can close a model and the associated re-
sult file. Also, the user can duplicate a loaded model. 
Each duplicate has its own top level item in the Vari-
able Browser like any other model. It is based on the 
same model file (e.g. Friction.fmu or Friction.mo), 
but has a separate result file, separate settings for the 
numerical integration and separate values for param-
eters or initial values set before the numerical inte-
gration. For example, the top level item 5 in Figure 5 
is a duplicate of model 2 (Rectifier model). 

This approach has the advantage that comparing a 
reference simulation with a tuning simulation of the 
same original model is very easily possible. The user 
just duplicates the reference version of the model and 
experiments on the duplicate. The effects can be di-
rectly inspected in plots for the reference and the 

tuned version of the model. 

 
Figure 6: Standard context menus for a top level item in 
the Variable Browser. 

2.2 Plotting Features 

Simulation data and analysis results must be pro-
cessed to make them comprehensible for humans. In 
PySimulator, the data is visualized using graphical 
plots. For this purpose PySimulator provides a plot-
ting framework, based on the 2D plotting library 
Chaco [C12]. Chaco was chosen because it is com-
patible with the Qt/PySide UI-framework, it is li-
censed under the new BSD license, and it is a native 
Python library. The last feature not only facilitates 
the integration but also allows making full use of its 
object oriented structure at all levels of the inher-
itance tree for manipulation and extendibility to fit 
our needs. The primary advantage of Chaco and 
what sets it apart from other plotting solutions for 
Python lies in its focus on interactivity.  

Plots are shown in a designated area within the main 
window as shown in the upper right part of Figure 1. 
Within this area plots can be arranged on a higher 
level within tabs. The tabs are then subdivided into a 

 

Figure 7: A plot widget displaying three variables, with a selected time interval and open context menu. 
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grid in which the plots are arranged. To achieve all 
this, a base class called PlotWidget was implemented 
that acts as an adapter between Chaco and our appli-
cation or respectively Qt/PySide. All plots are sup-
posed to be implemented as extensions of this base 
class.  

Based on the Chaco framework and PlotWidget a 
default plot widget (DefaultPlotWidget) for display-
ing a variable value over time was implemented 
while paying special attention to the fact that future 
plugin developers can both easily use the existing 
material and still have access to Chaco’s full versatil-
ity. Marking a variable in the Variable Browser plots 
the variable value over the time of the simulation in 
the currently active plot, unmarking it removes the 
plot line. An example of three variables of a simulat-
ed model plotted in a default plot widget can be seen 
in Figure 7. The following features are based on de-
fault Chaco elements and can easily be used individ-
ually on any plot, specifically plots by plugins, either 
out-of-the-box as described here or derived from 
them to fit special needs: 
• Panning: Left clicking and dragging within the 

plot pans the view. 
• Zooming: Turning the mouse wheel while hov-

ering over the plot zooms in and out. Hovering 
over an axis only zooms along the respective 
axis. Zooming and panning works very fast, and 
is even reasonably fast with millions of points in 
the plot window. 

• Selecting: Left clicking and dragging on the X-
axis selects a time period. Double clicking the 
axis opens a menu for textual input of selection 
limits. 

• Context menu: Right clicking on the plot opens 
a context menu. In the DefaultPlotWidget it 
shows callbacks for plugins. 

• Marker: While hovering over one plot, the plot's 
time stamp under the mouse is displayed as a 
vertical line in this and all related plots.  

Additionally, plots can be saved as images, either as 
bitmaps in PNG format or as vector graphics in SVG 
or PDF format.  

2.3 Plugin Structure  

Currently, infrastructure for two kinds of plugins is 
available in PySimulator: Simulator and Analysis 
plugins. The plugin interfaces are designed to easily 
integrate own simulator and analysis code. 

Simulator plugins are intended to provide the infra-
structure to simulate a certain kind of model and 
write/read the result file of the simulation. In princi-
ple all types of simulation engines can be included, 
provided time series are produced as results and var-
iables and parameters are identified with a hierar-
chical naming structure. Currently, plugins are avail-
able for FMUs [FC10], for Dymola [DS12], and for 
OpenModelica [GFR+12]. 

The name of each Simulator plugin appears in the 
main menu bar (Figure 2) under Open Model. To 
include a Simulator plugin only the plugin code has 
to be inserted in a new directory of 
Plugins/Simulator, e.g. FMUSimulator in Figure 8. 

 
Figure 8: Directory and main Python class structure for 
plugins in PySimulator. 

The main Python code of a Simulator plugin has to 
be inside a class Model that is derived from the class 
Plugins.Simulator.SimulatorBase.Model. Im-
portant variables, classes and function of the main 
class Model are: 
• modelType: String, e.g. ‘FMU1.0’, ‘Dymola’. 
• integrationSettings: Class including start, 

stop time, algorithm name, etc. 
• integrationStatistics: Class including 

number of events, grid points, elapsed real 
time, etc. 

• integrationResults: Class including result 
file access. 

• setVariableTree(): Function to generate da-
ta for a variable tree. 
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• getAvailableIntegrationAlgorithms(): 
Function to get a list of available integration 
algorithms. 

• simulate(): Function to start the numerical 
integration of the model. 

• initialize(t): Function to initialize the 
model. 

• getDerivatives(t,x): Function to evaluate 
the right hand side of the system. 

• getEventIndicators(t,x): Function to 
evaluate the event indicators (= switching 
functions to detect events) of the system. 

• getStates(): Function to get the values of all 
continuous model states. 

• getStateNames(): Function to get a list of all 
names of the continuous model states. 

• getValue(name): Function to retrieve the val-
ue of a certain variable. 

For example, the file FMUSimulator.py has a Python 
class Model that provides model typical methods and 
data as listed for an FMU. 

Analysis plugins provide functionality for analyzing 
the model or result data in the post-processing stage 
of a simulation. They contain functions which work 
on variables, models and plots after a model is load-
ed or a simulation is finished. In order to integrate 
the Analysis plugins, they are automatically loaded 
by PySimulator from the Analysis folder. An initiali-
zation function is called for every plugin to enable 
the initial setup, like declaration of variables or own 
classes. The Analysis plugin is further able to regis-
ter callback functions in the main program which 
allows access to the plugin’s functions. The call of a 
plugin’s function from the GUI takes place by either 
pull-down menus, a custom button bar or a context 
menu appearing when the user clicks on an appropri-
ate GUI element like the model’s name. 

For processing the data, the plugins can implement 
own algorithms or use shared functionality stored in 
the Algorithms folder. It is furthermore possible for 
such a plugin to initialize a model or to start a simu-
lation, as this might be necessary for some function-
ality like linearization of the model. In this case, the 
features of the Simulator plugins are utilized. The 
feedback of the Analysis plugin can be sent to the 
textual Information output window, a plot window or 
stored in every other way Python allows, e.g. in a file 
on disk. 

It follows a simple example for an Analysis plugin to 
find the maximum value of a time trajectory and plot 
a label at the maximum point: 
 
def findMax(widget): 
  for plot in widget.plots: 
    data = plot.data 
    maxVal = data[0] 
    for time, value in data: 
      if value > maxVal[1]: 
        maxVal = (time, value) 
    maxLabel = DataLabel( 
       component=plot, 
       data_point=maxVal,                            
       label_format=str('(%(x)f, %(y)f)')) 
    plot.overlays.append(maxLabel) 
 
def getPlotCallbacks(): 
  return [["Find Maximum", findMax]] 

3 Simulator Plugins 

 
Figure 9: Integrator control GUI in PySimulator. 

One of the main features of PySimulator is running 
and controlling the numerical integration of different 
types of models (= simulation). Those models re-
quire different simulation engines interfaced by the 
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Simulator plugins in PySimulator. All the Simulator 
plugins are controlled by the same Integrator Control 
GUI, see Figure 9. Some menu entries depend on 
properties of the Simulator plugin. 

Start and stop time for the integration may be edited 
and one of the integration algorithms available for 
the Simulator plugin can be selected. Depending on 
the property of the algorithm the user can edit the 
error tolerance or the fixed step size. The simulation 
results are mainly discretized, time depending trajec-
tories. The discretization points (= grid points, dense 
output points) of the time can be given either by the 
number of equidistant grid points or by the width of 
an equidistant time grid. A third option is to use the 
steps of the integration algorithm for the grid points. 
The name of the result file can also be specified. If 
Plot online is selected in the GUI, the plots of the 
simulation results are updated during the integration 
process. This may increase the elapsed real time for 
the integration, but gives information about the re-
sults at once. This feature is especially intended for 
model simulations that take some time. 

The simulation is run in a separate thread, so Varia-
ble Browser and Plot area are still available for user 
interactions. During the numerical integration several 
statistical parameters inform about the progress: cur-
rent simulation time, number of time and state 
events, number of computed result points, the size of 
the result file and the elapsed real time so far. In 
some cases it is very helpful to see that for example 
lots of events are generated and therefore the integra-
tion is getting stuck, or the result settings lead to a 
huge result file and therefore the simulation is slow-
ing down. 

3.1 FMU Simulator 

The FMU simulator provides an interface to models 
exported as a Functional Mockup Unit for Model 
Exchange (FMU, see [MC10]). This interface is sup-
ported by more than 30 simulation environments 
(www.functional-mockup-interface.org/tools.html). 
An FMU is basically composed of two components: 
Firstly, a description file in XML-format holds all 
information about the variables of the model and 
other model information. Secondly, binaries for one 
or several target machines are contained, such as 
Windows dynamic link libraries (.dll) or Linux 
shared object libraries (.so). They contain the code 
for evaluating the model’s equations.  

This way, the FMU interface allows the evaluation 
of the right hand side 𝑓 of the governing equations of 
a model, as well as its outputs 𝑦 and its event indica-
tor signals 𝑧. They depend in generally on the mod-
el’s states 𝑥, its parameters 𝑝, inputs 𝑢 and the time 
𝑡. Additionally, time events can be triggered by the 
FMU. The event indicator signals are used to detect 
state events, which may occur in many physical 
models. With this information, it is possible for a 
numerical integration solver to perform the time in-
tegration of the model to obtain a solution, see Fig-
ure 10. 

The single steps performed by PySimulator are the 
following. First, the XML description file of the se-
lected model is parsed. The information from this 
file is visualized in the Variable Browser of the main 
GUI. The Variable Browser can thus also be used 
independently as an FMU description viewer.  

Next, the Functional Mockup Interface (FMI) func-
tions in the shared library are interfaced to make 
them available in PySimulator. This way, it is possi-
ble for the integrator to call the model functions. 
While these parts are sufficient for some basic opera-
tions like initialization, the time integration itself 
utilizes the Sundials Solver Suite [HBG05]. Sundials 
provides solvers for explicit and implicit dynamical 
systems: CVODE and IDA. CVODE numerically 
integrates ordinary differential equations by linear 
multistep methods. Depending on the solution 
CVODE switches between solvers for stiff and non-
stiff problems. IDA uses BDF (Backwards Differen-
tiation Formulas) to solve systems of differential-
algebraic equations. Sundials supports root finding 
during the numerical integration. In summary, the 
Sundials solvers are prepared to be applied to FMUs. 
The Sundials integrator suite is implemented in C 
and is accessed from PySimulator via the python-
sundials [T12] interface. 

Figure 10: Interface from the FMU model to the SUNDI-
ALS solver. 

𝒙̇ = 𝒇(𝒙,𝒑,𝒖, 𝑡) 
𝒚 = 𝒈(𝒙,𝒑,𝒖, 𝑡) 
𝒛 = 𝒉(𝒙,𝒑,𝒖, 𝑡) 

FMU 

 

t, u 𝒙̇,𝒚, 𝒛 x 

SUNDIALS Solver 
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The FMU Simulator can be interfaced both by code 
from e.g. an Analysis plugin as well as by the GUI 
elements described in Section 3. In both cases the 
important simulation parameters can be adjusted by 
the user to the specific problem. After simulation, the 
results are stored in the MTSF file format, the pro-
posed standard time series file format [PBO12] that 
is based on HDF5 [THG12]. This format offers a way 
to read and write variable information and numeric 
data in a convenient and standardized way. The for-
mat is especially designed to support both small and 
very large files. In [PBO12] MTSF files up to 200 
GBytes have been generated and variables have been 
read from the file. Most simulation programs do not 
support generating and plotting result files of such a 
size.  

For example, a result file for the full robot model 
from the Modelica Standard Library (FMU generated 
by Dymola) is generated with 30 Mio. result points. 
The result file has a size of 171 GΒytes. When plot-
ting signals from this file, the loaded signal is 
downsampled to 5 Mio. points to get acceptable plot-
ting performance. 

3.2 Dymola Simulator 

The second Simulator plugin is based on the simula-
tion executable (dymosim[.exe]) generated by the 
commercial Modelica environment Dymola [DS12] 
from Dassault Systèmes. PySimulator supports se-
lecting a Modelica model by asking for the package 
file and the model name. Then, the Modelica model 
is automatically compiled by Dymola in the back-
ground if there is a version of Dymola installed. The 
executable includes object code for both the model 
equations and the numerical integration algorithms. 

 
Figure 11: Variable tree in PySimulator based on Dymola’s 
simulation executable. 

The list of all variables and the values for editable 
parameters and initial values are generated when 

loading the model, see Figure 11 for an example. If 
the user wants to start the numerical integration the 
function model.simulate of the Dymola Simulator 
plugin generates a new initialization file from the 
integration settings in the Integrator Control GUI and 
the changed parameters and initial values. After the-
se preparations the simulation executable is started. 
During the numerical integration process the current 
simulation time is read and displayed in the Integra-
tor Control GUI to be up to date about the simulation 
progress. 

The result file in Matlab’s 4 binary MAT-format can 
be read by PySimulator. The corresponding result 
object in PySimulator enables to get access to the 
numeric data, the description string and the unit by a 
Modelica variable name. A conversion of Dymola’s 
result file (MAT) to the proposed Standard Time 
Series File Format (MTSF) is supported by a sepa-
rate menu entry shown in Figure 2. 

3.3 OpenModelica Simulator 

A third Simulator plugin for PySimulator is shipped 
with the open source OpenModelica environment. 
Details about this plugin are given in [GFR+12]. 

4 Analysis Plugins 

The result of a simulation mainly consists of time 
series data that can be plotted. Signal processing 
plugins can access the plot data, can extract more 
information and can visualize it. Several simple 
functionalities are already provided to compute min-
imum, maximum, and other signal properties in a 
selectable time window. Furthermore, an involved 
functionality is available to perform Fast Fourier 
Transformations.  

The nonlinear model of a Simulator plugin can be 
linearized around the initialization point or another 
time point of the simulation (provided the Simulator 
plugin supports the required interface for linear 
models). Afterwards, linear system analysis plugins 
can operate on such a linear system. Already availa-
ble plugins compute and plot eigenvalues, provide 
eigenmode analysis, and perform frequency and step 
responses. 

4.1 Signal Processing Plugin 

The Signal Processing plugin provides operations on 
result signals displayed in a plot window. When right 
clicking on a plot window, together with an optional 
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selection of a time range, a window (see Figure 7) 
pops up to select the desired signal processing opera-
tion on the selected time range. 

 
Figure 12: Example for marking of a minimum. 

An example of how the result of an operation is 
shown in a plot is given in Figure 12, where the min-
imum of a signal is determined in the range 𝑡 ∈
[1.0, 2.7]. 

The operations to be carried out have the following 
mathematical definition: 

Name Operation on 𝒚(𝒕) 
with 

tmin ≤ t ≤ tmax, T =  tmax −  tmin 
Minimum 𝑦𝑚𝑖𝑛 =  min𝑦(𝑡) 

Maximum y𝑚𝑎𝑥 =  max𝑦(𝑡) 

Arithmetic 
Mean 

𝑦𝐷𝐶 =
1
𝑇
∙ � 𝑦(𝑡)

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

∙ 𝑑𝑡 

Rectified 
Mean 

𝑦𝑅𝑀 =
1
𝑇
∙ � |𝑦(𝑡)|

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

∙ 𝑑𝑡 

Root 
Mean 
Square 

𝑦𝑅𝑀𝑆 =  �
1
𝑇
∙ � 𝑦(𝑡)2

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

∙ 𝑑𝑡 

FFT 

               𝑓𝑠 =
𝑛 − 1
𝑇

,

                𝑓 = �0,
𝑓𝑠
𝑛

,
2𝑓𝑠
𝑛

,⋯ ,
𝑓𝑠
2�

,

∆𝑦𝑟 = 𝑦(𝑡𝑟) − 𝑦𝐷𝐶 ,

𝑦𝐹𝐹𝑇,𝑘(𝑓𝑘) = 1
𝑛𝑓

� ∆𝑦𝑟

𝑛𝑓−1

𝑟=0

𝑒
−𝑖2𝜋𝑘 𝑟𝑛𝑓

 

The integrals in the operations are computed by us-
ing the trapezoidal integration rule on the selected 
signal y (basically, the result points of y are linearly 
interpolated and then exactly integrated). 

The Fast Fourier Transform (FFT, [RKH10]) is used 
to analyze which frequencies with which amplitudes 

are contained in a periodic result signal. For this, a 
complex vector yFFT is computed as function of a real 
frequency vector f. Since an FFT requires equidistant 
time points, the (potentially) non-equidistant result 
points of a signal, y = y(t), are linearly interpolated 
and mapped to an equidistant grid of the desired 
number of points n. The frequency vector f consists 
of nf  = div(n,2) + 1 points. For even n, the last point 
of vector f is fs/2, otherwise it is fs/2∙(n-1)/n (with fs = 
(n-1)/T and T as the selected time range). The variant 
of FFT is used, that subtracts the arithmetic mean of 
y from the signal y itself and normalizes the FFT re-
sult with nf (in order that amplitudes of yFFT corre-
spond to the amplitudes in the underlying result sig-
nal). 

The core FFT calculation is performed with Python 
function numpy.fft.rfft which in turn is an inter-
face to the Fortran package fftpack [Swa82]. This 
package computes the FFT of an equidistant vector y 
of any length n in O(n2) and if n is expressed as a 
multiple of 2, 3, 4, or 5, that is 𝑛 = 2𝑖3𝑗4𝑘5𝑙 in 
O(n∙log(n)) operations. Note, the non-prime factor 4 
gives a speed-up with respect to purely 2 factors 
[Tem83]. 

A natural question is what number n to select. There 
are two requirements: (1) all frequencies up to a de-
sired frequency should be included, and (2) the dis-
tance between two frequency points should be small 
enough. With (1) the number of points n can be 
computed as (T is the time range on which the FFT is 
applied): 

𝑓𝑚𝑎𝑥 =
𝑓𝑠
2

=
𝑛 − 1

2𝑇
  →   𝑛 ≈  2𝑇𝑓𝑚𝑎𝑥. 

The distance d between two frequency points of vec-
tor f for an even number of n is computed as (for an 
odd n the result is the same, but with a slightly dif-
ferent derivation): 

𝑑 =
𝑓𝑚𝑎𝑥

𝑛𝑓 − 1
=

𝑓𝑠 2⁄
𝑛𝑓 − 1

=
𝑛 − 1

2𝑇
𝑛
2 + 1 − 1

=
1
𝑇
𝑛 − 1
𝑛

≈
1
𝑇

. 

This means that the frequency resolution depends 
only on the examined time interval T and can there-
fore only be enlarged by enlarging this interval (and 
it is not related to the number of points used in the 
FFT calculation). For example, if the base frequency 
is f0 and the examined time interval T is over k peri-
ods of this base frequency, then the distance d is: 
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𝑑 =
1

𝑘 𝑓0⁄ =
𝑓0
𝑘

. 

In other words, in order to get at least a resolution of 
10 % of the base frequency, the examined time inter-
val should have at least a range of 10 base periods. 

As a simple example consider the following addition 
of two sines with different amplitudes (𝐴1 = 1,𝐴2 =
0.2) and frequencies (𝑓1 = 5,𝑓2 = 20): 

𝑦(𝑡) = 𝐴1 sin(2𝜋𝑓1𝑡) + 𝐴2 sin(2𝜋𝑓2𝑡). 

If 10 periods of 𝑓1 are analyzed, the FFT-plot up to 
2𝑓2 (𝑛 ≈ 2 ∙ 10

5
∙ 40 + 1 → 𝑛 = 160) results in Fig-

ure 13. 

 
Figure 13: FFT of example with n = 160. 

As can be seen the 5 and 20 Hz frequencies are cor-
rectly identified with small errors in the amplitudes. 
(the width of the plot bars are selected as 2 5 ∙ 𝑑⁄ ). 
Extending the frequency range to 10𝑓2 does not 
change the resolution (𝑑 = 5 10⁄ = 0.5 𝐻𝑧), but re-
duces the amplitude errors as seen in Figure 14. 

 
Figure 14: FFT of example with n = 800. 

4.2 Linear System Analysis Plugin 

For many control applications it is necessary to have 
a linear approximation of a nonlinear system. In ad-
dition a linear representation of a nonlinear system 

can be helpful to analyze specific properties of the 
system, for example local stability. 

The Linear System Analysis plugin allows to auto-
matically linearize a model that is loaded into Py-
Simulator. If the plugin is loaded, its functionality 
can be accessed by right-clicking a loaded model in 
the GUI of PySimulator. If a loaded model is linear-
ized using the GUI the parameter set 𝑝 ∈ ℝ𝑛𝑝, as 
defined in the Variable Browser is used for the line-
arization around the operating point. If it is called 
from a Python-script, a set (Python dictionary) of 
parameters and values can be used. A model (nonlin-
ear dynamic system) can be represented as a set of 
equations: 

𝑥̇ = 𝑓(𝑥,𝑝,𝑢, 𝑡), 𝑥(𝑡0) = 𝑥0, 
𝑦 = 𝑔(𝑥, 𝑝,𝑢, 𝑡). 

For the plugin it is necessary that a set of inputs 
𝑢 ∈ ℝ𝑛𝑢 and outputs 𝑦 ∈ ℝ𝑛𝑦 are defined in the 
model, where 𝑛𝑢 ∈ ℕ is the number of inputs and 
𝑛𝑦 ∈ ℕ is the number of outputs of the system. 

The linearization procedure uses a numerical central 
difference quotient for the calculation of the Jacobi-
ans. For a function 𝑞(𝑣) depending on a scalar 𝑣 we 
use the approximation: 

𝑞𝑣(𝑣) ≈
𝑞(𝑣 + 𝛿) − 𝑞(𝑣 − 𝛿)

2𝛿
 

with a step size 𝛿 =  √𝜀3 max(|𝑣|, 1) and the ma-
chine precision 𝜀. The step size is computed to find a 
compromise between a minimum discretization error 
and a minimum numerical error. 

The central difference quotient is successively ap-
plied to every component of 𝑥 and 𝑢 at a steady state 
point 𝑤𝑠𝑠 ≔ (𝑥𝑠𝑠,𝑝,𝑢𝑠𝑠, 𝑡0). The linear approxima-
tion of the nonlinear system is a linear time invariant 
(LTI) system that is represented by the matrices 
𝐴 ∈ ℝ𝑛𝑥×𝑛𝑥, 𝐵 ∈ ℝ𝑛𝑥×𝑛𝑢, 𝐶 ∈ ℝ𝑛𝑦×𝑛𝑥 and 𝐷 ∈
ℝ𝑛𝑦×𝑛𝑢: 

𝐴 = 𝑓𝑥(𝑤𝑠𝑠), 𝐵 = 𝑓𝑢(𝑤𝑠𝑠),  
𝐶 = 𝑔𝑥(𝑤𝑠𝑠), 𝐷 = 𝑔𝑢(𝑤𝑠𝑠). 

The default case is 𝑥𝑠𝑠 ∶= 𝑥0 ∈ ℝ𝑛𝑥 and 𝑢𝑠𝑠 = 0. If 
no user defined steady state point is given, 𝑥𝑠𝑠 is cal-
culated by calling the simulator’s initialization func-
tion. It is also possible to linearize around an arbi-
trary user-defined steady state 𝑥𝑠𝑠. 
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The linear system is generated as an instance of a 
Python class inside the Linear System Analysis 
plugin, and can be accessed by other plugins inside 
PySimulator for further analysis. The class provides 
functions to return the matrices A, B, C, D, names 
and sizes of the input, output and state vectors. In 
addition it allows writing the matrices along with the 
state, input and output names to a file in Matlab’s 
MAT-format, see Figure 15, so that they can be di-
rectly used for controller synthesis inside Matlab 
[M12]. 

 
Figure 16: Frequency responses of a 2x2 system. 

Furthermore, the plugin provides various analysis 
operations on the linear input/output system. Most 
important, the frequency responses from the inputs to 

the outputs are computed and plotted. An example of 
the frequency responses of a system with 2 inputs 
and 2 outputs is shown in Figure 16. 

4.3 Eigenvalue Analysis Plugin 

For the analysis of many systems, the eigenvalues 
and eigenmodes are of special interest. They support 
the understanding of the system by providing damp-
ing and frequency information when eigenmodes or 
states are excited. 

The Eigenvalue Analysis plugin needs the function-
ality to linearize a system as a starting point for fur-
ther analysis. For this, the Linear System Analysis 
plugin from Section 4.2 is utilized. Βased on this, 
functions for the visualization of both eigenvalues 
and eigenmodes can be called, see Figure 17. 

 
Figure 17: Menu of the Eigenvalue Analysis plugin. 

The eigenvalues are plotted in the complex domain 
as can be seen in Figure 18. This provides infor-
mation about the stability in the point of linearization 
as well as about the dynamics of the corresponding 
eigenmodes. When clicking with the left mouse but-
ton on an eigenvalue, additional information to this 

 

Figure 15: Linear System Analysis plugin inside PySimulator. 
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eigenvalue is displayed such as frequency, damping 
and controllability. 
 

 
Figure 18: Plot of eigenvalues and frequency response 
with additional information. 

The eigenmodes themselves can be visualized if the 
model has been exported with an own visualization 
routine. This is e.g. the case, if a Modelica model is 
exported with the DLR Visualization library [Bel09]. 
The eigenmodes are a linear combination of the 
model’s states. Therefore, they can be visualized if 
the states have some form of visualization. The se-
lected eigenmodes, see Figure 19, are excited by a 
periodic sine, making it possible to see their impact 
on the system, not only in a figure, but in a dynamic 
way. 

 
Figure 19: GUI and animation of the 8th eigenmode, show-
ing a clear coupling of the flexible states. 

The shown example is a mechanical model of a mul-
ti-robot cell of the DLR Center of Lightweight Pro-
duction Technology. The visualized Eigenmode 8 
shows a clear coupling of the left and middle beam 
due to the portal shown in the upper left part of the 

figure. The GUI in Figure 20 shows some dynamic 
properties which can also be seen in the eigenvalue 
plot in Figure 18. As an additional possibility, the 
user can furthermore visualize the states of the sys-
tem.   

 
Figure 20: GUI to control the visualization of eigenmodes 
and states. 

The combination of the two abilities Plot Eigenval-
ues and Animate Eigenvectors/States enables the en-
gineer to understand and visualize the dynamics of 
the system. This might help to adapt parameters of 
the system to e.g. stabilize it or reduce the impact of 
a periodic disturbance. 

5 Algorithms 

The algorithms used in the plugins are mostly based 
on the standard Python packages numpy and scipy. 
However, several new algorithms had to be imple-
mented that seemed to be not yet available in other 
Python packages. These algorithms are provided un-
der directory Plugins/Algorithms. All functions in 
this directory can be used also in any other context, 
since there is no relationship to PySimulator (just 
that plugins from PySimulator are calling these func-
tions). Especially, in this directory functions are pro-
vided for the Signal Processing and the Linear Sys-
tem Analysis plugins. 

For example, class LTI in file Algorithms/Control/ 
lti.py provides various functions for multi-input-
multi-output Linear Time Invariant systems. In the 
current version, two representations of continuous 
linear systems are supported: 
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• LTI – State Space (derived by linearization 
from the nonlinear model, see Section 4.2): 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡). 

• LTI – Zeros and Poles:  

𝑦(𝑠) = �
𝑔11 … 𝑔1𝑚
⋮ ⋱ ⋮
𝑔𝑛1 … 𝑔𝑛𝑚

� ∙ 𝑢(𝑠), 

𝑔𝑖𝑗(𝑠) = 𝑘𝑖𝑗 ∙
∏ �𝑠 − 𝑧𝑖𝑗,𝑙�𝑙

∏ �𝑠 − 𝑝𝑖𝑗,𝑙�𝑙
 

             = 𝑘𝑖𝑗 ∙
∏ �𝑠 + 𝑛1,𝑖𝑗,𝑙�𝑙

∏ �𝑠 + 𝑑1,𝑖𝑗,𝑙�𝑙
 

                        ∙
∏ �𝑠2 + 𝑛2,𝑖𝑗,𝑙𝑠 + 𝑛3,𝑖𝑗,𝑙�𝑙

∏ �𝑠2 + 𝑑2,𝑖𝑗,𝑙𝑠 + 𝑑3,𝑖𝑗,𝑙�𝑙
 

An LTI object is initialized by either defining a state 
space representation with a tuple of matrices (A, B, 
C, D), or by defining a zeros and poles representa-
tion by a matrix of tuples (k, z, p). Such a tuple is 
defined with a gain 𝑘 ∈ ℝ, and z and p vectors of 
real or conjugate complex zeros and poles. Internally 
in the class, a second representation is computed and 
stored consisting of first and second order transfer 
functions described by coefficients 𝑛𝑞,𝑖𝑗,𝑙 , 𝑑𝑞,𝑖𝑗,𝑙 ∈
ℝ with 𝑞 = 1, 2, 3. Depending on the selected opera-
tion, one of the two representation forms is used to 
perform the calculation. For example, evaluating a 
zeros and poles object on a given s-value is per-
formed with the second representation form, since 
then a real-valued s will result in a real-valued result. 
Otherwise, due to numerical errors, the result might 
be complex-valued. 

Besides pure data, also meta-information can be as-
sociated to an LTI object, consisting of signal names, 
units and description texts. When generating an LTI 
object from the Linear System Analysis plugin, this 
meta information is automatically generated from the 
corresponding information stored in the underlying 
model. When plotting or printing an LTI object, the 
meta-information is utilized to improve the represen-
tation for the user. 

Currently, only a few operations on LTI objects are 
provided. Most importantly, a frequency response 
object can be computed. If the LTI object is in a state 
space representation, it is internally first transformed 
to a zeros and poles object and this object is then 
evaluated on the desired 𝑠 = 𝑗𝜔 values. By default, 

these values are selected on a logarithmic scale and 
the smallest and largest frequency values are de-
duced from the poles and zeros. The transformation 
to zeros and poles form is performed in a numerical-
ly reliable way by computing the eigenvalues of A 
and the generalized eigenvalues of (A, B, C, D) for 
selected columns of B and selected rows of C and D. 

6 Conclusions 

PySimulator is provided as an open source environ-
ment to conveniently perform simulations with dif-
ferent simulation engines and to analyze the results 
with a wide range of Analysis plugins. The environ-
ment has been designed to cope with large problems. 
For example, result files with sizes larger than 100 
GByte can be handled, as well as several million 
points in one plot window. We hope that many other 
people will contribute with Simulator and Analysis 
plugins. We plan to include plugins from other de-
velopers in future PySimulator distributions, provid-
ed the plugin adds useful functionality, and the most 
restrictive license used in the plugin is LGPL. The 
copyright remains with the developers. 
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Abstract 

How can Python users be empowered with the robust 

simulation, compilation and scripting abilities of a non-

proprietary object-oriented, equation based modeling 

language such as Modelica? The immediate objective 

of this work is to develop an application programming 

interface for the OpenModelica modeling and simula-

tion environment that would bridge the gap between the 

two agile programming languages Python and Modeli-

ca. 

The Python interface to OpenModelica – OMPy-

thon, is both a tool and a functional library that allows 

Python users to realize the full capabilities of 

OpenModelica's scripting and simulation environment 

requiring minimal setup actions. OMPython is designed 

to combine both the simulation and model building 

processes. Thus domain experts (people writing the 

models) and computational engineers (people writing 

the solver code) can work on one unified tool that is 

industrially viable for optimization of Modelica mod-

els, while offering a flexible platform for algorithm 

development and research.  

 

Keywords: Python, OpenModelica, OMPython, Python, 

simulation, modeling, Modelica, Python simulator. 

1 Introduction 

Necessity is the mother of all inventions. Often in sci-

ence and engineering, the insufficiency of available 

tools for researchers and developers creates difficulties 

in exploring and investigating a certain subject. This 

creates incentives to develop new infrastructures and 

tools to fill the void. The goal behind the creation of the 

Python interface to OpenModelica is to create a free, 

open source, highly portable, Python based interactive 

session handler for Modelica scripting and modeling, 

thus catering to the needs of the Python user communi-

ty. 

OMPython – the Python interface to OpenModelica 

is developed in Python using tool communication based 

on OmniORB and OmniORBpy - high performance 

CORBA ORBs for Python. It provides seamless sup-

port to the Modelica Standard Library and the Modelica 

Language Specification [3] supported by OpenModeli-

ca [2]. 

OMPython provides user-friendly features such as: 

 Interactive session handling, parsing, interpretation 

of commands and Modelica expressions for evalua-

tion, simulation, plotting, etc. 

 Creating models, using pre-defined models, making 

component interfaces and annotations. 

 Interface to all OpenModelica API calls. 

 Optimized  result parser that gives access to every 

element of the OpenModelica Compiler's (OMC) 

output. 

 Helper functions to allow manipulation of nested 

dictionary data types. 

 Easy access to the Modelica Standard library and 

calling of OpenModelica commands. 

 Provides an extensible, deployable and distributable 

unit for developers. 

Since OMPython is designed to function like a library, 

it can be used from within any Python application that 

requires the OpenModelica services. OMPython uses 

the CORBA implementation of OmniORB and Om-

niORBpy to communicate with the OpenModelica 

compiler. 

2 Using OMPython 

This section describes how to use OMPython and also 

demonstrates its use in creating a simple Modelica 

model callable from the Python interpreter. It also pre-

sents the two modes of operation specifically designed 

for testing OpenModelica commands and using the 

OMPython API as a Python library [1]. 
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2.1 Installing OMPython 

The two requirements for the operation of the API are 

installations of OpenModelica 1.8.1 and Python 2.6. 

Since OMPython is supplied together with the 

OpenModelica installer, the standard source distribu-

tion of the API can be used to install it to the third party 

libraries of the installed Python version. Building and 

installing the module, for example in the Windows sys-

tems, is as simple as running one line of command 

from the terminal. 
 

python setup.py install 

Now OMPython can be imported into any Python ap-

plication. 

2.2 Executing OMPython 

The API can be used in two modes, Test and Library, 

each designed for a specific purpose. 

2.2.1 Test 

Like any new tool, it is important to give its users the 

freedom to easily explore its capabilities, try its features 

and possibly suggest new improvements. 

For this purpose, the API can be executed in the test 

mode by executing the run() method of the OMPython 

module. This mode allows users to interactively send 

OpenModelica commands to OMC via the CORBA 

interface. The Python types of the OpenModelica out-

put are returned to the user. To illustrate this, in Figure 

1 a few operations are presented from the Python ter-

minal. 

 

Figure 1. OMPython executing OpenModelica commands 

in the Test mode.  

Creating new models in the text based Python terminal 

is rather straightforward using OMPython. Figure 2 

illustrates this and shows how a model can be saved 

with a simple command. 

 

 

Figure 2. Creating and saving a simple HelloWorld model 

file using OMPython. 

2.2.2 Library 

Once modelers are familiar with the interface they 

know what type of responses can be expected and can 

use the module as a library to programmatically design, 

simulate, plot, and do more with the models.  

This can be done by executing the execute() 

method of the OMPython module. The execute method 

forms the essence of the OMPython API. It encapsu-

lates the OMC operations, CORBA functionalities, 

parses the results to native Python data types and ex-

poses the API as a simple string processing method. 

Each instance of the execute method returns a result 

that the modeler can make use of. Additionally, com-

plicated data structures such as deeply nested dictionar-

ies are constructed, strictly typed, and are made availa-

ble to the user using this method. 

The Code Listing 1 shown below provides a simple 

Python script that uses OMPython as a library to per-

form a few tasks like loading Modelica libraries to 

simulating pre-defined Modelica models. Figure 3 de-

picts the output of the program generated by OMPy-

thon on a standard Python terminal.  

Code Listing 1 

import OMPython 

OMPython.execute("loadFile(\"c:/OpenModeli

ca1.8.1/testmodels/BouncingBall.mo\")") 

 

result=OMPython.execute("simulate(Bouncing

Ball, stopTime=2, method=\'Euler\')") 

 

print result 

OMPython.execute("quit()") 

 

An OpenModelica Python Interface and its use in PySimulator 

 

538 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076537 

   



 

 

                       

 

Figure 3. OMPython executing the Python script shown 

above. 

3 Deploying OMPython in 

PySimulator 

PySimulator is a Python-based Simulation and Analysis 

tool that is developed by the German Aerospace Center 

(DLR) in Germany. The tool uses plugins for simula-

tors based on Dymola [10], FMUs [11], and OpenMod-

elica [2]. It also provides analysis tools for some appli-

cations particularly in physics and engineering. 

This section shows the integration of the new 

OpenModelica simulator plugin for PySimulator using 

OMPython. 

3.1 The OpenModelica Plugin 

The plugin for the OpenModelica simulator integrates 

easily and well into the PySimulator package by using 

the OMPython library. PySimulator's template for the 

plugins provides convenient methods to implement 

simulation routines, parameter settings, retrieve and use 

simulation variables and more. Figure 4 shows a part of 

the development package of PySimulator that includes 

the OpenModelica plugin.  
 

 

Figure 4. OpenModelica plugin using OMPython within 

PySimulator. 

The OpenModelica plugin defines and uses some fea-

tures of PySimulator for performing simulations, read-

ing result files, and displaying variables etc. The 

plugins use PySimulator's plugin templates; this allows 

other simulation packages to be integrated easily. 

The deployment of the OpenModelica plugin within 

the PySimulator project allows the project to benefit 

from the full scripting capabilities of the latest 

OpenModelica API. 

3.2 Loading a Modelica Model 

The integration of the OMPython module within the 

OpenModelica plugin for PySimulator makes it possi-

ble for the modeler to quickly load Modelica files such 

as models (.mo) or load a simulated model's executable 

file. 

The user can open these files from the menu bar by 

selecting File > Open Model > OpenModelica. 

In this introductory example we will use a pre-

defined model named Influenza to demonstrate the 

use of OMPython in PySimulator. Figure 5 depicts the 

graphical user interface of PySimulator when opening a 

model file. Once the model file is selected, the model is 

loaded into the variables browser and is ready to be 

configured for simulations. 
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Figure 5. Loading Modelica models or model executables 

in PySimulator 

3.3 Using the OpenModelica plugin 

The loaded Modelica model can be simulated from Py-

Simulator using the default simulation options or by 

setting the simulation options before simulating from 

the Integrator Control dialog box. The OpenModelica 

plugin defines the simulation routine for the Modelica 

models by using the execute method of the OMPython 

API.  

Figure 6 shows how the simulation options can be 

set using PySimulator's Integrator control feature. 

 

 

Figure 6. Preparing the simulation settings using the 

Integrator Control. 

3.4 Simulating the model 

The initial simulation parameters and settings are pro-

vided as inputs to the OMC via the front-end of Py-

Simulator. The Run button of the Integrator control 

triggers the simulate command of the OMC with the 

supplied simulation options. The simulate command 

has the following parameters, 

 Simulation Interval 

o Start Time 

o Stop Time 

 Algorithm 

 Error Tolerance 

 Step size 

The user has the option to choose from a range of Nu-

merical integration algorithms from the Algorithm se-

lection box. The Integrator control dialog box also fil-

ters some parameters that are not available for some 

integration solvers by disabling the field; avoiding error 

and providing more accuracy in the results. 

The Variables browser builds a tree structure of the 

instance variables and highlights time-continuous vari-

ables in blue. The user can select these variables and 

plot them in the Plot window by checking the check 

box near the highlighted variables. 

Figure 7 illustrates the Variables browser that al-

lows users to access the variables after the Influenza 

model has been simulated with some simulation pa-

rameters set. 

 

 

Figure 7. Variables browser of the simulated model. 

3.5 Plotting variables from the simulated models 

The Plot window of the PySimulator GUI provides ad-

ditional user interface controls for comparing different 
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plots side-by-side, adding and removing plots and also 

to save the plots.  

Figure 8 shows the plotted variables in the plot win-

dow and the list of simulation variables in the Variables 

browser along with the variables selected for plotting. 

 

 

Figure 8. Plotted variables using PySimulator. 

3.6 Using Simulated results 

It is desirable to avoid simulating the model again eve-

ry time the user needs the simulation results. It is in-

stead preferable to use an existing simulation result file 

for the calculations, this saves resources and time. Py-

Simulator supports opening the OpenModelica simula-

tion result files (.mat) and the model's executable file to 

build the variable tree in the variables browser. The 

user can then adjust some parameters from the variable 

tree or the Integrator control to achieve the desired re-

sults. 

4 The OMPython API 

The Python interface to OpenModelica addresses its 

functional requirements through the implementation of 

two interrelated modules, OMPython and OMParser 

[1]. This section introduces the two modules and 

demonstrates their functionalities with some examples. 

The following Figure 9 illustrates the functions of 

the OMPython API with its components. 

 

Figure 9. Functions of the OMPython API

4. 1      OMPython module  

The OMPython module is the main interfacing 

module of the OMPython API which is responsible 

for providing the API as a tool and a Python library. 

The following are its components: 

4.1.1 Interactive Session handler 

Each instance of the module creates an interactive 

session between the user and the OMC. The session 

handler uses the CORBA Interoperable Object Ref-

erence (IOR) file to maintain the user's session activ-
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ities and log files for standard output and errors. The 

session is closed down when the user issues the 

quit() command to the OMC. This also removes 

the temporary IOR file from the user's machine. The 

log files facilitate the user with some straight for-

ward debugging and trace-backing purposes. 

4.1.2 CORBA Communication 

OMPython uses the Client-Server architecture of the 

CORBA mechanism to interact with the OMC. OM-

Python implements the client side of the architec-

ture. 

4.1.3 Modes of Operation 

The module defines two modes of operation, each 

designed for specific purposes. 

 Test 

 Library 

The Test mode allows users to test OMPython while 

the Library mode gives the user the ability to use the 

results of OMPython. 

4.1.4 Using the interface definition 

The vital link between the client and the server pro-

cesses in this distributed implementation is the Inter-

face Definition Language (IDL) file. OMC defines 

the omc_communication.idl file that it uses to 

implement the Remote Procedure Calls (RPCs), 

OMPython mirrors this IDL file to establish the RPC 

from the client machine.  

4.1.5 Get/Set helper functions 

Due to the nature of the complicated string outputs 

generated by the OMC such as Component Annota-

tions, the parser module of the OMPython module 

generates nested dictionaries. Deeply nested diction-

aries in Python require cumbersome operations to 

retrieve and set values inside dictionaries at various 

levels. To simplify the multiple steps necessary to 

perform a get or set operation within a dictionary, 

OMPython defines the dot-notation get/set methods. 

Figure 10 shows how the user can get and set the 

values of any nested dictionary data type.  

 

Figure 10. Get/Set helper function 

4.1.6 Universal Typecaster 

Since the variables in Python are dynamically typed, 

the interpretation of the data types needs to be strict-

ly controlled during runtime. For this purpose, the 

OMPython module defines a universal typecasting 

function that typecasts the data to the correct types 

before building the results. 

4.1.7 Imports OMParser 

Although the OMC outputs the results to the OMPy-

thon module via its CORBA interface, the results are 

still in the String-to-String CORBA output format 

which cannot be used intelligibly. So the OMPython 

module uses its own built-in parser module the OM-

Parser to generate appropriate data structures for the 

OMC retrieved results. 

4.2 OMParser module 

Since the results of the OMC are retrieved in a 

String format over CORBA, some data treatment 

must be done to ensure that the results are usable 

correctly in Python. 

The OMParser module is designed to do the fol-

lowing, 

 Analyze the result string for categorical data. 

 Group each category under a category name 

 Typecast the data within these categories 

 Build suitable data structure to hold these data so 

that the results are easily accessible. 

4.2.1 Understanding the Parsed output 

Each command in OpenModelica produces a result 

that can be categorized according to the statistics of 

the pattern of data presented in the text. Grammar 

based parsers were found to be tedious to use be-
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cause of the complexity of the patterns of data. This 

is also the case because the OpenModelica imple-

mentation has two types of APIs. One is typed, 

which could use grammar and the other is untyped, 

which cannot.  

OMParser follows a few simple rules to parse the 

OMC output: 

 Result strings that do not contain a pair of curly 

braces "{}" are simply typecasted to their respec-

tive types. 
For example: 

>>getVectorizationLimit() 

20 

>>getNthInheritedClass(Modelica.Electr

ical.Analog.Basic.Resistor,1) 

Modelica.Electrical.Analog.Interfaces.

OnePort 

 

 Result strings that include one or more pairs of 

curly braces "{}" are categorized for making dic-

tionary types. 

For example: 
>>getClassNames() 

{'SET1':{'Set1': ['ModelicaServices', 

'Modelica']}} 

 

 Data contained within double quotes " " are for-

matted to string types; removing the escape se-

quences in-order to keep the semantics. 

For example: 
>>getModelicaPath() 

"C:/OpenModelica1.8.0/lib/omlibrary" 

4.2.2 The Dictionary data type in Python 

Dictionaries are useful as they allow to group data 

with different data types under one root dictionary 

name. Dictionaries in Python are indexed by keys 

unlike sequences, which are indexed by a range of 

numbers.  

It is best to think of dictionaries as an unordered 

set of key:value pairs, with the requirement that the 

keys are always unique. The common operation on 

dictionaries is to store a value associate with a key 

and retrieve the value using the key. This provides 

us the flexibility of creating keys at runtime and ac-

cessing these values using their keys later. All data 

within the dictionary are stored in a named diction-

ary. An empty dictionary is represented by a pair of 

braces {}. 

In the result returned by the OMC, the compli-

cated result strings are usually the ones found within 

the curly braces. In order to make a meaningful cat-

egorization of the data within these brackets and to 

avoid the potential complexities linked to creating 

dynamic variables, we introduce the following nota-

tions that are used within the dictionaries to catego-

rize the OMC results, 

 SET 

 Set 

 Subset 

 Element 

 Results 

 Values 

In this section, to explain these categories, we use 

the parsed output of OMPython obtained using the 

Test mode.  

4.2.3 SET 

A SET (note the capital letters) is used to group data 

that belong to the first set of balanced curly brackets. 

According to the needed semantics of the results, a 

SET can contain Sets, Subsets, Elements, Values and 

Results.  

A SET can also be empty, denoted by {}. The 

SETs are named with an increasing index starting 

from 1 (one). This feature was planned to eliminate 

the need for dynamic variable creation and having 

duplicate Keys. The SET belongs within the diction-

ary called "result". 

For example: 
 

>>strtok("abcbdef","b") 

{'SET1': {'Values': ['"a","c","def"']}} 

The command strtok tokenizes the string 

"abcbdef" at every occurrence of b and produces a 

SET with values "a", "c", "def". Each value of 

the SET is then usable in Python. 

4.2.4 Set 

A set is used to group all data within a SET that is 

enclosed within a pair of balanced {}s. A Set can 

contain only Values and Elements. A set can also be 

empty, it can be depicted as {{}}, the outer brackets 

compose the SET, the inner brackets are the Set 

within the SET. 

4.2.5 Subset 

A Subset is a two-level deep set that is found within 

a SET. A subset can contain multiple Sets within its 

enclosure. 

For example: 

{SET1 {Subset1{Set1},{Set2},{Set3}}} 
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4.2.6 Element 

Elements are the data which are grouped within a 

pair of Parentheses (). As observed from the OMC 

result strings, elements have an element name that 

describes the data within them, so elements can be 

grouped by their names.  

In some cases such as when using the untyped 

OpenModelica API calls, element structures do not 

have a name, in these cases the data contained with-

in the parenthesis is parsed into outputs generated by 

the typed API calls, such as set, values, etc. Also, in 

some cases many elements have the same names, so 

they are indexed by increasing numbers starting 

from 1 (one). Elements have the special property of 

having one or more Sets and Subsets within them. 

However, they are still enclosed within the SET. 

For example: 
 

>>getClassAttributes(test.mymodel) 

{'SET1': {'Elements': {'rec1': 

{'Properties': {'Results': {'comment': 

None, 'restriction': 'MODEL', 

'startLine': 1, 'partial': False, 

'name': '"mymodel"', 'encapsulated': 

False, 'startColumn': 14, 'readonly': 

'"writable"', 'endColumn': 69, 

'file': '"<interactive>"', 'endLine': 1, 

'final': False}}}}}} 

In this example,the result contains a SET with an 

Element named rec1 which has Properties which 

are Results (see section 4.2.7) of the element. 

4.2.7 Results 

Data that is related by the assignment operator "=", 

within the SETs are denoted as Results. These as-

signments cannot be assigned to their actual values 

unless they are related by a Name = Value relation-

ship. So, they form the sub-dictionary called Results 

within the Element (for example). These values can 

then be related and stored using the key:value pair 

relationship. 

For example: 
 

>>getClassAttributes(test.mymodel) 

{'SET1':{'Elements':{'rec1': 

{'Properties': {'Results':{'comment': 

None, 'restriction': 'MODEL', 

'startLine': 1, 'partial': False, 

'name': '"mymodel"', 'encapsulated': 

False, 'startColumn':14, 'readonly': 

'"writable"', 'endColumn': 69, 'file': 

'"<interactive>"', 'endLine': 1, 

'final': False}}}}}} 

4.2.8 Values 

Data within any or all of SETs, Sets, Elements and 

Subsets that are not assignments and separated by 

commas are grouped together into a list called "Val-

ues". The Values list may also contain empty dic-

tionaries, due to Python's representation of a null 

string "" as {} - an empty dictionary. Although a 

null string is still a null value, sometimes it is possi-

ble to observe data grouped into Values to look like 

Sets within the Values list. 

For example: 
 

>>getNthConnection(Modelica.Electrical.A

nalog.Examples.ChuaCircuit,2) 

{'SET1': {'Set1': ['G.n', 'Nr.p', {}]}} 

4.2.9 The Simulation results 

The simulate() command produces output that has 

no SET or Set data in it. Instead, for the sake of sim-

plicity, the result contains two dictionaries namely, 

SimulationResults and SimulationOptions. 

For example: 
 

>>simulate(BouncingBall) 

{'SimulationOptions': {'options': "''", 

'storeInTemp': False, 'cflags': "''", 

'simflags': "''", 'variableFilter': 

"'.*'", 'noClean': False, 

'outputFormat': "'mat'", 'method': 

"'dassl'",'measureTime':False, 

'stopTime':1.0, 'startTime': 0.0, 

'numberOfIntervals': 500, 'tolerance': 

1e-

06,'fileNamePrefix':"'BouncingBall'"},'S

imulationResults':{'timeCompile':4.75231

650258347,'timeBackend':0.01602630977192

6, 

'messages':None,'timeFrontend':1.4200466

8806536,'timeSimulation':0.1197039958177

84,'timeTemplates':0.0230460728977474,'t

imeSimCode':0.0139967955849597,'timeTota

l':6.3452533928534,'resultFile':'"C:/Use

rs/ganan642/BouncingBall_res.mat"'}} 

4.2.10  The Record types 

Some commands produce result strings with Record 

constructs, these data are categorized for making 

dictionaries too. To keep the uniformity and simplic-

ity, the data of Record types are grouped into the 

dictionary RecordResults. 

For example:  
 

>>checkSettings() 

{'RecordResults': {'RTLIBS': '" -static-

libgcc -luuid -lole32 -lws2_32"', 'OMC_F 
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OUND': True, 'MODELICAUSERCFLAGS': None, 

'C_COMPILER_RESPONDING': False, 'OPENMO 

DELICAHOME': '"C:/OpenModelica1.8.1/"', 

'CREATE_FILE_WORKS': False, 'SYSTEM_INFO 

':None, 'CONFIGURE_CMDLINE': '"Manually 

created Makefiles for OMDev', 

'RecordName': 

'OpenModelica.Scripting.CheckSettingsRes

ult','OMC_PATH':'"C:/OpenModelica1.8.1//

bin/omc.exe"','WORKING_DIRECTORY':'"C:/U

sers/ganan642"', 'REMOVE_FILE_WORKS': 

True, 'OS': 

'"Windows_NT"','OPENMODELICALIBRARY':'"C

:/OpenModelica1.8.1/lib/omlibrary"','C_C

OMPILER': '"gcc"'}} 

5 OMPython Implementation 

The implementation of the OMPython API relies on 

the Client–Server architecture of CORBA to com-

municate to the OMC [2]. OMPython acts as the 

client that requests the services of OMC and OMC 

behaves like the server and replies to the Python 

module using the OmniORB and OmniORBpy – 

Object Request Brokers (ORBs) of CORBA as the 

communication platform. 

This section briefly describes how the API uses 

CORBA and its other features to achieve its re-

quirements. 

5.1 The OMC CORBA interface 

The OpenModelica Complier – OMC can be in-

voked using two methods: 

 Executed at the operating system level, like a 

program. 

 Invoked as a server from a client application us-

ing a CORBA client-server interface. 

OMPython uses the second method to start OMC 

since this allows the API to interactively query the 

compiler/interpreter for its services. 

5.2 OMC Client Server architecture 

Figure 11 gives an overview of the OpenModelica 

client server architecture. OMPython plays the role 

of the client in this architecture. It sends queries and 

receives replies from the OMC via the CORBA in-

terface. The messages and expressions from the 

CORBA interface are processed in two groups. The 

first group consists of the commands which are 

evaluated by the Ceval module and the second 

group contains the expressions that are handled by 

the Interactive module.  
 

 

Figure 11. Client-Server of OpenModelica with some 

interactive tool interfaces 

Messages in the CORBA interface are classified into 

two groups. The first group consists of the user 

commands or expressions; these are evaluated by the 

Ceval module. The second group contains the decla-

ration of variables, classes, assignments, etc. The 

client-server API calls are processed by the Inter-

active module.  

5.3 Using OMC through CORBA 

The OMC process can be invoked from CORBA by 

executing the OMC executable file using special 

parameters passed to it. The default location of the 

OMC executable file is in the $OPENMODELICA-

HOME/bin directory. OMPython invokes OMC with 

some special  flags +d=interactiveCorba 

+c=random_string which instructs OMC to start 

and enable the interactive CORBA communication 

and also use a timestamp to name the CORBA In-

teroperable Object Reference (IOR) file that will be 

created. The timestamp is needed to differentiate the 

different instances of OMC that have been started by 

different client processes simultaneously. 

The default location where the IOR file is created 

is in the temp directory. Normally, when OMC is 

started with the +d=interactiveCorba flag, it will 

create a file named openmodelica.objid. On 

Windows (for example), if the +c flag was given, 

the file name is suffixed with the random string to 

avoid name conflicts between the simultaneously 

running OMC server processes. This file contains 

the CORBA IOR. 

5.4 Using the CORBA IOR file 

The IOR file contains the CORBA object reference 

in string format. The CORBA object is created by 

reading the strings written inside the IOR file.  
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6 Measurements 

In this section, we present some performance meas-

urements for the OMPython API. 

The measurements shown are based on the re-

sponse time of the Python interpreter/compiler that 

performs the various functions of establishing the 

CORBA communication, sending commands to the 

OMC, receiving CORBA outputs, parsing the 

CORBA outputs and finally displaying the results to 

the user.  

Figure 12 illustrates a simple script that simulates 

a Modelica model and plots a variable using the Plot 

generated by OpenModelica. It also shows the re-

ceived response times of each command that was 

executed to perform the simulation. Table 1 and Ta-

ble 2 show the time statistics collected from five 

unique runs of two simple scripts using the OMPy-

thon API. The time is measured in Seconds. Figure 

13 and Figure 14 illustrate the overhead between the 

average output and the unparsed output's response 

times.  

These measurements aim to give an idea about the 

overhead of the OMPython API in addition to the 

CORBA overhead that is needed for OMC commu-

nication.  

 

 

Figure 12. Measuring response times of simulations 

for the BouncingBall model. 

 

Command Average re-
sponse time 

(s) 

Average un-
parsed re-

sponse time 
(s) 

load-

File("c:/Ope

nModeli-

ca1.8.1/mode

ls/BouncingB

all.mo") 

0.09223065 0.0421344389 

simu-

late(Bouncin

gBall) 

2.60921512 1.8922307169 

plot(h) 0.03251472 0.0183359414 

Table 1. Response time comparisons for loading, 

simulating and plotting variables using OMPython. 

 

 

Figure 13. Measuring response time for Simulations in 

OMPython 

 

Command Average re-
sponse time 

(s) 

Average un-
parsed re-

sponse time (s) 

getVersion() 0.0680588293 0.0590995445 

loadMod-

el(Modelica) 
5.971103887 4.4708573210 

getElemen-

tsInfo(Modeli

ca.Electrical

.Analog.Basic

.Resistor) 

0.0264064349 0.0190346404 

getClass-

Names() 
0.3907942649 0.2707218157 

getTempDirec-

toryPath() 
0.0244359882 0.0193691690 

getSettings() 0.0327650196 0.0234227783 

Table 2. Measuring response times of some 

OpenModelica commands in OMPython 
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Figure 14. Measuring  response times of some 

OpenModelica commands in OMPython 

7 Related Work 

Some Simulation packages are available for Python 

but these packages do not implement an equation-

based solving system. Also, they do not provide a 

Modelica based modeling and simulation environ-

ment, but rather present their custom model types. 

 PySCeS – The Python Simulator for Cellular 

Systems. It uses the model description language 

to define its models. Supports solvers like LSO-

DA, sections for non-linear root finding algo-

rithms, Metabolic control analysis, Mat-

plotlib/Gnuplot plotting interfaces, etc. It is re-

leased under a new BSD style license and is open 

source software [4]. 

 SimPy – Simulation in Python, is an object-

oriented, process-based discrete-event simulation 

language for Python. It is released under the 

GNU Lesser GPL (LGPL) license version 2.1. It 

features data collection capabilities, GUI and 

plotting packages. It provides the modeler with 

the active and passive components of a simula-

tion model and monitor variables for gathering 

statistics [5] 

 JModelica.org [12], MWORKS [13], and Amesim 

[14] are other Modelica tools providing a Python 

scripting API. 

8 Conclusion 

OMPython is a versatile Python library for 

OpenModelica that can be used by engineers, scien-

tists, researchers and interested architects to explore 

and develop Modelica based modeling and simula-

tion efforts. It is free, open source and is distributed 

with the OpenModelica installation which gives the 

user the potential to use the full collection of Model-

ica libraries that can assist in performing complex 

simulations and analyses.  

The OMPython API places minimal require-

ments on the user while offering an industry viable 

standard modeling and simulation environment. 
We suggest some future work that can be done to 

enrich the usage of the OMPython API. The API can 

be expanded to provide access to the GUI based fea-

tures of other OpenModelica tools such as OMEdit. 

User interfaces can be easily built on top of OMPy-

thon to implement additional graphic features. Fur-

ther interesting efforts can be made if the OpenMod-

elica API can be designed to expose its commands 

as interface definitions in the 

omc_communication.idl file. 
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Abstract 

To meet the requirement of collaboration in the 

system-level modeling of multi-domain physical sys-

tems, a general web-based modeling and simulation 

environment, WebMWorks, is designed and imple-

mented. It supports multi-user, multi-task and model 

sharing. Based on MWorks platform, the environ-

ment adopts SOA-based architecture and effectively 

solves the problems of sharing of simulation re-

sources and reuse of the models. By application of 

RIA technologies, an interactive modeling and simu-

lation environment based on the browser is con-

structed. This paper introduces the main characteris-

tics and architecture of WebMWorks, and presents 

the operational effect of the system. 

Keywords: visual modeling; web-based simulation; 

WebMWorks; 

1 Introduction 

Modelica is a non-proprietary, object-oriented, 

equation based language, and it has been widely ap-

plied because it is conveniently to express the model 

of complex physical system.  Now, Modelica has 

become one kind of unified modeling standard for 

multi-domain physical systems. The system-level 

modeling of multi-domain physical systems using 

Modelica is difficult to be accomplished by an indi-

vidual or individual enterprise because of its com-

plexity and multidiscipline. So it is necessary to 

study the collaborative modeling using Modelica. 

The web-based simulation is the integration of the 

web and simulation technology [1]. Compared to 

traditional simulation systems, the web-based simu-

lation has many advantages [2], such as, wide usabil-

ity, cross-platform capability, maintainability, up-

gradeability, and the sharing of the models. 

With the openness, domain-independent and the 

unified expression of models, Modelica supports the 

reuse of simulation model based on the model 

framework at multiple levels. So we can study the 

web-based simulation for Modelica and realize the 

sharing of models and collaborative design in the 

complex system modeling, which has great practical 

significance. 

At present, the related research is mainly around 

the virtual experiment and programming languages 

teaching. In reference [4] a web simulation environ-

ment UN-VirtualLab is presented, on which the vir-

tual experiment can be defined by the administrator 

and the users can modify the experiment parameters 

to view the results in browser. In reference [5] a web 

version of the DrModelica is shown. In reference [6] 

a web-based teaching environment called OMWeb is 

presented. Student can send their exercises to com-

pile and calculate on the server that contains many 

OMC (OpenModelica Compiler) wrappers and 

teachers can view the results. In reference [7] a web-

based visual modeling environment was developed 

for electrical engineering experiment. Users can 

complete the experiment through connecting the cus-

tom experimental components, and the results of the 

experiment can be obtained after the simulation. 

However, all the studies presented are based on the 

specific purpose and lacks some features that are 

actually needed in industry and research, such as a 

general web-based visual graphical editor. To over-

come these limitations, this paper describes a general 

web-based modeling and simulation environment: 

WebMWorks, on which users can easily perform 

system design, simulation and analysis in the brows-

er. The WebMWorks is based on MWorks [10] and 

establishes the foundation to form the unified inte-

grated platform for collaborative design and simula-

tion. 

2 MWorks Platform  

MWorks is a general modeling and simulation 

platform for complex engineering systems, which 

provides the compiling and solving engines for 

WebMWorks.  
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The framework of MWorks platform is shown in 

Fig.1. 
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Figure 1: The framework and main process of 

MWorks 

The platform is mainly composed of Modeling 

Module, MWCompiler, MWSolver and Postprocessor. 

A set of interfaces from MWorks are provided and 

can be called by external applications. In the 

WebMWorks, the MWCompiler and the MWSolver 

are called to perform the compilation, symbolic re-

duction and numeric-computation and results can be 

obtained for the simulation of the Modelica models.   

3 Scheme selection  

As a prototype platform for collaborative design 

and simulation based on Modelica, WebMWorks 

should have the following features: 

1) Support visual modeling based on web 

browser. 

2) Support visualization of simulation results 

based on web browser. 

3) Support multi-user and multi-task. 

4) Support collaborative modeling based on 

model sharing 

In order to realize feature 3) and 4), naturally, 

Modelica simulator should be located on the server 

side. Remote compilation and simulation of Modeli-

ca models also has been studied and achieved by 

many researchers [5-9]. 

Feature 1) is a foundation of the platform. In or-

der to achieve this target, we have two choices: one 

is downloading Modelica model libraries to the 

client and analyze the libraries.  The users can com-

plete the system modeling with the information of 

each model which was obtained by reading its model 

text. Then the system model will be sent to the server 

and simulated. The other is putting the analysis pro-

gram for Modelica models on the server side. The 

client gets the graphical information of each model 

from the server to realize the visual modeling. Then 

scenes of the system model are sent to the server. 

These scenes data will be resolved to model text, and 

finally simulated by calling the compiler. 

The first scheme will consume much time when 

the libraries have a large volume. In this way, it is 

unable to achieve the advantages of the web system 

that users can use at anytime, anywhere. And it is 

also not conductive to protect the intellectual proper-

ty, when the system contains some private model 

libraries. The second scheme needs to maintain a 

free communication between the client and the serv-

er in the process of modeling. In spite of this, in or-

der to explore the full benefits of web-based simula-

tion, the second scheme should be chosen. 

4 System Design 

4.1 System Architecture 

To build a modeling and simulation architecture 

that have indifferent interfaces, is reusable and loose-

ly-coupled, WebMWorks adopts the idea of Serivce 

Oriented Architecture (SOA) which is implemented 

by using WCF technology. WCF is a unified pro-

gramming model provided by Microsoft for building 

service-oriented applications. With WCF, the core 

functions of the system is wrapped as a service, and 

called by the internal or external program. The sys-

tem based on a layered architecture is shown in Fig.2. 

 Presentation tier 

The presentation tier is a web portal which 

contains a Silverlight plug-in. It can be used to 

provide visual modeling and the visualization 

of the simulation results. Silverlight is a RIA 

(Rich Internet Application) technology re-

leased by Microsoft, with the capabilities of 

cross-browser and cross-platform.  

 Service tier 

This tier consists of three independent 

servers, including the web server, the model-

ing server and the simulation server. By using 

WCF technology to package the functions of 

the program on the server, the presentation 

tier can get the variety of services from the 

service tier.  

Web server is used to host the client portal, 

containing the web pages and silverlight plug-
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in package. It handles various requests from 

the client, and provides the services of user 

management and model management. 
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Figure 2: System architecture of WebMWorks  

Modeling server receives requests from the 

user while modeling, including textual model-

ing request and graphical modeling request. It 

provides the services of textual modeling, 

graphical modeling and graph-text transforma-

tion. 

Simulation server receives requests of 

compilation and solution from the client. It 

provides the compilation service and computa-

tion service for the presentation tier. There are 

two message queues in this server, the compi-

lation queue and the solution queue. These 

queues are realized using Microsoft Message 

Queuing which has many advantages: stability, 

priority of the message, security and so on. 

When a compilation or solution request is re-

ceived, simulation server will put it into the 

corresponding queue. Then the server makes a 

balanced distribution of the requests to the 

nodes of compiler cluster or solver cluster. 

  Computation tier 

The tier consists of two computing cluster: 

Compiler cluster and Solver cluster. 

Each node in Compiler cluster performs 

the same function, and there is one or more 

process programs called CompileProcessor for 

processing compilation tasks in it. The number 

of processors is determined by the service ap-

plication on the simulation server. The 

workflow in the node is shown in Fig.3. 
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Figure 3: Workflow of each Compiler Node 

When a compilation command is executed 

at the client-side, a request contains compila-

tion data in XML format will be sent into the 

compilation queue on the simulation server. 

Compilation data contains several properties of 

the model to be compiled, including owner, ID, 

path and so on. CompileProcessor is a wrapper 

for MWCompiler which is the compiler of 

MWorks. It is constantly polling the compila-

tion queue to get the compilation data. Then it 

calls the MWCompiler to load the MSL, the 

Shared library and the active user’s library 

from the file server. The compiler takes the mo 

text of one model as input, and outputs the cor-

responding solver (MWsolver.exe), C code, 

and a XML file for the description of variables. 

Also, the compilation information will be 

stored to the database. 

Similar to the Compiler cluster, Solver 

cluster is composed of several solver nodes 

which distribute the solution request. Each 

node can start one or more SolveProcessor to 

process the solution tasks. The workflow is 

shown in Fig.4. 
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Figure 4: Workflow of each Solver Node 

When a simulation command is executed at 

the client-side, a request contains simulation da-

ta in XML format will be sent into the solution 

queue on the simulation server. Simulation data 

contains three parts of information: the first is 

the model information, including owner, ID, 

path and so on; the second is the setting infor-

mation of simulation, including start/stop time, 
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step length, algorithm; the third is the simula-

tion parameters which refer to the modified pa-

rameters by users in the post-processing rather 

than the initial parameters. SolveProcessor will 

be constantly polling the solution queue to get 

the simulation data and then the MWSolver will 

be downloaded from the file server. MWSolver 

takes simulation data as input, and outputs the 

result file and the log file of the solution.  

 Data storage tier 

This tier consists of the database server and 

file server. Database server manages the infor-

mation of the users and the metadata of Modeli-

ca models.  The metadata contains the relation-

ship between models and the properties of the 

Modelica models, such as type, name, path, de-

scription and owner. File server is used to store 

mo files of the models following the storage 

rules of Modelica models. It also stores SVG 

files, result files of the simulation, and kinds of 

intermediate files. 

4.2 System Workflow 

Fig.5 shows the typical procedure, from lo-

gining the system, to creating a new system 

model, and finally upto gaining the simulation 

results. 

1) System initialization. When the model-

ing sever is up, the modeling applica-

tion loads Modelica Standard Library 

(MSL) and Shared library from the file 

server, and provides all needed services 

in the process of modeling. 

2) User environment initialization. After 

successful login, the user will be as-

signed the appropriate permissions. Si-

multaneously the modeling application 

loads individual library of the user from 

the file server to the memory in. 

3) System graphical modeling. In the 

modeling page, the user can create a 

system model in interactive environ-

ment, as in the traditional Modelica 

IDE, such as Dymona, MWorks or 

OMEdit. The information which re-

quired in the modeling like the icons, 

parameters, properties of the compo-

nents are achieved through calling the 

services provided by the service tier.   

4) Model compilation. First, the client 

submits the scene presentation of one 

system model in XML format to the 

modeling application and calls the 

graph-text transformation service pro-

vided by the application. The scene will 

be resolved to mo text in the modeling 

server and the mo text will be saved to 

the file server. Second, the client calls 

the compilation services to send the 

compilation request into the compila-

tion queue. Finally, the CompilerPro-

cessor gets the compilation data from 

the queue, compiles the mo file of the 

system model and generates the corres-

ponding solver. 

5) Model solution. The request of the si-

mulation from the client will be put into 

the solution queue. Then the SolvePro-

cessor in one solver node gets the simu-

lation data from the queue and calls the 

MWSolver of the model to generate the 

result data of simulation. 

6) Post-proessing. In the post-processing 

page, the user can monitor the process 

of simulation. When the solution is 

completed, the result data can be 

packed into XML and sent to the client 

and displayed on the page. 
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Figure 5: System workflow of modeling and si-

mulation 
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5 System Implementation 

5.1 Client: Modeling Page 

The client is developed in a MVVM [12] archi-

tecture using the Silverlight technology. The vector 

graphics and asynchronous communication of Silver-

light make it easy to create interactive graphical ap-

plication in the browser. While a large number of 

graphical operations are transferred from the server 

to the client, the burden of the server is lightened, 

which allows the server with same hardware to han-

dle more requests. 

In the modeling page, a visual modeling envi-

ronment, which is similar with MWork Studio, has 

been realized. It supports users to create, modify, 

delete, query and download models. Each model has 

three views: text view, icon view and diagram view. 

The screenshot of the modeling page is shown in 

Fig.6. 

 
Figure 6: Modeling Environment in Browser 

The library viewer contains three root nodes: 

“Modelica”, “Public” and “CurrentUserName”. The 

“Modelica” node represents a specific version of 

MSL. The user can decide which version of MSL to 

load in the login page. The “Public” node represents 

the models that the users shared. And the “CurrentU-

serName” Node is on behalf of the models owned by 

the user who has logged in. The models under the 

“Public” and “CurrentUserName” node are consis-

tent with the version of the MSL. For example, when 

the user selects the version 2.2.2 of MSL, they have 

only loaded the models based on the Modelica Stan-

dard Library 2.2.2. The tree of the library viewer 

adopts the lazy loading mode, that is, only when the 

user expands one node, the next level nodes of the 

node are loaded.  

The edit area acts as visual modeling, text model-

ing or icon-editing area. The icon view provides ba-

sic graphics drawing, and the user can edit the icon 

of the model in this view. In the Diagram view, the 

model can be dragged and dropped from the library 

viewer to this view, and then the model will be in-

stantiated to a component. The users can complete 

the system modeling by connecting components.  

5.2 Client: Post-processing Page 

In the Post-processing page, the visualization of 

simulation results, which is similar with the MWorks 

Simulator, has been realized. It offers simulation 

management, setting up and viewing the results of 

several simulation cases at the same time. The 

screenshot of the Post-processing page is shown in 

Fig.7： 

 
Figure 7: Post-Processing Environment in Browser 

The simulation manager can monitor and control 

which state the model is in the compiling and simu-

lation queue. The possible states are: queuing, 

processing, finishing and failure. Also, the simula-

tion log can be shown in the window.   

The variable nodes in variable viewer also 

adopt the lazy loading mode. When the variable 

nodes are chosen, the set of dots will be downloaded 

and shown in the plot Area on the right. 

5.3 Modeling Application 

In the graphical modeling client, the graph 

which is shown in icon/diagram view defined by 

Modelica annotations. To get Modelica annotation, 

the client of WebMWorks used .NET platform to re-

implement some functions of modeling module of 

MWorks, call the interface of compiling through 

p/invoke, and at last realize loading Modelica model 

library.  The package of the function which the client 

modeling need is achieved by WCF, and can be 

shown to provide visual modeling service. 
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The modeling application can provide the WCF 

interface which can get SVG of icon view of model 

(scalable vector graphics, which is based on XML).  

For example, GetIconSVG (Modelica.Electrica-

l.Analog.Basic.Resistor) can get the SVG of icon 

view of the Resistor Model. 

 
Figure 8: Icon SVG of the Resistor model 

The client can call the interface of sever through 

the proxy of WCF to get the SVG which then will be 

displayed in the icon view of Resistor model. 

5.4 Multi-task implementation 

Compilation and calculation of the model based 

on Modelica are always time-consuming. In the case 

of multi-user, when a model is compiled by compiler, 

others cannot be compiled along. (MWCompiler 

does not yet support compiling more than one model 

at the same time).  

So, the compilation and calculation of WebM-

Works process in queue is formed to solve concur-

rent calculation and compilation of multi-tasking and 

multi-user. In this method, user can submit multi-

simulation task in the client, and quit the system after 

submitting tasks, which explore the full benefits of 

the web systems  

6 Conclusions and future work 

This article presents a general web-based model-

ing and simulation environment: WebMWorks. The 

design and implementation of the environment are 

described. Through transplanting the stand-alone 

tools of modeling and simulation for Modelica into 

the Web, the usage scenarios are greatly expanded: 

For the enterprise and research organizations, the 

co-design and co-simulation could be achieved, 

based on the tools of modeling and simulation on 

web and through combining with model sharing and 

workflow management. 

For individuals, the characteristics of the Web 

system, such as cross-platform capability, wide ac-

cessibility, would improve the efficiency of model-

ing and simulation. Model sharing and reuse, multi-

tasking also helps to improve the speed of the model-

ing and simulation. 

But, the prototype of WebMWorks lacks of sev-

eral functions compared with MWorks. In the future, 

it should be improved gradually in the following 

areas. 

 Enforce the capability of data transport, espe-

cially compression and decompression of the 

transporting data; 

 Add the function of highlighting and 

code folding for textual modeling; 

 Improve safety of the model store; 

 Add the function of 3D visualization in post-

processing. 
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Abstract

This paper discusses the cooperative simulation
of models implemented in Modelica, Simscape,
Simulink and MATLAB for the aim of energy opti-
mization in cutting factories. To simulate the thermal
processes in production halls, the machines and the
room itself have to be modelled in varying detail. To
achieve a quite accurate comprehensive model, the in-
dividual machines and the room are modelled in differ-
ent software and then simulated with the co-simulation
tool BCVTB, which stands for Building Controls Vir-
tual Test Bed. The communication between the indi-
vidual models requires a lot of preparative work and as
can be seen at the end of the paper, it works fine for a
fixed communication time step but is not possible with
a continuous synchronization for all given software.
Still, the possibilities of co-simulation with BCVTB
can be found sufficient for the needs of thermal pro-
cesses which react very slowly and not in time steps of
hugely differing dimensions respectively, but require a
period of time which can easily be approximated small
enough for a certain scenario.

Keywords: co-simulation; BCVTB; energy opti-
mization; Dymola/Modelica

1 Motivation

Nowadays it has become more and more important to
be able to simulate models with partial models of dif-
ferent complexity and differing requirements regard-
ing solver algorithms, step sizes and other model-
specific properties. To meet these requirements,

models of such complexity are approached via co-
simulation. Co-simulation stands for “Cooperative
Simulation”. One can tell from the name that the aim
is to simulate separate models and let them commu-
nicate and synchronize to certain points in time given
by an overall simulation which lets all partial models
cooperate.
The aspects discussed in this paper are part of the
INFO (Interdisziplinäre Forschung zur Energieopti-
mierung in Fertigungsbetrieben) project which is pro-
moted by the Austrian Research Promotion Agency
(FFG). Its aim is to optimize the energy consumption
in cutting factories. Therefore it’s necessary to simu-
late the thermal processes in production halls. Since
all different machines in one production hall require
individual modelling approaches, certain solvers and
even different software, this problem is approached
with co-simulation.
Via the Ptolemy-based co-simulation tool BCVTB
(Building Controls Virtual Test Bed), a room model
implemented in Modelica, machines implemented in
Modelica, Simscape and Simulink as well as a MAT-
LAB data model of the measured heat emission of a
machine are co-simulated. Figure 1 gives an overview
of the desired communication between the individual
simulators.

2 Building Controls Virtual Test Bed

The Building Controls Virtual Test Bed was designed
at the University of Berkely to allow the communica-
tion of the simulators Ptolemy, EnergyPlus, Dymola,
Matlab, Simulink, Radiance and BACnet. BCVTB
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Figure 1: Overview of the Intended Communication
between the Individual Simulators

resembles the Ptolemy interface but offers additional
blocks (actors, as they’re referred to in Ptolemy) and
on the other hand lacks Ptolemy elements which are
not necessary for the use of co-simulation, which
BCVTB has been developed for. Though some of
the Simulators would be able to interact without the
BCVTB interface (like Dymola and Simulink), the use
of different step sizes or even solver algorithms is only
possible with co-simulation.
To control the synchronization of the individual simu-
lators, BCVTB provides certain so-called directors.
The Continuous Time Director (CT) allows the user to
choose a variable step solver (explicit RK23 or RK45)
for the total simulation as well as setting solver options
like the maximum step size or the error tolerance (see
Fig. 2).

Figure 2: Continuous Time Director

If it’s sufficient for a model to synchronize all partial
models at predefined fixed time steps, the Synchronous
Data Flow (SDF) director can be used. All properties
of the SDF Director can be seen in Fig. 3:

From the BCVTB interface, the different simulators
have to be accessed with Simulator actors. These
actors establish the communication among the indi-
vidual Simulators via BSD sockets, which also have
been developed at the University of Berkeley and are
used for inter-process communication (see [3] for

Figure 3: Synchronous Data Flow Director

further information).
All values needed by a simulator have to be connected
to the input port, which allows multiple inputs; all
values which the simulator returns to BCVTB at
each synchronization time step can be accessed from
the output port of the simulator actor. The options
of the simulator actor (see Fig. 4 for a simulator
actor accessing MATLAB) define the simulator to
be called as well as options for the simulator, the
execution file, the path where it can be found and
a parameter socketTimeout. This parameter defines
how many milliseconds BCVTB has to wait for the
simulator to respond before canceling the simulation
and returning an error. If a BCVTB model fails due to
this socket time out-error, there is either an error in the
partial model or it simply takes longer than the given
socketTimeout to load and thus is not able to respond
early enough. Hence it is important to choose an
adequate amount of time for complex partial models.

Figure 4: Simulator Actor Accessing MATLAB

2.1 Communication between Dymola and
BCVTB

To enable the communication of BCVTB with Dy-
mola, the developers of BCVTB have implemented
the Modelica Buildings Library which provides a
BCVTB block (see Fig.5).
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Figure 5: BCVTB Modelica Block enabling the
Communication between Dymola and BCVTB

Inputs to the block are all values to be trans-
ferred from Dymola to BCVTB, outputs are all val-
ues needed from the BCVTB. In the block properties
the time steps at which Dymola has to synchronize
with BCVTB can be defined by setting the parame-
ter timeStep to the desired value.
nDblWri defines the number of values Dymola re-
turns to BCVTB and nDblRea stands for the num-
ber of values Dymola will receive from BCVTB at
each synchronization time step. All data received from
BCVTB is kept constant between the synchroniza-
tions.
The parameter uStart stands for the value which is re-
turned to BCVTB at the very first synchronization.

2.2 Communication between MATLAB and
BCVTB

In MATLAB, the first step necessary to enable the
communication with BCVTB is to create a socket
connection via

sockfd = establishClientSocket('socket.cfg');

Further the following values have to be exchanged
with BCVTB at every desired time step by calling

[retVal, flaRea, simTimRea, dblValRea ] = ...

exchangeDoublesWithSocket(sockfd, flaWri, ...

length(u), simTimWri, dblValWri);

retVal, flaRea, simTimRea and dblValRea repre-
sent the values obtained from BCVTB which can
now be used in the MATLAB function. MATLAB
has to submit sockfd, flaWri, length(u), simTimWri

and dblValWri to BCVTB. Before completely exiting
Matlab, the socket is closed with

closeIPC(sockfd);

2.3 Communication between Simulink and
BCVTB

For the communication with Simulink, BCVTB also
offers a preimplemented block. Inputs are again
all values from Simulink to be sent to BCVTB and
outputs are the values Simulink needs from BCVTB.
The underlying subsystems can be seen in Fig. 6.

Figure 6: BCVTB Simulink Block enabling the
Communication between Simulink and BCVTB

In contrary to the BCVTB block for Dymola, the
time step for synchronization cannot simply be de-
fined by a block parameter. For all preimplemented
examples BCVTB offers, the time step of the Simulink
solver is chosen fixed and equal to the BCVTB time
step so there’s no problem since the synchronization
automatically takes place at the correct time.
To be able to benefit of one of the main advantages of
co-simulation - the usage of different solvers and dif-
ferent step times - additional programming work has
to be done. To fulfill this purpose, the BCVTB block
is put in an If Action Subsystem which is activated only
if the time step of the BCVTB director is crossed. In
case of a SDF director, which means a constant time
step, the maximum time step for the solver in Simulink
is set to this constant and the time in Simulink modulo
the BCVTB time step is compared in every Simulink
time step. If the Simulink time crosses the BCVTB
time step, the modulo value changes and after zero-
crossing detection to evaluate the return value at the
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desired time within a certain tolerance, the If Action
Subsystem is activated and the exchange takes place
(see also section 3.3 and Fig. 11). If a CT director is
used in BCVTB, the time step varies and can’t be fore-
seen, so the time in BCVTB is compared to the time in
Simulink and at every time step iterated this way the
subsystem is activated by sending a discrete impulse
at these points in time.

3 Model Description

The model described in this paper uses Dy-
mola/Modelica, MATLAB, Simscape and Simulink
apart from the main model in BCVTB. It’s purpose is
to demonstrate the thermal processes in a production
hall. The hall itself is modelled in Modelica. The
different machines are implemented in Modelica,
Simscape and as simple data model in MATLAB.
To obtain a bearable room temperature for human
workers which possibly enter the hall, a controller
is implemented in Simulink. The waste heat of the
machines and the cooling heat from the controller are
transferred to the room model at each synchronization
time step via the BCVTB interface. The BCVTB
model can be seen in Fig. 7:

Figure 7: Model for Synchronization in BCVTB

The model is supervised by a SDF Director which
demands so-called firing of the individual simulators
every 60 seconds. The stop time can be defined by the
parameter finalTime in seconds. Since the machines
don’t need any values from BCVTB apart from the
time, they receive the current simulation time only.
The simulator actors Simscape, Dymola and Matlab,
which enable the communication with the respective
machine models, return the heat outputs which are
then sent to the room model called by the Dymola-

room simulator actor. The output of the Dymolaroom
simulator is a temperature measured in one of the com-
partments of the room (see section 3.1) which is then
sent to the controller represented by the Simulink sim-
ulator actor. The output of the controller is again sent
to the room model and treated as a heat source. To
obtain a better documentation of the simulation pro-
cess, the model also communicates with a MATLAB
function which stores the elapsed cpu time to an excel-
file and additionally sends it to BCVTB for immediate
visualization. The cpu time taken by the communica-
tion and execution of the m-file realizing the cpu docu-
mentation can be regarded negligible in comparison to
those of the other partial models, which are way more
complex and therefore expensive.

3.1 Room Model in Dymola/Modelica

The model of the production hall is realized as a com-
partment model. Each thermal compartment basically
represents a cuboid with a certain heat capacity and
conduction at the surfaces. The graphical model and
all parameters of a thermal compartment can be seen
in Fig. 8.

Figure 8: Model for a Thermal Room Compartment
Implemented in Modelica - Parameters and Graph

The model of the production hall consists of six
thermal compartments at 5× 5× 3 m3 each (see Fig.
9).

The heat emitted by the machines and the regulation
heat flow from the controller can be accessed at the
output port of the BCVTB block and are transferred
as prescribed heat flow to the compartments where the
machines are found in the production hall. The tem-
perature measured in one of the compartments is re-
turned to the BCVTB model and further to the con-
troller.
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Figure 9: Model Graph for a Machine Hall
Implemented in Modelica

3.2 Machine in Dymola/Modelica

Since the main focus lies on coupling the individual
models, the machines involved are held rather simple.
The machine implemented in Modelica consists basi-
cally of a DC motor. Since version 3.2 of the Modelica
standard library, the heat dissipated in an electrical cir-
cuit can be used in a thermal system by activating an
optional heat port at certain components. The electri-
cal energy lost at the resistor of the model is converted
into thermal energy, which is measured as heat flow
from the resistor heat port to the room represented by
a heat capacitor.

Figure 10: Model Graph of a DC Motor Implemented
in Modelica

To simulate different loads by machines which don’t
run 24 hours a day, the voltage applied to the voltage
source is chosen as pulsating with 320V at working
hours and 0V at night.

3.3 Machine in Simscape

The machine in Simscape is represented by a motor
similar to the one implemented in Modelica. To use
the waste heat emitted at the resistor, the rated power
is manually calculated from the voltage drop and sent
to a thermal system as heat flow. Again, the working
hours of the machine are set via the voltage source.

Figure 11: Model of a DC Motor Implemented in
Simscape

3.4 Controller in Simulink

The temperature control is realized rather simply. The
model gets the temperature measured in one of the
Thermal Compartments of the Dymola room model
and compares it to the desired room temperature. If the
room is more than one Kelvin too warm (cold resp.),
the control returns minus (plus resp.) 100W heat flow
to two room compartments.

3.5 Data Model in MATLAB

The data model in MATLAB is rather simple. The
heat emission of a machine over one day is read out
of an excel-file and returned to the BCVTB model and
further the Dymola room model at each time step.

4 Simulation Results

The model is simulated for one day to show the be-
haviour of the model for this time span. At 8 a.m.
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all machines start working and the room temperature
(measured in one compartment for the cooling system)
which can be seen in Fig. 12 begins to rise. As soon
as the room temperature reaches 294.15 K, the control
starts cooling.

Figure 12: Progress of the Temperature in One
Compartment

The temperature graph of all compartments is
shown in Fig. 13. The temperature measured in the
compartment shown above corresponds to the green
one in Fig. 13. One can easily see that the com-
partments containing machines (blue, red and pink) re-
spond much more quickly than the others.

Figure 13: Progress of the Room Temperature in All
Compartments

The heat emitted by the individual machines is
demonstrated in Fig. 14. Turning down the ma-
chines implemented in Simscape and Dymola causes
a step response similar to the one caused by switch-
ing them on. The measured heat emission transferred
to BCVTB with MATLAB shows a rather permanent
emission during working hours.

A very important result of the simulation is the doc-
umentation of the individual step sizes. Figure 15
shows the solver time steps between two synchroniza-
tion references of the simulation. For the simulation
of the machine and the room model in Dymola, the
Dassl solver is used. The machine model in Simscape
is simulated with ode15s, a variable step solver for stiff
systems. Since the control in Simulink only deals with

Figure 14: Heat Emitted to the Room by the
Machines (Simulated in Matlab, Simscape and
Dymola) over One Day

discrete states, variable step discrete is chosen for the
simulation. The fixed time step for synchronization in
the BCVTB model is set to 60 seconds.

Figure 15: Plot of the Different Solver Time Steps
between Two Synchronization References

One of the most important advantages of co-
simulation becomes very obvious in this plot: The
time steps in the machines, which also differ clearly
from each other, are significantly smaller than the time
steps of the room in Dymola. This makes perfect sense
due to the fact that for the machines systems of equa-
tions out of electrical and mechanical circuits have
to be solved. Since electrical and mechanical com-
ponents interact much faster than thermal ones, the
underlying systems require accordingly smaller time
steps. Fig. 16 shows the different solver steps made in
a very small interval around a synchronization refer-
ence. This clearly points out the redundant steps made
by the Simscape solver to iterate the accurate time to
communicate with BCVTB.
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Figure 16: Plot of the Different Time Steps at a
Synchronization Reference

Finally, the progression of the room temperature
during the simulation of the same model over three
days is shown in Fig. 17. Of course the very sim-
ple way of cooling can’t prevent the temperature from
boundless rising in compartments with machines.

Figure 17: Progress of the Room Temperature in All
Compartments over Three Days

5 Conclusion

At the first impression, BCVTB seems like a quite
advanced tool to enable cooperative simulation in a
rather easy way. It’s true that after successfully in-
stalling compatible releases of every software required
and modifying the given synchronization tools to even
allow differing solver time steps, coupling of several
partial models in a BCVTB model can be realized
without huge modifications.
On the other hand it’s not possible to let models com-
municate with BCVTB at variable time steps with the
given BCVTB blocks. In Simulink the communication
at time steps which aren’t known before can be real-
ized by activating a subsystem containing the BCVTB
block. To also achieve this in Dymola, most parts of
the given BCVTB block would have to be rewritten.
What’s more is that between two synchronization time
steps all values from BCVTB are extrapolated uni-
formly so depending on the actual graph and the syn-
chronization step size, the single errors could sum up
to an amount which causes the model to fail any vali-
dation. For the described use in thermal systems which

react very slowly, co-simulation with BCVTB might
be considered sufficiently accurate, but to achieve a
valid co-simulation which requires precise or at least
reliable approximations with arbitrarily small errors,
other possibilities of co-simulation will have to be con-
sidered.

6 Outlook

In the course of this project, the limits of co-simulation
with BCVTB will be further explored considering the
complexity of individual models as well as the amount
of partial models involved. Additionally, a room
model in the building energy simulation program En-
ergyPlus will be implemented and further compared to
the room model in Dymola to depict the advantages
of the different software regarding co-simulation with
BCVTB as well as the behaviour as thermal model for
a production hall.
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Abstract

The integration of a three-dimensional FEM model
(ANSYS) in a dynamic, component-based system sim-
ulation tool (CoSMOS) is described. In order to avoid
high simulation times of a direct co-simulation while
maintaining the relevant details of the FEM submodel
at the same time, model order reduction is applied to
the FEM model. The reduced submodel is encapsu-
lated in an FMU and finally imported in a system sim-
ulation. An example use case is presented to demon-
strate the workflow.

Keywords: FMI, model exchange, model order re-
duction, CoSMOS, system simulations

1 Introduction

The need to desribe complex dynamic systems, which
involve several physical disciplines of potentially dif-
ferent timescales and levels of detail, increases contin-
uously - e.g. almost any mechatronic design or power
generation process falls into this category. Due to
the interdependence of subsystems, a sequential de-
velopment process is very time and cost consuming
and requires many iterations. To make it more effi-
cient, system simulations are used but their realiza-
tion is hindered by a large variety of tools and mod-
els applied for and best suited to the different subsys-
tems. An expensive, specific coupling for every pair
of tools can be avoided by a standardized interface,
like the Functional Mockup Interface [1], [5]. It has
been introduced at the Siemens AG to combine sev-
eral component-based system submodels, see [10].
In this contribution, we show a workflow that uses FMI
for model exchange (version 1.0) to transport relevant

∗andreas.goedecke@siemens.com
†monika.muehlbauer@siemens.com
‡iason.vittorias@siemens.com

information from very detailed, three-dimensional
FEM models. These are often performed in the de-
tailed design phase of subsystems but bear a level
of detail too high for system simulations, which is
connected to long simulation times and large data
amounts. To overcome these issues, we apply model
order reduction to an FEM model, encapsulate it in
an FMU and import this in a system simulation, see
Fig. 1 for illustration. The latter is done exemplarily in
a Siemens-internal, flexible simulation platform called
CoSMOS.

In Section 2, we present the workflow in detail,
starting from an FEM simulation in ANSYS, describ-
ing step-by-step the model order reduction and FMI
encapsulation and leading to the CoSMOS simulation.
Section 3 gives an example of the approach and Sec-
tion 4 concludes the paper.

Figure 1: Overview of the workflow proposed.

2 Workflow

2.1 FEM simulation and Model Order Re-
duction

Model Order Reduction (MOR) techniques can dras-
tically reduce the order and / or dimension of a large
dynamical system without considerably sacrificing ac-
curacy. The goal of MOR is to find a projection matrix
V so that the state-space x ∈ ℜn of a full FEM model
is projected onto a state-space xr ∈ ℜr, where the di-
mension r is much smaller, i.e. r << n, with

x = V ·xr + ε . (1)
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Figure 2: The discretized system, consisting of thou-
sands of ODEs, is projected onto a lower dimension
space.

The error difference ε in (1) should be minimal ac-
cording to a norm specified.

Given the full system matrices from ANSYS and the
required new lower dimension, the software MOR for
ANSYS [9] generates the reduced order system matri-
ces. Fig. 2 illustrates this workflow. It uses a Krylov-
subspace method to find the projection matrix, refer
to [8, 6] for more details. For a documentation on how
to export the system matrices from ANSYS and how
to apply MOR for ANSYS, see [2].
The reduced order matrices can then be imported in
Matlab (or other preferred software) where the system
can be transformed from the implicit form of Fig. 2
to an explicit one by multiplying with the matrix E−1

r ,
given that Er is not singular. The final reduced system
then has the following form

ẋr = Arxr +Bru
y = Crxr . (2)

It is important to note here that the matrices of the
state-space (2) are independent of the input u. This
means that the reduced system, once created, can be
used for many different inputs in transient or harmonic
simulations without requiring any repetition of this
process.
The method of order reduction applies to various
model domains including electrical, thermal, or even
fluid flow domain. Although it can in principle be used
for second order systems as well, e.g. most mechan-
ical systems, we focus on first order systems in this
first approach, which are additionally linear. Note,
that extensions for nonlinear systems exist by either
using linerization techniques (or even splitting linear
and nonlinear parts), or direct application of nonlinear
methodology for model order reduction, e.g. proper
orthogonal decomposition [7]. The main disadvantage

of the latter, compared to the linear systems case, is
that a full simulation of the system is always required,
affecting thereby the required development time. To
the best of our knowledge, nonlinear equations are not
supported by the software MOR for ANSYS and are
not discussed in this paper.

2.2 Exporting a MOR model as FMU

The Functional Mockup Interface (FMI) [1] defines an
open interface between numerical simulation tools. A
zip-file, called Functional Mockup Unit (FMU) is dis-
tributed. It encapsulates a model description and static
information in an xml-file as well as the model access
in an exchangeable, simulator-independent binary file
or source code in C. The present workflow uses FMI
for model exchange (version 1.0) [4], which exports
the differential equations of the model, relying on the
importing simulator to perform the integration.

The FMU Software Development Kit (SDK) by
QTronic GmbH was utilized to provide the core FMU
functionality. Only a thin wrapper was implemented
using Matlab, which performed the task of import-
ing the MOR for ANSYS [9] matrices and converting
them into explicit form (2), as discussed in the previ-
ous section. Moreover, the wrapper finally creates the
C and XML files containing the model equations in the
format required by the FMU SDK.

2.3 Import of an FMU in a system simulation
tool

CoSMOS (Complex Systems Modeling, Optimization
& Simulation) is an in-house simulation platform for
dynamic system simulations that has been developed
at Corporate Technology, Siemens AG, since 2000,
cf. [11]. It is written in C# and C++ and is based on
a client-server concept to allow easy tool coupling
by using an open and modular architecture. Matlab,
Ansys, WinCC, Excel and several optimizers have
been considered so far among others.
One default client, called the simulation client,
comprises component libraries for one-dimensional
simulations in various domains as well as a selection
of solvers for systems of differential algebraic equa-
tions. Continuous process variables, discrete signals
and events can be handled. Results are written to .dcc
or SQLite files and can be inspected by a graphical
user interface. Dynamic simulations of fresh water
and sewage flows, of conveying systems and power
plant processes, of electric and traffic networks have
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been performed.

Figure 3: Generic FMU component with parameter di-
alog upon loading.

Figure 4: Specified FMU component with known pa-
rameters and ports.

Recently, the import of FMUs for model exchange
has been implemented. Fig. 3 and Fig. 4 give an
overview of the workflow with respect to the graphical
user interface. A gray box component that represents a
generic FMU is dragged and dropped from the library.
After the user has specified the FMU file in the param-
eter dialog, the box component derives its inputs, out-
puts and parameters from the FMU xml file containing
the model description [4]. This dynamic creation of a
component distinguishes an FMU from all other com-
ponents and its implementation means a considerable
effort with respect to the graphical representation.
The states of the FMU are added to the degrees of free-
dom of the overall system, they are updated using the
dll-functions provided in the FMU. As FMI version
1.0 does not include Jacobian information yet, the lat-
ter is obtained numerically.

3 Example use case: Temperature
control of a C-arm device

3.1 Description

In the following, we illustrate our proposed workflow
on a thermal model of a C-arm device which is con-
sidered in a simple control environment.
The C-arm device consists of two main thermal com-
ponents: An X-ray source, which represents a heat
source, and a closed water circuit with the water flow-
ing from the X-ray source to a water tank and forth and
back in two channels of the C-arm itself, see Fig. 5. By
convection, the heat is transfered to the ambient air.
The detailed thermal model of the C-arm device is to
be considered in a system simulation which is used to
test a very simple two-level control model. The latter
observes the material temperature at three positions,
where temperature sensors are to be positioned in the
real device. If required, an additional fan can be turned
on which leads to a decrease of the ambient temperture
around the C-arm.
The example is kept very simple for demonstration
purposes.

3.2 FEM Model

The CAD model of the C-arm is imported in ANSYS
(DesignModeler), see Fig. 5. The heat source and the
tank body are thermally coupled to the C-arm at two
areas, the water inlet and outlet. The power profile of

Figure 5: The design of the C-arm device. The two
faces of the water tank are hidden to enable the visibil-
ity inside it. The red circles indicate the points where
the material temperature is observed.

the X-ray source is the input to our model and deter-
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mines the amount of heat generated in the heat source.
The heat is transfered by conduction through the alu-
minum wall to the rest of the heat source body and
then mainly by convection to the water circuit which
has a fixed flow rate of 0.3 kg/s. The colder walls
in water tank and C-arm take the heat from the water
and discharge it finally to the ambient air by a second
convection-dominated process. The convection coef-
ficients are parameters defined as 14 W

m2
◦C for the C-

arm and 0.001 W
m2
◦C for the water tank. Heat can hence

mainly be disposed of in the C-arm itself.
The given geometry and physics data are imported

in ANSYS Multiphysics. Accordingly, the load (heat
generation) and constraint data (convection coeffi-
cients, flow properties) are provided either by using the
graphical user interface or by the scripting language
APDL. To properly represent the heat transfer caused
by the water flow in the ANSYS Multiphysics model,
FLUID116 and SURF152 elements are used [3].

The full system matrices are extracted using avail-
able ANSYS functionality.

3.3 Validation of the reduced model

Model order reduction is applied to the full system ma-
trices using MOR for ANSYS reducing therby the or-
der of the model from n= 59990 to r = 30, i.e. r << n.
For validation a comparison of the results was done be-
tween a simulation of the order reduced model in Mat-
lab (set up directly and not integrated via an FMU)
and an FEM simulation in ANSYS, which is consid-
ered to be our baseline. Matlab was chosen, because
it was also used to transform the reduced model from
implicit to explicit form and to finally build the FMU
wrapper.

Three different material temperatures at potential
sensor positions of the real device are selected for ob-
servation and are indicated by the red circles in Fig. 5:
One is located on the heat source, one on the C-arm
and one at the inlet of the water tank. The selection of
the output nodes affects the structure of the Cr matrix
in (2), and naturally, it adjusts the dimensionality of
the output vector y to 3 in this case.

Fig. 6 illustrates the comparison between the FEM
simulation and the direct simulation of the reduced
model. A huge saving in simulation time is achieved:
While the FEM simulation required approximately
6 hours, the reduced system could be simulated in
less than a minute. In terms of accuracy, the root
mean square error (RMSE) remained very low for all
three temperatures with values of 0.19◦C , 0.19◦C and
0.20◦C , respectively. The exchange of the FEM model

Figure 6: A comparison of a FEM transient simula-
tion in ANSYS with the transient simulation of the re-
duced order system in Matlab. The power profile is
given. Small errors are observed, whereas the reduc-
tion in simulation time is drastic, from 6 hours to less
than a minute.

with the reduced model is hence justified in a system
simulation which considers these three temperatures.

3.4 FMU and overall system behavior

As described in section 2.2, the reduced, thermal
model is translated to an FMU which is imported in
CoSMOS. The FMU has three inputs: u1 represents
the power input to the X-ray source, u2 and u3 the
ambient temperatures around the C-arm and the unit
of water tank and heat source respectively. The three
outputs of the FMU describe the material tempera-
tures at the three intended sensor positions, already
discussed in the previous section: y1 is located at the
X-ray source, y2 at the C-arm and y3 at the inlet of the
water tank.
A very simple two-level controler on the temperature
of the heat source is built using the CoSMOS simula-
tion client and its control library, cf. Fig. 7. Its func-
tion is tested in the following for a power input of
u1 = 600 W to the X-ray source. If the temperature
measured at the heat source (output y1 of the FMU)
exceeds 50◦C , an additional fan is switched on to full
power and reduces the ambient temperature around the
C-arm to 0◦C (input u2 of the FMU). It is assumed that
the ambient temperature around the unit of water tank
and heat source is not affected (input u3). If the ma-
terial temperature at the heat source falls below 40◦C ,
the fan is turned off.
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A modified CHORAL solver (default in CoSMOS)
is used to simulate the process where the FMU con-
tributes 90 states. Fig. 8 reveals the behavior of the
outputs of the FMU upon simulation. It can be clearly
seen that the fan is regularly switched on and off as
expected. If the controls are disabled, the temperature
at the heat source exceeds 70◦C .

Figure 7: System model in CoSMOS. The thermal
model is hidden in the FMU. The controls are built
with the CoSMOS control library.

Figure 8: Behavior of the FMU outputs from bottom to
top: Temperature at inlet of water tank, at C-arm and
at heat source w/ controls and w/ disabled controls

4 Conclusion

In this contribution, we presented and validated a
workflow to integrate highly accurate FEM simula-
tions in dynamic system simulations while avoiding
long simulation times common to FEM simulations.
Model order reduction techniques enabled the creation
of state-space representations of the FEM model, and
the Functional Mockup Interface was used to transfer
the reduced model to the system simulation that was
performed with the Siemens internal tool CoSMOS.
As an example, the integration of a detailed thermal

model of a C-arm device has been considered in a sys-
tem simulation which tested a simple control model.
The workflow presented applies to any scenario where
the accuracy of a lumped model is insufficient for a
system simulation, or where overall simulation time
is too limited for a direct co-simulation between FEM
and system model.
Future work will account for a comparison between
various model order reduction algorithms as well as a
consideration of stability criteria. The workflow pre-
sented up to the FMU generation will be automized
further and the limits of the overall workflow in terms
of model complexity and size will be explored.
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Abstract 

Driver-in-the-loop simulators are increasingly used 
in Motorsport and Automotive companies to enable 
engineers and drivers to experience a new vehicle 
design in a realistic environment before it is built.  
The use of simulators enables drivers to test a new 
vehicle and/or control system without having to 
build a prototype and to carry out those tests in com-
plete safety and in repeatable conditions.   

Using Modelica as the development language for 
the vehicle model within these systems enables rapid 
model development and the fast evaluation of vehi-
cle concepts.  This enables more vehicle concepts to 
be tested before committing to a prototype build.  
The use of physical models also ensures that geome-
try changes and other physical modifications to the 
concept can be evaluated on the simulator at an early 
stage. 
Keywords: driving simulator, vehicle dynamics, real-
time simulation 

1 Introduction 

Driver-in-the-loop simulators come in a wide range 
of different formats ranging from the basic work-
station simulator through to the high end simulators 
with multiple projectors and a motion platform with 
up to 6 degrees of freedom.  The aim is to provide a 
driver with a realistic environment and accurate ve-
hicle response to enable them and the engineers they 
are working with to evaluate the behaviour and per-
formance of the vehicle design.   

Driving simulators are used for a variety of rea-
sons in automotive and motorsport companies. These 
include driver training, vehicle attribute perception, 
new designs and the evaluation of new technologies 
that may affect the concentration/driving pleasure of 
the driver.  Recently there has been an increasing 
interest in using simulators earlier in the design pro-
cess to assess the behaviour of new vehicle designs 
and technologies and to understand how well these 
systems work together in a vehicle. To meet this re-

quirement it is necessary to improve the model de-
velopment process so that new vehicle concepts can 
be quickly modelled using physical models.  Dymola 
and Modelica are ideal for this application and have 
been used in this way by a number of Automotive 
and Motorsport users.  

2 The Vehicle Model 

2.1 Overview 

The vehicle model used in a driving simulator has to 
represent the complete vehicle, accurately predict its 
behaviour and run in real-time.  There is often also a 
desire to be able to use the same vehicle model in 
other parts of the engineering process outside of the 
simulator.  Using Modelica to define the vehicle 
model and Dymola to compile this enables us to 
meet these requirements as this paper explains. 

The vehicle model itself needs to be able to accu-
rately predict the transient performance of the real 
car.  To achieve this it needs to include models of the 
tyres, suspension, powertrain including both the 
physical and control aspects of these systems. 

A number of commercial libraries have been used 
in the development of vehicle models for use in driv-
ing simulators.  These are the Engines and VDLMo-
torsports Libraries and the following sections de-
scribe the use of these libraries to develop a model of 
a 1.8 litre, 4 cylinder turbo-charged gasoline direct 
injection engine fitted with a manual gearbox and 
double wishbone suspension. 

This paper will detail 3 of the key aspects to the 
vehicle model that have been developed to meet the-
se needs: the chassis model; the engine model; and 
the tyre-road contact model. 

2.2 Chassis model 

The VDLMotorsports Library [14] is an extension to 
the Vehicle Dynamics Library [15] developed by 
Modelon.  This library was originally developed for 
modelling open-wheel race cars where the double 
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wishbone suspension setup is commonly used to-
gether with either pushrod or pullrod actuation of the 
inboard springs and dampers.  The main objective of 
the library was to provide suspension models for this 
application that could run in real-time without addi-
tional detailed work from the end-users.  As part of 
the intended use of these models was for driving 
simulators and other trackside tools it was necessary 
to make sure that the geometry of the compiled mod-
els, including all of the physical adjustments normal-
ly possible with these suspensions, could be applied 
through parameter changes without requiring the 
model to be recompiled.  An annotated view of a 
pushrod suspension showing all the physical adjust-
ments required within the suspension is shown in 
Figure 1.  The shims identified can be defined as a 
thickness and make a change to the suspension ge-
ometry. 

 To achieve this we developed new implementa-
tions of the double wishbone suspension models that 
shared no common components, but a common ar-
chitecture with those in the Vehicle Dynamics Li-
brary. The major problem to be overcome in defining 
these suspension models was the non-linear systems 
of equations that are normally formed when the  sus-
pension is created using the Modelica MultiBody 
library and individual joints (revolute, universal and 
spherical).   

New combinations of aggregated joints [1] were 
developed to provide an analytic solution to the sus-
pension degrees of freedom which has enabled this 
mechanism to be implemented without any of the 
usual non-linear systems of equations.  These new 
joint combinations have been used to define the out-
board suspension mechanism as shown in Figure 2 
(the animation of this mechanism is shown in Figure 
1). The pushrod is defined with an aggregated joint 
of the form Revolute-Prismatic-Spherical-Prismatic-
Universal and is based on the JointUSR in the Mod-
elica Standard Library.  The upper wishbone and 
steering link are a more complex joint structure 
shown in Figure 3. 

In both Figure 2 and Figure 3 the cyan bars on 
various components represent prismatic adjustments 
that can be applied to the mechanism to adjust the 
overall suspension geometry.   

In the original baseline model that was created 
using the Modelica MultiBody library each instance 
of the suspension model contained 2 non-linear sys-
tems of equations of sizes 73 and 57, before symbol-
ic manipulation.  In the new suspension models both 
these non-linear systems of equations are eliminated.   

The VDLMotorsports Library also supports the 
double wishbone suspension setup more commonly 
found in road cars.  These models make use of the 
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Figure 3: Detailed view of the aggregated joint mecha-
nism defining the upper wishbone and steering link de-
grees of freedom 
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same efficient implementation of the suspension but 
now connect the spring and damper units to the low-
er wishbone (as shown in Figure 4) or other suspen-
sions links as required. 

For this example the vehicle model has been cre-
ated using the double wishbone suspension with out-
board springs and dampers connected to the lower 
wishbone.  This suspension model fits within the 
Vehicle Dynamics Library suspension architecture 
and enables the standard steering and anti-roll bar 
models to be used when applicable.  The suspension 
models are fully adjustable which would enable ge-
ometry changes as well as spring and damper rate 
changes to be assessed when using this model on the 
simulator. 

2.3 Tyre and road contact 

The tyre models typically used in driving simulators 
are based on the Pacejka tyre slip model and as such 
are essentially single point of contact handling mod-
els.  The vertical dynamics models are usually im-
plemented as some form of nonlinear spring to more 
accurately capture the vertical dynamics of the tyre 
and its input to the suspension. Whilst these single 
point of contact tyre models give a good prediction 
of vehicle handling on smooth surfaces they are not 
really adequate for use on rough surfaces such as 
those used in driving simulators.   

In many cases the simulator road data is based on 
high-fidelity LiDAR scans of a real road or track 
surface that captures all the bumps and surface de-
tails.  This level of detail in the track surface is not 

compatible with a single point of contact tyre model 
because it leads to a lot of noise feeding into the sus-
pension and steering. 

In order to make good use of the detailed road  
surface data a filtering method is introduced into the 
contact point calculation so that the rough surface is 
reduced to a single effective contact point.  One such 
method looks at a number of potential contact points 
underneath the tyre and calculates a resultant contact 
point and surface normal at which all of the tyre 
forces are applied.   

The screenshot in Figure 5 is taken from a single 
tyre test rig that is using 5 potential contact points 
(shown in red) and filtering these to determine one 
effective contact point (shown in yellow). The filter-
ing is achieved by considering the amount of tyre 
compression at each potential contact point and then 
adjusting the position and surface normal of the re-
sultant contact point accordingly.  When used with 
triangular meshed road data some further filtering is 
then required to avoid sudden jumps in the surface 
normal as the edges of the different triangles are 
crossed. 

The introduction of these filtering methods in the 
tyre model is done by replacing the standard Vehicle 
Dynamics Library contact block with a customized 
contact model.  The development of these filtering 
methods has driven several enhancements in the Ve-
hicle Dynamics Library ground models which have 
been implemented by Modelon.  These new options 
now enable the standard implicit contact model, 
which generates nonlinear systems of equations, to 
be replaced with an explicit contact model which 
does not include nonlinear systems of equations. 

S

S

Figure 4: Double wishbone suspension with outboard 
springs and dampers 

Figure 5: Visualisation of contact point filtering with the 
potential contact points in red and the resultant contact 
point in yellow 
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2.4 Engine model 

The engine model used in the test vehicle was de-
veloped using the Engines Library [2]. The Engines 
Library comes in two versions with different capabil-
ities: Mean Value Engine Models (MVEM) which 
means cycle averaged torque and emissions; and 
Crank Angle Resolved Engine Models (CAREM) 
which means crank angle resolution of torque, heat 
release and emissions. Both versions model the in-
take and exhaust manifold fluid dynamics and heat 
transfer with varying levels of detail. The heat trans-
fer models can range from models with no thermal 
resistance to ones which take into account the flow 
regime within the particular component [5]. The flu-
id flow models can range from simple volume mod-
els to ones which include the fluid momentum dy-
namics to analyse fluid pressure pulsations propagat-
ing throughout the system and study their effects on 
the system performance. 

For the purposes of CPU time reduction, a surro-
gate mode is available for both MVEM and CAREM 
[2],[3] models. The surrogate mode allows the en-
gine model to be reduced in complexity whilst main-
taining a high level of accuracy when compared to 
the non-surrogate mode.  Figure 6 shows the com-
parison of a MVEM model running in both modes 
and shows that there is little deviation between the 
results. 

 

 
Figure 6: Plot of plenum pressure for a naturally aspirated 
I4 SI engine with surrogate mode enabled (blue) and disa-
bled (red). In this case the two lines lie almost exactly on 
top of one another. 

All the fluid components in the Engines library 
are based on the Modelica Fluid library [4] which 
ensures compatibility with the latter and all derived 
libraries.  The medium model is based on the Model-
ica Media library but it has been necessary to pro-
vide some additional customisations to achieve the 
level of performance required in this library.  The 
medium model tracks 7 species throughout the air 

path of the engine so that fuel mass and the emis-
sions composition can be traced through the engine.  

The engine used in this example is a mean value 
4 cylinder 1.8l turbocharged spark-ignited gasoline 
engine with direct injection and producing a peak 
power of 160kw and peak torque of 225Nm. The 
transients of the turbocharger, fluids and heat trans-
fer in the air-path and torque output are captured in 
the results as well as the multi-body behaviour of the 
system.  This model is shown in Figure 7. 

 

 
Figure 7: I4 Turbo Mean Value Engine Model diagram 
layer showing the engine sub-systems. Note that fluid and 
mechanical connector arrays are used between the compo-
nents to simplify the diagram layer complexity 

In the above model the intake manifold comprises 
an air flow mass sensor, a turbocharger compressor 
including ducting, an air to air intercooler, a throttle 
body, a plenum volume and cylinder head port vol-
umes. The exhaust manifold comprises of the cylin-
der head ports and primary exhaust system coupled 
to the turbocharger turbine. Emissions after-
treatment systems have been omitted from this en-
gine model as they were not required for the purpos-
es of this experiment; however, their associated pres-
sure drops have been taken into account within the 
exhaust system. Both intake and exhaust volume 
models include heat transfer effects from the fluid to 
the pipe walls.  

The Engines library contains two main types of 
turbocharger turbines and compressors models  
[6][7][8][10].  There are purely map based models 
where the mass flow rate and efficiency are functions 
of the speed and pressure ratio.  These models rely 
on having very good map data available throughout 
the operating range of the turbine and compressor.  
The second type of model are based on ellipse curves 
(e.g. Stodola’s law for turbines).  In these models 
ellipse curves are fitted to the available map data to 
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describe the mass flow rate through the component.  
The advantage of these ellipse models is that the 
characteristics are guaranteed to be smooth. 

The engine model described in this paper utilises 
a turbocharger turbine model based on Stodola’s law 
which calculates the mass-flow rate as a function of 
the pressure ratio and essentially follows the ellipse 
law: 
 

 

 
where K is a constant that scales the turbine charac-
teristics.  

The turbocharger compressor uses a similar el-
lipse law that relates the mass flow rate and pressure 
ratio through the ellipse equation: 

 

 
 

The coefficients a, b and z are defined in tables that 
are dependent on rotational speed. 

The complete turbocharger model is shown in 
Figure 8.  The compressor side (left hand side of the 
figure) includes intake and outlet ducting with asso-
ciated replaceable heat transfer models and a pneu-
matically controlled recirculating pressure relief 
valve. The turbine side (right hand side) includes 
outlet ducting and an electronically controlled 
wastegate to limit the turbine performance. The shaft 
including the impellers is modelled as a 1D rotation-
al system with bearing friction model. 

The ellipse based compressor and turbine im-
prove the model robustness and can rely on less fine-
ly resolved compressor and turbine maps than the 
purely table based variants to achieve similar func-
tionality. Compressor surge is taken care of by sup-
plying a surge line to the model. Special considera-
tions for impeller torque are implemented for opera-
tion beyond the compressor surge line. 

The basic turbocharger model shown in Figure 8 
has been used for both low pressure and high pres-
sure turbocharging applications 

2.5 Results 

The whole vehicle model including the powertrain 
was compiled in Dymola using a fixed step solver 
with inline integration. The inline integration method 
chosen was a mixed implicit/explicit Euler with step 
size of 1.25ms. The mixed method was chosen as it 
gave the best results in terms of expected system be-
haviour, model robustness and simulation perfor-
mance. The step size was determined by considering 
the requirements of the model, the pc processor 
speed and the frequency that the rest of the simulator 
system needs to operate at.   

In this experiment, the model is compiled with a 
driver and simulated in Dymola to verify the behav-
iour.  The driver model is open loop for both longi-
tudinal and lateral control and the test consists of an 
acceleration from rest, shifting through the gears to 
test the extreme situation for both chassis, wheels 
and powertrain: 

 
Test sequence: 
1. t=0, vehicle standing at rest with engine idling 
2. t=2, launch starts, i.e. clutch engagement starts  
3. The vehicle accelerates at full throttle through 

the gears up to a speed of 250km/h 
 
The results of this acceleration test are shown in 

Figure 9.  The main user input required to get such 
complex models to function in real time is good ini-
tialisation. This is assuming that all the work at the 
component level has already been done to eliminate 
numerical jacobians and minimise the number of 
non-linear systems of equations. 

The critical areas in these vehicle models are the 
tyres, suspension and engine initial conditions.  
Within the VDLMotorsports Library a number of 
experiments and functions exist that enable the start 
conditions for the tyres and suspensions so be deter-
mined and automatically extracted for use in other 
simulations.  For the engine model, the initial pres-
sures and temperatures within the intake and exhaust 
system were determined by running the engine at a 

Figure 8: Turbocharger diagram layer showing the layout 
of the system 
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constant speed and load operating point that is then 
used as the start point for the real-time model. The 
final temperatures and pressures from this steady 
state experiment are used to define the initial condi-
tions in the real-time experiment. 

The results in Figure 9 show the vehicle longitu-
dinal dynamics and the dynamics of the engine com-
ponents when running the model in real time.  We 
have focused on the intake pressure and the turbo-
charger and wastegate [9] performance with the lat-
ter used to limit the intake manifold pressure. With 
such models running in real time, swapping turbo-
charger models or tweaking the turbocharger charac-
teristics, enable the user to test different boosting 
configurations for driveability and performance 
within a vehicle simulator. 

Such models as the one used in this paper provide 
invaluable and easily accessible detailed information 
for the engineers in the development phase of the 
vehicle when there is need to test a variety of options 
in a short space of time. The transient detail exhibit-
ed in the results for the torque generation are of suf-

ficient detail to provide the effects necessary for the 
evaluation of different engine and powertrain solu-
tions in vehicle simulators.  

3 Integrating the physics model and 
simulator system 

3.1  System Overview 

A typical driving simulator will consist of several 
computers each with responsibility for a different 
aspect of the system.  Figure 10 shows the basic ar-
chitecture of a typical system.   

The motion platform usually has a dedicated 
computer to decide how it should move and receives 
inputs from the physics model such as vehicle orien-
tation and accelerations.   

There is usually a PC (or real-time computer) that 
is dedicated to the physics model.  The physics mod-
el receives inputs from both the motion platform via 
the motion controller and the vision system.  The 
data coming from the motion platform are the driver 
inputs such as steering, pedal positions, gear, etc.  
The data coming from the vision system usually in-
cludes the environmental conditions and road surface 
information.   

It is also possible to incorporate the real control 
systems with the physics model.  The exact approach 
varies depending on the objective of the simulator 
and the hardware available.  In some instances a 
model of the control system is compiled to run on a 

Figure 9: System simulation engine behaviour during the 
full throttle acceleration test. From top to bottom: Vehicle 
speed (km/h), turbocharger shaft speed (rpm), absolute 
plenum pressure (Pa), crank speed (rpm), wastegate (blue) 
and dump valve (red) opening 

Figure 10: Basic configuration of a typical driving simu-
lator including a motion platform 

Using Modelica models for Driver-in-the-loop simulators 

 

576 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076571 



 

 

real-time computer alongside the physics models and 
in other cases a Hardware-in-the-loop approach is 
adopted with the real controller connected in to the 
system. 

The vision system itself can consist of multiple 
computers depending on the actual system configura-
tion. Typically there will be one master computer 
and then a number of slave machines with at least 
one computer per projector used. 

For a desktop simulator the motion platform and 
controller is replaced with a steering wheel and ped-
als that could be as basic as a gaming system or a 
more specialised system such as steering wheels with 
high accuracy motors for steering torque assessment. 

3.2  Test System Specification 

For the example in this paper we have integrated the 
model described in section 2 within a desktop driv-
ing simulator system.  We are using rFactor Pro [13] 
for the vision system and the physics model  is run-
ning  in the McLaren Electronics vTag 310 tool [11].  
A Logitech G27 [12] steering wheel and pedals is 
used for the driving controls together with a single 
monitor.  This configuration makes the driving simu-
lator compact enough to use in the office environ-
ment whilst providing a useful tool for evaluating 
baseline capability of a vehicle or detailed assess-
ment of a control system. 

By running the model in the vTag environment 
we are able to make use of the telemetry system built 
in to this tool.  This means that we can expose the 
model variables to the telemetry stream and view 
them in real-time using Atlas [16] (also from McLar-
en Electronics).  This enables logging of the model 
behaviour for offline analysis.   

The use of the vTag environment also enables the 
control system model to be run alongside the physics 
model.  In Formula 1, for example, it is mandated by 
the governing body that the complete vehicle control 
system be developed using the McLaren Electronics 
tool chain which means it can easily be compiled and 
run in the vTag environment. 

rFactor Pro has an extensive library of scenarios 
that can be used to test the vehicle.  These include 
LiDAR based race tracks for most of the Formula 1 
circuits, North American Indy & NASCAR circuits 
as well as La Sarthe, Nordschleife and a virtual prov-
ing ground with lane-changes, split Mu and low-Mu 
surfaces, a handling circuit with inclines and pro-
grammable surfaces.  The environmental conditions 
(temperature, pressure, humidity and weather) can all 
be controlled within rFactor Pro.  The virtual proving 
ground includes a wide range of different roads and 
track surface sections. 

3.3 Model build process 

To compile the model for use in the vTag environ-
ment we first have to define all of the input and out-
put signals at the top level of the model.  We then 
utilize the Source Code Export feature of Dymola to 
compile the model using inline integration and ex-
port the model as c-code.   

When Dymola exports the model in this way the 
code exposes a number of methods that enable the 
model equations to be coupled to a solver.  As inline 
integration is used with the models the solver doesn’t 
have to integrate any states but it does still have to 
handle events.  The implementation of this solver has 
been optimized to run the model as efficiently as 
possible. 

The interface between the physics model and the 
rest of the system is defined in additional c-files that 
are compiled with the solver and model equations to 
create the executable model.  This interface contains 
a number of functions that are called by the system 
to handle the initialization of the model and the cal-
culation of each time step.  As the vision system will 
typically run at a lower frequency than the model the 
interface supports running multiple model steps each 
time the vision system asks for a step to be run.   

For instance, this means the vision system can run 
at 500Hz but the model could run at 1000Hz or high-
er as appropriate.  In this test system, the vision sys-
tem is running at 400Hz and the model is running at 
800Hz. 

4 Conclusions 

Using Modelica to define the vehicle model and 
Dymola to compile and export the model as c-code 
suitable for real-time simulation means that the phys-
ics model in a driving simulator can be very easily 
updated to test new concepts as well as explore setup 
variations of an existing design.  The speed with 
which design ideas can be implemented in Dymola 
and compiled ready for the simulator means that it is 
possible for real drivers to start evaluating these ide-
as at a very early stage in the development process. 
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Abstract

Recently development of new-concept small vehicles
for future mobility societies becomes very active. In
this paper, development of simulation models of those
new vehicles by Modelica is described. It became
clear that such small vehicles tend to have reduced
stability and handling ability than conventional vehi-
cles. To cope with this problem, a benchmark study of
designing vehicle control logic for an IWM (In-
Wheel-Motor) vehicle was settled by Japanese society
of automotive industries and academia. A brief de-
scription about this benchmark study is also given. At
the end, requests to Modelica community from Japa-
nese automotive industries are described.
Keywords: Future mobility vehicles; Stability and
Handling Performance; Benchmark study

1 Introduction

To cope with future mobility society, development of
many new concept vehicles is becoming increasingly
active in recent years [1]. Those vehicles have charac-
teristics of smaller size, lighter weight, less number of
passengers than the conventional vehicles. Also those
vehicles tend to be equipped with lower RRC (Rolling
Resistance Coefficients) tires and new driving sys-
tems mainly using electric motors to achieve less
emission and less energy consumption. Some of those
future vehicles are equipped with IWM (In-Wheel-
Motor) systems to achieve flexible layout of power-
train and also advanced vehicle motion control [2].
Because such new-concept vehicles have different
mechanical structure and control structure from those
of conventional cars, it was necessary to make new
models to estimate their motions by simulation. In this

paper, development of the simulation models of those
new vehicles by Modelica is described. Those models
were developed based on Vehicle Dynamics Library
(VDL) of Dymola.
By the simulation, it became clear that such new small
vehicles tend to have reduced stability and handling
ability than conventional vehicles. To cope with this
problem, a benchmark study of improving stability
and handling ability of such new vehicles was settled
by Japanese joint committee of automotive industries
and academia. As a member of the committee, the
author will introduce the benchmark study in this pa-
per.
At the end of this paper, some requests from Japanese
automotive industries to Modelica community are de-
scribed. Those requests came from actual problem
which was encountered by the users during the model-
ing and simulation works for new mobility vehicles.

2 Modeling and simulation of future
vehicles

2.1 Target vehicles

Figure 1: Toyota’s scenario about future eco-cars
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Figure 1 shows Toyota’s broad scenario about future
eco-vehicles. As shown in the Figure, electric vehicles
are thought suitable as future mobility for short dis-
tance. Those vehicles often have different structure
from conventional cars. Thus it is necessary to make
new models for new kinematics and control to simu-
late the motion of those new vehicles. In this paper,
simulation models of a personal mobility ‘i-Real’ and
a ‘short commuter’ by Modelica are described.

2.2 Simulation of a personal mobility ‘i-Real’

Figure 2 shows a photograph of Toyota’s proto-type
personal mobility called ‘i-Real’. It has two front
wheels and one rear wheel. Steering system is
equipped with the rear wheel. The rear wheel is con-
nected by a swing arm with the body and it is possible
to change the length of wheel-base by controlling the
angle of the swing arm actively. There are electric in-
wheel-motors for each front wheel and rotation speed
of each wheel can be controlled independently. Also
there is a link to control the height of each front
wheels independently. Thus, it is possible to control
roll angle of the vehicle body against the ground ac-
tively.

Figure 2: Personal mobility ‘i-Real’

Figure 3: Dymola model of ‘i-Real’

Figure 3 shows Dymola model of the mechanical
structure of ‘i-Real’. Each mechanical part is con-
structed by using Multi-Body-Systems (MBS) library
and connected with the models of tires and environ-
ment of Vehicle Dynamics Library (VDL).
Figure 4 shows an animation result comparing a case
when active control of wheel-base and roll angle was
applied and a case when no control was applied while
cornering. Figure 5 shows time plots of vehicle speed,
lateral acceleration and yaw rate in this case. It was
successful to simulate the effect of active roll-angle
control and wheelbase control. Basic design of the
vehicle motion controller was made upon this simula-
tion model.

Without ControlWith Control Without ControlWith Control

Figure 4: Simulation result animation of ‘i-Real’
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Figure 5: Time plots of ‘i-Real’ simulation

2.3 Simulation of a ‘short commuter’ vehicle

2.3.1 Background and purpose
Recently many small vehicles for short running dis-
tance mainly for the usage in a city area are proposed.
Though, as shown in Figure6, lighter vehicle weight
and smaller vehicle size tend to result in decreased
resistance against external disturbances such as side-
wind. Also tires having low RRC tend to have re-
duced side stiffness as compared to normal tires. Thus
it is expected that handling performance of such small
and light vehicles equipped with low RRC tires tend
to be affected more than conventional vehicles.
To confirm this expectation, simulation of side wind
test for both a conventional vehicle and a short com-
muter vehicle was executed. As an example of the
short commuter vehicle, a small vehicle in which two
passengers ride in series on the center of the vehicle
was assumed. The specifications of both the short

commuter vehicle and a conventional vehicle are
shown in Table 1.

Low energy
consumption

Low RRC
tire

Small and
light vehicle

Decrease of tire
side stiffness

Increase of tire
vertical stiffness

Shorter vehicle
wheel base and
tread

Lighter vehicle
weight

Worse performance
- Side wind
- Acceleration /
deceleration while
cornering
- Emergency
avoidance

Worse ride comfort

Low carbon society
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consumption
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Small and
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Decrease of tire
side stiffness

Increase of tire
vertical stiffness

Shorter vehicle
wheel base and
tread

Lighter vehicle
weight

Worse performance
- Side wind
- Acceleration /
deceleration while
cornering
- Emergency
avoidance

Worse ride comfort

Low carbon society

Figure 6: Problems for small commuter vehicles

Table 1: Specifications of vehicles
Short commuter
vehicle

Conventional
vehicle

Weight 510 kg 1300 kg
Wheel Base 2000 mm 2600 mm
Width 1190 mm 1760 mm
Height 1460 mm 1515 mm

Vehicles run across a zone of side wind of 20m/s
while running at 60km/h. Figure 7 shows the result of
an animation for the open-loop side wind test, i.e.
there is no control about steering. It is evident that the
short commuter vehicle is affected a lot than the con-
ventional vehicle by the side wind.

Figure 7: Result animation of side-wind test

Upon above backgrounds, it is planned to study
about designing a control system for a future small
IWM vehicle. The system enables control of individ-
ual steering angle and camber angle of each wheel as
well as driving / braking torque of each wheel. The
purpose of the study is to design a controller of an
IWM vehicle to realize same level of handling and
stability performance as conventional vehicles satisfy-
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ing minimum energy consumption of IWMs simulta-
neously. This problem is announced to the wide area
of academia as one of the benchmark studies from the
automotive industries by joint committee of JSAE
(Society of Automotive Engineers of Japan) and SICE
(Society of Instrument and Control Engineers) about
‘vehicle modeling and control research’ in Japan.
Anyone who wishes to join this benchmark study can
freely obtain the model library from the web site be-
low. The evaluation functions of the benchmark re-
sults will also be provided from the web site.
(http://cig.ees.kyushu-
u.ac.jp/benchmark_JSAE_SICE/)

2.3.2 Structure of the simulation model
Figure 8 shows a whole structure of the simulation
model based on VDL of Dymola. The model consists
of a vehicle model and a driver model. The vehicle
model includes 3D multi-body dynamics model of
body and suspension. It is possible to control steering
angle and camber angle of each wheel independently.
The control of steering angle and camber angle of
each wheel is realized by changing independently the
length of two parallel lower arms of a double wish-
bone suspension which has an upper A-arm [3] as
shown in Figure 8. Also a simple electric model of
battery and IWM is included to calculate energy con-
sumption of IWMs. There is a simple battery model
which considers inner resistance and constant voltage
generation. Electricity is provided to each DC motor
and the motor converts electric current to driving /
braking torque of each wheel by the following equa-
tion.

)41(iiK imi (1)

where i: Motor torque, Km: Constant, ii: Motor cur-
rent .
Power consumption of each motor is calculated by a
multiplication of battery voltage and current flowing
into the each motor.
There also is a model of driver’s behavior which cal-
culates commands for steering angle, acceleration
pedal, braking pedal and so on. The driver model con-
sists of function blocks of perception, planning and
tracking respectively. The perception block calculates
current vehicle status (position, speed, angle, etc.).
The planning block settles target points on the path to
be followed on the road from the information of the

perception block. The tracking block calculates
driver’s maneuver commands for steering, accelera-
tion pedal, brake pedal and so on. These commands
are transferred to the vehicle model to calculate the
vehicle motion.
Finally all the models necessary for the simulation
were integrated in one model library. Also test cases
of desired tasks mentioned below were included in the
library.

2.3.3 Description of desired tasks
The limitation of actuators of each wheel is shown in
Table 2. There is no limitation for driving and braking
torques of each IWM, but the requirement of mini-
mizing energy consumption of IWMs is applied. The
energy to control steering angle and camber angle of
each wheel is not considered.

