Proceedings
of the

th

INTERNATIONAL

MODELICA
CONFERENCE

September 3-5, 2012
Munich, Germany
www.modelica.org

Editors:
Martin Otter
Dirk Zimmer

g44

MODELICA

Deutsches Zentrum
DLR fiir Luft- und Raumfahrt eV,

in der Helmholtz-Gemeinschaft
Robotics and Mechatronics Center

Proceedings of the 9th International Modelica Conference
Munich, Germany, September 3-5, 2012

Editors:
Prof. Dr.-Ing. Martin Otter and Dr. Dirk Zimmer (DLR-RMC-SR)

Published by:
Modelica Association and Linkdping University Electronic Press

ISBN: 978-91-7519-826-2

Series: Linkdping Electronic Conference Proceedings, No. 76
ISSN: 1650-3686

eISSN: 1650-3740

DOI: http://dx.doi.org/10.3384/ecp12076

Organized by:

Modelica Association and German Aerospace Center (DLR)

c/o PELAB, IDA, Linkopings Robotics and Mechatronic Center (RMC)
Universitet Institute for System Dynamics and Control (SR)
S-58183 Linkoping D-82234 Wessling

Sweden Germany

Conference location:
Veranstaltungsforum Fiirstenfeld,
Firstenfeld 12

D-82256 Firstenfeldbruck
Germany

Copyright © Modelica Association, 2012

2 Proceedings of the 9" International Modelica Conference DOl
September 3-5, 2012, Munich Germany 10.3384/ecp12076

http://www.robotic.dlr.de/Martin.Otter
http://www.robotic.dlr.de/dirk.zimmer
http://dx.doi.org/10.3384/ecp12076
https://www.modelica.org/
http://www.dlr.de/rm/en
http://www.fuerstenfeld.de/

Preface

The 9" International Modelica Conference is the main event for users, library developers, tool vendors and
language designers to share their knowledge and learn about the latest scientific and industrial progress
related to Modelica, to the Modelica Association and to the Functional Mockup Interface. Highlights of the
conference:

e 80 regular papers, 22 poster papers, and 6 libraries for the Modelica Library Award.

o 2 Keynotes.

e 8 tutorials (3.5 hours each, descriptions).

e 10 vendor sessions (45 min. each) where the latest news of Modelica and FMI tools are presented.

e 17 exhibitors in the exhibition area.

Please note that to some of the papers a Modelica library or model is attached. These files are accessible in
the electronic proceedings.

The conference provides also the most important news from the Modelica Association:

e The new version of the Modelica language version 3.3 was released on May 9, 2012. There are several
papers and a tutorial at the conference that discusses and demonstrates the new features.

e The working process of the Modelica Association has been changed and the work is now organized in
Modelica Association Projects (MAP) with an extended board. More details are given in the presentation
“Modelica News” on Tuesday, Sept.4, 9:10 — 9:25.

o The further development of the FMI (Functional Mockup Interface) standard is performed in a MAP. A
draft version of FMI 2.0 will be available before the conference. An overview of this new version is
given in a conference paper. In two sessions, applications and tool support for FMI are presented and
discussed.

e Since July, the Modelica Association provides an open source FMI compliance checker for FMI 1.0 at
https://svn.fmi-standard.org/fmi/trunk/Test FMUs. Its purpose is to check exported FMUs for validity.
The checker can also produce reference simulation results with a fixed step explicit Euler method.
Shortly after FMI 2.0 is released, the compliance checker will also be available for FMI 2.0.

Finally, we want to acknowledge the support we received from the program board and program committee.
We are grateful for the help by the Modelica Association and Monika Klauer from DLR. Last but not least,
let us thank all authors for their contributions to these proceedings. We wish all participants an enjoyable and
successful conference.

Welling, July 20, 2012

Martin Otter and Dirk Zimmer

DOl Proceedings of the 9" International Modelica Conference 3
10.3384/ecp12076 September 3-5, 2012, Munich, Germany

https://www.modelica.org/events/modelica2012
http://www.functional-mockup-interface.org/
https://www.modelica.org/events/modelica2012/tutorials/tutorials
https://www.modelica.org/events/modelica2012/exhibitors
https://svn.fmi-standard.org/fmi/trunk/Test_FMUs

Organizing Committees

Program Chairs
Prof. Dr.-Ing. Martin Otter, DLR-RMC-SR, Welling, Germany
Dr. Dirk Zimmer, DLR-RMC-SR, WeBling, Germany

Program Board

Dr. Hilding EImqvist, Dassault Systémes, Lund, Sweden
Prof. Peter Fritzson, Linkdping University, Sweden

Dr. Michael Tiller, Dassault Systémes, Paris, France

Program Committee

Dr. Johan Akesson, Modelon AB, Lund, Sweden

Dr. Peter Aronsson, MathCore - A Wolfram Company, Linkdping, Sweden
Prof. Karl-Erik Arzén, Lund University, Lund, Sweden

Prof. Bernhard Bachmann, Univ. Applied Sciences Bielefeld, Bielefeld, Germany
Daniel Bouskela, EDF R&D, Paris, France

Dr. David Broman, UC Berkeley, California, USA

Dr. John Batteh, Emmeskay, Michigan, USA

Dr. Ingrid Bausch-Gall, BAUSCH-GALL GmbH, Munich, Germany

Prof. Francesco Casella, Politecnico di Milano, Milano, Italy

Prof. Francois E. Cellier, ETH Zurich, Zirich, Switzerland

Prof. Liping Chen, Huazhong University of Science and Technology, Wuhan, China
Dr. Christoph ClauB, Fraunhofer 1IS EAS, Dresden, Germany

Mike Dempsey, Claytex Services Ltd, UK

Prof. Gianni Ferretti, Politecnico di Milano, Italy

Dr. Rui Gao, Dassault Systéemes Japan, Tokyo, Japan

Anton Haumer, Technical consultant, St. Andrae-Woerdern, Austria

Prof. Alberto Leva, Politecnico di Milano, Italy

Kilian Link, Siemens AG, Erlangen, Germany

Dr. Sven-Erik Mattsson, Dassault Systémes, Lund, Sweden

Dr. Jakob Mauss, QTronic GmbH, Berlin, Germany

Ramine Nikoukhah, Altair Development France, Antony, France

Dr. Mattias Nyberg, Scania AB, Sodertélje, Sweden

Dr. Hans Olsson, Dassault Systémes, Lund, Sweden

Prof. Chris Paredis, Georgia Institute of Technology, Atlanta, Georgia, USA
Prof. Peter Pepper, TU Berlin, Berlin, Germany

Dr. Nicolas Pernet, IFP Energies nouvelles, Rueil-Malmaison, France

Dr. Adrian Pop, Linkdping University, Sweden

Prof. Gerhard Schmitz, Technical University Hamburg-Harburg, Germany
Dr. Peter Schneider, Fraunhofer 11S EAS, Dresden, Germany

Dr. Stefan-Alexander Schneider, BMW, Munich, Germany

Dr. Wilhelm Tegethoff, TLK-Thermo GmbH and TU Braunschweig, Germany
Eric Thomas, Dassault-Aviation, Paris, France

Dr. Hubertus Tummescheit, Modelon AB, Lund, Sweden

Dr. Andreas Uhlig, ITI GmbH, Dresden, Germany

Prof. Alfonso Urquia, UNED, Spain

Prof. Hans Vangheluwe, University of Antwerp, Belgium and McGill University, Canada

Local Organizers

Prof.-Dr.-Ing. Martin Otter, DLR-RMC-SR, WeRling, Germany
Dr. Dirk Zimmer, DLR-RMC-SR, Weliling, Germany

Monika Klauer, DLR-RMC-SR, WeRling, Germany

4 Proceedings of the 9™ International Modelica Conference

September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076

Content

e (0] I AN o 1] Lo 1Y/ oo [1T T USSR 15
Fundamentals of Synchronous Control in ModeliCa..........c.coo i 15
A Library for Synchronous Control Systems in MOGEHCA...........cceviiieiiiiiiee e 27
State Machines iN MOUEIICAc.voeiiiii e 37
PNIib - An Advanced Petri Net Library for Hybrid Process Modeling..........ccccocvoviininiieisiiinc e 47
Session 1B: ThermMOoFlUId SYSIEMSc..cviiiiie ettt be et esbe e e srears 57
Simulation of Non-Newtonian Fluids using MOGEIICA..........cccccvveiiieiie i 57
HelmholtzMedia — A Fluid Properties LIDFary ... s 63
Object-Oriented Library of Switching Moving Boundary Models for Two-phase Flow Evaporators and
(@0 T [T TS SRS 71
High-Speed Compressible FIow and Gas DYNAMICS........cccviiriiiriiiiie e scie e e esiee e e seesieesreesneesnnesneesnnesneens 81
SESSION 1C POWET AN ENEIQY ...ttt ettt bbbt b b b ens 101
Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics Library
.. 101
Library for First-Principle Models of Proton Exchange Membrane Fuel Cells in Modelica.................... 115
The Modeling of Energy Flows in Railway Networks using XML-Infrastructure Data..............cc.ccoceevennes 125
Implementation of a Modelica Library for Energy Management based on Economic Models.................. 133
Session 1D: ElectromagnetiC SYSTEIMS |ccuviiiiiiiiece e e e et sae e s re e s re e sreesreesnaenree s 143
Modeling and Simulation of a Linear Piezoelectric Stepper Motor in MapleSim..........cccccoevviiiiiennn. 143
Magnetic Hysteresis Models fOr MOUEIICA...........cccocviieiieiicie e e 151
Motor Management of Permanent Magnet Synchronous Machingsccccocveeiiiiieiienieneeie e 159
An approach for modelling quasi-stationary magnetic CirCUItSccccvvvveveriese e 167
SeSSION 2A: FIMI STANAAIT | ... 173
Functional Mockup Interface 2.0: The StANAArdcooiiiieiiiieie e 173
Generation of Sparse Jacobians for the Function Mock-Up Interface 2.0cccccoeveveiinevcce e 185
Designing models for online use with Modelica and FMIc.ccocoiiiiiiiiciinc s 197
Co-simulation with communication step size control in an FMI compatible master algorithm 205
Session 2B: NUMEFICAl METNOUS. ... s 215

On the Formulation of Steady-State Initialization Problems in Object-Oriented Models of Closed Thermo-

L Y0 = LU TR] (=11 1SS 215
Probability-One Homotopy for Robust Initialization of Differential-Algebraic Equations....................... 223
Simulating Modelica models with a Stand-Alone Quantized State Systems SolVer..........ccccocvvviveveinnane. 237
Fast Simulation of Fluid Models with Colored JaCobianscoovieiiiiie i 247
DOl Proceedings of the 9" International Modelica Conference 5

10.3384/ecp12076 September 3-5, 2012, Munich, Germany

SeSSION 2C: CHMALE SYSTEIMS L...eciieiiiciie ettt e st e e s e e e ae e te e reenteenreenreesreens 253

Modelling and Calibration of a Thermal Model for an Automotive Cabin using HumanComfort Library

.. 253
Holistic vehicle simulation using Modelica —An application on thermal management and operation
strategy for eleCtrified VENICIES...........ooei e s 263
Modelling of Radiative Heat Transfer in Modelica with a Mobile Solar Radiation Model and a View
o Tox (o] 1Yo o L] OSSR 271
VEPZO - Velocity Propagating Zonal Model for the prediction of airflow pattern and temperature
diStribULION IN BNCIOSEA SPACES......ccviitiiie ettt st s b e s te s e sbesbeenbesbesaeeseesreaneesrenrs 279
SesSIoN 2D: MECNANIC SYSTEMS L.ttt 287
Modeling and Testing of the Hydro-Mechanical Synchronization System for a Double Clutch
LI5S 0] (o oSSR 287
Predicting the launch feel of automatic and dual clutch transmissSionS..........ccccceveviveiieiie v 295
Modelling of Elastic Gearboxes Using a Generalized Gear Contact Modelcccccoviviviiiiiviniienns 303
Revised and Improved Implementation of the Spur Involute Gear Dynamical Modelccccooeruneee. 311
Session 3A: Mixed Simulation TEChNIGUES L........cc.oiiiiiiiiicc e 323
Accessing External Data on Local Media and Remote Servers Using a Highly Optimized File Reader
] 0T OSSR 323
Detailed geometrical information of aircraft fuel tanks incorporated into fuel system simulation models
.. 333
Simulation of Artificial Intelligence Agents using Modelica and the DLR Visualization Library 339
Session 3B: Embedded and Real-Time SYSTEMSccviiiiieieic ettt st sre s 347
Functional Development With MOAEIICA...........ccviiiiiiiic e e 347
Translating Modelica to HDL: An Automated Design Flow for FPGA-based Real-Time Hardware-in-the-
Lo ST [TV = Lo S 355
A Modelica Library for Real-Time Coordination Modelingc.coeieiiiiiiiniieceee e 365
Session 3C: Language and Compilation CONCEPLS L......oiiiiiiiiiiie i 375
Implementation of a Graphical Modelica Editor with Preserved Source Code Formatting...................... 375
Model-based Requirement Verification : A Case STUAYcouiiiiriiirieiiisesee s 385
A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core Platforms........ 393
Session 3D: MEeChANIC SYSTEMS Toiiiiiiieiiee et 405
Modelling and Simulation of the Coupled Rigid-flexible Multibody Systems in MWorks.............c.cc.cou... 405
A Modelica Library of Anisotropic Flexible Beam Structures for the Simulation of Composite Rotor
2] =T U 417
Modeling and Simulation of a Fault-Tolerant Electromechanical Actuation System for Helicopter
SWAShPIALES IN MOUEIICAcvveviieicc et b e be et et s re s e besaeesnenras 425
6 Proceedings of the 9" International Modelica Conference DOl

September 3-5, 2012, Munich Germany 10.3384/ecp12076

Session 4A: Language and Compilation CoNCEPLS Iooviiiviiiiiiiii e 433

Survey of appropriate matching algorithms for large scale systems of differential algebraic equations..433

Static and Dynamic Debugging of Modelica MOElS...........ccoeviiiciiiiiccece e 443
LTS o] g IR = S] |1 o OSSP 455
A Modelica Sub- and Superset for Safety-Relevant Control Applicationsccccoovveveiiininencnene 455
A Modelica Library for Industrial Control SYStEMSccvevieieiieieie e 477
Session 4C: Handling Simulation OUTPULcoiiiiiiiiiee et nne s 485
Modelica3D - Platform Independent Simulation ViSualization...............cccceoviiinineneiese e 485
Proposal for a Standard Time Series File Format in HDF5.........c.cocoovviiiiiiic e 495
Session 4D: ElectromagnetiC SYSTEMS T......c.ooviiiiiiiiiiieeee s 507
Towards a Memristor Model Library in MOGEIICA.ccccoriiiiiiiiciseeee e 507
Fault Detection of Power Electronic Circuit using Wavelet Analysis in Modelicac..cccoeevieiiennnnne 513
SesSIoN SA: SIMUIATION TOOIS .. .ottt e b ste e esbesteeneeseeeteeneeneeas 523
PySimulator — A Simulation and Analysis Environment in Python with Plugin Infrastructure.................. 523
An OpenModelica Python Interface and its use in PySimulator.........cccccoviveiie v 537
WebMWorks: A General Web-Based Modeling and Simulation Envi-ronment for Modelica 549
Session 5B: Mixed Simulation TeChNIQUES T1.........ooviiiiiii e 557

Using BCVTB for Co-Simulation between Dymola and MATLAB for Multi-Domain Investigations of
ProTUCEION PLANTS ...ttt bbbttt 557

FEM models in System Simulations using Model Order Reduction and Functional Mockup Interface565

Using Modelica models for Driver-in-the-100p SIMUIALOrS...........cccoviieiiiecie s 571
SeSSION 5C: AULOMOTIVE SYSTEMIS.......cuiiiitiriiteieiei ettt se et nn e nn e 579
Development of New Concept Vehicles Using Modelica and Expectation to Modelica from Automotive
a0 [0 g =TSR 579
A Modular Technique for Automotive System SIMUIALIONcccoiviiiiiiiieeee s 589
Modeling Vehicle Drivability with Modelica and the Vehicle Dynamics Libraryccccooceviiiviicinnens 599
SESSION 5D POWEE PIANTSc.eiiiiiiiii ettt sttt ste et et ste e e naesteeneeseeeteeneeneeas 609
Status of ClaRaCCS: Modelling and Simulation of Coal-Fired Power Plants with CO2 Capture............ 609
Start-up Optimization of a Combined Cycle POWEF Plant............cccovveiiiiiieie e 619
Modeling and Simulation of a Vertical Wind Power Plant in Dymola/Modelicac.ccoceoiviincnennne. 631
DOl Proceedings of the 9" International Modelica Conference 7

10.3384/ecp12076 September 3-5, 2012, Munich, Germany

T (0] A I CY AN @ o] 11 411722 Y 1 o o 1 SRS 641

First and second order parameter sensitivities of a metabolically and isotopically non-stationary

biochemical NEtWOIK MOUEN ..o 641
Collocation Methods for Optimization in a Modelica ENVironmentcccocvvoeeeiieiieiene e 649
Parallel Multiple-Shooting and Collocation Optimization with OpenModelica..........c.cccccovevverviiveriernnnne. 659
Optimization Library for Interactive Multi-Criteria Optimization Tasksccccvveviverieerieerieesieesieesieesnnes 669
Session 6B: MechaniC SYSTEMS T ..o s 681
A Planar Mechanical Library for Teaching Modelica............cccooveiiiiiiiiiiii e, 681
DyMoRail: A Modelica Library for modelling railway buffers..........cccoveieiii e 691
Natural frequency analysis of Modelica powertrain Models...........ccccoveiiiriiiineienee e 697
Achieving O(n) Complexity for Models from Modelica.Mechanics.Multibody...........cccccvvveviniiineiinennnnn 705
SesSSIoN 6C: CHMALE SYSTEMS Tl ...ttt 713
Modeling the discontinuous individual channel injection into fin-and-tube evaporators for residential air-
CONTITIONING ...ttt bbb bbbt e h bbbt e e e s e e bt bbbt e et et e bt b e 713
Validation and Application of the Room Model of the Modelica Buildings Library.........c..c.ccccooveiennnnn. 727
The Indoor Climate Library and its Application to Heat and Moisture Transfer in a Vehicle Cabin 737
Dynamic Modelling of a Condenser/Water Heater with the ThermoSysPro Librarycccccooveeiinnnes 745
SessioN 6D FIMI Sandard F1..........coooiiii s 759
FMI implementation in LMS Virtual.Lab Motion and application to a vehicle dynamics case................. 759
Generating Functional Mockup Units from Software Specifications............ccccccvevvviiiiievevie e 765
Functional Mock-up Interface in Mechatronic Gearshift Simulation for Commercial Vehicles 775
Using Functional Mock-up Units for Nonlinear Model Predictive Controlcccccevvvviiicciieiie e, 781
8 Proceedings of the 9" International Modelica Conference DOl

September 3-5, 2012, Munich Germany 10.3384/ecp12076

o1y (=] g T<EIo] o] o TR 791

Modeling a Low-temperature Compressed Air Energy Storage with Modelicacccooevoeiiivieinnnes 791
Natural Unit Representation in MOGEIICAcoeiiiiii i 801
Modelica Code Generation with Polymorphic Arrays and Records Used in Wind Turbine Modeling......809
Derivative-free Parameter Optimization of Functional Mock-up UNitScccovviiiiiieiniicicscee 819
Stochastic Simulation and Inference using ModeliCa...........cccccoviiiiiiii i 829
A Toolchain for Real-Time Simulation using the OpenModelica Compiler...........c.ccoovieieiiiniienciene, 839
Time varying mass and inertia in paper winding multibody simulationccccccoeviviviiii i, 847
Collaborative complex system design applied to an aircraft SyStem.........cccoccevvviiiieii i, 855
Backward simulation - A tool for designing more efficient mechatronic SyStems............ccccovvvrciicreniennnn. 867
Modelling of new vehicle suspension concept with integrated electric drive.........ccccovvveviiiieeiieeviecnnennnns 877
Dynamic modeling and simulation of a multi-effect distillation plantc.ccocoiniiiiiiiii, 883
Modeling a drum motor for illustrating wearout PRENOMENA............ccvevvvieeieie i 889
“Green Building” — Modelling renewable building energy systems and electric mobility concepts using
1Y ToTo L] o S 897
High-Fidelity Transmission Simulation for Hardware-in-the-Loop Applicationscccccoveiinenenne. 907
ADGenKinetics: An Algorithmically Differentiated Library for Biochemical Networks Modeling via
SIMPLified KINETICS FOIMALSoviiiiiiiiteeee bbb 915
Variable Structure Modeling for Vehicle Refrigeration Applications...........c.cccovveveiiiiiciecnce e 927
Thermal Simulation of Power-Controlled Micro-CHP Systems for Residential Buildings...............cc....... 935
Modeling of a falling film VapOrator ..o 941
Integration of Modelica models into an existing simulation software using FMI for Co-Simulation........ 949
Chemical Process Modeling in MOGElICa.cccoviiiiiee e e 955
FMI Add-on for NI VeriStand for HiL SIMUIALIONccccooiiiiiieee e 963
Using Static Parametric Design to Support Systems Engineering of Industrial Automation Systems....... 971
DOl Proceedings of the 9" International Modelica Conference 9

10.3384/ecp12076 September 3-5, 2012, Munich, Germany

EXNIDITONS ...t 981
BAUSCH-GALL GIMBHottt sttt e st e ste e esbesne e eesteaneeseesaeeneennens 981
100 =1 1] [IR U PP PP PP PRPRRPRPPON 981
L =Y (SRS 981
CYDESIGN LADS. ...ttt bbb bbb bbbt E b b et 982
DASSAUIT SYSTRITIES ... vviviiticiiite ittt sttt st et sbe et e et e s beete e b e s beaae e s eesbeeseesbesbeese e besbeese e besbeeseebesteeseeseeareenns 982
N] o] SR 982
LIMS INEEINALIONAL ...ttt 983
Y= T o] L= o] SR 983
MOTEION GIMIDH ...t bbbt bbbt b bbb ne et 983
(@] o= oY/ T 1= o= SRS 984
L@ I o] 0T o3 € o OSSOSO 984
Schlegel SIMUIAtioN GMBH ..o et sre e re e nreens 984
SIIMPAGCK AG ..ttt h ettt ettt ekt e bt e b e e b e e e bt e e bt e e R b e oAb e oA ke ekt e ke e bt e ebe e eheeeReeenneenbeanbeas 985
TLK-TREIMO GMBH. ...t 985
TransCat PLIM GIMDHoooiiiiiiii bbbt sb e e ene s 985
WOITFAIM .t b bbb bbbk bbbt bbbttt 986
XRG SIMUIALION GIMBH ...t 986

10 Proceedings of the 9" International Modelica Conference DOl

September 3-5, 2012, Munich Germany 10.3384/ecp12076

Author Index

Abel, Andreas 775 Donders, Stijn 759
Akesson, Johan 173, 185, 375, Dormido, Sebastian 71, 941
619, 649, 819 Drenth, Edo 847
Andersson, Christian 819 Dumont, Elisabeth 691
Andersson, Daniel 101, 737 Dupont, Francois 37
Andreasson, Johan 599 Dziwok, Stefan 365
Anthonis, Jan 759 Eckstein, Lutz 263
Antretter, Florian 949 Eichberger, Alexander 775
Arnold, Martin 173, 205 Eiden, Joerg 609
Asghar, Adeel 443,537 El Hefni, Baligh 745
Bachmann, Bernhard 47,185, 247, Elmegaard, Brian 713
659 Elmqvist, Hilding 15, 27,37,173
Baharev, Ali 955 Elsheikh, Atiyah 915
Baker, Bernard 897 Enge-Rosenblatt, Olaf 889
Bals, Johann 513 Erdélyi, Hunor 759
Baltzer, Sidney 263 Eriksson, Lars 659
Batteh, John 599 Fernandez, Joaquin 237
Bausch-Gall, Ingrid 495 Fish, Garron 571, 697
Bayer, Christian 889 Floros, Xenofon 237
Beitelschmidt, Michael 705 Forster, Michael 641
Berenguel, Manuel 883 Frenkel, Jens 433, 705
Bergdahl, Tove 375 Friedrich, Markus 173
Bergero, Federico 237 Fritzson, Peter 385, 393, 433,
Blochwitz, Torsten 173, 355,775 443,537, 659,
Bodenmiiller, Tim 339 809
Bodrich, Thomas 151 Gallardo Yances, 247,619
Bonilla, Javier 71 Stephanie
Bonvini, Marco 477 Ganeson, Anand 537
Bouskela, Daniel 745 Gao, Jianbo 513
Bouvy, Claude 263 Gaucher, Fabien 37
Braun, Willi 185, 247 Gebremedhin, Mahder 393, 659
Breitenecker, Felix 557 Gedda, Sofia 819
Brunnemann, Johannes 609 Gentilini, Guillaume 745
Budt, Marcus 791 Gissing, Jorg 263
Burhenne, Sebastian 949 Godecke, Andreas 565
Casella, Francesco 215, 443 Goossens, Paul 907
Cellier, Francois E. 71, 237 Gottelt, Friedrich 609
Chen, Liping 405, 549 Graber, Manuel 781
Clauss, Christoph 173, 205, 507 Griffin, John 599
Dahl, Johan 101 Grin, Gunnar 271, 279
Davies, Kevin 115, 801 Gihmann, Clemens 287
de La Calle, Alberto 883, 941 Glnther, Felix 589
Delgado Beltran, Juan 697 Gusev, llya 311
Gabriel Hafner, Irene 557
Dempsey, Mike 295, 571, 697 Hajek, Manfred 417
Diehl, Stefan 819 Hamann, Peter 775
DOl Proceedings of the 9" International Modelica Conference 11
10.3384/ecp12076 September 3-5, 2012, Munich, Germany

Hannemann-Tamas, 641 Liu, Qinghua 549
Ralf Ljubijankic, Manuel 323
Hartweg, Stefan 523 Loh, Chia Choon 365
Hasenbein, Christoph 609 Magnusson, Fredrik 649
Hauger, Svein Olav 197 Mai, Pierre R. 455
Haumer, Anton 159 Majetta, Kristin 507
Haynes, Comas 115 Mallebrein, Georg 589
Heckmann, Andreas 125 Malmheden, Martin 855
Heinzl, Bernhard 557 Marquardt, Wolfgang 641
Hellerer, Matthias 339, 523 Mattias, Nyberg 385
Herkel, Sebastian 949 Mattsson, Jesper 375
Hillmann, Claudio 809 Mattsson, Sven Erik 15,37
Hirano, Yutaka 579 Mattsson, Tobias 375
Hodrius, Thomas 355 Maurer, Werner 691
Hofmann, Tobias 347 Mauss, Jakob 173
Hoger, Christoph 485 Mehlhase, Alexandra 485, 927
Huang, Hua 287 Mikelsons, Lars 839, 971
Huber, Jorg 323 Mikoleit, Beate 897
Isakovic, Karsten 485 Moghadam, Afshin 393
Isaksson, Par 631 Hemmati

Jahangiri, Pooyan 57 Mdihlbauer, Monika 565
Jeck, Peter 263 Miiller, Dirk 57,935
Ji, Hongchao 971 Miiller, Jakob 877
Ji, Yang 513 Naumann, Uwe 641
Junghanns, Andreas 173 Neumaier, Arnold 955
Kzern, Martin Ryhl 713 Neumerkel, Dietmar 173
Kastner, Wolfgang 557 Nezhadali, Vaheed 659
Kehrer, Christian 897 Nieveler, Joerg 565
Kempf, Karl 971 No6h, Katharina 641
Kennel, Ralph 513 Norrefeldt, Victor 271, 279, 737
Kirches, Christian 781 Nouidui, Thierry 727
Kittilsen, Pal 197 Stephane

Knoblich, René 287 Nowoisky, Sebastian 287
Kofman, Ernesto 237 Nytsch-Geusen, 323,485
Kollner, Christian 355 Christoph

Korner, Andreas 557 Ochel, Lennart 659
Kosenko, Ivan 311 Olsson, Hans 173
Kral, Christian 159 Oprea, Alexandra 333
Kruger, Imke 927 Otter, Martin 15, 27, 173,
Kubiak, Rick 485 495, 523
Kunze, Glinter 433,705 Palma, Cosimo 963
Landsiedl, Michael 557 Paredis, Christiaan 115, 801
Leva, Alberto 477 Pathak, Arnav 271,737
Liang, Feng 385 Pazold, Matthias 949
Lichius, Thomas 263 Petersson, Joel 631
Liermann, Matthias 867 Pfeiffer, Andreas 495, 523, 537,
Lind, Alexandra 619 669
Lind, Ingela 333 Phalak, Kaustubh 727
Lindholm, Petter 185 Picarelli, Alessandro 571
Link, Kilian 247,619 Pohlmann, Uwe 365, 765
Liu, Qi 549 Pop, Adrian 443
12 Proceedings of the 9" International Modelica Conference DOl

September 3-5, 2012, Munich Germany 10.3384/ecp12076

Prescott, William 759
ProR, Sabrina 47
Provan, Gregory 829
Pruckner, Alfred 877
Quincy, Jean Baptiste 855
Raabe, Nick 167
Radler, Jorg 323
Radon, Jan 949
Ravachol, Michel 855
Reddehase, Hendrik 765
Rein, Udo 775
Reiner, Matthias 523
Renz, Ala 609
Roberts, Neil 295, 697
Roca, Lidia 883
Rockemann, Jens 765
Rodemann, Tobias 897
Roeder, Volker 609
Rogovchenko, Olena 385, 537
Romanoni, Marco 963
Rossler, Matthias 557
Ruge, Vitalij 659
Saadat, Ali 63
Sadeghi, Sara 385
Sallberg, Elin 619
Samlaus, Roland 809
Schafer, Wilhelm 765
Schamai, Wladimir 385
Scharff, Dirk 781
Schaub, Alexander 339
Schierz, Tom 205
Schlabe, Daniel 133
Schlegel, Clemens 425
Schmidt, Torsten 507
Schmitz, Gerhard 609, 927
Schmitz, Moritz 641
Schneider, Stefan- 347, 455
Alexander

Schniittgen, Joachim 889
Schramm, Dieter 971
Schubert, Christian 705
Schulze, Christian 609
Schwan, Torsten 897
Seemann, Sebastian 425
Sielemann, Michael 81, 223
Sivertsson, Martin 659
Sjolund, Martin 443
Soroka, Orysia 143
Span, Roland 791
SpieR, Christian 417
Stavaker, Kristian 393

Sten, Jon 375
Stinner, Sebastian 935
Streblow, Rita 57
Streit, Sebastian 125
Strobel, Michael 809
Suck, Julian 365
Tegethoff, Wilhelm 781
Thiele, Bernhard 27, 455
Thomas, Eric 855
Thorade, Matthis 63
Thiring, André 609
Tichy, Matthias 365
Tillack, Jana 641
Tobolar, Jakub 877
Tummescheit, 631, 737
Hubertus

Ulbrich, Heinz 589
Unger, René 897
Vahid, Orang 143, 907
van der Linden, 303
Franciscus

Velut, Stéphane 619
Venturini, Alberto 829
Viel, Antoine 173
Vittorias, lason 565
von Lieres, Eric 641
Vontz, Thomas 565
Wagner, Robert 765
Wasbg, Stein 197
Wellner, Kai 609
Wetter, Michael 727
Wiechert, Wolfgang 641
Wischhusen, Stefan 253
Wolf, Boris 365
Wolf, Daniel 791
Worschech, Niklas 839
Wright, Derek 143
Wyes, Jutta 641
Xie, Gang 405
Xiong, Tifan 549
Yebra, Luis J. 71, 883, 941
Ylikiiskila, Johan 631
Zhao, Yan 405
Zhou, Fanli 405
Zimmer, Dirk 133, 681
Ziske, Johannes 151
Zuga, Adam 809
Zuo, Wangda 727

DOl
10.3384/ecp12076

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich, Germany

13

14

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076

Fundamentals of Synchronous Control in Modelica

Hilding Elmqvist*

Martin Otter?

Sven Erik Mattsson®

'Dassault Systémes AB, Ideon Science Park, SE-223 70 Lund, Sweden
’DLR Institute of System Dynamics and Control, D-82234 Wessling, Germany
Hilding.EImqgvist@3ds.com Martin.Otter@dlIr.de SvenErik.Mattsson@3ds.com

Abstract

The scope of Modelica 3.3 has been extended from a
language primarily intended for physical systems
modeling to modeling of complete systems by allow-
ing the modeling of control systems and enabling
automatic code generation for embedded systems.
This paper describes the fundamental synchronous
language primitives introduced for increased cor-
rectness of control systems implementation. The ap-
proach is based on associating clocks to the variable
types. Special operators are needed when accessing
variables of another clock. This enables clock infer-
ence and increased correctness of the code since
many more checks can be done during translation.

Keywords: Modelica; Synchronous; Control; Sam-
pled Data Systems, Periodic Systems

1 Introduction

The scope of Modelica has been extended from a
language primarily intended for physical systems
modeling to modeling of complete systems by allow-
ing the modeling of control systems and by enabling
automatic code generation for embedded systems.

This paper describes the fundamental synchro-
nous language primitives introduced for increased
correctness of control systems implementation since
many more checks can be done at compile time. A
companion paper (Elmqvist, et.al, 2012) describes
the state machine features of Modelica 3.3. Yet an-
other companion paper (Otter, et.al, 2012) describes
a Modelica library, Modelica_Synchronous, which
supports a graphically oriented approach to synchro-
nous control systems implementation.

The new language elements follow the synchro-
nous approach (Benveniste et. al. 2002). They are
based on the clock calculus and inference system
proposed by (Colaco and Pouzet 2003) and imple-
mented in Lucid Synchrone version 2 and 3 (Pouzet
2006). However, the Modelica approach also uses
multi-rate periodic clocks based on rational arithme-
tic introduced by (Forget et. al. 2008), as an exten-

sion of the Lucid Synchrone semantics. Additionally,
the built-in operators introduced in Modelica 3.3 also
support non-periodic and event based clocks.

In the following sections the new language ele-
ments are discussed. Afterwards, in section 5, a ra-
tional is given why they have been introduced by
comparing the new possibilities with the features of
Modelica 3.2 to model sampled data systems.

2 Synchronous Features of Modelica

The synchronous features of Modelica 3.3 will be
gradually introduced by means of examples illustrat-
ing how to use them. This paper uses a completely
textual approach. The companion paper (Otter, et.al,
2012) describes a Modelica library, Modeli-
ca_Synchronous, which supports a graphically ori-
ented approach to synchronous control systems im-
plementation.

2.1

We will consider control of a mass and spring-
damper system with a force actuator. A Modelica
model is shown below:

Plant and Controller Partitioning

model MassWithSpringDamper
parameter Modelica.Slunits.Mass m=1,;
parameter Modelica.Slunits. TranslationalSpringConstant k=1;
parameter

Modelica.Slunits. TranslationalDampingConstant d=0.1;

Modelica.Slunits.Position x(start=1,fixed=true) "Position";
Modelica.Slunits.Velocity v(start=0,fixed=true) "Velocity";
Modelica.Slunits.Force f "Force";

equation
der(x) = v;
m*der(v) = f - k*x - d*v;

end MassWithSpringDamper;

A simple discrete-time speed controller can be im-
plemented as follows:

model SpeedControl
extends MassWithSpringDamper;
parameter Real K = 20 "Gain of speed P controller";
parameter Modelica.Slunits.Velocity vref = 100 "Speed ref.";
discrete Real vd;

DOl
10.3384/ecp1207615

Proceedings of the 9" International Modelica Conference 15
September 3-5, 2012, Munich, Germany

Fundamentals of Synchronous Control in Modelica

discrete Real u(start=0);
equation

I/ speed sensor

vd = sample(v, Clock(0.01));

/I P controller for speed
u = K*(vref-vd);

/I force actuator
f = hold(u);
end SpeedControl;

The SpeedControl model extends the continuous-time
plant model MasswithSpringDamper. The speed control-
ler is a discrete-time controller. The boundaries be-
tween continuous-time equations and discrete-time
equations are defined by the operators sample and
hold.

The sample operator samples a continuous-time
variable and returns a discrete-time variable. The
sample rate is specified by the second Clock argument
to sample. In this case, a periodic clock which ticks
with a period of 0.01 second is specified.

Since sample returns a discrete-time result that is
associated to clock Clock(0.01), the variable vd be-
comes discrete-time and is associated to the same
clock as well. Variable vd appears in equation
u = K*(vref-vd) and therefore all time varying variables
in this equation, i.e., u, must be also discrete-time
and associated to the same clock. If further equations
would be present, then all equations in which vd and
u appear, would be again associated to the same
clock. This approach to identify the equations be-
longing to the same clock is called clock inference
and is a key element in the new approach.

The hold operator converts from discrete-time to
continuous-time by holding the value between the
clock ticks. More precisely, the hold(u) operator re-
turns the start value of u if the operator is called be-
fore the first tick of the clock of u. Otherwise, the
most recently available value of u is returned.

To summarize, the sample(v..) and hold(..) operators
define the boundaries between clocked and continu-
ous-time partitions. Equations and variables belong-
ing to the same clocked partition are identified by
clock inference.

2.2

More advanced features will be introduced using a
position controller using an inner P controller and an
outer Pl controller. The first version is using one
clock:

Discrete-time State Variables

model ControlledMassBasic
extends MassWithSpringDamper;
parameter Real KOuter = 10 "Gain of position PI controller";
parameter Real Klnner = 20 "Gain of speed P controller";
parameter Real Ti = 10 "Integral time for pos. Pl controller";

parameter Real xref = 10 "Position reference";

discrete Real xd;

discrete Real eQuter;
discrete Real intE(start=0);
discrete Real uQuter;

discrete Real vd,;

discrete Real vref;

discrete Real ulnner(start=0);
equation

/I position sensor

xd = sample(x, Clock(0.01));

/I outer PI controller for position
eOuter = xref-xd;

intE = previous(intE) + eOuter;
uOuter = KOuter*(eOuter + intE/Ti);

/I speed sensor
vd = sample(v);

/[inner P controller for speed
vref = uOuter;
ulnner = Kinner*(vref-vd);

/I force actuator
f =hold(ulnner);
end ControlledMassBasic;

In this model, the sample operator for v does not
have an associated Clock specification since it is in-
ferred (sample(v) is implicitly associated to clock
Clock(0.01) because xd is on this clock, and therefore
eOuter, and therefore uouter, and therefore vref and
therefore vd, and therefore sample(v)).

Since a PI controller is used, it is necessary to in-
troduce a discrete-time state variable for the integral
part. The operator previous(..) is used to access the
value of intE at the previous clock tick. Note that due
to this use of previous(..),intE becomes a discrete-time
state and needs to have a start value specified in the
declaration (at the first clock tick, previous(inte) re-
turns the start value of intE).

The behavior of the system is shown in the figure
below: X, xref and xd (upper diagram) and the actua-
tor signal ulnner (lower diagram).

2.3

A Modelica model will typically have several con-
trollers for different parts of the plant. Such control-
lers might not need synchronization and can have
different base clocks. Equations belonging to differ-
ent base clocks can be implemented by asynchronous
tasks of the used operating system.

Base- clocks and Sub-clocks

16 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207615

Session 1A: Hybrid Modeling

xref = xd

10 T T _
04
T T T T | T T T T
0.0 0.5 1.0
ulnner
3000
2000
10004 T
u T - T T T T T T T T
0.0 0s 1.0

It is also possible to introduce sub-clocks that tick a
certain factor slower than the base clock. Such sub-
clocks are perfectly synchronized with the base
clock, i.e. the definitions and uses of a variable are
sorted in such a way that when sub-clocks are acti-
vated at the same clock tick, then the definition is
evaluated before all the uses.

Such sub-clocks can, for example, be used to save
CPU resources. In some cases, an outer controller of
a cascade control architecture does not need to be
evaluated as often as the inner controller.

When using several clocks, it is convenient and
clear to declare them. Modelica 3.3 introduces a new
base type, Clock, for this purpose:

Clock cControl = Clock(0.01);
Clock cOuter = subSample(cControl, 5);

The subSample operator creates a clock which is a fac-
tor slower; in this case couter becomes 5 times slower
than cControl. The subSample operator can also operate
on a discrete-time variable and then picks the value
at every factor clock tick of the clock of this varia-
ble.

Such clock variables can then be used as argument
to the sample operator:

xd = sample(x, cOuter);
vd = sample(v, cControl);

The outer controller now calculates uOuter at the rate
of couter. uOuter is the velocity reference, vref, for the
inner controller which is compared to the sampled
velocity measurement, vd. vd has clock cControl, i.e., 5
times faster than uouter. Trying to directly calculate
uOuter-vd would give a clocking error since the se-
mantics is not clear. The user needs to state the intent
by using a clock conversion operator. In this case
uOuter needs to be converted to the faster clock by
using the superSample operator:

vref = superSample(uOuter, 5);

superSample replicates a factor 5 times the value of
the variable with the slower clock to have a clock a
factor faster.

The simulation results are shown below. Note
that xd and uouter have a slower sample rate than uin-
ner.

xref = xd
20

:
|

0.0 0.5 1.0
ulnner
4000
|:|_
T T T T | T T T T
0.0 0.5 1.0
uOuter
1004 .
I:l T T T T T T T T T
0.0 05 1.0

24

It is possible to inquire the actual interval of a clock
by using the interval() operator. One example of the
need is when using difference approximations. As-
sume that no speed sensor is available and the speed
needs to be estimated from changes of position. A
first order approximation is shown below. It uses a
faster sampling of the position, x:

Interval of Clock

Clock cFast = superSample(cControl, 2);

xdFast = sample(x, cFast);
vd = subSample((xdFast-previous(xdFast))/interval(), 2);

After approximating the derivative at the higher rate,
the result is sub-sampled with a factor of 2 to get the
required rate of vd.