Table 2: limits of actuators for each wheel
Actuator Limit
Steering angle 30 degrees (Front tires)

5 degrees (Rear tires)
Camber angle 10 degrees (All tires)

Four test scenarios were used for the benchmark study
as below.
1) Acceleration while cornering on low friction road:
Accelerate the vehicle from initial speed 0[km/h] to
70[km/h] in 5 seconds on a slippery (coefficient of
friction (mu) = 0.6) curve of R=50[m] as shown in
Figure 9.
2) Deceleration while cornering on a sprit friction
road:
Decelerate the vehicle from initial speed 70[km/h] to
0[km/h] in 5 seconds on a slippery split mu (mu =
{0.9, 0.4}) curve of R=50[m] as shown in Figure 10.
3) Double lane change:
Perform ISO double lane change task at the speed of
70[km/h].
4) Crossing side wind:
Run straight while crossing strong side wind at the
speed of 70[km/h].
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Figure 8: Diagram of main layers of the simulation model
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T = 0[sec]: V = 0[km/h]

T = 5[sec]: V = 70[km/h]
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Figure 9: Test condition for ‘acceleration while cor-
nering’ task
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Figure 10: Test condition for ‘deceleration while cor-
nering’ task

2.3.4 Vehicle model
As shown in Figure 8, the vehicle model consists of
sub-models of brake, chassis and power train. Inside

the chassis model, multi-body dynamics of suspen-
sion links and joints are considered. Figure 11 shows
Dymola model of the new suspension with two lower
arms for which their length are actively controlled to
control the camber angle and steering angle of the
wheel independently. Also body motion is considered
by multi-body dynamics model which has inputs from
each suspension linkage. Because of this, the effects
to body motion by suspension geometries such as
anti-dive geometry, anti-squat geometry and so on
can be considered. About tire model, ‘magic formula
model’ (Pacejka’02) [4] is used.

Figure 11: Dymola model of the new suspension

2.3.5 Driver model
Desired path and desired position of the vehicle on
the path (target points) are settled on the road respec-
tively according to the desired road shape and the
vehicle speed profile for each task. ‘Planning’ block
of the driver model shown in Figure 8 arranges target
points along the desired path considering a preview
distance of the driver model. ‘Tracking’ block calcu-
lates commands for steering angle, acceleration pedal
angle and braking force respectively using the infor-
mation from ‘Planning’ block and ‘Perception’ block.
Each command is calculated as follows.
Steering angle command: str_cmd

offsetstrgainstr
yrV
xrVcmdstr __*
_
_tan_ 1 (2)

where
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rV_x: longitudinal distance along path between
target point and current vehicle position,

rV_y: lateral distance along path between target
point and current vehicle position,

str_gain: steering gain,
str_offset: offset value (optional).

Acceleration pedal command: acc_cmd
DKcmdacc acc_ (3)

and
Braking force command: brk_cmd

DKcmdbrk brk_ (4)
where
Kacc: Proportional gain for acceleration command,
Kbrk: Proportional gain for braking command,

and

)___(

)___(

)___(

vehvxPvV
sT
K

vehvxPvV
NsT

KNs
vehvxPvVKD

i

d

(5)

Here,
K: Proportional feedback gain
Td: Inverse of differential feedback gain
Ti: Inverse of integral feedback gain
N: Constant
s: Laplace operator
vV_P_x: Reference velocity along path
v_veh: Vehicle velocity along path

2.3.6 Controller model
To provide a template of controller model, an exam-
ple model of the controller (default controller) is also
provided in the model library. It is required for re-
searchers of this benchmark study to propose revi-
sions to the default controller (and also driver model
if necessary) to realize the following demands.
1) Let vehicle yaw rate, side slip angle and lateral

acceleration follow the desired values (ideal mo-
tion of conventional vehicle) and / or make a de-
viation from desired path to minimum under limi-
tation of control amounts of steering angle and
camber angle of each wheel.

2) Minimize energy consumption of IWMs.
The desired yaw rate, the desired slip angle and the
desired lateral acceleration are calculated as bellows.
Desired slip angle:

0ref (6)
Desired yaw rate:

input
s

s
ref sT

K
1

(7)

Desired lateral acceleration:

refrefy VG _ (8)
Here, Ks and Ts are settled from the desirable motion
of the conventional vehicle as follows.

rfrffrr

rfrf
s ccaaaMVca

Vccaa
K

)(
)(

2
(9)

frf

f
s caa

VMa
T

)(
(10)

Here, following parameters are selected as a nominal
value of the conventional vehicle for
af : Longitudinal distance between front wheel and
CG (Centre of gravity)
ar : Longitudinal distance between rear wheel and
CG
cf : Cornering stiffness of front two tyres
cr : Cornering stiffness of rear two tyres
M: Mass of vehicle
V: Vehicle speed.

As a tentative example, the default controller calcu-
lates commands for the actuators as bellows.
Front steering angle:

si Gcmdstr /_ (i=1, 2) (11)

(Gs: Virtual steering gear ratio)
Rear steering angle:

0i (i=3, 4) (12)

Camber angle of all wheels:
0i (i=1~4) (13)

Driving / braking torque:

dtVVKVVK

cmdbrkcmdaccK

refirefp

torquei

)()(

)_or_(
(i=1~4)

(14)
where
Ktorque: Constant
Kp: Proportional feedback gain
Ki: Integral feedback gain
Vref: Desired vehicle speed
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2.3.7 Tentative results of an example
As a tentative example, a result of applying the de-
fault controller in the case of ‘deceleration while cor-
nering’ task is shown below. Figure 12 shows a time
plot of vehicle speed. Only by above default controls
it was not possible to trace the desired trajectory as
shown in Figure 13. Figure 14 shows a time plot of
side slip angle of both the cars in this case. Author
now encourages many academic people to join this
benchmark study.
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Figure 12: Vehicle speed of conventional vehicle and
new mobility for deceleration while cornering’ task
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Figure 13: Trajectories of conventional vehicle and
new mobility for ‘deceleration while cornering’ task
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Figure 14: Vehicle slip angle of conventional vehicle
and new mobility for ‘deceleration while cornering’
task
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Figure 15: Limitation of calculating rigid mechanical
loop of rigid elements by Modelica

3 Requests to Modelica from Japa-
nese automotive industries

In the way of developing Dymola models for automo-
tive applications, there occurred many requests to
Modelca community from automotive industries. Ta-
ble 3 summarizes the requests, though there are some
ambiguous points and further discussion seems nec-
essary. It is highly appreciated that Modelica Asso-
ciation will consider those requests in future devel-
opment of Modelica specification, Modelica tools
and also in future activity about Modelica. For this
purpose, there is a high expectation to the activity of
MIAB (Modelica Industrial Advisory Board).
As for the request number 21, the author will give an
additional explanation. This request relates to a de-
mand to convert CAD model to Modelica model di-
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rectly. There often are cases of making a rigid struc-
ture by combining rigid elements when making me-
chanical structure models by CAD. However, by cur-
rent limitation of Modelica, it is impossible to calcu-
late such models because the force and torque acting
on the every edge of the rigid elements are over con-
strained as shown in Figure 15. It is highly desired
that such limitation will be removed in the future.

4 Conclusions

For some future mobility vehicles, Modelica models
were developed for many virtual tests by the simula-
tion. It was proved that such simulations were useful
to estimate the motion of new mechanisms and also
the effect of controls before making actual vehicles.
To cope with the one of the potential problem of the
future small-size vehicles, a benchmark study was
proposed by Japanese committee of automotive in-
dustries and academia. It is highly welcome that
many control researchers will join and challenge to
the benchmark study. An organized session of this
benchmark study will be held in coming IFAC-AAC
(Advances in Automotive Control) 2013 symposium
which will be held in September of 2013 in Japan.
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Table 3: Requests from Japanese automotive industries to Modelica
Issue No. Requests

Readability of model 1

Improve readability of a model by avoiding difference between text-based
description and GUI (connection editor) based description. (It's possible to
write a model such that the parts are not connected in GUI but connected in
text layer. ) For example, making a guideline about the way of description
for the definition of connection.

Code generation 2 Support C code generation for best-fit to compiler's optimization.

3 Improve readability of generated C codes so that the modification by handcoding will be easier.

4

Support C code generation for paraller processing. For example, specifying
the importance of calculation causality between different physical domain
and if the importance is small, then enable code generation so that the
different domain can be calculated

Units 5 Support the unit of [rpm].

6 Categorize and claasify physical domain of SI units more clearly. (Thereare too many SI unit domains to search easily now.)

Libraries 7
Increase library blocks to connect different domains. For example,
between translational domain and rotational domain

8 Increase Modelica standard libraries

9 Develop libraries for interaction of heat flow and mechanical systems(combustion engine, friction, damper, etc.)

10 Develop libraries for interaction between mechanical vibration and soundfield analysis.
11 Develop libraries to simplify 3D flow anaysis simulation to 1D flow
12 To make commercial library independent for different modelica-based

Error handling 13 Improve the traceability of the reason of a error.

Usability 14 Make arbitrary one model class replacable by simple GUI.

15 Make it possible to specify physical variables to be shown in the simulationresults (hopefully by simple GUI).
16 Support revision management function for model classes and package files.

17 Enable error handling and variables monitoring for protected models. (Forexample, models from suppliers.)

18 Enhance FMI compatiblity to other tools (Ex. GT-SUITES, CarMaker,CarSim, Star-CD, etc.)

Modeling methodology 19 Support of a new modeling methodorogy based on conservation laws ofphysical systems. (As HLMD from Toyota [5].)

20

Model reduction:
1) Simplify precise equation-bassed physical models by numerical
sensitivity analysis (ex. Sparce handling).
2) Identify parameters for non-linear dynamic parametric models from
experimental data.

21 Let the calculation for kinematic loops of rigid bodies possible.
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Abstract 

Increasingly challenging requirements such as 
environmental and safety legislation as well as in-
creasing development costs are leading to a need for 
more overall system understanding in the automotive 
sector. Modelica, as a suitable way for multi-physics 
modeling, is therefore applied by Bosch, e.g. to in-
vestigate energy flows amongst domains. 
We present a modular approach consisting of two 
parts to handle complexity and increase the perfor-
mance: a modular library for the different domains 
and a co-simulation framework. To begin with, 
coupling aspects such as causality and communica-
tion are discussed in this context and their implemen-
tation is shown. A further focus is the variable macro 
step size that we developed within the framework for 
the automotive drive cycle simulation. The results of 
the modular approach are described and analyzed 
regarding error and performance aspects. Finally, 
challenges of the work are mentioned and an out-
look, including FMI [2], [10], is given. 
Keywords: co-simulation; automotive system simula-
tion; multi-domain 

1 Introduction 

Scarcity of resources, legislation and customer de-
mands continue to be the main driver for automotive 
manufacturers. New technologies such as hybridiza-
tion or full electrification but also systems and com-
ponents to increase the efficiency of the conventional 
powertrain help to reduce CO2-emissions. Especially 
a supplier such as Bosch, providing a broad range of 
components as well as system solutions, requires a 
profound overall system understanding in all devel-
opment stages. This is achieved by simulation, ap-
plying acceptably complex but comprehensive ve-
hicle models. In contrast to signal-oriented or do-
main specific tools, Modelica proved to be a suitable 
way for physical, multi-domain and object-oriented 
modelling and is therefore applied, currently using 

DYMOLA2012 [5] as simulation environment. Be-
sides the physical domains, the vehicle controllers 
complete the models and hence a forward oriented, 
robust drive cycle system simulation is done. The 
resulting energy flows amongst the domains during a 
drive cycle give potential assessments of a certain 
system or component. This is compared to vehicle 
measurements (as e.g. in [16]). 

A drawback of including all vehicle domains in 
one model is that the generated hybrid DAE system 
causes a high computational effort. Putting together 
the powertrain model with a detailed thermal and 
exhaust system model leads to simulation times sev-
eral times slower than real-time on a Windows PC 
system. 

To avoid this effect of complexity, the vehicle 
model is partitioned into subsystem models which 
are simulated in parallel using their locally adapted 
solvers. In a first approach, three subsystems were 
coupled, performing a co-simulation via TISC [17], at 
the expense of a precision loss but resulting in speed-
up by factor of 5 on a single core PC. Additionally, 
using simulator coupling, the possibility to introduce 
existing MATLAB/SIMULINK or AMESIM models is 
given. 

To reduce the numerical error introduced by par-
titioning and coupling, further development on cou-
pling aspects was done. This was realized by apply-
ing MDPCosim [11] as master-slave co-simulation 
environment and expanding it with approximation 
methods and a variable macro step size control. In 
comparison to the approach with error estimation by 
repeating steps [4], a different approach with heuris-
tic methods is being developed and in use for the 
presented drive cycle simulations. 

2 Modular Simulation of Automotive 
Models 

In order to optimize the energy consumption of a 
vehicle, simulation of the overall system is needed. 
This includes, besides the model of the powertrain 
with driver, engine, transmission, brakes and driving 
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resistances, all energy-relevant subsystems, namely 
the exhaust system, cooling and oil circuit as well as 
the electric power net and the system control. Accor-
dingly, the models contain the mechanic, hydraulic, 
thermal, electric and boolean logic domain. 

A modular realization was consequently chosen. 
On the one hand modularity is used to derive defined 
interfaces between the subsystems. This is obligatory 
for a collaboration of several developers or even sev-
eral tools. On the other hand, a partition into mod-
ules for a possible co-simulation is prepared. 

2.1 Motivation for modular simulation 

One reason for modular simulation is to assemble 
models, developed in different tools. [7] shows dif-
ferent approaches, thus model coupling could be e.g. 
realized via FMI for model exchange [2]. Another 
reason is to partition the system to benefit of multi-
rate time integration [1], [14], using different solvers 
for different dynamic behavior of subsystems. This 
can be used to meet real-time requirements for HiL 
simulation in the automotive domain, such as 
achieved in [9]. For HiL simulation fixed-step solv-
ers are being used though, in contrast to the pre-
sented overall system simulation with variable DAE 
solvers. 
In order to measure the computation time (tCPU) 
overhead by assembling i subsystem models to the 
overall vehicle, a factor θA (1) is introduced. 
 

∑
=

i
i model partialCPU

model overallCPU
A t

t

,

,θ  (1) 

 

During development of the subsystem models, e.g. 
the thermal system including the fluid circuits, the 
behavior of the vehicle is introduced by measured 
timetables and a standalone simulation is possible. 
Adding the thermal system model to the residual 
model of the vehicle containing already the other 
domains (i = 2), a θA of 12.1 was observed (for a 
more complex thermal model 19.2). Adding as an 
example a detailed model of the battery (i = 3) will 
again increase this factor. Therefore, instead of simu-
lating the model with one solver, the modular ap-
proach is chosen, which additionally provides effi-
ciency by simulating in parallel. Here, θA can be seen 
as an upper limit for the speed-up achievable by mul-
ti-rate advantages. For stability and accuracy reasons 
a partition leading to preferably weak coupling is 
useful, also giving the possibility to apply larger ma-
cro steps H. One possible partition method is de-
scribed in [14]. Another method is the TLM (Trans-
mission Line Modelling) approach, as presented in 
the Modelica context in [13]. TLM creates a modular 

simulation by adding a solver to each component. 
Though, the advantage of symbolic manipulation of 
the equations for multiple components within one 
technical subsystem would disappear. Hence, in our 
work the nearby application along technical domain 
boundaries is chosen. 

2.2 Coupling aspects 

For a co-simulation of the modular vehicle model the 
implementation of different coupling aspects is ne-
cessary. In the following, those aspects are catego-
rized and their application is described: 

• Synchronization: different communication 
strategies between the solvers are possible. 
Figure 1 shows in its upper part a sequential 
asynchronous solution, e.g. described in [15] 
with advantages in accuracy and no necessi-
ty to define macro step sizes. The lower part 
presents the parallel synchronous solution, 
which is more efficient and therefore used 
here. The MDPCosim master controls the 
slaves including the models, who can run in 
parallel 

• Causality: the advantage of Modelica with 
physical modeling and equation preprocess-
ing disappears at the coupling interfaces, 
where causal, directed signals have to be 
used. MDPCosim covers the possibility for 
connecting slaves with coupling laws in the 
master [12] (flow-flow-coupling) and e.g. a 
reaction torque is retrieved in the master. For 
the applied step sizes and partitions in the 
vehicle simulation the more conducive tech-
nique of potential-flow-coupling is adopted. 
Details of the causal interface are com-
mented in section 3. 

• Approximation: the discretization intro-
duced at the interface is adding an additional 
error to the simulation that can be reduced 
by approximation methods. Depending on 
the chosen synchronization scheme, different 
methods are possible: extrapolation, interpo-
lation or even iterative such as described in 
[3]. It can be implemented in the master 
(constant), the slave (time varying) or both. 
On the present, parallel case, extrapolation 
including smoothing is chosen, see section 3. 

• Macro step size: using synchronous coupl-
ing, a suitable macro step size has to be cho-
sen. An efficiency gain for the overall simu-
lation with acceptable co-simulation error 
needs to be combined. Therefore, investiga-
tion for fixed, predefined (timetable) and in 
conclusion variable macro step sizes was 
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done. As a result, a heuristic method was de-
veloped, which is described in detail in sec-
tion 4. 

• Event handling: occurring events in the 
subsystems will cause severe errors if the 
coupling values are affected, e.g. in a start-
stop-strategy. This must be avoided thus no 
discontinuous signals are chosen in the 
present interfaces. Still, detecting and treat-
ing events during co-simulation is important 
for future work and one viable solution 
could be using FMI for co-simulation [10]. 

 

 
Figure 1: Two synchronization schemes (slaves 1, 2) 

2.3 Evaluation of modular simulation 

Illustrating the implementation of some coupling 
aspects and signal routing, figure 2 shows the im-
plemented structure for the slaves in Modelica. 
 

Slave

Approx. Com.Modell

ODE / DAE /

hybrid DAE

Causal 

Interface

ũu y ȳ

ControlbusControlbus

Approx.Info

Solver  
Figure 2: Structure of a slave model with signals 
 
The input signals u are extrapolated in the approxi-
mation section to ũ. As wrapper to convert ũ and the 
output signals y to the physical proper model the 
causal interface for different domains is modelled. 
The continuous y then are communicated to the mas-
ter as discrete signals ȳ. Additional, modular specific 
information is written to the control bus as explained 
later. 

In order to evaluate the accuracy of the modular ap-
proach, a discretization error τC̄UM is defined by (2). 

 

t
dt

CUM
∫ −

=
yy

τ  (2) 
 

Notable at the physical interfaces this error is fed 
back and influences the behavior of y, compared to 
the same states y* in a monolithic simulation (one 
solver). The correlation in the master between slave 
inputs u and outputs y is given as incidence matrix I: 
 

Iyu =:  (3) 
In order to take into account the accuracy augmenta-
tion by approximation, as well as the cumulated 
feedback influences, the co-simulation error 
 

t

dt)
*
CUM

∫ −
=

*(Iyu
τ

~
~  (4) 

 

is introduced. In (3) and (5) t represents the simu-
lated time. 
Both accuracy and efficiency of the modular ap-
proach with co-simulation have to be regarded. Be-
sides cumulating events and F-evaluations the speed-
up factor SCS (5) is important, having the reduction of 
simulation time of the overall vehicle model as moti-
vation. 
 

CoSimCPU

monolithCPU
CS t

t
S

,

.,=  (5) 
 

The accuracy and efficiency of co-simulation was 
observed during the development of the library and 
the framework described below. 

3 Implementation 

As mentioned in the introduction, the modular auto-
motive system simulation relies on two parts, the 
modular library and the co-simulation framework. 

3.1 Modular library 

The development of the library was based on using 
the Powertrain Library [6]. In addition, detailed 
models of the oil circuit, cooling circuit, HVAC, the 
exhaust system and the power net were developed. In 
order to enable configuring multiple classes of ve-
hicles in different model granularity and combine 
them with existing in-house data libraries, the mod-
ular library was developed.  
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Figure 3: Example: overall vehicle model / data and model structure in the library 

 
It contains a ‘_MODEL_LIB’ part for the model de-
velopment and, mirroring the same structure, a sepa-
rate ‘_DATA_LIB’ part, where vehicles and subsys-
tems are configured, parameterized and set up for 
different (drive cycle) simulation experiments. Fig-
ure 3 shows a top-level model of a commercial ve-
hicle. On the right part, the library structure with 
model and data part is shown. The different subsys-
tems, e.g. for combustion engines (‘Ced’) or thermal 
systems (‘Ths’), can be changed by redeclaring the 
class with other data lib models. In the same way, a 
subsystem can be set up to be co-simulated, as 
shown in the left part of figure 3: The Ths-model is 
replaced by an interface (‘Ths CoSim’) directing to 
the thermal system co-simulation slave, which can be 
found as standalone model in the library structure 
and will be run in parallel. 

Modularity is also represented in the subsystem 
models. Figure 4 depicts the thermal system. It con-
tains replaceable models for the energy balance, 
combustion engine heat, cooling circuit, oil circuit 
and HVAC. 

 
Figure 4: The thermal system model 

In order to allow maximum modularity accompanied 
by physical coupling between the subsystems, causal 
interface models are introduced for different domains 
enabling signal exchange with a ‘causalSubBus’. In 
such manner e.g. the oil pump is coupled to the po-
wertrain part. The related flange interface in figure 5 
shows the crank part. 

 
Figure 5: Causal interface for flanges 
 
Depending on the macro step sizes, a flow-flow or a 
potential-flow-coupling can be chosen. Similar inter-
faces are used for the thermal part. For communica-
tion with MDPCosim and signal approximation, a 
configurable interface model is in the library, figure 
6. 

y u

Com

InfoBus

u u~

Apx

InfoBus

slaveOut

slaveIn

 
Figure 6: Co-simulation interface model 
 
Different slave approximation methods, partly in 
combination with master approximation of flow va-
riables, have been tested on a two-mass-oscillator 
model as well as in the vehicle context. Following, 
different methods, such as Taylor, Lagrange and 
Hermite polynomials and a transition method, 
smoothing signal jumps, are implemented for the 
library and applied in the ‘Apx’ block. All methods 
can handle a variable macro step size. Additionally, 

A Modular Technique for Automotive System Simulation 

 

592 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076589 



 

 

an ‘infoBus’ is introduced containing information 
about the signals approximation. 

3.2 MDPCosim framework 

The latter information can be fed via a control bus 
and used for master algorithms. This architecture is 
described in figure 7. It shows the configuration of 
the MDPCosim framework [12] and its adaption as 
vehicle co-simulation environment in C++. The ab-
ovementioned overall vehicle model is represented 
as slave 1 … N. An overhead process actuates the 
master and slave processes. These run in parallel, 
while the co-simulation is controlled by the master. 
This includes synchronization, connecting the signals 
(feedthrough or coupling law with approximation 
[12]) and the macro step size algorithm. 
 

Co-Simulation Environment

Master Slave 1

Slave N

Synchronization

Connection- /

Approximation-

algorithm

physical direct

Macrostepsize-

Algorithm

u1

y1

Controlbus

Controlbus

Slave 2

u2

y2

Controlbus

Controlbus

 
Figure 7: Architecture of the adapted environment 
MDPCosim 
 
As inter process communication, shared memory is 
used; TCP/IP is planned for future work. Besides the 
coupling signals (u, y) the control bus connects mas-
ter and slaves. It contains: derivatives of y, step size 
H, Tnext, τC̄UM and information about approximation, 
local step sizes h and events. This information is 
handled within the master algorithms. 

The inner layout of the slaves is shown in figure 2 
and figure 6 respectively. 

3.3 Batch co-simulation 

As a tool for the development of modular methods, 
MDPCosim was expanded with a superimposed al-
gorithm that allows automated batch runs. This is 
used to sweep parameters of the master as well as the 

slave models. Hence, fitting of model parameters is 
possible or a variety of co-simulations needed for 
requirements engineering of a certain component in 
the overall system context can be run. 

Figure 8 demonstrates the data and process flow 
of a batch run. It is configured, using a file that con-
tains the following information: number of runs, 
type, identifier of a parameter (file), (min and max) 
values. The different types are ‘variants’, ‘parame-
ter’, and ‘autoParaVari’. The type ‘variants’ is fol-
lowed by a file identifier defining numbered versions 
of a model or master parameter file or different mod-
el files. The other types allow naming a parameter to 
be varied, giving all values or giving a minimal and 
maximal value. 

START

END

BatchRun ?
single

Co-Sim
no

yes

READ  settings 

(batchType, numRuns,...)

yes

Type ?

READ 

para ident

READ 

para values

READ 

para ident

READ 

min max

autoParaVariparameter

READ 

file ident

READ 

para file

variants

INIT master / slave para file

SET para vector

i:=1

INIT Slave ctrl comnds i

INIT batch log file

SET para value / SET para file

single

Co-Sim

i=numRuns ?

WRITE batch log file

i:= i+1

SET Slave ctrl comnds i

WRITE 

result i

WRITE 

log files i

 
Figure 8: Flow chart of the batch architecture 
 
The result files and a batch log file can be imported 
in MATLAB to be commonly evaluated for the as-
pects described in section 2.3. By means of this 
evaluation the development of approximation and 
macro step size algorithms is done. 
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4 Macro Step Size Control for Drive 
Cycle Simulation 

The objective of modular automotive simulation is to 
increase simulation speed, while keeping the co-
simulation error acceptable. In contrast to the se-
quential asynchronous approach, see 2.2, for the pa-
rallel synchronous technique, defining the macro 
step size H is necessary. Setting H = hi (with hi: local 
step size of slave i) is not conducive, if we consider 
the effort for each macro step with an event in all 
slaves, waiting for synchronization and the master 
algorithm for coupling. Thus relatively large H are 
pursued. To reduce the following discretization error, 
the extrapolation methods are adopted and an algo-
rithm for variable H is developed. 

State of the art of simulation tools and the 
abovementioned context (section 2 and 3) lead to the 
following boundary conditions for the macro step 
size control: large subsystem models are solved with 
a commercial simulation tool and are therefore seen 
as black boxes for the master; overall, the coupling is 
kept weak (slow changing temperatures in the ther-
mal model / small pump inertia compared to the 
powertrain inertia.); the drive cycles (e.g. [8] or [18]) 
span more than 1000 s and macro steps in the range 
of 0.1 s and 10 s are chosen; the drive cycles provide 
an approximate predictive behaviour of the overall 
vehicle. Embedded methods or the Richardson 
method such as presented in [4] are neither condu-
cive (for efficiency reasons) in the present use-case 
nor possible (yet), since a macro step cannot be re-
peated. Thus, the methods, described in this paper 
are heuristic and strictly monotone procedures based 
on indicators. 

The chosen approaches go without the need to re-
peat steps and partly establish the general correla-
tion: 
 

,...),...,_),(~,,,,( puτhyy eventttHH =  (6) 
 

With p as parameters to be defined by the user and 
ũ(t) derived by the knowledge about the used ap-
proximation method for each signal. Based on (6) 
different approaches can be combined: 

• H is determined basing on additional user 
input parameters p or simply the common 
RTOL/ATOL user limits. 

• H is determined by one leading slave output 
y, by multiple or all outputs of all slaves y. 

• H is determined with local slave information 
about derivatives y , error τ , local step 
size(s) h, approximation and events. This in-
formation is provided via the control bus 
(Figure 2, 7). 

• H is determined with or without quasi-error 
estimation based on τ  and ũ. 

In figure 9 the master algorithm with the step size 
control (‘H algorithm’) is explained. If the parameter 
for H is set to <0, a table file with H = f(t) is used 
and if H is set to 0 the H controlling algorithm is in-
itiated. After initializing the slaves and the master 
including the H algorithm initialization, the co-
simulation cycle starts. Within each cycle, after ex-
ecuting each macro step, the H algorithm is called 
and can set a new value for H. 

START

END

READ master 

parameters

H=0 ?
Co-Sim

H=const.
H>0

READ  

H-table
H<0

Co-Sim

H=f(t)

H=0

READ var. H 

parameters

INIT y, ControlBus (Slaves)

INIT H algorithm

INIT t, H

INIT u, ControlBus

        (Master connection)

tEND?

yes

EXECUTE Step (t,H) (Slaves)

t:=t+H

GET y, ControlBus (Slaves)

H:=f(H algorithm)

SET u, ControlBus

        (Master connection)

no

 
Figure 9: Flow chart of the master algorithm 
 
In figure 10 an example of a master parameter file is 
shown. Starting with the entry for the co-simulation 
end time, the second line defines H. If it is 0, the al-
gorithm continues reading the parameter file with a 
line for the chosen H algorithm type and a line for 
start value for H (optional), followed by type specific 
parameters (see next section). 
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Figure 10: Example: Master parameter file for vari-
able macro step size 
 
Currently, the development of the more sophisticated 
H algorithms is still ongoing. However, first algo-
rithms are implemented and in use. A state-lead al-
gorithm is described in 4.1. 

4.1 Implementation 

In a drive cycle, the desired vehicle speed v and the 
gear is given as v = f(t) and gear = f(t). Additionally, 
the resulting kinematic states in the powertrain do-
minate the overall vehicle model behavior. Accor-
dingly, the macro step sizes are based on gradients of 
the vehicle speed ( v ) or the engine speed ( engω ) as 
leading states and indicator for most changing rates 
of the model states. Thus the macro step size H is set 
inversely proportional to the last gradient value. 

As shown the example in figure 10, line 5, the us-
er has to provide parameters for the index number of 
the slave i and the belonging index number j of the 
leading state. This has to be completed with the last 
line of parameters with values for Hmin, Hmax, method 
tuning parameters and minimum and maximum gra-
dient values. To reduce the user input, a method 
without the latter entries was developed. The correla-
tion follows with  
 

)()],1min(1[ minmaxmin
0 HHyHH p

dl −−+=   (7) 
 

with a dimensionless dly : 
 

avg

ji
dl yp

y
y






1

,=  (8) 

 

depending on a weighted mean value over the cur-
rent simulation time. The algorithm can be optimized 
with the remaining parameters: Hmin, Hmax, p0, p1. For 
this purpose, batch runs for each parameter are done 
with representing use case models and evaluated us-
ing MATLAB. One of the results is shown in fig-
ure 11, where a variation of Hmin from 0.05 s to 0.5 s, 
holding all other master parameters constant, is pre-
sented. It covers the evaluation for number of steps, 
speed-up Scs (5) and the error *

CUMτ~  (4). In that man-
ner, the parameters were optimized for a certain 
drive cycle. 
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Figure 11: Evaluated batch run varying Hmin 
 

The macro step sizes during a drive cycle 
(NEDC) in figure 12 are in the range of 0.4 s and 2 s 
and result in an average step size of 0.92 s.  
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[s
]

Macro step size; number of steps:1278

 

 

H [s]    Min:+4.000e-001  Max:+2.000e+000  Av.:+9.225e-001

 
Figure 12: macro step sizes in a drive cycle 
 
To evaluate the algorithm, this is compared to a fixed 
H co-simulation with this average value. The com-
parison is shown in table 1. 
 
Table 1: macro step size control method evaluation 

 variable H fixed H (0.92 s) 
Scs [s/s] 4.516 4.502 

CUMτ [m/s] 0.036 0.060 

 
With a comparable speed-up factor the cumulated 
discretization error could be significantly reduced. 
With adapted parameters, the method was also suc-
cessfully applied for the two-mass-oscillator test 
case. However, the user needs knowledge about the 
model and the coupling method. Therefore ongoing 
investigation is done on methods with less user in-
puts on the one hand and embedding more local in-
formation as well as a control strategy for approxi-
mations on the other hand. 
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5 Use-Cases and Results 

All models presented in this paper are simulated us-
ing DYMOLA [5] and co-simulation is done by coupl-
ing several DYMOLA processes. The vehicle hybrid 
DAE models require the use of the ‘dassl’ solver and 
the same integration settings are used for all experi-
ments. The modular simulation was investigated on 
test use-cases, a two mass oscillator (TMO) and sim-
ple thermal modal as well as in the overall automo-
tive context. For completeness, some results of the 
approximation tests with the TMO are given in the 
following. 

5.1 Two-mass-oscillator test case 

To develop the causal flange interface, an undamped 
rotating TMO is modeled with high frequency of the 
left and low frequency in the right mass and simu-
lated, using MDPCosim. Thus the direction and the 
combination of approximations can be distinguished. 
Table 2 shows some results. The co-simulation error 
after 20 s with H = 5 ms is compared for potential-
flow-coupling (angle Lϕ  to the right side) and flow-
flow-coupling with different approximation methods. 
It could be reduced by more than two orders. 
 

Table 2: TMO: improvement with approximation 
 [rad]τ~*

CUM, Lϕ  

potential-flow-coupling: 
no approx. (0. order extrapolation) 4.43e-1 

potential-flow-coupling: 
phi_left: first order transition 
tau_right: 4-point-lagrange 

2.90e-3 

flow-flow-coupling: 
master: 2nd order method 

slaves: first order transition 
1.38e-3 

 

5.2 NEDC: vehicle with detailed thermal sys-
tem 

Following the conditions for overall vehicle simula-
tion with larger step sizes, in the current state of the 
modular library only potential-flow-coupling and 
signals without direct physical reaction are used, 
such as the fuel mass flow. For temperature signals a 
4-point-lagrange polynomial and for (rotational) 
speed signals a first order taylor or the transition me-
thod is configured. 

Here, as an example a conventional passenger car 
model is coupled with a detailed thermal system 
model, similar to the one in figure 4, but with only a 
two-thermal-mass motor block model and simplified 
models of the cooling system and HVAC. The re-
sults are evaluated by referencing the same overall 
vehicle model, simulated without co-simulation with 

only one solver. For the NEDC (simulated time 
1180 s), the computing time was 1400 s. With ap-
proximations and the variable macro step size (see 
4.1; H: Ø 0.92 s) the co-simulation computing time 
was 310 s (speed-up: 4.5 and real-time capable). It 
lead to an acceptable error e.g. of the fuel consump-
tion value of << 1%. Compared to θA = 12.1 (see 2.1) 
there is more speed-up capability. This can be 
reached using larger Ø H, however finally leading to 
inacceptable accuracy. For more complex models of 
the thermal, exhaust system or the powernet, more 
speed-up is reached. 

Figure 13 shows three different simulations for 
the same acceleration sequence in this cycle. The 
simulation results for the engine speed of the refer-
ence, a co-simulation with correlating fixed H and 
the co-simulation with variable H and 0. order extra-
polation are compared. 
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Figure 13: engine speed in an acceleration sequence 

 
The same three simulation results as in the upper 
figure are taken in figure 14. To compare the beha-
vior of an approximation method in combination 
with variable macro steps additionally, the warming-
up curves of the average oil temperature are taken. 
 

 
Figure 14: warming-up at cycle start / negative ap-
proximation effect. 
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The approximated curve is mostly more congruent to 
the reference. However, in the first part, the prob-
lems of applying higher order extrapolation together 
with to large step sizes is obvious. 

This is one of the challenges in using a parallel 
and strictly monotone modular technique. Therefore, 
as mentioned in 4.1, the control bus has to be 
adopted for a quasi approximation order control to-
gether with further improved step size control me-
thods. 

6 Conclusions and Outlook 

In this paper we presented a Modelica based modular 
approach for overall vehicle system simulation. The 
advantages of using co-simulation in this context are 
deduced and achieved computational speed-up re-
sults are shown. The modular approach consists of 
two parts: a modular multi-domain vehicle library 
and the adapted co-simulation framework MDPCo-
sim [11]. The modular library allows configuring 
complete vehicles by assembling the needed subsys-
tem models, which is also possible as co-simulation 
slave to be simulated in parallel. Additionally, it pro-
vides interface models that can be easily configured 
by the user to set up a co-simulation run. The im-
plementation of different categorized coupling as-
pects is shown. In particular, a heuristic method for 
macro step size control that is used for the overall 
vehicle simulation is explained. As advantage its 
parameters were chosen according to the a priori 
known drive cycle. Though, there are many chal-
lenges, which have to be regarded to make modular 
simulation more applicable. 

Thus, there is remaining work to be done. A pref-
erable way is the adoption of FMI [10], once a reli-
able implementation also for the mentioned large 
multi-domain models is available (not the case at the 
beginning of the present work). The FMI standard 
provides a suitable set-up for the algorithms de-
scribed above. Consequently an even more common 
use of the modular library approach will be feasible, 
also including more different tools. 
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Abstract 

This paper highlights the use of multi-domain physi-
cal models for simulation of vehicle drivability ap-
plications.  The models are implemented using the 
Vehicle Dynamics Library and Engine Dynamics 
Library from Modelon.  The application examples 
include vehicle launch, vehicle start-stop, and trans-
mission shift events.  The examples are structured to 
illustrate how increasingly sophisticated models pro-
vide additional model fidelity or increase the driva-
bility phenomena observed.    

Keywords: vehicle dynamics; drivability; vehicle 
modeling; powertrain; engine; transmission; launch; 
NVH 

1 Introduction 

To meet increasingly stringent fuel economy and 
emissions standards, automotive original equipment 
manufacturers (OEMs) and suppliers have sought 
novel technologies to meet customer demand con-
strained by the regulatory environment.  As system 
complexity increases, the need for increasingly so-
phisticated analytic tools to perform concept evalua-
tion, capture multi-domain system interactions, and 
develop and validate control strategies grows.  Mod-
elica has been used extensively in the automotive 
community for modeling and simulation of vehicle 
dynamics and handling [1], transient engine model-
ing and performance [2] [3], vehicle thermal man-
agement [4], air conditioning systems [5], and vehi-
cle fuel economy and emissions [6].  

While customers demand continued refinement in 
vehicle performance attributes, they also demand no 
compromises in vehicle comfort and vehicle driva-
bility.  Furthermore, many system design or control 
actions improve one attribute potentially at the ex-
pense of another or several others, typically drivabil-
ity or comfort.  Automotive manufacturers are acute-

ly aware of the market requirements to achieve best 
in class levels of vehicle performance and drivabil-
ity.  For example, customers may report drivability 
related issues such as shift busyness resulting from 
an increased number of vehicle shifts to optimize 
fuel economy for transmissions with more gears.  
Shift performance and feel are also common custom-
er complaints.  With increasing use of start-stop 
technology (see Figure 1), customers experience 
many more starting events, and their expectations 
regarding these events differ in driving mode as 
compared with a single start in park in a garage or 
parking lot.  Vehicle launch with both conventional 
and especially with start-stop technology can be es-
pecially problematic from both a performance and 
drivability standpoint.  With multiple power paths in 
both conventional and hybrid vehicles, interactions 
between subsystems can lead to vehicle vibrations 
typically felt at the seat track by the customer.   With 
the accelerated adoption of dual clutch transmis-
sions, driveline vibrations induced by clutch dynam-
ics are becoming a drivability concern. Variations in 
clutch friction material, alignment, etc. can affect 
both nominal performance and drivability, and data 
to characterize the key components is often not 
available or considered proprietary by the suppliers. 

This paper describes several different vehicle 
drivability applications.  These models are imple-
mented using components from the Modelon Vehicle 
Dynamics Library (VDL) [1] and Engine Dynamics 
Library (EDL) [8].  These examples highlight the 
multi-domain approach needed to simulate vehicle 
drivability issues.  The examples are also structured 
to illustrate how increasingly sophisticated models 
provide additional model fidelity or increase the 
physical phenomena observed.  The sample applica-
tions in this paper include vehicle launch, vehicle 
start-stop, and transmission shift events. The applica-
tions also include different modeling approaches for 
the engine with both a conventional automatic and 
dual clutch transmission. 
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Figure 1.  Projections of micro-hybrid vehicles in 

North America and Europe (reprinted in [7]) 

2 Vehicle Modeling 

This section outlines the key multi-domain compo-
nent and subsystem models that support the subse-
quent vehicle drivability applications. The main 
model components are detailed as are the different 
modeling approaches that can be used to support ve-
hicle drivability applications.   

2.1 Vehicle Model Architecture 

The ability to create configurable model architec-
tures in Modelica is one of the key enablers for ar-
chitecture-driven development in model-based sys-
tems engineering [6].  With core language support 
for model management and configuration and formal 
interface definitions, Modelica provides an excellent 
foundation for distributed, collaborative systems 
modeling.   
    The Vehicle Dynamics Library takes an architec-
ture-driven approach to model development and con-
figuration.  One of the fundamental guiding princi-
ples of VDL is the ability to mix behavioral and 
physical models to conveniently change between 
different configurations and also between different 
levels of detail.  From a powertrain perspective, the 
use of the Rotational3D library [9] is key as it pro-
vides a fully-defined representation in 3D that can 
easily be reduced to a 1D representation or vice ver-
sa.  Within the same architecture, the VDL can sup-
port 1D modeling typically used for conceptual rep-
resentations early in the product development pro-
cess to represent the main degrees of freedom to gain 
early understanding and understand system-level 
interactions.  Furthermore, full 3D representations 
can be supported which require more extensive pa-
rameterization but with a level of detail that provides 
virtual testing capabilities.   

     VDL makes use of these Rotational3D connectors 
to represent the interface cuts between the different 
components in the powertrain, from the engine to the 
wheels. Therefore, the architecture has inherent sup-
port for plug-and-play compatible exchange between 
1D and 3D components. For example, it is straight-
forward to combine a 1D driveline in a 3D chassis or 
a detailed engine model on a lumped chassis. 
     The component-based interfaces also make it 
straightforward to switch context, as illustrated for 
the engine and transmission in Figure 2. In the top 
model, the engine and transmission are used in a full 
vehicle template, connected via the driveline to the 
wheels and the chassis. The other model contains 
only the engine and the transmission connected to a 
load, which then can be very simplified, e.g. just a 
1D mass, or also a full chassis with driveline.  
 

 

   
Figure 2.  Architectures illustrating the same engine 

and transmission models in different contexts as shown 
by the models in a full vehicle representation (top) and 
together with a load representing the vehicle (bottom) 

2.2 Engine 

Modelica has been used extensively for simulating 
detailed engine transient response including combus-
tion [2] [3].  Proper representation of the engine dy-
namic response is critical for vehicle drivability ef-
forts.  Both the mean and fluctuating component of 
the engine torque production can induce undesirable 
vehicle driveline response.  The various delays in the 
engine due to controls scheduling constraints, actua-
tor response, air path dynamics, and fueling dynam-
ics can also be important.  Engine inertial response 
(piston mass, crank/slider inertia, crankshaft inertia) 
can also be an important consideration in dynamic 
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simulation, especially for cranking, launch, and start-
stop events. 

Typical engine modeling approaches for drivabil-
ity applications include the following: 
• Mean value  modeling based on maps and actua-

tor inputs 
• Mean value modeling including air path (intake 

and exhaust) dynamics 
• Mean value  modeling with superimposed torque 

fluctuations at the crankshaft 
• High frequency modeling with multiple cylin-

ders based on input cylinder pressure  
• High frequency engine modeling with multiple 

cylinders and physics-based combustion model-
ing 

These approaches cover a range of predictive capa-
bility, computational effort, and input/calibration 
data requirements.  Furthermore, the level of exper-
tise required to implement and validate the various 
models varies greatly. 
    The engine components in the Vehicle Dynamics 
Library support multiple approaches for modeling 
the engine and crankshaft.  These approaches range 
from a pure map-based mean value approach to a 
high frequency approach based on cylinder pres-
sures.  Figure 3 shows an I4 engine with a cylinder-
based pressure calculation and a distributed model of 
the engine bottom. An analytic representation can be 
used for the pressure calculation to allow faster 
simulation with a standard table for torque as a func-
tion of throttle and engine speed required for pa-
rameterization.  This model calculates a pressure 
trace profile using spark timing with adjustable 
shape parameters and induces the appropriate 
amount of crankshaft torque fluctuation.  A sample 
cylinder force and engine animation for the I4 engine 
is shown in Figure 4.  A full tabular representation 
for the cylinder pressure as a function of crankangle, 
throttle, engine control settings, and engine speed 
can also be used.   
    To support additional modeling options for the 
engine, engine models from the Engine Dynamics 
Library [8] can be integrated into the VDL vehicle 
architecture.  The Engine Dynamics Library current-
ly provides mean value engine modeling capability 
including the air path dynamic effects, exhaust mod-
eling, and thermal effects.  The focus of the library is 
real-time like simulation of gas exchange and mean 
value torque production to support engine optimiza-
tion and evaluation of engine control strategies.  A 
turbocharged, spark-ignited engine model using EDL 
is detailed in Section 3 and integrated within the 
VDL architecture for use in a start-stop application. 
 

 
 

 
Figure 3.  I4 engine with cylinder pressure calculation 
and dynamic bottom (top) and detail for engine block 
showing piston and crankshaft models (bottom) 

 

 
 

 
Figure 4.  Cylinder force (top) and engine animation 

(bottom) for I4 engine 
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2.3 Transmission and Driveline 

Several transmission implementations are available 
in the Vehicle Dynamics Library, including repre-
sentations of automatic, manual, and CVT transmis-
sions.  Within the architecture of Vehicle Dynamics 
Library, it is certainly possible to implement custom 
transmission models including both 1D and 3D ef-
fects, backlash, friction, etc. 
    Dual clutch transmissions (DCT) are becoming 
increasingly popular due to the projected fuel econ-
omy benefits resulting from the removal of the 
torque converter, dry clutch technology, etc.  How-
ever, many of these changes also can pose new per-
formance (no torque multiplication from torque con-
verter), drivability (no damping from torque convert-
er due to fluid coupling), and control (managing 
clutch to clutch transitions for gear changes) chal-
lenges. Thus, dual clutch transmissions are often 
mated with a dual mass flywheel to provide the re-
quired damping but with increased inertia. 
    To illustrate some of these challenges in the fol-
lowing drivability applications, the simple dual 
clutch gearbox model shown in Figure 5 was imple-
mented and integrated into a transmission model.  
Since this model is primarily for demonstration pur-
poses, the control interfaces are simplified.  This 
model implementation should also be considered as 
functional as no detailed parameterization data 
(clutch, gearing, etc.) was available to support a 
more detailed model implementation for the purpos-
es of this paper.  For a full treatment of a dual clutch 
transmission and associated control, the interested 
reader is referred to [10].  
 

 
Figure 5.  Dual clutch transmission gearbox 

    The Vehicle Dynamics Library provides both 
components and assembled subsystems to model 
various driveline implementations (front, rear, all-
wheel drive).  Components are available for gears, 
gear pairs, clutches, shafts, differentials, etc.  The 
shaft models are implemented such that geometric 
effects such as joint effects and bend angles can be 
modeled if needed.  Pure 1D rotational components 
can be used as well with the 1D/3D structure provid-
ed by the library architecture. Figure 6 shows a rear 
wheel drive driveline model with a transmission 
shaft, rear differential, and geometric half shafts; this 
model is used in the vehicle model examples shown 
in Section 3.   

 

 
Figure 6.  Rear wheel drive driveline 

2.4 Chassis 

The Vehicle Dynamics Library includes a wide 
range of suspension models with fidelity levels that 
span from planar models to fully geometric, elasto-
kinematic models.  Lower fidelity suspension models 
are more desirable in drivability simulations for 
many reasons.  First, the engineers performing driv-
ability simulations are mainly interested in straight-
line behavior and longitudinal dynamics.  For these 
types of simulations, unlike in handling simulations, 
it is not important to accurately represent how the 
wheel moves with respect to the chassis for a given 
wheel travel and load condition.  A key benefit of 
using lower fidelity suspension models is that infor-
mation required to represent them is significantly 
lower than a more complex physical model.  

Historically, lower fidelity models have included 
the following representations: 

• Planar suspension 
• Equivalent roll stiffness 
• Lumped mass 
• Swing arm 

Each of these suspension models are available to be 
used within VDL. The lower fidelity suspension 
models have the same interface as the more complex 
physical suspension models.  This modular approach 
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ensures that either representation can used in the 
chassis at any time.  
    The range of chassis implementations are de-
scribed in more detail below and shown in Figure 7 
via animations from VDL.  The example applications 
in Section 3 include simulations within this range of 
chassis models. 
 
Pitch model:  The suspension is modeled as a rigid 
axle that can only translate vertically with respect to 
the chassis body.  Ride stiffness is modeled using 
vertical springs and dampers. This model allows the 
chassis to heave and pitch. 
Equivalent roll stiffness model:  The suspension is 
modeled as a rigid axle that rotates about a single 
axis.  Roll stiffness is modeled using a torsional 
spring and damper.   This model allows the chassis 
to roll. 
Lumped mass model: The suspension is modeled to 
allow each wheel to translate vertically with respect 
to the chassis body.  Ride and roll stiffness is mod-
eled using vertical springs and dampers. This model 
allows the chassis to heave, pitch and roll. 
Swing Arm model: The suspension is modeled to al-
low each wheel to swing on a control arm about a 
single axis.  Ride and roll stiffness is modeled using 
vertical springs and dampers.  This model allows the 
chassis to heave, pitch and roll. 
Tabular model:  The suspension is modeled using 
tables that define the kinematic and compliant model 
of the wheel with respect to the chassis body.  The 
model allows the chassis to heave, pitch and roll. 
 
     In order to use these models to represent a chassis 
for drivability work, it is only necessary to provide 
the chassis mass, track width, wheelbase and approx-
imate spring rates.  Since many engineers who work 
on powertrain response and drivability applications 
do not have ready access to the geometry required 
for more detailed chassis models, a small set of pa-
rameterization data can result in significant reduc-
tions in model development time. 
    While lower fidelity dynamic models typically are 
sufficient for vehicle drivability work, there are some 
applications which might require more detailed chas-
sis representations.  For example, some launch ma-
neuvers might require more detailed models to ob-
serve anti-squat or differential/axle windup effects.  
With the architecture and associated components 
from the Vehicle Dynamics Library, the various 
chassis representations are plug-in compatible such 
that full multibody representation can be seamlessly 
integrated.    
 
 

 
(a) Pitch model 

 
(b) Lumped mass model 

 
(c) Swing arm model 

 
(d) Tabular model 

 
(e) Multibody (elasto-kinematic) model 

Figure 7.  Range of chassis implementations from VDL 
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2.5 Powertrain Mounts 

Powertrain mounts are another critical element for 
modeling of vehicle drivability events.  The move-
ment of the powertrain on the mounts affects the 
torque transfer in the driveline as well as providing a 
transfer path for vibrations to the vehicle seat track.  
Mount design affects vehicle performance and com-
fort and requires a simulation environment capable 
of transient simulations over critical maneuvers of 
interest (idle, launch, tip in- tip out, etc.).     
    The VDL architecture includes a configurable 
component for modeling the powertrain mounts.  
The inherent 3D support makes addition of reaction 
forces and torques straightforward to capture the true 
dynamics of the system.  The component can be con-
figured for the number of mounts, mount locations, 
and also the characteristics of the mount behavior.  
For example, Figure 8 shows bushing compression 
(gray areas) due to rotation of the differential hous-
ing when the torque is transmitted from the longitu-
dinal to lateral direction.  These effects require a 3D 
representation of the driveline and differential which 
are readily implemented using components from the 
Vehicle Dynamics Library.     

 

 
Figure 8.  Differential housing wind-up 

3 Application Examples 

Using the component models outlined in the previ-
ous section, this section provides several example 
models illustrating the impact of modeling approach-
es on vehicle drivability response. 

3.1 Vehicle Launch  

Figure 9 shows a model configured for wide open 
throttle (WOT) vehicle launch from idle with an au-
tomatic transmission.  This implementation includes 
a simple mapped engine.  Figure 10 shows some 
sample results from the launch and subsequent shift 
events with the tabular chassis model.  Note the ac-
celeration disturbances around each shift event. The-

se sorts of disturbances can be mitigated by appro-
priate torque control and shift coordination between 
the engine and transmission. The development and 
optimization of such coordinated control is readily 
achieved using model-based systems engineering 
approaches with VDL.  

 
Figure 9.  Vehicle launch model with automatic trans-

mission 

 

 
Figure 10.  Vehicle launch from idle and shift results 

with automatic transmission 

 
Figure 11 shows comparisons between the chassis 

pitch and roll angle for the various chassis model 
implementations.  For the chassis pitch angle, the 
pitch, lumped mass, and swing arm models provide 
similar results as do the tabular and multibody mod-
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els.  For the chassis roll angle, the pitch model shows 
essentially no roll while the results from the lumped 
mass and swing arm models are grouped together as 
are the results from the tabular and multibody mod-
els. 
     

 
(a) Chassis pitch angle 

 
(b) Chassis roll angle 

Figure 11.  Chassis pitch (a) and roll angle (b) for the 
various chassis model implementations 

 
    Figure 12 shows a model configured for wide 
open throttle vehicle launch with a dual clutch 
transmission.  Note that the only changes from Fig-
ure 9 are the transmission swap and associated 
transmission control specification (open loop in this 
example).    Figure 13 shows some sample results 
from the initial launch and first 1-2 shift event.  Note 
the driveline disturbances shown during the shift due 
to a poorly executed clutch to clutch transition.  With 
a dual clutch transmission, the key to shift feel and 
performance is managing this transition thus high-
lighting the importance of clutch modeling (frictional 
characteristics, actuation, dynamic response, etc.) 
and controls for this type of transmission.  Given the 
complex dynamic response, a model-based systems 
engineering approach is required for multi-attribute 
balancing of performance and drivability. 

 

 
Figure 12.  Vehicle launch model with dual clutch 

transmission 

 

 
Figure 13.   Initial launch and 1-2 shift results for dual 

clutch transmission 

 
    The vehicle launch models illustrate the power of 
a modeling architecture and supporting component 
models such that the focus of the model can easily be 
shifted from full vehicle to powertrain with different 
levels of complexity for the chassis and driveline.  
This approach allows model detail to be implement-
ed in the areas where it is critical for observing the 
dynamic phenomena of interest while allowing mod-
el simplifications in other areas.  This approach ena-
bles a balance between model complexity, computa-
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tional effort, and also parameterization effort given 
that more detailed models typically require more de-
tailed data for parameterization.    

3.2 Start-Stop 

Start-stop technology on mild/micro-hybrid vehicles 
offers compelling fuel economy benefits with elimi-
nation of idle fuel consumption.  While the fuel 
economy benefits are clear, the drivability impact 
can be significant if the restarts are not managed 
well.  Customers experience many more starting 
events, and their expectations regarding these events 
differ when driving as compared with a single start 
in park in a garage or parking lot.  The engine must 
be quickly cranked from rest and able to meet driver 
demand for the subsequent launch event.  The engine 
cranking, fueling, airflow, and transmission engage-
ment events must be managed to provide quick re-
start performance while minimizing driver disturb-
ances felt at the seat track.   
    As with all drivability applications, the appropri-
ate choice of model for the engine, transmission, 
driveline, and chassis depends on the overall goal of 
the simulation and frequency range of interest.  Po-
tential applications include the following: 

• Starter motor, battery, and electrical system 
sizing 

• Model-based controls development 
• Design of driveline isolation components 

(damper, dual mass flywheel, etc.) 
• Powertrain mount design 
• Launch performance and sensitivity to phys-

ical and controls parameters 
• Driveline response over the range of engine 

speeds and torques seen during crank, initial 
combustion, and run-up phases 

For start-stop applications, one of the key modeling 
choices involves the engine dynamic response and 
resulting torque signature.  While mean value model-
ing approaches may be sufficient for some applica-
tions, others may require that the torque pulses at the 
crankshaft are represented as they may be key for the 
drivability phenomena of interest.  The start-stop 
examples that follow cover a range of engine model-
ing approaches from the Vehicle Dynamics and En-
gine Dynamics Libraries. 
    As described in Section 2.2, VDL includes engine 
models capable of producing fluctuating torque at 
the crankshaft.  Using the model shown in Figure 3 
with a separate cylinder head and distributed engine 
bottom, a map-based mean torque can be analytically 
transformed into a pressure calculation including the 
influence of control parameters on the pressure 
shape. This representation, while approximate when 

compared to a detailed engine cycle simulation, does 
not require detailed engine characterization for mod-
el development (i.e. intake and exhaust system flow 
characteristics, valve profiles and discharge coeffi-
cients, combustion characteristics, etc.) and can pro-
vide the appropriate amount of crankshaft torque 
fluctuation in a computationally efficient manner.  It 
should be noted that appropriate care must be taken 
when calculating the mean torque to account for the 
various delays in the engine response which are not 
physically modeled (i.e. throttle and airflow re-
sponse, fueling response, manifold filling and empty-
ing, etc.).    
    Within the architecture provided by VDL, a plug-
compatible I4 engine model with fluctuating torque 
is chosen for the replaceable engine subsystem 
shown in Figure 9.  Results from start-stop simula-
tions with this engine with an automatic transmission 
are shown in Figure 14.  These results show the im-
pact of the starter on initial launch behavior.  When 
the starter disengages early, the engine speed drops 
after the initial crank until the runup phase begins 
due to the initial firing events.  With normal starter 
disengagement, the engine speed smoothly increases 
during crank followed by the initial combustion 
events.  If the starter torque is also increased, the 
expected increase in engine speed is observed.  Note 
the similar trends in the vehicle speed response.      
  

 
Figure 14.  Start-stop response with automatic trans-

mission [engine speed (top) and vehicle speed (bottom)] 
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To support additional modeling options for the 
engine, engine models from the Engine Dynamics 
Library [8] can be integrated into the VDL vehicle 
architecture.  The Engine Dynamics Library current-
ly provides mean value engine modeling capability 
including the air path dynamic effects, exhaust mod-
eling, and thermal effects.  With the physical model-
ing approach in the EDL, the engine model responds 
naturally to changes in actuation and control com-
mands based on the individual component character-
istics.  Appropriate delays in engine response are 
also simulated via the physical characteristics of the 
components.  The component-based approach in 
EDL also allows advanced concept evaluation, com-
ponent sizing and optimization studies, and model-
based controls development.  

Figure 15 shows a turbocharged, spark-ignited 
engine model using EDL.  The model includes 
lumped representations of the intake air path (light 
blue connections), exhaust air path with EGR loop 
(orange connections), simplified cooling path (blue 
connections), key heat transfer effects in the charge 
air cooler, cylinder, and exhaust manifold, and a tur-
bocharger with wastegate.  The model is roughly 
parameterized for a 2L engine.  For the purposes of 
this paper, a battery and electric motor are added to 
the turbo system to provide “eboost” capability.  
This engine model is then integrated into the VDL 
architecture with the dual clutch transmission shown 
in Figure 12.   
    Figure 16 shows results from the start-stop launch 
with the EDL engine model, dual clutch transmis-
sion, and tabular chassis model.  The results are for 
an aggressive launch with varying levels of eboost 
motor assist applied in the first second of the launch 
event.  The simulations show the initial cranking 
event, engine run-up due to combustion, and 1-2 
shift with the dual clutch transmission which occurs 
around 1.5s.  With increasing motor assist, the turbo 
speed increases much more rapidly than would be 
possible with the compressor driven by the turbine 
alone, especially since the early combustion events 
do not provide significant exhaust enthalpy to drive 
the turbine (i.e. lower mass flow rates and lower ex-
haust temperatures).  The increased turbo speed re-
sults in additional boost and thus additional engine 
torque as shown in Figure 17 and higher engine 
speeds.  With a dual clutch transmission, the cou-
pling between engine and transmission can be man-
aged to optimize the overall launch event by control-
ling the timing of wheel torque subject to drivability 
constraints.   

While the EDL currently provides a mean value 
modeling approach for the engine, it is also possible 
to generate a fluctuating torque using the same mod-

els shown in Figure 3 by replacing the tabular torque 
map from VDL with the dynamic EDL model.  With 
this approach, the engine model remains physics-
based but can also provide fluctuating crankshaft 
torque for drivability applications without significant 
additional computational expense.   

 

 
Figure 15.  Turbocharged, spark-ignited engine model 

using the Engine Dynamics Library 

     

 
Figure 16.  Start-stop response with Engine Dynamics 

Library engine model and dual clutch transmission  
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Figure 17.  Engine torque for start-stop launch 

4 Conclusions 

Several application examples focused on vehicle 
drivability have been detailed.  These application 
examples include vehicle launch, start-stop, and 
transmission shift performance. These examples 
highlight the use of sophisticated model libraries 
with different levels of fidelity for key components 
such as the chassis along with different modeling 
approaches for the engine and both automatic and 
dual clutch transmissions.  The model libraries illus-
trate the multi-domain approach required to simulate 
vehicle drivability.  Using the flexible model archi-
tecture from the Vehicle Dynamics Library, the vari-
ous examples are seamlessly configured using plug-
compatible variants.  The examples are structured to 
illustrate how increasingly sophisticated models pro-
vide additional model fidelity or increase the driva-
bility phenomena observed.  An engine model creat-
ed using the Engine Dynamics Library is coupled 
with the models and architecture from the Vehicle 
Dynamics Library to illustrate a range of engine 
modeling approaches to support vehicle drivability 
applications. 
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Abstract

Within the DYNCAP project, the Modelica library
ClaRaCCS is being developed. This library will pro-
vide a framework to model both steam power plants
and carbon capture units in an integrated manner. The
current status of the library is presented. The structure
of the library and the general model design is outlined.
Its user-friendly handling as well as its high flexibility
in the modelling of individual complex scenarios are
demonstrated by the concrete modelling of a furnace.
The scenario of a closed steam cycle coupled to a car-
bon capture cycle based on an amine gas treatment is
described and simulation results are briefly discussed.

Keywords: power plant; Clausius-Rankine cycle;
CO2 capture; CCS; amine gas treatment; transient
simulation; library

1 Introduction

The ongoing climate change is a serious ecological
and economical challenge in the next decades. The
Intergovernmental Panel on Climate Change (IPCC)
recommends a reduction of CO2 emissions to below
80% until 2050 compared to 1990 [1]. Although the
proportion of renewable energies is growing signifi-
cantly, fossil fuels such as coal will remain central to
the world’s energy supply during the next decades.

It is therefore necessary to evaluate power plant
technologies appropriate for a significant reduction of
CO2 emissions in the short term. One already avail-
able technological solution is the capture of CO2 from
flue gases of fossil-fuelled power plants and its stor-
age (CCS). This technology has to be embedded into

∗brunnemann@xrg-simulation.de

a future energy mix with a large percentage of renew-
able and fluctuating energies, such as wind and solar
power. Hence, the need for a flexible operation of con-
ventional fossil-fuelled power plants under rapid, large
and frequent load changes arises.

The evaluation of such variable operation scenarios
requires a thorough investigation of future power plant
dynamics. This shall result in recommendations for
the design and operation of power plants, that meet
certain objectives regarding efficiency, technical lim-
itations and ecological standards. A valuable tool to
tackle this challenging task is computer simulation.

As a part of COORETEC [2], an initiative of the
German Federal Ministry of Economics and Technol-
ogy, the project DYNCAP [3] aims at studying the dy-
namic behaviour of steam-power processes with CO2
capture in order to provide balancing energy. The
project started in March 2011 and will be finished in
September 2014. One major outcome of the project
is the Modelica library ClaRaCCS (Clausius-Rankine
with CO2 Capture and Storage). The goal of the li-
brary is to provide models for the analysis of complex
power plants with CO2 capture in both static and dy-
namic operation mode. After completion of the DYN-
CAP project, the library will be freely available under
the Modelica license. The current development is per-
formed using Dymola [4], however the final version of
the library is intended to work with SimulationX [5] as
well.

This paper gives an introduction to ClaRaCCS and
presents the current status of development. The pa-
per is organised as follows: Section 2 summarises the
technical fundamentals for conventional steam power
plants as well as carbon capture processes modelled in
the library. In Section 3 general properties of the li-
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brary are introduced: Starting from the general library
structure the guiding principles, that underlie the mod-
els in ClaRaCCS, are explained. The treatment of me-
dia data as well as validation of models will also be
outlined. The described properties will then be illus-
trated by a concrete modelling example in section 4,
where the model of a furnace is described. Section 5
demonstrates the current status of ClaRaCCS by giv-
ing an example of use: the model of a coal-fired power
plant with attached carbon capture unit is presented.
The results of a simulation scenario are shown, where
throttling of the carbon capture unit is used in order to
meet the demand for a short term increase of the gene-
rator power output of the plant. Finally, section 6 gives
a summary and outlines future steps of development.

2 Technical Background

The processes covered in ClaRaCCS are conventional
hard-coal-fired power plants and their derivatives for
CO2 capture, the Post-Combustion Capture process
(PCC) and the Oxyfuel process (further information
in [6]). Lignite-fired power plants and gas-fired com-
bined cycle power plants are not part of the project
DYNCAP, but may be included in the future.

Because the model implementation of the Oxyfuel
process is still work in progress the respective section
will only give a short overview. The section of the
PCC process will introduce a little more of this tech-
nology because it is part of the simulation example
given in section 5.

2.1 Conventional Hard-Coal-Fired Power
Plants

State-of-the-art conventional hard-coal-fired power
plants burn pulverised coal in the steam generator with
air. The heat is transferred to a steam cycle that con-
verts it to electric energy. The general simplified pro-
cess scheme of the power plant is shown in figure 1.
Mills pulverise and dry the raw hard-coal. The raw
flue gas contains, additionally to nitrogen, CO2, oxy-
gen and water, also certain amounts of nitrogen ox-
ides, fly ash (dust) and sulphur oxides. Therefore the
flue gas treatment comprises a denitrification system,
an electrostatic precipitator and a wet desulphurisation
unit.

The steam cycle comprises a super-heater and a re-
heater. Power plants currently under construction have
a live steam (high pressure) pressure of about 285 bar
and a live steam temperature of about 600 ◦C. The

Figure 1: Simplified process scheme of a conventional
power plant.

re-heated steam is in the range of 60 bar and 620 ◦C.
Feed water is pre-heated with steam in the low pres-
sure range and the high pressure range. Up to nine
feed water pre-heaters are implemented, each with a
steam tapping from the turbines or crossover sections.
The turbines are all coupled with the same shaft and
running at constant speed in normal operation as they
are directly coupled with the electric net by the gener-
ator.

The overall efficiency of such a power plant is ap-
prox. 46 %.

2.2 Post-Combustion Capture Process

In a PCC CO2 is separated from the flue gas of a con-
ventional coal-fired steam power plant by a chemical
absorption-desorption process. The reduction of the
CO2 emissions is accompanied by a significant loss in
the electrical power output and a related net efficiency
penalty of 8-12 %-pts. As reference the solvent Mo-
noethanolamine (MEA) is used with a solvent mass
fraction of 30 % MEA and a targeted CO2 capture rate
of 90 %.

Figure 2 shows the schematic PCC process. The
flue gas of the boiler passes through the flue gas treat-
ment, where it is cleaned, and then enters the absorber
column at the bottom, in which the CO2 is absorbed
by a counter current solution flow. The treated gas
is released to the atmosphere, while the rich (CO2-
loaded) solution leaves the absorber at the bottom.
Downstream the absorber, the rich solution is pumped
through the rich-lean heat exchanger, heated up and
enters the desorber column at the top. In the desorber
the absorbed CO2 is stripped from the rich solution.
The required heat duty is provided by a reboiler in
which steam from the power plant is condensed. From
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the bottom of the desorber, the lean solution is pumped
to the entrance of the absorber, passing the rich-lean
heat exchanger where it is cooled and pre-heats the
rich solution. The captured CO2, nearly pure, is com-
pressed and pumped to the storage. A detailed expla-
nation of the process can be found in [7]. An overview
of this process is given in [8].
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Figure 2: Flow sheet of the PCC process, cf. [7].

The main task of the PCC is the reduction of the
CO2-emissions by a certain value. The CO2 capture
rate depends on the circulated solution flow rate and
the working capacity of the solution. Here the work-
ing capacity is defined as the difference between CO2
loadings behind the absorber and behind the desorber.
The solution rate can be influenced by the pump up-
stream the absorber. The lean loading depends on the
reboiler heat duty and thus is directly affected by the
steam mass flow which is condensed in the reboiler.
The liquid level of the absorber sump is controlled by
a pump that conveys the solution to the desorber.

2.3 Oxyfuel Process

Conventional coal-fired power plants and power plants
with PCC burn the coal with air. On the contrary, in the
Oxyfuel process the coal is burnt in an atmosphere of
oxygen from an air separation unit mixed with recircu-
lated flue gas. As the nitrogen of the air is avoided in
the combustion process, the flue gas contains mainly
CO2 (70 vol.-%), water and small amounts of oxygen,
nitrogen and argon. The flue gas fraction that is not re-
circulated is treated to remove the impurities in order
to receive a CO2 stream with a purity higher than 96 %.
The overall power plant net efficiency is decreased by
approx. 8-10%-points when the Oxyfuel process is ap-
plied. This includes the cryogenic air separation unit
and the compression of the captured CO2 to a pressure

of 110 bar. A detailed overview of the Oxyfuel process
can be found in [9].

3 The ClaRaCCS Library

3.1 Library Structure

Creating a library covering a very broad range of
physics that is at the same time well-arranged and user-
friendly, demands an elaborate library structure. Fig-
ure 3 shows the top level content of the ClaRaCCS
library. Beside the usual packages like UsersGuide,
Examples and Media the library is structured into the
main existing functional groups of the physical pro-
cesses under consideration. Components is the pack-
age with the most basic models describing e.g. turbo
machines, furnace, heat exchangers or thermal separa-
tion. In SubSystems these components are used to cre-
ate more complex models e.g. a boiler or an air separa-
tion unit. The package SubProcesses then in turn con-
tains models which are built from SubSystems models
like whole CO2 capture cycles. PowerPlants consists
of models representing whole power plants and is the
package with the most complex models.

Figure 3: Top level content of the ClaRaCCS library
and the central component package.

3.2 Model Design Principles

When setting up the model of a complex physical sys-
tem such as a power plant, the first question to be an-
swered is what physical fidelity is needed to cope with
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the given simulation task. The answer to this question
refers to the level of detail necessary for each compo-
nent and sub-process. The next step is to define the
general physical effects to be considered for solving
the given task. Finally, the level of physical insight
into the considered physical aspects must be chosen.

In what follows it will be explained how these three
stages guide the model design of the ClaRaCCS library.
For illustration the concept will be applied to the well-
known example of a fluid flow in a pipe.

3.2.1 Level of Detail

In [10] a classification of component models into dif-
ferent levels of detail was developed. It is mainly
based on two criteria:

• Purpose of model. In which simulation context
will the model be used? What questions and
physical effects shall be analysed with the model?

• Applicability of model. What are the main as-
sumptions the model is based on? Are there some
structural limitations?

The model design of ClaRaCCS has been inspired by
these ideas. Moreover it aims to provide a well bal-
anced combination of readability1, modelling flexibil-
ity and avoidance of code duplication. Consequently,
each component in the ClaRaCCS library is repre-
sented by a family of freely exchangeable models. Ev-
ery component family is grouped into four levels of
detail:

L1. Models are based on characteristic lines and / or
transfer functions. This results in an idealised
model, which shows physical behaviour. The
model definition may be derived either from ana-
lytic solutions to the underlying physics or from
phenomenological considerations. Applicability
is limited to the validity of the simplification pro-
cess. Non-physical behaviour may occur other-
wise.
Example: transmission line model for fluid flow
in a pipe.

L2. Models are based on balance equations. These
equations are spatially averaged over the compo-
nent. The models show a correct physical be-
haviour unless the assumptions for the averaging
process are violated.

1This results in a flat model hierarchy and restricts the use of
inheritance.

Example: single control volume for fluid flow in
a pipe.

L3. Models are by construction subdivided into a
fixed number of spatial zones. The spatial locali-
sation of these zones is not necessarily fixed and
can vary dynamically. For each zone a set of bal-
ance equations is used and the model properties
(e.g. media data) are averaged zone-wise. The
models show a correct physical behaviour unless
the assumptions for the zonal subdivision and the
averaging process over zones are violated.
Example: moving boundary approach for fluid
flow in a pipe.

L4. Models can be subdivided into an arbitrary num-
ber of spatial zones (control volumes) by the
user. They thus provide a true spatial resolution.
For each zone a set of balance equations is used
which is averaged over that zone. The model
shows a correct physical behaviour unless the as-
sumptions for the choice of grid and the averag-
ing process over the control volumes are violated.
Example: finite volume approach with spatial
discretisation in flow direction for fluid flow in
a pipe.

3.2.2 Physical Effects to be Considered

Once the decision for a specific detail group of mod-
els is made, the set of required physical effects to be
covered by a model may still differ according to the
simulation goal. For instance, in a pipe model it might
be necessary to resolve the spatial flow properties but
unnecessary to analyse sound waves in detail. This is
reflected in the complexity of the basic physical equa-
tions underlying the model.

Notice that, although the ClaRaCCS library is de-
signed for dynamic simulations, it is still possible
to include models, where parts of the basic physical
equations correspond to the stationary behaviour of a
component. Such models are often favourable with
respect to computation time and stability. Their use
is appropriate whenever certain aspects of the compo-
nent dynamics can be neglected compared to the sys-
tem dynamics under consideration. In the pipe exam-
ple above this would be manifested by the fact that
if only fluid flow properties (temperature profile, flow
velocities, etc.) are of interest, sound wave propaga-
tion can be neglected, as long as the flow velocity is
much less than the speed of sound. Consequently a
stationary momentum balance for the fluid would be
sufficient in this case.
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In order to cope with these different needs, the
ClaRaCCS library provides component models at the
same level of detail but covering different physical ef-
fects. They are distinguished by different self explain-
ing names.

3.2.3 Level of Insight

By now, the fundamental equations of a model are de-
fined by setting its level of detail and the physical ef-
fects of consideration. However, these equations de-
clare which physical effects are considered, but not
how they are considered. For instance, the pressure
loss in a pipe may be modelled using constant nom-
inal values or via correlations taking the flow regime
and the fluid states into account. These physical ef-
fects are therefore modelled in replaceable models that
complete the fundamental equations using predefined
interfaces, e.g. the friction term in the momentum bal-
ance. By separating the governing model definition
from the underlying sub-models, the flexibility of the
model is enhanced without loosing readability.

3.3 Media Data

The property data for all models will be provided by
medium classes which then in turn call external C-
functions. However, up to now only the models of
the conventional part of the plant obtain their property
data from external functions. The observed advantage
of this procedure is the possible access to other com-
mercial external fluid property libraries and a large
increase in simulation speed of the models. The im-
plementation of external property data for the multi-
component media used in the PCC is still work in
progress. The current state of this issue and the experi-
ences with external, table-based media data for single-
component media are very encouraging concerning
simulation speed and simulation stability.

For the sake of initialisation and numerical stability
the choice of different state variables may be of high
importance. Depending on the selection of the respec-
tive state variables an index reduction can be neces-
sary. Also phase and reaction equilibria can lead to
high index systems which have to be reduced sym-
bolically. In both cases it is likely that derivatives of
property data are required to perform index reduction.
Providing these derivatives still is a challenge to be
overcome during this project.

3.4 Model Validation

Models in the ClaRaCCS library will be validated
against established process modelling and power plant
software (Aspen Plus and Ebsilon [11, 12]) as well as
dynamic measurement data.

Figure 4: Validation example. Modelica absorber vs.
[11]. Lean and rich solution. Here α denotes the
amount of substance CO2 per amount of substance sol-
vent (MEA). L denotes the mass flow rate of the sol-
vent and G is the flue gas mass flow rate.

For the water steam cycle this measurement data are
provided by the coal fired power plant [13] at Rostock,
Germany, with a net power output of 500 MW. For
the PCC process the data are provided by a pilot plant
[14] at Heilbronn, Germany, which has the capacity to
clean approximately 1150 Nm3/h of flue gas.

4 Modelling of Furnace

The purpose of this section is the illustration of the
general modelling strategy as introduced in section 3.
As an example the furnace model package that pro-
vides models for burner, flame rooms and hoppers with
different levels of detail is considered. Here, predomi-
nantly the structure of the package is described without
covering the physics inside in more detail.

4.1 Connectors

Although parts of ClaRaCCS and Modelica.Fluid
cover similar fields of application own connectors for
liquids, fluids and gas mixtures are necessary due to
the usage of external media as motivated in 3.3. How-
ever, models of the Modelica standard library and
ClaRaCCS may be connected using simple adapters
included in the library. In addition, connectors for
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aerosols (unburned coal dust, fly ash) are defined sim-
ilar to the approach of of Gall et al. [15]. These con-
nectors instantiate the connectors for the flue gas, the
coal and the slag. In contrast to Gall’s approach, the
fly ash is treated as substance of the flue gas so that
there is no need for a fourth connector. The Modelica
code of e.g. the CoalSlagFlueGas_inlet connector
reads

connector CoalSlagFlueGas_inlet
"Port describing Coal,Slag and FlueGas flow"
import ClaRaCCS;
// Media properties of coal and slag
parameter Media.Coal.PartialCoal coalType;
parameter Media.Coal.PartialSlag slagType;

BaseClasses.Interfaces.FlueGas_a flueGas;
BaseClasses.Interfaces.Coal_inlet

coal(coalType = coalType);
BaseClasses.Interfaces.Slag_outlet

slag(slagType = slagType);
end CoalSlagFlueGas_inlet;

Likewise, a connector for the coal dust and the pri-
mary air is available. In addition, components for
splitting and joining are provided so that other com-
ponents in the flue gas path having solely flue gas con-
nectors (as e.g. a deNOx plant) can be connected to a
combustion chamber model.

4.2 Components in the Furnace Package

4.2.1 A Simplified Combustion Chamber Model

Figure 5 shows the tree of the furnace model
package. At the top level it provides the model
SimpleCombustionChamber which represents a
simplified model of detail level 2 (refer to figure 6).

Figure 6: Diagram
view of the simplified
combustion chamber
model.

It provides physical connec-
tors for the coal dust and
primary air, for the slag
and flue gas outlet. Based
on a stationary stoichiomet-
ric combustion calculation,
the flue gas composition,
the heat Qcombustion ob-
tained from combustion and
the stoichiometric air ratio
λ = ṁair/ṁair,st are calcu-
lated. The model consists of
stationary balance equations for the energy, the mass
flow, the flue gas components and its composition (i.e.
mass balance equations for each single substance con-
sidered in the used flue gas mixture). The user can

Figure 5: The tree of the furnace model package.

set values for the flue gas outlet temperature, the slag
fraction, slag temperature, and the concentration of
toxic substances (CO, NOx and SOx) in the flue gas.
Whereas the flue gas and the slag are accessible via
physical connectors, Qcombustion and λ are provided by
real outputs. These important process variables can
then be used as inputs to other models, such as a con-
troller for the air ratio. The model has been compared
to Ebsilon [12] and has shown good consistency of the
results.

4.2.2 Components for a Detailed Combustion
Chamber Model

Besides the model SimpleCombustionChamber, the
furnace package is intended to provide all required
components from that a complete –more detailed–
combustion chamber model can be built. These com-
ponents are currently models of detail level 2, i.e. they
represent single control volumes for the considered
combustion process. Since a complete combustion
chamber model will be built from several level of de-
tail 2 models, it yields a spatial discretisation and will
thus be a model of detail 3 or 4.

Figure 7 shows the diagram of a burner
model which extends the three base
models– namely CombustionChamberBase,
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Figure 7: Diagram view of a burner model.

CombustionChamberFurnaceBase and
CombustionChamberBase_additional_HPs that
are provided by the BaseClasses package (see
figure 5).

The partial model CombustionChamberBase pro-
vides the definition of the used Media, the instance of
the corresponding medium objects and physical con-
nectors. A replaceable model Geometry allows for an
adaptation of the combustion chamber’s dimensions to
the user’s needs. Also basic parameters that are com-
mon in all furnace components are defined in this base
class whereby the duplication of code is avoided en-
suring low maintenance effort.

Regarding the physical effects to be considered,
besides the connectors for the gas and solid flow,
this base model has three connectors for heat flows.
They are required to model the heat transfer from
the hot flue gas to the combustion chamber wall
and the heat transfer between neighboured flame
rooms/burners. The heat flows to the top and to the
wall are calculated based on the replaceable models
HeatTransfer_Top and HeatTransfer_Wall (re-
fer to figure 5). Please note that the heat flow at the
bottom connector is calculated from the heat transfer
model HeatTransfer_Top in the respective adjacent
burner/flame room. In view of a numerical optimisa-
tion, the control volume temperature can be decoupled
from that of neighboured ones by using differential
states for the temperature at a heat port. Such a state
with a certain time constant is provided with the re-
placeable model RadiationTimeConstant (see fig-
ure 5) and is placed in the burner model shown in
figure 7 at the top heat connector. Whereas the
CombustionChamberBase represents a basic con-
trol volume just describing the flow of the gas
and solid phase and the heat transfer, the sec-

ond partial model CombustionChamberFurnaceBase
accounts for the furnace process. It is ex-
tended by replaceable models for the burning time
and the particle migration time. The third base
model CombustionChamberBase_additional_HPs
provides two additional heat ports. In this way also
the heat flow from the flue gas to e.g. the carrier tubes
and the tube bundles of the convective heat exchang-
ers in a boiler model can be modelled. Again, for each
heat port replaceable models for the heat transfer cor-
relation are provided.

Figure 8: Diagram view of an exemplary combustion
chamber model built by the furnace package compo-
nents described above.

Figure 8 shows the diagram of an exemplary com-
bustion chamber model. In a boiler model the fixed
temperature boundaries on the right would be replaced
by according water steam tube models.

5 Example of Use

The current capabilities of the ClaRaCCS library can
be illustrated by a model of an anthracite-fired steam
power plant with a coupled post combustion capture
unit. For the sake of simplicity and due to current
library limitations the complex topology of current
Rankine cycles is reduced to the main features.
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Figure 9: Diagram view of coupled steam plant with carbon capture unit.

5.1 Example Description

The model’s definition is based on a PCC-retrofit of
the existing power plant [13] of Rostock, Germany, see
table 1 for its general operation parameters.

Table 1: General overview of power plant of Rostock,
Germany

Net output 509 MW
Net efficiency 43.2 %
Live steam pressure 262 bar
Live steam temperature 545 ◦C
Live steam mass flow 417 kg/s
Re-heat temperature 562 ◦C
Re-heat pressure 54 bar

In particular, the model features a set of roller bowl
mills, as reported in [16], a reduced combustion cham-
ber and boiler, a turbo-generator with tappings for one
high pressure pre-heater, one low pressure pre-heater,
the feedwater tank and the reboiler of the PCC. At
the low pressure side a condenser, a condensate pump,
the pre-heaters, the feedwater tank and the feedwater
pump complete the cycle, see figure 9.

The coupling of furnace outlet and PCC inlet at the
flue gas path is currently cut because of missing com-
ponents for the flue gas cleaning.

The PCC features first-principle models for the ab-
sorber and desorber columns and simplified models
for pumps and the inner heat exchanger, see [17] for
a more detailed description on column modelling.

In order to get a pure feed-forward response of the
model, only subordinate controllers are implemented
in a simple way. Pumps are used to keep the filling
levels of the storage devices within reasonable bounds.
The generator power output is controlled by the re-
boiler valve, which sets the amount of steam that is
used to supply heat for the reboiler. Additionally the
carbon capture rate is controlled by the lean solvent
pump downstream the desorber. Future investigations
will have to consider an integrated unit control concept
for both the steam cycle and the PCC unit, see [18] for
a first approach.

Although the degree of simplification is too high
to allow quantitative statements on the transient be-
haviour, the model is capable to capture the main dy-
namics in a qualitative manner and shows that the dif-
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ferent aspects of the library work together as desired.

5.2 Simulation Results

The extensive steam tapping for the heating of the re-
boiler introduces the option to provide primary con-
trol power by throttling the reboiler valve. Doing so,
the low pressure turbine mass flow rate is increased
in short term resulting in a significant power step-up.
However, a temporary drop of the carbon capture rate
has to to be accepted. In figure 10 the power output
and the reboiler steam mass flow are displayed indi-
cating that almost full throttling of the valve can lead
to a power step of 5 %-pts within 30 s. After holding
the primary control power for 5 min, the control band
is set free within 10 min.
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Figure 10: Power output applying reboiler feed reduc-
tion.
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Figure 11: Amine gas treatment characteristic values.

The reboiler temperature in figure 11 shows a mod-
erate drop with a minimum at 10 min of simulation
time. Due to the throttling of the valve and the subse-
quent temperature drop in the reboiler, the lean loading
of the solution in the reboiler increases (because less

CO2 is stripped from the solution). This means that a
higher flow rate of solution is needed to maintain the
targeted capture rate. Hence, the lean pump volume
flow increases in order to compensate the higher load-
ing, until the pump reaches its maximum capacity.
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Figure 12: Carbon capture rate during reboiler hold-
up.

As expected, the additional power output comes
at the cost of a strongly reduced carbon capture rate
showing its minimum of 55 % at approx. 11 min sim-
ulation time, see figure 12.

Although the simulation scenario might be strongly
simplified and the applied control strategy technically
not yet mature, it becomes obvious that the application
of highly integrated sub-processes like the amine gas-
treatment brings up new options for the plant’s tran-
sient operation mode and economical shifting (trade-
off between revenues from primary control power sup-
ply and costs due to CO2 certificates) on the one hand.
On the other hand new challenges for the power plant’s
control system must be tackled.

6 Summary and Outlook

In this paper the status of development of the
ClaRaCCS library is presented, which is a central part
of the DYNCAP project. In its final stage the library
will allow detailed dynamic simulations of power
plants coupled to a CO2 capturing process.

It was demonstrated how the flexible library struc-
ture supports the user in order to build up complex
power plant models individually tailored to specific
simulation goals.

Although in an early state of development, the given
simulation example proves that the library is already
capable of simulating simplified dynamic operation
scenarios for coal fired power plants coupled to a post-
combustion CO2 capture process.
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Having almost completed the development of fun-
damental components for the water steam cycle and
the post combustion process, the development will
now proceed to the design of subsystems and com-
plete power plant models including a CO2 capturing
unit. These models will be validated against measure-
ment data from an existing hard coal power plant and
a demonstration post combustion unit.

However, it should be noted that the design of
ClaRaCCS allows the easy adaptation of component
models in order to feature CCS-retrofits to existing
power plants as well as to perform concept studies for
planned ones. In this context the development of an
integrated control concept is a major challenge. First
steps into this direction have already been published
in [18]. Moreover the automation of the initialisation
process for complex simulations will be a major future
direction of work.

Concerning the models for the CO2 capture, the use
of external media data shall be supported in the future.
In this context it may be necessary to adapt the models
in order to maintain performance.
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Abstract

In the electricity market of today, with increasing de-
mand for electricity production on short notice, the
combined cycle power plant stands high regarding fast
start-ups and efficiency. In this paper, it has been
shown how the dynamic start-up procedure of a com-
bined cycle power plant can be optimized using di-
rect collocation methods, proposing a way to mini-
mize the start-up time while maximizing the power
production during start-up. Physical models derived
from first principles have been developed in Model-
ica specifically for optimization purposes, in that the
models contain no discontinuities. Also, the models
used for optimization are simpler than typical high-
fidelity simulation models. Two different models used
for optimization in four different start-up scenarios are
presented in the paper. A critically limiting factor dur-
ing start-up is the stress of important components, e.g.,
the evaporator. In order to take this aspect into ac-
count, constraints on the stress levels of such compo-
nents have been introduced in the optimization formu-
lation. In particular, it is shown how a pressure depen-
dent stress constraint, similar to what is used in actual
operation, can be applied in optimization. Also, differ-
ent assumptions about which control variables to opti-
mize are explored. Results are encouraging and show
that energy production during start-up can be signifi-
cantly increased by increasing the number of control
inputs available to the optimizer, while maintaining
desirable lifetime of critical components by introduc-
ing constrains on acceptable stress levels.

Keywords: Combined Cycle Power Plants, Start-up,
Dynamic optimization, Optimica, Control, Modelica,
Modeling

1 Introduction

In a time when the production from renewable energy
sources is steadily growing the demand for comple-
mentary electricity production on short notice is high.
Large fluctuations during the day require power gener-
ators to react quickly to maintain the balance between
demand and production. Deregulation of the electric
power market also allows private investors to install
power plants and supply power to the grid, which has
increased the competition on the electricity market.
The requirements between demand and supply have to
be maintained while offering electricity at the lowest
cost.

When considering fast start-ups and efficiency, the
combined cycle power plant stands high in comparison
with other electricity production methods. In this pa-
per, the start-up procedure of a combined cycle power
plant is studied. The aim is to minimize the start-up
time while keeping the lifetime consumption of crucial
power plant components under control and maximiz-
ing the amount of power output produced.

Several previous studies that deal with optimization
of the start-up of combined cycle power plants have
been made. In Casella and Pretolani, [1], optimiza-
tion with a trial-and-error method is presented where
the results are obtained by simulating Modelica power
plant models. The study has been carried out to de-
velop simplified models that can be used to automati-
cally compute the optimal transients with an optimiza-
tion software and the models were based on the Mod-
elica ThermoPower library, see Casella and Leva, [2].
A model-based approach for optimizing the gas tur-
bine load trajectory has been studied in Casella et al.,
[3]. A simplified model is developed based on inter-
polated locally identified linear models and the pro-
cedure aims at deriving the gas turbine load profile
described by a parameterized function. A minimum-
time problem is solved to determine the parameters

DOI Proceedings of the 9th International Modelica Conference    619 
10.3384/ecp12076619 September 3-5, 2012, Munich, Germany    

 

 

 

 

 

 

 

 

 

 

   



 

 

of the parameterized function. In [4] a combined cy-
cle power plant is modeled and optimized, where the
thermo-mechanical stress in the steam turbine rotor
is considered as the most limiting factor during the
start-up. Shirakawa et al. proposed an optimal design
method combining dynamic simulation and nonlinear
programming in [5].

The aim of the current paper is to make the start-
up procedure of a combined cycle power plant more
efficient, with respect to the start-up time and power
production, while limiting the thermal stress in the
heat recovery steam generator. The plant models are
described in the object-oriented modeling language
Modelica. All models are developed by Siemens AG,
Energy Sector, in cooperation with Modelon AB, and
are based on elementary models from first principle
equations of mass and energy. The physical mod-
els have been developed using the commercial Mod-
elica simulation environment, Dymola [6] and they
have been adapted to suit optimization purposes. The
tool used for optimization is the Modelica based open
source platform JModelica.org.

The paper is structured as follows: Section 2 gives
some background information about combined cycle
power plants, dynamic optimization, JModelica.org
and Optimica, while Section 3 describes the power
plant model. Section 4 presents the optimal start-up
problem formulation and the numerical results are dis-
cussed. Section 5 summarizes the results of this paper
and gives proposals for future work.

2 Background

2.1 Combined Cycle Power Plants

The basic principle of a combined cycle power plant
(CCPP) is to combine two thermal cycles in one power
plant, where the topping cycle is a cycle operating at a
higher temperature and the bottoming cycle is a cycle
operating at a lower temperature level. The waste heat
that the topping cycle produces is used in the process
of the bottoming cycle and the efficiency is higher for
the combined cycle than that of one cycle alone. In the
commercial power generation of today the combined
cycle power plants consist of a gas topping cycle and
a steam/water bottoming cycle [7].

The plant is constructed mainly with three parts, the
gas turbine (GT), the heat recovery steam generator
(HRSG) and the steam turbine (ST).

In the GT, ambient air is drawn into the tur-
bine, compressed and used to burn some combustion

medium. Hot gas is produced and expands in the tur-
bine where it is used to drive both the compressor and
the generator.

The key component of a CCPP is the HRSG which
couples the two cycles so that the heat from the GT ex-
haust gas is used to produce hot steam which drives the
ST. The HRSG consists mainly of three components;
the economizer, the evaporator and the superheater.
The water is preheated in the economizer, evaporated
to wet steam in the evaporator and the steam is dried
in the superheater. When the steam is of high enough
quality it is expanded in the ST where it generates
power.

The net efficiency can reach more than 60% in to-
day’s CCPPs. About 60-70 % of the total power output
is produced in the GT [7].

The start-up of a CCPP is normally scheduled as
follows:

1 The GT is first accelerated to full speed no load
and it is synchronized to the grid.

2 The load of the GT is increased and the boiler
starts producing steam. The generated steam is
not led to the ST but bypassed to a condenser.

3 When the steam quality is high enough, the by-
pass valve is slowly closed and the steam can
drive the ST.

Reducing the start-up time of the CCPP is typically
achieved by maximizing the loading rates of both tur-
bines while maintaining the lifetime consumption of
critically stressed components under control. One of
the critical components is the drum in the evaporator.
During the second phase of the start-up, the walls of
this component are subject to high thermal stress due
to temperature gradient transients. The ST is also sub-
ject to large stress constraints, but this occurs in the
last phase of the start-up. The paper focuses on the
optimization of the second phase, that is the loading of
the GT.

2.2 The Dynamic Optimization Problem

The start-up optimization of the CCPP has been for-
mulated as a dynamic optimization problem. The opti-
mization consists typically in finding time trajectories
of the control variables, u(t), that minimize an objec-
tive function ϕ expressed in terms of process variables
y. The optimization problem can generally be stated
as:

min
u(t)

ϕ(z(t),y(t),u(t), t f ) (1)
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subject to

dz(t)
dt

= F(z(t),y(t),u(t), t) (2)

0 = G(z(t),y(t),u(t), t) (3)

z(0) = z0 (4)

with the bounds

zL ≤ z(t)≤ zU (5)

yL ≤ y(t)≤ yU (6)

uL ≤ u(t)≤ uU (7)

tL
f ≤ t f ≤ tU

f (8)

where

ϕ is a scalar objective function,

F are the right hand sides of differential equation

constraints,

G are algebraic equation constraints, assumed to

be index one,

z are differential state profile vectors,

z0 are the initial values of z,

y are algebraic state profile vectors,

u are control profile vectors,

t f is the final time.[8]

The objective function ϕ , that is to be minimized, can
have multiple forms; one is given by the Lagrange
form:

ϕ =
∫ t f

t0
L(z(t),y(t),u(t), t)dt. (9)

2.3 JModelica.org

In this project, the tool used for optimization is the
open source platform JModelica.org [9].
JModelica.org is an extensible Modelica-based open
source platform for optimization, simulation and anal-
ysis of complex dynamic systems. The main objective
of the project is to create an industrially viable open
source platform for optimization of Modelica models,
while offering a flexible platform serving as a virtual
lab for algorithm development and research. [9]

JModelica.org offers different types of model ob-
jects that can be used for simulation and optimization.
For simulation purposes, a Functional Mock-up Unit
(FMU) that follows the FMI (Functional Mock-up In-
terface) standard, is used. It is created by compiling
a Modelica model in JModelica.org or in any other
tool which supports the FMU export. The FMU file

is thereafter loaded as an FMUModel Python object
in JModelica.org and can be simulated using the As-
simulo package. For a more detailed description of im-
port and export of FMUs in python, see [10]. For opti-
mization purposes a JMUModel object is instead cre-
ated. A JMU is a compressed file following a JModel-
ica.org specific standard that is close to the FMI stan-
dard. After compilation, the JMU file is loaded into
JModelica.org and the JMUModel is created and can
be optimized using state of the art numerical methods.
See Åkesson et al. [11] for a thorough description of
the JModelica.org platform.

2.3.1 Collocation Method

The JModelica.org platform uses a direct collocation
method based on Lagrange polynomials on finite el-
ements with Radau points [12]. The Differential Al-
gebraic Equations (DAE) are transformed to a non-
linear program (NLP) by approximating control and
state profiles by piecewise polynomial. The NLP prob-
lem is solved by the solver IPOPT [8].

2.3.2 IPOPT

The open-source software IPOPT (Interior Point OP-
Timizer) is a package for large-scale nonlinear opti-
mization. The optimization problem is transferred to
an interior point problem formulation where a loga-
rithmic barrier term replaces the inequality constraints
[13].

2.4 Optimica

Optimica is an extension of the Modelica language
that enables high-level formulation of optimization
problems based on Modelica models. The extension
mainly consists of an additional class, optimization,
which includes the attribute objective that specifies
the objective function of the optimization problem.
Another supplement is the constraint section, which
can handle different kinds of linear and non-linear
equality- and inequality constraints. [14]

3 Models

3.1 Plant Model

In this paper, three models of a CCPP with differ-
ent complexities have been considered referred to as
CCPP1, CCPP2 and CCPP3, see Figures 1, 2 and 3,
respectively.
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All models are developed in Modelica, [15], using
the commercial modeling and simulation environment
Dymola [6] and are based on elementary models from
first principle equations of mass and energy. Disconti-
nuities have been smoothed and all equations are twice
continuously differentiable. Components are modeled
separately according to the object-oriented principle
and joined by additional connection equations to form
the complete system model. Some of the components
in the Dymola models are not connected by visible
connector lines but only by Modelica equations. This
is the case for the output of the integrator at the valve
opening, which is connected to the real expression at
the valve just above it and also the two outputs of the
GT which are connected to the two real expressions to
the right of the GT.

The water side is modeled by dynamic balance
equations whereas the gas side is static. The simpli-
fied HRSG model, see Figures 1, 2 and 3, consist of an
HP pressure stage boiler and is represented by lumped
volume models of a superheater and an evaporator.
To attain better accuracy with respect to thermal dis-
cretization, the superheater is described by five partial
components with different tube geometries. An ideal
level control is assumed in the evaporator model and
it computes the water/steam flow through the HRSG.
The evaporator drum is modeled as a volume, where
the wall, which is subject to high stress during tran-
sients, is spatially discretized. The GT model com-
putes temperature and mass flow of the gas entering
the HRSG at every load. The bypass valve controls
the pressure in the water circuit and can be actuated by
a pressure controller to limit large pressure transients.
A constant pressure has been chosen as boundary con-
dition for the bypass valve, corresponding to the pres-
sure in the condenser. The models CCPP1 and CCPP2
differ in that a pressure controller acting on the bypass
valve is introduced in CCPP1, whereas in CCPP2, the
bypass valve is used as a manipulated control variables
available for optimization.

The model CCPP3, see Figure 3 is more detailed
than models CCPP1 and CCPP2 in that it is modeled
with an additional IP reheater apart from an HP super-
heater and an HP evaporator. The reheater is described
by three partial components and the superheater has
four partial components with different tube geome-
tries which are operating at different pressures like in
CCPP1 and CCPP2 as in the simplified model. An ad-
ditional component that has been added to CCPP3 is
the header of the part of the superheater operating at
highest temperature, see component Header in Figure

3. The header is in this model considered as a com-
ponent subject to high stress during start-up transients
together with the evaporator drum.

Figure 1: Modelica object diagram of model CCPP1,
including a pressure controller. The main compo-
nents are marked and the degree of freedom PL (Power
Load) is circled.

3.2 Water and Steam Properties

Pressure and specific enthalpy have been chosen as
states in the balance equations on the water side. Cor-
relations to compute temperature as well as density
and its derivatives with respect to pressure and en-
thalpy need therefore to be derived. Polynomial ap-
proximations expressed as Taylor expansions from the
phase boundaries have been chosen, see [16] for a
similar method. This leads to optimization friendly
and accurate medium properties and also a continuous
transition of temperature and density across the phase
boundaries.

4 GT Load Profile Optimization

4.1 Problem Formulation

The aim of the optimization is to minimize the start-
up time of the CCPP while keeping the lifetime con-
sumption of critically stressed components under con-
trol and maximizing the amount of power output pro-
duced. Four different optimization problems are con-
sidered, namely, i) a 1DOF problem based on the
model CCPP1 is considered, ii) a 2DOF problem
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Figure 2: Modelica object diagram of model CCPP2.
The main components are marked and the degrees of
freedom PL (Power Load) and VO (Valve Opening)
are circled.

based on CCPP2, iii) a 2DOF problem with constant
thermal stress bounds based on CCPP3 and finally iv) a
2DOF problem with pressure dependent thermal stress
bounds based on CCPP3.

4.1.1 Optimization Phase

The optimization starts after the synchronization of
the GT to the grid. The time between stand-still and
full-speed-no-load is not subject to optimization but
is simulated to compute the initial point of the opti-
mization. In the present study, a hot start is assumed,
which means that the start-up is initiated after a stand-
still time of at most 7 hours. The start-up is considered
to be complete when the GT has reached its full load,
i.e. its maximum power output.

4.1.2 Degrees of Freedom

Two control variables have been considered in the pa-
per: the load u of the GT and the opening v of the
bypass valve. The degrees of freedom in the optimiza-
tion are defined as the time-derivative of the control
variables, i.e. du/dt (marked as PL for Power Load in
Figures 1, 2 and 3) and dv/dt (marked as VO for Valve
Opening in Figures 2 and 3), and are parameterized by
piecewise constant signals.

In a first optimization problem, the GT load u is cho-
sen to be the only control variable. The bypass valve
is in that case manipulated by a PI controller to con-

Figure 3: Modelica object diagram of model CCPP3,
including a header and an IP reheater. The main com-
ponents are marked and the degrees of freedom PL
(Power Load) and VO (Valve Opening) are circled.

trol the pressure at the superheater outlet, Figures 1.
In a second optimization problem, the pressure con-
troller, seen in Figure 1, is removed and both degrees
of freedom are used for optimization. In these cases,
the physical models of the power plant are identical,
apart from the pressure controller. For the two opti-
mization problems based on CCPP3, both degrees of
freedom are used.

4.1.3 Cost Function

The objective function is written in the Lagrange form
as in Equation (9). The optimization problem has been
formulated using a quadratic cost function where the
integrand L penalizes the deviation of the load u from
its reference value ure f as well as the derivatives of the
inputs:

L = α(u−ure f )
2 +β

du
dt

2
+ γ

dv
dt

2
. (10)

The reference value for u(t) is normalized to 1, which
corresponds to 100% of its full load. This formulation
maximizes the produced power output during start-up
and should also result in a short start-up time.

4.1.4 Constraints

The limiting factor during the start-up procedure is the
thermal stress due to temperature gradient transients
in the wall of the drum of the evaporator and super-
heater header. The simplified optimization constraint
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considered for CCPP1 and CCPP2 is the temperature
gradient in the wall of the boiler:

|Tmiddle layer wallDrum−Tevap| ≤ |dTmaxDrum|= 0.5.
(11)

In the first optimization problem based on CCPP3, an
additional constraint for the temperature gradient in
the header is added:

|Tmiddle layer wallHeader−TSH | ≤ |dTmaxHeader|= 0.5.
(12)

In the second optimization problem based on CCPP3,
the constant bounds on the drum and header tempera-
ture gradients are replaced by pressure dependent con-
straints

|Tmiddle layer wallDrum−Tevap| ≤ fd(p) (13)

|Tmiddle layer wallHeader−TSH | ≤ fh(p). (14)

When the bypass valve opening is used for op-
timization, an additional constraint on the opening
derivative is introduced:

|dv
dt
|< |dv

dt
|max. (15)

4.1.5 Initialization

To initialize the first optimization problem, a simula-
tion of the model is first realized in JModelica.org, us-
ing a simple (zero-load) input trajectory. This results
in feasible trajectories for the optimization that do not
violate the defined constraints. The simulation result
is then used as an initial guess trajectory for the first
optimization. To improve the result accuracy the opti-
mization is done iteratively, starting with a simple dis-
cretization with few elements. The result of the pre-
vious optimization is then used as a new initial guess
trajectory and the discretization is refined by increas-
ing the number of elements and/or by changing the end
time of the optimization.

4.1.6 Optimization Settings

The number of elements, ne, in the optimization inter-
val has been varied between 10 and 45 and the num-
ber of collocation points in every element was fixed to
ncp = 3. The overall relative tolerance for the interior
point solver was chosen to be 10−4.

4.2 1 DOF Optimization of CCPP1

The pressure in the HRSG is controlled using the
opening v of the bypass valve in a built in control-
loop, leaving u as the sole degree of freedom (1

DOF) for optimization. The continuous-time opti-
mization model contains 28 continuous time states and
456 scalar equations. The power output has been al-
lowed to either both increase and decrease during start-
up (non-monotonic power output) or to only increase
(monotonically increasing power output). Both cases
have been optimally controlled to full load and the op-
timization results are shown in Figures 4 and 5. The
solid line trajectory represents the solution for the non-
monotonic power output and the dashed trajectory rep-
resents the monotonically increasing power output.

Figure 4: Optimal start-up trajectories for 1 DOF:
dashed (monotonically increasing power output) and
solid (non-monotonic power output) curves. Sim-
ulated initial guess trajectories are shown by dash-
dotted curves. From the top: the derivative of the GT
load, the GT load, the GT outlet temperature, the GT
mass flow and the temperature gradient in the wall of
the drum. All results and times have been normalized.

The optimal and normalized time for the GT to
reach 95% of full load is approximately the same in
both cases: 0.724 and 0.723 for the monotonic and
non-monotonic load profile, respectively. From Fig-
ure 4, it can be seen that the temperature gradient
constraint becomes rapidly active in spite of the low
GT load. This is due to that the pressure controller
keeps the bypass valve closed which results in a low
mass flow through the valve and a high pressure in the
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Figure 5: Optimal start-up trajectories for 1 DOF:
dashed (monotonically increasing power output) and
solid (non-monotonic power output) curves. Sim-
ulated initial guess trajectories are shown by dash-
dotted curves. From the top: the pressure in the super-
heater on the steam/water side and the pressure con-
trol loop set-point, the bypass valve opening in the
pressure controller, the outlet temperature and the out-
let mass flow from the superheater on the steam/water
side. All results and times have been normalized.

HRSG, giving large temperature gradients in the wall
of the drum. There is also hot steam in the HRSG due
to transients from phase 1 and from the fact that the
start-up is considered as a hot start. At about t = 0.37,
the GT load is rapidly increased from about 10% to
80%, at an optimal rate that steadily maintains the gra-
dient constraint active. At about t = 0.44, the non-
monotonic load profile reaches a maximum of 90%
before decreasing to 80% at t = 0.51. This behavior is
related to the optimization formulation that penalizes
deviations from the reference load of 100% and may
therefore lead to overshoots before the gradient con-
straint becomes too constraining. The overshoot that
is allowed at low input penalty coefficient β is not ob-
served in the case of a monotonically increasing load.
The dip in the temperature gradient observed at about
t = 0.48 is due to the limited degree of freedom and its
amplitude decreases with an increasing discretization

level. In the case of a monotonically increasing load,
the gradient dip cannot be avoided and is rather inde-
pendent on the discretization level. After scaling the
value of the objective function is 1 for the monotoni-
cally increasing power output case and 0.95 in the non
monotonic case.

4.3 2 DOF Optimization of CCPP2

The CCPP2 model contains 28 continuous time states
and 389 scalar equations. When optimizing the 2 DOF
case the input signal representing the power output
was defined as non monotonic. The second input, the
opening of the bypass valve, could vary from closed to
fully open with a derivative in the interval [−0.5,0.5].
The model has been successfully optimized to full
load, see results in Figure 6 where the solid trajectory
represents the solution of the optimization problem.

Figure 6: Optimal start-up trajectories for 2 DOF:
solid (non-monotonic power output) curve. Simulated
initial guess trajectories are shown by dash-dotted
curves. From top: the bypass valve opening, the
power output, the pressure in the superheater on the
steam/water side and the temperature gradient in the
wall of the drum. All results and times have been nor-
malized.

The optimal time for the GT to reach 95% of full
load is approximately t = 0.75 when the model with 2
DOF is optimized, see Figure 6. The temperature gra-
dient constraint is active from t = 0.06 and the GT load
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can not increase as rapidly as initiated after t = 0.04.
At about t = 0.12 the GT load increases steadily at al-
most constant rate to not violate the temperature gra-
dient constraint until it reaches its maximum value at
t = 0.84. The dip in the temperature gradient that was
observed in the 1 DOF case is not observed. The gra-
dient constraint is not completely active around t = 0.1
which most likely is due to the discretization. The by-
pass valve is opened at t = 0 and is fully opened at
t = 0.12, inducing that the power load can be increased
more rapidly for t < 0.5, comparing to the 1 DOF case.
After scaling the value of the objective function is 0.19
in the 2 DOF non monotonic case, and this value also
includes a contribution from the dv/dt term in the cost
function.

The total power produced during the start-up pro-
cedure corresponds to the area under the graph of the
power output. Even though the GT reaches full load
later than in the 1 DOF case, the 2 DOF model pro-
duces more GT power during the start-up than the
1 DOF model. The objective function value corre-
sponding to the deviation of the power output from
full load is thus about 1/5 of the 1 DOF model solu-
tion. This result shows the benefit of using an extra
degree of freedom.

4.4 2 DOF Optimization of CCPP3

The model CCPP3 contains 39 continuous time states
and 576 scalar equations. Two different optimization
problems based on CCPP3 are considered in this sec-
tion.

4.4.1 Constant Temperature Gradient Bounds

An optimization problem based on CCPP3 with con-
stant bounds on temperature gradients has been suc-
cessfully solved, where full load is reached, see the
results in Figures 7 and 8, dashed curves.

The degrees of freedom were du/dt and dv/dt. The
GT load input u was non-monotonic and the bypass
valve was controlled in the optimization so that the
opening of the bypass valve could vary from closed to
fully open with a derivative in the interval [−0.5,0.5].
The optimal time for the GT to reach 95% of full load
was approximately t = 0.45, see Figure 7.

The GT load can not increase as rapidly as initi-
ated after t = 0.04 since at the end time of the second
block (0.04 < t ≤ 0.08, since the degree of freedom
du/dt is piecewise constant) the header constraint is
active. The header temperature gradient constraint is
active from t = 0.08 until t = 0.3. The drum tempera-

Figure 7: Optimal start-up trajectories of CCPP3.
Dashed curves show results for constant temperature
gradient bounds and solid curves show results for pres-
sure dependent constraints. Simulated initial guess tra-
jectories are shown in dash-dotted curves. From the
top: bypass valve opening, GT power output, pressure
in the superheater on the steam/water side, tempera-
ture gradient in the wall of the header and temperature
gradient in the wall of the drum. All results and times
have been normalized.

ture gradient constraint is active at different times from
t = 0.16 and it is the only active temperature gradi-
ent constraint when t > 0.3. Around t = 0.6 the drum
temperature gradient constraint is active for the longest
time sequence.

From t = 0.12 the GT load increases with a rate that
varies to not violate the header drum constraint. Af-
ter t = 0.2 the GT load increases with a steady almost
constant rate until it reaches about 80% of full load
at t = 0.34. The drum temperature gradient constraint
is not active during this time period. From t = 0.34
the GT load increases at a low rate to not violate the
drum temperature gradient constraint until it reaches
its maximum value of 1 at t = 0.88. The bypass valve
is opened at t = 0 and is fully opened at t = 0.48. The
valve though closes at t = 0.08 giving a rise in the
HRSG pressure and the drum temperature gradient.

After scaling the value of the objective function is
0.34, and this value also includes a contribution from
the dv/dt term in the cost function.
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Figure 8: Optimal start-up trajectories of CCPP3.
Dashed curves show results for constant temperature
gradient bounds and solid curves show results for pres-
sure dependent constraints. The dash-dotted curve
shows the pressure dependent stress constraint. From
the top: temperature gradient in the wall of the header
as a function of pressure and the temperature gradient
in the wall of the drum as a function of pressure. All
results and times have been normalized.

4.4.2 Pressure Dependent Temperature Gradient
Constraint

In Figures 7 and 8, the results for the case when ap-
plying pressure dependent temperature gradient con-
straints to CCPP3 are shown in solid curves.

The GT load input u was non-monotonic and the
bypass valve was controlled in the optimization so
that the opening of the bypass valve could vary from
closed to fully open with a derivative in the interval
[−0.5,0.5]. The degrees of freedom were du/dt and
dv/dt.

The optimal time for the GT to reach 95% of full
load was approximately t = 0.56. As in the case of
constant stress bounds, the GT load can not increase
as rapidly as initially after t = 0.04, since at the end
time of the second block (0.04 < t ≤ 0.08, since the
degree of freedom du/dt is piecewise constant) the
header constraint is active, see Figures 7 and 8.

The header temperature gradient constraint is active
from pressures p=0.19 to p=0.25 corresponding to the
time period t = 0.07 and until t = 0.24. The drum tem-
perature gradient constraint is active from pressures
p= 0.2 to p= 0.55 corresponding to the times t = 0.09
to t = 0.7. The GT load is thus more constrained at

lower pressures than in the previous case, see Figure
8.

The pressure dependent stress constraints allow the
drum temperature gradient to attain larger values when
t > 0.7 (the pressure in the HRSG is larger than 0.55)
compared to the constant constraint used in the previ-
ous case. The stress in the header is, however, more
constrained in second case, which yields a lower rate
of increase of the GT load as compared to the previ-
ous case. From t = 0.08 the GT load increases with a
rate that does not violate the header drum constraints.
The bypass valve is opened at t = 0 and is fully opened
at t = 0.65. The pressure is kept at low values when
the temperature gradient constraints are active and the
pressure can increase at a higher rate when t > 0.5.

After scaling the value of the objective function is
0.47 and this value also includes a contribution from
the dv/dt term in the cost function.

4.5 Discussion

When starting up a power plant, the most desirable
goal does not necessarily have to be to reach full load
as fast as possible. To achieve as much power output
as possible during the start-up procedure could be just
as important. The results show how a larger amount of
produced power during start-up can be achieved when
adding the opening of the bypass valve as degree of
freedom.

When using the pressure controller in the 1 DOF
model, it has been shown to function in a far from op-
timal way since the pressure is controlled so that the
load cannot increase during the first 0.35 s. The set
point of the controller could be modified so that the by-
pass valve can be opened earlier in the start-up, lower-
ing the pressure in the HRSG and giving the load more
operational space where it does not violate the gradi-
ent constraint. When the bypass valve opening is used
as a degree of freedom in the 2 DOF case the valve is
opened earlier, lowering the pressure in the HRSG and
allowing the load to be increased earlier. The results
from the 2 DOF case produces the most power during
the start-up and the benefits from using two degrees of
freedom instead of one is clear.

The 2 DOF model produces more steam in an ear-
lier phase of the start-up due to the faster ramp up of
the GT load. It is though not taken into account in
this paper to determine if the produced steam is of suf-
ficient quality to start the third phase of the start-up
procedure; the loading of the ST. A more complete
picture of the efficiency of the start-up could be at-
tained by modifying the objective function and adding
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more complex and thorough descriptions of possible
objectives, so that the efficiency is maximized and the
economical costs during the whole start-up transient is
minimized. Thus the economical aspects of not only
the load produced could be taken into account.

The rate of increase of the GT power load has been
unlimited in all optimizations done in this paper. This
and the fact that the GT power load is allowed to de-
crease gives a peak in the GT power load in the begin-
ning of the start-up phase for all non-monotonic GT
load cases. From an optimization point of view this is
a satisfying result, since it is clear that the optimizer
is trying to make the load reach its reference value as
fast as possible. The GT load must though decrease
to not violate the temperature gradient constraints. In
actual power plants, such a fast increase in load could
damage the GT or even not be physically applicable.
By penalizing the use of the du/dt input such peaks
could be avoided in the optimization.

When comparing the two optimization problems
based on CCPP3, presented in Sections 4.4.1 and
4.4.1 respectively, it is clear that the time to reach full
load is more or less the same even though in the sec-
ond case there are stricter temperature gradient con-
straints at lower pressures comparing to the first case.
The optimizer compensates this by using the full po-
tential of the drum gradient constraint for t > 0.7. The
rate of increase of the GT load is slightly larger for sec-
ond case when t > 0.7 and it can be observed that the
pressure increases at a higher rate than in first case.
Even though the time to reach full load is approxi-
mately the same the profile resulting in the second case
keeps the lifetime consumptions of the stressed com-
ponents at a level used in actual power plant controls.
The header constraint is active earlier in the start-up
phase comparing to the drum constraint. This is due
to that the hot exhaust gas from the GT enters the
header first when the gas is of the highest temperature.
The exhaust gas reaches the drum with a time delay
and the exhaust gas is of lower temperature than when
reaching the header. The drum consists of water in its
fluid state and the gradient is therefore coupled to the
pressure in the component. Steam is though decou-
pled from pressure and the header temperature gradi-
ent is more dependent on the GT exhaust gas temper-
ature than the pressure. The basic stress model used
in the second case uses constraints that are typically
used in power plant control. Since the stress levels ob-
tained with constant temperature gradient bounds vio-
late these constraints, the result from the second case
is the most preferable choice.

For additional background, results and discussions
from this project, see [17].

5 Summary and Conclusions

In this paper it has been shown how a start-up pro-
cedure of a combined cycle power plant can be opti-
mized with respect to the start-up time and the power
production during start-up, using JModelica.org. The
thermal stress in the heat recovery steam generator has
been considered as the most limiting constraint when
starting up the GT to full load, i.e. its maximum power
output.

Three different optimization models have been con-
sidered; one where the load u of the gas turbine is the
sole degree of freedom and two where both the load u
and the opening v of the bypass valve are degrees of
freedom. Also, two different levels of model fidelities
have been considered. Based on these, four optimiza-
tion problems have been successfully solved where
the power output has been controlled to the reference
value of 100% and it has been observed that by adding
the opening of the bypass valve as degree of freedom
a larger amount of power during start-up is produced.
In addition, it has been shown how pressure depen-
dent stress constrains contributes to increased lifetime
of critical components, which maintaining fast start-
ups.

The models have been adapted to suit optimization
purposes concerning the start-up of the GT and thus
the ST has not been modeled. The next step towards
achieving more realistic results could be to close the
steam cycle and to include more detailed components
in the model. More constraints could as well be used
and additional degrees of freedom could be added. It
has not been taken into consideration when it is most
optimal to start the ST and if the optimization of the
GT loading should take this factor into account. One
improvement could thus be to find when, during the
start-up procedure, the ST should be started and to de-
termine when and how much of the steam should pass
the bypass valve. Another improvement could be to
include economical aspects and to minimize the fuel
spent during start-up while maximizing the produced
power load. The work presented in this paper is one
step towards an optimal power plant control and could
be used with an on-line strategy such as model predic-
tive control.
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Abstract

A small wind power plant connected to the grid has
been modeled in Modelica/Dymola and controlled us-
ing external controllers written in C++. The small
wind power plant consists of three wind power units,
with a nominal power of 3kW, and one grid connection
interconnected with an internal DC-grid. All the con-
trols needed for controlling and optimizing the opera-
tion of the individual parts in the plant were developed
and implemented. Apart from this a managing control
for the entire plant were developed and implemented.

The control was implemented using an external
static library interconnected with Dymola. the Exter-
nal Object approach for implementing objects in Mod-
elica was also tested. The optimization algorithms de-
veloped for the wind turbine was done in a way so
that no measurements of the wind speed are needed.
The controls were developed so that they can achieve
a number of different tasks such as Reactive Power
Compensation and Island Control.

Models were implemented in Modelica using Dy-
mola as tool. In order to model the power electron-
ics involved in the system the Electric Power library
(EPL) has been utilized. Models for the wind turbine
were developed and tested.

The models were in the end tested and evaluated by
running a number of different simulations. The Differ-
ent test cases consists of optimizing the power output,
controlling the power output to a desired level and is-
land operation, that is to power up a small grid on its
own.
Keywords: wind power, power electronics, control, op-
timization, vertical wind power, Electrical Power li-
brary

Nomenclature

P Power, if electrical active Power.
Cp Efficiency coefficient of the wind turbine.
Tω Mechanical torque.
β Pitch angle of the rotor blades.
λ Tip speed ration of the rotor blades.
λi Factor used for calculating Cp.
ωT Rotational speed of the turbine.
ρ Air density.
c1−6 System dependent constant used to calculate

Cp.
A Area swept by the rotor.
R Radius of the wind turbine.
v Wind speed.
vbase Wind model base component.
vgust Wind model gust component.
vnoise Wind model noise component.
Lsd/q Inductance in d/q-axes.
T re f Torque reference.
ψm Permanent flux.
ire f
sd/q Direct/Quadrature current reference.

isd/q Direct/Quadrature current.
T Electrical torque.
pp Number of pole pairs in the generator.

1 Introduction

Wind power is at the moment in a globally expansive
phase with different kinds of technical solutions and
suppliers. In most solutions power electronics is incor-
porated to smaller or larger extent. Most wind power
plants currently operate with a horizontal axis turbine,
however vertical axes turbines is an interesting future
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Figure 1: Schematic picture of how the wind power
system is set up.

alternative. Vertical plants have been erected and are
now being tested in Sweden.

The advantages of using a vertical axes turbine are a
simple and robust construction with a minimal amount
of moving parts, which allows for a cost efficient wind
power plant with an aspect both to investment, opera-
tion and maintenance. Other pros are independence of
wind direction, less sensitivity to turbulence, simple
blade profiles and lower noise levels.

The objective of this project was to model and con-
trol a small wind power plant consisting of one or sev-
eral wind power units and one grid connection inter-
connected with an internal DC-grid. The configuration
of investigated can be seen in figure 1. This article will
mainly focus on the case with one single wind power
unit connected to the grid through back to back full in-
verters1. The models and controls developed will be
tested by running different test cases. They will also
be evaluated according grid codes, see [1] & [2].

2 Modeling

The system to be modeled consists, as depicted in fig-
ure 2, of a wind turbine connected through a break to

1Back to back full inverters consists of two inverters coupled
by a DC-grid, i.e. the DC-connection of the generator inverter is
coupled to the DC-connection of the grid inverter.

a generator. The power voltage output from the gener-
ator is rectified by an inverter connected to a DC-grid
which is then connected via another inverter to a three-
phase grid. The reason to why an internal DC-grid is
utilized is mainly to decouple the rotational speed of
the wind power units from the grid frequency, the DC-
grid also acts as both filter and buffer.

2.1 Wind Turbine

Wind turbine power generations depend on the inter-
actions between the wind and the rotor. The power
extracted from the wind by the rotor can be described
as the kinetic energy of the wind times an efficiency
coefficient. The efficiency coefficient is varying with
the pitch angle of the blades and tip speed ratio. The
tip speed ratio is the wind speed relative the speed of
the tip of the turbine’s blades. The mechanical power
P in a vertical wind power unit can be described by
equation 1. The efficiency coefficient, Cp, can be de-
scribed according to equation 2, as proposed in [3] and
[4].

P =
1
2
·ρ ·A · v3 ·Cp (1)

Cp(λ ,β ) = c1 · (
c2

λi
− c3 ·β − c4) · e

−c5
λi + c6 ·λ (2)

1
λi

=
1

λ +0.08 ·β
− 0.035

β 3 +1
(3)

λ =
ωT ·R

v
(4)

The area swept by a vertical wind power turbine is
simply expressed as the rotor diameter times the ro-
tor length. The efficiency coefficient, Cp, can be cal-
culated according to equation 2 to 4. A typical Cp-
curve for different pitch angles2 can be seen in figure
3. The mechanical torque Tω can be obtained by divid-
ing the power absorbed, P, with the rotational speed of
the turbine, ωT . A component modeling the effect of
tower shadow was also implemented according to [5].
The tower shadowing effect occurs when a rotor blade
passes behind the tower, this since it is then shadowed
from the wind by the tower. This was modeled by sub-
tracting a torque component each time a rotor blade
passes behind the tower.

Tω =
P

ωT
(5)

2The pitch angle is the angle at which the rotor’s blade surface
contacts the wind.
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Figure 2: Overview of control structure and configuration of the wind power plant.

Figure 3: Typical characteristic of a Cp-curve at differ-
ent pitch-angles, β

Apart from modeling the wind turbine as an energy
producing unit modeling of the actual mechanical and
electrical properties also needs to be done in order to
get a good overall model. The wind turbine was mod-
eled to be directly coupled to a shaft and via a brake
to the permanent magnet generator. The shaft was
modeled as inertia, containing both the rotor’s iner-
tia and the actual shaft’s inertia, coupled via a model
of coulomb friction in bearings, in order to simulate
losses in the shaft, to the brake. For modeling of the
inertia, bearing friction and brake components from
Modelica’s standard library was used.

2.2 Wind Model

The produced power of a wind turbine is tightly linked
to the current wind speed. The wind changes both dur-
ing the day and the seasons. In order capture these
changes and to simulate the real wind conditions, a
wind model consisting of three components is used in
this project. The three components are:

• A base component, vbase

• A gust component, vgust

• A noise component, vnoise

The three components are summarized to v = vbase
+ vgust + vnoise. The base component is always present,
it may be constant, a ramp signal or have any other
form. The gust component appears randomly during
time and the noise component is modeled as white
noise.

2.3 Power Electronics

The system is designed using back to back full in-
verters. This means that the modeling of the power
electronics becomes essential for the complete model.
This since the power electronics is used for controlling
both the individual wind power units and grid connec-
tion. The Electric Power Library was chosen to be the
main tool used for modeling the power electronics and
generators since it is well suited for the task.
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2.3.1 The Electric Power Library

The Electric Power library is a Modelica library used
for modeling of power electronics and can be used in
both steady state and transient mode for the simula-
tions and initializations. The Electric Power library
provides components for modeling AC three phase
system, AC one phase systems and DC system. The
AC three phase systems can be represented in the abc-
, dqo- and dq-frame. Especially modeling in the dqo-
/dq- reference frame provides relatively quick simu-
lations, compared to simulations in the abc-reference
frame. This since a symmetrical three phase volt-
age or current is represented by constants in the dq0-
reference frame. The Electric Power library was origi-
nally written by H.J. Wiesmann and is currently owned
and sold by Modelon AB.

The Electric Power Library supports modeling in
the dq0-reference frame. The dq0-reference frame
not only simplifies analysis of the system but also in-
creases the simulation speed.

The main components used from the Electric
Power library were models for the inverters, a model
for a Permanent Magnetized Synchronous Machine,
PMSM, DC-link model and models for transmission
lines. The rotor connection of the PMSM model is
compatible with the Modelica standard library.

3 Control Design

In order to control the wind power plant different con-
trols are needed. The controls are developed to achieve
a number of different operation modes that are needed
in order to achieve the grid codes. The overall control
structure developed can be seen in figure 2. A short
description of the different controllers follows below,
for more detailed descriptions see [6].

3.1 Wind Power Unit Control

The control needed to control the wind power unit has
been divided into three controllers the Turbine Con-
trol, the Power Controller and the Speed Controller.

3.1.1 Turbine Control

The Turbine Control’s task is to manage the wind
power unit, which is to decide when the unit should
start and stop as well as to give instructions as to which
mode the unit currently should be working in. The
Turbine Control should communicate with both the

Plant Control and the Power Controller. The commu-
nication should be kept to a minimum and no actual
control should be done by the Turbine Control and
Plant Control. The controller’s main task is to make
decisions about when the unit could be in operation
and provide information about the unit’s current ca-
pacity to the Plant Control. In order to do this the Tur-
bine Control needs information about the current wind
speed as well as orders from the Plant Control. Apart
from this the control also needs information about how
fast the rotor is spinning. This to avoid using the brake
at high speeds and instead do a soft deceleration using
the generator.

3.1.2 Power Controller

In order to control the power output from the wind
power unit the Power Controller was developed. By
controlling the power output from the wind power unit
a number of different control modes can be achieved.
The Power Controller is designed in two different sec-
tions.

The first part’s task is to set an appropriate power
reference for the second part. This power reference
mainly depends on what control mode that is desired.
For example when ordered to control the DC-voltage
level the Power Controller receives a power offset.
The power offset received is the current power input
needed from the wind power unit in order for the to-
tal power input to be equal to the power output, thus
keeping the DC-voltage level inert. The Power Con-
troller then calculates the power reference as a devia-
tion from the power offset in order to control the DC-
voltage level.

The second part’s task is to control the power out-
put from the wind power unit to the reference value.
This is done by adjusting the rotational speed of the
turbine. As long as the wind speed is high enough for
achieving the desired power the task is quite trivial and
easily achieved by a PI-controller. However when the
wind speed is too low and the desired power cannot be
reached the controller should do as good as possible.
In this case the controller should maximize the power
output from the plant. The algorithm used to optimize
the rotational speed was based on the sensorless max-
imum power point racking algorithm proposed in [7].

A flow chart over the general operation of the Power
Controller can be seen in figure 4. The general idea
with the control is to determine whether the current
operation point is to the left or right of the optimal
point, and depending on this take different actions.

The control algorithm starts by setting initial con-
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Figure 4: Flow chart for the power control algorithm

dition and reads new measurements. It then tries to
decide whether the current operation point is to the
left or right of the optimal by comparing the change
in power output and the change in rotational speed.
If the current operating point is considered to be on
the left side of the optimal point the control output
is calculated by a PI-controller with a simple anti-
windup. If it is considered to be on the right side of
the optimal point the control output is calculated as
ωout(t) = ωout(t − 1)− |c · ∆P| where c is a control
constant and ∆P is the change in power. Also the inte-
gral for the PI-controller is updated in order to achieve
a bumpless transfer between the two controls. That
is when a control switch is made the output from the
“new” control is equal to that of the “old”.

3.1.3 Speed Controller

The speed controller consists of a series of cascaded
PI- and PIE-controllers. The PIE-controller is a PI-
control which is compensated by feed-forwarding the
back electromagnetic force from the generator. The
control parameters are calculated based on the genera-
tor parameters. The outer controller is a PI-controller
controlling the rotational speed of the turbine by gen-
erating a torque reference. The requested torque can
be achieved in many different ways, according to equa-
tion 6, where T , pp, ψm, Lsd and Lsq are generator pa-
rameters and isd and isq are currents in the respective
axes. In this project a method was chosen were the
direct current, isd , is set to zero, which generates the
current references in equation 7.

T
pp

= ψmisq +(Lsd−Lsq)isd isq (6)

Figure 5: Schematic picture of the control structure
used for controlling the grid connection.

⇒


ire f
sd = 0

ire f
sq = T re f

ψm·pp

(7)

The two inner PIE-controllers control the currents
of the PMSM which are designed according to [8].

3.2 Grid Connection Control

The control needed for the grid connection has been
divided into two controllers the Voltage Control and
the Current Control.

3.2.1 Voltage Control

The Voltage Control’s task is to control the active and
reactive power flow at the point of connection. This
can be done in different ways depending on which con-
trol goal is desired. For example Swedish wind power
plants are supposed to deliver zero reactive power.
However in a small system the reactive power flow can
be controlled so that the output voltage level to the grid
is kept constant, independent of the active power out-
put. Another possible control mode is Island operation
in which the plant powers up the grid and controls the
grid’s voltage and frequency.

3.2.2 Current Control

The current controllers are implemented as two paral-
lel PI-controllers controlling the direct and quadrature
currents. The current references are received from the
voltage control. The currents are controlled by out-
putting a reference voltage to the transistor control,
modulator. The modulator uses the requested voltages
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in order to control the transistor by generating by gen-
erating switch signals for each of the individual invert-
ers.

3.3 Wind Power Plant Control

The Plant Control’s task is to manage the wind power
plant. Most of its operation consists of setting the
control modes of the grid connection and wind power
units to achieve a specific control goal. The control
could be done very simplistic, very advanced or any-
way in between. The implementation done here was
kept quite simplistic with some intelligence, for exam-
ple loss compensation and ability to choose the num-
ber of plants that should be in operation and is covered
in [6].

4 Implementation

4.1 Wind Power Unit

Most of the implementation was done using Model-
ica’s standard library and Modelon’s Electric Power li-
brary, however some models for the wind turbine was
developed as well as a wind model.

An overview of the Modelica model over a wind
power unit can be seen in figure 6, to the right is the
top view, with inverter and controllers, and to the left
is the contents of the actual unit, with generator, shaft
and turbine model. The unit model consists of a model
of the turbine connected to a shaft, modeled as an in-
ertia and a bearing friction. The shaft is connected via
a brake to the permanent magnet synchronous gener-
ator, PMSG, the electrical output from the PMSG is
connected to an inverter which performs an AC to DC
conversion. Additionally a wind model was developed
in order to model the wind in a realistic way. The in-
verter is controlled by the control-blocks on top of it,
and by performing the AC/DC conversion the inverter
controls the generator. As can be seen most models in-
corporated in the wind power unit model are from ei-
ther Modelica’s standard library or Modelon’s Electric
Power library. The models implemented in this project
are the turbine model, wind model, the controllers and
an interface between the control and the inverter. The
model of the turbine was implemented using equations
1 to 5.

4.2 Grid Connection

The grid connection is modeled using components
from the Electric Power library. The grid model con-

Figure 7: Screenshot of a strong grid model imple-
mented in Dymola.

sist of a transmission line to the point of connection.
After the point of connection follows a transformer
and another, longer, transmission line. The model
shown in figure 7 is depicting a model of a strong
grid. In order to model a strong grid an optimal volt-
age source is connected to the long transmission line.
The switch implemented before the first transmission
line is necessary since the average inverter model used
is based on a voltage source which means that when in
passive mode it acts as a ground connection.

4.3 Control

There are two possibilities when trying to implement
C/C++ objects into Dymola/Modelica. The first is us-
ing an External Static Library and the second is us-
ing the External Object function in Modelica. Both
methods have their pros and cons. The External Static
Library is disconnected from the modeling tool to a
greater extent while the External Object is more inter-
connected with Modelica. In the end the decision was
made to mainly use the External Static Library for im-
plementation of the control structure. This was due to
two different reasons.

1. The goal was to be able to run the exact same
code both in simulations and on the actual plant
and for this reason it was desirable to separate the
control code and the models as much as possible.

2. The External Object currently only supports code
in FORTRAN 77 and C [9], while the static ex-
ternal library supports both C and C++.

However the External Object was also investigated and
tested. The control blocks implemented in Dymola can
be seen in figure 6 and 8 while a detailed description
is covered in [6].

4.4 Wind Power Plant

Two different Modelica models were developed, how-
ever the only difference between the two is the num-
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Figure 6: Screenshot of the wind power unit model in Dymola.

Figure 8: Screenshot of a wind power plant model us-
ing one wind power unit in Dymola.

ber of wind power units that is connected to the DC-
grid. The models were constructed by connecting one
or more wind power unit models to a model of a DC-
link, the DC-link was then connected to the grid con-
nection model. In reality the wind acting on the differ-
ent wind power units is not identical. The wind model
was moved to the wind power unit model to reflect this
fact.

5 Results

5.1 Optimizing Operation Point

This test is designed for evaluating performance of the
optimizing algorithms of the Power Controller. The
task in this case is to maximize the power output from
the unit when the wind speed is not high enough to
achieve the requested power output. The unit starts at
standstill.

The results from the simulation are shown in fig-
ure 9. As can be seen the wind speed starts at 8 m/s
and after 200s it increases to 11 m/s over 100s. When
observing the power output from the unit it can be no-
ticed that the output is almost zero until the rotational
speed reference has been reached, this since the gener-
ator is not applying any negative torque. After this the
power output is approximately 1 kW, and when ob-
serving the Cp-value in figure 9 it can be seen that it
is very close to its maximum, which for this test was
∼ 0.26. When the wind speed is increased the Power
Controller reacts and adjusts the rotational speed of
the rotor, and after some time the Cp-value has been
returned to its maximum. It takes some time for the
algorithm to recover after the increase in wind speed,
however the value is maintained in the proximity of
the maximum during this time. The wind gusts are
reflected both in the output power and the Cp-value.
The main reason to why the effect is so visible in the
output power is that the wind power unit which was
simulated is quite small, a bigger rotor, with higher in-
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Figure 9: Simulation results, plotted from top to bot-
tom are: 1. The rotational speed of the turbine and its
reference 2. the power output from the unit and the
calculated maximum output power 3. the Cp-value 4.
the wind speed

ertia, would do a better job of filtering these “bumps”.
The effect of the gusts on the Cp-value is quite large,
however the goal of the optimizing algorithm should
not be to maximize the output power over these gusts,
but instead to maximize the power output during a long
period of time. Otherwise the control would be forced
to be very aggressive and “nervous” which is not de-
sirable.

5.2 Active and Reactive Power Output Dur-
ing Operation

This case has been designed in order to test as many
features of the Power Controller as possible. To do this
the wind speed varies from 0 - 23 m/s during the sim-
ulation. This should cause the power controller to shut
down the wind power unit both for too high and too
low wind speeds. It should also optimize the power
output when the wind speed is too low for nominal
power and control the power output when the wind
speed is sufficient. More importantly it should also
confirm that the transition between the different con-
trol modes work well. The limits for low and high
wind speed were chosen to 6 respectively 20 m/s.

The simulation has been divided into 7 different
zones, depicted in figure 10 and 11.

1. The wind speed starts at 0 m/s and increases to
5 m/s. During this period the rotor’s rotational
speed and the power reference are both zero,
since the wind speed is too low for operation of
the plant.

2. In this zone the wind speed is increased from 5
m/s to 10 m/s which is enough to allow operation
of the unit. The power reference is raised to its
nominal value, 3000 W, and the rotor starts to ro-
tate. Since the wind speed is not high enough for
nominal power the Power Controller tries to op-
timize the unit’s power output, as can be seen in
the graph of the Cp-value in the third subplot of
figure 10.

3. In this zone the wind increases further and is now
high enough to allow operation at nominal effect.

4. In this zone the wind speed increases to 23 m/s,
which is more than the maximum allowed for op-
eration. Hence the power reference value is de-
creased to zero and the generator decelerates the
rotor speed. When the rotational speed is low
enough the brake is applied and the rotor stops.

5. The wind speed is now reduced to 18 m/s, which
is lower than the maximum allowed wind speed
for operation, and the power reference is in-
creased to its nominal value and the rotor starts to
rotate again. Since the wind speed is high enough
for nominal power the Power Controller controls
the power to this value.

6. The wind speed is now reduced to 11 m/s which
is too low for nominal power and the Power Con-
troller tries to optimize the unit’s output power,
which can be seen on the Cp-value in the third
subplot of figure 10.

7. In this zone the wind speed is decreased to 3 m/s
which is well below the minimum allowed wind
speed. This causes the Turbine Control to give
orders to shut down the wind power unit. The
power reference is set to zero and the generator
decelerates the rotor. When the rotor’s rotational
speed is low enough the brake is applied.

As can be seen in zone 1, 4 and 7 the Turbine Con-
trol successfully makes the decision to turn off the unit
when the wind is either too high or too low for op-
eration. The transition between the different control
modes, which can be seen going from zone 2 to 3 and 5
to 6 3, is working correctly. In the transition from zone
2 and 3 a small power overshoot is present before the
Power Controller manages to counteract the increased
wind speed. In zone 2 and 6 it can be seen that the

3in zone 2 to 3 the transition between optimization and nominal
power can be observed, and in zone 5 to 6 the transition between
nominal power and optimization can be observed.
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Figure 10: Simulation results, plotted for top to bot-
tom are: 1. the rotational speed of the turbine and its
reference 2. the power output from the unit and its
reference 3. the Cp-value 4. the wind speed

Power Controller successfully finds the optimal opera-
tion point. In zone 3 and 5 it can be seen that the Power
Controller successfully controls the output power to its
nominal value, 3kW. When observing the Cp-value in
zone 7 a large spike can be observed. The reason for
this is that when the rotor decelerates it passes through
its optimal rotational speed.

In figure 11 the results from the grid side control of
the plant are presented. As expected the direct voltage
is high above the nominal voltage of 230V during the
time the reactive power compensation is inactive, and
the reactive power output during the same time period
is zero, according to Swedish grid codes [2]. The reac-
tive power compensation is turned on after 350s, when
the plant is at standstill. When the operation resumes
it can be noticed that the direct voltage is controlled to
its nominal value, 230V. Because of the reactive power
flow the active power delivered to the point of connec-
tion is slightly lower than without reactive compensa-
tion.

5.3 Island Operation

This test case was designed to test how the plant man-
ages to run in Island mode, that is to on its own power
up and control the voltage and frequency of the AC-
grid. This is done by ordering the grid connection
to control the AC-voltage and frequency and the wind
power unit to control the DC-voltage level.

The results from the simulation are presented in fig-
ure 12. As can be seen the power controller success-
fully controls the DC-level to 900V with some devia-
tions. At the start the Plant Control orders the wind

Figure 11: Simulation results, plotted from top to bot-
tom are: 1. the DC-voltage level and its reference 2.
the power flow into the DC-grid and active power flow
out from the DC-grid 3. the reactive power flow out
from the DC-grid 4. the direct voltage

power unit to output 1000W to power up the DC-
link capacitor. When the DC-level reaches 850V the
grid controller starts powering up the grid. When the
power flow from the DC-grid has started the Plant
Control waits until accurate power readings have been
achieved and then orders the wind power unit to con-
trol the DC-voltage level. The Power Controller man-
ages to relatively fast control the DC-voltage to 900V.
After 250s the load is increased which causes the DC-
voltage to start decreasing. When the DC-voltage
drops the power reference is changed in order to re-
store the DC-voltage. As depicted in figure 12 the grid
controller does not have any trouble to power up the
grid, and the drop in the DC-level is not so big that it
has any effect on the inverter output. The effect of the
load’s oscillation is visible in the DC-voltage which
also is experiencing a small oscillation. However this
oscillation can be neglected since it has no major effect
on the system. The DC-control has no apparent prob-
lems controlling the DC-level when a varying load is
connected.

6 Conclusion

This work has shown that Modelica and Dymola are
powerful tools for modeling a wind power plant in-
cluding power electronics. It has also been shown that
it can be used to test and evaluate control algorithms
before the plant is built.

All the models and control algorithms were tested
using different simulations. The different simulations
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Figure 12: Simulation results, plotted from top to bot-
tom are: 1. the power output from the wind power unit
and its reference 2. the DC-voltage level and its refer-
ence 3. the power in and out from the DC-grid 4. the
wind speed

tests the performance of the control algorithms during
different conditions. Apart from the controls discussed
some algorithms with the sole purpose of optimizing
the control algorithms were also tested [6]. Unfortu-
nately it was not possible to verify the models against
real measurement data. The models are however con-
sidered to be good enough to test the control strate-
gies. The general properties of the system are con-
sidered to be correct since the power extraction from
wind power turbines is quite well documented [3][4],
as well is most power electronics and generators.

During the project the performance of the control
system was tested and evaluated compared to grid
codes of Denmark and Sweden. Some paragraphs
were not taken into account when designing the con-
trol. These grid codes would require some additional
control modes, but no obvious problem in implement-
ing that into the system was found. The details of these
tests, as well as more simulation cases can be found in
[6]. The performance of the control algorithms was in
general good and achieved virtually all the grid codes
tested.
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Abstract

The Jülich-Aachen Dynamic optimization Environ-
ment (JADE) is employed for computing first- and
second-order parameter sensitivities of a metaboli-
cally and isotopically non-stationary biochemical net-
work model. Based on a Modelica representation of
the model, code generation, algorithmic differentiation
and first- and second-order adjoint sensitivity analy-
sis are employed for computing the gradient and the
Hessian of a parameter estimation objective function.
In particular, we use composite adjoints, an exten-
sion of the classical adjoint sensitivity analysis, and a
numerical integrator based a modification of second-
order discrete adjoints of the extrapolated linearly-
implicit Euler method. Therewith, the 116× 116-
Hessian of the objective function with respect to 116
model parameters can be computed at the cost equiv-
alent to only 18 objective function evaluations, while
computing the same Hessian with the cheapest finite-
difference formula would require 6845 evaluations of
the objective function.

Keywords: biochemical network model; parameter
sensitivities; automatic differentiation

1 Introduction

Kinetic-based modeling is the method of choice
for unraveling complex interactions in living micro-
organisms [8]. Only this approach allows to analyze
the response of organisms to extracellular stimuli, such

∗This work was carried out during the tenure of an ERCIM
“Alain Bensoussan” fellowship program. This program is sup-
ported by the Marie Curie co-funding of regional, national and
international programs (COFUND) of the European Commission.

as changes in the substrate concentration. Moreover,
industrial processes are typically run in cultivation
modes, in which the intracellular metabolism cannot
be assumed to be in a stationary state. Metabolically
non-stationary network models include rate laws for
the enzyme catalyzed reactions, and the correspond-
ing model equations depend on several kinetic param-
eters. The rate laws also include regulatory effects, i.e.
activation and inhibition by other metabolites, which
increases the overall complexity of the network. Ki-
netic models are normally calibrated using measured
intracellular metabolite concentrations. However, the
ratio between the number of unknown parameters and
the quantity of available measurement data is often in-
sufficient. Consequently, the kinetic parameters are
poorly determined or even non-identifiable on the ba-
sis of such data.

This limitation can be overcome by combining clas-
sical kinetic modeling with an isotope-labeling ap-
proach ([11], [3]). In this approach, experiments are
performed with a specifically 13C-labeled substrate
instead of the slightly lighter, naturally 12C-labeled
substrate. 12C as well as 13C-atoms are distributed
through the reaction network and form specific la-
beling signatures in the involved metabolites. These
signatures, so called isotopologues, consist of differ-
ently many heavier (labeled) and lighter (naturally la-
beled) carbon atoms, and can be quantified using the
LC-MS measurement technique [12]. Hence, the use
of labeled substrates increases the amount of data for
each metabolite proportional to its number of carbon
atoms. However, the model dimensions are strongly
increased. The extended model requires increased
computational resources not only for solving the for-
ward problem, but also for determining gradient and
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Hessian information for efficiently solving the invers
parameter estimation problem.

2 Biochemical Network Model

The combined metabolically and isotopically non-
stationary modeling approach is illustrated with an ex-
ample network of Escherichia coli [2]. The biochem-
ical network covers glycolysis and the pentose phos-
phate pathway. The model involves 28 metabolites
(thereof 8 co-metabolites) and 28 reactions (thereof 8
effluxes), as illustrated in Figure 1.

The equations for the kinetic rates, r, the values
of the stoichiometric constants, pstoich, and of the ki-
netic parameters, pkin, and the initial metabolite con-
centrations, c0, are taken from the same publication
[2]. The model is extended from the metabolically
non-stationary case to the metabolically and isotopi-
cally non-stationary case by transforming the differen-
tial equations, that describe the change of metabolite
concentrations, c, over time (Equation 1), into sets of
differential equations for the so-called cumomers, m
(Equation 2).

dc
dt = f (c,r, pstoich)

r = g(c, pkin)
c(0) = c0

(1)

A cumomer can be interpreted as a molecule frag-
ment that is fully labeled to a specified degree ([13],
[14]). The cumomer, e.g., m#x1x of a metabo-
lite, m, with three carbon atoms includes the four
differently labeled species m#x1x = ∑i, j∈{0,1}m#i1 j,
namely m#010, m#110, m#011 and m#111, where the
digits 0 and 1 denote the isotopes 12C and 13C, re-
spectively. The concentration of a cumomer fraction
is defined as the sum of the concentrations of all cor-
responding species. In particular, the concentration of
the cumomer m#xxx is the absolute metabolite concen-
tration, c. A metabolite with n carbon atoms has 2n cu-
momers in total. The formulation of cumomer balance
equations requires structural information on: (1) the
underlying metabolic network model, i.e. all partici-
pating enzymatic reaction steps, (2) the carbon atom
transitions for each of these steps (see Figure 2 for an
example), and (3) the kinetic mechanisms [11].

dm
dt = f (m,r, pstoich)

m(0) = m0
(2)

The cumomer balances in Equation 2 are combined
with the original kinetic equations from Equation 1.

The vector c, containing all metabolite concentrations,
is a subset of the vector m, containing all cumomer
fractions m#i jk with i, j,k ∈ {1,x} of all metabolites.
The initial values of the algebraic variables, r, are de-
termined such as to fulfill the algebraic equation, g.

Realistic models, e.g., of the central carbon meta-
bolism, have around 30-40 metabolites, 50-60 reac-
tions and 30-40 regulatory relations leading to model
dimensions of 1,000 to 10,000 equations. Moreover,
Equation 2 is typically stiff, dense and highly non-
linear.

Figure 2: Carbon atom transition of a reaction
that converts D-fructose-1,6-bisphosphate (FBP)
into glyceraldehyde-3-phosphate (GAP) and
dihydroxyacetone-phosphate (DHAP). The lines
describe transitions of individual carbon atoms from
the substrate to the product.

The final E. coli network model contains 682 dif-
ferential equations that are linear combinations of the
non-linear rate equations (see Equation 2). The rates
do generally not only depend on the concentrations of
the related substrate and product molecules, but can
also depend on the concentrations of other molecules
that act as activators and inhibitors of the catalyzed re-
action. Equations 3 and 4 show typical examples in
which the kinetic parameters are highlighted in bold-
face. Sensitivities of the model solution with respect to
these parameters are often required for parameter esti-
mation and in the context of metabolic control analy-
sis.

Equation 3 describes the enzyme D-glucose-6-
phosphate aldose-ketose-isomerase (pgi) and is for-
mally a reversible Michaelis-Menten kinetic with one
generic inhibitor. Parameters are the maximal reaction
rate rmax, an equilibrium constant keq, two inhibition
constants ki, and two affinity constants km. Equation 4
describes the enzyme phosphoglycerate kinase (pgk)
and is formally a two-substrate reversible Michaelis-
Menten kinetic. Parameters are, in addition to the
first kinetic equation, the coupling constants of the co-
metabolites ATP and ADP.
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Figure 1: Biochemical network of E. coli including the glycolysis (orange) and the pentose phosphate pathway
(red). The metabolites (rectangles) are converted by reactions (rhombi). Additional lines show regulatory
interactions: activation (green lines), inhibition (red lines) and co-metabolite coupling (dashed lines, yellow
metabolites).

3 JADE

The biochemical network model from the previous
section has been implemented in Modelica and tested
with Dymola. However, Dymola does not provide ca-
pabilities for higher-order sensitivity analysis, which
are essential for many engineering tasks such as
parameter estimation, optimal experimental design,
optimal control and dynamic real-time optimization
(DRTO). This gap will be closed by the Jülich Aachen
Dynamic Optimization Environment (JADE), a new re-
search program that sustains ongoing collaborations
between Aachener Verfahrenstechnik – Process Sys-
tems Engineering (AVT.PT), the Jülich Biotechnology
Institute (IBG-1), and Software Tools for Computa-

tional Engineering (STCE). AVT.PT and STCE are
both chairs at RWTH Aachen University and IBG-1
belongs to the Forschungszentrum Jülich. The JADE
concept includes a software infrastructure for sensitiv-
ity analysis of differential-algebraic equation systems.

This publication addresses a prototypical task
within the JADE framework, the determination of pa-
rameter sensitivities of a residual function for estimat-
ing unknown model parameters. The biochemical net-
work example is taken as an example, but the pre-
sented software infrastructure works for a wider class
of Modelica models, without discontinuous elements,
i.e. without “if”- and “when”-assignments. A soft-
ware infrastructure is presented, that provides an easy-
to-use integrated solution for determining the required
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rpgi =
rmax

pgi

(
cG6P−

cF6P
keq,pgi

)
kmG6P,pgi

1+ cF6P

kmF6P,pgi

(
1+

cm6PG
kiF6P,m6PG,pgi

)+ cm6PG
kiG6P,m6PG,pgi

+cG6P

(3)

rpgk =
rmax

pgk

(
cADP·cPGP−

cAT P·cm3PG
keq,pgk

)
(

kmADP,pgk

(
1+ cAT P

kmATP,pgk

)
+cADP

)(
kmPGP,pgk·

(
1+ cm3PG

kmm3PG,pgk

)
+cPGP

) (4)

first- and second-order derivatives.

Workflow

The workflow for computing sensitivity information
can be divided in three layers (see Figure 3 for a
schematic sketch):

1. A so-called equation set object (ESO), an in-
stance of a C++ class which provides data and
methods related to the model.

2. A Meta ESO object, an instance of a C++ class
which assembles one ESO or, in the case of
multistage models, several ESOs and information
about the parametrization of the model (we refer
to [9, 10] for details on multistage problems).

3. Drivers for the NIXE integrator [5], a numerical
solver for (adjoint) sensitivity analysis of DAEs,
based on the information assembled in the Meta
ESO, to carry out sensitivity analysis tasks.

Figure 3: Layers of the software infrastructure.

Currently, flat Modelica models are translated into a
subset of the C language, referred to as C-, by means
of the Mof2C- application. In flat or flattend Model-
ica models, all object-oriented features are removed by
the expansion of all sub-models and their connections.
In particular, a flat Modelica model contains no sub-
model, it has a “flat hierarchy”. A residual function of
the DAE is created to be differentiated by means of al-
gorithmic differentiation in form of the derivative code
compiler (dcc) [7], an AD tool relying on semantic
source code transformation. On Windows platforms,

the source code, generated by Mof2C- and dcc is com-
piled into a dynamic link library. Figure 4 shows a
typical workflow within the JADE framework.

Figure 4: JADE workflow for sensitivity analysis.

4 Results

We present first- and second-order adjoint sensitivity
computations for the biochemical network model from
section 2. The model is formulated in Modelica with-
out using discontinuous elements. It belongs to the
class of smooth semi-explicit index-1 differential al-
gebraic equations of the type of Equations 5 to 7.

ẋ(t, p) = f (x(t, p),y(t, p), p), t ∈ [t0, t f ], (5)

0 = g(x(t, p),y(t, p), p), t ∈ [t0, t f ], (6)

x(t0, p) = x0, (7)

Here, x(t, p)∈Rnx and y(t, p)∈Rny denote the vectors
of differential and algebraic state variables, p ∈Rnp is
the parameter vector, f and g denote the differential
and algebraic equations, respectively, x0 ∈ Rnx is the
vector of initial values and t0 and t f are the initial and
final times, respectively.

The model comprises 1488 state variables, thereof
683 differential and 805 algebraic, as well as 337 pa-
rameters, thereof 116 relevant for a typical parameter
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estimation. The model is sparse in that the Jacobians
of f and g with respect to x, y and p have in the sum
only 9121 nonzero entries. The initial time is set to
t0 =−20 in order to simulate the system in a stationary
state before a concentration pulse is applied at t = 0,
and the final time is t f = 40.

For the purpose of parameter estimation we
need to compute a least-squares residual, as well
as it’s gradient and Hessian. Let yout(t, p) =
(yi1 ,(t, p), . . . ,yiny,out

(t, p)) ∈ Rny,out , i j ∈ {1, . . . ,ny},
j = 1, . . . ,ny,out , denote the vector of measured vari-
ables, which is in the present example a subset of the
algebraic variables. For the residual we consider a fi-
nite time series t1 < t2 < · · · < tN and a matrix of cor-
responding measurements Ỹ = (ỹi j) ∈ RN×ny,out . With
scalar weights σi j, i= 1, . . . ,N, j = 1, . . . ,ny,out , the pa-
rameter estimation objective function has the follow-
ing form:

Φ(p) = φ(yout(t1, p),yout(t2, p), . . . ,yout(tN , p))

:=
N

∑
i=1

ny,out

∑
j=1

σi j (yout, j(ti, p)− ỹi j)
2. (8)

We assume measurements to be available for
ny,out = 103 output variables every 0.5 seconds, start-
ing from t1 = 0 to tN = t81 = 40. As real measure-
ments are currently not available, synthetic data Ỹ =
(ỹi j) ∈ R81×103 were generated by adding normally
distributed noise with a standard deviation of 10% to
the nominal values. The weights are chosen as:

σi j =
1

0.01+ ỹi j
2 , i = 1, . . . ,81, j = 1, . . . ,103,

The summand 0.01 in the denominator is introduced
for avoiding division by zero in the case ỹi j = 0 and to
reduce the impact of small-valued measurements.

Let pest ∈ Rnp,est denote the vector of parameters
to be estimated: pest, j = pi j , i j ∈ {1, . . . ,np}, j =
1, . . . ,np,est , np,est = 116. Our software infrastructure
is benchmarked for the following tasks:

1. Simulate the original model

2. Compute value of the objective function Φ.

3. Compute the gradient ∂Φ/∂ pest by means of
first-order adjoint sensitivity analysis.

4. Compute the gradient ∂Φ/∂ pest by means of
first-order forward sensitivity analysis.

5. Compute the Hessian ∂ 2Φ/∂ pest
2 by means of

second-order adjoint sensitivity analysis.

Code Generation and Compilation

All computations are performed on a Notebook with
a 2.53 MHz Intel Core2 SP9600 processor, equipped
with 4 GB RAM and running Linux Mint 12.

As illustrated in Figure 4, the first task of the JADE
architecture is to generate C-code from a flat Model-
ica model. This done by the Mof2C- compiler, which
generates a C-function of the model residual and re-
lated utility functions, e.g., for providing access to the
variable names. This part of the code generation takes
roughly 4 seconds. Then, the derivative code com-
piler dcc, an algorithmic differentiation (AD) tool, is
applied for generating derivatives of the model resid-
ual. This part takes approximately 5 minutes, thereof 4
minutes for the generation of the second-order adjoints
of the model residuals.

The generated code, including the derivative codes,
is then compiled either in a dynamic link library (DLL)
on Windows platforms or a shared object on Linux or
UNIX platforms. Here, the compilation times strongly
depend on the compiler flags, especially on the opti-
mization flags. The sequential compilation times with
the g++-4.6.1 compiler of the GNU Compiler Col-
lection (gcc) are 2 minutes (thereof 1 minute for the
second-order adjoints) for non-optimized code, and for
optimized code (-O3-flag) 53 minutes (thereof 37 min-
utes for the second-order adjoints).

Simulation and Sensitivity Analysis

We apply the JADE infrastructure for simulating and
evaluating the objective function, as well as it’s gra-
dient and Hessian with either optimized or non-
optimized compiled code. The numerical kernel re-
lies on the NIXE integrator. NIXE implements the
extrapolated linearly-implicit Euler method, and pro-
vides facilities for higher-order forward or adjoint sen-
sitivity analysis. In detail, NIXE implements a mod-
ified discrete adjoint method for the adjoint sensitiv-
ity analysis [5]. Further, since the objective func-
tion φ in Equation 8 depends on different points in
time, we use the technique of composite adjoints
[4], instead of the classical adjoint sensitivity analy-
sis (which only submits one final time) [1]. When-
ever the gradient or Hessian of a DAE-embedded func-
tional of the type φ(x(t1, p), . . . ,x(tN , p)) with respect
to sufficient many parameters has to be computed
(cf. Equation 8), from the view of computational effi-
ciency, composite adjoints are the method of choice.
Roughly spoken, composite adjoints compute a lin-
ear combination of the N classical adjoints associated
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with φ(x(t1, p), . . . ,x(tN , p)) corresponding to the final
times t1, . . . , tN . The computational cost of composite
adjoints is equivalent to the cost of only one classical
adjoint computation with a final condition at tN . For
details we refer to [4].

Table 1 shows the performance of different com-
putations. For comparison, we have also executed a
simulation with Dymola 7.1 in combination with MS
Visual Studio 2008 on the same notebook but running
Windows 7 (see last row of Table 1).

Table 1: Computational performance
JADE results, AbsTol=RelTol=10−5

1488 state variables, 116 parameters
Run time

Task Optimized Non-opt.
Simulation 1.7 s 2.3 s
Objective 10.5 s 14.5 s
Gradient (adjoint) 14.5 s 19.9 s
Gradient (forward) 46.8 s 63.5 s
Hessian (2nd adjoints) 180.0 s 465.0 s
Dymola Simulation 1.6 s (DASSL, Tol=10−5)

The simulation time of JADE is competitive with
Dymola, for both the optimized and the non-optimized
compiled codes. However, Dymola does neither sup-
port first-order nor second-order sensitivity analysis.
We observe that the evaluation the objective func-
tion takes much longer than the simulation. This is
due to the NIXE integrator stopping at the measure-
ment times and resetting the adaptive step size control.
Computing the 116 components of the gradient with
adjoint sensitivity analysis takes only about 1.5 times
the time of one single function evaluation for both the
optimized and the non-optimized codes. Forward sen-
sitivity analysis is 3 times slower (optimized and non-
optimized). Computing the 116× 116-Hessian ma-
trix takes 180 seconds with the optimized compiled
code and 465 seconds with the non-optimized com-
piled code.

Comparison with Finite Differences

If we compare the computational times of the JADE
sensitivity analysis with the costs of finite differences,
we clearly see the superiority of the tailored numerical
methods of JADE. Table 2 shows compute time ratios
of the different sensitivity tasks as compared to a sin-
gle objective function evaluation.

The cheapest finite differences formulas would re-
quire 117 = 1+116 function evaluations for the gradi-
ent and 6845 = 1+116+1162/2 function evaluations

for the Hessian. The excellent numerical performance
of the JADE prototype is mainly achieved by combin-
ing the AD tool dcc [7] with composite adjoints [4]
that are computed with the specifically tailored numer-
ical integrator NIXE [5], which strongly exploits the
structure of the underlying (adjoint) sensitivity equa-
tions.

Conclusions

We have introduced the JADE platform for first- and
second-order sensitivity analysis of DAE models. The
platform combines code generation, algorithmic dif-
ferentiation and a customized numerical integrator for
forward and adjoint sensitivity analysis. The pre-
sented results in particular for computing the Hessian
of the studied parameter estimation objective function
are more than competitive. The complete 116× 116
Hessian of the objective function is computed at the
cost of 18 single function evaluations, yielding accu-
rate second-order derivatives. In comparison, com-
puting the same Hessian with the cheapest and least
accurate finite difference formula would require 6845
function evaluations. This makes the JADE platform
particularly attractive for large-scale applications with
nonlinear numerical optimization solvers that require
second-order derivatives.

Outlook

Up to now, the numerical methods of JADE are re-
stricted to smooth Modelica models without discon-
tinuities. However, many systems, e.g., from engi-
neering or biotechnology, need to be modeled with
non-smooth differential-algebraic equations. In addi-
tion, the modeling process can yield under-determined
differential-algebraic systems (more variables than
equations). In this case, some of the model variables
must be determined by external criteria, for example
by means of an optimization criterion. The resulting
models do not belong to the well-known class of hy-

Table 2: JADE (optimized) versus finite differences
Cost factor = run_time(Task)

run_time(Ob jective)

Task
JADE

Finite differences
forward adjoint

Objective 1 - 1
Gradient 4.5 1.4 117
Hessian - 17.2 6845

First- and second-order parameter sensitivities of a metabolically and isotopically non-stationary … 

 

646 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076641 



 

 

brid DAE systems, but a novel class of non-smooth
DAEO systems can be defined, where the “O” denotes
optimization. The concept of the JADE prototype, i.e.
combining a high-level model language like Modelica
with algorithmic differentiation and tailored numeri-
cal solution methods, will be extended to the classes
of non-smooth DAE and DAEO systems.
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Abstract

The solution of generic dynamic optimization prob-
lems described by Modelica, and its extension Opti-
mica, code using direct collocation methods is dis-
cussed. We start by providing a description of dynamic
optimization problems in general and how to solve
them by means of direct collocation. Next, an existing
implementation of a collocation algorithm in JModel-
ica.org, using CasADi and IPOPT, is presented. The
extensions made to this implementation are reported.

The new implementation is compared to an old C-
based collocation algorithm in JModelica.org in two
benchmarks. The presented benchmarks are based on
a continuously stirred tank reactor and a combined cy-
cle power plant. The new algorithm and its surround-
ing framework is more flexible and shown to be several
times more efficient than its predecessor.

Keywords: dynamic optimization; JModelica.org;
collocation; nonlinear programming; CasADi

1 Introduction

Optimization of large-scale dynamic systems is be-
coming a standard industrial technology. Applications
include minimization of material and energy consump-
tion during set-point transitions in power plants and
chemical processes, minimizing lap times for vehicle
systems and trajectory optimization in robotics.

There are different kinds of dynamic optimization
problems and in this paper we consider two categories.
The first is optimal control, where the aim is to find
control variable trajectories (and possibly parameters)
that minimize, for example, the amount of resources
spent to perform a specified action. The second cat-
egory is parameter estimation, where the problem is
to find the values of unknown model parameters that

This work was supported by the Swedish Research Council
through the LCCC Linnaeus Center. We would also like to thank
Francesco Casella for letting us use the combined cycle power
plant model.

allow the model to behave according to some given
measurement data.

Solving dynamic optimization problems is useful in
many different fields and applications. Parameter es-
timation is used to improve physical models in gen-
eral. Optimal control has many applications, in both
on-line and off-line settings. On-line optimal control
is usually done in the form of model predictive control.
Off-line applications include finding optimal trajecto-
ries for the transition between two stationary operat-
ing conditions in a system, which can be used either
as a reference during manual control or as a target for
automatic control if combined with feedback. Another
example is the identification of system bottlenecks, for
example by analyzing adjoint variables.

There are many approaches to solving dynamic
optimization problems. Until the 1970s, problems
were typically solved using dynamic programming or
Pontryagin’s maximum principle. These approaches
are ill-suited for large-scale problems and have trou-
ble handling inequality constraints. Modern tech-
niques often involve finding an approximate solution
to the infinite-dimensional optimization problem by
transcribing it into a finite-dimensional nonlinear pro-
gram (NLP). These are called direct methods. The
main difference among direct approaches is how to
handle the constraints describing the system dynam-
ics. In this paper, direct collocation is used. Another
common approach is direct multiple shooting. See [1]
and [2] for overviews on different direct methods.

JModelica.org [3] is a tool targeting large-scale dy-
namic optimization. The system dynamics are de-
scribed using Modelica, and the optimization formu-
lation is done with the use of the Modelica extension
Optimica [4]. In this paper, we implement an opti-
mization algorithm in JModelica.org for solution of
dynamic optimization problems described by Model-
ica and Optimica code. This work is a continuation
of the work begun in [5], where CasADi and JMod-
elica.org were integrated and a prototypical colloca-
tion method was implemented based on this integra-
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tion. This prototype has since been refined and ex-
tended to support additional problem formulations and
solution techniques. Additional benchmarks have also
been performed, as reported in [6].

The outline of the paper is as follows. In Section
2, a general class of dynamic optimization problems is
presented. In Section 3, we discuss how to solve this
class of problems using direct collocation. In Section
4, the prominent tools used to implement the described
collocation method in a Modelica environment are pre-
sented. In Section 5, we present the extensions made
to the implementation from previous work. In Section
6, the implemented algorithm is compared to a similar
existing algorithm. The two algorithms are applied to
a continuously stirred tank reactor and to a combined
cycle power plant. Finally, in Section 7, the paper is
summarized and some future work is discussed. The
work presented in this paper is a result of [6], where
additional details are available.

Throughout the paper, the following notation is
used. The integer interval from a ∈ Z to b ∈ Z is de-
noted by [a..b]. All kinds of products between scalars,
vectors and matrices are denoted by the binary oper-
ator ·. The space of functions continuous of order
k from Rm into Rn is denoted by Ck(Rm,Rn), where
k = −1 means that the functions may be discontin-
uous. No distinction between tuples and vectors is
made.

2 Dynamic optimization

We consider systems whose dynamics are described
by a single and fully implicit differential algebraic
equation (DAE) system of index one (or zero). That
is, an equation system of the form

F(t, ẋ(t),x(t),u(t),w(t), p) = 0,

where t ∈ R is the sole independent variable: time,
x ∈ C0(R,Rnx) is the state, u ∈ C−1(R,Rnu) is the
vector-valued control variable, w ∈C−1(R,Rnw) is the
vector-valued algebraic variable and p ∈ Rnp is the
vector of parameters to be optimized, that is, the free
parameters. Initial conditions are also given on a fully
implicit form, i.e.,

F0(ẋ(t0),x(t0),u(t0),w(t0), p) = 0,

where t0 is the start time. For ease of notation, we com-
pose the time-dependent variables into a single vari-
able z, that is,

z := (ẋ,x,u,w).

The system dynamics are thus fully described by

F(t,z(t), p) = 0, ∀t ∈ [t0, t f ],
F0(z(t0), p) = 0,

where t f is the final time and

F ∈C2(R×Rnz×Rnp ,Rnx+nw),

F0 ∈C2 (Rnz×Rnp ,Rnx) ,
nz := 2 ·nx +nu +nw.

These continuity requirements, and some of the con-
tinuity requirements stated later in this section, are
needed to establish the second-order optimality con-
ditions and also to find a solution to the first-order op-
timality condition using some variation of Newton’s
method.

The general problem studied in this paper is to

minimize f (t0, t f ,z, p), (1a)

with respect to t0, t f ,z, p,

subject to F(t,z(t), p) = 0, (1b)

F0(z(t0), p) = 0, (1c)

zL ≤ z(t)≤ zU , (1d)

pL ≤ p≤ pU , (1e)

ge(t0, t f , t,z(t), p) = 0, (1f)

gi(t0, t f , t,z(t), p)≤ 0, (1g)

Ge(t0, t f ,Ze, p) = 0, (1h)

Gi(t0, t f ,Zi, p)≤ 0, (1i)

∀t ∈ [t0, t f ].

The objective (1a) can take on many forms. For op-
timal control problems, it is typically a Bolza func-
tional, that is, a function on the form

f (t0, t f ,z, p) =φ(t0,z(t0), t f ,z(t f ), p)+∫ t f

t0
L(t,z(t), p)dt,

(2)

where

φ ∈C2(R×Rnz×R×Rnz×Rnp ,R)

is called the Mayer term and

L ∈C2(R×Rnz×Rnp ,R)

is called the Lagrange integrand.
For parameter estimation, the objective function is

typically formulated using a weighted least squares
sum, penalizing the deviation of the measured vari-
ables from the discrete measurement data. However,
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in this paper we choose a slightly different approach.
We first interpolate the discrete measurement data to
form ym ∈C0(R,Rny), where ny is the number of mea-
sured variables. This function gives the approximated
trajectories for the vector-valued measured variable
y ∈C−1(R,Rny). Any of the states, algebraic variables
and control variables can be measured variables. The
objective is then chosen as a continuous weighted least
squares function, given by

f (z, p) =
∫ t f

t0
(y(t)− ym(t)) ·Q · (y(t)− ym(t))dt, (3)

where Q ∈ Rny×ny is the weighting matrix. The reason
for this approach is discussed in Section 3.

The constraints (1b) and (1c) enforce the system dy-
namics and initial conditions. The constraints (1d)
and (1e) are variable bounds, which are enforced
during the entire time horizon [t0, t f ], where zL ∈
(R∪{−∞})nz and pL ∈ (R∪{−∞})np are the lower
bounds and zU ∈ (R∪{∞})nz and pU ∈ (R∪{∞})np

are the upper bounds. The constraints (1f) and (1g)
are called path constraints. These can for example be
used to describe that a vehicle must follow a certain
path. Finally, the constraints (1h) and (1i) are called
point constraints. These are similar to the path con-
straints, with the difference being that they are only
enforced at specific time points, rather than during the
entire time horizon. The vectors Ze and Zi contain the
variable values at all the time points used in the point
constraints, i.e.

Ze = (z(T1),z(T2), . . . ,z(Tm)),

where Ti is the time point at which point constraint i is
enforced and m is the number of constraint points. A
typical example of a point constraint is terminal con-
straints, where variable values are specified at the end
of the time horizon. The path constraint functions ge

and gi as well as the point constraint functions Ge and
Gi must be twice continuously differentiable.

The general problem formulation (1) covers a large
class of problems. The constraints (1d) to (1i) are op-
tional, whereas the constructs in (1a) to (1c) are re-
quired to get a well-posed problem. The start and final
time can be either fixed or free. For example, letting
the final time be free and choosing the cost function as
f (t0, t f ,z, p) = t f allows for the formulation of mini-
mum time problems, where the goal is to minimize the
time required to perform some action, often specified
in the form of terminal constraints.

A possible generalization of (1) is the division of
the time horizon into multiple phases, where at the

phase boundaries the DAE system is allowed to change
and/or the states may be discontinuous. Another pos-
sible generalization is enforcing continuity for con-
trol and algebraic variables and then including their
respective derivatives in the constraints and cost func-
tion. These generalizations are however outside the
scope of this paper.

3 Collocation methods

3.1 Collocation polynomials

We will now describe how to solve the dynamic opti-
mization problem (1) by means of direct collocation,
using an approach similar to the ones described in [1]
and [7]. The time horizon is discretized into ne ele-
ments, and within element i the time-dependent vari-
able z is approximated using a vector-valued polyno-
mial zi = (ẋi,xi,ui,wi), called a collocation polyno-
mial. In element i, the time is normalized according
to

t̃i(τ) = ti−1 +hi ·(t f −t0) ·τ, τ ∈ [0,1], ∀i∈ [1..ne],
(4)

where ti is the time at the end of element i, which is
called the mesh point of element i, and hi is the length
of element i. The element lengths have been normal-
ized so that the sum of all lengths equals 1. This nor-
malization facilitates the optimization of t f and t0 by
keeping element lengths constant.

The collocation polynomials are formed by choos-
ing a number nc of collocation points (which is as-
sumed to be the same for each element). Let τi,k de-
note collocation point k in element i, and let zi,k =
(ẋi,k,xi,k,ui,k,wi,k) denote the value of z(τi,k). The col-
location polynomials are then formed using Lagrange
interpolation polynomials, using the collocation points
as interpolation points. Since the states need to be con-
tinuous even at the element boundaries, we introduce
an additional interpolation point at the start of each el-
ement for the state collocation polynomials, denoted
by τi,0 := 0. We thus get the collocation polynomials

xi(τ) =
nc

∑
k=0

xi,k · ˜̀k(τ), (5)

ui(τ) =
nc

∑
k=1

ui,k · `k(τ),

wi(τ) =
nc

∑
k=1

wi,k · `k(τ),

where ˜̀k and `k are the Lagrange basis polynomials,
respectively with and without the additional interpola-
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tion point τi,0. The basis polynomials are given by

˜̀k(τ) = ∏
l∈[0..nc]\{k}

τ− τl

τk− τl
, ∀k ∈ [0..nc],

`k(τ) = ∏
l∈[1..nc]\{k}

τ− τl

τk− τl
, ∀k ∈ [1..nc].

Note that the basis polynomials are the same for all
elements, due to the normalized time.

In order to obtain the polynomial approximation of
the state derivative ẋ in element i, the collocation poly-
nomial xi is differentiated with respect to time. Using
(4), (5) and the chain rule, we obtain

ẋi(τ) =
dxi

dt̃i
(τ) =

dτ

dt̃i
· dxi

dτ
(τ)

=
1

hi · (t f − t0)
·

nc

∑
k=0

xi,k ·
d ˜̀k
dτ

(τ). (6)

There are different schemes for choosing the col-
location points τi,k, with different numerical proper-
ties, in particular regarding stability and order of con-
vergence. The most common ones are called Gauss,
Radau and Lobatto collocation. In this paper we use
Radau collocation, which always places a collocation
point at the end of each element, and the rest are cho-
sen in a manner that maximizes accuracy.

Collocation methods are not only used for optimiza-
tion purposes, but are also widely used for numerical
solution of both ODE and DAE systems, i.e. simula-
tion. The concepts are the same in both simulation and
optimization, and there is a theoretical basis shared by
collocation methods in the two areas. See [8] for more
on simulation using collocation methods, which are a
special case of implicit Runge-Kutta methods.

3.2 Transcription of the dynamic optimiza-
tion problem

In this section, the infinite-dimensional dynamic op-
timization problem (1) is transcribed into a finite-
dimensional NLP, using the collocation polynomials
constructed in the previous section. The main idea is
that the infinite-dimensional time-dependent variable z
is approximated using polynomials, which can be rep-
resented using a finite number of values: the colloca-
tion point values. This finite-dimensional approxima-
tion of the solution z is more suitable when employing
numerical optimization methods.

As decision variables in the NLP we choose all the
collocation point values zi,k, the state values at the start
of each element xi,0 and the free parameters p. We also

choose the initial condition values as NLP variables,
which we denote by z1,0. Finally, we choose t0 and t f

as optimization variables if they are free. We thus let

Z = (z1,0,z1,1,z1,2, . . . ,z1,nc ,

x2,0,z2,1,z2,2, . . . ,z2,nc ,

x3,0,z3,1,z3,2, . . . ,z3,nc ,

...,

xne,0,zne,1,zne,2, . . . ,zne,nc , p, t0, t f ).

be the vector containing all the NLP variables. There
are other possibilities in the choice of NLP decision
variables, and the choice depends on the collocation
scheme. With Radau collocation and the above choice,
the transcription of (1) results in the following NLP:

min. f̃ (Z), (7a)

w.r.t. Z ∈ RnZ ,

s.t. F(ti,k,zi,k, p) = 0, (7b)

F0(z1,0, p) = 0, (7c)

u1,0−
nc

∑
k=1

u1,k · `k(0) = 0, (7d)

zL ≤ zi,k ≤ zU , (7e)

pL ≤ p≤ pU , (7f)

ge(ti,k,zi,k, p) = 0, (7g)

gi(ti,k,zi,k, p)≤ 0, (7h)

Ge(Ze) = 0, (7i)

Gi(Zi)≤ 0, (7j)

∀(i,k) ∈ {(1,0)}∪ ([1..ne]× [1..nc]),

ẋ j,l =
1

h j · (t f − t0)
·

nc

∑
m=0

x j,m ·
d ˜̀m
dτ

(τl),

∀( j, l) ∈ [1..ne]× [1..nc], (7k)

xn,nc = xn+1,0, ∀n ∈ [1..ne−1], (7l)

where

nZ = (1+ne ·nc) ·nz +(ne−1) ·nx +np +2

is the number of scalar NLP variables and

ti,k := t̃i(τk)

denotes collocation point k in element i. The objective
(1a) is transcribed into (7a). In the case of optimal
control, the Mayer term of the Bolza functional (2) is
straightforward to transcribe as

φ(t0,z(t0), t f ,z(t f ), p) = φ(t0,z1,0, t f ,zne,nc , p).
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To transcribe the Lagrange term, we start by using (4)
to define the Lagrange integrand in element i as

Li(τ,zi(τ), p) := L(t̃i(τ),z(t̃i(τ)) , p) .

The Lagrange term is then approximated as follows.∫ t f

t0
L(t,z(t), p)dt

=
ne

∑
i=1

(
hi · (t f − t0) ·

∫ 1

0
Li(τ,zi(τ), p)dτ

)
≈

ne

∑
i=1

(
hi · (t f − t0) ·

nc

∑
k=1

ωk ·Li (τk,zi,k, p)

)
,

where the quadrature weights ωk are given by

ωk =
∫ 1

0
`k(τ)dτ.

These quadrature weights provides the best approxi-
mation for these interpolation points, as shown in [1].
The optimal control objective is thus transcribed as

f (z, p)≈φ(t f ,zne,nc , p)+
ne

∑
i=1

(
hi · (t f − t0) ·

nc

∑
k=1

ωk ·Li (τk,zi,k, p)

)
=: f̃ (Z).

For the parameter estimation problem, the continuous
weighted least squares integral (3) is approximated us-
ing the same Gaussian quadrature, resulting in

f (z, p) =
∫ t f

t0
(y(t)− ym(t)) ·Q · (y(t)− ym(t))dt

≈
ne

∑
i=1

(
hi · (t f − t0) ·

nc

∑
k=1

ωk · (yi,k− ym(ti,k)) ·Q·

(yi,k− ym(ti,k))

)
=: f̃ (Z),

where yi denotes the collocation polynomials for the
measured variables, and yi,k denotes the corresponding
collocation point values.

The system dynamics constraint (1b) is only en-
forced at the collocation points and the start time in
the NLP, rather than during the entire time horizon.
The initial conditions (1c) are straightforward to tran-
scribe into (7c), since all the initial values have been
chosen as NLP variables. The consistency of the user-
provided initial conditions is ensured by enforcing all
the dynamic constraints at the start time.

The initial values for the states and algebraic vari-
ables are determined by the dynamic and initial con-
straints. The initial value for the control variable is

however not governed by the dynamic or initial equa-
tions, but is instead given by the collocation polyno-
mial u1. To obtain the value for u1,0, we thus need to
add the extrapolation constraint (7d).

The bounds and path constraints (1d) to (1g) are
straightforward to transcribe into (7e) to (7h), by only
enforcing them at the collocation points. How to tran-
scribe the point constraints (1h) and (1i) is less obvi-
ous. The approach we have chosen is to assume that
each constraint point coincides with a collocation or
mesh point. It is then just a matter of identifying the
NLP variables that correspond to the constraint point
values Ze and Zi in order to transcribe the point con-
straints into (7i) and (7j). The other possibility is to
evaluate the collocation polynomials at the constraint
points. These constraints are however more computa-
tionally expensive to evaluate. But adding elements in
order to line up the mesh with the constraint points is
prone to be even more expensive. However, as long
as the number of constraint points are few in number,
which often is the case, this is not a critical issue.

A similar situation occurs during parameter estima-
tion if a discrete least squares sum is used as the ob-
jective. The measured variable values are then needed
at each of the measurement time points, and these are
typically not few in number. The question of whether
to line up the mesh (or even collocation) points with
the measurement time points, or to simply evaluate the
collocation polynomials, is then a critical choice. In
this paper however, we avoid this issue by instead us-
ing the continuous least squares objective (3). This
allows us to evaluate the objective using quadrature,
for which we only need the variable values at the col-
location points, which are readily available.

In order to determine the state derivative values at
the collocation points, we enforce equation (6) at all
the collocation points, giving us the collocation equa-
tions (7k). These are not enforced at the start time,
where the state derivative values instead are deter-
mined by the DAE system and initial conditions.

Finally, we add the continuity constraints (7l), to get
continuity for the state. An NLP has the general form

minimize f (x)
with respect to x ∈ Rnx ,

subject to xL ≤ x≤ xU ,

g(x) = 0,

h(x)≤ 0,

which the transcription (7) is a special case of. By
solving the NLP (7), we may obtain an approximate
solution to the dynamic optimization problem (1).
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4 Tools

4.1 CasADi

Obtaining the first and second-order derivatives of the
NLP cost and constraints functions with respect to the
NLP variables allows for efficient solution of an NLP.
To this end, CasADi [9] (Computer algebra system
with Automatic Differentaion) is used. CasADi is a
low-level tool for efficiently computing derivatives us-
ing automatic differentiation (AD) and is tailored for
dynamic optimization. Once a symbolic representa-
tion of an NLP has been created using CasADi, the
needed derivatives are efficiently and conveniently ob-
tained and sparsity patterns are preserved.

To solve the NLP (7), we use IPOPT [10]. IPOPT
uses a sparse primal-dual interior point method to find
local optima to large-scale NLPs. CasADi comes with
an interface to IPOPT, which is used in the implemen-
tation.

4.2 JModelica.org

4.2.1 The JModelica.org platform

JModelica.org [3] is an open-source platform for simu-
lation and optimization of Modelica models. Whereas
standard Modelica tools, such as Dymola1 and Open-
Modelica2, mostly focus on the simulation of physi-
cal systems, JModelica.org also targets large-scale dy-
namic optimization. A common problem is that a large
amount of research goes into developing algorithms
without accompanying means of describing complex
physical systems, making these algorithms difficult to
use in practical applications. One goal of JModel-
ica.org is to open up the Modelica language and the
vast amount of existing Modelica models to algorithms
developed in academia.

The Modelica language is largely designed with
simulation-based analysis in mind. To accommodate
the need for conveniently formulating dynamic op-
timization problems based on models described by
Modelica code, the Modelica extension Optimica [4]
has been developed and integrated into JModelica.org.
Optimica enables the extension of a Modelica model to
include the constructs used to formulate a dynamic op-
timization problem, such as (1), where the pure Mod-
elica code describes the dynamic constraints (1b) and
(1c).

1http://www.3ds.com/products/catia/portfolio/

dymola
2http://www.openmodelica.org/

The main components of JModelica.org are the
Modelica and Optimica compilers, which are imple-
mented in Java, and the three modeling interfaces
Functional Mock-up Interface (FMI)3, JModelica.org
Model Interface (JMI) and a new symbolic XML-
based format based on the FMI XML format, which
includes equations in symbolic form. The user inter-
acts with the various components of JModelica.org via
the scripting language Python.

While FMI is a standard defining a tool-independent
format for representation of hybrid dynamic models
on ordinary differential equation (ODE) form, JMI is
a runtime library designed solely for JModelica.org,
and has long been the main interface for dynamic opti-
mization in JModelica.org. The main optimization al-
gorithm in JMI is collocation-based and implemented
in C. It relies on CppAD4 to compute and evaluate
derivatives. However, in this paper the new XML-
based format is instead used for the new collocation
algorithm. This format is an extension of the XML
format used in FMI and is described in [11]. The for-
mat uses a DAE representation of the model instead of
an ODE representation. It is designed to use a model
representation that is as general as possible, allowing
for the formulation of a wide variety of problems based
on Modelica code, in particular dynamic optimization
problems described by Optimica code. CasADi sup-
ports import of models described by this XML for-
mat, allowing for smooth interaction between JMod-
elica.org and CasADi.

4.2.2 The collocation algorithm toolchain

Figure 1 depicts an overview of the entire workflow
for the implemented collocation algorithm.

User

Modelica

Optimica

JModelica.org

 Compiler
XML

Python

CasADi CollocationIPOPT

Solution

Figure 1: Overview of algorithm workflow

3http://www.functional-mockup-interface.org/
4http://www.coin-or.org/CppAD/
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The user starts by defining the system model in
Modelica and the dynamic optimization problem in
Optimica. The user interaction is carried out in
Python. The Optimica file is, via Python, sent to
JModelica.org’s compiler. The compiler generates an
XML file from the Optimica file, which has a flat,
rather than hierarchical, representation of the dynamic
optimization problem similar to that of (1).

The XML file is parsed by CasADi and JModel-
ica.org and the extracted information is used to tran-
scribe the problem into an NLP by the collocation al-
gorithm inside JModelica.org. This NLP problem is
then solved by IPOPT. The solution is written to a re-
sult file in a format compliant with Dymola. The so-
lution is also represented by a Python object which is
returned to the user. This allows the user to freely ana-
lyze the data in Python, e.g. plotting it either manually
or using JModelica.org’s plotting GUI.

5 Implementation extensions

The work presented in this paper is a continuation of
the work begun in [5], where a prototypical colloca-
tion algorithm was implemented in JModelica.org us-
ing CasADi in Python. In this section we describe the
prominent extensions made to this implementation.

The algorithm supports problems with free start and
final time. Since these are typically combined with ter-
minal constraints, support for general point constraints
has also been added.

Whereas the old implementation only supported
Radau collocation with three collocation points per el-
ement, the new implementation supports an arbitrary
number of collocation points (up to about 80 points,
at which point the method for computing the colloca-
tion points runs into numerical problems). The new
implementation also supports Gauss collocation as an
alternative to Radau collocation.

CasADi has two separate approaches to performing
automatic differentiation. The first approach is called
SX and is a conventional AD approach, where the
computation graph is only allowed to contain scalar,
built-in unary and binary operations. The second ap-
proach is called MX and allows for more general oper-
ations in the computation graph, such as matrix opera-
tions (preserving sparsity), branches and user-defined
functions. The novel MX graphs are less computation-
ally efficient than SX graphs, but support a wider range
of operations. This allows the resulting MX graphs to
be smaller than SX graphs, thus consuming less mem-
ory, which may be critical. The collocation algorithm

has been extended to enable the user to choose be-
tween SX and MX graphs. See [9] for more details
regarding SX and MX graphs.

The collocation algorithm only deals with systems
which are continuous in time. However, control sig-
nals are often inherently discrete in time, which can
not be disregarded in for example model predictive
control. In order to support discrete control signals, the
possibility of adding blocking factors has been added.
Blocking factors change the representation of control
signals from piecewise polynomial to piecewise con-
stant. Control signals can be forced to remain constant
over single or multiple elements.

Finally, options have been added to allow the elimi-
nation of certain NLP variables. The state derivative
variables ẋi,k can be eliminated by inlining the col-
location constraint (7k), and the state continuity vari-
ables xi,0 can be eliminated by inlining the continuity
constraint (7l). This allows for the trade-off between
problem size and problem sparsity. Eliminating state
derivatives also has the benefit of no longer needing to
scale these variables, which often is difficult.

6 Benchmarks

6.1 Benchmark setting

In this section, we will compare the newly extended
collocation algorithm based on CasADi and its Python
interface with the old collocation algorithm imple-
mented in C. Both of these algorithms are imple-
mented in JModelica.org. We use Radau collocation
with the same, low number of collocation points per
element. The benchmarks are based on a continuously
stirred tank reactor and a combined cycle power plant.

The two algorithms are based on the same theory
and the constructed NLP problems are nearly identi-
cal, so the solutions can be expected to also be nearly
identical. There are however a few differences. The
most prevalent is that the new algorithm constructs
AD graphs for the entire NLP. The computation of the
Hessian of the Lagrangian function is thus easy and
efficient. Obtaining this information for the old algo-
rithm using CppAD, although possible, would require
a tremendous effort to implement, which has not been
done. Thus IPOPT employs a quasi-Newton method
for the old algorithm, in which the Hessian instead is
approximated. The computation of the Hessian and
AD graphs for the entire NLP is expensive. These
computations can however be performed off-line, and
in turn make the on-line computations more effective.
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In this benchmark, SX graphs are used for the new al-
gorithm, since the generality offered by MX graphs are
unnecessary for the presented benchmarks.

All the benchmarks are run on a Fedora 16 com-
puter with an Intel® Core™ i7-2600 Quad processor
@ 3.4 GHz. Revisions [3352] and [2594] of JModel-
ica.org and of CasADi respectively are used, together
with version 3.10.2 of IPOPT with the MA27 linear
solver. For each benchmark, we provide the following
run-time statistics:

• Off-line: The CPU time [s] spent doing off-line
computations, which includes compilation of the
Modelica and Optimica code, construction of AD
graphs and computation of derivatives of NLP
functions.

• On-line: The CPU time [s] spent doing on-line
comptuations, which essentially is the time spent
in IPOPT. This part consists of two parts, where
the first one is the time spent internally in IPOPT,
and the second part is the time spent evaluat-
ing NLP functions, which is done by CppAD or
CasADi. The time spent by CasADi evaluating
NLP functions is nearly negligible, whereas Cp-
pAD spends a significant amount of time evaluat-
ing functions on-line for the old algorithm.

• Total: The total CPU time [s] from the start of
the compilation until the optimization result is re-
turned.

• Iterations: The number of iterations required by
IPOPT to solve the problem.

Minor variations in the collocation scheme or prob-
lem formulation can have a tremendous impact on the
required number of iterations, for example if the solver
has to enter a restoration phase, which in turn affect
the overall solution time. But on average, the required
number of iterations for the two algorithms should be
similar for a specific problem. The only significant
reason to expect a different number of iterations is
due to that the new algorithm computes second-order
derivatives analytically, whereas the old algorithm ap-
proximates them numerically. The number of itera-
tions for the new algorithm can thus be expected to be
lower on average.

6.2 Continuously stirred tank reactor

The continuously stirred tank reactor (CSTR) model
used for this benchmark was developed in [12]. The

system contains a highly nonlinear exothermic re-
action and has two states: reactant concentration c
[mol/m3] and reactor temperature T [K]. The rate F0
[m3/s], concentration c0 [mol/m3] and temperature T0
[K] of the reactant inflow are assumed to be constant.
The reactor has a liquid cooling system, whose tem-
perature Tc [K] is the sole control variable.

A formulation analogous to (1) of the considered
problem is to

min. φ(t f ), (8a)

w.r.t. c,T,Tc,φ ,

s.t. ċ(t) = F0 ·
c0− c(t)

V
− k0 · e−

Ea
T (t) · c(t), (8b)

Ṫ (t) = F0 ·
T0−T (t)

V
−

H
ρ ·Cp

· k0 · e−
Ea

T (t) · c(t)+

2 ·U
r ·ρ ·CP

· (Tc(t)−T (t)), (8c)

φ̇(t) =
∣∣∣∣(c(t),T (t),Tc(t))−

(
cref,T ref,T ref

c
)∣∣∣∣2

2
(8d)

(c(t0),T (t0),Tc(t0),φ(t0)) = (c0,T0,Tc0,0),
(8e)

(T (t),Tc(t))≤ (350,370), (8f)

∀t ∈ [t0, t f ].

The objective (8a) is to move the system from the sta-
tionary operation point given by the initial condition
(8e), where

(c0,T0,Tc0)≈ (956.3,250.1,370.0),

to the stationary operation point, given by(
cref,T ref,T ref

c
)
≈ (338.8,280.1,280.0).

The variable φ is introduced as a state and measures
how the cost increases over time, and is governed by
the dynamic equation (8d). This allows us to formulate
the objective on Mayer form, instead of Lagrange.

The dynamics of the system are modelled by equa-
tions (8b) and (8c), where V,k0,EA,H,ρ,Cp,U and r
are physical parameters and constants. In order to
avoid too high temperatures, we impose the variable
bounds (8f). With t f = 200 s, ne = 70 and nc = 5, we
get the following result.

Table 1: Run-time statistics for the CSTR benchmark

Off-line On-line Total Iterations

New alg. 1.0 0.3 1.3 50
Old alg. 2.0 0.9 2.9 62
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Figure 2: Comparison of the old and new algorithm on
optimal control of a CSTR

We see that for this benchmark, the new algorithm
is about twice as fast both off-line and on-line. They
also produce the same solution (up to IPOPT toler-
ances). This problem is very small-scale, and in the
next benchmark we will see that a larger problem will
allow the new algorithm to truly outperform the old
one

6.3 Combined cycle power plant

The combined cycle power plant (CCPP) model used
for this benchmark is described in [13]. The model has
9 states, 128 algebraic variables and 1 control variable.
The task is to minimize the time required to perform
a warm start-up of the power plant. This problem has
become highly industrially relevant during the last few
years, due to an increasing need to improve power gen-
eration flexibility. The startup process is considered
finished when the normalized load input signal u [1]
to the steam turbine, starting at 15 %, has reached 100
% and the evaporator pressure p [Pa], which is a state
with an initial value of approximately 3.47 MPa, has
reached approximately 8.35 MPa.

In order to reduce the wear and tear on the steam
turbine, which is one of the most expensive parts of
the power plant, the thermal stress in the turbine σ

[Pa], which is an algebraic variable, may not exceed
260 MPa. This is the main limiting factor in the startup
process. Another imposed constraint is that the deriva-
tive of the load input signal u may not be negative and
may not exceed 0.1/60 s−1. Since these bounds are
on the derivative of the control variable, which is not
supported by neither the old nor the new algorithm, we

introduce the control variable u̇ and add the equation

du
dt

= u̇,

to the DAE system. This converts the previous control
variable u into a state, giving us a total of 10 states,
and the sole control variable is now instead u̇, which
we can impose the mentioned bounds on.

We formulate a Lagrange cost function which pe-
nalizes the weighted deviation of the load input signal
and the evaporator pressure from their respectively de-
sired values, given by

f (z) =
∫ t f

t0

(
10−12 ·

(
p(t)−8.35 ·106)2

+

0.5 · (u(t)−1)2
)

dt.

With t0 = 0 s, t f = 4000 s, ne = 40 and nc = 4, the
following optimization result is obtained.

Table 2: Run-time statistics for the CCPP benchmark

Off-line On-line Total Iterations

New alg. 4.9 3.0 7.9 79
Old alg. 13.2 23.9 37.2 75
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Figure 3: Comparison of the old and new algorithm
for optimal start-up of a CCPP

In this case we clearly see the benefits of con-
structing AD graphs for the entire NLP problem us-
ing CasADi for large-scale problems, which is what
allows for the exceptionally quick NLP on-line solu-
tion. Once again the algorithms find the same solution.
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7 Conclusions

We have presented and implemented an optimization
algorithm based on existing theory for direct collo-
cation. The algorithm has been compared to an old
and similar algorithm in JModelica.org. The solutions
found by the two algorithms have shown to be as iden-
tical as can be expected, that is, up to IPOPT toler-
ances.

The overall performance of the new algorithm com-
pared to the old algorithm, in terms of speed, is clearly
superior, especially for large-scale problems. In terms
of being fully-featured, there are still a few important
features missing for the new algorithm. CasADi com-
bined with Python is however very flexible, so adding
new features is often straightforward, which is not the
case for the old algorithm implemented in C.

Future work includes adding additional discretiza-
tion schemes, adding support for multi-phase prob-
lems and allowing element lengths to be free in order
to maximize accuracy. A related topic is the further
development of Optimica, to support additional prob-
lem formulations.
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Abstract 

Nonlinear model predictive control (NMPC) has be-

come increasingly important for today’s control engi-

neers during the last decade. In order to apply NMPC a 

nonlinear optimal control problem (NOCP) must be 

solved which in general needs high computational ef-

fort. 

State-of-the-art solution algorithms are based on 

multiple shooting or collocation algorithms, which are 

required to solve the underlying dynamic model formu-

lation. This paper describes a general discretization 

scheme applied to the dynamic model description 

which can be further concretized to reproduce the mul-

tiple shooting or collocation approach. Furthermore, 

this approach can be refined to represent a total colloca-

tion method in order to solve the underlying NOCP 

much more efficiently. Further speedup of optimization 

has been achieved by parallelizing the calculation of 

model specific parts (e.g. constraints, Jacobians, etc.) 

and is presented in the coming sections. 

The corresponding discretized optimization problem 

has been solved by the interior optimizer Ipopt. The 

proposed parallelized algorithms have been tested on 

different applications. As industrial relevant application 

an optimal control of a Diesel-Electric power train has 

been investigated. The modeling and problem descrip-

tion has been done in Optimica and Modelica. The 

simulation has been performed using OpenModelica. 

Speedup curves for parallel execution are presented. 

 

Keywords: Modelica, Optimica, optimization, mul-

tiple shooting, collocation, parallel, simulation 

1 Introduction 

This paper presents efficient parallel implementations 

and measurement results of solution methods for non-

linear optimal control problems (NOCP) relevant for 

nonlinear model predictive control (NMPC) applica-

tions.  

NMPC as well as NOCP have become increasingly 

important for industrial applications during the last 

decade [3], [4]. State-of-the-art solution algorithms [4] 

are based on multiple shooting or collocation algo-

rithms, which are needed to solve the underlying dy-

namic model formulation. This paper concentrates on 

parallelizing these time-consuming algorithms, which 

finally lead to a very fast solution of the underlying 

NOCP. Moreover, a general discretization scheme ap-

plied to the dynamic model description is introduced, 

which can be further concretized to reproduce the 

common multiple shooting or collocation approach [7] 

and can also be refined to represent total collocation 

methods [4] in order to solve the underlying NOCP 

much more efficiently. The modeling and problem de-

scription is done in Modelica [2] extended with optimi-

zation goal functions and constraints specified as in 

Optimica [15]. The simulation is performed using 

OpenModelica [1]. Speedup curves for parallel execu-

tion are presented for application examples.  

Section 2 describes the underlying mathematical 

problem formulation including the objective function 

and constraints to the state and control variables. The 

general discretization scheme applied is discussed in 

Section 3. This approach can be further refined to rep-

resent multiple shooting or collocation algorithms for 

the solution process, which is described in Section 4. 
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In section 5 the general discretization scheme is fur-

ther developed towards total collocation methods.  

Industrial relevant Modelica applications are pre-

sented in Section 6. Parallel execution of the constraint 

equations of the NOCP is performed in Section 7. The 

results show reasonable speedups of the optimization 

time when it comes to time consuming calculation of 

the model equations. The necessary implementations 

are partly realized in the OpenModelica Compiler, 

which is described in Section 8. The paper concludes 

with a summary of the achieved results. 

2 The Nonlinear Optimal Control 

Problem (NOCP) 

The numerical solution of NOCP is performed by solv-

ing the following problem formulation [7][8]: 

 

   
 ( )

 ( ( )  ( )  )

  ( (  ))

 ∫  ( ( )  ( )  )

  

  

   

(2.1) 

subject to 

 (  )     (2.2) 

 ̇( )   ( ( )  ( )  ) (2.3) 

 ( ( )  ( )  )    (2.4) 

 ( (  ))    (2.5) 

where  ( )           ( )      are the state and 

control variables, respectively. The receding time hori-

zon is given by the interval  [     ]. The constraints 

(2.2), (2.3), (2.4) and (2.5) describe the initial condi-

tions, the nonlinear dynamic model description based 

on differential algebraic equations (DAEs, Modelica), 

the path constraints  ( ( ( )  ( )  )    ) and the 

terminal constraints. 

Support for time-optimal control and corresponding 

terminal constraints is work-in-progress and are not yet 

provided by the current implementation. 

2.1 Boundary Value Problems 

The objective function (2.1), that needs to be mini-

mized, includes conditions at the boundary time point 

    stated by the function  ( (  )) as well as condi-

tions taking into account the whole time horizon stated 

by ∫  ( ( )  ( )  )
  
  

  . 

 

Figure 1. Different trajectories achieved by varying control 
variables. Only one trajectory fulfills the terminal constraint (red 

dot).  

The function  ( (  )) describes conditions that 

should be fulfilled at the final time point similar to the 

terminal constraint (2.5). Since  ( (  )) is part of the 

objective function  ( ( )  ( )  ) the applied optimiza-

tion methods may not find a solution that fulfills the 

corresponding terminal constraints, but should be very 

close to it. The trajectories are influenced by changing 

the control variables. Different trajectories using differ-

ent control variables are visualized in Figure 1. 

On the other hand, different trajectories could fulfill 

the same terminal constraints. Taking into account the 

whole time horizon by minimizing the second part 

∫  ( ( )  ( )  )
  
  

   of the objective function will 

lead to the selection of the optimal trajectory. This be-

havior is visualized in Figure 2. 

 

Figure 2. Different trajectories that fulfill the terminal constraint.  

3 General Discretization Scheme 

In order to apply a general discretization scheme the 

NOCP formulation is rewritten to a general form which 

later can be used to derive the different possible numer-

ical algorithms e.g. multiple shooting, multiple or total 

collocation algorithm, etc. [6]. Equations (2.2) and 

(2.3) can be rewritten as follows: 

 ( )     ∫ ( ( )  ( )  )    

 

  

 (3.1) 
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When discretizing the time horizon  [     ] into a finite 

number of intervals  [     ]   [       ]  (e.g. equidis-

tant partitioning:                        
     

 
) integral in  (3.1) can be reformulated to 

∫ ( ( )  ( )  )   

 

  

 ∑∫  ( ( )  ( )  )   

    

  

   

   

  

(3.2) 

Each integral  

∫  ( ( )  ( )  )   

    

  

 (3.3) 

on a subinterval can now be treated independently, if 

additional constraints are added to the NOCP formula-

tion to force the calculation of an overall continuous 

solution. Therefore, locally the problem reduces to a 

boundary value problem [5] stated by  

  

  (    )     ∫  (  ( )  ( )  )   

    

  

 (3.4) 

where   ( )   ( ) for   [       ] ,          . 

It yields    (  )     and continuity is forced by addi-

tional constraints    (    )       added to the NOCP 

formulation, which finally leads locally to a boundary 

value problem. Each sub-problem (3.4) can be solved 

independently and in parallel, if multiple shoot-

ing/collocation is applied. By varying the control varia-

ble  ( )  in each sub-interval the solution of (3.4) can 

be influenced in order to fulfill the overall continuity 

constraints. In the current approach it is assumed that 

 ( )     is constant for each subinterval [       ]   

4 Multiple Shooting or Collocation 

Different numerical methods are available to solve 

equation (3.4). The first approach presented within this 

paper is the reformulation of (3.4) to an ordinary differ-

ential equation 

 ̇ ( )   (  ( )     ) (4.1) 

with the initial condition   (  )    . 
In order to solve equation (4.1) an appropriate (e.g. 

explicit/implicit) integration algorithm can be applied 

that is already available in OpenModelica. A schematic 

view of the algorithmic dependencies is presented in 

Figure 3.  

Alternatively, equation (3.4) or (4.1) can locally be 

solved using collocation methods, which also can be 

interpreted as numerical treatment of integration. De-

tailed descriptions of the multiple shooting algorithm 

using local collocation can be found in [7]. The solu-

tion process for equation (3.4) in each subinterval can 

be performed in parallel. The necessary calculation 

time depends certainly on the chosen integration meth-

od. In case of an explicit integration algorithm, e.g. 

Runge-Kutta based, more intermediate integration steps 

might be necessary for certain accuracy than using an 

implicit integration method, e.g. local collocation 

methods. On the other hand, explicit integration meth-

ods just perform at each intermediate step an evaluation 

of the model equations, whereas implicit methods in 

general need to solve a system of non-linear equations, 

which might also be time consuming. Nevertheless, 

when the underlying system of ordinary differential 

equations is stiff, implicit methods need to be applied. 

 
Figure 3. Schematic view of the algorithmic dependencies. 

Although, equation (3.4) can be solved in parallel a lot 

of time is used for finding exact solutions to a locally 

defined problem, which might not be relevant for the 

over-all problem stated by the (NOCP) formulation 

(2.1)-(2.5). Therefore, the solution process for the 

NOCP still needs a lot of computation time. The next 

section describes methods to overcome this deficiency 

by adding the locally derived residual equations (based 

on locally applied collocation methods) to the over-all 

NOCP formulation. 

5 Total Collocation 

Applying collocation methods for solving equation 

(3.4) locally leads in general to a system of non-linear 

equations for each sub-interval. The solution process of 

these equations might be time consuming and with re-

spect to the NOCP not efficient. If the corresponding 

non-linear equations are added to the NOCP formula-

tion and corresponding optimization algorithms have 

access to the intermediate points used by the local col-

location method a more efficient solution process can 

be formulated [4]. This section presents two different 

collocation methods. 

 

NOCP 

Discretizati
on Scheme 

Multiple 
shooting 

Numerical 
Treatment 

of 
Integration 
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Based on the common Lagrangian polynomial 

   ( ) for interpolation purposes, following abbrevia-

tions are introduced for           and         :  
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 ∏
      
      

 

    
    
     

       

∫      ∫    ( )

  

 

    

where         are the supporting points within the 

reference interval [   ]. Further abbreviations are de-

fined by                              (    ), 

and        (            ). 

 
Figure 4. Schematic view of the algorithmic dependencies. 

The first variant is dealing with the approximation of 

the states which leads to the following formulas: 

                 ∑    

 

   

      

                         ∑     

 

   

      

(5.1) 

In case of     this approach reduces to the implicit 

Euler formula with approximation order 1. 

The second variant is dealing with the approximation 

of the derivatives of the states and leads to the for-

mulas: 

                   ∑∫    

 

   

      

     ∑    

 

   

      

(5.2) 

In case of     this approach reduces to an implicit 

Runge-Kutta formula (trapezoidal rule) with approxi-

mation order 2. 

The discretized NOCP using total collocation and 

corresponding Gaussian quadrature formula for the 

integral part of the goal function is finally described by: 

   
 ( )

 ( ( )  ( )  )   (    )   

  ∑∑    (            )

 

   

 

   

 
(5.3) 

subject to 

 (            )   

 (    )    

 (            )   

 (    )   

 (5.4) 

for        ,        . For variant 1 the support-

ing points        , and weights        are given 

based on Radau formulas.               

 (            )               are the additional resid-

ual equations from (5.1). For variant 1 the supporting 

points        , and weights        are given 

based on Lobatto formulas.  (            )       

      are the additional residual equations from (5.2). 

6 Modelica Applications 

To investigate the performance of the proposed optimi-

zation algorithm, industrial relevant optimal control 

problems are solved and corresponding results are pre-

sented in this section.  

6.1 Batch Reactor 

We begin by considering a simple model from the 

chemical reactor described in [7] to maximize the yield 

of   ( ) by manipulation the reaction temperature  ( ), 
with the following problem formulation:   

   
 ( )

 ( ( )  ( )  )     ( ) (6.1) 

subject to 

 ̇ ( )   ( ( )  
  ( )

 
)    ( )

 ̇ ( )   ( )    ( )
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where  ( )  (  ( )   ( ))
 

 and   [   ]. 
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Figure 5. Trajectories of state and control variables 

6.2 Optimal control of Diesel-Electric power-

train 

The Diesel-electric model based on [10] is presented in 

Appendix A. This concept is modeled according to a 

nonlinear mean value engine model (MVEM) contain-

ing four states and three control inputs while the gener-

ator model is simplified by considering constant effi-

ciency and maximum power over the entire speed 

range.  

In a Diesel-electric powertrain the operating point 

of the Diesel engine can be freely chosen which would 

potentially decrease fuel consumption. Moreover, the 

electric machine has better torque characteristics. These 

are the main reasons making the Diesel-electric power-

train concept interesting for further studies. 

To investigate the fuel optimal transients of the 

powertrain from idling condition to a certain power 

level while the accelerator pedal position is interpreted 

as a power level request, the following optimal control 

problem is solved: 

states    (

    
   
   
   

) , controls    (

  
   
    

) 

   ∫  ̇ 

 

 

   

subject to 
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and boundary conditions are: 

at     (

  
  
  
  

)                          

at     (

 ̇ 
 ̇ 
 ̇ 
 ̇ 

)   , (

  
  
  
  

)                  

and              . 

The constraints are originated from components’ limi-

tations and the functions    are described in the appen-

dix [10]. 

 
Figure 6. Trajectories of control variables 

In this work, we try to find the fuel optimal control 

and state trajectories in a certain time interval  [     ]. 
For simplicity, only diesel operating condition is as-

sumed which means (         ). 

 
Figure 7. Trajectories of state variables 
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The dynamic system is solved after it is discretized 

into subintervals. Figure 6 and Figure 7 show the ob-

tained control and state trajectories. As it is expected, 

the fuel optimal results happen when engine is acceler-

ated only near the end of the time interval (        ) 
to meet the end constraints while minimizing the fuel 

consumption. 

In section 7 it is shown how the parallel execution 

increases the performance of the optimization process.  

7 Parallel Execution and Perfor-

mance Measurements 

We have performed measurements for the different 

algorithms (multiple shooting/collocation and total col-

location with variant 1 and 2) applied to the above de-

scribed applications. The C/C++ source code has been 

compiled by gcc version 4.6.3 (GCC) with OpenMP 

support. The measurements are done on an Intel Core 

i7 CPU 870 with 8 cores @ 2.93 GH (4 real cores and 4 

virtual cores). 

The corresponding optimization problem is solved 

by the interior point optimizer Ipopt [16]. Figure 8 

shows the different functions and derivative infor-

mation that need to be provided to Ipopt for the solu-

tion process. In the current implementation the Hessian 

matrix of the corresponding Lagrangian formulation is 

calculated numerically by Ipopt. The other information 

(see Figure 8) is provided numerically by external rou-

tines. When calculating the Jacobian and Hessian ma-

trices the treatment of the sparsity patterns, is important 

for the performance of the multiple shooting and total 

collocation methods [9]. This has been realized for the 

Jacobian matrix calculation. 

 
Figure 8. Schematic view of the required components of Ipopt 

The multiple shooting algorithm uses an explicit 

Runge-Kutta formula of order 3 as well as 3 steps with-

in each interval. The multiple collocation method uses 

3 intermediate interval points based on Radau formulas. 

The total collocation uses variant dependent intermedi-

ate interval points as described in section 5. The tests 

have been performed using 128 intervals when dealing 

with sparse matrix representation. The user defined 

functions (see blue boxes of Figure 8) have been paral-

lelized. 

7.1 Batch Reactor 

The speedups obtained and the computation times for 

the batch reactor are shown in Table 1 and Figure 9. 

 

 multiple shooting multiple collocation 

threads Ipopt jac_g Ipopt jac_g 

1 1,5742s 28,93ms 18,47s 343,3ms 

2 1,0164s 16,77ms 10,25s 188,3ms 

4 0,6691s 9,37ms 5,825s 104,7ms 

8 0,6539s 8,52ms 5,055s 89,57ms 
Table 1. Computation times for the Jacobian of the constraints and 
the over-all optimization using multiple shooting/collocation method 

for the batch reactor 

 

 
Figure 9. Speedups and computation times of the whole 

optimization process 

Table 1 shows that multiple collocation is much more 

expensive than the multiple shooting. Reason for this is 

the computational time needed to solve non-linear sys-

tems coming from the implicit discretization. There-

fore, by parallelizing the user defined functions a better 

speedup (Figure 9) for the whole optimization can be 

performed for the multiple shooting method, whereas 

the speedup for the user defined function (e.g. Figure 

10) is comparable. 

 

 
Figure 10. Speedups and computation times for the Jacobian of the 
constraints 

Ipopt 

constraints 
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object 
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7.2 Diesel Model 

The solution process for the diesel model using multi-

ple shooting and multiple collocation is quite time con-

suming (see Table 2 and Table 3). Especially, the mul-

tiple collocation algorithm was only performed with 32 

intervals in order to reduce execution time to an ac-

ceptable level. Although, parallelization of the user 

defined function leads to a great speed up, the overall 

performance of the multiple shooting or collocation 

method is still poor. The total collocation variants are 

superior with respect to the over-all performance as can 

be seen in Table 3.  

 

 multiple shooting multiple collocation 

threads Ipopt jac_g Ipopt jac_g 

1 1518,4s 1,8196s 368,07s 2,6007s 

2 917,17s 0,9671s 196,04s 1,3832s 

4 608,29s 0,5286s 108,33s 0,7625s 

8 508,71s 0,3861s 87,027s 0,6110s 
Table 2. Computation times for the Jacobian of the constraints and 

the over-all optimization using multiple shooting/collocation method 

for the diesel model 

 

 total collocation 1 total collocation 2 

threads Ipopt jac_g Ipopt jac_g 

1 15,40s 8,215ms 14,07s 9,947ms 

2 11,49s 4,356ms 10,10s 5,281ms 

4 10,19s 2,553ms 8,342s 2,987ms 

8 9,452s 1,713ms 7,897s 1,965ms 
Table 3. Computation times for the Jacobian of the constraints and 
the over-all optimization using total collocation method for the 

diesel model 

The speed-up regarding the user-defined function is 

comparable to the multiple shooting or collocation 

methods (see Figure 12). The speed-up of the whole 

optimization process is not optimal due to the serial 

computation and dense treatment of the Hessian matrix 

calculated internally by Ipopt (see Figure 11). 

 

 
Figure 11. Speedups and computation times of the whole 
optimization process 

 
Figure 12. Speedups and computation times for the Jacobian of the 

constraints 

8 Integration with OpenModelica 

Support for specifying optimization goal functions and 

constraints together with Modelica models has now 

been implemented in OpenModelica. Such integrated 

models can now be exported via XML to tools such as 

CasADi [12] which can act as a frontend to ACADO 

[13]. 

In the current OpenModelica prototype all aspects 

of the tool chain are not yet completely implemented. 

For example, we are currently using numerically de-

rived Gradients, Jacobians and Hessians since the au-

tomatic differentiation machinery in OpenModelica has 

not yet been extended to operate on the optimization 

problem goal function. 

However, the prototype is complete enough to do 

the measurements of the included model applications 

on a parallel platform to obtain the speedup curves for 

parallel execution on 1-8 cores. 

The OpenModelica compiler has been extended to 

export Modelica Models to XML based on an extended 

version of the FMI XML schema from [14]. The XML 

export, in addition to the standard Modelica syntax, 

supports the Optimica extensions from Jmodelica [15]. 

Theses extensions allow users to formulate dynamic 

optimization problems to be solved by a numerical al-

gorithm. The extensions include several constructs in-

cluding a new specialized class optimization, a con-

straint section, etc. See the batch reactor example be-

low as well as the Optimica manual for complete in-

formation. 

optimization BatchReactor 

           (objective = -x2(finalTime), 

            startTime = 0, finalTime =1) 

  Real x1(start=1,fixed=true,min=0,max=1); 

  Real x2(start=0,fixed=true,min=0,max=1); 

  input Real u(free=true, min=0, max=5); 

equation 

  der(x1) = -(u+u^2/2)*x1; 

  der(x2) = u*x1; 

end BatchReactor; 
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The XML generated for flattened Optimica Models can 

be imported into other non-Modelica Optimization 

tools like ACADO. 

Currently the OpenModelica compiler does not yet 

use the optimization problem formulation internally as 

input to automatic differentiation. The Modelica plus 

Optimica model description is flattened, some common 

compilation phases are applied e.g. syntax, semantics 

and type checking, simplification, constant evaluation 

etc. and then the complete flat model is exported to 

XML. 

9 Conclusions 

In this paper parallelized implementations of several 

different algorithms for solving NOCP have been pre-

sented. The well-known multiple shooting or colloca-

tion as well as total collocation methods are derived 

using a general discretization scheme. Total collocation 

methods have proofed at least in the current implemen-

tation and for the tested applications to be superior to 

the other algorithms. 

The corresponding discretized optimization problem 

has been solved by the interior optimizer Ipopt. Further 

speedup of the optimization process for all described 

algorithms have been achieved by parallelizing the cal-

culation of model specific parts (e.g. constraints, Jaco-

bians, etc.). So far the evaluation of derivatives have 

been done numerically. This will be further improved 

using the already available symbolic differentiation 

capabilities of OpenModelica [11]. Finally, this work 

will be continued by applying the proposed algorithms 

on more industrial relevant applications together with a 

thorough testing on advanced parallel hardware archi-

tectures. 
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11 Appendix A 

 
Figure 13. Diesel Engine Model 
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Model Constants 

Symbol Description Value Unit 

     Ambient pressure 1.011e5 Pa 

     Ambient temperature 298.46 K 

    Specific heat capacity of air, constant pressure 1011 J/(kg.K) 

    Specific heat capacity of air, constant volume 724 J/(kg.K) 

   Specific heat capacity ratio of air 1.3964 - 

   Gas constant, air 287 J/(kg.K) 

    Specific heat capacity of exhaust gas, constant pressure 1332 J/(kg.K) 

   Specific heat capacity ratio of exhaust gas 1.2734 - 

   Gas constant, exhaust gas 286 J/(kg.K) 

     Specific heat capacity ratio of cylinder gas 1.35004 - 

    Intake manifold temperature 300,6186 K 

    Pressure in exhaust system 1.011e5 Pa 

(   )    Stoichiometric oxygen-fuel ratio 14.54 - 

    Diesel heating value 42.9e6 J/kg 

 

Model Parameters 

Symbol Description Value Unit 

     Number of cylinders 6 - 

   Engine displacement 0.0127    

   Compression ratio 17.3 - 

        Inertia of the engine-generator 3.5      

    Volume of intake system 0.0218    

   Compressor radius 0.04 M 

     Max. compressor head parameter 1.5927 - 

 ̇           Max. corrected compressor mass flow 1.2734 - 

   Compressor efficiency 286 J/(kg.K) 

     Volumetric efficiency 1.35004 - 

       Combustion chamber efficiency 0.6774 - 

     Friction efficiency 1.011e5 Pa 

     Friction efficiency 14.54 - 

     Friction efficiency 42.9e6 J/kg 

    Non-ideal Seliger cycle compensation 1.054 - 

    Ratio of fuel burnt during constant volume 0.4046 - 

    Volume of exhaust manifold 0.0199    

    Turbocharger inertia 1.9662 e-4      

      Turbocharger friction 2.4358 e-5          

       Effective turbine area 9.8938 e-4    

   Turbine efficiency 0.7278 - 

      Wastegate parameter 0.6679 - 

      Wastegate parameter 5.3039 - 

        Effective wastegate area 8.8357 e-4    

 

Parallel Multiple-Shooting and Collocation Optimization with OpenModelica 

 

668 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076659 



 

 

Optimization Library for Interactive Multi-Criteria Optimization Tasks Optimization Library for 
Interactive Multi-Criteria Optimization Tasks 

A. Pfeiffer 
Institute of System Dynamics and Control, German Aerospace Center DLR, Oberpfaffenhofen 

Andreas.Pfeiffer@dlr.de

Abstract 

The commercial library Optimization 2.1 for interac-
tive multi-criteria optimization tasks has been re-
leased along with Dymola 2013. The library offers 
several numerical optimization algorithms for solv-
ing different kinds of optimization tasks. User de-
fined Modelica functions or models provide the basis 
for an interactive optimization process where the 
user keeps overview of complex multi-criteria opti-
mization tasks that can take discrete parameters, sev-
eral model operating points or trajectories into ac-
count. Computational performance of optimization 
runs can be significantly increased by parallel nu-
merical integrations of the Modelica model on multi-
core machines. 
Keywords: Modelica; Optimization; Multi-Criteria; 
Trajectory Optimization; Parallel Simulation 

1 Introduction 

In principle, numerical optimization algorithms may 
be very powerful tools in engineering design pro-
cesses like modeling, model validation or controller 
design. However, the fact that numerical algorithms 
are available does not necessarily encourage engi-
neers to apply them. A user-friendly, easy handling 
of a well integrated optimization tool is necessary to 
make the advantages of automatic optimization 
available for non-experts. The presented Optimiza-
tion library realizes this requirement in the Modelica 
world when working with Dymola [DS12b] or CAT-
IA [DS12a]. 

1.1 Related Work 

OMOptim [TNT+11] is an initiative to provide an 
open source optimization platform within OpenMod-
elica. The emphasis of this platform is on using ge-
netic algorithms, whereas interfacing gradient based 
optimization methods is planned for the future. The 
application is currently tailored to optimize model 
parameters of Modelica models. The library present-
ed in the paper at hand provides a variety of different 

optimization tasks solved by several sophisticated 
local and global optimization algorithms.  

In JModelica.org the Modelica extension Optimica is 
supported to solve dynamic optimization [AAG+10]. 
The approach in Optimica is different to the present-
ed one, because Optimica defines additional Modeli-
ca language elements to describe Optimization prob-
lems directly in Modelica. Consequently, special 
compilers are needed to generate code for the opti-
mization runs. JModelica.org supports collocation 
methods for dynamic optimizations. In the presented 
approach, (standard) Modelica models are compiled 
by Dymola. The well-proven numerical integration 
algorithms provided by Dymola are used in the op-
timization loop. Tailored graphical user interfaces 
support the user in several optimization tasks. 

The library Design.Optimization [EOM+05] is the 
forerunner of the presented library. For the new ver-
sion the library has been completely reimplemented 
with many new features. The new concept of differ-
ent optimization tasks is enhanced by specialized 
graphical user interfaces (GUIs). The primary con-
cept and the code of numerical algorithms for solv-
ing multi-criteria optimization problems are based on 
[JBL+02]. 

1.2 Optimization Problem Formulation 

The multi-criteria optimization problems considered 
in the Optimization library can be formulated as fol-
lows: 

min
𝑝∈𝐵

𝑓�diag(𝑟1)−1𝑐1(𝑝)� 

such that  𝑐2(𝑝) ≤ 𝑟2,   𝑐3(𝑝) = 𝑟3 

with  𝑐 = �
 𝑐1 
 𝑐2 
 𝑐3 

� ,  𝑟 = � 
𝑟1
𝑟2
𝑟3

 �   and 

𝑓 = �

 max   …  maximum of criteria values, or      

 ‖∙‖2 
2   …  sum of squared criteria values, or 

‖∙‖1    …  sum of absolute criteria values.     
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Free parameters 𝑝 (e.g. some Modelica parameters in 
models) to be varied during the optimization process 
are called tuner parameters or tuners. The first part 
of the criteria vector 𝑐 represents the objectives of 
the optimization (e.g. the overshoot of a variable in a 
model). The goal is to minimize all these objectives. 
The criteria components that define inequality or 
equality constraints are optional. They enable formu-
lation of conditions on some criteria components if 
needed. The demand values 𝑟 serve as reciprocal 
scaling factors of the criteria. They enable a different 
weighting of the individual criteria to be minimized. 
The tuner box 𝐵 defines minimum and maximum 
values for each tuner parameter, thus limiting the 
range in which the tuner parameters can be varied. 

For multi-criteria optimization problems a whole set 
of optimal solutions generally exists: the Pareto op-
timal solutions [E05]. For these solutions it is not 
possible to decrease one of the components of the 
objectives vector 𝑐1 without increasing another one. 
It means the different criteria conflict each other. 
Finding all Pareto optimal solutions requires very 
high computational effort. In many cases it is suffi-
cient to transform a multi-criteria problem to an op-
timization problem with a scalar objective func-
tion 𝑓. This approach is applied to the Optimization 
library with the maximum of the objectives, the sum 
of the squares of the objectives or the sum of the ab-
solute values of the objectives. 

1.3 Discrete Tuner Parameters 

Discrete tuners are tuners that only have a finite 
number of values to be set. Examples for such tuners 
are configuration parameters that represent different 
topologies, e.g. switching modes in networks.  

Three possibilities are available to define discrete 
tuners in the Optimization library. At the level of 
each tuner parameter, one can define the number of 
equidistant discrete values within the interval [min, 
max]. Only these points can be selected by the opti-
mization algorithm to set the tuner value. 

 
Figure 1: Discrete values for tuner parameters in the opti-
mization setup GUI. 

For example, setting equidistant = 6 for min = −10, 
max = 0 enables the values −10, −8, −6, −4, −2, 0 for 

the tuner Ki in Figure 1. The second possibility to 
define discrete tuners is to give a Modelica vector of 
values that can be set to the tuner parameter, e.g. dis-
creteValues = {−7.8, −2.5, −9.3} for tuner parameter 
Kf. 

At the level of all tuner parameters a list of values of 
discrete tuner parameter sets can be defined in a ma-
trix. Each column corresponds to a tuner parameter, 
see Figure 2. It is possible to simply import the ma-
trix from and export it to file. This feature allows to 
automatically evaluate a long list of tuner values 
generated by a separate tool. 

 
Figure 2: Discrete tuner matrix in the optimization setup 
GUI. 

1.4 Optimization and Evaluation Algorithms 

The following numerical optimization algorithms are 
available in the Optimization library: Sequential 
Quadratic Programming (SQP), Quasi Newton 
(BFGS) method, Pattern Search, Simplex Method 
and Genetic Algorithm. SQP and BFGS algorithms 
rely on derivatives of the criteria with respect to the 
tuner parameters and have good convergence proper-
ties for smooth optimization problems. Pattern 
Search and Simplex Method are more robust against 
nonsmoothness but generally need more criteria 
evaluations to converge. Genetic Algorithm is the 
only approach to find a global solution whereas the 
others are local convergent methods. Further details 
to the implemented optimization algorithms can be 
found in [J11]. 

All the optimization algorithms have in common that 
they work more or less sequentially. Most values for 
tuners depend on criteria values of previous evalua-
tions. So, there are limited possibilities to parallelize 
the (time consuming) evaluations of criteria. In con-
trast to these algorithms, pure evaluation methods 
independently set tuner values at the beginning of the 
process. Of course, constraints fulfillment is there-
fore not guaranteed. 

Two evaluation methods are implemented in the Op-
timization library: Random Search and Systematic 
Tuner Variation. Random Search takes uniformly 
distributed random values between minimum and 
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maximum of each tuner parameter. Systematic Tuner 
Variation is based on discrete tuners. If the discrete 
tuner matrix is activated, the corresponding tuner 
values are used row by row of the matrix. If the dis-
crete tuner matrix is not used, all combinations of 
equidistant or given discrete tuner values are the ba-
sis for the criteria evaluations. For the example in 
Figure 1 there are 3 ∙ 6 ∙ 1 = 18 different sets of dis-
crete tuner values. 

Table 1: Overview of the optimization and evaluation algo-
rithms with their capability to support continuous and / or 
discrete tuners. 

Algorithm Continuous Discrete Mixed 
SQP    
BFGS    
Pattern Search    
Simplex Meth.    
Genetic Alg.    
Random Search    
Systematic Var.    
 
Most of the interfaced algorithms are designed to 
handle continuous tuner parameters. It means that the 
tuner values can be arbitrarily varied inside a given 

interval. Table 1 gives an overview which algorithm 
also supports discrete tuners or problems with both 
continuous and discrete tuner parameters. 

1.5 Optimization Process 

For each of the GUI supported optimization tasks the 
process to configure the task, to start the optimiza-
tion and to handle the results is nearly the same and 
is discussed in the following by means of Figure 3. 

By starting the corresponding setup GUI for an op-
timization task, the user gets a hierarchical list of 
settings to be configured. For each task one has to 
specify tuners and criteria depending on the type of 
the task. For optimization tasks requiring a model, 
additional settings for the model simulation have to 
be provided. All the information given in the setup 
GUI can be saved to a Modelica file. The file con-
tains a call starting the corresponding setup GUI 
filled with the saved entries. Of course, the textual 
file can be edited before starting the setup GUI. So, 
loading an optimization setup is simply running the 
Modelica function generated when saving the setup.  

After the optimization setup is configured, the opti-
mization run is started. During the run the current 

Updated 
Tuner values 

Load Setup 

Save Setup 

Optimization Run 
Logging 

Setup GUI 

How to 
proceed 

with 
results? 

Figure 3: Optimization process for GUI supported Optimization tasks. 
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solutions may be logged to an HTML-file, also inter-
actively displayed in Dymola’s Command window. 
The logging has two intentions. Firstly, the history of 
a complete optimization run can be reconstructed. 
Secondly, optimization runs may last hours or days. 
It is very important in these cases to have a feedback, 
what the optimization algorithm is currently doing, 
to quickly react on non-intended intermediate opti-
mization results. The HTML-logging lists the current 
tuner and criteria values and visualizes them in dif-
ferent colors in comparison to values at the begin-
ning of the optimization.  

Beside the HTML-logging there is a logging of pure 
numeric data to be processed after the optimization 
run if it is necessary. After the optimization run is 
finished, the user is asked how he wants to proceed. 
There is the possibility to reset the tuner parameters 
by values generated by the optimization process. For 
example, one can select the tuner values of the best 
evaluation (= solution) of the optimization run. The-
se settings can be used to proceed the optimization 
process with different settings, e.g. using another 
optimization algorithm. In any case, after an optimi-
zation run the setup GUI is displayed (with possibly 
changed tuner values) and can be configured as de-
scribed above. 

2 Function based Optimization 

Two optimization tasks based on user-defined Mod-
elica functions are described. Whereas Function Op-
timization is an interactive task, Realtime Optimiza-
tion is designed to be called in model equations dur-
ing the numerical integration. 

2.1 Function Optimization 

The task Function Optimization is designed for the 
most general case of an optimization problem in 
Modelica. The user has to provide a Modelica func-
tion that evaluates the criteria (and constraints) func-
tions. Optionally, a user-defined function for the 
evaluation of the Jacobian matrix can be incorpo-
rated. The task can be used for simple academic op-
timization problems resulting in a criteria function of 
a few lines of code, or for every complex optimiza-
tion problem including simulations and linearizations 
of several models. The user has to program and con-
trol the simulations and linearizations by available 
functions in Modelica and Dymola. 

The main part of a function optimization problem is 
to program the criteria function in Modelica. The 

criteria function returns a criteria vector depending 
on the tuner values. The criteria can either be parts of 
the optimization's objective function or be one of the 
constraints of the optimization problem. A criteria 
function has to have defined interface variables from 
the partial function PartialCriteriaVariables: 

partial function PartialCriteriaVariables         
  input Real tuners[:]; 
  output Real criteria[:]; 
end PartialCriteriaVariables; 

A typical criteria function looks like the following 
prototype. One can add own input variables to the 
criteria function. The values for these inputs have to 
be declared in the name of the criteria function in the 
setup, e.g. ”myCriteriaFunc(myVar=<value>)”.  

function myCriteriaFunction 
  extends PartialCriteriaVariables; 
  input <AnyType> myVar; 
algorithm 
  criteria := ...(tuners, myVar); 
end myCriteriaFunction; 
 
Gradient based optimization algorithms (SQP, 
BFGS) need the Jacobian matrix of the criteria with 
respect to tuner parameters. The user can select be-
tween symmetric finite differences and forward dif-
ference quotients. There is also the possibility to 
program the Jacobian matrix by oneself, e.g. if one 
knows the analytical Jacobian matrix. The interface 
variables are defined in the following partial func-
tion: 
  
partial function PartialJacobianVariables 
  input Real tuners[:];   
  input PartialCriteriaVariables CritFunc; 
  output Real Jacobian[:,size(tuners,1)];   
end PartialJacobianVariables; 

To a Jacobian function one can also add own input 
variables, see the following prototype of a typical 
Jacobian function: 

function myJacobianFunction 
  extends PartialJacobianVariables; 
  input <AnyType> myVar;  
algorithm 
  Jacobian := ...(tuners, myVar); 
end myJacobianFunction; 

2.2 Realtime Optimization 

Realtime Optimization is in some way different to 
the other optimization tasks. Realtime Optimization 
provides the framework for an optimization function 
to be called during the numerical integration of a 
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model. A possible application of this optimization 
task is a discrete controller that solves an optimiza-
tion problem to predict new controller values every 
sample time. The optimization problem itself is very 
similar to that of Function Optimization. User de-
fined functions for criteria evaluation and optional 
functions for the Jacobian matrix provide the basis 
for the optimization task. Because Realtime Optimi-
zation is active during a simulation many times, 
there is no GUI support for it. A Modelica model 
calling the optimization function typically has the 
following structure: 

model myModel 
  Real resultTuners[...]; 
  Real resultCriteria[...]; 
  KernelProblem problem(...); 
  ... 
equation  
  ... 
  when sample(0, 0.1) then 
   (resultTuners,resultCriteria) =  
   run(problem, CriteriaFunc = 
      function myCriteriaFunction); 
  end when; 
  ... 
end myModel; 

At each sample point the optimization run is started 
by the function run. The optimization problem is 
described by the record problem that includes the 
tuner and criteria definitions as well as the optimiza-
tion options. The approach is currently used in model 
predictive control for an electric vehicle [K10]. 

3 Model based Optimization 

This section deals with optimization tasks based on 
the numerical integration of a Modelica model. The 
computation of the optimization criteria is part of the 
numerical integration. Because model simulation is 
the main application of dealing with Modelica mod-
els, the following optimization tasks and their fea-
tures may be considered as the core of the Optimiza-
tion Library. 

3.1 Criteria Library 

To support all model based optimization tasks the 
sub-library Optimization.Criteria is part of the 
whole package. The library (see Figure 4) provides 
models that compute typical criteria from time de-
pendent model variables. The collection of criteria 
models helps the user to prepare his system model 
for conducting an optimization on it. For Real sig-
nals the following models are included: minimum, 

maximum, mean value, moving average and integral 
norm. In Figure 5, some examples are illustrated. 
Computing deviations between two signals may be 
handled by the corresponding criteria models. In the 
field of controller design typical design criteria are 
overshoot, rise time and settling time. Each of them 
is represented by a corresponding criteria model. 
Some of the criteria models require the input signals 
to be differentiated. 

 
Figure 4: Criteria library. 

 
Figure 5: Typical signals of criteria models. 

In some cases only parts of the whole time interval 
shall be used to compute a certain criterion, or some 
time areas shall be weighted more than others. For 
such needs several weighting models are provided: 
Step, Ramp, Triangle, etc. 

3.2 Model Optimization 

The task Model Optimization is designed to optimize 
parameters of a Modelica model. The user can select 
from a list of model parameters to define tuners, see 
Figure 6. Also it is possible to get a list of all time 
depending model variables to be selected for criteria 
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variables. The value of the criterion is defined by the 
final value of the criterion variable at the end of the 
integration interval. 

 
Figure 6: GUI for selecting model parameters as tuners. 

The simulation of the model to be optimized has to 
be specified by usual simulation preferences like 
start and stop time or the numerical integration algo-
rithm. Additionally, different modes to accelerate the 
numerical integration of the model equations are im-
plemented, see Section 3.5. 

A typical application of Model Optimization is the 
identification of model parameters by comparing 
simulation results and corresponding measurements 
from a test bench. A further application is well 
known in the field of controller synthesis. To im-
prove the controller performance automatic optimi-
zation is applied to the system model. 

3.3 Multi Case Model Optimization 

Multi Case Model Optimization is an extension of 
the task Model Optimization and has its origin in the 
field of model based controller design. Most control-
lers do not only have to guarantee performance and 
stability of a system in one, but in several operating 
points. The optimization of the controller parameters 
includes the simulation of a system model in differ-
ent operating points that are characterized by differ-
ent values of special model parameters, the case pa-
rameters. These model parameters are disjoint with 
the tuner parameters and are not varied by the opti-
mization algorithm. The different model simulations 
that are defined by the case parameters are called 
cases. In Figure 7 main parts of the corresponding 
task setup GUI are shown. 

Each case should have a name to distinguish it from 
the other cases. In Figure 7 there are three cases: 
nominal, worstOvershoot and worstSettlingTime. 
The case parameters (e.g. Ma, Md, …, Zd) can be 
selected from a list of all independent model parame-
ters. For each case every case parameter gets a value, 
see the matrix in Figure 7. The model is simulated 
with these case parameter values for each case. The 
criteria of the optimization task are similarly speci-
fied as for the task Model Optimization. 

 
Figure 7: Optimization setup GUI for Multi Case Model 
Optimization. 

In summary, every case contributes to the overall 
criteria vector of the optimization problem, see Fig-
ure 8 for an example. Depending on the objective 
function type all these criteria values are combined 
to the objective function value. In the example the 
value is the maximum of all criteria values: riseTime 
for the case worstSettlingTime. 

 
Figure 8: Logging of multi case criteria. 

3.4 Trajectory Optimization 

Problems of Optimal Control arise in different fields 
of applications. The goal is to minimize an objective 
functional with respect to one or more time depend-
ent control trajectories. Various constraints are typi-
cal for optimal control problems. Dynamic model 
equations appear in most of the problems in technical 
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applications. Consequently, an optimization task 
Trajectory Optimization is provided in the library. 

There are many techniques [B01] to numerically 
solve an infinite dimensional optimal control prob-
lem. In the Optimization library the solution proce-
dure is according to the task Model Optimization. It 
means that tuners are varied by the optimization al-
gorithm and for each computation of the criteria a 
model simulation is performed. This Single Shooting 
Technique is based on a finite dimensional optimiza-
tion problem approximating the original problem.  

The control trajectories are approximated by B-
splines of degree 𝑘. The number of samples 𝑁 and 
the interpolation degree 𝑘 define the construction of 
a B-spline as control trajectory [DH02]. The B-spline 
has 𝑁 equidistant knots on the time interval the 
spline is defined (normally this is the integration in-
terval of the model). Further there are 𝑁 + 𝑘 − 1 de 
Boor control points that parameterize the spline. A 
spline 𝑠(𝑡) is a piecewise polynomial function be-
tween the knots. The individual polynomials have at 
most the degree 𝑘. The polynomials are appended 
such that the complete spline is 𝑘 − 1 times continu-
ously differentiable on the whole interval it is de-
fined. Because a B-spline is contained in the convex 
hull of its de Boor points 𝑁, the box constraints 
𝑢Min ≤ 𝑁 ≤ 𝑢Max (for lower and upper bounds 𝑢Min, 
𝑢Max) are valid for the whole spline function: 
𝑢Min ≤ 𝑠(𝑡) ≤ 𝑢Max. Therefore, the control points 𝑁 
are selected as tuners to be varied by the optimiza-
tion algorithm. 

 
Figure 9: Polygon of B-spline control points and corre-
sponding B-spline trajectory. 

In Figure 9 the polygon of 13 control points and the 
corresponding B-spline of degree 3 (𝑁 = 11, 𝑘 = 3) 
are shown. The control points correspond to the 13 
time values 0.0, 0.033, 0.1, 0.2, …, 0.8, 0.9, 0.967, 

1.0. Additional to the given time grid 0.0, 0.1, …, 1.0 
there are two values at the boundaries: 0.033 and 
0.967. They represent the free boundary conditions 
of the B-spline. 

The optimization setup for Trajectory Optimization 
includes the selection of model inputs that represent 
the control trajectories. For these trajectories the 
number of sample points 𝑁 and the interpolation de-
gree 𝑘 has to be specified by the user. Any starting 
trajectory may be provided in a separate file. An ex-
ample using the Trajectory Optimization task is giv-
en in Section 4. 

3.5 Parallel Numerical Integration 

Because the numerical integration of model equa-
tions normally is the most time intensive part of any 
model based optimization tasks, several techniques 
are applied to reduce the computation time of the 
numerical integration inside the optimization loop. 
The default case is a sequential execution of the nu-
merical integration runs by calling Dymola’s simula-
tion executable for each new set of model parame-
ters. We call it single simulation technique.  

An optimized version of sequential integration runs 
is provided by Dymola. The executable is started 
only one time and independent model parameter val-
ues are sequentially read from file and processed by 
the numerical integration. Especially for many simu-
lation runs with very short elapsed real times for one 
model simulation, this multi simulation approach 
accelerates the numerical integration in summary, 
because process overhead is avoided. 

Independent simulation runs of a model may be exe-
cuted in parallel. Especially for multi-core machines 
this may reduce the computation time of the whole 
optimization run. In the Optimization library the 
simulation runs are parallelized in different threads 
by calling several copied simulation executables in 
an OpenMP program. OpenMP is a software inter-
face for shared-memory parallel programming on 
different platforms. It is supported by many comput-
er hardware and software vendors [CJP08]. For par-
allel simulations the user can specify the number of 
threads up to the double of the number of available 
cores. Table 2 shows execution sequences for differ-
ent simulation modes in principle. 

To measure the acceleration in computation time, a 
test is performed for different simulation modes. The 
model Electrical.Analog.Examples.Rectifier 
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from the Modelica Standard Library 3.2 is simulated 
1000 times with identical parameter values. To in-
crease the elapsed real time of one numerical integra-
tion run, the stop time of the integration is increased. 
The test is executed on a PC with an Intel Xeon 
X5550 quad-core processor (2.67 GHz) with activat-
ed hyper-threading. 

Table 2: Execution sequence for single, multi and parallel 
(with 3 threads) simulations. 

Single Multi Parallel 3 
 

 

 

 Thread 1 Thread 2 Thread 3 

   

In Figure 10 the results of the test are illustrated. De-
pending on the execution time for one model simula-
tion, the speed factor with respect to the single simu-
lation technique is plotted for multi and parallel sim-
ulations. Parallel simulations are performed with 2, 4 
and 8 threads. For very fast model simulations the 
multi simulation approach is clearly superior. Com-
pared to single simulation the multi simulation is up 
to 4 times faster although no parallelization tech-
nique is applied. The parallel execution of 1000 
model simulations results in maximum speed factors 
of 1.9, 3 and 4 for 2, 4 and 8 threads. These maxi-
mum factors are reached if the execution time for 
one model simulation is greater than 1 second. Be-
low this bound the speed factor is decreasing due to 
the process overhead. For machines with many cores 
the limiting influence for parallelization is probably 
memory access. 

An important assumption for the performance test is 
the independency of all evaluated model parameter 
values. The Optimization library supports two algo-
rithms that fulfill this assumption: Random Search 
and Systematic Tuner Variation (see Section 1.4). 
For these algorithms the tuner values of all evalua-
tions may be determined before running any simula-
tion, therefore full parallel evaluations are possible. 
So, speed factors as shown in Figure 10 can be 
reached. 

Accelerating the computation time in nonlinear op-
timization by parallel evaluations of the criteria has 

been investigated since several years, e.g. see 
[LAS97]. The optimization algorithms of the Opti-
mization library partially support parallel criteria 
evaluations. During an optimization run there are 
both evaluations of the criteria that can be parallel-
ized and such ones that cannot be parallelized. The 
evaluation of numerical Jacobian matrices typically 
needs the most computation time for optimization 
runs with SQP and BFGS methods. Consequently, 
the Optimization library supports computing numeri-
cal Jacobian matrices by parallel model simulations. 
It also supports parallel criteria evaluations of multi 
case optimization tasks (see Section 3.3). The simu-
lation runs of a model with different case parameter 
values are independent and therefore can be comput-
ed in parallel. It is planned to support parallel model 
simulations for independent criteria evaluations of 
the genetic algorithm. 

 
Figure 10: Speed factors for different simulation modes. 

Depending on the used optimization algorithm, the 
Modelica model and the number of tuners, the speed 
factor for a complete optimization run differs. On the 
test machine a factor of 3 in computation time has 
been observed for optimization examples using a 
model that needs more than 1 second of elapsed real 
time per simulation, see Section 4.3 for an example. 

4 Application Example 

In [EOM+05] the full robot model of the Modelica 
standard library is used to demonstrate a multi case 
optimization for controller design. Of course, the 
current version of the Optimization library can still 
handle this kind of optimization task (see Section 
3.3). In the following a trajectory optimization setup 
for the robot model is presented to find reference 
trajectories for the robot’s movements from one 
point to another point in space. 
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4.1 Robot Model 

The robot model (see Figure 11) mainly consists of a 
3-D mechanical structure model and 6 axis models 
including electrical motors, controllers and mechani-
cal components of the axes (gear and friction). The 
reference trajectories for the angles and velocities of 
the axes are provided by a separate path planning 
model. The path planning is based on an algorithm 
that finds trajectories for the fastest movement for a 
given start position 𝛼 to a given end position 𝛽 under 
kinematical constraints. The constraints are defined 
by the maximum velocity and the maximum acceler-
ation of the axis movements. 

 
Figure 11: Animation of robot model from Modelica Stand-
ard Library. 

The drawback of the path planning model is that the 
available maximum torque of the electrical motors is 
not considered. We may include them in the path 
planning by solving a trajectory optimization prob-
lem with the inverse dynamics model [R11] using 
the Optimization library. For these purposes we have 
to adapt the robot model. The motor, controller and 
friction model of the axes are removed. The rotation-
al power train of each axes is driven by a signal 
based torque source. The non-causal approach of 
Modelica automatically leads to the inverse dynam-
ics model when giving input signals for the robot 
positions [TOB01]. 

4.2 Trajectory Optimization Problem 

The goal of the trajectory optimization problem is to 
find movements for the axes’ angles 𝑞(𝑡). The 
movement from the start angles 𝛼 to the end angles 
𝛽 should be as fast as possible under the constraints 
that the maximum velocity and the maximum motor 
torques are bounded by given values. Additionally, 
the angular accelerations shall be zero at the start and 

the end position to avoid oscillations for the con-
trolled robot using the computed paths as reference 
motion. 

The mathematical formulation is as follows: 

min
𝑡𝐸𝑛𝑑,   𝑢(𝑡)

𝑡𝐸𝑛𝑑        w. r. t. 

𝑞(0) = 𝛼,      𝑞(𝑡𝐸𝑛𝑑) = 𝛽,        𝑞̈ = 𝑢, 
𝑞̇(0) = 𝑞̇(𝑡𝐸𝑛𝑑) = 𝑞̈(0) = 𝑞̈(𝑡𝐸𝑛𝑑) = 0, 

 |𝑞̇(𝑡)| ≤ 𝑣𝑀𝑎𝑥,     |𝜏(𝑡)| ≤ 𝑇𝑀𝑎𝑥    for   𝑡 ∈ [0, 𝑡𝐸𝑛𝑑]. 

In our investigations we only consider the main axes 
1, 2 and 3. Axes 4, 5 and 6 are fixed and do not 
move. Reasonable values for the maximum angular 
velocities 𝑣𝑀𝑎𝑥 and the maximum torques 𝑇𝑀𝑎𝑥 can 
be found in [OT88]. We use 𝑣𝑀𝑎𝑥 = (3, 1.5, 5) 𝑟𝑟𝑟/
𝑠 and 𝑇𝑀𝑎𝑥 = (950, 1950, 540) 𝑁𝑁 for axis 1, 2 
and 3. The adapted robot model is prepared in such a 
way that 𝑞(0) = 𝛼, 𝑞̇(0) = 0 is inherently fulfilled. 
The trajectory 𝑞(𝑡) is implicitely defined by B-
Splines for the controls 𝑢(𝑡) ∶= 𝑞̈(𝑡). The trajecto-
ries for 𝑞̇(𝑡) and 𝑞(𝑡) are automatically computed in 
the robot model by the numerical integration algo-
rithm during the simulation of the model. 

 
Figure 12: Criteria of robot path planning in Optimization 
setup GUI. 

The trajectory optimization setup (see Figure 12) 
consists of three input controls 𝑞̈(𝑡) and the free pa-
rameter 𝑡𝐸𝑛𝑑. The criterion to be minimized is the 
end time 𝑡𝐸𝑛𝑑, whereas 6 (= 2 ∙ 3 axes) inequality 
constraints are defined for 𝑞̇𝑀𝑎𝑥 and 𝜏𝑀𝑎𝑥. The robot 

Session 6A: Optimization 

DOI Proceedings of the 9th International Modelica Conference    677 
10.3384/ecp12076669 September 3-5, 2012, Munich, Germany   



 

 

Time 𝑡 in 𝑠 
  Figure 13: Result trajectories with different number 𝑁 of 

sample points for the B-splines. 
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model includes criteria models (see Section 3.1) to 
compute the absolute maxima 𝑞̇𝑀𝑎𝑥 of 𝑞̇(𝑡) and  
𝜏𝑀𝑎𝑥 of 𝜏(𝑡). There remain 12 equality constraints 
for 𝑞(𝑡𝐸𝑛𝑑), 𝑞̇(𝑡𝐸𝑛𝑑), 𝑞̈(0) and 𝑞̈(𝑡𝐸𝑛𝑑).  

The advanced feature to handle a free end time 𝑡𝐸𝑛𝑑 
for the trajectory optimization is implemented and 
will be available in the next release of the Optimiza-
tion library. 

4.3 Trajectory Optimization Results  

We set the start trajectories for 𝑞̈(𝑡) equal to 0 and 
choose 𝑡𝐸𝑛𝑑 = 5 at the beginning of the optimiza-
tion. These start conditions lead to violated optimiza-
tion constraints for 𝑞(𝑡𝐸𝑛𝑑). The SQP algorithm suc-
ceeds in finding input functions 𝑞̈(𝑡), such that all 
constraints are fulfilled. Important for SQP is a high 
accuracy of the criteria, therefore we set the error 
tolerance of the integration to 10−12. The error toler-
ance for the solution of SQP is set to 10−6. 

Depending on the number 𝑁 of sample points for the 
B-splines, different solution are found, see columns 
1 and 2 in Table 3. The degree 𝑘 of the polynomials 
is always set to 𝑘 = 3. We tested the developed par-
allelization techniques (see Section 3.5) for this 
benchmark problem. In Table 3 the computation 
times for the single simulation approach are docu-
mented. Further, the speed factors using parallel 
simulations with 2, 4 and 8 threads are given. Since 
the computation of the numerical Jacobian matrix 
dominates the overall computation time, speed fac-
tors of pure independent simulations (compare Fig-
ure 10) can be reached for 2 and 4 parallel threads. 
The optimization with 8 threads is faster than using 4 
threads, but the difference is smaller than in Figure 
10. 

Table 3: Results of the trajectory optimization with different 
number 𝑁 of sample points for the B-splines. 

N 𝑡𝐸𝑛𝑑 
Single Parallel speed factors 

Elapsed time 2 threads  4 threads 8 threads 

5 1.60 s 30 min 1.85 2.95 3.15 
8 1.48 s 150 min 1.96 3.11 3.38 
10 1.42 s 251 min 1.95 3.12 3.34 
20 1.40 s 908 min 2.00 3.33 3.58 
30 1.40 s 1228 min 2.02 3.37 3.68 

Figure 13 illustrates the solutions 𝑞2(𝑡), 𝑞̇2(𝑡) and 
𝑞̈2(𝑡) for 𝑁 = 5, 8, 10 and 20. It is obvious, that the 

velocity constraint 𝑞̇2 ≤ 𝑣2 = 1.5 𝑟𝑟𝑟/𝑠 is an active 
constraint. In Figure 14 it can also be seen, that the 
motor torque is inside the demanded ranges. The tra-
jectory for the torque of axis 3 hits the border lines 
several times. 

Time 𝑡 in 𝑠 

Figure 14: Motor torque for different axes. The optimiza-
tion solution is computed with 𝑁 = 20 sample points. 
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5 Conclusions 

A library for solving interactive optimization tasks is 
presented. Both function and different model based 
optimization tasks are available to support the engi-
neer in improving his system design by sophisticated 
numerical optimization algorithms. Additionally, 
optimization runs may be accelerated by automated 
parallel model simulations on multi-core machines. 
Version 2.1 of the Optimization library is available 
along with the release of Dymola 2013. 
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Abstract 

Teaching Modelica to students of a university re-
quires suitable example models. This paper describes 
a planar mechanical library that is primarily con-
ceived for didactical purposes. It is simple, built out 
of a few components only, but it enables the model-
ing of interesting and complex systems. The library 
is freely available and supported by various Modeli-
ca environments. 
Keywords:Education;Planar Mechanics; 

1 Introduction 

1.1 Motivation 

This paper presents a planar mechanical library that 
has been primarily designed for didactical purposes. 
The idea of such a library is that it is simple and easy 
to understand. In this way, the students can focus on 
learning the principles of equation-based modeling 
and they can avoid the lot of peculiar particularities 
that have meanwhile become part of the language. 

We have used this library in the Modelica course 
at the technical university in Munich [8]. The course 
is enlisted in the computer science department. The 
students of this class mostly study computer science, 
applied mathematics or physics. Computer science 
students in Munich do not have any physics course 
in their basic curriculum. Hence, explaining the 
modeling of physical systems requires explaining the 
physics as well, in this particular case: the funda-
mental laws of motion.  

In planar mechanical systems, we describe the 
physics of a multi body system in a two‐dimensional 
plane. Each body position can be described by the 
coordinates x and y and its orientation by the angle φ 
(see Figure 1). Each body has a mass and its inertia 
can be described by a single scalar. 

Planar models of mechanical systems are useful 
for a number of applications. Very popular is their 
use for contact problems that are a lot simpler in 2D 

than in 3D. The modeling of gear wheel interaction 
is one such example [5]. For this paper their use in 
teaching is of course the main issue. 

 

x

y

φ

 
Figure 1: Representation of an object in planar space 

1.2 Suitability of planar mechanics 

Planar mechanical systems are ideally suited for 
teaching equation-based modeling, because their 
components are easy to model and to understand but 
the resulting systems are often complex in behavior 
and demanding in their computational aspects. Or to 
put it in short terms: you can do a lot of cool stuff by 
simple means. 

From the modeling side, planar mechanics offers 
the following advantages: 
• Planar mechanical systems are tangible and vis-

ual systems. All students have played with me-
chanical systems before in their life and every-
one has an intuitive (and sometimes wrong) un-
derstanding about their motion. This motion can 
be visualized in an animation, which is more ap-
pealing to students than studying plots. 

• The physical laws of planar mechanical systems 
are basically taught already in high-school. 
D’Alemberst Principle and Newton’s Law look 
familiar to the students. The equations of motion 
themselves are relatively easy. 
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• Planar mechanical systems can be steered either 
by human interaction or by a control law. Again 
these tasks are very tangible and concrete: eve-
ryone has steered a bicycle and everyone has 
tried to balance a pen in his life. 

 
The resulting system can then be used to demonstrate 
and study the advantages and difficulties of equa-
tion-based modeling. 
 
• First of all, mechanical systems require true non-

causal equation-based modeling. Modeling 
methods that are based on the computational 
flow such as Simulink are of very limited use in 
this domain. A kinematic loop can be used as an 
illustration. 

• Also kinematic loops require the solution of non-
linear equation systems. The corresponding ex-
amples can be used to explain techniques for in-
tialization and state selection. 

 
In contrast to planar mechanical systems, 1D and 3D 
mechanical system are not so well suited for teach-
ing.  

1D mechanical systems are too simple. Of course, 
We teach both rotational and translational mechanic 
prior to planar system, but many interesting configu-
rations such as kinematic loops do not naturally exist 
in 1D. Hence, the topic does not bear long and quick-
ly gets boring unless you enter the specifics of drive-
train modeling which is misplaced in a general Mod-
elica course.  

3D mechanical systems on the other side are way 
too complex. A short look on the components of the 
standard MultiBody Library  [2,7] makes this clear. 
In 3D, the description of a body orientation can be 
performed in many different and potentially redun-
dant ways. This redundancy then leads to further dif-
ficulties so that kinematic loops require special 
treatment. In planar mechanics, the orientation is 
uniquely described by a single angle and kinematic 
loops do not require special modeling tools. 

2 State of the Art in planar mechani-
cal modeling 

The library presented in this paper is not the first 
planar mechanical library that has been developed in 
Modelica.  

Indeed, we have developed one of the first vari-
ants as part of the MultiBondLib [7]. It is freely 
available and it is also well suited for teaching but 
only in a course where bondgraphic modeling is part 

of the program. In contrast, the new library is direct-
ly based on equations and does not require the 
knowledge of bondgraphs. Furthermore, because of 
the use of bondgraphs in the MultiBondLib the con-
nectors contained redundant information and kine-
matic loops required special handling.  

A second planar library has been developed by 
Höbinger and Otter [4]. In addition to the basic me-
chanical components (joints and body parts), the li-
brary contained models for the contact of curved sur-
faces. Although, it was envisioned that this library 
becomes part of the Modelica Standard Library 
(MSL), this has not yet taken place. 

Furthermore new planar mechanical elements 
have developed by van der Linden [5] for the model-
ing of gearwheels. This developments use the same 
interfaces and components as the planar mechanical 
library presented here. 

2.1 Contributions of this Paper 

Since already a significant amount of effort has been 
spent on the development of Modelica code for pla-
nar mechanics, it is important to clarify the contribu-
tion of this paper. Essentially there are three major 
objectives for this work: 
 
• Presentation of a didactical library: This is the 

major part of this paper (section 3 to 5). I will 
present the interfaces and the structure of the li-
brary and show how simple the individual com-
ponents can be modeled.  

 
• Cross-Platform Library for different compil-

ers: The ability to compose complex systems out 
of simple components using only a smaller sub-
set of the language is not only interesting for 
students but also for compiler developers. The 
library turns out to be very well suited for testing 
the abilities of various Modelica environments. 
Also for teaching purposes, it is good if the ma-
terial is not bounded to a certain software tool 
but of general applicability. More on this topic in 
section 6 

 
• Establishment of a standard interface for pla-

nar mechanics: The planar mechanical library 
for didactical purposes is not supposed to be-
come part of the MSL. Libraries that are part of 
the MSL must be optimized with respect to usa-
bility. This in part conflicts with desired level of 
simplicity for teaching. However, there is no rea-
son why a potential library for planar mechanics 
in the MSL and the didactical library should use 
different interfaces.  
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3 Structure of the library 

The interface of a planar mechanical component rep-
resents a flange point. This point is determined by a 
fixed position the plane (x,y) and a fixed orientation 
angle (phi). Forces in x and y direction (fx, fy) as 
well as a torque (t) may act on the flange point. The 
corresponding Modelica connector is hence designed 
as follows: 
 
Listing 1: Connector code 
 
connector Frame 
"General Connector for planar mechanical components" 
 

SI.Position x "x-position"; 
SI.Position y "y-position"; 
SI.Angle phi "angle (counter-clockwise)"; 
flow SI.Force fx "force in x-direction"; 
flow SI.Force fy "force in y-direction"; 
flow SI.Torque t "torque (clockwise)"; 
 

end Frame; 
 
 
For simplicity, the potential use of vectors in the 
connector has been omitted. For beginners it is a lit-
tle easier, to work with x,y, and phi than with a vec-
tor r[2] and phi. The same holds for the forces. 
Given this connector, a variety of planar mechanical 
components can be implemented. Figure 2 provides 
an overview of the library content.  

The standard components are parts and joints. 
These elements were designed in strong resemblance 
to their counterparts in the Modelica MultiBody li-
brary. In addition to the standard components, the 
library contains sub-packages for vehicle wheels and 
gearwheels. 

The wheel models can be used to move with a 
wheel on the x,y-plane. There are ideal wheel models 
and simple slip based models inspired by previous 
works [6].  

Future versions of this library may also contain 
the gear wheel models out of the work of van der 
Linden [5]. They can for instance be used to assem-
ble a planetary gear box. 

All elements in this library contain a suitable vis-
ual representation for the animation. For simplicity 
though, the animation is not as configurable as in the 
MultiBody library. Another difference to the Multi-
Body library is that there is no World model availa-
ble in this library. Again the sheer simplicity is pre-
ferred over a more elaborate solution. 

The library features a large set of examples that 
demonstrate the variety of systems that can be as-

sembled from these components: pendulum, crane 
crab, kinematic loops, or even two-track car vehicle 
models are included. Also examples of controlled 
systems and model inversion are contained in this 
library. 

The library itself is available at [8] or at the Mod-
elica Website. This is made publicly available and 
represents the standard version. The examples in this 
version are all suitable for testing purposes. Further-
more this library is self-contained only requiring a 
few elements of the standard library but not requiring 
any other library. 

The planar mechanical library that is being used 
in the lecture course is slightly different. First of all 
it is developed in several steps as the course pro-
ceeds. In its latter stages, it also contains elements 
from DLR libraries. The lecture course contains also 
slides explaining the components of this library at 
great level of detail. 

 

 
Figure 2: Structure of the planar mechanical library 
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4 Teaching Modelica 

4.1 Context 

When the library is used for teaching, it is not pre-
sented as a whole but gradually developed together 
with the students. The goal is that the students learn 
all relevant processes of modeling in Modelica: from 
punching in equations, plugging together compo-
nents to designing a whole library.  

In the course “Virtual Physics”, the library is be-
ing used from lesson 5 on. In the first 4 lessons, the 
students learn the basics of equation-based modeling 
and the Modelica language. After going through ex-
amples of 1D mechanical systems, we start by the 
most basic mechanic components.  

4.2 Component Modeling 

The most important component is of course the body 
component: 
 
Listing 2: Body component 
 
model Body "Body component with mass and inertia" 
 
  Interfaces.Frame_a frame_a; 
 
  parameter SI.Mass m "mass of the body"; 
  parameter SI.Inertia I "Inertia of the Body"; 
  parameter SI.Acceleration gx =0  
    "gravity acceleration (in x) acting on the mass"; 
  parameter SI.Acceleration gy=-9.81  
    "gravity acceleration(in y) acting on the mass"; 
 
  SI.Velocity vx "velocity in x"; 
  SI.Velocity vy "velocity in y"; 
  SI.AngularVelocity w "angular velocity"; 
  SI.Acceleration ax "acceleration in x"; 
  SI.Acceleration ax "acceleration in y"; 
  SI.AngularAcceleration z "angular acceleration"; 

 
equation  

//The velocity is a time-derivative of the position 
vx = der(frame_a.x); 
vy = der(frame_a.y); 
w = der(frame_a.phi); 
 
//The acceleration is a time-derivative of the velocity 
ax = der(vx); 
ay = der(vy); 
z = der(w); 
 
//Newton's law 
fx + m*gx = m*ax; 
fy + m*gy = m*ay; 
frame_a.t = I*z; 
 

end Body; 
 

Even with plenty of comments the code remains 
compact and is very easy to understand. For the first 
version, everything that may distract the student has 
been removed. Gravity acceleration is a simple pa-
rameter and does not be read out of a strange “world 
model”. There is no animation and there are no op-
tions for initialization or state-selection that pollute 
the code. Just the bare physical equations form the 
model.  

In this version, also no vector notation is used. 
For students of a technical university it seems to 
cause no problems in understanding the model code. 
Teaching experience from universities of applied 
sciences indicates that vector notation is better intro-
duced later on.  Vector notation is used in a subse-
quent version, where also the code of the animation 
is added. The students know at this stage that this 
code is non-essential. 

For joint elements, a neutral element is a good 
starting point. This element implements the lever 
principle but exhibits no forces on its connectors. 
 
Listing 3: Neutral component 
 
model Neutral 

//This component has two frames… 
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_a frame_b; 
 
equation  
 

//…but exhibits no effect. 
  frame_a.fx = 0; 
  frame_a.fy = 0;  
  frame_a.t = 0; 
 

//This is the balance of force and torque 
  including the lever principle 

  frame_a.fx + frame_b.fx = 0; 
  frame_a.fy + frame_b.fy = 0;  
  frame_a.t   
  + frame_b.t  
  + (frame_b.x - frame_a.x)*frame_b.fy 
  - (frame_b.y – frame_a.y)*frame_b.fx 
  = 0; 
 
end Neutral 
 

 
Any joint can now be implemented by replacing the 
assignment of zero force with the corresponding po-
sitional constraints. Furthermore, the lever principle 
can often be simplified. Let us for instance look at 
the revolute joint. Here, two positional constraints 
are enforced: the position must be equal in direction 
of x and y. Since there is no distance between the 
two frames, the lever principle degenerates to a bal-
ance of torque. 
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Listing 4: Revolute joint, first version 
 
model Revolute 
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_a frame_b; 
 
equation  
 

//frame_a.fx = 0 gets  replaced by 
  frame_a.x = frame_b.x; 
 

//frame_a.fy = 0 gets replaced by 
  frame_a.y = frame_b.y; 
 
  frame_a.t = 0; 
 

//since there is no difference in position  
  the lever principle can be simplified 

  frame_a.fx + frame_b.fx = 0; 
  frame_a.fy + frame_b.fy = 0;  
  frame_a.t  + frame_b.t = 0; 
 
 
end Revolute; 

 
 
In a second version, two differential equations and 
one algebraic equation are added since the joint is 
well suited to describe the motion of the system. 
 
Listing 5: Revolute joint, second version 
 
model Revolute 
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_a frame_b; 
 
//These 3 variables help to describe the motion of a system 
  SI.Angle phi 
  SI.AngularVelocity w; 
  SI.AngularAcceleration z; 
 
equation  
 
//For 3 more variables we need 3 more equations: 
  frame_a.phi + phi = frame_b.phi; 
  w = der(phi); 
  z = der(w); 
 
//Known material… 
  frame_a.x = frame_b.x; 
  frame_a.y = frame_b.y; 
  frame_a.t = 0; 
 
  frame_a.fx + frame_b.fx = 0; 
  frame_a.fy + frame_b.fy = 0;  
  frame_a.t  + frame_b.t = 0; 
 
end Revolute; 

 
 
In this way, also a fixed translation element can be 
explained. The prismatic joint can then be presented 
as a translational element of variable length. 

4.3 Valuable Examples for Teaching 

Having available only five component models for 
 

• body with mass and inertia, 
• revolute joint, 
• prismatic joint, 
• fixed translation, 
• and global fixation 

 
enables us to compose already a lot of interesting 
models.  

 
Figure 3: Chaotic trajectory of a double pendulum 
 
The famous double pendulum can be used to demon-
strate chaotic system behavior. Figure 3 shows the 
erratic trajectory of the peak of the pendulum. Simu-
lating with different values for precision yields each 
time a completely new trajectory and no conver-
gence can be reached. The students learn the im-
portant lesson that a simple non-linearity can lead to 
totally unpredictable and chaotic systems. 
 

bodyDrive

revolute?
fixedTra?

fixed

prismatic f ixed1

revolute?
pistonR

od

bodyPis?

re
vo

lu
te

?

 
Figure 4: Model diagram of a simple piston engine 
Figure 4 displays the model diagram of a piston en-
gine. It represents a kinematic loop: although there 
are four joint elements, the complete system has just 
one degree of freedom. This example is used to ex-
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plain the mechanism of initialization and state selec-
tion to the students. The joint elements are then fur-
ther enhanced by an initialization section and attrib-
utes for state selection. Furthermore, the students 
learn about the Pantelides algorithm for reducing the 
differential index of a system. 
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Figure 5: Model diagram of an inverted pendulum con-
trolled by a PID element 
 
The inverted pendulum is a famous example in con-
trol theory. It is easy to model by using the planar 
mechanical components. A simple PID controller 
can be added to show how a controller can be de-
signed in Modelica. Furthermore it is possible to in-
vert the model by stipulating the trajectory and com-
puting the forces. In this way, the students can learn 
how flexible a Modelica model can be used: not only 
for simulation but also for control design and model 
inversion. 