2.5 Phase of Clock

To better control the scheduling of calculations, it is
possible to shift the phase of a clock. For example,
the calculation of the outer controller code will be
done before the inner controller code due to the data
flow. This might give jittering in the actuator signal
ulnner caused by the slight delay due to the computa-
tion time. One way to avoid this is to schedule the

DOI
10.3384/ecp1207615

Proceedings of the 9™ International Modelica Conference 17
September 3-5, 2012, Munich, Germany

Fundamentals of Synchronous Control in Modelica

outer code to be executed later in the cycle and to
accept the use of an old value of uOuter. This is ac-
complished in the following way:

Clock cOuter = subSample(shiftSample(cControl, 2, 3), 5);

The shiftsample operator shifts the clock a part of the
interval. In this case 2/3 of the interval of the clock
cControl.

By changing the clock couter in this way, the cal-
culation of uouter will be delayed and will not be
synchronized to vd. This needs to be compensated by
using backsample which shifts the clock in the oppo-
site direction to shiftSample:

vref = backSample(superSample(uQuter, 5), 2, 3);

It should be noted that this means that a start value
must be given to uouter which is used before the
clock of uouter has started ticking.

The complete model including all aspects dis-
cussed above is given below:

model ControlledMass
extends MassWithSpringDamper;
parameter Real KOuter = 10 "Gain of position Pl controller";
parameter Real Klnner = 20 "Gain of speed P controller";
parameter Real Ti = 10 "Integral time for pos. Pl controller";
parameter Real xref = 10 "Position reference";

discrete Real xd;

discrete Real eOuter;

discrete Real intE(start=0);
discrete Real uOuter(start=0);

discrete Real xdFast;
discrete Real vd;

discrete Real vref;

discrete Real ulnner(start=0);

Clock cControl = Clock(0.01);
Clock cOuter = subSample(shiftSample(cControl, 2, 3), 5);
Clock cFast = superSample(cControl, 2);
equation
/I position sensor
xd = sample(x, cOuter);

[outer PI controller for position
eOuter = xref-xd;

intE = previous(intE) + eOuter;
uOuter = KOuter*(eOuter + intE/Ti);

/I speed estimation
xdFast = sample(x, cFast);
vd = subSample((xdFast-previous(xdFast))/interval(), 2);

/I inner P controller for speed
vref = backSample(superSample(uQuter, 5), 2, 3);
ulnner = Kinner*(vref-vd);

/I force actuator
f = hold(ulnner);
end ControlledMass;

The simulation results are shown below. In particular
it can be noted how uOuter is shifted 2/3 of the inter-
val on ulnner.

x xref = xd xdFast
15
10
5_
u_
-5 T T T T T T T T T
0.0 0.1 02
uCuter ulnner
20004
1000+
il - ™ -
T T T T | T T T T
0.0 0.1 02

An interesting question is when a clock starts to tick.
In principal there are two useful approaches: A clock
starts ticking at time = 0 seconds or it starts ticking at
the simulation start time (or when a device is
switched on). The synchronous extensions of Model-
ica use the second approach because from the view
of a hardware device, there is no absolute but only
relative time.

Operator y = shiftSample(u, c, r) defines a new clock
that basically shifts the first activation of the clock of
y in time c/rxinterval(u) later than the first activation of
the clock of u. This definition gives not a precise
time definition because interval(u) is of type Real. Fur-
thermore, it only holds in special cases, such as for
periodic clocks with a fixed period. The precise time
definition that holds for all clocks is achieved by
constructing (conceptually) a clock cBase:

Clock cBase = subSample(superSample(u, r), c);

and the clock of y = shiftSample(u, c, r) starts at the se-
cond clock tick of cBase and y is set to the most re-
cently available value of u.

In a similar way the operator y = backSample(u, c, r)
defines a new clock that basically shifts the first ac-
tivation of the clock of y in time c/r*interval(u) before
the first activation of the clock of u. Similarly to
shiftSample, the precise time definition is achieved by
constructing (conceptually) a clock cBase :

Clock cBase = subSample(superSample(u, r), c);

18 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207615

Session 1A: Hybrid Modeling

and the clock of y = backSample(u, ¢, r) is shifted a time
duration before the clock of u, such that this duration
is identical to the duration between the first and se-
cond clock tick of cBase.

The backSample(..) operator is more critical than the
shiftSample(..) operator: The clock of v starts before the
clock of u and therefore a start value for u is needed
and before the first tick of the clock of u, the operator
returns this start value. Additionally, there is the re-
striction that the clock of v cannot start before the
simulation start time.

On first view, one could have only provided one
operator to shift the start of a clock forward or back-
ward in time. However, shifting backwards in time
requires providing a start value, whereas this is not
the case when shifting forward in time. Since these
are therefore structurally different cases, it is better
to use two different operators.

2.6

In the previous sections, periodic clocks are defined
with the Clock(period) constructor, where period is of
type Real and defines the sample period. The seman-
tics is that two clocks of this kind are not time syn-
chronized to each other. Example:

Clock c1 = Clock(0.1);

Clock ¢2 = superSample(c1,3);
Clock ¢3 = Clock(0.1/3);

Exact Periodic Clocks

Clock c1 and c2 are precisely time synchronized to
each other and at every third tick of c2, clock c1 ticks.
However, clock c3 is not time synchronized to c1 or
c2 and there is no guarantee that c3 ticks at every
third tick of c1. The reason is that calculations with
Real numbers are not exact and subject to small nu-
merical errors.

Alternatively, a periodic clock can be defined
with the Clock(c,r) operator, where ¢ and r are of type
Integer, and the fixed sample period is defined as the
rational number c/r. The semantics is that all clocks
defined in this way are precisely time synchronized
to each other. Example:

Clock ¢1 = Clock(1,10); /l period = 1/10
Clock ¢2 = superSample(c1,3); // period = 1/30
Clock ¢3 = Clock(1,30); /l period = 1/30

Clocks c1, c2, and c3 are precisely time synchronized
to each other and at every third tick of c2 and of c3,
clock c1 ticks.

An interesting question is which periods can be
defined with exact periodic clocks? Basically, a peri-
od is defined as the quotient of two Modelica Integer
numbers, which are usually 32 bit integers. There-
fore, periods in the range 10 ... 10° s can be directly
defined. However, clocks can be sub- and super-
sampled, e.g,

superSample(Clock(1, 1000000000) , 1000000000);

The resulting clock will have a period of 10 s. In
other words, from a Modelica point of view, any pe-
riod that can be represented by a rational number
with unlimited precision can be defined. In the Mod-
elica 3.3 specification it is stated that “it is required
that accumulated sub- and super sampling factors in
the range of 1 to 2% can be handled”. Therefore, eve-
ry tool should support internally at least 64 bit inte-
gers and therefore periods in the range 10 ... 10" s.

2.7 Clocked When Clause

Although the new synchronous operators allow de-
fining clocked equations implicitly due to clock in-
ference, it is sometimes still useful to explicitly de-
fine that a group of equations is associated with the
same clock. In order to not introduce yet another new
keyword, the already existing when-clause is over-
loaded for this purpose. Example:

import Modelica.Utilities.Streams.print;
equation
when Clock(0.1) then
X = A*previous(x) + B*u;
y = C*previous(x) + D*u;
print("Clock ticks at time = " + String(sample(time)));
end when

If a clock is used in a when-clause then all equations
in the when-clause are associated with this clock. In
such a case, the equations in the when-clause can be
arbitrary equations (recall that for standard when-
clauses with a Boolean condition, all equations in the
when-clause must have a variable reference on the
left hand side of every equation, i.e., equations must
be of the form “x = expr”).

In the example above, all three equations in the
when-clause belong to the same partition that is are
associated to clock Clock(0.1). When-clauses might be
used to clearly define that equations are associated
with the same clock. Furthermore, there are excep-
tional cases as in the example above, where it would
be not possible to associate the print(..) statement to
Clock(0.1) without a when-clause because no variable
of the clocked partition is used in the print statement.
If the clock of the when-clause is defined somewhere
else and shall be deduced by clock inference, then
the clock Clock() needs to be used in the when-clause:

when Clock() then /I clock is inferred

X = A*previous(x) + B*u;

y = C*previous(x) + D*u;

print("Clock ticks at time =" + String(sample(time)));
end when

In Modelica 3.3, clocked when-clauses are restricted:
The condition must be a clock (and not, say a Boole-
an expression of clocks such as “c1 or ¢2”), an else-

DOI
10.3384/ecp1207615

Proceedings of the 9™ International Modelica Conference 19
September 3-5, 2012, Munich, Germany

Fundamentals of Synchronous Control in Modelica

when part is not allowed, and the clocked when
clause can only appear in an equation section.

2.8

It is also possible to define clocks with a varying
interval between the sampling points. As an exam-
ple, consider

Varying Interval Clocks

model VaryingClock
Integer nextinterval(start=1);
Clock ¢ = Clock(nextlInterval, 100);

Real v(start=0.2);
Real d = interval(v);
Real dO = previous(nextinterval)/100.0;
equation
when c then
nextinterval = previous(nextinterval) + 1;
v = previous(v) + 1;
end when;
end VaryingClock;

It defines a Clock ¢ with varying interval, nextinterval.
A definition of the form

Clock ¢ = Clock(nextInterval, 100)

states that clock c ticks at the simulation start and
then every nextinterval/100 Seconds, and at every clock
tick, nextinterval can be newly computed. Since at the
first clock tick, previous(nextinterval) is equal to the
start value of nextinterval (= 1), the value of nextinterval
at the first clock tick is 1+1 = 2, and therefore the
second clock tick is at 2/100 seconds. The further
ticks are at 5/100, 9/100 etc. The behavior of the var-
iable v is shown in the following plot:

= = @ @

The variables d = interval(v) and
do = previous(nextinterval)/100.0 are equal.

Let us sub-sample v by adding to the model:

Real vs3 = subSample(v, 3) ;
Real ds3 = interval(vs3);

0os

L S S A T L B e S S T T R
[uls} 01 02 03 04 05

As the plot shows, vs3 samples each third point of v.
We can also super-sample:

Real vS5 = superSample(v, 5) ;
Real dS5 = interval(vS5);

. ¥

The 5 super-sampling points are evenly distributed in
time within the intervals of clock ¢ as shown by the
plot of dss. Let us now sub-sample dss:

Real vS5s3 = subSample(vS5, 3) ;
Real ds3S5 = interval(vs3S5);

The result is that vs5s3 is every third sample of vs5
resulting in a more irregular sampling interval. The
equation vS5s3 = subSample(vS5, 3) can be expanded as
vS5s3 = subSample(superSample(v, 5), 3).

What is the result if we do it in the reverse order,
vs3S5 = superSample(subSample(v, 3), 5)? For the clock c,
the time to the next tick is known at the current tick.

20 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207615

Session 1A: Hybrid Modeling

However, this is not the case for the clock of subSam-
ple(v, 3). The interval to its next tick is the sum of 3
future intervals of ¢ and only the first term is known.
The definition of super-sampling does not require the
intervals of super-sampling to be equidistant in time.
The definition is instead based on counting ticks. It
means that vs3S5 = vS5s3.

In Modelica, a non-periodic clock can only be in-
troduced by using an explicit clock constructor. The
factors of sub-sampling or super-sampling must be
parameter expressions, which mean that neither sub-
sampling nor super-sampling can construct a clock
with varying interval from a periodic clock. It is also
required that there must be only one clock construc-
tor, c, in the same base-clock partition if ¢ is a non-
periodic clock. All this means that we can construct a
new clock co that is a super-sampled clock of ¢, such
that all other clocks can be modeled as pure sub-
sampling clocks of co. As we have described, there
are no issues in making a faster clock co by super-
sampling c. The sub-sampling of co to implement all
the sub-clocks is then just a matter of counting ticks
and picking the nth samples.

2.9

It is also possible to define clocks that tick when a
Boolean expression changes from false to true. For
example assume that a clock shall tick whenever the
shaft of a drive train passes 180°. This can be defined
as (Otter, et.al. 2012):
w = der(angle);

J*der(w) = tau;
when Clock(angle >= hold(offset)+Modelica.Constants.pi) then

offset = sample(angle);
end when;

Boolean Clocks

At the simulation start the discrete variable offset has
a start value of zero. Therefore, the first clock tick
appears when angle becomes larger as 180°. Then,
offset IS set to the actual angle, and the next clock tick
appears at another full rotation of the shaft. Note,
that the Boolean expression is continuous-time, and
therefore the clocked variable offset cannot be direct-
ly used, but must be casted from a clocked to a con-
tinuous-time variable with operator hold. A typical
simulation result is shown in the next figure:

angle

offset
3000

20004

[deg]

10004

Operators subSample, superSample, shiftSample and back-
sample can also be applied on Boolean clocks. How-
ever, there are restrictions. For example, superSample(..)
cannot introduce new ticks because the next clock
tick is not known in advance. Example:
Clock u = Clock(sine(time) > 0);
Clock y1 = subSample(u,4);
Clock y2 = superSample(y1,2);
Clock y3 = superSample(u, 2);

/I fine y2 = subSample(u,2)
/I error

2.10 Discretized continuous time

A partition (i.e., a set of equations) that is marked by
sample, hold, subSample, superSample €tc. operators is
called a “clocked partitions”. There are two different
kinds of clocked partitions:

Clocked discrete-time partition

This is the type of partition discussed so far, consist-
ing of algebraic equations, potentially using opera-
tors previous(..) and interval(..) in the equations.

Clocked discretized continuous-time partition
This is a partition where the operator der(..) is used
(and then previous(..) and interval(..) must not be pre-
sent). In such a case a set of differential and algebra-
ic equations is marked to be a clocked partition. The
semantics is that at clock ticks these equations are
solved with a specified integration method from the
previous to the next clock tick. The integrator for
such a partition is propagated (inferred) similarly as
a clock and therefore it suffices to define it at a few
places.

This is a powerful feature since in many cases it is
no longer necessary to manually implement discrete-
time components but it suffices to just build-up a
controller with continuous-time components and
then sample the input signals and hold the output
signals.

In the following example a continuous-time PI
controller that gets a reference and a measurement
signal as input is automatically transformed to a
clocked partition:

model ClockedPI
parameter Real k;
parameter Real T;
input Real y_ref;
input Real y_mes;
output Real u(start=0.0);
discrete Real e;
discrete Real x;
discrete Real ud;
Clock ¢ = Clock(Clock(0.1), solverMethod="ImplicitEuler");

equation
/I Sampling the inputs
e = sample(y_ref,c) - sample(y_mes);

o 1 2
DOl Proceedings of the 9™ International Modelica Conference 21
10.3384/ecp1207615 September 3-5, 2012, Munich, Germany

Fundamentals of Synchronous Control in Modelica

/I P1 controller
der(x) = e/T;
ud = k*(x +e);

/I Holding the output

u = hold(ud);

end ClockedPl,

With the declaration Clock(c, solverMethod), the solver-
Method (defined as String) is associated to clock ¢ and
the partitions to which this clock is associated are
solved with the specified solver method (= integra-
tion method). As already mentioned, this feature can
be used to discretize continuous-time blocks. Also,
nonlinear plant models can be inverted and the in-
verse model can be discretized and used, say, as
feedforward controller part in a sampled data con-
troller, see (Otter, et. al. 2012). Furthermore, this
feature can be utilized for multi-rate real-time simu-
lations where a model is partitioned in different parts
and these parts are solved with different integration
methods and step sizes.

3 Synchronous Operators

All newly introduced operators of the synchronous
extension to Modelica have been sketched so far. In
this section, a short overview of these operators is
given:

Clock Constructors
Clock(): Returns a clock that is inferred

Clock(i,r): Returns a variable interval clock where the
next interval at the current clock tick is defined
by the rational number irr. If i is parameteric,
i.e., a literal, a constant, a parameter or an ex-
pression of those kinds, the clock is periodic.

Clock(ri): Returns a variable interval clock where the
next interval at the current clock tick is defined
by the Real number ri. If ri is parametric, the
clock is periodic.

Clock(cond, ri0): Returns a Boolean clock that ticks
whenever the condition cond changes from false
to true. The optional rio argument is the value
returned by operator interval() at the first tick of
the clock.

Clock(c,m): Returns clock ¢ and associates the solver
method m to the returned clock .

Base-clock conversion operators

sample(u,c): Returns continuous-time variable u as
clocked variable that has the optional argument
¢ as associated clock.

hold(u): Returns the clocked variable u as piecewise
constant continuous-time signal. Before the

first tick of the clock of u, the start value of u is
returned.

Sub-clock conversion operators

subSample(u,factor): Sub-samples the signal or clock u
by the integer factor. If factor is not present, it is
inferred.

superSample(u,factor): Super-samples the signal or clock
u by the integer factor. If factor is not present, it is
inferred.

shiftSample(u,c,r): Shifts the clock of a signal or clock u
forward in time.

backSample(u,c,r): Shifts the clock of a signal or clock u
backward in time. Before the first tick of the
clock of u, the start value of u is returned.

Other operators

previous(u): At the first tick of the clock of u, the start
value of u is returned. At subsequent clock
ticks, the value of u from the previous clock ac-
tivation is returned.

interval(u): Returns the interval between the previous
and the present tick of the clock to which signal
u is associated. The interval is returned as a Re-
al number.

4 Base-clock and Sub-clock
Partitioning

Consider the example SpeedControl in section 2.1. The
variables and equations of MasswithSpringDamper form
a well-defined continuous-time model together with
the equation f = hold(u) from SpeedControl if we view u
as a known input. Similarly the variables and equa-
tions added in SpeedControl when extending from
MasswithSpringDamper form a well-defined discrete
system if we disregard the equation f = hold(u), which
already is used in the continuous time system and if
we view v, referred in the equation
vd = sample(v, Clock(0.01)) as a known input. We have
now decomposed the system in a continuous-time
partition and in a discrete-time partition.

For the general case, we observe that the sample
and hold operators serve an important role as identi-
fying the interfaces between the two kinds of parti-
tions. The first argument of sample identifies inputs to
discrete-time partitions that must be provided by
continuous time partitions. Similarly the first argu-
ment of hold identifies inputs to continuous-time par-
tions that must be provided by discrete-time parti-
tions. If the first arguments are expressions, auxiliary
variables are introduced.

22 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp1207615

Session 1A: Hybrid Modeling

The idea of the base-clock decomposition is to
decompose the variables and the equations into sets
where the equations only refer to variables of its own
set if we neglect references of the first argument of
sample and hold. There are simple algorithms for do-
ing this, for details, see (Modelica Association 2012).

It must then be possible to classify a partition as
either continuous-time or discrete-time. Use of previ-
ous, subSample, superSample, shiftSample Or backSample Or
appearances of clocks or clock constructors requires
the partition to be discrete-time. The global variable
time can only be referenced in a continuous time par-
tition.

The derivative operator is clearly a continuous-
time operator. However, it may appear in a discrete-
time partition, because there are features to have
them automatically discretized by defining appropri-
ate solver clocks, see section 2.10.

The discrete time partitions are further divided in-
to sub-clock partitions by the same procedure while
treating the first argument of the operators subSample,
superSample, shiftSample Or backSample as known inputs.

The result of sub-clock partitioning for the model
ControlledMass in section 2.5 is:

Continuous-time partition:
der(x) = v;
m*der(v) = f - k*x - d*v;
f = hold(ulnner);

Discrete-time sub-partition 1:
xd = sample(x, cOuter);
eOuter = xref-xd;
intE = previous(intE) + eOuter;
uOuter = KOuter*(eOuter + intE/Ti);

Discrete-time sub-partition 2:
xdFast = sample(x, cFast);
auxl = (xdFast-previous(xdFast))/interval();

Discrete-time sub-partition 3:
vd = subSample(auxi, 2);
vref = backSample(aux2, 2, 3);
ulnner = Kinner*(vref-vd);

Discrete-time sub-partition 4:
aux2 = superSample(uOuter, 5);

5 Rationale for Clocked Semantics

This section describes why the synchronous lan-
guage elements have been introduced in Modelica
3.3, by analyzing the issues of Modelica 3.2 regard-
ing control systems implementation.

Modelica 3.2 has both continuous-time and dis-
crete-time equations. Discrete-time equations are
enclosed in when-clauses and are only executed at
certain events, i.e. these equations are only valid in-

stantaneously, not always. Furthermore, the discrete-
time equations are not general equations, since the
left hand-side of an equation in a when-clause must
be a variable reference. It is for example not allowed
to write in a when-clause: “A*x = b”. The synchro-
nous features of Modelica 3.3 remove this restriction
and general equations are allowed in clocked parti-
tions and in particular also in clocked when-clauses.

In order to handle such instantaneous equations, a
special semantics regarding the definition of varia-
bles was introduced. A variable that is assigned by
an instantaneous equation keeps its value until the
next event when it is assigned again (= automatic
“hold” semantics). This implies that the value of
such a discrete-time variable could be read at any
time by another instantaneous equation or continu-
ous-time equation.

Such semantics can, however, be error prone
when different discrete-time equations are not cor-
rectly synchronized (see example below). The syn-
chronous features of Modelica 3.3 remove this prob-
lem.

Periodically sampled control systems can be de-
fined with standard Modelica 3.2 when-clauses and
the sample operator. For example:

when sample(0,3) then

xd = A*pre(xd) + B*y;

u = C*pre(xd) + D*y;

end when;
This approach to define periodically sampled data
systems has the following drawbacks that are not
present with the solution using clocks and clocked
equations described earlier in this paper:

Sampling errors cannot be detected:

All current Modelica libraries modeling sampled
data systems, such as Modelica.Blocks.Discrete, or
Modelica_LinearSystems2.Controller (Baur, et.al.
2009) provide a set of blocks where at every block
instance the sample period has to be defined in some
way. For example, the following figure shows part of
a control system modeled with the Modeli-
ca_LinearSystems2 library:

samplar? Pl

—hhﬁ/@—

-
P -

]
\?N
A

feedback Z

k=2

T=0.1

sampleri

DOI
10.3384/ecp1207615

Proceedings of the 9™ International Modelica Conference 23
September 3-5, 2012, Munich, Germany

Fundamentals of Synchronous Control in Modelica

At every discrete block (here: samplerl, sampler2,
P11) a sampleFactor has to be given defining that the
block equations are sampled at a multiple of a base
sampling rate (which is propagated via inner/outer to
all instances). This factor is shown in the icons (here:
“2™). If the modeler accidentally gives a different
number at one of the blocks (e.g., at “samplerl”),
then this is still a correct Modelica model and a
translator has to accept it, although this controller is
erroneous.

Furthermore note that component “feedback” is
still a continuous-time model without a when-clause.
If everything is correctly modeled, the “effect” of the
above model is that of a sampled data system with
one periodic sampling rate. However, it is easy to
make a mistake (e.g. forgetting “samplerl”, or using
a sampleFactor of 3 at one component), and then the
resulting model does no longer describe the desired
controller, but is still a valid Modelica model.

Worse, there is no easy way for a tool to figure
out which equations belong to one partition that
should be downloaded to a hardware device (e.g.,
describes the above figure one controller with one
sample rate, or three different controllers that are
connected by the continuous-time block “feed-
back”?). Due to the automatic sample and hold se-
mantics of when-clauses in Modelica, it is not possi-
ble to fix this with Modelica 3.2 language elements.

With the synchronous language elements parti-
tions are identified that belong to the same clock.
The sampling rate has to be defined only at one
place. Sampling errors can be easily detected, since
then the requirement is violated somewhere that all
variables in a clocked equation must belong to the
same clock.

Unnecessary initial values have to be defined:

Due to the automatic sample and hold semantics, all
variables assigned in a when-clause must have an
initial value because they might be used before they
are assigned a value the first time. Example:

when b then

yl = 2*x;
end when;
y2 =2*yl;
Since the continuous-time equation y2 = 2*y1 is valid
all the time, including during initialization, a value
for y1 is needed all the time. The when-clause in the
example is not active during initialization, and there-
fore an initial value for y1 has to be provided. In gen-
eral, it is too difficult and probably impossible that a
tool can figure out whether an initial value for a dis-
crete-time variable in Modelica 3.2 is needed or not.
The only safe way is therefore to provide initial val-
ues for all discrete-time variables, although in reali-

ty, only a small sub-set of the discrete-time variables
needs an initial value.®

With the synchronous language elements this is
different: Start values are required for the first argu-
ments of some operators (previous, hold, backSample).
For all other variables, it is guaranteed that a start
value is not needed for initialization (it might be
needed as guess value for an iteration variable of a
nonlinear equation system).

Inverse models not supported in discrete systems:
It is not possible to use a continuous-time model in
when clauses. However, this feature is highly desira-
ble. For example, some advanced controllers use an
inverse model of a plant in a controller, see (Looye
et. al. 2005). This powerful feature of Modelica to
use a nonlinear plant model in a controller is only
available for continuous-time systems, but not for
discrete-time systems. With Modelica 3.2, modelers
therefore have to export an inverse plant model and,
e.g. Dymola provides the export option to include an
integration method and treat the exported component
from the outside as discrete-time system. It is then
possible to import this discrete-time component in
another environment, but not in a Modelica model.
With clocked equations of Modelica 3.3, clocked
controllers with continuous-time models can be di-
rectly defined in Modelica, see section 2.10.

Efficieny degradation at event points:

Simulating a continuous-time plant and a discrete-
time controller in Modelica 3.2 together results in an
event iteration at a sample instant. A when-clause
with a sample(..) condition is evaluated exactly once at
such an event instant. However, the continuous-time
model to which the sampled data controller is con-
nected will be evaluated typically three times at a
sample instant: Once, when the sample instant is
reached, once to evaluate the continuous equations at
the sample instant, and once when an event iteration
occurs since a discrete variable v is changed and
pre(v) appears in the equations. Since a sampled sys-
tem is only evaluated once at a sample instant, i.e., at
a particular time instant, event iteration should not be
necessary since the discrete-time variables cannot be
changed by the event iteration. However, it seems to
be difficult to figure this out automatically for a
Modelica 3.2 model and therefore Modelica tools,
including Dymola, have usually at least one unneces-
sary evaluation of the continuous-time equations at a
sample instant.

With clocked equations described in the next sec-
tions a tool does not need to trigger an event itera-
tion, because it is guaranteed that all equations be-
longing to a periodic or non-periodic interval clock
are evaluated exactly once at an event instant, and

24 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp1207615

Session 1A: Hybrid Modeling

variables computed in such a partition cannot be
used outside of the partition (only with a cast opera-
tor the most recent available value of a clocked vari-
able v can be inquired outside of the clocked parti-
tion, but not previous(v)), and therefore event iteration
cannot give a different result. Therefore, it is easy for
a tool to avoid the unnecessary re-evaluation of the
continuous-time equations at an event triggered by a
clock.

6 Conclusions

We have introduced synchronous features in Modeli-
ca. For a discrete-time variable, its clock is associat-
ed with the variable type. Special operators have to
be used to convert between clocks. This gives an
additional safety since correct synchronization is
guaranteed by the compiler. It would have been very
hard to correctly implement the last version of the
example control system without such help from the
compiler.

7 Acknowledgements

The authors are very thankful to Albert Benveniste,
Marc Pouzet, Benoit Caillaud, Timothy Bourke,
Francois Dupont, Daniel Weil, Fabien Gaucher, Tor-
sten Blochwitz, Peter Fritzson, Hans Olsson and
Modelica Association members for stimulating dis-
cussions and feedback during evolutions of the Mod-
elica 3.3 specification.

Parts of this work were supported by the German
BMBF (Forderkennzeichen: 011S08002), and the
Swedish VINNOVA (funding number: 2008-02291)
within the ITEA2 MODELISAR project
(http://www.itea2.org/project/result/download/result/
5533). The authors appreciate the partial funding of
this work.

References

Baur M., Otter M., and Thiele B. (2009): Modelica L.i-
braries for Linear Control Systems. Proceedings
of 7th International Modelica Conference, Como,
Italy, September 20-22.
www.ep.liu.se/ecp/043/068/ecp09430068.pdf

Benveniste A., Caspi P., Edwards S.A., Halbwachs N., Le
Guernic P., and Simone R. (2003): The Synchro-
nous Languages Twelve Years Later. Proc. of the
IEEE, Vol., 91, No. 1. www.irisa.fr/distribcom/-
benveniste/pub/synch_ProclEEE_2002.pdf

Colaco J.-L., and Pouzet M. (2003): Clocks as First Class
Abstract Types. In Third International Conference
on Embedded Software (EMSOFT'03),

Philadelphia, Pennsylvania, USA, October 2003.
www.di.ens.fr/~pouzet/lucid-
synchrone/papers/emsoft03.ps.qz

Elmgqvist H., Gaucher F., Mattsson S.E, and Dupont F.
(2012): State Machines in Modelica. Proceedings
of 9th International Modelica Conference, Munich,
Germany, September 3-5.

Forget J., F. Boniol, D. Lesens, C. Pagetti (2008): A Mul-
ti-Periodic Synchronous Data-Flow Language. In
11" IEEE High Assurance Systems Engineering
Symposium (HASE'08), Dec. 3-5 2008, Nanjing,
China, pp. 251-260.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reoa
d=true&arnumber=4708883&contentType=Confere
nce+Publications

Modelica Association (2012): Modelica Language
Specification Version 3.3.
https://www.modelica.org/documents/ModelicaSpec
33.pdf.

Otter M., Thiele B., and EImqgvist H. (2012): A Library
for Synchronous Control Systems in Modelica.
Proceedings of 9th International Modelica
Conference, Munich, Germany, September 3-5.

Pouzet M. (2006): Lucid Synchrone, Version 3.0, Tuto-
rial and Reference Manual.
http://www.di.ens.fr/~pouzet/lucid-synchrone/

Looye G., Thimmel M., Kurze M., Otter M., and Bals J.
(2005): Nonlinear Inverse Models for Control.
Proceedings of 4th International Modelica
Conference, ed. G. Schmitz, Hamburg, March 7-8.
https://www.modelica.org/events/Conference2005/0
nline_proceedings/Session3/Session3c3.pdf

DOI
10.3384/ecp1207615

Proceedings of the 9™ International Modelica Conference 25
September 3-5, 2012, Munich, Germany

Fundamentals of Synchronous Control in Modelica

26 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207615

A Library for Synchronous Control Systems in Modelica

Martin Otter', Berhard Thiele', Hilding Elmqvist’
'DLR Institute of System Dynamics and Control, D-82234 Wessling, Germany
’Dassault Systémes AB, Ideon Science Park, SE-223 70 Lund, Sweden
Martin.Otter@dlr.de, Bernhard.Thiele@dlr.de, Hilding. Elmqgvist@3ds.com

Abstract

Based on the synchronous language elements intro-
duced in Modelica 3.3, a library is described to uti-
lize the new features in a convenient way for graph-
ical model definition of sampled data systems. The
library has elements to define periodic clocks and
event clocks that trigger elements to sample, sub-
sample or super-sample partitions synchronously.
Optionally, quantization effects, computational delay
or noise can be simulated. Continuous-time equa-
tions can be automatically discretized and utilized in
a sampled data system. This is demonstrated by us-
ing the inverse of a nonlinear plant model in the feed
forward path of a discrete controller of a mixing unit.

Keywords: Synchronous models, sampled data sys-
tems, periodic systems, clock, inverse systems

1 Introduction

In the Modelica language version 3.3 (Modelica As-
sociation 2012) synchronous language features have
been introduced to precisely define and synchronize
sampled data systems with different sampling rates.
This paper is a companion paper to (EImqvist et.al.
2012) which should be first inspected to understand
why new language elements have been introduced,
as well as the syntax and semantics of them.

The new language elements follow the synchro-
nous approach (Benveniste et. al. 2002). They are
based on the clock calculus and inference system
proposed by (Colaco and Pouzet 2003) and imple-
mented in Lucid Synchrone version 2 and 3 (Pouzet
2006). However, the Modelica approach also uses
multi-rate periodic clocks based on rational arithme-
tic introduced by (Forget et. al. 2008), as an exten-
sion of the Lucid Synchrone semantics. Additionally,
the built-in operators of Modelica 3.3 also support
non-periodic and event based clocks'.

In order to utilize these elements in an actual
model in a convenient way, a free library “Modeli-
ca_Synchronous” has been developed using a proto-
type of Dymola (Dassault Systémes 2012) for the

' A non-periodic clock is defined by a varying interval and
an event clock by a Boolean condition.

new language elements. This library is in a prototype
status. After an evaluation period it is planned to in-
clude this library into the Modelica Standard Library.
Note, all Modelica libraries designed so far for sam-
pled systems, such as Modelica.Blocks.Discrete,
Modelica LinearSystems2.Controller (Baur et. al.
2009) and Modelica EmbeddedSystems (EImqvist
et.al. 2009) are becoming obsolete and should be
replaced by this new library.
In the figure to the right a
screenshot of the library is
shown with the first sub li-
brary level. The most im-
portant sub libraries are:

e Clocks:
Library of blocks that
generate clocks.

Mu:u:leli-:a_Synu:hru:unu:uus

[Excamples

Clocks

i| SamplerandHolds

[] Cammunicatian

[|| MonPeriadic

i| Periodic

" Dby of blocks that 7 ARSI
sample, sub-sample, su- [JITvpes
per-sample and hold signals.

e NonPeriodic:
Library of blocks that operate on periodically
and non-periodically clocked signals (the blocks
depend explicitly on the actual sample interval).

e Periodic:
Library of blocks that are designed to operate
only on periodically clocked signals, mainly de-
scribed by z transforms (the blocks do not ex-
plicitly depend on the sample period, but implic-
itely, since the block parameters need to be de-
signed for one specific sample period).

In the following subsections, the most important
blocks are discussed and their usage demonstrated in
examples.

2 Clocks

A “Clock” is a new base data type introduced in
Modelica 3.3 (additionally to Real, Integer, Boolean,
String) that defines when a particular partition of
equations of a model is active. Every variable and
every equation is either continuous-time or is associ-

DOI
10.3384/ecp1207627

Proceedings of the 9" International Modelica Conference 27
September 3-5, 2012, Munich, Germany

A Library for Synchronous Control Systems in Modelica

ated exactly to one clock (EImquvist et.al. 2012). This
feature is visualized in the figure below where c(t;) is
a clock that is active at particular time instants and
r(t;) is a variable that is associated to this clock. A
clocked variable has only a value when the corre-
sponding clock is active:

A

=
~~
- ot
N

time t
t() tl tz t%

Similarly to Reallnput, RealOutput etc., clock input
and output connectors are defined in sub library “In-
terfaces” in order to propagate clocks via connec-
tions:

Icon | Modelica Definition

>

connector Clocklnput input Clock;

connector ClockOutput = output Clock;

>

Sub library “Clocks”, see

screenshot to the right, de- ,(,:,HOCks_

fines the following compo- | (yPeriodicRealClock
nents that generate clocks, {:{}PeriodacExactCIo&
and provide the respective 5--4-.‘?}EventCIod<

clock via its ClockOutput
connector to other components:

e PeriodicRealClock defines a periodic clock
where the period is defined with a Real number
(e.g. “period = 0.1” for 0.1 s). If clocks are relat-
ed relatively to each other (see section 4), then
only one of them can be a PeriodicRealClock.

e PeriodicExactClock defines a periodic clock
with a resolution defined by enumeration
“Types.Resolution” (with values “y, d, h, min, s,
ms, us, ns”’) and an integer multiple “factor” of
this resolution. For example “factor = 3” and
“resolution = Types.Resolution.ms” defines a pe-
riodic clock with sample period 3 ms.

o EventClock defines a clock that is active when
the Boolean input to this component changes
from false to true.

The implementation of these clocks is a direct map-
ping to the new clock generators. Example:
block PeriodicRealClock

parameter Modelica.SIunits. Time period,;
extends Modelica_Synchronous.Interfaces.PartialClock;

equation
y = Clock(period);
end PeriodicRealClock;

partial block PartialClock
parameter Boolean useSolver = true
annotation(Dialog(tab="Advanced"));
parameter Modelica_Synchronous.Types.SolverMethod
solverMethod="External"
annotation(Dialog(tab="Advanced",enable=useSolver));
Modelica Synchronous.Interfaces.ClockOutput y;
end PartialClock;

All these clocks have an “Advanced” menu in which
an optional integration method (such as “explicit Eu-
ler method”) can be associated to the clock, see next
figure. The effect of such a definition will be ex-
plained below.

General Advanced |

useSalver v v

solverMethod I "ExplicitEuIer";I*

3 Sample and Hold

Within the sub libr ary MDdE"Ea_S‘;.-‘I'IEhrDI'IDLIS
“SamplerAndHolds” (-] Examples
various blocks are de- =] Clacks

fined to sample, sub- éSampIer.ﬁ.ndHDIds

sample, super-sample ;
and hold signals. Since | =/ [_JRealSignals
Modelica does not have ~g™eHold
generic types, for every -epPeHaldWithDieffects
base type a separate
sub-library is present, wesSample
such as Sam- ---—lﬁrﬂSampIeWith.ﬁ.DeFFects
plerAndHolds.RealSig -wmarSubSample
nals, see screenshot to : |
the right. All these “TSUpersample
components define | @[JlIntegerSignals
boundaries between | JBacleansignals
different partitions

. ’ + Clocksignal
especially: e [clocksignals

e Sample requires that the input signal is continu-
ous-time. The block samples the input and pro-
vides it as clocked output signal. The equations
that have a dependency to that output, are col-
lected/grouped into the same clocked partition.

e Hold requires that the input signal is clocked and
provides it as continuous-time signal to the out-
put with a zero order hold. Before the first tick of
the clock that is associated to the input, the out-
put is set to parameter y_start (this value is al-
so displayed in the icon, see Figure 1).

28 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207627

Session 1A: Hybrid Modeling

hold1

0.0

periodicClock

reference feedback controller
ramp Pl
sample2 feedback
e »—ros >
4 L
duration=2 : Td=1

paads

samplet
Sl -
-+

%
E

01s

Figure 1: Simple drive train with clocked PI controller, samplers, hold and periodic clock.

o SampleWithADeffects, HoldWithDAeffects
are similar to Sample and Hold, but provide ad-
ditionally the options to simulate particular ef-
fects, such as noise, signal limitations and quan-
tization effects, as well as computational delays.

The Sample and Hold blocks have again a direct
mapping to the corresponding new language ele-
ments. For example, the RealSignals.Sample block is
implemented as:

block Sample
parameter Boolean useClock=false;
Modelica.Blocks.Interfaces.Reallnput u;
Modelica.Blocks.Interfaces.RealOutput y;
Modelica_Synchronous.Interfaces.ClockInput

clock if useClock;
protected
Modelica_Synchronous.Interfaces.ClockInput ¢_internal;
equation

connect(clock, ¢ _internal);
if useClock then
y = sample(u,c_internal);
else
y = sample(u);
end if}
end Sample;

With the default option useClock=Ffalse, just the
input u is sampled, y = sample(u), and the clock
of the output y is deduced by clock inference due to
the clock definition somewhere else (EImqvist et.al.
2012).

If useClock=true, the input clock connector
clock is enabled and the clock propagated to this con-
nector is used as clock for the output:
y=sample(u,clock), see block sample2 in Fig-
ure 1.

Figure 1 demonstrates all blocks that have been
discussed so far within an illustrative example mod-
el. This model consists of a load inertia that is driven
by a torque. The goal is to control the speed of the

inertia. For this, a feedback controller is provided in
form of a periodic sampled data system described
with clocked equations. The reference part is again a
continuous-time model and provides the desired
speed of the inertia.

The boundaries of the feedback controller are de-
fined with components samplel, sample2 and
holdl that are instances of blocks Sample and
Hold respectively. All equations inside this partition
(“feedback controller”) need to be associated to a
clock. For this, the Sample block has an optional
ClocklInput connector that can be enabled. In the
figure, a periodic clock with period 0.1 s is connect-
ed to sample2 and therefore the “feedback control-
ler” partition is active every 0.1 s. Note, it would
also be fine to connect the clock additionally to sam-
plel, since associating the same clock definition
several times to a partition is allowed.

The PI component is a clocked block from Mod-
elica_Synchronous.NonPeriodic. It is implemented
as (note, previous(x) defines that x is clocked and
that the value from the previous clock tick is used;
interval (u) is the time duration from the previous
to the actual clock tick as Real number):
block PI "From Modelica_Synchronous.NonPeriodic"

extends Modelica_Synchronous.Interfaces.PartialClockedSISO;
parameter Real k "Gain of continuous PI controller";

parameter Real T "Time constant of continuous PI controller";
output Real x(start=0) "Discrete PI state";

protected
Real Ts = interval(u) "Sample period";
equation
x = previous(x) + u*Ts/T;
y=k*(x+uw);
end PI;

This PI controller is parameterized with the coeffi-
cients of a continuous-time PI controller and with the
actual sample period the coefficients of the discre-
tized (clocked) PI controller are computed. Changing

DOl
10.3384/ecp1207627

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

29

A Library for Synchronous Control Systems in Modelica

the sample period will therefore result in a similar
controller behavior.
It would also be possible to utilize the PI control-
ler from the Modelica Synchronous.Periodic sub-
library. In this sub-library it is assumed that the
blocks are utilized only with periodic clocks and the
block parameters have been designed for a particular
sample period. The corresponding PI controller is
implemented as:
block PI "From Modelica Synchronous.Periodic"
extends Modelica Synchronous.Interfaces.
PartialPeriodicallyClockedSISO;

parameter Real kd "Gain of discrete PI controller";
parameter Real Td "Time constant of discrete PI controller";
output Real x(start=0) "Discrete PI state";

equation
X = previous(x) + w/Td;
y = kd*(x + u);

end PI;

The PI coefficients kd and Td are designed for a par-
ticular sample period. Changing this sample period,
without changing kd and Td, will significantly
change the controller behavior.

It would also be possible to use a continuous-time
block, in particular the continuous-time PI controller
from Modelica.Blocks.Continuous.PI that is basical-
ly implemented as:
block PI "From Modelica.Blocks.Continuous "

parameter Real k=1 "Gain";

parameter Modelica.Slunits. Time T "Time Constant";

extends Modelica.Blocks.Interfaces.SISO;

output Real x "State of block";
equation

der(x) =uw/T;

y=k*(x+u);
end PI;
In this case the PI controller is described by a differ-
ential equation. Since the input signal to this block is
a clocked signal when present in the block diagram
of Figure 1, the differential equation is automatically
discretized by integrating from the previous to the
actual clock tick with the integration method defined
in component “periodicClock”. In Figure 1, solver
“External” is defined (see icon of the clock). This
means that the solver defined in the simulation envi-
ronment is used to integrate the continuous-time
block: This might be a variable step-solver with error
control where the step size is selected such that it hits
the clock tick always exactly.

On the other hand, if solverMethod = “’Implic-
itEuler” is selected, then the differential equation of
the PI component will be discretized with a fixed
step implicit Euler method. This approach is also
called “inline integration”. For details, see (EImqvist
et.al. 1995). In this case exactly the same result will
be obtained as with the previous two Pl components.

This approach is very powerful, since every linear or
non-linear continuous-time block can be utilized in
the clocked partition. It is therefore in many cases is
is no longer necessary to derive discretized blocks
manually as, e.g., done in the Modelica Linear-
Systems2.Controller library (Baur et.al. 2009).

Typical simulation results are shown in the next
figure. Note, here it is clearly visualized by Dymola,
that the input to holdl (= holdl.u) is a clocked
signal.

FAME.Y load v [radis]
1 —
D -
T T T T T
i} 1 2 3
= hald.u
15
104 °
= B
it
.5 t
-10 T T T T T
0 1 2 3

4 SubSample and SuperSample

With blocks “SubSample” and “SuperSample” it can
be defined that a partition is sub- or super-sampled
with respect to another clocked partition:

5 At every “factor” ticks of the
input (here: factor = 2), the
o output ticks and is set to the
SubSample .
mnput.
At every “factor” ticks of the
3 output (here: factor = 3), the
p Ll | input ticks. The output is set to
Supersample | the last available value of the
input.

The factor of a sub- or super-sampled partition can
either be explicitly defined with the block, or it can
be inferred, since either the factor is defined at an-
other element or exact periods are associated with
the partitions (see below). In the next figure an ex-
ample is shown, where the signal sample.y is sub-
sampled by a factor of 3 (= subSample.y) and su-
per-sampled by a factor of 2 (= superSample.y).

30 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207627

Session 1A: Hybrid Modeling

% = sampley subSample.y superSample.y

1.2

- [] L

L]
L]
0.8+ P—
L]

1]

0.4} -
L]
4 L]
» -
I:Il:l T T T T T T T T T
0.00 0.05 0.10

There are now many possible ways to define the
clocks of time-synchronized partitions. In Figures 2-
Figure 4 on the next page some useful variants are
demonstrated at hand of a cascade control system for
a very simple drive system. The goal is that the load
inertia travels according to the desired reference an-
gle. This angle is defined with block KinematicPTP2
from the Modelica Standard Library (the reference
signal is constructed so that it moves from a start to
an end angle as fast as possible for given maximal
speed and maximum acceleration). The “slow” con-
troller part is a simple P-controller to control the po-
sition, whereas the “fast” controller part is a PI con-
troller to control the speed.

In Figure 2 one real periodic clock with a sample
period of 0.02 s is defined. This clock is then sub-
sampled with a factor of 5 which defines a second
clock with a sample period of 0.1 s. The “slow” and
the “fast” controller partitions are separated by the
superl block (an instance of SuperSample) and
therefore it is defined that the output of superl is
faster than the input of super1l (the input clock is an
integer multiple of the output clock). The two de-
fined clocks are associated with sample3 and su-
perl and therefore the clocks are associated with the
partitions “’slow controller” and “fast controller”.
Note, the factor at super1 is inferred to be 5.

In Figure 3 only one real clock with a sample pe-
riod of 0.02 s is defined. This clock is associated to
the “fast controller” partition via component su-
perl. Now, in component superl a factor of “5” is
defined. This means that the fast partition is 5-times
faster as the slow partition, and therefore the clock of
the “slow controller” partition is implicitly defined.

In Figure 4 two “exact” clocks are defined: One
clock with a period of 20 ms and one clock with a
period of 100 ms. These “absolute” clocks are asso-
ciated with the “slow” and “fast” partition respec-
tively. Since component superl defines that the
“fast” partition must be an integer factor faster as the
“slow” partition, an implicit constraint is present,
that the clocks of the two partitions must have peri-
ods that are an integer multiple of each other. There-
fore, defining 20 ms and 100 ms is fine. However,

defining periods of 30 ms and 100 ms would result in
an error, since this constraint is violated.

The preferred modeling style is a matter of taste.
Note, the relative definitions of Figure 2 and Figure
3 have the advantage that parameter factor can still
be changed after the model is translated (provided a
tool supports this feature). Instead, in the definition
of Figure 4 it would be typically no longer possible
to change the (absolute) periods after translation,
since there is a constraint between the two defini-
tions (one period must be an integer multiple of the
other period).

5 Nonlinear Inverse Models

Since a long time, Modelica is used to model ad-
vanced nonlinear control systems. Especially, Mod-
elica allows a semi-automatic treatment of inverse
nonlinear plant models. In the fundamental article
(Looye et.al. 2005) this approach is described and
several controller structures are presented to utilize
an inverse plant model in the controller. This ap-
proach is attractive because it results in a systematic
procedure to design a controller for the whole operat-
ing range of a plant. This is in contrast to standard
controller design techniques that usually design a
linear controller for a plant model that is linearized at
a specific operating point. Therefore the operating
range of such controllers is inherently limited. Up to
Modelica 3.2, controllers with inverse plant models
can only be defined as continuous-time systems. Via
the export mechanism of Dymola they could be ex-
ported with solvers embedded in the code and then
used as sampled data system in other environments.
However, it is not possible to re-import the sampled
data system to Modelica.

The synchronous features of Modelica 3.3 togeth-
er with the Modelica Synchronous library offer now
completely new possibilities, so that the inverse
model can be designed and evaluated as sampled
data system within Modelica and a Modelica simula-
tion environment such as Dymola. The approach is
sketched at hand of a simple nonlinear plant model
of a mixing unit (FOllinger 1998, page 279) and the
design of a nonlinear feed-forward controller accord-
ing to (Looye et.al. 2005):

A substance A is flowing continuously into a
mixing reactor. Due to a catalyst, the substance re-
acts and splits into several base substances that are
continuously removed. The reaction generates ener-
gy and therefore the reactor is cooled with a cooling
medium. The cooling temperature T¢(t) in [K] is the
primary actuation signal. Substance A is described
by its concentration c(t) in [mol/l] and its tempera-
ture T(t) in [K] according to the following

DOI
10.3384/ecp1207627

Proceedings of the 9™ International Modelica Conference 31
September 3-5, 2012, Munich, Germany

A Library for Synchronous Control Systems in Modelica

Simple Drive with cascade controller for position and speed control

periodicRealClock

5

subSample1

External

002s

reference
kinematicPTP ‘
= »—o o
@ b sample3
e

slow controller

gain
feedbackl
A
k=20

fast controller

plant
P
" hold1
suger1 | feedback2
TP M =
Y 0.0
T=0.5

sample1

L
sample2

1L

Figure 2: Two clocks are defined with sub-sampling and partitions with super-sampling.

reference

kinematicPTP

"

g

o

L)

periodicRealClock

sample3
ol

slow controller

gain
feedbackl

A

0.02s
fast controller plant
Pl
¥ holkd1
sugert feedback2
e b
s -
0.0
T=0.5
samplet
1y :
sample2

Ty

-
4

Figure 3: One clock is defined and the second clock is inferred by the factor of the super-sample block.

slowClock

reference
kinematicFTP .
T b i—
o H
h sample3

fastClock

slow controller

gain
feedbacki

A
k=20

fast controller plant
Pl
v hold1 orgue aa
suger1 feedback2 /_\O—tl-l
amty P —»
- -]
0.0 =T
T=0.5
samplet
Ll o
-
sample2
LIl :

Figure 4: Partitions are defined with exact (integer) clocks that need to be compatible to each other.

32

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp1207627

Session 1A: Hybrid Modeling

nonlinear differential algebraic equation system:

-&/T

y=c-k,-e
C=-a,-C—a, y+a,

(1)
T=-a, T+a, y+a,+b-T

with
k, =124-10" a, =0.00446 a, =0.0303
£=10578 a,=00141 a,=241
b=0.0258 a,=0.00378 a, =1.37

For the given input T(t) these are 1 algebraic equa-
tion for the reaction speed {t) and two differential
equations for c(t) and T(t). The concentration c(t) is
the signal to be primarily controlled and the temper-
ature T(t) is the signal that is measured. These equa-
tions are collected together in an input/output block:
mmixinglInit .
T_c | |

T
The design of the control system proceeds now in the
following steps:

5.1 Design of Pre-Filter

Inverting a model usually means that equations need
to be symbolically differentiated and that higher de-
rivatives of the inputs are needed (that are usually
not available). One approach is to filter the inputs, so
that a Modelica tool can determine the derivatives of
the filtered input from the filter states. The minimum
needed filter order is determined by first inverting
the continuous-time plant model from the variable to
be primarily controlled (here: “c”) to the actuator
input (here: “T.”). This is performed with the help of
block “Modelica.Blocks.Math.InverseBlockCons-

step fiter

sample2 1 l

Iﬁ“—’ﬂ

startTime=0

imAMixingUnit

traints” that allows connecting an external input
(c_ref below) to an output (c below):

c_ref

Translating this model will generate the continuous-
time inverse plant model. However, Dymola gives
(correctly) an error message:

mixingLinit
(5
T | ‘

T

(i) The DAE has 8 scalar unknowns and & scalar equations,

*3 The model requires derivatives of some inputs as lisked below:
i) 2 ref

*3 Failed to reduce the DAE index,

(i) Translation aborted,

(i) ERROR: 2 errors were Found

This message states, that Dymola has to differentiate
the model, but this requires the second derivative of
the external input c_ref and this derivative is not
available. The conclusion is that a low pass filter of
at least second order has to be connected between
c_ref and c, for example Modelica.Blocks.-
Continuous. Filter. Only filter types should be used
that do not have “vibrations” in the time domain for
a step input. Therefore, parameter analogFilter
of the component should be selected as “Critical-
Damping” (= only real poles), or “Bessel” (= nearly
no vibrations, but steeper frequency response as
“CriticalDamping”). The cut-off frequency f_cut is
manually selected by simulations of the closed loop
system. In the example, we use a CriticalDamping
filter of third order (the third order is selected to get
smoother signals) and a cut-off frequency of 1/300
Hz.

Tc

gain = mixingUnit
periodicRealClock : feedback | | c
A 5 +
{. d/ 4.}:, :
\‘\‘lr’/
1s
sample1
Figure 5: Sampled data controller for mixing unit including the inverse plant model.
DOl Proceedings of the 9™ International Modelica Conference 33
10.3384/ecp1207627 September 3-5, 2012, Munich, Germany

A Library for Synchronous Control Systems in Modelica

5.2 Design of Controller

The controller for the mixing unit is shown in Figure
5. It consists of the filter discussed in the previous
section. The input to the filter is the reference con-
centration which is filtered by the low pass filter.
The output of the filter is used as input to the con-
centration c in the inverse plant model. This model
computes the desired cooling temperature T_c
(which is used as desired cooling temperature at the
output of the controller) and the desired temperature
T (which is used as desired value for the feedback
controller). This part of the control system is the
“feed forward” part that computes the desired actua-
tor signal. As feedback controller a simple P-
Controller with one gain is used.

This controller could be defined as continuous-
time system in previous Modelica versions. Howev-
er, with Modelica 3.3 it is now also possible to de-
fine the controller as sampled data system. For this,
the two inputs are sampled (samplel and sample?2)
and the actuator output is hold (hold1).

The controller partition is then associated with a
periodic clock (via sample2) that has a sample peri-
od of 1 s and a solverMethod = “ExplicitEuler”.
Since the controller partition is a continuous-time
system, it is discretized and solved with an explicit
Euler method at every clock tick (by integrating from
the previous to the actual time instant of the clock).

The controller works perfectly if the same param-
eters for the plant and the inverse plant model are
used (follows perfectly the filtered reference concen-
tration). Changing all parameters of the inverse plant
model by 50 % (with exception of € since the plant is
very sensitive to it) still results in a reasonable con-
trol behavior as shown by the following simulation
results (the desired concentration jumps from 0.492
to 0.237):

crankshaftSpeedRef

sample speedControl hold1
L - OF
start Time=4 4’ o.o

triggerad Speed

stepy[moll] » fitery mixingUnit.c [molf]

050

045

040+

035+

030+

0254

020 : : : T T T T T T T T T T T
0 40 &0 120 160 200 240 280

mizingUnit. T

mixingUnitT_e = invMixingUnit.T_c

K]

280 : : : T T T T T T T T T T T
0 40 &0 120 160 200 240 280

The piecewise constant (blue) curve in the upper
window is the output of the filter (that is, it is the
desired concentration). The red curve in the upper
window is the concentration of model mixingUnit,
which is the concentration in the plant. Obviously,
the concentration follows reasonably well the desired
one. By using a more involved feedback controller,
the control error could be substantially reduced.

6 Event Clocks —Engine Control

All previous sections concentrated on periodic

clocks. However, also non-periodic synchronous

sampled data systems can be defined with Modelica

3.3. This is demonstrated at hand of a closed-loop

throttle control synchronized to the crankshaft angle

of an internal combustion engine. This system has

the following properties:

e Engine speed is regulated with a throttle actuator.

e Controller execution is synchronized with the
engine crankshaft angle.

e The influence of disturbances, such as a change in
load torque, is reduced.

The complete system is shown in Figure 6. Block

torque?

L

& i[i\‘tau

Tl T ems

Load tomque

Josuag ajfiue

Figure 6: Sampled data engine controller that is synchronized with the crankshaft angle.

34 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207627

Session 1A: Hybrid Modeling

speedControl is the discrete control system. The
boundaries of this controller are defined by samplel
and holdl. A special element triggeredSpeed
has the crankshaft angle as input and provides the
sampled crankshaft speed as output. Additionally,
the clock associated with the output (and therefore
also to component speedControl) ticks, at every
180 degree rotation of the crankshaft angle. This
special application is implemented in the text layer
of component triggeredSpeed as:
N = der(angle);
when Clock(angle >= hold(offset)*Modelica.Constants.pi) then
offset = sample(angle);
N_clocked = sample(N);
end when;

Here, N is the derivative of the crankshaft angle.
Whenever this angle becomes larger as 180 degree
an event clock is activated due to Clock(..). In
such a case the when-clause becomes active, and the
speed N is sampled, and the new offset for the next
event is computed.

7 Interfaces to External Devices

Bellmann presented in (Bellmann 2009) a Modelica
library with capabilities for creating interactive simu-
lation models with advanced (3D-) visualization®. It
included support for standard input devices such as
keyboard and joysticks, as well as communication
mechanisms like UDP or shared memory. These de-
vice interfaces have been adapted to work with the
Modelica synchronous extensions, and have been
extended to also support the Linux OS. Furthermore
additional functionality such as support for Softing
CAN interface cards’ and the (Linux specific)
Comedi* control and measurement device interface
have been added. In the next figure some of the
blocks are shown that are currently available in the
external devices library.

8 Cyber-Physical Models

Modelica is designed for modeling of systems con-
taining both physical parts and control systems. It is
possible to hierarchically assemble a system out of
smart subsystems, i.e. which includes their local con-
trol systems.

In (Elmquist et.al. 2009) it is described how parts
of the model which is used for evaluating the system

% Today the visualization part of that library has evolved
into the commercially available product “Visualization
Library”, which is distributed by BAUSCH-GALL

dataWrite

-
Subdevice: 1

Jjoystickinput1
s ™y
Channel: 0
’ Ts:0.01 s
\ J \, éJ J

Device: /devicomedi0

sharedMemoryWrite1 SoftingCANConfig
—

~
CANusb_1

uDPSend1

keyboardKeylnput spaceMouselnput1 =
{) (" h 1 cANixMessage
Txid 101
Return ﬂ .% 0,01)s
key... r(l
\ J A J J
= synchronizeRealtime1
addReal p— Start bit: 2
€ L) “J

Length: 4 bits.

0

architecture and performance can be used for differ-
ent studies and for generation of embedded code.
The solution in the Modelica EmbeddedSystems
library is to introduce generic “communication
blocks” between the partitions. Such communication
blocks can then be configured in different ways, for
example to just contain an ideal Sample block or a
block with A/D effects. It can also contain a device
driver for a A/D converter for the input to the dis-
crete-time partition. It is then possible to use the
code of this partition for embedding to control hard-
ware.

If instead, the communication block contains a
D/A converter, for the output of the continuous-time
partition, the code for the continuous-time partition
can be used for hardware-in-the-loop simulation.

The point is that this configuration can be done
without changing the original model. It is done by
using redeclarations of the content of the communi-
cation blocks by using a hierarchical modifier in a
model extending the original model. This approach is
beneficial with regards of maintaining the original
model since only one version is needed.

It is planned that this technique, already evaluated
in the Modelica EmbeddedSystems library, is in-
cluded in the Modelica_Synchronous library.

Normal

9 Summary

A new, free Modelica library is presented that pro-
vides a convenient graphical user interface for the
synchronous language elements introduced in Mod-
elica 3.3. This library is planned to replace all previ-
ous Modelica libraries designed for sampled data
systems, since

e the clocking for a partition needs to be defined
only at one block (and not at every block of a

GmbH, http://www.bausch-gall.de/. controller),

3 Softing AG (2012), http://www.softing.com.

* The Comedi project (2012), http://www.comedi.org/.

DOl Proceedings of the 9™ International Modelica Conference 35

10.3384/ecp1207627

September 3-5, 2012, Munich, Germany

A Library for Synchronous Control Systems in Modelica

e cvery continuous-time block (including inverse
models) can be directly utilized in the clocked
partition, thereby making it unnecessary in most
cases to provide a manually implemented dis-
crete-time version,

e crrors to define the sample periods can be de-
tected by the translator (because all variables and
equations of a clocked partition must be associ-
ated exactly to one clock),

e more efficient simulation of an overall model
consisting of plant (= continuous-time) and con-
troller (= clocked partitions),

e providing the possibility to easily identifying the
controller part that shall be downloaded to actual
hardware (because all equations and variables of
a clocked partition are associated exactly to one
clock).

10 Acknowledgement

Sven Erik Mattsson developed the Dymola prototype
supporting the synchronous features of Modelica 3.3.
Without this prototype, it would not have been pos-
sible to develop the Modelica_Synchronous library.

References

Baur M., Otter M., and Thiele B. (2009): Modelica L.i-
braries for Linear Control Systems. Proceedings
of 7th International Modelica Conference, Como,
Italy, September 20-22.
www.ep.liu.se/ecp/043/068/ecp09430068.pdf

Benveniste A., Caspi P., Edwards S.A., Halbwachs N., Le
Guernic P., and Simone R. (2003): The Synchro-
nous Languages Twelve Years Later. Proc. of the
IEEE, Vol., 91, No. 1. www.irisa.fr/distribcom/-
benveniste/pub/synch_ProclEEE 2002.pdf

Bellmann T. (2009): Interactive Simulations and
advanced Visualization with Modelica.
Proceedings of 7th International Modelica
Conference, Como, Italy, September 20-22.
www.ep.liu.se/ecp/043/062/ecp09430056.pdf

Colaco J.-L., and Pouzet M. (2003): Clocks as First Class
Abstract Types. In Third International Conference
on Embedded Software (EMSOFT'03),
Philadelphia, Pennsylvania, USA, October 2003.
http://www.di.ens.fr/~pouzet/lucid-
synchrone/papers/emsoft03.ps.gz

Dassault Systémes (2012): Dymola.
http://www.Dymola.com

Elmgqvist H., Otter M. and Cellier F.E. (1995): Inline
Integration: A New Mixed Symbolic/Numeric
Approach for Solving Differential-Algebraic
Equation Systems. Keynote Address, Proceedings
ESM'95, European Simulation Multiconference,

Prague, Czech Republic, June 5-8, pp. xxiii-xxxiv.
http://citeseerx.ist.psu.edu/viewdoc/download:jsessi
onid=6E666F4221CFED902DCA7BDF8DC51AB6
2d0i=10.1.1.127.3787 &rep=rep 1 &type=pdf

Elmgqvist H., Otter M., Henriksson D., Thiele B., Mattsson
S.E. (2009): Modelica for Embedded Systems,
Proceedings 7th Modelica Conference, Como, Italy,
Sep. 20-22.
http://www.ep.liu.se/ecp/043/040/ecp09430096.pdf

Elmgqvist H., Otter M., and Mattsson S.E. (2012):
Fundamentals of Synchronous Control in
Modelica. Proceedings of 9th International
Modelica Conference, Munich, Germany, Sep. 3-5.

Follinger O. (1998): Nichtlineare Regelungen I,
Oldenbourg Verlag, 8. Auflage.

Forget J., F. Boniol, D. Lesens, C. Pagetti (2008): A Mul-
ti-Periodic Synchronous Data-Flow Language. In
11" IEEE High Assurance Systems Engineering
Symposium (HASE'08), Dec. 3-5 2008, Nanjing,
China, pp. 251-260.
http://ieeexplore.icee.org/xpl/articleDetails.jsp?reoa
d=true&arnumber=4708883 &contentType=Confere
nce+Publications

Looye G., Thiimmel M., Kurze M., Otter M., and Bals J.
(2005): Nonlinear Inverse Models for Control.
Proceedings of 4th International Modelica
Conference, ed. G. Schmitz, Hamburg, March 7-8.
https://www.modelica.org/events/Conference2005/0
nline_proceedings/Session3/Session3c3.pdf

Modelica Association (2012): Modelica Language
Specification Version 3.3.
https://www.modelica.org/documents/ModelicaSpec
33.pdf.

Pouzet M. (2006): Lucid Synchrone, Version 3.0, Tuto-
rial and Reference Manual.
http://www.di.ens.fr/~pouzet/lucid-synchrone/

36 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207627

State Machines in Modelica

Hilding Elmqvist’ Fabien Gaucher?

Sven Erik Mattsson®

Francois Dupont®

!Dassault Systémes AB, Ideon Science Park, SE-223 70 Lund, Sweden
?Dassault Systémes, 84, Allée Galilée, 38330-Monthonnot-St-Martin, France
3Dassault Systémes, 120, rue René Descartes, 29280 — Plouzané, France
Hilding.EImqvist@3ds.com Fabien.Gaucher@3ds.com
SvenErik.Mattsson@3ds.com Francois.Dupont@3ds.com

Abstract

The scope of Modelica has been extended from a
language primarily intended for physical systems
modeling to modeling of complete systems by allow-
ing the modeling of control systems including state
machines.

This paper describes the state machines intro-
duced in Modelica 3.3. Any block without conti-
nuous-time equations or algorithms can be a state of
a state machine. Transitions between such blocks are
modeled by a new kind of connections associated
with transition conditions.

The paper gives the details for building state ma-
chines and includes several examples. In addition,
the complete semantics is described using only 13
Modelica equations.

Keywords: Modelica; State Machines; Control;

1 Introduction

The scope of Modelica has been extended from a
language primarily intended for physical systems
modeling to modeling of complete systems by allow-
ing the modeling of control systems including state
machines and enabling automatic code generation for
embedded systems.

This paper presents state machines in Modelica.
A companion paper (EImgqvist, et.al, 2012) describes
the fundamental synchronous language primitives
introduced for increased correctness of control sys-
tems implementation since many more checks can be
done at compile time.

The paper describes language elements to define
state machines. Any block without continuous-time
equations or algorithms can be a state of a state ma-
chine. Transitions between such blocks are
represented by a new kind of connections associated
with transition conditions.

The paper gives the details for building state ma-
chines and includes several examples. In addition,
the complete semantics is described using only 13
Modelica equations.

2 States and Transitions

Modelica State Machines will be introduced gradual-
ly by means of examples.

Modelica block instances without continuous-
time equations or algorithms can potentially be states
of a state machine. A cluster of block instances at the
same hierarchical level which are coupled by transi-
tion equations constitutes a state machine. All parts
of a state machine must have the same clock. One
and only one instance in each state machine must be
marked as initial by appearing in an initialState equ-
ation.
2.1 A Simple State Machine
As a first example, consider the trivial state machine
of Figure 1.

inner Integer i(start=0);

{ state1 1]

outer output Integer i;
i = pravious(i) + 2;

i=10

i state2 |

outer output Integer i;
i = previous(i) - 1;

i<1

Figure 1. A simple state machine

DOl
10.3384/ecp1207637

Proceedings of the 9" International Modelica Conference 37
September 3-5, 2012, Munich, Germany

State Machines in Modelica

An inner variable i is defined in the model which has
two block instances statel and state2. In the corres-
ponding block definitions, i is declared as ‘outer out-
put’ which means that i is an output from both of the
blocks. In statel, i is incremented by 2 and in state2,
i is decremented by 1. How such multiple definitions
are handled is described below.

If statel is active, a transition to state? is made
when i>10. If state2 is active, a transition to statel is
made when i<1.

The simulation result is shown in Figure 2.

T T T T T T T T T
o 10 20

Figure 2. Plot of v of simple state machine

The Modelica code (without annotations) is:

model StateMachinel
inner Integer i(start=0);

block Statel

outer output Integer i;
equation

i = previous(i) + 2;
end Statel;
Statel statel,;

block State2

outer output Integer i;
equation

i = previous(i) - 1;
end State2;
State? state2;

equation
initialState(statel);
transition(statel, state2, i > 10, immediate=false);
transition(state2, statel, i < 1, immediate=false);
end StateMachinel;

2.2 Merging Variable Definitions
When a state class uses a variable in an outer output
declaration, the equations have access to the corres-
ponding variable declared inner. Special rules are
then needed to maintain the single assignment rule
since multiple definitions of such outer variables in
different mutually exclusive states of one state ma-
chine need to be merged.

In each state, the outer output variables (v;) are
solved for (expr;) and, for each such variable, a sin-
gle definition is automatically formed:

v := if activeState(state;) then expr;
elseif activeState(state,) then expr,
elseif ... else last(v)

last() is a special internal semantic operator return-
ing its input. It is just used to mark for the sorting
that the incidence of its argument should be ignored.
A start value must be given to the variable if not as-
signed in the initial state.

Such a newly created assignment equation might
be merged on higher levels in nested state machines.

2.3 Defining a state machine

The following special kinds of connect-equations are
used to define transitions between states and to de-
fine the initial state:

transition(from, to, condition, immediate, reset,
synchronize, priority)

Arguments “from” and “to” are block instances and
“condition” is a Boolean expression. The optional
arguments “immediate”, “reset”, and “synchronize’
are of type Boolean, have parametric variability
and a default of true, true, false respectively. The
optional argument “priority” is of type Integer, has

parametric variability and a default of 1.

bl

This operator defines a transition from instance
“from” to instance “to”. The “from” and “to” in-
stances become states of a state machine. The tran-
sition fires when condition = true if immediate =
true (this is called an “immediate transition”) or
previous(condition) when immediate = false (this
is called a “delayed transition”).

The argument “priority” defines the priority of fir-
ing when several transitions could fire. priority=1
is the highest priority.

If reset = true, the states of the target state are reini-
tialized, i.e. state machines are restarted in initial
state and state variables are reset to their start val-
ues.

If synchronize=true, the transition is disabled until
all state machines within the from-state have
reached the final states, i.e. states without outgoing
transitions.

initialState(state)
The argument “state” is the block instance that is
defined to be the initial state of a state machine. At

the first clock tick of the state machine, this state
becomes active.

38 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207637

Session 1A: Hybrid Modeling

The attributes of transitions are shown graphically as
illustrated in Figure 3.

(statel h
{ /
2:b 4. d
5. e
a 3:c

(state2

L ,

Figure 3. Graphical conventions for transitions

A transition has a perpendicular bar representing the
condition which is close to the destination state for
an immediate transition, else close to the source
state. The arrow is filled for a reset transition other-
wise non-filled. A synchronize transition has an “in-
verted fork” at the source state. Priority is shown
preceding the condition if not equal to one. For the 5
transitions in Figure 3, the settings are as follows,
from left to right:

immediate = true, false, true, false, true;
reset = true, true, false, false, true;
synchronize = false, false, false, false, true;
priority =1,23,4,5.

All transitions leaving the same state must have dif-
ferent priorities.

It is possible to query the status of the state ma-
chine by using the following operators:

Argument “state” is a block in-
stance. The operator returns true,
if this instance is a state of a
state machine and this state is
active at the actual clock tick. If
it is not active, the operator re-
turns false.

It is an error if the instance is not
a state of a state machine.

activeState(state)

Returns the number of clock
ticks since a transition was made
to the currently active state. This
function can only be used in
transition conditions of state ma-
chines not present in states of
higher level state machines.

ticksInState()

Returns the time duration as Real
in [s] since a transition was made
to the currently active state. This
function can only be used in

transition conditions of state ma-

timelnState()

chines not present in states of
higher level state machines.

2.4 Immediate and Delayed Transitions
If we attempt to simulate the state machine in Figure
1 with transitions having immediate=true, we get the

error message in Dymola:
An algebraic loop involving Integers or
Booleans has been detected.

The reason is that since the transition conditions
involve i, the variable defined in the equations, there
is a cyclic dependency or algebraic loop between the
update equations for i and the update equations for
state machine evolution.

2.5 Conditional Data Flows

An alternative to using outer output variables is to
use conditional data flows. Since instances of blocks
can be used as states of a state machine, the connec-
tion semantics of Modelica has been extended to al-
low several outputs to be connected to one input.

Consider the combined state machine and data
flow diagram in Figure 4:

L)

—J
i>10 j
\
.
i<l
Figure 4. Combined state machine and data flow
diagram

The states are instances of the block:

block Increment
extends Modelica.Blocks.Interfaces.PartialIntegerSISO;
parameter Integer increment;

equation
y = U+ increment;

end Increment;

with increment values 2 and -1 respectively. The
outputs are connected to a protected connector called
i in order to be able to use i in the transition condi-
tions. The connector i is connected to an instance of
the block:

block Prev

extends Modelica.Blocks.Interfaces.PartialIntegerSISO;
equation

y = previous(u);

DOI
10.3384/ecp1207637

Proceedings of the 9™ International Modelica Conference 39
September 3-5, 2012, Munich, Germany

State Machines in Modelica

end Prev;

The connections from the state instances to i in Fig-
ure 4 are handled in a special way. It is possible to
connect several outputs to inputs if all the outputs
come from states of the same state machine. In such
cases, we get the following constraint equations:
U=U=...=y1=Yo=...
with u; inputs and y; outputs. The semantics is de-
fined as follows. Introduce a variable v representing
the signal flow and rewrite the equation above as a
set of equations for u; and a set of assignment equa-
tions for v:
v := if activeState(state;) then y; else last(v);
v := if activeState(state,) then y, else last(v);

U=V
U, =V

The merge of the definitions of v is then made ac-
cording to section ‘Merging Variable Definitions’.
The result of the merge is:
v = if activeState(state;) then y;
elseif activeState(state,) then y,
elseif ... else last(v)

Plotting i shows the same behavior as the plot of i of
the example using inner outer declarations.

3 Hierarchical State Machine
Example

Consider the hierarchical state machine in Figure 5:

inner Integer v(start=0);

7 state1 ™

inner Integer count:
inner outer output Integer v;

s stateA 3
outer output Integer v;

v = previous(v) + 2;

LN ’

{ stateX 1]

outer input Integer v;
Integer i(start=0);

Integer w;
ve=6 i = previous(i) + 1;
W=
e stateB
outer output Integer v;
v = previous(v) - 1; stateX.i = 20
v=10

stateC

outer output Integer count;
count = previous(count) + 1;

Integer j(start=0);

] = previous(]) + 1;

2: true 7 count >=2

.
\

stateD

R

v =20
true

state?

outer output Integer v;
v = previous(v) + 5;

Figure 5. Hierarchical state machine

The model demonstrates the following properties:

e statel is a meta state with two parallel state ma-
chines in it.

e stateA declares v as ‘outer output’. statel is on
an intermediate level and declares v as ‘inner
outer output’, i.e. matches lower level outer v by
being inner and also matches higher level inner v
by being outer. The top level declares v as inner
and gives the start value.

e count is defined with a start value in statel. It is
reset when a reset transition (v>=20) is made to
statel.

e stateX declares the local variable w to be equal
to v declared as ‘inner input’.

e stateY declares a local counter j. It is reset at
start and as a consequence of the reset transition
(v>=20) from state2 to statel. However, the reset
of j is deferred until stateY is entered by transi-
tion (stateX.i>20) although this transition is not a
reset transition. This is done by marking that sta-
teY should be reset when making the reset tran-
sition v>=20 and deferring the reset until stateY
is actually entered. Synchronizing the exit from
the two parallel state machines of statel is done
by using a synchronized transition.

40 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp1207637

Session 1A: Hybrid Modeling

The behavior of the state machine can be seen in the
plots of v and w and i of Figure 6:

v = sfatel.statexlw state] stateX.i

25

aaaaaa

204

15+

104

-5 T T T T T T
0 10 20 30

Figure 6. Behavior of hierarchical state machine

4 Adaptive Cruise Control Example

As a more useful example, we will consider a vehicle
with adaptive cruise control, i.e. controller that can
drive the car at a certain speed or follow the car in
front at a safe distance.

The example is simplified considerably to be able
to explain all the details in limited space. And the
data is just designed for illustrative purposes.

The vehicle dynamics is described by the follow-
ing model (without annotations):

model Vehicle
parameter Real k=5000;
parameter Real m=1000;
parameter Real loss=5;
Modelica.Blocks.Interfaces.RealInput ud;
Modelica.Blocks.Interfaces.RealOutput xd;
Modelica.Blocks.Interfaces.RealOutput vd;

Modelica.Slunits.Distance x(start=0, fixed=true);
Modelica.Slunits.Velocity v(start=0, fixed=true);
Real tau;

equation
der(x) = v;
m*der(v) = k*tau - loss*v*abs(v);

tau = hold(ud);

xd = sample(x, Clock(1, 10));

vd = sample(v, Clock(1, 10));
end Vehicle;

The power train is considered ideal.

A vehicle with the cruise control system is shown
in Figure 7. It has an instance of the vehicle dynam-
ics (with a car icon) with a sampled input ud on the
left and two sampled outputs (period=1/10 second),
xd and vd (counting from the top) to the right.

parameter Real vref=60;

xrel.y = -200

4 normal

parameter Real vref;
i manual

u=1;

v = vreff3.6
cruise
parameter Real K, vref,

YT T

Real c: > oy —
c = K*{vref - v);
u = max(min(c, 1), -0.5); p,—y—l
xrel < -150
xrel = -100
follow 7

parameter Real K, xref, Td;
Real c, vd;

vd = (xrel - previous(xrel))interval();

© = K*{uref - xrel - Td*d); xrel

u = max(min(c, 1), -0.5); < f 3—4—0
N

xrely = -25

{ emergency b

u =ifv= 0then -3 else 0:#

< —<

o -

Figure 7. Vehicle with adaptive cruise controller

The top level state machine has two modes: normal
and emergency. Both produces the control signal u
connected to ud of the vehicle. The normal mode has
vd and xrel as inputs. xrel is formed as the difference
between the vehicle position and the position of the
vehicle in front, available as an input.

The normal state has three states: manual, cruise
and follow. The manual state is a simple start up state
“stepping on the gas” until the desired speed has
been achieved. The cruise state contains a speed con-
troller implemented as a simple P-controller with
limitation.

When the vehicle comes within 100 meters of the
vehicle in front, follow state is entered. It contains a
position controller with xref=-100. Since the vehicle
is essentially a double integrator from throttle to po-
sition, a PD controller is needed. In this case a naive
implementation without filtering is shown. When the
distance is larger than 150 meters, cruise mode is
reentered.

The emergency state is entered when the distance
to the car in front is less than 25 meters independent-
ly in which substate normal is in. Maximum braking
power (-3) is then applied until the car has stopped.
When the distance is again 200 meters, the normal

DOI
10.3384/ecp1207637

Proceedings of the 9™ International Modelica Conference 41
September 3-5, 2012, Munich, Germany

State Machines in Modelica

state is entered with a reset transition, i.e. the sub-
state of manual of state normal is activated.

The architecture with two entirely different con-
trollers for speed and position was chosen to illu-
strate the possibility in particular regarding how the
data flow connections can be used. (Adaptive cruise
control can also be achieved using a cascade control-
ler with an inner speed loop.)

A model of a platoon of 5 CruisingVehicles was
built. The desired speed vref is set as {100, 60, 65,
50, 25} km/h. The initial speeds are the same except
for the last car (cruisingVehicle) which is standing
still. The distances between the cars are 200 meters.

The results of simulation are shown in Figure 8:
position on top and velocity below. All cars slow
down to follow the first car (cruisingVehicle4) at 25
km/h at a distance of 100 meter.

1200

1000

200~

cruigingVehicle. vehicle.x

cruigingVehicle! vehicle.x
cruisingVehicle2 vehicle.x
cruizingVehicle3. vehicle.x
cruizingVehicled. vehicle.x

fa
=1
(=]

0 25 50

cruizingVehicle vehicle.v

cruizgingVehicle1 . vehicle.w
cruigingVehicle2 vehicle.w
cruigingVehicle3. vehicle.w
cruisingVehicled. vehicle.w

[m/fs]
I'II'|

c
-2 T T T T T T T T T

0 25 E-ID
Figure 8. Positions and velocities of vehicles
in a platoon

The control signals are shown in Figure 9.

= cruisingvehicle.vehicle.ud
cruisingWehicled.vehicle.ud

0.0

0 25 a0
Figure 9: Control signals

The implementation of the cruise state shown in Fig-
ure 7 is a bit simplified using a parameter vref for the
velocity set point. Usually, the triggering of going
from manual to cruise mode is done by a button. The
cruise mode is then picking up the current speed and
uses that as a set point. Such an implementation can
be made as follows:

model Cruise
parameter Real K = 1;
Real c, vref;
Boolean reinit(start=true) = false;
Modelica.Blocks.Interfaces.RealOutput u;
Modelica.Blocks.Interfaces.RealInput v;
equation
vref = if previous(reinit) then v else previous(vref);
¢ = K*(vref-v);
u = max(min(c, 1),-0.5);
end Cruise;

This is a general modeling idiom for special treat-
ment when a state is entered. The equation for reinit
is reinit = false. However, the start value is true, so
previous(reinit) gives a pulse at the first cycle if a
reset transition is made to the state.

So the desired behavior is achieved by a reset
transition from manual to cruise, but a non-reset
transition from follow to cruise, since in the last
case, the stored vref should be used.

A platoon of 100 vehicles can easily be con-
structed using an array of CruisingVehicles:

model Platoon
parameter Integer n=100;
CruisingVehicle cruisingVehicle[n](vref=linspace(100, 50.5, n));
Modelica.Blocks.Sources.Constant const(k=10000);
equation
connect(const.y, cruisingVehicle[n].xFront);
foriin1:n-1 loop
connect(cruisingVehicle[i+1].xd,
cruisingVehicle[i].xFront);

end for;
end Platoon;
42 Proceedings of the 9" International Modelica Conference DOl
September 3-5, 2012, Munich Germany 10.3384/ecp1207637

Session 1A: Hybrid Modeling

This is a good example of how well the state ma-
chine concept is integrated in Modelica allowing to
use data flows between states, using modifiers for
parameterization, using redeclare of classes and
components and using arrays of a mixture of state
machines and continuous dynamical models.

5 State Machine Semantics

This section is not intended for normal users of
Modelica state machines. It is included since the pre-
cise semantics can be described using only 13 Mod-
elica equations and is thus a convenient reference for
advanced users and tool developers.

For the purpose of defining the semantics of state
machines, assume that the data of all transitions are
stored in an array of records, t:

record Transition
Integer from;
Integer to;
Boolean immediate = true;
Boolean reset = true;
Boolean synchronize = false;
Integer priority = 1;

end Transition;

The transitions are sorted with lowest priority num-
ber last in the array. The states are enumerated from
1 and up. The transition conditions are stored in a
separate array c[:] since they are time varying.

The semantics model is a discrete-time system
with inputs {c[:], active, reset}, outputs {activeState,
activeReset, activeResetStates[:]} and states
{nextState, nextReset, nextResetStates[:]}. For a top
level state machine, active is always true. For sub-
state machines, active is true only when the parent
state is active. For a top level state machine, reset is
true at the first activation only. For sub-state ma-
chine, reset is propagated from the state machines
higher up.

5.1 State Activation

The state update starts from nextState, i.e.,what has
been determined to be the next state at the previous
time. selectedState takes into account if a reset of the
state machine is to be done.

output Integer selectedState =
if reset then 1 else previous(nextState);

The integer fired is calculated as the index of the tran-
sition to be fired by checking that selectedState is the
from-state and the condition is true for an immediate
transition or previous(condition) is true for a delayed

transition. The max function returns the index of the
transition with highest priority or 0.

Integer fired =
max(if (if t[i].from == selectedState then (if t[i].immediate
then c[i] else previous(cli])) else false) then i else 0
for i in 1:size(t,1));

The start value of c is false. This definition would
require that the previous value is recorded for all
transitions conditions. Below is described an equiva-
lent semantics which just requires to record the value
of one integer variable delayed. The integer imme-
diate is calculated as the index of the immediate
transition to potentially be fired by checking that
selectedState is the from-state and the condition is
true. The max function returns the index of the tran-
sition with true condition and highest priority or 0.

Integer immediate =
max(if (if t[i].immediate and t[i].from == selectedState then
c[i] else false) then i else 0 for i in 1:size(t,1));

In a similar way, the Integer delayed is calculated as
the index for a potentially delayed transition, i.e. a
transition taking place at the next clock tick. In this
case the from-state needs to be equal to nextState:

Integer delayed =
max(if (if not t[i].immediate and t[i].from == nextState then
c[i] else false) then I else O for i in 1:size(t,1));

The transition to be fired is determined as follows,
taking into account that a delayed transition might
have higher priority than an immediate:

Integer fired = max(previous(delayed), immediate);

nextState IS set to the found transitions to-state:

Integer nextState = if active then (if fired > 0 then t[fired].to
else selectedState) else previous(nextState);

In order to define synchronize transitions, each state
machine must determine which are the final states,
i.e. states without from-transitions and to determine
if the state machine is in a final state currently:

Boolean finalStates[nStates] =
{max(if t[j].from == i then 1 else O for j in 1:size(t,1)) ==
for i in 1:nStates};

Boolean stateMachinelnFinalState = finalStates[activeState];

To enable a synchronize transition, all the stateMachi-
nelnFinalState conditions of all state machines within
the meta state must be true.