5 Tire and vehicle models 

Whereas the standard components already enable the 
creation of many interesting examples, planar me-
chanical systems can also be used to model vehicles 
driving on the plane. To this end three separate 
wheel models are provided: 
 

• An ideal rolling wheel 
• A dry-friction based wheel 
• A slip-based wheel 

 

Listing 6 presents the code for the ideal rolling 
wheel. Although being already significantly more 
complex, this component is not beyond what a good 
student can learn to understand if he is supported by 
sufficient explanations and further material. 
 
Listing 6: Ideal wheel 
 
model IdealWheelJoint 

 
  Interfaces.Frame_a frame_a; 
  Rotational.Interfaces.Flange_a flange_a; 

 
  parameter SI.Length radius  
    "radius of the wheel"; 
  parameter SI.Length r[2]  
    "driving direction of the wheel at angle phi = 0"; 
  final parameter SI.Length l = sqrt(r*r); 
  final parameter Real e[2] =  r/l  
    "normalized driving direction"; 

 
Real e0[2]"normalized direction w.r.t inertial system"; 
Real R[2,2] "Rotation Matrix"; 
 
SI.AngularVelocity w_roll "roll velocity "; 
SI.Velocity v[2] "transl. velocity"; 
SI.Velocity v_long "velocity in longit. direction"; 
SI.Acceleration a "accel. of driving velocity"; 
SI.Force f_long "longitudinal force"; 
 

equation  
 

//Resolve the normalized driving direction in the 
  inertial coordinate system 
R={{cos(frame_a.phi),-sin(frame_a.phi)}, 
   {sin(frame_a.phi),cos(frame_a.phi)}}; 
e0 = R*e; 
 
//Project the longitudinal velocity in the planar space 
 (this implyies that the lateral velocity is zero) 
v = der({frame_a.x,frame_a.y}); 
v = v_long*e0; 
 
//Implement the law of ideal rolling 
w_roll = der(flange_a.phi); 
v_long = radius*w_roll; 
a = der(v_long); 
 
//Project the force on the longitudinal direction 
{frame_a.fx, frame_a.fy}*e0 = f_long; 
 
//model the drive torque 
-f_long*radius = flange_a.tau; 
 
//There is no bore torque 
frame_a.t = 0; 
   

end IdealWheelJoint; 
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The code for the other two wheel models is only a 
little more complex. The students have to learn about 
friction characteristics and regularization techniques.  
Given these wheel models, a simple one-track car 
model can be composed in five minutes: 
 

bodyFront

idealWh?

ch
as

si
s

bodyRear

idealWh?

re
vo

lu
te

engineTorque

2

tra
il

 
 

Figure 6: Model diagram of a simple one track vehicle  
Such a model is sufficient to study the influence of 
the trail or the basic difference between front-wheel 
drive and rear-wheel drive.  

The highlight of the course is a two-track car 
model with slip-based wheels. It is enhanced by a 
simple 3D chassis that computes the load balance on 
the four wheels. The car model can be simulated in 
real-time. It is also visualized in real time by the use 
of the SimVis Library [1] (see Figure 7) and can be 
controlled online by the keyboard using components 
from the Modelica Device Drivers library [3]. As a 
result, the students can drive their own car model in 
3D just as in a computer game. Such an example at-
tracts many students to the course and helps to keep 
up their motivation during the course. 

6 Cross-platform compatibility 

Since the library uses only a subset of the Modelica 
language that consists entirely out of well-
established language constructs, it can be supported 
by a large set of different Modelica compilers al-

ready now. 15 examples have been selected for test-
ing the results of various Modelica simulation envi-
ronments. The current test results are summarized in 
figure 8. It shows the test results for all 17 examples 
and for for different compilers. 

First of all, Dymola[9] offers full support of the 
library. It is also the environment that has been used 
for the development of the library and that I use for 
teaching.  

JModelica[11] is also able to parse and process 
the entire library. It does not offer dynamic state-
selection as in Dymola but this feature is not so es-
sential for a didactical library. 

OpenModelica[10] can also parse the entire li-
brary. The correct translation and simulation is pos-
sible for large set of examples but not for all of them. 
In some more complex examples, the back-end of 
the compiler still has some problems with the non-
holonomic constraints equations that originate from 
ideal rolling parts.  

Also SimulationX[12] offers almost full support 
of the library. Some examples require a non-standard 
solver but these are this was the only small problem 
that occurred. For one example of a kinematic loop, 
SimulationX started with the wrong initial position 
but this might be due to modeling ambiguity. 

In all cases the compiler developers are working 
on the occurring problems and there is a fair chance 
that a complete support of the library can be realized 
soon.  

Test of MapleSim[13] have not yet been complet-
ed. First results indicate that MapleSim parses the 
code correctly and that the simulator is capable of 
simulating the test cases. The current problems con-
cern the usability of the models but these problems 
should be solved for the new version of MapleSim. 

Tests within Wolfram SystemModeler [14] have 
not yet been done. 

 

 
Figure 7: 3D-Realtime visualization of the two track ve-
hicle  
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Figure 8: This table displays the current support of the library among different Modelica environments 

7 Conclusions 

Ultimately, the goal is to have a didactical library 
available that can be used to teach Modelica in dif-
ferent modeling and simulation environments.  

I personally hope that this library helps other lec-
turers to create their Modelica courses. It can be used 
for free under the Modelica 2 license. Suggestion (or 
even better: contributions) that help to improve the 
quality of the library are always highly welcome. 
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Abstract

This article gives an overview of the DyMoRail li-
brary.The aim of this Modelica library is the simula-
tion of longitudinal dynamics of entire railway trains.
The DyMoRail library allows an efficient simulation
of complete train compositions in various configu-
rations. The library contains different car models,
buffers, couplers equipped with both friction and elas-
tomer springs, as well as the center-buffers for multi-
ple units. DyMoRail allows to simulate the entire mo-
tion cycle that the buffer undergoes during a collision.
The robust programming of the basic models allows
simulations for arbitrary combination of buffers, cou-
plers and destruction tubes. Different modelling tech-
niques (SIMULINK, STELLA) have been explored.
Since the modular structure of Modelica allows fast
and simple setup of models including different types
of rolling stock and different types of couplers and
buffers, it was decided to build this library in Mod-
elica. This simulation environment was successfully
used by Schwab Verkehrstechnik AG during the devel-
opment of their state-of the-art center coupler product
family. Within DyMoRail2 we intend to implement
further features and improve the modularity and flexi-
bility of the library.

Keywords: library, mechanics, railway

1 Introduction

Buffers and couplers are an essential part of the rail-
way wagon. They have to be optimized for new wagon
types to work for different train compositions. They
have to absorb minor impacts, take up slack between
locomotive and wagons and bear the load of preced-
ing wagons when pushing. Years ago it was good
enough for couplers and buffers to fulfil UIC (Inter-
national Union of Railways) standards. But nowadays
manufacturers only survive in this competitive market
if they are able to offer optimized solutions regarding
force, energy absorption, and driving comfort. Mod-

elling plays an important role in this optimization pro-
cess. One of the main requirements to this rail model
are that it should allow easy substitution of compo-
nents and handling of different combinations of sub-
system parts.

Schwab Verkehrstechnik AG and ZHAW carried out
a project funded by CTI (Swiss Federal Commission
for Technology and Innovation) to develop a simu-
lation tool which allows to model longitudinal dy-
namics of entire railway trains. During the following
years a Modelica library has been developed which is
called DyMoRail. The DyMoRail library allows an
efficient simulation of complete train compositions in
various configurations. The library contains a num-
ber of different car models, buffers, couplers equipped
both with friction and elastomer springs, as well as the
center-buffers for multiple units (such as Seetalbahn,
Thurbo, Flirt). DyMoRail allows to simulate the en-
tire motion cycle during a collision (retraction of the
buffer, force increase with stroke of the buffer, exten-
sion of the buffer, and finally the separation of the wag-
ons).

The robust programming of the basic models allows
for arbitrary combination of buffers, train draw rod and
destruction tubes. In a first attempt, simulations were
performed with SIMLULINK. But it turned out that in
SIMULINK a completely new model had to be pro-
grammed from scratch for each combination. There-
fore Schwab Verkehrstechnik and ZHAW decided to
build a new library based on Modelica. The mod-
ular structure of Modelica allows fast modifications
of the model by simple replacement of entire subsys-
tems. In this paper we will present the structure of
the existing library, show some examples and propose
some improvements that will lead to a new version
DyMoRail2, which will be constructed in collabora-
tion with Schwab Verkehrstechnik AG and is funded
by CTI.
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Figure 1: DyMoRail library structure

2 Library Structure

The DyMoRail library structure is shown in Figure 1.
The fundamental packages and models are explained
in the following paragraph. The library consists of
seven sublibraries: connectors, basic elements, hy-
draulics, buffer hydraulics, buffers, couplers and cars.

2.1 Connectors

The sublibrary connectors contains the mechanical
and hydraulic connections as well as the connections
between the hydraulic buffers and the respective buffer
hydraulics.

2.2 Basic Elements

This sublibrary contains different models of springs
and buffers, as well as friction between car and rail-
way track. The submodels ”buffer bush” and ”cou-
pler bush” simulate the fundamental behaviour of the
buffers and couplers. Four different operation modes
of the buffer bush are distinguished: free, pretension,
deformation and arrested. In free mode, the buffer
plates do not touch and the force is zero. In the
pretension mode the force increases. In the defor-
mation mode the buffer spring and buffer hydraulics
are loaded. In the arrested mode the force increases
steeply. The additional state forward, backward and
halt describe the actual condition of the bush. In addi-
tion friction is also modelled in the bush.

2.3 Hydraulics

In addition to the basic elements for viscous flow, this
sublibrary contains hydraulic accumulator and check
valves and multiplier valves for various buffers and
couplers. Each multiplier valve has three signal inputs:

The first signal yields the state of the buffer. The valve
opens only if the buffer state is on deformation and is
not retracted. The second input provides the opening
of the aperture so that oil can flow into the hydraulic
buffer. The third input provides the deformation of the
buffer bush.

2.4 Buffer an Couplers

These sublibraries contain products of the company
Schwab Verkehrstechnik AG, such as buffers, cou-
plers, coupling rods and railway compositions. Elas-
tomer springs are commonly used, because they are
cost saving and robust. They show a non linear char-
acteristic and have high inner friction. The friction de-
pends on the buffer force and has both a linear and a
non-linear part.

The library contains a basic model for both the hy-
draulic buffer and coupler. The hydraulics, which have
to be reconfigured for each train, are filed in the buffer
hydraulics sublibrary.

2.5 Cars

This sublibrary (also shown in Figure 1) contains ele-
ments, which allow the modelling of cars as rigid or
flexible bodies, as well as car bodies and locomotives.
Two additional models allow to model freight trains
with an arbitrary number of wagons. These trains
are equipped with either standard buffers or hydraulic
buffers. The library contains further models which de-
scribe multiple units of Stadler Rail AG (such as GTW,
FLIRT, KISS).

3 Examples

Two different examples are presented in the following
paragraph.

3.1 1 g-Buffer

The acceleration of lightly loaded freight cars during
a shunting impact can reach levels as high as 40 m/s2

(4 g). Such hard collisions mean a high risk of damage
to the freight. Since for transportation by trucks much
lower accelerations of the order of 0.8 g occur, this is
a severe disadvantage of the rail transport compared
with road transport. The 1 g-buffer was developed in
order to protect damageable freight during shunting
impacts. This buffer should keep the maximum ac-
celeration of the wagons below 10 m/s2 at an impact
velocity of 7.2 km/h. The buffer shows the same static
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behaviour as a conventional UIC–526 buffer, i.e. the
force increases up to a value of 900 kN at a stroke of
150 mm. Under static load, the buffer can only retract
by half of its length up to a maximum force of 150 kN.
Due to an elaborate valve control the 1 g-buffer is dy-
namically more flexible than statically. At first this
buffer has been modelled with SIMULINK. However,
modelling with DyMoRail allows a larger variety of
different scenarios. Besides the DyMoRail model is
much more precise and detailed.

In Figure 2 a model for a collision between two
wagons is depicted. A freight car of 80 t, respectively
30 t, collides with a car at rest. The moving car is
equipped with a 1 g-buffer and the car at rest with stan-
dard UIC-buffers. Figure 3 and 4 show the simulation
results. The force-stroke-behaviour of the 1 g-buffer is
drawn during shunting impacts. For both cases, the ac-
celeration of the cars does not exceed 10 m/s2 (1 g). 1 g
buffers are used nowadays mostly for freight cars that
transport road semi-trailers. According to the simu-
lated data the 1 g buffer complies with DB Cargo stan-
dards.

The model has been validated with measurements
performed on the 1 g buffer[1].

Figure 2: Model for a collision between two wagons.
A freight car of 90 t, or 30 t respectively, collides with
a car at rest. The moving car is equipped with a 1 g-
buffer (yellow) and the car at rest with standard UIC-
buffers (grey).

3.2 S-Bahn

For Zurich S-Bahn trains of the third generation, mul-
tiple units consisting of 6 double decker coaches are
used. A single assembly has a mass of 312 t, a total
length of 150 m and can take up to 1694 passengers. It
is obvious that, during shunting, the rolling stock must
not be damaged at all. This means that the central cou-
pler must not be damaged during a collision of such a

Figure 3: Force-stroke diagramm of the 1 g buffer dur-
ing a collision of a 90 t wagon equipped with a 1 g
buffer at a velocity of 7.2 km/h with a 80 t wagon at
rest equipped with standard UIC-buffers.

Figure 4: Force-stroke diagramm of the 1 g buffer dur-
ing a collision of a 30 t wagon equipped with a 1 g
buffer at a velocity of 7.2 km/h with a 80 t wagon at
rest equipped with standard UIC-buffers.

multiple unit at a speed of up to 5 km/h with another
one.

Furthermore it has to be proven that the coupler is
pulled down correctly during a major impact with an-
other S-Bahn up to a speed of 36 km/h and that the side
buffer are capable of absorbing the remaining energy.
The same proof has to be provided for a collision at
36 km/h against a freight car of mass 80 t. First the
central coupler retracts and after that breaks away so
that the laterally mounted auxiliary buffers take up the
remaining energy. The entire process including pres-
sure build-up, opening of the hydraulic predetermined
breaking point, retraction of the damper, compression
of the spring elements and deformation of the crash
elements can be simulated in a single run.

The damper of the central coupler is a multifunc-
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tional device (Figure 6). It contains a gas spring and
a multiplier valve. They ensure that the coupler trans-
mits the momentum and secondly absorbs enough en-
ergy to prevent the wagons from oscillating during the
journey. During coupling at a speed of 5 km/h the
damper has to absorb the total energy over a length of
140 mm without the force increasing above 1200 kN.
If the the force increases above 1500 kN, a hydraulic
breaking point will be activated so that the coupler is
retracted faster. In addition, the coupler comes with a
return stroke damping, which prevents breakaway dur-
ing run-up.

Every one of these scenarios has been simulated
with a dynamical model for both multiple units.
Thereby the flexibility of the car body, its connection
to the bogie and the behaviour of the short couplers
between cars have to be modelled with sufficient pre-
cision

Figure 5: Force-stroke diagram for an entire S-Bahn
multiple unit consisting of 6 double decker coaches
with a total mass of 312 t and a total length of 150 m

4 Future Work

A follow up project (called DyMorail2) has been
funded by CTI and will be carried out in collabora-
tion with Schwab Verkehrstechnik AG. We intend to
implement the following improvements to the first Dy-
MoRail library:

1. Each buffer and coupler should be modelled in
different levels of detail and complexity, in order
to gain flexibility for simulating entire composi-
tions consisting of several cars on the one hand
and single wagons on the other.

2. The valve control has to be redesigned. At
present the valve is modelled such that it opens

Figure 6: Construction drawing of the damper show-
ing its working principle. It shows the damper bush in
brass colour. On the rear is the air spring filled with
nitrogen. The front part contains oil and both cham-
bers are separated by a movable piston (”separation
plunger” in red). In green is shown the overload pres-
sure valve.

at a certain pressure and closes again at a lower
one. This model is very simple and robust and
can be used for a broad spectrum of applica-
tions. However, for modelling of long trains
equipped with hydraulic buffers in combination
with spring buffers these valves produce a lot of
events, which increases the simulation complex-
ity.

3. We also plan to implement crash scenarios ac-
cording to new European norm DIN EN 15227.
It contains requirements to the construction of
rolling stock in order to minimize the conse-
quence of collisions. It applies to the car body
as well as to coupler and buffer.

5 Conclusion

With DyMoRail1 a powerful library has been imple-
mented which allows to simulate longitudinal dynam-
ics of entire railway trains. With this library an ef-
ficient simulation of complete train compositions in
various combinations is possible. Modelica/Dymola
has the following advantages over other tools such as
SIMULINK or STELLA:

• Every model can be reused immediately

• Cars, buffers, crash elements and couplers can be
arbitrarily combined

• Little effort is needed to establish, test and recon-
figure new models

• Documentation and filing of simulation experi-
ments is straight forward
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• Even non-experts can carry out simulations with
DyMoRail

This simulation environment was successfully used
by Schwab Verkehrstechnik AG during the develop-
ment of their state-of the-art center coupler product
family. Within DyMoRail2 we intend to implement
further features and improve the modularity and flexi-
bility of the library.
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Abstract 

The natural frequency analysis of complex 
powertrain models created in Modelica presents a 
number of problems.  This paper presents the basic 
principles and some of the problems associated with 
carrying out this kind of analysis.  As a result of this 
work, a new feature in the Powertrain Dynamics 
Library has been developed to automate these 
methods and provide the end-user with a simple set 
of functions to perform natural frequency analysis.  
Simple examples are used to illustrate the problems 
and solutions and a complex powertrain model is 
then analysed using the library.     

Keywords: modal analysis; natural frequency; 
linearization; powertrain; NVH 

1 Introduction 

Modal analysis is the study of the dynamic response 
of a system at its resonance frequencies.  Modal 
analysis is used in many fields for example in 
structural engineering to design buildings resistant to 
earthquakes [1] and in vehicle powertrain design to 
avoid poor NVH characteristics [2]. 

For a vehicle, modal analysis is carried out on all 
parts of the car to determine their natural 
frequencies. Care is taken to make sure that the 
natural frequencies of the parts in the car are all at 
distinct, separate frequencies.  If the natural 
frequencies are not suitably separated this can lead to 
resonance across multiple parts of the car and a poor 
NVH characteristic. 

A new feature has been introduced in the 
PTDynamics library [3] [4] to perform the natural 
frequency analysis of powertrain models created 
using this library.  This paper highlights some of the 
problems involved with this type of analysis based 
on Modelica models and discusses some of the 
techniques developed to solve these. 

To determine the natural frequencies of a model 
and the corresponding modal response we start by 

linearising the model at the required operating point.  
Linearisation of a model using Dymola returns the 
state-space representation of the model and from this 
the natural frequencies can be calculated.  The 
natural frequencies are found when all damping in a 
model is removed.   

2 Modal frequency analysis and 
Modelica models 

2.1 Basic Principles 

This section looks at the basic modal analysis 
principles applied to a spring mass network.  The 
example of a spring mass network has been chosen 
so that the natural frequency of a model can be 
described.  An unforced spring mass network can be 
represented by the following ordinary linear 
differential equation: 
 
 ��� + ��� + �� = 0	  
 
It is common to calculate the natural frequency of 
the above equation with the damping term set to zero 
so the equation becomes:   
 
 ��� 	+ �� = 0 (1) 
 
The natural frequency of the spring mass system can 
now be calculated from the roots of the above 
equation.  The roots are the eigenvalues and 
eigenvectors of the equation. 

To perform modal analysis on complex models 
we linearise these first which generates the state 
space representation of the model.  The state space 
representation of a model is given by:	 

 
 �� = �� + 
�		� = �� + �� 

(2) 

where: 
A, B, C and D are matrices 
u is the vector of inputs 
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y is the vector of outputs 
x is the vector of states 
 
To rearrange our simple spring-mass system in to 
state space form is done by transforming equation (1) 
in to the following form: 
 
 �� = −�����	  
 
In this simple example, there are no inputs so the u 
term is dropped and there are no outputs so the 
equation for y is not required.  The model is then 
reduced to: 
 
 �� = 	��	 (3) 
where � = ���� � 
and � = � 0 1−���� 0� 
 

2.2 Eigenvalues and eigenvectors 

For a given matrix A the eigenvalues and 
eigenvectors are calculated such that: 
 �� = �� 
where: � is the eigenvector associated with the eigenvalue � is an eigenvalue 
 
The eigenvalue solutions, are the roots of: 
 ��� − ��� = � 
 
All the eigenvalues are included in vector � that is 
referred to as the eigenvalues of A.  The eigenvectors 
are combined row wise into matrix v. The 
eigenvectors and eigenvalues of this equation are 
calculated so that the natural frequency can be 
calculated as follows in section 2.3. 

2.3 Frequency and damping 

The natural frequency is calculated from the 
eigenvalues as [5]: 
 
 � = |�|2!  

 
where: 
|| is the complex norm � is frequency in Hertz 
 

The complex norm is the sum of the squares of the 
real and imaginary parts all square rooted.  There is 
also a damping term that is associated with each 
eigenvalue.  In the case where the damping has been 
set to zero, this term will be zero and will not 
influence the natural frequencies of the model.  The 
damping term can be calculated with the following 
equation [6]: 

 
 
 
 

" = 	# 0, |�| = 0Re(�)|�| , |�| ≠ 0*	  

 
where: Re()  is the real part of a complex number 
 
The frequency that a model with damping oscillates 
at without being driven by an outside force is 
referred to as the damped frequency and using 
eigenvalue analysis this is calculated as : 
 
 +, = +-.1 − "/  
 

2.4 Issues for complex Modelica models 

The current analysis described above can be easily 
performed on a spring mass network but it is not as 
easy to implement this on a complex Modelica 
model.  A number of issues arise when trying to 
apply this process using a Modelica tool such as 
Dymola. 

 A complex model will contain a large number of 
state variables and we would normally expect to find 
many states that do not have any effect on the natural 
frequency response of the physical states of the 
model.  For example, states within a driver model or 
control system that do not directly influence the 
physical response of the system.  These states should 
be removed from the analysis to reduce the time 
taken to do the analysis. 

Some Modelica tools are able to compile models 
using dynamic state selection.  Currently models that 
use dynamic states cannot be analysed and a fixed 
set of states needs to be applied to the model.  This 
has to be done by the user before starting the 
frequency analysis. 

In the simple spring mass network presented so 
far we have not considered the possibility of the 
relative state of the spring being selected as a state 
rather than the position of the mass.  Modelica tools 
are able to select a set of states from a model and in 
many cases they will select relative states rather than 
absolute states.  Whilst the natural frequencies of the 
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Figure 1: Process to convert relative states to 
positional states 

system are unaffected by the choice of state variable 
it is preferable in this type of analysis to use the 
absolute states of the system.  Using the absolute 
states makes the interpretation of the modal response 
easier as the points of interest become physical 
points such as the driveshaft ends or pinion gear 
rather than relative states such as the driveshaft twist 
or relative angle between pinion and crown wheels. 

Further problems are observed when component 
models that utilize the standard Modelica friction 
model are included for analysis.  The behaviour of 
the slip/stick friction models is not linearized in the 
expected manner and modifications to the analysis 
have to be made around these components. 

To calculate the natural frequencies the damping 
terms have to be removed from the model but 
without the damping often models will not simulate.  
This causes a problem for the initialisation of models 
and when the model needs to be analysed under 
different operating conditions, for example, in 
different gears or under different loading conditions 
where springs are compressed to different parts of 
their non-linear force curve. 

3 Implementation in the Powertrain 
Dynamics Library 

The Powetrain Dynamics (PTDynamics) library is 
used to create complex MultiBody models of 
powertrains in a user friendly and efficient manner.  
A new feature has been introduced to determine the 
natural frequencies of these powertrain models.  A 
number of issues are present that make performing 
the natural frequency analysis difficult when 
working with Modelica models (refer to Section 2.1). 
This section describes some of the methods 
implemented in to the linearization functions 
available in the PTDynamics library that are used to 
overcome these issues. 

3.1 Relative states 

The natural frequencies of the model are typically 
calculated for positional states (i.e. position or 
angular position).  However when a model is created 
using Modelica, the modelling tool can choose to 
select relative states (such as spring extension) rather 
than positional states (such as the position of ends of 
the spring).  When this is detected in a model the 
relative states are converted in to positional states 
before linearizing the model. 

The first step in the analysis process is to 
determine the states used in the model which is done 
by translating the model and analysing the list of 

selected states.  If relative states are detected then the 
model has to be modified by adding outputs that 
measure the positions either side of the component 
with the relative states, see Figure 1.  The model can 
then be linearized and the resulting A matrix 
manipulated to transform the relative state in to a 
positional state.  Within the PTDynamics library a 
precise naming convention is used to enable the 
automatic detection of relative and absolute states 
from the variable names. 

By only making the transformation from relative 
to positional state in the linearized model we do not 
affect how the original model simulates.  This means 
that we can still use the original model to get the 
system to the desired operating point and then 
linearize it.  If we forced the user to only use 
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positional states in the model we may introduce 
slight differences in to the model due to the different 
equation solutions required and we could impact the 
simulation time. 

When the modified model, with the added 
outputs, is linearized, the resulting state space 
representation includes these outputs in the C matrix.  
This matrix relates the position outputs to the states 
in the model.  Each relative state will generate two 
outputs but only one of these outputs will be related 
to the relative state by the C matrix. This state is 
used to replace the relative state.   

Using the spring mass model as an example we 
can see how this manipulation of the A matrix 
should be performed.  Linearizing the modified 
model gives the following: 
 0 = �0 �1

1 0 � 
 

1 � �0 0
0 1� 

 
23435	64752 � 87422. :, 2;<=6>. 2_<5@A 
BC3;C3	64752 � 	 8;B2=3=B61, ;B2=3=B62A 

 
From the C matrix it is seen that position2 is related 
to spring.s_rel as: 
 
 DEFGHGEIJ � ��2, : �� 
 
where: 
� are the states of the model 
 
A transformation matrix is now created that 
transforms � to a set of states that does not contain 
relative states.  In this example the transformation 
matrix would be: 
 

L � M 1 0
��2,1� ��2,2�N 

  
 �OPQ � R� (4) 
  
Replacing � in (3) with �OPQ from (4) gives: 
 
 �� ST� � L�L�U�ST�  
 
A drawback of this method is that it can select a state 
that is only associated with a position and not 
directly with an actual mass or inertia state. Figure 2 
illustrates a case where this behaviour is present.  
The user currently has to review the selections made 

during the analysis process to ensure that these 
situations are avoided. 
 

 
Figure 2: The initial states of the model include 
spring2.s_rel, this state is replaced with spring2.flange_a.s 
that is a state without a mass 

3.2 Friction components 

A number of component models such as clutches and 
brakes use the Modelica Standard Library coulomb 
friction model [7] that handles the stuck and sliding 
modes in a clean way using state events.   When this 
is linearized using the built-in Dymola function the 
model is sometimes linearized as if in the slipping 
mode regardless of the actual state of the component.  
A method has been developed to adjust the model 
and resulting state space model to correctly account 
for the friction state.   

Figure 3 shows an overview of the automatic 
process that is used to overcome this using the 
PTDynamics library.  First the model is translated 
and the names of the selected states are analysed to 
determine if there are any states that relate to friction 
and to determine what state the friction model is in at 
the instant that the model is being linearized at.   

If the friction model is in the stuck mode then it is 
necessary to join the positional states in the A matrix 
that are either side of the frictional component.  To 
be able to join states in the A matrix it is necessary to 
calculate the mass/inertia of the states being joined 
together.  This is done by adding torque inputs to the 
corresponding positional states either side of the 
friction component.   

 In the example shown in Figure 3, we would 
detect the friction states within the clutch and then 
modify the model.  In addition to adding a torque 
input either side of the friction model we also need to 
add position outputs either side of the friction model 
so that we can join the states in the locked mode. 
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After the modified model is linearized the B matrix 
is used to determine the mass of the states.  This 
information together with the state space C matrix 
can then be used to update the A matrix by joining 
the states on either side of the friction component.  

The mass of the states is determined as follows, 
the basic equation describing a spring mass system 
that contains a force is: 

 
 VW � X� + Y� + Z  
where: 

V is mass 

� is position 

� is velocity  

W is acceleration 

X is stiffness  

Y is damping vector 

Z is the applied force 

 

In the example shown in Figure 3, the positional 
states that the clutch is connected to are independent 

which means the following equation can be used to 
describe both states that need to be joined together 
and rearranged as: 
 

 2� � 7��[2 +7��\2� + 7��]  
 

The state space representation of this equation is:  
 
 �2�2�� � � 0 17��[ 7��\� �22�� + � 07���] (5) 

 
From (2) and (5), we can determine that the state 

space B matrix is equal to � 07���, so the mass/inertia 

for the states to be joined can be calculated.  Using 
the example shown in Figure 3, we get the following 
values when linearising the modified model.  
 

0 = ^ 0 1−1 0 0 00 00 00 0 0 10 0_ 
 

` = ^010
0000 0.5_ 

 

1 = �1 0 0 00 0 1 0� 
 23435	64752 = 8=1. ;ℎ=, =1.+, =2. ;ℎ=, =2. +A =6;C3	64752 = 	 834C1, 34C2A BC3;C3	64752 = 	 8;B2=3=B61, ;B2=3=B62A 

 
Using the B matrix we can determine the inertia of 
the two bodies either side of the clutch. 

 7� = �cd,ef� 7/ = �cg,df/ 
 

To modify the A matrix we use the B matrix to 
determine the rows in the A matrix that should be 
combined.  The C matrix is then used to determine 
the columns that need to be combined.  After 
combining the rows and columns we can remove the 
redundant rows and columns from the A matrix.   

In this example we find that the 2nd and 4th rows 
need to be combined as well as the 1st and 3rd 
columns which results in: 
 

0 = ^ 0 + 0 1
h(−1 + 0) ∗ 7� + 0 ∗ 7/7� +7/ j h(0 + 0) ∗ 7� + 0 ∗ 7/7� +7/ j_ 

 

0 = � 0 10.333 0� 
 Figure 3: Process to handle friction components 
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To include damping effects when joining states using 
this method the columns corresponding to the rows 
determined from the B matrix need to be added 
together as well.   

There is a known limitation of the joining method 
demonstrated here and used in the PTDynamics 
library in that the states being joined together must 
be independent states.  This means that the positional 
state must not be dependent on other positional 
states. An example of a component that has 
dependent states is a planetary gear where the 
rotational states of the three shafts are dependent on 
each other.  To overcome this limitation a flexible 
shaft has to be connected between a clutch and a 
planetary gear in a gearbox to be able to join the 
states on either side of the clutch using this method. 

4 Applications 

4.1 Simple example 

This simple example contains three inertias with the 
first two separated by a clutch and the second and 
third inertia separated by a spring as shown in Figure 
4.  A ramp input is used to actuate the clutch and 
goes from 0 at 0s to 1 at 1s.  The response for the 
clutch state and the speeds of the inertias either side 
are shown in Figure 5. 

If the model is linearized at t=0s, i.e. when the 
clutch is open we find the natural frequency is at 
5.29Hz.  If the model is linearized at t=2s, when the 
clutch is locked, the natural frequency occurs at 
2.20Hz.   

The change in frequency occurs because the total 
effective inertia on the left hand side of the spring 
has changed.  Without using the method to join the 
states either side of the clutch the built in functions 
report no change in the natural frequency despite the 
change in configuration of the model. 

 
Figure 4.  Simple model that contains a clutch and a 
spring 

 
Figure 5.  Plots of locked and angular velocity of inertia 
and inertia1 in the Simple model in Figure 4. 

4.2 Full vehicle example 

A model of a front engine, rear-wheel drive vehicle 
with a manual transmission was constructed using 
the PTDynamics library it fully test the new 
functions and methods.  The model is shown in 
Figure 6.  The engine model is a simple mapped 
engine model but the transmission and driveline are 
more detailed.  Figure 7 shows the gearset model 
from within the transmission.  The gearset and 
driveline models include torsional compliance in a 
number of the shafts but are rigidly mounted within 
the chassis.  Overall this model has a good torsional 
representation of the powertrain system and would 
be suitable for studying driveability events such as 
tip-in and tip-out. 

 

 
Figure 6.  PTDynamics vehicle example that is linearized  
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Figure 7.  Gearset used in vehicle example. 

The chassis model doesn’t include suspension but 
the tyres do include a slip model based on the well-
known Pacejka tyre model.  This required the 
development of a method that relates the wheel 
rotation to the chassis movement.  This was 
necessary because the slip models are based on 
velocity relationships but for this type of analysis we 
need the relationships to be based on position.  The 
method developed assumes that the ratio between the 
wheel rotation and the chassis motion is a fixed ratio 
at the instance that linearization occurs.  The details 
of this method are not described in this paper. 

The model was linearized and the following 
natural frequencies are found (in Hz): 5.1, 35, 124, 
266 and 343.  The 5.1Hz response is the shuffle 
frequency of the vehicle and the modal response is 
shown in Figure 8. The x-axis of the modal response 
plots is an integer that corresponds to the states listed 
in Table 1.  The magnitudes are normalised with 
respect to the variable with the largest displacement. 

The modal response shows that at this frequency 
there is very little motion of the chassis but the 
whole powertrain is moving out of phase with the 
chassis and at relatively large displacements.   

 
 No. State 

1 transmission.clutch.drivenPlate.flange_a.flange.phi 

2 transmission.gearset.uniformShaft10.body_a.phi 

3 transmission.gearset.uniformShaft.body_a.phi 

4 driveline.rearDifferential.pinion.phi 

5 driveline.rearDifferential.differentialAssembly.outputGear_2.phi 

6 chassis.motion.prismatic_x.s 

Table 1.  States of simple vehicle.  Each number 
corresponds to a state.  The number in the legends in 
Figure 8 corresponds to the number in this table. 

It is also possible to generate Bode diagrams for 
different inputs and outputs of the vehicle model.  
The example shown in Figure 8 is the bode diagram 
generated when engine torque is an input to the 
system and the differential pinion gear rotation angle 
is the output. The Bode plotting function in 

Modelica_LinearSystems2 is used to generate the 
actual plot. 
 

 
Figure 8.  Modal response of the vehicle model at 5.1Hz.  
The magnitude and phase of the different states are 
plotted.   Each state is assigned to a position along the x 
axis as determined by the legend.  The numbers in the 
legends correspond to the states in Table .  

 

Figure 9.  Bode diagram with Engine torque as the input 
and differential pinion position as the output. 

5 Conclusion 

A new method for determining the natural 
frequencies and modal responses of complex 
Modelica models has been developed and introduced 
as a new feature in the Powertrain Dynamics library.  
This feature includes automated methods to handle 
the problems with relative states and friction 
components as described in this paper in addition to 
other methods to handle further problem areas such 
as tyre slip models.  The feature will be further 
improved to provide animation of the modal 
response of the powertrain to aid the understanding 
of the natural frequencies of the powertrain system. 
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Abstract

This paper presents a graph theoretical interpretation
of the well-known O(n) algorithm for Multibody sys-
tems. It enables Modelica compilers to solve for the
unknown accelerations of a Multibody model without
the need of inverting a dense mass matrix which would
require O(n3) operations.

Keywords: MultiBody, Relaxation, Gaussian Elimi-
nation, OpenModelica

1 Introduction

Simulation has become an indispensable tool in early
development stages. Increasing computational power
leads to a demand for more detailed models. Espe-
cially in the design of Mobile Machinery, Multibody
systems are of major importance.

Currently, most Modelica compilers apply Tearing
[1] to models from Modelica.Mechanics.MultiBody
yielding a dense linear system of size proportional to
n - the number of bodies. In order to solve for the
unknown joint accelerations the system has to be in-
verted which requires O(n3) operations. Hence this
approach is only recommendable for small to medium
sized problems.

Efficient algorithms with O(n) complexity are well
known from literature [2], [4]. Unfortunately their ap-
plication for Modelica.Mechanics.MultiBody proves
to be difficult since these algorithms rely on special
knowledge about the multibody systems which is not
available in a general equation based framework like
Modelica.

It has already been pointed out in the literature [5]
that a technique called Relaxation is able to yield such

an O(n) formalism for multibody systems. However,
adaptions to the model libraries as well as a specific
model structure were required.

This paper presents a novel algorithm for general
purpose Modelica compilers. It is based on a graph
theoretical generalization of the well known O(n) al-
gorithm for multibody systems adapted to models
from Modelica.Mechanics.MultiBody.

2 Multibody systems

2.1 Kinematic Graph

Every multibody system can be represented by a kine-
matic graph whose nodes represent both bodies and in-
ertial frames and whose edges correspond to joints. If
the kinematic graph contains closed loops, appropriate
joints, so called cut-joints, are temporarily removed so
that the resulting graph only consists of trees. In a tree,
every node (body) has a unique parent, which is the
next node on the path to the root (inertial frame). All
bodies are numbered, such that every child body has
a higher number than its parent. Each joint is num-
bered according to the child body it is connected to,
thus forming pairs of bodies and joints. All remaining
cut-joints are numbered consecutively. An example is
given in Figure 1.

2.2 Equations of Motion

The equation of motion of a single body i can be writ-
ten as

Miai = pi + fi− ∑
k∈µ(i)

RT
k,ifk (1)

pi = fi,ext −hi (2)
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Figure 1: Kinematic Graph of Example System

where Mi ∈ R6×6 represents the mass matrix, ai ∈ R6

both translational and rotational acceleration of a fixed
point on body i and hi ∈ R6 all gyroscopic terms. pi

is used as an abbrevation for hi and all external forces
and torques fi,ext . fi, fk ∈R6 represent the joint reaction
forces of the joint belonging to the body i as well as all
the set of all its children µ (i). Rk,i transforms the force
and torque from i to k whereas its transpose performs
the opposite transformation.

It is assumed that every joint i has a set of joint-
coordinates qi as well as joint velocities si which fully
determine its kinematic state. Thus, the acceleration
of body i is given by

ai = Ri,hah +Jiṡi + ci (3)

where h is the index of the parent body of i. Ji de-
scribes the degrees of freedom of joint i and ci collects
all remaining terms which are neither linear in ah nor
ṡi.

From d’Alamberts Principle it can be found that

JT
i fi = τi (4)

whith τi being the motor force driving the joint.
Since equations (1)-(4) are linear with respect to the

accelerations and forces, one can merge the equations
for every element of the multibody system into one
single linear system of equations.

One of the most efficient O(n) algorithms (see [3])
to solve this linear system of equations is defined
through repeated application of

ṡi = ρ
−1
i

(
τi−JT

i MA
i
(
aλ (i)+ ci

)
−JT

i pA
i
)

(5)

ai = aλ (i)+Jiṡi + ci (6)

requiring the calculation of the following variables for
each body starting at the highest index

MA
i = Mi + ∑

k∈µ(i)
Ma

k (7)

ρi = JT
i MA

i Ji (8)

Ma
i = MA

i −MA
i Jiρ

−1
i JT

i MA
i (9)

pA
i = pi + ∑

k∈µ(i)
pa

k (10)

pa
i = pA

i +MA
i ci +MA

i Jiρ
−1
i

(
τi−JT

i pA
i
)

(11)

It can be shown that this exact algorithm can be
derived from a (sparse) Gaussian Elimination of the
linear system of equations provided all equations and
variables are ordered correctly.

In a general equation based framework, information
such as the ordering of bodies is not readily avail-
able. Thus the algorithm cannot be applied directly.
However, [5] has shown that the application of a tech-
nique called Relaxation, which is a type of Gaussian
Elimination, may also lead to an O(n) algorithm. The
suitable ordering of the equations and variables was
achieved by inserting a special relax operator into the
model equations.

This paper follows another path in which the O(n)
algorithm is derived using graph theoretical tech-
niques. To do so a graph representing the equations of
motion is built from the multibody system. The key to
an efficient O(n) algorithm lies in the ordering of the
graph. This is a problem for a Modelica compiler since
the information about the structure is lost in the com-
pilation process but is needed to achieve the efficiency
of algorithms such as [3]. By trying to generalize the
idea behind the algorithm from [3], a good ordering
for general modelica models can be found which con-
sequently leads to an efficient O(n) algorithm. This
approach is described in the following section.

3 Graphtheoretical Interpretation

3.1 Graph of a system of equations

Given a set of equations, an undirected bipartite graph
can be defined which contains two sets of nodes repre-
senting equations and variables respectively. There is
an edge between a variable and an equation if and only
if that equation depends on that variable. The graph of
the equation system belonging to the example system
has been sketched in Figure 2. Every square node rep-
resents an equation whereas every circle represents a
variable. Nodes representing eq. (1) have been named
Ii, eq. (3) is called Ai and (4) is labelled Di. In addi-
tion to the definition above, the edges carry the partial
derivative of the equation with respect to the variable.

It can be seen that the graph exhibits two legs.
The first leg contains all kinematic quantities (Ai, ai)
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Figure 2: Equation Graph of Example System

whereas the second leg comprises all kinetic quantities
(Ii, fi). The two legs are interconnected through steps
given by the inertial equations Ii (eq. 1). Equations Di

(eq. 4) and variables ṡi appear as handles to the legs,
thus forming a ladder like structure. All nodes with
the same index represent a body along with its joint
and shall be denoted as body structure. A body struc-
ture is called terminal if the body it represents does not
have any children.

3.2 Gaussian Elimination

Gaussian Elimination can be applied to a linear system
of equations Ax = b. Therefore one has to reproduce
A from the equation graph of the multibody system.
This requires the numbering of all equation and vari-
able nodes, i.e. allocating them to rows and columns
of A. The algorithm then iterates over all elements on
the main diagonal of A, which are called pivots. Mul-
tiples of the current row are added to all rows below
such that all elements below the pivot are eliminated.
Thus A is reduced to Â which has a (block) upper tri-
angular form.

Given the numbered graph, Gaussian Elimination
can be applied directly:

1. Begin at i = 1

2. Check that there is an (invertible) edge between
equation node i and variable node i (equivalent to
pivot element)

3. Create Edges between all pairs of equations
and variables connected to equation and variable
nodes i

4. Remove equation and variable nodes i along with
all adjacent edges from the graph

5. Continue at 2 with i := i+ 1 until all nodes are
removed

Figure 3 shows this process for a body structure (see
section 3.1) as found in Figure 2.

33

2

12

1

3

a) Step 1

5 4

33

2

2 3

b) Step 2

5 4

33 3

c) Step 3

5 4

d) Step 4

5 4

Figure 3: Steps of Gaussian Elimination

3.3 O(n) algorithm

The numbering shown in Figure 3 leads to the efficient
O(n) algorithm from [3].

Removing the closed loop (A5, D5, f5, ṡ5) from the
graph given in Figure 2 yields two terminal body struc-
tures. These can be eliminated as shown in Figure
3 revealing new terminal body structures. This pro-
cess can be repeated until all body structures are elim-
inated.

Looking at the numbering employed in Figure 3 one
may note that
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1. Resulting pivots are chosen to be identity matri-
ces if possible

2. Each body structure is treated seperately, begin-
ning at the terminal ones

3. All nodes between the handles of the body struc-
ture are being numbered consecutively beginning
at the equation handle

4. Equation and variable handle are given the same
number although there is initially no connection
between them (zero pivot)

5. Entries in the lower triangular part of Aonly occur
due to the Di nodes as well as the Ii nodes of non
terminal body structures.

Please note that the handles nodes correspond to a suit-
able choice of tearing variables and residual equations,
as described in [1].

One may expect that the application of these rules
to the equation graph found in models from Mod-
elica.Mechanics.MultiBody may yield a numbering
which leads to an efficient O(n) algorithm for multi-
body systems for a general purpose Modelica com-
piler.

4 Application to Model-
ica.Mechanics.MultiBody

4.1 Equation Graph

Due to the object oriented nature of Model-
ica.Mechanics.MultiBody the equations are the same
as in 2.2 but are not written in such a compact form.
Equation (1) is found in the Body model. Equations
(3) and (4) are found in the different joint models. The
transformation matrices Ri,k (see Eq. (1)) are defined
through the FixedTranslation and FixedRotation mod-
els. The linear system of equations under considera-
tion is found as a strong connected component through
Tarjan’s algorithm [8] after index reduction has been
applied [7]. Moreover, most Modelica compilers ap-
ply symbolic simplifications to the equations of mo-
tion. Figure 4 shows the graph of the sample system
with which a Modelica compiler has to deal with.

Application of the O(n) algorithm requires three
steps:

1. Recover the graph structure

2. Find a suitable ordering

Figure 4: Equation Graph of Example System mod-
elled with Modelica.Mechanics.MultiBody

3. Apply Gaussian Elimination

Every step will be discussed in the following.

4.2 Tree Structured Systems

4.2.1 Recovering the graph structure

The first rule (see section 3.3) says, that if possible the
pivots shall be chosen to be identity matrices. There-
fore pairs of equations and variables have to be found
whose partial derivative is an identity matrix. This
process shall be called Natural Matching. In a first
step, every vectorial equation is tested if it can be
solved for its unmatched vectorial variables with only
using addition and subtraction. If that is the case, this
equation and variable are matched. Afterwards, all re-
maining equations and variables are expanded to their
scalar representation. All remaining scalar equations
are tested if they can be solved for their unmatched
vectorial variables with only using addition and sub-
traction. If that is the case, this equation and variable
are also matched. Then a classic matching algorithm
[6] is applied, leaving a set of variables and equations
unmatched. These are the candidates for the tearing
variables and residual equations. This procedure has
already been suggested in [9].

Since all equations in the Model-
ica.Mechanics.MultiBody library have been written
down in a manner which is most suitable for com-
putation, it happened in all our tests that the set of
candidates may be used without further modification
as tearing variables and residual equations. The tests
also showed, that mostly joint accelerations were used
as tearing variables and, depending on symbolical
simplifications, the Di equations or close neighbours
were used as residual equations.
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The result of the matching algorithm is visualized
in the graph by assigning directions to all edges. An
edge from an equation to a variable means that this
equation is used The result of the matching algorithm
is visualized in the graph by assigning directions to all
edges. An edge from an equation to a variable means
that this equation is used to calculate that variable. An
edge from a variable to an equation means that this
variable is needed in the calculation of that variable.
All tearing varibales are assumed to be known whereas
all residual equations do not have any variables that
they are solved for. The result for the example system
including the kinematic loop is shown in Figure 4.

Next, the order between the tearing variables has to
be found. Therefore the algorithm starts at a tearing
variable and follows the edges in opposite direction,
thus running down the kinematic leg. When another
tearing variable is found, it must be the predecessor
and the traversal is stopped. Thus, the predecessor
to every tearing variable can be found defining an or-
der between them which corresponds to the kinematic
graph of the mechanical system. Please note, that this
only works for tree structured systems. Otherwise a
body, and therefore a tearing variable, may have more
than one predecessor.

In a next step, the residual equation to each tearing
variable has to be found. Again, a breadth-first graph
traversal is started from every tearing variable follow-
ing each edge. The first residual equation, that is found
is assigned to the tearing variable.

4.2.2 Finding a suitable ordering

From the kinematic graph, obtained in the previous
step, the terminal pairs of tearing variables and resid-
ual equations are known. Starting at a terminal resid-
ual equation all paths to its tearing variable can be
found by following the in opposite direction. Valid
paths may also include eliminated nodes. Once all
paths have been found, decreasing numbers are as-
signed to the nodes using a breadth-first-search start-
ing at the tearing variable. Afterwards the nodes of
the residual equation and the tearing variable are num-
bered. Then all numbered nodes are eliminated from
the graph as well as the tearing variable from the kine-
matic graph. This process is repeated for the next ter-
minal tearing variable until all tearing variables are
eliminated. In a last step all remaining nodes are num-
bered. Thus, a number has been assigned to every node
allowing to apply Gaussian Elimination.

4.2.3 Applying Gaussian Elimination

Given the numbering of all nodes, the matrix A can be
constructed. Next Symbolic Gaussian Elimination is
applied to the matrix G=

[
A b

]
yielding an upper-

triangular G′, see section 3.2. The equations of the
strong connected component are then replaced by x =
G′−1b.

When performing Gaussian Elimination temporary
variables should be introduced after every elimination
step. Otherwise the symbolic expressions in the entries
of G′ may grow very fast.

4.3 Closed Loop Systems

Adapting the algorithm to cope with closed kinematic
loops is part of the ongoing work. This section shall
outline the problem and possible solutions.

Natural Matching still works reasonably well,
choosing joint accelerations and the constraint forces
of the loop as tearing variables. The search for the
predecessors of the tearing variables, however, breaks
down. Firstly because the tearing variables of the kine-
matic loop may have more than one predecessor and
secondly because they are located in the kinetic leg.

The ordering between the tearing variables then has
to be modeified such that, the tearing variables of the
loop closure joint are treated after all other tearing
variables belonging to the same kinematic loop.

So far, the search for the predecessors has been ex-
tended so that it finds every tearing variable which is
a parent in the kinematic graph. It leads to a dramatic
increase in effort for both the search as well as the as-
sembly of the kinematic graph. Tests have shown that
the whole algorithm suceeds for some models, includ-
ing the sample model, but it fails for others. Failing
is mainly caused because the search for predecessors
sometimes returns unexpected results.

5 Numerical Tests

The described algorithm has been implemented into
the OpenModelica Compiler. It has been tested on
multibody systems with tree structure only.

The following models have been used for testing:

1. Planar Pendulum - A sequence of n submodels
consisting of a revolute joint, a body and a fixed-
Translation

2. Split Pendulum - Same as Planar Pendulum but
with a short extra branch of constant length
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3. Alternating Pendulum - Same as Planar Pendu-
lum, but with alternating axes of rotation

4. Multi Pendulum - Each body is followed by two
more pendulum bodies with a limited recursion
depth (see Figure 5

Figure 5: Multi Pendulum

Figures 6, 7, 8 and 9 show the required operation
counts needed to calculate the whole model (including
the accelerations) for the four test cases. As can be
seen each curve exhibits a linear dependence on the
number of bodies and therefore the number of degrees
of freedom.

For comparison, the results when using tearing [1]
which is (O(n3)) have also been included. One may
see that for planar systems the O(n) algorithm pro-
duces much lower operation counts as the number of
bodies grow. In the 3D case, however, the tearing
algorithm outperforms the proposed O(n) algorithm.
Investigations have shown that this is partly due to
the limited symbolic simplification capabilities of the
OpenModelica Compiler.

6 Discussion

6.1 Applicability

The algorithm has been tested on several different
multibody models. It relies on the structural properties
of the linear system as discussed in the earlier sections.
Due to the fact that Tarjan’s Algorithm [6] decomposes
the system into seperate strong connected components,
the use of force elements does not influence the algo-
rithm as long as their value does not depend on accel-
erations or forces in the system. Hence, Accounting
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Figure 6: Results - Pendulum
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Figure 7: Results - Split Pendulum

for dry friction (tangential force depending on the nor-
mal force) for example, might cause the algorithm to
fail.

Structural singularities are found during compile
time, since during symbolic Gaussian Elimination
each pivot is checked if it is non-zero. Problems like
numerical cancellation or division by zero are not de-
tected by the compiler and have to be reported as errors
at runtime.

Due to the problems which may be encountered on
some models, the algorithm should not be enabled by
default. Instead it provides an interesting alternative
for users who try to tune their models for faster execu-
tion times, as it would be the case in real time applica-
tions, for example.
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Figure 8: Results - Alternating Pendulum (3D)
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Figure 9: Results - Multi Pendulum

6.2 O(n) or Tearing?

If Gaussian Elimination fails during compile time,
the current implementation switches back to Tearing.
However, the question arises which strong connected
components should the proposed O(n) algorithm be
applied to. The current (presumably non-efficient) im-
plementation is controlled by a compiler flag. If it is
set, the O(n) algorithm is applied to every strong con-
nected component. Should it fail, Tearing is applied
istead. A possible improvement could be, to control
that either by an annotation or by comparing the oper-
ation count.

6.3 Efficiency

The investigations suggest that this algorithm indeed
achieves O(n) performance and the results show that
it is often more efficient than Tearing. However, there
is still much potential for optimization. The most
promising optimization would be to exploit symme-
try. This could be achieved by looking for common
sub expressions.

The current version of the Model-
ica.Mechanics.MultiBody library however, is not
suited for exploiting symmetry since all transla-
tional variables are written with respect to the world
frame. Thus, for equation (1) and (3) the relationship
Ri, j = RT

j,i does not hold. Preliminary tests have
shown a 20% decrease in operation count, without the
usage of a common sub expression search, when the
symmetry is established by writing all translational
variables with respect to the local frame_a.

7 Outlook

Next steps include adaptions to make the algorithm
work reliably on models with kinematic loops. It is
also worth extending the module which performs sym-
bolic simplification by analyzing the assignments be-
fore code generation. This may also be combined with
trying to exploit symmetry in order to lower the num-
ber of operations.

Lastly, it would be interesting to see if that algo-
rithm may also be applied successfully to models from
other domains, like electrical networks or chemical
processes.

8 Conclusion

In this paper a special O(n) algorithm for calculating
the joint accelerations of a multibody system has been
adapted. With the novel graph theoretic interpretation,
general purpose Modelica compilers are able to solve
models from Modelica.Mechanics.MultiBody with a
computational effort proportional to number of bodies
n compared to the usual O(n3) algorithms based on
the mass matrix. A working implementation for the
OpenModelica Compiler has shown a linear relation-
ship between the operation count and degrees of free-
dom. When comparing the results to the tearing algo-
rithm, it became apparent that it outperforms the pro-
posed algorithm for non-planar models. This is partly
due to the limited symbolic simplification carried out
by the OpenModelica Compiler.
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Abstract

In this paper a working principle based upon the novel

expansion and distributor device EcoFlowTM is ana-

lyzed. The device enables compensation of flow mald-

istribution by control of individual channel superheat.

The working principle is discontinuous liquid injection

(pulsating flow) into each individual channels during a

specified cycle time. Moreover, the influence of the in-

jection cycle time is investigated together with an op-

tional secondary flow into the other channels with re-

gards to cooling capacity, overall UA-value and COP.

The results showed spurious fluctuations in pressure

when simulating the pulsating flow, thus the dynamic

behavior in the mixture two-phase flow model is in-

sufficient to model the discontinuous liquid injection

principle. Despite, the fluctuations and imperfections

of the model we found that the cycle time should be

kept as low as possible and that the optional secondary

flow increases performance. Moreover, the paper re-

ports on the applicability of Modelica developed mod-

els to analyze and optimize the working principle and

design of expansion devices such that Modelica may

be used in future development of novel discontinuous

expansion devices.

Keywords: refrigeration; air-conditioning; evap-

orator; two-phase flow; liquid injection; pulsation;

transient; dynamic; modeling; simulation; Modelica.

Nomenclature

Roman

A cross-sectional area (m2)

cp specific heat capacity (J kg−1K−1)

C capacitance flow (W K−1)

COP coefficient of performance (-)

D inner tube outer diameter (m)

d inner tube inner diameter (m)

Fw wall friction force (N m−3)

Fo orifice flow ratio parameter (-)

g gravitational acceleration (m s−2)

Ḣ enthalpy flow (W)

h specific mixed-cup enthalpy (J kg−1)

h̄ specific in situ mixture enthalpy (J kg−1)

htc heat transfer coefficient (W m−2K−1)

İ momentum flow (N)

K orifice flow coefficient

k thermal conductivity (W m−1K−1)

M mass (kg)

ṁ mass flow rate (kg s−1)

NTU number of transfer units (-)

OD opening degree (%)

P channel perimeter (m)

p pressure (Pa)

Q̇ heat flow rate (W)

q′′w wall heat flux (W m−2)

R thermal resistance (K W−1)

S slip ratio (-)

T temperature (K)

t time (s)

U velocity (m s−1)

UA overall UA-value (W K−1)

x vapor quality (-)

z axial channel length (m)

Greek

α void fraction (-)

ε effectiveness (-)

Θ distribution vector (-)

ρ density (kg m−3)

ρ̄ mixture density (kg m−3)
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ρ ′ momentum density (kg m−3)

θ angle to horizontal plane (deg.)

Subscripts

ax axial

c condensation

cyc cycle

e evaporation

exp experiment

f saturated liquid

g saturated gas

H homogeneous

damp dampening

inj injection

rad radial

ss steady state

tot total

w wall

1 Introduction

Flow maldistribution in fin-and-tube evaporators has

been shown by many investigators to reduce the per-

formance of air-conditioning systems in terms of cool-

ing capacity and COP. Furthermore, compensation of

flow maldistribution by control of individual channel

superheat has been shown to recover the penalties of

flow maldistribution significantly [1, 2, 3]. Perfect

control of individual channel superheats means that a

thermostatic or electronic expansion valve is located

on each evaporator channel and thus controls each su-

perheat to be the same. It is not beneficial for eco-

nomic reasons to install an expansion valve for each

channel. Therefore, the discontinuous liquid injec-

tion principle is studied in this paper as a promis-

ing method for compensation by control of individual

channel superheat. On the other hand, the tube cir-

cuitry of fin-and-tube evaporators may be optimized

to compensate flow maldistribution by design [4] such

that equal channel superheats occur, however, it does

not ensure equal channel superheats at part-load or off-

design conditions.

The focus of the current study is to gain more under-

standing and insight in the discontinuous liquid injec-

tion into each evaporator channels and its implications

for evaporator design and system performance in terms

of overall UA-value, cooling capacity and COP. We

will investigate implications for two standard tube cir-

cuitries namely the face split and the interlaced evap-

orator, see figure 1. Especially, we strive to optimize

the discontinuous liquid injection principle by study-

ing the effects of different specifications (cycle time

and optional secondary flow) and provide guidelines

for optimal energy efficiency. For simplicity we do

not consider actual flow maldistribution when evalu-

ating the effect of cycle time and optional secondary

flow. The injection principle is essentially two-phase

flow pulsations and the study may show the potential

of increasing capacity and COP by employing pulsa-

tions to the flow.

The modeling of the liquid injection dynamics

showed spurious fluctuations in pressure, which have

not been observed as high in any similar experiments

carried out at Danfoss. The current analysis should

therefore be seen as a first study of the injection dy-

namics with the current model approach and limita-

tions. When simulating the injection dynamics, we

must keep in mind that the correlations for heat trans-

fer, friction and void may become invalid at large tran-

sients in mass flow, since they are developed from

steady state experiments. Furthermore, the discontin-

uous refrigerant injection is essentially pulsating two-

phase flow, and the significance of the liquid/vapor in-

terfacial dynamics may become important such as in-

terfacial friction and drag and/or thermodynamic non-

equilibrium effects. These phenomenons are not in-

cluded in the typical mixture two-phase flow model

used in many Modelica libraries, and also used in the

current study (developed in Kærn [3]).

1.1 Liquid injection principle

The liquid injection principle is based on the recently

developed Danfoss product (EcoFlowTM [5]). Actu-

ally, the EcoFlow valve does not measure the individ-

ual channel superheats but only the overall superheat.

Furthermore, it does not provide continuous refriger-

ant flow in each channel, but rather discontinuous in-

dividual channel injection (modulation of each chan-

nel flow) with optional secondary flow to the other

channels. The optimal distribution of mass flow rate

(at flow maldistribution) is then found from a distribu-

tion analysis performed at specific time intervals dur-

ing operation, see Mader and Thybo [6]. The distribu-

tion analysis is essentially carried out by control algo-

rithms, where the importance of each individual chan-

nel on the overall superheat is measured in order to

find the optimal distribution. The individual channel

superheats become the same at the optimal mass flow

distribution.

The individual injection is performed by a stepper

motor (48 steps per revolution), which rotates the dis-

tributor disc, see figure 2a. The EcoFlow valve comes
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a b

Airflow Airflow

Figure 1: Tube circuitries of the interlaced evaporator (a) and the face split evaporator (b).

in two different designs, i.e. a multi-orifice (MO) de-

sign (main orifice + secondary orifices) and a single-

orifice (SO) design (main orifice only), see figure 2b

and 2c. The orifice size of the SO design is larger,

since more refrigerant needs to pass through the main

orifice. The SO design enables the possibility of in-

dividual channel defrost during cooling operation (no

defrost periods) for the face split evaporator only, see

figure 1b. As we shall see later, the results show that

the performance in steady state without considering

frost build-up becomes a bit smaller when using the

SO concept. Furthermore, all orifices of both designs

are closed in between each channel injection.

1.2 Objectives and content

The first objective is to evaluate the effect of the cycle

time for the MO and SO design concepts, i.e. the time

it takes for one revolution. The second objective is to

evaluate the size of the secondary orifices in the MO

design compared to the main orifice. The questions

that are sought to be answered are:

• What is the minimum cycle time for discontinu-

ous liquid injection? Too large cycle times will

cause too much dry-out of the channels.

• Does capacity decrease or increase by the discon-

tinuous liquid injection (pulsating flow)?

• How much refrigerant should pass through the

main and secondary orifices in the MO design?

Note that the results is focused on the steady state

performance in terms of overall UA-value, cooling ca-

pacity and COP, where the dynamics of the refrigerant

injection is modeled.

The paper starts by a brief description of the liq-

uid injection modeling and use of experimental results

for evaluating orifice flow coefficients for the actual

MO and SO designs. Then the pressure fluctuations

caused by the liquid injection modeling is considered

and compared to experiments using an earlier MO de-

sign and performed on the interlaced tube circuitry. Fi-

nally, the effect of the cycle time and flow ratio be-

tween main and secondary orifices of the MO concept

are investigated.

2 Modeling approach

This section describes the model that was imple-

mented in the Modelica language of the discontinu-

ous liquid injection principle. Furthermore, the system

model is described with focus on the evaporator.

2.1 Injection modeling

This section describes the experimental data reduction

that was performed of actual EcoFlow capacity tests,

in order to obtain the orifice flow coefficients for both

MO and SO designs (see figure 2). The goal of the

data reduction is to compute the mass flow through the

main orifice and secondary orifices at different pres-

sure levels and opening degrees (when the expansion

valve is open only). The capacity tests provide con-

tinuous capacity (evaporation of refrigerant) or mass
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Figure 2: EcoFlow distribution method and refrigerant

flow through discs (a), single-orifice (SO) discs (b) and

multi-orifice (MO) discs (c).

flow rate through the valve, but we are only interested

in the mass flow through the valve when it is open.

When knowing the orifice flow coefficient K, the mass

flow through the valve may be computed by the single

phase orifice equation as

ṁopen = KA

√

2ρ f (pin − pout) (1)

where A is the flow area of the orifice, ρ f is the sat-

urated liquid density, pin and pout are the pressure at

inlet and outlet of the valve. The use of equation 1

is the standard method of developing empirical equa-

tions to predict mass flow rate through orifices [7] even

in refrigerant expansion devices [8, 9].

Two-phase flow effects such as partial vaporization

(flashing) are included in the flow coefficient. Further-

more, the capacity tests of the orifice discs were only

carried out at standard conditions. It means that K will

not be dependent on the pressure levels, and is thus as-

sumed to be constant at different pressure levels. The

standard conditions for these capacity tests are: Evap-

oration at 5◦C, condensation at 32◦C, 4 K subcooling

and no superheat. The relation between the experi-

mental mass flow rate and valve capacity is thus

Q̇exp = ṁexp[hg(pout)−h(pin,Tin)] (2)

The stepper motor has 48 steps per revolution equal-

ing 7.5 degree rotation per step. The step time is 10

ms per step, i.e. a minimum of 480 ms per revolution

(minimum cycle time). Due to the opening and clos-

ing of the valve, the liquid refrigerant before the valve

will create a fluid hammer (also called a hydraulic

shock). The moving liquid is suddenly forced to stop,

and the pressure builds up before the valve and a pres-

sure wave will propagate upstream. In order to elimi-

nate the peak forces acting on the valve, the speed of

the stepper motor is dampened as the valve opens and

closes.

To find the actual mass flow through the valve when

open we need to know the opening time of the valve

(injection time). The actual injection time is a func-

tion of cycle time, opening degree, damping time and

step time of the stepper motor. A detailed description

is given in Kærn [3], however, it is simply a matter of

tracking the time when open and closed. When the in-

jection time is known the mass flow through the valve

when open may be computed by mass continuity as

ṁopen = ṁexp

tcyc

tinj

(3)

and used in equation 1 to compute the flow coefficient

K for the total flow through main and secondary ori-

fices. The flow coefficient is thus for actual design and

number of discharge channels (EcoFlow is made with

up to 8 discharge channels), and is a function of open-

ing degree, cycle time, step time and damping time.

In this paper we only consider four channel evapora-

tors, i.e. two coils with two channels each. Therefore,

the flow coefficients were only computed on the four

channel orifice discs with MO and SO designs. The

standard EcoFlow time settings are a step time of 10

ms and a damping time of 120 ms for both opening

and closing. Using the capacity tests, we computed

the flow coefficients for the total flow as function of

opening degree for cycle times 6, 10 and 20 seconds

for both MO and SO designs. For the SO design the

total flow comes through the main orifice, however,

for the MO design we need additional information on

how much flow that goes into the main and secondary

orifices, respectively.

Fortunately, a capacity test was also performed at

steady state conditions, i.e. no rotation of the distrib-

utor disc and fully open continuous flow. The test

was done at all orifices open, but also at main orifice

closed, which gives us the flow ratio parameter be-
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tween the main orifice flow and total flow in steady

state as

Fo =
ṁmain,ss

ṁtot,ss

= 0.492 (4)

The ratio is assumed to be independent of the cy-

cle time and damping time, and thus directly used to

distribute the total mass flow to the main and the sec-

ondary orifices when the valve is open. The total mass

flow when the valve is open and the corresponding

steady state mass flow are shown on figure 3a. Fig-

ure 3b shows the corresponding flow coefficients.
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Figure 3: Total mass flow rate when valve is open (a)

and flow coefficients (b) as function of opening degree

(MO design); Cyc=cycle time [s], O=opening damp-

ing time [ms], C=closing damping time [ms].

We assume that the accelerational effects of the fluid

at opening and closing may cause the differences in the

flow coefficients and mass flows, which tends to differ

more at low opening degree, where the accelerational

effects should play a larger role compared to the actual

mass transferred through the valve. As expected, the

mass flow curves are below the steady state mass flow

and becomes closer at high opening degree, where the

opening and closing have smaller influence. Unfortu-

nately, there were no measurements between 10% and

60% opening degree.

The expansion process may experience choking of

the flow, i.e. the mass flow may not increase by de-

creasing the downstream pressure and is only a func-

tion of upstream conditions. Using the above mod-

eling approach does not include the choking phe-

nomenon and the mass flow is essentially a function

of pressure difference and flow coefficient. It is thus

assumed that choking of the flow is not existing.

2.1.1 Implementation

The implementation of the liquid injection model

in Modelica is done by using the CombiTable1D
model from the Standard Modelica Library, i.e. one-

dimensional linear table interpolation of the flow coef-

ficients. The mass flow rates through the main orifice

and secondary orifices (MO) are then computed using

equation 1 and 4. Now it is just a matter of comput-

ing the individual channel opening and closing time

during each cycle. A distribution vector is defined as

N

∑
i=1

Θi = 1 (5)

which determines the time period associated with each

channel ttube,i as

ttube,i = tcycΘi (6)

where i denotes the channel number and N the total

number of channels. The injection time for each chan-

nel is computed by

tinj,i =

(

ttube,i −
Nsteptstep

N
−

Ndamptdamp

N

)

OD

100

+
Ndamptdamp

N
(7)

The first term in the parenthesis is the controllable

time per channel (minimum cycle time subtracted)

times opening degree. The second term counts for the

additional mass flow that would occur even though the

opening degree is zero. The dampening time occurs

from approximately 70% to 100% opening area of the

orifice (as the disc turn). For simplicity, the additional

mass flow is assumed to be the mass flow when fully

open times the damping time.

The opening of each channel is assumed to occur

at ttube,i/2− tinj,i/2. The closing is then at ttube,i/2+
tinj,i/2. The changes in mass flow rate are made

smooth by use of the first order continuous functions

as described in [3, 10] for numerical reasons. The tran-

sition time was chosen to be 0.1 seconds.

Figure 4 shows some examples of the MO liquid

injection model at a cycle time of 10 seconds. It il-

lustrates the working principle of the liquid injection
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Figure 4: Mass flow distributions for liquid in-

jection model with MO design at cycletime =
10 s; Θ = [0.25,0.25,0.25,0.25],OD = 50% (a);

Θ = [0.4,0.25,0.1,0.25],OD = 50% (b); Θ =
[0.4,0.25,0.1,0.25],OD = 100% (c); pe = 9.3 bar and

pc = 19.8 bar (standard condition).

model as the opening degree and the distribution vec-

tor are changed. Throughout this paper we do not

consider compensation of flow maldistribution, thus

the liquid injection model runs in even flow mode

(figure 4a) and the distribution vector becomes Θ =
[0.25,0.25,0.25,0.25]. In compensating flow mode the

values in the distribution vector need be controlled in

the numerical model according to the individual chan-

nel superheat.

2.2 Model setup

The numerical model is described in Kærn et al. [11]

for a co-axial evaporator and has been updated as de-

scribed in Kærn [3] to model the full system (con-

denser and compressor also) and the tube circuitries

of the interlaced and face split evaporators, see fig-

ure 1. The model is implemented in the Modelica

language and Dymola 7.4 [12] is used as simulator.

The Modelica language facilitates object-oriented pro-

gramming, which is important for model reuse and ex-

tension. Dymola has been well tested within the field

of air-conditioning and refrigeration [13, 10]. Ther-

mophysical properties for R410A are obtained from

the Refeqns package [14]. In order to model the re-

frigerant distribution and circuitry in the evaporator

a dynamic distributed one-dimensional mixture finite

volume model was chosen. For the condenser, the sim-

pler moving boundary model of Zhang and Zhang [15]

was chosen, which averages the vapor, two-phase and

liquid regions. The models of the expansion and com-

pressor are quasi-static. Momentum transfer and fric-

tional pressure drop are only addressed in the evapora-

tor tubes, U-bends and feeder tubes, in order to predict

the mass flow distribution in the evaporator. Further-

more, the void fraction model by Zivi (1964) is used

to model the refrigerant charge of both condenser and

evaporator.

Since the evaporator pressure showed spurious fluc-

tuations when simulating the injection principle, we

included the refrigerant flow equations and implemen-

tation for the evaporator model in the appendix such

that these may be studied by the reader. Furthermore,

we did not use the Modelica stream prefix. Since the

compressor runs at constant speed, we did not observe

flow reversal during the flow pulsations.

2.2.1 Geometry and correlations

Table 1 shows the main geometry of the test case evap-

orator and condenser. The tube inner walls are smooth.

Furthermore, the feeder tubes to the evaporator have

an internal diameter of 3 mm and a length of 300 mm.

The manifold inner and outer diameter is 16 mm and

19 mm, respectively, and its length is 5 m from the

evaporator to the compressor. Note that the coil geom-

etry is the same for both the interlaced and face split

evaporator, however, the tube connections or circuit-

ing are different as shown on figure 1. Furthermore,

the simulation of the injection is very CPU demand-

ing and for this reason we chose to use only one cell

per tube for the evaporator. In terms of convergence

in total cooling capacity of the evaporator, this choice

is within 2% of the total cooling capacity at 5 cells

per tube [3]. In the condenser, refrigerant enters four

channels and is mixed before entering a fifth channel.

Since the circuitry is not addressed in the condenser, it

is assumed to be four straight tubes.
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Table 1: Main geometry of evaporator and condenser

Evaporator Condenser

Number of coils 2 1

Number of channels in each coil 2 5

Number of tubes in each channel 18 6

Tube length [mm] 444.5 2100

Inner tube diameter [mm] 7.6 7.6

Outer tube diameter [mm] 9.6 9.6

Transverse tube pitch [mm] 25.4 25

Longitudinal tube pitch [mm] 21.25

Fins Louvred Louvred

Fin pitch [mm] 1.81 1.15

Total outside area [m2] 17.3 52.2

Number of cells per tube 1

Table 2: Overview of used correlationsp

Air-side

Heat transfer Wang et al. (1999)

Fin efficiency Schmidt approximation (1949)

Single-phase

Heat transfer Gnielinski (1976)

Friction Blasius (1913)

Bend friction Ito (1960)

Two-phase

Heat transfer (evaporator) Shah (1982)

Heat transfer (condenser) Shah (1979)

Void fraction Zivi (1964)

Friction Müller-Steinhagen and Heck

(1986)

Bend friction Geary (1975)

Full references are given in Kærn [3].

Each discrete cell of the evaporator is calculated

as a separate heat exchanger with uniform transport

properties. Mass, momentum and energy conservation

equations are applied to the refrigerant in each cell,

where thermodynamic equilibrium is assumed. Fur-

thermore, changes in kinetic and potential energies are

neglected. It is assumed that the tube walls have rota-

tional symmetry (no azimuthal heat conduction) and

negligible axial heat conduction. Mass and energy

conservation equations are applied to the air, which

is assumed to be dry. Similar assumptions are used

in the condenser model of the refrigerant and airflow,

however the heat resistance and the dynamics in the

condenser wall are neglected. The used correlations

for both the evaporator and the condenser are given in

table 2. Furthermore, effectiveness-NTU relations are

employed.

The expansion process is modeled as an isenthalpic

process and the opening degree from equation 7 es-

sentially controls the superheat out of the evaporator.

The manifold is modeled by mixing of the refrigerant

streams, i.e. mass and energy conservation equations

are applied. The dynamics of the manifold wall is in-

cluded and heat transfer is modeled using a constant

heat transfer coefficient of 700 Wm−2K−1. The geo-

metric volume flow of the compressor is 6.239 m3h−1,

and polynomials from the rating of the compressor are

used to compute the isentropic and volumetric efficien-

cies.

2.2.2 Boundary conditions

The liquid injection model controls the overall super-

heat to 5 K by the opening degree using a PI-controller.

During start-up of the simulation, the charge of the

system is determined so that the subcooling becomes 2

K. The indoor and outdoor air temperatures are 26.7◦C

and 35◦C, respectively. The mean frontal air veloci-

ties are 1.16 and 0.68 ms−1 to the evaporator and con-

denser, respectively.

3 Experimental comparison

In this section we compare the injection modeling with

experiments carried out at Danfoss Nordborg. The dy-

namic behavior observed in the simulations showed

fluctuations in important variables such as superheat

and evaporating pressure. In Kærn [3] a sensitivity

analysis of the fluctuations were performed in order to

better understand the causes of the fluctuations, how-

ever, sensible variables such as void fraction and mani-

fold+suction volume did not eliminate the fluctuations

satisfactorily.

The fluctuations in the model have a time period

corresponding to the cycle time of the liquid injec-

tion model divided by the number of channels in the

evaporator (for even flow mode, see figure 4a). These

fluctuations have not been observed as high in any ex-

periments carried out at Danfoss, where the sampling

frequency has been high enough to capture these fluc-

tuations. The sampling frequency is often chosen to

be 1 s−1 for refrigerant temperature and pressure mea-

surements at Danfoss, which is too low for capturing

the injection dynamics seen in the numerical model.

3.1 The experiments

The EcoFlow experiments were performed on a bit dif-

ferent system and conditions than described in previ-

ous section. The system comprised a 10.5 kW inter-

laced evaporator, a hermetic scroll compressor, micro-

channel condenser and an early MO disc version. The

early design of the MO disc is estimated to have a flow
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Table 3: Reduced experimental boundary conditions

Superheat 5 K

Pressure out of condenser 31.9 bar

Liquid temperature out of condenser 45.6 ◦C

Volume flow out of evaporator 7.17 m3h−1

Indoor air temperature 24.3◦C

Indoor frontal air velocity 2.98 m s−1

ratio parameter Fo (equation 4) of 0.8, which reflects

the earlier version cross-sectional areas of the main

and secondary orifices. Furthermore, the flow coef-

ficients, the step time and damping time are assumed

to be the same as the final MO disc design. The cycle

time was six seconds in the experiments and the flow

distribution mode was even flow, see figure 4a.

These experiments are the most recent experiments

carried out at Danfoss in Nordborg on a fin-and-

tube four channel evaporator using the EcoFlow valve.

Later experiments including compensation were per-

formed with the final EcoFlow version, however, on

larger capacity units with six or eight channels each,

which complicates the simulations drastically. For

these reasons, the earlier EcoFlow MO experiments

were chosen for the comparison. More information

about the experimental data is given in Kærn [3]. The

experimental data is reduced in order to be used as in-

put to the evaporator model only, thus we only simu-

late the 10.5 kW evaporator and manifold+suction vol-

ume in this comparison. Table 3 lists the model inputs.

Figure 5a and 5b show the experimental superheat

and pressure fluctuations during three cycles. The cor-

responding model results are shown in figure 5c and

5d. Note that the thick curve around 5 K is overall

superheat. Furthermore, the experiments show a bit

higher individual superheats. This is because that they

were measured on the tube wall surface with insula-

tion around the tube, and may have heat entering from

the surroundings.

When comparing to the experimental data, it is seen

that the pressure fluctuations are smaller (approxi-

mately one third in amplitude of the numerical results).

It is difficult to make this conclusion based on these

experimental results, since the sample time was only

1 s−1 for the pressure. However, the experiments car-

ried out at Danfoss with higher frequency did not show

as high fluctuations as the numerical model does here.

The reason for these high fluctuations in the numer-

ical model have not been obtained so far. However,

we believe that the interfacial dynamics of the two-

phase flow and the presence of thermodynamic non-

equilibrium may be responsible for the dampening of

the pressure fluctuations in the experiments. These

are inherently exclusive in the mixture two-phase flow

model. In addition, the refrigerant heat transfer, pres-

sure drop and void correlations are developed from

steady state experiments and employed at large tran-

sients, however, no dynamic two-phase flow correla-

tions (pulsating flow) were found in the literature.

If we compare the individual superheat measure-

ments and the prediction by the numerical model, then

the accordance is much more acceptable. Both the

measurements and the model predictions show the ef-

fect of the liquid injection into each channel, since

they fluctuate similarly at a time period correspond-

ing to the cycle time. Furthermore, the superheat de-

creases as the refrigerant enters through the main ori-

fice into each channel as indicated on figure 5e. The

corresponding mass inside each channel is shown on

figure 5f, which increases when the refrigerant enters

through the main orifice and otherwise decreases.

What is probably most important is the individual

channel overall UA-value in figure 5g, which shows a

decrease just before new refrigerant is fed to the cor-

responding channel. There may be an optimization

potential here if the cycle time is chosen such that

the UA-value decrease is avoided. Figure 5h shows

the corresponding individual channel pressure drop by

friction and acceleration due to density and mass flux

differences. When considering the individual channel

pressure drop due to friction and acceleration, one may

expect that this is the cause of the pressure fluctua-

tions, however, the sensitivity analysis from [3] proves

otherwise. It is interesting to note that the accelera-

tional pressure drop is positive as the refrigerant is fed

to each channel. This is because the refrigerant mass

flow is higher at the inlet compared to the outlet of the

channel, i.e. the difference in momentum flow between

inlet and outlet is positive.

4 Simulation results

Despite the presence of the pressure fluctuations, the

numerical model is used to perform simulations of the

significance of the cycle time for both the multi-orifice

(MO) and single-orifice (SO) designs. Furthermore,

the flow ratio parameter Fo (equation 4) for the MO

design will be investigated, i.e. the flow distribution

between the main and secondary orifices of the MO

design.
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Figure 5: Zoomed-in experimental superheats and suction pressure (a,b); Model comparison (c,d) and other

model results (e-h) at uniform airflow: Inlet individual channel mass flow rate (e), individual channel mass (f),

individual channel overall UA-value (g) and individual channel accelerational and frictional pressure drop (h).

4.1 Cycle time

Figure 6 (a,b,c) shows the UA-value, cooling capacity

and COP using MO and SO designs as function of the

cycle time. Note that the orifice flow coefficients for

the 3 second cycle time simulations were assumed to

be the same as for the 6 second cycle time case.

The results show that the MO design performs bet-

ter than the SO design. Furthermore, the cycle time

should be kept as low as possible. If flow pulsations

increase heat transfer we would have expected an op-

timum cycle time, but it seems to be outside the cycle

times considered or not shown using the current mix-

ture model and limitations (see discussion). The sim-

ulation using the SO design at a cycle time of 20 sec-

onds failed and was not obtainable. It also seems that

this case decreases the performance drastically. The

question regarding which cycle time is the maximum

limit is difficult to answer based on the present results.

For these four channel evaporators it seems that the

maximum cycle time is 10 and 6 seconds for the MO

and SO design, respectively. Otherwise, the channels

dry-out too much when the valve is closed.

The face split circuitry shows the best performance

in contrast to the interlaced circuitry at uniform flow

conditions for each distribution method. This is be-

cause the superheated regions of the face split evapora-

tor is in the first tube row and is thus minimized. This

also means that the face split evaporator performs bet-

ter than the interlaced if flow maldistribution is com-

pensated as also shown by Kærn [3].

4.2 MO flow ratio

Figure 6 (d,e,f) shows the UA-value, cooling capacity

and COP as function of the flow ratio parameter Fo,

and at a cycle time of 6 seconds. It shows that the

maximum performance is when Fo equals 0.25, which

means that the main and secondary orifices have the

same dimension, thus no possibility to distribute mass

individually. Essentially, all the curves on figure 4a co-

incides, i.e. the flow is distributed evenly to all orifices

at each injection.

It shows that for uniform flow conditions, the op-

timal refrigerant mass flow distribution is uniform.

However, the decrease in performance as Fo increases
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Figure 6: UA-value, cooling capacity and COP vs. the cycle time (a,b,c) at Fo = 0.492 for the MO design;

UA-value, cooling capacity and COP vs. the flow ratio parameter (d,e,f) at cycle time tcyc = 6 seconds.

is small and the maximum limit seems to be around

0.6. Otherwise the secondary channels will also dry-

out too much. Furthermore, the Fo = 95% results of

the MO design seems to be close to the SO design re-

sults presented here at Fo = 100%.

5 Discussion

It is difficult to claim whether the two-phase flow pul-

sations increase or decrease the heat transfer mecha-

nism. Firstly, the two-phase flow regimes are broken

up by the flow pulsations and giving rise to new dis-

continuous flow patterns, which are not properly re-

flected in the steady state correlations for refrigerant

heat transfer, pressure drop and void fraction. No two-

phase flow correlations were found in the literature by

the authors that were developed for discontinuous liq-

uid injection or pulsating flow. Secondly, the mixture

two-phase flow model (also used in many Modelica li-

braries) showed spurious pressure fluctuations, which

have not been observed as high in any experiments car-

ried out at Danfoss. The amplitude of the fluctuations

are approximately 3 times higher in the model com-

pared to similar experiments. Thus the readers need

to be cautioned that the results and conclusions from

the liquid injection modeling are obtained despite the

presence of these fluctuations. It is believed that the

absence of the two-phase interfacial dynamics in the

mixture two-phase flow model is the main cause of the

high pressure fluctuations.

It needs to be stressed that it is not the finite volume

model approach itself that leads to these fluctuations,

but rather the governing phasic equations when added

and becoming mixture equations. The model could

be a separated flow model that includes the governing

phasic equations and possibly the finite volume model

could be used to discretize the phasic equations again.

It is difficult to claim what may minimize the pressure

fluctuations. The only separated flow model known

to the authors that is implemented in Modelica is the

work of Bauer [16], who implemented both phasic mo-

mentum equations. It resulted in another state variable

(the velocity difference between the phases), which es-

sentially is related to the void fraction. It would be

interesting to look deeper into such model approaches

when considering these fluctuations. Similarly, more

dedicated experimental evidence of these fluctuations

would be interesting to have.

6 Conclusion

We conclude that the typical mixture two-phase flow

model that is used in many Modelica libraries is in-

sufficient to model the discontinuous liquid injection

principle (pulsating flow) into each evaporator chan-

nel. This is because the simulations showed spurious

fluctuations in evaporating pressure and superheats,

which have not been observed as high in any experi-

ments carried out at Danfoss. Furthermore, it should

be stressed that the correlations for heat transfer, pres-

sure drop and void fraction employed in mixture two-

phase flow models do not reflect the dynamic behavior
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of the pulsating flow, since they are based upon steady

state experiments. To draw detailed conclusions, fur-

ther studies on the discontinuous liquid injection prin-

ciple should be conducted in order to fully understand

and model the phenomenon.

Despite the fluctuations, two orifice designs of the

discontinuous liquid injection principle were investi-

gated in uniform flow conditions, i.e. the multi-orifice

(MO) design and the single-orifice (SO) design. The

multi-orifice design allows for a secondary flow into

the remaining channels at each channel injection.

The simulations of the discontinuous liquid injec-

tion principle showed that the MO design gave better

performance compared to the SO design, without con-

sidering the possible individual channel defrost possi-

bility of the SO design for the face split circuitry. In

addition, the main flow and the individual secondary

flows in the MO design should be kept as even as pos-

sible while having the required mass flow distribution

control band. Based upon the four channel evapo-

rator that were analyzed, it is recommended that the

cycle time should be kept below 10 and 6 seconds

for the MO and SO designs, respectively. Further-

more, the flow ratio parameter should be around 0.6,

or adapted to specific tube circuitry according to the

required mass flow distribution control band.

A Refrigerant flow equations and im-

plementation (evaporator model)

This appendix describes the refrigerant flow equations

and implementation for the evaporator model only. It

is done in order to fully state the equations that lead to

the spurious fluctuations in evaporating pressure when

simulating the liquid injection principle.

A.1 Mixture two-phase flow

The model of the one-dimensional two-phase flow is

the simplest form, i.e. the mixture model as derived

by performing a differential analysis on each phase

and adding the phasic equations [17]. The result is

the mixture mass conservation, the mixture momen-

tum conservation and the mixture energy conservation

equations given by

A
∂ ρ̄

∂ t
+

∂ ṁ

∂ z
= 0 (8)

∂ ṁ

∂ t
+

∂

∂ z

(

ṁ2

ρ ′A

)

=−A
∂ p

∂ z
−FwA− ρ̄gAsinθ (9)

A
∂

∂ t

(

ρ̄ h̄− p
)

+
∂

∂ z
(ṁh) = Pq′′w (10)

where it has been assumed that thermodynamic equi-

librium exists and that the changes in kinetic and po-

tential energy are negligible. The mixture density, spe-

cific in situ enthalpy, specific mixed-cup enthalpy and

momentum density are given by

ρ̄ = ρgα +ρ f (1−α) (11)

h̄ = [ρ f h f (1−α)+ρghgα ]/ρ̄ (12)

h = (1− x)h f + xhg (13)

ρ ′ =

(

(1− x)2

ρ f (1−α)
+

x2

ρgα

)

−1

(14)

where the void fraction is defined as α = Ag/A, and

the vapor quality is defined as x = ṁg/ṁ.

Using the definition of the slip ratio, the void frac-

tion and the vapor quality, the fundamental void-

quality relation can be derived as

S =
Ug

U f

=

ṁg

ρgαA

ṁ f

ρ f (1−α)A

=
x

1− x

ρ f

ρg

1−α

α

(15)

and rewritten in terms of the void fraction as

α =

[

1+
ρg

ρ f

1− x

x
S

]

−1

(16)

If homogeneous flow is assumed, then S = 1 and the

homogeneous void fraction, αH , may be calculated

by equation 16. Furthermore, for homogeneous flow it

can be shown that h̄ = h and ρ ′ = ρ̄ = ρH by using the

homogeneous void fraction, where the homogeneous

mixture density, ρH , becomes

ρH =

(

x

ρg

+
1− x

ρ f

)

−1

(17)

The state variables are chosen to be h̄ and p. The

derivative of the mixture density with respect to time

is computed by use of the chain rule

∂ ρ̄

∂ t
=

∂ ρ̄

∂ p

∣

∣

∣

∣

h̄

∂ p

∂ t
+

∂ ρ̄

∂ h̄

∣

∣

∣

∣

p

∂ h̄

∂ t
(18)

where the partial derivatives of mixture density with

respect to pressure and in situ enthalpy are calculated

by numerical finite difference as
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∂ ρ̄

∂ p

∣

∣

∣

∣

h̄

=
ρ̄(p+∆p, h̄)− ρ̄(p, h̄)

∆p
(19)

∂ ρ̄

∂ h̄

∣

∣

∣

∣

p

=
ρ̄(p, h̄+∆h̄)− ρ̄(p, h̄)

∆h̄
(20)

Equations 8, 9 and 10 are discretized according to

the Finite Volume Method (FVM), where the number

of control volumes must be high enough to resolve the

spatial distribution of properties.

The staggered grid structure is adopted as described

by Patankar [18]. It means that the mass and energy

conservation will be solved on the control volume grid,

and the momentum equation will be solved on a stag-

gered grid as depicted on figure 7, where ψ denotes

a thermodynamic quantity and ψ̂ its approximation.

Similar discretization methodology was used in Bauer

[16].

Inlet

ψ1 · · · ψi · · · ψn

Outlet

ṁ1 · · · ṁi ṁi+1 · · · ṁn+1

ψ̂i ψ̂i+1

Figure 7: Staggered grid structure; thick = control vol-

ume grid, dashed = staggered grid

The mass and energy conservation equations be-

come

A∆z
dρ̄i

dt
= ṁi − ṁi+1 (21)

A∆z
d

dt

(

ρ̄ih̄i − pi

)

= Ḣi − Ḣi+1+ Q̇i (22)

where the enthalpy flow Ḣi = ṁiĥi and heat flow Q̇i =
P∆zq′′w,i = P∆zhtc,i(Tw,i−Ti) have been used, and New-

ton’s law of cooling is applied with the well known

heat transfer coefficient htc.

For convection dominated flows the upwind differ-

ence scheme is recommended to approximate thermo-

dynamic quantities onto the staggered grid, because

central difference scheme may lead to non-physical so-

lutions. The 1st order upwind scheme is obtained by

taking the control volume face value (staggered grid

center) to be equal to the nearest upstream control vol-

ume center, thus

ψ̂i ≈ δiψi +(1−δi)ψi−1 i = 1..n+1 (23)

where δi is the indicator function denoting the direc-

tion of the mass flow

δi =

{

0 ṁ ≥ 0

1 ṁ < 0
(24)

The momentum equation becomes

∆z
dṁi

dt
= ∆İi −A(pi − pi−1)−Fw,iA∆z

−
ˆ̄ρigA∆zsinθ (25)

where the momentum flow İi = ṁ2
i /(ρ̂

′

i A) has been

used and the difference in momentum flow, ∆İi, is ap-

proximated according to the 2nd order central differ-

ence scheme as

∆İi ≈

(

İi−1 − İi

)

+
(

İi − İi+1

)

2
=

dİi−1 +dİi

2
(26)

where dİ is the momentum flow difference between

the staggered grid cells. The use of the central dif-

ference scheme serves to avoid discontinuities in the

momentum equation.

Boundary models are used to compute the boundary

conditions Ḣ, İ, dİ, ψ̂ . The change of momentum flow

dİ at the inlet or outlet is simply set to zero, whereas

the other variables are computed from the thermody-

namic state and the mass flow rate.

Correlations for the frictional force, Fw, the heat

transfer coefficient, htc, and the void fraction, α , must

be supplied to close the system of equations.

A.2 Tube wall

The tube wall is discretized according to the Resis-

tance Capacitance Method [19]. The method essen-

tially uses the thermal resistances to describe the heat

flows across the tube wall boundaries. The tube wall is

assumed to have rotational symmetry, i.e. T = T (r,z),
and thus the energy equation for each discrete cell be-

comes

Mcp

dT

dt
= Q̇W + Q̇E + Q̇S + Q̇N (27)

where Q̇S = −P∆zq′′w from equation 10. The entering

and leaving heat flows are depicted on figure 8.

By definition, the heat flows are computed as Q̇ =
∆T/R, where the thermal resistances in the radial and

axial directions to the midpoint of the wall cell are

Rax = 0.5
∆z

kA
(28)

Rrad = 0.5
ln

D/2

d/2

2πk∆z
(29)
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Figure 8: Heat flows to and from the tube wall

The boundary condition at the inlet and outlet of the

pipe wall is simply no heat flow in the axial direction.

Since we only use one cell per tube in this study the

axial heat conduction is essentially neglected.

A.3 Airflow

The airflow is assumed to be incompressible and can

not accumulate mass or energy. With these assump-

tions, the mass and energy conservation equation for

each air cell become

ṁin − ṁout = 0 (30)

(ṁcpT )
in
− (ṁcpT )

out
+ Q̇N = 0 (31)

The effectiveness-NTU method is applied to de-

scribe the variation in air temperature, i.e. the single

stream heat exchanger configuration where the surface

temperature of each cell is uniform. It describes the

actual heat flow by the effectiveness, ε , of the highest

possible heat transfer, i.e.

Q̇N = εCmin(−∆Tmax) (32)

where Cmin is the minimum capacitance flow and

∆Tmax is the maximum temperature difference. Cor-

relations for the heat transfer coefficient and the fin

efficiency must be applied to compute the Number of

Transfer Units and thus the effectiveness.

A.4 Smooth functions

A first order continuous function is applied at the

phase transitions (0 ≤ x < 0.05 and 0.95 < x ≤ 1). The

function ensures a smooth transition from two-phase

to single phase in heat transfer and frictional pressure

drop correlations. If the transitions are discontinuous,

the equation solver might be slow or even fail to con-

verge. The first order continuous function is described

in Richter [10]. The used correlations are shown in

table 2.

A.5 Heat exchanger architecture

Components of the refrigerant (both control volume

grid cell and staggered grid cell), the wall and the air

have been made in Dymola, and essentially arrays of

these components are put together to form the evapo-

rator in cross flow operation, as shown on figure 9.

Refrigerant Refrigerant

Air

Air

RefCell

WallCell

AirCell

· · ·

· · ·

· · ·

RefCell

WallCell

AirCell

1 · · · n

Figure 9: Heat exchanger architecture; cross flow.

Following this implementation, we did not use al-

ready made components from the Modelica standard

library. We chose this to learn every step of the imple-

mentation in Modelica and to be able to quickly apply

changes to the model formulation and correlations if

necessary. Furthermore, we did not use the Modelica

stream prefix. Since the compressor runs at constant

speed, we did not observe flow reversal during the flow

pulsations.

The circuitry modeling is a bit more complex than

shown on figure 9, however, its construction is simply

a matter of running through many for loops to connect

the airflow paths and the refrigerant bends (assumed

adiabatic) with correct radius. Note that the refrigerant

flow is discretized fully from inlet to outlet through the

bends such that the bends also contains a volume grid

cell and a staggered grid cell. More information on the

circuitry implementation is given in Kærn [3].
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Abstract 

The Modelica Buildings library contains a package 

with a model for a thermal zone that computes heat 

transfer through the building envelope and within a 

room. It considers various heat transfer phenomena 

of a room, including conduction, convection, short-

wave and long-wave radiation. The first part of this 

paper describes the physical phenomena considered 

in the room model. The second part validates the 

room model by using a standard test suite provided 

by the American Society of Heating, Refrigerating 

and Air-Conditioning Engineers (ASHRAE). The 

third part focuses on an application where the room 

model is used for simulation-based controls of a 

window shading device to reduce building energy 

consumption. 

Keywords: Buildings library; ANSI/ASHRAE Stand-

ard 140; Simulation-Based Controls 

1 Introduction 

To support the design and operation of low energy 

buildings, the Lawrence Berkeley National Laborato-

ry (LBNL) has been developing a free and open 

source Modelica Buildings library for building ener-

gy and control systems [1]. Version 1.1 Build1 of the 

library contains about 200 component models for 

building energy and control systems. These compo-

nent models can be used for (1) rapid prototyping of 

innovative building systems, (2) design of building 

energy systems, (3) performance analysis of existing 

building systems, (4) development, specification and 

optimization of building control sequences, and (5) 

model-based operation for controls, fault detection 

and diagnostics.  

Recently, we implemented window and room models 

into the Buildings library to extend its capability to 

whole building energy simulation [2]. However, the 

models were not systematically validated against 

reference data in [2]. In [3], we presented the valida-

tion of the window model which is an important part 

of the room model. This paper is to validate the room 

model and to show an application where the model is 

used as part of a controls framework of a window 

shading device of a building. After the introduction, 

we will briefly describe the physics and implementa-

tion of the room model. Then we will validate the 

room model using a subset of ANSI/ASHRAE 

Standard 140 [4], which is a standard test suite for 

evaluating building energy simulation tools. After 

validating the room model, we will describe an ap-

plication where the room model is part of a simula-

tion-based controls framework used to control a 

window shading device of a test cell for reducing 

building energy consumption.  

2 Room model 

The room model of the Buildings library simulates 

heat transport processes within rooms and through 

the building envelope. This model can be used for 

the modeling of rooms with unlimited number of 

opaque and transparent surfaces or entire buildings. 

The room model takes into account the following 

physical processes:  

(1) Transient or steady-state heat conduction through 

opaque surfaces, such as walls.  

(2) Heat transfer through glazing systems including 

solar radiation, infrared radiation from ambient envi-

ronment, heat conduction and heat convection.  

(3) Convective heat transfer between the room (in-

side) air and room-facing surfaces using either a con-

stant heat transfer coefficient or a temperature-

dependent heat transfer coefficient.  

(4) Convective heat transfer between the outside air 

and outside-facing surfaces using either a constant 

heat transfer coefficient or a variable heat transfer 

coefficient as a function of wind-speed, wind-

direction and temperature.  

(5) Solar and infrared heat transfer between the room 

enclosing surfaces. 
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(6) Temperature, pressure and species balance equa-

tions inside the room volume.  

Note that the current room model assumes that the 

air in the room is well-mixed so that a single volume 

is used to represent the room air. More details of the 

room model are available in [2]. 

3 Validation of the room model 

This section focuses on validation of the room model 

using different cases of ANSI/ASHRAE Standard 

140 [4]. The Standard 140 is widely used in the 

building simulation community for testing the accu-

racy of building simulation models. Due to the com-

plexity and high cost, it is difficult to precisely 

measure the energy performance of a building for a 

year. As an alternative approach, Standard 140 doc-

uments the simulated annual energy performance of 

a thermal zone using different building energy simu-

lation tools. The simulation results of the tools are 

not the same since they use different assumptions, 

physical models and implementations. However, the 

variation of the simulation results is usually in a rea-

sonable range. In this paper, we present validation 

cases of a low and high mass building using cases 

600, 610, 620, 630, 600FF, 900, and 900FF.  

Model configuration 

For the validation, the following model configura-

tions have been used: 

 Room-side convective heat transfer coefficients 

are a function of the difference between air and 

surface temperature. 

 Outside convective heat transfer coefficients are 

a function of the difference between air and sur-

face temperature, and a function of wind speed. 

 The long-wave radiative heat transfer has not 

been linearized. 

 The medium model Build-

ings.Media.GasesConstantDensity.SimpleAir has 

been used. 

For more details, all cases are available in the Build-

ings library version 1.2 

3.1 Case 600: Low mass building without shad-

ing (South facing windows) 

Case 600 is a low mass rectangular zone (6m × 8m × 

2.7m) without interior partition and with two win-

dows (3m × 2m each) on the south wall (Figure 1). 

Construction material properties and other details are 

provided in [4]. For the validation, we simulated the 

zone for a year with weather data provided in [4].  

 

Figure 1 Case 600: Low mass rectangular zone 

Figure 2 compares the annual heating and cooling 

loads calculated by the room model of the Buildings 

library with results of other energy simulation tools 

provided in [4]. The results of the room model, la-

beled as Buildings Lib., are comparable with other 

energy simulation tools. The heating (5.44 MWh) 

and cooling (6.97 MWh) loads are within the range 

specified in [4] . 

 

Figure 2 Case 600: Comparison of annual heating and cool-

ing loads 

We also compared the predicted peak heating load 

(Table 1) and peak cooling load (Table 2) and their 

time of occurrence. Again, the results of the Build-

ings library are in close agreement with simulation 

results of other tools. The difference observed in date 

of peak cooling load can be caused by different 

modeling assumptions in the simulation tools. The 

peak heating (4.23 kW) and cooling (6.82 kW) loads 

predicted by the Buildings library are within the min-

imum and maximum range specified in [4].  
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Table 1 Case 600: Annual hourly integrated peak heating 

loads 

Code Name kW Date Hour 

ESP 3.437  4-Jan 5 

BLAST 3.940  4-Jan 5 

DOE2 4.045  4-Jan 5 

SRES/SUN 4.258  4-Jan 2 

TRNSYS 3.931  4-Jan 6 

TASE 4.354  4-Jan 2 

Buildings Lib. 4.229 4-Jan 5 

Table 2 Case 600: Annual hourly integrated peak cooling 

loads 

Code Name kW Date Hour 

ESP 6.194  17-Oct 13 

BLAST 5.965  16-Oct 14 

DOE2 6.656  16-Oct 13 

SRES/SUN 6.827  16-Oct 14 

TRNSYS 6.486  16-Oct 14 

TASE 6.812  17-Oct 14 

Buildings Lib. 6.821 17-Oct 13 

Figure 3 shows hourly load profiles on the day of 

peak heating load (Jan 4th).  In the load profiles, heat-

ing and cooling loads are represented with positive 

and negative values respectively. The Buildings li-

brary predicted that there was cooling load from 

about 11 a.m. to 5 p.m. and heating load for the rest 

of the day. This profile is similar to the profiles pre-

dicted by other simulation tools.  

 

Figure 3 Case 600: Comparison of hourly heating and cool-

ing load profiles for Jan 4
th

 

3.2 Case 610: Low mass building with shading 

(overhang) 

The case 610 is an extension of Case 600 in which a 

horizontal overhang is added to provide shading for 

the south facing windows. The overhang is 1m deep, 

located at 0.5m above the windows and extends from 

east to west facing walls as shown in Figure 4. This 

case tests the ability of a simulation tool to treat 

shading of a south exposed window. 

 

Figure 4 Case 610: Low mass building with overhang on 

south facing windows 

Figure 5 compares the annual heating and cooling 

loads calculated by the Buildings Library with other 

simulation tools. The heating (5.47 MWh) and cool-

ing (5.39 MWh) loads predicted by the Buildings 

library are within minimum and maximum range 

specified in [4]. As expected, adding shading device 

reduced the total cooling load. Compared to Case 

600, the reduction in cooling load varied from 19% 

to 36% for different energy simulation tools. The 

Buildings library predicted a reduction of 23%. With 

less solar gain, all the programs also predicted in-

creased (0.5% to 2%) heating load. The Buildings 

library predicted a minor increase of 0.6%. 

 

Figure 5 Case 610: Comparison of annual heating and cool-

ing loads 

Table 3 and Table 4 compare the predicted peak 

heating and cooling load and time of occurrence dur-

ing the year. All simulation tools predicted almost 

similar time for the occurrence of the peak heating 

load. For peak cooling loads, two simulation tools 

predicted significantly different dates than the rest of 

the simulation tools. The room model predicted the 

same date as the majority of the tools. The Buildings 
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library calculated a peak heating load of 4.23 kW 

which is within the range of reference data. However, 

it slightly over-predicted the peak cooling load (6.38 

kW) which is about 0.15% higher than the maximum 

value (6.37 kW) of the reference data. 

Table 3 Case 610: Annual hourly integrated peak heating 

loads 

Code Name kW Date Hour 

ESP 3.437  4-Jan 5 

BLAST 3.941  4-Jan 5 

DOE2 4.034  4-Jan 5 

SRES/SUN 4.258  4-Jan 2 

TRNSYS 3.922  4-Jan 6 

TASE 4.354  4-Jan 2 

Buildings Lib. 4.228 4-Jan 5 

Table 4 Case 610: Annual hourly integrated peak cooling 

loads 

Code Name kW Date Hour 

ESP 5.669  25-Nov 13 

BLAST 5.824  25-Nov 14 

DOE2 6.064  13-Jan 14 

SRES/SUN 6.371  25-Nov 14 

TRNSYS 5.675  25-Nov 14 

TASE 6.146  17-Oct 14 

Buildings Lib. 6.380 25-Nov 13 

3.3 Case 620: Low mass building without shad-

ing (East-West facing windows) 

The case 620 is same as Case 600 except that win-

dows are oriented towards east and west as shown in 

Figure 6.  

 

Figure 6 Case 620: East and West facing windows 

Figure 7 compares annual heating and cooling loads 

computed by Buildings Library with other simulation 

tools. The results of room model (heating load: 5.61 

MWh and cooling load: 4.31 MWh) are comparable 

with other simulation tools and are within the range 

specified in [4]. In contrast to Case 600 here heating 

load is higher than cooling as the room receives solar 

radiation during morning and evening when intensity 

of solar irradiation on the window surface is low, and 

during midday when the azimuth angle with respect 

to the window surface is high and the normal com-

ponent of irradiation is low. Also both windows are 

never simultaneously exposed to the sun.   

 

Figure 7 Case 620: Comparison of annual heating and cool-

ing loads 

Peak heating and cooling load with their time of oc-

currence is compared in Table 5 and Table 6. The 

results are comparable and are within range specified 

in [4]. Compared to Case 600 and Case 610 there is 

no significant change in peak heating load but peak 

cooling has reduced. This reduction is due to low 

solar heat gain as discussed earlier.   

Table 5 Case 620: Annual hourly integrated peak heating 

loads 

Code Name kW Date Hour 

ESP 3.591  4-Jan 6 

BLAST 3.941  4-Jan 5 

DOE2 4.046  4-Jan 5 

SRES/SUN 4.277  4-Jan 2 

TRNSYS 3.922  4-Jan 6 

TASE 4.379  4-Jan 2 

Buildings Lib. 4.230 4-Jan 5 

Table 6 Case 620: Annual hourly integrated peak cooling 

loads 

Code Name kW Date Hour 

ESP 3.634  26-Jul 16 

BLAST 4.075  26-Jul 17 

DOE2 4.430  26-Jul 17 

SRES/SUN 4.593  26-Jul 17 

TRNSYS 4.275  26-Jul 17 

TASE 5.096  26-Jul 16 

Buildings Lib. 4.295 26-Jul 16 

3.4 Case 630: Low mass building with shading 

(overhang and window side fins) 

Case 630 is an extension of case 620 in which an 

overhang and side fins are added on both east and 

west facing windows. The overhang is 1m deep, 3m 

wide and located 0.5m above the windows. The side 
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fins are 1m deep, along the vertical edges of the 

windows and extend from roof to ground level. This 

case tests the ability of the simulation tool to treat 

shading of east and west exposed windows with side 

fins and overhang combined.  

As the east and west side windows are covered with 

overhang and side fins, the room receives little direct 

solar heat gain. This results in higher heating loads 

and lower cooling load. Results obtained from the 

Buildings library (heating load: 5.88 MWh, cooling 

load: 3.35 MWh) are comparable and within range of 

results from other simulation tools (Figure 8). 

 

Figure 8 Case 630: Comparison of annual heating and cool-

ing loads 

Even though there is not much change in peak heat-

ing load compared to earlier cases, the peak cooling 

load has dropped significantly. In this case, both 

peak heating-cooling load and time of occurrence 

calculated by the Buildings library are within range 

and comparable with results from other tools as 

shown in Table 7 and Table 8.  

Table 7 Case 630: Annual hourly integrated peak heating 

loads 

Code Name kW Date Hour 

ESP 3.592  4-Jan 7 

BLAST 3.941  4-Jan 5 

DOE2 4.025  4-Jan 5 

SRES/SUN 4.280  4-Jan 2 

TRNSYS 3.922  4-Jan 6 

TASE N.A. N.A. N.A. 

Buildings Lib. 4.230 4-Jan 5 

Table 8 Case 630: Annual hourly integrated peak cooling 

loads 

Code Name kW Date Hour 

ESP 3.072  26-Jul 16 

BLAST 3.704  26-Jul 17 

DOE2 3.588  26-Jul 17 

SRES/SUN 4.116  26-Jul 17 

TRNSYS 3.608  26-Jul 17 

TASE N.A. N.A. N.A. 

Buildings Lib. 3.866 26-Jul 17 

Low mass basic sensitivity tests 

Sensitivity of each program for addition of overhang, 

side fins and change in window orientation is tested 

in [4] using differences in the results. The variation 

in annual and peak heating-cooling loads can be ob-

served in Table 9 and Table 10 for Case 600 and 

Case 610. Results for Buildings library are within the 

range specified in [4].  

Table 9 Difference in Case 600 and 610 results: Annual loads  

Code Name Heating [MWh] Cooling [MWh] 

ESP 0.059 -2.222 

BLAST 0.033 -1.582 

DOE2 0.077 -2.227 

SRES/SUN 0.054 -1.830 

TRNSYS 0.098 -1.891 

TASE 0.021 -1.272 

Buildings Lib. 0.029 -1.581 

Table 10 Difference in Case 600 and 610 results: Peak loads 

Code Name Heating [kW] Cooling [kW] 

ESP 0.000 -0.525 

BLAST 0.001 -0.141 

DOE2 -0.011 -0.592 

SRES/SUN 0.000 -0.456 

TRNSYS -0.008 -0.811 

TASE 0.000 -0.666 

Buildings Lib. -0.001 -0.441 

Differences in results of case 620 and 600 represent 

effect of change in window orientation. The differ-

ences in results of the Buildings library (Table 11 

and Table 12) for these cases are within the range 

specified in [4]. This indicates that the room model 

correctly models modification in window orientation.  

Table 11 Difference in Case 600 and 620: Annual loads 

Code Name Heating [MWh] Cooling [MWh] 

ESP 0.317 -2.72 

BLAST 0.276 -2.341 

DOE2 0.235 -2.745 

SRES/SUN 0.328 -2.645 

TRNSYS 0.201 -2.591 

TASE 0.366 -2.427 

Buildings Lib. 0.169 -2.661 
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Table 12 Difference in Case 600 and 620 results: Peak loads 

Code Name Heating [kW] Cooling [kW] 

ESP 0.154 -2.560 

BLAST 0.001 -1.890 

DOE2 0.001 -2.226 

SRES/SUN 0.019 -2.234 

TRNSYS -0.008 -2.211 

TASE 0.025 -1.716 

Buildings Lib. 0.001 -2.526 

As described earlier, in Case 630 overhang and side 

fins are added to the east and west facing windows of 

Case 620. The differences in results of these cases 

verify the effect of these shading devices. Table 13 

and Table 14 compare the results of the Buildings 

library with other simulation tools. 

Table 13 Difference in Case 620 and 630: Annual loads 

Code Name Heating [MWh] Cooling [MWh] 

ESP 0.437 -1.288 

BLAST 0.310 -0.984 

DOE2 0.525 -1.845 

SRES/SUN 0.329 -1.140 

TRNSYS 0.551 -1.485 

TASE N.A N.A 

Buildings Lib. 0.266 -0.956 

Table 14 Difference in Case 620 and 630 results: Peak loads 

Code Name Heating [kW] Cooling [kW] 

ESP 0.001 -0.562 

BLAST 0.000 -0.371 

DOE2 -0.021 -0.842 

SRES/SUN 0.003 -0.477 

TRNSYS 0.000 -0.667 

TASE N.A. N.A. 

Buildings Lib. 0.000 -0.429 

3.5 Case 600FF: Low mass building without 

temperature control  

Case 600FF is based on case 600 except that there is 

no mechanical heating or cooling system. The room 

temperature is floating with the weather conditions. 

The Buildings library computed the highest room 

temperature (65.9°C) at 3 p.m. on October 17 and 

the lowest room temperature (-19.8°C) at 8 a.m. on 

January 4. These results are consistent with the ones 

computed by other simulation tools in Standard 140. 

3.6 Case 900: High mass building with temper-

ature control  

Case 900 is a high mass building which uses the 

same building model as was used for Case 600 ex-

cept that the wall and floor construction were 

changed to use heavier materials. This case is used to 

test the ability of a simulation tool to treat thermal 

mass. As shown in Figure 9, the Buildings library 

predicted annual cooling and heating loads are in the 

range of Standard 140. The Buildings library also 

predicted the occurring hour for peak heating load 

(3.267 KW) at 7 a.m. on January 4 and peak cooling 

load (3.369 KW) at 2 a.m. on October 17. These val-

ues are also in the range of Standard 140.  

 

Figure 9 Case 900: Comparison of annual heating and cool-

ing loads 

3.7 Case 900FF: High mass building without 

temperature control  

Case 900FF is the same as case 900 with the only 

difference that there is no mechanical heating or 

cooling system. The room temperature is floating. 

The Buildings library computed the highest room 

temperature (42.6°C) at 3 p.m. on September 2 and 

the lowest room temperature (-5.7°C) at 8 a.m. on 

January 4. These results are consistent with the ones 

predicted by other simulation tools in Standard 140. 

4 Application 

This section describes an application where the vali-

dated room model of the Buildings library was used 

in a simulation-based controls framework to control 

a window shading device of one test cell of the Ad-

vanced Windows Test Facility at LBNL (Figure 10). 

The windows facility is a test facility with three 

identical test cells which serve for testing and eval-

uation of controls strategies and façade systems. The 

dry bulb temperature in the corridor of the facility 

(Figure 11) is controlled to a constant value and the 

walls of the test cells are well insulated. This is to 

insure that all test cells experience the same load 

profiles. Each of the test cells has a floor area of 

about 14 m2, a room volume of about 47m3 and a 

south facing window. The ovals in Figure 10 indicate 

the test cells that were used in this study. The win-
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dow shading device of the left test cell is controlled 

with the controls framework. The right test cell has a 

static interior blind and is used as our reference cell. 

The room air temperature of the test cells is con-

trolled to a fixed temperature. There are several sen-

sors in the test cells which measure room air temper-

atures, exterior glass surface temperatures at the up-

per and lower window surfaces, plug loads, lighting 

loads, fan loads as well as transmitted solar irradia-

tion at the upper and lower window surface. There 

are also several sensors located outdoors to measure 

external environmental conditions, such as solar ir-

radiances, outdoor temperature, and wind speed (see 

Figure 12).  

 

Figure 10 The Advanced Windows Test Facility at the Law-

rence Berkeley National Laboratory 

 

 

Figure 11 Schematic view of the Advanced Windows Test 

Facility at the Lawrence Berkeley National Laboratory 

In this application, the room model of the Buildings 

library is used to model the test cell with the window 

and an exterior venetian blind. The window system 

installed in the test cell is a double pane window. 

The exterior venetian blind can be remotely con-

trolled to be fully retracted or fully closed. It is also 

possible to control the slat angle positions of the 

blind.  

In the following sections, we will describe the con-

trols framework applied to control the blind of the 

window system. The objective of the framework is to 

control the blind to reduce heating and cooling loads 

of the test cell. The indoor dry-bulb temperature was 

controlled to a constant value of 24 C. To reduce the 

heating and cooling loads, an optimal blind position 

is calculated at discrete time steps using Modelica 

models of the Buildings library and a control algo-

rithm. This position is then converted into a control 

signal which is sent to real hardware to move the 

blind in the desired position. 

 

 

Figure 12 Instrumentation used at the test facility 

(Pyranometer (top left), pyrgeometer (top right), tempera-

ture sensors (bottom left), pyranometer (bottom right)) 

4.1 Overview of the Controls Framework 

Figure 13 shows the schematic of the framework for 

one simulation time step. It involves the co-

simulation between different simulation tools and the 

communication between hardware and software. The 

entire process is controlled by the Building Controls 

Virtual Test Bed (BCVTB) [5]. The BCVTB is an 

open source software environment developed by 

LBNL and based on the Ptolemy II software from 

UC Berkeley [6]. It allows expert users to couple 

different simulation programs for co-simulation, and 

to couple simulation programs with actual hardware 

[7]. 

In the controls framework, the BCVTB is the master 

that orchestrates the simulations and data exchange 

among simulators and hardware. It sets the start time, 

the stop time as well as the sampling time when 

blind position should be updated.  It uses the 

SystemCommand actor [5] to call scripts which start 

different simulation programs.  In our implementa-

tion, the simulation runs in real-time with a time step 

size of 5 minutes. 

The simulation workflow can be divided into 8 

steps. At the beginning of the simulation, the 

BCVTB gets the start and end time of the simulation, 

the test cell number, and the time step that are pre-

defined by the users. 

 In step (1) of every time step, it uses a Python [8] 

script to send requests through the internet to get the 

current clock-time, weather data, as well as plug, fan 

and lighting loads which are measured in the test 

cell.  

In step (2), it writes a weather file and a load file. 

The weather file contains measured weather data 

including diffuse solar irradiation on the horizontal 

surface, direct solar irradiation, the atmospheric in-

frared solar irradiation, outdoor dry-bulb tempera-

RoomC RoomB RoomA

Corridor

South
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ture, and wind speed. The load file contains the sum 

of plug, fan and lighting loads. 

In step (3), the BCVTB starts a Perl [9] script 

which invokes Radiance [10] to calculate the incom-

ing solar irradiations and the solar radiation absorbed 

by different room surfaces for multiple blind posi-

tions. Radiance is a ray-tracing based daylighting 

simulation program. It is selected because it can 

compute light transmittance of complex fenestration 

systems with light-redirecting shades. Since the 

Buildings library does not support the modeling of 

venetian blinds, we use the capability of Radiance to 

compute the light redirection of the blinds, and to 

compute the solar irradiation distribution in the room. 

This was achieved by calculating incident and ab-

sorbed solar irradiation in Radiance for distinct blind 

positions and overwriting the solar irradiation distri-

bution calculations done in the room model. In our 

configuration, we considered 11 positions. Because 

the simulations were fast compared to the sampling 

time, and only 11 control options need to be consid-

ered, we did an exhaustive search to determine the 

optimal control signal.  The first position is with the 

blind fully retracted. The second to the 11th position 

are with the blind set at angles with degree of 40, 35, 

30, 25, 20, 15, 10, 5, 0, and -5, respectively, where 

the last position is with the blind fully closed. The 

calculated irradiation data includes incident solar 

radiation on interior wall surfaces of the test cell and 

solar irradiation absorbed in glass layers and the 

shading layer of the window system. At the end of 

the calculation, the results are written to the files 

which will be used for step (4). 

 In step (4), the BCVTB starts a script, which 

simulates multiple instances of the Modelica room 

model using Dymola [11]. Each model represents the 

room with the blind set to a specific position. The 

model is parameterized using a weather file, load file 

as well as incoming and absorbed solar irradiation 

pre-calculated by Radiance. Figure 14 shows a 

screenshot of the Modelica implementation of the 

test cell. This model consists of 7 parts: part 1 de-

fines the heat sources which are read from the load 

file, part 2 is the PI controller for heating, part 3 is 

the PI controller for cooling, part 4 models the build-

ing envelope, part 5 represents the material proper-

ties of the building envelope, part 6 provides the 

weather data, and part 7 computes the infiltration in 

the test cell. 

In step (5), the BCVTB calls a Python script to 

collect the Modelica simulation results for different 

blind positions and determines the optimal position 

which will lead to the least heating and cooling load. 

This position is then written in a file named 

“chosenposition.txt”. 

In step (6), the BCVTB calls a script which saves 

the state variables of the room model with the opti-

mal blind position. These state variables will be used 

as initial conditions in the next time step. The capa-

bility of Modelica to easily reinitialize state varia-

bles, the transparency of making changes to models 

and the separation between process model, control 

implementation and numerical methods are im-

portant reasons why Modelica being well suited suit-

able for simulation-based controls operations. 

In step (7), the BCVTB calls a script which reads 

the optimal blind position from the 

“chosenposition.txt” file, converts it into a controls 

signal, and sends it through the internet to the actua-

tor to set the position of the blind.  

Finally, in step (8), the BCVTB calls a script 

which requests the hardware to report the actuation 

position set. This is written it in a log file. The 

BCVTB then pauses until the next time step is 

reached and restarts the process. 

 

 

Figure 13 Simulation-based controls framework used to control one of the test cells of the test facility
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Figure 14 Modelica implementation of the test cell 

4.2 Simulation results 

In our preliminary work, we measured the heating 

and cooling loads of two test cells for a period of 9 

days (from 04/13/2012 to 04/22/2012). One test cell 

used an interior static venetian blind set at 30 degree 

blocking angle (RoomA). This represents one com-

mon configuration for blinds which is generally set 

by users. The other test cell (RoomC) has an exterior 

blind controlled using the simulation-based controls 

framework.  

As shown in Figure 16 the heating and cooling 

load of the test cell with controlled exterior venetian 

blind is much less than that with the interior static 

blind. The measurements show in the peak up to two 

and half times lower cooling load in the room with 

the controlled exterior venetian blind. Consequently,  

 

 

one can save cooling energy by using the controlled 

exterior venetian blind. 

Considering the test was only about one week and 

there were days with missing data, further investiga-

tions are needed to evaluate the performance of the 

algorithm over a longer period of time. Both exterior 

blind and controls can contribute to the energy sav-

ing in current study. To quantify the energy saving 

due to the controls, we will need to use exterior ve-

netian blinds for both test cells. Nevertheless, the 

preliminary results show that our controls framework 

is functioning and the Modelica room model can 

meet the requirements of the application.  

 

Session 6C: Climate Systems II 

DOI Proceedings of the 9th International Modelica Conference    735 
10.3384/ecp12076727 September 3-5, 2012, Munich, Germany   



 

 

 

Figure 15 Measured outdoor dry bulb temperature 

 

Figure 16 Comparisons between heating and cooling loads 

derived from measurements obtained in RoomA (static 

blind) and RoomC (controlled blind) 

5 Conclusions 

The validation results show that the room model of 

the Modelica Buildings library generates similar re-

sults for low and high mass buildings with and with-

out shade compared to other energy simulation tools 

listed in ANSI/ASHRAE Standard 140. The applica-

tion shows how the room model of the Modelica 

Buildings library can be used as part of a simulation-

based controls framework of shading. This demon-

strates that the room model of the Modelica Build-

ings library can be used not only for whole building 

simulations, but also as part of a framework for sim-

ulation-based controls operations. 
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Abstract 

This paper presents the newly developed Indoor 
Climate Library. The library facilitates simulation of 
the coupled heat and moisture transfer through enve-
lopes and the interaction of envelopes with the inte-
rior air. The computation of coupled heat and mois-
ture transfer becomes more and more important for 
the development of electric vehicles. Due to the lack 
of waste heat from the combustion engine the heat-
ing of a vehicle cabin during winter time becomes a 
challenge. One way to reduce heat losses through the 
envelope is to add insulation. However, insulation 
bears the risk of water accumulation and its perfor-
mance usually decreases with increased water con-
tent. The Indoor Climate Library helps the user to 
detect such problems early in the product develop-
ment process and to find remedies. 

 

Keywords: Heat and moisture transfer; Indoor air, 
Modelica Library 

 

1 Introduction 

To compute heat and moisture flow through building 
wall constructions, Nouidui [1] has built the Building 
Physics Library as research code . The authors have 
now rearranged and updated this code with the focus 
on user friendliness and increased applicability. 
Templates have been added allowing the quick setup 
of a model. Furthermore, the package structure has 
been rearranged to allow the user to easily navigate 
the library. 

In Modelica different libraries are provided for the 
computation of building related problems. The 

Buildings Library [2-5] contains thermal models for 
walls, windows, shading systems, HVAC compo-
nents, controls, etc. Even components from the Mod-
elica Standard library allow quick setup of thermal 
models of wall constructions. However, these librar-
ies are limited to the thermal aspect of energy flows 
but neglect the moisture flow through constructions. 
Raised moisture levels adversely affect material 
properties. Risk of mold growth increases resulting 
in a harmful indoor environment [6]. Thermal con-
ductivity of insulation materials usually increases 
with moisture content resulting in a degradation of 
insulating properties. Furthermore, the moisture 
transfer itself leads to a considerable enthalpy flow 
when evaporation or condensation occur, affecting 
wall temperatures considerably. The goal of the In-
door Climate Library is to provide a tool that pre-
dicts heat and moisture flows. Based on outside 
weather conditions the temperature and humidity 
profile in the enclosure layers and of the inner air are 
computed. The classical application field of the li-
brary is for buildings. However, recent developments 
of energy efficient heating systems for electrical ve-
hicles show the need of using more insulation mate-
rials. Therefore, the library focuses on applications 
in the automotive and aviation sector as well. 

 

2 Use of the Indoor Climate Library  

The following section describes how to use the In-
door Climate Library. 
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Nomenclature  w Water content [kg/m³] 

A Area [m²]  wf Free water saturation [kg/m³] 

Aw Absorption coefficient [kg/(m²·h0.5)]  wmax Maximum water content [kg/m³] 

c 
cw 

Specific heat capacity of dry material [J/kg·K] 
Specific heat capacity of water [J/kg·K] 

 βc Convective mass transfer coefficient 
[kg/(m²·Pa)] 

d Thickness [m]  δ Water vapor permeability [m²·s] 

Dw Liquid transport coefficient [m²/s]  ε Emissivity [-] 

Dwr Liquid transport coefficient at redistribution [m²/s]  λ Thermal conductivity [W/m·K] 

Dws Liquid transport coefficient at suction [m²/s]  µ Water vapor diffusion number [-] 

f Form factor [-]  ρ Density [kg/m³] 

H Enthalpy [J/kg]  σ Planck constant 5.67·10-8 [W/(m²·K4)] 

hc Convective heat transfer coefficient [W/m²·K]    

mሶ  Mass flow rate [kg/(m²·s)]  Subscripts 

pwater Water vapour pressure [Pa]  i, j numeration indexes 

ሶݍ  Heat flow rate [W/m²]  l liquid 

T Temperature [K]  v vapor 

 

2.1 Before modeling 

Before modeling the user needs to answer the fol-
lowing questions: 

 How many domains are needed 
 How many walls are needed 
 What materials are used 
 How many windows are needed 
 What window types are used 
 To which domains do these walls and win-

dows connect 
 How many outside surfaces are needed 
 How are the surfaces oriented 
 Time and place 
 Which weather data to use 

When having found an answer to these questions, the 
user can build the whole model from predefined pa-
rameterized templates: The wall and window tem-
plates allow quick creation of models of different 
enclosures. The domain model contains a model of 
the air in a room that is connected to the walls and 
windows. Outside surfaces are the interface between 
wall templates and the environment. The environ-
ment provides the boundary conditions of the simu-
lation. 

 

2.2 Wall Template 

The wall template consists of ten material layers. 
The default model for a material layer is the “None”-

model. This is a passive model that can be ex-
changed by the needed material layer models. To 
configure the wall model, the user selects the needed 
material from a drop-down list. 
Figure 1 shows the parameter dialog of a material 
layer. The number of nodes, the layer thickness, the 
discretization scheme and initial conditions must be 
set. The default discretization scheme uses small 
nodes near material layer boundaries and larger 
nodes in the middle. By changing the status of a ra-
dio button the user can choose to define a custom 
discretization. Another radio button allows the user 
selecting to enter the initial water content or the ini-
tial relative humidity of the material. Furthermore, 
the initial temperature can be set. 
 

 
Figure 1: Parameterization of the material layer model 
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2.3 Window Template 

The type of window is selected from a drop-down 
list. Models for one, two and three-pane windows are 
available. Heat transfer through conduction, convec-
tion, long-wave radiation, transmission and absorp-
tion of solar radiation are taken into account when 
computing pane temperatures. The transmitted solar 
radiation is propagated to the adjacent domain. 

 

2.4 Domain template 

A rectangular room is a simple example for a do-
main. It consists of an air volume and of and six in-
side surfaces. The surface is considered as the infini-
tesimally narrow layer between the air volume and 
the wall. The wall side of the surface transports heat 
and moisture by conduction. The air side of the sur-
face exchanges heat and moisture convectively with 
the adjacent air volume. A radiation node estimates 
the radiation between surfaces. View factors in the 
radiation node are computed from the connected sur-
face’s relative absorption weighted areas. For build-
ing applications this approach is sufficiently accurate 
[4]. If the user possesses more advanced view fac-
tors, a more detailed radiation model taking the real 
view factors into account, can be used. Windows are 
treated like any other wall in the domain model ex-
cept that a further connection to a radiative source 
node is needed for transmitted solar radiation. 
Figure 2 shows the parameterization of a domain 
model. The user gives the number of surfaces, their 
area, convective heat and moisture transfer coeffi-
cients or correlations and long-wave emissivities. If 
radiative or convective heat sources are contained in 
the domain their number must be given and corre-
sponding models connected with the domain. For the 
air volume, the volume and initial pressure, tempera-
ture and relative humidity must be entered. 
 

 
Figure 2: Parameterization of the domain model 

2.5 Outside Surfaces 

The geometric parameters of an outside surface are 
area, slope and azimuth angle (Figure 3). The surface 
model has an outer instance of the environment 
model. 
As for the inside surface, heat and moisture is trans-
ported by conduction on the wall side and by con-
vection on the air side. Radiation and radiation pa-
rameters are split into long-wave and short-wave 
radiation. Long wave radiation is exchanged with 
surrounding earth and with the sky. Short wave radi-
ation is provided by the sun. A distinction is made 
between direct and diffuse solar radiation. A geomet-
rical model computes the impact angle of the sun to 
determine the direct solar radiation. This angle de-
pends on the slope and azimuth of the surface, loca-
tion and time. Diffuse radiation is independent of the 
surface orientation, e.g. light also enters through a 
north facing window during daytime.  

 

 
Figure 3: Parameterization of the outer surface model 

 

2.6 Environment model 

The environment model is used at the top-level of 
simulation models as an inner component. Infor-
mation comes from weather files of test reference 
year data and is used in all models referring to out-
side weather conditions. The outputs from the com-
ponent are the air temperature, humidity and pres-
sure, wind speed and direction, intensity of direct 
and diffuse solar radiation, intensity of terrestrial and 
sky radiation and cloudiness. 
The user selects a weather data file and the location 
of the building or cabin. This location is important 
for the geometrical sun model. Depending on the 
time format of the weather data file, a correction of 
the local standard time longitude needs to be entered. 
For GMT this correction is zero, for CET  
-15°. To assess the reflection of solar and sky radia-
tion by the soil, the corresponding parameters need 
to be entered. Meaningful standard values are set as 
default. The user needs to provide the start time and 
date of the simulation and the start time and date of 
weather data. This is necessary to align the weather 
data, the sun position and the simulation time in the 
integrator. 
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Figure 4: Parameterization of the environment model 

 

3 Technical background of the In-
door Climate Library 

In this section, the principles of hygrothermal simu-
lation are described. 

3.1 Water storage function 

The water storage function describes the relation be-
tween water content and relative humidity of a mate-
rial. This function is usually non-linear and often 
increases more steeply at higher relative humidity. It 
needs to be determined experimentally. At 100% 
relative humidity free water saturation wf is reached. 
An example of water storage functions is shown in 
Figure 5. 
The porosity of a material indicates the maximal wa-
ter content wmax. When all pores are filled with liquid 
water the material cannot be further penetrated by 
water. This maximal water content is above the free 
water saturation provided by the moisture storage 
function. In the range between the free water satura-
tion and maximal water content the relative humidity 
remains equal to one, and is therefore independent of 
the water content. Up to the free water saturation, the 
material can be in an equilibrium state. Above no 
boundary condition exist that could maintain the 
reached water content [8].  

 
Figure 5: Examples of water storage functions [7] 

3.2 Heat flow 

The heat flow through a material node is obtained 
from the difference of the temperature T between 
nodes i and i+1, the conductivity λi and the length di 
of node i: 

ሶ௜ݍ ൌ ௜ߣ ∙
௜ܶ െ ௜ܶାଵ

݀௜
 (1)

 

For some materials thermal conductivity is constant, 
e.g. concrete: λ=0.24 W/(m·K). Other materials like 
mineral wool show an increase of thermal conductiv-
ity at higher water contents (Figure 6). The Indoor 
Climate Library uses a replaceable thermal conduc-
tivity model to match the type of material. 

 
Figure 6: Example for increase of thermal conductivity with 
water content [7] 

3.3 Water vapor diffusion 

The driving potential for water vapor diffusion is the 
difference of the water vapor pressure pwater between 
nodes i and i+1. 
 

ሶ݉ ௩,௜ ൌ ௜ߜ ⋅
௪௔௧௘௥,௜݌ െ ௪௔௧௘௥,௜ାଵ݌

݀௜
 (2)
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The permeability δi of a material to water vapor is 
obtained from a function depending on the material 
node’s temperature Ti and the water vapor diffusion 
number µi (equation (3)). This number is a property 
of the material; for stagnating air it is by definition 
one. Depending on the type of material it can be con-
stant (e.g. porous concrete 600/2: µ=6.7) or vary 
with relative humidity (Figure 7).  
 

௜ߜ ൌ
2 ∙ 10ି଻ ∙ ௜ܶ

଴,଼ଵ

101300	 ∙ ௜ߤ
 (3)

 

 
Figure 7: Example of relative humidity dependent water 
vapor diffusion coefficient [7] 

 

3.4 Liquid water transport 

Some materials are able to transport liquid water by 
capillary suction. Liquid transport is driven by the 
difference of water content wi between material node 
i and i+1.  

ሶ݉ ௟,௜ ൌ ௪,௜ܦ
௜ݓ െ ௜ାଵݓ

݀௜
 (4)

 

The liquid transport coefficient Dw depends on 
whether the material surface is wet due to rain or 
whether it is dry. On a wet surface suction occurs, if 
the surface is dry redistribution occurs. The redistri-
bution factor Dwr can be estimated by a factor of 10 
smaller than the suction factor Dws [9]. 