DOI
10.3384/ecp1207637

Proceedings of the 9™ International Modelica Conference 43
September 3-5, 2012, Munich, Germany

State Machines in Modelica

5.2 Reset Handling

A state can be reset for two reasons:

e The whole state machine has been reset from its
context. In this case, all states must be reset, and
the initial state becomes active.

e A reset transition has been fired.

Then, its target state (and its sub-state machines)
are reset, but not other states.

The first reset mechanism is handled by the activeRe-
setStates and nextResetStates vectors. The state machine
reset flag is propagated and maintained to each state
individually:

output Boolean activeResetStates[nStates] =
{if reset then true else previous(nextResetStates[i])
for i in 1:nStates};

until a state is eventually executed, then its corres-
ponding reset condition is set to false:

Boolean nextResetStates[nStates] = if active then
{if activeState == i then false else activeResetStates[i]
for i in 1:nStates}

The second reset mechanism is implemented with
the selectedReset and nextReset Variables. If no reset
transition is fired, the nextReset is set to false for the
next cycle.

5.3 Activation handling

The execution of a sub-state machine has to be sus-
pended when its enclosing state is not active. This
activation flag is given as a Boolean input active.
When this flag is true, the sub-state machine main-
tains its previous state, by guarding the equations of

the state variables nextState, nextReset and
nextResetStates.

5.4 Semantics Summary

The entire semantics model is given below:

model StateMachineSemantics "Semantics of state machines"
parameter Integer nStates;
parameter Transition t[:]
"Array of transition data sorted in priority";
input Boolean c[size(t,1)]
"Transition conditions sorted in priority";
Boolean active "true if the state machine is active";
Boolean reset "true when the state machine should be reset";

Integer selectedState = if reset then 1 else previous(nextState);
Boolean selectedReset = if reset then true
else previous(nextReset);

I For strong (immediate) and weak (delayed) transitions
Integer immediate = max(if (if t[i].immediate and t[i].from ==
selectedState then c[i] else false) then i else O
foriin 1:size(t,1));

Integer delayed = max(if (if not t[i].immediate and t[i].from ==
nextState then c[i] else false) then i else 0 for i in 1:size(t,1));

Integer fired = max(previous(delayed), immediate);
output Integer activeState = if reset then 1

elseif fired > 0 then t[fired].to else selectedState;
output Boolean activeReset = if reset then true

elseif fired > 0 then t[fired].reset else selectedReset;

I/ Update states
Integer nextState = if active then activeState
else previous(nextState);
Boolean nextReset = if active then false
else previous(nextReset);

I/ Delayed resetting of individual states
output Boolean activeResetStates[nStates] = {if reset then true
else previous(nextResetStates[i]) for i in 1:nStates};
Boolean nextResetStates[nStates] = if active then
{if selectedState == i then false else activeResetStates[i]
for i in 1:nStates}
else previous(nextResetStates);

Boolean finalStates[nStates] = {max(if t[j].from == i then 1 else 0
for jin 1:size(t,1)) == 0 for i in 1:nStates};

Boolean stateMachinelnFinalState = finalStates[activeState];
end StateMachineSemantics;

6 Comparison to Other State Ma-
chine Formalisms

State machines needed to be introduced in Modelica
to enable modeling of complete systems. Several
attempts have been made: (Mosterman et. al. 1998),
defines state machines in an object-oriented way
with Boolean equations. A more powerful state ma-
chine formalism was introduced in StateGraph (Otter
et. al. 2005). A prototype mode automata formalism
was implemented (Malmheden et. al. 2008) using a
built-in concept of modes. Certain problems of po-
tentially unsafe models in StateGraph were removed
in the StateGraph2 library (Otter et. al. 2009). These
efforts showed that state machine support must be
natively supported in the language.

The presented state machines of Modelica 3.3
have a similar modeling power as Statecharts (Harel,
1987) and State Machine Diagrams of SysML (Frie-
denthal 2008).

The semantics of the state machines defined in
this paper is inspired by mode automata (Maraninchi
2002) and basically the same as Lucid Synchrone 3.0
(Pouzet 2006), or its clone LCM (Logical Control
Module) (Gaucher et.al. 2009). Some minor proper-
ties are different compared to Lucid Synchrone 3.0,

44 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207637

Session 1A: Hybrid Modeling

in particular regarding transition conditions. Lucid
Synchrone has two kinds of transitions: namely
“strong” and “weak”. Strong transitions are executed
before the actions of a state are evaluated while weak
transitions are executed after. This can lead to sur-
prising behavior, because the actions of a state are
skipped if it is activated by a weak transition and
exited by a true strong transition. For this reason, the
state machines in Modelica use “immediate” (= the
same as “strong”) and “delayed” transitions. Delayed
transitions are “immediate” transitions where the
condition is automatically delayed with an implicit
previous(...).

Note that safety critical control software in air-
crafts is often defined with such kind of state ma-
chines, such as using the Scade 6 Tool Suite from
Esterel Technologies (Dormoy 2008) that provides a
similar formalism as Lucid Synchrone, with minor
differences such as the ability to associate actions to
transitions in addition to states. Scade also provides
synchronize semantics by means of synchronization
transitions between several parallel sub-state ma-
chines being in states which have been declared fi-
nal.

Stateflow (Mathworks 2012), while being very
expressive, suffers from “numerous, complex and
often overlapping features lacking any formal defini-
tion”, as reported by (Hamon, et.al, 2004).

The presented Modelica approach has the impor-
tant feature that at one clock tick, there is only one
assignment to every variable (for example, it is an
error if state machines are executed in parallel and
they assign to the same variable at the same clock
tick; such errors are detected at compile-time).

Modelica, Lucid Synchrone, LCM and Scade 6
all have the property that data flow and state ma-
chines can be mutually hierarchically structured, i.e.
that, for example a state of a state machine can con-
tain a block diagram in which the blocks might con-
tain state machines.

7 Conclusions

We have described how state machines can be mod-
eled in Modelica 3.3. Instances of blocks connected
by transitions with one such block marked as an ini-
tial state constitute a state machine. Hierarchical
state machines can be defined with reset or resume
semantics, when re-entering a previously executed
state. Parallel sub-state machines can be synchro-
nized when they reached their final states. Special
merge semantics have been defined for multiple out-
er output definitions in mutually exclusive states as
well as conditional data flows.

8 Acknowledgements

The authors are very thankful to Albert Benveniste,
Marc Pouzet, Martin Otter, Martin Malmheden, Da-
niel Weil, Torsten Blochwitz, Peter Fritzson, Carl-
Fredrik Abelson, Hans Olsson and other Modelica
Association members for stimulating discussions and
feedback during evolutions of the Modelica 3.3 spe-
cification.

The authors appreciate the partial funding of this
work by the Swedish funding organization VINNO-
VA (funding number: 2008-02291) within the
ITEA2 MODELISAR project (http://www.itea2.org/
project/result/download/result/5533).

References

Dormoy F.X. (2008): SCADE 6 A Model Based
Solution For Safety Critical Software
Development, ERTS EMBEDDED REAL
TIME SOFTWARE 2008, TOULOUSE,
FRANCE, http://www.esterel-
technologies.com/EN-50128/files/ERTS2008-
SCADE-6-A-Model-Based-Solution-For-
Safety-Critical-Software.pdf

Elmgqvist H., Otter M., and Mattsson S.E. (2012):
Fundamentals of Synchronous Control in
Modelica. Proceedings of 9th International
Modelica Conference, Munich, Germany,
September 3-5.

Friedenthal S., Moore A., and Steiner R. (2008): A
Practical Guide to SysML —The Systems
Modeling Language, Elsevier Inc.

Gaucher F., Closse E., Weil D. (2009): The LCM
Language Primer, Dassault Systémes Internal
Report, Grenoble, France, 2009

Hamon G., and Rushby J. (2004). An operational
semantics for Stateflow. In Fundamental
Approaches to Software Engineering
(FASE)’04, volume 2984 of LNCS, pages 229—
243, Barcelona, Spain, 2004. Springer.
http://fm.csl.sri.com/~rushby/papers/sttt07.pdf

Harel, D. (1987): Statecharts: A Visual Formalism
for Complex Systems. Science of Computer
Programming 8, 231-274. Department of Ap-
plied Mathematics, The Weizmann Institute of
Science, Rehovot, Israel.
www.inf.ed.ac.uk/teaching/courses/seoc1/-
2005_2006/resources/statecharts.pdf

Malmheden M., Elmgvist H., Mattsson S.E., He-
nriksson D., and Otter M. (2008): ModeGraph
- A Modelica Library for Embedded Control

DOI
10.3384/ecp1207637

Proceedings of the 9™ International Modelica Conference 45
September 3-5, 2012, Munich, Germany

State Machines in Modelica

Based on Mode-Automata. B. Bachmann
(editor), in Proc. of Modelica’2008 conference,
Bielefeld, Germany.
www.modelica.org/events/modelica2008/Proce
edings/sessions/session3a3.pdf

Maraninchi, F. and Rémond, Y. (2002): Mode-
Automata: a New Domain-Specific
Construct for the Development of Safe
Critical Systems.
http://wwwverimag.imag.fr/~maraninx/SCP200
2.html

MathWorks (2012): R2012a Documentation -
Stateflow
http://www.mathworks.com/help/toolbox/statef
low/

Modelica Association (2012): Modelica Language
Specification Version 3.3.
https://www.modelica.org/documents/Modelica

Spec33.pdf.

Mosterman P., M. Otter, and H. EImqvist. (1998):
Modeling Petri Nets as Local Constraint
Equations for Hybrid Systems using Modeli-
ca. Proceedings of SCSC’98, Reno, Nevada,
USA, Society for Computer Simulation Inter-
national, pp. 314-319.

Otter M., K.-E. Arzén, and I. Dressler (2005): Sta-
teGraph — A Modelica Library for Hierar-
chical State Machines. Proceedings of the 4th
International Modelica Conference, Hamburg,
Germany, ed. G. Schmitz, pp. 569-578.
http://www.modelica.org/events/Conference20
05/online proceedings/Session7/Session7b2.pd
f

Otter M., Malmheden M., EImgvist H., S.E.
Mattsson, and C. Johnsson (2009): A New
Formalism for Modeling of Reactive and
Hybrid Systems. Proceedings of the 7th Inter-
national Modelica Conference, Como, ltaly,
20-22 September 20009.
http://www.ep.liu.se/ecp/043/041/ecp09430108
pdf

Pouzet M. (2006): Lucid Synchrone, Version 3.0,
Tutorial and Reference Manual.
http://www.di.ens.fr/~pouzet/lucid-synchrone/

46 Proceedings of the 9" International Modelica Conference

September 3-5, 2012, Munich Germany

DOl
10.3384/ecp1207637

PNIlib - An Advanced Petri Net Library
for Hybrid Process Modeling

Sabrina Prof3

Bernhard Bachmann

University of Applied Sciences, Department of Engineering and Mathematics
Am Stadtholz 24, 33609 Bielefeld
sabrina.pross@fh-bielefeld.de Bernhard.bachmann@fh-bielefeld.de

Abstract

A new Petri net library, called PNIib, is presented to
enable graphical hierarchical modeling, hybrid simu-
lation, and animation of processes in life sciences,
technical applications, among others. In order to
model these most different processes, a hew power-
ful and universally usable mathematical modeling
concept — xHPN (extended Hybrid Petri Net) — has
been established. This formalism is used as specifi-
cation for the PNIib (Petri Net library) realized by
the object-oriented modeling language Modelica.
The application of the new environment is demon-
strated by three selected examples. The first example
demonstrates the representation of functional princi-
ples by a model of a Senseo coffee machine and the
second one is a model of a printing production pro-
cess. The third example presents the applicability of
modeling business processes. All models are provid-
ed as application cases in the library.

Keywords: Petri nets; hybrid modeling; xHPN; pro-
cess modeling

1 Introduction

The Petri net formalism was first introduced by Carl
Adam Petri in 1962 for modeling and visualization
of concurrency, parallelism, synchronization, re-
source sharing, and non-determinism [1]. A Petri net
is a graph with two different kinds of nodes, called
transitions and places; thereby, places and transi-
tions are connected by arcs. Every place in a Petri
net can contain a non-negative integer number of
tokens. These tokens initiate transitions to fire ac-
cording to specific conditions. These firings lead to
changes of the tokens in the places.

In the recent years, Petri nets with their various
extensions are becoming increasingly popular. They
have been proven to be a universal graphical model-
ing concept for representing different systems in
nearly all degrees of abstraction. They support the

qualitative modeling approach as well as the quanti-
tative one. Furthermore, the processes can be mod-
eled discretely as well as continuously, refer to [2].
In addition, discrete and continuous processes can
also be combined within a Petri net model to so-
called hybrid Petri nets first introduced by David
and Alla [3]. The Petri net formalism with all its ex-
tensions is so powerful that nearly all other formal-
isms are included. Hence, only one formalism is
needed regardless of the approach (qualitative vs.
guantitative, discrete vs. continuous vs. hybrid, de-
terministic vs. stochastic) which is appropriate for
the respective system. The Petri net formalism is
easy to understand for researchers from different dis-
ciplines. It is an ideal way for intuitive representing
and communicating data and new knowledge of
mechanisms and processes. Furthermore, Petri nets
allow hierarchical structuring of models and, there-
fore, offer the possibility of different detailed views
for every observer of the model.

/

capacities, test arcs, inhibitor arcs.
read arcs, functions, delays,

random delays, maximum speeds,

conditions, priorities, probabilities

| State graphs |
(state machines)

)/

——)

Grafcet/SFC
o
=5
/KQ(«\

©
Discrete ‘{(7"0

Petri Net

Normal Petri Nets
(3wq@) suonenby

Qemablv pue [enu2Ia1Q JO Wa)

Continuous
Petri Net

Hybrid Petri Net

hybrid DAE

\ /

Figure 1: Relationships between the different formalisms

There are already three Petri net libraries availa-
ble on the Modelica homepage (www.modelica.org).
The first was developed by Mosterman et al. and
enables the modeling of a restricted class of discrete

DOI
10.3384/ecp1207647

Proceedings of the 9" International Modelica Conference 47
September 3-5, 2012, Munich, Germany

PNIib - An Advanced Petri Net Library for Hybrid Process Modeling

Petri nets, called normal Petri nets [4]. The places of
normal Petri nets can only contain zero or one token.
Additionally, all arcs have the weight one and exter-
nal signals initiate the firing of transitions. If a con-
flict occurs between two or more transitions, the
transition with the highest priority fires. Hence, only
deterministic behavior is represented by this kind of
Petri net.

The second Petri net library is an extension of the
previous one and was developed by Fabricius [5].
The places are able to contain a non-negative integer
number of tokens and can be provided with non-
negative integer minimum and maximum capacities.
Furthermore, the transitions are timed with fixed or
stochastic delays.

The third library, called StateGraph, is based on
Grafcharts which combines the function chart for-
malism of Grafcet with the hierarchical states of
Statecharts [6]. The StateGraph library is part of the
Modelica standard library and was developed by Ot-
ter et al. [7].

The relationships between the mentioned con-
cepts are displayed in Figure 1. To enable modeling
of different systems with Petri nets in Modelica, the
existing libraries have to be extended by the follow-
ing aspects:

— Transfer of the discrete Petri net concept to a con-
tinuous one,

— Support of edges with (functional) weightings,

— Support of test-, inhibitor, and read arcs,

— Support of (different) conflict resolutions (ran-
dom decisions),

— Combination of discrete and continuous Petri net
elements to hybrid Petri nets.

2 Extended Hybrid Petri Nets

The extended Hybrid Petri Net (xHPN) formalism
comprises three different processes, called transi-
tions: discrete, stochastic, and continuous transition,
two different states, called places: discrete and con-
tinuous places, and four different arcs: normal, in-
hibitor, test, and read arcs. The icons of the formal-
ism are shown in Figure 2.
Discrete places contain a non-negative integer quan-
tity, called tokens or marks, while continuous plac-
es contain a non-negative real quantity. These marks
initiate transitions to fire according to specific condi-
tions and the firings lead to changes of the marks in
the connected places.

Discrete transitions are provided with delays and
firing conditions and fire first when the associated
delay is passed and the conditions are fulfilled. The-

se fixed delays can be replaced by exponentially dis-
tributed random variables, then, the corresponding
transition is called stochastic transition. Thereby,
the characteristic parameter A of the exponential dis-
tribution can depend functionally on the markings of
several places and is recalculated at each point in
time when the respective transition becomes active
or when one or more markings of involved places
change. Based on the characteristic parameter, the
next putative firing time t = time + Exp(4) of the
transition can be evaluated and it fires when this
point in time is reached.

XHPN: Extended Hybrid Petri Nets

Places

O

7
{{

Transitions

(time-)discrete process
(event)

(time-)discrete state
(integer quantity)

3\ continuous state

stochastic process N/ (real quantity)
(random event) Arcs
. —— ,normal“arc
continuous process T
(flow) ———O inhibitor arc

————% testarc

——e readarc

Figure 2: Icons of the xHPN formalism

Both - discrete and stochastic transitions - fire by
removing the arc weight from all input places and
adding the arc weight to all output places. On the
contrary, the firing of continuous transitions takes
place as a continuous flow determined by the firing
speed which can depend functionally on markings
and/or time.

Places and transitions are connected by normal
arcs which are weighted by non-negative integers
and real numbers, respectively. But also functions
can be written at the arcs depending on the current
markings of the places and/or time. Places can also
be connected to transitions by test, inhibitor, and
read arcs. Then their markings do not change during
the firing process. In the case of test and inhibitor
arcs, the markings are only read to influence the time
of firing while read arcs only indicate the usage of
the marking in the transition, e.g. for firing condi-
tions or speed functions. If a place is connected to a
transition by a test arc, the marking of the place must
be greater than the arc weight to enable firing. If a
place is connected to a transition by an inhibitor arc,
the marking of the place must be less than the arc
weight to enable firing. In both cases the markings of
the places are not changed by firing.

The conversion of a discrete to a continuous
marking is realized by connecting a discrete transi-
tion to a continuous place and the conversion from a
continuous to a discrete marking is realized by con-

48 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207647

Session 1A: Hybrid Modeling

necting a continuous place to a discrete transition.

However, the conversion process is always per-

formed by discrete transitions, discrete places can

only influence the time when continuous transitions

fire but their marking cannot be changed during the

continuous firing process. Figure 3 shows examples

of these two basic principles:

e T1 can only fire when P1 has more than zero
marks and P3 has at least one mark (influence),

e T2 can only fire when P4 has at least one mark
and P6 has at least 5.4 marks (influence),

o T3 fires by removing one mark from P7 and add-
ing 1.8 marks to P8 (conversion),

e T4 fires by removing 0.8 marks from P9 and add-
ing one mark to P10 (conversion)

/Pl\ /PZ 1— PS
Opgiingt) 7’!?
\ / \/@/
N/
(P7. %1—»} /F’S\u /Pg\ 0.8—»!»1—»«410\
Y & N

—P7— —P8
367 | =TT =1

32 |
28 |
|
|

2.4

g L O A A B 1

S16
12

0.8 |
0.4 |

00— —— ———— 1
0.0 05 10 15 2.0 25 3.0

Figure 3: Basic concepts of hybrid Petri nets and marking
evolution of places P7 and P8 achieved by firing T3 with
a delay of 1 of the bottom left Petri net.

It is important to mention that a discrete transition
fires always in a discrete manner by removing and
adding marks after a delay is passed regardless of
whether a discrete or a continuous place is connected
to it. However, a continuous transition fires always
by a continuous flow so that a discrete place can only
be connected to continuous transition if it is input as
well as output of the transition with arcs of same
weight. In this way continuous transitions can only
be influenced by discrete places but discrete mark-
ings cannot be changed by continuous firing.

Several conflicts can occur when the places have
to enable their connected active transitions. Possibly,
a discrete place or a continuous place connected to
discrete transitions has not enough marks to enable
all discrete output transitions simultaneously or can-
not receive marks from all active input transitions
due to the maximum capacity. Then a conflict arises
that has to be resolved (type-1-conflict, see Figure
4).

1—>

=B
2
*}H

Figure 4: Example of a type-1-conflict; P1 has not enough
tokens to fire T1 and T2 simultaneously.

This can be either done by providing the transi-
tions with priorities or probabilities. In the first case,
a deterministic process decides which place enables
which transition and in the second case the enabling
is performed at random; thereby transitions assigned
with a high probability are chosen preferentially.

)

T1 714’\‘\\[)%\

vi=3 1

//PZ\\

T2 —1—>(

N\
N\ //T34>ﬂ
K

\\\0 j 34’ﬂ

e
o

Y

<
N
n
N
(4]

T3 —1—>

Figure 5: Example of a type-2-conflict; the input speed of

P2 and P3 is not sufficient to fire T5 and T6 with the de-
termined speed.

Another conflict can occur between a continuous
place and two or more continuous transitions when
the input speed is not sufficient to fire all output
transitions with the respective speed or when the
output speed is not sufficient to fire all input transi-
tions with the respective speed (type-2-conflict, see
Figure 5). This conflict is solved by sharing the
speeds proportional to the assigned maximum speeds

.\

(cf. [8]). I
\@Zl{
NI a

Figure 6: Example of a type-3-conflict; at time 0, T1 be-
comes active and fires continuously. At time 2, the delay
of T2 is passed and it becomes firable. At this point in
time, P3 has a conflict because it cannot fire tokens in T1
and T2, simultaneously. Hence, T2 takes priority over T1
and fires.

))

™

DOI
10.3384/ecp1207647

Proceedings of the 9™ International Modelica Conference 49
September 3-5, 2012, Munich, Germany

PNIib - An Advanced Petri Net Library for Hybrid Process Modeling

If a conflict occurs between a place and continu-
ous as well as discrete/stochastic transitions, the dis-
crete/stochastic transitions take always priority over
the continuous transitions (type-3-conflict, see Fig-

ure 6).
vli=2
H/P:%\\\\—l I—H/@:Z;\\w\
/N

Figure 7: Example of a type-4-conflict; at time 0, P3 can
either enable T1 or T2 but not both simultaneously. This
conflict can be solved by prioritization of the transitions.

A last conflict can occur when a discrete place
has not enough marks to enable all connected con-
tinuous transitions. This is solved by prioritization of
the involved transitions (type-4-conflict, see Figure
7).

Visitor enters
toilet

Figure 8: Hybrid modeling of a flush toilet with the aid of
XHPN formalism

Figure 8 shows an example of hybrid modeling
by the xHPN formalism. The model represents a
flush toilet. A visitor enters the toilet; thereby, the
time between two visitors is not exactly known so
that it is modeled by a stochastic transition with an
exponentially distributed delay (7'1). The visitor
(P1) pushes (T2) the lever (P2) which lifts the flush

valve flapper (P3). Then the water can flow (T5)
from the tank (P4) to the bowl (P5) and afterwards
to the sewer (T'6). When the water flows to the bowl,
the float (P6) sinks in the toilet tank. If the float falls
below a specific level (inhibitory arc), the tank fill-
valve (P7) is opened (T7) and new water can flow
(T9) into the tank. This causes also that the float ris-
es and when a specific level is reached (test arc), the
tank fill-valve is closed (T8). If the lever has re-
turned to its starting position, the flush valve flapper
sinks back to the bottom (T'4) and no water can flow
into the bowl anymore.

3 PNIlib

The advanced Petri Net library, called PNlib, enables

the modeling of extended hybrid Petri Nets (xXHPN).

It comprises

o adiscrete (PD) and a continuous place (PC),

o adiscrete (TD), a stochastic (TS), and a continu-
ous transitions (TC), and

o atest (TA), an inhibitor (I1A), and a read arc (RA).

OO
g

s e s

Figure 9: Component icons of the PNIib.

The main package PNIib is divided into the fol-
lowing sub-packages:

o Interfaces: contains the connectors of the Petri net
component models.

e Blocks: contains blocks with specific procedures
that are used in the Petri net component models.

e Functions: contains functions with specific algo-
rithmic procedures which are used in the Petri net
component models.

e Constants: contains constants which are used in
the Petri net component models.

e Models: contains several examples and offers the
possibility to structure further Petri net models.
Additionally, the package contains the component
settings which enables the setting of global parame-
ters for the display and the animation of Petri net

models.

50 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207647

Session 1A: Hybrid Modeling

Places, transitions, and arcs are represented by the
icons depicted in Figure 9. Thereby, the discrete
place is represented by a circle and the continuous
place by a double circle. The transitions are boxes
which are black for discrete transitions, black with a
white triangle for stochastic transitions, and white for
continuous transitions. The test arc is represented by
a dashed arc, the inhibitor arc by an arc with a white
circle at its end, and the read arc by an arc with a
black square at its end.

3.1 Connectors

The PNIib contains four different connectors:
PlaceOut, PlaceIn, TransitionOut, and Tran-
sitionTn. The connectors Placeout and PlacelIn
are part of place models and connect them to output
and input transitions, respectively. Similar, Transi-
tionout and TransitionIn are connectors of the
transition model and connect them to output and in-
put places, respectively. Figure 10 shows which con-
nector belongs to which Petri net component model.

Figure 10: Connectors of the PNIib.

The connectors of the Petri net component models
are vectors to enable the connection to an arbitrary
number of input and output components. Therefore,
the dimension parameters n1n and nout are declared
in the place and transition models with the con-
nectorSizing annotation.

3.2 Places

The parameters of places are summarized in Table 1.
If the type-1-conflict is resolved by priorities, the
corresponding priorities of the transitions are given
by the indices of the connections, i.e. the transition
connected to the place with the index 1 has also the
priority 1, the transition connected to the place with
the index 2 has also the priority 2 etc. Otherwise, if
the probabilistic enabling type is chosen, the corre-
sponding probabilities for the transitions have to be
entered as a vector. Thereby, the first vector element
corresponds to the connection with the index 1, the
second to the connection with the index 2 etc. The
input of enabling probabilities as vectors in the place
model, and not at the corresponding arcs, is neces-
sary due to the fact that properties cannot be as-

signed to connections according to the Modelica
Specification 3.2.

Table 1: Parameters and modification possibilities of dis-
crete (d) and continuous (c) places

Name Default

Description

Type

startTokens/
startMarks

Marking at the beginning
of the simulation

scalar 0

minTokens/ scalar 0

minMarks
Minimum capacity

maxTokens/ scalar infinite
maxMarks

Maximum capacity

choice/
scalar

enablingType

Type of enabling if type-
1-conflicts occur; the
priorities are defined by
the connection indices
and the probabilities by
the variables ena-
blingProblIn/Out

Priority

enablingProblIn
Enabling probabilities of
input transitions

vector fill(1/nIn,nln)

enablingProbOut vector
Enabling probabilities of

output transitions

fill(1/nOut,nOut)

N scalar
Amount of levels for sto-
chastic simulation

settings1.N

condition | false
expres-

sion

restart

Condition for resetting
the marking to
reStartTokens/Marks

reStartTokens/
reStartMarks

When the reStart condi-
tion is fulfilled, the mark-
ing is set to reStartTo-

scalar 0

kens/Marks

The input of enabling probabilities as vector is
demonstrated by Figure 11. Place P1 is connected to
the transitions T1, T2, and T3 and the connection to
T1 is indexed by 1, the connection to T2 is indexed
by 2, and the connection to T3 is indexed by 3. Thus,
the corresponding connect-equations are

connect (Pl.outTransition[1],
Tl.inPlaces([1l]);

connect (P1l.outTransition([2],
T2.inPlaces([1]);

connect (P1l.outTransition[3],
T3.inPlaces([1l]);

The enabling probabilities 0.3 for T1, 0.25 for T2,
and 0.45 for T3 have to be entered by the parameter
vector
enablingProbOut={0.3,0.25,0.45}.

DOI
10.3384/ecp1207647

Proceedings of the 9™ International Modelica Conference 51
September 3-5, 2012, Munich, Germany

PNIib - An Advanced Petri Net Library for Hybrid Process Modeling

N

[1);0.3

13);045

-

Figure 11: Input of enabling probabilities.

The main process in the place model is the recal-
culation of the marking after firing a connected tran-
sition. In the case of the discrete place model, this is
realized by the discrete equation

when tokeninout or pre(reStart) then
t=if tokeninout then pre(t)+
firingSumIn - firingSumOut else
reStartTokens;
end when;

whereby pre (t) accesses the marking t immediate-
ly before the transitions fire. To this amount, the arc
weight sum of all firing input transitions is added
and the arc weight sum of all firing output transitions
is subtracted from it. Additionally, the tokens are
reset t0 restartTokens when the user-defined
condition restart becomes true.

The marking of continuous places can change
continuously as well as discretely. This is imple-
mented by the following construct
der (t)=conMarkChange;
when disMarksInOut then

reinit(t, t+disMarkChange) ;
end when;
when reStart then

reinit(t, reStartMarks);
end when;
whereby the der-operator access the derivative of
the marking t according to time. The continuous
mark change is performed by a differential equation
while the discrete mark change is performed by the
reinit-operator within a discrete equation. This
operator causes a re-initialization of the continuous
marking every time when a connected discrete tran-
sition fires. Additionally, the marking is re-initialized
by restartMarks when the condition restart
becomes true.

3.3 Transitions

The parameters of transitions are summarized in Ta-
ble 2. Thereby, it has to be distinguished between the
following input types: scalar, vector, scalar function,
vector function, and condition expression. The input
of arc weights as vectors in the transition model and
not at the respective arcs is necessary due to the fact

that connections cannot be provided with properties
according to the Modelica Specification 3.2.

Table 2: Parameters and modification possibilities of dis-
crete (d), stochastic (s), and continuous (c) transitions

Name Type Part |Default

Description of Allowed

delay scalar d 1

Delay _of timed non-negative

transitions real values

h scalaror |s 1

Hazard function | scalar non-negative

to determine the | function real values

characteristic

value of exponen-

tial distribution

maximumSpeed |scalaror |c 1

Maximum speed | scalar non-negative

function real values

arcWeightIn |vectoror |d,s.c |1

Weights of input | vector non-negative

arcs function integers (d,s),
non-negative
real values (c)

arcWeightOut |vectoror |d,s,c

Weights of output | vector non-negative

arcs function integers (d,s),
non-negative
real values (c)

firingCon condition |d,s,c |true

Firing condition | expression Boolean con-
dition expres-
sion

The input is demonstrated by the following ex-
amples. Figure 12 shows a discrete Petri net. The
indices of the connections are written at the arcs
within square brackets, e.g. the connection (P1 -
T1) has the input index [1] and (T1 — P5) has the
output index [3]. The input of the arc weights dis-
played after the indices to property dialog or as mod-
ification equation is performed by the vector func-
tions

arcWeightIn = {2*Pl.t,4}and
arcWeightOout = {2,1,5*P1.t},

whereby the expression p1.t accesses the current
marking of P1l. Thus, the weights of the arcs
(P1 - T1) and (T1 - P5) are functions which de-
pend on the marking of P1.

>
[11; 2
[1]; 2:m(P1)

[2]; 1
[2]; 4
1II'V// (i >
>

Figure 12: Input of arc weights.

olo

<

52 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207647

Session 1A: Hybrid Modeling

Transitions can also be provided with additional
conditions that have to be satisfied to permit the ac-
tivation. The condition
firingCon = time>9.7
causes that the transition cannot be activated as long
as time is less than 9.7.

Figure 13 shows two continuous Petri nets. Transi-
tion T1 has a maximum speed function which de-
pends on the makings of P1 and P2. The input of this
function to the property dialog or as modification
equation is performed by the expression
maximumSpeed = 0.75*P1.t*P2.t,

whereby p1.t and p2.t accesses the marks of P1
and P2, respectively. Transition T2 has a maximum
speed function that depends on time and can be en-
tered by the expression

if time<=6.5 then 2.6
else 1.7.

maximumSpeed =

26 time<6.5
V2= R
17 time>65

Figure 13: Input of maximum speed functions.

Based on the current markings of the places, it is
checked in the transition model by an algorithmic
procedure if the transition can become active. Dis-
crete transitions wait then as long as the delay is
passed and stochastic transitions wait till the next
putative firing time is reached. Based on this infor-
mation, the places enable some of the active transi-
tion to fire. At this point, several conflicts can occur
which have to be resolved appropriately by the
methods mentioned in [8] to get a successful and
reliable simulation. When a transition is enabled by
all its connected places, it is firable and reports this
via the connector variable fire to the connected plac-
es. The places recalculate then their markings based
on this information.

3.4 Arcs

XHPNs comprise four different kinds of arcs: normal,
test, inhibitor, and read arc. The Modelica language
do not support the assignment of properties to arcs

that are generated by connect equations. Due to that
fact, test, inhibitor, and read arcs are realized by
component models which are interposed between
places and transitions (see Figure 14); the normal arc
is simply generated by the connect equation. Test
and inhibitor arc can be normal arcs simultaneously.

» »
i» >

Figure 14: Modeling of normal (top left), test (bottom
left), inhibitor (top right), and read arcs (bottom right)
with the PNlib.

Table 3: Parameters and modification possibilities of test
and inhibitor arcs (read arcs have no parameters)

Name Type Default
Description Allowed
testValue scalar 1

The marking of the place non-negative inte-
must be greater to enable gers if connected
firing of transitions (test to discrete places,
arc); non-negative real
the marking of the place values otherwise
must be smaller to enable

firing (inhibitor arc).

normalArc choice/ |no

If yes is chosen, then the |scalar no or yes

arc is also a normal arc to

change the marking by

firing (called double

arc).

4 Animation and Connection to
Matlab/Simulink

A possibility to represent the simulation results of an
XHPN model is an animation. Thereby, several set-
tings can be made in the property dialog of the set-
tings-box. These settings are global and, thus, affect
all components of the Petri net model. By using the
prefixes inner and outer, it is achieved that the set-
tings are common to all Petri net components of a
model. An animation offers a way to analyze the
marking evolutions of large and complex xHPNs.
Figure 15 shows four selected points in time of the
animation of an xHPN example. All display and an-
imation options are realized with the Dynamicse-
lect annotation.

To simulate the established xXHPN model several
times with different parameter settings and use the
arising simulation results for parameter estimation,
sensitivity analysis, deterministic and stochastic hy-
brid simulation, or process optimization [8], the
Modelica models in Dymola are connected to

DOI
10.3384/ecp1207647

Proceedings of the 9™ International Modelica Conference 53
September 3-5, 2012, Munich, Germany

PNIib - An Advanced Petri Net Library for Hybrid Process Modeling

Matlab/Simulink. This is realized with the aid of a
Dymola interface in Simulink and a set of Matlab m-
files utilities [9].

Time =1 Time =3

E@» 3@))_|> 3

o 70 ese |
P2 . % P

Figure 15: Animation of an xHPN model.

All markings which should be available in Matlab
have to be declared with the prefix output on the
highest level. This is achieved by creating a connect-
or of the output connector at the top of the place
icon. In the case of discrete places it is an orange
IntegerOutput connector and in the case of con-
tinuous places it is a blue Realoutput connector. In

USER INSERT PAD

Figure 15 the markings of P1, P3, P5, and P6 are
available in Matlab.

5 Application

The PNIib is so powerful but also so universal and
generic that it is an ideal all-round-tool for model-
ing and simulation of nearly all kinds of processes,
such as business processes, production processes,
logistic processes, work flows, traffic flows, data
flows, multi-processor systems, communication pro-
tocols, and functional principals. This section gives
an overview of the different application fields using
the PNIib. Three selected examples

e Modeling a Senseo coffee machine,

e Modeling a printing process, and

e Modeling a business process

are part of the PNIib and should demonstrate the
huge application field. Additionally, the application
of the PNIib for modeling biological processes is
shown in [10].

SENSEO MACHINE

l inserting

p— 41>

puffer

Coffee Cup

Water Tank

water_tank

REFILL WATER

WATER TANK

Figure 16: Hierarchical model of a Senseo coffee machine and simulation results

A model of a Senseo coffee machine is presented. The
main feature of a Senseo coffee machine is that the coffee
is placed in the machine in a pre-portioned form by so-
called coffee pads. One pad is generally used to make one
cup of coffee (125°ml) and two pads reach for two cups at
125 ml or one big cup at 250 ml. After a warm-up time of
about 60 seconds and the insertion of a coffee pad, the
coffee can be made. In this warm-up phase, the water is

heated at 90°C and then pressed with a pressure of about
1.4 bar within 40 seconds through the pad. In contrast to a
normal coffee machine that boils the water continuously
and transports it by its own buoyancy (hot bubbles) up
into the filter, the Senseo machine heats a portion of water
completely in a heating chamber and pumps it then
through the pad. To ensure that the heating chamber in the
machine is always filled with water, a float is placed in the

54 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207647

Session 1A: Hybrid Modeling

removable water tank which allows measuring the mini-
mal capacity. If the minimum level is exceeded, the heater
is turned off. If there is sufficient water level, the next
portion of water is heated directly after the scalding and
filling. These functional principles are represented by the
hierarchically structured model shown in

Figure 16 and also some simulation results. Addi-
tionally, a detailed description of the model can be
found in the PNIlib.

The applicability of the PNIib for modeling pro-
duction processes is shown by a model of a printing
process. It is also modeled hierarchically to provide a
compact and clear view on the highest level contain-
ing all important facts (see Figure 17). The process
starts with paper on a role and ends with printed leaf-
lets for supermarkets. During the process, misprints,
also called maculation, could occur due to several
reasons. If the worker at the printing machine detects
these misprints, he presses a button and all incorrect
exemplars are transferred outward. When the macu-
lation is over, he presses the button again and the
process is continued. With the help of this model
several new insights can be detected, e.g.

e How and when maculation occurs? What are the
causes and how can maculation be prevented?

e How much paper is need for the particular order?

e How long does the order take? ...

Orders Exemplars Maculation Paper Duration

2 31887 9623 49812 7223

orders duration

§

Stop/Start [>

paper

meters on role

iy
[l

)
Q

maculation

2706

Figure 17: Model of a printing process on the highest lev-
el.

The PNIib can also be used for modeling and simu-
lating business processes. A business processes de-
scribes a sequence of activities or tasks which have
to be carry out in order to achieve a particular busi-
ness goal e.g. a service or product for a particular
customer. Figure 18 shows a small part of a business
process model. The major advantages of this ap-
proach are (1) the hierarchical structure, which pro-

vides a compact and clear view of the processes on
the highest level, and (2) the simulation and anima-
tion option which enable analyzing and optimizing
of the processes. A possible question may arise in
this juncture is, how much employees are needed to
accomplish the requests and orders of the customers
or simple how the profit can be maximized. All ques-
tions of this kind can be answered by simulating the

model with different parameter settings.
0

d=0 PI 2

Figure 18: Part of a business process model.

6 Conclusions

A powerful Petri net environment has been devel-
oped for graphical hierarchical modeling and hybrid
simulation as well as animation of processes from
most different application fields. Thereby, the math-
ematical modeling concept XHPN serves as specifi-
cation for performing a hybrid simulation. The
XHPN elements are modeled object-oriented by dis-
crete, differential, and algebraic equations in the
Modelica language. This allows an easy way to
maintain, extend, and modify the components.

Moreover, the connection to Matlab/Simulink of-
fers the whole Matlab power for post-processing the
simulation results of Modelica models. The Matlab-
based tool AMMod (Analysis of Modelica Models)
provides already several mathematical methods for
data pre-processing, relationship analysis, parameter
estimation, sensitivity analysis, deterministic and
stochastic hybrid simulation, and process optimiza-
tion [10].

The application of the new Petri net simulation
environment has been demonstrated by a model of a
Senseo coffee machine, a model of a printing pro-
cess, and a model of a business process. All models
show the applicability of the xHPN formalism as
well as graphical hierarchical modeling and hybrid
simulation with the PNlib.

A future goal is to provide an open source Petri-
net simulation tool. This demands a further devel-
opment of the open source Modelica-tool OpenMod-

DOI
10.3384/ecp1207647

Proceedings of the 9™ International Modelica Conference 55
September 3-5, 2012, Munich, Germany

PNIib - An Advanced Petri Net Library for Hybrid Process Modeling

elica to get the PNIlib work with it because some
Modelica features are not supported so far.

Moreover, the xHPN formalism as well as the
PNIib will be extended by fuzzy logic (e.g. [11]) and
the color concept (e.g. [12]) to enhance the range of
application fields further.

Furthermore, the PNIib is already connected to
VANESA, an open source tool for visualization and
analysis of networks, in order to enable modeling,
editing, visualization, and animation of xHPN mod-
els by an easy-to-use interface [13]. This connection
will be further improved.

References

[1] Petri C.A. Kommunikation mit Automaten.
PhD thesis, Rheinisch-Westfalisches Institut
fir Instrumentelle Mathematik, Bonn, Ger-
many, 1962.

[2] David R., Alla H. Continuous petri nets. Pro-
ceedings of 8th European Workshop on Ap-
plication and Theory of Petri nets:275-294,
1987.

[3] David R., Alla H. On Hybrid Petri Nets. Dis-
crete Event Dynamic Systems: Theory and
Applications(11): 940, 2001.

[4] Mosterman P.J., Otter M., EImqvist H. Mod-
eling Petri nets as local constraint equations
for hybrid systems using Modelica. Proceed-
ings of SCS Summer Simulation Confer-
ence:314-319, 1998.

[5] Fabricius S.M. Extensions to the Petri Net
Library in Modelica. ETH Zurich, Switzer-
land, 2001

[6] Johnsson C., Arzén K.-E., Grafchart and
grafcet: A comparison between two graphical
languages aimed for sequential control appli-
cations, Preprints 14th World Congress of
IFAC(A): 19-24, 1999.

[7] Otter M., Arzén K.E., Dressler |. StateGraph-
a Modelica library for hierarchical state ma-
chines. Proceedings of 4th International
Modelica Conference:21-33, 2005

[8] ProfR S. Hybrid Modeling and Optimization
of Biological Processes. Bielefeld, Germany,
PhD thesis (in preparation), Faculty of Tech-
nology, Bielefeld University, Germany,
2012.

[91 Dynasim AB Dymola-Dynamic Modeling
Laboratory-User Manual Volume 2, Lund,
Sweden, 2010

[10] ProR S., Bachmann B. Hybrid Modelling and
Process Optimization of Biological Systems,
MATHMOD Conference, Wien, Austria
2012.

[11] Chen S, Ke J, Chang J Knowledge represen-
tation using fuzzy Petri nets. Knowledge and
Data Engineering, IEEE Transactions on
2(3):311-319, 1990

[12] Jensen K Coloured petri nets. Petri nets: cen-
tral models and their properties: 248-299,
Springer Verlag, Berlin Heidelberg, 1987

[13] ProR S., Janowski S. J., Bachmann B., Kalt-
schmidt C., Kaltschmidt B. PNlib - A Model-
ica Library for Simulation of Biological Sys-
tems based on Extended Hybrid Petri Nets,
3rd International Workshop on Biological
Processes & Petri Nets (accepted), Hamburg,
Germany, 2012.

56 Proceedings of the 9" International Modelica Conference DOl

September 3-5, 2012, Munich Germany

10.3384/ecp1207647

Simulation of Non-Newtonian Fluids using Modelica

Pooyan Jahangiri

Rita Streblow

Dirk Muller

RWTH Aachen University - E.ON Energy Research Center
Mathieustr. 10, 52074 Aachen, Germany
pjahangiri@eonerc.rwth-aachen.de

Abstract

Many fluids used today in different applications
show a non-Newtonian behavior. In order to simulate
this behavior, many different approaches exist but
are not fully implemented in a simulation program.
One of the problems with these kinds of simulations
is the lack of compatibility with existing models.
This makes the modeling very time consuming.

In this paper, a simple approach is shown that pro-
vides a general set of equations which can then be
used to model both Newtonian as well as non-
Newtonian behavior of fluids in the same model in
Modelica. Since the implementation is in base mod-
els, existing components can easily be used to simu-
late non Newtonian fluids without sacrificing simula-
tion times.

Keywords: Non-Newtonian; Medium Model; Pres-
sure Drop

1 Introduction

In many applications such as food industries, resi-
dential heating and cooling systems, some power
plants as well as other energy systems, a non-
Newtonian fluid is chosen as the working fluid. The
non-Newtonian behavior has a great influence on
both flow as well as heat transfer properties of the
fluid; therefore, for simulation of such systems, it is
necessary to have compatible models and compo-
nents with this type of fluids.

2 Theory

2.1 The Governing Equations

Non-Newtonian fluids are fluids in which the viscos-
ity changes with respect to the applied stress. Ac-
cording to the correlation between the shear stress
and shear rate, fluids can be divided into different
categories (see Figure 1).

-
-
-
-

e “ Plastic /

- Dilatant .-+~ _INewtonian

E ~
- -

/ e

J -

~="" Pseudoplastic

Shear Stress

Shear Rate

Figure 1: Fluid classification according to shear rate
and shear stress

Many available fluids can fully or partly be de-
scribed by Ostwald-de Waele relationship (Power-
law fluids) shown in equation (1).

T=Ky" (1)
where

Shear stress [Pa]

Flow consistency index [Pa.s"]
Shear rate [s]

Flow behavior index

= x o

Flow behavior index “n” as well as flow consistency
index “K” are among the properties of the fluid and
are considered constant at a given temperature.

By “n” equal 1, the Ostwald-de Waele relationship
describes Newtonian fluid behavior. For n<1, Pseu-
doplastic fluids and for n>1 Dilatant fluids can be
described.

2.2 Pressure Drop

For the calculation of the pressure drop in a pipe,
when the mass flow rate is known, the dimensionless

Darcy friction factor “A” as well as physical
parameters of the pipe are used according to equation

(2) [1]

DOI
10.3384/ecp1207657

Proceedings of the 9" International Modelica Conference 57
September 3-5, 2012, Munich, Germany

Simulation of Non-Newtonian Fluids using Modelica

I p-v?

=1 —- (2)
Ap =21 D >

where

Pressure drop [Pa]

Darcy friction factor
Length of the pipe [m]
Diameter of the pipe [m]
Density of the fluid [kg/m°®]
Flow velocity [m/s]

<D —~ > D>
© =

In order to calculate the Darcy friction factor, a
Fanning friction factor “f” has been introduced by
[2] and is shown in equation (3):
A
=_ 3
f=7 3)

The Fanning friction factor for the laminar region
can be calculated from equation (4) and for turbulent
region from equations (5) and (6) where “Re” corre-
sponds to the Reynolds number. [2, 3, 4]

16

= R_e (4)

f

0.125 5
f= 0.0014+W (5)

(6)

2.3 Reynolds Number

In order to calculate the Reynolds number for Power-
law fluids, [2] also introduces the general Reynolds
number in equation (7).

(2-n) ., pn.
Re = ”y—p (7)
where
y=K-8"1 (8)
and
3n+ 1\"
K= K(n4n) ©)

Note that using n=1, the Reynolds number can be
simplified to the Reynolds number in Newtonian
fluids as in equation (10).

Depending on the fluid, the turbulent region can start
from Reynolds number between 4000 up to 70,000.
On the other hand, the boundary Reynolds number
between the laminar and the transitional region can
be calculated according to [5] using equation (11).

6464n

(Bn+1)2 (11)

2+n
Reygm = -2+ n)(m)

3 Implementation in Modelica

3.1 Existing Flow Models

In Newtonian fluids, the viscosity does not depend
on the applied stress or in other words the volume
flow rate; hence, it can be calculated within the me-
dium model using just the base properties of the fluid
such as the pressure and the temperature.

In existing models in Modelica standard library, at
each calculation step, the viscosity of the fluid is cal-
culated within the medium model. This is then used
to estimate the Reynolds number according to equa-
tion (10). By knowing the Reynolds number, the
flow region can be chosen and the governing equa-
tions for that region are used to calculate the Darcy
friction factor and then the pressure drop.

Note that since Reynolds number is a function of
velocity, the procedure mentioned above is only val-
id when the velocity is known by knowing either the
mass flow rate or the volume flow rate and the ge-
ometry of the pipe. For this reason, a new set of
equations are also implemented to calculate the mass
flow rate in a pipe when the pressure difference be-
tween two pints is the known variable.

This is helpful for many hydraulic components such
as pumps which produce a certain pressure differ-
ence and the result will be the flow of the medium;
therefore, in order to be able to simulate the flow of
the medium properly, it is also necessary to be able
to calculate the mass flow rate from the pressure
drop.

In this procedure, a second friction factor “A,” is in-
troduced which is independent of the velocity and is
shown in equation (12).
2-D3.
p =20
l-u

Using the second friction factor, the Reynolds num-
ber can be estimated by the Reynolds number equa-

- Ap (12)

Re = v-b-p (10) tion for the laminar region and be corrected if the

K estimation result falls above the turbulent boundary

58 Proceedings of the 9" International Modelica Conference DOl
September 3-5, 2012, Munich Germany 10.3384/ecp1207657

Session 1B: Thermofluid Systems

using the equations governing the turbulent region.
The velocity and the mass flow rate are then calcu-
lated using the Reynolds equation.

3.2 Non-Newtonian Medium Model

Since the viscosity of Non-Newtonian fluids cannot
be calculated using only the base properties, the
main calculation should be in the flow model. In or-
der to correlate flow model and medium model with
the smallest change possible, an extra function is
required in the “Partial Medium Model”. This func-
tion will describe the flow behavior index “n” and is
written as follow:

replaceable partial function flowBehaviorindex
extends Modelica.lcons.Function;
input ThermodynamicState state "thermodynamic state record";
output Real n "flow behavior index";

end flowBehaviorindex;

Since the flow behavior index is only a function of
the states of the fluid such as the temperature, it can
be defined and calculated in the medium model. By
adding this partial function for the definition of the
flow behavior index in the base medium model, im-
plementing the governing equations or tables for all
the fluid models is made possible.

In case the fluid is a Newtonian fluid such as water,
the flow behavior index should be set to the constant
number of “1”.

By comparing equations (7), (8) and (10) it can be
seen that having n=1, the coefficient K’ is equal the
dynamic viscosity “u”. This means that the “dynam-
icViscosity” function in the partial medium model
can also be used to calculate the consistency
dex K'. Like the flow behavior index, the consistency
index does only depend on the base properties of the
fluid and not the flow parameters. Therefore it can
also be calculated in the medium model.

3.3 Non-Newtonian Flow Models

Having the flow behavior and consistency indices
from the medium model, the Reynolds number can
be calculated when the volume flow rate is known
using the general Reynolds number shown in equa-
tion (7). Using the Reynolds number, the fanning
friction factor can be calculated using equation (4)
for the laminar region and equation (6) for the turbu-
lent region. The pressure drop is then calculated with
the help of equations (2) and (3).

For the transitional region between laminar and tur-
bulent, the laminar region is connected to the turbu-
lent region using a cubic Hermite spline.

As already discussed in the existing flow models, it
is necessary to have a function for calculation of
mass flow with respect to pressure difference in the
system. Since pressure drop as well as Reynolds
number and hence the Darcy friction factor are a
function of velocity which is derived from the mass
flow rate, here is also not possible to use the general
Reynolds number and Darcy friction factor directly
for these calculations. To solve the problem, a varia-
ble which is independent of velocity is introduced in
equation (13) and is called the modified Darcy fric-
tion factor “4,,,”.

A = /I-Re(%) (13)

Combining equations (2), (7) and (13), the modified
Darcy friction factor can be calculated as follow:

2))

1. =
" ly(%)

(14)

- Ap

By having a flow behavior index of “1” as for New-
tonian fluids, the modified Darcy friction factor is
reduced to equation (12).

When the modified Darcy friction factor is known,
the Reynolds number can be calculated under the
assumption that the flow is laminar using equation
(15) achieved from equations (3), (4) and (13).

2—n)

re= ()"

64

(15)

If the calculated Reynolds number according to
equation (15) is greater than the turbulent Reynolds
number, then the Reynolds number is calculated for
the turbulent region using equation (16) derived from
equations (3), (6) and (13).

(16)

0.3164 (i)
Re = ()
Am

By knowing the Reynolds number, the mass flow
rate can be calculated as follow:

DOI
10.3384/ecp1207657

Proceedings of the 9™ International Modelica Conference 59
September 3-5, 2012, Munich, Germany

Simulation of Non-Newtonian Fluids using Modelica

1

@)

AN 2 (17)
p3n—4 . pn-1

m=

The transitional region here is also generated by a
cubic Hermite spline as before.

4 Simulation Results

The specified functions are directly implemented in
the “detailed wall friction model”. The model is test-
ed for a Paraffin-Water dispersion shown in Figure 2
with 30% paraffin dispersed in water. The fluid
shows a pseudoplastic behavior. The dispersed paraf-
fin goes through a phase change at a certain tempera-
ture which not only affects the thermal properties but
also the flow properties of the fluid.

Figure 2: Paraffin-Water dispersion used as working
fluid in energy systems

The measured flow behavior and consistency indices
at different temperatures for the Paraffin-Water dis-
persion are shown in Figure 3 and are implemented
in the medium model.

08

To calculate the pressure drop from a known mass
flow rate, Paraffin-Water dispersion model at 22°C,
with n=0.5889 and K=0.1877, is used in a simple
simulation model (consisting of a pipe with a length
of 1 m and diameter of 0.05 m. The results are
shown in Figure 4.

Laminar Transitional Turbulant

Pressure Drop [bar]
<
2
o

0005+

0 1 1 1
0 1 2 3

Mass Flow Rate [kgrs]

.
w

Figure 4: Pressure drop of Paraffin-Water dispersion
with respect to mass flow rate

The mass flow rate is then calculated in a simple
simulation model when the pressure difference is
known for a pipe with 1 m length and 0.05 m diame-
ter and is shown in Figure 5.

Lam Trans

=

1
0.01 0015
Pressure Drop [bar]

Turbulant

Mass Flow Rate [kgis]
(&)

002

1 Il
0 0.005 0025 003

——
—— | [

06 '—"“"ﬁ-o—o—-______‘

05F

07k

04}
03}

02 .—f——'_"'-—.__.____.—-—“ T

Ok e

Behavior f Consistency Index

L 1 L L 1
) 1n 1% 20 25 20 35

Temperature [*C]

Figure 3: Measured flow behavior and consistency
indices for Paraffin-Water dispersion*

! Data provided by Fraunhofer UMSICHT

Figure 5: Mass flow rate of Paraffin-Water disper-
sion with respect to pressure drop

Since the model can be used for all the fluids gov-
erned by Ostwald-de Waele relationship, the pres-
sure drop is compared for simulations with 3 differ-
ent flow behavior indices and is shown in Figure 6.
The closer the behavior index to 1 is, the closer the
fluid behaves as a Newtonian fluid.

60 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207657

Session 1B: Thermofluid Systems

[
s
P

o

[
o
s3]

0061

Pressure Drop [bar]

Mass Flow Rate [kg/s]

Figure 6: Comparison between different pressure-
drops in fluids with different flow behavior indices

4.1 Compatibility

In all the equations described for the non-Newtonian
flow, the equations for the Newtonian fluids are de-
rived when the flow behavior index is set to “1”,.
These are the exact equations which are already im-
plemented in the wall friction model in Modelica
standard library. Therefore, the same flow model can
be used for all the existing medium models in all
existing components without any compatibility is-
sues.

Since the non-Newtonian flow model is an extension
to the available flow model in Modelica 3.2, it is also
compatible with the entire fluid library. This will
omit the need to design new components just for
non-Newtonian systems.

4.2 Simulation Times

To substitute the existing model for the general flow
model, it is important to maintain the fast simulation
speed. Therefore, a simple dynamic simulation is
done using Paraffin-Water dispersion and water with
the general model described in this paper and is
compared to the same simulation setup using water
and the existing flow models. The CPU times are
compared in Table 1.

Table 1: CPU Time comparison between different
models and fluids

CPU Time
Modified Model Existing Model
Dispersion Water Water
0.106 s 0.109s 0.105s

It can be seen that although more complicated equa-
tions are used, the solving time stays almost in the
same range. This will result in simulation times

which are almost the same as in existing flow models
in Modelica.

5 Conclusions

There are many applications for simulating the be-
havior of non-Newtonian fluids such as food pro-
cessing plants and energy distribution systems.

In order to implement the non-Newtonian behavior,
an extra function is added to the base medium model.
This function describes the flow behavior index of a
fluid and enables the interaction between the medi-
um model and the flow model. The flow behavior
index corresponds to the degree of non-Newtonian
behavior of each fluid. Having the necessary interac-
tion between the models, more general equations
regarding pressure drops in the system can be im-
plemented. These equations contain both the Newto-
nian as well as non-Newtonian behavior of a fluid.

Since the changes are in the base models, any other
component that uses the model directly or indirectly
can be used for the simulation of both Newtonian
and non-Newtonian fluids without any additional
changes and compatibility issues.

Using the flow behavior index, the non-Newtonian
behavior of fluids can later be expanded to the heat
transfer properties of fluids in the Modelica thermal
libraries.

6 Acknowledgement

Grateful acknowledgement is made for the financial
support by BMWi (Federal Ministry of Economics
and Technology), promotional reference 032747B
and for great help and support by Fraunhofer UM-
SICHT.

DOI
10.3384/ecp1207657

Proceedings of the 9™ International Modelica Conference 61
September 3-5, 2012, Munich, Germany

Simulation of Non-Newtonian Fluids using Modelica

References

[1]
[2]

(3]

[4]

(5]

Wagner, W.; Strémung und Druckverlust;
3rd Ed. Germany : Vogel Publication, 1992.

Metzner, A.B. und Reed, J.C.; Flow of Non-
Newtonian Fluids - Correlation of the Lami-
nar, Transition, and Turbulent-flow Regions;
A.I.Ch.E. Journal. December 1955, pp. 434-
440.

Dodge, D.W. und Metzner, A.B.; Turbulent
Flow of Non-Newtonian Systems; A.l.Ch.E.
Journal. June 1959, pp. 189-204.

Wronski, Jorrit.; Untersuchungen zur Be-
stimmung des Feststoffgehalts von Dispersi-
onen - Entwicklung eines Ladesensors fir
PCS-Systeme; Ruhr-Universitdt Bochum -
Lehrstunl flr Feststoffverfahrenstechnik,
2010.

Chhabra, R.P. und Richardson, J.F; Non-
Newtonian Flow in the Process Industries;
Oxford, 1999.

62

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207657

HelmholtzMedia — A Fluid Properties Library

Matthis Thorade, Ali Saadat
Helmbholtz Centre Potsdam GFZ German Research Centre for Geosciences

Abstract

HelmholtzMedia is a library for the calculation of fluid
properties. It is implemented in Modelica and pub-
lished under the Modelica license. All thermodynamic
state properties and their partial derivatives are calcu-
lated from a Helmholtz energy equation of state. Fur-
ther properties that can be calculated include surface
tension, viscosity and thermal conductivity.
Keywords: thermodynamic properties, Helmholtz
energy, surface tension, viscosity, thermal conductiv-

ity

1 Introduction

For the simulation and design of power or refrigera-
tion cycles, accurate properties of the working fluid
are indispensable. The most accurate equations of state
(EoS) available today for a variety of working fluids are
fundamental EoS in terms of Helmholtz energy. From
such EoS all thermodynamic state properties, like pres-
sure p or specific entropy s, as well as all partial deriva-
tives of thermodynamic state variables can be calcu-
lated.

Further properties of interest are surface tension,
viscosity and thermal conductivity. For each of these
properties an independent correlation is necessary.

Both the Helmholtz energy EoS as well as correla-
tions for additional properties have been implemented
in the HelmholtzMedia library. Details of the imple-
mentation are given in the following text.

2 Helmholtz energy fundamental
equation of state

A historical overview over the development of fun-
damental EoS in general is given by [2](in German),
an overview over the functional form used today by
almost all Helmholtz EoS is given by [8]. The inde-
pendent variables of the Helmholtz EoS are temper-
ature T and specific volume v or density ¢. Both
are non-dimensionalised by their critical values. The

Helmbholtz energy f is non-dimensionalised by the
specific gas constant R and the temperature 7" and split
up into an ideal gas part a” and a residual part ". This
allows for developing a functional form for the two
parts independently.

The functional form for the description of the ideal
part of the Helmholtz energy results from the thermal
equation of state of the ideal gas and a two-fold inte-
gration of the heat capacity of the ideal gas. The heat
capacity of the ideal gas can be described by polynom-
inal terms, by so-called Planck-Einstein terms or by
a combination of the two. Alternatively, hyperbolic
functions can be used, but these have not been imple-
mented so far.

a%(8, 7) =log (6)
i=nL
+), g log [ia]
i=1

i=nP
+ 2 i P
i=1

i=nE

+ Z e[i’l] . log [1 - eXp(e[i’z] . T)]
i=1

The functional form for the description of the resid-
ual part of the Helmholtz energy as implemented uses
three groups of terms: polynominal terms, so-called
Benedict-Webb-Rubin terms and Gaussian bell-shaped
terms. For some fluids (e. g. CO, or water) the func-
tional form contains additional non-analytical terms

DOI
10.3384/ecp1207663

Proceedings of the 9" International Modelica Conference 63
September 3-5, 2012, Munich, Germany

HelmholtzMedia — A Fluid Properties Library

Table 1: Thermodynamic state properties [7]

Table 2: Partial derivatives of state properties [10]

Property Algorithm Property Algorithm
= T 0
pressure p = oTR [1 + 5%] _p) - TR [1 + 250% + 520%8]
entropy s = R [T(ag +a;) — (a® + ar)] do /¢

TR [T(ag + (xi)]
TR [(1 + da}) + o(af + a})|
TR [1+ (a° + a") + a}]

internal energy u =
enthalpy h =
Gibbs-energy g =

that have not been implemented so far.

i=nP
ar(é, T) — Z Py SPis1 . Pl
i=1
i=nB
+ by - §bua . rhuar . exp [_5b[/,41]
i=1
i=nG
+ 8- 58131 - 7821 - exp [
i=1
2
&li6] (6 - g[i,g])

2
+871 - (7= &g’

A short discussion of all terms is given in [13, Section
5], avery comprehensive discussion is given in [7]. The
parameters of the two contributions to the Helmholtz
energy are then fitted to experimental data for each
fluid. Details on the fitting procedure can be found
in [7].

Once the functional form and values for the param-
eters are known, all state properties can be calculated
as simple combinations of the partial derivatives of the
Helmholtz energy!. Algorithms for the calculation of
the state properties are given in [7], an extract is re-
peated in Table 1.

In addition to the state properties, the partial
derivaties of state properties are often needed in engi-
neering applications, for example specific heat capaci-

The partial derivatives of the Helmholtz energy are abbrevi-
ated as follows:

0 ﬁ(xo 0 62(10 0 020{0
a, = -_ s O = _ N atﬁ =
or o2), 0706

0 _ 60(0 0 _ ()2(10

%=\) T\ s
of = da’ o = d%a" P d%a"
or 5’ ©r or? 6’ © 0106

. _ [0 . [

%=\ % = \ 952

= oR [1 + dag — (310{;6]

= 1; [—(1 + dag) + 160526]

= % [—1’2(&?T + air)]

TR
o [75“25]

= R [—'L'Z(OtgT + ait)]

- IR [z‘éar;6 + dag + 52“{26]
0
= R[1 - *(ad; + o)
+5arzr3 - 1'5(1;6]
TQR [1+ 2605 + 5%als]

R[(@ +a") + (1 + 6af)

y®
N———
Il

—7(a? + af) — 6]

ties, the thermal expansion coefficient f, or the isother-
mal compressibility k. Any partial derivative can be
calculated in a two-step procedure: First, the partial
derivatives with respect to temperature and density, the
independent variables of the EoS, are formed. These
are given in [10] and repeated in Table 2. Second, all
further derivatives with respect to arbitrary state prop-
erties can then be transformed into simple combina-
tions of the partial derivatives with respect to temper-
ature and density, using the rules for Jacobian matrix
transformations.

For example, the partial derivatives of density with
respect to pressure and enthalpy, which are helpful for
transient simulation of power cycles, can be expressed
as

®).-[@)-@).@),e0)

64

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp1207663

Session 1B: Thermofluid Systems

and

(), [G),-GL(3),), |
oh/, 00) T /o \0e) \OT /,
More examples are given in [10].

3 Vapor-liquid equilibrium and two-
phase state

The vapour-liquid equilibrium (VLE) of a pure fluid is
characterized by three conditions:

thermal equilibrium: AT =(T'-T")=0
mechanical equilibrium: Ap=(p' —p”")=0

chemical equilibrium: Ag = (g’ —g")=0.

For a given temperature 7' the equilibrium state can
be determined by simultaneously solving the equation
for mechanical and chemical equilibrium. Using the
relations from Table 1 the mechanical equilibrium can
be rewritten as

Ap=o'R[1+8ay8',7)
—0"R[1+6"ay(s". 0] =0

and the chemical equilibrium as

Ag=TR[1+a’",7) + a"(8',7) + 8 ay(6, 7)]
—TR[1+a°", 7))+ a"(8",7) + 6" (6", 7)] =0

resulting in two equations with ¢’ and ¢” as two un-
knowns. These two equations can be simplified by
canceling out the constant and purely temperature-
dependent parts and then be solved simoultaneously
using a Newton-Raphson algorithm as described in [1].
A simplified flowchart for this algorithm is shown in
Figure 1. The actual implementation uses dimension-
less, scaled variables and gradients.

Once the VLE and the respective saturation states
are known, all state properties can be calculated using
the vapour mass fraction x. It is defined as

m" mass of vapour

" m’ +m” mass of liquid + mass of vapour

Using m = m’ +m"” and v = V/m this can be re-written
as

Specity T

Guess
0/ and pn

l

Calculate
Ap = p(T, 0") — p(T, 0")
Ag = g(T,0') - ¢(T,0")

Calculate better
o' and o"
by using

Ap and Ag

and
[7)
(%), = (%)
00) r 00 /) r

o' and o" found

Figure 1: Simplified flowchart for finding the vapour-
liquid-equilibrium iteratively, adapted from [1]

Solving for v yields

v=xv"+0-x)0" =0 +x@" -0
All other state properties can be calcuted in the same
manner.

In order to calculate the partial derivatives of state
properties within the two-phase region, the derivatives
along the saturation line are needed. The derivatives
of saturation pressure and temperature along the satu-
ration line are given by the Clausius-Clapeyron equa-
tion:

dpc B 3 1R = H
(5) =35 -7

" —

T —uv Tuv =0

dT(y U// _ U/ UI/ _ U/

dp _S//_S/_Th//_h/
These derivatives can then be used to calculate arbi-
trary derivatives along the saturation line, and, in a

second step, partial derivaties within the two-phase
state [10].

4 Iterative procedures

So far, it was assumed that temperature 7" and density d
are known. But the thermodynamic state can as well be

x= U= vl /o — 1/’ defined by specifying any other combination of two in-

" —v 1" = 1o’ dependent state variables. In engineering applications,

DOl Proceedings of the 9™ International Modelica Conference 65
10.3384/ecp1207663 September 3-5, 2012, Munich, Germany

HelmholtzMedia — A Fluid Properties Library

Specify:
pand T

Check T

T>T,

T<T,

c

Iteratively determine
vapour-liquid equilibrium

= Ps

P<Dps
P> Ps
two-phase region: liquid: Gas: super-critical:
p and T coupled 0 <0< Omax 0<o<o 0 <0 < Opmax

Figure 2: Simplified flowchart for determination of
density iteration bounds when pressure and tempera-
ture are specified

the known variable combinations often are (p, T), (p, h)
or (p, s). When any of these combinations is given, the
corresponding (7, d) have to be determined iteratively.
Two examples of such iterative procedures are given
below.

4.1 Density as a function of temperature and
pressure

By specifying pressure and temperature, only single-
phase states can be described, because in the two-phase
region pressure and temperature are not independent.
In order to find the density correspondig to the given
pressure in the single-phase region, a residual function
is defined as

RES(0) = p - pcalc(o’ i)

As p = p(g) is strictly montonic for a given temper-
ature, the residual function is as well strictly mono-
tonic and has one single root. Finding the root of the
residual function is then equal to finding the density
corresponding to the specified pressure. In literature
many algorithms for root finding are known, this li-
brary uses the algorithm by Brent [3]. It is implemented
in the Modelica Standard Library as Modelica.Math.
Nonlinear.solveOneNonlinearEquation. The
mandatory input for this algorithm is a residual func-
tion and a lower and upper bound. A flowchart for find-
ing the upper and lower bounds of density is shown in
Figure 2.

Once the density is known, all state properties can
be calculated using the relations given in Table 1 with

Specify
pand h

P> D
Check p °
P <P

Iteratively determine
vapour-liquid equilibrium
— T, and h’ and A"

h<

n
two-phase region: liquid: vapour: super-critical:
T=T,und x = x(h)) \ Tpn <T<T, Ty < T < Tax) \ Topin < T < T

Figure 3: Simplified flowchart for determination of
temperature iteration bounds when pressure and en-
thalpy are specified

density and temperature as input. In the following sec-
tion, enthalpy and entropy are needed as a function of
pressure and temperature. These are calculated by first
calculating the density iteratively and then calculating
enthalpy and entropy using temperature and density as
input variables.

4.2 Density and temperature as a function of
pressure and enthalpy

By specifying pressure and specific enthalpy, it is pos-
sible to describe single-phase as well as two-phase
states. If the pressure is below critical pressure, the
first step thus is to determine the vapour-liquid equi-
librium corresponding to the specified pressure. The
algorithm for VLE determination as described in sec-
tion 3 uses temperature as input. When the VLE is to
be determined from a specified pressure, the residual
funtion

RES(D N pc,calc(]—)

is used. The lower bound and uper bound for the tem-
perature are the triple temperature and the critical tem-
perature. The VLE information is then used to deter-
mine the region and temperature iteration bounds as
shown in Figure 3.

Density and temperature can then be determined us-
ing the Brent algorithm and the residual funtion

RES(T) =h- hca]c(peT) P

where h,.(p,T) already is an iterative funtion, as de-
scribed earlier.

66

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207663

Session 1B: Thermofluid Systems

S Ancillary equations

For the determination of the region during the iter-
ative procedures the vapour pressure and the satura-
tion states have to be evaluated. In order to mini-
mize the computational effort, three ancillary equa-
tions are given that are sufficiently precise for a first
region check. Only if the thermodynamic state is very
close to or within the two-phase region the VLE has to
be determined from the EoS for best consistency.

Additionally, the results from the ancillary equations
are used as start values for the iterative determination
of the VLE from the EoS.

5.1 Vapour pressure

The vapour pressure increases sharply with increasing
temperature, as shown in Figure 4. The HelmholtzMe-
dia library uses the vapour pressure equation suggested

by [12]:
2 (-5)
T

()5
Inl—)=—="-
Pe T c

This vapour pressure equation can be solved for tem-
perature numerically only.

5.2 Density of saturated liquid and saturated
vapour

Six models are implemented for the saturated density.
These are similar to the models implemented in Ref-
Prop [5]. As before the reduced density 6 and the re-
duced inverse temperature = are defined as

T,
=2 = e

0c T

The reduced density & at saturation is calculated in a
two-step procedure:

(7).
(-3)

1+ Z a,0"
5 =14 exp <2 a,-@”f)
exp (1 Z a,-@”i)

Multiplying the reduced density é with the critical den-
sity ¢, then yields the density o.

model 1,3 or 5
®=
model 2,4 or 6
and

model 1 or 2

model 3 or 4

model 5 or 6.

6 Further properties

6.1 Surface Tension

The surface tension ¢ between liquid and vapour phase
decreases with saturation temperature approaching the
critical temperature. This is modeled according to [6]:

T.—T,\"
6=Zg[< CT 6>

C

6.2 Viscosity

In this library two viscosity models are implemented
that are similar to the models implemented in Ref-
Prop [5]. In both models, the viscosity is split into three
contributions: the dilute gas viscosity 7, the initial
density viscosity #; and the residual viscosity #,. This
allows for an individual model for each contribution.

n=ny(M +n (o, T) + n.(0,T)

6.3 Thermal conductivity

One thermal conductivity model has been imple-
mented that is similar to the model implemented in
RefProp [5]. The thermal conductivity is split into
three contributions: the dilute gas thermal conductiv-
ity A, the residual thermal conductivity A, and the crit-
ical enhancement contribution A.. Each contribution is
then individually modeled.

A= AO(D + /lr(OaT) + Ac(07’1-)

7 Modelica implementation

This library is compatible to and based on
Modelica.Media [4]. HelmholtzMedia defines a
partial package PartialHelmholtzMedium which
extends from Modelica.Media.Interfaces.
PartialTwoPhaseMedium. All functions available in
the base class are either inherited without modification
or they are modified by implementing a new algorithm.

The Record ThermodynamicState contains den-
sity, temperature, pressure, specific enthalpy, specific
internal energy and specific entropy. Compared to the
base class, specific entropy was added. The Record
SaturationProperties was modified by adding the
states 1iq and vap.

Where possible, annotation(inverse=..); and
annotation(derivative=..); were used.

For fluids that can be modeled by the implemented
algorithms, adding a new fluid is done by extending

DOI
10.3384/ecp1207663

Proceedings of the 9™ International Modelica Conference 67
September 3-5, 2012, Munich, Germany

HelmholtzMedia — A Fluid Properties Library

4] Propane
n-Butane
3 1
<
5
~ 2+
,
1 1
0 Y : 1 1
100 200 300 400

TIK

O r
-10 |
A~
< <
~—
= n-Butane
—20 1
Propane
=30

Figure 4: Vapour pressure as a function of temperature

from PartialHelmholtzMedium and modifying the
parameters for the algorithms. The parameters need to
be copied from the respective publications and saved
in the format used by HelmholtzMedia. RefProp [5]
comes with a comprehensive compilation of these pa-
rameters, so that RefProp licencees could alternatively
copy them from the RefProp fluid files. So far, six
fluids have been implemented: n-Butane, Isobutane,
Isopentane Propane, R134a and Ethanol. The parame-
ters for these six fluids have been copied from RefProp.

8 Summary and Outlook

The most accurate equations of state (EoS) available
today for a variety of working fluids are fundamental
EoS in terms of Helmholtz energy. The HelmholtzMe-
dia library implements the Helmholtz energy EoS in
a generalized form that makes adding more fluids very
easy. In addition to the equation of state, algorithms for
the calculation of viscosity, thermal conductivity and
surface tension are given, as well as ancillary equations
for saturation properties that speed up iterative proce-
dures. Apart from these ancillary equations, the library
is not optimized for speed.

Possible extensions for future versions include the
addition of non-analytic terms for the residual part of
the Helmholtz energy and hyperbolic terms for the
ideal part of the Helmholtz energy. For viscosity and
thermal conductivity two more models could be added,
an extended corresponding states model and a model
based on the generalized friction theory.

In order to add accurate EoS for mixtures like the

GERG-2008 model, a template for multi-component
multi-phase media would be necessary. The structure
of Modelica.Media might change in a future version
of the Modelica Standard Library [11].

The library is completely written in Modelica and
released as open-source under the terms of the Model-
icalicense. Anybody interested in the library is invited
to contribute; the source code and an issue tracker are
available at [9].

Acknowledgment

The authors would like to thank Eric W. Lemmon for
answering an abundance of questions and for providing
a modified version of RefProp capable of outputting
additional intermediate results.

This work was performed in the framework of the
GeoEn project and was funded by the Federal Min-
istry of Education and Reasearch of Germany (Grant
03GO0767A).

References

R. Akasaka. “A Reliable and Useful Method to
Determine the Saturation State from Helmholtz
Energy Equations of State”. In: Journal of
Thermal Science and Technology 3.3 (2008),
pp. 442-451. DOI: 10.1299/jtst.3.442.

[1]

68

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp1207663

Session 1B: Thermofluid Systems

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

H. D. Baehr. “Thermodynamische Fun-
damentalgleichungen und charakteristis-
che Funktionen”. In: Forschung im Inge-
nieurwesen 64.1 (1998), pp. 35-43. DOL:
10.1007/PL00010764.

R. Brent. Algorithms for minimization without
derivatives. Prentice-Hall, 1973.

H. Elmqvist, H. Tummescheit, and M. Otter.
“Object-oriented modeling of thermo-fluid sys-
tems”. In: Proceedings of the 3rd International
Modelica Conference. 2003, pp. 269-286.

E. W. Lemmon, M. L. Huber, and M. O. McLin-
den. NIST Standard Reference Database 23:
Reference Fluid Thermodynamic and Transport
Properties - REFPROP. 9.0. National Institute
of Standards and Technology, Standard Refer-
ence Data Program. Gaithersburg, 2010.

G. R. Somayajulu. “A generalized equation for
surface tension from the triple point to the crit-
ical point”. In: International Journal of Ther-
mophysics 9.4 (1988), pp. 559-566. DOI: 10.
1007/BF00503154.

R. Span. Multiparameter equations of state:
an accurate source of thermodynamic property
data. Springer Verlag, 2000.

R. Span, W. Wagner, E. W. Lemmon, and R. T.
Jacobsen. “Multiparameter equations of state —
recent trends and future challenges”. In: Fluid
Phase Equilibria 183-184.1-2 (2001), pp. 1-20.
DOI: 10.1016/50378-3812(01)00416-2.

M. Thorade. HelmholtzMedia. 2012. URL:
https : / / github . com / thorade /
HelmholtzMedia/.

M. Thorade and A. Saadat. “Partial derivatives
of thermodynamic state properties for dynamic
simulation”. In: will be submitted to: Environ-
mental Earth Sciences (2012).

H. Tummescheit. Ticket 85: Re-design and
simplification of Modelica.Media. 2008. URL:
https://trac.modelica.org/Modelica/
ticket/85.

W. Wagner. Eine mathematisch statistische
Methode zum Aufstellen thermodynamis-
cher Gleichungen — gezeigt am Beispiel der
Dampfdruckkurve reiner fluider Stoffe. Vol. 3.
Fortschrittberichte der VDI Zeitschriften 39.
VDI Verlag, 1974.

[13]

W. Wagner and A. PruB3. “The IAPWS Formula-
tion 1995 for the Thermodynamic Properties of
Ordinary Water Substance for General and Sci-
entific Use”. In: Journal of Physical and Chem-
ical Reference Data 31.2 (2002), pp. 387-535.
DOI: 10.1063/1.1461829.

DOI

10.3384/ecp1207663

Proceedings of the 9™ International Modelica Conference 69

September 3-5, 2012, Munich, Germany

HelmholtzMedia — A Fluid Properties Library

70 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp1207663

Object-Oriented Library of Switching Moving Boundary Models
for Two-phase Flow Evaporators and Condensers

Javier Bonilla® Luis J. Yebra ¢

Sebastidn Dormido ?

Francois E. Cellier ¢

¢ Centro de Investigaciones Energéticas MedioAmbientales y Tecnolégicas (CIEMAT)
Plataforma Solar de Almeria (PSA), Almeria, Spain
b National Distance Education University (UNED),
Department of Computer Science and Automatic Control, Madrid, Spain
¢ Swiss Federal Institute of Technology (ETH Zurich),
Department of Computer Science, Zurich, Switzerland

Abstract

This paper discusses a Modelica library of switching
moving boundary models for two-phase flow heat ex-
changers: evaporators and condensers. The equation-
based object-oriented modeling paradigm has been
considered by means of designing basic models ap-
plying the conservation laws for each flow state: sub-
cooled liquid, two-phase flow and superheated vapor.
Evaporator and condenser models have been devel-
oped by interconnecting the basic models and includ-
ing mechanisms to switch between different configu-
rations: general, flooded and dry evaporators and con-
densers. Finally, simulation results are presented by
an integrity and stability test case.

Keywords: Moving boundary model; switching;
two-phase flow; evaporator, condenser

1 Introduction

Heat exchangers play a very important role in indus-
try; the modeling and control of these elements is
a key part in the process plant control. Two of the
most common discretization approaches used in fluid
dynamic modeling are the finite-volume distributed-
parameter method [21] and the moving-boundary
lumped-parameter method [8]. Dynamic modeling is
always a challenging task in which the trade-off be-
tween accuracy and speed must be evaluated depend-
ing on the purpose of the model. Moving boundary
models are low-order and much faster models than fi-
nite volume models; additionally they can describe the
dynamic behavior of evaporators and condensers with
high accuracy [1]. In the context of real-time simu-
lation, dynamic system optimization and model-based

control, where fast computation is required, the mov-
ing boundary method seems to be appropriate.

The moving boundary method divides the evapora-
tor/condenser in different regions, also called Control
Volumes (CVs), depending on the fluid phase. In each
CV, the lumped thermodynamic properties are aver-
aged; the barrier is not fixed and it may move between
adjacent CVs. The main idea is to dynamically track
the lengths of the different regions [16].

The three basic flow states are: subcooled lig-
uid (SC), two-phase flow (TP) consisting of vapor
and liquid present simultaneously in the same vol-
ume, and superheated vapor (SH) as represented in
Fig. 1. Considering these three basic flow states, com-
pound configurations can be created. Fig. 2 shows
these configurations: general, flooded and dry evap-
orators/condensers.

A state-of-the-art study in moving boundary mod-
els for two-phase flow heat exchangers was previ-
ously presented in [2] together with a new switching
flooded evaporator model. This paper extends previ-
ous work by new switching moving boundary models
for general/dry evaporators and general/flooded/dry
condensers. To the knowledge of the authors, there
are three papers related to moving boundary models
developed using Modelica [17, 27, 13]. The novelty
of this paper is that a strictly object-oriented design is
followed.

Subcooled Liquid Two-phase Flow Superheated Vapor

() (b) (©)

Figure 1: Basic flow states

DOI
10.3384/ecp1207671

Proceedings of the 9" International Modelica Conference 71
September 3-5, 2012, Munich, Germany

Object-Oriented Library of Switching Moving Boundary Models for Two-phase Flow Evaporators ...

Subcooled Liquid Two-phase Flow Superheated Vapor

(a) General evaporator

Superheated Vapor Two-phase Flow Subcooled Liquid

(d) General condenser

Subcooled Liquid

(b) Flooded evaporator

Two-phase Flow

(e) Flooded condenser

Two-phase Flow Two-phase Flow Superheated Vapor

(c) Dry evaporator

Subcooled Liquid Superheated Vapor Two-phase Flow

(f) Dry condenser

Figure 2: Evaporator and condenser configurations

2 Mathematical modeling

This section first describes the assumptions made in
the development of the mathematical models, after
that the governing equations in their general form are
listed, the one-dimensional CV concept is then intro-
duced, and finally the basic and compound models are
explained together with some additional equations re-
quired to complete the models.

2.1 Assumptions

With the aim of developing a low-order model that re-
flects the principal dynamics, a number of assump-
tions have been made: horizontal orientation; one-
dimensional case; constant pipe cross-sectional area;
time-dependent uniform pressure along the evapora-
tor; homogeneous two-phase flow; average properties
and time-dependent uniform heat flux per unit length
in each CV; negligible gravitational forces; negligi-
ble changes in the kinetic energy; negligible viscous
stress; heat conduction and radiation in the fluid and
heat conduction in the pipe wall are also neglected.

2.2 Governing equations

The straightforward way to derive the model equations
is from the time-dependent equations for conservation
laws. Considering the assumptions presented in the
previous section, the differential formulation for the
conservation of mass and energy in the fluid are repre-
sented by Egs. 1 and 2, respectively [18]. Eq. 3 [18]
defines the conservation of energy in the pipe wall and
Table 1 summarizes the nomenclature.