Often, the water absorption coefficient Aw is given. 
For example, porous concrete has a Aw coefficient of 
5.4 kg/(m²·h0.5). Künzel [8] suggests equation (5) to 
compute the liquid transport coefficient at suction 
from Aw, the free water saturation and the actual wa-
ter content: 

௪௦,௜ܦ ൌ 3.8 ∙ ቆ
௪ܣ
௙ݓ
ቇ
ଶ

⋅ 1000
൬
௪೔
௪೑

ିଵ൰
 (5)

3.5 Heat and Moisture Balance for a material 
layer node 

The sum of entering and leaving heat and water 
flows yields the variation of temperature and water 
content of a material. It is admitted that water vapor 
enters node i with temperature Ti-1 and condenses at 
temperature Ti. Similarly it evaporates and leaves at 
temperature Ti. Liquid water is admitted to enter with 
temperature Ti-1 and to leave at temperature Ti. To 
describe this process the evaporation and liquid en-
thalpies Hv and Hl are introduced to the heat balance 
equation. The thermal inertia is the sum of the dry 
thermal inertia ρ·c (density, specific heat capacity) 
and the thermal inertia of water contained in the 
node wi·cw (cw: specific heat capacity of water). 

 
݀௜ ⋅ ൣሺߩ ⋅ ܿ ൅ ௜ݓ ⋅ ܿ௪ሻ ⋅ ሶܶ௜ ൅ ௟,௜ܪ ∙ ሶݓ ௜൧ ൌ 
ሶ௜ିଵݍ െ ሶ௜ݍ
൅ ሶ݉ ௩,௜ିଵ ⋅ ൫ܪ௩,௜ିଵ െ 	௟,௜൯ܪ
െ ሶ݉ ௩,௜ ⋅ ൫ܪ௩,௜ െ ௟,௜൯ܪ
൅ ሶ݉ ௟,௜ିଵ ⋅ ൫ܪ௟,௜ିଵ െ  ௟,௜൯ܪ

(6)

 
The variation of the water content wi in node i is ob-
tained from the sum of entering and leaving mass 
flows. 
 
݀௜ ⋅ ሶݓ ௜ ൌ
ሶ݉ ௩,௜ିଵ െ ሶ݉ ௩,௜ ൅ ሶ݉ ௟,௜ିଵ െ ሶ݉ ௟,௜ 

(7)

3.6 Surfaces 

A surface exchanges heat and moisture between air 
and the adjacent material layer. The heat exchange 
takes into account convection due to the temperature 
difference between wall and air (hc: convective heat 
transfer coefficient) and the enthalpy flow of the ex-
changed water vapor (equation (8)). 
The moisture flow is determined by the convective 
moisture transfer coefficient βc and the water vapor 
pressure difference (equation (9)) 
 
ሶ௖௩ݍ ൌ ݄௖ ∙ ሺ ௔ܶ௜௥ െ ௪ܶ௔௟௟ሻ 
൅ ሶ݉ ௩ ∙ ൫ܪ௩,௔௜௥ െ  ௩,௪௔௟௟൯ܪ

(8)

 
ሶ݉ ௩ ൌ ௖ߚ ⋅ ൫݌௪௔௧௘௥,௔௜௥ െ ௪௔௧௘௥,௪௔௟௟൯ (9)݌

 
Inner surfaces exchange heat by radiation. An ap-
proximated form factor of a surface is obtained by 
equation (10), where ε is the long-wave emissivity of 
the surface and A its area. The radiation between sur-
faces is estimated in a radiation node model that dis-
tributes radiation between surfaces. Radiative 
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sources are distributed on all surfaces contained in 
the domain (equation (11)) 
 

௜݂ ൌ
߳௜ ∙ ௜ܣ

∑ ௝߳ ∙ ௝ௗ௢௠௔௜௡ܣ
 (10)

 

ሶ௥௔ௗ,௟௪,௜ݍ ൌ ߪ ∙ ௜ߝ ∙ ෍ ௝݂ ∙ ൫ ௜ܶ
ସ െ ௝ܶ

ସ൯
௝∈ௗ௢௠௔௜௡

	

൅ ෍ ௜݂ ∙ ሶ௥௔ௗ,௦௢௨௥௖௘ݍ
௦௢௨௥௖௘௦

 
(11)

 
For outer surfaces, the long wave terrestrial radia-
tion, the long wave atmospheric radiation and the 
short wave solar radiation are taken into account. 

4 Application example 

An insulated car cabin (Figure 8) is considered as 
application example. Four passengers are supposed 
to travel one hour in the morning and one hour in the 
evening from Monday to Friday in the region of 
Holzkirchen, Germany, during January 2011. During 
weekend the car is not used. Passengers emit heat 
and moisture according to sedentary work. 
 

 
Figure 8: Vehicle geometry 

Cabin enclosures are assumed to consist of three lay-
ers: 1 mm aluminium, 10 mm mineral wool and 
1.2 mm cloth (50% wool, 50% viscose). Fenestration 
is assumed to be a one-pane window with a transmit-
tance of 0.84 for solar radiation. The vehicle is ori-
ented southwards. Leakages are supposed to lead to 
one air change per hour (ACH) in the cabin. A venti-
lation system is running during occupation of the 
vehicle. This system is assumed to deliver 50 ACH. 
The supply temperature is controlled to result in a 
cabin air temperature of 22 °C. Outdoor conditions 

are taken from the weather station of Fraunhofer IBP 
in Holzkirchen, Germany. 
 
Simulation results show a considerable accumulation 
of water in the insulation (Figure 9). Besides the in-
creased risk of mold growth this leads to increased 
heat conductivity degrading the performance of the 
insulation (Figure 10). 
 

 
Figure 9: Accumulation of water in the vehicle insulation 
(10mm) 

 
Figure 10: Thermal conductivity of the vehicle insulation 
(10mm) 

To improve the situation the thickness of the insula-
tion can be increased. This leads to higher surface 
temperature on the cabin side of the insulation result-
ing in a lower gradient of water vapor pressure thus 
leading to a lower moisture flow into the insulation. 
Figure 11 and Figure 12 show moisture content and 
thermal conductivity when increasing the thickness 
of mineral wool to 30 mm. The gain of this measure 
is twofold. A thicker insulation presents a higher re-
sistance to heat. Furthermore, the conductivity of the 
thicker insulation is lower as less water accumulates. 
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Figure 11 Accumulation of water in the vehicle insulation 
(30mm) 

 
Figure 12: Thermal conductivity of the vehicle insulation 
(30mm) 

5 Ongoing developments 

The next step in the development of the Indoor Cli-
mate Library is to implement more functionalities 
than currently available. More detailed radiation 
models allowing the use of user-defined form factors 
and templates of predefined form factors for simple 
generic geometries will be introduced. A database of 
convective heat and moisture transfer coefficient 
correlations will be inserted. Interfaces will allow the 
use of the Air Conditioning Library [10] to model 
the air supply from HVAC systems. Templates for 
generic building and vehicle setups will be added. 
Further application examples will give an overview 
of the possibilities of the Indoor Climate Library. 

 

6 Conclusion 

The Indoor Climate Library allows computing heat 
and moisture transfer in constructions. A vehicle ap-

plication example shows that the applied usage pro-
file the selected wall layer construction leads to ac-
cumulation of moisture in the insulation. The Indoor 
Climate Library allows quick estimation of remedies 
to this problem. Increasing the thickness of the insu-
lation reduced water accumulation noticeably. 
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Abstract 

A new dynamic model of a water heater has been 
developed. The component model is meant to be 
used for power plant modeling and simulation with 
the ThermoSysPro library developed by EDF and 
released under open source license. 
The model and the test conditions are fully de-
scribed: modeling hypothesis, governing equations, 
parameter values and test transients. 
To validate the model, three difficult transients were 
simulated: the islanding (sudden plant disconnection 
from the grid), flow reversal and zero-flow condi-
tions inside the water heater.  
Regarding the islanding scenario, the simulation re-
sults are very close to the experimental values meas-
ured on site. This transient demonstrates the physical 
validity of the model at it is fast and challenges the 
model equations in all operating conditions of the 
exchanger.  
 
Keywords: Modelica; thermal-hydraulics ; heat ex-
changer ; water heater ; dynamic modeling; inverse 
problems 
 

1. Introduction  
 
In the framework of the EUROSYSLIB project, a 
new library called ThermoSysPro has been devel-
oped.  
The main objective of ThermoSysPro is to provide a 
generic library for the modeling and simulation of 
power plants and other kinds of energy systems. The 
meaning of the word ‘generic’ is here to be taken as 

the possibility to use the same library components to 
model different kinds of energy systems for different 
types of studies (sizing, control system verification, 
etc.).  
The library is now routinely used for different pur-
poses, see for instance [1 to 6]. An introduction to 
the library can be found in [5]. 
New developments are ongoing or planned to extend 
the scope of the library for uncertainties and state 
estimation.  
The objective of this paper is to show how the library 
can be extended to include a new component to 
model a shell-and-tube heat exchanger, by using al-
ready existing components of ThermoSysPro. 

2. Model of the condenser/water 
heater 

2.1. General presentation of the water heater 

The water heater is a two-phase shell-and-tube heat 
exchanger (see Figure 1). The feedwater flows inside 
the tube bundle, while the steam and condensate 
flows outside these tubes (inside the cavity). In the 
water heater, there are three distinct areas: (1) the 
desuperheating zone, (2) the condensation zone, both 
located in the upper part of the component, and (3) 
the subcooled zone, located in the lower part of the 
component. In some water heaters, the condensate of 
the water heater located upstream from the current 
water heater is re-injected into the current water 
heater. During re-injection, part of the condensate 
may vaporize due to the pressure drop (this 
phenomenon is known as flash). The level of the 
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condensate in the cavity is adjusted with a valve 
located at outlet of the water heater. 
 

 
Figure 1:  Shell-and-tube heat exchanger 

2.2. Description of the water heater model 

The DynamicWaterHeating model represents the 
dynamics of the thermo-hydraulic phenomena of the 
hot fluid inside the cavity and of the cooling fluid 
which flows through the tube bundle. In particular, 
the model features the thermal exchanges between 
the fluid in the cavity and the cooling fluid flowing 
through the tube bundle. 
The water heater is considered as a vertical or hori-
zontal cylindrical cavity (as schematized in Fig-
ure 2), containing a U-bent tube bundle with the fe-
edwater inlet and outlet located on the same side. 
The cavity is subdivided into the following zones:  

A) The desuperheating zone, where the super-
heated steam, flowing into the heater, exchanges heat 
with the liquid flowing through the tube bundle, until 
it becomes saturated steam and enters the condensa-
tion zone. This zone is modelled by ‘Pipe 4’ in Fig-
ure 2. 

B) The condensation zone, where the saturated 
steam condenses as a consequence of the thermal 
exchange with the tube bundle, turning into liquid 
water that enters the subcooled zone. This zone is 
modelled by ‘Pipe 2’ and ‘Pipe 3’ in Figure 2. 

C) The subcooled zone, where the liquid inside the 
cavity continues to exchange heat with the liquid 
flowing through the tube bundle. This zone is mod-
elled by ‘Pipe 1’ in Figure 2. 
 
Four configurations of the model are possible (see 
Figure 2):  
1. horizontal water heater, with desuperheating 

zone, condensation zone and subcooled zone, 
2. horizontal water heater, with condensation zone 

only, 

3. vertical water heater, with desuperheating zone,       
condensation zone and subcooled zone, 

4. separate vertical water heater with desuperheat-
ing zone, condensation zone and subcooled zone. 

Pipe 4
Desuperheater

Pipe 2
Condensation zone

Pipe 3
Condensation zone

Pipe 1 Subcooled
zone

 
Figure 2a: Horizontal water heater (1) 

Pipe 4
Desuperheater

Pipe 3
Condensation zone

 
Figure 2b: Horizontal water heater (2) 

Pipe 4
Desuperheater

Pipe 2
Condensation zone

Pipe 3
Condensation zone

Pipe 1 Subcooled
zone

 
Figure 2c: Vertical water heater (3) 
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Pipe 4
Desuperheater

Pipe 2
Condensation zone

Pipe 3
Condensation zone

Pipe 1 Subcooled
zone

 
Figure 2d: Vertical separate water heater (4)  

2.3. Components of the water heater model 

The DynamicWaterHeating can simulate all hori-
zontal configurations as shown in Figure 2a and 2b. 
 
The model is divided into sub-models of four differ-
ent types which are connected together to make the 
full model (see Figure 3):  
• 3 DynamicTwoPhaseFlowPipe models, 
• 3 HeatExchangerWall models, 
• 1 TwoPhaseCavity model, 
• 3 Volume models. 
 
By reassembling the sub-models, any other configu-
ration of the water heater can be modelled. 
 

 
Figure 3:  Model of the water heater “Dy-

namicWaterHeating ” 

The description of each sub-model is given in 
the following section. Each sub-model in the 
model can be recognized by looking at its icon 
(see Figures 4, 5, 6 and 7).  

3. Physics of the condenser/water 
heater 

3.1. DynamicTwoPhaseFlowPipe model 

 
Figure 4: Two-flow pipe model icon 

 
The model of the fluid flow in a cylindrical conduit 
is based on the dynamic mass, energy, and momen-
tum balance equations, which are originally given as 
1-D partial differential equations. The original dis-
tributed-parameter model is first discretised by using 
the finite-volume method. The model is formulated 
in order to correctly handle possible flow reversal 
conditions.  
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Assumptions 
 
• Homogeneous fluid in each mesh cell (same veloc-

ity for the liquid and steam phases); 
• 1-D modelling (using the finite-volume method); 
• The accumulation is considered in each mesh cell; 
• The inertia of the fluid is taken into account; 
• The phenomenon of longitudinal heat conduction 

in the metal wall and in the fluid is neglected; 
• The thermo-physical properties are calculated on 

the basis of the average pressure and enthalpy in 
each mesh cell. 

 
Mass balance equation 
 
The mass balance equation in each cell is given by: 

1::1 +− −=∆⋅⋅ iiii
i mmx

dt
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Taking the pressure and the specific enthalpy as state 
variables yields: 
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Energy balance equation 
 
The energy balance equation in each cell is given by: 
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with the specific internal energy given by: 
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Taking the pressure and the specific enthalpy as state 
variables yields: 
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1: +iih is the specific enthalpy of the mass flow 

1: +iim& crossing the boundary between the cells i  and 
1+i . 1: +iih  is related to the state variables ih  and 

1+ih by: 

11: )(ˆ)(ˆ ++ ⋅−+⋅= ieieii hPshPsh  
where eP  is the Peclet number and 
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When neglecting diffusion, the Peclet number is in-
finite, and  
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This simplification is known as the upwind scheme. 
 
Momentum balance equation 
 
The momentum balance equation in each cell is 
given by:  
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with respectively the acceleration, friction and grav-
ity pressure losses given by: 
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By default, the flow is considered turbulent 
(Reynolds number Re > 2300). 
 
The Colebrook correlation is used to compute iΛ . 
 
Convective heat transfer within the U-tubes   
 
The heat exchanged between the fluid and the wall 
is: 

( ))()()()( 22 iTiTSihiW wc −⋅∆⋅=∆  
 
Convection heat transfer coefficient 
 
The convection heat transfer coefficient ch  between 
the fluid and the wall is computed using the Dittus-
Boelter correlation. 
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3.2. HeatExchangerWall model 

 
Figure 5: Wall model icon 

The wall model describes the conductive heat 
flow through the wall of the tube bundle. The 
flow is positive when entering the tubes (going 
from side 2 to side 1 of the wall). 
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3.3. TwoPhaseCavity model 

 
Figure 6: Two-phase cavity model icon 

 
The cavity is modelled as a non-adiabatic two-phase 
volume, with vertical or horizontal cylindrical ge-
ometry. The physical model is based on a non-
equilibrium, two-phase formulation of the fluid bal-
ance equations with a control volume approach. The 
two phases are supposed to be isobaric and will be 
referred to as liquid zone and steam zone, respec-
tively.  
The model features the condensation flow of the 
steam phase into the liquid phase, and reciprocally, 
the vaporization flow of the liquid phase into the 
steam phase. 
The reasons for not assuming thermal equilibrium 
between the two phases are: 

• The vapour may enter the cavity superheated (the 
vapour temperature is then higher than the satura-
tion temperature). 

• The liquid may be subcooled by the incoming 
drain and the wetted tube bundle (the liquid tem-
perature is then lower than the saturation tempera-
ture). 

 
Assumptions 
 
• Accumulation of mass and energy is considered. 

Heat exchange between the liquid and steam 
phases is considered. 

• Heat exchange between the liquid or steam phases 
and the wall is considered. 

• Heat exchange between the water heater and the 
external medium (ambient) is considered. 

• Pressure losses are not taken into account in the 
cavity. 

• The liquid and steam phases are not necessarily in 
thermal equilibrium. 

• The liquid and steam phases are assumed to be 
permanently in pressure equilibrium. 

 
State variables 
 
The state variables of the system are: 
• the mean pressure in the cavity, 
• the specific enthalpy of the liquid phase, 
• the specific enthalpy of the steam phase, 
• the temperature of the wall, 
• the volume of the liquid phase. 
 
The volume of the steam phase is bound to the vol-
ume of the liquid phase by the following equation: 

VVV vl =+   
 
Mass balance equation in each phase  
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where e
vm&  is the mass flow of incoming vapor, 

e
drainm&  is the mass flow of the incoming 

condensate of the water heater located upstream, 
o
lm& is the mass flow of outgoing condensate, 

condm& is the condensation flow inside the cavity, 
and evapm&  is the evaporation flow inside the ca-
vity. 
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Condensation and evaporation mass flow rate inside 
the cavity 
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condC  and evapC being coefficients with inverse time 

dimensionality [ ]t
1 ,  voX  and loX denoting con-

stants. 
 
Energy balance equation in each phase 
 
The general form of the energy balance equation is 
given by: 
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Taking the pressure and the specific enthalpy as state 
variables yields: 
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Heat exchange between the liquid and steam phases  
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Heat exchange between the liquid or steam phases 
and the wall  
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Heat exchange between the water heater and the ex-
ternal medium  

)( avvavawa TTAKW −⋅⋅=  
In this equation, the vapor temperature is considered 
instead of the wall temperature to account for both 
the thermal resistance of the metallic wall and the 
thermal insulator of the cavity, in addition to the 
usual convective resistance. Consequently, vaK  is 
the global heat exchange coefficient between the va-
por and the ambient. The liquid is neglected in this 
equation because the volume of liquid is small w.r.t. 
the volume of vapor. 

Heat exchange between the liquid and the tube bun-
dle ‘Pipe 1’ 
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Heat exchange between the steam and the tube bun-
dle ‘Pipe 2’ 
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Heat exchange between the steam and the tube bun-
dle ‘Pipe 3’ 
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Heat exchange between the steam and the tube bun-
dle ‘Pipe 4’ 
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Heat transfer convection coefficients 

The heat transfer convection coefficient convh  be-
tween the water and the outside wall of the tube bun-
dle is computed using the Kern correlation [7] . 
 
The Nusselt correlation is used to calculate the heat 
transfer coefficients condh  between the steam and the 
outside wall of the tube bundle, in the condensation 
zone. 

Dynamic modelling of a Condenser/Water Heater with the ThermoSysPro Library 

 

750 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076745 



 

 

3.4. Mixture homogeneous Volume model 

   
Figure 7: Mixing volume model icon 

This sub-model describes the mixing of one-
phase flow fluid. 
 
Mass balance equation 
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Energy balance equation 
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4. Validation of the condenser/water 
heater 

4.1. Modelica model of the condenser/water 
heater 

To simulate the complex dynamic physical behav-
iour in normal and accidental conditions of the con-
denser/water heater model, a test model called 
“TestDynamicWaterHeating” has been developed by 
assembling the necessary components from the 
ThermoSysPro library (cf. Figure 8). The test model 
includes the level control system. 
 

 
Figure 8:  Model of the water heater “TestDy-

namicWaterHeating ” 

4.2. Data implemented in the model 

All geometrical data were provided to the model 
(tubes and exchangers lengths, diameters, volumes, 
corrective terms for the heat exchange coefficients, 
corrective terms for the pressure losses, etc.). The 
plant characteristics are given in Figure 11 (cf. Ap-
pendix). 

4.3. Calibration of the  model 

The calibration phase consists in setting (blocking) 
the maximum number of thermodynamic variables to 
known measurement values (enthalpy, pressure) 
taken from on-site sensors for 100% load. This 
method ensures that all needed performance parame-
ters, size characteristics and output data can be com-
puted.  

 
The main computed performance parameters are:  
• the correction coefficient of the heat transfer coef-

ficient inside the condensation zone, 
• the correction coefficient of the pressure loss coef-

ficients inside the tube bundle (pipes),  
• the pressure loss coefficients of the pipeline be-

tween the steam turbine and the water heater, 
• the maximum Cv values of the extraction valve 

and the valves positions.  

4.4. Simulation scenario: islanding 

In order to challenge the dynamic simulation capa-
bilities of the model, a high amplitude transient, 
called islanding, that occurs when the plant is sud-
denly disconnected from the normal energy dis-
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charge network, is simulated. This transient is used 
to check and validate the physics taken into account 
in the model and the numerical robustness of the 
model as it runs the water heater model into very 
different operating regimes. This allows to test the 
validity and applicability range of the model equa-
tions, and the numerical robustness of the Modelica 
implementation when using Dymola.  

4.5. Boundary conditions of the model 

The boundary conditions of the model (scenario pro-
files) are presented in Figure 9. 
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Figure 9a: Outlet pressure of the steam turbine 
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Figure 9b: Inlet pressure of the feed water 
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Figure 9c: Inlet temperature of the feed water 
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Figure 9d: Inlet flow of the feed water 

4.6. Results of dynamic simulations 

In order to cover the whole transient, the simulation 
time has been set at 2500 seconds. 
 
Simulation runs were done using Dymola 6.1. The 
simulation of the scenarios were mostly successful, 
with only one iteration variable to be fed manually. 
 
The following phenomena are simulated: 
• flow reversal, 
• local boiling or condensation, 
• swell and shrink effect in cavity,  
• cavity levels and cavity pressure control. 

 
The model is able to compute precisely:  
• the mass flow rate of the steam (at the inlet), 
• the mass flow rate of the condensate (drain), 
• the distribution of water and steam mass flow rate 

inside the tubes, 
• the thermal power of  the water heater and tubes, 
• the pressure temperature and specific enthalpy dis-

tribution across the network, 
• the cavity levels and and cavity pressure. 
 
The results of the simulation runs are given in Fig-
ure 10. Figures 10a and 10b show that the results 
obtained with Dymola are very close to the measured 
values on site. The outflow drain (condensate) in 
Figure 10d depends on the way the level is con-
trolled inside the heater.  
 
So, the physical validity of the component model is 
demonstrated, because we believe that this type of 
fast transient is likely to extensively validate the 
physics inside the model as it challenges the water 
heater in very different operating regimes of the 
rated operation. 
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Comparison of the measured feed water temperature and 
calculated with Dymola = f (t)
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Figure 10a: Evolution of the feed water outlet tem-

perature 

 
Comparison of the measured condensate (drain water) 

temperature and calculated with Dymola = f (t)
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Figure 10b: Evolution of the condensate (water drain) 

outlet temperature 

 
Comparison of the measured feed water pressure and 

calculated with Dymola = f (t)
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Figure 10c: Evolution of the feed water outlet pressure 

 

Comparison of the measured condensate (water drain) mass 
flow rates and calculated with Dymola = f (t)
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Figure 10d: Evolution of the condensate (water drain) 

outlet mass flow rate 

4.7. Validation of the water heater model under 
flow reversal and zero-flow conditions 

The ThermoSysPro library handles flow reversals. 
  
The boundary conditions for the flow reversal sce-
nario are:  
• outlet pressure of the steam turbine = 22.733e5  

Pa, 
• outlet enthalpy of the steam turbine = 2650.6e3  

J/kg, 
• inlet pressure of feed water = 71.29e5 Pa, 
• inlet temperature of the feed water = 454.46 °C, 
• inlet mass flow rate of the feed water (t = 0) = 

624.97 kg/s, 
• inlet mass flow rate of the feed water (t > 2000s) = 

-200 kg/s, 
• outlet enthalpy of the feed water inlet (Q < 0) = 

940.e3 J/kg. 
 
Figures 12 and 13 in the Appendix show the results 
for the scenario of flow reversal in the water heater 
and the results for the zero-flow scenario. 
 
The possibility of flow reversal and zero-flow in the 
tube bundle of the component has been experimen-
tally verified. But there are no data available for 
comparison with the simulation results. 

5. Conclusion 

A new open source Modelica library called ‘Ther-
moSysPro’ has been developed within the frame-
work of the ITEA 2 EUROSYSLIB project. This 
library has been mainly designed for the static and 
dynamic modeling of power plants, but can also be 
used for other energy systems such as industrial 
processes, buildings, etc. It is intended to be easily 
understood and extendable by the models developer. 
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A new dynamic model of a water heater has been 
developed using existing elements of ThermoSysPro.  
 
To validate the model, three difficult transients were 
simulated: the islanding (sudden plant disconnection 
from the grid), flow reversal and zero-flow inside the 
water heater.  
 
Regarding the islanding scenario, the simulation re-
sults obtained with Dymola are very close to the ex-
perimental values measured on site. This transient 
demonstrates the physical validity of the model at it 
is fast and challenges the model equations in all op-
erating conditions of the exchanger.  
 
The possibility of flow reversal and zero-flow occur-
ring inside the tube bundle of the module has been 
experimentally verified and simulated, but no ex-
perimental data is available for comparison with the 
simulation results. 

Nomenclature 

Symbols 
m&  Mass flow 
ρ  Fluid density 
h  Fluid specific enthalpy 
u  Fluid specific internal energy 
P  Fluid pressure 
T  Fluid temperature 

pc  Fluid specific heat capacity 

V  Volume  
t  Time 
W  Power  

vx  Vapor mass fraction in vapor phase 

lx  Vapor mass fraction in liquid phase 

mvx  Vapor mass fraction in input drain 

Λ  Friction coefficient 
ζ  Friction corrective coefficient 

x∆  Tube segment length 
S∆  Heat surface exchange of tube segment 

D  Tube diameter 
A  Tube cross section or heat exchange 

surface 
e  Wall thickness 
λ  Conduction coefficient 
K Heat exchange coefficient 
M  Mass 

ch  Convective coefficient 

1convh  Convective coefficient of heat transfer 
between the condensate and the tube 
bundle in Pipe 1. 

2condh  Convective coefficient of heat transfer 
by condensation between the vapor and 
the tube bundle in Pipe 2. 

3condh  Convective coefficient of heat transfer 
by condensation between the vapor and 
the tube bundle in Pipe 3. 

ntubes  Number of tubes in the bundle 
 
Indices  

iX  or )(iX Quantity in volume i 

1: +iiX  Flow between volume i and i+1 

eX or eX  Quantity at inlet 

oX  or oX  Quantity at outlet 

lX  Quantity relative to liquid 

vX  Quantity relative to vapor 

wX  Quantity relative to wall 

extX  Quantity relative to external side of 
wall 

aX  Quantity relative to ambient 
satX  Quantity relative to saturated phase 

condX  Quantity relative to condensation 

evapX  Quantity relative to evaporation 

drainX  Quantity relative to drain (conden-
sate) 

1X  Quantity relative to Pipe 1 

2X  Quantity relative to Pipe 2 

3X  Quantity relative to Pipe 3 

4X  Quantity relative to Pipe 4 
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Appendix 

 
Figure 11:  Data of the model 
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Figure 12: Results for the flow reversal scenario 
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Figure 13: Results for the zero-flow scenario 

With: 
1 - Evolution of the inlet mass flow rate of the feed water, 
2 - Inlet mass flow rate of the steam (corresponding to the steam turbine outlet), 
3 - Outlet mass flow rate of the water (output drain),  
4 - Outlet temperature of the feed water (pipes), 
5 - Inlet temperature of the feed water (pipes), 
6 - Outlet temperature of the water (output drain). 
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Abstract 

The aim of this paper is to present the implementa-

tion of the Modelisar Functional Mock-up Interface 

(FMI) in LMS Virtual.Lab Motion. This functionali-

ty enables co-simulation between multi-disciplinary 

subsystem models for a range of industrial applica-

tions. The validity of the methodology and industrial 

applicability of the implementation is demonstrated 

on an application case taken from automotive indus-

try, with an Opposite Wheel Travel scenario using a 

half vehicle model in LMS Virtual.Lab Motion and 

an Air-spring FMU based on Modelica code. 

Keywords: Functional Mock-up Interface (FMI); 

Modelica; Co-simulation; LMS Virtual.Lab Motion 

1 Introduction 

In complex systems such as in automotive and aero-

space many different types of subsystems (e.g. me-

chanical, hydraulic or electric subsystems) interact 

with each other [1]. The simulation of such complex 

multidisciplinary systems is a new challenge in mod-

ern computer aided engineering. 

A widely used technique to link together different 

multidisciplinary subsystems in a common simula-

tion framework is what scientific literature refers to 

as Co-Simulation. In co-simulation, the overall sys-

tem is split into different subsystems, which are 

treated by different optimized simulation tools, cou-

pled by input and output variables, thus creating a 

coupling loop [2, 3]. 

The “Functional Mock-up Interface” (FMI) [4], 

developed within the framework of the ITEA2 Mod-

elisar project [5], provides a standardized way for 

linking together different subsystems modeled in 

different simulation software. An instance of a model 

compiled for being linked with a 3
rd

 party simulation 

environment is called a “Functional Mock-up Unit” 

(FMU).  

Typically an FMU consists of the following main 

elements compressed into a single archive: 

a) C-header files to interact with the equations 

of a model or to perform co-simulations with other 

simulators (model interface) and  

b) XML schema files to inquire information 

about model and interface variables (model descrip-

tion file) 

c) executable files 

Two distinct standards have been defined within 

the framework of FMI: FMI for Model Exchange 

and FMI for Co-Simulation. The FMI for Model 

Exchange was developed to allow a modeling tool to 

generate C code or binary files from a model that can 

be integrated into another simulation environment 

[4]. The FMI for Co-Simulation defines an interface 

standard for the communication between a master 

and the individual simulation tools called slaves in a 

co-simulation environment. The data exchange is 

restricted to discrete communication points in time 

and the subsystems are solved independently be-

tween these communication points [4, 6]. 

FMI compatibility was implemented in LMS Vir-

tual.Lab Motion [7], a multi-purpose simulation 

software, specially designed to simulate realistic mo-

tion and loads of mechanical system. LMS Virtu-

al.Lab Motion can be used as a simulation platform 

into which one or several FMUs can be linked in 

order to perform simulations for analyzing complex 

multidisciplinary systems. 

2 FMI Interface in LMS Virtual.Lab 

Motion 

A schematic representation of linking an FMU in-

to a simulation with LMS Virtual.Lab Motion is pre-

sented in Figure 1. To be able to establish the link 

between LMS Virtual.Lab Motion and an FMU, in-

puts and outputs have to be defined, which will rep-

resent the coupling data for the co-simulation.  
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The coupling data is exchanged at the level of 

Control Nodes. A Control Input represents the sig-

nal which is transmitted from the mechanical model 

in LMS Virtual.Lab Motion to the FMU. Typically, 

Control Inputs are displacement, velocity or acceler-

ation data. A Control Output is a signal received 

from an FMU that is applied to the mechanical mod-

el in LMS Virtual.Lab Motion (e.g. force or torque). 

Control Nodes are the nodes or connection points to 

which the above mentioned Control Inputs and Out-

puts are applied. 

 
Figure 1: Schematic representation of the FMI inter-

face in LMS Virtual.Lab Motion 

 

For the two distinct standards, FMI for Model 

Exchange and FMI for Co-Simulation, the different 

approaches are described as follows. 

In case of linking to an FMU for Model Exchange 

the state equations of both the FMU and LMS Virtu-

al.Lab Motion are solved by the Motion solver.  

The LMS Virtual.Lab Motion Solver uses a set of 

Differential-Algebraic equations (DAE) of motion in 

Netwon-Euler format [7]. 

  ̇    
     (   ) (1) 

 ( )    (2) 

Here, q is the vector of generalized position coor-

dinates, v denotes the vector of generalized coordi-

nate velocities, M is the mass matrix, Qa is the vector 

of applied forces, Φ(q) denotes the vector joint con-

straint equations and λ stands for the vector of La-

Grange multipliers. A maximal set of coordinates are 

considered first and then the extra degrees of free-

dom are removed by applying a set of joint con-

straint equations.  

When linking an FMU for Model Exchange to 

LMS Virtual.Lab Motion a set of control forces is 

applied on the mechanism bodies representing the 

contribution of the FMU. In turn sensors feed posi-

tion, velocity and acceleration data back to the FMU. 

Usually, the FMU forces are the product of state 

equations. This means that the Motion solver must 

integrate a set of differential equations from the 

FMU. 

Representing the FMU state equations by g and 

the state variable by χ, the coupled equations of mo-

tion become: 

  ̇    
     (     ) (3) 

 ( )    (4) 

 (       ̇)    (5) 

In case of linking to an FMU for Co-Simulation, 

each simulation package runs its own solver, which 

is in turn synchronized with the other solver. Each 

solver is running and communicating with the other 

solver at discrete intervals in time. The same equa-

tions (3-5) are solved in the co-simulation mode as in 

the case of model exchange, but separately. In this 

situation the LMS Virtual.Lab Motion solver is the 

master. The Motion solver solves its own set of state 

equations from the current time (t
i
) to the time at the 

next communication interval (t
i+1

). Equation (5) now 

becomes equation (6) where the FMU variable inputs 

(q, v) are still at the last sample time. 

 (         ̇)    (6) 

Once the LMS Virtual.Lab Motion solver has fin-

ished integrating to the next communication interval 

the FMU solver is called and told to integrate to the 

current time. The FMU solver now uses the LMS 

Virtual.Lab Motion inputs at the last communication 

interval to move forward to the next communication 

interval. 

  ̇    
     (     
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For both cases described above, a fixed commu-

nication interval has been used. 

In the following paragraphs, the implementation 

of the FMI standard into LMS Virtual.Lab Motion 

will be demonstrated with a simple air-spring FMU. 

3 Application case description and 

results 

For demonstrating the implementation of the FMI 

interface and industrial applicability, an application 

case is presented from automotive industry, with an 

Opposite Wheel Travel scenario using a half vehicle 

model in LMS Virtual.Lab Motion and an Air-spring 

FMU based on Modelica code. 

3.1 Development of a Modelica FMU of an air-

spring 

An air-spring can be approximated as a volume of 

air, enclosed either in a cylinder fitted with a piston 

or in a flexible bellows, as shown in Figure 2. The 

air is compressed to a predetermined pressure under 

the static load of the vehicle. Subsequent motion of 

the piston either increases or decreases the pressure 

and consequently increases or decreases the force 

acting on the piston. 

For simplicity, the air-spring is modeled with an 

isothermal process, considering a closed system and 
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ideal gas. The chamber of the gas is considered as 

rigid, thus neglecting the elasticity of the bellow.  

The diameter of the piston is variable as high-

lighted in Figure 2. 

 
Figure 2: Schematic representation of an air-spring 

(p is the pressure and V is the volume of the gas, D 

represents the piston diameter and F the piston force, 

x is the piston displacement) 

 

For an ideal gas at constant temperature, the 

Boyle-Mariotte law is valid (9): 

                (9) 

Where, p denotes the pressure of the system, V 

denotes the volume of the gas, n is the number of 

moles of gas present, R is the ideal gas constant and 

T denotes the temperature of the system. 

Considering the air-spring modeled as an iso-

thermal process, the pressure p of the system will be 

variable as a function of the volume V. Furthermore, 

the volume V depends on the displacement and di-

ameter of the piston of the air-spring. 

The diameter of the piston is defined as a function 

of its displacement x (10): 

    (
    (   )

  
  ) (10) 

For the present case the piston diameter varies 

following the curve shown in Figure 3. Parameters k1 

and k2 are used for tuning the shape of the curve. 

 

 
Figure 3: Piston diameter as a function of piston dis-

placement 

 

The volume of the system is defined as a function 

of the initial volume V0, the piston area A, and dis-

placement x (11): 

     
  

 
 (11) 

Where the piston area A is defined as follows 

(12): 

   (
 

 
)
 

 (12) 

The pressure acting on the piston can be defined 

based on the ideal gas law (13): 

  
   

 
 (13) 

Where n is the number of moles of gas present in 

the chamber of the air-spring and can be determined 

as follows (14): 

  
    
  

 (14) 

In the above equation (14) p0 denotes the initial 

pressure of the air-spring system. For a displacement 

of 0.05 m the pressure evolution of the air-spring is 

presented in Figure 4 below. 

 
Figure 4: Pressure of the system as a function of pis-

ton displacement 

 

The force acting on the piston is defined as a 

function of the piston area and the pressure in the air-

spring system (15): 

     (15) 

Considering a displacement of 0.05 m, the evolu-

tion of the force acting on the piston is presented in 

Figure 5. 

 

 
Figure 5: Piston force as a function of piston dis-

placement 
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Based on the thermodynamic relations described 

above, the air-spring system was translated into 

Modelica code. 

 

 
 

The pre-defined parameters of the Modelica code 

of the air-spring are the following: 

 

R = 8.3144621[J/mol K] ideal gas constant 

V0 = 0.0008[m
3
] initial chamber volume 

T = 293.15[K] gas temperature 

p0 = 303975[Pa] initial gas pressure 

D0 = 0.08[m] initial piston diameter  

k1 = 200 parameter 1 

k2 = 5 parameter 2 

 

The input to the Modelica air-spring model is the 

displacement of the piston x and the output of the 

model is the force F acting on the piston. 

An FMU for Model Exchange of the Modelica 

air-spring was generated with the specified IN and 

OUT ports, using OpenModelica 1.8.0 based on the 

FMI standard V1.0. This FMU was linked into a dy-

namic simulation with LMS Virtual.Lab Motion. 

3.2 LMS Virtual.Lab Motion vehicle dynamics 

simulation with a Modelica air-spring FMU 

In LMS Virtual.Lab Motion a front suspension of a 

vehicle was modeled (as shown in Figure 6). An Op-

posite Wheel travel scenario was implemented, 

which is one of the typical scenarios considered in 

vehicle suspension design for analyzing relevant 

suspension parameters and forces in the connecting 

elements. 

 
Figure 6: Vehicle front suspension in LMS Virtu-

al.Lab Motion (air-spring FMU inputs are highlight-

ed in green and outputs in red) 

 

In an opposite wheel-travel analysis the left and 

right wheels are moved vertically on an equal but 

opposite path to simulate body roll. The left and right 

wheels move 180° out of phase with respect to each 

other along a specified bounce and rebound travel. 

For the present case, the wheel travel distance of 

0.05m was considered with a cycle time of 1 s. 

Two instances of the Modelica Air-spring FMU 

for Model Exchange were linked into the LMS Vir-

tual.Lab Motion suspension model for the left and 

right side. The air-spring FMUs were linked to the 

upper and lower part of the damper units on the left 

and right side of the suspension. 

Corresponding to the Modelica air-spring model 

the input to the air-spring FMU was the relative dis-

placement of the lower damper part with respect to 

the upper part. In Figure 6, highlighted with green, 

xFL and xFR represent the relative displacement of 

the Front Left and Front Right dampers respectively. 

 

 
Figure 7: Air-spring FMU input signals (xFL in red 

and xFR in blue) 

 

The evolutions of the FMU input signals for the left 

and right air-springs are presented in Figure 7. 

The output of the FMU air-spring was the force 

on the piston of the air-spring, applied between the 

upper and lower damper part. Highlighted in red in 

Figure 6, for the left and right air-springs are the 

FMU output forces denoted with FFL and FFR re-

spectively. 
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Figure 8: Air-spring FMU output signals (FFL in red 

and FFR in blue) 

 

Figure 8 presents the evolutions of the FMU output 

signals. The nonlinear behavior of the air-spring 

forces is clearly visible. 

3.3 Validation of the presented air-spring FMU 

with LMS Imagine.Lab AMESim 

To validate the FMI implementation in LMS Virtu-

al.Lab Motion, the results obtained with the FMU for 

Model Exchange have been compared to the results 

obtained with LMS Imagine.Lab AMESim. 

LMS Imagine.Lab AMESim is a 1D simulation 

suite to model and analyze multi-domain, intelligent 

systems and predict their multi-disciplinary perfor-

mance [8]. 

For the purpose of validation, the air-spring mod-

el has been replicated in LMS Imagine.Lab AMESim 

using the same equations (10–15). The AMESim 

model of the air-spring has been coupled with the 

LMS Virtual.Lab Motion model using a Model ex-

change approach, but instead of using the FMI 

standard, an internally developed interface was 

adopted. 

Consequently, the set of control forces from the 

LMS Imagine.Lab AMESim air-spring have been 

applied on the LMS Virtual.Lab Motion mechanism, 

which have been solved together by the Virtual.Lab 

Motion solver. To be able to correctly compare re-

sults, the same communication time interval of 

0.001s has been used for both cases. 

Figure 9 presents the comparison of the different 

air-spring forces obtained with the FMU for Model 

Exchange with the LMS Imagine.Lab AMESim 

model. In this figure the front left air-spring force 

(FFL) is presented in red and the front right air-

spring force (FFR) in blue. The FMU forces are de-

picted with continuous lines while the LMS Imag-

ine.Lab AMESim forces are presented with dashed 

lines. 

 

 
Figure 9: Comparison of Air-spring forces: FFL in 

red and FFR in blue; FMU signal in continuous line, 

AMESim signal in dashed line 

 

As it can be noticed in Figure 9 the FMU forces 

and the AMESim forces follow very closely each 

other. In the central region of the figure, a close-up is 

presented at t=0.73 s. 

The difference between the signals is 0.429 N, 

which expressed in percentage, is approximately 

0.016% and as such can be considered negligible. 

4 Conclusions 

The Modelisar FMI standard provides a vendor-

neutral interface that allows the exchange of simula-

tion models between different tools and platforms 

and enables their use in multidisciplinary simula-

tions. 

This paper presents the implementation of the 

Modelisar Functional Mock-up Interface (FMI) in 

LMS Virtual.Lab Motion. This functionality is 

demonstrated with an Opposite Wheel Travel scenar-

io using a half vehicle model in LMS Virtual.Lab 

Motion and an Air-spring FMU for Model Exchange 

compiled from Modelica code. 

Linking together different FMUs and an LMS 

Virtual.Lab Motion model in a co-simulation envi-

ronment brings several benefits. However, both Co-

simulation and Model Exchange type of simulation 

have their benefits and drawbacks. 

In a Model Exchange type of simulation, in addi-

tion to the set of multibody equations of motion, a 

set of control forces from the FMU are applied on 

the mechanism, which are solved together by the 

Virtual.Lab Motion solver. Usually, the FMU forces 
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are the product of state equations. In a Model Ex-

change type of simulation the main benefits are: 

good numerical stability and use of the full capability 

of the solver (variable step sizes, iterative meth-

ods…). The drawback is that this approach may be 

inefficient and time consuming if large differences in 

stiffness exist between the subsystems and the sys-

tems are loosely coupled. 

In case of Co-simulation, the coupling data is ex-

changed between the Virtual.Lab Motion solver and 

the FMU at each communication interval, conse-

quently, the co-simulation approach is less stable. In 

the case of Co-simulation, the main benefits are: 

problem-specific solvers can be used for integrating 

different subsystems and hence it may be more time 

efficient for loosely coupled systems (solvers may 

use different integration step sizes). On the down-

side, this approach is less stable as the Model Ex-

change type. The main reason for this instability is 

the approximation of the coupling variables between 

two consecutive communication time steps. Howev-

er, by choosing the communication step size careful-

ly a stable simulation can be achieved. 

As a result it is suggested to use the model ex-

change approach for tightly coupled systems, while 

the co-simulation approach may be more efficient in 

loosely coupled problems. 
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Abstract

This paper presents an approach to use the Func-
tional Mockup Interface (FMI) for integration of
classical controller specifications and statechart-
based specifications of real-time critical message
exchange protocols. The Functional Mockup Unit
(FMU) is automatically generated from the speci-
fication. Using the generated FMU we are able to
exploit simulation facilities as provided by Model-
ica/Dymola.

Keywords: Systems Engineering, Software En-
gineering, MechatronicUML, FMI, FMU, Model-
ica

1 Introduction

In today’s globalized world market forces demand
products to provide for more and more unique fea-
tures. In so-called mechatronic or embedded sys-
tems these features are often realized (mainly) by
software. For example, many new features which
were recently introduced in the automotive indus-
try are largely software driven.

In addition, very advanced new features will de-
pend on extensive communication between cur-
rently still independently operating individual
components. For example, intelligent lighting sys-
tems in cars will combine information about the
environment obtained from their own sensors with
those collected by other cars to save energy but
also to avoid glaring other drivers. Similar ex-
amples exist for transportation systems in general
but also for household appliances or in the pro-
duction industry [25]. Here, possible significant
energy savings are one main motivation to intro-
duce so-called smart grids.

The resulting high amount of software enabling

communication between a large number of compo-
nents combined with the software controlling in-
dividual components makes those systems more
complex than today. This requires significant
changes in the way software is developed today.
This is especially true as the software controlling
individual components is usually dealing with con-
tinuous variable values and developed by control
engineers whereas software controlling communi-
cation is handling discrete input and output sig-
nals often using asynchronous communication and
is developed by software engineers. In addition,
electrical and mechanical engineers bring in exper-
tise about the underlying hardware system con-
straints which have to be considered when devel-
oping the software.

As these systems are usually deployed in safety-
critical environments, high quality of the software
is an absolute must [21]. However, in the past, an
overall validation of systems under construction
was not possible until implementations had been
finished, i.e., after all hardware and software parts
had been built and integrated into the final prod-
uct. The above mentioned different disciplines use
their own models and formalisms to describe the
corresponding parts of the system under develop-
ment, e.g. feedback controllers are described using
differential equations and communication proto-
cols are described using statecharts. This devel-
opment process hinders early (formal) verification
and simulation of system models to detect errors in
the design phase as early as possible and to avoid
costly error removal in later development stages.

In this paper we focus on supporting simu-
lation based on model-driven development espe-
cially considering cross-discipline development be-
tween control and software engineering. In con-
trast to other approaches like [22, 8, 26], we use
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a discrete system model which enables the de-
tailed specification of timing issues when speci-
fying communication protocols, because message
transfer specified by those protocols is real-time
critical. Proper functioning of the system does
not only depend on the correct order of messages
sent and received but also on their timely delivery.

This paper presents how we employed the Func-
tional Mockup Interface (FMI) and the Functional
Mockup Units (FMU) in order to integrate dis-
crete model-based real time protocol specification
with controller design and appropriated simula-
tion facilities using Modelica/Dymola.

The approach has been developed as part
of the ENTIME project (ENTIME is the Ger-
man acronym for ’Design Methods for Intelligent
Mechatronics’). The project aims at the devel-
opment of a seamless methodology reaching from
conceptual design to concrete implementation of
mechatronic systems. It is carried out in close co-
operation with nine industrial partners. To sup-
port simulation of the physical models and cor-
responding feedback loops together with specifi-
cations of real-time protocols, the main challenge
was to provide the needed tool support, because
the project collaborators use different modeling
and simulation tools in their industrial practice.

The paper is organized as follows. In the next
section we illustrate the use of MechatronicUML,
a domain specific modeling language enabling pro-
tocol specifications including sophisticated real-
time constraints. The example which we use in
the paper, is a miniature robot called BeBot which
is a small mechatronic systems with a focus on
ad-hoc communication. In Section 3, we give a
brief and informal introduction to the concepts of
the FMI standard, sketch our implementation of
MechatronicUML according to the FMI standard
for model exchange by means of the example, and
present our tool support. Section 4 discusses re-
lated work in more detail. The paper closes with
a conclusion and an outlook on future work.

2 Specification of Protocols

The specification language which we use is called
MechatronicUML [3]. It has been developed by
a large joint project between engineers and peo-
ple from computer science. The project is the
collaborative research center self-optimizing sys-
tems in mechanical engineering which is funded

by the German national science foundation since
2002 (http://www.sfb614.de/en/).

2.1 Running Example

The example is the scenario of a so-called obsta-
cle avoidance maneuver which is performed by a
BeBot. BeBot [11] is a sophisticated intelligent
miniature robot, developed by the Heinz-Nixdorf
Institute. Figure 1 shows a picture of a BeBot. In
our scenario, the BeBot uses three sensors which
detect obstacles in front, left and right of its cur-
rent position. Further, the BeBot has a gyroscope
which measures its current angle position with re-
spect to the outside world. Three components of
the BeBot are active when it performs obstacle
avoidance. These components are (1) an explo-
ration component which starts or stops the explo-
ration of the environment, (2) a navigation com-
ponent which steers the BeBot around an obstacle
based on the given sensor inputs and (3) an obsta-
cle detection component which receives the input
from the three sensors and transforms them into
corresponding messages which are received by the
navigation component.

Figure 1: BeBot Robot [11]

As a consequence, the decision if and how an
obstacle avoidance maneuver has to be performed
depends on (extensive) asynchronous communica-
tion between these three components. For exam-
ple, the navigator which knows the actual angle to
the outside world, informs the obstacle detection
component which sensor values are relevant. The
obstacle detection component must not send mes-
sages when a turn is performed, because sensor
values are not correct when the BeBot spins.

Figure 2 illustrates how a BeBot will find its
way out of the shown maze.
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Figure 2: BeBot Obstacle Avoidance Maneuver

2.2 Structure Model

In MechatronicUML the system model is struc-
tured hierarchically and consists of either atomic
components or of structured components. Atomic
components implement their behavior directly
and structured components are a composition of
other components. The component model of
MechatronicUML differs from other component-
based approaches, like [27], as MechatronicUML
employs active components, i.e. the behaviour
of each component is specified by a real-time
statechart (see below) and executed by a single
thread [3].

Each component has interaction points, called
ports for accessing their functionality. Discrete
ports, shown as rectangles, are used for sending
and receiving asynchronous messages. Each mes-
sage is typed over a message type. Further, dis-
crete message ports have the causality in , out

, or in/out . Discrete in-ports can only re-
ceive messages, discrete out-ports can only send
messages and in-out-ports can receive and send
messages. A continuous port, shown as a trian-
gle is either a continuous in-port , or a continu-
ous out-port . It sends or receives signal values
which are typed as Boolean, Int, or Real.

Figure 3 shows the internal structure of the Be-

Bot SW component. It consists of three atomic
components. The component Exploration is respon-
sible for starting and stopping the exploration sce-
nario. It is connected via its port sender to the
component Navigation. The Navigation component
is responsible for actuating the BeBot. It can set
the linear speed and the angular speed of the BeBot.
The Navigation component is connected to the Ob-

stacleDetection component via its discrete port mas-

ter. The ObstacleDetection component transfers the
continuous signal values of the sensors front, left,
and right to asynchronous messages. These mes-
sages inform the Navigation component if it has to
perform an obstacle avoidance maneuver.

  Obstacle

  Detection

BeBot_SW

      

Navigation

masterslave

linear_speed

angular_speedExploration 

receiver

Expsender

actual_angularfront

left

right

Figure 3: Component Type of the BeBot Software

2.3 Real-Time Properties

Real-Time properties are specified by clocks. In
MechatronicUML a clock is a first-class real-
valued entity and is used to synchronously mea-
sure the duration of time during execution. It can
be reset to zero, which is marked by the keyword
reset, with any state- or transition-action. At the
beginning of the simulation clocks start with a
zero-value. In contrast to delayed transitions of
State Graph2 [22], or the after, before-construct
of Stateflow [23], or the relative time event after
of UML, a clock is not automatically reset when
the system state changes. At any point in time, a
clock can be read. The value of the clock repre-
sents the continuous-time since the last reset [2].
This semantics simplifies the specification of more
complex real-time behavior and constraints. It is
possible to compare clock values with time con-
stants. We use clocks to specify transition guards,
transition deadlines and time invariants of states.

2.4 Discrete Behavior Model

MechatronicUML uses Real-Time Statecharts to
specify protocols of message exchange between dif-
ferent components, i.e. the order of message invo-
cation and its corresponding time constraints. Be-
sides elements from UML state machine formalism
Real-Time Statecharts use syntactic elements like
clocks and corresponding clock constraints as ex-
tended transition guards as defined by timed au-
tomata. In MechatronicUML each discrete port
has its own statechart. The behavior of a com-
ponent is given by the parallel composition of all
statecharts of all its ports. In addition, it is possi-
ble to add synchronization channels like in timed
automata to synchronize the behavior of the dif-
ferent port statecharts.
Time-invariants from timed automata con-

strain when and how long a statechart is allowed
to stay in a particular state. We define the max-
imum time for evaluating and executing a transi-
tions by a deadline. We use clocks as guards of
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transitions, deadlines of transitions, and time in-
variants of states. The operational semantics of
Real-Time Statecharts is formally defined by [12]
and is based on timed automata.

It enables the application of formal verification
techniques like real-time model checking [14] with
tools like UPPAAL [4]. For instance we specify
in our example in Figure 4 the safety property
that each turn maneuver may not last longer than
5 seconds. Therefore we use the time invariant
c0 < 5.

Figure 4 shows the Real-Time Statechart of the
Navigation component. It consists of the paral-
lel composition of the port statecharts receiverExp

and master. The statechart in region receiverExp

describes how the received messages from com-
ponent Exploration are processed. At the begin-
ning the statechart is in its initial state Stop and
the parallel statechart master is in the state Halt.
When the upper statechart gets the asynchronous
message start the outgoing transition fires, if the
synchronization channel go is available. The syn-
chronization channel go is available if the sender
transition, marked by the “!”, and the receiving
transition, marked by the “?” can fire. If both
transition can fire both transitions fire together in
an atomic way. This means either both fire or none
of them. Because there are no more conditions on
the transitions they fire and the statechart gets in
the states Start and Go.

When the statechart master enters the state Go

the output signal linear speed of the BeBot is set to
the value 0.1 and the angular speed is set to 0. In
the state Go the BeBot drives forward until the Ob-

stacleDetection sends the message obstacleFront. In
this case the BeBot turns right to a southward
direction and drives forward until the left sensor
signals that there is no more obstacle at the left
side. If there is no more obstacle, the BeBot turns
back in an eastward direction and drives forward
until the next obstacle occurs in front of it. If
there is an obstacle at the left side until the BeBot
reaches the corridor boarder, the BeBot performs
a U-turn and drives forward until the right sensor
signals that there is no more obstacle at the right
side. These steps are carried out in a loop until
the Exploration component sends the stop message.

Navigator

receiverExp

Stop

var: Integer linear_speed, angular_speed, ref_angular, 

Real actual_angular; cl: c0;

Start

start go! / 
1

stop() halt! / 
1

master

Halt

Go

go? /
1

halt? /

4

ObstacleFront

obstacleFront /

1

TurnMinus90

1
[ref_angular == 0] / 

TurnFinished

Minus90

c0 < 5

[actual_angular ==

 ref_angular] /

 turnFinished
1

1
 / detectLeft

NoObstacleRight  / 

stopDetectRight
2

Turn90
1

2

[ref_angular == -90] / 

stopDetectLeft {ref_angular := 90}

TurnFinished

90

c0 < 5

[actual_angular == 

ref_angular] /

 turnFinished

1
 / detectRight

Turn0

1

3

NoObstacleLeft  / 

stopDetectLeft

[actual_angular ==

 ref_angular] /

 turnFinished

entry / {linear_speed := 0.1, 

angular_speed := 0}

exit / {linear_speed := 0}

entry / 

{linear_speed := 0} 

{reset: c0}

2

1

c0 < 5

entry / 

{angular_speed := 1,

ref_angular := 0}

{reset: c0}

entry / 

{angular_speed := 1}

entry / 

{angular_speed := 1,

ref_angular := -90}

 

[ref_angular == 90] / 

stopDetectRight

3

Figure 4: Real-Time Statechart the Navigator

2.5 Asynchronous Communication

The shown Real-Time Statechart formally defines
the protocol definition of the message exchange
and the corresponding timing constraints. Mes-
sages are sent when a transition fires. Messages
which should be sent are shown behind the slash
(/) and messages which should be consumed are
shown before the slash. The connector may have
a delay or a message could be lost. For the sake
of simplicity of the figure above and due to lack of
space, we omit the specification of the connector
here. The receiver port of a message stores a re-
ceived message in a mailbox. This is implemented
as a queue and has a fixed size which is defined
by the modeler during design time. Each mes-
sage type has its own mailbox. Thus, the receiver
can test directly if a needed message is available
without searching the whole queue. Each message
type could have an arbitrary number of parame-
ters, which are packaged in the message when a
transition fires. The receiver transition can read
and process the parameters when it fires and con-
sumes the message. Messages remain in the mail-
box until a transition consumes and destroys it.

2.6 Further Features of
MechatronicUML

As explained, MechatronicUML [3] mainly focuses
on the discrete parts of systems. The language
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especially addresses the specification of complex
communication protocols with hard real-time re-
quirements [9].

The structure of a mechatronic system is defined
by a component-based development approach. It
is possible to distinguish between discrete software
components and continuous software components
like controllers. MechatronicUML has clear inter-
faces between discrete system parts and continu-
ous system parts.

The behavior of continuous components includ-
ing their communication protocols is specified by
an extension of our Real-Time Statecharts in the
sense of hybrid automata. However, in contrast to
hybrid automaton approaches [1, 19] we abstract
from detailed definitions of controllers.

This abstraction together with some constraints
on the parallel composition of port statecharts en-
ables formal verification of the behavioral spec-
ification using model checking. We employ the
model checker UPPAAL to verify safety proper-
ties like deadlock freeness, state reachability or
end-to-end response time. MechatronicUML mod-
els can be verified automatically. We also prove
by model checking that a mailbox will not over-
flow (see above). However, formal verification is
beyond the scope of this paper and we refer to
[15, 13] for further details.

3 Generating FMUs from
Software Specification

This section shows how to generate an FMU.

3.1 FMI/FMU Fundamentals

Using different tools when designing the models
leads to compatibility problems when you want to
simulate all models in combination. To address
this problem, the ITEA2 project MODELISAR
has defined the FMI as an open standard for model
exchange and co-simulation between multiple soft-
ware systems. The FMI is used to create an in-
stance of a model which can be loaded into any
simulator providing an import function for FMI
[7]. The FMI for Co-Simulation allows to couple
several simulation tools [6].

A software instance compatible to the FMI is
called an FMU. An FMU is basically a zip-archive
with a “*.fmu” file extension. The information re-
quired for the simulation environment is collected

in an XML-file called modelDescription.xml. In
addition, this file also includes a list of all variables
available for data exchange between the simulator
and the FMU. Furthermore, the standard defines
functions that are used for the interaction between
a model and the simulator. To provide an FMU,
the FMU provider has to implement these func-
tions using the C language.

3.2 Generating C-Code from
MechatronicUML

This section sketches the C-code generation tech-
niques for MechatronicUML models. The gener-
ated code may be used for a concrete microcon-
troller target platform or – as this paper shows –
for an FMU implementation.

3.2.1 Generating C-code from the
Structure Model

For each atomic component of the
MechatronicUML model, we generate a header
file and a corresponding implementation file. A
component is mapped to a structure containing
pointers to nested sub-components, variables,
and clocks required for the associated statechart.
In addition, corresponding code for the ports is
generated. The discrete port implementation is
used for inter-component communication. For
this purpose, a discrete port implements an array
of message queues. A queue stores messages
of one specific type. For parametrized message
types additional structures are generated in
order to encapsulate the parameter values. For
continuous in-ports we generated a variable with
the causality input and for continuous out-ports
we generate a variable with the causality out-
put. The continuous port type is mapped to a
corresponding FMI data type, e.g. Boolean to
fmiBoolean. Via the input and output variables
the FMU can be connected to other FMUs or
Modelica/ Simulink components.

Our code is intended to run also on small 8-bit
processors with only a few kilobytes of memory.
This is too little to support both a real-time op-
erating system and the control software. Hence,
the control software is executed standalone on the
processor and to support multiple communicating
components on one processor, the components are
processed in a cycle using a simple task loop imple-
mentation. Note that for future work we will intro-
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duce a real-time operating system with more so-
phisticated task management and scheduling fea-
tures for larger systems with 16- and 32-bit pro-
cessors.

Listing 1 shows the execution sequence of our
example. The information about a component
is passed as an argument, allowing for multiple
components of the same type to exist in one en-
vironment. In every processing cycle, a compo-
nent statechart may exchange messages with other
components by sending and receiving them. After
every component has been processed, a synchro-
nization step is performed where raised events are
delivered to the target components.

. . .
// execute component behav ior
exe c nav i ga t i on ( comp navigation ) ;
e x e c exp l o r a t i on ( comp explorat ion ) ;
e x e c ob s t a c l e d e t e c t i o n (

comp obs tac l e de t e c t i on ) ;
// execute message exchange
sync ( connec to r s ende r r e c e i v e rExp ) ;
sync ( connec to r mas t e r s l ave ) ;
. . .

Listing 1: BeBot Execution Sequence

3.2.2 Generating C-Code from the
Discrete Behavior Model

There are several implementation techniques for
statecharts, but in most cases all the techniques
are variants and combinations of (1) the state ta-
ble, (2) the object-oriented state design pattern,
and (3) the simple switch-case statement imple-
mentations. (1) The state table implementation
maps directly to a state table representation in
the code. As it is not hierarchical, it needs ex-
tensions for nested states and parallel regions and
requires a large state table representation with a
complicated initialization. Hence, the code is less
readable. (2) The state design pattern simplifies
the implementation of statecharts. However, it
has also to be extended for hierarchical statechart
implementations. In addition, the implementation
is straightforward in C++, but it is rather com-
plex in C, because of the needed mapping for in-
heritance and polymorphism. Therefore, we de-
cided to generate nested switch-case statements
(3). The implementation technique of switch-case
statements is quite simple, it can be easily coded
in C, and it has a small memory footprint since
only one state variable is necessary to store the
current state of a state machine. Furthermore,

nested switch-case statements allow us to imple-
ment hierarchical statecharts in a quite intuitive
and readable way, which ensures traceability be-
tween the model and the generated code.

Listing 2 shows a code excerpt from the gen-
erated program for the BeBot example shown in
Figure 4. It gives an impression of the generated
C-code for a transition from state ObstacleFront to
state TurnMinus90.

void execute master ( comp navigation ∗ comp) {
. . .
switch ( reg master ) {

. . .
case STATE NAVIGATOROBSTACLEFRONT:
i f ( r e f a n gu l a r == 90) { . . .
} else i f ( r e f a n gu l a r == −90) { . . .
} else i f ( r e f a n gu l a r == 0) {

// s t a t e change
reg master = STATE NAVIGATOR TURNMINUS90;
// entry ac t i ons
angu lar speed = 1 ;
r e f a n gu l a r = −90;

}
. . .

Listing 2: Excerpt from navigation.c

For each region of a statechart, we declare an
Integer variable to keep the current state of this
region. Within each case-statement, a sequence of
mutually exclusive if-statements is used to deter-
mine whether one of the state’s outgoing transi-
tions can fire. In order to enable a transition, the
existence of events and Boolean expressions gen-
erated from conditional guards, clock guards, and
synchronization channels have to be evaluated. As
transitions have priorities in MechatronicUML to
prevent non-deterministic behavior, the generator
sorts the transitions according to their priorities
before generating the appropriate code. If a tran-
sition is enabled, it fires, i.e. the new state is set
and the appropriate exit and entry actions are ex-
ecuted. A state may also contain do-actions and
inner regions which are executed if no transition
is enabled. For this case, a final else-block is cre-
ated. Note, the presented program is executed
once in each cycle. In order to use the generated
C-code for an FMU implementation, we have to
implement the required interfaces from the FMI
standard.

3.3 FMI/FMU Wrap Up

We employ the FMU SDK from QTronic [16]. Fig-
ure 5 shows the relations and dependencies be-
tween the FMI standard, the QTronic FMU SDK,
and our statechart implementation.
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Figure 5: Implementation Dependencies

The basic implementation of the FMI is
provided by the FMU SDK. To implement
MechatronicUML, our code generator creates a
header file and an implementation file for each
component taking the FMU SDK into account.

The FMU SDK implements the FMI standard
by delegating some of the tasks to supplemen-
tary functions that have to be implemented by
the user. In our case, these implementations are
also generated automatically by our code genera-
tor. The most important function is eventUpdate,
as it is used to execute the statecharts. Since
the eventUpdate-function is called by the FMI-
function fmiEventUpdate whenever an event oc-
curs during a simulation, we are able to react on
changes in the simulation model. We use Time
Events from the FMI to control the execution of
a statechart at a regular interval and map each
clock to an fmiReal variable. Since the current
simulation time is passed to the FMU as a pa-
rameter, the current simulation time is assigned
to the clock variable to reset a clock. Evaluat-
ing is done by calculating the elapsed time since
the last reset. The difference between the current
simulation time and the affected clock variable is
used to evaluate clock constraints, deadlines and
invariants upon appropriate actions are taken.

In the FMI standard, direct access to the data
stored within the model is not possible, even if the
source code is provided. Instead, a reference num-
ber is associated with each variable in the descrip-
tion file. Therefore, the FMU SDK stores variables
of the model in four arrays of the types fmiReal,
fmiInteger, fmiBoolean, and fmiString and refer-
ences them by using indices. This is an efficient
implementation of the FMI standard, but it is not
useful for target-specific code that does not serve
as an FMU implementation. Further, it is not easy
to read and to understand the code. Therefore,
we generate placeholders for the variables of our
model. For the FMU implementation we generate
preprocessor macros, which map the placeholders
to FMU SDK compliant array access statements.

Figure 6: EmbeddedModeller

In case of other targets, e.g. microcontrollers, we
generate preprocessor macros mapping the place-
holder to more suitable structures and variables.

3.4 Tool Support

We provide our tool support in form of an Eclipse
modeling tool suite which is called Embedded-
Modeller. The EmbeddedModeller provides
several diagram editors and supports software
specifications based on MechatronicUML as ex-
plained in the previous sections. Figure 6 shows
the editors for Real-Time Statecharts and struc-
tured component diagrams.

For generating C-code and the corresponding
FMU description file, we used a template-based
code generator framework. To create the FMU
with all resources, the batch script provided with
the FMU SDK is executed. Firstly, the batch file
creates a temporary directory with the desired di-
rectory structure for the FMU under construction.
Secondly, it compiles the sources and copies all
needed files to the corresponding folders. Lastly,
the batch packages the processed directory and
saves it within the *.fmu file.

To simulate the designed BeBot software, we
generated the FMU for our software specification
BeBot SW and created the Modelica model of the
mechanical and control engineering parts of the
BeBot within Dymola. The FMU was imported
and connected to the hardware model of the Be-
Bot. Since the continuous ports of the Mechatron-
icUML serve as an interface to continuous com-
ponents in general, we are able to connect our
FMU, i.e. our discrete software component, to the
provided BeBot feedback controllers. We simu-
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lated the integrated model in Dymola successfully.
Note, our approach is not limited to Modelica /
Dymola as the FMI standard is tool-independent.
Therefore, it is possible to simulate software speci-
fications with any other simulation tool which sup-
ports the FMI model exchange standard.

4 Related Work

This section presents related work. We focus on
approaches which can be used to simulate hy-
brid systems and where the discrete behavior is
state-based. Further, we currently use the FMI
for model exchange and not for co-simulation.
Therefore, we do not discuss other approaches
for co-simulation or distributed simulation like
CODIS [5], TISC [20] or FMI co-simulation [6].

4.1 Statecharts in Modelica

Currently, state-based behavior can be modeled
in Modelica with the library State Graph2 or al-
gorithmic code is generated from SimulationX or
ModelicaML.

State Graph2 is a Modelica library [22] which
provides classes for states (Step), hierarchical
and parallel behavior (Parallel), and transitions
(Transition). With these elements it is possi-
ble to model complex behavior like Harel’s wrist
watch example. In contrast to MechatronicUML,
StateGraph2 has no concepts for clocks, clock con-
straints, time invariants, and deadlines to spec-
ify and constrain timing behavior. A modeler
could manually implement such behavior in Mod-
elica. Further, State Graph2 has no concept for
asynchronous message-based communication. We
are currently working on such a library extension.
However, as State Graph2 is modeled with equa-
tions and these equations are sorted before the
model is simulated, the modeler can hardly influ-
ence the resulting C-code generated by Dymola.
So, it is difficult to compare this code with real
target source code. The FMI C-code is the same
as the target source code except for the interface
definition .

SimulationX has its own state-based language
which follows the ideas of UML state machines
and supports a subset [8]. In contrast to Real-
Time Statecharts, SimulationX does not support
parallel behavior, timing behavior, and coordina-
tion of distributed components by asynchronous

communication. Timing behavior is supported
in a limited way, as transition firing could be
constrained to a time interval from the moment
when the source state of the transition is en-
tered. In MechatronicUML we use, like timed au-
tomata, clocks, clock constraints, time invariants,
and deadlines to specify and constrain the timing
behavior of our models. Messages are only avail-
able within a statechart in SimulationX. They do
not support an arbitrary number of parameters,
and messages are lost when a transition cannot re-
act on the event immediately. Therefore, it is diffi-
cult to specify coordination of distributed compo-
nents. SimulationX generates Modelica algorithm
code from its state machines.

ModelicaML is a UML Profile [26] which en-
ables to use UML Classes and Properties to spec-
ify Modelica models. State-based behavior is mod-
eled by UML state machines. The code gener-
ation mechanism supports nearly all UML state
machine constructs [24]. The Modelica code is
generated like SimulationX to the Modelica algo-
rithm section. As UML has no concept for clocks,
clock constraints, time invariants, and deadlines,
ModelicaML does not support them either. Asyn-
chronous messages between components can be
simulated via an external C-function [24]. As
ModelicaML has all freedoms of Modelica, it is not
possible to verify the resulting models efficiently.

4.2 MATLAB Simulink/Stateflow

MATLAB has an own state-based modeling lan-
guage called Stateflow, which can be combined
with its simulation platform Simulink. Stateflow
supports many features from UML state machines
and can be combined with the whole capabilities
of the MATLAB platform via its action language.
It is only possible to define formal semantics for
restricted Stateflow models [17]. Stateflow does
not provide first class modeling entities for speci-
fying timing behavior, except simple after and be-
fore statements. Stateflow does not provide a con-
cept of buffering messages. It is possible to model
such elements with a combination of Simulink and
Stateflow blocks, but this is complex, error prone,
and hard to maintain manually [18]. It is possible
to load FMU using the separate FMI toolbox of
Modelon [10].
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5 Conclusion and Outlook

This paper shows how it is possible to generate
FMUs from a formal software specification lan-
guage for cyber-physical system. As a result it
is possible to perform software-in-the-loop tests
by numerical simulation of hybrid systems. We
describe the following problem that arises when
providing a methodology and tool support reach-
ing from conceptual design to concrete implemen-
tation of cyber-physical systems: The approach
should support the overall system simulation for
different industrial partners in a heterogeneous de-
sign tool environment. The partners provide simu-
lation models for mechanical and control engineer-
ing parts of the system, but software simulation
models are missing. The transformation of soft-
ware specification to FMUs solves this problem.

As the main contribution, we describe how a
software specification in MechatronicUML can be
automatically translated to FMUs maintain the
original MechatronicUML semantics and, thus,
the verification results. In particular, we map
the component-based structure, the asynchronous
communication in form of Real-Time Statechart,
and real-time properties in MechatronicUML to
C-code, which is wrapped by the FMI. We
implemented the generation of FMUs from a
given MechatronicUML model using a model-
driven transformation approach. This combines
the modeling and formal verification strengths of
MechatronicUML with the advanced simulation
capabilities of simulation tools like Dymola or
Simulink. As a result of numerical errors we can-
not guarantee that in different FMI import tools
the different simulation runs have the same behav-
ior. Therefore, the formal verification is important
because it proofs every possible simulation run and
guarantees that all paths are conform to the spec-
ification. It is up to further research to proof that
our generation is correct and keeps the verified
properties.

The shown transformation approach should be
interesting for anyone who wants to test for-
mal software specification by simulation against
a model of the physical system. A transformation
against the FMIs could be performed for other for-
mal software specification languages like Petri nets
for flow analysis or stochastic software models for
testing performance or failure rates. Hereby, it
would be possible to combine the strength of for-
mal analysis and numeric simulation.

For future work, we plan to develop a concept
to allow for communicating via messages between
several FMUs. Further, we want to generate code
against different hardware platforms to analyze
the timing behavior. We want to integrate the be-
havior of an underlying middleware or real-time
operating system into the simulation. We may
use co-simulation for this purpose. The simula-
tion of complex cyber-physical systems requires
much computing time. We want to compare the
performance of native Modelica simulations with
integrated FMU simulations and try to enhance
the performance of hybrid simulations. Currently,
it is not easy to interpret the simulation results.
Here a bisimulation concept would help. To show
the result, a simulation run could be visualized in
the statechart or the message exchange could be
visualized by sequence diagrams.
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Abstract 

Mechatronic shifting simulation of automated trans-

missions in commercial vehicles is used for optimi-

zation and development in today’s truck engineering 

departments at Daimler. Within the ITEA2 project 

Modelisar in cooperation with ITI GmbH and SIM-

PACK AG this application served as a usecase for 

proof of concept of the newly developed Functional 

Mock-Up interfaces (FMI). Utilizing these standard-

ized interfaces models from different tools are cou-

pled to build up the overall system for the mecha-

tronic shifting simulation. The coupling via FMI for 

Model Exchange was achieved for control modules 

from MATLAB/Simulink into the SimulationX 

powertrain model and secondly from the 1D-

multiphysics powertrain in SimulationX into multi-

body vehicle in SIMPACK. Furthermore FMI for 

Co-Simulation was investigated in a pure Simula-

tionX framework for the powertrain model. Very 

promising results can be observed as for modeling as 

for simulation processes. The FMI technology has 

clearly shown its capability to be applied in the pro-

ductive simulation process. 

Keywords: FMI, Modelisar, multibody system, auto-

mated shifting, mechatronics, co-simulation, model 

exchange 

1 Introduction 

The ITEA2 project Modelisar was a European re-

search initiative from 2008 till 2011 focusing on the 

overall development process “from System Model-

ing to S/W running on the Vehicle”. The major out-

come is the standardization proposal Functional 

Mock-Up Interface (FMI) to facilitate tool and 

model coupling on implementation and numerical 

level, e.g. see [4], [5]. Within the project several use-

cases served as proof of concept by utilizing tools 

providing the new interfaces.  

One usecase was the “Mechatronic shifting simu-

lation of commercial vehicles” provided by Daimler 

AG, ITI GmbH and SIMPACK AG. This work-

package uses a Functional Mock-Up (FMU) of an 

automated gear shift system within the truck power-

train focusing on the transmission and demonstrating 

several benefits of the Modelisar environment. The 

SiL simulation is used for optimizing gear shift times 

and shifting comfort in heavy-duty trucks. Major 

challenges are the number of sub-models from dif-

ferent simulation tools and the necessary standardi-

zation of modeling, coupling, and solving. 

Coupled Simulation of Overall System

engine drivetraingearbox

C-code

controller sensors,

actuators

vehicle

Fig 1.1 - FMU Mechatronic Shifting Simulation 
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2 Mechatronic shifting simulation 

2.1 The Modelisar usecase 

The demonstration target for the Modelisar usecase 

has been a fully shiftable powertrain of heavy-duty 

trucks, which models the physics and control struc-

ture of the overall vehicle in such a degree of detail, 

that all phases of a gear shift can be reflected in 

terms of interactions between the driveline and vehi-

cle dynamics, and the different control units partici-

pating in the shift. The models are capable to treat 

the large-scale low-frequency effects such as drive-

line jerking, as well as high-frequency phenomena, 

such as dynamics of actuation systems and gearbox 

components, engine combustion, or the impact of 

CAN bus delays on the overall system behavior. 

 

The model allows the accurate prediction of the 

performance of the different driveline control units 

in interaction with the truck, the vehicle responses, 

and the perception of the driveline operation by the 

driver in terms of driving and shifting comfort. 

 

This type of modeling requires the integration of 

a heterogeneous collection of models created for 

various simulation environments: 

- 1D torsional vibration models of engine, gear-

box – modeled in SimulationX
®1

, 

- Actuation systems on clutch and gearbox – 

modeled in SimulationX, 

- Detailed multibody (mbs) vehicle – modeled in 

SIMPACK
®2

 

                                                      
1
 SimulationX is a registered trademark of ITI GmbH 

2
 SIMPACK is a registered trademark of SIMPACK AG 

- Controller model from external supplier – com-

piled C code generated from MATLAB/ 

Simulink 

- DAIMLER in-house controller code – C code 

and MATLAB/Simulink models, 

- Re-engineered controller functionality where no 

appropriate source was available – modeled in 

Modelica
®3

 within SimulationX. 

 

Thus, this application has been a perfect target 

within the MODELISAR project to verify technolo-

gies developed in the project framework, for the FMI 

as well as for FMI-based co-simulation technologies. 

 

The main objectives of the usecase were de-

creased simulation time, improved processes and 

overall decreased development times utilizing the 

FMI coupling techniques. Therefore the Simulation-

in-the-Loop (SiL) implementations are based on the 

FMI-enhanced new versions of SimulationX, SIM-

PACK and MATLAB/Simulink representing control 

functionalities and powertrain models. 

2.2 Simulation environment at project start  

The usecase started with a simulation framework as 

shown in Figure 2.2, see [1], [2]. It included already 

all necessary models for the mechatronic shifting 

simulation. The coupling was based on proprietary 

non-standard interfaces from SimulationX and SIM-

PACK.  

                                                      
3
 Modelica is a registered trademark of the Modelica As-

sociation 
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Fig 2.1 – FMI for Model Exchange Usecase Prototype 
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The control unit was integrated into the Simula-

tionX powertrain model utilizing Modelica external 

functions on one hand via MATLAB
®
/Simulink

®
 

and a Real-Time Workshop
®4

 (RTW) SimulationX 

target or the other hand via wrapped exported C-

Code. The resulting time excitations stimulated the 

vehicle model in SIMPACK as an offline coupling. 

Although this simulation environment already de-

livered detailed and qualitatively good results many 

reasons for improvement were observed: The offline 

coupling omits any feedback of powertrain and vehi-

cle. The model exchange was as well for the soft-

ware modules as for the powertrain module mainly 

handwritten and error prone, inefficient and costly to 

maintain.  

3 FMI for Model Exchange 

Within this use case the FMI for Model Exchange 

has been the main instrument to achieve the desired 

tool interoperation and model transfers. Using the 

FMI for Model Exchange controllers have been con-

nected to a SimulationX driveline model, which in 

turn has been integrated into SIMPACK using the 

very same technology, see [3]. 

 

3.1 Control unit integration 
 

Control software development for engine, clutch and 

gearbox control for Daimler commercial vehicles is 

done mainly inhouse. Software development 

stretches over a wide and dynamic range of MAT-

LAB/Simulink and TargetLink
®5

 versions but also 

includes plain C code. Thus achieving a software-in-

the-loop (SiL) integration of these control unit mod-

                                                      
4
 MATLAB, Simulink and Real-Time Workshop are reg-

istered trademarks of The MathWorks, Inc. 
5
 TargetLink is a trademark of dSPACE GmbH 

ules provides a certain challenge but has also a high 

potential to be facilitated with a standardized inter-

face such as FMI. Within the usecase FMI applica-

bility has been examined in two variants:  

Variant 1 applies to controllers implemented in 

MATLAB/Simulink and utilizes a RTW toolbox 

provided by Dassault Systèmes AB through another 

Modelisar work package in order to export the Simu-

link model as FMU. Such FMU can be integrated 

easily into SimulationX. So this variant was the pri-

mary path in the usecase to verify the FMI interface.  

Variant 2 implemented an FMI wrapper for plain 

controller C code. This was tested only prototypi-

cally within Modelisar using small test models. The 

approach has been demonstrated to be applicable but 

the absence of an automated FMI wrapper generation 

(e.g. through scripting) and the necessary degree of 

manual preparation of the FMU so far does not allow 

a productive use in the overall simulation process. 

 

FMI 
model

exchange

Model

*.mdl

RTW

FMI-Target

Quellcode

*.c

*.h

RTW

FMI-Target

Quellcode

*.c

*.h

Quellcode

*.c

*.h

FMI

*.mdl

Model

*.ism

*.mo

 
Fig 3.1 – Process chain for transferring MATLAB/ 

Simulink controller models into SimulationX 

The migration to FMI based SiL controller mod-

els has been achieved within the productive simula-

tion process by gradually replacing the tool-specific 

solutions based on a dedicated SimulationX target 

for the Real-Time Workshop (RTW).  

torque

engine-gearbox-mount

torque

propshaft

3D vehicle model (SIMPACK)1D powertrain model (SimulationX)

Fig 2.2 – Simulation environment at project start 
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Applying the standardized FMI technology now 

allows a higher degree of automation in the model 

exchange process and significantly broadens the 

range of potential target environments for the mecha-

tronic gearshift simulation. The application of FMI 

also did not affect results and simulation perform-

ance. 

 

3.2 FMU import without feedback 
 

In a first stage prototype, the powertrain FMU in-

cluding the control unit of section 3.1 was imported 

by FMI in the SIMPACK vehicle model. Rather than 

using offline pre-calculated inputs to the mbs-model 

as shown in section 2.2, online generated inputs 

where used in the simulation (see Figure 3.2).  

 

Cutting point of the SIMPACK powertrain model 

is between the first cardan shaft and the differential 

on the rear axle. All rotational parts in front of the 

cardan joint are modeled as 1-D model within Simu-

lationX and imported via FMI in SIMPACK. All 

rotational parts behind the cardan joint and the com-

plex vehicle 3D-structure are modeled in SIMPACK. 

No input from SIMPACK is passed into the FMU 

during simulation (without feedback).  

FMU output, being applied to SIMPACK as ki-

netic excitations: 

- torque on the gearbox output, 

- torque on the rear differential input. 

The results of the FMU integration without feed-

back show a perfect match with the results of the 

approach of section 2.2. The SIMPACK solver step 

size of the SIMPACK vehicle model without FMU 

was approximately 1e-3s. By integrating the FMU in 

the SIMPACK model, the overall simulation time 

increased due to the limiting step size of 20e-6s in-

duced by the FMU. The integration time can poten-

tially be reduced by a co-simulation between these 

two models, see section 4. Another approach is a 

performance optimization of the powertrain model in 

SimulationX. First model analyses show a high po-

tential to at least gain an acceleration of factor 10. 

 

3.3 FMU import with feedback – full FMI for 

Model Exchange solution 

 

In the final stage prototype, the dynamic feedback 

between powertrain FMU and vehicle model was 

taken into account (see Figure 3.3) 

Cutting point of the SIMPACK powertrain model 

is behind the gearbox output flange. All rotational 

parts in front of this flange are modeled as 1D model 

Fig 3.2 – FMI without feedback 

3D vehicle model (SIMPACK)

engine-gearbox-mount

gearbox out

wheel hub

Vehicle and powertrain model (SIMPACK)

1D powertrain model (SimulationX) 

exported as FMU for Model Exchange

Fig 3.3 – FMI with feedback 
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within SimulationX and imported via FMI in SIM-

PACK. All rotational parts behind this flange and the 

complex vehicle 3D-structure are modeled in SIM-

PACK. 

The FMU uses the following values as input 

(with feedback), being kinematic measurements of 

SIMPACK: 

- relative angle of the engine block wrt. vehicle 

frame, 

- relative rot. velocity of the engine block wrt. 

vehicle frame, 

- relative angle of the front propeller shaft flange 

wrt. engine block, 

- relative rot. velocity of the front propeller shaft 

flange wrt. engine block, 

- angle of the rear wheels. 

FMU output, being applied to SIMPACK as kinetic 

excitations: 

- torque on the gearbox output, 

- torque on the front propeller shaft flange. 

 

The feedback introduces a new level of accuracy 

for simulation of shifting comfort and increases 

simulation quality at Daimler.  

The simulation performance shows the same 

characteristics as described in chapter 3.2. The step 

size is dominated completely by the high dynamic 

powertrain model and no additional difficulties due 

to the feedback are introduced. The future work will 

focus on FMI for Co-Simulation on one hand and 

performance increase in the powertrain model on the 

other hand. 

4 FMI for Co-Simulation 

Sharing models between different simulation tools 

using the FMI for Model Exchange potentially pro-

vides pitfalls if the tools are using different solver 

technologies or if models run on significantly differ-

ent time scales. The latter is also the case in the 

model coupling between SimulationX and SIM-

PACK.  

The FMI for Co-Simulation is a potential solution 

since it allows bundling a model with a dedicated 

solver, which can run independently of the solver in 

the target system. On the other hand a co-simulation 

between models of physically coupled sub-systems 

may be difficult due to the inherently introduced 

communication time delays in the coupling. 

During the usecase project the FMI for Co-

Simulation in SIMPACK still has been under devel-

opment. For this reason an alternative test scenario 

has been implemented, where the FMI of the drive-

line which is intended for SIMPACK integration has 

been re-imported into SimulationX and has been 

coupled with a model of the downstream driveline 

(from the differential onwards), see [3]. In terms of 

present natural frequencies and discontinuities this 

reflects a similar scenario as in SIMPACK, where 

the vehicle part of the model could be solved with 

significantly bigger time steps. 

The maximum achievable stepsize in the commu-

nication and the impact of different interpolation 

methods between communication steps have been 

assessed. This test case showed a clear need to bal-

ance the communication stepsize in order to achieve 

stable and valid simulation results. Although the 

communication for a physical link still needs very 

small step sizes, the communication stepsizes are 

about 10 times larger than the required stepsizes us-

ing an FMI for Model Exchange. This allows expect-

ing an equivalent 10-fold performance increase. 

5 Conclusions and Outlook 

The usecase Mechatronic Shifting Simulation was 

completed successfully by implementing an FMI-

based simulation framework already improving the 

development at Daimler and furthermore showing 

high potential for a wider future use. The new inter-

face standardization proposals FMI for Model Ex-

Fig 4.1 – FMI for Co-Simulation with Vehicle Model in SimulationX 
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change and FMI for Co-Simulation were imple-

mented in different prototypes arising in the field of 

drivetrain dynamics and especially mechatronic 

shifting simulation for commercial vehicles.  

To model and simulate the mechatronic power-

train SimulationX is used. Since version 3.4 Simula-

tionX implements FMI for Model Exchange as im-

port and export, as well as FMI for Co-Simulation as 

Slave and Master. All four variants have been tested 

successfully in different prototypes. 

The vehicle and cabin is modeled as 3D multi-

body system in SIMPACK. The version SIMPACK 

9.0 implements FMI for Model Exchange as import. 

This interface has been tested successfully for differ-

ent prototypical implementations. 

Furthermore the control unit software had to be 

imported from MATLAB/Simulink. This could be 

achieved successfully via FMI for Model Exchange 

with the RTW toolbox as well developed within 

Modelisar. 

From a technical point of view the following re-

sult could be achieved: 

- Prototypical FMI based simulation of mecha-

tronic shifting system with bi-directional cou-

pling of vehicle and powertrain model, 

- FMI based model exchange of MAT-

LAB/Simulink control modules into powertrain 

model in SimulationX, 

- FMI based model exchange of SimulationX 

powertrain model into SIMPACK vehicle model, 

but simulation performance needs further im-

provement due to problem specific multi-scale 

behavior, 

- Alternative bi-directional coupling via FMI for 

Co-Simulation started. 

FMI makes coupling of models easier to imple-

ment. The numerics of the coupling regarding per-

formance, model harmonization, etc. must be ana-

lyzed as before. The potential of FMI for Co-

Simulation could be shown. As soon as implementa-

tions are available it will be investigated for the cou-

pling of vehicle and powertrain model for the mecha-

tronic shifting simulation. 

In the result of the Modelisar project the further 

development and improvement of the FMI standard 

has become a core task within the Modelica commu-

nity. Due to the high industrial acceptance and feasi-

bility proven by projects such as the presented use 

case, tool vendors eagerly follow these developments 

within their tools.  

SIMPACK Version 9 officially supports Model 

Import based on FMI Standard 1.0. Co-Simulation 

based on FMI Standard 1.0 is currently under devel-

opment and will be available fall 2012.  

ITI has been driving FMI developments from the 

very beginning and fully supports all FMI variants in 

SimulationX since 2010. 

As soon as FMI Standard 2.0 has been officially 

released, SIMPACK and ITI are going to upgrade 

the FMI interfaces in their tools to this version. 

To summarize it can be said that with the new 

coupling interfaces enormous benefits for industrial 

applications can be generated: They reduce signifi-

cantly the implementation complexity and costs for 

tool and model coupling. They optimize the SiL 

processes regarding time, cost, robustness and qual-

ity. They simplify internal and external model ex-

change and model reuse.  
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Abstract

A software framework for prototyping of Nonlinear
Model Predictive Control (NMPC) loops is presented
that is based on the standardized model exchange for-
mat FMI (Functional Mock-up Interface). Arising op-
timal control problems are solved by an efficient im-
plementation of the direct multiple shooting method,
which is especially suitable for nonlinear and stiff
system models. Using co-simulation, an optimizer,
plant, and estimator can be coupled to a closed NMPC
loop. Several stages of a typical control design process
are supported, ranging from virtual simulation experi-
ments to real plants with prototype NMPC controllers.
Energy efficient control of vapor compression cycles
is presented as example application of the proposed
methods.

Keywords: Functional Mock-up Interface; Nonlin-
ear Model Predictive Control; Vapor Compression Cy-
cles

1 Introduction

Nonlinear Model Predictive Control (NMPC) pro-
vides promising possibilities to improve control accu-
racy, stability, as well as energy and economical effi-
ciency of technical systems. The key idea is to utilize
rigorous mathematical models of the controlled plant
for online computations of appropriate control actions,
based on the repeated solution of a dynamic optimiza-
tion problem. Model-plant mismatch and disturbances
are incorporated by updating the mathematical model
according to estimates obtained from most recent mea-
surement data. From the point of view of the numer-
ical algorithms employed, these methods are well de-
veloped and ready to use. Their application to com-
plex systems however by now is the subject of a few

selected research projects only. The most prevalent
reason for this may well be the considerably large ef-
fort required to develop fast implementations of large-
scale accurate nonlinear models. The development
of object-oriented and equation-based modeling lan-
guages such as Modelica aims at helping to consider-
ably reduce this effort: systems can be conveniently
modeled by composition from smaller, reusable sub-
components. Moreover, there no longer is the need
to manually transform equations into a signal-oriented
form.

In the last few years, Modelica has matured to a
modeling language that is widely used for systems
simulation in both academics and industry. More re-
cently, research initiatives have come up that helped
to extend the scope of Modelica beyond pure systems
simulation. For example, [7] gives an overview over
current research activities in the area, and shows possi-
ble further directions especially from a control design
perspective.

Probably the first work reported in literature about
dynamic optimization with Modelica models can be
found in [12]. Therein the MATLAB S-Function for-
mat is used to interface Modelica models with an op-
timization solver. Dynamic optimization with mod-
els generated by the C-code export functionality of
the Modelica tool Dymola is described in [16] and
[25]. Both approaches suffer from the fact that the
used model exchange formats are proprietary. In [26]
the development of optimization based controllers in
Modelica is addressed. But the authors remain unclear
about the technical details how a Modelica model can
be reused as internal model of the control algorithms.

A more integrated approach is described in [1].
Based on Optimica, a language extension of Mod-
elica that serves to formulate optimization problems,
an open source Modelica simulation and optimization
tool has been developed that goes by the name JMod-
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elica.org, see [2]. Therein, dynamic system models
are formulated in the Modelica language and are sym-
bolically transformed into a representation suitable for
evaluation by numerical solvers. As is the case for
most Modelica tools, not all parts of the Modelica
language and the Modelica Standard Library are sup-
ported yet. Optimal control problems can be solved
in JModelica.org by means of a direct collocation
method.

As part of the ITEA-2 research project Modelisar,
the standardized model exchange format FMI (Func-
tional Mock-up Interface) [22, 3], has been developed.
During the last two years, FMI gained a lot of attention
and is now supported by over 20 simulation tools. A
detailed list can be found on http://fmi-standard.
org. The main purpose of FMI is to exchange models
between different simulation tools. FMI is used to de-
sign nonlinear Kalman Filters for state and parameter
estimation in [6]. To the best of our knowledge, there
are no reports of FMI having been applied to optimiza-
tion of dynamic systems, though.

1.1 Contribution

This article addresses the above described situation
by presenting a software framework for fast and re-
liable prototyping of NMPC loops using the FMI stan-
dard [22]. The key idea is to use existing special-
ized software for each task and exchanging models be-
tween these tools, relying on FMI for the purpose. Us-
ing established modeling and simulation tools such as
Dymola, one can conveniently set up large-scale and
complex system models. Exported as FMI models,
called FMUs (Functional Mock-up Units), we import
these into the direct optimal control code MUSCOD-II

[4, 9, 21]. MUSCOD-II is a software package for effi-
cient numerical solution of optimal control problems.
The implemented direct multiple shooting method is
favorable especially for large-scale, highly non-linear,
and stiff systems.

Using the co-simulation platform TISC [20], we
also present a software solution for coupling optimiza-
tion algorithms with simulation tools to conveniently
test designed NMPC loops. Using existing interfaces
to measurement and automation software NMPC con-
trollers can also be connected to real plants.

With NMPC of a vapor compression cycle, we
present a challenging but promising application and
demonstrate the capability of our method.

1.2 Structure of the Paper

The paper starts with a description of the theoretical
background of our methods. In Section 2 the under-
lying model class is defined. Based on this dynamic
system model, a class of continuous Optimal Control
Problems (OCPs) is formulated. The direct multiple
shooting method is presented in Section 3 as an ef-
ficient numerical approach for the discretization and
solution of OCPs. The control loop is closed in Sec-
tion 4 by taking into account state estimates or mea-
surements and repeatedly solving the OCP. In order to
derive an efficient control algorithm, special attention
is paid to reinitialization of subsequent optimization
iterations and the separation of each iteration into dif-
ferent phases. Technical details of our methods are
presented in Sections 5 and 6. We discuss optimiza-
tion results for an example application in Section 7,
using the presented toolchain and algorithms.

2 Problem Class

Starting point is an index-1 system of semi-explicit
differential algebraic equations (DAE) describing the
dynamic behavior of a controlled plant:

dx
dt
(t) = f

(
x(t),z(t),u(t), p

)
, t ∈T , (1a)

0 = g
(
x(t),z(t),u(t), p

)
(1b)

with independent variable time t on the horizon T :=
[0, tf], differential state variables x(·) ∈ Rnx , algebraic
state variables z(·) ∈ Rnz , control functions u(·) ∈ Rnu

and time-invariant model parameters p ∈ Rnp . Later
on, we will show how to use the FMI [22] to conve-
niently exchange models of type (1) between different
modeling software tools.

We may then formulate an OCP based on plant
model (1) to find locally optimal control trajectories on
the time horizon T for a given initial process state x0.
To this end, we need to express the performance mea-
sure as an OCP objective function, i.e., a combination
of a Lagrange-type term L,

∫ tf

0
L(x(t),z(t),u(t), p)dt, (2)

and a Mayer-type term E that is defined at the end of
time horizon only,

E(x(tf),z(tf), p). (3)
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With the resulting objective function

Φ(x(·),u(·),z(·), p) :=
∫ tf

0
L(x(t),z(t),u(t), p)dt (4)

+E(x(tf),z(tf), p),

an OCP can be formulated as follows:

min
x(·),z(·),

u(·),p

Φ(x(·),z(·),u(·), p) (5a)

s.t.
dx
dt
(t) = f (x(t),z(t),u(t), p), t ∈T , (5b)

0 = g(x(t),z(t),u(t), p), t ∈T , (5c)

0≤ c(x(t),z(t),u(t), p), t ∈T , (5d)

0 5 ri(x(ti),z(ti), p), {ti}i ⊂T , (5e)

0 = x(0)− x0. (5f)

We strive to identify trajectories for the controls u(·)
and the differential and algebraic states (x(·),z(·))
that minimize the cost function Φ, and are a so-
lution to the initial value problem defined by (5b)
and (5f). Additionally, mixed state-control inequal-
ity constraints (5d) and point constraints on a grid
{ti}i ⊂T (5e) must be satisfied.

3 Direct Multiple Shooting

The OCP presented in Section 2 is an infinite-
dimensional optimization problem. The purpose of the
Direct Multiple Shooting method [4, 21] is to trans-
form this problem into a finite dimensional nonlinear
program (NLP) by discretization of the control func-
tions and path constraints and by parameterization of
the state trajectories. To this end, we introduce a shoot-
ing grid {τi}0≤i≤N ,

0 = τ0 < τ1 < .. . < τN = tf. (6)

on the horizon T . Control trajectories are discretized
on the shooting grid, e.g. as piecewise constant func-
tions

u(t) := ui, t ∈ [τi,τi+1)⊂T , 0≤ i≤ N−1. (7)

The control space is hence reduced to functions de-
pending on finitely many parameters ui only.

Multiple shooting state variables si are introduced
on the time grid to parameterize the differential state
trajectories. The node values serve as initial values for
an IVP solver computing the state trajectories indepen-
dently on the shooting intervals 0≤ i < N,

dxi

dt
(t) = f (xi(t),zi(t),ui, p), t ∈ [τi,τi+1] (8a)

0 = g
(
xi(t),zi(t),ui, p

)
, (8b)

xi(τi) = si. (8c)

Obviously we obtain from the above IVPs N trajecto-
ries, which in general will not combine to a single con-
tinuous trajectory. Continuity across shooting inter-
vals needs to be ensured by additional matching con-
ditions entering the NLP as equality constraints,

si+1 = xi(τi+1; τi,si,zi,ui, p), 0≤ i≤ N−1. (9)

Here we denote by xi(τi+1; ti,si,zi,ui, p) the solution of
the IVP on shooting interval i, evaluated in τi+1, and
depending on the initial time ti, initial states (si,zi),
and on control and model parameters ui and p. Path
constraints c(·) are discretized on the shooting grid for
simplicity of exposition. Likewise, the point constraint
grid is assumed to coincide with the shooting grid.

From this discretization and parameterization, we
obtain a highly structured NLP of the form

min
ξ

N

∑
i=0

li
(
τi,si,zi,ui, p

)
(10a)

s.t. si+1 = xi(τi+1; τi,si,zi,ui, p) 0≤ i < N, (10b)

0 = g
(
τi,si,zi,ui, p

)
, 0≤ i≤ N, (10c)

0≤ c
(
τi,si,zi,ui, p

)
0≤ i≤ N, (10d)

0 5 ri
(
τi,si,zi,ui, p

)
0≤ i≤ N, (10e)

0 = s0− x0, (10f)

where all unknowns of the problem are grouped in a
single vector ξ :=

(
s0,z0, . . . ,sN ,zn,u0, . . . ,uN−1

)
. For

the ease of notation, we write uN := uN−1 in (10).
We solve this large-scale but structured NLP by

a tailored sequential quadratic programming (SQP)
method. This includes an extensive exploitation of the
arising structures, in particular using block-wise high-
rank updates of the Hessian approximation, a partial
null-space reduction to eliminate the algebraic states
[21], and condensing techniques for a reduction of the
size of this QP to the dimension of the initial values s0
and controls (u0, . . . ,uN−1) only [4, 21].

Note that the evaluation of the matching condition
constraint (10b) requires the solution of an initial value
problem with initial values (si,zi) and controls ui on
the time horizon [τi,τi+1]. For more details on the nu-
merical algorithms and techniques employed we re-
fer the reader to e.g. the textbook [24] for nonlinear
programming in general, and to [4, 21] for details on
nonlinear programming techniques for Direct Multi-
ple Shooting. An efficient implementation is available
with the software package MUSCOD-II [9, 21] that has
been used for all computations. MUSCOD-II for off-
line optimal control is publicly available [19] on the
NEOS Server for Optimization [15].
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4 Nonlinear Model Predictive Con-
trol Scheme

We now address the issue of solving OCP (10) in an
on-line NMPC setting. Key to an efficient numerical
algorithm for NMPC is to reuse in every iteration in-
formation available from the last problem’s solution to
initialize the new problem. This is due to the fact that
subsequent problems differ only in the real-world pro-
cess state x0 (5f). Moreover, the faster the control feed-
back can be computed and applied to the real-world
process, the more similar the subsequent problems will
be. If model predictions are sufficiently close to real
process behavior, it is reasonable to expect that the in-
formation contained in the previous problem’s solution
already is a very good initial guess close to the desired
solution of the new subproblem.

4.1 Initial Value Embedding

In [8, 9] and subsequent works it has been proposed
to initialize the current problem with the full solution
of the previous optimization run, in particular control
variables ui and state variables (si,zi). We refer to [10]
for a detailed survey on the topic of initial value em-
bedding. It is a prominent feature of the Direct Multi-
ple Shooting approach that very good state initializers
are available not only for x(0) but also for the shooting
grid nodes x(τi), 1≤ i≤ N.

In using the proposed initialization, the value of s0
will in general not be the value of the current state
x0. By explicitly including the linear initial value con-
straint (10f) we can however guarantee that s0 attains
the value of x0 already after the first full Newton–type
step computed by the SQP method.

4.2 A Real–Time Iteration in Three Phases

This idea motivates the idea of real–time iterations
that perform only one SQP iteration per NMPC sam-
ple [9]. In this iteration, we can evaluate all derivatives
and all function values without requiring knowledge of
the current state x0, the only exception being the lin-
ear initial value constraint. Consequently, we can pre-
solve a major part of the direct multiple shooting SQP
step as follows:

Preparation All functions and derivatives that do not
require knowledge of x0 are evaluated. This
includes ODE solution, sensitivity computation,
sparsity analysis, structure exploitation, and ma-
trix factorizations. Note that the preparation

phase of the new problem always takes place one
sampling period ahead.

Feedback As soon as x0 is available, the SQP step
is readily computed from the prepared data, but
only as far as required to give a feedback con-
trol to the process. Hence, the feedback delay
reduces to the computation time of the SQP step
after preparation that essentially involves the so-
lution of only a single QP.

Transition The SQP step computation is completed
after the feedback control has been given to the
process.

5 Software Framework

In this section we present our software framework
for a convenient setup of simulated and real-world
NMPC loops. The basic idea is to use different spe-
cialized software for each task and to couple it to a
co-simulation master. Using FMI ensures integrity
of the underlying plant model that is used in several
places, and avoids error-prone and time-consuming
model transformations.

5.1 General Structure

A closed NMPC loop consists of three major parts as
sketched in Figure 1:

Plant The controlled system. This could be a real-
world plant or, in an earlier design stage, a virtual
plant based on a simulation model.

Estimator The current value of all state values and
parameters of the system model is estimated from
available measurement data y(t). The estimator
could be realized as a nonlinear Kalman filter or
a moving horizon estimator (MHE). If a virtual
plant is used wherein all state variables and pa-
rameters are accessible, it is also possible to use
an ideal estimator with (x(t), p) = y(t).

Optimizer The heart of an NMPC loop is an opti-
mization algorithm that determines the best pos-
sible control action for the current system state.
This is realized as described in Sections 3 and 4.
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Figure 1: Signal flow diagram of closed NMPC loop.

5.2 Data Exchange

We use the co-simulation platform TISC [20] to set-up
a powerful NMPC prototyping environment, keeping
the basic structure of Figure 1 in mind. TISC acts as
master and manages data exchange between different
clients. There already exist interfaces between TISC
and a variety of simulation, visualization and measure-
ment tools, e.g. Dymola, LabView, and Simulink. The
user has to define types and names of variables to be
sent and received for each client. Data routing between
clients is automatically managed by matching variable
types and names. For our NMPC environment we use
a fixed naming and typing convention. Variable names
and the direction of information flow are defined ac-
cording to Figure 1. The TISC type of time is Dou-
ble, whereas all other variables are of TISC type Dou-
bleArray.

Using this definition it is readily possible to ex-
change components of an NMPC loop. For example,
one could replace a virtual plant that is simulated in
Dymola with a real plant interfaced through LabView
with just a few mouse clicks.

6 FMI for Optimization

In this section we show some implementation de-
tails to shed light on how an FMU can be used
in MUSCOD-II to formulate and solve OCPs of
type (10). We also describe new requirements and de-
mands the FMI standard faces when we desire to use in
a consistent derivative-based optimization setting such
as direct optimal control, and give recommendations
on future enhancements of FMI.

6.1 Interface between MUSCOD and FMI

In order to set up and solve a OPC in MUSCOD-II the
user has to provide a C++ file that defines the model
equations, including differential equations, objectives,
and constraints. This source code is compiled into

a shared library and dynamically loaded by the main
program MUSCOD-II during runtime.

Instead of modeling in C++, we link a compiled
FMU to a generic MUSCOD-II model that calls the ap-
propriate FMI functions. This paradigm has also been
followed by [19] to interface MUSCOD-II with AMPL
[11]. As defined in FMI, some function calls have to be
carried out once during startup in order to instantiate
and initialize an FMU. This is organized by defining
a class, writing the required function calls in its con-
structor, and instantiating it as a global object. Now,
the constructor is called when the resulting dynamic
library is loaded into MUSCOD-II. The corresponding
code is shown in Listing 1. The pointer to the instanti-
ated FMU is defined globally, because we need to call
FMU functions in several places.
#define NXD 19

#define NU 2

#define NP 0

fmiComponent fmu;

const fmiValueReference uRef[NU] =

{352321536 , 352321537};

class InstantiateFMU {

public:

InstantiateFMU ();

~InstantiateFMU ();

};

InstantiateFMU :: InstantiateFMU ()

{

// Instantiate fmu

fmu = fmiInstantiateModel (instanceName ,

GUID , callbacks , fmiFalse );

// Set Time

status = fmiSetTime(fmu , 0.0);

// Set Controls

const fmiReal uIni[NU] = {2.5, 41.6667};

status = fmiSetReal (fmu , uRef , NU, uIni);

// Set Parameters

const fmiReal pInit[NP] = {};

fmiSetReal(fmu , pRef , NP, p);

// Initialize

fmiEventInfo eventInfo;

status = fmiInitialize(fmu , fmiFalse , 0.0,

&eventInfo );

}

InstantiateFMU instantiateFMU;

Listing 1: Instantiation and initialization of a FMU in
a MUSCOD model source file.

First of all we have to provide the differential right-
hand side function of the ODE, as shown in Listing 2.
This function is called by a MUSCOD-II integrator and
is expected to return the right-hand as a function of
time, states, controls, and parameters. The objective
function is formulated in a similar way. As an exam-
ple, the source code of a Lagrange term is shown in
Listing 3.
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void ffcn (

double *t, double *xd, double *xa,

double *u, double *p, double *rhs ,

double *rwh , long *iwh , long *info

) {

// Set Time

fmiSetTime (fmu , *t);

// Set Controls

fmiSetReal (fmu , uRef , NU , u);

// Set Parameters

fmiSetReal (fmu , pRef , NP , p);

// Set States

fmiSetContinuousStates (fmu , xd, NXD);

// Get Derivatives

fmiGetDerivatives (fmu , rhs , NXD);

}

Listing 2: Right-hand side function.

void lfcn (

double *t, double *xd, double *xa,

double *u, double *p, double *lval ,

double *rwh , long *iwh , long *info

) {

// Set Time

fmiSetTime (fmu , *t);

// Set Inputs

fmiSetReal (fmu , uRef , NU , u);

// Set States

fmiSetContinuousStates (fmu , xd, NXD);

// Get Outputs

const fmiValueReference yRef [2] =

{905970080 , 905971331};

double y[2];

fmiGetReal (fmu , yRef , 2, y);

*lval = (y[1] -283.15) * (y[1] -283.15)

+ 0.01 * y[0] / 1000.0;

}

Listing 3: Lagrange term of objective.

A large part of this source code can be generated
automatically from the model description xml file of
an FMU, but some lines, e.g. objective formulation,
currently still need to be coded by hand.

6.2 Directions for Future FMI Developments

In this section we give an outlook on future develop-
ments in using FMI for direct dynamic optimization.
Ideally, we are interested in realizing FMI access to
the full class of DAE-constrained switched systems,

dx
dt
(t) = fσ (t,x(t),z(t),u(t), p), t ∈T , (11a)

0 = gσ (t,x(t),z(t),u(t), p), (11b)

σi(t) =
{

+1 s(t,x(t),z(t),u(t), p)> 0,
−1 s(t,x(t),z(t),u(t), p)< 0.

, (11c)

i = 1, . . . ,nσ .

Additional transversality conditions must be satisfied
to guarantee that points s(t,x(t),z(t),u(t), p) = 0 are

isolated and a clear transition between the two alter-
nate right-hand sides occurs in the neighborhood of
such points, see e.g. [5].

The principle of internal numerical differentiation
(IND) requires a caller-control approach to be used
for consistent derivative-based optimization. In such
an approach, FMI is responsible for evaluation of the
functions f and g, if given a caller-supplied switch sig-
nature σ , factorization of dg

dz , iteration count for solv-
ing the DAE constraint 0 = g(·), etc. The caller is then
able to keep these potentially nondifferentiable parts
of the evaluation of system (11) fixed for the purpose
of computing consistent derivatives and sensitivities of
IVP solutions, e.g., as described in [5, 18, 23] for the
case of implicit switches.

6.3 FMI Requirements for Consistent
Derivatives

The current implementation of the FMI standard has
proven sufficient to enable our tools to work with FMI
when the problem class is limited to continuous ODEs.
DAEs are currently handled internally, and are ex-
posed as ODEs in a reduced space to the caller. This
involves iterative solution of the nonlinear DAE con-
straint that is carried out internally by the FMI. Im-
plicitly discontinuous ODEs, so-called switched or hy-
brid systems, are supported in an accessible way by
the FMI standard. State discontinuities however are
handled internally again. This effectively limits our
approach to FMI for optimization to ODEs with con-
tinuous solutions.

To extend the FMI standard to complement state-of-
the-art optimization software, the paradigm of external
control over adaptive components needs to be adhered
to. This currently is partially the case for switched sys-
tems, but needs to be extended to, e.g., state disconti-
nuities, direct linear algebra involving pivoting deci-
sions, and to the use of iterative solvers.

Whenever it is desirable to call such procedures in-
side an FMI model, all information about control about
adaptive components, including pivoting sequences,
iteration counts, matrix factors, outcome of condi-
tional evaluations, or choice between alternate func-
tions during implicit switching, should be conveyed
to the FMI by the caller. This would grant the caller
control over potential sources of non-differentiability
inside the FMI. We propose that the caller sould main-
tain an FMI state object that documents the state and
outcome of all non-differentiable actions, and would
pass this FMI state object to the FMI, to be used for
subsequent function evaluation. The caller would fur-
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ther modify this FMI state object whenever appropri-
ate, e.g. exchange functions during implicit switching,
but only after the arising non-differentiability or dis-
continuity has been taken care of on the optimizer’s
side. Indeed, the FMI 2.0 standard makes consider-
able progress into this direction.

7 Example Application: Vapor Com-
pression Cycle

To illustrate the applicability of the NMPC tools and
algorithms described in the previous sections, we
present simulation results for a challenging NMPC ap-
plication. We desire to control a vapor compression
cycle with two goals in mind: good disturbance rejec-
tion and maximum energy efficiency.

7.1 System Description

The system under consideration is sketched in Fig-
ure 2. Main components are two plate heat-
exchangers, a variable-speed scroll compressor, an
electronic expansion valve and a suction line accumu-
lator. Working fluids are internally refrigerant R134a
and on both secondary sides water-glycol mixtures.
This system also exists in reality and is designed as test
stand for automotive air-conditioning compressors.

Figure 2: Vapor compression cycle including inputs
and controlled outputs of the system.

7.2 System Model and Optimal Control
Problem

The system model is derived from first principles only.
The condenser is modeled as moving boundary model,
details can be found in [14]. Accumulator and evapo-
rator are modeled as lumped volumes.

Refrigerant fluid properties are incorporated using
bicubic spline interpolation. This approach leads to

improved computational speed and smoothness com-
pared to the commonly used iterative solution of fun-
damental equations. Further information can be found
in [13].

The resulting system model is an explicit ODE sys-
tem with 17 differential states. There are 2 controls:
a voltage signal vexv to the step motor controller ac-
tuating the expansion valve and the rotational speed
set-point of the compressor ncomp.

The main control goal is to keep the evaporator out-
let water temperature T out

evp at a fixed set point Tset. We
formulate the squared deviation as first Langrange-
type objective term:

∫ tf

0
(T out

evp (t)−Tset)
2 dt. (12)

We also want to maximize energy efficiency, in other
words, minimize the electrical power Pcomp needed by
the compressor, leading to the second Langrange-type
objective term:

∫ tf

0
Pcomp(t)dt. (13)

We also desire to realize a smooth control profile by
penalizing excessive control action, adding

∫ tf

0
(ncomp− ñ)2 dt, (14)
∫ tf

0
(vexv− ṽ)2 dt (15)

to our objective. Where ñ and ṽ are two additional
state variables the original ODE system is augmented
by. The corresponding additional equations are

dñ
dt

= ncomp− ñ, (16)

dṽ
dt

= vexv− ṽ. (17)

Weighting factors wi are introduced and all terms are
combined to the objective

Φ :=
∫ tf

0

[
(T out

evp (t)−Tset)
2 +w0Pcomp(t) (18)

+w1(ncomp− ñ)2 +w2(vexv− ṽ)2] dt

We finally obtain a OCP of type

min
x(·),u(·)

Φ(x(·),u(·)) (19a)

s.t.
dx
dt
(t) = f (x(t),u(t)) t ∈T , (19b)

0≤ c(x(t),u(t)) t ∈T , (19c)

0 = x(0)− x0, (19d)
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with 19 differential states x and 2 controls u. In ad-
dition to the plant model ODE (19b), fixed upper and
lower bounds for all states and controls (19c) as well
as initial values for all states (19d) are considered.

7.3 Simulation Results – NMPC

Using the methods and software tools described in pre-
vious sections we can set up a closed loop NMPC
simulation. The vapor compression system Modelica
model is developed, and exported as an FMU using
Dymola. As described in section 6.1, the exported
FMU is used in MUSCOD-II to formulate and solve the
arising optimal control problems of type (19).

Investigation of a range of choices for the NMPC
controller’s parameters, comprising time horizon,
number of multiple shooting intervals, and sampling
rate, leads to the final choice of 500 s time horizon di-
vided into 10 multiple shooting intervals and a 2 s sam-
pling interval of the closed loop controller. Control
trajectories are discretized on the same grid by piece-
wise constant functions. This setup shows good closed
loop performance in terms of stability and disturbance
rejection.

The choosen prediction horizon of 500 s appears to
be very large at first sight, but shorter prediction hori-
zons have been found to lead to stability issues. This
behavior is mathematically explained by large time
constants of the system. A physical explanation can
be given by a closer look at the suction line accumu-
lator. In this component, liquid refrigerant is stored in
order to compensate for changes of the optimal active
refrigerant charge at different working points; see [17]
for a detailed discussion. The second task of a suction
line accumulator is to separate vapor from liquid and
feed the compressor with pure vapor. In steady-state
conditions for the whole cycle, the accumulator energy
balance forces inlet and outlet refrigerant states to an
equilibrium. The accumulator can therefore be seen to
act as a passive control unit that drives two points of
the cycle (accumulator inlet and outlet) to the dew line.
This passive control action takes place comparatively
slowly, resulting in large time constants of the system
model.

A virtual NMPC experiment is set up by simulating
the controlled plant in Dymola and coupling it with
MUSCOD-II via TISC. The real-time iteration scheme
presented in Section 4.2 is applied with a fixed sam-
pling rate of 2 s, assuming zero feedback delay.

Additional assumptions are no model-plant mis-
match, availability of the full process state vector, and
uncontrolled input measurements without disturbance.

0 200 400 600 800 1000
t (s)

30

40

50

60

70

n c
om

p
( s−

1)

NMPC
PI

(a) Control input 1: compressor speed.
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(b) Control input 2: expansion valve voltage signal.
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(c) Chilled water temperatures at evaporator inlet and outlet.
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(d) Compressor’s electrical power consumption.
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(e) Refrigerant subcooling at condenser outlet.

Figure 3: Simulation results: NMPC versus PI control
of a vapor compression cycle.

Although these assumptions can hardly be satisfied
when NMPC is applied to a real plant, this kind of
ideal experiment still helps to gain insight into the the-
oretical performance of an optimally designed NMPC
controller. Using our software framework, closed loop
performance of extended problems can be studied very
conveniently.
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7.4 Simulation Results – Comparison to PI
Control

For comparison, we applied a conventional control
concept with two continuous PI controllers to the
plant. Our primary goal – keeping chilled water out-
let temperature at a constant set-point of 8 ◦C – is
achieved by adjusting compressor speed. Contrary to
NMPC, we can’t take our second goal – maximizing
energy efficiency – directly into account. It known,
however, that for vapor compression cycles of our
type, a certain value of refrigerant subcooling at the
condenser outlet is optimal [17]. Hence, we may use
the second control input – expansion valve opening –
to keep subcooling close to a fixed set-point of 3 K.

In our example experiment we start with near
steady-state conditions. At t = 200 s the chilled wa-
ter inlet temperature rises from 10 to 10.5 ◦C. With
chilled water outlet at 8 ◦C, this results in a cooling
load increase of 25%. Figure 3 shows the correspond-
ing response of PI and NMPC closed loops.

In the first 200 seconds there is only little control
action. Both control goals, chilled water outlet tem-
perature (Figure 3(c)) and compressor’s power con-
sumption (Figure 3(d)), are almost identical for both
control concepts. This is because the chosen subcool-
ing setpoint for the PI controller is set to 3 K, which is
close to the efficiency optimal working point for these
boundary conditions. At t = 200 s, when the chilled
water inlet temperature rises, things change notice-
ably. First of all, there is an immediately deviation
of the chilled water outlet temperature from its set-
point. Both controllers react by increasing the com-
pressor speed (Figure 3(a)) and drive the temperature
back to their setpoints (Figure 3(c)). Looking at Fig-
ure 3(b), we see that both controllers react to the dis-
turbance by opening the expansion valve. The NMPC
controller however does so much more aggressively,
leading to the desired result that water outlet temper-
ature stays at its setpoint for the remaining simulation
time. The PI controlled temperature shows a second
deviation starting at t = 300 s. Because the maximum
compressor speed of 60 s−1 has already been reached,
the temperature deviation lasts until t = 800 s.

One could argue that the situation could be im-
proved by tuning the expansion valve PI controller to
speed up its reaction. Although we don’t claim to
have chosen the best possible PI parameters, simula-
tion studies show that the expansion valve PI controller
must be comparatively slow in order to ensure stabil-
ity of the closed loop. This may be due to the large
time constants mentioned above. A second reason may

be the inverse response behavior of the plant model
for expansion valve opening as input and subcooling
as output. Besides good disturbance rejection, a sec-
ond benefit of our NMPC controller becomes clear by
looking at the compressor power consumption in Fig-
ure 3(d). At t = 1000 s the system slowly approaches
a new steady state working point with about 4% in-
creased power consumption of the PI controlled com-
pared to the NMPC controlled cycle. Therefore, one
can see that a fixed subcooling setpoint is not optimal
for all boundary conditions. Figure 3(e) shows that for
the new working point, optimal subcooling tracked by
the NMPC controller lies somewhere around 4 K. If
we continued simulation, the PI controller would steer
the cycle back to non-optimal subcooling of 3 K.

8 Conclusion

Although tailored to forward simulation, the FMI for-
mat can be used for interfacing Modelica models with
state-of-the-art dynamic optimization software. But
with the current design of FMI this approach is lim-
ited to continuous ODE. To extend the scope of FMI
for optimization to hybrid DAE there must be major
changes. Instead of solving implicit algebraic equa-
tions with embedded solvers internally, the residuum
functions should be exposed. The proposed software
framework has proven its applicability for setting up
NMPC loops in an early design stage. The application
vapor compression cycle demonstrates the benefits of
NMPC. In the presented scenario, NMPC shows a sig-
nificantly better performance compared to a conven-
tional PI control concept in terms of energy efficiency
and disturbance rejection. Moreover, NMPC is able to
identify and track new optimal working points under
changed external conditions.
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Abstract 

The paper deals with the simulation of an innovative 
adiabatic compressed air energy storage plant. These 
plants are able to store electrical energy by com-
pressing and expanding ambient air. In contrast to 
other approaches the plant layout examined in this 
paper works with much lower storage temperatures 
of just 100-200 °C. Aim of the modeling effort is to 
dynamically simulate the plant and to analyze the 
thermodynamics of the system. Here, off-design be-
havior regarding turbomachinery output tempera-
tures, pressure losses and heat flows are of particular 
interest. 
 
Keywords: compressed air; energy storage; thermal 
storage; low-temperature; CAES; modeling; Mode-
lica 

1 Introduction 

The increasing share of renewable power generation, 
particularly of fluctuating wind and solar generation, 
leads to a time-based shift between supply and de-
mand. A result of this development is the increasing 
demand for energy storage. Beside short time storage 
technologies like batteries or flywheels, a significant 
demand for bulk storage like pumped hydro energy 
storages (PHES) arises. For Europe the future PHES 
potential is rather limited due to siting restrictions 
including proper topological conditions. One alterna-
tive is compressed air energy storage (CAES), which 
provides energy capacities and power ranges compa-
rable to those of PHES. This renders CAES a prom-
ising option for bulk electricity storage in the near 
term future. 

2 Compressed Air Energy Storage 

The idea of using compressed air to store energy is 
rather old. Beside pressurized air driven vehicles for 
special applications, there are two so called diabatic 
CAES plants, which are already in operation. The 
first CAES in Huntorf (Germany) works since 1978. 
The second one, located in McIntosh (USA), is in 
service since 1991. The concept of CAES is to ab-
sorb electricity by compressing ambient air by an 
electrically driven compressor in times of surplus 
electricity in the grid. The compressed air can be 
stored in a pressurized containment of any kind. The 
mentioned CAES plants use solution mined under-
ground salt caverns as compressed air storage (CAS). 
Because of the surrounding salt these caverns are 
technically tight without additional sealing. During 
discharge the compressed air is released from the 
CAS and heated up to drive an expansion turbine. 
The expansion turbine is connected to a generator 
supplying electric power to the grid. 

 
Figure 1: Block diagram of the first compressed air 
energy storage plant located in Huntorf, Germany [1] 

As shown on the left hand side of Figure 1 the whole 
amount of heat generated during compression is 
cooled to the ambient in today’s diabatic CAES. 
Therefore, two main intercoolers are installed in the 
Huntorf plant, the first one between the low and high 
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pressure compressor units and the second one be-
tween high pressure compressor unit and CAS. The 
second intercooler ensures that the air enters the 
CAS at a maximum temperature of 35 °C, because 
higher temperatures would destabilize it. In expan-
sion mode these plants use a gas fired combustion 
chamber to pre-heat the compressed air before the 
expansion in order to protect the turbine and to in-
crease the power output. In the Huntorf plant this 
pre-heating again is located at two points of the 
process. First, the air is pre-heated before entering 
the pressure expander and then again between the 
two expander units. Therefore, both diabatic CAES 
plants are, in the proper meaning of the word, no 
pure energy storages. They are rather a type of hy-
brid gas plants. 

2.1 Current adiabatic design approaches 

Nowadays CAES approaches aim on cycle operation 
without the need of fossil fuels to heat up the com-
pressed air during expansion. Therefore, a thermal 
energy storage (TES) is applied. It captures the heat 
of compression during the charging process and al-
lows for using it to heat up the air in the discharging 
process. Figure 2 shows the block diagram of an 
adiabatic compressed air energy storage (A-CAES). 

 

 
Figure 2: Concept of an adiabatic compressed air 
energy storage 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Low-temperature adiabatic compressed air 
energy storage concept 

Advantages of the concept are the high cycle effi-
ciency of up to 70 % and the high energy density of 
the TES [2]. The main challenges are the demand for 
a compressor redesign to face temperatures of up to 
650 °C and the development of a large packed bed 
TES, which can withstand high temperatures and 
pressures of around 70 bar simultaneously. 

2.2 Low-temperature concept 

To avoid the previously mentioned challenges 
Fraunhofer UMSICHT investigates the possibility to 
design A-CAES plants for lower TES temperatures. 
Interesting results for a two-stage A-CAES at 350 °C 
[1] and the fact that the cycle efficiency of A-CAES 
is not governed by the Carnot efficiency led to the 
current 100-200 °C LTA-CAES concept [3]. 
Figure 3 shows the plant layout of a LTA-CAES. 
Due to the use of an eight stage radial inflow com-
pressor it is possible to cool the compressed air after 
each stage. This leads to a reduction of compression 
work and a limitation of the TES temperature to 
100-200 °C. The chosen temperature depends on the 
economic optimum between increasing revenue 
through better cycle efficiencies on the one hand and 
increasing investment costs for the TES due to high-
er temperatures on the other hand. In the addressed 
temperature range a pumpable TES medium like 
pressurized water or thermal oil can be used. Inde-
pendent of the TES temperature there is always a 
part of compression heat, which cannot be reused 
during the discharging process. In the shown 
stand-alone plant version (Fig. 3) this heat is cooled 
to ambient air temperature by additional intercoolers. 
The stored heat is used to pre-heat the compressed 
air before entering each expander stage. This results 
in cycle efficiencies of up to 67 %. 
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3 Current plant model 

In the ongoing development process the model de-
scribed below enables the examination of the ther-
modynamic behavior of the plant especially in off-
design operation. The current plant model is based 
on Modelica 3.2 standard libraries, especially on the 
Modelica.Fluid library by Casella et al. [4], and im-
plemented in Dymola 2012 FD01 [5]. The com-
pressed air is currently assumed as an ideal gas mix-
ture of dry air, taken from the Modelica.Media pack-
age ‘DryAirNasa’. 

Table 1: Symbol table 

symbol meaning unit 

p pressure Pa 
h enthalpy J/kg 
T temperature K 
X mass fraction - 

Q&  heat flow W 

m&  mass flow kg/s 
y specific useful flow work J/kg 
κ isentropic exponent - 
R gas constant J/kg K 
∏ compression/expansion ratio - 
η efficiency - 
P power W 

3.1 Standard library components 

As intended by using Modelica to simulate the 
LTA-CAES, many standard library components 
could be used in the model. Among sensors, PID-
controllers, valves and Fluid.Sources, the whole tur-
bomachinery piping is implemented by Mode-
lica.Fluid pipe models. The CAS is assumed as a 
solution mined underground salt cavern and is based 
on the ‘ClosedVolume’ Modelica.Fluid model. 

3.2 Heat exchanger modeling 

In a first step the used heat exchanger models are 
simplified to heat sinks and sources without any 
mass or energy storage capacities. The current ap-
proach also assumes an ideally regulated water mass 
flow through the heat exchanger components. 
 
The pressure loss of the heat exchanger is a fixed 
value given by the user. The output pressure is calcu-

lated according to Equation 1 if the current mass 
flow exceeds a given minimum. Otherwise the pres-
sure loss is set to zero. The resulting step is 
smoothed by a first order transfer function. 

 Eq.1 

Another fixed input value is the outlet temperature 
(Tout), which is assigned to the air leaving the heat 
exchangers in times of required heat transfer. There-
fore, the enthalpy at the outlet is calculated using this 
given temperature (Eq. 2). 

 Eq.2 

The required heat flow to reach this temperature is 
calculated by the energy balance equation (Eq. 3) 
and given to the user as an output value.  

 Eq.3 

3.3 Turbomachinery modeling 

The main components of the LTA-CAES plant are 
the compressor and expander turbomachineries. Par-
ticular attention was paid to these components during 
model development. The LTA-CAES concept in-
cludes an eight stage compressor and a four stage 
expander, both integrally geared. In the model each 
of the turbomachinery stages is characterized by two 
characteristic diagrams, one with regard to the pres-
sure ratio and the other with regard to the polytropic 
stage efficiency. In the LTA-CAES concept devel-
oped so far, both compressor and turbine are sup-
posed to run on fixed speeds. 

 
Figure 4: First stage compression ratio diagram 

In the LTA-CAES concept the control of the opera-
tional point is carried out by variable guide vanes. 
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Their impact on turbomachinery operation is deter-
mined by the current angle of the guide vanes. Figure 
4 shows the pressure ratio for the first compressor 
stage as a function of air mass flow and guide vane 
angle. 

 
Figure 5: First stage polytropic efficiency diagram 

The polytropic efficiency of the same compressor 
stage is a function of air mass flow and pressure ratio 
as depicted in Figure 5. 
All these diagrams are based on predicted values for 
operating and off-design points. The parameters of 
the second (efficiency) and third (compres-
sion/expansion ratio) order surface functions are fit-
ted by the open source software GnuPlot in order to 
reproduce the available off-design point behavior. 

 
Figure 6: Compressor stage model with inputs from 
characteristic diagrams 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Entire turbine train with control system 

As shown in Figure 6 the characteristic diagrams are 
implemented as a ‘CombiTable2d’ in Modelica.  
With the current mass flow delivered by a sensor and 
the guide vane angle given by the control instance as 
inputs, these tables deliver their values as inputs for 
the Modelica.Fluid based compressor stage model. 
The model uses these values to calculate the change 
in enthalpy. Therefore, the isentropic exponent κ is 
calculated at suction conditions by the used Mode-
lica.Media model. Together with the stage inlet tem-
perature (Tin) and the compression ratio input value 
(∏in), Equation 4 is used to calculate the specific is-
entropic useful flow work (ys) assuming ideal gas 
behavior. 
 

 
Eq.4 

 
Equation 5 shows the conversion of the polytropic 
efficiency input value (ηpol, in) to isentropic efficiency 
(ηs). 
 

 

Eq.5 

 
The division by the isentropic efficiency (ηs) results 
in the effective change in enthalpy (∆h) (Eq. 6). 
 

 
Eq.6 

 

The output pressure is calculated by Equation 7. 

 Eq.7 
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With the given pressure and enthalpy at the output 
port of the compressor stage model, Modelica.Media 
is able to calculate values like the output tempera-
ture. 
To match the energy balance (Eq. 8) there is an addi-
tional model output value called internal consumed 
power (Pi).  

 Eq.8 

Since there is no change in air mass flow within the 
stage, the mass balance shown in Equation 9 is valid. 

 Eq.9 

In the turbine model both characteristic diagrams are 
generated as functions of mass flow and guide vane 
angle from literature data (Fig. 7) [6, 7]. Apart from 
that, the same kind of input values and a correspond-
ing set of equations are used. It is therefore not de-
scribed in detail in this paper. 
 
Simulations of multi-stage turbomachineries are very 
complex since a pressure or temperature change in 
one stage has a direct influence on the following 
ones. This especially applies for off-design condi-
tions and for interim cooling or heating processes. 
The fundamental advantage of modeling each com-
pressor or turbine stage as an independent model is 
the ability to calculate their interactions without 
complex methods like the principle of superposition 
for the compressor or the law of cone for the turbine.  

3.4 Control system 

Since the plant model is not intended to simulate 
start-up and shut-down phase in detail, the modeling 
of the surge control valve was omitted. The start-up 
and shut-down of the plant is therefore simplified. 
Once started, the consumed or produced power is 
adjusted by a PID-controller system. The values the 
control system should maintain are given to the 
model by a Modelica ‘timeTable’ connected to an 
external file. Programming both stage types in the 
shown pressure driven way leads to a turbomachin-
ery system with a self-regulating mass flow rate. The 
control system is able to change the guide vane angle 
and therefore the operating point of the plant. As 
proven by comparison, the model behavior and the 
guide vane angle control simulate the real perform-
ance with sufficient accuracy. 

4 First results 

The presented simulation results refer to a model 
parameterization of a plant with an eight stage 
53 MW compressor unit and a four stage expander 
unit with an output power of 30 MW. The TES tem-
perature is limited to 150 °C and the cavern pressure 
varies in the range between 100 and 152 bar assum-
ing a cavern depth of 1500 m. The chosen high pres-
sure leads to a high energy density in the cavern. The 
required geometrical volume of the cavern is 
30,000 m³. With this cavern the LTA-CAES plant is 
able to operate six full load hours of charging as well 
as discharging. 

4.1 Plant operation 

Like normal power plants, usual diabatic CAES 
plants preferably work only in their full load operat-
ing point, where optimal efficiency can be reached. 
Therefore, the first simulation results show the plant 
behavior at design point, which reflects a full cycle 
of charging and discharging the cavern at maximum 
power. 

 
Figure 8: Cavern pressure during full cycle process 

Figure 8 shows the cavern pressure increasing from 
100 to 152 bar and then decreasing to 100 bar again 
during a full charge and discharge period of 6 hours 
(21,600 s) each. 

 
Figure 9: Timetable signal and corresponding com-
pressor power consumption and turbine power output 
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During the charging process (400-22,000 s) the re-
quested power consumption is set to 53 MW. While 
discharging the LTA-CAES the requested power 
output is set to the maximum output power of 
30 MW. This call starts at 23,400 s and continues to 
45,000 s. As shown in Figure 9 the timetable pro-
vides the corresponding values to the model and the 
compressor and turbine power follows this demand. 

 
Figure 10: Guide vane angle adjustment 

Figure 10 shows the guide vane angle in the same 
time period, regulated by the control system to match 
the timetable power signal. It can be seen, that the 
compressor guide vanes are continuously closing to 
hold the power consumption of 53 MW during the 
charging process. In contrast the turbine guide vanes 
are opened up more and more during the discharge 
process in order to provide a constant power output 
of 30 MW. The corresponding change in air mass 
flow due to the guide vane adjustment is shown in 
Figure 11. 

 
Figure 11: Mass flow through compressor and tur-
bine train 

4.2 Compressor train 

One aspect of the previously mentioned complex 
interactions between each of the compressor stages 
can be observed in Figure 12. It can be seen that the 
increasing cavern pressure is not reached by a 
slightly increasing compression ratio in each stage. 
Rather there is a strong increase of the compression 

ratio in the higher stages and nearly no change in the 
first three stages. 

 
Figure 12: Compressor stages compression ratios 

As a result of this compressor behavior the power 
consumed by the stages does not behave similar 
(Fig. 13). Especially, the first and the last compres-
sor stage show an opposed development. While all 
the other stages consume a constant power, due to 
the reduction of mass flow (Fig. 11) by guide vane 
adjustment, the last stage consumes more and more 
power. In this compressor stage the strong increase 
in compression ratio overcompensates the reduced 
mass flow. In contrast the power of the first stage 
decreases. 

 
Figure 13: Compressor stages power consumptions 

According to the different change of compression 
ratio and power consumption in all of the stages, the 
efficiency course also varies between each of them. 
Depending on that the temperature of the air entering 
the heat exchangers varies during the charging proc-
ess. Figure 14 shows the heat flow rates each of the 
heat exchangers has to provide. The previously de-
scribed behavior of the stages can be seen here again 
clearly. The wide range of heat flow rates arises from 
the different tasks of the heat exchangers. The heat 
exchangers two, four, six and eight are designed to 
deliver a preferably constant heat flow to the TES. 
The others just cool the process air down to a defined 
temperature to ensure the maximum TES tempera-
ture of 150 °C in this plant layout. Therefore, their 
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heat flows vary according to the compression ratio of 
the previous compressor stage. 

 
Figure 14: Heat flow rates of the heat exchangers 
during the compression process 

4.3 Turbine train 

By opening the turbine guide vanes (Fig. 10) the 
control system increases the air mass flow (Fig. 11) 
to compensate the decrease in turbine output power 
due to the decrease in cavern pressure. Despite the 
considerable decrease of turbine inlet pressure of 
52 bar during discharging, the turbine mass flow in-
creases only by 5.4 kg/s, enough to allow for a con-
stant power output. The corresponding dynamic be-
havior of each of the four expander stages is shown 
in the Figures 15 and 16. 

 
Figure 15: Expander stages expansion ratios 

Corresponding to the decreasing cavern pressure de-
picted in Figure 8, the expansion ratio of each stage 
decreases as well. It can be seen, that each stage has 
an individual course (Fig. 15). These pressure driven 
expansion ratios, together with the adjustable guide 
vane angle, define the mass flow through the ex-
pander stages as depicted in Figure 11. 
 
Depending on the self-adjusting mass flow and the 
guide vane angle given by the control system, each 
stage has an individual efficiency course during dis-
charging. 

 
Figure 16: Turbine stages isentropic efficiencies 

Figure 16 shows the efficiencies of the four expander 
stages during the discharging process. The values 
seem to be constant. In fact there is a minimal rise at 
the beginning of the discharging process followed by 
a slightly decrease towards the end. The maximum 
value can be found at the point the guide vane angle 
(Fig. 10) crosses the zero degree position, because at 
this condition the expander stages reach their optimal 
operating point. The nearly constant efficiency over 
the whole discharging process demonstrates the gen-
eral advantage of turbomachinery control by guide 
vane adjustment. 
As a result of the changing expansion ratios and effi-
ciencies the output temperatures of the expander 
stages vary, too. Because of the small change in effi-
ciencies, the expansion ratios are the main influential 
variables. Together with the air mass flow these tem-
peratures govern the heat exchanger requirements. 
Figure 17 shows air temperatures at the inlet of each 
heat exchanger. Since the assumed slow discharge of 
the cavern has a negligible effect on the cavern tem-
perature, the air temperature at the first heat ex-
changer inlet is constantly set to 50 °C. The inlet 
temperatures for the other heat exchangers are equal 
to the previous turbine stages output temperatures. 
As to be expected, increasing temperatures depend-
ing on the decreasing expansion ratios of the turbine 
stages can be observed. 

 
Figure 17: Temperature of the heat exchanger in-
flowing air 
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Figure 18: Heat flow rates into the heat exchangers 
needed to heat up the airflow to 150 °C 

The heat flow rates of the heat exchangers to heat up 
the air to 150 °C show an interesting behavior 
(Fig. 18). The heat flow rate required by the first heat 
exchanger is increasing due to the rising mass flow. 
In contrast the accordingly expected heat flow in-
crease at the other stages is compensated by the 
higher input temperatures and the consequently 
smaller temperature difference between inlet and 
outlet air stream. 

4.4 Model performance 

The shown results were generated using Dymola 
2012 FD01 on a 3 GHz dual-core system with 4 GB 
of RAM. The model was initialized with initial guess 
values from stationary calculations. Apart from some 
difficulties at points of sudden step responses, which 
could be solved by smoothing these, the model 
works very fine. The model performs robust and 
quick, mainly due to neglecting mass and energy 
storage in compressor and expander stages as well as 
in the heat exchangers implemented so far. The 
simulation of the whole 50,000 s charging and dis-
charging cycle (Dassl 0.0001; 500 output intervals) 
requires 9 s. Leveling up the number of output inter-
vals to 5,000 increases the simulation time to 13.7 s. 

5 Conclusions and work in progress 

The basic results of the model show the potential of 
using dynamic simulation to investigate the thermo-
dynamic behavior of an A-CAES. Especially, the 
complex interactions between turbomachinery 
stages, heat exchangers and pressure losses can be 
analyzed in detail. Furthermore, the model allows the 
analysis of off-design behavior, which is getting 
more and more important in today’s electricity mar-
kets. The influence of off-design operation on the 
overall cycle efficiency can be evaluated as well. 
 

Besides the presented results work further pro-
gresses. The presented model will be extended by: 
 

- the implementation of detailed heat ex-
changer models 

- the implementation of external media librar-
ies for humid air to investigate the influence 
of condensing water in the process 

- the implementation of alternative turbo-
machinery concepts 

 
In the absence of experimental data the compressor 
model so far had to be validated by data from steady-
state calculations in different working points. Here, 
the model results match the steady-state ones very 
well. A detailed off-design validation by experimen-
tal data for the turbomachinery is aimed at for the 
future. 
 
The final goal of the research work will be an itera-
tive process by using both, the presented dynamic 
simulation model and the economic optimization 
model GOMES® [8]. This way an optimization of 
technical and economical aspects for a given busi-
ness case will be possible. 
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Abstract

A method is presented by which alternative systems
of physical units may be represented and utilized in
Modelica. The method may be useful in simulating
models of physical systems where the base units of the
International System of Units (Système international
d’unités, SI)—the standard unit system in Modelica—
are poorly scaled. It also provides a convenient means
to express the values of physical quantities in fields of
science and engineering where data is typically rep-
resented in other systems of units or where the rank
of the system of units is less than that of SI (i.e.,
natural units). By explicitly expressing the value of
a physical quantity as the product of a number and
a unit (where the unit is an algebraic variable), the
method uses variables that are unit-neutral. Unfortu-
nately, workarounds are necessary in order to imple-
ment the method in the current version of the Model-
ica language. Nonetheless, it may be useful in special
applications, and the related discussion may provide
valuable insight. In particular, it is shown that there
is an apparent conflict in the interpretation of “num-
ber” and “value” between Modelica and the Interna-
tional Bureau of Weights and Measures (Bureau Inter-
national des Poids et Mesures, BIPM).
Keywords: natural units; physical quantities; Model-
ica; SI

1 Introduction

In the mathematical representation of physical sys-
tems, the values of quantities are interrelated through
equations that express the behavior of the system over
time and space. As stated by the BIPM [5, p. 103]:

“The value of a quantity is generally ex-
pressed as the product of a number and a
unit. The unit is simply a particular exam-
ple of the quantity concerned which is used
as a reference, and the number is the ratio of
the value of the quantity to the unit.”

In general, a unit may be the product of powers of
other units, whether they are base units or units de-
rived from the base units in the same manner.

In the Modelica language, physical quantities are
typically expressed as instances of the Real type [12,
p. 46]. The value attribute of the instance is the num-
ber associated with the value of the quantity (not the
value of the quantity, as will be seen). The unit at-
tribute is a string that describes the unit by which the
value of the quantity is divided to arrive at the num-
ber.i The displayUnit attribute (also a string) de-
scribes the unit by which the value should be divided
to arrive at the number as it is entered by or pre-
sented to the user. Based on the information provided
by the unit and displayUnit attributes, simulation
tools may perform unit checking and conversion. The
Real type contains other attributes as well, including
quantity, which is another string [8, p. 375].

The SIunits subpackage of the Modelica Standard
Library contains types that inherent from the Real

type. The type definitions appropriately modify the
unit, displayUnit, and quantity attributes (among
others) to represent various physical quantities. The
unit and displayUnit attributes are based on the
SI. The quantity string is generally used to describe
the name of the physical quantity. For example, the
Velocity type has a unit of "m/s" and a quantity

of "Velocity".
If an instance of the Velocity type has a value of

one (v = 1), then it is meant that “the value of velocity
is equal to one meter per second.” Again, the value

attribute represents the number, or the value divided
by the unit, not the value itself. This apparent con-
flict could be solved in one of several ways. First, the
unit could be strictly set equal to be one (1), regardless
of what the unit is. This is the essence of the current
implementation in Modelica. It is also the interpreta-
tion we use when we are working a problem by hand

iHereafter, the value of the quantity is referred to as simply
the value, but it should not be confused with the value attribute
(which, in the current version of the Modelica language, is the
number).
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and drop the units because we are exclusively using a
particular system of units. However, in this case, the
statement that “the value of a quantity is generally ex-
pressed as the product of a number and a unit” [5] loses
its meaning; it may as well be “the value of a quan-
tity is generally expressed as the number.” Second,
the value attribute could be renamed as the number

attribute. Since the name of a variable is an implicit
reference to this attribute (whatever it is called), the
variable would then represent the number. The third
method of resolution is to let the units (the meter and
the second in this case) be mathematical entities and
let v′ = 1 ·m/s. Here, the variable v′ directly repre-
sents the value. Its value attribute is the value in the
context of the statement by the BIPM.

2 Method

The approach is to follow the third method to resolve
the apparent misnomer of the value attribute—to fac-
tor the units out of the unit attribute and into the
value attribute. This offers the advantage that unit
conversion is handled naturally. The essence of unit
conversion is that the phrase “x (value) in u (unit)” is
interpreted mathematically as “x divided by u.” Con-
tinuing with the previous example, v′ is divided by
m/s in order to display v′ in meters per second (as
a number). The result is simply one (1). If the unit
foot is established through the appropriate relation
(ft ≈ 0.3048 ·m) and v′ is divided by ft/s, the result
is v′ in feet per second (∼ 3.2894).

As another example, systems involving angle are
sometimes evaluated by working with variables in cy-
cles and other times with variables in radians. If the
variable is the value, then “variable in unit” means
“value divided by unit.” If we work with the value
directly, then there is no need to specify which unit we
are working “in.” The unit is included; it has not been
factored out by division. As long as the dimensionality
is correct, the math is equivalent due to the relation-
ships among units (or combinations of units). In this
case, the relevant unit relation is 1 · cycle = 2π · rad.ii

This example extends directly to frequency (angle per
time). Often, different symbols are used for frequency
in Hz (ν) and frequency in rad/s (ω). If the units are
included in the variable f , then f = ν ·Hz = ω · rad/s.

In this method, each unit must be represented by an

iiFurthermore, a cycle is typically equated to the number one
(1). For instance, in SI, a frequency of one hertz (1 ·Hz) is equated
to one per second (1/s) [5] even though to be precise it is one cycle
per second (1 · cycle/s).

algebraic variable (albeit constant). For each unit in-
troduced, it is necessary to add an equation that allows
the unit’s value to be determined. If a unit is consid-
ered to be a derived unit, then the equation simply re-
lates the unit to other units (e.g., 1 · cycle = 2π · rad).
However, there are several units (in SI, 7) that may not
be simply defined via other units. These base units
must be related to something outside of the algebraic
system of equations representing the immediate phys-
ical system. This something is the “particular example
of the quantity concerned which is used as a reference”
quoted previously [5]. The designation of “base” or
“derived” is somewhat arbitrary [8, p. 375], but regard-
less, there are a number of units that must be defined
by example. Considering only the immediate physical
system, these units are linearly independent.

If only the SI will be used, then it is easiest to strictly
set each of the base units of SI equal to one (1)—
the meter (m), kilogram (kg), second (s), ampere (A),
kelvin (K), mole (mol), and candela (cd). This is im-
plicitly the case in Modelica.SIunits, but again, it
hardly captures the idea that a value is the product of a
number and a unit.

There are systems where typical values are many
orders of magnitude larger or smaller than the re-
lated product of powers of base SI units (e.g., the do-
mains of astrophysics and atomic physics). In mod-
eling and simulating those systems, it may be advan-
tageous to choose appropriately small or large values
(respectively) for the corresponding base units such
that the product of the number (large or small in mag-
nitude) and the unit (small or large, respectively) is
well-scaled. Products of this type are often involved in
initial conditions or parameter expressions, which are
not time-varying. Therefore, the number and the unit
can be multiplied before the dynamic simulation. Dur-
ing the simulation, only the value is important. After
the simulation, the trajectory of the value may be di-
vided by the unit for display. This scaling is usually
unnecessary due to the wide range and appropriate dis-
tribution of the real numbers that are representable in
floating point space. The Modelica language specifi-
cation recommends that floating point numbers be rep-
resented in at least IEEE double precision, which cov-
ers magnitudes from∼2.225×10−308 to∼1.798×10308

[12, p. 13]. However, in some cases it may be prefer-
able to carefully scale the units and use single pre-
cision instead for the sake of computational perfor-
mance. There are fields of research where, even today,
simulations are sometimes performed in single preci-
sion [10] and where scaling is a concern [14, p. 29].
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Since there are many systems of units besides the
SI, it is best if the method is neutral with regards
to not only the values of the base units, but also the
choice of the base units and even the number of base
units. As mentioned previously, the choice of base
units is somewhat arbitrary, and different systems of
units are based on different choices. Some systems
of units have fewer base units (lower rank) than SI,
since additional constraints are added that exchange
base units for derived units. For example, the Planck,
Stoney, Hartree, and Ryberg systems of units define
the Boltzmann constant to be equal to one (k = 1)
[15]. The unit K is “eliminated” [9, p. 386] or, more
precisely, considered a derived unit instead of a base
unit. In the SI, the Boltzmann constant would be de-
rived from the base units kilogram, meter, and sec-
ond (K≈ 1.381×10−23 ·kg ·m2/s2). In such a system,
terms that would otherwise be written as kT may be
replaced by simply T ; temperature (T ) is considered
to be energy per particle or degree of freedom. In this
case, it is not possible to arbitrarily choose a value for
K.

A unit is considered to be a “natural” unit if it de-
pends only on values of universal physical constants
[15]. If a system of units is purely natural, then all
its base “units” are base “constants.” The “particular
example of the quantity concerned which is used as
a reference” [5] is an experiment that yields precise
and repeatable results in determining a constant rather
than a prototype which is carefully controlled and dis-
tributed via replicas. For instance, a natural unit for
electrical resistance is the von Klitzing constant, and
it can be chosen as a base constant. Often, the base
constants are defined to be equal to one. However, just
as it is not necessary to set base units to one, it is not
necessary to set base constants to one. The values can
be chosen to best scale the numerics of the system.

It is judicious to check that the terms of each equa-
tion have the same dimension. Fortunately, methods
for unit checking have already been established and
implemented in Dymola [11]. In the present context,
those methods can, in theory, be applied to the di-
mension instead (i.e., “dimension checking” instead of
“unit checking”). Again, in the present method, the
unit is included in the value attribute. The question
of which unit the variable is “in” is not applicable, but
it is still possible and appropriate to check the dimen-
sions.

The dimension of a value may be expressed in the
same manner as the unit is in the current version of
the Modelica language [12, Ch. 18]. For SI, it would

be appropriate to use these base dimensions instead of
the corresponding base units: length (L), mass (M),
time (T), electric current (I), thermodynamic temper-
ature (Theta), amount of substance (N), and luminous
intensity (J) [5, p. 105]. In the example that follows,
the Rydberg constant, Faraday constant, and the spe-
cific mass of electrons are all set equal to one. There-
fore, the rank is reduced from seven to four.

3 Implementation

The method is implemented in version 3.2 of the Mod-
elica language [12] and version 7.4 of Dymola [7].
However, the implementation includes several less-
than-ideal workarounds; a full and consistent imple-
mentation would require changes to the language and
the modeling environment (see Sec. 4).

First, it is necessary to define the units and con-
stants as variables. These variables must be declared
in an accessible package so that they can be used in
equations within the declaration, initial, and dynamic
sections of the model and its subclasses. An excerpt
from this Units package is shown in Listing 1. The
top section of the code establishes mathematical con-
stants (in this case, only π). The next section es-
tablishes the base constants and units, which are ad-
justable. The third section establishes the constants
and units which may be derived from the base units
and constants using accepted empirical relations. The
rest of the code (not listed) establishes the SI prefixes
and the remaining derived units and constants. The
SI prefixes are included in their unabbreviated form in
order to avoid name conflicts (e.g., constant Real

kilo(unit="1")=1E3). In a model, a kilometer is in-
cluded as kilo*m, unless km is defined as a stand-alone
unit. All of the primary units of SI are included (Ta-
bles 1 and 3 of [5]) except for ◦C, since it involves an
offset. Other convenient units are included for the sys-
tem at hand (e.g., atm). For convenience, the Units

package is given the abbreviated label U by an import

statement at the top level of the entire library or con-
taining package.

Each unit or constant is a constant Real. The
unit attribute is given a string that describes the di-
mension. The abbreviations l, N, T, and I are used
for length, number, time, and luminous intensity, re-
spectively.iii The dimensions are combined as strings

iiiLowercase “ell” is used so that Dymola 7.4 recognizes it as
a unit—the liter. Dymola also recognizes N as newton and T as
tesla. This is not the meaning here, but there is no problem since
it happens that these three units are orthogonal. As long as lu-
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according to the rules established for unit strings in the
Modelica language [12, p. 210].

The units, constants, and prefixes must be identi-
cally defined in Dymola’s workspace so that they can
be used to convert values to numbers for display. The
definitions from the Units package are copied to a
Modelica script. All the specifications of constant
Real and of the unit attribute are removed. It is im-
portant that the base units or constants are declared at
the beginning of the script and all derived units are
arranged in an order that allows the script to succeed
on the first pass. The script is run when Dymola is
launched. Assert statements are added at the end of
the script to perform basic checks on the relationships
among the values.

Now, types must be defined for the required quanti-
ties. Each quantity inherits from the Real type. The
unit attribute is given a string that describes the di-
mension (as in the Units package). The quantity

attribute is not used, since the type is the quantity. The
displayUnit attribute is given a string that describes
the desired unit to be used for display (according to
the format specified in Ch. 18 of [12]). By default, it
is the simplest expression of the unit in SI. For conve-
nience, the package containing the quantities is given
the global, abbreviated label Q.

Another Modelica script is written to define
the unit conversions for display using Dymola’s
defineUnitConversion command. As mentioned
previously, a value is divided by a unit to arrive at a
number for display. This script is executed after the
script that defines the units, constants, and prefixes
(automatically—upon starting Dymola) so that all of
those variables are available. For example, the en-
try for velocity is defineUnitConversion("l/T",

"m/s", s/m).
A top-level “environment” model is included which

stores copies of the base units or constants. With that
information, it is possible to re-derive all of the other
units and constants. This is important in order to prop-
erly interpret simulation results even after the base
units or constants are re-adjusted.

Where the der operator is used, it is explicitly di-
vided by the unit second (e.g., der(x)/U.s). This is
necessary because the global variable time is time in
seconds.

Listing 1: Selected constants from the Units package

// -----------------------------------------------

minous intensity is not represented in the model (I, which is not
recognized), unit checking may be used as dimension checking.

// Base physical constants and units

replaceable constant Bases.Default base

constrainedby Bases.Basis

"Scaleable base constants and units";

// Note: The base constants and units may be

// replaced to suit the scale of the physical

// system.

final constant Q.Angle rad=base.rad "radian";

final constant Q.Wavenumber R_inf=base.R_inf

"Rydberg constant (R_&infin;)";

final constant Q.Velocity c=base.c

"speed of light in vacuum (c)";

final constant Q.MagneticFluxReciprocal k_J=

base.k_J

"Josephson constant (k_J)";

final constant Q.Resistance R_K=base.R_K

"von Klitzing constant (R_K)";

final constant Q.RadiantIntensity 'cd'=base.'cd' "

candela";

final constant Q.Number k_F=base.k_F

"Faraday constant (k_F)";

final constant Q.Number R=base.R "gas constant";

// -----------------------------------------------

// Empirical constants and units

// Note: The values are currently based on the

// those from NIST (2010). The measured (rather

// than conventional) values are used.

constant Q.Length m=10973731.568539*rad/R_inf "

meter";

// SI unit of length

// This is the "Rydberg constant" relation (NIST,

// 2010). The unit radian is included to be

// explicit, although it is currently one by

// definition (BIPM, 2006).

// (http://en.wikipedia.org/wiki/Rydberg_constant)

.

constant Q.Time s=299792458*m/c "second";

// SI unit of time or duration

// This is the "speed of light in vacuum" relation

// (NIST, 2010).

constant Q.MagneticFlux Wb=483597.870E9/k_J "weber

";

// SI unit of magnetic flux

// This is the "Josephson constant" relation

// (NIST, 2010).

constant Q.Conductance S=25812.8074434/R_K "siemen

";

// SI unit of electrical conductance

// This is the "von Klitzing constant" relation

// (NIST, 2010). The unit radian is included on

// the denominator for dimensional consistency,

// but it is one by the current defition (BIPM,

// 2006).

constant Q.ParticleNumber mol=96485.3365*Wb*S/k_F

"mole";

// SI unit of amount of substance

// This is the "Faraday constant" relation (NIST,

// 2010). The factor Wb*S is the coulomb, which

// is defined below.
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constant Q.Potential K=8.3144621*(Wb*rad)^2*S/(s*

mol*R) "kelvin";

// This is the "molar gas constant" relation

// (NIST, 2010). The factor (Wb*rad)^2*S/s is the

// joule, which is defined below.

Listing 2: Selected records from the Units.Bases package

record Basis "Base constants and units"

final constant Q.Angle rad=1 "radian";

// SI unit of rotation or planar angle

constant Q.Wavenumber R_inf=1

"Rydberg constant (R_&infin;)";

// The SI unit length (meter) is inversely

// proportional to this value, which should be

// increased for larger characteristic lengths.

constant Q.Velocity c=1 "speed of light in

vacuum (c)";

// The SI unit time (second) is inversely

// proportional to this value (and R_inf), which

// should be increased for larger characteristic

// times.

constant Q.MagneticFluxReciprocal k_J=1

"Josephson constant (k_J)";

// The SI unit of magnetic flux (weber) is

// inversely proportional to this value, which

// should be increased for larger magnetic flux

// numbers. Also, the SI unit of charge

// (coulomb) is inversely proportional to this

// value.

constant Q.Resistance R_K=1

"von Klitzing constant (R_K)";

// The SI unit of electrical conductance

// (siemen) is inversely proportional to this

// value, which should be increased for larger

// characteristic conductances. Also, the SI

// unit of charge (coulomb) is inversely

// proportional to this value.

constant Q.RadiantIntensity 'cd'=1 "candela";

// SI unit of luminous intensity

constant Q.Number k_F=1 "Faraday constant (k_F)"

;

// The unit of substance (mole) is inversely

// proportional to this value, which should be

// increased for larger particle numbers. If

// k_F is set to 1, then charge is considered

// to be an amount of substance.

constant Q.Number R=1 "gas constant";

// The unit of temperature (kelvin) is inversely

// proportional to this value, which should be

// increased for larger temperature numbers. If

// R is set to 1, then temperature is

// considered to be a potential.

end Basis;

record Am

"Base constants and units for SI with k_F and R

normalized instead of A and m"

extends Basis(

final R_inf=sqrt(8.3144621)*10973731.568539,

final c=299792458/sqrt(8.3144621),

final R_K=(96485.3365^2*25812.8074434)/8

.3144621,

final k_J=483597.870E9*sqrt(S*s)/m,

final candela=1,

final k_F=1,

final R=1);

// Note: The values of the un-normalized SI

// base units are:

// A ~= 0.0000103643

// m ~= 0.346803

end Am;

4 Discussion and Conclusion

The implementation has been utilized to help model
and simulate a proton exchange membrane fuel cell
(PEMFC) in Dymola 7.4 [6]. It has been convenient
in specifying the values of parameters and constants
in this domain, where the product and research liter-
ature quotes values according to many different con-
ventions. There are also cases where simulations have
failed until the base constants were adjusted to prop-
erly scale critical values. In these cases, adjusting the
nominal attributes of the variables did not seem to be
sufficient, although it is difficult to prove.

The implementation raises the following concerns,
which must be addressed in order to fully and consis-
tently employ the method.

1. The unit attribute of a Real type should be re-
named as dimension to indicate that it represents
the physical dimension of the quantity rather than
a particular unit.

2. In the new context, the Real type may be a mis-
nomer. It may be best renamed as Quantity, but
this may have implications on the name for the
Complex record described in the Modelica lan-
guage specification [12].

3. The quantity attribute of the Real type (possi-
bly renamed as Quantity) may be superfluous.
However, its removal may imply that the same
attribute of the Boolean, Integer, and String

types should be removed as well.

4. It would be helpful to establish a standard method
to store and access the values of the base units
and constants along with the results of a simu-
lation. Ideally, the conversions created by the
defineUnitConversion command (in Dymola)
would be dynamically linked to the values of
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the base units or constants, regardless of whether
they are within an active model or from previous
results.

5. The global variable time should be expressed
as a quantity in the same manner as other
variables—as the product of a number and a unit.
Currently, time is time in unit seconds and the
second has a value of 1. The time variable should
be adjusted such that time/U.s is time in unit
seconds and the second is not constrained to the
value of 1. If the der operator is based on this
unit-neutral time quantity, then it would be un-
necesary to divide its output by the unit second
(as in Sec. 3).

All of these items would affect both the Modelica
language and the Modelica Standard Library. There-
fore, it would be a rather significant undertaking to im-
plement the method as a standard. However, not all of
the items are necessary and the method can already be
implemented to a limited extent (with work-arounds)
in Modelica 3.2 and Dymola 7.4.

If a generalized method of units were to be intro-
duced to Modelica, concepts from SysML may be per-
tinent and useful. Subsections C.4 and C.5 of ver-
sion 1.2 of the SysML specification describe model
libraries for “Quantity Kinds and Units” and “Quan-
tities, Units, Dimensions, and Values” [1].

The proposed approach is not intended to supersede
the previous work in unit checking in Modelica by
Broman et al. ([4, 3]). Instead, it uses the methods
of unit checking for dimension checking.
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Abstract

At Fraunhofer Institute for Wind Energy and Energy
System Technology IWES a simulation software for
offshore wind farms is being developed, concentrat-
ing on the ability to define physical models at differ-
ent levels of detail. Therefore parameterizable mod-
els representing parts of wind turbines are defined that
can be transformed for various purposes like simula-
tion with Finite Element Method (FEM) tools or Mod-
elica solvers.

This paper describes the concepts of purely para-
metric physical models and code generation. It is elu-
cidated how models of different complexity can be
transformed into each other by model driven develop-
ment techniques. Thereby the focus is set on the gen-
eration of Modelica code and it is explained how the
use of Modelica libraries simplifies the generation of
simulatable code.

During the development of generators for Model-
ica, issues arose regarding type compatibility of arrays
with different sizes when using polymorphism. These
issues are explained by an example and possible en-
hancements for the Modelica language are suggested.

Keywords: model transformation; polymorphism;
code generation; wind turbine modeling

1 Introduction

At Fraunhofer Institute for Wind Energy and Energy
System Technology IWES a simulation software for
offshore wind farms is being developed under the
project name OneWind. The goal is to provide a tool
that allows wind turbine designers and manufacturers
to rapidly develop models of wind turbines in different
levels of detail. It shall also be possible to use differ-
ent types of models and to transform them into each
other in order to check the models against the users ex-
pectations with the best suitable simulation technique.
Furthermore, simulations of different load cases ac-

cording to the respective wind turbine standards and
guidelines [5, 3] will be possible. A key purpose of
the OneWind project is to implement the load calcula-
tion as a coupled aero-servo-hydro-elastic simulation
in Modelica, to get a better estimation of the turbine
performance, to analyze the system response and to
optimize the component and control system design.

Nowadays many tools are involved in the process of
wind turbine design like GH Bladed1 for load calcu-
lations or Focus2 for rotorblade designs, just to name
two of them. Additionally Computational Fluid Dy-
namics (CFD) tools give a more precise view on aero-
dynamical influences from 3-D flow effects on rotat-
ing blades. All of these tools define their own data and
model representations and hence provide only limited
interoperability. The OneWind project aims to provide
consistency in the highly iterative design process be-
tween different models for various purposes at design
time. Therefore it facilitates the usability of the tools
in one integrated development process by introducing
a purely parametric data layer called Engineer Design
Data (EDD) [17]. Hence data from external tools must
be imported into the parametric representation and re-
verse transformations to the tools data model must be
performed in order to generate compatible data as in-
put for simulations with the external tools. Figure 1
displays the concept of the EDD with transformations
and code generation.

Due to the different domains that the simulation en-
vironments are aiming at, there can not be just one
model in the parametric level that represents all kinds
of physical properties of a wind turbine component.
As an example, structural models of rotorblades must
be fairly simple with only few degrees of freedom (e.g.
a modal description) in order to be able to execute
load calculation for thousands of loadcases in a rea-
sonable time. In contrast, the detailed design of the

1http://www.gl-garradhassan.com/en/GHBladed.php
2http://www.wmc.eu/focus6.php
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increasing 
complexity

Figure 1: Example of a Transformation Between Two Types of Models and Code Generation for Simulation

composite structure of a rotorblade needs a model with
fine grained information about the layer structure to be
used for Finite Element Method (FEM) simulations.
During the design process changes in the fine-grained
models need to be transferred in each iteration step
to the simpler models of the load calculation. These
transformations from fine to coarse-grained models
can often be done automatically. The opposite trans-
formation direction is called design transformation
and needs additional user inputs and engineering know
how in order to be performed. However, the details
of these transformations and their underlying theo-
ries are out of scope of this paper. More of interest
is the transformation from the EDD representation of
wind turbine models to computable Modelica models,
as one feature of the OneWind development environ-
ment. In the domain of wind turbine modeling with
Modelica we can use the EDD to reduce the complex-
ity of model parameterization for the user. Instead of
editing the potentially complex source code directly,
the user only sees the model parameters that are cru-
cial for the model’s behaviour. Thus, the user does not
need to understand the syntax of Modelica. Instead of
transforming the complete model to a Modelica repre-
sentation, only the user-defined parameters are trans-
formed to Modelica records, that belong to compo-
nents of the OneWind Modelica library [18]. The li-
brary consists of major components in different com-
plexity levels needed for load calculations of typical
offshore wind turbines. Components for the structure
and aerodynamics of rotor blades are provided as well
as a hub, nacelle with drivetrain and generator, tower,
substructure and operating control procedures. Addi-
tionally, the library includes models for the simulation
of external conditions, (wind, soil and waves) and their
influence on the wind turbine’s structure. The library

is constructed in a way, that the assembly of model
classes with related parameter classes can be manipu-
lated by redeclaration statements and inheritance from
the base library classes. An example is shown in sec-
tion 4. This has the benefit that developers of Modelica
models can re-use the components of the library, indi-
vidually change parameters of the model classes and
easily enhance it. Furthermore a wind turbine model
with a desired complexity level can be constructed us-
ing a custom combination of library models.

The remainder of this paper is structured as fol-
lows: In section 2, the concept of the EDD is intro-
duced concentrating on a simple wind turbine model.
In section 3 the transformation from the EDD to the
Modelica representation is explained. Section 4 eluci-
dates the problems that we encountered by transform-
ing user defined parameters to a Modelica array repre-
sentation. In section 5, we finally come to a conclu-
sion and suggest how polymorphism of the Modelica
language could be enhanced by introducing polymor-
phism in arrays.

2 Engineer Design Data

The concept of a purely parametric data layer is used
in all products of the OneWind project. It represents
the idea to ensure the consistency of models in differ-
ent levels of detail for all purposes needed during the
design process of a wind turbine. In this layer the user
can manipulate models which are imported or newly
created in a unified way, regardless of the software
used for further processing or simulation. The mod-
els can then be transformed to a computable form and
simulated by external tools. When the simulation re-
sults are obtained, the user can analyze and assess the
results and start with a new design iteration in order to
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enhance the physical models. This section introduces
how EDD models with different representation types
can be defined.

2.1 Abstract Syntax Definition

A meta-model hierarchy called Meta-Object Facility
(MOF) [15] for the definition of models is defined by
the Object Management Group (OMG) (see Figure 2).
The hierarchy is specified as follows: The M0 level de-
scribes objects of the real world, as an example it could
be an instance of a model of a wind turbine with spe-
cific parameters. The model layer (M1) defines, how
a real life object can be represented, e.g. by defin-
ing a wind turbine model with Modelica. The model
consists of components like rotorblades, a tower and a
hub that are represented as class or model definitions.
In the meta level (M2) the objects that can be used
for the development of M1 models are described. For
Modelica this implies, that the different language con-
structs like classes, models, equations, . . . are defined.
Finally the meta-meta level (M3) describes, how the
M2 models are defined. We selected Eclipse [2] as the
base environment for our products since the Integrated
Development Environment (IDE) is open source and
can be customized easily by plug-ins that are imple-
mented by software developers. Since the underlying
framework is Eclipse, we picked the Eclipse Model-
ing Framework (EMF) [1] as the meta meta-model for
our Modelica language definition as well as the para-
metric data layer. Using EMF as the M3 layer imple-
mentation, language constructs like Modelica classes
and equations are defined by EClasses, type references
from a component to model declarations can be de-
fined with EReferences and so on. EMF implements
a basic version of the MOF, called EMOF. Hence the
parametric layer used in OneWind is build by various
meta-model definitions defined with EMF. EDD mod-
els specified in the meta-models implement a common
interface. One strength of the meta-model approach
is that one can define automatic transformations be-
tween two models of the same level, if one can define
relations between features on the meta level. EMF
is widely used in the Eclipse community and hence
many tools exist that simplify the definition and use of
the models. The Framework allows generic processing
of model instances making it possible to create func-
tionality for a wide spectrum of diverse models. As
an example we implemented a generic editor enabling
the user to edit arbitrary models that are based on an
EMF meta-model. Generic SWT-composites for ba-
sic data types like double, int and String are avail-

M0
objects of real world

M1
model of real world objects

( EMF model instances)

M2
model of M1 objects

(Meta-model defined with EMF)

M3
model of M2 objects
(Meta-model of EMF)

+ +=

Model = ? + ?? +

Figure 2: Hierarchy of Meta-models Defined by the
OMG

able. Special composites can be easily registered as
an OSGi [13] service in order to provide a convenient
way to edit custom data types.

2.2 Concrete Syntax Definition

The abstract syntax of a Domain-Specific Language
(DSL)is described by its meta-model, i.e., it defines
how the language is logically structured. A stored
model definition in the Modelica language for exam-
ple is defined as the root element of a document, which
can be a source file containing the model starting with
an optional within statement that defines in which
package the model is contained. Inside the stored def-
inition, packages, classes, sub-classes etc. are defined
according to the rules of the abstract syntax.

The Modelica specification [14] defines an accom-
panying concrete syntax grammar for textual represen-
tation of the language. Parsers use the grammar def-
inition to recognize the elements of the language and
to build a tree based representation of Modelica mod-
els. In our project the textual DSL Modelica is defined
with Xtext [12], allowing us to describe textual rep-
resentations and to automatically generate EMF-based
meta models. Through the grammar definition textual
editors that developers can use to define models using
the language are automatically generated. The editors
recognize syntax errors and the IDE can check addi-
tional Well-Formedness Rules (WFR) on the user de-
fined models [16] in order to assist the developer in
creating correct code.

A textual representation of DSLs is one way of
model representation. A graphical notation may also
be defined consisting of icons for structural features.
A popular example is the graphical notation language
Unified Modeling Language (UML) [6]. It defines
icons like rectangular boxes for classes or lines be-
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tween classes representing associations. When using
EMF for the definition of meta-models, it is not neces-
sary to define a graphical representation. The frame-
work provides generic tree-based editors for editing
model instances. The standard serialization is based
on the XMI file format. However, tools like the Graph-
ical Modeling Framework (GMF) [8] allow the defi-
nition of graphical notations similar to the previously
mentioned UML for custom meta-models defined with
EMF. Hence we have three types of representations for
DSLs:

1. Abstract syntax without graphical notation

2. Abstract syntax with textual concrete syntax

3. Abstract syntax with icon based concrete syntax

As we have seen, there are multiple ways of repre-
senting EMF based meta-models. Hence it is possi-
ble to use the appropriate way of representation for
each kind of data. The data can still be processed
in a similar way since the underlying data model is
the same. In the OneWind project we use the first
form of DSLs without graphical notation for the pa-
rameterizable components of our wind turbine, i.e., for
EDD models. Besides the tree based editor that is pro-
vided by EMF we implemented a more convenient and
extensible editor based on SWT composites as men-
tioned above. The textual DSLs currently supported
are Modelica, the data format ANSYS Parametric De-
sign Language (APDL) 3 and a definition language for
airfoils. Xtext grammars were defined for these for-
mats resulting in generated editors, parsers and seri-
alizers (also known as unparsers). Since Xtext uses
AntLR for the parser generation, support for some for-
mats like NASTRAN 4 bulk data format are hard to
implement.

Pure data formats are often structured by terminal
symbols like white spaces or line breaks that compli-
cate or even make it impossible to define a LL(k)-
grammar [11]. Hence, a custom parser and serializ-
er/unparser could be implemented in the future that
would create an EMF compatible Abstract Syntax Tree
(AST) from the text files and write the tree represen-
tation back to a file. Currently we have no icon based
DSL, which is best viewed using an icon-based ed-
itor. However, we implemented a connection editor
allowing us to connect wind turbine components rep-
resented in the purely parametric representation like it
is also done in many tools for Modelica models [4, 7].

3http://www.apdl.de/
4http://www.mscsoftware.com/products/cae-tools/msc-
nastran.aspx

In the next section the transformation between dif-
ferent kinds of models is discussed focusing on the
generation of Modelica code from wind turbine mod-
els.

3 Model Transformation

Since model driven software development is increas-
ingly accepted and used by software engineers, trans-
formations of the developed models are becoming im-
portant. Various techniques for the transformations
have been developed, of which some are described in
this section. The transformations to Modelica models
which are used in our project are presented in the sub-
sequent section.

3.1 About Model Transformations

Model transformations can be done in different ways.
The most appropriate one is the direct transformation
between models based on rules defined for elements
of two meta-models. These rules can automatically be
applied to convert one model to another. If the trans-
formation rules are bijective, i.e., in both directions,
automatic synchronization between two models can be
realized. This kind of transformation is called a Triple
Graph Grammar (TGG) [10].

TGGs can only be defined for a small set of mod-
els. The first requirement is, that the two models to
be transformed into each other must be semantically
similar. For example, models of towers can not be
transformed to rotor blade models. Secondly the in-
formation content must be comparable. Modal blade
models may not be translated into more detailed mod-
els that can be used for FEM simulations. The infor-
mation needed for the physical properties in a FEM
model cannot be automatically derived from the kind
of parameters available in a modal blade model. This
observation does not only hold in the context of TGGs.
Generally speaking, a transformation from one model
to another can only be done if the “structural informa-
tion” content of the initial model is greater or equal to
the “structural information” of the target model.

In general models of physical components at differ-
ent levels of detail for the use with different theories do
not meet the above mentioned requirement for TGGs
of being bijective. Often physical theories are needed
to transform detailed models into coarser models and
the opposite design transformation is always based on
assumptions and engineering know how, which is to
be obtained from the user in terms of parameters of
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Figure 3: EDD-model of a Rotor, Rotor Blade, Blade
Element and Airfoil

the transformation. Transformation mechanisms are
needed to implement the complex algorithms in or-
der to perform the transformations. Nevertheless the
transformation of a detailed model into a coarse model
is highly automatable and can be reused when param-
eters change in the detailed model during the design
process. For the transformation of EMF based models
several tools are available, like QVT or ATL5. These
languages provide functional language style syntax for
the definition of automatic model transformation rules.
In the future these languages might be used in the
OneWind project where applicable. However, at the
moment only Java-based transformation modules are
being developed.

3.2 Transforming EDD to Modelica Code

As a result of defining the Modelica language as a
Xtext grammar, serialization/unparsing of Modelica
code from an AST representation to textual Modelica
source code is automatically available. Transforming
EMF based wind turbine models to Modelica AST rep-
resentation may be possible by using transformation
languages as mentioned above. However, since the ab-
stract syntax of Modelica is rather complex, our initial

5http://www.eclipse.org/m2m/

approach is to write such transformers in Java.
The generated Modelica source files are used along

with the OneWind library (see Figure 4) mentioned
in section 1 for the highly coupled aero-servo-hydro-
elastic simulation of wind turbines. The EDD model
for a rotor (see Figure 3) is explained and serves as
an example of the generation of Modelica code. A ro-
tor consists of a hub and multiple rotor blades. Usu-
ally three rotor blades are used in modern horizontal
axis wind turbines. The rotor blades consist of blade
elements that define structural properties like masses,
stiffnesses or lengths. Additionally each blade element
defines an airfoil that describes the aerodynamic prop-
erties of that part of the blade. The user can edit the
properties mentioned above, in order to design a ro-
tor. The generator then generates Modelica records
containing the user defined parameters. A Modelica
rotor stub that is defined in the OneWind library is pa-
rameterized by the generated data. Finally the model
consisting of the library components and the generated
part can be simulated using Modelica simulation en-
vironments. The parameters which are customizable
by the user are separated in Modelica records. Hence
for each model that is being transformed, e.g. a blade,
a data record is created that contains the parameters.
In the blade example the data record contains single
parameters for unary properties and arrays for multi-
ple properties like blade elements. The array size is
equal to the number of elements in the list. Moreover,
the user can choose between different kinds of compo-
nents to change the structural properties of the model.
One can, for example, decide whether a rigid, modal

h=80
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l=62
p=5

r=2
t=2

StiffTower

RBBEM

StiffHub

OneWinda
Library

Generated
Parameters

Generateda
Redeclared
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Figure 4: The OneWind Library and Generated Mod-
elica Code
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or FEM blade model shall be used for the simulation.
When the user selects a blade model that differs from
the default one used in the library, the blade model is
changed by the generation of a redeclaration. Thereby
it is possible to customize the wind turbine model.
The approach described above allows us to provide
the wind turbine designer with an abstract view of the
main properties of a wind turbine model. Variants of
wind turbine models can be created quickly and com-
pared to each other.

In the next section some problems that occurred dur-
ing the implementation of the transformation modules
including the use of polymorphic data types are de-
scribed.

4 Polymorphism in Modelica

The transformation strategy described in the previous
section provides a generic way of converting models
from a purely parametric representation to simulatable
Modelica models. For this approach to work the
two types of models must be structurally equivalent.
Hence the library must be designed in a way that
provides suitable class stubs for the generation of
Modelica code and the parametric model must meet
the structure of the components defined by the library.
During the development, we recognized that the
conditions can be met with reasonable effort. Never-
theless problems arise in cases where lists of items of
complex types are transformed to Modelica code. One
example is rotor blades containing blade elements that
have a length and an airfoil property. In the example,
the NREL 5 MW reference baseline wind turbine
model [9] is used. Listing 1 displays the resulting data
record of the transformation. A load element contains
a parameter profile that holds a list of aerodynamic

Listing 1: Generated Blade Data Record
record BladeData

//array length 3

Profile_Cylinder1 cylinder1;

//array length 142

Profile_DU21 du21;

//array length 127

Profile_NACA64 naca64;

parameter Integer nBladeElements = 3;

replaceable parameter Profile

profile[5] =

{cylinder1 ,du40 ,du35 ,du25 ,naca64};

end BladeData;

profiles (Listing 2) of type Profile. The class
Profile displayed in Listing 3 is a kind of template
record. It contains arrays of profile specific data:
the angle of attack alpha[deg], lift coefficient
ca(alpha)[-], drag coefficient cw(alpha)[-]

and pitching moment coefficient cm(alpha)[-].
The array size is variable as the number of
properties varies between different profile types.

Listing 2: Load Element Containing the Airfoil De-
scriptions
model LoadElement

parameter Profile profile;

end LoadElement;

Concrete profile records like Profile_NACA64 (see
Listing 4) define the profile specific value quantity
and assign the concrete values to the array. This
structure provides a similar behaviour as generic
array lists in Java whereby the generic type in this
case is defined by the Modelica record Profile.

Listing 3: Generic Type Profile
record Profile

import Modelica.SIunits.Conversions.

NonSIunits.Angle_deg;

parameter Angle_deg alpha[:];

parameter Real caOfAlpha[:];

parameter Real cwOfAlpha[:];

parameter Real cmOfAlpha[:];

end Profile;

For simplification reasons the listing shows only
a reduced set of aerodynamical coefficients of the
NACA64 airfoil. Typically, it consist of many support
positions for the complete range (-180 to +180 deg)
of the attack angle alpha with variable equidistant
steps. For frequently used regions of attack angles
usually small step sizes are used. Thereby a better
linearisation between these points and approximation
of the measured coefficients during a simulation
can be achieved for the used airfoil. The profile
data can be used in a unified way as defined by
the Profile record and therefore the class using
the profile data does not need to know the concrete
profile type. Finally a blade model is generated that
assigns the aerodynamic profiles to the load element
of the blade (Listing 5). A problem that occurs using
polymorphic arrays as explained above is that the
created list of instances of class Profile consists
of types with different array size, e.g. the size of all
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arrays from profile[1] = 3 and from profile[2] = 142.
Unifying the records leads to ragged arrays that are
not defined by the Modelica specification. Hence
the behaviour during simulation is unpredictable or
the simulation tool does not even compile the code.

Listing 4: Concrete Profile Record Profile_NACA64
//For clarity reduced profile set

//of NACA64 (15 instead of 127 values)

record Profile_NACA64

extends Profile

(

alpha = {-180.00 ,-90.00 ,-30.00 ,

-10.00 ,-5.00 ,-3.00 ,-1.00 ,

0,1.00 ,3.00 ,5.00 ,10.00 ,

30.00 ,90.00 ,180 .00},

caOfAlpha = {0,-0.067 ,-0.829 ,

-0.711 ,-0.151 ,0.088 ,

0.328 ,0.442 ,0.556 ,

0.784 ,1.011 ,1.382 ,

0.926 ,0.053 ,0},

cwOfAlpha = {0.0198 ,1.3587 ,0.4295 ,

0.0111 ,0.0079 ,0.0064 ,

0.0052 ,0.0052 ,0.0052 ,

0.0053 ,0.0058 ,0.015 ,

0.4294 ,1.4565 ,0.0198},

cmOfAlpha = {0.00 ,0.3636 ,0.1563 ,

-0.0734 ,-0.0841 ,-0.0912 ,

-0.0971 ,-0.1014 ,-0.1076 ,

-0.1157 ,-0.124 ,-0.1149 ,

-0.1668 ,-0.3858 ,0.00};

);

end Profile_NACA64;

Listing 6 shows a workaround for this issue. Instead of
creating objects from a list of types with variable array
size, the Profile class for each load element object is
directly declared with a modification statement of the
desired profile class. The profile data of each blade
element object is filled by array concatenation which
corresponds to a normal parameter modification state-
ment. This circumvents getting objects with variable
sized array types. In this case a list of instances of
the class LoadElement is defined, where each load
element object has a different airfoil type and the size
is specified by the respective modification. Thus the
array sizes are known at this point as the profile data
is not assigned in a generic way and the compiler does
not fail to unify the record types.

The drawback of this approach is that the code
generation is not realized as described in section 3.2
and therefore it may not be obvious where the gen-
erated data comes from. Additionally it prevents one
from creating an automatic transformation mechanism
as custom adaptions to the code generators must
be implemented. The advantage of an automatic

transformation algorithm is that it reduces the im-
plementation effort, creates code that is easier to test
and it enhances the readability of the generated code.

Listing 5: Generated Blade Model
model NREL5MBlade

BladeData bladeData;

LoadElement loadElement

[bladeData.nBladeElements](

profile = bladeData.profile

);

end NREL5MBlade;

The model from Listing 6 can now replace the default
blade model from the OneWind library by using
Modelica replaceable object types. This also
holds true for the class LoadElement. The physical
algorithms (e.g. calculating loads for the balde
from wind inflow) are reused, only the calculation
parameters are modified. This approach is used for all
main components of the library (rotor, nacelle, tower,
substructure, operating control, environment etc.) in
order to create a custom model of a wind turbine.

Listing 6: Redeclaration of Blade Element Data
model NREL5MBlade

extends RigidBlade(

redeclare LoadElement loadElement(

// old:

// profile = bladeData.profile

// new:

profile = {

bladeData.cylinder1 ,

bladeData.cylinder1 ,

bladeData.cylinder2 ,

bladeData.du40 ,

bladeData.du35 ,

// ...

bladeData.naca64 ,

bladeData.naca64}

)

);

end NREL5MBlade;

The OneWind library contains a default wind turbine
model HorizontalAxis.OffshoreWindTurbine.
All main components in this model are
replaceable objects and can thereby be re-
declared by parameterised classes of the con-
crete NREL5M model. Listing 7 shows the
main class of the generated concrete wind tur-
bine model of the NREL5M reference baseline
offshore wind turbine, which inherits from the
default model. It can be simulated with a Mod-
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elica compiler in combination with the generated
model classes and the OneWind library components.

Listing 7: Main wind turbine class with redeclared
components
model NREL5MOffshore

extends

HorizontalAxis.OffshoreWindTurbine

(

redeclare NREL5MOperatingControl

operatingControl ,

redeclare NREL5MRotor rotor ,

redeclare NREL5MNacelle nacelle ,

redeclare NREL5MTower tower ,

redeclare NREL5MSubstructure

substructure ,

redeclare NREL5MSoil soil ,

redeclare NREL5MWind wind ,

redeclare NREL5MWater water

);

end NREL5MOffshore;

5 Conclusion and Outlook

Based on the experience gained during the develop-
ment of our simulation environment, we can see that it
is possible to create a common data basis for different
tools dealing with the design and simulation of wind
turbines. Transformations between different kinds of
models enable the re-use for different purposes.

As described for the generation of Modelica mod-
els, the use of the EDD approach allows one to pa-
rameterize models and to create simulatable represen-
tations like Modelica source code. Furthermore, mod-
els can be structurally customized to create several ver-
sions of physical models in the end. In the future, au-
tomatic transformation with languages as described in
section 3 may be introduced for the transformation be-
tween EDD models as well as between EDD and sim-
ulator specific models.

For the Modelica code generation it is desirable to
use transformation languages, since changes in the
Modelica language specification are easier reflected by
adapting a few transformation rules than by modifying
Java classes.

Increased polymorphism, as discussed in section 4,
would enhance the generation as the generated code
would be easier to understand and the generation could
be encapsulated for each component. This simplifies
the code generation and reduces the dependencies be-
tween components and their contained declarations.

In order to enable the use of more polymorphism,
the Modelica language specification would have to be

enhanced, in this case allow polymorphic ragged ar-
rays. As most of the Modelica simulators compile
Modelica to plain C code, the polymorphism would
have to be adapted as C does not support polymor-
phism. However, this could enhance the parameteri-
zation of Modelica code as the implementation would
be independent from the concrete components that are
used.

To enhance the transformation process we will in-
vestigate the use of transformation languages as the
next step. This will provide a more generic way of
code generation and enhance the maintainability since
changes in the meta-model of Modelica can be applied
easier.

Furthermore, investigation is needed whether trans-
formation rules can be derived that allow transforma-
tion of arbitrary types of models. Hence, it would not
be necessary to create transformation rules for each
particular EDD model, but universally applicable rules
would further simplify the transformations. To realize
this goal more generic data structures as described in
section 4 would be desirable.
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Abstract

Representing a physical system with a mathematical
model requires knowledge not only about the physical
laws governing the dynamics but also about the param-
eter values of the system. The parameters can some-
times be measured or calculated, but some of them are
often difficult or impossible to obtain directly. Never
the less, finding accurate parameter values is crucial
for the accuracy of the mathematical model.

Estimating the parameters using optimization algo-
rithms which attempt to minimize the error between
the response from the mathematical model and the real
physical system is a common approach for improving
the accuracy of the model.

Optimization algorithms usually require informa-
tion about the derivatives which may not always be
easily available or which may be difficult to com-
pute due to, e.g., hybrid dynamics. In such cases,
derivative-free optimization algorithms offer an alter-
native for design and parameter optimization.

In this paper, we present an implementation of
derivative-free optimization algorithms for parameter
estimation in the JModelica.org platform. The imple-
mentation allows the underlying dynamic system to
be represented as a Functional Mock-up Unit (FMU),
and thus enables parameter optimization of models ex-
ported from modeling tools compliant with the Func-
tional Mock-up Interface (FMI).

Keywords: Derivative-free optimization; Parameter
Estimation; JModelica.org; FMI; Assimulo

1 Introduction

Increasingly, industry rely on mathematical modeling
for evaluating and designing new machines and de-
vices. As the models grow increasingly complex, the

need for estimating parameters which are unknown or
uncertain is put into focus. Estimating unknown pa-
rameters in the mathematical model using optimiza-
tion algorithms is a commonly used approach to in-
crease the accuracy of models. In this paper, we focus
on parameter estimation problems where the objective
is to minimize the error between the simulated profiles
of the mathematical model and measurements from the
corresponding physical system. The objective func-
tion considered

f (x) =
M

∑
i=0

(ysim(ti,x)− ymeas(ti))2 (1)

where ysim is the model output trajectory and ymeas are
the measurements. The parameters to be estimated are
x ∈ Rn, where n is the number of parameters. M is
the number of measurements at the time points ti. The
optimization problem is then formulated as

min
x∈Rn

f (x). (2)

subject to the system dynamics, in the FMI case given
by a hybrid Ordinary Differential Equation (ODE).
Additionally, the parameters may be subject to bounds,
l ≤ x≤ u.

This optimization problem may be solved by tran-
scribing the problem into a non-linear programming
problem using either shooting methods [6] or collo-
cation methods [6]. These methods, however, both
use derivative information, which may be difficult or
expensive to compute, e.g., in the case of hybrid sys-
tems. The idea is then to use algorithms which do not
depend on derivative information, such as the Nelder-
Mead simplex method [7]. In a derivative-free method,
instead of using information from the derivatives to
improve the solution, the objective is evaluated at a
chosen set of points which are then used to improve
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the solution. How the points are chosen and which
strategy is used to improve the solution depends on the
method. Typically, computation times are longer than
for derivative-based methods, but on the other hand,
derivative-free methods offer a feasible and robust op-
tion when other algorithms fail.

In this paper, we evaluate three derivative-free op-
timization algorithms for parameter estimation avail-
able in the JModelica.org platform: the Nelder-Mead
simplex method, the differential evolution method and
a genetic algorithm. Based on this evaluation, the
Nelder-Mead algorithm seems most appropriate to
solve the class of parameter optimization problems
considered.

The main contribution of the paper is an implemen-
tation of the Nelder-Mead simplex algorithm. The al-
gorithm supports parameter bounds and parallel eval-
uation of function evaluations where FMU models are
loaded and simulated.

We also briefly present the underlying packages
FMI Library (FMIL), PyFMI1 and ASSIMULO2.
These packages are part of JModelica.org, but also
available stand-alone, and are used for simulating the
model response. In Figure 1, an overview of the
interaction between the packages in JModelica.org
when solving a derivative-free optimization problem
is shown.

Functional Mock-up Unit

PyFMI ASSIMULO

JModelica.org

DFO

FMIL

Parameter 
guess

Model 
response

Figure 1: Overview of the interaction between the
packages in JModelica.org when solving a derivative-
free optimization problem.

The paper is outlined as follows. In Section 2, the
Functional Mock-up Interface is presented together
with an overview of optimization tools. In Section 3,
an introduction to the JModelica.org platform is given
together with the simulation package ASSIMULO as
well as the Python package PyFMI for interaction with
FMUs. Next, derivative-free optimization algorithms
are introduced, followed by a description of the imple-
mentation in JModelica.org. In Section 6, the imple-

1http://www.pyfmi.org
2http://www.assimulo.org

mentation is applied to two different problems where
the second is a large industrial example where a model
of an engine is calibrated. Finally, Section 7 concludes
the paper with a summary and conclusions.

2 Background

2.1 The Functional Mock-up Interface

The Functional Mock-up Interface [1] defines an open
standard for model exchange. The intention is to allow
exchange of models between different modeling and
simulation tools. The standard describes models as hy-
brid ODEs with state, step and time events. A model
that implements the FMI standard is called a Func-
tional Mock-up Unit and is distributed as a compressed
directory containing a shared object file or source code
containing the model equations, and a set of functions
for data access, and an XML file, which describes the
model parameters and variables. The standard has re-
ceived a significant amount of attention among ven-
dors since the release in 2010 and currently there are
34 environments that support or plan to support the
standard.

2.2 Optimization tools

There exist many tools for optimization of complex
systems, both in the public domain and commercially
available. Broadly, there are three different categories
of optimization tools, although the scope is sometimes
overlapping. In Model integration tools the problem
of interfacing several design tools into a a single com-
putation environment, where analysis, simulation and
optimization can be performed is addressed. Examples
include ModelCenter [23], OptiY [22], modeFRON-
TIER [12], and iSIGHT [10]. Such environments are
capable of integrating several simulation and design
tools into one computational chain, where the results
are optimized. The integrated tools may be hetero-
geneous in the sense that they model different phys-
ical domains by means of different algorithms. Due
to this heterogeneity amongst supported tools, opti-
mization algorithm that does not exploit derivatives
or model structure such as sparsity is commonly em-
ployed. Model integration tools typically also have
strong support for model approximation and visualiza-
tion.

Many modeling and simulation tools has optimiza-
tion add-ons, e.g., Dymola [9], gPROMS [24], Jaco-
bian [19], and OMOptim [18]. The level of support
for optimization in this category differs between the
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tools. Dymola, for example, offers add-ons for param-
eter identification and design optimization [11, 20].
gPROMS on the other hand, offers support for so-
lution of optimal control problems and has the ad-
ditional benefit in comparison with Modelica tools
to provide support for partial differential equations
(PDEs). Tools in this category usually support a set of
derivative-based and derivative-free optimization algo-
rithms. Optimization problems are typically formu-
lated by means of graphical user interfaces.

In the third category there are numerical packages
for dynamic optimization, often developed as part of
research programs. Examples are ACADO [21], Mus-
cod II [28], and DynoPC [17]. Such packages are typ-
ically focused on efficient implementation of an op-
timization algorithm for a particular class of dynamic
systems. Also, detailed information about the model to
optimize is generally required in order for such algo-
rithms to work, including accurate derivatives and in
some cases also sparsity patterns. While these pack-
ages offer state of the art algorithms, they typically
come with simple or no user interface. Their usage
is therefore limited due to the effort required to code
the model and optimization descriptions. A notable
example is CasADi [4], which provides an efficient
AD kernel, interfaces to numerical optimization algo-
rithms and a comprehensible Python interface for cus-
tom development of dynamic optimization algorithms.
CasADi also support import of Modelica models in
XML format, see [5].

The approach presented in this paper falls into
the category of additions to modeling and simulation
tools. Specifically, models exported from FMI compli-
ant tools can be optimized. The presented algorithm
uses Python scripting as a means to formulate opti-
mization problems, and in this respect it differs from,
e.g., the approach taken in Dymola.

3 JModelica.org

JModelica.org3 [26] is a platform for modeling, sim-
ulation and optimization of complex physical sys-
tems primarily based on the Modelica4 modeling lan-
guage. JModelica.org is a community-based open-
source project started at Lund University with the fol-
lowing aim:

“To offer a community-based, free,
open-source, accessible, user and applica-

3http://www.jmodelica.org
4http://www.modelica.org

tion oriented Modelica environment for op-
timization and simulation of complex dy-
namic systems, built on well-recognized
technology and supporting major plat-
forms.”

JModelica.org provides compilers for the Modelica
language and the extension Optimica [25]. For sim-
ulations, the Python package ASSIMULO is used for
both simulating ODEs and DAEs. Dynamic optimiza-
tion is available using direct local collocation algo-
rithms based on the DAE formulation of the model.
The user interaction with JModelica.org is based on
the programming language Python.

Included in JModelica.org are packages that can
also be used stand-alone. In the following subsections,
the packages FMI Library, PyFMI and ASSIMULO are
presented.

3.1 FMI Library

FMI Library (FMIL) is a C package designed for
working with FMUs and serving as support for ap-
plications interfacing the FMI. The package con-
tains convenient methods for decompressing of FMUs,
parsing XML information and connecting the binary5.
The library supports FMI 1.0 for model exchange and
for co-simulations and is intended for custom integra-
tion of FMI technology in applications. FMIL is also
used as a basis of the Python package PyFMI.

3.2 PyFMI

PyFMI [2] is a package for interacting with FMUs us-
ing Python, based on the FMI Library. It provides
convenient high-level functions for interacting with an
FMU, retrieving values and accessing variable infor-
mation from the XML information. Additionally, a
low-level mapping of the functions specified in the in-
terface can also be accessed. A model can be loaded
and made available from Python using the following
Python code:

#Import the model class

from pyfmi import FMUModel

#Load the model into Python

model = FMUModel("bouncingBall.fmu")

PyFMI also provides a connection to the simulation
package ASSIMULO and thus enables access to state-
of-the-art solvers such as CVode and IDA from the
Sundials suite, capable of simulating hybrid systems.

5http://www.jmodelica.org/FMILibrary
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A simulation is performed by using the simulate

method.

#Simulate the model using Assimulo

res = model.simulate(final_time=10)

3.3 ASSIMULO

ASSIMULO [3] is a Python package for solving first
or second order explicit ordinary differential equa-
tions (ODEs) or implicit ordinary differential equa-
tions (DAEs).

ASSIMULO combines a variety of different solvers
written in FORTRAN, C and Python via a com-
mon high-level interface. The state-of-the-art solvers
CVode and IDA from the SUNDIALS suite [15] as
well as RADAU5 [14] are amongst the available
solvers.

ASSIMULO is divided into two parts, namely prob-
lem definitions and solvers. A problem definition may
in addition to the right-hand side of the differential
equation also contain for instance the Jacobian as well
as event functions in order to support simulation of
hybrid systems. The idea is to separate information re-
lated to a problem from the solver. For instance, which
states are algebraic is information that is related to the
problem and not the solver. In Figure 2, an overview
is given showing the available problem definitions and
solvers in ASSIMULO. Also shown is the connection
between the different problem formulations.

Problems

Solvers

Implicit
ODE

Explicit
ODE

IDA CVODE

GLIMDA

ODASSL

DOPRI5

RODAS LSODAR

RADAU5

RADAU5

Explicit ODE
(2nd order)

Implicit ODE
Overdetermined

Newmark

HHT-alpha
methods

A
S
S
IM

U
L
O

Figure 2: Connection between the different problem
formulations and the different solvers available in AS-
SIMULO.

4 Derivative-free Optimization

In applications where derivatives are difficult or com-
putationally expensive to obtain, there is a need for
derivative-free optimization methods. Examples in-
clude very large models which also contains hybrid
elements.

δ Operation type

−1
2 inside contraction

1
2 outside contraction
1 reflection
2 expansion

Table 1: Different δ -values with corresponding opera-
tion types.

We shall now introduce three different derivative-
free optimization algorithms which have been imple-
mented or interfaced in the JModelica.org platform
[13]: the Nelder-Mead simplex method, the differen-
tial evolution method and a genetic algorithm.

4.1 The Nelder-Mead simplex method

The Nelder-Mead simplex method has obtained its
name from the fact that each iteration is based on
a simplex. A simplex in Rn is a set of n + 1 ver-
tices x1, . . . ,xn+1 ∈Rn such that the vectors xi−x1, i =
2, . . . ,n+1 are linearly independent, i.e. it is a gener-
alization of a triangle to arbitrary dimension.

In each iteration of the Nelder-Mead algorithm, the
objective is to replace the vertex with the highest cost
in the n-dimensional simplex with a better point. The
vertices are ordered by increasing value of f such that
f (x1) ≤ . . . ≤ f (xn+1). The new point is searched for
along the line through the vertex with the highest cost,
xn+1, and the centroid,

xc =
1
n

n

∑
i=1

xi, (3)

of the remaining vertices x1, . . . ,xn. This line has the
equation

x = xc +δ (xc− xn+1), δ ∈ R. (4)

The parameter δ defines the type of the operation
performed on the simplex. There are four different op-
eration types that are performed by the algorithm: re-
flection, expansion, inside contraction or outside con-
traction, resulting in the reflection point, xr, the expan-
sion point, xe, the inside contraction point, xic, or the
outside contraction point, xoc respectively. Table 4.1
displays the δ -values corresponding to these four op-
erations. If none of these operations results in a better
point than xn+1, the simplex is shrunk toward the ver-
tex with the lowest cost, x1. That is, the n points with
the highest costs are replaced by new points obtained
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from

x = x1 +
1
2
(xi− x1), i = 2, . . . ,n+1. (5)

This procedure is repeated until some termination cri-
terion is fulfilled. There are usually three different ter-
mination criteria, one of which has to be fulfilled in
order for the algorithm to terminate:

• Convergence criterion for x – the simplex is suf-
ficiently small according to a user-provided toler-
ance.

• Convergence criterion for f – the function values
at the simplex vertices are sufficiently close ac-
cording to a user-provided tolerance.

• Termination criterion without convergence – the
maximum number of iterations or function eval-
uations has been reached.

In Figure 3, two iterations of the algorithm are
shown, illustrating how the simplex changes form and
position.

6 4 2 0 2 4 6
6

4

2

0

2

4

6
Simplex search

Figure 3: Two simplex iterations where the solid tri-
angle is the initial simplex which transforms into the
dashed triangle (δ = 2) and then the dash-dot triangle
(δ =−1

2 ).

4.2 Evolutionary algorithms

The differential evolution method and genetic algo-
rithms belong to the class of evolutionary algorithms,
which consists of stochastic optimization algorithms
inspired by the principles of biological evolution the-
ory. In such algorithms, each candidate solution, x̄ ∈
Rn, represents an individual and the objective function,
f (x), or fitness function, represents the environment

within which the individuals live. The value f (x̄) de-
termines how fit the individual x̄ is to survive in the
environment; a lower value means a better fit. At each
iteration, or generation, a new population of possi-
ble solutions is produced through mutation, crossover
and selection. Mutation is a mechanism for maintain-
ing genetic diversity by modifying an existing solution
while crossover means combining two existing solu-
tions into a new one.

4.2.1 The differential evolution method

The differential evolution method [27] works accord-
ing to the following steps.

Initialization: An initial population of N individu-
als, or vectors, is generated randomly inside the feasi-
ble region.

Mutation: At each iteration, the population con-
sists of N vectors, xi ∈ Rn, i = 1, . . . ,N. For each vec-
tor xi, the target vector, a mutant vector, vi ∈ Rn, is
produced by adding the weighted difference between
two vectors in the current population to a third one ac-
cording to the following formula:

vi = xr1 +F (xr2− xr3) ,

where r1,r2,r3 ∈ {1,2, . . . ,N} are random indices, dis-
tinct from each other and from i, and F ∈ [0,2] is a
constant.

Crossover: The mutant vector, vi, is then recom-
bined with its corresponding target vector, xi, through
a mixing of their elements, generating a trial vector,
ui ∈ Rn. The trial vector receives elements of the mu-
tant vector with probability P ∈ [0,1] and elements of
the target vector with probability 1−P.

Selection: The trial vector, ui, is compared with the
target vector, xi, and the one giving the lowest value of
the fitness function, f , is selected for the next genera-
tion.

The phases mutation, crossover and selection con-
tinue until a termination criterion is fulfilled.

4.2.2 Genetic algorithms

In genetic algorithms [16] the individuals are encoded
as bit strings. There are various genetic algorithms
which differ from one another but the following is a
general description.

Initialization: An initial population of size N is
generated randomly inside the feasible region.

Selection: In each generation, a selection probabil-
ity, p(xi), is defined for each individual, xi ∈ Rn. The
selection probability depends on the fitness function
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value for the individual, f (xi), a smaller value gives
a larger probability. Two individuals are then selected
randomly according to their selection probabilities.

Crossover: Crossover is performed on the two
selected individuals with a certain probability, the
crossover rate. A common choice for this probability
is around 0.7. There are different crossover techniques
but a common approach is to randomly choose a posi-
tion in the bit strings and swap all bits between the two
strings after that position.

Mutation: Mutation is performed by flipping bits
(from 0 to 1 or vice versa) at random positions in the
bit strings. The probability of flipping a bit, the mu-
tation rate, should be much lower than the crossover
rate.

Selection, crossover and mutation is repeated until
a termination criterion is reached.

5 Implementation

The algorithms evaluated in Section 4, have been made
available in JModelica.org. The Nelder-Mead simplex
algorithm has been implemented and is now provided
as part of JModelica.org, while the differential evolu-
tion algorithm and a genetic algorithm has been in-
terfaced through the OpenOpt package 6. The algo-
rithms are available through the Python function fmin

in JModelica.org.
The method fmin requires as input the objective

function together with the initial conditions as well
as options for specifying the intended optimization al-
gorithm and tolerances. In Section 6.1, it is shown
how the objective function can be defined when the
dynamic model is contained in an FMU.

In the Nelder-Mead algorithm, support for parallel
evaluation of the objective function, f (x), has been
implemented. In each iteration of the algorithm, the
evaluations of the n+ 1 vertices are distributed over
a user-supplied number of processes, as well as the
evaluations of the reflection, expansion and contrac-
tion points.

For further implementation details, see [13].

6 Examples

In [13], the different derivative-free algorithms was
tested and the result indicated that the Nelder-Mead
algorithm is the preferred algorithm for the tested pa-
rameter estimation problems. The evaluation was done

6http://openopt.org/

based based on execution time and convergence to the
optimal solution.

6.1 Furuta pendulum

The Furuta pendulum is a system consisting of a hori-
zontal arm driven by a motor which is connected to a
vertical pendulum, see Figure 4. The system has two
degrees of freedom, namely the angle of the arm, φ ,
and the angle of the pendulum, θ . Additionally, there
is friction in both the arm joint and the pendulum joint.
Due to the discontinuities introduced by the friction,
the system is not well suited for derivative-based opti-
mization algorithms.

Figure 4: The Furuta pendulum.

The Furuta pendulum is modeled by a Modelica
model, see Figure 5. The problem at hand is to cal-
ibrate the unknown friction coefficients of the arm and
pendulum, respectively, against the given measure-
ments using the Nelder-Mead simplex algorithm. The
objective is thus

f (x) =
M

∑
i=1

(φ sim(ti,x)−φ
meas(ti))2+

M

∑
i=1

(θ sim(ti,x)−θ
meas(ti))2

(6)

where x is a vector containing the friction coefficients
for the arm and the pendulum respectively.

The measurements were generated by simulation
of the Modelica model for the Furuta pendulum and
white measurement noise was added to the outputs.
The measurements were given for a period of 40 sec-
onds and were contained in a data file. The data was
loaded into Python by the following code:
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Figure 5: A Modelica model for the Furuta pendulum.

from scipy.io import loadmat

import numpy as N

# Load measurement data from file

data = loadmat('FurutaData ')

# Extract data series

t_meas = data['time'][:,0]

phi_meas = data['phi'][:,0]

theta_meas = data['theta'][:,0]

y_meas = N.vstack ((phi_meas ,theta_meas ))

The objective function is defined as a Python function
where the FMU, generated by Dymola, for the Furuta
pendulum is loaded and simulated for given parameter
values.

from pyfmi import FMUModel

from pyjmi.optimization import dfo

# Define the objective function

def furuta_dfo_cost(x):

#Scale down

armFriction = x[0]/1e3

pendFriction = x[1]/1e3

# Load the FMU Model

model = FMUModel('Furuta.fmu')

# Set new parameter values

model.set('armFriction ',

armFriction)

model.set('pendulumFriction ',

pendFriction)

# Simulate the model response

res = model.simulate(final_time=40)

# Load simulation result

phi_sim = res['armJoint.phi']

theta_sim = res['pendulumJoint.phi']

t_sim = res['time']

# Evaluate the objective function

y_sim = N.vstack ((phi_sim ,theta_sim ))

obj = dfo.quad_err(t_meas ,y_meas ,

t_sim ,y_sim)

return obj

Finally, the objective is provided to the optimization
function fmin together with the initial guess and the
parameter bounds. The initial guess, i.e., the nomi-
nal values, were obtained through manual testing. The
object returned by fmin contains the optimized param-
eters together with statistics, such as the number of it-
erations performed:

# Specify initial conditions (scaled)

x0 = N.array([0.012 ,0.002])*1e3

# Lower and Upper bounds

lb = N.zeros(2)

ub = x0 + 10

# Solve using the Nelder -Mead algorithm

res = dfo.fmin(furuta_dfo_cost ,

xstart=x0,lb=lb ,ub=ub ,

x_tol=1e-3,f_tol=1e-2)

# Optimal point rescaled

[armFriction_opt ,pendFriction_opt] =

res[0]/1e3

The optimized parameter values were found to be
0.010 for the arm friction coefficient and 0.0010 for
the pendulum friction coefficient. The result is visual-
ized in Figure 6, where it can be seen that the model
response is significantly more accurate using the opti-
mized parameters as compared to the response given
from the nominal parameters. In Figure 7, the error
is shown between the measurements and the simulated
response using both the nominal parameters and the
optimized parameters.

6.2 Diesel Engine

In this example, parameters in a model of an exhaust
gas pipe in a diesel engine is calibrated against mea-
surements. The model was developed in Dymola using
the Engine Dynamics Library and models a 13 liters
Volvo truck engine [8]. The energy of the exhaust gas
after the combustion is converted to torque, before re-
leasing the gas to the purification process. In Figure
8, an overview of the model is shown. The energy is
converted into torque by two turbines, shown as two
trapezoids, where the first drives a compressor at the
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Figure 6: Simulation profiles corresponding to the
optimized parameters (dashed-dotted), profiles result-
ing from simulation with nominal parameter values
)dashed) and measurements (solid).

air intake of the engine and the second is connected
to the drive shaft. Additionally, there are two gas vol-
umes which are connected to two thermal conductors
that transport heat to the surrounding air. The endpoint
circles represent the boundary conditions for the gas.

The uncertain parameters are the thermal capacities
in the walls of the gas volumes together with the ther-
mal conductance from gas to wall in the volumes.

The inputs of the model are the gas temperature and
pressure entering the system, angular velocity of the
turbines and the gas pressure exiting the system. The
output is the gas temperature exiting the system.

Measurements are provided for the inputs and the
output sampled every second over a thirty minute pe-
riod. In Figure 9, the result is shown when simulating
the model using nominal parameter values.

The problem is to minimize the error between the
simulated gas temperature that exits the system and the
measured temperature,

min
x∈Rn

M

∑
i=1

(T sim(ti,x)−T meas(ti))2 (7)

subject to x≥ 0 (8)

where M is the number of measurement points and n
the number of parameters.

Instead of optimizing the four uncertain parameters
simultaneously, the problem is divided into two prob-
lems. The first problem is to determine the thermal
capacity and the thermal conductance in the right vol-
ume. The second is to determine the thermal capacity
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Figure 7: Error between the measurements and
the simulated profiles using the nominal parame-
ters (dashed) and the optimized parameters (dashed-
dotted).

Figure 8: Overview of the model of the diesel engine.

and the thermal conductance in the left volume, using
the results from the first problem. This procedure is
used since the parameters of the first and second vol-
ume are correlated. Optimizing all parameters simul-
taneously then results in over-parameterization.

For each optimization problem, the first third of the
measurement data sequences are used for calibration
and the remaining part is used for validation.

The model was exported from Dymola as an FMU
and thereby made available to the DFO algorithms
in JModelica.org. The two problems are then solved
using the Nelder-Mead simplex algorithm. Figure 9
shows the resulting simulation response for the opti-
mized parameters. In Figure 10, the corresponding er-
ror profiles are shown for the calibration and validation
data sets respectively. As can be seen, the optimized
parameters significantly increase the accuracy of the
model. The (scaled) RMS error was decreased from
1.0 to 0.18 for the calibration data set and from 1.0 to

Derivative-free Parameter Optimization of Functional Mock-up Units 

 

826 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076819 



 

 

0.36 for the validation data set.
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Figure 10: Error profiles for the calibration data set
(top) and the validation data set (bottom).

7 Summary

An implementation of derivative-free optimization al-
gorithms in JModelica.org has been presented. The
implementation has been successfully applied to two
dynamic models where the dynamics are contained in
a Functional Mock-up Unit. In one of the examples,
a Volvo truck engine was calibrated against measure-
ment data, demonstrating the industrial applicability
of the approach.

The Python-based user interface enables flexible
implementation of complex cost functions involving,

e.g., simulation of FMUs and comparison with mea-
surement data or algorithmic evaluation of complex
discontinuous costs.
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Abstract

The physical modelling and simulation of systems
with inherent uncertainty still poses significant issues
when using Modelica and its tools. At present, both
language and tools are fundamentally deterministic
and offer limited support for handling uncertainty; this
limits the scope of using Modelica in certain domains,
e.g. feedback control systems. We propose a frame-
work for incorporating uncertainty in Modelica sim-
ulation and analysis tasks. We do this by coupling
a Modelica model with exogenous stochastic models.
Finally, we apply this approach to the domain of build-
ing modelling.

Keywords: simulation; stochastic modeling; energy
systems modeling

1 Introduction

Physical-model simulation using Modelica has tradi-
tionally been viewed as a deterministic problem, de-
spite major sources of uncertainty. This uncertainty
arises due to issues such as:

initial conditions incomplete input observations,
measurement error, shortcomings in the data
assimilation cycle, etc.

model accuracy and fidelity incomplete knowledge
of physical processes (e.g., inaccurate parameter-
izations of sub grid-scale processes). incomplete
and inaccurate numerical schemes,

At present, Modelica tools (e.g., Dymola) enable
variability of initial conditions by different instantia-
tions of model parameters Θ or by assigning values
to internal model variables. However, this assignment
can be done only once for each simulation. For simu-
lations in which stochastic variables exist or there are
external processes providing data (e.g., sensor/actuator
data) to the model on a regular basis, the simulation
must be re-started for each new input. This limits the

scope of using Modelica for use with certain feedback
control systems (e.g., Model-Predictive control) or in
embedded systems.

Consider the case in which Modelica currently deals
with stochastic inputs, e.g., if we were to specify a
probability distribution (pdf) over Θ. In this case,
Monte Carlo (MC) sampling can be used to define a
set of initial conditions for simulation. The drawback
to this approach is that, for a complex pdf, a large num-
ber of samples (and hence simulations) will be needed
in order to achieve a stochastically-sound set of simu-
lations.

Throughout this article we will use the domain of
energy modeling to explain our concepts. In particular,
we will focus on the modeling of buildings, for which
there exist several Modelica libraries, e.g., [13], for
generating models for large, complex systems.

Our objective is to define a stochastic state evolu-
tion approach that is computationally efficient and can
make use of existing Modelica deterministic simula-
tors. We propose a framework for incorporating un-
certainty in simulation and analysis tasks which use
Modelica models. Our contributions are as follows:

• We propose a framework for ensemble-based
stochastic optimisation, using Modelica as a de-
terministic modeling language and simulation
methodology.

• We apply this approach to the domain of renew-
able energy in terms of underfloor heating opti-
misation.

Our approach shows how one can extend the ex-
isting Modelica language and toolset for such tasks.
However, it also highlights deficiencies in Modelica
for stochastic representation, as well as deficiencies in
the Modelica tools to incorporate stochastic inference
within a simulation, as well as the inability to accept
exogenous inputs during a simulation.
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2 Related Work

This work aims to extend both Modelica and Building
Performance Simulation (BPS) with stochastic meth-
ods, and we discuss prior work in both areas.

Little work has focused on stochastic methods in
Modelica. Most recently, Bouskela et al. [1] have
described (a) methods for stochastic analysis and (b)
proposals for identifying stochastic Modelica vari-
ables and performing appropriate inference. [11] dis-
cusses how a Modelica model can be used as a simula-
tion model within computational design, such that the
probability of a feasible design is explictly computed.

In the area of BPS, Jacob et al. [9] integrate
Monte Carlo sampling within embedded optimization
for BPS. In particular, they use conditional probability
density functions for energy consumption and demand
to quantify the difference between a base case (of en-
ergy usage) with scenarios in the presence of uncer-
tainty.

[8] shows how uncertainty analysis can improve
BPS through a case study of an office building with
respect to various building performance parameters,
demonstrating the implications of uncertainty in re-
sults concerning energy consumption (annual heating
and cooling) and thermal comfort (weighted over- and
underheating hours).

One in-depth analysis of the impact of uncertainty in
BPS, covering notions of internal and external prob-
abilistic approaches to quantifying the overall effect
of parameter uncertainty in building simulations, has
been performed [12]. He quantifies the effects of un-
certainty in building simulation by considering the in-
ternal temperature, annual energy consumption and
peak loads. [3] study the potential impact of cli-
mate change on current building designs by examin-
ing future climates. They employ two methods, math-
ematical transformations of observed weather (mor-
phing), and synthetic weather generator, to generate
future weather files (on an hourly time scale) which
are representative of possible future climates. [10]
study how exogenous stochastic processes (e.g., me-
teorological events) influence building thermal pro-
cesses, and how endogenous (building-internal) pro-
cess knowledge (e.g., occupancy patterns ) can lead to
improved building operation.

3 Simulation Framework

We consider an optimisation framework in which our
task is to optimise an objective function J subject to

a set of constraints over the model, χ(Φ). For exam-
ple, we may want to define an optimal controller for
controlling the heating system in a building.

We assume that the model ΦP that we are simulat-
ing requires a set of inputs generated by an exogenous
stochastic process ΦO. For example, in building en-
ergy simulation, a model ΦP consists of the building
itself, e.g., the building envelope with internal zones,
climate control equipment such as HVAC and sen-
sors/actuators, etc.

We partition the variables in a Modelica model ΦP

as V = V P∪V O, where V P denotes the endogenous
variables and V O denotes the exogenous variables.
Endogenous variables V P do not depend (at least, not
directly) on any exogenous stochastic process: at each
simulation step, they are deterministically calculated
by the Modelica solver. By contrast, exogenous vari-
ables V O depend directly on exogenous inputs, which
change over time due to the exogenous stochastic pro-
cess ΦO. Therefore, the values of V O must be updated
every time the stochastic process ΦO produces new in-
puts.

For example, the exogenous variables might be
weather variables that provide a set of input condi-
tions for weather for a Modelica simulation of ΦP. In
fact, the existing building library [13] has inputs for
up to 30 weather variables, such as temperature, wind-
speed, etc.

Figure 4 shows an example of a discrete-time sim-
ulation process with exogenous model inputs V O

t at
each time step t. The exogenous model ΦO performs
inference independent of the Modelica simulation, and
provides an input for variables V O

t at each time step.
The Modelica simulation uses these inputs to conduct
its simulation. A key insight into this process is that
the Modelica model ΦP must provide inputs of its en-
dogenous variables V P

t to the simulation at time t +1,
since the model would otherwise take (incorrect) de-
fault values for V P

t+1.

α α α




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Figure 1: Simple schematic of simulation process with
exogenous model inputs

We formalise this process as follows. We define our
simulation system as consisting of two models: (a) an
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exogenous (possibly stochastic) model ΦO with vari-
ables α , of which a subset V O are output variables; (b)
a deterministic (endogenous) model ΦP with variable
set V partitioned into input variables V O and internal
variables VP, and parameters Θ (which are constants
over a simulation).

3.1 Stochastic Model Analysis

We further assume an exogenous model E defined by
Θ = ψ(α) that generates the parameter assignment θ̂ .
If E is stochastic, then we have Pr(Θ) = Pr(α), which
defines the joint distribution over α .

We assume a two-step process for model analysis.
First, we perform exogenous analysis, which takes the
joint set of stochastic inputs α , and through Monte-
Carlo (MC) sampling, generates an ensemble of pre-
dictions for the parameter set α . Second, we run a
simulation for each element of the ensemble, generat-
ing an ensemble S of simulation outputs. Finally, we
perform some analysis of the ensemble S to compute
our objective.

3.2 Stochastic Simulation Process

[5] define a good probabilistic simulation/forecast as
the process of maximizing the accuracy of the predic-
tive distributions subject to calibration, where accu-
racy refers to the spread of the predictive distributions,
and is a property of the forecasts only. Calibration
is the statistical compatibility between the predictive
simulation output (or distributions for stochastic mod-
els) and the observations. This is a joint property of
the forecasts and the observations. We can jointly as-
sess calibration and accuracy by using proper scoring
rules, such as the logarithmic score or the continuous
ranked probability score [6].

For example, a proper scoring rule is a function
s(ζ ,x) that assigns a numerical score to each pair
(ζ ,x), where ζ is the predictive distribution and x is
the verifying observation.

3.3 Simulation Analysis

Given a set of n possible input streams to ΦP, we run n
simulations. The key is to now use these n simulations
to solve our tasks in order to optimise J .

Consider the case where we aim to compute an op-
timal control that optimises J . Given the n simula-
tions, we want to compute a robust control u∗.

Robust control methods are designed to function
properly (e.g., maintain stability) under the condition

that uncertain parameters or disturbances are within
some (typically compact) set. For example, this may
include the assumption of bounded modelling errors.
In contrast with adaptive control (which can adapt
to changes in environmental conditions or measure-
ments), robust control methods are static.

In our case, we assume that the MC sampling pro-
vides a statistically sound set of simulation conditions.
Given that, we can either optimise the worst-case out-
come, or optimise within the bounds to the input en-
semble.

4 Application Domain: Energy Mod-
eling

4.1 Building Simulation

For the analysis and prediction of the dynamic be-
havior of building performance indicators such as en-
ergy consumption and thermal comfort, building per-
formance simulation (BPS) is a key enabling technol-
ogy. Previous work has shown that the use of BPS
is mostly limited to building design and for checking
code compliance for the detailed design [8].

BPS makes a number of assumptions that violate re-
alistic building characteristics. For example, almost
all BPS model variables are assumed to be determinis-
tic, even though they are uncertain, due to uncertainty
in material characteristics and to external and inter-
nal condition changes over time. For example, a BPS
model contains a range of internal parameters that are
only known imprecisely, e.g., wall/ floor/ ceiling heat-
transfer parameters. In addition, this type of model
behaves differently based on the building occupancy
and usage, both of which change over time.

4.2 Incorporating Weather Forecasts

Today, the preferred method of probabilistic weather
prediction is based on ensembles of Numerical
Weather Prediction (NWP) forecasts. In this case,
each ensemble member is a single-valued, determin-
istic forecast from an NWP model, i.e., a simulation
of an NWP model. The forecasts differ from each
other with respect to the two major sources of uncer-
tainty: (1) initial conditions and/or (2) model formula-
tion. Figure 2 shows an example of an ensemble of 11
pressure predictions over time.

The ensemble of forecasts must be post-processed
in order to provide an interpretable, single forecast. In
other words, statistical post-processing aims to gener-
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Figure 2: Weather ensemble of 11 pressure predictions
over time

ate a calibrated, sharp predictive distribution from the
output of NWP ensembles. Two general approaches
to the statistical post-processing of forecast ensembles
have emerged, namely

• Bayesian model averaging (BMA) [7], where
each ensemble member is associated with a ker-
nel function, with a weight that reflects the mem-
ber’s relative accuracy.

• ensemble model output statistics (EMOS) [4]
or nonhomogeneous Gaussian regression (NGR),
which fits a single, parametric predictive PDF us-
ing summary statistics from the ensemble.

Consider an ensemble forecast, λ1, · · · ,λm, for sur-
face temperature, T , at a given time and location.
BMA employs Gaussian kernels with a linearly bias-
corrected mean: the BMA predictive PDF is the Gaus-
sian mixture with mean N and variance σ2.

p(T |λ1, · · · ,λm) =
m

∑
i=1

wiN (ai +biλi,σ
2),

with the BMA weights w1, · · · ,wm, bias parameters
a1, · · · ,am and b1, · · · ,bm, and a common spread pa-
rameter σ2.

The major drawback to this current ensemble ap-
proach to physical simulation is that it only apples to
single variables, at single locations and single look-
ahead times. A key objective in this area is to compute
physically consistent probabilistic forecasts of spatio-
temporal simulation trajectories.

4.3 Example: Underfloor Heating Example

Consider the case where we can to compute a control
setting for the underfloor heating in a zone Z, where

we have uncertainty over the weather forecast and the
occupancy for the following day.

We apply our approach to the optimisation of under-
floor heating control. Our task is to compute the time
interval I during which we “charge" (or heat up) the
underfloor slab during the night, such that we jointly
maximise user comfort (Uc) and minimise energy us-
age (Ue) over the following day. Figure 3 depicts a
simple example of an underfloor heating system for a
house.

We can formulate this task by defining J as the
weighted sum of user comfort and energy usage, with
corresponding weights wc and we:

J = wcUc + weUe (1)

subject to

Uc ≥ U∗c , UE ≥ 0 (2)

χ(Φ) are satisfied (3)

Figure 3: Simple schematic of underfloor heating sys-
tem for a house

4.4 Underfloor Heating with Stochastic Fore-
casting

This section describes our underfloor heating model
that incorporates stochastic forecasts for weather and
occupancy. Figure 4 depicts the variation in tempera-

Figure 4: Simulation process for under-floor heating
system. The red area shows the hours during which
the heating is on. The gray area shows the difference
between setpoint and room temperature during office
hours.

ture over a day, given that the underfloor heating sys-
tem is switched on for the period 3-8 am. In this exam-
ple the temperature set-point for the day is 18◦ Celsius,
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and our objective is to maintain this temperature as
closely as possible, in order to optimise the occupants’
comfort. The gray area between the actual temperature
during the day and the set-point is used to compute a
discomfort index, i.e., it is the area denoting the failure
to maintain the set-point.

We employ three different models for this applica-
tion:

• a stochastic model for weather variable predic-
tion;
• a stochastic model for occupancy prediction;
• a Modelica model for simulating the occupied

zone in a building with underfloor heating, given
as inputs the weather forecasts and the predicted
occupancy.

Weather 
Ensemble 

Occupancy 
Ensemble 

Monte-Carlo 
Sampling 

VO(1) 

VO(2) 
 
 
 
 
 
 
 
 

VO(n) 

Modelica 
Simulation 

S1 

S2 
 
 
 
 
 
 
 
 

Sn 
 

Ensemble 
Analysis 

. 

. 

. 

. 

. 

. 

. 

. 

Exogenous Analysis  Endogenous Analysis 

u* 

Figure 5: Computational architecture for analysis of
underfloor heating system.

Figure 5 depicts our computational architecture,
showing the two phases of exogenous computation,
where we generate ensembles for weather and occu-
pancy forecasts, and endogenous computation, where
we create an ensemble of simulations based on the in-
put ensembles, and then compute the control output
u∗ that optimises our objective function J , given the
simulation ensembles.

5 Implementation

We have partially implemented the computational ar-
chitecture described in the previous section. In this
section we provide implementation details on our en-
ergy simulation model and its inputs, as well as how
we intend to use the model for computing an optimal
control action u∗.

5.1 Room model

We model a room of one of the buildings on our uni-
versity campus. This room is an open-space office
with a maximum capacity of 12 occupants. The room
is equipped with typical office furniture (desks, com-
puters, printers, etc.). The only heating system is

under-floor heating. Additionally, the room has 8 win-
dows and 2 doors. The room is also equipped with
sensors that monitor temperature, presence, and lumi-
nance.

We model this room by using the Buildings library,
developed by Wetter et al. [13]. Figure 6 contains a
graphical representation of our model. The main com-
ponents are:

1. a room component, which extends Build-
ings.Rooms.MixedAir;

2. an external weather file;

3. heat gains based on occupancy and equipment in
the room;

4. an under-floor heating component.

Figure 6: Room model with under-floor heating

5.2 Weather forecast ensembles

Weather is one of the main inputs to our model.
Weather data can be either from the past (historical
weather records) or in the future (weather forecasts).
Since our objective is to implement a control frame-
work, we are interested in weather forecasts. In this
section we discuss how we obtain and process weather
forecasts.

As mentioned previously, probabilistic weather
forecasts are based on ensembles. These ensembles
are generated routinely by various data centers around
the world. In particular, we use weather forecasts
generated by the Global Ensemble Forecast System
(GEFS) model [2], which is developed and run by
the National Oceanic and Atmospheric Administration
(NOAA) in the United States.
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As the name suggests, the GEFS is a global model,
i.e. it produces forecasts for the whole planet. These
forecasts are available for download free-of-charge
from the NOAA file servers. The GEFS model pro-
duces forecasts up to 16 days in advance; however,
since the accuracy tends to degrade quickly, we con-
sider only the first 7 days of prediction. For these first
7 days, the model provides a spatial resolution of 1
degree latitude by 1 degree longitude, and a temporal
resolution of 6 hours. The GEFS produces 20 ensem-
ble members. Each member contains the trajectories
of various weather variables, e.g. temperature, humid-
ity, pressure, etc.

Our goal is to use these ensemble forecasts to gen-
erate probabilistic weather inputs for our model. In or-
der to accomplish this, after downloading the forecast
files, we need to carry out a series of steps:

1. forecasts must be spatially interpolated to the
point of interest;

2. forecasts must be temporally interpolated;

3. the weather variables that are relevant to our
model must be extracted from the forecasts; addi-
tionally, some weather variables required by the
model are not directly included in the forecasts
(e.g. direct and diffuse solar radiation), and there-
fore must be calculated from the information that
is available;

4. the extracted and calculated variables must be
statistically post-processed, in order to provide
probability distributions;

5. the probability distributions calculated above
must be sampled (e.g. by using Monte Carlo
methods) to provide weather scenarios;

6. finally, for each sampled scenario, a weather file
in the format required by the model must be pro-
duced.

We have developed software that performs the
above steps, with the exception of the statistical post-
processing. At the moment of this writing, instead of
generating probability distributions and then sampling
from those, we simply create 20 different weather files
for each of the 20 ensemble forecasts generated by the
GEFS; then, we provide these weather files as inputs
to our model. Figure 7 depicts the steps we have im-
plemented to provide weather input to our model.

Global Ensemble 
Forecast System

Spatial / 
temporal 

interpolation

Conversion to 
Modelica 

format
Modelica model

FTP download Weather 
variable 

extraction / 
calculation

Figure 7: Steps to provide weather input to the room
model

5.3 Sensitivity Analysis

The Modelica Buildings library accepts weather files
specified as tables of n rows and 30 columns. Each
row contains weather conditions for a specific time
step, and each column contains the values of a weather
variable, specified as real numbers. However, each
weather variable has a different impact on the model
output (i.e., the room temperature): some variables af-
fect the room temperature more strongly than others;
some variables do not affect the room temperature at
all. Hence, it is important to precisely assess the im-
pact of each weather variable on the model output, so
that only relevant variables need to be extracted from
the forecasts.

In this context, we have performed sensitivity anal-
ysis on our model in the following way. First, we ran a
baseline simulation with a weather file containing his-
torical data. Then, we altered each weather variable
in the file by increasing and decreasing its values by
10%, 20% and 30%. Each variable was altered inde-
pendently of the others; i.e., when we altered one vari-
able, all other variables retained their original values.

For each weather variable, we generated 6 simu-
lations corresponding to the variations in the range
of {−30%,−20%,−10%,10%,20%,30%}. We mea-
sured the error between the baseline and each varia-
tion; the error was calculated as the integral of the dif-
ference of room temperature. The error provides an
indication of how much a variable affects the simula-
tion output, with higher error corresponding to higher
sensibility.

The results indicate that the model is most sensitive
to the following weather variables:

1. dry bulb temperature;

2. direct, diffuse and global solar radiation;

3. opaque sky cover;

4. wind speed and direction;

5. dew point.

Therefore, only these variables are extracted from the
GEFS weather forecasts and provided to the model.
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5.4 Simulation process

We use the model to address the task of optimal under-
floor heating control. Since under-floor heating is
a slow-response system, it is normally turned on at
night: it is at this time that the concrete slabs are
“charged” with heat, which will then be released in the
room over the following day. In this context, the out-
put of the control task is u∗, i.e. the amount of hours
during which the under-floor heating will be turned on.

In order to calculate u∗ we simulate 9 different sce-
narios Su, where we vary the amount of under-floor
heating hours u from 0 to 8. For each Su, we calcu-
late Ju = wcUc +weUe. Finally, we calculate u∗ =
uarg max{Ju}. The value u∗ is then given as input to
a Building Management System (BMS) which opens
the under-floor heating valves for the required amount
of time.

This process is repeated every day, for instance at
10 pm. In other words, every 24 hours we run a new
series of simulations and we calculate a new control
action u∗ based on weather (and, potentially, occu-
pancy) forecasts for the day after. However, each time
we run a new series of simulations, we cannot reset the
model variables to pre-defined initial values. In fact, as
stated in section 3, the endogenous variables must be
initialized with the values of the previous simulation,
whereas the exogenous variables must be initialized
according to the external stochastic processes. Using
Dymola, this means that the dsin.txt file (which pro-
vides initial values to variables) must contain the final
values of the simulation which generated u∗ 24 hours
before. This process is depicted in figure 8.

Modelica 
simulations 
(Dymola)

Weather 
forecast 

ensemble

Simulation post-
processing u*

dsfinal.txt

dsin.txt

Ensemble of room 
temperature 
trajectories

Figure 8: Steps to compute u∗ every 24 hours. The
post-processing step contains the logic to calculate u∗.
The file dsfinal.txt contains the final values of the pre-
vious simulation which generated u∗.

5.5 Preliminary control results

In order to test our control approach, we first applied
it to historical weather data. Our goal here is to com-
pare our control strategy with a 5-hour fixed-schedule
strategy, in terms of user comfort and energy usage.
We use the simulation process described in the previ-

ous section; the only change is that we use historical
weather data instead of forecasts.

We use a set-point of 23 degrees Celsius for week
days, and 16 degrees Celsius for weekends. The fixed
schedule strategy operates the under-floor heating for 5
hours every night, between 3 am and 8 am. Moreover,
it does not differentiate between weekdays and week-
ends1. Our control strategy, instead, tries to minimize
the error between set-point and room temperature, and
thus will tend to turn off the under-floor heating during
weekends, when the set-point is lower.

Figure 9 shows the average room temperature ob-
tained with our control strategy (blue trajectory) and
the fixed schedule strategy (red trajectory). Although
there is some amount of error for both strategies, it is
clear that, on average, our control strategy performs
better, i.e. it is closer to the desired set-point. Possi-
ble ways to further improve our control strategy might
consist in (1) leaving the set-point unchanged over
weekends (thus avoiding the cooling down of build-
ing materials, at the expense of higher energy usage),
and (2) extending the possible number of under-floor
heating hours to 9 or 10 (at the moment we keep the
maximum number of hours to 8).

Figure 9: Comparison of average temperature ob-
tained with our control strategy (blue) and a 5-hour
fixed schedule strategy (red). The red line represents
the desired set-point. The horizontal axis represents
days and the vertical axis represents degrees Kelvin.

Figure 10 compares the energy usage of the two
strategies. It is apparent that, over the whole year, our
control strategy requires significantly less energy than
the fixed schedule strategy. This is mainly due to (1)
savings during weekends, and (2) savings during the
summer season, when the under-floor heating is not
needed. It is worth mentioning that, within the model,
the energy usage is calculted as the amount of energy
(in Joule) that is required to heat up the water which
will flow into the under-floor heating pipes.

1It is worth noting that this control strategy was actually im-
plemented on the building on our university campus.
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Figure 10: Comparison of energy consumed by our
control strategy (blue) and a 5-hour fixed schedule
strategy (red). The horizontal axis represents days and
the vertical axis represents energy in Joule.

5.6 Adding stochastic inputs to the control
framework

The preliminary implementation discussed in the pre-
vious section did not include stochastic inputs. In fact,
both weather and occupancy are assumed to be deter-
ministic processes over a day. In this section, we dis-
cuss how we intend to extend this control framework
in order to include stochastic inputs.

As explained in section 3.1, given an exogenous
model ΦO with variables α , we first compute the joint
probability distribution Pr(α), and then we generate
an ensemble of predictions for α through Monte Carlo
sampling; the predictions will then used as exogenous
inputs to the Modelica model ΦP.

In our application domain, the exogenous model ΦO

is a combination of stochastic weather and occupancy.
Therefore, each prediction p for ΦO will contain the
trajectories of weather variables, plus the number of
occupants in the room at each time t. In order to
use predictions p as exogenous inputs to our control
framework, we use algorithm 1. This algorithm com-
putes u∗ by searching through a search space com-
posed of 9× n simulations, where n is the number of
predictions for α generated through Monte Carlo sam-
pling.

It is significant to note that the simulated room tem-
perature can change significantly on the basis of dif-
ferent predictions for α . Figure 11 shows an ensemble
of 5 room temperature trajectories, obtained with 5 dif-
ferent members of a weather forecast ensemble. Given
this significant variability, we believe that using a com-
bination of stochastic weather and occupancy predic-
tion could yield better results than using deterministic
forecasts.

Algorithm 1 Algorithm to compute a control action
based on an ensemble of exogenous predictions.

for u between 0 and 8 do

for each prediction p do

calculate errorp
u

calculate energyp
u

Jp
u ← wcerrorp

u +weenergyp
u

end for
Ju← ∑

n
p=1 Jp

u

end for
return u∗ for which Ju is minimized

Figure 11: Ensemble of 5 room temperature trajecto-
ries, generated with 5 members of a weather forecast
ensemble. The horizontal axis contains hours and the
vertial axis contains degrees Kelvin.

6 Discussion

We have described an approach to extend Modelica
simulation with multiple ensembles generated by ex-
ogenous stochastic simulations. This approach cou-
ples a discrete-time stochastic simulation with a Mod-
elica simulation, in which the stochastic simulation
generates an input to the Modelica model for each
time step. Further, the system state from the Modelica
model for time t must be used to initialise the model
at time t + 1. This methodology can enable Modelica
to be used for optimisation, and for embedded control
and optimisation applications.

Although this approach works well for slower sys-
tems, for fast systems (where each time step is small)
the computational overhead of initialising a Modelica
simulation for each time step hinders real-time and
embedded applications. This exposes the limitation
of Modelica in two ways: (1) the lack of an in-built
stochastic modeling capability; and (2) the inability to
accept inputs (e.g., from sensors and actuators) during
a simulation. We argue that, in order to gain accep-
tance for real-world applications, Modelica must ex-
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tend its langauge and computational tools to incorpo-
rate methods for dealing with these two deficiencies.
Bouskela et al. [1] propose a language extension to
partially deal with the first deficiency, but further work
is necessary.
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Abstract

Nowadays, simulation is the key technology to shorten
development times, while increasing the functionality
of products. In this context simulation is always used
in order to verify characteristics of the product under
consideration. In the past simulation was mostly done
offline, i.e. not synchronized to real-time. Due to the
increased computing power, the relevance of real-time
simulation has increased in the last years. Therefore,
several simulation environments offer a toolchain for
real-time simulation, e.g. the Real-Time Workshop in-
tegrated in Simulink. In this paper such a toolchain
(although not yet fully automated) for the OpenMod-
elica Compiler (OMC) is presented using a hydro-
mechanical system as an example. Thereby, this pa-
per describes a modular C++ Simulation-Runtime for
the OMC including a numerical integration method
suitable for real-time simulation as well as modeling
details of the example system using Modelica.Key-
words: real-time; simulation; runtime; OpenModelica

1 Introduction

Simulation is always based on models. These models
can be mind-models, scaled physical models or mathe-
matical models. No matter what kind of model is used,
the purpose of simulation is mostly the validation of
characteristics of physical systems. Nowadays, even
detailed mathematical models can be simulated in rel-
atively short time. Hence, computer-simulation is an
important tool in the mechatronic development cycle
and helps to reduce costs by shorten the development
process. The mechatronic-development cycle involv-
ing the validation process is visualized in the V-Model
in figure 1.
Clearly, the level of detail of the employed model
plays a very important role. To obtain a model with
a higher level of detail, more modeling effort has to be
invested and one has to expect longer simulation times.

Figure 1: V-Model of the mechatronic development
cycle

A proper model is as simple as possible, but still com-
plex enough to reproduce the physical effects under
consideration [9]. However, there exist tasks that can
not be fulfilled satisfactorily with the help of non-real-
time simulations regardless of which level of detail is
used. These are among others:

• Setting up Simulators (e.g. driving simulator),

• Controller testing,

• Physical Component testing.

Real-time simulation refers to a mathematical model
of a physical system including a numerical integra-
tion method that can execute at the same rate as ac-
tual "wall clock" time. Hence, using real-time sim-
ulation, the real system can be replaced by a virtual
system which makes real-time simulation suitable for
the applications mentioned above. Due to this pos-
sibility and the increased available computing power,
real-time simulation became very popular in the recent
years.
Consequently, many commercial simulation tools of-
fer a complete toolchain for real-time simulation. Such
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a toolchain consists of a modeling environment, a
simulation-runtime and a compiler which can compile
the model for a real-time-target. Simulink together
with the Real-time Workshop form the toolchain of-
fered by The MathWorks. Some other tools do not
offer an own compiler, but an export to Simulink, so
that the real-time Workshop can be used. There are
also tools which offer an integrated solution. However,
currently the OMC lacks such an automated toolchain
at all. In this paper a C++ Simulation-Runtime is
presented which forms the basis for a toolchain for
real-time simulation. This modular C++ Simulation-
Runtime contains a numerical integration method suit-
able for real-time simulations of hydraulic systems and
can also be used for co-simulation.
This contribution is structured as follows. In section 2
the C++ Simulation-Runtime and its structure is pre-
sented. After that the toolchain for real-time simula-
tion is explained using an application example in sec-
tion 3. Here, the C++ Simulation-Runtime is compiled
together with the application example for the real-time
operating system Scale-RT [2] and executed on a real-
time-target after that. The paper closes with a conclu-
sion and an outlook.

2 A C++ Simulation-Runtime for
OpenModelica

In order to set up an automated toolchain for real-time
simulation, a new C++ Simulation-Runtime was de-
signed. The design-guidelines were chosen to obtain a
simulation-runtime that is easy to

• maintain,

• extend,

• configure.

Therefore, it is much easier to add new numerical inte-
gration methods, extend its functionality with new al-
gorithms (e.g. for initialization) or just to fix bugs. In
order to obtain a simulation-runtime that realizes these
design-guidelines, the solver-component which imple-
ments the numerical integration method is separated
from the system-component which represents the sys-
tem of differential-algebraic equations (DAE). Note,
that this design is completely contrary to the idea of
inline-integration which was invented in order to in-
crease the computational efficiency [8]. In the next
section a general overview is given. After that the
Event-Handling strategy is explained. In section 2.4

the chosen numerical integration method for real-time
simulation is described.

2.1 Components Overview and General In-
terface Description

SolverSystem

SimManager

Settings
«component»

«component»

«component» «component»
IContinuous

IEvent

ISystemProperties

ISystemIntialization

ISolverSettings

IHistory ISolver IGlobalSettings

Figure 2: Components of the C++ Simulation-
Runtime

In figure 2 the component diagram of the
C++ Simulation-Runtime is pictured. The solver-
component consists of a set of integration methods,
e.g. CVode from the Sundials library [12]. The
SimManager-component controls the simulation. Be-
sides standard-tasks like starting and stopping of the
simulation, the SimManager is able to synchronize dif-
ferent systems and solvers and hence allows for co-
simulation. The settings-component is used to con-
figure the simulation, e.g. set solver-tolerances. The
system-component represents the DAE and therefore
includes the Modelica-System class. This class is gen-
erated by a new code-generation module inside the
OpenModelica compiler [10]. As mentioned above
the solver-component is separated from the system-
component and thus interfaces are used (see figure 3).

«interface»«interface»«interface»«interface»

IContinuous ISystemProperties ISystemInitialization

EventHandling Modelica System

SystemDefaultImplementation

is generated by the
OpenModelica Compiler

IEvent

11

Figure 3: Modelica-System class

The C++ Simulation-Runtime is able to handle sys-
tems with a lot of different properties as shown in fig-
ure 4. Some of the properties (likeisAlgebraic) are
standard properties and used to automatically select
a suitable numerical solution method for the corre-
sponding system. Other properties are not yet reported
by the OMC to the C++ Simulation-Runtime. A flag to
use a symbolic jacobian for the numerical integration
is part of current work. The generation of the symbolic

A Toolchain for Real-Time Simulation using the OpenModelica Compiler 

 

840 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076839 

   



 

 

jacobian is described in [5]. The interfaceISystemI-replacements

«interface»
ISystemProperties

+ hasConstantMass() : Boolean

+ hasStateDependentMass() : Boolean

+ isAlgebraic() : Boolean

+ isAutonomous() : Boolean

+ isExplicit() : Boolean

+ isODE() : Boolean

+ isTimeInvariant() : Boolean

+ provideSymbolicJacobian() : Boolean

Figure 4: ISystemProperies Interface

nitialization is used to initialize the Modelica-System
at the beginning of the simulation. Since the efficient
initialization of models is part of current work [6],
the currently implemented algorithms are rather basic.
However, due to the design of the C++ Simulation-
Runtime, new initialization-algorithms can be easily
added. The communication between solver and sys-

«interface»

IContinuous

+ getDimRHS(index : const INDEX =ALL_VARS) : Integer

+ getDimVars(index : const INDEX=ALL_VARS) : Integer

+ giveRHS(f : Double[*]{ordered}, index : INDEX=ALL_VARS)

+ giveVars(z : Double[*]{ordered}, index : INDEX=ALL_VARS)

+ setTime(time : Double)

+ setVars(z : Double[*]{ordered}, index : INDEX=ALL_VARS)

+ update()

Figure 5: IContinous Interface

tem is defined by the interfaceIContinuous(see fig-
ure 5). The methodgiveVarsreturns the state-vector
z. The state-vector is sorted according to the variable-
index (see table 2.1) and hence it is possible to access
a corresponding part of the state-vector by passing the
variable-index. This sorting allows for efficient gen-
eration of the jacobian [11]. The remaining methods

Variable Index Description
VAR_INDEX0 States of systems of 1st order
VAR_INDEX1 1st order States of systems of 2nd order,

e.g. positions
VAR_INDEX2 2nd order States of systems of 2nd order,

e.g. velocities
DIFF_INDEX3 Constraints on position level only
DIFF_INDEX2 Constraints on velocity level only
DIFF_INDEX1 Constraints on acceleration level only
ALL_RESIDUALS All constraints
ALL_STATES
ALL_VARS

Table 1: The Variable Index

are basic methods needed for the numerical integra-

tion process.
In case that the OMC returns algebraic equation

«interface»

«interface»

IAlgLoopSolver

IAlgLoopNewton

Modelica System

AlgLoop System
is generated by the
OpenModelica Compiler

1

1

1

*

Figure 6: Solving Non Linear and Linear Systems

systems (as shown in figure 6), an instance of the
AlgLoop-System class is created for each equation
system. Once again, the Algloop-System class pro-
vides a method which allows to choose an adequate
numerical solution method.
The simulation results are currently stored in a tabu-
lator separated text-file. The Modelica-System class
uses an instance of typeIHistory to store the simula-
tion results. Moreover, the storing instance uses a pol-
icy class for the implementation of the storing behav-
ior [3]. This allows an extension of the output mecha-
nism of simulation results, e.g storing the results in a
buffer for further processing. In the future simulation
results will be stored in the new Modelica result-file-
format.

2.2 Integration Loop

setTime setVars

ẋ(t) = f(t,x(t),p,u(t),λ (t))
0

︸︷︷︸

żi

= g(x(t), t)
︸ ︷︷ ︸

f(ti ,zi ,p,ui )

Solver System

update

giveRHS(̇zi = f(ti ,zi ,p,ui ))

writeOutput

ti

ti+1
zi+1

zi =

[

xi

λ i

]

zi+1 = zi +hi · żi

yi+1 = h(ti+1,zi+1,p,ui )

Figure 7: Integration loop in the C++ Simulation-
Runtime

A scheme of the integration loop for a semi-explicit
DAE

ẋ(t) = f(t,x(t),p,u(t),λ(t)), (1a)

0= g(x(t), t), (1b)
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can be seen in figure 7. Here,x denotes the states,λ
is the vector of algebraic variables,p are the param-
eters andu(t) are the system inputs. The time-step
starts by setting the previously calculated state-vector
and the current time. The right-hand-side of equation
1a is evaluated by callingupdate. Note that algebraic
loops are solved within this call. After thatgiveRHS
gives the right-hand-side to the numerical integration
method which performs the integration step (e.g. using
Forward-Euler).

2.3 Event-Iteration

«interface»

IEvent

+ checkConditions(index : Integer, all : Boolean=False)

+ checkForDiscreteEvents()

+ getDimZeroFunc() : Integer

+ getTimeEvents(events : TEVENT_TYPE[*]{ordered})

+ giveConditions(conditions : Boolean[*])

+ giveZeroFunc(f : Double[*])

+ handleSystemEvents(events : Boolean[*]{ordered})

+ saveConditions()

+ setConditions(conditions : Boolean[*]{ordered})

+ saveVars()

Figure 8: IEvent Interface

To handle discontinuities the Modelica-System im-
plements theIEvent interface (figure 8). For each
continuous event from the Modelica model, a zero-
crossing- function and a corresponding condition vari-
able is created. Thereby, the zero-crossing-functions
are interpreted as transitions in a state-graph. To be
more precise, the zero-crossing-functions are always
negative as long as no event occurs. A positive zero-
crossing-function indicates an event and in the con-
sequence the event is handled (and the event-iteration
is started) such that the corresponding zero-crossing-
function is negative again. Note, that this is funda-
mental difference to the treatment of events in the cur-
rent C Simulation-Runtime and allows the use of the
built-in zero-detection algorithms of the Sundials li-
brary. These algorithms are very efficient since all
ODE/DAE solvers of the Sundials library are multi-
step methods and hence the solution polynomial is at
hand with no additional effort.
When a zero is found an event-iteration is started as
pictured in figure 9. The input of the event-iteration

is an event-vectore indicating which zero-crossing-
function (i.e. transition) is active. The relevant relation
expressions are evaluated and stored in a condition-
vector usingcheckConditions. This condition-vector is
used in theupdatemethod to evaluate the right-hand-
side of equation 1a. The methodsaveVarsis called to
save the predecessor values of all variables.

zerostate= EQUAL_ZERO

zerostate=ZERO_CROSSING

Zero search method Continue integration

check conditions of active events ine

update()

checkForDiscreteEvents()

checkConditions(0,true)

ni ++

condition or discrete var changed
andni < max

saveConditions()

saveVars()

Event iteration inside system

Figure 9: Event Iteration within an integration step

2.4 Real-time Simulation

Real-time Simulation refers to a mathematical model
of a physical system including a numerical integra-
tion method that can execute at the same rate as actual
"wall clock" time. Hence, two requirements have to be
met:

• The simulation has to be faster than the "wall
clock" time.

• A predictable worst-case runtime is required.

The first requirement is a requirement on the compu-
tational complexity and hence a requirement for the
model as well as for the numerical integration method.
An approach for the generation of models suitable for
real-time simulation can be found in [13]. The choice
of the numerical integration method is even more re-
stricted by the second requirement which is mostly
harder to meet than the first one. A predictable worst
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case runtime can only be obtained with non-iterative
algorithms. To be more precise implicit numerical in-
tegration methods can not be used (without modifica-
tion) inside a real-time process. Note that this require-
ment is rather problematic in the context of stiff ODEs
and DAEs. Furthermore, step-size control produces a
non-predictable runtime and can thus also not be used.
The same holds for many algorithms for the detection
of zero-crossings.
Since explicit numerical integration methods are not
suited for many practical problems and implicit meth-
ods are not allowed inside a real-time process, linear-
implicit integration methods with fixed step size are
very common for real-time simulation [4]. Using a
linear-implicit integration method, not a non-linear,
but a linear system of equations has to be solved. This
operation can be performed with an upper bound for
the computational effort and hence linear-implicit in-
tegration methods can be used in real-time processes.
Linear-implicit methods can for example be obtained
by linearizing the numerical integration method. In
that case linear-implicit methods inherit the stability
properties of the corresponding implicit method due
to the linearity of Dahlquist’s test equation [11].
The most popular linear-implicit integration scheme is
the linear-implicit Euler-method due to its simplicity
and stability properties, i.e. it is A- and L-stable like
the Backward-Euler [7]. These properties make it bet-
ter suited for practical (i.e. stiff) problems than ex-
plicit methods. Unfortunately, it is of the same order as
Backward-Euler which might be problematic in com-
bination with a fixed-step size for low tolerances. An
alternative is the linear-implicit trapezoidal-rule. This
method has the same complexity as Backward Euler
but is of order two. However, the linear-implicit trape-
zoidal rule is not L-stable due to the stability properties
of the trapezoidal-rule and should thus not be used for
stiff problems.
The C++ Simulation-Runtime offers an A- and L-
stable linear-implicit integration method of order three
which will be called LI3 in the following. This method
was designed for the solution of discretized un-
steady incompressible Navier-Stokes equations orig-
inally and has not been used for real-time simulation
yet (to the author’s knowledge) [14]. For an ODE as

in equation 1a the method can be written as

k1 = xn+
2h
3

L · f(xn, tn), (2)

k2 = L(xn−
h
2

J ·k1+
h
3

f(xn, tn)+
h
3

f(k1, tn+
2h
3
)),

(3)

k̄ =
9
4

k1−
3
4

k2−
1
2

xn, (4)

k3 = L(xn−
h
2

J · k̄ +
h
4

f(xn, tn)+
3h
4

f(k1, tn+
2h
3
)),

(5)

xn+1 = L(xn−
h
2

J · k̄+
h
4

f(xn, tn)+
3h
4

f(k2, tn+
2h
3
)),

(6)

where

L = (E−

h
2

J)−1. (7)

HereJ denotes the jacobian off (or at least an approx-
imation) andh is the step-size. Thus, one time-step
requires three evaluations of the right-hand side of the
ODE. Moreover, four linear systems of equations of
the same dimension asx have to be solved. Thus, the
structure of LI3 is similar to the structure of a linear-
implicit method obtained from a diagonally-implicit
Runge-Kutta method. Note that the solution of these
four systems is computationally cheaper than solving
a system of dimension 4· dim(x) which would result
from a linear-implicit method obtained from a implicit
Runge-Kutta method. The proof for the stability prop-
erties as well as for the order can be found in [14].
Clearly, a time-step with LI3 is computationally more
expensive than a time-step with the linear-implicit
Euler-method. However, LI3 allows to use larger step-
sizes due to the higher order. This is expressed in
the engineers rule of thumb that a method of orderp
should be used for a tolerance of 10−p.
Consequently, stability properties, order and computa-
tional complexity make LI3 suitable for real-time sim-
ulation of stiff problems and hence hydro-mechanic
systems.
Since no iterative algorithm for the detection of zero-
crossings can be used, the zero-crossing is assumed to
be in the middle of the last solution interval. Note that
this leads to an increase in the worst-case runtime of a
factor of three.

3 Application Example

In the last section a C++ Simulation-Runtime for the
OMC was presented. This simulation-runtime forms
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Figure 10: Pieter Schelte (picture taken from [1])

the basis for an automated toolchain for real-time sim-
ulation. The workflow of this toolchain is explained in
this section using a hydro-mechanical heavy-duty sys-
tem as an example. In the next subsection the set-up of
the real-time simulation is explained. After that some
modeling details and simulation results are given.

3.1 Real-Time Simulation Set-Up

The toolchain consists of the OMC as a Model-
ica Compiler, the C++ Simulation-Runtime, a cross-
compiler for ScaleRT and the real-time operating sys-
tem itself. The hardware setup to execute the real-time
simulation of the Modelica model using SCALE-RT
requires a host and a target PC. The host PC is stan-
dard Windows PC while the target PC uses ScaleRT
(Linux with Xenomai real-time extension).
The output of the OMC is coupled to the ScaleRT in-
terface and cross-compiled for ScaleRT. The automa-
tion of this step is part of future work. After that the
code can be transfered to the target and started via the
ScaleRT software in a graphical-user-interface.
Note that in contrast to the OMC neither ScaleRT nor
the coupling of the C++ Simulation-Runtime to the
real-time interface is Open Source.

3.2 Modeling of the Example System

The application example is a part of a hydro-
mechanical heavy-duty system, which is designed to
operate on a ship for the installation and removal of
oil-platforms. The ship is currently under construc-
tion and is pictured in figure 10. The complete hydro-
mechanical system consists of eight beams, each with
a clamp (or gripper) at the end. During operation the
beams move towards the legs of a platform and grip

Figure 11: Object diagram of the Y-drive

them. After that the platform can be lifted and re-
moved (details can be found at [1]). Each beam can
be divided into a Y- and a Z-drive. In this paper only
the Y-drive is modelled and simulated. The Y-drive is
used to compensate sea motion, driving the beam to-
wards the leg and applying a constant force towards
the leg in case of a contact (in order to avoid hammer-
ing). It consists of

• a hydraulic cylinder,

• a 3-way hydraulic valve,

• an electrical drive,

• the beam,

• gears,

• and a force controller.

The electrical drive moves the beam towards the leg
using position control, while the cylinder applies a
constant force towards the leg during contact using
force control.
The Y-drive was modeled in Modelica, where custom
models were set up for all Rexroth specific compo-
nents of the system. Thereby, an incompressible fluid
is used. The object diagram is shown in figure 11.
Here the hydraulic unit consists of a tank, a pressure
source and a three way valve. In order to deal with the
large forces inside the system a special kind of cylin-
der is used and modelled. The flat model consists of
360 equations, while the translated model has 25 state
variables and two algebraic loops. The algebraic loops
exhibit real as well as discrete variables.
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Figure 13: Velocity of the clamp

3.3 Simulation Results

Real-time simulation requires a predictable worst case
runtime. Therefore, the number of Newton-iterations
in the algebraic loop solver had to be limited. Unfor-
tunately, by doing so it is not guaranteed that a ad-
equate solution is found. Nevertheless, for the used
scenario (parameters and inputs) and step size (1ms)
a maximum of 4 iterations was required. Hence, the
maximum number of iterations was set to 6. The LI3
method described in the previous section was used as
numerical integration method. In figure 12 the posi-
tion of the clamp is shown. The blue line represents
the solution computed on the real-time target, while
the red line shows the solution computed offline using
the C++ Simulation-Runtime and CVode as numerical
integration method. It can be seen that the two lines
are nearly overlaying. The same holds for the velocity
of the clamp shown in figure 13.

4 Conclusion and Outlook

In this contribution the basis for a toolchain for real-
time simulation using the OMC is presented. There-
fore in section 2 a new C++ Simulation-Runtime was
shown that is easy to extend and maintain. Moreover,
this Simulation-Runtime includes numerical integra-
tion methods, that are suitable for real-time simulation.
Due to its flexibility new solvers and algorithms (e.g.
multi-rate integration, mixed-mode integration) can be

integrated in the future.
In section 3 the C++ Simulation-Runtime was cou-
pled to the interface of the real-time operating system
ScaleRT. That coupling enabled the execution of the
C++ Simulation-Runtime together with simulation-
code generated by the OMC on a real-time target. The
toolchain was demonstrated using a hydro-mechanical
heavy duty example system.
In the future this toolchain will be automated, in or-
der to be in the position to generate code for real-time
simulation just by a few mouse-clicks. Moreover, cou-
pling of external hardware (e.g. a electronic control
unit) is part of future work. This will allow for virtual
commissioning using a low-cost toolchain.
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Abstract 
This paper will discuss Modelica’s 

unprecedented flexibility for multi-body 

simulations. Classical multi-body simulation 

has as a prerequisite constant mass and inertia 

for deriving the equations of motion for rigid 

bodies. However, there are industry 

applications, like the control development of 

paper winding, that require time dependency of 

mass and inertia. In these applications mass 

and inertia cannot be assumed constant and 

will thus constitute part of the differential 

equations system by means of introducing 

mass and inertia as states. 

Introducing mass and inertia as states, rather 

than parameters, requires reformulation of the 

Newton/Euler formulation of the body model 

component in the Modelica mechanics multi-

body library [3]. 

A successful new body model formulation has 

been created and is applied in an industrial 

example system model. 

Keywords: dynamic mass, dynamic inertia, multi-

body, mechanics, paper winding, vibration, FMI 

Introduction 
In the paper industry winding machines are 

used to reduce the inconveniently large paper 

roll into smaller paper rolls of just a few tons. 

The dynamic properties of these machines are 

heavily influenced by the change in mass and 

inertia of the paper rolls while winding and 

unwinding [1, 2]. The time varying resonance 

frequencies of the system will put limits on the 

machines throughput. 

The paper industry has an interest to 

investigate the dynamic machine properties by 

simulation as the references are proof of. This 

publication will deal with one of the key 

aspects of a simulation package to handle; the 

mass and inertia time (revolution) dependency. 

Many specialised multi-body packages are 

built upon constant mass and inertia’s to solve 

the equations of motion. To coop the problem 

of varying mass, the system is analysed at 

different points of operation rather than 

simulating a full run. 

Mastering this topic of dynamic mass and 

inertia properties may not only allow for 

system controllers’ validation in the time 

domain with Dymola’s
1
 real time capabilities, 

but also support algorithm development with 

FMI [6] technology exporting models to 

control development environments. 

This publication shows Modelica’s capabilities 

in to this specific topic of paper winding. 

Modelica Body 

Mass rate signals 

In order to create sound models, which can be 

diagnosed upon dimension consistency, mass 

rate signals are defined. These read, 

type MassRate = 

 Real (final quantity="MassRate", final unit= ”kg/s"); 

 

                                                
1
 Dymola is a registered trademark of Dassault Systèmes 
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type MomentOfInertiaRate = 

 Real (final quantity="MomentOfInertiaRate", final unit= " 

kg.m2/s"); 

 

Newton/Euler equations 

The Modelica Standard Library defines bodies 

with the help of Newton/Euler equations 

around the centre of mass of the modelled 

body. These equations have to be elaborated to 

count for the mass and inertia rates. From 

Newton’s second law we have 

     

     
  

  
  

  

  
  

  

  
 

In the above equation Fnet is the net external 

force applied to the system, since Newton’s 

second law is only valid for constant mass 

particles [3]. Reference [4] exemplifies how a 

net force can be derived, hence 

       
  

  
  

  

  
  

  

  
  

  

  
 

The net force on the left hand side of the above 

equation includes a so called “thrust” force 

from the mass flow, 
  

  
 . In our application a 

difficulty arises to determine the web mass, 

mw, which is accelerated. At constant web 

velocity, u, this term vanishes. 

 

Figure 1 Sketch of model 

With help of the right hand side of the force 

equation, the Modelica code for a body in 3D 

will be modified and yields, 

frame_a.f = m*(Frames.resolve2(frame_a.R, a_0 - g_0) + 

  cross(z_a, r_CM) + 

  cross(w_a, cross(w_a, r_CM))) + 

  mdot*(v_0 + cross(w_a, r_CM)); 

 

frame_a.t = Idot*w_a + I*z_a + 

  cross(w_a, I*w_a) + 

  cross(r_CM, frame_a.f); 

 

In the above set of equations mdot will defined 

as mass rate and Idot as a 3x3 inertia tensor 

with pivots of moment of inertia rate signals. 

The above mentioned “thrust” force from 

reference [4] will have to be applied externally 

to frame_a as forces and moments. 

 

Figure 2 Free spinning results with constant impulse 

momentum 

Body properties 

A special variable mass and inertia model has 

been designed that can resemble the effects of 

increasing radius of the paper winding roll. 

The radius (rate) of this body defines both 

mass (rate) and moment of inertia (rate) too. 

The inertia tensor however, and especially the 

rate, is application dependent and a generic 

solution difficult. Hence, the paper deals with 

paper winding only. All properties are 

dynamically sound for a multi-body analysis. 
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E.g. a free winding roll with initial velocity 

will reduce angular velocity over time due to 

increased spinning moment of inertia (see 

Figure 2) at constant momentum (net external 

force equals zero). 

Difficulties arose by straight forward 

modelling of variable mass and inertias. The 

symbolic manipulation of the equations 

showed imbalance on the number of equations 

and unknowns. These are overcome with 

simple and physical sound, mathematical re-

formulation of the existing body model in the 

Modelica Standard Library.  

This dynamic mass and inertia body model is 

accessible from a library and has become a 

building block for usage in other models for 

mechanical simulation. 

Model Assumptions 
The model envisioned shall deal with the 

simulation problem of variable mass and 

inertia solely. One drum, with the drive input, 

and one paper roll (blue coloured in the 

animation series below) are modelled. The 

interaction between the drum and paper roll is 

based upon a simple impact force function for 

the support forces and a simple load dependent 

slip force with relaxation for the horizontal 

forces (see Figure 3). These horizontal forces 

will apply a drive torque on the paper roll and 

a torque load on the driving drum. 

 

Figure 3 Load dependent slip force with relaxation 

No special emphasis is made on material 

properties of paper with respect to friction and 

material damping, nor the web tension’s 

influence on the dynamic performance. The 

models are purely made to show Modelica’s 

capabilities of the specific problem of variable 

mass and inertia. 

The paper roll can move freely in the vertical 

direction and around its spin axis only, for 

reasons of simplicity and the limited scope of 

this report the other four degrees of freedom 

are kinematic constraint. 

 

Figure 4 Speed and Torque profile of Drum and 

Paper Roll 

Load case 
The drum is driven with a speed profile as 

indicated in Figure 4. The speed profile 

equates to certain constant web acceleration 

until a predefined velocity is reached. This 

velocity is kept constant throughout the 

remaining simulation. For the sake of 

comparison the direction of operation is taken 

positive, whereas in the real application the 

drum and paper roll rotate in opposite 

directions. 

The centre of mass of the paper roll has a small 

offset from the centre line in order to introduce 

vibrations in the two drum system. These 

induced vibrations are solely for the sake of 

exemplifying the time varying oscillations. 
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Figure 5 Speed and Torque profile of Drum and 

Paper Roll 

Discussion of Results 

Speed and Load 

The drum is driven with a speed profile as 

indicated in Figure 4, the paper roll angular 

velocity is determined through acceleration of 

the same by means of a frictional force at the 

interfacing surface of roller and drum. Because 

the radius of the paper roll starts at the core 

radius, which is much smaller than the drum’s 

radius, and increases over time the angular 

velocity increases steeper than the drum’s 

angular velocity. At approximately 260 s (with 

the used data) both radii are equal and hence 

the angular velocity is equal too. 

The speed profile of the drum will require a 

driving torque as indicated in Figure 4 above. 

The initial large value is due to the acceleration 

of the heavy drum. Once the desired velocity 

of the web is reached the torque level is 

determined by the increase of the paper roll 

spinning inertia. This paper roll inertia 

increment becomes a torque load (red in Figure 

4) upon the system. Surprisingly the actual 

load is negative, because the incoming paper 

from the web results in a system accelerating 

torque from the linear momentum (web tension 

omitted), because its forces are applied 

tangential at the paper roll surface. To keep a 

constant web velocity the driving drum torque 

is negative. 

 

Figure 6 Roller vertical velocity and radius over time 

Figure 5 depicts results when the web linear 

momentum is omitted. The increasing inertia 

yields an increasing torque. 

The offset on the centre of gravity results in a 

forced vibration of the paper roll in the vertical 

direction (Figure 6) and around its spin axis 

(Figure 7). The paper roll is constraint in the 

remaining directions, but could technically 

have compliant bearings. This is outside the 

scope of this paper. 

The radius of the paper roll increases over time 

and the increasing radius will also create 

vertical motion of the centre of gravity. The 

mean value of the vertical velocity is positive 

indicating the centre of gravity rises. 

Radius and velocity 

The radius rate of change decreases over time, 

because the web velocity is constant and the 

actual radius increases. The paper roll’s 

tangential velocity is constant, hence the 

angular velocity must decrease and thus the 

radius rate. 
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Figure 7 Roller angular velocity and acceleration 

Impact Force 

The paper roll is supported with help of an 

impact force between the drum and the paper 

roll. Due to the fact the mass increases over 

time the impact force will increase too (see 

Figure 8). A close up is made to show the lift 

of at around 90 s of simulation time. 

Do mind that the impact function, with viscous 

damping only, may not at all be representative 

for paper properties. Modelica is however, 

very well suited to accommodate any impact 

model and thus able to model material 

damping, but again outside the scope of this 

paper. 