Var. Description Units

t Time [s]

z Spatial coordinate [m]

A Cross-sectional area [m?]

Cp Isobaric specific heat capacity | [J/(K-kg)]
m Mass flow rate [kg/s]

X Vapor quality [-]

p Pressure [Pa]

0 Heat flow rate [W]

g Heat flux [W/m?]

y Void fraction [-]

¥ Mean void fraction [-]

h Specific enthalpy [J/kg]

h Mean specific enthalpy [J/kg]

W h of saturated liquid [J/kg]

' h of saturated vapor [J/kg]

P Density [kg/m?]

p Mean density [kg/m>]

o’ Density of saturated liquid [kg/m?]

p” Density of saturated vapor [kg/m>]

T Temperature K]

T Mean temperature K]

£ Pipe roughness [m]

Subs. Description | Subs. Description
a InlettoCV | b Outlet to CV
sc Subcooled tp Two-phase
sh Superheated | w Pipe wall

i InnertoCV | o Outer to CV

Table 1: Nomenclature

2.3 One-dimensional Control Volume

The moving boundary method is based on the divi-
sion of the heat exchanger in different CVs. Fig. 3
represents a CV; the lumped thermodynamic proper-
ties in the CV are averaged and they are uniform but
time-dependent (i, T,p); the pressure (p) is not de-

JdAp dm g
o T 0, (1) noted by a mean value, because there is only one
time-dependent pressure value for the entire evapo-
JdApu I drth — ¢) rator. The cross-sectional areas (A,A,,) are constant.
- Y1 . . .
ot dz Each CV has three interfaces or boundaries. One is ad-
oT, jacent to the pipe wall where the thermodynamic prop-
AwaCp,wW =40 —4i- (3) erties are also considered in its mean values (7,,, p,).
72 Proceedings of the 9" International Modelica Conference DOl
September 3-5, 2012, Munich Germany 10.3384/ecp1207671

Session 1B: Thermofluid Systems

To Pu (A
A
:a AE hT s Po
a i —> hy
Ma l P Mo
Te Pu SAW

Z, Zp

Figure 3: Control Volume (CV)

The other two interfaces connect to adjacent CVs or
the inlet or outlet boundaries of the heat exchanger. In
Fig. 3 the flow direction is defined by the arrow, so
the inlet flow thermodynamic properties correspond to
the a subscript variables (p,, h,,11,), whereas the out-
let flow thermodynamic properties are defined by the
b subscript variables (pp, hp, i1p).

2.4 Basic Volume Models

The derivation of the mass and energy balance equa-
tions for the CV models is not presented due to
space limitation. From the-state-of-the-art study in
two-phase flow moving boundary models useful in-
formation was obtained [2]. The derivation of the
model is analogous to the developed in [16, 17] but
not neglecting the mean void fraction time derivative
(dy/dr), where a new calculation method has been in-
troduced. Additionally, the thermodynamic properties
at the boundaries are not fixed to any particular value,
by means of considering the density or specific en-
thalpy of saturated liquid/vapor, so the basic volume
models can be used in any evaporator/condenser.

24.1 One-phase Flow Volume Model

The mass and energy balance equations for the sub-
cooled liquid and superheated vapor CV models are
described by Eqs. 4 and 5 where the subscript cv can
be substituted by sc or sh to consider the particular CV.

dpcv _ dzey dz, de
A —_— A— — —
(ch dt + Pcv dt) + Pa dt P» dt (4)
= My, — nyp,.
- dz dh dpg, - d
<pcv cv dcv + Pev d;‘v Zev + C[l)tcvhcvzcv) _Achd71;

dz,

2.4.2 Two-phase Flow Volume Model

The mass and energy balance equations for the two-
phase flow CV model are described by Eqgs. 6 and 7.
The way the mean void fraction and its time derivative
are calculated is described in [2].

A(dj"’ma" (y)p’>+ztp(‘fif<p o)+

_dp" dp dp'dp dz, dzp
- AL 5 AL
Vap ar TV)) FPAG —PA,
I ——.
(6)
d dy
A(Z’p(T’P”h" +(1=Pp'H) +2p <dzy (p"H" —
dp _,dh" dp dp' dp
/h Lih” //77 1 77}!/
PH) T g "t =Dy
W dp dp dz
1= L 4PN _ 4z, 2P 4 h, e
=nry, dt)> gy AP
dz)) .
ApbhbT: = righg — mphy, + qitpltp-
@)

2.5 Heat Exchanger Models

When modeling the compound models (not only one
CV model), additional equations are required besides
the CV governing equations; these equations depend
on the kind of heat exchanger and relate the outlet CV
specific enthalpies with the values at saturation condi-
tions.

2.5.1 Evaporator

If a general or flooded evaporator is considered (cf.
Figs. 2(a) and 2(b)), Eq. 9(a) is required for the sub-
cooled liquid CV, and also the initial value for /; must
be set to /.

An easy way to accomplish this is to only intro-
duce Eq. 8. However, there is a problem with that
approach if switching moving boundaries models are
considered.

hy, =M. 3

Suppose that a flooded evaporator is being modeled,
where the outlet fluid is two-phase flow; A for the

+ Apaha 2 Apyiy T — by — ity + s even:
Palta™y Pl =gy afta = Mplth T dievley subcooled liquid CV is not a state variable because
®) it depends on pressure, and therefore Eq. 8 is valid
DOl Proceedings of the 9™ International Modelica Conference 73

10.3384/ecp1207671

September 3-5, 2012, Munich, Germany

Object-Oriented Library of Switching Moving Boundary Models for Two-phase Flow Evaporators ...

and Ay is an algebraic variable. However, if the out-
let fluid turns into subcooled liquid due to a change
in the model inputs, Eq. 8 is no longer valid and #; is
a state variable. Such a model is called a variable-
structure model. In a variable-structure model the
number/type of equations or variables can change, on
the other hand a static-structure model implies that the
number of equations as well as the number of alge-
braic and state variables remains the same. Variable-
structure models are not currently supported by most
modeling and simulations tools (including Modelica
tools). Whereas there exist some modeling languages
and tools that support variable-structure models, none
of the existing variable-structure modeling tools sup-
ports the handling of higher-index systems [28]. For
that reason, Modelica is still our preferred modeling
language, but it must be taken into account that only
static-structure models can be simulated.

For this reason, the number of equations must re-
main the same in all different configurations of our
model, and A for the different CVs must always be
a state variable so its value cannot be fixed to any al-
gebraic variable and neither can A,, because it is con-
nected to &, from the CV to the left, except for the
case of the first CV where the h, value can be freely
establish.

If a general or dry-expansion evaporator is consid-
ered (cf. Figs. 2(a) and 2(c)), Eq. 9(b) is required for
the two-phase flow CV, and also the initial value for 4,
must be set to "

2.5.2 Condenser

If a general or flooded condenser is considered (cf.
Figs. 2(d) and 2(e)), Eq. 9(a) is required for the two-
phase flow CV, and also the initial value for /; must
be set to /. If a general or dry condenser is considered
(cf. Figs. 2(d) and 2(f)), Eq. 9(b) is required for the
superheated vapor CV, and also the initial value for £,
must be set to /”.

dh, _ di

an i
dt dt

= 9
dt dt ©)

(@), (b).

2.6 Pipe Wall Model

The energy balance equation for each pipe wall CV is
described by Eq. 10. This equation is derived in [27],
where T, , and T,,, are the wall temperature values at
the interfaces. This approach is closer to the practical
situation as it remains continuous and smooth during

the switching between different configurations.

dT,,

T, Ty =Ty dz
dt

Tw,a - Tw &
Zab dt

A

=qo—qi-
(10)

2.7 Additional Equations

Some additional equations are required in order to
complete the heat exchanger model. These equations
are not detailed here due to space limitations but they
can be easily found in the literature [16]. The remain-
ing equations are: the heat flow rates between the pipe
wall and the ambient and between the pipe wall and
the fluid and the geometric constraints, i.e., the total
heat exchanger length and the pipe geometry. The pipe
geometry considered in this manuscript has been the
cylindrical geometry.

2.8 Switching

Switching from one configuration to another implies
the disappearance of an existing CV or the appear-
ance of a new one, e.g. when switching from a general
evaporator to a flooded evaporator or vice versa. This
section elaborates how such transitions are captured
by the model. Additional equations for the new CV
may be required. When the CV is active, its govern-
ing equations correspond to the equations described in
Sections 2.4.1 or 2.4.2 depending on the fluid phase;
however a different set of equations is required to de-
scribed the CV in its inactive state. This is also ex-
plained in this section. It is assumed that the appear-
ance or disappearance of a CV can only occur at the
end of the heat exchanger.

2.8.1 Disappearance of a Control Volume

A CV disappears (becomes inactive) when Eq. 11(a)
becomes true, where z,,,, denotes a threshold that
specifies the minimum length of an active CV. This
value cannot be zero in order to avoid structural sin-
gularities, therefore the CV length must be greater that
zero. The default value for this parameter has been set
to 107% m.

2.8.2 Control Volume in an Inactive State

When any of the CVs is inactive, the mass and en-
ergy balance equations (Eqgs. 4 and 5 or Eqgs. 6 and 7
depending on the CV fluid phase) are substituted by

74 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207671

Session 1B: Thermofluid Systems

Egs. 11(b) and 11(c), respectively. These equations
guarantee that the CV is inactive and does not act on
the fluid.

Zev < Zmin (0)7 Hlg = 1t (b)7
dh, _ dhy, () dzey -0 (d) .
a a7 Tar T '

Moreover, Eq. 9(a) or 9(b) must be substituted by
Eq. 11(d) depending on the inactive CV and on the
kind of heat exchanger considered.

2.8.3 Appearance of a Control Volume

The event triggering the appearance of a CV depends
on the particular CV and also on the kind of heat ex-
changer.

Evaporator. The superheated vapor CV appears (cf.
Figs. 2(a) and 2(c)) when the vapor quality in the two-
phase flow CV becomes greater than 1.0, Eq. 12(a).
The two-phase flow CV appears (cf. Figs. 2(a) and
2(b)) when the outlet specific enthalpy in the sub-
cooled liquid CV becomes greater than the specific en-
thalpy of saturated liquid, Eq. 12(b).

Condenser. The subcooled liquid CV appears (cf.
Figs. 2(d) and 2(e)) when the outlet specific enthalpy
in the two-phase flow CV is lower than the specific
enthalpy of saturated liquid, Eq. 12(c). The two-phase
flow CV appears (cf. Figs. 2(d) and 2(f)) when the
outlet specific enthalpy in the superheated vapor CV
becomes lower than the specific enthalpy of saturated
vapor, Eq. 12(d).

x>1 hb>h’

(@),
(),

(b)),
(d).

(12)

hy < n hy < n’

3 Description of the Library

This section describes the Modelica library that imple-
ments the mathematical models previously described,
the MBMs (Moving Boundary Models) library.

3.1 Library Structure and Interfaces

Fig. 4(a) shows the main packages that make up
the MBMs library, and Fig. 4(b) shows the Compo-
nents.Water MBM package in expanded view, where
the basic and compound models can be seen. The

i g [components
=[] vBns W [JIBalances
= () Users Guide : Cweter
= [%]lcons S [Juen
+ U] Units 5 [sasic
= [C] Constants i alm SUbCoOledLiquid
“ [R]Records &t TwoPhaseFlow
=+ Ime\TaceS Lt -SuperHeatedvapor
= [E]Functions - [JJJevaporators
+ [JBaseClasses &L Floodzd
Lm
] DPaniaIComponents ;"-#'D")‘
+ fE] components P General
-] Examples = Sw'mh'”g
— [PlEvaporators -E"..F\nnded
+ [=] Basic by
Pl L gh-General
=J| Compound
) 2 [Jcondensers
5[Switching T
- - SkFlooded
A Stability é'-T-DIY
TJintegrity L General
| Validation H Swnchmg
+ [Condensers - EkFloaded
[@]HeatTransferCor LDy
o FannimgFrictiDnFactm' :--ﬁnGeneml

(a) Packages (b) Components

Figure 4: The MBMs library

former do not support switching, whereas the latter
do. Modelica Fluid and Modelica Thermal ports have
been used throughout in order to define the interfaces
in the MBMs library. This guarantees that the MBMs
library is compatible with any component from the
Modelica standard library 3.2 [20] or from third-party
components that also make use of these interfaces.

3.2 Partial Base Classes

The most remarkable partial base classes in the MBMs
library are: the Volume class, the MultipleVolume
class, the HeatTransferCorrelation class and the Fric-
tionFactor class.

3.2.1 Volume Class

The Volume class defines the fluid and heat ports, the
medium, some additional thermodynamic properties,
as well as the state and geometry of the CV. This class
is the base class for the basic volume models. The
volume class also includes a heat transfer correlation
(HTC) and a friction factor model (FFM).

3.2.2 MultipleVolume Class

The MultipleVolume class defines two or three CVs
that can be redeclared in classes that inherit from it.
The CVs are connected through the fluid connectors,
and this is the base class for all heat exchangers. We

DOI
10.3384/ecp1207671

Proceedings of the 9™ International Modelica Conference 75
September 3-5, 2012, Munich, Germany

Object-Oriented Library of Switching Moving Boundary Models for Two-phase Flow Evaporators ...

g[nCV]

hit te

(a) Icon (b) Component diagram

Figure 5: MultipleVolume base class (3 CVs)

followed strictly an object-oriented design for heat ex-
changers. Figs. 5(a) and 5(b) show the icon and com-
ponent diagram of the 3 CVs MultipleVolume class.

3.2.3 Heat Transfer Correlations and Friction
Factor Models

There are two base classes for heat transfer correla-
tions (HTCs) and friction factor models (FFMs). The
user can inherit from them to define new HTCs or
FFMs. FFMs have been implemented because the
Petukhov and Gnielinski HTCs require a friction fac-
tor which can be caculated from those FFMs, further-
more there are plans for extending the library with
pressure loss. A HTC can be restricted to only one
particular fluid phase (one-phase or two-phase) or to
only one particular process (evaporation or condensa-
tion), if required. Moreover, there are some HTCs for
evaporation and FFMs for smooth and rough pipes, al-
ways considering turbulent flow, already implemented
in the library. They are summarized in Table 2. The
implemented HTCs and FFMs have been also adapted
to switching in order to avoid discontinuities and nu-
merical problems during the simulation. The HTCs
and FFMs have been validated against an independent
implementation [26]. The HTC and FFM can be se-
lected in each CV through the GUI. A test case for the
implemented two-phase flow HTCs is shown in Fig. 6.

3.3 Volume Components

Fig. 7 shows the icons of the subcooled liquid, two-
phase flow and superheated vapor models. These mod-
els inherit from the Volume class and add their partic-
ular equations, although the subcooled liquid and the
superheated vapor models inherit from an intermedi-
ate class in the hierarchy, the OnePhaseVolume class,
because both models share the same equations.

5 10* ‘
Chen (1966)
= = = Shah (1982)
2.57) .= = Kandlikar (1990)
Gungor-Winterton (1986)
ol Goebel (1998)

Heat transfer coefficient (W/(mZK))

0.5k &

i
0 0.2 0.4 0.6 0.8 1
(-

Steam quality (-)

Figure 6: Comparison of two-phase flow HTCs (p = 3
MPa, Q = 5,827 Kw, rii = 0.6 kg/s, € = 3- 107> m)

Heat Transfer Correlations Fluid phase
Ideal any
Constant any

[9] Dittus-Boelter (1930) One-phase
[3] Chen (1966) Two-phase
[22] Petukhov (1970) One-phase
[11] Gnielinski (1976) One-phase
[25] Shah (1982) Two-phase
[14] Gungor-Winterton (1986) Two-phase
[19] Kandlikar (1990) Two-phase
[12] Goebel (1998) Two-phase
Fanning Friction Factor Model | Kind of pipe
None -

Constant any

[5] Colebrook (1939) any

[4] Chen (1979) any
Explicit simplified Chen (1979) | any

[24] Karman-Prandtl (1930) Rough

[7] Denn (1980) Smooth
[15] Haaland (1983) any

Table 2: HTCs for evaporation and fanning FFMs im-
plemented in the MBMs library

aall] aall] aali]

Subcooled Liquid Volume Two-phase Flow Volume Superheated Vapor Volume

(a) (b) (©)

Figure 7: Volume components

76 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207671

Session 1B: Thermofluid Systems

General Evaporator

GnCV]
S

General Evaporator

(a) (b)

ainC)

L g

Flooded Evaporator Flooded Evaporator

(© (d)

dlncY] T

=

Dry-expansion Evaporator

(e) ®

Dry-expansion Evaporator

Figure 8: Evaporator components

3.4 Heat Exchanger Components

Redeclaring the partial Volume classes in the Multi-
pleVolume (2 or 3 CVs) class with the volume com-
ponents: subcooled liquid, two-phase flow and super-
heated vapor models, evaporators and condenser can
be defined.

3.4.1 Evaporator Components

Fig. 8 shows the general, flooded and dry-expansion
evaporator models. The figures on the left represent
the icons whereas the figures on the right are the com-
ponent diagrams, where the partial Volume classes
have been redeclared appropriately.

3.4.2 Condenser Components

For condensers, the situation is the same, but changing
the order of the interconnected basic volumes models.
Fig. 9 shows the general, flooded and dry condenser
icons and component diagrams.

qInCV]

HE
|

General Condenser

(@ (b)

General Condenser

gnCYV]

b

Flooded Condenser

(©)

qlncv] T

Flooded Condenser

-
o — 0

I

Dry Condenser Dry Condenser

(e ®

Figure 9: Condenser components

3.5 Pipe Wall Component

The pipe wall component includes the pipe wall model
previously introduced in Section 2.6 adapted to sup-
port switching. The pipe wall component together
with the Volume class depend on the geometry. The
geometry is a partial class. Different geometries can
be implemented by inheriting from the geometry class;
the library already includes a cylindrical geometry
model. Moreover, the pipe wall component inherits
from a partial wall class, so different wall models can
be implemented and used.

3.6 The initialization problem

The initialization problem is always a cumbersome
task and it is especially difficult when considering in-
active CVs in the initialization. For that reason, the
initialization has been taken into account in the de-
sign of the MBMs library; the initialization options
can be establish through the GUI in the initialization
tab of evaporators and condensers. Fig. 10 shows the
initialization options for a switching general evapora-
tor. Here, it can be specified, which CVs are inactive
in the initialization, the initial inlet pressure can be set
as well as the initial outlet temperature (this value is

DOI
10.3384/ecp1207671

Proceedings of the 9™ International Modelica Conference 77
September 3-5, 2012, Munich, Germany

Object-Oriented Library of Switching Moving Boundary Models for Two-phase Flow Evaporators ...

¢dhaldt?]

Specific Enthalp:
Inlet specific enthalpy derivate available ‘

eActive volume 27 %] CV2 initially activelinnactive

iActive volume 3%: []

Cantral
¢Active volume 17 [’ CW initially activefinnactive
CV3 initially active/innactive

Pressure

o

Temperature: Outletintial temperature (when Volume 1 and 2 active and not active Volume 3)

Initial inlet pressure ‘

Figure 10: Initialization options for general evapora-
tors

only required when the outlet fluid is two-phase flow),
and it can be specified whether the inlet specific en-
thalpy time derivative is available. Sometimes when
considering experimental data as input, this thermody-
namic property may not be available and cannot be es-
timated, in which case the inlet specific enthalpy time
derivative is set to zero.

4 Simulation

This section shows the simulation of the mathematical
models previously introduced and implemented in the
MBMs library. The medium in these simulations is the
two-phase flow water-steam mixture from the Model-
ica Media library [20]. Dymola 2013 [6] has been the
Modelica tool used for these simulations. The numer-
ical solver used has been DASSL [23] and the relative
tolerance has been set to 107%. All of the developed
models have been thoroughly tested in integrity and
stability tests, however due to space limitation only a
few can be presented in this article. A simulation test
for a switching flooded evaporator was presented in

[2].

4.1 Model Integrity

The simulation results must be verified and the govern-
ing equations of the model must be validated both in
steady-state and in transient predictions. To this end,
the mathematical model and library implementation
results were compared to those of an independently de-
veloped finite volume model and code from the Mod-
elica Fluid library [10] that belongs to the Modelica
Standard Library 3.2. The Modelica Fluid library has
been meticulously designed and tested and is widely
used in the Modelica community.

Fig. 11 shows the outlet temperature for a test
case considering a switching moving boundary gen-
eral evaporator model from the MBMs library (dashed

Outlet temperature (K)
a o o o
S a o a o
S & & & &
— T T

IN
@
=}

IS
o
S

- - - MBM —— FVM 3CVs —— FVM 10CVs —— FVM 20CVs —— FVM 50CVs
5 10 15

o

Time (s) X 10

Figure 11: Integrity and stability test

Model CPU-Time (s) | State events
MBM 0.87 104
FVM 3 CVs 2.34 45
FVM 10 CVs 6.93 124
FVM 20 CVs 21.4 228
FVM 50 CVs 103 551

Table 3: Simulation statistics

blue line) and finite volume models from the Model-
ica Fluid library considering different numbers of CVs
(3,10,20,50). It can be seen that the simulation results
obtained with the MBMs library are in good agree-
ment with those from the Modelica Fluid library and
that the MBMs library model runs considerably faster
(cf. Table 3), because the finite volume model requires
at least 20 CVs to yield acceptably accurate results.

4.2 Model Stability

Model stability, especially the switching stability, was
checked by holding certain inputs constant during the
simulation while varying sinusoidally others to force
repeated switching. Variations in the heat flow rate,
mass flow rate, inlet specific enthalpy and outlet pres-
sure have been tested. Fig. 11 shows the outlet tem-
perature in a switching general evaporator when vary-
ing sinusoidally the inlet heat flow rate over the pipe
(cf. Fig. 12). The outlet fluid phase changes from sub-
cooled liquid to two-phase flow (constant temperature)
to superheated vapor. Fig. 13 shows the CV lengths
in the moving boundary model where it can be ob-
served, which CVs are inactive during the simulation
(CVs with zero length), the length of the evaporator is
500 m.

78 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207671

Session 1B: Thermofluid Systems

Heat flow rate (W)

Time (s)

Figure 12: Heat flow rate over the pipe

500

400

@
S
]

=

Control volume length (m)
N
3
8

=)
3
T

|
[

ok ——— —— o limamm—m e

——SCCVlength - = = TP CV length - == SH CV length

0 5 10 15
Time (s) <10t

Figure 13: Control volume lengths

5 Conclusions

This paper details mathematical moving boundary
models for heat exchangers, considering basic CVs
and compound models: general, flooded and dry evap-
orators and condensers, independent of the two-phase
flow medium. The pipe wall model is also shown. It
is independent of the geometry, particularized for a
cylindrical geometry in this paper. The switching cri-
teria was also introduced allowing the disappearance
of the CVs at the end of the heat exchanger. A new
equation-based object-oriented Modelica library, the
MBMs library, implementing all of the detailed mod-
els has been presented. This library provides models
of different HTCs and FFMs. It also tackles the initial-
ization problem, which is specially tough in the case
of moving boundary models. The mathematical mod-
els and the MBMs library have been tested thoroughly
using integrity and stability tests.

6 Future work

The MBMs library is currently still in its beta version,
and some of the following open tasks will be consid-
ered for future library extensions: pressure drop in
each CV and disappearance of CVs at the beginning
of the heat exchanger. It is planned to use and vali-
date the switching condenser models in the modeling
of a double effect absorption heat pump in the ambit of
the POWER project. The switching evaporator models
are intended to be also validated in the HIBIOSOLEO
project for the development of a direct steam genera-
tion linear Fresnel solar thermal power plant.

References

[1] S. Bendapudi, J. Braun, and E. Groll. A
comparison of moving-boundary and finite-
volume formulations for transients in centrifugal
chillers. International Journal of Refrigeration,

31(8):1437-1452, December 2008.

J. Bonilla, L.J. Yebra, S. Dormido, and F.E. Cel-
lier. Object-Oriented Modeling of Switching
Moving Boundary Models for Two-phase Flow
Evaporators. In Proceedings MATHMOD 2012
- 7'" Vienna International Conference on Mathe-
matical Modelling, 2012.

J.C. Chen. Correlation for Boiling Heat Transfer
to Saturated Fluids in Convective Flow. Indus-
trial Engineering Chemistry Process Design and
Development, 5(3):322-329, 1966.

N.H. Chen. An Explicit Equation for Fric-
tion Factor in Pipe. Industrial & Engineering
Chemistry Fundamentals, 18(3):296-297, Au-
gust 1979.

[5] C.F. Colebrook. Turbulent Flow in Pipes, with
particular reference to the Transition Region
between the Smooth and Rough Pipe Laws.
Journal of the Institution of Civil engineers,

11(4):133-156, 1939.

Dassault Systetmes. Dymola 2013 - Dynamic
Modeling Laboratory. http://www.3ds.com/
products/catia/portfolio/dymola, 2012.

[71 M.M. Denn. Process Fluid Mechanics. Num-
ber 6. Prentice-Hall, Englewood Cliffs, 1980.

[8] M. Dhar and W. Soedel. Transient Analysis of
a Vapor Compression Refrigeration System. In

DOI
10.3384/ecp1207671

Proceedings of the 9™ International Modelica Conference 79
September 3-5, 2012, Munich, Germany

Object-Oriented Library of Switching Moving Boundary Models for Two-phase Flow Evaporators ...

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Proceedings of the 15" International Congress
of Refrigeration, pages 1031 — 1067, Venice,
Italy, 1979.

FE.W. Dittus and L.M.K. Boelter. Heat transfer in
automobile radiators of the tubular type. Univer-
sity of California Publications in Engineering,

2(1):443-461, 1930.

R. Franke, F. Casella, M. Sielemann, K. Proelss,
M. Otter, and M. Wetter. Standardization of
Thermo-Fluid Modeling in Modelica.Fluid. In
Proc. of the 7" Int. Modelica Conference, pages
122-131, Italy, September 2009.

V. Gnielinski. New equations for heat and mass
transfer in turbulent pipe flow and channel flow.
International Chemical Engineering, 2(16):359—
368, 1976.

O. Goebel. Thermohydraulics of Direct Steam
Generation. In Proceedings of the 9" Interna-
tional Symposium on Solar Thermal Concentrat-
ing Technologies, Odeillo-Font-Romeu, 1998.

M. Griber, N.C. Strupp, and W. Tegethoff. Mov-
ing Boundary Heat Echanger Model and Vali-
dation Procedure. In Proceeding of EUROSIM,
2010.

E. Gungor and R.H.S. Winterton. A general cor-
relation for flow boiling in tubes and annuli. In-
ternational Journal of Heat and Mass Transfer,
29(3):351-358, 1986.

S.E. Haaland. Simple and Explicit Formulas for
the Friction Factor in Turbulent Pipe Flow. Jour-
nal of Fluids Engineering, 105(1):89-90, 1983.

J.M. Jensen. Dynamic modeling of Thermo-Fluid
Systems-With focus on evaporators for refrigera-
tion. PhD thesis, Technical University of Den-
mark, 2003.

JM. Jensen and H. Tummescheit. =~ Moving
boundary models for dynamic simulations of
two-phase flows. In Proc. of the 2™ Int. Mod-
elica Conference, 2002.

R.W. Johnson. The Handbook of Fluid Dynam-
ics. CRC Press, 1998.

S.G. Kandlikar. A general correlation for satu-
rated two-phase flow boiling heat transfer inside
horizontal and vertical tubes. Journal of heat
transfer, 112:219 — 228, 1990.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Modelica Association. Modelica Standard Li-

brary 3.2, 2010.

S.V. Patankar. Numerical Heat Transfer and
Fluid Flow. Hemisphere, Washington,D.C,
1980.

B.S. Petukhov. Heat Transfer and Friction in Tur-

bulent Pipe Flow with Variable Physical Proper-
ties. Advances in Heat Transfer, 6(C):504-564,
1970.

L.R. Petzold. A description of DASSL: a Difer-
ential/Algebraic System Solver. Scientific Com-
puting, pages 65-68, 1983.

H. Schlichting and K. Gersten. Boundary-layer
theory. Springer, 2000.

M.M. Shah. Chart correlation for saturated
boiling heat transfer: equations and further
study. ASHRAE TransUnited States, 88(CONF-
820112-):185-196, 1982.

E. Zarza. The Direct Steam Generation with
Parabolic Collectors. The DISS project (in Span-
ish). PhD thesis, Escuela Superior de Ingenieros
Industriales de Sevilla, Seville, Spain, November
2000.

W. Zhang and C. Zhang. A generalized
moving-boundary model for transient simulation
of dry-expansion evaporators under larger distur-
bances. International Journal of Refrigeration,

29(7):1119-1127, November 2006.

D. Zimmer. Equation-Based Modeling of
Variable-Structure Systems. PhD thesis, Swiss
Federal Institute of Technology (ETH), 2010.

Acknowledgments

This work has been financed by CIEMAT research
centre, by the INNPACTO project, Hibridacion de tec-
nologias renovables en una planta de generacion de
energia. (HIBIOSOLEO), 1IPT-440000-2010-004 and
the National Plan Project, Predictive COntrol tech-
niques for efficient management of reneWable Energy

micro-gRids.

(POWER), DPI2010-21589-C05-02 of

the Spanish Ministry of Economy and Competitive-
ness and FEDER funds.

80

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207671

High-Speed Compressible Flow
and Gas Dynamics

Michael Sielemann
Deutsches Zentrum fiir Luft- und Raumfahrt, Robotics and Mechatronics Center,
System Dynamics and Control, Miinchner Strasse 20, 82234 Wessling, Germany

Abstract

Discretization schemes suitable for gas dynamics are
reviewed and applied to the declarative concepts of
Modelica. Here, a suitable connector definition is in-
troduced to enable both robust simulation and higher-
order schemes, which require larger stencils than typ-
ically available on established thermo-fluid dynamics
connectors.

Keywords: Finite volume method, shock waves,
monotone flux, total variation diminishing, essentially
non-oscillatory

1 Introduction

System-level simulation of thermo-fluid dynamics us-
ing Modelica is a wide topic yet relatively mature.
Several authors present applications using the lan-
guage in various technical domains. For instance,
Casella [3, 4] considers power plant simulation, Pfaf-
ferott [20], Tummescheit et al. [36], Richter [24],
and Prolf [21] study applications in sub-critical vapor
compression cycles, Casas [2, 1] addresses air condi-
tioning using desiccant assisted cycles, and Vasel and
Schmitz [40] consider air conditioning using trans-
critical cycles.

In all of the given applications, the governing equa-
tions are adapted to the specifics of the underlying
flow phenomena. With the exception of Lépez [5],
the assumptions are identical for all applications re-
ported in literature. The corresponding flow, which
allows to make these assumptions, is called a low-
speed compressible flow herein. All authors referenced
in the first paragraph assume that the flow is incom-
pressible with respect to the flow phenomena, as it is
low-speed. Density variation is only encountered due
to heat transfer and in lumped parameter components
such as compressors. Density variation due to flow
phenomena is neglected, i.e., the Mach number is typ-
ically below 0.3.

In particular, an analysis of model code revealed
that the difference between static and total pressure is
neglected as the dynamic pressure is considered small
and not of interest. For the given applications in power
plants or vapor compression cycle refrigeration sys-
tems this is reasonable. Only in special devices, which
involve large variations in flow cross-section such as
adapters between different pipe diameters or nozzles,
total pressure is of interest. Total or stagnation en-
thalpy is often treated similarly; the kinetic term v? /2
is neglected. A typical argument is that the order of
magnitude of change in specific enthalpy due to heat
transfer is larger than that of such kinetic terms.

If kinetic terms in pressure and specific enthalpy
are not neglected for such applications and the com-
mon assumption of a steady-state momentum balance
is made then coupled nonlinear algebraic equation sys-
tems arise for density, which is required to establish
flow velocity. These coupled equation systems deteri-
orate simulation performance.

Certain applications involve a different type of flow,
which is called high-speed compressible flow herein.
Kinetic terms and dynamic pressure may not be ne-
glected and have to be included in compressible for-
mulations. Density variation is also encountered with
respect to flow phenomena, in particular dynamic con-
servation of momentum is relevant and also shock
waves may be part of the solution. The Mach num-
ber may be > 0.3 (including the supersonic regime).
The term “gas dynamics” refers to the same type of
flow.

The key theoretical area to enable applications
involving high-speed compressible flow is the dis-
cretization method for the governing equations. The
foundations of numerical solution methods in thermo-
fluid dynamics are well understood. However, in the
framework of equation-based, object-oriented model-
ing languages, only methods suitable for low-speed
compressible flow have been applied. The clas-
sic finite volume method has been studied in par-

DOl
10.3384/ecp1207681

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich, Germany

81

High-Speed Compressible Flow and Gas Dynamics

ticular by Tummescheit [35]. Moving boundary
methods have been applied by Jensen [14, 15] and
Tummescheit [35]. Casella [4] proposed a mean den-
sity discretization, which is non-conservative but re-
sults in continuous and continuously differentiable
thermodynamic properties at phase boundaries of two-
phase flow. Prol and Schmitz [22] discretized the
governing equations for frost formation on heat ex-
changer surfaces.

Lopez [5] proposed an approach to model and simu-
late gas dynamics. Due to robustness issues, which are
certainly linked to deficiencies in the connector defini-
tion used in [5] (c.f. reference [7]), the approach did
not become widely supported. In an attempt to finally
extend the applicability of Modelica also to high-speed
compressible flow and gas dynamics, this paper and
reference [29] contribute to the state of the art in the
following areas.

e Relevant concepts of the theory in numerical so-
Iution methods for high-speed compressible flow
are reviewed and translated from the algorithmic
perspective taken in literature to the acausal con-
cepts of equation-based, object-oriented model-
ing languages.

e The elements of discretization schemes are de-
composed in an object-oriented fashion and im-
plemented in a generic library. Object-oriented
concepts are exploited for increased flexibility
such as parametric polymorphism for exchange-
able thermodynamic property models.

2 The governing equations in com-
pact flux form

To address high-speed compressible flow, a compact
flux formulation as described by Toro [34] is consid-
ered. It is posed using conserved variables « and flux

f.

w (x,1) + f (u(x,1)), = s (u(x,1)) (1)
P
u(x,t)= | pv 2)
puo
pv
flux)={ pv+p 3)
v(puo+p)

If the cross-sectional area A is supposed to vary

source term including heat transfer and viscous wall
friction can be used [34].

0 p
1dA
s(u(x,t)) = | Apysr TAdr pv 4
er puo +P

3 Conservative methods

An approach to discretize the governing equations of
thermo-fluid dynamics is now introduced based on
Toro [34]. It is formulated in conserved variables and
therefore called a conservative method.

The use of conservative methods is motivated by
the presence of discontinuities such as shock waves in
the solution of certain problems such as gas dynamics.
Hou and LeFloch [13] have shown that formulations
based on variables other than the conserved ones fail
to correctly predict the solution at shock waves. They
result in wrong jump conditions and thus wrong shock
strength, speed, and location. The theorem of Lax and
Wendroff [17] in turn states that conservative meth-
ods, if convergent, do converge to the weak solution
of the conservation law. Consequently, conservative
methods are an obvious choice if shock waves are po-
tentially contained in the solution.

In this section, the compact formulation of the con-
servation laws introduced in equation (1) is used. The
vector of conserved quantities is denoted by u (x,7) =
(p,pv,pup). In order to include weak solutions of (1),
an integral form of the equations is used, a finite vol-
ume method.

As done in several numerical methods, the prob-
lem domain is discretized on a suitable computational
mesh. The control volumes are defined based on a grid
of cell side coordinates on an interval [a, b]

®

a=x <X3/2<...<Xn_1/2 <Xn+1/2:b

Based on it, cells, cell centers and cell sizes are defined
fori=1,2,...,n.

L= [xi_1/2, %41 2]
(Xi-1/2 +Xig1/2
AX; =Xip10 = Xio1)2

(6)

Xl‘zj

In this notation, x;,1/, is the coordinate of the right
side of a computational cell /; with cell center x;. This
grid is colocated. Furthermore, the maximum cell size
is defined as follows.

smoothly with time and position, then the following Ax = gf‘é‘n (Ax;) (N
82 Proceedings of the 9" International Modelica Conference DOl
September 3-5, 2012, Munich Germany 10.3384/ecp1207681

Session 1B: Thermofluid Systems

The discretization scheme allows to deduce alge-
braic equations or differential algebraic equations that
properly approximate the governing equations. Note
that, in the context of Modelica, the goal is to deduce
differential algebraic equations and thus the equa-
tions have only to be discretized in space, not in time
(“semi-discretized”).

The set of cell centers, which is used in a discretiza-
tion scheme to deduce such equations for each cell, is
called the stencil. For the most simple schemes, the
stencil for cell /; includes I; itself and the cells to the
left and to the right,

S@) = {Li-1,Li, 11 } (8)

Therefore, equation (1) is integrated over the inter-
val I; to obtain

) s 1)) -

dt
AlXi (f (u (xip1/2:1)) = f (u (xim1/2,1)))

Herein, a cell average is used

1 Xit1/2
W) = [u(En)ds
LYXi1/2

©)

Equation (9) is approximated by a semi-discretized
conservative scheme, which results in a differential al-
gebraic equation,
du; (1)
dt

Herein, u; (¢) is a numerical approximation of the exact
cell average u (x;,t), and f;1, /, is a numerical flux, an
approximation of the physical flux f (u (x;11/2,1)).

The remainder of this section is concerned with the
construction of numerical fluxes. All these fluxes con-
sist of a monotone flux and a reconstruction. Practi-
cally, a monotone flux is a flux free of spurious oscil-
lations. Due to Godunov’s Theorem such linear fluxes
are however first-order accurate only. Therefore, these
monotone fluxes are often used together with recon-
structions in order to build higher-order schemes. The
reconstruction provides an approximation of the vec-
tor of conserved variables u (or any other variable of
interest) based on the cell averages. Its higher-order
accuracy yields, together with a first-order monotone
flux, higher-order numerical flux.

1
ZS(LTi(f))—E(fm/z—ﬁq/z) (10)

3.1 Monotone flux and first-order schemes

A monotone numerical flux is defined using a function
g7

ﬁ+1/2:g<u;1/27u;1/2) (11)

Here, u;_ | ” is in general an approximation of the vec-
tor of conserved variables at x;, 1/, in the left limit,
and Mi++l P in the right limit. Each monotone flux can
be used without reconstruction with the approximation
Ui o R Ui and ”i++1 o A Uit The results are first-
order schemes. Alternatively, any more sophisticated
approach may be used to reconstruct uil /2

In the following presentation of monotone fluxes,
qr will refer to the right limit ql.fr] P of a quantity gq.
Similarly, g;_ | P is abbreviated as ¢;.

Monotone fluxes are classified as either upwind
methods or central methods. Upwind methods dis-
cretize equations on a mesh according to the direction
of propagation of information on that mesh. Central
methods do not make a distinction based on the direc-
tion of information propagation. Within the upwind
methods, both Godunov-type methods and flux vector
splitting methods are presented based on [34].

3.1.1 Godunov-type Upwind Methods

These methods are also called flux difference splitting
methods or Riemann approach methods. In the general
case, ”i_+1/2 #+ ”;1/2’ L.e., at position x; 1 , a disconti-
nuity is present. The original Godunov monotone flux
therefore interpreted this as Riemann problem and pro-
vided the conserved variables at x;, | 5, ;112 This is
the state that will be present instantly at this position
and will remain constant over a time step. Then, the
flux can be evaluated at this position, f (u,-H /2). The
result is the Godunov monotone flux.

As the Godunov monotone flux uses the exact so-
lution to the Riemann problem, the resulting method
is computationally relatively expensive and is rarely
used for practical computations. Godunov-type mono-
tone fluxes follow the approach of the Godunov mono-
tone flux but employ an approximate Riemann solver.
This reduces the computational expense significantly
and results in rather accurate monotone fluxes.

Roe’s Monotone Flux: This Godunov-type flux uses
one of the most well-known approximate Riemann
solvers. The approximate Riemann solver is due to
Roe [26] and works as follows. The original Rie-
mann problem is replaced by an approximate Rie-
mann problem, which is solved exactly. The ap-
proximate problem is based on linearized conservation
laws, u; + A u, = 0.

The linearized problem has to be established for
each combination of governing equations (e.g., Euler
equations) and thermodynamic property model (e.g.,
ideal gas).

DOI
10.3384/ecp1207681

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

83

High-Speed Compressible Flow and Gas Dynamics

Roe [26] established a methodology using averaged
values such that A, (ul*+ 12 " Uiy /2> = Ay, (u) fulfills
the given conditions. The vector # is the vector of Roe
average values. For the one-dimensional Euler equa-
tions and ideal gas, the Roe average values are as fol-

lows.
Pr+p1

VPP

\/ITrVr+\/[71V1
NN

Ty = VPrhor +/Piho
VPt /P

czz(K—1)<ho—;v2>

Due to specific properties [26], the linearized sys-
tem can be transformed into a system of independent
transport equations. The data difference Au = u, — u;
is projected onto the right eigenvectors of A;. This
establishes the wave strengths o;. Proper integral rela-
tions allow to establish the numerical flux as

Sl

V=

and

8Roe (ula ur) =

1 3
(fitfr)=5 Y 0|l K;
i=1

N —

with eigenvalues A; and right eigenvectors K;.
For the problem of interest, the wave strengths are

1 1
-1
mﬁ:—K# [Ap (V2 — h) —vAm + Ae]

aG=Ap—0a;— o

Here, the data difference Am for example refers to
the difference in momentum.

HLLE Monotone Flux: The Harten, Lax and van
Leer [12] monotone flux simplifies the approximate
Riemann problem even further. It neglects the con-
tact surfaces and consequently assumes that between
the shock and the expansion fan only a single homo-
geneous state is present. For hyperbolic systems of
two equations this is correct, but for the Euler equa-
tions addressed herein this is a rough approximation.
Even if the resolution of contact surfaces is poor, this
monotone flux is still a robust and efficient one, whose
accuracy is, on global level, often sufficient.