Bending and torsion 

The discussed and simulated model has neither 

bending compliance nor torsional compliance. 

These affects are omitted in this paper, but will 

have an impact on the dynamic behaviour of 

the real system. One could however, make a 

roller and a drum component that can be 

compliant connected to another roller and 

drum component easily in Modelica. This way 

a discretized lumped mass and inertia roller 

and drum system is created to reflect the 

bending and torsional vibrations of the system. 

 

Figure 8 Impact force between drum and paper roll 

Animation 

Dymola has capabilities of dynamic graphical 

presentation of the variable mass and inertia 

body. Below an animation sequence with a 

sample every 100 s is presented of the 

simulation run discussed in this paper. 

 

Figure 9 Animation, t=0 s 
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Figure 10 Animation, t=100 s 

The animation clearly depicts the increase in 

radius and the centre of gravity rising over 

time. 

 

Figure 11 Animation, t=200 s 

 

 

Figure 12 Animation, t=300 s 

 

Figure 13 Animation, t=400 s 

 

Figure 14 Animation, t=500 s 

 

Figure 15 Animation, t=600 s 
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Figure 16 Animation, t=700 s 

Functional Mock-up Interface 
The newly developed dynamic mass and 

inertia models can also be used for controller 

development in specialised environments like 

Simulink
2
. The FMI Toolbox from Modelon is 

used to import the Functional Mock-up Unit 

exported from Dymola. The result is depicted 

in Figure 17. 

 

Figure 17 Simulink model with FMI block of the 

Drum-Paper Roll mechanism 

This model exchange allows the control 

engineer to have an excellent non-linear plant 

model to develop his algorithms against. 

Dymola’s real time capabilities allow the user 

to export the models to a HIL system and 

verify the actual electronic controller. 

Conclusions 
This report shows that Modelica is capable of 

modelling variable mass and inertias of 

winding machinery. A special body element is 

created in the Modelica language which 

becomes a reusable body object. This body can 

be used to model a lumped system of a roller to 

accommodate bending and torsional modes 

(future work). 

The created dynamic mass and inertia model is 

a prerequisite allowing for virtual controller 

software development, verification and 

validation at a systems level for a complete 

winding cycle. 

                                                
2
 Simulink is a registered trademark of The Mathworks 
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Abstract 

Aircraft systems have evolved dramatically since 
the beginning of aviation. Many improvements of 
performance and safety have been made. Now each 
sub-system has optimized performance and it is thus 
difficult to find gains without breakthroughs in archi-
tectures or technologies; and this is the objective of 
the R & D studies towards a more electric aircraft. 

Simulations are widely used to explore and justify 
aircraft architectures [1], but system simulations cur-
rently suffer from limitations which make them dif-
ficult to use for complex multi-systems analysis. 
Therefore tools and processes must evolve to ac-
company these major changes in order to support the 
designers in their quest of optimized design. 

This article deals with new processes and tools 
which will take part, in a close future, in the deter-
mination, the verification and validation of systems 
architectures. The results presented here were ob-
tained during the CSDL project (Complex Systems 
Design Lab) partly funded by the French govern-
ment. 

 
Keywords: Collaborative process, System engineering, MBSE, 
hybrid DAE, multi-physics, multi-levels, Optimization, Robust 
Design, Coupling Simulation System - surrogate Models, 
PLM/SLM integration  

1 Introduction 

Aircraft vehicle systems are typical examples of 
complex systems. They are composed of many sub-
systems, which overall represent a set of thousands 
of equipment, and that have more and more interac-
tions between them. 

 
These sub-systems are provided by several com-

panies for integration and must fulfill aircraft re-
quirements. 

The efficient study of performance and safety is 
of prime interest when designing complex systems in 
a collaborative context. At each stage of the design 
cycle, system engineers should be able to find opti-
mized architectures of systems according to require-
ments. Such need is particularly important in the 
early stages of design when decisions on the aircrafts 
concepts, systems architecture and partners choice 
will determine the performance and the future cost of 
the product. 

 
Figure 1 Design phases and effort ramp-up  

 
It is thus necessary to make the right decisions in 

these early phases. With this intention, the systems 
architects may find it beneficial to explore spaces of 
design in a smart automated way in order to identify 
the points of interest quickly. 

 
The article is structured as follows: 
• Section 2 briefly presents aircraft vehicle sys-

tems and their design process. 
• Section 3 details the requirements for a collabo-

rative tool for complex system design. 
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• Section 4 explains the solutions developed 
within the project CSDL, in particular collabora-
tive management of hierarchical multi-physics 
Modelica models with Dassault Systèmes V6 
PLM platform. 

• Section 5 presents the challenges ahead to get a 
full and efficient set of tools and processes for 
future airplane designs. 

2 General information on Aircraft 
vehicle systems 

2.1 Architecture 

Aircraft vehicle systems are composed of several 
sub-systems. The main sub-systems are represented 
in the following composition (figure 2), here for a 
conventional aircraft architecture. There are Envi-
ronment Control System (ECS), Power Plant (en-
gines), Electrical, Braking, Hydraulics or Fuel sys-
tems. 

They are connected together and to several other 
parts like control systems, passengers, environmental 
conditions or system properties [2]. 

 

 
Figure 2: Systems architecture of a conventional aircraft 

 
Each of these sub-systems is itself composed of 

sub-systems or equipment. For example the ECS is 
composed of a bleed (which mixes air flows from the 
engines), a cold air unit (which in particular manages 
cold and hot air flows to achieve a good comfort for 
the passengers in the cabin and a sufficient cooling 
for the equipment in the bays), a distribution sub-
system (pipes and parts for distribution of air to 
cabin and bays), scoops (to get cold air from external 
environment …). 

The ECS is connected to engines (power-plants), 
passengers comfort models, and environmental con-
ditions. 

Traditionally, each aircraft system is defined 
within ATA (Air Transport Association) numbering, 

which provides a common referencing standard for 
all commercial aircraft documentation e. g Chapter 
24 is for electrical power or 21 for Air Conditioning 
and Pressurization. This standard has many benefits 
on common decomposition of aircraft functions, but 
tends to segregate sub-systems that may be opti-
mized nearly independently from each over. 

In this conventional architecture (fig. 2), electri-
cal systems have only limited interactions with other 
subsystems. In the case of a more electrical aircraft, 
that is one of the most significant technology 
changes for the near future with many expected 
benefits, electrical equipment will be spread across 
multiple systems. Therefore, there is a consensus that 
the way to the truly optimized complex system is 
through an overall system redesign, including a 
trans-ATA approach. 

2.2 Aircraft systems main activities and design 
process 

The main activities of people involved in the air-
craft vehicle systems are: 

• System design and integration of the vehicle 
systems on the aircrafts. 

• Follow-up, technical expertise and technical 
facts processing for the aircraft in service. 

The activities are then not limited to design sys-
tems only, but also participates in the maintenance, 
improvements of the aircraft systems along the 
whole life-cycle (more than 30 years) and in de-
commissioning. 

These activities include participation in the certi-
fication process of the aircraft which is necessary to 
allow the plane to fly; and for which product justifi-
cation and traceability with respect to the require-
ments are mandatory. 

 
Figure 3: Several of aircraft vehicle systems activities 
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In the image above a typical workflow between 
the aircraft manufacturer and its suppliers and part-
ners is presented. Several activities of the verifica-
tion and validation process made during functional 
analysis, analysis which participates in justifications 
(e.g. FHA - Failure Hazard Analysis, behavioural 
analysis) are also sketched, connected to functional, 
logical and physical architectures. 

3 Requirements for an aircraft sys-
tems design platform 

Now, it is possible to list requirements for a truly 
efficient collaborative platform for aircraft systems 
design and optimization. 

3.1 General requirements 

The “must have” features of such a collaborative 
design tool can be listed as follows. They must al-
low: 

• Compatibility with the tool managing the 
definition: currently 3D Digital Mock-up 
with Product Lifecycle Management. 

• Project management during the entire life-
time of an aircraft (more than 30 years) 

• Collaborative work between all stakeholders 
of the design of the aircraft systems. 

• System engineering process: requirements, 
functional and architecture management e.g. 
standard architecture descriptions according 
to ATA decomposition. 

• Several architecture analyses, in particular 
behavioral simulations, based on 3D and 
system representations. 

3.2 Requirements on models for aircraft sys-
tems architecture 

Model Based System Engineering (MBSE) is a 
key practice to advance complex systems develop-
ment and Modelica is a critical enabler of MBSE 

But system architecture analysis based on models 
must also be architecture driven because it is the ar-
chitecture which must be justified and optimized. 
Simulations are means for architecture assessment. 
Therefore, it must be possible to add behaviors to 
components of sub-systems or directly to the sub-
systems of an architecture. 

Tools and models must also have several features 
as described bellow. 

3.2.1 Tools for performance analysis 
To evaluate the performances of systems archi-

tectures during trade-off, analysis based on simula-
tions are widely used, from simulation of 0-D/1-D 
models to multidimensional models (FEA/CFD…) 
for more detailed analysis. The architecture compo-
nents should thus be able to have models with multi-
ple levels of details, chosen according to needs. 

In fact, designers should have all models needed 
to model the behaviors they want according to the 
types of analysis that are to be done. Current analy-
ses are listed bellow: 

• Static analysis for study of energy balance, 
energy flow distribution or of particular de-
sign points 

• Dynamic analysis to study analysis along 
time, or Eigen values. 

• DOE (Design Of Experiments) including 
sensitivity, robustness and optimizations 
analysis. 

And this must be applied on models with nominal 
and non-nominal behaviours (e.g. when failures oc-
cur). 

There are also requirements on simulations man-
agement, because simulation properties, models, re-
sults must also be stored and managed to be usable 
many years later. 

3.2.2 Libraries of models for system engineering 
What kind of features would a system engineer 

like to find in the application libraries?  
System engineer wants to have a set of models 

able to represent the behavior of physical compo-
nents with a sufficient accuracy for the kind of 
analysis he/she has to do, and to focus on technical 
subjects in the way to chose and optimize systems. 
Then, system engineer would like to find: 
• Multi-domain and multi-physics libraries of 

components for the large range of physics im-
plied in the aircraft systems. 

• Versatile components whose physical properties 
can be parameterized according to product data 
sheets or with data linked to definition (managed 
by the PLM.) 

• Application libraries with validated components 
should be valuable, if not essential. Validation in 
a defined range of application is very important, 
because it is the base for the re-use and extends 
of components (which contains knowledge of the 
company). 

• Switches to enable a model validity checker or 
not. Supposing that a validity model is already 
defined (see properties [2]). 
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• Switches to define physical hypotheses: consider 
static or dynamic behavior, nominal or non-
nominal behaviors. 

• Published additional data which can help to set 
simulations. For example stochastic data are of-
ten added to models afterwards by system engi-
neers. It is not logical that such information is 
not usually included in models provided by part-
ners. In fact they are the best specialists for pub-
lishing such useful information at the right plac-
es in the models. A general mechanism for pub-
lishing such data should be studied to enable this 
process. 

3.3 Requirements for model interfaces and 
model exchanges 

To allow connectivity of models (equipment or 
sub-systems), it is important that standard interfaces 
are defined, and that more complex interfaces could 
be derived from them. These standards must be ap-
plied by all partners, and managed like other inter-
faces. 

The tool shall manage: 
• IP for model exchange (integrate models of 

partners, provide to partners system models). 
• Interface between sub-systems. In particular 

it must allow change of components (sharing 
a particular interface) as defined below in 
the application example when surrogate 
models may change. 

After decomposition in black or grey boxes, 
simulations of systems should remain efficient (see 
requirements below.) 

Functional Mock-up Interface, FMI [7].) can be 
used for encapsulation of Modelica models and other 
model code as soon as it respects previous require-
ments. 

3.4 Requirements for simulations 

For early verification of an architecture, quick 
evaluations based on thousands of simulations are 
required to explore the design space. Therefore, sys-
tem simulation is often used because it is far quicker 
than 2D-3D FEA or CFD computations. They are 
used to find robust and optimized designs by use of 
sensitivity, robustness and optimization process. 
They must also take into account variability of archi-
tectures, parameters defined as a range or as a sto-
chastic distribution. It is also necessary to be able to 
increase granularity of certain equipment models that 
has proven particularly sensitive or to incorporate 
new observers only available in detailed models. 

Tools often allow co-simulation between 0-1D mod-
els and 2D-3D models. However, it is not really 
adapted to early verification because they can lead to 
slow simulations, which are often not compatible 
with efficient optimizations processes (with several 
parameters to optimize and having multiple criteria) 
which require a large number of computations. 

Computation time is critical because simulations 
must be feasible within time constraints to get re-
sults, analyze them and choose the optimized archi-
tecture with a good level of confidence often after 
several interactions. It is also important to have suf-
ficiently fast simulations in order to make early deci-
sions and explore alternative architecture designs 
during a decision review. To allow such quick calcu-
lations High Performance Computing (HPC) fea-
tures, parallel computations, and distribution of 
simulations on adequate hardware are other key fac-
tors. 

3.5 Requirements for model debugging 

The previous sections suppose that models simu-
late without problems. But it is well known that 
complex systems written in a natural physical lan-
guage such as Modelica often gives sets of hybrid 
Differential Algebraic Equations with non-linear 
equations that can be difficult to initialize and solve. 

Even if Dymola and DBM, the Dymola kernel in-
tegrated in Catia V6, is very efficient; performance 
and convergence of the initial problem also depends 
a lot on the quality of the code written by the author 
of the model as well as the how well the iteration 
variables of the initial problem have been/can be set. 
Features like the homotopy operator [5] help the user 
to solve initialization equation systems by providing 
a simplified model requiring less start values of itera-
tion variables of the initial problem. However, it is 
important that such features could be used both by 
model developers and by final advanced users (see 
published properties and features in next section). 

It is also important that the simulation tool help 
users to localize the cause of problem. Many features 
have been introduced in Dymola. Following new 
features can help: 
• More (visual) features to quickly locate impor-

tant information (e.g. component highlights, 
model comparisons …). 

• Structural analysis to study architecture of mod-
els to localized ways of simulation improve-
ments (causality, algebraic loops, invertibility 
…). 

• Other methods will be studied in the near future 
[8], in particular Modelica models with structural 
changes and non-nominal behavior integration. 
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4 Application to an aircraft system 

Investigation of these problems for very early 
stages of design have been done within the project 
CSDL, which had the objective to develop a com-
prehensive collaborative environment for decision 
making at the earliest stage of a project. 

It tries also to take into account that process and 
associated tools must help designers along all the 
lifecycle of an aircraft, from early stage to opera-
tional service, including justification to requirements 
traceability. 

It is applied to the design of an environmental 
control system. 

4.1 Description of the system 

An environmental control system (ECS) was se-
lected because it combines several demonstrative 
features which can be applied to other systems af-
terwards. 

 
Figure 4: ECS Sizing engineering problem 

 
For this reason, a generic model of ECS was pre-

viously used as a base during ITEA2 Eurosyslib [6] 
for properties modelling (see [2]) and will be used to 
enhance several modelling features during ITEA2 
Modrio [8]. In CSDL it is used to investigate multi-
level modelling and collaborative design. 

This generic model is a 0-1D model written in 
Modelica. It is composed of basic sub-systems. Air 
flow comes from two engines modelled as bounda-
ries with fixed pressure and temperature. A bleed 
mixes the two flows and provides the resulting flow 
to the Cold Air Unit (CAU) which regulates mass 
flow and energy given to the Cabin. Usually the en-
ergy flow rate coming from the CAU is provided to 
the different parts of the Cabin and to the Bays 
through a complex piping system. In this example, 
only a Cabin is taken into account. 

 
Figure 5: Generic ECS 

 
The CAU is composed of a compressor, a turbine, 

heat exchangers, pipes and a regulating valve con-
trolled by a PI controller which uses the measured 
Cabin temperature and a temperature set point for the 
regulation, as shown in figure 6. 

 
Figure 6: Cold Air Unit 

4.2 Surrogate model 

For rough assessment, a cabin modelled as a vol-
ume or some combination of volumes and heat wall 
exchanges may be sufficient. But, for more detailed 
insight, in particular for passenger comfort, it is more 
suitable to calculate the air flow in cabin using CFD 
codes. A usual method is to co-simulate the two 
models. For assessment based on small number of 
calculations, it is possible to do this; but optimizing 
the system may require too many simulations to be 
run. 

As for passenger comfort optimization, where in-
sight of only a couple of variables in the cabin are 
required, it is better to build a reduced surrogate 
model from CFD and optimise the system using it as 
described in figure 7. 
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Figure 7: Cabin modeling options  

 
Several types of surrogate models can be used to 

approximate the CFD response, RBF (Radial Basis 
Function) being one of them. A surrogate model is a 
parameterized function. In our use case, inputs are 
temperature T and velocity u of the air injected into 
the Cabin, plus external temperature Tex. Output are 
temperatures at several selected points in the cabin: 
T_feet, T_head and T_sensor which are temperatures 
around passenger feet and head, sensor used for tem-
perature control feedback. 

 

 
Figure 8: Surrogate model inputs and outputs  

 
The function is expressed by a mathematical for-

mulation that is parameterized by a set of weights. 
These weights are computed so that the surrogate 
model matches the CFD response. 

4.3 Surrogate model integration in Modelica 

To integrate the new model, we need to modify 
the interface between the CAU and the Cabin to de-
fine a common interface that is usable for a number 
of models both Modelica native and imported ones. 

Exchangeable models are declared as replaceable 
and constrained by the specified base model which 
manages the interface connections compatibility to 
other sub-systems. It is done in a similar way as 
made in the Modelica library called VehicleInter-
face. 

 
Figure 9: Modelica model with replaceable components 
 
Therefore, when implementing the system tem-

plate with a new Cabin representation, only models 
having a compatible interface are proposed to the 
user, as shown in the following figure. 

 

 
Figure 10 Interchangeable Cabin models 

 
Internal parts of compatible models are then de-

fined as can be seen below: 

 
Figure 11: compatible interface with a Volume model 

 

 
Figure 12: same compatible interface with a CFD model 

Models allowed to be used can be both native 
Modelica models, reduced models such as RBFs im-
plemented in Modelica but reading data exported 
from Isight at runtime, FMU’s or other. This ap-
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proach shows how a flexible common system struc-
ture can be defined using the redeclare/replaceable 
constructs to allow simple configuration of a large 
number of architecture design alternatives incorpo-
rating different levels of granularity and origin of the 
subsystems depending on what is the subject matter. 

4.4 Stochastic distribution in Modelica 

Stochastic properties of parameters used for 
analysis like robustness are often added to model 
afterwards when needed. Such properties should be 
associated to the model by the company that pro-
vides products or sub-systems; Attempts to define 
standard definition of uncertainties have been done, 
e.g. as expressed in [4]. But it is not yet standardized, 
even if it should be. 

We have then tried to add these properties in a 
way that will be easy to use for adding such metadata 
in existing models. It is done by defining base 
classes for distributions and extending the models 
with these base classes (here adding a tab in the Dy-
mola graphical interface with additional parameters 
for probability distributions.) 

 

 
Figure 13 Stochastic data definition within Dymola 

 
Such meta-data should be managed by the tool 

with publishing mechanisms. The following figure 
shows an Isight workflow where these stochastic 
properties defined within the model are mapped in 
order to be reused in a robustness analysis. 

 

 
Figure 14 Stochastic data extraction 

4.5 Design process 

During the design process, several activities must 
be carried out. Only main ones are presented. The 
purpose is not to be exhaustive, but to show work-
flows and illustrate what must be done and how it 
could be done. These activities are iterative and must 
create formal links between architectures and prod-
ucts with valid requirements (see [1]). They are also 
collaborative (see next chapter). 

4.5.1 Engineering Requirements 
Passenger thermal comfort should be guaranteed 

for a whole range of operating conditions. Some spe-
cific operating conditions corresponding to external 
temperature extrema have been chosen as dimension-
ing test cases. 

Moreover, several objectives have been set: 
minimum mass for the system, minimum mass flow 
rate extract from the engines. 

Among all design space parameters of the model, 
several parameters have been selected: turbine effi-
ciency and nozzle area, main heat exchanger effi-
ciency 

More types of requirement for an aircraft ECS 
may be found in [2]. 

4.5.2 Functional analysis and Logical architecture 
A simple decomposition of the functional and 

logical views are presented in next figure. The func-
tional view represents what the system should do, 
and the logical view represents how it is imple-
mented. The logical view shows here that Engines 
and ECS are parts of two different ATA (ATA 71 for 
"Power Plant" and ATA 21 for ECS, exactly "Air 
Conditioning and Pressurization") 

 

 
Figure 15 Functional and Logical Views 
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4.6 Collaborative process 

To manage systems and build previous models, 
specific skills are required. Several actors may inter-
act in aircraft manufacturer units or in partner com-
panies. 

4.6.1 Actors 
To study the collaborative process, several actors 

have been identified and defined in the following 
table: 

 
Figure 16: Set of involved actors 

4.6.2 Collaborative Workflow 
A workflow describing the engineering process 

has been defined, as shown below. 

 
Figure 17: Collaborative process 

 

Some of the steps are supported by a simulation ser-
vices automated in Isight, as described below. 

4.6.3 Design process 

4.6.3.1 Sensitivity analysis 
Sensitivity is the first analysis performed on a 

model. It helps identifying important parameters to 
focus on, and parameters on which tolerances may 
be relaxed. 

 
Figure 18 Isight sensitivity analysis configured by a spread-
sheet 

 

4.6.3.2 Optimization 
The final aim is to produce optimized systems 

according to multi-objective requirements. It is then 
an important activity among all design activities. 

4.7 Leveraging V6 RFLP 

As we mentioned earlier, efficient collaboration 
between stakeholders is a key ingredient. V6 CATIA 
Systems enables such collaboration by: 
• Providing a unique data referential for require-

ments (R), functional decomposition (F), logical 
product definition (L) including 0-1D models (cf. 
lower part of picture 20 showing the ECS), physi-
cal product definition (P) including CAE multi-
dimensional models. 

• Tracing dependencies of these data through im-
plement relationships (cf. right hand side of pic-
ture 20 showing implemented/implementing rela-
tionships thru the R-F-L-P cascade), 

• Tracing additional dependencies by capturing 
data flow of simulation processes (detailed in 
next section).  

 

 
Figure 19: Mapping of use case data to V6 data referential 

(RFLP and Simulation) 
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Figure 20 Thermal Architect V6 cockpit: ECS RFLP (right), 
ECS system (bottom) and design exploration services (top) 

 

In this way, not only each stakeholder can man-
age the lifecycle of his/her own data properly but 
also have access to the data published by other 
stakeholders and author his/her data in this context. 
Out-of-sync situations can be properly detected in 
the case some upstream data is revisioned. 

 
Figure 21 Compass showing that a system reuses an old ver-
sion of a requirement parameter (outlined in red). 

4.8 Providing on-the-shelf services for the 
Thermal Architect  

 
Figure 22: Services to the Thermal Architect 

 

Through its process integration capability, Isight 
enables Method Engineers to build automated simu-
lation services intended to the Thermal Architect and 
CAE analyst. Complementarily, simulation data 
management capabilities of SIMULIA V6 Scenario 
Definition module are used to manage the lifecycle 
of these services and to deploy them within the en-

terprise. Moreover, it will manage the data relative to 
each usage of these services. 

These simulation services are intended to be ge-
neric enough so that they are applicable on a class of 
design problems, such that, once a service is pub-
lished by the Method Engineer, this service can be 
used on different designs without requiring rework 
by the consumer of this service. 

After instantiation by the end user, the V6 impact 
graph functionality will enable to completely trace 
the data flow of the simulation data produced by 
these services, so that the end-users will be able to 
understand which data contributed to the generation 
of a particular data. The example below shows the 
dependency of an optimized design candidate on: 
• the parameterized system architecture (data cre-

ated by the Thermal architect) 
• the CFD model used to generate the surrogate 

model that is fed into the 0-1D modelling (data 
created by the CAE analyst).  

 
Figure 23: Traceability 

4.9 Parameter management 

PLM parameters can be defined within the re-
quirements by the Aircraft Architect and reused e.g. 
within the Logical system by the Thermal Architect.  

These PLM parameters, which have a lifecycle of 
their own and are likely to be revisioned, can be used 
to publish requirements characteristics such as ex-
pected Cabin temperature range (e.g. between 20 and 
24°C), range of operating conditions (e.g. external 
temperature between -60 and 40°C) that the aircraft 
can be exposed to, as well as performance targets 
(e.g. maximum mass).  

These PLM parameters are then available down-
stream in the R-F-L-P cascade, and can be used lo-
cally to valuate Knowledgeware parameters that pa-
rameterize applicative V6 data like CATIA System 
Modelica models. 

Reuse of Knowledgeware parameters in the Mod-
elica models creates links between parameters in the 
Modelica models and other data in order to ensure 
consistency between teams of different engineering 
disciplines that normally do not have much direct 
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interaction. An example that we show is how a pa-
rameter from the requirements like the external tem-
perature range is reused to drive the values of the 
external temperature within the alternative models of 
the Environment of the ECS. 

 

 
Figure 24: Parameter Flow from Requirements to System 

4.10 Decision support interactive environment 

In order to identify the design points of interest 
and to be able to compare these design points, there 
is a need for a graphical environment that is able to 
show two complementary views of the engineering 
problem (cf. figure 25): the analytical view focusing 
on the performance and constraints (cf. figures 26 
and 27), and the behavior centric view that shows, 
for a specific design point, the associated simulation 
results (0-1D, CFD, etc…) showing how the virtual 
product behaves. 

This graphical environment is fed with the results 
generated by design exploration processes mentioned 
in section 4.8 and is itself packaged as a service to 
ensure efficiency, consistency and traceability, quite 
important characteristics for the decisions that will 
be taken using this environment. 

 

 
Figure 25: Graphical Environment for Decision Support 

 
 

 
Figure 26: Decision views 

In addition, using surrogate model it is possible 
make interactive request offline. For instance, the 
feasible domain can be interactively visualized for 
any combination of design parameters and con-
straints (cf. figure 27) 
 

 
Figure 27: Interactive feasible domain 

 

The ability to performed interactive analysis is a 
major towards performing an interactive “what if 
analysis”. 
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5 Conclusions 

In this article, we have tried to sum up what 
should be a truly efficient tool for aircrafts systems 
design. A lot of work has been done to obtain a cut-
ting edge tool which includes system management in 
a PLM framework. 

The purpose is to help designers to focus on im-
portant problems in a more and more complex con-
text by providing smart tools that allow them to per-
form their task more efficiently. 

For system simulation, Modelica is a key factor. 
Many enhancements of the language have made it 
the leading modeling language for physical model-
ing. Last but not least is the new integration of syn-
chronous semantics in Modelica 3.3 which allows 
state of art modeling of control systems and digital 
electrical systems. 

Modelica is spreading rapidly in aerospace appli-
cations. Even if the language is much more efficient 
than other languages, there are still some challenges 
to have efficient simulations involving large hybrid 
models of complex multi-systems architectures. 
Most of these challenges will be studied in the next 
big European project MODRIO (Model Driven 
Physical Systems Operation). 
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Abstract

This paper proposes the use of backward simulation
with Modelica as a tool to improve system design. The
aim is to introduce system simulation into early de-
sign stages of mechatronic systems and to use the same
software tools and model libraries that are also used in
later stages for dynamic analysis and control design. It
seems that the necessity of a control design is one of
the main obstacles against the use of conventional dy-
namic system simulation in early design stages. The
main benefit of backward simulation is that it does not
require an implementation of feedback control.

The backward simulation approach is explained us-
ing the example of a servo-hydraulic drive. The paper
shows that it can help to significantly reduce the en-
ergy consumption of this system. It is possible to sim-
ulate typical duty cycles of the drive without the need
to redesign the control for each change.

Keywords: backward simulation; forward simula-
tion; model inverse; hydraulics; mechatronics; servo-
drive; efficiency optimization; servo drives; design
process

1 Introduction

Dynamic system simulation is useful to analyse the dy-
namic behavior of systems, to design controllers or to
determine cumulative system characteristics. Cumula-
tive characteristics, such as for example energy con-
sumption, depend on the definition of a typical load
cycle. Simulation can be used to determine the state
variables of components of the system for this load
cycle and to predict the expected losses and total en-
ergy consumption. This is attractive for the designer
in the initial stages of system development. A typical
example is the design of a servo-drive. The designer
has to make many choices in the initial design stages.
Choices include the appropriate type of drives, such

as electrical, hydraulic or pneumatic, drive configura-
tion. For each drive type the designer has to size its
components. While dynamic simulation could be very
helpful in making these choices, it is, however, rarely
used. One of the main reasons is the need for control
design, which often requires expert knowledge, [8].

Today, engineers use mainly steady state relation-
ships to size components of a mechatronic system.
This can be done with spreadsheet calculations. Some
manufacturers move to offer specialized software for
the dimensioning and analysis of a drive solution such
as the SIZER configuration tool [1] for electric drives.
Such tools take some dynamic forces into account, but
only for predefined, typical scenarios.

This paper presents the method of backward simu-
lation which allows the use of dynamic system simu-
lation to study different system configurations and to
size components. Backward simulation in the context
of this paper is synonymouos with (forward) simula-
tion of the inverse system model. It means that in-
put and output of the simulation are switched and that
the direction of computation goes backward from the
physical outputs to required control inputs. As will
be explained in the paper, the main benefit of back-
ward simulation is the fact that a control does not have
to be implemented. Another benefit is, that imple-
mented with Modelica, the backward simulation ap-
proach could be used with the same models and sim-
ulation tools used for the conventional (forward) sim-
ulation approach. This would lead to a better com-
munication between design and control engineers and
improve the product development.

The rest of the paper is organized as follows. The
role of support of dynamic system simulation in prod-
uct design and the benefits that are coming with the
additional use of backward simulation are described
in section 2. Section 3 reviews the use of backward
simulation in literature and presents two simple ex-
amples to explain the idea and concept. Section 4
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presents the mathematical model of a hydraulic drive
as an exemplary application of the backward simula-
tion approach. The backward simulation approach is
demostrated by using it to optimize the hydraulic drive
efficiency for a certain load cycle in section 5. Section
6 provides the conclusion of this study.

2 Dynamic simulation support in
product development

Figure 1 illustrates the conventional support of dy-
namic simulation in the design of a servo drive in the
left flowchart. Usually the design starts by specifying
the desired motion and the expected load. This pro-
vides the necessary information about required torque
and speed which can be used to configure the sys-
tem and size its components. The designer depends
on analytic and empirical design formulas which he
can solve for the unknown parameters. This approach
makes sure that the hard requirements can be met. But
it may be diffcult to include some other important as-
pects of the design, such as average power consump-
tion or required cooling power. These are cumulative
characteristics which depend on the average use. For
those aspects to be included, respective empirical or
analytical design formulas are harder to define. Some
sizing tools such as mentioned in [1] can actually com-
pute power consumption for standard drive cycles on
the basis of steady state simulaton.

Dynamic system simulation is usually used only in
later stages of product development. It is used to ac-
celerate commissioning by setting up control hardware
with hardware-in-the-loop simulation. It is also used
in commissioning or to trouble-shoot unexpected sys-
tem behavior. The design and implementation of a
feedback control is a characteristic part of dynamic
simulation, certainly of servo-drives which operate
in closed loop. The control design verifies whether
the requirement specifications can be met. Once the
control is working, also the cumulative characteristics
such as power consumption and required cooling can
be assessed. If the investigations identify the need to
make changes at this stage in product development, it
is clear that the costs of making those changes will be
high compared to changes made during conceptual de-
sign phase.

An alternative design process is shown in the right
side of Figure 1. The initial design is found from the
same knowledge and experience as in the conventional
design process. The main difference is that backward
dynamic simulation is used right from the beginning.

Figure 1: Backward/Forward vs. conventional simula-
tion support of the design process

The (dynamic) simulation model is built from a com-
ponent library, with the the same models used later
for dynamic analysis and control design. However,
no control is implemented and the simulation is run
in backward mode with the required motion and ex-
ternal forces as boundary conditions. The backward
simulation shows if any component runs into physical
limitations. Also the energy efficiency over a repre-
sentative duty cycle can be assessed. Different con-
figurations can be tested to minimize the energy con-
sumption. The backward simulation helps to detect
and address dynamic performance issues. As a result it
reduces the risk of costly design changes in late stages
of the product development. The control design and
dynamic analysis of the closed loop can be done at a
later stage in the product development. The key advan-
tage of backward simulation for the conceptual design
is that a perfect control system is used, where the mea-
sured signal is always identical to the desired signal.

Another advantage is that the same dynamic model
can be used in later stages of system development for
the control design and hardware-in-the-loop simula-
tion. The only difference between backward and for-
ward simulation is in the definition of inputs and out-
puts and that backward simulation does not need a
control to work. Whereas traditionally there is only
small overlap of the fields of expertises of design and
control engineers, combined backward/forward simu-
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lation would enable them to use and update a common
tool. This can improve cross-departmental communi-
cation and lead to faster and better product develop-
ment. The use of the backward simulation approach is
illustrated in this paper at the example of sizing of a
hydraulic servo-axis.

3 Backward simulation

Backward simulation basically is forward simulation
of the inverse model. It is to switch cause and effect
of a system simulation. The model used for backward
simulation is the same model used for forward simu-
lation. The difference is in the definitions of inputs
and outputs. The input to the model in forward sim-
ulation becomes the output in backward simulation.
Forward simulation follows physical principles from
cause to effect. Backward simulation can be used to
compute the required input for a given output. Back-
ward simulation, or simulation of the model inverse,
can be well automated with equation based modeling
languages such as Modelica. Dymola, as a simulation
tool for Modelica models, is able to calculate the non-
linear model inverse. This capability can be used ef-
fectively for system configuration and sizing, but also
for nonlinear control. The approach of this paper is
closely related to the approach taken in [2], which
uses the inverse simulation approach for the optimal
selection of drive components in aircraft design. The
use of inverse model simulation for nonlinear control
schemes is presented in [14, 12].

This paper uses the term backward simulation syn-
onymously for simulating the model inverse. The
term backward simulation has been used also by
other research groups. The program Advisor, a Mat-
lab/Simulink implementation of model libraries used
for optimization of hybrid vehicle drive trains, uses
a combined backward-forward simulation approach,
[17, 9]. The motivation of using the combined
backward-forward approach is to be able to focus on
system design. The optimization of drivetrain config-
urations can be approached without the need for con-
trol design. The problem of Advisor is that the way in
which the models of this library can be used is prede-
termined, either backward or forward. Equation based
modeling languages such as Modelica have the advan-
tage that the causality of their use is not predefined.

The term backward simulation is also used in the
context of backward planning (for example [5]) or for
simulation of dynamic systems backward in time (see
[6, 13, 16, 15]). In these cases, the simulation aims to

help find the system parameters and initial conditions
which lead to a certain result.

3.1 Backward simulation in Modelica

In many components of the Modelica libraries, signal
inputs are used, to apply external forces or other con-
straints or to make changes in component parameters.
Signal inputs put restrictions on the connection struc-
ture, e.g. an "input" cannot be connected to an "in-
put". It has to be connected to an output. However, it
does not define the computational causality as in other
approaches like Simulink. A typical example is a hy-
draulic control valve modeled as a turbulent resistance,
see Figure 2. The volumetric flow rate Q is propor-

Figure 2: Valve from the Hydraulics library

tional to the partial opening xV and to the square root
of the pressure difference p1− p2 across its ports [10].
With the flow gain cv the flow through a control valve
is expressed as

Q = cvxV
√

p1− p2 (1)

Since the square root function is not defined for neg-
ative pressure differences and not differentiable for
∆p = 0, often an approximate solution for the square
root function is used to implement the flow-pressure
relationship in a model [3]. Such a function is im-
plemented as RegRoot in the standard Modelica Li-
brary in Modelica.Fluid.Utitlities. It is strictly
monotonically increasing, continuously differentiable
and therefore invertible.

Q = cvxV ·RegRoot(p1− p2,∆psmall) (2)

For the implementation of control valves as
for example in Modelica.Fluid.Valves.-

ValveIncompressible, it is assumed that the
partial opening xV is not affected by the pressure
difference or flow through a valve. The valve opening
is therefore defined as a signal input.
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For backward simulation, the partial valve opening
xV needs to be solved for from given flow Q and pres-
sure difference p1− p2.

xV =
Q

cV
√

p1− p2
(3)

With simulators such as Simulink, where the causal-
ity of a model is predefined, assigning pressure and
flow as given from boundary conditions leads to an
error since the valve opening is defined as a sig-
nal input. With Modelica this is possible, as Fig-
ure 3 shows. With the block Blocks.Math.Inverse-

Figure 3: Valve from the Hydraulics library

BlockConstraints it is possible to connect an input
function to the volumetric flow sensor and to impose a
required flow on the computation while the signal in-
put of the valve can be interpreted as a signal output.
What this component does, is, to simply connect the
two input signal connectors with each other as well as
the two output signal connectors. The effect is that the
model inverse is automatically derived by the Model-
ica translation engine.We see how Modelica allows to
simulate the system ’backwards’ simply by changing
the boundary conditions for inputs and outputs.

3.2 Simple backward simulation example

The input step function in Figure 3 is filtered with a
first order filter, without which the simulation would
fail. As already stated, backward simulation is for-
ward simulation of the model inverse. Inverting a dy-
namic model usually requires the derivatives of the in-
put function. This is illustrated at the example of a
simple linear system expressed by the transfer func-
tion

G(s) =
Y (s)
U(s)

=
1

s2 +2s+1
. (4)

The input-output dynamics written in state differential
form is

d
dt

[
x1
x2

]
=

[
0 1
−1 −2

]
+

[
0
1

]
u (5)

y =
[
1 0

][x1
x2

]
(6)

The inverse of this system can be expressed as transfer
function

G−1(s) =
U(s)
Y (s)

=
s2 +2s+1

1
. (7)

However, there is no equivalent expression in state
differential form. To express the inverse dynamics,
the states would be functions of their derivatives. In
Simulink and other assignment based simulation lan-
guages, it is important that each model element can
be expressed in state differential form. For the inverse
dynamics element this is impossible.

The state differential form is required also for the
simulation of Modelica models. However, this is
reached through automated rearrangement of all sub-
model equations. This is a difference to other simu-
lator concepts where each element or sub-model must
be represented in state differential form initially.

Figure 4 illustrates how simulation of the inverse
model dynamics is possible when the whole system
is considered. To implement the simulation of the in-
verse model, the derivatives of the input to the inverse
model must exist. Generating the input through a 2nd

order filter assures that two derivatives exist.

Gf(s) =
Y (s)
R(s)

=
25

s2 +10s+25
. (8)

Applying the filtered signal Y (s) = Gf(s)R(s) to the
inverse model Eq. 7 yields

U(s) = R(s) · 25(s2 +2s+1)
s2 +10s+25

(9)

The combined system can be expressed in state differ-
ential form.

d
dt

[
x1
x2

]
=

[
0 1
−25 −10

]
+

[
0

25

]
r (10)

u =
[
−24 −8

][x1
x2

]
+25r (11)

Figure 4 shows that the results of backward and for-
ward simulation match. Feeding the forward simu-
lation with the result u of the backward simulations
yields the desired system response y that was given as
input to the backward simulation.
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Figure 4: Backward simulation example

3.3 Limitations of backward simulation

The backward simulation approach is limited to sys-
tems for which the model inverse exists and is stable.
Coulomb friction for example depends on the sign of
velocity. For zero velocity the coulomb friction is un-
defined and depends on the history of motion. This
function is not invertible without adjustments. An-
other challenge are physical limitations implemented
in the models. If, during backward simulation, one
component reaches a physical limitation, the states
which cause the behavior of the model in limitation
are not clearly defined anymore. There are infinitely
possible combinations of states which cause the lim-
ited model to be in its limit. The cases for which the
model inverse cannot be obtained are further elabo-
rated in [14, 12]. It is subject of future research to
show how relevant these issues are for typical config-
uration and sizing problems and how they can be ad-
dressed appropriately. The next section explains the
mathematical model of the example amplication for
which the advantage of the backward simulation ap-
proach is demonstrated.

4 Model of example application

A typical model for a servo-hydraulic drive is pre-
sented as given in many text books such as [7, 10, 11].
The drive consists of a servo-valve which connects the
two ports of a cylinder to a constant pressure supply
and a tank, see Figure 5.

Figure 5: Hydraulic scheme

The model can be described by a system of nonlin-
ear state differential equations of dimension 6.

ẍp =
1

mt(xp)

[
(pA−α pB)Ap−Ff(ẋp)−Fext

]
(12)

ṗA =
1

Ch,A

[
QA(pA,xV)−Apẋp +QLi(pA, pB)

]
(13)

ṗB =
1

Ch,B

[
QB(pB,xV)+αApẋp−QLi(pA, pB)

]
(14)

ẍV = −ω
2
VxV−2DVωV ẋV +ω

2
V u (15)

Where the states and parameters are listed in Table 1.
The flow equations are nonlinearly dependent on the

valve partial opening xV and the pressure difference.
It has to be defined for different cases depending on
which ports are connected with each other.

QA = cV sg(xV− xo)sign(pS− pA)
√
|pS− pA| . . .

· · ·−cV sg(−xV−xo)sign(pA− pT)
√
|pA− pT| (16)

QB = cV sg(−xV− xo)sign(pS− pB)
√
|pS− pB| . . .

· · ·− cV sg(xV− xo)sign(pB− pT)
√
|pB− pT| (17)

As already explained in section 3.1, the term
sign(∆p)

√
|∆p| does not work reliable in a Modelica

simulator since there is an infinite derivative whenever
∆p becomes zero. For practical implementation the
approximate function RegRoot can be used. The dif-
ferent switching conditions are realized using the func-
tion sg, which is defined as:

sg(x) =
{

0, for x < 0
x, for x≥ 0

(18)
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Table 1: States and parameters of model
Symbol Comment Unit
Ch capacity of chamber m3

Pa
E ′A,B effective bulk modulus Pa
Fext external force N
Ff friction force N
pA,B pressure in A,A Pa
QA,B flow into chamber A,B m3

s
QLi leakage from chamber B

into A

m3

s

u valve signal
maximum valve signal -

VA,B Volume chamber A,B m3

xp piston position m
xV valve spool partial open-

ing
-

Ap = 7.6 ·10−4 piston face side surface
area

m2

CLi = 1.6 ·10−13 leakage coefficient m3

Pa.s
cV = 8.9 ·10−8 valve flow gain -
cS = 0.01 Stribeck velocity m

s
DV = 0.9 damping ratio of valve -
Emax = 1.7 ·109 bulk modulus at infinite

pressure
Pa

Fc0 = 100 Coulomb friction force N
Fs0 = 100 Static friction force N
mt = 50 total mass of piston kg
pS = 200 ·105 supply pressure Pa
pT = 2 ·105 reservoir pressure Pa
s = 0.8 stroke m
xo =−1% fractional valve overlap -
α = 1 piston surface ratio -
γ = 800 Approximation factor -
ωV = 628 natural undamped fre-

quency of valve

rad
s

σ = 1000 viscous friction coeffi-
cient

N.s
m

According to the manufacturing of the valve, the spool
can have over- or underlap with the sleeve in the mid-
dle position. The overlap parameter xo takes this into
account. If it is negative, it means that the valve is un-
derlapped and therefore all valve ports are connected
with each other in the middle position of the valve.

The leakage flow across the piston QLi is the cylin-
der pressure difference multiplied by the leakage coef-
ficient CLi.

QLi =CLi(pB− pA) (19)

The pressure gradient ṗ in a cylinder chamber is char-

acterized by the hydraulic capacity

Ch =
V
E ′

(20)

which is the quotient of Volume over effective bulk
modulus of the respective chamber. The volumes
change with position of the piston, while the bulk mod-
ulus varies with the chamber pressure. An emperical
model proposed by [4] is

E ′ = Emax

[
1− e−0.4−2·10−7 p

]
(21)

where Emax is the bulk modulus at infinite pressure.
The friction of the hydraulic cylinder can be rep-

resented by the stribeck curve, which is a piecewise
defined function.

Ff(ẋp) = σ ẋp + sign(ẋp)

[
Fc0 +Fs0e−

|ẋp |
cs

]
(22)

where σ is the viscous friction coefficient, Fc0 the
coulomb friction, Fs0 the static friction and cs the so-
called Stribeck velocity. Since the friction model as
given by Eq. (22) is not invertible, an approximation
of it is used by replacing the sign function.

sign(ẋp)≈
2
π

arctan(γ ẋp) (23)

And therefore:

|ẋp| ≈ ẋp
2
π

arctan(γ ẋp) (24)

With the values given in Table 1, the friction function
is plotted in Figure 6.

Figure 6: Friction model

The set of differential algebraic equations Eq. (12-
15) is given in the standard form of ordinary differ-
ential equations, where the state derivatives are ex-
pressed as a function of the states and inputs. For
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backward simulation the model inverse needs to be
expressed by rearranging the equations. This is not
possible algebraically in this case. However, Model-
ica tools, such as Dymola, can generate nonlinear in-
verse models automatically as explained in section 3.
The next section explains how backward simulation
can help in sizing a hydraulic system with respect to
static and dynamic requirement specifications.

5 Efficiency study using dynamic
backward simulation

Backward simulation allows to study the drive’s per-
formance for a whole duty cycle without the need to
design a controller. In fact, perfect control is assumed
because the expected output is forced on the system
as a boundary condition. This is an advantage, since
sometimes it is the necessity of control design which
discourages the early use of system simulation. Of-
ten, in early stages of system development, issues such
as architecture configuration and component sizing is
important. System simulation in forward manner may
then be impractical if changes in the system always
require re-design of the controller. It is interesting to
note that Modelica allows to use the same model for
forward and backward simulation. This means that the
same model used in backward manner for system con-
figuration and component sizing may be used in for-
ward manner later for the control design.

The idea of backward simulation is to force the
prescribed duty cycle as boundary conditions on the
physical outputs of the system, see Figure 7. Con-
sequently, by simulating the inverse model, the corre-
sponding physical inputs are calculated. To do this, no
control has to be implemented. The advantage of this
approach is demonstrated at the example of a hydraulic
servo drive as modeled in the previous section. The
model ’HSS’ in Figure 7 is described by Eqs. 12-15.
For the sake of clarity the system was not put together
by the commercial Modelon Hydraulics library. The
components of this library include some effects which
cause problems for the backward simulation approach.
For example, an interpolation function is used to cal-
culate the average density within a resistance. This
interpolation function causes to fa

Figure 8 shows the required (filtered) duty cycle,
the position and velocity trajectories and the external
force impact. In this duty cycle the hydraulic drive
moves out with a constant velocity of 0.23 m

s while ap-
plying a constant force on a workpiece of 10kN. The
return stroke takes place with high velocity of 0.8 m

s .

Figure 7: Dymola backward simulation of hydraulic
servo system

The objective of optimization is to find the right
sizes of cylinder and valve as well as choosing the op-
erating pressure. To do this in conventional forward
simulation, a control has to be designed. In case the
requirement specifications cannot be met, it is unclear
in forward simulation whether the suboptimal control
limits the performance or whether the components just
don’t allow for a better performance.

Simulation of the setup is performed in backward
simulation with the parameters as listed in Table 1.
The design engineer can examine from the results
whether component limitations were violated. It is
also possible to examine the total energy consump-
tion. Figure 9 shows the required valve signal in-
put HSS.xv, the cylinder pressures HSS.pA, HSS.pB
and the cumulated amounts of energy Eloss, Emech, and
Emech+fric. The top plot indicates that the valve size
is too small since it opens beyond 100%. The cylin-
der pressures are within the range between supply and
tank pressure. At the beginning of the force impact,
the pressure in chamber A has a peak of 185 bar. The
load pressure during the working stroke is ∆pA,B =
(167− 34)bar which is 67% of the available pressure
difference. According to [11] this is the operating
point of optimal efficiency for this type of servo drive.
This can be seen well by looking at the bottom plot of
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Figure 8: Duty cycle of drive

Figure 9. It compares the total hydraulic input energy
Eloss, the mechanical output energy Emech and the cu-
mulative curve of mechanical output energy and fric-
tion energy Eloss+fric. In this example, the friction en-
ergy is negligible compared to losses in the valve. Dur-
ing the working stroke, the efficiency is approximately
67% which is optimal according to [11]. The total
energy consumption for the working stroke is 3487J.
The backward simulation reveals that the energy con-
sumption for the return stroke is equal. This result is
interesting although obvious. One might expect that
the return stroke should consume less energy because
no load is applied. However, the same flow is con-
sumed at the same pressure level. Therefore the power
is equal. The backward simulation can now be used
to alter the design to achieve a higher efficiency while
not violating the valve limitations at the same time.

The losses during the return stroke can be reduced
by changing the area ratio of the cylinder. Choosing a
faster valve reduces the dynamic peak in the valve and
pressure signal at the moment when the load is sud-
denly applied. Reducing the cylinder area decreases
the overall losses and increases the load pressure. The
changes according to Table 2 are found through few

Figure 9: Valve signal, pressures and loss curves for
duty cycle

iterative steps and do not represent an optimum solu-
tion. But the effect in terms of reduction of energy
consumption is significant, as Figure 10 shows.

The energy consumption of the improved system
could be reduced by 38% from 7029J to 4323J for
the example duty cycle. The valve was doubled in size
and does not run into limitations anymore. This exam-
ple demonstrates the advantage of the use of backward
simulation for the design of servo drives. Through the
use of backward simulation the energy efficiency of
the systems could be analyzed for a representative duty
cycle without the need to design a control. The control

Table 2: Modified parameters
Symbol Comment Unit
Ap = 6.08 ·10−4 piston face side surface

area
m2

cV17.8 ·10−8 valve flow gain -
α = 0.5 piston surface ratio -
ωV = 1256 natural undamped fre-

quency of valve

rad
s
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Figure 10: Valve signal, pressures and loss curves for
optimized system

design is the next step after the dimensions of the drive
have been determined.

6 Conclusion

This paper explains the idea of backward simulation,
which is basically forward simulation of the inverse
model. It was shown at the example of the mathemat-
ical model of a hydraulic servo-drive that building the
model inverse by hand is not a trivial task. Depend-
ing on the system under study, the model inverse can
only be determined numerically. Modelica tools such
as Dymola provide this capability and therefore facili-
tate this new simulation technique. It is explained that
the backward simulation approach only works if the
system inverse can be build from the model. This may
not be possible for systems with backlash or hystere-
sis. Phenomena like coulomb friction, which are dis-
continuous, need to be approximated.

The advantage of backward simulation is demon-
strated in this paper at the example of a hydraulic
servo drive for which a typical duty cycle was given.
With little effort, new system parameters are found for

which the energy consumption is reduced by nearly
40%.

This study did not make use of already available li-
braries.
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Abstract

In the last decade an electrification of the powertrain
became the significant trend in the passenger cars’ de-
velopment. Beside hybrid electric powertrains there
is also a variety of solutions for pure electric cars.
The presented paper introduces a Modelica model of
an electric vehicle solution with rear driven wheels.
The suspension model containing an individual elec-
tric drive placed close to the wheel will be discussed
with focus on different modelling aspects. Moreover,
some typical characteristics of suspension will be pre-
sented.

Keywords: Modelica; vehicle suspension; planetary
gerbox; electric car; connecting multibody with one-
dimensional

1 Introduction

In the last years, the electrification of the powertrain
of passenger cars became one of the huge challenges
for the vehicle developers. This is the consequence of
the legislative demand to reduce the emissions and of
customer wish to reduce fuel consumption as well.

Several solutions for the hybrid electric vehicles ex-
ist such as parallel or serial arrangement of internal
combustion engine and electric drive. Whereas such
solutions are preferred for mass-production vehicles
the pure electric vehicles are still designed in signif-
icantly lower series.

Electric cars commonly utilise either vehicle body
mounted motors or in-wheel drives. For the first one
the gearbox and drive shafts transmit the drive torque
to the wheels. An alternative concept for electric car
suspension with drive close to the wheel was devel-
oped in the joint research project of BMW Group
Forschung und Technik, DLR and Schaeffler Group.
This concept should utilise advantages of abovemen-
tioned common solutions and additionally minimise

the required space needed for all components includ-
ing battery.

To investigate the behaviour of the suspension in the
early design stage the mutlibody model was created.
Later, a model of electric motor was additionally uti-
lized in an overall vehicle model. Based on the vehicle
model a drive control strategy was developed and op-
timized for various drive manoeuvers.

The presented paper focuses on different aspects of
the modelling in the early design stage.

2 Suspension concept and design

Typical for BMW vehicles, the developed driven sus-
pension was designed for the rear axle, see the result-
ing overall design as shown in Figure 1. The basic
idea was to couple the electric drive fixed on vehicle
body with suspended wheel by means of a gearbox in-
tegrated in the wheel, see [1].

Figure 1: Overall view of the presented rear suspen-
sion (electric drive not displayed)
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For the wheel guidance there is used a mechanism
which can be simply imagined as double pendulum, cf.
Figure 2. A swing arm rotating about the axis n1 ori-
ented in lateral direction is fixed on the vehicle body.
The wheel carrier is joined rotationally to this swing
arm, whereby the axis n2 of rotation points to the lat-
eral direction as well. To constrain one redundant
degree of freedom, the wheel carrier is additionally
linked to the vehicle body. The link is placed before
the rotational axis n2 of the carrier. To tune the kine-
matic characteristics of the suspension the orientation
of the two rotational axes n1 and n2 and the position of
the link mounting points can be changed.

Figure 2: Structure of the wheel guidance mechanism

As mentioned above, the in-wheel gear was sug-
gested for the power transmission to minimise the re-
quired space in a vehicle. Due to this solution the elec-
tric drive can be placed close to the wheel at the rota-
tional axis n1 of the swing arm. The driving torque is
transmitted from the drive pinion to the lay shaft on
axis n2 and then to the wheel rim. To reach the de-
sired ratio from drive pinion to wheel, there are two
“planet” gearwheels on the lay shaft, one in contact
with the pinion and the other in contact with the ring
wheel.

To minimise required space a rotational damper and
spiral spring were employed in suspension. Using
such rotational elements was the best way to exploit
the large rotational movements of suspension during
deflection and rebound. The spring was placed on
axis n1 and designed to react the torques acting on the
swing arm. It is supported directly on the vehicle body.

The damper is connected to the swing arm and wheel
carrier instead. Placed on the same axis n2 like the lay
shaft, the rotational velocity of the damper is approxi-
mately double of that of the spring.

Especially for acoustic reasons, there are used elas-
tic bushings and a subframe, too, as usual in the ve-
hicle design. Each of the suspensions is coupled by
means of bushings on the subframe thus constitut-
ing one axle unit. Finaly, the complete subframe is
mounted elastically on the vehicle body.

3 Modelling

The aim of the modelling was to create the multibody
model of the suspension and of the complete vehicle
to perform common analyses during the early design
stage. Additionally, the multibody model was used to
tune the vehicle dynamics control.

In order to promote easy interoperability with the
various automotive libraries not only from DLR, the
created Modelica library was consequently based on
the VehicleInterfaces standards, see [2]. The Vehi-
cleInterfaces focuses on standardising the assemblies
interface definitions without enforcing a standard ve-
hicle model architecture, so that the same assembly
models can be reused in different model architectures.
For example, the chassis assembly uses the same in-
terface definition regardless of it being a basic one-
dimensional (1D) longitudinal model or a complex
multibody vehicle dynamics model.

All the assembly models were created based on
the idea of template and parametrised models as
also utilised in the PowerTrain library from DLR,
see [3], [4] and [5]. Therefore, every Modelica sub-
package with assemblies such as suspensions or steer-
ings contains template models – i. e. assembly models
of different level of detail and for diverse purposes.
Various meaningfully parametrised models of realis-
tic assemblies are then inherited from such template
models and used in an overall vehicle architecture thus
representing a particular vehicle model.

In the following the modelling of the discussed sus-
pension will be described in more detail.

3.1 Wheel guidance

The wheel guidance mechanism was realised as a
multibody model with two rigid bodies and two ro-
tational joints, each one for the swing arm and for the
wheel carrier. The movement of the wheel carrier was
constrained with the link modelled as the Universal-
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Spherical joint from Multibody package of Modelica
standard library. The final design of the suspension
utilizes slightly skew rotational axes to achieve suit-
able kinematics common for rear axles of passenger
cars, see camber and toe angle characteristics in Fig-
ure 3.

Figure 3: Camber and toe angle of suspension

3.2 Gearbox

The two-stage gearbox was modelled by means of
two one-dimensional rotational PlanetPlanet models
(see [5]) from PowerTrain library, cf. blocks sun-
Planet and planetRing in Figure 4. The sunPlanet rep-
resents the first stage from drive pinion to the lay shaft,
the planetRing is used for the second stage from lay

shaft to the ring gearwheel which is fixed on the wheel
rim. This configuration is similar to that of a planetary
gearbox.

In the multibody model of the suspension the rota-
tional joints of the wheel as well as of the wheel car-
rier connect the respective body to the predecessory
one. It means, that the joint angles reflect relative ro-
tation of wheel to wheel carrier and of wheel carrier to
swing arm, respectively. On the contrary, the angles of
sun and planet gearwheels and of carrier in the Plan-
etPlanet model are absolute angles as adequate for a
1D rotational mechanics. Therefore, a 1D sub-model
was added which calculates necessary relative angles
to connect the 1D gearbox and multibody suspension
in a correct way. This sub-model was called Rotation-
alAdd and used two times in the gearbox model, see
the blocks called rotAdd2_i, i = 1,2 in Figure 4.

Figure 4: One-dimensional Modelica model of the
gearbox

This sub-model for rotational additon has three
flanges: 1, 2 and 12. The corresponding flange angles
φ1, φ2 and φ12 result from simple kinematics:

φ2 = φ1 +φ12.

The appropriate flange torques yield

τ1 = 0, (1)

τ2ω2 + τ12ω12 = 0. (2)

The equations (1) and (2) both summarise power bal-
ance on flanges 1, 2 and 12. Herewith, the power flow
between 2 and 12 must be in balance. At the flange 1,
in contrast, no power flow may be realised.

Let us focus now on the connection of the sun-
Planet component as first stage of the gearbox to the
swing arm joint. The swing arm body is identical
with the carrier of sunPlanet. For swing arm joint the
revolute joint from Modelica standard library called
Modelica.Mechanics.MultiBody.Joints.Revolute could
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be used, cf. [6]. This revolute joint has two multibody
(a and b) and two 1D rotational (axis and support)
connectors. Simplified described, the following torque
balance is adopted between the connectors:

τMBS,a = −Tab τMBS,b,

τ1D,axis = −τMBS,b naxis,

with transformation matrix Tab from multibody
frame b to frame a and vectors of cut torques τMBS,a

and τMBS,b in frames a and b, respectively, and nor-
malised vector naxis of rotation axis. It should be noted
that the torque from 1D flange support does not ap-
ply within this joint. Consequently, when connect-
ing 1D flange axis to flangeCarrier from 1D gearbox
(see connectors in Figure 4) the scalar carrier torque
τ f langeCarrier = τ1D,axis would be applied on multibody
frame b and supported on frame a. However, this
is unrealistic since for idealised frictionless joints the
supporting torque can only be realised by the torque
source, i. e. by the electric drive.

Therefore, the rotational joint equations are modi-
fied as follows:

τMBS,a+τ1D,support naxis =−Tab(τMBS,b+τ1D,axisnaxis),

τ1D,axis =−τMBS,b naxis.

With such a definition, the torque from 1D flange axis
only applies on multibody frame b and the torque from
1D support on frame a. Consequently, the carrier
torque from 1D gearbox only applies on the swing arm
and not on the predecessory body. The connection of
the second stage of the gearbox to the wheel carrier
joint is arranged in the same way.

The final connection of the total gearbox model with
the multibody components is depicted in Figure 5.

3.3 Spiral spring and damper

For suspension the rotational spiral spring was con-
nected between vehicle body and swing arm. It
was designed to optimally support reaction forces and
torques acting in the swing arm mounting. Especially,
the torque about the swing arm rotational axis and
the vertical force were considered, both resulting from
tyre/road contact. The rotational stiffnes of the re-
alised spring is nearly constant over the whole wheel
deflection range.

Both cut torques and cut forces on the spring mounts
are dependent on their relative deflection, i. e. their rel-
ative orientation and displacement. These dependen-
cies were modelled by means of multi-dimensional ta-
bles within one multibody force element. The tables

Figure 5: Modelica model of suspension (some
marginal elements are not shown)

were generated previously on the base of a finite ele-
ment spring model.

The rotational damper acting between swing arm
and wheel carrier was modelled as one-dimensional
non-linear damper.

3.4 Axle subframe and bushings

On the rear axle, each of the suspensions is mounted
on a module carrier. Each of these module carriers is
then elastically mounted on a subframe which again is
elastically mounted on the vehicle body.

The elastic bushings in the mounts are modelled as
force elements. Generally, it is formulated in such a
way that the forces and torques depend linearly on the
relative position and orientation angles of its connec-
tors, respectively, and on their derivatives. The bush-
ings operate at small angles, i. e. at angles with a mag-
nitude less then 5◦. This fact was considered to sim-
plify the calculations.

4 Suspension kinematics and brake
support angle

In our project, the functionality of the suspension was
proven in various tests, both virtual and real. Within
this section the suspension kinematic characteristics
will be discussed in more detail.
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As already shown in Figure 3, the progress of cam-
ber and toe angles was tuned when modifying the ori-
entation of rotational axes n1 and n2 of the swing arm
and the wheel carrier, respectively.

Let us now exploit next typical characteristics - the
support angle εB at braking. Together with the brake
support angle of front suspension and the height of
centre of gravity of the vehicle it is crucially responsi-
ble for the amount of vehicle pitch movement during
braking. According to [7], this angle can be calculated
by means of the translational velocity v∗W at the “vir-
tual” tire/road contact point as

tanεB =±v∗Wx

v∗Wz
.

Such virtual contact point is considered on the wheel
with blocking brake during wheel deflection and re-
bound. In a case of conventional vehicle with brakes
mounted on the wheel carrier this means that the wheel
can be virtually fixed on the carrier during computer
aided investigation of εB. For practical reasons the
point can simply be considered to be on the wheel
carrier, too. On the contrary, when the brake is
mounted otherwise, e. g. on the vehicle body, such vir-
tual blocking must be regarded in a correct way.

This is also the case for the described suspension.
Since the suspension is considered to have no conven-
tional friction brake, the brake torque will only be re-
alised via electric drive. Therefore, in the simulation
the drive pinion was fixed for the brake support an-
gle analysis. In Figure 6 the trajectory of the virtual
contact point is depicted for our case compared to the
point trajectory at conventionally braked wheel.

The analysis proved that the brake support angle εB

depends not only on the suspension geometry but ad-
ditionally on the gear ratio iTotal as depicted by means
of three curves in Figure 7 for increasing ratio.

5 Conclusions

The paper gives an overview of the new vehicle sus-
pension concept with integrated gearbox and electric
drive and focuses especially on modelling aspects. In
the model, the multibody suspension parts are com-
bined with one-dimensional rotational elements for
two-stage gearbox thus enabling efficient simulation.
For proper interaction between such one-dimensional
and multibody parts new Modelica models were intro-
duced.

Besides the wheel guidance functionality, the partic-
ular models of gearbox, spiral spring and bushings are

Figure 6: Trajectory of virtual tyre/road contact point
of developed suspension (suspension representation
simplified): Braking via electric drive (red line at the
bottom) vs. conventional brake mounted on wheel car-
rier (black line)

Figure 7: Brake support angle of suspension for vary-
ing gear ratio iTotal
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discussed. Finally, some particular kinematic charac-
teristics of the suspension are discussed in more detail.

The incorporation of the suspension into the com-
plete vehicle model and the comparison of the simu-
lation results with the real driving manoeuvres as well
as the utilised drive control strategy will be addressed
in the future.
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Abstract

This paper describes a model which simulates the dy-
namics of a multi-effect distillation system in different
operating conditions. It has been designed to improve
the operation of the process and develop a control
strategy which optimizes the distillate production. The
physical models are based on conservation equations
of mass and energy. They also include experimental
correlations for heat transfer coefficients. Conserva-
tion laws are applied in different components, such as
the heater, the effects and the preheaters. The results of
the mathematical model simulation of the whole pro-
cess show promising outcomes.

Keywords: solar desalination, multi-effect distilla-
tion, modeling

1 Introduction

One of the challenges today is the production of fresh-
water for those population areas with high water stress.
For places close to the sea, the desalination process
provides an excellent way to tackle this problem. The
use of desalination plants in these regions with plen-
tiful seawater resources is becoming a technological
way to produce freshwater. Since large-scale desalina-
tion typically requires large amounts of energy, a so-
lution is coupling desalination plants with renewable
energies [10]. This process can be performed in var-
ious ways, for instance, using solar energy in which
the source that provides the heat for the desalination
process is collected in a solar field.

Multi-effect distillation plants (MED) raise a great
interest in industry due to its efficiency when they are
coupled with a solar thermal system. This kind of sys-

tems is gaining more acceptance as a result of their
lower energy requirements, higher heat transfer coef-
ficients, compactness, high product water quality and
low pre-treatment [2, 7]. In the literature there is a
wide variety of steady-sate models for MED plants
[3, 5, 6, 9]. One of the last works is the one developed
in [13], which shows a hybrid system that combines a
desalination system with solar and wind energies. In
that paper, the model includes the distillation unit, the
flat-plat collectors and the wind system. Regarding dy-
namic models, the literature about multi-effect distil-
lation systems is scarce [4, 8].
The innovation of the present paper is that the dynamic
model has been developed with the object-oriented
Modelica language using the Dymola tool and the
Modelica.Thermallibrary. This framework has al-
lowed us to develop new libraries to make simulations
easier and improve the operating procedure.

2 Description of the system

The AQUASOL system (Figure1) at CIEMAT-
Plataforma Solar de Almería (PSA), located in the
South of Spain, proposes a solar distillation technol-
ogy that consists of a compound parabolic collector
(CPC) solar field, two 12m3 water storage tanks, a
multi-effect distillation unit with a 3m3/h nominal dis-
tillate production, and a double effect (LiBr-H2O) ab-
sorption heat pump (DEAHP) [1].

The desalination plant at CIEMAT-PSA is a
forward-feed multi-effect distillation unit manufac-
tured and delivered by Weir ENTROPIE (Paris,
France) in 1987. It has 14 cells, or effects, in a vertical
arrangement. The original first cell that worked with
low-pressure saturated steam (70 °C, 0.31 bar [11])
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Figure 1: AQUASOL diagram

was replaced in the AQUASOL project by a new one,
which works with hot water coming directly from a
thermal storage tank. For optimal operation, the inlet
feed-water temperature in the first cell must be around
66.5°C. It is possible to reach this temperature with
heat from a solar field as well as with steam generated
by an auxiliary gas boiler coupled to a double effect
absorption heat pump that can work at variable steam
loads (from 30% to 100%).

Seawater is preheated on its way toward the first
cell of the plant, which is at the top of the desalina-
tion tower. Vapour is produced in this first effect (or
heater) using the hot water from the storage system.
This vapour flows to the preheater-1 and part of the
latent heat is transferred to the seawater that flows in-
side this preheater, increasing the temperature of the
seawater. The steam produced in the first effect goes
to the effect-2, where it is condensed in a tube bun-
dle sprayed with the more concentrated brine which
falls by gravity from the previous effect. The latent
heat released by condensation of the vapour allows
part of the seawater entering the second effect to evap-
orate at a lower temperature/pressure. This condensa-
tion/evaporation process is repeated in the successive
effects. Finally, the vapour produced in the effect-14
is condensed in a final condenser cooled by seawater.

3 The dynamic model

The model of the MED unit is based on the following
assumptions:

• no heat losses with the atmosphere,

• no flash vapour is produced,

• the final distillate production is the sum of the dis-
tillate produced in each effect,

• the temperature drop in each effect is equal to the
temperature difference in the preheaters,

• the preheater-14 is considered as the final con-
denser.

Each component of the plant (the heater, the effects
and the preheaters) has been modeled in theModel-
ica language usingModelica.Thermallibrary. Figure
2 shows the final model of the MED unit, which in-
cludes the heater, 13 effects and 14 preheaters.

The inputs of the model are the feedwater mass flow
rate to the heater, ˙mM, the inlet temperature to the
heater,TiM , the salt concentration of the seawater com-
ing into the heater,CB0, the pressure in each effect, the
seawater mass flow rate, ˙msw, and the inlet seawater
temperature to the preheaters 14 and 13. The outputs
of the model are the outlet temperature from the heater,
ToM, and the distillate production, ˙md. The correlations
of the heat transfer coefficients included in the models
were obtained from experiments carried out in the real
plant [12]. Nomenclature and subscripts are shown in
Tables1, 2.

Table 1: Nomenclature

Name Description Units
A Surface area m2

BPE Boiling Point Elevation K
C Concentration %
Cp Specific heat capacity J/kgK
dT Temperature difference

between successive effects K
h Specific entalphy J/kg
ṁ Mass flow rate kg/s
M Mass kg
P Pressure Pa
Q Heat transfer rate W
T Temperature K
U Overall heat trasfer coefficientW/m2K
λ Latent heat of vaporization J/kg

Table 2: Subscripts

Name Description
B Brine
d Distillate
e Effect
h Heater
i Inlet
k Effect identification number
M MED heating water
o Outlet
p Preheater
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Figure 2: Modelica model of the MED unit

sw Seawater
v Saturated vapour

3.1 The heater

The first effect of the MED plant is the heater. Hot
water coming from a storage system enters the heat ex-
changer and produces the first evaporation of the sea-
water. Fig.3 shows the model of the heater.

The heat transfer rate for the first effect can be cal-
culated from the MED heating water mass flow rate,
ṁM, and the MED heating water temperature differ-
ence in stationary conditions as follows:

Qh = ṁM ·Cp · (TiM −ToM) (1)

Using the log-mean temperature and the overall heat
transfer coefficient,Uh, the heat transfer rate can be
written as:

Qh = Uh ·Ah ·
(TiM −Tv1)− (ToM−Tv1)

ln TiM−Tv1
ToM−Tv1

(2)

whereTv1 is the saturation temperature of the vapour
generated in the heater.

Distillate mass flow produced in the heater can be
estimated using the latent heat of vaporization,λ :

ṁdh =
Qh

λ
(3)

Since the vapour pressure of the aqueous solution is
lower than that of pure water at the same temperature,
the boiling point of the solution will be higher than
that of the water. Therefore, the temperature of the
brine can be obtained using the boiling point elevation,
BPE:

TB1 = Tv1 +BPE (4)

The BPE is a brine property and depends on the
brine salinity and temperature.

The mass flow rate and concentration of the brine
can be obtained applying mass and energy balances.

Mass balance:

d
dt

(MB1) = ṁsw− ṁB1− ṁd1 (5)

Salt mass balance:

d
dt

(MB1 ·CB1) = ṁsw·CB0− ṁB1 ·CB1 (6)
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Figure 3: Modelica model of the heater

Energy balance:

d
dt

(MB1 ·hB1) = ṁsw·hsw− ṁB1 ·hB1− ṁd1 ·hv1 (7)

3.2 The preheaters

The vapour produced in the heater flows to the
preheater-1 located besides, where it condenses as the
temperature of the seawater that flows inside the pre-
heater tubes increases. This process is repeated in the
successive effects and preheaters. Figure4 shows the
model of the preheater.

dT

Tvk  mdk

Tp(k-1)  msw

Tp(k)  msw

P

Figure 4: Modelica model of the preheater

The heat transfer rate for eachk-preheater was cal-
culated using the measured seawater mass flow rate,
ṁsw, and the temperature difference between the out-
let and the inlet:

Qpk = ṁsw·Cp(Tp(k−1) −Tpk) (8)

Using the overall heat transfer coefficient:

Qpk = Upk ·Ap ·
(Tp(k−1) −Tvk)− (Tpk−Tvk)

ln
Tp(k−1)−Tvk

Tpk−Tvk

(9)

3.3 The effects

The vapour that has not been condensed in the pre-
heater flows to the following effect, where the seawa-
ter with a higher brine concentration flows by gravity
from the previous effect. Then, the vapour condenses
and transfers its latent heat to the seawater producing a
new evaporation. Fig.5 shows the model of one effect.

CB(k-1)

CB(k)

TB(k-1)  mB(k-1)

TB(k)  mB(k)

Tvk  mdk

P

dT

Figure 5: Modelica model of the effect

The heat transfer rate equation for eachk-effect
evaporator is:

Qek = Uek·Ae · (dTk +BPE) (10)

wheredT is the temperature difference between suc-
cessive effects, which is calculated in the prehetear
component.

The distillate mass flow rate in thek-effect is:

ṁdk =
Qek

λ
(11)

The model of each cell or effect is based on mass
and energy balances taking into account the distillate
produced and the brine mass flow rate from the previ-
ous cell:

d
dt

(MBk) = ṁB(k−1)− ṁBk− ṁdk (12)

d
dt

(MBk ·CBk) = ṁB(k−1) ·CB(k−1)− ṁBk ·CBk (13)

d
dt

(MBk ·hBk) = ṁB(k−1) ·hB(k−1)−ṁBk ·hBk−ṁdk ·hvk

(14)
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4 Simulation results

The developed model can be used to improve the oper-
ation of the plant, studying the effect of the variation in
the operating conditions on the MED unit performance
and production rate.

The final distillate production will be the sum of the
amounts of vapour produced in each effect as follows:

ṁd = ṁdh+
k=14

∑
k=2

ṁdk (15)

Figure6 shows the results obtained simulating the
developed model and using the following inputs:

• MED heating water mass flow rate, ˙mM, is 12
kg/s,

• MED inlet heating water temperature,TiM , varies
between 338 and 345 K (as shown in Fig.6)

• seawater mass flow rate inside preheaters 1-13,
ṁsw, is 1.94 kg/s,

• preheater-13 inlet seawater temperature,Tp14 is
about 303 K (see Fig .6).

As it can be observed in Fig.6, the MED outlet heat-
ing water temperature,ToM, is about 3.3 K less than
TiM . Nevertheless, if the inlet temperature increases,
this difference also increases slightly. As it was ex-
pected, higher temperatures cause higher thermal con-
sumption. On the other hand, the higher the inlet tem-
perature, the more distillate is produced.

Therefore, the model may be an efficient tool to es-
timate the thermal consumption depending on the de-
tillate demand. This means that we can predict if the
solar resource is enough to reach the production goals
or if we should combine it with the use of the heat
pump.

5 Conclusions

In this paper, a multi-effect distillation unit has been
modeled. Physical equations for each one of the main
components (the heater, the effect and the preheater)
have been developed using the object-oriented Model-
ica language. The whole plant has been defined with
multiple instances of the effect and preheater subsys-
tems properly interconnected between them. First sim-
ulation results are promising and the model may be
used to improve the operation in the real plant. The
main purpose of the model is the prediction of the ther-
mal dynamics of the heater as well as the prediction of
the distillate production rate.
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Abstract 

In this contribution, a model of a drum motor is pre-
sented. This model was designed for description of 
dynamic behaviour of the drum motor as well as for 
the possible implementation of several wearing phe-
nomena. Using this model, a better understanding of 
wear and tear phenomena has been achieved by car-
rying out a considerable number of simulation runs 
using different operational and wearing conditions. 
Using this information, important knowledge about 
detection of wearout signs was able to be gained. 

Often, mathematical models with different levels 
of detail are used. In these cases, it may be a difficult 
task to obtain reliable parameters. In this paper, we 
present three different approaches for establishing a 
model structure and for the determination of needed 
parameters. This way, we were able to define every 
part of the model with an appropriate level of detail 
and equip them with adequate parameter values. 
 

Keywords: drum motor; mathematical model; 
wearout phenomena modeling; parameter determi-
nation; condition monitoring 

 

1 Introduction 

Applications of mathematical models of technical 
systems are widespread in today’s product develop-
ment cycle. Mathematical models help to increase 
the understanding of physical properties of a product. 
The usage of mathematical models in the design 
phase allows investigations of functional properties 
under changing operational conditions. Both proper-
ties and operational conditions are described in the 
models by certain parameters. In the early phase of 
product development, only a certain range of values 
for these parameters is needed. Later on, these pa-

rameters have to be determined with higher accuracy 
to benefit from the model-based investigations. 

Correct and robust operation under changing cir-
cumstances is the most important requirement con-
cerning machines and facilities in today’s industry. 
Additionally, all equipment must guarantee a very 
high level of availability. These two demands are 
competing against each other because every tech-
nical system is characterized by a certain appearance 
of wear and tear. This applies to mechanical and 
electrical systems but also for any other physical 
domain. This appearance of wear and tear increas-
ingly causes a less correct operation of any technical 
system with progressing time of operation. There-
fore, compliance checks concerning the allowed tol-
erances have to be performed either in certain time 
intervals or depending on the current condition of 
wearing. However, those checks take time and, 
therefore, decrease the machine’s availability.  

Using a mathematical model of a machine or a 
facility that is able to reconstruct phenomena of 
wearing is one promising way of getting out of the 
dilemma. Still, the model must be able to describe 
functional and dynamic properties, too. That is the 
reason why such mathematical models cannot be 
implemented in an easy and straight forward manner. 
The model structure developed first has to be laid out 
with necessary parameters. Some of them can be cal-
culated while other ones may only be measured. Cal-
culation may be performed analytically or, e.g., by 
using a Finite Element model. Parameter measure-
ments mostly need considerable effort for establish-
ing an appropriate test set-up. All three methods 
were applied for the development of the model pre-
sented here. Using a well-parameterized model, we 
can carry out investigations about impacts of effects 
of wear and tear on functional properties of a ma-
chine or a facility. 
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line) is nearly constant during the complete simula-
tion interval. Contrastingly, the torque with bearing 
damage (dashed line) shows distinct ripples. The 
ripples’ magnitude order is about 0.5 % of the 
torque’s mean value. That seems to be not so high 
but it is enough to detect some differences within a 
frequency plot. This way, a damage of sufficient di-
mension could be detected by a dedicated condition 
monitoring system. 

6 Conclusions 

We presented an approach to simulate wear and tear 
phenomena within complex systems. For the case of 
a drum motor we proposed three different methods 
of modeling and parametrising components thereof. 
The roller bearing was described analytically, 
whereas the gear was simulated using the Finite El-
ement method. A third access to unknown parame-
ters is measurement as shown with the O-rings. Us-
ing these well-parameterised models, we were able 
to establish a behavioural description for some im-
portant wearout effects with the drum motor. Hence, 
these models can be used to predict the behaviour of 
a worn system within its usual environment. This 
opens the possibility to investigate some conse-
quences of wearout effects in several simulation runs 
in order to establish design rules for condition moni-
toring algorithms and thus support the development 
of adapted condition monitoring systems. This in 
turn allows for improved maintenance strategies and 
reduced costs. 
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Abstract 

For most people, a comfortable living and mobili-
ty are basic needs. With the rising individual demand 
for energy as well as the diminishing fossil energy 
resources, new optimized concepts for energy supply 
and usage are required. To address these challenges, 
renewable energy sources, decentralized storage, and 
electric mobility concepts are matters of rapidly 
growing importance.  

Future building energy systems have to success-
fully integrate user demands, local renewable energy, 
storage systems and charging infrastructure, a task 
requiring extensive scrutinizing. 

Typical questions to the engineer are to compare 
different system layouts with respect to sustainabil-
ity, cost, and robustness, or to identify the right lev-
ers in an energy system to optimize components and 
control algorithms. 

This paper describes an approach to solve such 
questions using simulations with the non-causal lan-
guage Modelica. Modeling paradigms and examples 
are shown. Special emphasize is given to the “Green 
Building” library and its components, bringing major 
building energy systems and electric vehicles to the 
same platform. 

 
Keywords: Renewable energy; Building; eMobility 

1 Introduction 

Increasing the use of renewable energy for almost 
all aspects of people’s life is one of the major topics 
of this decade. Energy storage, smarter energy con-
sumption and interaction of energy grid components, 
on global scale as well as locally, are tasks to be 
solved by the engineer. 

Ecological footprint, detail efficiency as well as 
usage comfort are matters becoming more important. 
To fulfill these aspects, various components like 
photovoltaic or storage tanks, even weather forecast, 
need to work together to satisfy the users’ demands 
in a renewable and reliable way. 

In addition to the technical aspects of automation 
and networking systems, the functionality of this 
component interaction needs to be clarified. Heat, 
electricity and mobility used to be separated aspects 
in life. With the use of renewables these are increas-
ingly correlated. For example a combination of mi-
cro-wind-turbines, photovoltaics, solar heat and heat 
pumps could be used in a specific building. Another 
possible solution would be a combined heat and 
power unit (CHP) heating the house and charging the 
electric vehicle. The solution may also vary depend-
ing on the available monetary budget. 

Renewable energy is limited in availability. The 
peak PV-power is at noon while peak consumption is 
often in the morning or in the evening. The need for 
energy storage or at least time shifting of consump-
tion arises. Even user behavior is important in such a 
system.  
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Hence, to find a suitable energy system configu-
ration for a specific scenario has become an exten-
sive engineering task. Therefore, new supporting 
tools and methods covering the whole system are 
needed.  

2 Simulation Tools 

Today’s available tools can be categorized into 
different groups. First, there are special component 
layout programs like for example PVSol for photo-
voltaics.  

A second group of tools uses FEM and CFD. 
These make it possible to simulate heat and radiation 
input to complex rooms and buildings and to calcu-
late the resulting temperature fields, air flow, etc. 
EnergyPlus, ANSYS and Ecotect are examples for 
these powerful tools. 

A third group addresses systems simulation. 
HVAC, even photovoltaics and wind are integrated 
into one block oriented system model. The underly-
ing physics are often represented as equivalent net-
works while control algorithms are represented in a 
signal oriented way or are programmed in a proce-
dural language. A typical tool-chain would contain 
TRNSYS and Matlab Simulink. These toolchains are 
extraordinary powerful. Yet some important effects 
like the nondeterministic behavior of humans, elec-
tric mobility, dynamic costs, battery aging and prob-
ability-based energy management systems have been 
difficult to implement.  

Modelica, as a non-causal, non-proprietary and 
cross-domain modeling language with Tools like 
SimulationX excel in these requirements. Some Li-
braries like Modelica “Buildings” or “Human Com-
fort” contain models for building energy and com-

bined control system simulations [8]. Yet, with these 
libraries, it is still a huge effort to model a complete 
building-vehicle-user energy system.  

In such a holistic simulation, systems of fast dy-
namics (1ms-1s) like vehicle physics or battery con-
trol have to work alongside with systems of low dy-
namics (1min-1day) for a long simulation time span 
(days to years).  

Additionally the models need to be complex 
enough to test control algorithms but not too com-
plex for a fast simulation speed as well as safe and 
easy to configure. A systems engineer as addressee 
of the simulation is specialized in component inter-
action, not in heat pump specifics, vehicle batteries 
and detailed building thermodynamics. For special 
cases where detail is needed, simulator coupling is 
an option. 

To fulfill these requirements, an approach widely 
used in the automotive industry was adapted to the 
field of building energy system modeling and real-
ized in the Green Building Simulation Library. 

3 Modelica Green Building Library - 
modeling paradigms 

The Green Building Library was created using the 
cross-domain equation based concept of the Modeli-
ca language. The aim was to create a set of physical 
and functional models with similar granularity and 
handling. This way a complete renewable energy 
system can be represented (Fig. 2), including: 

• sources like photovoltaics, windmills, solar-
thermal collectors, heat pumps or CHPs, 

• storage tanks, batteries and grid, 
• consumers, user behavior, weather as well as 
• charging stations and electric vehicles. 

Fig. 1: Modelica-based simulation models for vehicles (left) and buildings (right) [1, 5] 
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The granularity and complexity (fig. 1) of each 
element is comparable to the approach used in the 
automotive industry (e.g. partial models for engines, 
gearboxes and longitudinal dynamics of vehicles).  

Special emphasis was placed on the input pa-
rameter set of each component and intuitive model-
ing. For better usability, all parameters are similar to 
those found in typical component data sheets or 
standardized reports (i.e. EnEV [10]).   

Another requirement to the chosen approach is, 
that all the relevant characteristics needed for the 
comparison of different building energy systems, 
shall be calculated within one simulation environ-
ment, if possible. Therefore, all library components 
have been modeled as compatible differential-
algebraic equation systems (DAE) including physical 
behavior, control algorithms and external interrupt 
connectors for energy management systems. Fur-
thermore, optional functions to calculate investment 
and operating costs of each component can be used 
(fig. 3). Currently, however, these calculations are 
performed in external post processing routines. 

Another important requirement is a high simula-
tion speed while maintaining the highest possible 
time resolution. For advanced comparisons, a year 
needs to be simulated with a minimum step size of 1 
minute; this is at least half a million steps for one 
simulation run. This is longer than the usual 15min – 
1h time steps of thermal simulations. To achieve the 
needed model reduction fast internal processes were 

simplified or replaced with functional descriptions, 
each as internal DAE systems. 

A major factor for the simplification was the in-
fluence on outer processes and component interac-
tion. A typical example is the windmill power elec-
tronics. Instead of simulated MOSFETs and capaci-
tors, a phenomenological model containing charac-
teristic curves for conversion factors, efficiency and 
voltage limiters represents the electronics. 

In other models, where such simplification is no 
option (error margin, numeric stability), pre-
calculation is used. Complex driving cycles are one 
example for fast internal time constants. Heat pump 
characteristics based on source and heating medium 
temperatures are another example, where the solver 
would need to calculate partial differentials. 

Emphasize is given to an exact representation on 
effects which are relevant for the energetic behavior 
of a component (e.g. heat absorption and dissipation 
of a heat storage depending on the temperature 
spread). Other equations describing less relevant ef-
fects, like volume flow within heat storages, are ne-
glected. This constant granularity is a usability ad-
vantage over usage of models from different sources. 

Influences like weather are integrated using an 
ambience block, which reads either external data-
bases or location provided with the library as internal 
blocks (fig. 3). 

Most of the library components require special 
control algorithms for the internal regulation of the 

Fig. 2: Component models integrated in Modelica-library [2] 
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system states (e.g. de-icing processes of air heat 
pumps). These control strategies are integrated as 
blocks in the general component layout to simulate 
the typical behavior of the components. The user, to 
test new operating strategies like a combined 
heat/power-led CHP usage depending on vehicle 
dock and weather forecast, can replace the control 
block. Another option is the use of controller inputs 
for a superimposed energy management (fig. 3). 

Within a domain, the components are connected 
with specific connector elements, which are derived 
from “real-world”-connections like pipes for heating 
systems and cables for electrical systems. This way, 
the real energy exchange is simulated and can be 
observed during and after each simulation run [1]. 

∫ ∆⋅⋅⋅=
•

dtTVcte medmedpmedtherm med
ρ)(  (1) 

∫ ⋅⋅⋅= dtnIUte phaseeffeffel ϕcos)(   (2) 
Both consistent equations (1) and (2) describe the 

interchanged energy between connected components. 
Therefore, both equations consist of domain-specific 
flow (volume flow and current) and potential (tem-
perature spread and voltage) states as well as further 
special constant values. 

4 Coupling of Building and Vehicle 

As explained before, the main challenge in cou-
pling building and vehicle is the difference in the 
major time constants, which would lead to a small 
minimum simulation step size. 

The thermal energy flow in buildings mainly de-
pends on low system dynamics caused by inner 
masses, slow external temperature changes, etc. 
Electrical demand changes faster but it still is in the 
order of minutes at the building’s lateral. 

In contrast to that, vehicle-specific time constants 
are much lower, in the order of milliseconds to se-
conds and they are vital for an adequate simulation 
of the energetic behavior (fuel, electrical energy). 

There are proven frameworks to dynamically 
simulate the energetic behavior of vehicles with al-
ternative drive trains [see for example 9]. These con-
tain approaches to simulate the driver’s behavior and 
the operating strategy defining the vehicle operation 
mode (EV mode, ICE mode) as well as the detailed 
dynamic behavior of each vehicle component (e.g. 
gear boxes, ICE, EM etc.). 

Unfortunately, such approaches are too complex 
for implementation in the combined simulation of 
buildings and vehicles. Because of the differing sys-
tem dynamics, direct coupling of building and vehi-
cle creates very stiff DAE systems. Hence, either the 
simulation time becomes non-acceptable or the re-
sults deteriorate in accuracy and numerical stability. 

To solve this we looked at the vehicle from the 
building point of view. This way the vehicle is a 
component, which is either docked at home or exe-
cuting a certain driving cycle. If it is available and 
connected to a charging station (battery electric or 
plug-in hybrid) then the vehicle is a consumer or an 
intelligent battery. The important information is the 
energy or fuel needed for a specific cycle, vehicle 
availability and if the vehicle is connected, the power 

Fig. 3: Generalized component layout [1] 
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exchange and control algorithms. The energy de-
mand during the driving cycle does not directly in-
teract with the building. Therefore, this can be repre-
sented by pre-calculated driving cycles, user models 
and the simplification of the vehicle to a battery 
model. 

This way in the building simulation, the vehicle is 
considered as only one component of the building 
energy system (fig. 4) with focuses on charging and 
grid-support. In a preprocessing operation, the driv-
ing cycles for different vehicle internals (ICE, BEV, 
PHEV, etc.) are simulated with high accuracy. This 
includes detailed longitudinal dynamics, architecture 
(serial, parallel etc.), power train components charac-
teristics (e.g. battery size) and selected operating 
strategy (e.g. deplete and sustain) [see 9 et al.]. The 
main results are mean speed, mean power and fuel or 
energy consumption for use within the building en-
ergy simulation. 

The vehicle presence can be either derived as a 
transient simulation variable from the driving time in 
the preprocessing or created as synthetic user behav-
ior for the presence at the charging station. 

Using that approach allows a high accuracy of the 
fuel and electrical power demand of the vehicle dur-
ing a time period with an adequate simulation speed. 
Furthermore, the feedback of the charging strategy 
and the power supply to the vehicle on the building 

energy system can be analyzed. Influences of superi-
or energy management systems on the electrical en-
ergy supply to the vehicle and the amount of renew-
able energy used for driving the vehicle are analyza-
ble as well. 

5 Exemplary simulation results 

An example, showing capabilities and power of 
the presented “Green Building”-library is a semide-
tached house in Germany. One simulation represents 
a conventional energy system and ICE vehicle. A 
second simulation shows a complex renewable con-
figuration. 

The conventional and the renewable configura-
tion are then assessed regarding: 

• primary energy balance, 
• carbon dioxide emission balance and 
• renewable fraction of traction energy 
For these assessments of annual balances, a statis-

tical method was used. Analogue to VDI 4655, 
twelve reference days were defined (i.e. sunny win-
terday, weekend). Each reference day was simulated. 
The results were superimposed with the weather sta-
tistics of the last 10 years. 

Fig. 4: Vehicle and charging station as a part of a complete energy system modeled in SimulationX 
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The renewable energy system consists of (fig. 5): 
• small combined heat and power unit 
• gas-fired condensing boiler 
• heat storage 
• domestic water boiler 
• stationary battery 
• photovoltaic system 
• plug-in-hybrid-electric-vehicle 

In opposite to that, the conventional energy system 
only contains three components (fig. 6): 

• gas-fired condensing boiler 
• domestic water boiler 
• compact car (ICE)  

Both systems were simulated in combination with 
a 3-zonal building model with floor heating system. 
Component parameters (e.g. battery size) and system 
control algorithms were adapted to the requirements 

of the exemplary building scenario. However, pa-
rameter variations (e.g. variation of battery size) 
could easily be done due to the flexibility of the li-
brary components. 

Although, there are many other analyzable crite-
ria, for renewable energy systems, the ecological 
footprint is one of the most important bases of the 
decision-making. It is possible to evaluate this foot-
print by using primary energy factors. These factors 
bias different forms of energy (e.g. electricity, fuel, 
natural gas) by describing how much primary energy 
(e.g. coal-equivalent) is required for their provision. 

Fig. 7 shows the primary energy balance of the 
analyzed system variants. The renewable system has 
a better primary energy balance and ecological foot-
print than the conventional system since a big share 
of the electrical energy is generated by CHP and 
photovoltaics. 

Fig. 5: Renewable energy system model 

Fig. 6: Conventional energy system model 
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Another important criterion for evaluation of dif-
ferent building energy systems and connected vehi-
cles with (partly) electrified power train is the annual 
carbon dioxide emission balance. In this process all 
emissions of vehicles, heating system and electrical 
energy consumption are analyzed. 

Fig. 8 shows that the annual CO2 emission and 
electrical energy consumption of the renewable sys-
tem with PHEV are much lower than the ones of 
conventional system. The main reason is the electric-
ity output of photovoltaics and CHP. This helps to 

maintain a high renewable mileage of the PHEV in a 
typical commuting situation with 30 km of daily 
driving. With the regarded vehicle, this cycle could 
be covered almost completely on battery. The only 
exceptions were some winter days where the com-
bustion engine was needed.  

Compared to the conventional system, the CO2 
emission for heating in the renewable system is 
higher. This is caused by electricity conversion and 
by the marginally lower thermal efficiency of the 
CHP (92% of CHP compared to 98% of condensing 

Fig. 7: Comparison of relative primary energy balance 

Fig. 8: Comparison of relative primary energy balance 
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boiler). 
The total CO2 emission of the whole energy sys-

tem (building combined with vehicle) of the conven-
tional system is about 55% higher than the one of the 
renewable system. This significant impact of the sys-
tem on the environment can now be measured 
against investment cost or production resources. 

The system can be optimized further to avoid grid 
storage (grid feed-in) or towards a maximum renew-
able vehicle mileage. 

For the ratio between renewable energy and fossil 
fuels used to fulfill the individual mobility demand, 
i.e. the annual distance driven only using renewable 
energy, the size of the stationary battery is essential. 

With the stationary battery, the energy income 
(CHP, PV at noon) can be decoupled from energy 
usage (charging at night).The basic simulated opera-
tional strategy (also defined in Modelica) was to 
charge the stationary battery whenever photovoltaic 

energy was available and to transfer this energy to 
the vehicle when docked. The difference to the ener-
gy requested by the vehicle was taken from CHP and 
grid. Values for losses in battery and converters 
matched those of the real components. This way a 
bigger amount of PV-energy in the stationary battery 
results in a higher renewable mileage. 

To evaluate the influence of stationary battery ca-
pacity, the scenario was simulated with four sizes of 
relative 100%, 50%, 30% and 10%. Fig. 9 shows that 
the PHEV with the biggest battery size is driven with 
an average ratio of 95% renewable energy during the 
year while the smaller ones have ratios of 91%, 62% 
and 24%.  

So, with a slightly worse primary energy balance 
(about 7%) due to less grid-feeding, the biggest bat-
tery offers almost complete renewable mileage for 
the PHEV. With the half size battery, the coverage is 
still more than 90%. 

Fig. 9: Ratio of renewable energy to total vehicle energy demand 

Fig. 10: annual renewable ratio of vehicle energy depending on relative battery capacity 
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Obviously, with increasing battery size, i.e. ca-
pacity, the achievable annual renewable energy ratio 
on mobility increases monotonically (fig. 10). Be-
cause of the presented operating strategy for the pho-
tovoltaic system, the more capacity of the stationary 
battery is available the more renewably energy can 
be used to recharge the vehicle. An asymptotic max-
imum (fig. 10) occurs because the PHEV uses the 
internal combustion engine under cold outside tem-
peratures, thus not using renewables. 

Comparing battery costs leads to an optimum re-
garding battery size and annual renewable mobility 
energy ratio. This optimum can be calculated using 
annual capital costs for battery versus the achievable 
renewable energy ratio on annually driven distance.  

The same evaluation and optimization could be 
done using different operational strategies, compo-
nent (PV) sizes, vehicles or driving cycles. Even ro-
bustness to stochastic user behavior could be ana-
lyzed using the described holistic energy simulation 
approach.  

6 Summary and Conclusions 

The presented Modelica-based simulation library 
enables the modeling of various architectures for 
building energy systems including vehicles with 
(partly) electrified power trains. Simulation with the-
se models creates a multitude of results, which can 
be used for evaluating and optimizing these systems 
using different criteria. Some criteria like battery size 
were presented within this paper. The more complex 

energy systems get, the larger the potential for  opti-
mization.  

Besides the evaluation of energy system variants, 
the new Green Building framework (fig. 11) offers 
the capability of model-based development also for 
energy management algorithms in buildings or pre-
dictive renewable operation strategies for vehicles 
with electrified power trains. 

Current work aims to improve the library with 
new component models like phase changing material 
(PCM) thermal storages and more top-level models 
for even easier use. A second major research objec-
tive is to create new energy management algorithms 
for the complete system using real-prediction and 
simulation [3]. 

Since renewable energies are still expensive in 
terms of money and production resources, an effi-
cient use of these systems is essential. 
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Fig. 11: Toolchain of simulation framework [1] 
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Abstract 

Model-based development plays a central part in op-

timizing existing transmission designs and exploring 

new system architectures. Design iterations and per-

formance evaluations are done through virtual proto-

types of the transmission systems, used in hardware-

in-the-loop (HiL) simulations. In this paper, 

MapleSim’s Driveline Component Library is intro-

duced. The combination of this Modelica library and 

Maple’s core symbolic technology, enables engi-

neers to include more detail into their models target-

ed for real-time simulation of transmission systems. 

The paper also includes some results from the work 

at Aisin AW in modeling transmissions and HiL test-

ing. 

Keywords: Transmissions; Hardware-in-the-loop; 

symbolic calculations 

1 Introduction 

As automotive manufacturers strive to meet and ex-

ceed performance requirements on fuel efficiency 

and ride comfort, they have focused increasingly on 

the transmission design as one of the key factors. 

Engineers are putting tremendous effort into deter-

mining exactly how the power is lost, and what can 

be done to reduce losses and improve overall fuel 

efficiency. As a result, the transmission industry is 

now actively involved in optimizing existing trans-

mission designs and exploring new system architec-

tures. At the same time, transmission controllers are 

becoming more complicated and more detailed prod-

uct testing is needed than ever before. 

Model-based development (MBD) plays a central 

part towards achieving these goals. Design iterations 

are done through virtual prototypes of the transmis-

sion systems, used in hardware-in-the-loop (HiL) 

simulations. Virtual prototyping can yield more effi-

cient products at significantly reduced costs by al-

lowing engineers to address design issues long be-

fore they invest in physical prototypes. 

In this paper we report on some of the activities 

under taken at AISIN AW in Japan regarding HiL 

simulation and the use of MapleSim environment to 
accelerate the development of automatic transmis-
sions. The requirements for low calculation cost 

plant models for real-time simulations were met by 

creating the gear train part of the model in 
MapleSim. These models are then exported as opti-

mized c-code for implementation into the HiL sys-

tem. 

2 Transmission Modeling Using the 

Driveline Component Library 

The transmission models referred to in this paper are 

built using the components from the MapleSim 

Driveline Component Library (DCL) [1] as well as 

other components from the Standard Moldelica Li-

braries [2]. DCL covers all stages in a powertrain 

model from the engine through to the differential, 

wheels and road loads (See Figure 1). Furthermore, 

the library allows for flexible inclusion of power loss 

data that best reflect the way in which the loss data 

was acquired. 

In the remainder of this section, some of the fea-

tures of the components used in modeling transmis-

sions are discussed. 

2.1 Clutches and Brakes 

As part of the standard component library, MapleSim 

provides two clutch models: a standard, controllable 

friction clutch and a one-way clutch [2]. 

In DCL, these models are expanded; clutch and 

brake models provide a real output port for the loss 

power and a Boolean output port to indicate clutch 

lock-up. There are also other formulation improve-

ments that make DCL models perform better when 

used with fixed-step integrators usually encountered 
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in real time applications and Hardware-in-the-Loop 

simulations. 

Figure 1: Driveline Component Library 

2.2 Torque Converter 

The torque converter is modeled using tables of 

measured data. The following characteristics are 

used: 

• Torque Ratio  vs Speed Ratio  

• Load Capacity  vs Speed Ratio  

Where subscripts “t” and “p” designate turbine and 

pump quantities, respectively. The required data can 

be given as tabulated data. The Torque Converter 

component supports two alternative formulations 

based on the following definitions of the load capaci-

ty : 

  

  

Backward flow, happens during deceleration of 

the vehicle where the vehicle kinetic energy is 

transmitted back through the transmission to the en-

gine. In this situation, the turbine is pumping and the 

pump is acting as a turbine. Since torque converters 

are not designed to work optimally this way, the 

torque converter will have very different characteris-

tics. This is accommodated in the lookup table data 

by providing torque ratios and capacity values for 

, typically up to about 5. 

In the test model shown in Figure 2, the input 

(pump) torque is increased linearly for the first 10 

seconds.  At low speeds, between t = 0 and 4 s, the 

turbine torque increases faster than the input torque. 

This is the “torque multiplication” effect typically 

seen in the torque converters [3]. Due to the inherent 

inefficiencies in the mechanism, the turbine speed is 

slightly less than the pump speed while the torque is 

driving the pump.  

 

 
Figure 2: Torque converter test model 
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Note that when the input torque drops at t = 15 s, 

the kinetic energy of the dynamometer changes the 

torque flow from forward to backward (i.e. turbine 

drives the pump), and the pump speed drops below 

the turbine speed. 

2.3 Gears, Gear Sets, and Transmissions 

DCL includes simple and compound gear sets and 

related actuation components for modeling gear 

trains and transmissions (see Figure 1). The 

Ravigneaux gear set component is discussed in the 

following as an example of the compound gear com-

ponents in DCL. 

 

Ravigneaux Gear Set 

The Ravigneaux configuration is a basic automatic 

transmission planetary assembly. As shown Figure 3, 

this configuration is constructed internally using 

three Planet-Planet components and one Planet-Ring 

component. 

 

 
Figure 3: Internal structure of the Ravigneaux 

Gear 

 

Lepelletier Gear Sets 

There are two Lepelletier Actuation components (6-

speed and 7-speed) provided in DCL which can be 

used together with a Ravigneaux gear and a plane-

tary gear to create 6-speed or 7-speed transmissions 

as shown in Figure 4-a and 4-b, respectively. 

 
Figure 4: Building 6-speed (a) and 7-speed (b) 

transmissions with the Lepelletier Actuation 

components 

2.4 Incorporating Losses 

As shown in Figure 5, all of the gear components in 

the DCL can easily be switched from ideal (i.e. no 

losses) to lossy where power losses due to tooth-

meshing are accounted for [4]. 

 

 
 

Figure 5: Fundamental GUI option for all gears – 

ideal = true/false 

 

In lossy mode, the meshing friction is expressed 

as a transmission efficiency ( ) 

which may be defined as a function of the gear angu-

lar velocity via data tables. The user has the option to 

provide an efficiency table for each meshing gear 

pair in the gear set individually. 

In compound gear sets (Planetary Gear, Dual-

ratio Planetary Gear, Counter-rotating Planetary 

Gear, Ravigneaux Gear, Simpson Gear, and CR-CR 

Gear), internal bearing damping can be added using 

the component options. Bearing friction can also be 

added using external Bearing Friction components 

by enabling the optional “planet flanges”. Figure 6 

shows a Counter-rotating Planetary Gear component 

with added bearing friction losses. The bearing fric-

tion is expressed as a torque loss and is related only 

to the shaft speed [2]. 
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Figure 6: Adding bearing friction to gear sets 

3 Advantage of the Symbolic Tech-

nology 

Symbolic techniques turn out to be a critical ingredi-

ent, both to enable efficient modeling of these com-

ponents as well as to generate optimized code, yield-

ing the required HiL execution speed. MapleSim’s 

symbolic capabilities are enabled by an underlying 

Maple computation engine [6], providing extremely 

efficient symbolic operations that are necessary for 

handling the thousands of system equations typically 

found in the transmission models. 

A common characteristic of Modelica environ-

ments is that system models are built by assembling 

components using “physical” connections, carrying 

quantities like torque and rotational angle bi-

directionally between the two components. The deci-

sion on causality of the model is deferred to simula-

tion time, just before the numeric integration process 

is started.  This is possible because the entire set of 

equations for the whole system is generated symbol-

ically, as a first step. At this point we typically have 

a set of differential algebraic equations. As shown in 

Figure 7, several steps are necessary before these 

equations can be solved numerically, yielding simu-

lation results and/or HIL code. These steps are dis-

cussed next. 

3.1 Equation Simplification 

The initial set of equations generated from the sys-

tem model is typically large and contains many re-

dundancies. Symbolic techniques are used to simpli-

fy this set of equations as much as possible. The 

simplifications are exact and do not result in any loss 

of fidelity in the model. Trivial equations of the form 

a = b are removed. Linear equations are pre-solved 

analytically. Reducing the number of equations by a 

factor of ten is not uncommon. This simplification 

step is key to the scalability of the remaining pre-

processing steps. 

 

 
Figure 7: Steps towards numerical simulation 

3.2 Index Reduction 

The generated system consists of differential alge-

braic equations (DAEs). Such equations cannot be 

readily solved with standard numerical techniques 

because of the presence of algebraic constraints. The 

“index” of a DAE is loosely defined as the number 

of times the equations need to be differentiated in 

order to remove these constraints. The goal here is to 

reduce the system of equations to “index 1”, allow-

ing numeric integration. During integration, the con-

straints are monitored for “drift”, ensuring an accu-

rate solution, reflecting the behaviour of both the 

differential equations as well as algebraic con-

straints. Again, symbolic techniques turn out to be 

essential, allowing differentiation of equations and 

efficient index reduction. 

3.3 Causalization 

At this point, we have a simplified system of (index 

1) differential equations. In order to numerically 

solve this system, we will need to repeatedly evalu-

ate the system for a particular point. To enable this, 

we will need to turn our (acausal) system of equa-

tions into a (causal) sequence of numeric operations. 

In short, this process involves imposing an order of 

evaluation onto our set of equations. Doing this effi-

ciently involves tools from graph theory, readily 

available in the symbolic computing tool chest. 

3.4 Optimized Code Generation 

Executing speed is critical to HiL applications and 

symbolic techniques again turn out to be key to gen-
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erating highly efficient code. It is, of course, possible 

to generate code directly from the causal system of 

equations described above. However by looking at 

those equations globally, we are able to perform 

symbolic optimizations prior to generating code, 

which makes the difference between achieving the 

required HiL cycle times or not. These optimizations 

involve detecting common computation sequences 

that can be factored out, which go way beyond the 

(local) optimization capabilities of available compil-

ers. 

3.5 Two Examples 

A Simple Driveline Model: 

Consider the driveline mode shown in Figure 8. 

The model represents a vehicle powertrain from en-

gine to dynamometer. The model includes a torque 

converter between the flywheel and the transmission.  

The transmission is a 4-speed Ravigneaux gearbox. 

Using throttle and brake controllers, the speed is 

changed following a ramp-up/coast down profile. 

Using MapleSim’s API commands from Maple, 

the simulation time is measured. A fixed time-step 

solver (Euler) is used here with a time step of 0.001 

sec. Total simulation time is 150 seconds. The simu-

lation was done on a 64-bit Windows 7 machine with 

Intel(R) Core(TM) Duo 2.40 GHz CPU. Figure 9 

shows Maple’s commands for this example. These 

command extract and simplify the model 

equationsand convert them to optimized c-code. The 

simulation results are obtained from a Maple proce-

dure which includes the complied c-code. 

 

 

 
Figure 8: An example of a complete powertrain. 

 

The simulation was done over 15 times faster 

than real-time (i.e. ~10 second of integration time for 

a 150-second simulation). In 20 consecutive runs the 

average simulation time was 9.68 with standard de-

viation of 0.30. 

 

 
Figure 9: Running MapleSim simulation using 

API commands in Maple 

 

A Vehicle Model with Mean-value Engine Model: 

The system in Figure 10, is the second example cho-

sen for the real-time demonstration. This model is 

considerably more complex than the previous exam-

ple and includes a detailed mean-value engine model 

[7] and a 4-speed transmission model. The 

MapleSim model uses the New York City Cycle [8] 

and runs for 600 seconds. Simulation timing was 

done under similar solver settings as the previous 

example. The same computer was also used. On av-

erage the simulation was done about 12 times faster 

than real-time (i.e. ~50 second of integration time for 

a 600-second simulation). Based on 15 consecutive 

runs the average simulation time was 50.2 seconds 

with standard deviation of 0.54. 

4 HiL Simulation of the Automatic 

Transmissions 

At AISIN AW, HiL simulation is extensively used to 

accelerate the development of automatic transmis-

sions. The plant models for HiL simulations require 

sufficiently high fidelity to accurately represent the 

aspect of the system dynamics important to the de-

signers. At the same time, these models have to have 

low calculation cost in order to enable real-time exe-

cution. 

As shown in Figure 11, the real-time platform used 

in the HiL simulations reported here is the ADX sys-

tem [9] from A&D Technology, Inc.  

The plant model is deployed in Simulink [10] and 

can be separated into two parts as depicted in Figure 

12. The first part is the plant model which is con-

structed of the s-function generated from MapleSim 

models including clutches, brakes, and various gear 

sets. This part also includes Simulink blocks for oth-

er parts of plant model. The second part is the auto-

matic testing module. 

It is critical that the calculation time associated 

with the first part (plant model) is kept as low as 
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possible to accommodate for the high execution 

times of the increasingly more complex automatic 

testing routines implemented in the testing module. 

 

 
Figure 11: HiL simulation system 

 

 
Figure 12: Model for Real-time system 

 

A sample gear train is shown in Figure 13 which 

includes a planetary gear, a Ravigneaux gear, and a 

basic gear connected together using three clutches, 

two brakes (modeled using clutch components), and 

a one-way clutch. This gear train is connected to an 

ideal gear which represents the differential gear ra-

tio. The tire load is modeled using additional inertia, 

clutch, and brake components. The tire component 

and the longitudinal vehicle dynamics component 

(refer to Figure 1) are not used here since that level 

of fidelity is not necessary for the intended HiL sim-

ulations. 

Figure 14 shows the HiL simulation results with 

s-function generated from MapleSim. Compared 

with another software previously used, it was shown 

that for the above model, the implementation of the 

s-function generated from MapleSim in the HiL sim-

ulations with a sampling time of 1ms, reduced the 

overall CPU time by 250s (or 25% of a time step). 

This reduction is due to fact that the MapleSim’s s-

function runs twice as fast as the previously imple-

mented block. 

5 Conclusions 

In this paper some of the features of the Driveline 

Component Library – an add-on Modelica library for 

MapleSim modeling, simulation, and analysis envi-

ronment – were introduced. The Driveline Compo-

nent Library provides a comprehensive set of com-

ponents that enable transmission manufacturers – as 

well as other automotive developers – to convenient-

ly create plant models for control and simulation. 

The underlying symbolic computation engine of 

MapleSim (i.e. Maple) expands the inherent ad-

vantages of similar Modelica-based physical model-

ing tools to new heights. Benefiting from the power 

of symbolic computing, MapleSim can generate ex-

tremely fast code that is of vital importance when 

simulating large complex systems in real-time.  

Figure 10: Full vehicle model in MapleSim 
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Figure 13: Gear train model created in MapleSim 

 

Figure 14: A sample of HIL simulation results 

 

The paper also included a brief description of the 

activities at AISIN AW on the development of new 

automatic transmissions and their use of MapleSim 

and the Driveline Component Library in HiL simula-

tions. The optimized c-code generated by MapleSim 

from transmission plant models enabled AISIN AW 

to perform more detailed HiL simulations. In a sam-

ple case study, it was shown that the s-function gen-

erated by MapleSim ran twice as fast as the s-

function generated by a similar tool. 
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Abstract

This work demonstrates the compact but powerful
freely available Modelica library ADGenKinetics for
descriptive modeling of biochemical reaction net-
works using simplified kinetics formats. While exist-
ing powerful works and guidelines for modeling bio-
chemical reaction networks based on classical mech-
anistic kinetics already exist, in this work a first at-
tempt of utilizing the power of Modelica constructs
for providing a compact implementation of simplified
kinetic formats with generalized structured formulas
is presented. This gives the opportunity of realizing
biochemical reaction networks using few number of
reaction components, in contrast to libraries based on
classical mechanistic kinetics which require hundreds
of reaction components. Moreover, ADGenKinetics
is the first algorithmically differentiated Modelica li-
brary that is enhanced with differentiated components
by which parameter sensitivities are additionally com-
puted with minimal efforts from the user perspective.

Keywords: enzyme kinetics, biochemical reaction
networks, systems biology, algorithmic differentiation

1 Introduction

Modelica as a universal modeling language with a lot
of capabilities for supporting hierarchical modeling,
multidisciplinary modeling, object-oriented reusable
components and different modeling flavours with a
large degree of freedom and creativity is continuously
attracting the attention of many scientific fields.
However, in the field of Systems Biology aiming at
studying cellular process with the aid of mathematical
models, there are still few published non-standardized
attempts for modeling biochemical reaction networks
for describing the metabolism within cellular activi-
ties, one of the core modeling activities demanded by
many applications of the field of Systems Biology.

This work demonstrates a comprehensive overview
of the compact Modelica library ADGenKinetics for
a specific set of reaction kinetics. These subsets of
enzyme kinetics are referred to as simplified kinet-
ics formats and are represented by generalized struc-
tured kinetics formulas suitable for biochemical reac-
tions with arbitrary number of substrates, products, in-
hibitors and activators. The employment of general-
ized kinetics have two advantages from two perspec-
tives:

1. From the modeling perspective: Utilization of
generalized kinetics formulas provides the oppor-
tunity of implementing a compact library with so
few numbers of components that the user nei-
ther needs to choose an enzyme kinetic compo-
nent from a long list of components nor needs to
self implement newer enzyme kinetics for newer
cases of non considered reactions

2. From the implementation perspective: By ef-
ficient employment of powerful Modelica lan-
guage constructs, the implementation of highly
specialized practical library for modeling bio-
chemical network applications gets simplified.

The proposed library is distinguished by the following
criteria:

• It is suitably adequate to get linked with special-
ized graphical editors for modeling biochemical
reaction networks and for other applications of
automatic model generation

• It is the first algorithmically differentiated library
by which algorithmic differentiation (AD) tech-
niques [6, 11] are directly applied at the library
level [5]. The resulting additional subpackage
contains extended components in which param-
eter sensitivities, i.e. derivatives of model vari-
ables w.r.t. model parameters, are represented.
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• it is open-source and provided under the Model-
ica License 2.

The rest of the work is structured as follows: section 2
presents a quick introduction to biochemical networks
modeling. Section 3 gives rather a quick overview of
various classical and simplified kinetic laws but com-
prehensive enough for appreciating this contribution.
Section 4 demonstrates the proposed library, its ad-
vanantages and limitations along an example in section
5. Finally, outlook is given in section 6.

2 Background and Terminology

2.1 Modeling biochemical reaction networks

Biochemical reaction network models are used for de-
scribing the dynamics of molecular species and their
interaction within the cellular metabolism [9]. Usually
such models are based on the continuum1 and homo-
geneity assumptions2. The law of mass conservation3

is used for describing the rate of change in the mass of
intermediate metabolites (i.e. biochemical substances)
in a biochemical reaction network. The resulting mod-
els typically have the following structure:

ċ = N · v(c,α), c(0) = c0 (1)

where c ∈ Rm stands for vectors of the metabolite con-
centrations, v = v(c, p) ∈ Rn is a vector of reaction
rates described by enzyme kinetics, α is kinetic pa-
rameters vector describing enzyme characteristics and
N ∈ Rm×n is the reactions stoichiometry describing the
number of participating molecules in any single reac-
tion [15].

Figure 1 demonstrates a typical biochemical net-
work of enzymatic reactions termed as the Spiral-
lus which represents an abstraction of Tri-Carboxylic
Acid (TCA) cycle [14]. The set of freely distributed
metabolites A,B,C,D,E,F are viewed as nodes, while
the reactions are viewed as intermediate edges among
the metabolites [2]. With the presence of substrates
being taken up through the initial reaction vupt , in-
termediate reactions become active and the two prod-
ucts Eex,Fex get produced as long as enough substrate
molecules are taken up. Some of the reactions are ir-
reversible such as v3 (i.e. the flow of materials is con-
ceptually only in the forward direction) while others

1All chemical species involved have such a high copy number
to be described by a continuous concentration value

2Diffusion processes are so fast that concentrations can be con-
sidered to be spatially homogeneous

3the mass within a closed system remains constant over time

Figure 1: Spirallus: An Abstraction of the TCA cycle

are reversible such as v1. The reactions vupt ,v3,v4 are
inhibited by the molecules of the metabolites A,D,C
acting as inhibitors respectively. Analogously, specific
molecules of metabolites may act as activators by ac-
celerating certain reactions. Inhibitors and activators
are referred to as effectors or modifiers. A mathemati-
cal model for describing the process dynamics is given
as follows:

˙[A] = vupt − v1
˙[B] = v1 − v2 − v5

˙[C] = v2 − v3
˙[D] = v3 − v4

˙[E] = v4 + v5 − v2 − v6
˙[F ] = v3 + v4 − v7

The state variables A,B, ..,Fex corresponds to the con-
centration of metabolites. The algebraic variables v j

describe the reaction rates via algebraic functions re-
ferred to as enzyme kinetics, the topic of the following
section.

3 Enzyme kinetics

Vital cellular processes at the metabolism level are per-
formed according to the present set of enzymatic reac-
tions networks. The base elements of such networks
are the involved enzymatic reactions. For instance,
within an uni-uni enzymatic reaction in the form:

S+E
k1−−⇀↽−−
k−1

ES k2−→ E +P (2)
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the molecules of the specific enzyme E binds with
the molecules of the substrate S according to a rate
constant k1. Similarly, k−1 is a rate constant describ-
ing the decomposition rate of the complex ES into E
and S. The resulting enzyme-substrate complex ES
molecules are vastly transformed to the product P. The
reaction rate v of such transformation, i.e. product for-
mation, is modeled by enzyme kinetics. Such kinetics
typically correspond to nonlinear functions of the fol-
lowing form:

v(t) = e · f (c(t),α) (3)

where e is the amount of the associated enzyme, α a
set of parameters corresponding to enzyme character-
istics and c(t) the concentration of the involved sub-
strates, products and effectors [1]. In case of a re-
versible reaction, f can be usually expressed in terms
of forward and backward reaction rate as v = v f wd −
vbwd . In this case, the overall direction of the reaction
is then the sign of v. Many enzyme kinetics approaches
for describing the function f exist some of which are
demonstrated in the following subsections.

3.1 Mechanistic kinetics

In order to emphasize the importance of simplified ki-
netics formats, the widely used classical mechanistic
kinetics are introduced as a motivation. Mechanis-
tic kinetics describe the reaction rates of biochemi-
cal enzymatic reactions by involving the underlying
enzyme binding mechanisms within the mathemati-
cal model. For instance, the simple reaction (2) is
modelled by Michaelis-Menten kinetic. Its analytical
derivation based on the quasi-steady state assumption
(i.e. k−1,k1 ≫ k2) leads to the following formula:

v =
k2[E]0[S]

k−1+k2
k1

+[S]
=

Vmax[S]
Km +[S]

(4)

The parameter Km corresponds to the substrate con-
centration that yields the half-maximal reaction rate
Vmax/2. These two parameters represent enzymatic
characteristics demonstrating how quickly the enzyme
becomes saturated and what its maximum activity is.

Reactions with effectors

For enzymatic activities influenced by effectors vari-
ous types and binding mechanisms exist, cf. figure 2
for various inhibition mechanisms. Mechanistic kinet-
ics distinguish such types of inhibitions mechanisms
through their mathematical formulation according to
whether

Figure 2: A summary of different types of inhibition
mechanisms

• the inhibitor binds to the complex ES

• the inhibitor binds to S

• the reversibility of the inhibition

For instance, the analytical derivation of a mechanistic
kinetic for an irreversible reaction inhibited by I ac-
cording to complete competitive inhibition leads to:

v =
Vmax[S]

Km(1+[I]/KI)+ [S]
(5)

Where KI is a parameter that expresses the ratio of EI
formation to EI decomposition. Within competitive
inhibition, the inhibitor I competes with the substrate S
for binding with the enzyme E. In this case, the release
of P is blocked by I, cf. figure 2. Similar discussion
regarding activation mechanisms leads to the fact that
a wide range of mechanistic kinetics formulas exists
distinguishing all these various mechanisms.

Multi-substrate reactions

For cellular reactions with more than one substrate
and one product, very likely to arise in the cellular
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metabolism, mechanistic kinetics are more sophisti-
cated. Their analytical derivation additionally consid-
ers the sequence in which substrates bind and products
are released. For example, within a bi-bi reaction, (two
substrates S1,S2 and two products P1,P2) the underly-
ing enzymatic mechanisms are differentiated accord-
ing to whether binding to enzyme is done

• in random order, (i.e. E binds with both of S1 and
S2 in any order)

• in a sequential order, (i.e. S2 binds only with the
complex ES1)

• in an alternate binding of substrates and release
of products (ping-pong mechanisms)

as well as

• which intermediate complexes are formed (only
ES1, ES2 or also ES1S2)

• Interactions among reactants (e.g. inhibition
through product formation)

For example, the kinetic of an ordered bi-bi reaction
(i.e. binding in a specific order)

E +S1 ⇀↽ ES1 +S2 ⇀↽ ES1S2 ⇀↽

EP1P2 ⇀↽ P1 +EP2 ⇀↽ E +P1 +P2 (6)

is described with the equation:

v =
Vmax[S1][S2]

KiS1KmS2 +KmS2 [S1]+ [S1][S2]
(7)

In summary, each combination of assumptions re-
garding the underlying enzymatic reaction leads to
a unique kinetic formula. This results in enormous
number of possible equation patterns corresponding
to combinatorially high number of different assump-
tions. Such equations do not necessarily follow a gen-
eral equation pattern if they are expressed in terms
of mechanistic parameters rather than elementary rate
constants ki. This causes some difficulties by modeling
since hundreds of components need to be separately
implemented for expressing different enzyme binding
mechanisms.

3.2 Generalized kinetics formats

As already shown, mechanistic kinetics characterize
detailed description of the underlying enzymatic
mechanism. These kinetics pose however some prob-
lems when used for describing enzymatic reactions

within cellular environment. Under such crowded
conditions, a lot of effectors may influence the enzyme
activity. When considering all typical interactions,
the corresponding derived kinetic becomes very
complex and parameter dependencies are enhanced
when estimating the parameters with experimentally
generated data leading to serious problems in the
process of model identification [16].

This argument motivates the use of generalized ki-
netics which relay on more simplified assumptions two
of which are introduced. The first type is the so-called
convenience kinetics which assumes a reversible rapid
equilibrium with random binding mechanism [10]. In
this way, the corresponding kinetic of any reaction
with arbitrary number of substrates Si, products Pj, in-
hibitors Ib and activators Aa becomes:

v = ∏
a

KAa +[Aa]

KAa

·∏
b

KIb

KIb +[Ib]

·
V f wd

max ∏
i

[Si]

KmSi

−V bwd
max ∏

j

[Pj]

KmPj

∏
i

(
1+

[Si]

KmSi

)
+∏

j

(
1+

[Pj]

KmPj

)
−1

(8)

Another kinetic format is the linlog kinetic [8] given
by:

v = v0 +∑
i

αi · ln(
Si

S0
i
)+∑

j
β j · ln(

Pj

P0
j
)+

∑
a

γa · ln(
Aa

A0
a
)+∑

a
δb · ln(

Ib

I0
b
) (9)

In contrary to mechanistic parameters, which pro-
vide descriptive physical insights into enzymatic
mechanisms, linlog parameters are based on scaled
sensitivities describing the influence of characteristic
changes of enzymes on a referenced reaction rate at a
reference steady-state v0.

One of the main advantages of the presented kinet-
ics in the context of this work is that they are expressed
in terms of generalized structured formulas very ade-
quate for compact implementation and automatic gen-
eration of highly complex models. However, one of
the limitation of such kinetics is that they may not
describe the enzymatic behavior accurately in some
boundary cases as shown in [7].

ADGenKinetics: An Algorithmically Differentiated Library for Biochemical Networks Modeling … 

 

918 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076915 



 

 

4 Overview of the library

4.1 The Biochem Library

For modeling biochemical networks with Modelica,
considerable efforts have been realized by the Biochem
library [12]. It provides the essential guidelines and
design principles for achieving this goal, eg. basic im-
plementable interfaces and basic types. According to
the available publications, Biochem provides about 99
abstract reaction types under the restriction that a re-
action can get connected to at most three substrates,
three products and one effector. Out of these abstract
types, many mechanistic reaction kinetics can be de-
rived. Within the library Metabolic, a published im-
plementation of Biochem, at least 180 kinetics are im-
plemented and classified according to the number of
substrates and products within many sub-packages. If
all combination of reaction assumptions are consid-
ered, still many hundred of reaction kinetics need to
be inserted. If more than one effector is considered,
a realistic scenario for biochemical reaction networks
in cellular environment, the number of required com-
ponents corresponding to various kinetics would be so
high.

4.2 The ADGenKinetics Library

In this work, a compact implementation of simpli-
fied kinetics is demonstrated following the main
guidelines provided by Biochem w.r.t. the library
structure, physical units, naming conventions and
some of the implementation. The main differences
appear whenever the mathematical structures of the
simplified kinetics are utilized for implementing
interfaces for the underlying generalized formulas.
These interfaces are specialized according to the
number of reactants, products, specific effectors,
reversibility etc. By exploiting powerful Modelica
constructs, realization of simplified kinetics require
very few number of components out of which realistic
biochemical networks are easily constructed, modeled
and simulated. On the other hand classical mech-
anistic kinetics within implementation of Biochem
requires a large number of components. Users are
likely to insert additional kinetics whenever new or
slightly modified biochemical reaction networks need
to be modeled.

Figure 3 summarizes the presented library. The fol-
lowing packages are available:

• Interfaces: connectors, classification interfaces

and icons

• NodeElements: components for nodes

• Reactions: components for reactions

• Derivatives: extended components for computing
parameter sensitivities

• Examples: biochemical network models

Further two subpackages within NodeElements and
Reactions exist corresponding to two ways of decla-
ration of connectors within components:

1. dynamic: parametrized number of connections

2. static: fixed number of connections

The main differences of both ways and their advan-
tages and disadvantages are emphasized in this section
along with the given examples. Common interfaces
and abstract classes are located above these packages.

4.3 Connectors

The fundamental laws on which biochemical reaction
network models rely i.e. the continuum and homo-
geneity assumptions and the law of conservation (cf.
section 2.1) translates into the terminology of Model-
ica as follows:

Listing 1: Implementation of chemical ports
connector ChemicalPort

"reaction connector from a node to

a reaction"

Units.Concentration c "Concentration";

flow Units.VolumetricReactionRate r

"reaction rate";

end ChemicalPort;

That is, the concentration of a substance is the
potential variable while the flow rate of materials
represents the flow variables when connecting nodes
and reactions together. The mathematical models of
biochemical reaction networks do not require a node
to distinguish between a connection from an ingoing
reaction and a connection to an outgoing reaction.
The sign of the reaction rate is explicitly determining
whether the considered node is a substrate or a product
of the connected reaction.

This situation is different with connections to nodes
from a reaction side. The kinetic formula distinguishes
between a substrate node and a product node, cf. equa-
tion (8). Consequently additional connectors, Chem-
icalPort_S, ChemicalPort_P extending the connector
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Figure 3: An overview of the library with static/dynamic number of connections

ChemicalPort with distinguished icons for differenti-
ating between connections to substrates and connec-
tions to products are considered. Additionally, the spe-
cialized connector ModifierChemicalPort between ef-
fectors and reactions is provided. This connector in-
cludes only the concentration of the respective node.
Similarly two icons are provided to distinguish activa-
tors from inhibitors.

4.4 Nodes

In Biochem, implementation of nodes is realized at
three levels of abstraction:

1. NodeConnections: A class providing the basic in-
terfaces and icons, about 8 connectors as a reac-
tant and 4 connectors as a modifier

2. BasicNode: An abstract class realizing basic im-
plementation of nodes and extending NodeCon-
nections

3. Node: An implementation of BasicNode describ-

ADGenKinetics: An Algorithmically Differentiated Library for Biochemical Networks Modeling … 

 

920 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076915 



 

 

ing the concentration dynamics

The static subpackage is directly taken from Biochem.

In the subpackage dynamic, only one connector for
reactants and one connector for modifiers [15] is given
as follows:

Listing 2: Implementation of node connections
partial model NodeConnections

"Metabolite connections to reactions"

Interfaces.ChemicalPort rc

"connection to any reaction ";

Interfaces.ModifierChemicalPort mc

"connection as a modifier";

end NodeConnections;

The abstract class BasicNode in dynamic looks as fol-
lows:

Listing 3: Implementation of an abstract node class
partial model BasicNode

"Basic declarations of any Metabolite"

extends Interfaces.dynamic.

NodeConnections;

parameter Units.Concentration c_0=0;

Units.Concentration c(start=c_0);

Units.VolumetricReactionRate r_net;

equation

r_net = rc.r;

rc.c = c;

mc.c = c;

end BasicNode;

Direct implementation of BasicNode is realized in the
models FixedConcentrationNode and Node:

Listing 4: Implementation of a node
model Node "Metabolite with dynamic rate"

extends NodeElements.dynamic.BasicNode;

equation

der(c) = r_net;

end Node;

Further types of nodes exist in Biochem.

4.5 Reactions

Each generalized kinetic format is realized within a
subpackage. Currently, the subpackage convenience
is implemented. The realization of other simpli-
fied kinetic formats like linlog kinetics is analogously
straightforward.

4.5.1 dynamic

In this subpackage, convenience kinetics are imple-
mented by extending several abstract classes which
specifies a reaction according to:

1. its dimension: how many substrates and products
are involved as well as the stoichiometry of the
reactants

2. its reversibility

3. whether the reaction is effected by other modi-
fiers, how many and their types

The implementation of these basic classes are shown
as follows:

Listing 5: The dimension of a reaction
class ReactionDimension

"Dimension and structure of a reaction"

parameter Integer NS = 1

"Number of substrates";

parameter Units.StoichiometricCoef

n_S[NS]=ones(NS)

"Stoichiometry of all subtrates";

parameter Integer NP = 1

"Number of products";

parameter Units.StoichiometricCoef

n_P[NP]=ones(NP)

"Stoichiometry of all products";

end ReactionDimension;

Using the previous class, an abstract type for reac-
tions slightly modified version from the one provided
in Biochemis given as follows:

Listing 6: The dimension of a reaction
partial model BasicReaction

"basic declaration of a reaction"

extends Interfaces.dynamic.Dimension

.ReactionDimension;

Units.VolumetricReactionRate v

"reaction rate";

Interfaces.ChemicalPort_S rc_S[NS]

"connection to substrates";

Interfaces.ChemicalPort_P rc_P[NP]

"connection to product";

equation

rc_S [:].r = n_S [:] * v;

rc_P [:].r = -n_P [:] * v;

end BasicReaction;

Specification of the reaction reversibility is done via
the related classes OneWayReaction and TwoWayRe-
action. These classes provide the basic declaration
of related kinetic parameters and are directly taken
from Biochem. Moreover, two additional abstract
classes BasicIrrReaction and BasicRevReaction are
introduced in the proposed library for emphasizing
type abstractions among implemented kinetics:

Listing 7: Basic reversible reaction
partial model BasicRevReaction

"basic implementation of

a reversible reaction"
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extends Reactions.convenience.dynamic.

BasicIrrReaction;

extends Interfaces.Reversible.TwoWay;

Real P1 "Product terms nominator";

Real P2 "Product terms denominator";

parameter Units.AffinityConst KmP[NS]

= ones(NS) "Affinity constants of

the product node";

equation

P1 = Vbwdmax * product ({rc_P[i].c/KmP[i]

for i in 1:NP});

P2 = product ({rc_P[i].c/KmP[i] + 1

for i in 1:NP});

end BasicRevReaction;

The corresponding classes for specifying the effec-
tors are given by the classes ReactionInhibition and
ReactionActivation:

Listing 8: The inhibitors of a reaction
partial model ReactionInhibition

"Inhibition influencing a reaction"

parameter Integer NI = 1

"# Metabolites inhibiting the reaction";

Interfaces.ModifierChemicalPort_I

mc_I[NI];

parameter Units.AffinityConst KI[NI]

= ones(NI) "Affinity constant";

Real I "Inhibition term";

equation

I = product ({KI[i] / (KI[i] + mc_I[i].c)

for i in 1:NI});

end ReactionInhibition;

Using these classes, all reaction types of convenience
kinetics are realized only with 8 classes. For instance,
the implementation of convenience kinetics for re-
versible inhibited reactions with arbitrary number of
reactant substrates, products and inhibitors is given as
follows:

Listing 9: Kinetic for reversible inhibited reaction
class InhRevKinetic

"S1+S2+... <==I1 ,I2 ,..== > P1 ,P2 ,..."

extends Reactions.convenience.dynamic.

BasicRevReaction;

extends Reactions.convenience.dynamic.

ReactionInhibition;

equation

v = I * (S1 - P1) / (S2 + P2 - 1);

end InhRevKinetic;

Realistic biochemical reaction networks can be real-
ized using only these 8 classes.