An advantage of this flux is that it can be applied
easily to different thermodynamic property models.
The approximate Riemann solver of Roe for exam-
ple is not straight-forward to apply to several problems

such as ones involving real gas equations. It is there-
fore a relevant candidate for equation-based, object-
oriented modeling languages applications, as the spe-
cific thermodynamic property models are often fac-
tored out of the component models, in which the dis-
cretized Euler equations are implemented.

The scheme is implemented via an a-priori estima-
tion for the fastest signal speeds and its monotone flux
is defined as

o f () =i f (wr)

8HLLE (Ml, Mr) =

c;r—cl_

+ —

crc

r =l
o —c¢; (tr =)
r 1

Here, the signal speeds are ¢, = max (0,v, +¢,,v+7¢)
and ¢, = min(0,v; —¢;,V —¢) respectively. In these
equations the Roe average velocity v and the Roe av-
erage speed of sound ¢ have been used.

3.1.2 Flux Vector Splitting Upwind Methods

In Patankar [19] for instance, a simple first-order up-
wind scheme in primitive variables was introduced.
Based of the sign of a characteristic quantity (usually,
this is a velocity normal to the cell boundary), any vari-
able on the boundary was established to have either
the value from the left or the right side. In the con-
text of the present approach to conservative methods
and high-speed compressible flow, there is no simple
scheme of this type. This becomes obvious from the
hyperbolicity of the Jacobian d f/du and its eigenval-
ues.

In general, the real part of the eigenvalues can have
any sign and a simple one-sided differencing scheme
will be appropriate only if the real parts of all eigen-
values have the same sign. The general system will
however have some eigenvalues with a positive real
part, and one side will be upwind for them, while the
others have a negative sign on the real part and conse-
quently the upwind side will be opposite for them. A
typical way to resolve this problem is to split such a
system into one with a positive real part of the eigen-
values and one with a negative real part and to treat
them separately. These are the flux vector splitting
methods discussed in this section.

The flux vector splitting approach is also called
Boltzmann approach and works as follows [34]. As
before, the Jacobian of the system of nonlinear hyper-
bolic conservation laws (1) is of interest.

o)
du

A(u)

84

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207681

Session 1B: Thermofluid Systems

Due to hyperbolicity, it may be expressed as

A=KAK™! (12)
Here, A is the diagonal matrix of eigenvalues A; of A.
The matrix K is the matrix of right column eigenvec-
tors K;. The flux vector splitting methods aim at split-
ting the flux f(u) into components f*(u) and f~ (u)
based on the following equality.

f)=fr)+ f (u)

Following the introduction of this section, the split
fluxes are established such that the eigenvalues 4,7, A,”
of the Jacobian

A+_8f+(u)
AT= Ju '’
o Of (w)
A= du

fulfill Re (4;") > 0 and Re (%) <0.

The Steger-Warming Monotone Flux: In order to
establish such a splitting, the homogeneity property
of (1) may be exploited. If the system of hyperbolic
conservation laws fulfills this property, then

(13)

like in the linear constant coefficient case. The un-
steady Euler equations fulfill this property and conse-
quently the splitting may utilize the structure exposed
in (12), that is, the splitting may be applied to the di-
agonal matrix A. Steger and Warming [30] proposed a
splitting of the eigenvalues A;,

A=A AT (14)

Here,)Li+ >0and A, <0. Consequently, A is split as
A=A"+A" (15)

AT are the diagonal matrices of the split eigenvalues
lii. This leads directly to the splitting of A.
A=AT+A” (16)

where AT = KATK~!. If the property (13) is fulfilled,
one arrives at an expression for the flux splitting.

The crucial question is how to choose lii in (14).
Steger and Warming [30] suggested to use to following
equations.

A=

(A + |Ai]) = max (4;,0) (18)

N =

_ 1
When exercising this approach, the following Steger-
Warming monotone flux is established.

(A = |Aif) = min (%;,0) (19)

gsw () = fT(w)+f(u)
with
) = P
=2
AF+2(k— 1A+ A5
(V=0 AT +2(k— 1DvAS + (v+o)Af
(h—ve) AT + (k= 1)V A5 + (h+ve) Af

The eigenvalues are given by (18) and (19). The re-
maining variables have to be evaluated according to
the definition of the flux, i.e., for fT(u) the values
from the left such as p;, u; and for f~(u) the values
from the right such as p,, u,.

3.1.3 Centered Methods

Schemes, whose support does not depend on the
sign of the characteristic speeds, are called centered
schemes.

The Rusanov Monotone Flux, a local Lax-
Friedrichs Flux: The Lax-Friedrichs flux is one of
the simplest and most approximate methods consid-
ered herein. It was originally developed in the con-
text of finite-difference methods and later applied to
the finite-volume context.

Similarly to the HLLE method, only an expansion
and a compression wave are considered. In the orig-
inal Lax-Friedrichs flux, the speed of each wave was
assumed to be such that it reached the cell boundaries
exactly within a time step Ar. For uniform grids, each
wave of the global problem therefore had the same
speed, which is an even more approximate solution
than in the HLLE method. As, in the present context,
no fully explicit scheme is employed but the method
of lines, no time step Ar is defined. For this reason
and to slightly improve accuracy, a local form of the
Lax-Friedrichs monotone flux, the Rusanov monotone
flux [27], is considered. In the Lax-Friedrichs flux,

flu)=f"(u)+f~(u) (17)
1 1 Ax
Here, f*(u) = A%u. gur (ur,ur) = 5 (f (ur) + f (ur)) = AL (ur —uy)
DOl Proceedings of the 9™ International Modelica Conference 85
10.3384/ecp1207681 September 3-5, 2012, Munich, Germany

High-Speed Compressible Flow and Gas Dynamics

the signal speed Ax/Ar is replaced by Ay =
max ((|v|+¢);,(|v|+¢),). Then, the Rusanov mono-
tone flux is defined as follows.

1
8Rus (ulaur) = 5 (f (ur) +f(ul)) - %)'max (Mr

First-Order Centered Monotone Flux: The First-
Order Centered Monotone flux (FORCE scheme) [33]
is obtained when replacing the random sampling of
Riemann problems in Random Choice Methods with
deterministic integral averages.

According to Toro [34], for fully explicit schemes,
the result is the arithmetic mean of the Lax-Friedrichs
and Richtmyer [25] fluxes. The Richtmyer flux is a
second-order scheme with constant coefficients and is
thus, according to Godunov’s classic theorem [9], not
monotone and results in spurious oscillations.

For the fully explicit version of the Richtmyer flux,
an intermediate state is first defined,

ful)

1 1 At
URi = — (uz +ur) +

> EE(f(ul)—i‘f(ur))

and then the flux is evaluated at it.

gri (ur,ur) = f (uri)

Then, the FORCE flux is the arithmetic mean of the
Lax-Friedrichs and Richtmyer fluxes [34]

1

8Force (ulaur) = E (gLF (”l’ur) + 8ri (ulaur))

Again, the local version of the Lax-Friedrichs flux
(the Rusanov flux presented in previous section) and a
local version of the Richtmyer flux are used, is again
obtained by replacing Ax/Ar with A4y

After introducing some monotone numerical fluxes,
methods to obtain higher-order approximations of the
solution to (1) are considered.

3.2 Total Variation Diminishing schemes

Godunov’s theorem [9] was mentioned already. It
provides the theoretical foundation to the observation
that linear second-order schemes are more accurate
in smooth regions of a problem solution to (1) than
first-order schemes. Near strong gradients and shocks,
these methods produce spurious oscillations however.
Monotone methods however do not exhibit such spu-
rious oscillations. In case of linear schemes, their lim-
ited first-order accuracy is disadvantageous however.
One option to eliminate or reduce spurious oscilla-
tions for higher-order methods is to introduce artifi-
cial viscosity. This can be tuned such that it is large

enough to suppress oscillations in the neighborhood
of discontinuities and small elsewhere to maintain ac-
curacy. A disadvantage of this approach is however,
that the quantity of artificial viscosity is problem de-
pendent and therefore requires fine-tuning by the user.
This approach is not followed here and instead a less
empirical approach to introduce viscosity is adopted.

Therefore, in order to circumvent the limitations
formulated by Godunov’s theorem, schemes with vari-
able coefficients, i.e., nonlinear schemes, are consid-
ered. Such schemes can adapt themselves to the local
nature of the solution.

Harten [10] defined High-Resolution Methods as
numerical methods with the following properties.

1. Second or higher-order of accuracy in smooth
parts of the solution

2. The solution is free of spurious oscillations.

3. The resolution of discontinuities in the solution
is high, i.e., the number of cells containing the
numerical reproduction of the discontinuity is
smaller in comparison with that of first-order
monotone schemes.

A class of methods fulfilling these properties is that
of Total Variation Diminishing methods [10]. See this
reference for a definition of the total variation. For
brevity, only the case of a smooth function u(z), for
which the total variation is

TV (u) = /j;{u'(x)‘dx

and the case of a mesh function " = {u!'} are men-
tioned. For the latter, the total variation is defined as

V)= Y [l]

|=—0c0

Fundamental properties of the exact solution of the
conservation law (1) such as no creation of new local
extrema lead to the conclusion that the total variation
TV (u(t)) is a decreasing function of time [10]. Conse-
quently, Total Variation Diminishing methods mimic a
property of the exact solution.

For a general scalar conservation law, Harten [10]
provided a theorem on a sufficient condition for a par-
ticular class of nonlinear schemes with two coeffi-
cients to be Total Variation Diminishing (TVD). These
conditions are essentially four inequalities on these
two coefficients. As the coefficients may in general be
data dependent, Harten’s theorem provides a tool for

86

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207681

Session 1B: Thermofluid Systems

the construction of nonlinear schemes that circumvent
Godunov’s theorem stated above.

The classic TVD approach to adaptively switch be-
tween the characteristics of a monotone first-order nu-
merical flux g“C and those of a higher-order constant
coefficient flux g/’ is to make the following assump-
tion [32].

gTVD — gLO + [gHI _gLO]

Here, ¢ is a flux limiter function that implements the
adaptive algorithm. Analysis of Harten’s theorem led
to the identification of the Sweby TVD region [32].
In this region, various flux limiters have been defined
such as the well-known limiters Superbee, Minbee,
and Ultrabee.

In the following sections, this approach is not fol-
lowed directly. Instead of flux limiters, slope limiters
are used, which are analogous to the flux limiters.

For the reasons described in section 3.1.3, both an
upwind TVD and a central TVD method are consid-
ered.

3.2.1 A MUSCL Upstream TVD Scheme

Van Leer [37, 38, 39] introduced a higher-order
method along the concept of reconstruction mentioned
in the introduction of this paper. MUSCL stands for
Monotone Upstream-Centered Scheme for Conserva-
tion Laws.

The first-order schemes discussed so far use mono-
tone fluxes directly by assuming piecewise constant
data over the cells [;, i.e., ”i_+1/2 ~ u; and ”;;1/2 R Uig-
In the simplest MUSCL scheme, piecewise linear lo-
cal reconstructions are used. The reconstruction has
to maintain the integral average, which is trivially ful-
filled for piecewise linear local reconstructions.

First, slope vectors A, /, are defined as follows.

(20)
1)

Strictly speaking, these slopes are not slopes but differ-
ences of the vector of conserved quantities in adjacent
cells. The terminology used in literature is adopted
however and therefore A/, are called slope vectors.
In order to implement a TVD scheme, the approach of
limited slopes described by Quirk [23] is used.

Aiyjp = Ui — Ui

Aiy1yo = Uiy1 — U

max|0,
min (BA;_12,Ai1)2) »
min (A;_1/2,BAi112)] Ai12>0

The value B = 1 does, in the scalar case, reproduce
the Minbee flux limiter, and 8 = 2 the Superbee flux
limiter.

Based on the piecewise linear local reconstruction,

X—Xj A

Ax;

ui (x,t) =u; (1) +

The values at the extreme points of the cell /; are es-
tablished.

1~
u:1/2 =u;— EAI (22)
_ B
ui+1/2 =u;+ EAi (23)

In order to finally obtain the second-order accurate
upstream flux, some first-order monotone upstream
flux is employed with the reconstructed values u

i+1/2°
+
Uit1)2:

TVDu __ _mu — +
8i+1/2 = 8it1)2 (”i+1/27ui+1/2>

Note that u; is obtained from a reconstruction in

i+1/2

cell I;, and u;"

i1)2 from a reconstruction in cell ;1.

3.2.2 A MUSCL Centered TVD Scheme

As mentioned before, also a second-order TVD cen-
tered scheme is introduced. It also follows the concept
of the MUSCL scheme but uses a first-order monotone
centered flux.

This approach is base on a slope limiter &;, for which
the following equation holds.

i = GiA;

>>

Here, the slope vector of the cells, A;, is used.

1 1
Ai=3 (I+ o)A+ 3 (1-@)Aiy1)2
This is a weighted average of the side slope vectors
Ai11/2, see (20) and (21). The weighting parameter has
to fulfill @ € [—1,1]. In computations conducted for
this paper, the value of ® = 0 was used. Additionally,
the ratio r; of the cell side slope vectors is introduced.
Aiap

=

Aiv12

Then, a slope limiter analogous to the Superbee flux
limiter is [34]

A — 0 r<o0
') min(o, or 0<r<!
b (r) = 1
max (BAZ'_]/2,AH_1/2) s 1 3 <r< 1
(| max (A2, BAL1)] A1 <O min (r,&, (r),2) r>1
DOl Proceedings of the 9™ International Modelica Conference 87
10.3384/ecp1207681 September 3-5, 2012, Munich, Germany

High-Speed Compressible Flow and Gas Dynamics

A van Leer-type slope limiter is [34]

0 r<o0
S (r) = { min (l%,cgr(r)) r=0

A Minbee-type slope limiter is [34]

0 r<o0
Emp(r)=X% 1 0<r«li
min (1,&,(r)) r>1

Above, &,(r), a TVD region limit that is defined as
follows, was used.

2
-0+ (1+e)r

& (r)

As before, the conservative variable vector is ap-
proximated via the limited slope A; and equations (22)
and (23). Then, the second-order accurate centered
flux is obtained via a first-order monotone centered
flux with the reconstructed values ”i_+1 /2 u; 12 For
this purpose, the FORCE flux can be used.

TVDc __ _Force — +
8i+1/2 = 8it1/2 (“i+1/27“i+1/2)

i+1/2
+
i+1/2

Note again that u is obtained from a reconstruc-

tion in cell /;, and u from a reconstruction in cell

liyy.

3.3 Weighted Essentially Non-Oscillatory
schemes

One disadvantage of TVD schemes is that the accu-
racy near discontinuities is reduced. In the schemes
presented above, this was directly visible in the slope
for example. Also, the accuracy necessarily is reduced
to first-order near smooth extrema.

In this section, both Essentially Non-Oscillatory
and Weighted Essentially Non-Oscillatory schemes
are presented, which are self-similar (i.e., there is no
mesh size dependent parameter), uniformly high-order
accurate, yet essentially non-oscillatory for piecewise
smooth functions (i.e., the magnitude of the oscilla-
tions decays with order of accuracy of the scheme).
Piecewise smooth functions are smooth except at
finitely many isolated points. At these points, the func-
tion and its derivatives are assumed to have finite left
and right limits.

The key element of these schemes is the reconstruc-
tion. This is a specific interpolation technique, which
was developed for piecewise smooth functions. It
works by automatically choosing the locally smoothest

stencil, and by that avoiding crossing discontinuities in
the interpolation procedure as much as possible.

The Essentially Non-Oscillatory reconstruction al-
gorithm starts with a stencil containing one or two
cells only. It then adds either the cell to the right or
the one to the left of the stencil, depending on which
results in the less oscillatory interpolant.

Instead of choosing one of the candidate stencils
and discarding the others, Weighted Essentially Non-
Oscillatory reconstruction uses a convex combination
of the interpolant through all candidate stencils.

First, the given two reconstructions are presented
and then it is described how to establish a numerical
flux from the corresponding reconstructions. This sec-
tion is based on Shu [28].

3.3.1 Essentially Non-Oscillatory Reconstruction

Before describing the Essentially Non-Oscillatory
(ENO) reconstruction, an important detail of interpo-
lation methods used for reconstruction has to be ad-
dressed. In section 3.2 it was mentioned that linear in-
terpolation in the MUSCL scheme was uncritical with
respect to maintaining the proper cell average of the
interpolant. In the context of the present methods,
higher-order interpolation is considered and therefore
the interpolant must be established in a way that main-
tains the cell average.

Assume that some function, say, velocity, is con-
sidered. The cell averages v; of that function v(x) are
given on a grid. One is interested in a polynomial p;(x)
of degree k — 1 for each cell /;. This then forms a k-th
order approximation to v(x) in the cell ;. The poly-
nomial shall be constructed such that its cell average
shall agree with that of the original function v;.

Assume that, additionally to the cell /; and the order
of accuracy k, one is given a stencil S(i) of k consecu-
tive cells. The stencil is given via the left shift r, i.e.,
the stencil includes r cells to the left and s cells to the
right of I;, with r+s+1=k.

S(i) = {Iifn e aIiJrs} (24)

In order to preserve the cell average, the interpolant
over the stencil is established via the primitive function
of v(x).

Then, the interpolant can be established. In computa-
tional implementations, this interpolation step is usu-
ally accelerated via the computation of so-called re-
construction coefficients. This is possible, because one

88 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207681

Session 1B: Thermofluid Systems

is usually not interested in the complete interpolant but
only in values of it at specific stations such as x; .
Due to the linearity of the mapping from the cell aver-
ages V; to the interpolated values, these reconstruction
coefficients depend on the left shift of the stencil r, the
order k, and the mesh spacing Ax;, but not on the func-
tion v itself.

The actual ENO approximation is addressed next.
Here, an adaptive stencil is used. This means that the
left shift r is not constant. A left shift r that is constant
over the cells /; would lead to a fixed stencil approxi-
mation (e.g., a central stencil) for which it was shown
that it leads to spurious oscillations if of order two or
higher with constant coefficients. In ENO approxima-
tion, the left shift is thus established for each cell /; in
a way that avoids including a cell with a discontinuous
change in the stencil.

Harten et al. [11] showed that a robust criterion to
identify the stencil with the “smoother” interpolant is
to choose the one with the smaller absolute value of
the Newton divided difference.

Recall the definition of the Newton divided differ-
ences. For the primitive function V (x) the 0-th degree
divided difference is

V[xiip] =V (xiip)

and the general j-th degree divided difference with j >
1 is defined as

\% [xi—l/Za"'axi+j_1/2:| =
V X1/ Xi o] =V [Kicajas oo Xijoapo]

Xitj—1/2 —Xi-1/2

Similarly, the divided differences of the cell averages
are

vix] =vi
and in general
V[xi,...,xi+j] = (25)
V[Xigty e Xig] = VX Xig 1]
Xitj —Xi

Note that the zeroth degree divided difference of v; is
identical to the first degree divided difference of V (x)
due to the definition of the primitive function.

V(xie12) =V (xiz12)
Xit1/2 —Xi-1/2

(26)

V [Xis12,%i41 2] =
=7i

This equality allows to express the divided differences
of V(x) of degree j > 1 by those of v; of degree j > 0.

Taking the derivative of the k-th degree interpolation
polynomial P(x) to approximate V (x), one finds that
only divided difference of v; of degree j > 1 are re-
quired to express p(x).

The ENO approximation thus identifies the
“smoothest” stencil in V; via a stencil of V (x), which
is labeled S(i). Notice that from the latter the cor-
responding stencil in v; can be identified via (26).
First, the divided differences of the primitive function
V(x) are computed using (26) and, for degrees j > 2,
using (25). Then, the algorithm starts with a two point
stencil in V(x),

$2(i) = {xi_12: %1212}

This stencil is then consecutively enlarged for / =
2,...,k. From the preceding step the following sten-
cil is known

A

S (i) = {xit1/2,- - Xjim12}

and one of the neighboring points x; 1/, and x; ;12
is added to the stencil. If

‘V [xj—1/2,---,xj+z—1/2” < \V [xj+1/2>-~-axj+l+l/2”

then x;_; , is added to Si(i) to obtain Sy, (i). If the
inequality is not fulfilled, then x; ;1 , is added to the
stencil.

As soon as the stencil is completely established, La-
grange or Newton interpolation can be used to find the
interpolants. In computational implementations the re-
construction coefficients mentioned at the beginning
of this section are usually used instead. By the choice
of the stencil the left shift r is established. Then, the
proper reconstruction coefficients can be used to in-
stantly establish the interpolated values at the interface
locations.

Figure 1 illustrates the interpolants chosen by Es-
sentially Non-Oscillatory schemes. For the exam-
ple v = {10,10.4,10.25,10,3,2.5,2.25,2} and x =
{1,2,3,4,5,6,7,8} were assumed. First, consider the
resulting interpolant for cell 3. The scheme described
above starts the stencil with this cell and extends it
twice (i.e., order — 1 times) to the left or right. As
described, the schemes includes either neighbor point
that results in a smoother interpolant according to the
criterion of divided differences. For cell 3, the scheme
once selects a cell to the left and once a cell to the right
for inclusion in the stencil. For cell 4 in turn, including
the right cell (cell 5) would lead to rather large gradi-
ents in the interpolant each time. Therefore, the stencil
is extended twice to the left. The interpolant for cell 4

DOI
10.3384/ecp1207681

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

89

High-Speed Compressible Flow and Gas Dynamics

12
o ’ Cell3 Cell4 |
~ 85 \\\\ N
z
g 6" o Data _ |
S 4l —— Interpolant for cell 3 \\\\\\ i
----- Interpolant for cell 4 |-~ - - _._ 7 =-- __(:Te;—l:S Cell 6
2| |--- Interpolant for cell 5 B ST L
--- - Interpolant for cell 6
0 I I | | | | | |
0 1 2 3 4 5 6 7 8 9

Coordinate x

Figure 1: Third-order ENO reconstruction

is therefore identical to that of cell 3. For cells 5 and
6, the stencil is only extended to points to the right for
similar reasons.

The left limit of vy, is established based on the
interpolant of cell 4, i.e., v, , = 9.84. The right limit

P _
18 Vs = 3.33.

3.3.2 Weighted Essentially Non-Oscillatory Re-
construction

ENO schemes are uniformly high-order accurate right
up to the discontinuity, which is achieved by adap-
tively switching the stencil used for interpolation.
However, certain properties leave room for improve-
ments [28]:

o The stencil may change near zeros of the solution
even by a round-off error perturbation.

o As the left shift of the stencil may change at
neighboring points, the resulting numerical flux
is not smooth.

e To the reconstruction scheme, 2k — 1 cells are
available. In the end, only k cells are used. This
results in k-th order accuracy when 2k — 1-th or-
der accuracy is theoretically possible in smooth
regions of the solution.

The idea of Weighted Essentially Non-Oscillatory
(WENO) reconstruction is to use a convex combina-
tion of the interpolants through several stencils. If,

For each cell /; k candidate stencils are consequently
available.

Sp(i) = {Xizry - Ximpgh—1

with » =0,...,k— 1. Using the reconstruction coeftfi-
cients, each stencil produces a different reconstruction
of v 1/2, which is labeled vl@l /2 A convex combina-
tion of these values is used to define the reconstruction

using the WENO method.

k-1
_ (r)
Vie12 = Y, OrViiy 2
r=0

k=1

For stability and consistency, @, > 0 and } o, =1
r=0

need to be imposed. In smooth regions, these weights

should approximate optimal high-order weights to k —
1-th order, which would imply (2k — 1)-th order of the
complete reconstruction scheme. The question is now
what these optimal weights are. In the general case,
this leads to an overdetermined system of equations,
which can be solved, e.g., by using a least-squares al-
gorithm. In the case of a uniform mesh, the equation
system becomes square and an explicit solution can be
computed. Jiang and Shu [16] gave optimal weights
d, for uniform grids and 1 < k < 3. Herein, k =3 is
considered. For this value of k, the following optimal
weights have been established.

3 3 1

= - dy = o

Furthermore, Jiang and Shu [16] suggested the fol-
lowing form of the weights

however, a candidate stencil contains a discontinuity, o

its weight shall be close to zero to mimic the success- @r =1

ful properties of ENO schemes. S;O s

90 Proceedings of the 9" International Modelica Conference DOl
September 3-5, 2012, Munich Germany 10.3384/ecp1207681

Session 1B: Thermofluid Systems

forr=0,...,k— 1. Coefficients ¢, in turn are defined
as follows

d,
(e+B)°
Here, € > 0 is introduced to avoid division by zero.
Following Jiang and Shu [16], € = 10~° was used in
computations. f, are called smooth indicators in the
given reference and have been defined as follows

<alg;l(x) > zdx

This is the sum of the squares of the scaled L?
norms for all derivatives of the interpolation polyno-
mial p,(x) over the interval (xi,l /25 Xix1 /2). For k=3,
the result is a 2k — 1 = 5-th order accurate reconstruc-
tion.

Figure 2 illustrates Weighted Essentially Non-
Oscillatory reconstruction on the same example as fig-
ure 1. The reconstruction of the left limit of vy,
is considered, i.e., v, | /2 For this, the scheme uses

i+1/2 Axﬂ*l

k—1 ,x
&:;A

i—1/2

three stencils S,(4) with increasing left-shift r. The in-
terpolants based on these stencils are illustrated in the
figure. Note the strong gradients in the interpolants us-
ing So(4) and S;(4). This is also an illustration that the
stencil selection of the ENO scheme shown in figure 1
for cell 4 was reasonable.

The WENO scheme proceeds with the different re-
construction values vﬁl PR Vz(tsz1 /20 which are each
marked with a filled circle in figure 2. For this par-
ticular example, the scheme results in weights @y =
13-107°% @ =15.6-107°%, @, = 0.999983. This
means, that the interpolant with left-shift » = 2 domi-

- ~ (2
nates and Vas12 Vet

3.3.3 ENO and WENO numerical fluxes

So far, two different algorithms for the reconstruc-
tion of piecewise smooth functions were introduced.
The question is now how to construct corresponding
higher-order numerical fluxes for the system of hyper-
bolic conservation laws (1) from these reconstructions.

Probably, the easiest way to do this is to apply the
reconstruction to each component of the vector of con-
served variables u separately and thus reconstruct the
left and right limit uil pat the location x; ;. Then,
a monotone first-order flux can be used to establish
an essentially non-oscillating higher-order numerical
flux.

Shu [28] remarks that only low-order schemes are
highly sensitive to the choice of first-order monotone

flux. This sensitivity decreases with increasing or-
der of accuracy and therefore a simple Lax-Friedrichs
monotone flux is used in the given reference to con-
struct higher-order WENO numerical fluxes.

The given component-wise approach to construct
a numerical flux based on ENO and WENO recon-
structions is simple to implement. Also, the resulting
schemes work reasonably well for many applications,
in particular if the order of the scheme is not high.
Shu [28] mentions “second or sometimes third-order”.

If the order of the scheme is high or a more demand-
ing test problem shall be solved, the following charac-
teristic decomposition is much more robust and should
be implemented instead.

Recall the diagonal decomposition of the Jacobian
of the flux in section 3.1.2 on flux vector splitting, (12).
A change of variables v = K~ 'u leads to a decou-
pling of the system of conservation laws (1). Then,
the component-wise application of the ENO or WENO
reconstruction is fundamentally justified. The recon-
structed values vil Jp are then transformed back into
the physical space of conserved variables,

+
Kviii

u?-:i-l 2=

A remaining question is the choice of K, which de-
pends on u, K = K(u). For this purpose, the Roe av-
erages introduced in section 3.1.1 were used, as this
leads to advantageous properties such as the satisfac-
tion of the mean value theorem.

Based on the reconstructed left and right limit ”il /2
at the location x;, 1/, a monotone first-order flux is
used again to establish an essentially non-oscillating
higher-order numerical flux.

4 Object-oriented implementation

Two libraries for object-oriented modeling and simu-
lation of gas dynamics were developed for [29] and
this paper. Both were written in Modelica. The first
one is a library specific to ideal gases, which allows
several simplifications and results in little computa-
tional overhead. The second one is a gas dynam-
ics library for generic thermodynamic property mod-
els. These thermodynamic property models are im-
plemented according to the object-oriented interface
MODELICA.MEDIA [6]. This interface had to be ex-
tended with two additional methods to be suitable for
applications in gas dynamics. These and other imple-
mentation aspects are discussed in this section.

DOI
10.3384/ecp1207681

Proceedings of the 9™ International Modelica Conference 91
September 3-5, 2012, Munich, Germany

High-Speed Compressible Flow and Gas Dynamics

12
T SO - ol T i
10 © Cell 2 Cell 3 Ce%\ el
8 n o Data Y » h
Interpolant using So(4) C%l 5 Cell 6
7| |--- Interpolant using Sy (4) Ve O o o i
-~ - - Interpolant using S»(4) N
0 I I | | Lt | | |
0 1 2 3 4 5 6 7 8 9
Coordinate x
Figure 2: Fifth-order WENO reconstruction
4.1 Ideal gas and generic thermodynamic use of centered schemes. These schemes are indepen-

property models

A large fraction of the literature on discretization
methods using conservative methods considers ideal
gas equations of state only. Discretizations using real
gas! equations of state in turn consider non-ideal me-
dia, too. Several articles make assumptions on the
structure of the real gas equations of state however
(e.g,. Liou et al. [18] assume a “general pressure func-
tion” but require that is be explicit in density, specific
internal energy, and mass fractions, and Gallouét et
al. [8] explicitly assume Tammann and van der Waals
equations of state).

In equation-based, object-oriented modeling and
simulation, one aims to encapsulate the equations of
state in separate classes and implement discretization
methods independently using a generic interface. As
the given real gas schemes require structural assump-
tions on the equations of state, too, a generic interface
had to be extended with several methods specific to
these structural assumptions. A clean separation be-
tween discretization scheme and equation of state ap-
pears to be difficult in this case.

A large fraction of the methods described in the pre-
vious section 3 are specific to ideal gases with con-
stant specific heat capacity c,. Specialized Riemann
solvers can be constructed easily for some of these
methods (such as the HLLE method described in sec-
tion 3.1.1). In the context of equation-based, object-
oriented modeling languages, such approximate Rie-
mann solvers had to be exchanged concurrently with
the equations of state. A more practical solution is the

UIn this thesis, a real gas is one that is not both thermally and
calorically ideal.

dent of any Riemann solver and can thus be used with
any thermodynamic property model. As described in
section 3.1.3, the support of these schemes does not
depend on the sign of the characteristic speeds. While
the upwind schemes as discussed in sections 3.1.1
and 3.1.2 are more accurate in several cases than their
centered counterparts, they are usually more com-
plex and computationally expensive [34]. Therefore,
in the libraries described herein, monotone and TVD
centered schemes as well as schemes using higher-
order reconstruction with a centered scheme are im-
plemented for general thermodynamic property mod-
els and upwind methods are restricted to ideal gases.

4.2 Generic interface to thermodynamic
property computations

As described above, the object-oriented interface of
MODELICA.MEDIA [6] is used for thermodynamic
property computations. In order to be applicable to
gas dynamics, this interface has to be extended with
two additional methods.

The first extension is required for the conversion
of conserved variables to primitive variables. In the
gas dynamics library for generic equations of state the
primitive variables are velocity v and the thermody-
namic state record of the medium?. For the conver-
sion of the vector u as defined in equation (2) to the
primitive variables an additional setState function
is thus required. From u, density and specific inter-
nal energy can be established. Therefore, a function

%In place of the velocity the mass flow rate could have been
used, too. This selection is ambiguous and was eventually made
for similarity with conventional implementations of gas dynamics.

92 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207681

Session 1B: Thermofluid Systems

setState_duX is used.

The second extension is required for the conversion
of the classic primitive variables {p,v, p} to the ones
used in the object-oriented implementation for generic
thermodynamic property computations, the thermody-
namic state record and velocity. This is necessary in
case of a characteristic decomposition such as the one
discussed in section 3.3.3. For this purpose, a func-
tion setState_pdX is required. Note that this is only
required if a gas dynamics library for generic thermo-
dynamic property models shall also be used with ideal
gases.

4.3 Conservative and non-conservative for-
mulations

In order to obtain valid simulation results, the con-
served quantities in the governing equations and the
conservation statements they imply have to make
physical sense [34]. Formulations that are conser-
vative purely in a mathematical sense (i.e., formally,
they can be expressed as (1), but there is no corre-
sponding conservation law in physics) will, in case of
shock waves, result in wrong shock speeds and there-
fore wrong solutions [34].

In the context of equation-based, object-oriented
modeling languages, a simple solution is to explicitly
select the conserved variables themselves as state vari-
ables, i.e., u(x,t). This is done in the gas dynamics
library specific to ideal gases. For ideal gases that are
both thermally and calorically ideal (in particular, c,
is not a function of temperature), all intensive quan-
tities can be established in closed form based on any
two thermodynamic potentials. Therefore, no distinc-
tion between independent and dependent variables is
required for such media.

For generic thermodynamic property models this is
different. In general, such models are explicit in a
number of thermodynamic potentials only (e.g., pres-
sure and specific enthalpy). As long as the physical
flux is not changed, it is then possible to use the inde-
pendent variables of a thermodynamic property model
as state variables instead. This is the approach fol-
lowed in the gas dynamics library for generic thermo-
dynamic property models.

4.4 Inhomogeneous problems

In several references on computational methods for
gas dynamics, fully explicit conservative methods are
considered in contrast to (10). In the context of

equation-based, object-oriented modeling, it is nat-
ural however to use a semi-discretized formulation.
Furthermore, this has advantages for inhomogeneous
problems. No source term splitting schemes [31] are
required for the present approach. With the semi-
discretization (also called method of lines) both the
numeric fluxes and the source term are algebraic ex-
pressions and no further complications arise for inho-
mogeneous problems.

4.5 Library design

In this section, the design of the two gas dynamics li-
braries is sketched. The one considering generic ther-
modynamic property models is emphasized and some
remarks are made on the one specific to ideal gases.
For readability, the code illustrates single-substance
media only. Mass fractions of multiple-substance me-
dia can be covered analogously to the other primi-
tive variables, because they are similarly dominated by
convection.

The connector has to implement the stencil defined
in equation (8). Its length depends on the stencil length
required by the discretization scheme. If the stencil
for a flux computation has to include n cells, then at
least n/2 of these cells are inside the domain modeled
by the respective component and need not be accessed
via the connector. This implies that at most n/2 cells
of the stencil have to be provided by the connector.
Therefore, the connector definition given in listing 1 is
used.

Note the replaceable discretization package
(“Discretization”) in the connector definition in
addition to the replaceable package containing the
thermodynamic property model (“Medium”). A vector
of thermodynamic states and one of velocities of
the given length are defined twice. Different causal
prefixes are used to handle how one component “pre-
scribes” and “reads” which variables®. The library
considering ideal gases only uses density and pressure
vectors in place of the thermodynamic state.

Additionally, information about the computational
mesh has to be included in the connector. In the pro-
posed connector definition, the coordinates of the sides
of the cells are used. They are defined in a local coor-
dinate system, whose origin is set to the side shared by
two components connected together. The coordinate
of this shared side can thus be omitted and the same
number of side coordinates and cell center variables on

3The causal prefixes are used in the acausal modeling language
just to define a nominal causality, not an actual one.

DOI
10.3384/ecp1207681

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

93

High-Speed Compressible Flow and Gas Dynamics

1 connector Stencil_a

2 "Interface for quasi one-dimensional high-speed flow"

3

4 replaceable package Medium =

5 Modelica.Media.Interfaces.PartialMedium "Medium model";
6

7 replaceable package Discretization =

8 GasDynamics.Discretizations.Partial.PartialDiscretization
9 "Discretization";

10

11 output Medium.ThermodynamicState

12 state_a[Discretization.halfStencilLength]

13 "Thermodynamic state stencil';

14 output SI.Velocity v_a[Discretization.halfStencilLength]

15 "Velocity stencil";

16 output SI.Length x_side_a[Discretization.halfStencilLength]
17 "Cell side coordinate";

18

19 input Medium.ThermodynamicState
20
21 "Thermodynamic state stencil";

state_b[Discretization.halfStencilLength]

22 input SI.Velocity v_b[Discretization.halfStencilLength]

23 "Velocity stencil";
24 input SI.Length x_side_b[Discretization.halfStencillLength]
25 "Cell side coordinate";

26 end Stencil_a;

Listing 1: Connector for high-speed compressible flow

the thermodynamic state and velocity is included. The
side coordinates for Stencil_a are defined strictly
positive; those for Stencil_b strictly negative.

Analogous to the Stencil_a connector definition
in listing 1, a connector Stencil_b is defined. It dif-
fers only in inverted causality prefixes (input instead
of output and vice versa).

The discretization package contains structural pa-
rameters including the stencil length, conversion func-
tions, an exchangeable thermodynamic properties
model, and flux functions. Its interface is defined in
listings 2 to 4.

The structural parameters of a Discretization are its
name, whether it uses equations applicable to ideal
gases, its order of accuracy, and the stencil length.

The conversion functions of a Discretization convert
the set of primitive variables (thermodynamic state
record and velocity) to the vector of conserved vari-
ables as defined in equation (2) and vice versa. Note
that these functions need not be replaceable, because
the implementations are generally valid. Note that in
the second conversion function in listing 3 one of the

additional functions mentioned in section 4.2 is used
(setState_duX()).

The key elements of a Discretization are the flux
functions. Their interfaces are described in listing 4.
For readability, interfaces are defined for both a mono-
tone first-order flux and the arbitrary-order numerical
flux. This allows to clearly separate the reconstruction
and the Riemann solver for instance. In models, only
the arbitrary-order numerical flux is used and therefore
the use of the monotone flux function is optional. The
monotone flux arguments are the left and right ther-
modynamic state and the flow velocities. It returns
the flux vector. The arbitrary-order flux function has a
stencil of thermodynamic states and of velocity as well
as the cell side coordinates as inputs and also returns
the flux vector. The Discretization package also con-
tains a replaceable package implementing thermody-
namic properties. This is not shown in listings 2 to 4.
Discretization packages were implemented using the
Local Lax-Friedrichs flux, Roe’s Riemann solver, the
HLLE Riemann solver, the Steger-Warming flux vec-
tor splitting, the First-Order Centered flux, the Muscl-

94 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207681

Session 1B: Thermofluid Systems

partial package PartialDiscretization

"Interface for discretization in compact flux form"

1
2
3
4 // Description

5 constant String discretizationName =
6 "unusablePartialDiscretization"
7 "Name of the discretization";

8

9

// Type of discretization
10 constant Boolean idealGasOnly = false

11 " = true, if contains specifics of ideal gases";
12 constant Integer order(min=1)=1

13 "Order of discretization method";

14

15 // Stencil definition
16 constant Integer halfStencillength =1

17 "Half of length of stencil for flux f_(i+1/2)";

18 final constant Integer stencilLength =2*halfStencillength
19 "Length of stencil for flux f_(i+1/2)";

20

21 /..

22

23 end PartialDiscretization;

Listing 2: Discretization interface, structural parameters

Hancock TVD scheme with several limiters and mono-
tone fluxes both in upstream and in centered versions,
third- to ninth-order ENO schemes and several fifth-
order WENO schemes with and without characteristic
decomposition.

The implementation of a Discretization is illustrated
for a second-order Muscl-Hancock scheme with a Su-
perbee limiter and a Local Lax-Friedrichs flux in [29]
and omitted here due to space constraints.

4.6 Applications

Results of a Sod-type problem are shown in figure 3.
Here, the results of computations using the Local
Lax-Friedrichs scheme (a first-order monotone cen-
tered method) are compared to those using a fifth-
order WENO scheme (using Roe’s first-order mono-
tone flux and a characteristic decomposition). The fig-
ure illustrates the generally accepted result that proper
higher-order reconstructions lead to higher resolution
of shock waves, expansion fans, and contact discon-
tinuities [34]. That is, such phenomena are smeared
over fewer computational cells.

5 Conclusions

A conceptually meaningful structure for numerical gas
dynamics using Modelica was introduced. The re-
viewed discretization schemes were implemented in
the resulting framework and delivered robust and effi-
cient simulation of the corresponding thermo-fluid dy-
namics problems.

References
[1] W. Casas. Untersuchung und Optimierung
sorptionsgestiitzter Klimatisierungsprozesse.

PhD thesis, Technical University of Hamburg-
Harburg, Institute of Thermo-Fluid Dynamics,
2006.

W. Casas and G. Schmitz. Experiences with a gas
driven, desiccant assisted air conditioning system
with geothermal energy for an office building.
Energ. Buildings., 37(5):493-501, 2005.

F. Casella and A. Leva. Modelica open library for
power plant simulation: design and experimen-
tal validation. In P. Fritzson, editor, Proceedings

DOI
10.3384/ecp1207681

Proceedings of the 9™ International Modelica Conference 95
September 3-5, 2012, Munich, Germany

High-Speed Compressible Flow and Gas Dynamics

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

[4]

[5]

[6]

partial package PartialDiscretization

"Interface for discretization in compact flux form"

/...

function primitiveToConserved

"Convert primitive variables to conserved variables"
input Medium.ThermodynamicState state "Thermodynamic state";

input SI.Velocity v "Velocity";

output Real u[3] "Vector of conserved variables";

algorithm

u :={Medium.density(state), Medium.density(state)*v,

Medium.density(state)*

(Medium.specificInternalEnergy(state) + 1/2%v*v)};

end primitiveToConserved;

function conservedToPrimitive

"Convert conserved variables to primitive variables"
input Real u[3] "Vector of conserved variables";
output Medium.ThermodynamicState state "Thermodynamic state";

output SI.Velocity v "Velocity";
algorithm
v =u[2]/u[1];
state
Medium.X_default);
end conservedToPrimitive;

/7 ...

end PartialDiscretization;

:=Medium.setState_duX(u[1], u[3)/u[1]-1/2%*v*v,

Listing 3: Discretization interface, conversion functions

of the Third International Modelica Conference,
pages 41-50, Linkoping, Sweden, 2003.

F. Casella and A. Leva. Modelling of thermo-
hydraulic power generation processes using
Modelica. Math. Comput. Model. Dyn. Syst.,
12(1):19-33, 2006.