4.5.2 static

This subpackage is more or less a straightforward
implementation of the Biochem guidelines except in

some details. It provides many components for de-
scribing enzyme kinetics with fixed number of sub-
strates, products and modifiers via a static number of
connectors. The implementation is done along many
levels via the following abstract classes:

1. The classes Reaction1S, Reaction2S, ... , Reac-
tion1P, Reaction2P, ... , Reaction1I, Reaction1A
etc. provide the basic icons for reactions with
specific number of connectors to substrates, prod-
ucts, etc.

2. The abstract classes BasicIrrReaction1S1P, Ba-
sicIrrReaction2S1P,...etc. provide basic imple-
mentation for kinetic terms of irreversible and re-
versible reactions with specific number of reac-
tants. Similarly, the classes BasicReaction1I, Ba-
sicReaction1I provide basic implementation for
kinetics terms of modified reactions.

3. The actual kinetics are realized within Ir-
rKinetic1S1P, IrrKinetic1S2P, ... , IrrKi-
netic1S1P1I,... etc. by extending and specializing
the abstract classes.

Using this way, many components need to be pro-
vided. For instance, by realizing reactions with two
substrates and two products together with one modifier
at maximum, there are 2 (substrates)× 2 (products)×
2 (reversibility) ×3 (effectors) = 24 components that
need to be provided. By three substrates and three
products with two modifiers at maximum, about 9×
2×6 = 108 components need to be provided.

4.6 The Derivatives subpackage

The Derivatives subpackage contains an extended
copy of the whole library with identical structure
of subpackages, interfaces and components. Each
component has additional declaration and equations
for computing parameter sensitivities. The equations
are computed using algorithmic differentiation tech-
niques. In this work, new novel AD techniques es-
pecially optimized for equation-based languages are
employed. For any model using the library typically
corresponding to a DAE system of the form:

F(ẋ,x, p, t) = 0 , x(t0) = x0(p) (10)

where x(t) ∈ Rn and p ∈ Rm represent state vari-
ables and model parameters, respectively, importing
the types within the Derivatives subpackage lets the
underlying model of eq. (10) get extended with the the
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Figure 4: Omix: a highly-specialized graphical editor
for biochemical networks

corresponding sensitivity subsystems:

[Fẋṡi +Fxsi +Fpi ]Jp = 0 , si(t0) =
∂x0(p)

∂ pi
(11)

where si =
∂x
∂ pi

for i = 1,2, ...,m

and Jp ∈ Rm×r is the input Jacobian specifying the set
of active parameters q ∈ Rr w.r.t. which derivatives
are sought. The same model simulates the underlying
biochemical reaction network together with the deriva-
tives of all variables with respect to the specified input
parameters. A usage example is available in the Exam-
ples subpackage and is summarized in the following
section.

5 Examples

The implementation of the biochemical network in fig-
ure 1 is demonstrated once with dynamic number of
connections and again with static number of connec-
tions. With dynamic number of connections, the im-
plementation is assembled as follows:

Listing 10: Implementation of the Spirallus network
with parametrized number of connections
model Spirallusdyn

"An abstraction of the TCA cycle"

import ADGenKinetics.

NodeElements.dynamic .*;

import ADGenKinetics.

Reactions.convenience.dynamic .*;

Node Aex(c_0 =1);

Figure 5: Implementation with the Dymola graphical
editor

InhIrrKinetic vupt(NS=1,NP=1,NI=1,

Vfwdmax =1.0,

KmS ={0.1} ,KI ={3.0});

ModifierNode A;

RevKinetic v1(NS=1,NP=1,

Vfwdmax =3.0, Vbwdmax =1.0,

KmS ={0.1} , KmP ={3.0});

Node B;

...

equation

// vupt

connect(Aex.rc,vupt.rc_S [1]);

connect(vupt.rc_P[1],A.rc);

connect(vupt.mc_I[1],A.mc);

// v1

connect(A.rc,v1.rc_S [1]);

connect(v1.rc_P[1],B.rc);

...

end Spirallusdyn;

The main disadvantage of this approach is that the
implementation is provided only at textual level.
Typical modeling environments of Modelica don’t
currently provide graphical support for parametrized
dynamic number of connections yet. Nevertheless,
this approach is ideally relevant for automatic model
generation possibly using specialized graphical edi-
tors for biochemical networks. For instance, figure
4 shows a snap shot of Omix [2] a general-purpose
editor for constructing, editing and visualizing
biochemical networks in a semi-automatic manner.
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Figure 6: Concentration of the substances

Omix is enhanced with a plugin for parsing and
generating Modelica models [13]. The tool employs
Open Modelica Compiler (OMC) for parsing a
Modelica library for biochemical network modeling
and identifying existing types of kinetics and nodes.
Then OMC is again used for automatically generating
the corresponding models that can be then simulated
using typical Modelica simulation environments as
described in [3] in a very similar manner to the tool
provided in [4]. The presented library would be ideal
for such a tool or any other SBML-based graphical
editor using very similar concepts.

With the static components of fixed number of con-
nections, biochemical network models can be directly
assembled with common Modelica simulation envi-
ronments. For instance, figure 5 provides the imple-
mentation of the network model using Dymola. Fig-
ures 6 and 7 demonstrate the simulation results of
the concentration of chemical substances and the re-
action rates of reactions of the Spirallus network, re-
spectively. Using the subpackage Derivatives, pa-
rameter sensitivities can be computed in a straight for-
ward way. For the Spirallus example, this can be done
by slightly modifying the declaration part of the code
from listing 10 to the following:

Listing 11: Implementation of the dynamics of the
Spirallus network together with the parameter sensi-
tivities
import ADGenKinetics.Derivatives.

NodeElements.dynamic .*;

import ADGenKinetics.Derivatives.

Reactions.convenience.dynamic .*;

import ADGenKinetics.Derivatives.

Functions .*;

Figure 7: Reaction rates of reactions

inner parameter Integer NG = 24

"Number of gradients";

Node Aex(c_0 =1);

InhRevKinetic vupt(NS=1,NP=1,

Vfwdmax =1.0, g_Vfwdmax=unitVector (1,NG),

KmS ={0.1} , g_KmS={ unitVector (2,NG)},

KI={3.0} , g_KI={ unitVector (3,NG)});

...

IrrKinetic v7(NS=1,NP=1,

Vfwdmax =2.0, g_Vfwdmax=unitVector (23,NG),

KmS ={3.0} , g_KmS={ unitVector (24,NG)});

Node Fex;

equation

// equations remain as before

...

In the last model, the standard types for nodes and re-
actions are replaced by the extended types within the
subpackage Derivatives. An additional unique param-
eter NG is declared, specifying the number of active
parameters w.r.t. which derivatives are sought. Fi-
nally, the input gradient of any parameter p is ini-
tialized with the help of the function unitVector(i,NG)
which returns a unit vector of length NG with the ith
component equal to one. In this way, for any vari-
able v, g_v[i] corresponds to ∂v/∂ p. For parameters
with non-initialized gradients, they simply become in-
active. Figure 8 shows the parameter sensitivities of
the reaction v7 w.r.t. all kinetic parameters.

6 Outlook

In this work, a Modelic library for implementing gen-
eralized kinetics formats based on justifiable simpli-
fication assumptions is provided. With the help of
Modelica language constructs, the opportunity of real-
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Figure 8: Parameter sensitivities of v7

izing real-life applications with few number of compo-
nents is given. Consequently, the library is especially
adequate for tools requiring automatic model genera-
tion. Moreover, this library follows the main guide-
lines of Biochem making it possible to get integrated
with other existing implementation. The presented li-
brary is the first algorithmically differentiated Mod-
elica library. With minimal additional user efforts,
base models additionally simulate parameter sensitiv-
ities together with the network dynamics. The under-
lying novel equation-based AD techniques which have
been especially designed for ADGenKinetics have also
the potentials to be employed by other Modelica li-
braries.
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Abstract

A variable-structure approach for Modelica models is
presented in this paper. Variable structure models en-
able the user to change the simulation model during
runtime. This is not supported by common simulation
environments and thus a Matlab script is used to con-
trol the run of the simulation. The script switches be-
tween the different models and sets the initial values to
ensure smooth transients of the variables. The method
is applied to a simplified model of a thermal manage-
ment system for Lithium ion batteries in a hybrid ve-
hicle. In this model some components do not need
to be calculated through the complete simulation time
and are removed from the model through the variable-
structure approach. With this approach the simulation
time can be reduces while the simulation accuracy is
not affected negatively.

Keywords: vapour compression cycle; simulation
speed; thermal management, variable-structure model

1 Introduction

How can the variable-structure method help to speed
up simulations? In the case of battery thermal manage-
ment, the branch to the battery cooling can be opened
or closed with a valve such that the battery is only
cooled when needed. So the general structure of the
refrigeration cycle changes from a branched cycle to
a single evaporator cycle. In simulation environments
supporting Modelica it is not possible to change the
set and causality of an equation system. In Modelica
it is assumed that a model always has one set of equa-
tions and that the variables themselves do not change.
For the refrigeration cycle it would be highly useful
to be able to change the equation system because the
equations for the unneeded branch could be turned off.
This means that no unnecessary calculations have to be

done and the simulation time could be reduced. To ex-
plain this approach the thermal management of HEV
batteries will first be explained. Then the general ap-
proach for variable-structure models that was used in
this paper is introduced. The presentation of a sim-
ple model and its preparation for the application of
the variable-structure method is followed by the results
for simulations with and without the variable-structure
method.

2 Thermal Management of HEV bat-
teries

The batteries of hybrid electric vehicles heat up due to
inner heat generation. Thermal management is though
essential to ensure safety and prevent ageing. The only
reliable heat sink for the cells is the automotive refrig-
eration cycle. The cells can be cooled by evaporation
of the refrigerant, therefor a cold plate is put in parallel
to the ordinary evaporator (see fig.1).

Cooling of the cells is only necessary when their up-
per temperature limit is reached. Only then the valve
to the battery cooling branch opens, e.g. there is no
refrigerant flow as long as the cells are cool enough.
The necessary cooling power depends on the drive cy-
cle and the surrounding temperatures.

System simulation plays an important role in the de-
sign of vehicle air conditioning. It enables the user to
test various system architectures as well as providing
values that cannot be measured in real life test rigs. As
the development becomes faster and additional tasks
like battery cooling emerge, accelerating the simula-
tions becomes necessary. Additional components and
more complex system designs raise the dimensions of
the resulting nonlinear equation systems. During the
evaluation process of a cooling system, a lot of simu-
lations for various climatic conditions and heat loads
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Figure 1: System architecture of A/C Refrigerant Cy-
cle with Battery Cooling

are necessary to evaluate the additional energy con-
sumption of the refrigeration cycle.

In the current Modelica models with static structure,
the refrigerant mass flow in the battery branch cannot
be set to exactly zero. The resulting very small refrig-
erant mass flows and pressure losses in the control vol-
umes slow down the simulation. In addition, the mass
flow might change its sign, causing further decelera-
tion of the simulation. The equations for the closed
branch have to be solved during the whole simulation
although they are not needed most of the simulation
time. The CPU time needed for simulations becomes
too large and the number of possible simulation runs
is limited by the available time. Very simple (and less
exact) models have to be used, making the results less
reliable.

Calculation time could be radically reduced if the
obsolete equations could be switched off when the bat-
tery branch is closed. The time span during which the
valve is closed can make up large parts of a driving
cycle (see [1]) so there is a large potential to reduce
the time for a simulation run. Currently there is no
possibility to deactivate equations in Dymola/Model-
ica during runtime.

3 Variable-structure modeling with
Modelica/Dymola

A variable-structure model consists of different modes
whereas each mode itself is a model and has a set
of equations and variables. The model can switch
from one mode to another triggered through a switch-

ing condition. When a switching condition occurs the
mode switch takes place and the end values of the sim-
ulation results are used to initialize the next mode. The
modeler has to define which end values to use to ini-
tialize the next mode.

As explained above such a change of an equation
system is needed to model the thermal management
of batteries more efficiently. But neither Dymola nor
other simulation environments e.g. OpenModelica and
SimulationX support the change of a set of equations
of a Modelica model during a simulation run. There-
fore, a scripting approach with Matlab is used as intro-
duced in [2]. This approach allows a user to model
their models in a chosen simulation environment or
language and use Matlab to switch from one mode
(and therefore to another set of equations) to the next.

The general idea is to create a new modeling layer
where the structural change is described and which
handles the actual change. The simulation models are
implemented in a simulation environment chosen by
the user. It is important that the simulation environ-
ment can be controlled through Matlab so a model can
be compiled and a simulation run can be started using
Matlab.

Figure 2 illustrates the sequence of operations in a
Matlab script that handles the change of a set of equa-
tions of a model. In this example the variable-structure
model has two modes, which means we have two mod-
els whereas each model has its own set of equations.
For this example we use Dymola as a simulation en-
vironment, but other environments could be integrated
as well.

Figure 2: Course of events of a Matlab script to change
a set of equations of a Dymola model

As a first step all needed models are compiled,
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which means an executable model ’dymosim.exe’ with
an initialization file ’dsin.txt’ is created which can be
started through Matlab. Afterwards the simulations
parameters (start time, stop time, solver, etc.) are set.

Then a mapping of variables takes place. In this
mapping process the initialization files of all modes
are loaded. These files contain all variables and pa-
rameters with their startvalues. An equivalent file is
created by Dymola at the end of each simulation of a
model (called ’dsfinal.txt’), containing the endvalues
of variables. When loading such a file we get an array
with all variable names and an array with all initial (or
end) values of a simulation.

For a mode transition between two modes it is nec-
essary to map user defined variables from the end-
array to the initial-array of the next mode. Therefore,
a mapping matrix is created for each transition. This
matrix holds the indices of the values to be read from
the end-array in the first column and the indizees of
the values to be overwritten in the initial-array in the
second column.

This mapping matrix is created at the beginning be-
cause it saves simulation time when a transition is
needed more than once, for instance switching from
mode 1-> 2 -> 1 -> 2 would mean that the mapping
matrix from mode 1 to mode 2 can be used twice. Af-
ter this preparation phase is done the simulation of the
first mode is started. The script uses the dymosim.exe
which is created when compiling a Dymola model to
simulate the model.

When a defined stop condition is reached, which is
implemented in the model itself, a terminate command
will stop the simulation. As soon as the simulation ter-
minates, the end values of the simulation are read from
the ’dsfinal.txt’ file. The earlier created mapping ma-
trix for this transition is then used to map the simula-
tion results to the initial data in the dsin.txt file for the
next mode.

The script then starts the dymosim.exe of the sec-
ond model. This simulation runs until the stop time or
another terminate condition is reached. Then the script
again processes the simulation data and either the stop
time of the simulation is reached which stops the sim-
ulation completely or the script changes back to the
first mode via a transition and the mapping matrix in
this transition.

With this simple approach Dymola can be used to
simulate variable-structure models even though Dy-
mola on its own does not support these kind of mod-
els. This means that existing Modelica models can be
reused for variable-structure models and that they do

not have to be remodeled in other tools or languages
as SOL [3], MOSILAB [4] or Hydra [5] which do
support variable-structure modeling to a certain extent.
The problem with these approaches is, that SOL is an
experimental language and does not support index re-
duction and solvers in the extent that Dymola does.
MOSILAB does not support index reduction at all and
is not freely available for it is still under development.
Hydra is based on functional programming languages
and is therefore not as easy to learn for modelers. All
the existing approaches would mean a remodeling of
the existing air condition models.

4 Evaluation

4.1 Model

All models in this use case are based on the AirCon-
ditioning Library by Modelon [6], based on the AC lib
[7].

A simple test case was created to evaluate the
variable-structure approach. It reduces the complex
model of a refrigeration cycle with thermal manage-
ment of the battery to the main components that are af-
fected when the battery cooling branch is closed. The
model consists of an evaporator with a discretized pipe
in parallel, the branch to the pipe can be closed with a
valve. The valve has a variable Kv-value that can be
set by an input source. The original model with all
initial equations activated (Figure 3) serves also as the
initial mode for the variable-structure model. For the

Figure 3: model for mode 1 with two branches

second mode (Figure 4), only the evaporator branch
remains. Two new component models were created:
splitResistance and junctionResistance. They repre-
sent the pressure loss in the corresponding compo-
nents from the first mode. Using the same names for
the components eases the mapping of the parameters
and start values when a switch occures. This means at
the beginning of the Matlab script where the mapping
takes place, all components and their variables which
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have the same name (e.g. evaporator) are mapped in
the mapping matrix of the transition.

Figure 4: Modelica model for mode 2 with only one
branch

The simulations are carried out as follows: The
valve is closed with a ramp function, beginning at 30s
simulation time. After 10s, the valve is closed. At
50s (10s after complete closure) the variable-structure
model switches to mode 2. At 150s the variable-
structure model switches back to mode 1, the valve
opens again at 160s. Figure 5 shows the sequence for
the kv-Value of the valve.

Figure 5: Simulation sequence for the kv-value of the
valve

4.2 Preparation of the modes

As described above the mode 1 model has more com-
ponents than the mode 2 model but each component
from mode 2 has been in the first model, too. There-
fore, it is known that the end values of the first model
can be used to initialize all components of the second
model. To make the identification of the components
which exist in both modes easier, they were called
exactly the same. Therefore, the mapping function
called at the beginning of the Matlab script can cre-
ate a mapping matrix which maps all variables exist-
ing in both modes to each other. To create the mapping
matrix the script takes the lists of the initial names of
both modes and searches through this list to match the
names. This is necessary because the order of the vari-
ables might not be the same, even (sub-)variables of
a component such as (evaporator.p[1], evaporator.[T])
might be in different order. The first mode has about 7

400 variables and the second mode about 6 900 vari-
ables which makes this mapping process time consum-
ing. A better mapping algorithm is planned for future
work.

If the variables and components are not called the
same, the modeler can define which variables and
components belong together. For instance the modeler
can define that all variables from a component ’a’ from
mode one have to be matched to all variables from a
component ’b’ in model two. In this case all variables
inside these components are matched and the mapping
is saved in the mapping matrix.

To be able to initialize the second model through
the Matlab script the model needs to be prepared for a
script initialization. Many components in the AirCon-
ditioning Library are per default set to initialization
through parameters and initial equations. This leads
to the problem that an initialization from outside is not
per default possible. For instance look at the following
model:

model init

Real T1(start = 100);

Real T2;

initial equation

T2 = T1-10;

...

end init;

In this example T1 has a start value of 100. But T2
can only be initialized through T1 and is 10 smaller
than T1. With such a model we are not able to ini-
tialize the T’s separately because we cannot ignore the
initial equation even though this might be necessary if
this model is the second mode and different values are
needed. In the AirConditioning library such cases can
be handled by setting the initType of the components
to ’noInit’. If a component cannot be initialized exter-
nally and does not have such an initType provided the
user has to change the model to use it in a variable-
structure model. Often these initial equations are deep
down in the model hierarchy, e.g. temperature of the
evaporator wall and therefore it is quite difficult to lo-
cate all needed changes. This does not mean that initial
equations are not allowed for variable-structure mod-
els, it just means that a modeler has to know what his
model is doing and if the initial equations hinder an
initialization from the outside.

An easy way to test if the model can be initialized
though an extern file is to simulate a model for a period
of time and use the end values from the ’dsfinal.txt’ as
initial file and restart the simulation of the same model.
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If the simulation results are smooth around the mode
change it is usually save to assume that the initializa-
tion worked.

A problem with the initialization through Matlab is
that when using the given Matlab methods to handle
Dymola the initialization does not always work. For
instance, it is possible to use a method dymosim.m
which gets as parameters the name of the Dymola
model and the initial values (and some other data). But
this method does not seem to write the dsin.txt (more
precisely the dsin.mat as it is called from Matlab) cor-
rectly. This means the initialization does not work cor-
rectly and the simulation results are wrong.

First it was assumed that the initial equations in the
AirCondition model were the problem but it was dis-
covered that the given Matlab function seems to be
the problem. Therefore a new initialization method
in Matlab was written. This method uses the mapping
matrix of the transition and creates a new initialization
matrix for the new mode, which only holds the end
data of the old mode and user defined values. All other
data is not included in this initialization matrix. This
new initialization matrix is then saved in the models
dsin file. When switching back from the second mode
to the first not all necessary data is known to initialize
the mode. Therefore, the modeler has to specify the
additional values separately in the Matlab script.

4.3 Results

The results of the variable structure model are conform
to a large extent with the results of the static struc-
ture model, which calculates the unnecessary branch
through the whole simulation time. The mass flow in
and out of the split can be seen in figure 6. The valve
starts to close at 30s, the mass flow changes according
to the changing pressure drops in the branches. When
the valve is completely closed, the mass flow into the
battery branch is almost zero but shows still little vari-
ations around zero for the static structure model.

The variation of the mass flow results in variations
of the pressure drop in the junction. Figure 7 and 8
show the inlet and outlet pressure of the evaporator.
The little variations are thus propagated to all the com-
ponents of the model, to the complex ones (in this ex-
ample the evaporator), too.

The needed CPU time for the simulation runs is
plotted in figure 9. The CPU time is given through
Dymola and is the time from calling the dymosim.exe
until exiting the simulation. Until the first switch of
the variable-structure model, the CPU times rise with
the same speed for both simulations. The second mode

Figure 6: Refrigeration mass flow in and out of the
split for static and variable structure model

Figure 7: Refrigeration pressure at evaporator inlet

of the variable-structure model is calculated rather fast
and does only need a short simulation time. While the
variable-structure model does only need a short simu-
lation time during this phase where only one branch of
the model is simulated the static structure model needs
a lot of simulation time. The opening of the valve at
160s lets the CPU time of the static model rise almost
vertically. Whereas the variable-structure models CPU
time does not rise that high. This already shows that
while only simulating a short period of time (200 sec-
onds), it is already possible to save a lot of simulation
time through the variable-structure approach. In this
example both modes where simulated for the same pe-
riod of time.

Figure 8: Refrigeration pressure at evaporator outlet
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If, as was mentioned in the introduction, the two
branched model is only needed for short periods dur-
ing a drive cycle a lot of simulation time can be saved.
But it also has to be considered that using a variable-
structure model also means that a switching procedure
is necessary and that each mode needs to be compiled.
Compiling the two necessary modes of the variable-
structure models takes about 22 seconds whereas the
compilation of the static structure only takes about 13
seconds. Creating the mapping matrix for each tran-
sition at the beginning of the script take about 10 sec-
onds – the search algorithm is not optimized yet and
the time could be significantly reduced with a better
algorithm.

Figure 9: CPU time needed for simulation

The switching from one mode to the next with
loading the end values and setting the initial values
takes about 0.5 seconds per switch. This means that
when looking at the overall simulation time of the
presented example the variable-structure model needs
about 121 seconds whereas the static structure mod-
els takes about 270 seconds. This means that even
with the necessary overhead the simulation with the
variable-structure model is still faster.

4.4 Restrictions

As already mentioned throughout the paper the
variable-structure approach has some restrictions and
the modeler has to regard certain points. At first
the initialization needs to be mentioned, the modeler
needs to define how the end values of one mode are
used to initialize the next mode. If the old mode does
not provide enough data for the initialization the mod-
eler either has to provide the missing data (by con-
crete values or calculations) or the variable-structure
approach might not be feasible. Furthermore, the mod-
els used as modes need to be initialized from the out-
side, so the modeler might need to adapt the models to

fulfill this requirement.

As it also is with conventional modeling it is with
variable-structure modeling, too, that one should not
use it just because one can. For instance in conven-
tional modeling a model with few equations might suf-
fice even though one could model it more accurately
which might result in solver problems or time prob-
lems. So it is with variable-structure modeling. In
some cases the approach might be usable but not fea-
sible, because the switch does not lead to a significant
positive effect. For instance the simulation time is not
reduced and the accuracy is the same. Another possi-
bility is that the switch is done at the wrong time, e.g.
switching to the second mode of the refrigeration ap-
plication when the valve is not closed yet. This will
lead to a model with inconsistent results. This means
that, as in conventional modeling, the modeler needs
to know his models and what he wants to do to use the
variable-structure approach feasible and sensible.

5 Summary

System simulation for refrigeration cycle models in
vehicle refrigeration applications is time consuming.
The variable structure method presented in this paper
can help to reduce the needed CPU time and the over-
all simulation time for such a model.

With the help of a Matlab script, the user can switch
between several representations of the same model.

It takes some time to prepare and test the models. If
the given advices are already considered during mod-
eling the method can be easily used to speed up simu-
lations.

The method can be applied to other applications
with variable-structure with more than two modes, too.
A Python framework which guides the user through
the steps to describe a variable-structure model is cur-
rently worked on. This will enable the user to de-
scribe the models more easily and to use a free soft-
ware (Python) instead of Matlab. Furthermore, more
simulation environments will be integrated so the user
is not limited to Dymola.

It is planned to investigate the advantages of
variable-structure models more thoroughly and with
more complicated models. With these researches it
will be possible to find out when variable-structure
models can be used sensibly and when it is more useful
to use a static structure model.
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Abstract

Combined heat and power (CHP) plants are a well-
known technology for industrial and district heating
appliances. As those plants are often used to opti-
mally satisfy thermal demands they often run heat-
controlled. The power generation profiles of those
plants are badly predictable. Those badly predictable
power generation profiles are fluctuating and central
power plants have to work in the times when the heat-
controlled plants do not run. Due to these circum-
stances it should be analysed to what extent a power-
controlled operation can be applied. For this purpose a
dynamic simulation of the whole system is necessary.
This paper presents the possibilities of a dynamic sim-
ulation of a one-family-house with a power-controlled
micro-CHP unit and a thermal storage.

Keywords: CHP; electrical grid; grid compatibility

1 Introduction

The energy supply of Germany will change signifi-
cantly within the next few years. An increasing part of
the power supply will be based on fluctuating sources
like wind power or photovoltaics. On the other hand,
about 35 per cent of the final energy in Germany is
used for space heating and domestic hot water in build-
ings [3]. Thus, reasonable concepts for the building
sector have to be found.

In periods where there is not enough power supply
from the regenerative sources, flexible and energy effi-
cient alternatives have to be considered. One of these
alternatives could be combined heat and power (CHP)
plants. The waste heat of the power generation process
is used at the same time for example for space heating
and domestic hot water. In many cases these plants
can work more efficient than other options to gener-
ate heat. To combine the advantages of the CHP-plant

as a fast reacting power generator and as an efficient
heat supply system, those plants should be operated in
a power-controlled way. This includes that a thermal
storage is needed to buffer the discrepancy between the
run times of the CHP plants and the thermal demand
in the building.

Because of the increasing dynamics of those sys-
tems, dynamic simulations have to be considered to
evaluate which role a system with power-controlled
CHP-plants can play in the future. For these simu-
lations, libraries are used that were developed at the
Institute for Energy Efficient Buildings and Indoor Cli-
mate at RWTH Aachen University. They offer the pos-
sibility to simulate the performance of the CHP plant
and the storage system, the dynamic thermal charac-
teristics of the building and the user behaviour [2].
With this approach, an integrated evaluation of whole
micro-CHP systems is possible.

2 Definition of the problem

Due to new regulations (e.g. [1]) and an increased
awareness of energy topics in public, the integration
of regenerative sources in the German power supply
increases. Especially wind power and photovoltaics
are used as regenerative power sources. The disadvan-
tage of these technologies is their non-controllability.
They are completely dependent to weather conditions
(wind speed and directions, solar radiation) and it is
clear that there is a discrepancy between generation
and demand.

At some times, there will be more regenerative
energy generated than needed. At other times, the
demand is higher than the generation from renew-
able energies. This would especially happen, if there
are many consecutive days without wind and maybe
nearly no direct solar radiation because of clouds and
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other effects. The arising gap between generation and
demand should be closed with technologies that are as
efficient as possible. (Micro-)CHP units, for instance,
can reach higher efficiencies than pure power gener-
ating units (figure 1), and could be a suitable alterna-
tive to conventional power plants. Another aspect is

Figure 1: Comparison of combined heat and power
generation and the separated generation [4]

the increasing dynamic of the system. Power plants
are controlled with schedules that are generated from
weather forecasts etc. The forecasts (one day before)
and the real situation (e.g. solar radiation) can differ
in a strong way (figure 2). This results in the need for
fast reacting and fast starting and stopping technolo-
gies. For these applications, CHP units based on inter-
nal combustion engines are a suitable alternative be-
cause of their well controllable and fast reacting load
conditions.

Figure 2: Comparison of predicted and real capacity of
photovoltaics in the zone of one German grid operator
[4]

For an efficient use of CHP units, the heat has to be
used directly in the building. Residential buildings are
predestinated as heat sinks for CHP plants, because of
a year-round heat demand. This heat demand is signif-

icantly larger in winter because of the heating demand
on colder days. In summer there is just the demand
for domestic hot water. Due to this situation and the
fact that the thermal demand does not coincide with
the generation (especially with a power-controlled de-
vice), thermal storages play an important role in such
a concept. Thermal storages are cheap in comparison
to electrical storages with a similar capacity. The size
and insulation of those thermal storages has to be anal-
ysed to find out which kind of storage should be used.

Besides the storage, also the single CHP units have
to be analysed. Today, there are several micro-CHP
units with capacities of 1 kWel on the market for one-
family-dwellings. Based on internal combustion en-
gines, they deliver a thermal power of about 2.5 kW .
If they are used in a power-controlled way, this could
result in less delivered thermal power than would be
needed for space-heating and domestic hot water sup-
ply. A solution to this problem could be an over-
dimensioning of the CHP plants, so that in times of a
running plant, the thermal storage can be loaded very
fast to provide a secure supply based on the CHP-plant
as long as possible. For times, when a secure supply
cannot be guaranteed with this stored thermal energy,
a peak-load boiler should be installed.

Before those systems can be tested in reality in
a power-controlled way, they should be analysed in
simulations to get insight to most of the occurent ef-
fects. Because of the complexity and dynamics of
this system, a coupled thermal, hydraulic and rudi-
mentary electrical simulation is used. Modelica with
its equation-based modelling approach is a good tool
to bring this complexity into a model based on single
components. The used model will be explained in the
following chapter.

3 Whole building system simulation

3.1 Design

For the evaluation of power-controlled micro-CHP-
systems, a whole system model is needed. For the hy-
draulic components, the Modelica fluid-library is used.
With this library, easy connection setups between sin-
gle components of the model are possible. Standard
components like pipes, vessels and valves can be com-
posed to new components. It is also possible to con-
nect the different elements to a whole hydraulic cir-
cuit. The used medium in this model is obviously wa-
ter. All the components are interacting with each other,
so that it is very difficult to just simulate one compo-
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nent after the other. Especially the storage effects of
the building mass and the included hot water storages
can just be analysed in a coupled complete system sim-
ulation. The different models for simulation of power-
controlled and heat-controlled operation are shown in
figure 3.

Figure 3: The whole building simulation model

The heat generating units are the CHP plant and the
peak-load boiler. There are two storages included, one
for space heating and one for domestic hot water. The
boiler switches on if the stored heat cannot provide
the heat supply in both heat-controlled and power-
controlled operation. The CHP plant is either running
based on a predefined profile (power-controlled, con-
trol 1 in figure 3) or running due to a temperature drop
in the storages (heat-controlled, control 2 in figure 3).
The heat transfer to the single rooms is guaranteed
with radiators.

The model of the micro-CHP plant is built up on
manufacturer’s data [7]. It is mainly based on prede-
fined table values. This means that a given relation
between electrical power, thermal power and fuel con-
sumption can be set in the model for different load
types (part load in different steps and full load). This
simple approach of modelling a CHP-unit gives us the
possibility to study the behaviour of the total building
energy system.

Some delay elements are included to improve the
dynamics of start-up and shut-down processes. Those
processes are very important to model a power-
controlled CHP-unit. The model has an input to pre-
define the values forced by the electrical grid opera-
tor. This signal leads to a calculation of the belonging
thermal power and fuel consumption. The calculated
thermal power is fed to a volume element of the Mod-
elica fluid library. If the plant runs heat controlled, it

just switches off or modulates if a predefined outflow
temperature is reached. In both cases (heat-controlled
and power-controlled), a superior control can be im-
plemented to switch the plant on or off. This can be
used for security applications etc.

As stated before, a buffer storage has to be inte-
grated to decouple the generated heat from the de-
mand. This decoupling is necessary both in the heat-
controlled and in the power-controlled operation. The
buffer storage is built up as a stratified storage with
several layers which are thermally and hydraulically
connected [6]. Besides the stored energy and the heat
and mass transfer inside the storage, the heat losses to
the environment (in the basement) have to be consid-
ered, because these losses will influence how long the
stored energy can be used. The water elements inside
the storage are volume elements of the Modelica fluid
library. The fluid transfer between the layers is cal-
culated automatically because of the connection to the
hydraulic network of the building. The heat transfer
between the layers is calculated with an approach of
effective thermal conduction. For the heat transfer to
the environment, a physical approach of heat transfer
(convection, conduction, convection) in a tube is used.
In the upper part of the domestic hot water storage, a
heat exchanger is included to seperate the heat supply
circuit physically from the domestic hot water which
has to stay very clean.

Besides the supply system, also the building has to
be modelled. In the examined system, the house is
modelled physically to represent all the storage and
loss effects that can be observed in a house. These are
for example all transmission losses due to the temper-
ature difference between inside and outside. Besides,
the storage capacity of the walls is also considered. If
a wall consists of different layers (e.g. concrete and
insulation material), those different layers are imple-
mented with their storage capacity and heat transport
properties. Another important effect are the ventilation
heat losses of the building effected by infiltration and
air exchange through natural ventilation caused by the
user of the building. The user behaviour is also impor-
tant for the thermal simulation of the building, because
a human being produces heat itself and uses different
electrical devices which produce additional heat.

The third thing where user behaviour plays a role
is the domestic hot water tapping profile. The impact
of the domestic hot water supply on the overall heat
supply for buildings will increase as the space heat de-
mand will gradually decrease in refurbished and new
buildings. The supply of the users with domestic hot

Sebastian Stinner and Dirk Müller 

DOI Proceedings of the 9th International Modelica Conference    937 
10.3384/ecp12076935 September 3-5, 2012, Munich, Germany   



 

 

water is implemented with a domestic hot water tank
which is loaded by the CHP-unit and, if necessary, by
the boiler. Another possibility to generate domestic
hot water would be a fresh water station directly cou-
pled to the buffer storage. This should be developed in
the future.

To set the flow temperature of the space heating sys-
tem to a desired value, a return addition is integrated.
This element is especially interesting when there is de-
mand for domestic hot water and space heating at the
same time and the temperature level for the space heat-
ing is lower than the desired domestic hot water tem-
perature. The building model includes heat valves that
inhibit the fluid flow through the radiators if the de-
sired indoor temperature is reached. The desired in-
door temperature can be varied and is set from an in-
put table. In the case described here, a temperature
of 21◦C during the day and 17◦C during the night is
set up. If the temperatures get higher than the de-
sired value, the heat valves close and no fluid flows
through the radiator anymore. As soon as the temper-
atures drop down, the valves open again and let the
hot water pass. The power of the radiators is then cal-
culated depending on the room temperature, the flow
temperature, the surface area of the radiator, the nom-
inal power and the radiator exponent.

3.2 First results

To show the possibilities of the model and the insights
that can be obtained, two examples are shown. The
first analysed plant has a maximum thermal power of
about 2.5 kWth and a maximum electrical power of 1
kWel . This is a standard micro-CHP unit which can
be bought on the German market. Two models will be
compared. On the one hand this is a model with a heat-
controlled CHP-unit. This unit is only controlled by
the temperatures in the buffer storage and the storage
for domestic hot water. On the other hand, we analyse
a power-controlled operation. In this second model,
the times when the CHP unit runs are pre-determined
by a certain profile that is set up maybe from a grid op-
erator. Such a profile will result from a residual load
profile. It is calculated for every time step as the dif-
ference between the electric load in the grid and the
feed-in of renewable sources. If the residual load is
above zero, some CHP units have to run because of a
frequency drop in the grid. In times when the resid-
ual load is below zero, this energy has to be stored
or maybe used in another way (in electricity-driven
heat pumps for example). For two days, this profile
is shown in figure 4.

Figure 4: Desired on/off-profile of the CHP unit for
two days

After running the simulation, the on/off-profile for
the CHP-unit for two exemplary days is shown in fig-
ure 5 in the lower part. In contrast to that, the heat-
controlled CHP-plant runs nearly continuously for all
the days with a little exception at the beginning of
January 2nd. At the same time, the power-controlled
CHP-unit switches off, although the electricity-profile
in figure 4 is set to on at this time. Both switch-off
processes are due to an increasing temperature in the
storage which is shown in figure 5 in the upper part.
The storage volume is set to 1000 litres for both cases.

During the night, there is nearly no heat consump-
tion which leads to an increasing temperature in the
storage and also an increasing temperature of the fluid
flowing to the CHP unit. To analyse these types of
feedback between different parts of the energy sys-
tem, a dynamic approach as it is used with Modelica
is needed. We cannot fill the stratified storage until its
whole temperature is at the maximum reachable tem-
perature, because the plant has also some limits. These
limits have to be analysed in further activities. To guar-
antee a secure energy supply, the plants in the single
houses have to interact with each other. In a case when
one plant cannot operate anymore due to an increasing
temperature, this can be detected at an earlier stage and
another plant can run instead.

The second example which is presented is a system
with a bigger engine with an electrical power of 3 kWel
and a thermal power of 8 kWth. This plant is over-
dimensioned for the examined building, but we want
to study how such a plant will behave in a heat supply
system for one building. Due to the bigger thermal ca-
pacity of the plant, also a bigger thermal storage is in-
cluded. This storage has a volume of 2500 litres. This
storage volume is needed to guarantee longer run times
of the plant. But, as we can see in figure 6, the stor-
age capacity is not big enough to let the CHP-plant run
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Figure 5: Temperature at the top of the buffer storage
and the on/off-profile of the CHP unit

with the desired profile. The plant often runs in part-
load instead of full-load or it is even switched off. This
shows that a system like this can just work in a house
with worse insulation or it has to share the production
of the desired electrical power with another house.

Figure 6: Desired profile and really produced electric-
ity of the CHP unit (3 kWel) for two days

Other effects like the behaviour of the peak-load-
boiler can also be studied. In this example, the ad-
ditional energy which should be provided by a peak-
load-boiler is analysed. For the heat-controlled plant,
no additional heat from the boiler is needed in the
considered time period of two days. For the power-
controlled plant with a capacity of 1 kWel , an addi-
tional heat energy demand of about 44 kWh is cal-
culated. This shows, that this operation will lead to
higher demands for boilers. The solution for this could
be the over-dimensioned power-controlled plant with
a capacity of 3 kWel . With this plant, just a little de-
mand of about 3 kWh is calculated. With the approach
of an over-dimensioned plant, we can decrease signif-
icantly the additional heat demand which is provided
by a boiler. This does not regard the fact that the plant
with 3 kWel was not running in the pre-defined way.
With a plant running as it was pre-defined, the heat

gained from the plant would increase significantly. If
this operation would be shared to different houses as
mentioned before, it would decrease again. Detailed
analyses of these systems should follow.

In addition, the approach stated in this paper gives
us the possibility to check, if the desired room temper-
atures are reached all the time with these new energy
supply systems.

4 Conclusion and outlook

CHP plants can play a bigger role in the supply of res-
idential buildings because of their flexibility and their
energy efficiency. This paper shows, how Modelica
can be used to model these new and distributed energy
systems for the future. A model for the integration of
the CHP plant in the heat supply for residential build-
ings is shown. The difference between heat-controlled
and power-controlled operation modes is presented.
Different user behaviour profiles can be included to
improve the systems engineering adapted to the single
user.

With this comprehensive model, a detailed analysis
of future power-controlled micro-CHP-systems can be
performed. Besides the analysis of power-controlled
system, also switching between heat-controlled and
power-controlled operation is possible and will be con-
sidered in the future.

Anyway, there are several things which should and
will be implemented in the future. The model of the
micro-CHP plants has to be validated with measure-
ment data to be sure to represent the dynamics of the
plant correctly.

The current models have to be simplified to less
complex and less extensive models. This would pro-
vide the possibility to simulate more than one house in
one model as it was mentioned in chapter 3.2. Thus, it
would be possible to get the houses interconnected and
to simulate the supply of whole city quarters with their
electrical demand and fluctuating electricity sources
like photovoltaics and wind power. This would give
an integrated insight to the energetic impact of future
energy systems with a higher rate of micro-CHPs.

A third point that has to be implemented is the inter-
connection of the different user profiles that are used
in the model. In detail, these are the electrical demand
profile, the domestic hot water profile, the natural ven-
tilation profile and the heat source profile caused by
internal loads. This would additionally improve the
accuracy of the prediction for those energy systems.
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Abstract

Falling film evaporators have demonstrated a good
performance in air-conditioning and refrigeration.
This paper presents the development of a detailed
falling film evaporator model. The model is based on
classical Newton’s viscosity law and Nusselt falling
film theory. A library of evaporator components com-
patible with Modelica.Fluid, Modelica.Thermal and
Modelica.Media has been implemented. The simula-
tions presented have the expected behaviour. These
models will be used to a complete model of a heat
pump.

Keywords: Falling film; evaporator; heat pump;
dryout; object-oriented modeling;

1 Introduction

One of the difficulties of working with solar energy
is its variability. Since this technology starts, re-
searchers have studied how to avoid solar irradiance
disturbances affect energy production. The proposed
solutions range from thermal storage to auxiliary en-
ergy sources to make feasible facilities.

With the aim of testing and developing a solar
thermal Multi-Effect Distillation (MED), AQUASOL
experimental thermal desalination plant was built at
CIEMAT-Plataforma Solar de Almería at the early
nineties [6]. Presently, the experimental plant per-
forms an hybrid solar-gas process that combines, a
thermal desalination system and a solar field with a
Double Effect Absorption Heat Pump (DEAHP) cou-
pled with a gas boiler [3] ( Fig. 1). This system
achieves at the same time the design requirements of
low-cost, high efficiency and zero discharge [1].

The MED plant is a 14-effect plant where the sea-
water descends due to gravity from the 1st to 14th ef-
fects achieving a 3 m3/h nominal distillate production (
Fig. 1). In the effect 1, the seawater is preheated by hot
water (66.5 °C) coming from a 12-m3 primary storage
tank. Energy supplied to the primary tank can be trans-

Figure 1: AQUASOL project plant flow sheet

Figure 2: Energy balace of MED plant coupled to
DEAHP

ferred by the solar field, by the DEAHP or by both.
When the DEAHP is coupled with the MED plant, the
DEAHP evaporator works as 14th effect distillate con-
denser.

A heat pump is a machine that transfers heat from a
low temperature source to a high temperature source.
In AQUASOL DEAHP, the low temperature source
(35 °C) is the 14th effect cell and the high tempera-
ture source is the water that flows from the secondary
tank (63.5 °C) to the primary tank (66.5 °C). Accord-
ing to the Second Law of Thermodynamics, an energy
input is required to make this heat transfer possible.
This energy is provided by steam generated at the gas
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Figure 4: Thermodynamic cycle of the AQUASOL DEAHP

Figure 3: AQUASOL DEAHP, CIEMAT-Plataforma
Solar de Almería

boiler (180 °C). Fig. 2 shows the heat transfer pro-
cess between the MED plant, the DEAHP and the gas
boiler [2].

AQUASOL DEAHP ( Fig. 3) is composed of 5 ves-
sels: one evaporator, one absorber, two generators and
one condenser. It uses a water/aqueous lithium bro-
mide solution as working fluid in two fluid intercon-
nected circuits.

Fig. 4 shows the thermodynamic cycle of DEAHP.
The low temperature source (steam from 14th effect
cell) transfers heat to the low pressure evaporator
which generates a steam flow. This steam is absorbed
by a strong lithium bromide solution, as a consequence

it increases its temperature and transfers the heat to the
high temperature source (water that flows from sec-
ondary to primary tank). To desorb the weak lithium
bromide solution there are two generators with two
different pressure levels. The gas boiler transfer heat
to the generator 1 desorbing part of the water of the
solution. The steam generated is condensed in genera-
tor 2 transferring heat and desorbing more water. The
steam generated in generator 2 is condensed transfer-
ring heat to the hot source. Water from condenser and
generator 2 returns to the evaporator and the strong
lithium bromide solution return to absorber.

A detailed model of the DEAHP evaporator is pre-
sented in this paper. This study has been done under
the framework of POWER project.

2 Mathematical model

The nomenclature used in this section is described
in Appendix A. Newton’s notation is used for time
derivatives.

AQUASOL DEAHP evaporator is a horizontal-
tubes-falling-film-type evaporator. Falling film evap-
orators have demonstrated better performance than
flooded tubes evaporators in air conditioning and re-
frigeration applications due to its higher heat transfer
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Figure 5: DEAHP evaporator scheme

coefficient and its smaller size [4].
A schematic cross section of the evaporator is

shown in Fig. 5. Water is sprayed over the first row
of the bundle tube structure. Over the tube surface, a
thin film of water is formed. Water in the film flows
downward under the gravitational force, falling one by
one over all the column tubes. The film thickness de-
termines the mass and heat flow rates.

The water feeding device can affect evaporator per-
formance because it determines the water distribution
over the tubes. In the model a uniform water distribu-
tion is assumed. When the water film flow rate falls
below a certain limit dry patches are formed. This re-
duces the effective wetted area and consequently the
heat transfer. An empirical correlation of the apparent
wet area fraction F = Awet/At is presented in [5]. The
fraction is calculated according to Eq. 1. If F is equal
or less than 1, F is fixed to 1.

F = 0.0024Re0.91
top (1)

This correction is included in the model through the
wetted length, lwet , which is estimated with F and the
real length l.

lwet = lF (2)

A classical formulation is used to model the dynam-
ics of the falling film displacing over the tubes. It is
assumed that the film thickness is constant over the
tube as shows Fig. 6. According to it and using New-
ton’s Law of Viscosity the force balance equation for
the liquid film can be expressed as:

µ
du
dy

= ∑τs = ρg(δ − y)sin(θ) (3)

Integrating over the spacial coordinates Eq. 3 and
applying the boundary condition u = 0 at y = δ , the
velocity profile is:

u =
ρg
µ

(
δy− y2

2

)
sin(θ) (4)

The downward average film velocity depending on
the angle is:

ū =
1
δ

∫
δ

0

ρg
µ

(
δy− y2

2

)
sin(θ)dy =

ρgδ 2

3µ
sin(θ)

(5)
The average film velocity over the tube is calculated

integrating Eq. 5 over half of the tube circumference
from the top to the bottom:

v =
1
π

∫
π

0

ρgδ 2

3µ
sin(θ)dθ =

2gρδ 2

3πµ
(6)

The mass flow rate at the bottom of the tube is:

ṁbot = 2Γ lwet = 2vδρlwet =
4glwetρ

2δ 2

3πµ
(7)

Eq. 7 has a quadratic relationship with the film thick-
ness.

The film thickness can be calculated using the den-
sity definition:

ρ =
m
V

=
m

πlwet(r+δ )2 −πlwetr2

δ =−r+
√

r2 +
m

πρlwet
(8)

where m, the mass of the water stuck to the outer sur-
face of the tube, is calculated with the mass balance
over the tube:

ṁ = ṁtop − ṁbot − ṁev (9)

According to Nusselt’s classical theory on falling
film condensation, heat is transferred by conduction
across the falling film. Same assumption is used in
this model. Applying Fourier’s law:

Q̇tube = kAwet
Ttube −T

δ
(10)

The thin film energy balance is:

U̇ = Q̇tube + ṁtophtop − ṁbothbot − ṁevhev (11)

where Q̇tube is the heat flow rate transferred by the
tube, ṁbot is calculated with Eq. 7, hbot is assumed as
the falling film specific enthalpy and hev the specific
enthalpy of saturated vapor.
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(a) Falling film in sheet mode (b) Falling film scheme

Figure 6: Falling film on a horizontal tube

To determine the evaporated mass flow rate, the fol-
lowing relationship is used:

ṁev =
1

hsg −hsl
(Q̇tube−mḣsl −ṁtop (hsl −htop)) (12)

where the mass of evaporated water is adapted with
changes in the pressure and in the inlet mass flow rate.

The pressure inside the evaporator is estimated with
the ideal gas law because the evaporator works at low
pressures.

3 Modelica library

A new library to simulate a falling film evaporator has
been developed using Modelica version 3.2. This li-
brary is completely compatible with Modelica.Fluid,
Modelica.Thermal and Modelica.Media. Water ther-
modynamic properties have been calculated using the
package Modelica.Media.Water.StandardWater.

The library is divided in the tube model, the tube
conduction model, the tube column model and the tube
bundle model.

The tube model is the basic class which includes
all the equations that models the mass and energy bal-
ances in one single control volume. As inputs the
model has a fluid port of top inlet flow and a heat
port connected to the Nusselt falling film conduction
model, as outputs it has two fluid ports, one for the
outlet flow that falls by gravity at the bottom and
one to evacuate the steam generated, and a real out-
put to provide conduction model the heat transfer co-
efficient. The model obtains the water initial state
variables (temperature and pressure) through an outer

Modelica.Fluid.System class. The parameters of the
tube model are shown in Fig. 7.

Figure 7: Tube model parameter menu

The tube conduction model joins a conduction
model with a tube model, modeling the mass and en-
ergy dynamics of the falling film outside the tube. It
has three fluid ports (top, bottom and steam) and one
heat port where the metal tube transfers heat to the
falling film.

The tube column model uses an array of tube con-
duction models in order to model one of the evapo-
rator columns. The tube conduction models are con-
nected consecutively one by one through top and bot-
tom fluid ports, making a column of tubes. The steam
fluid ports are interconnected between them in a sin-
gle output fluid port. Also, the heat ports are intercon-
nected between them, hence, assuming the same tem-
perature. This assumption is possible because inside
the tubes flow steam that is condensated transferring
heat but keeping constant the temperature.

The tube bundle model adds to the tube col-
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umn model the dynamics of an evaporator with many
columns. This model assumes that all the columns
have the same dynamics and extrapolates the results
of one single column to all of them. The model addi-
tionally includes a conduction model where the con-
duction across the tubes is modeled as one single mass
that transfers heat from the single mass to the outside.

Figure 8: DEAHP evaporator in Modelica

4 Simulation

The model used to simulate the evaporator shown in
Fig. 5 is composed of a tube bundle model, a wa-
ter level model, a pump model, a gas model, a steam
sink model and a water source model. The water level
model simulates the mass and energy balances of the
vessel under the tubes. The water in the vessel is re-
circulated with the help of a pump to the tube bundle
as it is shown in Fig. 8. The gas model considers the
mass and energy balances of a mixture of gases (steam
and air) in the evaporator vessel where the pressure is
given with the ideal gas law. The steam sink model is
a first approximation to model the absorber where the
steam leaves the vessel always with a steam mass flow
rate lower than the saturation boundary. Water source
model is used to control the vessel water level. The
simulated tube bundle has 8 columns and 25 rows.

The simulation time was 25.8 s of 100 s. It has been
performed starting from steady-state initial conditions.
When the evaporator is started, an ideal pump flows a
constant water flow rate to the tube bundle and each
tube in the model has the same inlet flow rate. Water

and tubes start at the same temperature. At simulation
time 20 s, the tubes progressively raise its tempera-
ture until time 40 s and where its temperature reach
steady-state. Water starts evaporating. First, water
heats the gas increasing slightly the pressure, and then,
the gas leaves the vessel. When the steam sink model
reaches its saturation mass flow rate, the pressure in-
side the vessel raises and that increases also the spe-
cific enthalpy of saturated liquid. This pressure rise
stops when the evaporated mass flow rate reaches the
saturation mass flow rate boundary given by the steam
sink model.

Simulation results are shown in Fig. 9. Fig. 9a
at the top depicts the total heat flow rate transferred
by the tubes to the falling film. At the bottom a com-
parison between tube wall temperature and inlet and
outlet water temperature of the tube bundle is shown.
Fig. 9bI shows the variation of the pressure inside the
vessel. This variation affects to the specific enthalpy of
the saturated liquid as is depicted at Fig. 9bII. Also, in
this figure is shown that while the 25th tube row begins
to evaporate, at the 1st tube row the specific enthalpy
of the inlet water is lower than the specific enthalpy of
saturated water until the evaporator heats all the water
in the vessel and the water in the vessel reaches the sat-
urated temperature. Evolution of dry patches in tubes
can be observed in Fig. 9c. Dryout disappears when
water temperature increases and the Reynols number
increases too. Besides, in this figure can be observed
the evolution of the falling film thickness along the ex-
periment. Fig. 9d shows the steam mass flow rate
generated in the evaporator. As it can be seen, the sim-
ulation has chattering in some of the tubes when the
pressure increases, even though this effect has been
foreseen in Eq. 12. Numerical errors taken into ac-
count could probably be the origin of this problem.

5 Conclusions

A new dynamic model of a falling film evaporator has
been developed. The model is framed in a project
which studies the AQUASOL DEAHP. A Modelica
library for falling films evaporators has been imple-
mented. The library is based on Newton’s viscosity
law and Nusselt’s classical theory of falling film and it
is compatible with Modelica.Fluid, Modelica.Thermal
and Modelica.Media libraries. The simulations show
the expected performance within the range which it
has been designed in spite of chattering in evapora-
tion. The chattering problem will be studied in detail
in future works and possible solutions like hysteresis
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are going to be tested. The library will be extended
with new components that will model absorbers and
generators. Models will be calibrated and validated
with experimental data and control algorithms will be
proposed to optimize the DEAHP performance.

Appendix A. Nomenclature

A Area (m2)
F Apparent wet area fraction (dimensionless)
g Gravitational acceleration (m · s−2)
h Specific enthalpy (J ·Kg−1)
l Length (m)
m Mass (Kg)
k Conductivity (W ·m−1 ·K−1)
p Pressure (Pa)
Q Heat (J)
Re Reynols number 4Γ /µ (dimensionless)
r Radius (m)
T Temperature (K)
U Internal energy (J)
u Flow velocity (m · s−1)
V Volume (m3)
v Average film velocity (m · s−1)
x Spatial coordinate tangential to the tube (m)
y Spatial coordinate normal to the tube (m)

Greek symbols
δ Film thickness (m)
Γ Liquid mass flow rate per unit length of tube

(each side) (Kg ·m−1 · s−1)
θ Angle (rad)
µ Dynamic viscosity (Kg ·m−1 · s−1)
ρ Density (Kg ·m−3)
τs Shear stresses (Pa)

Subscripts
bot bottom
ev evaporated
sg saturated gas
sl saturated liquid
t total
top top
tube tube
wet wetted
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Figure 9: Simulation results
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Abstract 

The Functional Mock-up Interface (FMI) opens new 

opportunities for the development and extension of 

existing non-Modelica simulation programs with 

Modelica models. For the developer this is a produc-

tive way to design and validate new complex simula-

tion models with multi-domain modeling languages 

such as Modelica. With the standardized Functional 

Mock-up Interface (FMI) and the Functional Mock-

up Unit (FMU) export it is possible to execute these 

models within other software tools, including infor-

mation exchange during the simulation. However, 

there are some design requirements in Modelica, 

which have to be taken into account. In this paper, 

models for different HVAC (Heating, Ventilation 

and Air Conditioning) equipment configurations are 

integrated into existing software using the FMI. An 

interface extension plug-in is developed to pick a 

specific FMU and execute it alongside the existing 

simulation algorithm. Two different coupling algo-

rithms were investigated: the iterative and the co-

simulation approach. Some issues and practical hints 

for a successful coupling and simulation are present-

ed. 

Keywords: Building Simulation; FMI for Co-

Simulation; HVAC 

1 Introduction 

The application of building performance software 

during the design process is standard in the design of 

energy efficient buildings. There are tools that solve 

the coupled heat and moisture transport in building 

components to avoid moisture related problems such 

as mold growth or rotting components. Different 

kinds of components (e.g. walls, windows, roof) are 

combined to a whole building model. Additionally, 

climate data and inner sources lead to a whole build-

ing envelope simulation software, which allows for 

an accurate assessment of the indoor environment 

and the energy consumption of the building. The 

WUFI
®
Plus software offers the possibility for such a 

simulation. Until now, the HVAC equipment was 

considered as an ideal heating and cooling system. 

Current activities aim to implement realistic models 

into WUFI
®
Plus to simulate HVAC systems. These 

models are written in Modelica [1]. The building 

envelope and the HVAC system influence each other 

significantly. This makes a separate simulation of 

both systems inaccurate and introduces special re-

quirements for combining both in a co-simulation. 

The decision to implement the Modelica models into 

the existing software rather than model the building 

envelope with Modelica was made because of the big 

user community, which is familiar with the existing 

GUI and other user specific requirements. A possible 

way to include Modelica models into an existing 

building simulation program is the Functional Mock-

up Interface for Co-Simulation. The integration is 

described in this paper. 

2 Existing Software / Models 

2.1 Building model 

WUFI
®
Plus is a holistic model based on the hygro-

thermal envelope calculation model developed by 

Künzel [2]. The hygrothermal behavior of the build-

ing envelope affects the overall performance of a 

building. WUFI
®
Plus is a building performance sim-

ulation tool, which computes the coupled heat and 

moisture transfer in the building components. These 

components are combined to a whole building mod-

el. Moisture sources or sinks inside the rooms or 

components, input from the envelope due to capillary 
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action, diffusion and vapor ab- and desorption as a 

response to the exterior and interior climate condi-

tions as well as the thermal parameters are taken into 

account. A stable and efficient numerical solver had 

been designed for the solution of the coupled and 

highly nonlinear equations. The conductive heat and 

enthalpy flow by vapor diffusion with phase changes 

in the energy equation are strongly dependent on the 

moisture fields. The vapor flow is simultaneously 

governed by the temperature and moisture field due 

to the exponential changes of the saturation vapor 

pressure with temperature. The differential equations 

are discretized by means of an implicit finite volume 

method. The model was validated by comparing its 

simulation results with the measured data of exten-

sive field experiments [3]. The user can define de-

sign conditions for the indoor climate by setting min-

imal and maximal values.. To simulate the indoor 

climate, the software calculates heat and moisture 

balances for one or more building zones, regarding 

all the sources, sinks and transfers. So long as these 

balances are not satisfied during a time step, the inte-

rior temperature and humidity is adapted. For exam-

ple, if the heat loss through the building envelope 

and ventilation is more than the solar and internal 

heat gains plus space heating capability, the interior 

temperature is decreased as long as the loss and the 

gain is equal. 

2.2 Modelica HVAC models 

The aim was to create simple but realistic HVAC 

models, which can be used by practitioners. This 

means that only necessary and obtainable plant in-

formation is required for these simulations. The 

computation time to simulate a building should not 

increase to times which are no longer acceptable for 

practitioners. 

Systems to be simulated include: 

 Condensing gas boiler 

 Solar thermal collector 

 Combined heat and power plants 

 Heat pumps 

 Bore hole heat exchangers 

 Thermally activated building systems 

(TABS) 

 Radiators 

 Storage tanks 

 Control equipment 

 PV systems 

The model development was done with the software 

Dymola 2012 [4]. To deliver realistic and validated 

plant equipment models, the above mentioned sub-

models are merged to complete HVAC configura-

tions, an example is shown in Figure 1. This was 

done to increase the usability and avoid the risk of 

non-feasible configurations. In the end, the user 

chooses one HVAC configuration and has to select 

only a few necessary parameters or import them 

from a database. 

 

 
Figure 1: Exemplary HVAC configuration in  

WUFI
®
Plus 

3 Integration 

The first investigated coupling approach was to use 

Dymola specific export possibilities (Source Code 

generation). More details on this can be found in [5]. 

Finally the coupling with the Functional Mock-up 

Interface for Co-Simulation was chosen because of 

its unified convention and possibilities to perform 

the co-simulation. Merging the existing software and 

the Modelica HVAC models using the Functional 

Mock-up Interface for Model Exchange would re-

quire the development of a new solver for  

WUFI
®
Plus. Therefore, one of the main advantages 

in the context of the described application was that a 

solver is included in the FMU for Co-Simulation. In 

the described case it is the CVODE solver included 

in the Sundials solver package [6]. The selected 

solver within Dymola has no influence on the ex-

ported solver. The standardized interface provides 

some methods to interact with the model. Beside in-

stantiating, initializing, setting and obtaining of val-

ues of defined variables and parameters there is the 

possibility to execute single time steps. Furthermore, 

there is a distinction between time varying variables 

and parameters. The value of parameters can be set 

before initializing the model; the value of variables 

can be set between the time steps. But these time 
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varying variables must be declared as input within 

the Modelica code. Their causality must be set to 

Input. If parameters appear in if-statements in sub-

models, the model must be re-compiled for a change 

of their value. In the exported and compiled FMU 

such a parameter is automatically set to constant and 

the value is firmly anchored. Changing the value of 

constants within the FMU is not possible.  

If-statements are often responsible for discontinuities 

and events. They should be avoided during the mod-

el design process because they increase the computa-

tion time [7]. However, to set a parameter of an  

if-statement in the compiled FMU, a workaround is 

to define the parameter as input. 

There are more than one HVAC configurations with 

different devices and different parameters and, con-

sequently, many FMUs. WUFI
®
Plus has to interact 

with the HVAC system configuration, which is cho-

sen by the user of the software. A FMU adapter 

(Figure 2) is written in the object-oriented language 

C++ to manage dynamic FMU instantiation, initiali-

zation, set inputs, obtain outputs and execute time 

steps. Therefore, the adapter receives information 

about the different kinds of configurations and their 

parameters (their value references). 

 

 
Figure 2: Communication between building model and 

heating systems 

 

As mentioned, the building model and the HVAC 

models have to interact with each other. Some results 

of one are needed as input for the other. Two differ-

ent insertion algorithms were investigated and are 

discussed below.  

3.1 Iterative approach 

As described before, WUFI
®
Plus uses an iterative 

process to simulate the interior temperature and 

moisture for defined zones. Also airflow is calculat-

ed iteratively. For short computation times there is a 

solver designed for fast convergence of these values 

with only a few iterations. Indeed, the HVAC sys-

tems influence the indoor climate. The first approach 

was to use the existing heat and moisture balance 

algorithm. The HVAC system receives, for example, 

the indoor set point temperature and the actual tem-

perature of a zone and a time step and delivers the 

possible heat flow to the zone. If the heat balance is 

not satisfied, the current temperature will be in- or 

decreased and the HVAC system must iterate (Figure 

3).  

 

 
Figure 3: Flow chart - iterative approach 

 

The advantage of this approach is to use the estab-

lished flexible balance system. The HVAC model 

can be coupled in a fast way with only a few modifi-

cations of the WUFI
®
Plus algorithm. However, this 

method requires repeating and discarding of FMU 

time steps. Therefore the parameter newStep of 

fmiDoStep(..) can be set to fmiFalse if the capa-

bility flag canRejectSteps of the FMU is true. Until 

now this feature is not supported by the exported 

FMU. This is specific to Dymola and might not be 

the case for other simulation environments. Howev-

er, in the analyzed case the missing feature is a prob-

lem for the implementation of the iterative approach. 

If a time step is regarded as an entire simulation, a 

workaround could be to re-initialize the FMU for 

every time and iteration step. In order to retain all 

information, all time varying variables must be 

stored after a step and re-stored as initialization val-

ues for the next step. To repeat a step, the values of 

the last step are used. This could be time and 

memory consuming. Furthermore, some states of the 

model, which cannot be stored in the cache, may 

change during a time step.  

A further issue of this coupling approach is that the 

iteration might end in a continuous loop. The heat 

supply system models are designed to deliver a heat 
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flow to the room, when the current room temperature 

is lower than the set point temperature. This is im-

plemented using a thermostatic valve model. The 

building model iterates the room temperature with 

the heat balance, including the heating system as a 

kind of heat source. If the balance is positive, the 

room temperature can be increased for the next itera-

tion step. In this case, the current room temperature 

might become equal or greater than the set point 

temperature and in return the heating system model 

calculates no heat gain. If the heat balance ends with 

a negative sum, the room temperature is decreased. 

The heat supply system reconvenes a heat gain for 

the next iteration. This leads to a continuous loop. 

3.2 Co-simulation approach 

The mentioned issues with the iterative approach 

lead to a real co-simulation approach. The iterative 

process has been removed, so there is no requirement 

to repeat time steps within the FMU. Therefore the 

building envelope model (WUFI
®
Plus) and the 

HVAC model calculate the steps alternately with a 

ping-pong method. A usual simulation time step, to 

simulate a whole year, is one hour. For the alternate-

ly co-simulation this time step size, with ,e.g. con-

stant room temperatures, very likely leads to unreal-

istic simulation results. One physically realistic solu-

tion is to decrease the time step size. 

 

 
Figure 4: Flow chart - co-simulation approach 

 

The explicit algorithm (Figure 4) is the following, 

described with thermal values: The plant equipment 

model calculates a few seconds with a constant inte-

rior temperature. Dependent on the heat emitting 

system (e.g. radiator) and its heat capacity and per-

formance, this is possible because of the fast re-

sponse time of the active HVAC system. The result 

is still the heat flow which is added as heat gain to 

the building zones. Simultaneously, the building is 

simulated with the last heat gain. Depending on the 

heat balance the new interior temperatures for the 

next time step are calculated. With this method, 

small time steps depending on the time constant of 

the heating system must be used (e.g., five seconds). 

This leads to increased computation times. However, 

these small sub time steps must not be stored in the 

results. Furthermore, the building model converges 

faster with small time steps, which saves some com-

putation time. 

First tests with a time step of five seconds showed an 

increased demand of simulation time of about one 

third compared to the WUFI
®
Plus simulation without 

the HVAC models. The results of a Dymola simula-

tion compared to the results of an external FMU 

simulation of the HVAC system are equal.  

4 Conclusions 

The multi-zone building model and the HVAC mod-

els are complex models with a lot of variables and 

their own specialized solver. Separately they are 

proven, validated and stable for many kinds of simu-

lations. The described weak coupling using the co-

simulation approach seems to be a reasonable tech-

nique. Exported FMUs, acting as sub-models with 

defined in- and output, can be used to supplement the 

building model. The authors believe, that in princi-

ple, the merging of the models is possible with the 

introduced iterative and co-simulation approach. 

However, not supported features of the exported 

FMU make the iterative approach unfeasible. A still 

acceptable computation time with the co-simulation 

approach led us to the conclusion that this is a more 

suitable approach in the described case. The sum of 

heat gains over the sub time steps delivered by the 

HVAC configuration is realistic. However, future 

work will include more investigations about the cho-

sen time intervals and the handling of discontinuous 

input.  
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Abstract

Chemical process models are highly structured. Infor-
mation on how the hierarchical components are con-
nected helps to solve the model efficiently. Our ulti-
mate goal is to develop structure-driven optimization
methods for solving nonlinear programming problems
(NLP). The structural information retrieved from the
JModelica environment will play an important role in
the development of our novel optimization methods.
Foundations of a Modelica library for general-purpose
chemical process modeling have been built. Multi-
ple steady-states in ideal two-product distillation were
computed as a proof of concept. The Modelica source
code is available at the project homepage. The issues
encountered during modeling may be valuable to the
Modelica language designers.

Keywords: separation, distillation column, tearing
methods, homotopy continuation, bifurcation

1 Introduction

The object-oriented component-based modeling
methodology in Modelica (FRITZSON [13]) is well-
suited for chemical processes modeling. Accordingly,
Modelica has received attention in the chemical
engineering literature (SANDROCK & DE VAAL

[19]). Creating a component-based framework for
chemical process modeling is one of the goals of our
project. This framework then serves as a common
language between mathematicians and chemical
engineers. The current chemical engineering literature
is hardly accessible to mathematicians, partly due to
the engineering jargon and unwritten traditions.

We created a prototype Modelica implementa-
tion of basic chemical engineering processes. Cur-
rently, only steady-state models are supported.
Once this component library is finished, soft-
ware with a graphical user interface, such as the
OpenModelica Connection Editor (OMEdit), can be
used to build chemical process models. The process

model creation involves only high-level operations on
a GUI; low-level coding is not required. This is the
desired way of input. Not surprisingly, this is also
how it is implemented in commercial chemical process
simulators such as Aspen Plus R©, Aspen HYSYS R© or
CHEMCAD R©.

Nonlinear system of equations are generally solved
using optimization techniques. AMPL (FOURER et al.
[12]) is the de facto standard for model representation
and exchange in the optimization community. Many
solvers for solving nonlinear programming (NLP)
problems are interfaced with the AMPL environment.
We are aiming to create a ‘Modelica to AMPL’ con-
verter. One could use the Modelica toolchain to create
the models conveniently on a GUI. After exporting the
Modelica model in AMPL format, the already existing
software environments (solvers with AMPL interface,
AMPL scripts) can be used. Thus an AMPL export fa-
cility builds a bridge between Modelica users and the
optimization community. Such an implementation ex-
ists (ÅKESSON [3]) but it is no longer supported, and
not publicly available.

Our ultimate goal is the development of structure-
driven optimization methods for solving nonlinear
programming problems (NLP). The structural infor-
mation (hierarchical components and the connections
between them) can be exploited to solve the underly-
ing process model efficiently. For example the process
model of the reactive distillation column in CIRIC &
MIAO [8], producing ethylene glycol from ethylene
oxide and water, has 70 variables and 70 equations.
However, the steady-state process model can be solved
by solving univariate equations only, in a proper elim-
ination order (BAHAREV & NEUMAIER [5]). In other
words, the problem is essentially 1-dimensional. Typ-
ically, chemical process models are essentially low-
dimensional even if their steady-state model is large-
scale.

The structural information is difficult to get from
an AMPL source directly, one would rather try to ex-
tract it from the flattened AMPL file instead. In prin-
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ciple, one could recover the required structural infor-
mation from the flattened model, at least to some ex-
tent. This means that the flattening step throws away
the structural information first, then one must try to
recover it inside a solver. In contrast, the structural
information is programmatically accessible in JMod-
elica (ÅKESSON et al. [2]) before flattening, and we
intend to utilize this.

2 Component-based modeling of che-
mical processes

Chemical processes are well-suited for component-
based modeling since they are networks of equip-
ments. In turn, it is natural to model the equipments
hierarchically, as a composite of smaller components.
The smallest subcomponents are called atomic units.
The atomic units are connected by process streams.

2.1 Connector class: process streams

A process stream S consisting of C substances has
C+2 independent variables. It is characterized by the
list of variables

S = {S. f , S.p, S.H},
where S. f is an array of size C. See also Table 1.

variable physical meaning SI unit
f [i]≥ 0 molar flow rate of substance i = 1 : C mol/s
p ≥ 0 pressure Pa
H enthalpy flowrate J/s

Table 1: The C+ 2 variables characterizing a process
stream.

The graphical representation of process streams is
by arrows, as shown in Figure 1.

S

Figure 1: The graphical representation of stream S.

The units are connected by streams. The streams
entering the unit are called inlets, while the streams
leaving it are called outlets. The causal flows reflect
the fact that the chemical process streams are directed,
the material can only flow into the direction specified.

2.2 Sources and sinks

Given their simplicity, the easiest way to describe
these components is by their implementation, see be-
low. The only equations that sources and sinks can be

involved in are the connecting equations and specifi-
cations on their stream variables.

class Source
output Stream outlet;

end Source;

class Sink
input Stream inlet;

end Sink;

2.3 Types of equations

These equations apply to all atomic units in subsec-
tion 2.4. Only flows of chemicals are considered. Heat
flows allowing thermal coupling or multidomain mod-
els would need an extension.
Material balances: A system of C linear equations,
reflecting the conservation of mass.
Heat balance: A linear equation reflecting the conser-
vation of energy.
Mechanical equilibrium: The outlets have the same
pressure as the unit. With the exception of the mixer
and the pressure changer, the pressure of the unit
equals the pressure of its only inlet.
Thermal equilibrium: The enthalpy of the outlets
corresponds to the temperature of the unit. This rela-
tion is expressed by nonlinear equations (equation of
state). If the temperature is not an internal variable of
the unit then these nonlinear equations are missing.
Characterizing equations: These equations charac-
terize how the unit works and cannot be changed.
Connections with other units: These equations de-
scribe how the units are connected by equating the cor-
responding variables of the involved streams.
Specifications: These equations make the steady state
model of the unit well-defined. They usually corre-
spond to closed loop control systems. The form of
these equations shows large variation: they can be triv-
ial equations as well as complicated nonlinear equa-
tions.

2.4 Atomic units

As the name suggests, these units cannot be decom-
posed further to smaller, connected Modelica compo-
nents. Atomic units implement the UnitOp interface,
that is all the equations listed in Subsection 2.3 apply.
These units are the followings.
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A B C

Figure 2: Structural types of the atomic units: (A)
heat exchanger, pressure changer, reactor; (B) divider,
flash; (C) mixer.

1. Mixer
2. Heat exchanger
3. Pressure changer
4. Reactor
5. Divider
6. Flash

The mixer has multiple inlets and a single outlet.
All other atomic units have a single inlet and can have
either one or two outlets. See Figure 2. Some code
snippets are shown below. The simplicity of the imple-
mentation is a consequence of proper decomposition.

class Mixer
extends UnitOp(nInlet=2, nOutlet=1);

end Mixer;

class PressureChanger
extends UnitOp(nInlet=1, nOutlet=1);
redeclare class ChangeInPressure=DeltaP;

end PressureChanger;

class Divider
extends UnitOp(nInlet=1, nOutlet=2);
Real zeta;
equation
outlet[1].f = zeta*inlet[1].f;
outlet[1].H = zeta*inlet[1].H;

end Divider;

The Divider has one so-called unit parameter, ζ ,
its value typically comes from specification.

The atomic units or the equipments are not referred
to as components in the chemical engineering litera-
ture. Unlike Modelica, the word “component” refers
to a particular chemical substance in the process. We
call the smallest Modelica components atomic units
and the composite Modelica components composite
units.

2.5 Notes on the process stream definition

Traditionally, one uses the total molar flowrate, the
mole fractions of the chemical substances, the pressure
and the temperature to characterize a process stream.
In addition, the specific enthalpy is needed to distin-
guish, for example, between boiling water and satu-
rated steam, as they both have a temperature of 100◦C

variable physical meaning SI unit
F ≥ 0 total molar flow rate [mol/s]
x[i]≥ 0 mole fraction of substance i = 1 : C [–]

∑x[i] = 1
p ≥ 0 pressure [Pa]
T ≥ 0 temperature [K]
h specific enthalpy flowrate [J/s mol]

Table 2: Traditional choice of variables to characterize
a process stream.

at atmospheric pressure. The traditional representation
is shown in Table 2.

There are three problems with this representation.
(1) The temperature is uniquely determined by the
other variables and this relation is nonlinear (equation
of state). (2) The material and heat balance equa-
tions are nonlinear because mole fractions are used
to describe the stream composition. (3) The process
stream definition involves an equality constraint (the
mole fractions must sum up to 1).

The first two issues make linear atomic unit mod-
els nonlinear. In particular, the mixer becomes nonlin-
ear. (The thermodynamically consistent model of the
mixer is nonlinear. However, it is practically always
made linear in the chemical engineering literature by
ignoring the so-called heat of mixing.) The mixer is
the only atomic unit having multiple inlets. Thus, a
nonlinear mixer has a domino effect: many of the com-
posite units are no longer worth decomposing.

The temperature can be safely dropped from the
stream definition. It is uniquely determined by the
other variables and it is never needed outside the units.
If, for some reason, the temperature of a stream is
needed, one can always calculate it by running a flash
calculation.

At first sight, it looks strange to the engineer to drop
the temperature from the stream definition. Tradition-
ally, the temperature is included in the stream variables
(e.g. the EMSO model library, DE P. SOARES & SEC-
CHI [9]) as it is easily measured in real life with a ther-
mometer. Nevertheless, it can be safely excluded.

To make the balance equations linear we use the mo-
lar flowrates of the individual substances and the total
enthalpy flowrate in place of the total molar flow rate,
the mole fractions and the specific enthalpy flowrate.
This has the beneficial side-effect that the equality
constraint disappears since the mole fractions are not
present. With these changes to the stream definition
given in Table 2, we arrive at the stream definition pre-
sented in Table 1.
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2.6 Why not Modelica.Fluid?

The Modelica.Fluid library superficially resembles our
library. However, according to the documentation:
“The Modelica.Fluid library provides basic interfaces
and components to model 1-dimensional thermo-fluid
flow in networks of pipes. [. . . ] there is the restric-
tion that only media models are supported that have
T, (p,T), (p,h), (T,X), (p,T,X) or (p,h,X) as independent
variables. [. . . ] (Note, T is temperature, p is pressure,
d is density, h is specific enthalpy, and X is a mass
fraction vector).”

The Modelica.Fluid library does not aim at support-
ing chemical process models. Chemical process mod-
els are different from flows in networks of pipes.

We want to preserve the linearity of the material and
heat balances because it plays an important role in our
novel methods. Since the presence of the tempera-
ture, the mass / mole fractions or the specific enthalpy
would make the balance equations nonlinear, none of
them should not appear in the connector class. As al-
ready discussed in subsection 2.5, only the molar flow
rates of the substances, the pressure and the enthalpy
flowrate together guarantee linearity. Unfortunately,
the Modelica.Fluid library does not allow this choice
of the independent variables.

2.7 Hierarchical modeling: composite units

We call the smallest Modelica components atomic
units and the composite Modelica components com-
posite units. Often, atomic units only exist on the
level of abstraction. For example the equipment in
YI & LUYBEN [20] referred to as reactor cannot be
decomposed further into smaller, functioning pieces.
However, it can be modeled by connecting 7 atomic
units and a sink appropriately. None of these units is a
reactor. See Figure 3.

The set of atomic units listed in Subsection 2.4 was
determined by recursively decomposing a variety of
chemical processes. As a result, this set of atomic
units is sufficient for general-purpose chemical pro-
cess modeling.

Figure 4 shows an example of hierarchical decom-
position. The vapor-liquid equilibrium cascade is a
cascade of stages. A stage is a mixer and a flash unit
connected appropriately. In real life, the stages are the
smallest, still functioning pieces. The decomposition
of the stage into a mixer and a flash unit is an abstrac-
tion, as the stage does not have a mixer or a flash unit
inside. Nevertheless, this decomposition is valid for
modeling.

P

P

P

M H R

S

P

Reactor

Figure 3: The reactor of Yi & Luyben and its abstract
decomposition into atomic units. P: pressure changer,
M: mixer, H: heat exchanger, R: reactive flash, S: sink.

M F

Figure 4: Hierarchical decomposition of the vapor-
liquid equilibrium cascade into a cascade of stages,
then the decomposition of a stage into a mixer M and
a flash unit F.

2.8 Modelica issues encountered

The unit models are valid only if the molar flowrates
are nonnegative. This is due to the internal physi-
cal structure of the corresponding unit. The natural
way to impose these nonnegativity constraints is to
impose it on the molar flowrates and the pressure of
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the stream, that is, in the connector class. Inequal-
ity constraints can be represented within the Modelica
language but only by introducing slack variables and
setting the min/max on these variables accordingly.
This approach is rather inconvenient. The Optimica
language extension (ÅKESSON et al. [1]) supports in-
equalities, it is our preferred way of defining inequality
constraints.

Figure 5: A stage with an optional connection (dashed
arrow).

Another difficulty is that Modelica cannot handle
arrays of components that have optional connections.
All stages have an optional inlet, see Figure 5. This
makes the creation of cascades somewhat awkward as
missing inlets have to be simulated by dummy streams.
The details are difficult to explain in text but easy to
understand from the source code. The reader is re-
ferred to the source code of the VLEcascade, available
from the project homepage at NEUMAIER [17].

3 Application: separation operations

The Modelica implementation discussed in the previ-
ous section is tested on a separation operation model.
The background of the application is briefly presented.
Then numerical results are given for the particular
benchmark in subsection 3.2.

A chemical plant takes raw materials as input and
produces products as output. Roughly speaking, three
steps can be distinguished in a chemical plant: prepa-
ration, reaction and purification. See Figure 6. Un-
wanted chemical substances are separated from the
raw input materials in the first step. The unwanted sub-
stances may interfere with the reaction in the second
step. The reaction produces the desired products and
byproducts. Usually a significant fraction of the reac-
tants remain unreacted. These unreacted reactants, the
products and the waste byproducts are separated in the
third step, called the purification step. The unreacted
reactants are recycled, that is, they are fed back to the
first step.

Both the first and the third step involves separation
operations. In a typical chemical plant, 40–80% of
the investment is spent on separation operation equip-

I II III

Figure 6: Schematic figure of a chemical plant. Input:
raw materials, output: products and byproducts. The
steps are (I) preparation, (II) reaction and (III) purifi-
cation.

ments (PRAUSNITZ et al. [18], p. 2).
Many of the practically relevant equipments used in

separation operations (multistage extraction, absorp-
tion, desorption, stripping and distillation) are inter-
nally a cascade. Not surprisingly, their mathematical
model can be solved in a sequential manner.

Identifying multiple steady states is critical to
proper design, simulation, control, and operation of
these equipments. Unfortunately, professional simula-
tors return only one solution at a time, without indicat-
ing the possible existence of other solutions. Usually,
only one of the steady-states is desired, the so-called
high purity branch. The other steady states are unde-
sirable and potentially harmful as they can lead to un-
expected behavior, meaning that the equipment may
respond to perturbation in a counterintuitive way.

Given the importance of separation operations, they
have already been modeled in Modelica by several au-
thors, for example DURO & MORILLA [11], JOOS

et al. [15] and CHANG et al. [7]. Our implementa-
tion is based on our Modelica component library for
general-purpose chemical process modeling. This dis-
tinguishes our implementation from the previous ones.

3.1 Internal physical structure of distillation
columns

Distillation columns are used in separation operations.
The body of a multistage distillation column is a cas-
cades of stages. In the cascade, the output of one stage
is the input of its two neighbors and vice versa, see
Figure 4. This structural information can be exploited
to solve the underlying process model efficiently.

The internal physical structure is reflected in the
mathematical model of the columns. The equations
can be evaluated in a sequential manner after guessing
just a few variables at one end of the cascade. The es-
sential dimension of the problem is given by the num-
ber of variables that have to be guessed to start the
stage-by-stage computations. The steady-state model
of distillation columns are essentially low-dimensional
even if their steady-state model is large-scale.
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This approach, reducing the large-scale model to
a low-dimensional one, is called the stage-by-stage
calculation (LEWIS & MATHESON [16]). Unfortu-
nately, solving the low-dimensional model is very
difficult if not impossible with this method, as it
shows an extreme sensitivity to the initial estimates.
Thus, currently only high-dimensional techniques are
in use (DOHERTY et al. [10], 13–33). But a proof-of-
concept method remedies the numerical difficulties of
the stage-by-stage calculation, see BAHAREV & NEU-
MAIER [5].

3.2 Example: multiple steady-states in ideal
two-product distillation

The Modelica implementation discussed in Section 2
is tested on the distillation column presented in JA-
COBSEN & SKOGESTAD [14]. Its main structure cor-
responds to the linear structure presented in Figure 4,
and detailed in subsection 3.1.

Perhaps the simplest distillation columns are the
single feed two-product columns with ideal vapor-
liquid equilibrium. Even these columns can have mul-
tiple stead-states (JACOBSEN & SKOGESTAD [14]).
One type of multiplicity can occur when the column
has its input specified on a mass or volume basis (e.g.,
mass reflux and molar boilup). This is of high practi-
cal relevance as industrial columns usually have their
inputs specified in this way.

The model equations are taken from BAHAREV

et al. [4]. Specifications are: methanol-propanol feed
composition, mass reflux flow rate and vapor molar
flow rate of the boilup. Heat balances are included in
the model.

In many studies, one is interested in the dependence
of the characteristics on a design parameter (the bifur-
cation parameter) that can be varied, resulting in bi-
furcation diagrams. In this case, the design parameter
is the reflux flowrate specified on mass basis, and the
observed parameter is the product purity. The bifur-
cation diagram is given in Figure 7. The model equa-
tions have five distinct solutions in a certain range of
the reflux flow rate. One of the solutions is infeasi-
ble in practice because it would result in negative flow
rates. The fact that the Modelica implementation gives
the expected steady-states suggests that the implemen-
tation of the involved atomic and composite units is
correct.
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Figure 7: Bifurcation diagram, multiple steady-states
in ideal two-product distillation. The infeasible
steady-states are represented by dashed lines.

4 Future work

4.1 Recovering structural information

The structural information (connections of the units)
can help to solve the underlying process model effi-
ciently, as already mentioned in the introduction and
in Subsection 3.1. The core equations of the column
in Subsection 3.2 are shown below.

Modelica source:

connect(cascade.outVapor, condenser.inlet);
connect(condenser.distillate,distillate.inlet);
connect(condenser.reflux, cascade.reflux);
connect(feed.outlet, cascade.feed);
connect(cascade.boilup, reboiler.vapor);
connect(cascade.outLiquid, reboiler.inLiquid);
connect(reboiler.bulk, bulk.inlet);

AMPL source:

M_eq{j in 1..N-1}:
sum{k in 1..j} F[k]*z[k] + V[j+1]*y[j+1]
= D*y[1] + (sum{k in 1..j} F[k]+V[j+1]-D)*x[j];

M_tot:
F[N_F]*z[N_F] = D*y[1] + (F[N_F]-D)*x[N];

H_eq{j in 1..N-1}:
sum{k in 1..j} qF[k] + V[j+1]*HV[j+1]
= V[1]*(HV[1]-HL[0]) + D*HL[0]
+ (sum{k in 1..j} F[k]+V[j+1]-D)*HL[j];

The Modelica code is favorable when it comes to
structural information, since it speaks about connec-
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tions as clearly as possible. The JModelica environ-
ment (ÅKESSON et al. [2]) supports programmatic ac-
cess to the connectivity information. JModelica will
play an important role in the further development of
our novel methods.

4.2 Optimization

Optimization methods are used in almost all areas of
engineering. Typical problems in chemical engineer-
ing arise in process design, process control, model de-
velopment, process identification and real-time opti-
mization, see BIEGLER [6]. Our ultimate goal is to de-
velop structure-driven optimization methods for solv-
ing nonlinear programming problems (NLP). This re-
quires an objective function (e.g. minimize cost, max-
imize yield or profit) to be included in the model. In-
equality constraints often required too. Unfortunately,
Modelica does not support cost function and inequali-
ties, only the Optimica language extension (ÅKESSON

et al. [1]) does.

4.3 Dynamic simulation

At the moment, only the steady-state model equations
of the units are implemented in Modelica. It is pos-
sible to extend the library to support dynamic simula-
tion, but it is not easy in practice. Often, the model
equations are not accurately known and the dynamic
calculations may involve additional pitfalls.
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Abstract 

Currently, most of the links from Modelica models 

to real-time hardware platforms suitable for Testing 

and Validation are based upon non standard model 

exchange format, or rely on third party preprocessor. 

This paper describes the implementation of the Mod-

elisar Functional Mock-up Interface (FMI) support in 

NI VeriStand, a commercial software environment 

suitable for real-time testing applications. 

This paper presents the work conducted to imple-

ment the FMI Add-on for NI-VeriStand, which is 

available as a commercial product, and the process to 

make hardware in the loop simulation starting from a 

Model Based Development environment compliant 

with the FMI for Co-Simulation standard for model 

export and using it in NI VeriStand environment 

with National Instruments real-time hardware. 

Keywords: FMI; Hardware in the Loop; NI VeriS-

tand; Real Time Systems 

1 Introduction 

FMI stands for “Functional Mock-up Interface” [1] 

and is an open standard for model exchange speci-

fied in the ITEA2 Modelisar project [2]. The aim of 

this work is to enable NI VeriStand [3] to support the 

FMI standard for Co-Simulation. This in order to 

perform rapid-prototyping and hardware in the loop 

simulations using National Instruments hardware 

directly from Modelica models exported using the 

FMU standard. With the FMI Add-on it is possible to 

use FMU models in Windows and /or in National 

Instruments RT Targets like NI PXI [4] and NI 

CompactRIO [5]. 

In this paper, we will present: 

 A description of the activity carried out for 

the implementation of the FMI Add-on [6] 

for NI-VeriStand. 

 A detailed description of the steps that are to 

be performed in order to use FMUs in Na-

tional Instruments PXI RT Targets. 

 A validation test for the FMI Add-on per-

formed with Dymola [7] and National In-

struments PXI RT Target based on the de-

tailed model of a 6 dof manipulator. 

2 Scenario 

Using the FMI Add-on you can make MiL/SiL/HiL 

with NI VeriStand framework and all Model Based 

Design environments compliant with the FMI for 

Co-Simulation standard. Figure 1 shows a typical 

scenario of the automotive field where some control 

algorithms have been designed in Simulaink and 

LabView, and the car model has been modeled in 

Dymola. With the FMI add-on and NI VeriStand it is 

possible to deploy the plant model along with the 

control algorithms in several targets and perform 

HiL Validation for the whole system. 

 

 
 

Figure 1: Example of HIL scenario in the automotive 

field 
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3 NI VeriStand 

NI VeriStand is a software environment for configur-

ing real-time testing applications. NI VeriStand helps 

you configure a multicore-ready real-time engine to 

execute tasks that include the following: 

 Real-time stimulus generation 

 Analog, digital, and communication bus in-

terfaces 

 Real-time stimulus generation 

 Analog, digital, and communication bus in-

terfaces 

 Field-programmable gate array          

(FPGA)-based I/O interfaces  

 Calculated channels 

 Triggerable, multifile data logging 

 Event alarming and alarm response routines 

NI VeriStand can also import control algorithms, 

simulation models, and other tasks from NI Lab-

VIEW software and third-party environments. You 

can monitor and interact with these tasks using a run-

time editable user interface that includes many useful 

tools for value forcing, alarm monitoring, I/O cali-

bration, and stimulus profile editing.  

4 Co-Simulation 

Co-Simulation is an approach for joint simulation of 

models developed with different tools where each 

tool treats one part of a modular coupled problem. 

Intermediate results are exchanged between these 

tools during simulation where data exchange is re-

stricted to discrete communication points. 

Between these communication points the subsystems 

are solved independently. Figure 2 shows an exam-

ple of Co-Simulation where a complete system has 

been modeled using three different tools, and where 

each model uses is own numerical solvers and ex-

changes data thanks to the Co-Simulation master 

environment during the simulation.  

 

 
Figure 2:  Example of Co-Simulation scenario in the 

automotive field with Dymola, Simulink and Lab-

View 

5 Implementation 

5.1 FMU and Real Time Target 

Most Modeling and Simulation Environments 

compliant with the FMI 1.0 specification export an 

FMU file that contains an XML file and a Dynamic 

link library (dll) in order to maintain the intellectual 

properties of the model and the integrator algorithms. 

For this reason the first issue that arose in the de-

velopment of the FMI add-on was how to use the 

model compiled as dll on RT Target running an op-

erating system different from Windows. 

Most of National Instruments Real Time Targets 

use Phar Lap ETS as operating system. Phar Lap 

ETS is a dedicated real-time operating compliant 

with a subset of Windows Application Programming 

Interface (win32 API) [8].  

As consequence the dll included in the FMUs 

generated by the commercial modeling tools had to 

be checked against Phar Lap requirements.  

The first tool chosen was Dymola from Dassault 

Systèmes, whose FMU generation routines were 

modified by Dassault Systèmes development team in 

order to solve all compatibility issues. 

In order to check the compatibility of the dll in-

cluded into the FMU files, LabVIEW RT DLL 

Checker [10] has been used. Using this tool, dll gen-

erated by any commercial or free tool, together with 

hand coded and compiled ones must be tested in or-

der to check if they are compliant for Phar Lap ETS 

environments. 

   

 
 

Figure 3: LabVIEW RT DLL Checker window 

 

If an FMU model passes this test, it is suitable for 

its  use into RT Phar Lap Operative Systems such as 

National Instruments PXI platforms. 

The implementation that is been performed to use 

FMUs into NI VeriStand consists in a wrapper be-

tween the FMU specifications and NI VeriStand ap-

proach to process simulation models. 
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We used C/C++ code for the part that has to be 

deployed on RT target and C# language for interact 

with NI VeriStand interface for acquire user specifi-

cation for the model and the simulation. 

 

5.2 Co-Simulation Master and Slave 

NI VeriStand environment is a full featured Co-

Simulation platform working as master for the Co-

Simulation process. When several FMU’s and Co-

Simulation slave models exported using other model 

exchange formats, e.g. S-Functions, are imported 

into NI VeriStand, it works as master considering 

every imported model as slave. 

 

 
Figure 4: NI VeriStand logical schema during Co-

Simulation 

 

Data exchange between subsystems is restricted 

to discrete communication points. In the time be-

tween two communication points subsystems are 

solved independently from each other by their indi-

vidual solver. NI VeriStand controls the data ex-

change between subsystems and the time synchroni-

zation of all slave simulation solvers.  

A simulation model can be coupled if it is able to 

communicate data during simulation at certain time 

points.  

 
Figure 5: NI VeriStand logical schema during Co-

Simulation 

 

In NI VeriStand you can define the duration of 

the time step in which VeriStand will read the inputs 

and write the outputs. A time step is the atomic unit 

of time that all simulation tasks needed to be com-

pleted.  

6 Using FMU models on NI Real 

Time 

This section describes the process of validation for a 

model exported as FMU using an RT hardware plat-

form.  

First of all a general schema of the HIL scenario, 

depending on the system that needs to be validated 

has to be developed, see Figure 1. Once the HIL 

schema has been decided, the installation of the FMI 

Add-on must be done in each RT target that will host 

an FMU model, see Fig. 6. 

 

 
 

Figure 6: Installation of the FMI add-on on NI RT 

targets 

 

In order to setup the HIL system platform, each sub-

system model must be exported from the model 
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based environment in which it was developed.    

With the installation of the FMI add-on VeriStand 

will support fmu files in addition to dll, lvmodel, mdl 

and out files (Fig. 8) . It has to be highlighted that 

FMU models must be compliant with the FMI for 

Co-Simulation 1.0 standard. Fig. 7 shows a Dymola 

model exported with the FMI standard. 

 
Figure 7: FMU for Co-Simulation model export from 

Dymola 

 

After each sub-model has been exported, it must be 

imported into NI VeriStand, using the NI System 

Explorer as shown in Fig. 8. 

 

 
Figure 8: FMU model import using the NI System 

Explorer 

 

Once the models have been imported into VeriStand, 

connections must be configured in order to map  

hardware acquisition boards I/O with model va-

riables.   

After System Explorer configuration a suitable 

workspace can be configured into NI VeriStand in 

order to control inputs and visualize the outputs in 

real-time, see Fig. 9. Finally the deployment on the 

targets will be performed automatically by VeriStand 

and users can use their system models in HIL. 

 

 
Figure 9: NI VeriStand workspace with custom 

scopes 

7 Test and validation of the FMI 

add-on 

In order to test the performance and validate the re-

sults of the HIL simulations performed on RT targets 

using FMU models, a detailed model of a six dof 

mechanical manipulator has been chosen as a test 

case. The model of the physical system is a version 

of the Modeli-

ca.Mechanics.MultiBody.Examples.Systems.RobotR3

.fullRobot that can be found in the Modelica Stan-

dard Library, modified using Dymola, see Fig. 7. 

The original model has been modified adding one 

real input for each degree of freedom of the manipu-

lator as reference angle for the motion of the electric 

drives. The new model can be controlled by external 

sources in real-time. We used also two simple con-

trol algorithms developed, one in Simulink and the 

other one in LabView, to control two of the inputs of 

the System. The purpose of this two control algo-

rithms was to demonstrate the capabilities of this 

methodology and the scalability of the system archi-

tecture. 

7.1 The system architecture 

The architecture used to validate the system is shown 

in  Fig. 10, and consists in three models exported in 

different formats from different tools that will be 

executed together exchanging data in real-time on a 

NI PXI-8196 Phar Lap RT target.  

The target has been configured into VeriStand using 

the System Explorer, as shown in Fig. 11. Two dif-

ferent validation campaigns have been performed, 

the first using Windows and the second using Phar 

Lap on NI PXI-8196 as targets. 
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Figure 10: System architecture for the Validation 

experiment 

 

Thanks to the Dofware FMI add-on, the FMU model 

was loaded into VeriStand and the depvs file, needed 

for the deployment of the project into the target, au-

tomatically generated.  

Thanks to the support of National Instruments devel-

opment team it was possible to grant the best user 

experience in VeriStand to FMU importers. In fact 

the FMI add-on was developed in a way so that the 

import process in VeriStand is now the same for 

every model exchange format, as shown in Fig 11. 

 
Figure 11:  Import of different external models using 

the system explorer 

 

It is important to note that model parameters im-

ported using the FMU format must to be set in the 

modeling environment before the export phase. This 

is because the FMI specification does not allow pa-

rameter tuning during the simulation phase but only 

before the initialization phase of the model and this 

cannot be done into VeriStand. For this reason all the 

parameters of the model that need to be tunable dur-

ing the HIL validation tests have to be modified and 

changed into inputs before the FMU generation. Still 

the parameters of the imported models can be seen in 

the system explorer as shown in Fig.12.  

This issue will be more likely solved with the next 

release of the FMI specification that will allow pa-

rameter tuning during runtime simulations. 

 

 
 

Figure 12: Model parameters explorer into VeriStand 

 

To finish the setup phase of the system architecture, 

the I/O of the all models must be coupled together 

using the System Configuration Mappings editor in 

VeriStand, see Fig. 13, and with physical I/O of the 

target, see Fig. 14. 

 

 
 

Figure 13: System Configuration Mappings editor in 

VeriStand, I/O of the models are coupled together 
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Figure 14:  System Configuration Mappings editor in 

VeriStand, I/O of the models are coupled with physi-

cal I/O of the DAQ systems 

 

VeriStand will drive the Simulation, thus the time 

step along with the execution order of the real time 

task models have to be set into the NI tool. 

It is important to note that the solver’s time steps of 

the single slave models must be smaller than the 

sampling time of the master device. It is also impor-

tant to note that the execution time of a single time 

step of each single slave model must be smaller than 

the allocated running time in VeriStand, or the simu-

lation will be shut down.  

The allotted running time is determined by the inte-

raction of your models and the hardware in your sys-

tem. In fact VeriStand must complete all tasks in 

addition to the ticking of the models, such as input 

data processing and output data returning. The num-

ber of inputs and outputs in the system might in-

crease the time that has to be allot for a time step. 

Moreover if the system includes multiple models, all 

of your models might need to perform a task during 

each given time step. 

7.2 I/O Monitoring and validation results 

At this point we are able to deploy the project into 

the target, i.e. all FMU resource files are copied to 

the target accordingly to the depvs files and the si-

mulation can begin.  

Once the simulation is running, the simplest way to 

monitor the state of the outputs is to develop a cus-

tom workspace into VeriStand, see Fig. 15. The 

workspace can include scopes for the model va-

riables and interactive controllers for input and pa-

rameter real-time tuning. 

 
Figure 15: NI VeriStand workspace developed to 

control the manipulator model 

 

Fig. 16, 17, 18 and 19 show the simulation results in 

terms of reference angles and simulated angles for 

each axis of the manipulator. The results are com-

pared to the ones obtained simulating the same sys-

tem entirely in Dymola. We can note that the simula-

tion results in Dymola are matching with the ones 

obtained in VeriStand using both windows and NI 

PXI targets. It has also to be noted that there are 

some little differences from the results obtained in 

Dymola and the ones obtained in the PXI target gen-

erated from the “errors” introduced by different 

solvers and by logger used to save the output results 

and the limited resources of the PXI that generated 

data losses in the communication between the sub-

model units and the master sample time. The data 

logger was added as a custom device in VeriStand, 

and is capable of saving the output data on the file 

system using a fifo.  

 

 
Figure 16: NI VeriStand with PXI target Vs Dymola 

benchmark 
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Figure 17: NI VeriStand with Windows target Vs 

Dymola benchmark 

 

 
Figure 18: NI VeriStand with Windows target Vs 

Dymola benchmark 

 

 
Figure 19: NIVeriStand with PXI target Vs Dymola 

benchmark 

 

 

 

 

 

8 Conclusion 

Thanks to the development of the FMI add-on for 

NI VeriStand a tool chain can now be defined to per-

form HIL simulation for control validation on NI 

hardware platforms starting from Modelica based 

models. 

The tool chain has been validated against simula-

tion results obtained in Dymola on a detailed system 

model divided into sub-systems in order to validate 

also the data communications between sub-models 

during the HIL tests. NI VeriStand present the possi-

bility to use an external solver, so we created an ad-

don also for FMI for model-exchange. We success-

fully tested it also on Phar Lap OS, but so far very 

few solvers have been implemented (Euler and 

Runge-Kutta). This solution gave us good results for 

simple models, but has still to be improved in order 

to implement solvers capable of efficiently handle 

complex models. 

 

An important milestone on the roadmap of the 

FMI add-on will be the compatibility upgrade with 

respect to the FMI 2.0 specification. In this way no 

more modifications will be needed in order to tune 

the parameters of the Modelica models during HIL 

validations. 
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Abstract

This paper proposes a static parametric design
methodology for application of the model based sys-
tems engineering (MBSE) paradigm in the world of
Modelica. This methodology allows for parameter
synthesis of the industrial automation systems under
consideration of customer requirements. Furthermore,
the parametrized system can be verified automatically.
An integrated system model consisting of require-
ments, system design and verification models is cre-
ated and can be used as a design template to generate
a new parameter set according to the change of cus-
tomer requirements. A case study from the practice is
presented to proof the concept of this methodology.

Keywords: Model Based Systems Engineering,
SysML, Modelica, Parameter Synthesis

1 Introduction

The complexity of modern industrial automation sys-
tems increases steadily. New functions and technolo-
gies need to be integrated to fulfill customer require-
ments, environmental regulations and/or safety stan-
dards. The increasing complexity has raised many
challenges such as keeping the the design consistent
and approving the correctness with respect to the cus-
tomer requirements. Model based systems engineer-
ing (MBSE) is defined as the formalized application
of modeling to support system requirements, design,
analysis, verification and validation activities begin-
ning in the conceptual design phase and continuing
throughout development and later life cycle phases.
Hence MBSE is a suitable approach to cope with these
challenges.

One of the key issue in MBSE process is to deter-
mine the proper dimension of the system design ac-

cording to the formalized requirements model. The
static parametric design methodology uses Modelica
static models together with the dynamic models to
support the MBSE process by the means of select-
ing the proper components of the desired system from
given product catalogs, dimensioning the sub-systems
as well as checking the correctness of the system de-
sign with respect to systems requirements.

The objective of the static parametric design
methodology is to perform a parameter synthesis of
a technical system according to the customer require-
ments automatically. Furthermore, the calculated sys-
tem design can be verified automatically as well. The
Systems Modelling Language (SysML) [11] is used to
formalize the customer requirements. Moreover, the
extension of abstraction levels and classification de-
fined in [4] is also applied in this paper. Work on
the integration of SysML and Modelica has already
proven its effectiveness in the MBSE [6, 8, 9]. Reusing
these improvements the SysML models can be trans-
formed into executable Modelica models.

In this contribution, we focus on the standard appli-
cation that the structure of the desired system is nor-
mally known to the system engineers. The require-
ments models serve as the basis of the static para-
metric design methodology. By changing the require-
ments models, a new parameter set of the system can
be obtained automatically. In this sense, the integrated
model consisting of requirements, system design and
verification models can be seen as a design template
for a standard application.

This paper is organized in 6 sections. Section2 il-
lustrates the current systems engineering process and
the need of model based systems engineering and
static parametric design methodology. As part of re-
lated work in Section3 a short introduction to SysML
and its integration with Modelica are given. Section
4 introduces the static parametric design methodology
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to support the systems engineering in detail. The capa-
bilities of the proposed methodology are demonstrated
using an industrial application in Section5. The paper
closes with conclusions and an outlook to future work.

2 Systems Engineering of Industrial
Automation Systems

The systems engineering process is described in the
following referring to the well known V Model ac-
cording to the VDI 2206 standard [12] depicted in
(Figure1).

Requirement Product

S
ystem

D
esign S

ys
te

m
In

te
gr

at
io

n

Domain-specific Design
Mechanical Engineering

Electrical Engineering
Information Technology

Modelling and Model Analysis

Assurance of Properties

Figure 1: V Model According to VDI 2206 [12]

The main tasks of current systems engineering of
industrial automation systems can be summarized as
follows:

• State the customer needs correctly and unam-
biguously;

• Define the proper system design based on the cus-
tomer requirements;

• Verify the system design against customer re-
quirements.

They will be introduced respectively in the following.

2.1 Requirements Specification

Due to the fact that the requirement specification is
the subject matter of contract between customer and
contractor the above described context implies that the
requirements engineering has to be seen not only from
the technical perspective but also needs to consider the
business process and the contractual situation along
the supplier chain. In this context it is self-evident that
the requirements shall be defined and structured not
only according to technical aspects but also according

to the contractual situation. The definition of levels of
abstraction is an appropriate way to meet these needs.
The depicted levels of abstraction in Figure2 reflect
the described supplier chain and major technologies
involved and therefore are a reasonable choice in the
context of automation systems. In order to deal with
the complexity of large systems the design objects are
clustered in a system break down structure. The re-
quirements derived on the different levels of abstrac-
tion can be referenced in requirement specifications in
order to provide the contractual views on subsets of
requirements.

Figure 2: Levels of Abstraction in Requirements and
System Design

2.2 Systems Design

Industrial automation systems are characterized by
their ability to process a material or work piece ac-
cording to a defined procedure to achieve the output of
a desired product. The challenge of the system engi-
neer is to design a machine that is capable to run the
process in a deterministic and efficient way. This task
is typically performed within a specific design domain
that refers to a field of technical expertise. The proper
selection of the components and their integration into
the overall structure strongly influence the function,
performance, robustness and reliability of the whole
system. Currently the selection of the components is
mainly determined by the competence of the system
engineers which is time consuming and error prone.
In order to avoid manual errors, it is desired to select
the components in a systematical manner.

Today, parameter synthesis of a technical system is
usually based on static calculations in the field of in-
dustrial automation systems. A small example of such
static calculation for selection of a hydraulic valve in
a hydraulic lift system is depicted in Figure3. The di-
mension of the cylinder shall be first defined in order
to calculate the maximal flow rate through the valve
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with the given maximal cylinder velocity by

Qmax= AD ·vmax. (1)

After that the nominal size of the valve is determined
by some design criteria. Moreover, the design crite-
ria origin from customer requirements as well. In this
case, the nominal size is defined by the nominal flow
rate which is calculated by

Qnominal= 1.5·Qmax. (2)

The nominal size of the valve can be chosen from the
product catalog according to the nominal flow rate.
That means a proper component, in this case the valve,
is correctly selected for the desired system.

Figure 3: Schematic of a Hydraulic Lift System

In order to ensure the acceptance of a MBSE tool
offering the methodology presented in this paper, these
design guidelines have to be integrated into the MBSE
tool.

2.3 Verification and Validation

Model based verification and validation of a systems
design against systems requirements has been widely
used in the field of industrial automation systems. The
goal here is to verify the system design in an auto-
mated and reproducible way. Since this issue has al-
ready been addressed in virtual verification of systems
design against systems requirements (vVDR) method-
ology [10], it is used to approve the systems design in
this paper as well.

2.4 The Challenges

Since industrial automation systems usually consist of
components from different domains, it is hard to keep
the design correct and consistent. In order to deal with
this fact, the systems design from different engineering
domains shall be integrated into the whole MBSE pro-
cess. Therefore, a universal and standardized model-
ing language is required which shares the understand-
ing among engineers from different disciplines. This
common language shall enable the generation of re-
quirements models, system design models, traceabil-
ity models as well as verification models containing
domain-specific details. SysML is being proposed to
meet this requirement. However it has been evaluated
as not sufficient due to the lack of executable seman-
tics. Integration of the languages SysML and Mod-
elica has proven its efficiency in the area of MBSE
[5, 6, 7, 10]. Therefore, in this contribution SysML
and Modelica are chosen as the modelling languages
applied in our MBSE process as well.

In order to set up a MBSE tool for parameter syn-
thesis, the following two questions have to answered:

1. How to perform a parameter synthesis to deter-
mine all the proper components based on the cus-
tomer requirements in an automatic manner?

2. How to link different kinds of models in the
whole MBSE process?

These two challenges have been addressed in this
paper by the means of using static parametric design
methodology in an integrated system model based on
SysML and Modelica. The details are presented in
Section4.

3 Background and Related Work

3.1 The SysML and Modelica

SysML is a general purpose language used in the field
of systems engineering. It is defined as a UML pro-
file which reuses subsets of UML constructs and ex-
tends them with some additional modeling elements.
SysML is capable to capture the textual requirements
and to allocate them with the design models and test
cases. However due to loosely defined executable se-
mantics SysML is not capable to execute the modeled
physical systems. In contrast to that, Modelica is an
object oriented and equation based modeling language
for multi-domain physical systems. Graphical model-
ing is supported by the object diagram which offers an
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intuitive way to describe power transmission through
acausal connections as well as directed signal flows.
Strong semantics allow the generation of executable
models of continuous as well as discrete systems. Ob-
ject oriented language constructs enable the efficient
reuse of models and the design of comprehensive and
easy to use model libraries. As mentioned in Section 2,
a language which integrates the descriptive modeling
power of SysML and the formal executable simulation
power of Modelica seems to be a promising approach
for the systems engineering in industrial automation
systems.

3.2 Related Work

Several work has already been done towards appli-
cation of MBSE paradigm using Modelica language
with different concerns. The vVDR methodology [10]
addresses mainly the virtual verification of systems
requirements by using UML, Modelica and Modeli-
caML. In Dubois et. al. [2] a requirement traceabil-
ity model to enforce the traceability concept in SysML
in the automotive domain is presented. Requirements
management and allocation have already been covered
in the other paper of the author [4].

This paper describes a methodology for the param-
eter synthesis of technical systems according to cus-
tomer requirements. Moreover, the different kinds of
models are linked with the other models in the inte-
grated system model and therefore it is easy to regen-
erate and to verify the final parametrized system. They
will be introduced in detail in the following section.

4 Static Parametric Design

The proposed static parametric design methodology is
based on Modelica static models. Static models are
defined as models that are constant over time. Consid-
ering the whole MBSE process, the following items
can be formalized as Modelica static models:

• Requirement Specifications,

• Product Catalogs,

• Selection Criteria.

4.1 Definitions of Models

The requirement specifications can be defined asre-
quirements modelswhich are captured as stereotyped
SysML models according to the different abstraction
levels and classifications in [4].

This classification is mainly based on the taxonomy
proposed in [3] with some changes as presented in
the following. Instead of the requirement type spe-
cific quality, the structural requirement is defined in
the field of industrial automation.

• A functional requirementis the requirement that
should produce an expected reaction to a given
stimuli.

• A performance is the requirement to check
whether a system variable such as timing, speed,
volume or throughput is in a desired range.

• A structural requirement is the requirement
which describes the structural demand of the
stakeholder.

• A constraint is the requirement to provide the
technical and safety boundary conditions that the
system shall satisfy.

Theproduct catalogs modelsare easy to understand
as Modelica static models. They can modeled as a
simple record class with some table definitions. In
this work, a UML library with a sub-set of the Bosch
Rexroth catalog is implemented and later transformed
to Modelica static models. The advantages of imple-
mentation as UML library over Modelica library is the
compatibility with SysML and the extendibility of the
product catalog.

The selection criteria are implemented asstatic cal-
culation models. The idea is using Modelica functions
to determine the proper dimension of the components.
Normally, those selection criteria for the components
are usually the same. Due to the fact of reuseability, a
Modelica library calledParametricDesignwhich con-
sists of most selection criteria in the field of industrial
automation systems is built as shown in Figure4.

Besides the static models,simulation modelis an
executable model which is used for dynamic simula-
tion. In the verification and validation phase, the sim-
ulation model is linked with the test cases to check the
correctness of the parametrized system design.

All those models are further transformed into Mod-
elica static models with the help of a Modelica code
generator, which is implemented with the help of
Eclipse Acceleo [1].

4.2 Link of Different Models

Several models have been defined in this static para-
metric design methodology. It is necessary to link
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Figure 4: Structure of the Parametric Design Library

those models in a efficient manner in order to per-
form a parameter synthesis automatically. The basic
idea is to reference the attributes of SysML model to
the variables, parameters and constants of the Mod-
elica model. Currently, these relations have been es-
tablished manually which is time consuming and error
prone. A method to extend the standard relationships
such as «satisfy», «verify» and «derive» has been pro-
posed in [4]. An overview of the linking of different
models in this methodology is shown in Figure5. The
tooling that supports the binding of related objects is
implemented in Eclipse.

Figure 5: Link of Different Models

4.3 Methodology Description

The prerequests of application of the static design
methodology are

• hydraulic library,

• static design library,

• product catalog library.

Furthermore, the formalized requirements models and
at least one simulation model have to be created at first
as the basis for application of the static parametric de-
sign methodology.

The main steps of this methodology can be summa-
rized as follows:

1. Capture the customer requirements as stereo-
typed requirements according to the proposed
classification in [4].

2. Create a simulation model from the hydraulic li-
brary on the considered level of abstraction.

3. Select the proper design criteria from the para-
metric design library and create the static calcu-
lation model.

4. Link the requirements model, static calculation
model as well as product catalog model in the
parametric design model.

5. Run a parameter synthesis to obtain a best suited
parameter set and the other possible parameter
sets for the desired system.

6. Set the obtained possible parameter sets in the
simulation model and save them as design vari-
ants.

7. Define test cases that need to satisfy customer re-
quirements.

8. Link the requirements model, test cases as well
as simulation models in the verification model.

9. Run a verification that executes all related test
cases and design variants.

10. Choose the best suited design variants according
to the verification results.
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5 Application Example

In this section, a hydraulic lift system is used to
demonstrate the static parametric design methodology.
The hydraulic lift system is used to lift a load to a given
height. It shall be considered in the context of the
OEM-supplier relation as it applies to a typical Bosch
Rexroth engineering project.

The task of this case study is to define a best suited
parameter set of the desired lift system which ful-
fills all the customers requirements as well as techni-
cal constraints. First of all, a simulation model shall
be created. Therefore, the structure of the hydraulic
lift system has to be known for the system engineers.
Then, the static calculation model shall be created as
well by selecting the proper design criteria from the
parametric design library. After linking of different
models in the integrated system model, a parameter
synthesis can be performed to obtain the best combi-
nation of the components with the minimal dimension
which satisfy all the requirements.

The main advantage is that the system engineers can
use the integrated system model as a design template.
With the help of this design template, it is much more
easier to variate the parameter set of the hydraulic lift
system by changing the customer requirements auto-
matically.

5.1 Requirements Capture

The requirements from the customers are formalized
as follows: a load of 3000kg shall be lifted to 0.5 m
within 2 s. Besides the customer requirement there are
some technical constraints of the desired system. For
example, the maximum velocity can not exceed 0.6
m/s. The other important constraint is that the pres-
sure drop over the proportional valve shall not exceed
30% of the working pressure. The important require-
ments are listed in Table1. The beginning letter of
the ID of the requirement refers to the type of the re-
quirement. The requirements P1, C2 and C3 can be
verified by test cases which are modeled as Modelica
models. Since the structral requirments S4 and S5 pro-
vide only the important design parameters, they are not
necessary or possible to verify. According to those re-
quirements, the proper components from the product
catalogs shall be selected iteratively until all the com-
ponents are chosen. They can be formalized as SysML
requirements model and later transformed into Mod-
elica static model. An example of the requirements
model and its generated Modelica code are shown in
Figure6.

ID Description
P1 The load shall be lifted to 0.5 mwithin 2 s.
C2 The max. velocity shall not exceed 0.6 m/s.
C3 The pressure loss over the valve shall not

exceed 30% of the working pressure.
S4 The mass of the load is 3000kg.
S5 The working pressure is 200 bar.

Table 1: The System Requirements List

Figure 6: An Example of Requirements Model and
Generated Modelica Code

5.2 Modelling of the Hydraulic Lift System

The object diagram (Figure7) shows the structure of
the hydraulic lift system. The load is lifted by a differ-
ential cylinder which is driven by a constant pressure
source. The proportional valve is controlled by a sim-
ple P-controller to realize the position control. Since
the focus of this work is to illustrate the static paramet-
ric design methodology, the details about the model
will not be introduced here.

5.3 Static Parametric Design Process

The involved components from the product catalog
are the differential cylinder and proportional valve.
Hence, the design criteria models for those two com-
ponents in the design library are selected into the static
parametric design model together with the require-
ments model. Table2 and3 show the important de-
sign variables from the product catalogs of differential
cylinder and proportional valve.
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Figure 7: Object Diagram of the Hydraulic Lift Sys-
tem

Piston Rod Max
Diameter Diameter Stroke

mm mm mm
40 28 2000
50 36 2000
63 45 2000
80 56 2000
100 70 3000
125 90 3000
140 100 3000

Table 2: Product Catalog of Differential Cylinders

Nominal Max Pressure
Size Flow Rate Drop

– l/min bar
10 170 80
16 450 180
25 900 350
27 1000 430
35 3500 1100

Table 3: Product Catalog of Proportional Valves

The requirements variables defined in the require-
ments models, such as mass of load, maximum veloc-
ity and desired lifting position are taken as inputs for
the design criteria which are implemented as Modelica
functions. Finally, a parametric design model is ob-
tained by linking the requirements models, static cal-
culation models and the related product catalog mod-
els.

After the parametric design model is created, the
automatic parameter synthesis can be done very con-
veniently. The parametric design model is interactive
solved and the design variables are calculated. Ac-

cording to those design variables the corresponding
components with the proper size are chosen until all
the components from the product catalog are chosen.
The following table shows the automatic generated
best suite combination of cylinder and valve, which
is defined as anoptimal design. It is worth to mention

Piston Rod Max
Cylinder Diameter Diameter Stroke

mm mm mm
Optimal 100 70 3000

Nominal Max Pressure
Valve Size Flow Rate Drop

– l/min bar
Optimal 25 900 350

Table 4: Selected Components from Product Catalog

that the gain of the P-controller is determined by "Try
and Error". In the future, this kind of parameter which
is not related to the product catalog can be defined by
the means of optimization.

5.4 Verification of System Design

After the static parametric design process is done, a
best suited set of combination of the components is
obtained. An automatic verification will check the
optimal design against customer requirements. This
is done by using vVDR methodology [10] to model
the test case of requirements with violation monitor.
According to the requirements definitions in Table1,
three test cases are defined to verify the requirements
P1, C2 and C3. Figure8 shows the verification result
of this proposed optimal design. The first two figures
(Figure8(a)and8(b)) illustrate that the load is lifted to
0.5 meter after 2 second and does not exceed the max-
imal velocity. As shown in Fiugre8(c), the pressure
loss over the valve in steady state satisfies the critical
30% of working pressure 200 bar as well. Therefore,
the hydraulic lift system with the automatic selected
parameter fulfills the customer requirement and tech-
nical constraints.

5.5 Comparison of Design Variants

The best suited combination of components from the
product catalog are supposed to have the minimal size
which satisfy all the requirements. It has been verified
to fulfill all the requirements in the last section. Nev-
ertheless, it is still not proved that the performance of
this design is better than the others variants. In order
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Figure 8: Verification Results of Optimal Design

to validate this, design variants around the optimal de-
sign with other nominal sizes can be generated from
this methodology. The design variants are defined by
substituting the components of the optimal design with
a smaller or larger nominal size. In this case, four de-
sign variants are automatically generated and used to
compare with the optimal design. The dimension of all
the design variants are shown in the following table.

Design Piston Rod Valve
Variants Diameter Diameter Size
Optimal 100 70 25
Variant 1 80 56 25
Variant 2 100 70 16
Variant 3 100 70 27
Variant 4 125 90 25

Table 5: Dimensions and Costs of Design Variants

The simulation results of the optimal design and the
other four design variants are shown in Figure9. It
shows that the design variant 1 and 3 can approach the
desired position within 2 seconds. However the veloc-
ities exceed the maximal velocity constraint 0.6 m/s.
The design variant 2 and 4 fulfill the second test case
and can not satisfy the first one. The results concern-
ing the third test case are listed in Table6.

A verification matrix of the design variants against
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Figure 9: Comparison of Cylinder Positions and Ve-
locities of Different Design Variants

the test cases are shown in Table6. Furthermore, the
costs of design variants depending on the dimensions
of selected components from the product catalog can
also be calculated. With the help of this verification
matrix and the price, the selected optimal combination
of the components from the product catalog is proved
to be exact the best suited design.

Design Test Test Test System
Variants Case 1 Case 2 Case 3 Cost
Optimal passed passed passed 2000
Variant 1 passed failed passed 1700
Variant 2 failed passed passed 1820
Variant 3 passed failed failed 2040
Variant 4 failed passed failed 2400

Table 6: Verification Matrix and System Costs
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5.6 Open Issues

This case study demonstrates the proposed static pa-
rameter design methodology. According to the cus-
tomer requirements and technical constraints, the di-
mension of the desired system can be defined auto-
matically. However, the main drawback is that the
simulation model shall be first modeled. That means
this methodology can not be applied to arbitrary sys-
tem. This is due to the fact that there is not enough
information for determining a proper combination of
the desired system in the practice. This drawback also
limit the application of MBSE in the field of industrial
automation systems.

It is noticed that the order for the selection of com-
ponents is fixed in this case, i.e., the dimension of
cylinder shall be first defined in order to determine the
nominal size of the proportional valve. Sometimes the
order is not fixed. For both cases the system engineers
shall have the chance to determine the order for the
selection of components more freely without reimple-
mentation of static design model. Since Modelica is a
standardize equation-based modelling language, it has
been chosen to meet these requirements. It is capable
to deal with the this issue. One proposed concept is
to switch the variability ofparameterandvariableof
static models in an arbitrary manner. The system en-
gineers can give the known parameters until the static
model is balanced and solvable to calculate the other
unknown variables.

6 Conclusion and Future Work

In this paper a static parametric design methodology
has been analyzed in the systems engineering con-
text of industrial automation systems. A set of pos-
sible design variants with different dimensions can be
automatically generated and compared by using this
methodology. The concept has been demonstrated by
a case study of a typical engineering project. The other
contribution of this work is allocation of this method-
ology in a MBSE process in which the parametrized
design variants are fully traceable to the other models.

In the future, the proposed methodology will be im-
plemented as an Eclipse plug-in for better tool sup-
port of the static parametric design. It is usually the
case, not all the parameters can be defined by the static
parametric design methodology. Integration of an op-
timizer to define those parameters is desired. Applica-
tion of a big scenario is also a part of future work.
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Exhibitors 
 

BAUSCH-GALL GmbH 

 

BAUSCH-GALL GmbH (LLC) is an engineering company based in Munich, Germany, which sells and 
supports Modelica Libraries, works on simulation projects, organizes training courses and does consulting 
based on specific technical know-how. BAUSCH-GALL GmbH also offers special design services, devices 
and products for radio frequency (RF) applications. Based on a broad range of expertise in the solution of 
practical problems by effective computer application, BAUSCH-GALL GmbH serves the market for 
simulation and computer-aided engineering. 

 

CENIT 

 

CENIT has been successfully active for more than 20 years as a leading consulting and software specialist 
for optimizing business processes in product lifecycle management (PLM), enterprise information 
management (EIM), business optimization & analytics (BOA) and application management services (AMS). 
The enterprise focuses chiefly on proprietary software development and on marketing standard solutions by 
market leaders such as Dassault Systèmes, SAP and IBM. CENIT employs about 700 staff world-wide, 
serving customers from the automotive, aerospace, mechanical engineering, tool and mold construction, 
financial services, commercial and consumer goods industries. 

 

Claytex 

 

Claytex is an engineering consultancy and software distributor that specialises in Systems Engineering. Our 
expertise is in the modelling and simulation of complex multi-domain systems using Dymola and Modelica. 
We are based in Leamington Spa (UK) and work with Modelica and FMI on a wide variety of projects. Most 
recently these include the modelling of Low Carbon Vehicles, Formula 1 and Nascar Sprint Cup racing cars. 
These projects apply the models in a wide range of tasks including energy usage calculations, control system 
development, powertrain design and driving simulators. We develop a number of application libraries for 
Dymola include the Engines, Powertrain Dynamics, SystemID, FlexBody, VDLMotorsports and 
XMLReader libraries. 
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CyDesign Labs 

 

CyDesign Labs focuses on the conceptual design phase of complex cyber-electromechanical systems.  
CyDesign is a model-based design optimization platform that will allow system designers to evaluate a broad 
range of alternative designs and verify major system requirements prior to detailed design.  The platform 
uses Modelica to simulate system behavior for requirements verification. A comprehensive component 
model library allows designers to concentrate on strategic design decisions instead of model development.  
By thorough exploration of the trade space of design alternatives and assessment of the viability of these 
alternatives, repetitive “design-build-test” cycles can be eliminated, resulting in reduced costs and time to 
market.  The CyDesign platform will be available for automotive applications starting in early 2013. 

 

Dassault Systèmes 

 

Dassault Systèmes, the 3DEXPERIENCE Company, provides business and people with virtual universes to 
imagine sustainable innovations. Its world-leading solutions transform the way products are designed, 
produced, and supported. Dassault Systèmes’ collaborative solutions foster social innovation, expanding 
possibilities for the virtual world to improve the real world. The group brings value to over 150,000 
customers of all sizes in all industries in more than 80 countries. 

Dassault Systèmes’ CATIA provides a fully integrated systems modeling environment that enables systems 
engineers to execute and analyze system or sub-systems models, while mixing dynamic and state logic 
behaviors, using the open source Modelica language. 

 

ITI GmbH 

 

In the realm of system simulation, ITI is a leading developer of innovative software solutions and offers a 
vast range of engineering services that help to reduce time-to-market significantly. Our interdisciplinary 
software application SimulationX allows for comprehensive physical modeling of complex systems. 
Amongst others we support our customers in virtual prototyping, result interpretation and optimization of 
energy-efficient design. SimulationX supports the Modelica® language with open and complete CAx 
interfaces. The software is applied by more than 700 well-known companies, such as Audi, BMW, Bureau 
Veritas, Daimler, Fraunhofer-Gesellschaft, Germanischer Lloyd, Honda, Nikon, Robert Bosch, Siemens, 
ThyssenKrupp und Veolia. 

http://cydesign.com/
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LMS International 

 

Since the 2010 conference, LMS considerably increased its effort to make Imagine.Lab the best-of-breed 
platform for system simulation. LMS’ will is to deliver a combined structured approach (C-based and 
Modelica-based) to best serve the engineering needs, from full system to detailed component modeling over 
most of the mechatronics applications. LMS continues to support the establishment of Modelica as an 
industrial reference through its dedicated commercial support team as well as its involvement in European 
research projects and its support of the FMI.  LMS’s position in the Model Based System Engineering 
software market is considerably increasing to the benefit of the industry and the recognition of Modelica. 

  

MapleSoft 

 

Maplesoft, a subsidiary of Cybernet Systems Co., Ltd. in Japan, is the leading provider of high-performance 
software tools for engineering, science, and mathematics. Its product suite reflects the philosophy that given 
great tools, people can do great things. Maplesoft’s core technologies include Maple, the world’s most 
advanced symbolic computation engine, and MapleSim, a Modelica-based physical modeling and simulation 
tool. With MapleSim, you can leverage the growing collection of industry-tested Modelica components in 
your own projects.  Maplesoft’s customers include Ford, BMW, Bosch, Boeing, NASA, CSA, Canon, 
Motorola, Microsoft, Bloomberg, and DreamWorks, covering sectors such as automotive, aerospace, 
electronics, defense, and energy. 

  

Modelon GmbH 

 

Modelon specializes in providing solutions, services and technology for the research and development of 
dynamic systems. We offer unique know-how in physical modeling, simulation and optimization, and 
model-based control design. Our customers are spread all over the world andrepresent a variety of 
application areas with some emphasis on the automotive, energy and process industries. Modelon has a 
strong competitive edge in technology and solutions related to the Modelica language, takes active part in the 
language development, and is the premier provider of commercial Modelica libraries. Besides offering 
engineering services and modelica libraries, Modelon provides Dymola Training Days for beginners and 
advanced users as well. The company has sites in Germany, Sweden and also in USA. 

 

http://www.lmsintl.com/
http://www.maplesoft.com/index.aspx?L=E
http://www.modelon.com/
http://www.lmsintl.com/�
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Open Modelica 

 

OpenModelica is an open-source Modelica-based modeling and simulation environment intended for 
industrial and academic usage. Its long-term development is supported by a non-profit organization – the 
Open Source Modelica Consortium (OSMC). The goal with the OpenModelica effort is to create a 
comprehensive Open Source Modelica modeling, compilation and simulation environment based on free 
software distributed in binary and source code form for research, teaching, and industrial usage. We invite 
researchers and students, or any interested developer to participate in the project and cooperate around 
OpenModelica, tools, and applications. 

  

QTronic GmbH 

 

QTronic provides engineering software and services for model-based development. 

• Silver is a tool used to move control development  tasks from real cars, test rigs and HiLs to 
Windows PC. Silver provides an environment to quickly port control software (C Code or hex file) 
from real ECUs to Windows and to run the resulting virtual ECU in closed-loop with a simulated 
vehicle on PC. 

• TestWeaver automates search for worst case system behavior, based on an executable system model 
and system quality indicators. The objective is to early identify bugs and weak points of a system via 
MiL/SiL/HiL. 

Our outstanding tools are used by development engineers at AMG, BMW, Bosch, Continental, Honda, IAV, 
Mercedes-Benz, Toyota and ZF. 

 

Schlegel Simulation GmbH 

 

Schlegel Simulation GmbH is an engineering company and software distributor based in Munich, Germany. 
Our expertise is modeling and simulation of mechatronic systems using Dymola / Modelica and other tools. 
We develop simulation models, work on simulation projects, realtime and hardware-in-the-loop simulations, 
we develop customer specific simulators and software, and provide consultancy and training. Schlegel 
Simulation distributes and supports Dymola. 

 

 

http://http/www.ida.liu.se/labs/pelab/modelica/OpenSourceModelicaConsortium.html
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SIMPACK AG 

 

SIMPACK AG, a spin-off of the DLR, was founded in 1993. The company expanded quickly in the sectors 
of Virtual Prototyping and 3D-Simulation and soon achieved international recognition for excellence. 

SIMPACK is used for non-linear multi-body simulation and is particularly renowned for the integration of 
flexible bodies. The simulation of cars, trucks, engines, rail vehicles, wind turbines and airplanes represent 
only some sectors where SIMPACK is used. SIMPACK is the market leader in the simulation of high 
frequency vibrations and ‘shock contact’ and therefore the number one choice for the handling and comfort 
analyses as well as NVH and durability calculations. The software’s diversity and good connectivity to 
various CAD, control, hydraulic and FE software enables SIMPACK to be easily integrated into any 
manufacturer’s already established development process. 

 

TLK-Thermo GmbH 

 

TLK-Thermo GmbH has a long experience in R&D with a focus on energy management, mobile air 
conditioning and refrigeration systems. During the last years TLK has been continuously increasing the 
scope of its activities on other thermal systems such as power plants, residential heating and industrial 
refrigeration systems and the thermal management of alternative vehicle concepts. TLK provides its 
expertise in thermodynamics, simulation technology and software as engineering services. We offer 
simulation and measurement of thermal systems, customized software, consulting and training courses. Our 
software products are TIL Suite/TILMedia Suite (modeling of thermal systems), TISC Suite (Co-Simulation 
environment), FMI Suite und ViewerSuite. 

  

Transcat PLM GmbH 

 

Founded in 1987, Transcat PLM GmbH is an established specialist and supplier of Product Lifecycle 
Management (PLM) solutions based on the CATIA, ENOVIA, DELMIA, SIMULIA and 3DVIA products of 
Dassault Systèmes. As a Value Added Reseller (VAR) the company offers the PLM solutions throughout 
Germany with the associated services as well as its own add-on software products. As one of a few partners 
Transcat PLM is certificated for all V6 products of the PLM 2.0 portfolio and markets the complete V6-
product range of Dassault Systèmes. Transcat PLM also offers customized software components for virtual 
product development in its Product Data Quality (PDQ) range. The portfolio is extended by tailored server, 
storage and system management concepts. 
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Wolfram 

 

Founded by Stephen Wolfram in 1987, Wolfram is one of the world's most respected software companies. At 
the center is Mathematica: the world's most powerful global computation system. In 2011, Wolfram acquired 
MathCore Engineering AB - a founding member of the Modelica Association and an active influence in the 
Modelica language design since 1997. Through this, SystemModeler was released in 2012 - the most 
complete physical modeling and simulation tool. Unlike other systems, SystemModeler requires no add-ons, 
fully supports the standard Modelica model language and is designed to connect perfectly with Mathematica 
for the ultimate integrated modeling, simulation, and analysis workflow. 

   

XRG Simulation GmbH 

 

XRG Simulation has extended expertise in thermal energy system simulations in the automotive and building 
services field, for the aerospace and shipping industry and for power plants. We are specialized in energy 
engineering and support industry and research institutions in research, development and improvement of 
products and projects. Our excellence is: 

• Modelling and simulation of thermodynamic systems 
• Mathematical optimization 
• Validation of models 
• Software development for optimization as well as pre- and post-processing of system simulations 
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