J. Diaz Lépez. Shock wave modeling for Mod-
elica.Fluid library using oscillation-free logarith-
mic reconstruction. In Proceedings of the Fifth
International Modelica Conference, pages 641—
649, 2006.

H. Elmgqvist, H. Tummescheit, and M. Otter.
Object-oriented modeling of thermo-fluid sys-
tems. In P. Fritzson, editor, Proceedings of the
Third International Modelica Conference, pages
269-286, Linkdping, Sweden, 2003.

[7]

[10] A. Harten.

R. Franke, F. Casella, M. Otter, M. Sielemann,
S.-E. Mattson, H. Olsson, and H. Elmgvist.
Stream connectors—an extension of Modelica
for device-oriented modeling of convective trans-
port phenomena. In F. Casella, editor, Proceed-
ings of the seventh International Modelica con-
ference, pages 108—121, Como, September 2009.

T. Gallouét, J. Hérard, and N. Seguin. Some
recent finite volume schemes to compute euler

equations using real gas eos. Int. J. Numer. Meth.
Fl., 39(12):1073-1138, 2002.

S. K. Godunov. A finite difference method for
the computation of discontinuous solutions of
the equations of fluid dynamics. Mat. Sbornik.,
47:357-393, 1959.

High resolution schemes for hy-

96

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207681

Session 1B: Thermofluid Systems

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

partial package PartialDiscretization

"Interface for discretization in compact flux form"

/...

replaceable partial function monotoneFlux

"First-order flux approximation"

input Medium. ThermodynamicState state_l
"Stencil of thermodynamic states on left (i)";

input Medium. ThermodynamicState state_r
"Stencil of thermodynamic states on right (i+1)";

input ST.Velocity v_1 "Velocity in x-dir on left, v_(i)";

input SI.Velocity v_r "Velocity in x-dir on right, v_(i+1)";

output Real flux[3] "Fluxes f_(i+1/2)";

end monotoneFlux;

replaceable partial function flux "Numeric flux approximation"
input Medium. ThermodynamicState state[stencillength]

"Thermodynamic state stencil";

input SI.Velocity v[stencilLength] "Velocity stencil";

input Real x_side[stencillength + 1]

"Coordinates of cell sides (i-1/2), (i+1/2) etc.";

output Real flux[3] "Fluxes f_(i+1/2)";

end flux;

/7 ...

28 end PartialDiscretization;

Listing 4: Discretization interface, flux functions

perbolic conservation laws.
49:357-393, 1983.

J. Comput. Phys.,

[15]

J. M. Jensen. Dynamic Modeling of Thermo-
Fluid Systems with focus on evaporators for re-
frigeration. PhD thesis, Technical University of

[11] A. Harten, B. Engquist, S. Osher, and Denmark, Department of Mechanical Engineer-
S. Chakravarthy. Uniformly high order es- ing, 2003.
sentially non-oscillatory schemes, IIL J.

Comput. Phys., 71:231-303, 1987. [16] G.Jiang and C.-W. Shu. Effcient implementation
of weighted ENO schemes. J. Comput. Phys.,

[12] A. Harten, P. D. Lax, and B. van Leer. On up- 126:202-228, 1996.

Stream d1ffer§n01ng and Qodunov—type schemes [17] P.D. Lax and B. Wendroff. Systems of conserva-
for hyperbolic conservation law. SIAM Rev., .

tion laws. Comm. Pure Appl. Math., 13:217-237,
25(1):35-61, 1983.

1960.

[13] T. Y. Hou and P. LeFloch. Why non-conservative 18] M. Liou, B. Leer, and J. Shuen. Splitting of in-
schemes converge to the wrong solutions: Error viscid fluxes for real gases. J. Comput. Phys.,
analysis. Math. Comput., 62:497-530, 1994. 87(1):1-24, 1990.

[14] J. Jensen, J. Jensen, and H. Tummescheit. Mov- [19] S. Patankar and D. Spalding. A calculation pro-
ing boundary models for dynamic simulations of cedure for heat, mass and momentum transfer in
two-phase flows. In Proceedings of the Second three-dimensional parabolic flows. Int. J. Heat.
International Modelica Conference, 2002. Mass. Tran., 15:1787-1806, 1972.

DOl Proceedings of the 9™ International Modelica Conference 97

10.3384/ecp1207681

September 3-5, 2012, Munich, Germany

High-Speed Compressible Flow and Gas Dynamics

[20]

[21]

[22]

[23]

[24]

10°

+Lax-Friedrichs
x Weno5

1.5

Q,
o
5
4 1 .
A fr
+
+
X+
+
05 | | | | L ——
0 0.2 0.4 0.6 0.8 1
Coordinate x
200 T T
150
-
>
g 100
L
(]
~ 50

|
0.6

|
0.4
Coordinate x

Q
> 0.8
g
a

0.6

| | | |
0 0.2 0.4 0.6 0.8 1
Coordinate x
T T

600
~
(D]
E
<
2,
g 400
F

200 ‘

| |
0.4 0.6
Coordinate x

0.2

Figure 3: Comparison of Local Lax-Friedrichs and fifth-order WENO schemes on a Sod-type problem

T. Pfafferott. Dynamische Simulation von
CO2-Kilteprozessen fiir mobile Anwendungen.
PhD thesis, Technical University of Hamburg-
Harburg, Institute of Thermo-Fluid Dynamics,
2005.

K. ProlB. Untersuchung von Energie- und Mass-
espeicherungsvorgdngen in Pkw-Kdlteanlagen.
PhD thesis, Technical University of Hamburg-
Harburg, Institute of Thermo-Fluid Dynamics,
2009.

K. ProlBand G. Schmitz. Modeling of frost
growth on heat exchanger surfaces. In Proceed-
ings of the Fifth International Modelica Confer-
ence, 20006.

J. J. Quirk. An alternative to unstructured grids
for computing gas dynamic flows around arbi-
trarily complex two dimensional bodies. Com-
put. Fluid., 23(1):125-142, 1994.

C. C. Richter. Proposal of New Object-Oriented
Equation-Based Model Libraries for Thermody-

namic Systems. PhD thesis, Technical Univer-

[25]

[26]

[27]

[28]

[29]

sity Braunschweig, Institute for Thermodynam-
ics, 2008.

R. D. Richtmyer and K. W. Morton. Dif-
ference Methods for Initial Value Problems.
Interscience-Wiley, New York, 1967.

P. L. Roe. Approximate Riemann solvers, param-
eter vectors, and difference schemes. J. Comput.
Phys., 43:357-372, 1981.

V. V. Rusanov. Calculation of interaction of non-
steady shock waves with obstacles. USSR J.
Comput. Math. Phys., 1:267-279, 1961.

C.-W. Shu. Essentially non-oscillatory and
weighted essentially non-oscillatory schemes for
hyperbolic conservation laws. Advanced numeri-
cal approximation of nonlinear hyperbolic equa-
tions, 1697:325-432, 1998.

M. Sielemann. Device-Oriented Modeling and
Simulation in Aircraft Energy Systems Design.
PhD thesis, Technical University of Hamburg-
Harburg, Institute of Thermo-Fluid Dynamics,
2012.

98

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp1207681

Session 1B: Thermofluid Systems

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

J. L. Steger and R. F. Warming. Flux vector split-
ting of the inviscid gasdynamic equations with
applications to finite difference methods. J. Com-
put. Phys., 40:263-293, 1981.

G. Strang. On the construction and comparison
of difference schemes. SIAM J. Numer. Anal.,
5(3):506-517, 1968.

P. K. Sweby. High resolution schemes using flux
limiters for hyperbolic conservation laws. SIAM
J. Numer. Anal., 21:995-1011, 1984.

E. F. Toro. On two Glimm-related schemes for
hyperbolic conservation laws. In Proceedings of
the Fifth Annual Conference of the CFD Society
of Canada, pages 3.49-3.54. University of Vic-
toria, Canada, 1997.

E. F. Toro. Riemann Solvers and Numerical
Methods for Fluid Dynamics: A Practical Intro-
duction. Springer, 1997.

H. Tummescheit. Design and Implementation of
Object-Oriented Model Libraries using Model-
ica. PhD thesis, Lund University, Department of
Automatic Control, 2002.

H. Tummescheit, J. Eborn, and K. ProlB.
Airconditioning—a Modelica library for dynamic
simulation of AC systems. In G. Schmitz, editor,
Proceedings of the Fourth International Model-
ica Conference, Hamburg, Germany, 2005.

B. van Leer. Towards the ultimate conservative
difference scheme I. the quest for monotonicity.
Lect. Notes. Phys., 18:163-168, 1973.

B. van Leer. Towards the ultimate conservative
difference scheme II. monotonicity and conser-
vation combined in a second order scheme. J.
Comput. Phys., 14:361-370, 1974.

B. van Leer. Towards the ultimate conservative
difference scheme III. upstream-centered finite
difference schemes for ideal compressible flow.
J. Comput. Phys., 23:263-275, 1977.

J. Vasel and G. Schmitz. Transient simulation
of a direct-evaporating CO2 cooling system for
an aircraft. In 25th International Congress of
the Aeronautical sciences (ICAS), Proceedings of
the, Hamburg, Germany, September 2006.

DOI

10.3384/ecp1207681

Proceedings of the 9™ International Modelica Conference 99

September 3-5, 2012, Munich, Germany

High-Speed Compressible Flow and Gas Dynamics

100 Proceedings of the 9" International Modelica Conference DOl
September 3-5, 2012, Munich Germany 10.3384/ecp1207681

Gas Exchange and Exhaust Condition Modeling of a Diesel
Engine using the Engine Dynamics Library

Johan Dahl t Daniel Andersson I
1Volvo Group Truck Technology, Control Systems, Gothenburg, Sweden
TModelon AB, Lund, Sweden

Abstract

In this paper the newly developed Engine Dynamics
Library is presented. Ever increasing consumer and
regulatory demand for improved fuel economy and
lower emissions forces the engines and Engine After-
Treatment Systems (EATS) to be improved continu-
ously. Since the complete system is very complex,
models are useful in cost effectively developing new
control strategies and select hardware. The library is
based on a mean-value combustion model and the fo-
cus lies on modeling the gas exchange with real-time
like simulation times, useful for engine optimization
and for evaluation of control strategies. The library
contains models of the standard engine components
such as manifolds, pipe, turbines, compressors, valves,
mechanics, etc. Simulation results from Dymola for a
13 L Volvo truck engine demonstrate that the model
captures the transient flow and temperatures and emis-
sion trends, and has sufficient accuracy to be useful in
engine optimization. The physical modeling approach
allows for virtual prototyping by replacing individ-
ual components, which is an important advantage over
black-box modeling. It is shown that the model cap-
tures essential system properties in the gas exchange,
such as non-minimum phase behavior and sign rever-
sal for VGT and EGR valve actuation. The model has
been calibrated using surface fitting of maps and least-
squares estimation of parameters in Matlab, as well as
parameter optimization using JModelica and FML.

Keywords: Engine modeling; Engine simulation;
Air Gas management

1 Introduction

As the requirements on the engine and EATS become
more strict, a new development process of control
strategies and hardware concept selection is needed as
only using engine test cells and vehicles in the devel-
opment process is too time consuming and expensive.

In the new development process at Volvo, Software-
In-the-Loop (SIL) simulations are used more exten-
sively in the control strategy and hardware develop-
ment. With the introduction of US10 and soon EU6
legislation ultra low on-road emissions are required.
Future emission legislation will also include CO,, N,O
and NO, [1]. To fulfill these requirements with opti-
mal fuel consumption, the significant interaction be-
tween the engine and EATS must be considered and
control strategies for both components need to be opti-
mized together [2]. This requires good engine models
with accurate modeling of the engine out conditions.
In particular, focus has been on predicting the sensitiv-
ity of the dynamic response and engine exhaust tem-
perature with respect to the air gas management. Is-
sues about control system design or strategy are not in
the scope of this paper. Nevertheless, a good physical
model of the engine provides useful insights for both
the control system designers and hardware selection.
The engine model is also useful for finding suitable
requirements of the EATS system. For example the
emission transient response can be a limiting require-
ment for the needed volumes of the Diesel Oxidation
Catalyst (DOC), Diesel Particulate Filter (DPF) and
Selective Reduction Catalyst (SCR) in order to fulfill
the EU6 emission legislation.

In this paper the Engine Dynamics Library (EDL) is
presented. The library is implemented in Modelica
and consists of mean-value models of standard en-
gine components. The focus of the model has been
on capturing the transient engine response and the en-
gine outlet conditions as these features are important
for the total engine and EATS optimization. Compar-
ison results between test cell measurements and simu-
lation results of a 13 liter Volvo truck engine certified
for the Post New Long-Term (PNLT) emission legis-
lation, introduced in 2009, are presented. The Engine
Dynamics Library is a new commercial library offered
by Modelon.

DOl
10.3384/ecp12076101

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich, Germany

101

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics ...

2 Engine modeling in Dymola

Today several tools exist in which physical or semi-
physical models can be implemented. Dymola [3],
which is based on the open standard Modelica lan-
guage, was chosen as the tool for developing an engine
model library. The main reasons for choosing Model-
ica are the flexibility, expressiveness and openness of
the language, as compared to domain specific tools,
and the possibility to extend tools and libraries with
in-house IP and know-how. Others have demonstrated
that Modelica is suitable for engine modeling [4, 5],
but the focus has not been on gas exchange modeling
or predicting the exhaust gas temperature entering the
EATS.

The following sections describe EDL and the compo-
nent and medium models that have been implemented.

2.1 Library structure

/i1 EngineDynamics
+ @Inﬁ:rmaﬁun
+ [F]Engines

+ [F]Cvlinder

+ [@] Compressor
+ (] Turbine

+ [HeatExchangers
+ (D] Volumes

+ F‘ipes

+ (] Valves

+ [[Mechanics

+ [m] FlowModifiers
+ [e+]) Sources

+ [Sensars [F]Engines

+ [A]Records - [T]Templates

*f-EXDCIFtBbEkS E--;_a.-:'I'l.lrl:u:ucl'u.slrguau:iEGR

+ (] Media — [CJExamples

-E-I_ltilities E";_-.':MEIpBaSEdTLII'bDChargEdEGR
+ ﬁchgices + Experiments

+ @1.;.;..—.5 + @Int&rfﬁces

~EDLPath + [ARecords

Figure 1: EDL and sub packages (left), Engines pack-
age (right)

The structure of EDL is shown to the left in Fig. 1.
The library is divided into packages for each physi-
cal component, plus some additional packages for sup-
porting components and classes. There is also a pack-
age named Engines, shown to the right of Fig. 1,

which contains examples of configured engine mod-
els and experiments.

EDL is not based on the Modelica.Media or Mod-
elica.Fluid packages. Medium property models and
base classes for fluid systems modeling are based on
classes in the Modelon Base Library, which is deliv-
ered with EDL. EDL share base classes with Mode-
lon’s Liquid Cooling Library (LCL), Heat Exchanger
Library (HXL) and Vehicle Dynamics Library (VDL),
making them all compatible. The libraries can be used
together for different kinds of vehicle analysis, for ex-
ample EDL, LCL and HXL together forms a powerful
solution for thermal management analysis, and EDL
and VDL can be used together for drivability analysis.

2.2 Cylinder

The cylinder component (Fig. 2) is based
on a mean value combustion model as
described in [6]. The component bound-
ary conditions are boost pressure and
temperature, exhaust manifold pressure,
engine speed, fuel injection and other
control signals. The empirical correlations described
in the following sections (often 2-dimensional maps)
can easily be replaced by any equation based models,
for example simple qualitative models found in litera-
ture, regression models or neural network models.

ez

Figure 2:
Cylinder

Flow model

The cylinder mass flow is modelled by means of a vol-
umetric efficiency defined as:

Vd @,

mcharge = Pin l(pBonsta a)e) : N : 7 (D

where A is the volumetric efficiency, V; is the dis-
placed volume, N is the number of revolutions per cy-
cle, ppoos 18 the inlet manifold pressure and w, is the
engine rotational speed. A(ppoost, @) is modelled by
a two-dimensional map obtained from measurements.

Torque model

For the torque model we define brake mean effective
pressure, pp. and fuel mean effective pressure, pyg,
as:

T, 4w
Vu

Vu

Pme = Pme = (2)
where T, is the engine torque, H; is the fuel lower

heating value and mg is the mass of fuel burnt per

102

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076101

Session 1C: Power and Energy

combustion cycle. The engine efficiency can then be
written as:

Ne = pme/pm(p (3)

Following the Willans Approximation [6], a torque
model on the following form is implemented:

“4)

where the energy conversion efficiency, e is
modelled by a two-dimensional map obtained from
measurements, the mechanical friction, pyeor, 18
mapped from engine speed, ppeog, 1S the cycle-
averaged pressure difference between inlet and
exhaust manifolds.

Pme = e(pm(w (Oe) *Pme — PmeOf(a)e) — Pme0g

Exhaust gas properties

The outlet exhaust gas temperature is mapped from
engine speed and injected fuel. The transferred heat
to the cylinder block is obtained from energy balance
over the component boundaries.

The composition of species in the exhaust gas is mod-
elled by a stoichiometry matrix for the combustion.
Complete combustion of the injected fuel is assumed.
The NO, and soot generation is modelled by a regres-
sion model [7] on the form:

y(t)=9"0+e(r) (5)

where y = (Cyox,Csoor)! are the NO, and soot con-
centrations of the exhaust gas, the regressor ¢ =
(l,ul,u%,...,ullv,ug,...)T contains the first and higher
order terms of the following signals:

e Injected fuel amount, my

Fuel injection timing, {

Needle opening angle (controls the fuel injection
pressure), fBr

CO; concentration in the inlet manifold, Ccoo

Inverse stoichiometric air to fuel ratio, A !
e Engine speed, @,

0 are the model parameters and e is the model error.
In the experiment described in section 3.2, all of the
input signals to the model come directly from model
control signals or boundary conditions, except for the
inlet manifold CO, concentration and air to fuel ra-
tio. These variables are simulated in the engine sys-
tem model and the simulated values are used as inputs
to the emission model.

2.3 Compressor and turbine
e v o
Figure 3: Compressor and VGT

The compressor and variable geometry turbine (VGT)
components (Fig. 3) are both parameterized by maps
for mass flow rate and isentropic efficiency. The
components model a polytropic thermodynamic pro-
cess with mechanical power crossing the component
boundary via a rotational mechanical flange. Quasi-
static balance equations for conservation of substance
mass and energy are used, i.e. storage of mass and
energy is not considered and the outlet properties re-
spond instantly to property changes of the inlet flow.
These equations assume:

e The amount of mass inside the component is
small compared to that in the upstream and down-
stream pipes, which is covered by volume com-
ponents connected to these components.

o The heat capacity of the solid parts are lumped to-
gether with the wall heat capacities of the volume
components connected upstream and downstream
of these components.

e The rotational kinetic energy of the solid parts
is modeled by a separate inertia component con-
nected to the rotational flange connector of these
components.

The mapped isentropic efficiency, 7;s, defines the
deviation from an isentropic process [8].

h()ut,isentropic - hin
hout - hin
hout - hin

hout,isentropic - hin

(6)

(Compressor)

Nis =

Nis = (Turbine) @)
where h;, is the inlet specific enthalpy, A, is the
outlet specific enthalpy and %o isentropic 1 the outlet
specific enthalpy of an isentropic process.
The variable geometry turbine is modeled using sev-
eral maps of isentropic efficiency and mass flow rate
for different positions, the properties are interpolated
linearly between the mapped geometry settings. The
turbine model currently contains no compensation for
the upstream pressure oscillations. Internal losses

DOI
10.3384/ecp12076101

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

103

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics ...

from heat transfer to the housing and mechanical fric-
tion are currently modeled as a constant efficiency fac-
tor. The turbo moment of inertia is captured by a sep-
arate inertia component connected between the com-
pressor and turbine components in the engine system
model.

2.4 Heat exchangers

A quasi-static heat exchanger model with

—
table based efficiency is implemented “*x__h&
in EDL. It does not contain storage of g g 1S

mass or energy and the outlet fluid prop-

erties respond instantly to inlet prop- Figure 4:
: Heat
erty changes. The component has inter-
exchanger

changeable friction models with different
levels of detail for the primary and sec-
ondary flow channels. A model on the following form
was chosen because it is easily calibrated to fit mea-
sured data:

dp=f-5-v ®)
Here dp is the pressure drop over the channel, f is the
friction factor, p is the fluid density, v is the flow ve-
locity and n is a constant. Note that for n = 2, this
corresponds to the Darcy-Weisbach equation for pres-
sure loss due to friction in a pipe. The constants f and
n are chosen to fit measurement data.

The heat transfer is modeled by defining heat ex-
changer efficiency as € = Q/Qua- The maximum
transferable heat Q,,,, is calculated from the heat ca-
pacity flow and inlet temperatures of the two chan-
nels. The model is parameterized by specifying a two-
dimensional map for the efficiency from the mass flow
rates in the two channels.

2.5 Volumes

&

Figure 5:
Two port
air volume

All fluid mass and energy storage is mod-
elled in volume components by dynamic
mass and energy balance equations. An
ideal mixture is assumed and a number
of different components are available,
which have different port configurations. The volume
models have the option to consider wall heat capac-
ity, heat transfer between fluid and wall (constant heat
transfer coefficient model) and heat transfer to the sur-
roundings. There is a special volume model for the in-
let manifold that can handle incoming flow in a differ-
ent medium model representation by mapping the fluid
species between the mass fraction vectors of the two
medium models. This is necessary if separate models

for air and exhaust gas are used. Outgoing flows from
the volume carry the average medium properties of the
total volume.

2.6 Pipes

The pipe models provided in the library
consider pressure drop due to friction
and optionally also heat transfer effects.
Several friction models can be chosen,
but also here eq. 8 is used. The
heat transfer model is interchangeable as
well, with the options: 1) Constant heat
transfer coefficient, 2) Dittus-Boelter correlation for
forced convection in turbulent flow (Coefficients can
be adjusted by the user). Optionally a dynamic mo-
mentum balance can be used.

Figure 6:
Air pipe
model

2.7 Valves

There are a number of valve models
available in EDL. The first one is de- %
signed to be easily parameterized from r

measured data. It defines a flow equa-

tion for the fully opened setting as eq. 8. Figure 7
The valve characteristics are represented ~ Valve
model

by means of a relative open area that is
governed by the actuation signal. Lin-
ear, quadratic and tabulated characteristics are avail-
able. The second one is implemented according to
the IEC 534/ISA S.75 standards for valve sizing. It
accounts for fluid compressibility effects, as well as
choked conditions. For the engine model presented in
this paper, the first model is used because it is easier
to parameterize from measurements and choked con-
ditions do not occur under normal operation.

A butterfly type valve model has been implemented as
well, including flap mechanism, torque generation on
the flap by the gas flow and mechanical friction.

2.8 Medium models

The medium property models are implemented as re-
placeable packages with high flexibility, similar to that
of the Modelica.Media package. Ideal gas mixtures
based on the NASA coefficients [9] can be created and
used.

In addition to this, a simplified medium model as-
suming a linear function for specific heat capacity of
temperature, C,,(T), has been implemented for perfor-
mance reasons. By definition, the specific enthalpy
function, A(T), will become quadratic in temperature

104

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076101

Session 1C: Power and Energy

under this assumption. In static component models,
the upstream temperature 7 (k) is calculated from the
specific enthalpy of the inlet fluid connector. An ex-
plicit function for this calculation greatly improves
simulation performance for system models with sev-
eral such components, as the non-linear systems of
equations can be reduced or completely avoided. The
medium models are compatible, so all component
models can carry any of the medium model types.
Available in EDL are some pre-defined mixtures, used
as air or exhaust gas models. The components in-
cluded are CO,, H,O, O,, N, and Ar for both NASA
and linear C,(T') models. Also a single component
dry air model is provided. To model emissions, some
pre-defined exhaust gas mixtures include trace compo-
nents for NO,, Soot, HC and CO. The trace compo-
nents are assumed to be carried by fluid flow but don’t
affect the thermodynamic properties of the fluid.

2.9 Mechanical

Basic rotational mechanical components are available
in EDL, such as inertia and ideal gear models. The
mechanical connectors of the turbo components and
cylinder component are compatible with the mechani-
cal components in the Modelica Standard Library.

3 Engine system model

A 13 liter Volvo engine certified for the Post New
Long-Term (PNLT) emission legislation has been
modeled using EDL. The engine is equipped with vari-
able geometry turbine, exhaust gas recirculation gov-
erned by a valve, throttle, EGR cooler, intercooler and
unit injectors. The purpose of the simulation model
is to perform similar experiments that are performed
in engine test cells, where the engine is mounted to an
electrical dynamometer which directly controls the en-
gine speed.

3.1 Model description

The engine system model is configured as shown in
Fig. 8. The upper left connector is the air inlet connec-
tor that should be connected externally to a component
defining air temperature and pressure boundary condi-
tions. The components in the air path are connected
to represent the engine system design, indicated with
light blue in the figure. First there is a pipe component
modeling the pressure drop over the air filter (1). Then
follows compressor (2), intercooler (3) and throttle (4)

=L+ Airinlet Exhaust

1 =1

14

T .

summary

initializati... | parameters

u_ntakeThrottle

Figure 8: Engine system model with: Air filter (1),
Compressor (2), Intercooler (3), Throttle (4), Turbo in-
ertia (5), Inlet manifold (6), Cylinder block (7), Drive
shaft (8), Exhaust manifold (9), EGR valve (10), EGR
cooler (11), Venturi (12), VGT (13), Muffler (14),
Heat transfer (15, and more)

components, each separated by volume components.
The compressor is connected to an inertia model (5)
that is also connected to the VGT component (13).
The throttle in the lower left is connected to the inlet
manifold component (6). This is a volume model that
also accounts for the thermal mass of the wall and heat
transfer between the gas and wall. The inlet manifold
has two more connectors for gas (orange). One is con-
nected to the cylinder block and the other is the inlet
for EGR gas.

The cylinder block (7) has a rotational connector for
the drive shaft that is connected to an external connec-
tor to the right in the figure (8). It is also possible to en-
able a support connector for the reactive torque, but it
is not used here. There are real input signal connectors
for injected fuel, injection timing and needle opening
angle. The exhaust gas port is connected to the exhaust
manifold (9), which is also a volume model including
thermal mass of the wall. There is an outlet port for
the exhaust gas recirculation path that is connected di-
rectly the the EGR valve (10). This is connected to a
volume and then to the EGR cooler (11) and venturi
(12). The venturi component is a pure sensor model
that does not affect the gas flow rate or properties. The
EGR gas path is then fed back to the inlet manifold.

DOI
10.3384/ecp12076101

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

105

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics ...

For each volume model there is a unique pressure and
temperature state introduced. As a consequence of the
model layout the flow through the EGR valve is cal-
culated from the pressure difference between the ex-
haust manifold and EGR volume components. The
pressures are calculated during model simulation by
means of numerical integration.

The exhaust manifold is also connected to the turbine
component (13). Additionally, the turbine has an in-
put signal for varying the geometry, a rotational flange
connector and an outlet gas connector. The turbine
component calculates a torque that is generated on the
flange. Thus, the turbo rotational speed is obtained
during simulation by integration of the dynamic mo-
mentum equation introduced in the inertia component,
with torque terms from the turbine and compressor
components. After the turbine the gas is fed to a vol-
ume model and then a pipe model that accounts for the
pressure drop over the muffler (14).

The volume model in the exhaust path has a thermal
connector (red square) that holds the wall temperature
of the exhaust pipe. This is connected to a heat trans-
fer component (15) that contains a linear heat transfer
equation. This is also connected to an external heat
connector where the ambient temperature should be
provided as boundary condition. Such heat transfer
components are also used to cover heat transfer be-
tween the cylinder block and coolant water, and be-
tween cylinder block and inlet manifold. The coolant
path is indicated with dark blue connections. The set
of connector variables in the air, gas and water con-
nectors are identical. Only the color differ for a clearer
visual model representation.

3.2 Simulation model

The engine model described above can be used in var-
ious simulation models or virtual experiments. Sim-
ulation models are created by instantiating the engine
model and assigning values or signal to boundary con-
ditions and input control signals. The following sig-
nals from the engine electrical control unit (EECU) are
set as input signals:

o Injected fuel, injector timing and needle opening
angle (controls the fuel pressure)

o VGT, EGR valve and throttle positions
The following physical boundary conditions are set:
e Engine coolant temperature and mass flow rate

e Ambient air temperature and pressure

Ambient temperature and pressure

BIELAUMIE

jcje) dua)] uge

Coolant pressure out

\d
e Tp

Ambient temp

[vatPosTable

] ¢

'Y v
= \ ' uEGHTable
A £

EGR valve pos

SLBEZ=1
%
“Lwaioue

Coolant flow in

engCoolantFiv

engine

speed speedTable

L
o
NopAngle, E,’;ﬂls‘f F I wi_ref

Engine speed

enagCoolanfTTaljle

cacTemp

7

7
T=298
CAC ambient temp

InfTiming

| ThrottleTable

Throttle pos. fuelable

Fuel flow

Figure 9: Simulation model of the engine in a test
cell. The engine component corresponds to the engine
model as shown in Figure 8.

e Engine driveshaft speed

This experiment is set up in Dymola, as shown in
Fig. 9. The centered engine icon represents the engine
model as shown in Fig. 8. The components with ta-
ble icons are used to read signals from the engine test
cell measurements from an external file. The engine
component need not be connected directly to source
components, but could be used in larger system mod-
els together with drive line, vehicle dynamics, coolant
system or exhaust after treatment system models.

4 Calibration

The calibration is done component by component.
The benefit with this approach is that it is possible
to change a component and only recalibrate the new
component without needing to recalibrate the whole
systems. Validation is performed both component by
component and for the overall system using steady-
state and dynamic data. The exhaust gas thermal dy-
namics is calibrated using an exhaust gas path sub-
system model.

106

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076101

Session 1C: Power and Energy

4.1 Static correlations

The calibration of the static engine correlations is
performed in Matlab using steady state measurement
data. Flow model parameters for pipe, valve and heat
exchanger models are calibrated with a Least-Squares
method using static engine screening data. For the
compressor and VGT the maps supplied by the man-
ufacturer were used. Heat exchanger measurements
were also supplied separately, and not identified from
the screening data. The maps for energy conversion
efficiency, volumetric efficiency and exhaust gas tem-
perature used in the cylinder component were cali-
brated using the surface fitting tool gridfit [10]. The
calibration data for this component consisted of a par-
tial load map collected from an engine test cell. For
the valves, one dimensional look-up tables for relative
open area from the control signal were created. Some
results from the calibration procedure are presented in
the following figures. Fig. 10 shows the fitted surface
for volumetric efficiency together with measurements.
Fig. 11 shows the measured mass flow rate through the
intercooler at different pressure drops together with a
calibrated model using equation 8. Fig. 12 shows the
fitted look-up table for throttle relative open area.

Yolumetric efficiency v inlet manifold pressure & engine speed

124, : P e
= : ! : -
- : B : :
S 1 : S ce
5 : <F 0,8% L i
o : % -] :
E D e 8%@0 o
E Ty '-“h i (‘r\ﬁ I (7’80 i
= r\nﬁf\ n"}—\n"‘ﬁ S ey o
o 09 i [l an oo et J :
> ey o (ol N

R ! e 4 Cg:'

o 7 :

Boost pressure [Pa]

Engine speed [rpm]

Figure 10: Volumetric efficiency map, fitted map and
measured data

4.2 Emission model

The linear regression model is calibrated by least
squares estimation [7]. For calibration, the initial 10
minutes of the dynamic JEO5 cycle, further described
in section 5, were used. The remaining 20 minutes are
then used for validation of the calibration result. The

Measured and fitted CAC flow characteristics

= Measured
Fitted

0.6 .

CAC air flow [kg/s)

D 1 1 1
a 1 2 3 4

CAC pressure drop * density [F'a*kgfmS] <10t

Figure 11: Intercooler flow friction model

Mapped relative open area versus input signal

2 Measured
—&— Map

Throttle relative open area

Throttle pasition

Figure 12: Throttle relative open area

following regressor found to best best result

‘P = (mevm?%m_:;”a

C’C27C3’
2 03
ﬁf?ﬁf?ﬁf?
Cc02,Cé02,Clon
AtaA2aA
0,0%,0°) 9)

4.3 Parameter optimization in JModelica.org

JModelica.org [11] has been used for optimization of
model parameters for heat transfer and thermal dy-
namics in the exhaust gas path. The method used is the
derivative free Nelder-Mead simplex method [12, 13].
Derivative free methods do not require that the model
provides derivatives of the objective function with re-
spect to tuner variables. That makes them well suited

DOI
10.3384/ecp12076101

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

107

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics ...

for optimization of more complex models, and model
modifications for optimization purposes are not nec-
essary. The following parameters were optimized to
obtain the best possible result for the exhaust gas tem-
perature during transient cycles:

e Thermal conductance between exhaust gas and
wall

e Heat capacity of the exhaust pipe wall

e Thermal conductance between the wall and the
surrounding air

The dynamic exhaust gas temperature response,
presented in Fig. 23, is very different from the instan-
taneous outlet gas temperature from the quasi-static
VGT model. This is both due to thermal mass of
the metal parts, and heat transfer to the surrounding
air. The heat capacity and thermal conductances men-
tioned above model the dynamic exhaust temperature
response from the VGT outlet temperature. The initial
10 minutes of the JEOS5 cycle were used for parameter
optimization. The remaining 20 minutes are then used
for validation of the calibration result.

5 Validation

The models have been validated, both by individual
component experiments, and by complete engine sys-
tem simulation. The used data was collected from an
engine test cell and consisted of partial load map data
and of the Japanese emission cycle, JEO5. The JEO5
cycle is one of the legislation requirements in the Post
New Long-Term (PNLT) legislation.

5.1 Turbo model validation

The turbo model with rotational speed as dynamic
state was validated separately with boundary condi-
tions from a partial load map. An experiment model
is set up where a compressor and VGT component are
connected with an inertia model in between. Upstream
and downstream pressure and temperatures and VGT
position are prescribed and the resulting mass flow
rate, outlet temperature and rotational speed are val-
idated for the compressor and turbine models. Fig. 13
shows a comparison of the turbo flow rates. In Fig. 14
the turbo model outlet temperatures are shown.

05

0.4

0.2+

0.0

0.2 T
0.0EQ

08

0.4+

0z

0.0+

0.2 T
0.0EQ

T T T T
4.0E3 8.0E3 1.2E4 1.6E4

Figure 13: Turbo model validation. Top: Exhaust flow
rate [kg/s], simulated (solid) and measured (dashed).
Bottom: Air flow rate [kg/s], simulated (solid) and
measured (dashed)

0.0ED

300+

T T T T
0.0EQ 4.0E3 8.0E3 1.2E4 1.6E4

Figure 14: Turbo model validation. Top: Turbine out-
let temperature [K], simulated (solid) and measured
(dashed). Bottom: Compressor outlet temperature
[K], simulated (solid) and measured (dashed)

5.2 EGR model validation

The EGR valve model is validated with part load map
data. Upstream and downstream pressures are pre-
scribed and the simulated EGR flow rate is compared
to measurements. The result is presented in Fig. 15.

5.3 Verification of non-minimum phase and
sign reversal

An engine equipped with VGT and EGR valve
has some essential system properties such as non-
minimum phase behavior in the intake manifold pres-
sure and a non-minimum phase behavior and a sign re-

108

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076101

Session 1C: Power and Energy

T T T T
0.0E0 4.0E3 8.0E3 12E4 1.6E4

Figure 15: EGR flow model validation. EGR flow
[kg/s], simulated (solid) and measured (dashed)

versal in the compressor flow [15]. Fig. 16 shows that
the the model captures the non-minimum phase behav-
ior between the EGR valve position, u.e-, change and
inlet manifold pressure, pj,.

0.8

0.6

EGR position [ratio]

044

0.2+

a0

T T T
1099 1102 1103 1104 1105

Time [=]

T T
1100 1

P inlet manifold
P
Il

T T T
102 103 1104 105

Time [=]

11IUU 11‘01
Figure 16: Dynamic verification of the non-minimum
phase between u.e- and p;, using steps. Operating
point: @, = 1500 rpm, 7, = 670 Nm, u,s = 0.5 ra-
tio.

Fig. 17 shows that the model capture the non-
minimum phase behavior between the VGT position,
Uy, and the compressor mass flow r1.. Notice that
initially the DC gain between u,,, and 1. is negative
but after a while it becomes positive. This phenom-
ena is even better seen in Fig. 18 where the u,, is

slowly changed from complete opened vanes towards
closed position. As the sweep is performed slowly and
the other operating conditions are kept constant, the
results can be regarded as steady state results.

08

0.8

0.7

0.6

YGT position [ratio]

0.5+

0.4

03 T T T
400 S00 600 7o
Time [5]

T T
200 300

0.200

0195+

0190+

0185+

Compressor flow [kgrs]

0180+

0175

0170 : : .
400 500 600 700

Time [s]

100 260 30‘0
Figure 17: Dynamic verification of the non-minimum
phase between u,, and 7. using steps. Operating

point: @, = 1500 rpm, 7, = 670 Nm, u,, = 1 ratio.

0.5

% GT position [ratio]

0.0 —— ————
0 500 1000 1500

Time [5]

20

15///\
1.2+

T T T T T T
1000 1500

P inlet manifold

T T T T T
[1} 500

0154
0104
T T T T T T T

T
1500

Compressor flow [kais]

T T T T T T
o a00 1000

Time [5]
Figure 18: Slow sweep of the u,¢ from fully open to-
wards closed position. Operating point: ®, = 1500
rpm, T, = 670 Nm, u,g, = 1 ratio.

DOI
10.3384/ecp12076101

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

109

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics ...

5.4 Dynamic validation

The engine system model is validated with JEOS
boundary conditions using the experiment setup in
Fig. 9. The cycle is 1830 seconds long and the simu-
lation time for the whole cycle was 735 seconds (2.5x
faster than real-time) on a standard laptop. The JEOS is
a very transient cycle which contains mostly city driv-
ing with some high way driving. The engine speed
variations during the complete cycle are shown in Fig.
19 and the load variations are shown in Fig. 20.

2000

1500+

1000

500

T
ann 1200 1600
Time [s]

T
0 400

Figure 19: JEOS engine speed [rpm]

T T T
200 1200 1800

Time [5]

T
0 400

Figure 20: JEOS engine torque [Nm)]

The resulting full cycle exhaust gas temperature is
shown in Fig. 21 and NOx emissions are shown in
Fig. 22. Both the modeled exhaust temperature and
the NOx emission captures most of the behavior. The
modeled exhaust temperature differs from the mea-
sured temperature in the end of the JEOS cycle. The
temperature before the VGT capture the temperature
behavior correct also in the end of the cycle this indi-
cate that there are still heat transfer effects that need to
be incorporated in the model.

T
200 1200
Time [s]

T
0 400

Figure 21: Complete model validation. Exhaust
gas temperature [K], simulated (solid) and measured
(dashed)

0.002- | |

0001 e 18 ke T Ll : AT

o.oo0 - AF R

sﬁu 1200
Time [s]

Figure 22: Complete model validation. Exhaust NOx

concentration [kg/kg], simulated (solid) and measured

(dashed)

Figures 23 - 27 show simulation results for engine
torque, mass flow rates and exhaust gas temperature
from a part of the cycle (750 - 1000 s). The exhaust gas
temperature is measured in the pipe 1 meter after the
turbine. As can be seen in Fig. 23 the model captures
most of the behavior. Figures 24 - 26 show that the
model captures the dynamics of the exhaust, EGR and
air mass flows. The ERG flow in Fig. 25 shows a
small time lag of the measured flow compared to the
simulated. This is likely due to a time lag in the EGR
flow sensor.

0o

850

600

550

Time [5]

Figure 23: Complete model validation. Exhaust
gas temperature [K], simulated (solid) and measured
(dashed)

110

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076101

Session 1C: Power and Energy

0.1 T T

Time [s]

Figure 24: Complete model validation. Exhaust
gas flow rate [kg/s], simulated (solid) and measured
(dashed)

0.10

0.05+

0.00

-0.05 T T

Time [s]

Figure 25: Complete model validation. EGR flow rate
[kg/s], simulated (solid) and measured (dashed)

0.1 T T

Time [s]

Figure 26: Complete model validation. Air flow rate
[kg/s], simulated (solid) and measured (dashed)

2000

1500

1000+

500

Time [g]

Figure 27: Complete model validation. Engine torque
[Nm], simulated (solid) and measured (dashed)

The model captures most of the dynamics of the en-
gine torque, but for the idling part (e.g. 850-890s)
there is an offset between modeled and measured

torque (Fig. 27). The difference may be explained
by the fact that the friction or the pumping loss mea-
surements which the model is based on are not correct
in this region.

Fig. 28 shows the NOx emissions. The black-box
model succeeds to capture the behavior. The NOx lev-
els are quite close to the measured level in steady state
operation, and the peaks are often quiet close to the
measured level regarding timing and level. The NOx
level was measured by a Horiba system, which isn’t
capable of measuring fast transients and the measure-
ments can be regarded as a filtered values.

Time [5]

Figure 28: Complete model validation. Exhaust NOx
concentration [kg/kg], simulated (solid) and measured
(dashed)

6 Discussion

The components in the 13L Volvo PNLT engine are
primarily modeled by a physical first-principle ap-
proach. The selected inputs for the emission model
does not capture the effect of the wall temperature and
a next step can be to parametrize a cylinder wall tem-
perature model in order to model the effects of cold
starts. The current simple emission model captures
most of the transient effects and in order to further im-
prove the transient optimization based on the models
the accuracy needs to be improved. Instead of assum-
ing CO; in the exhaust manifold based on stoichio-
metric combustion, it can be added as an output of the
emission model. This may improve the estimation of
the CO; in the inlet manifold which is one of the inputs
to the emission model. There exists several data driven
emission models with similar computational complex-
ity that would be interesting to compare against [16].
The plan for the future is that EDL will be ex-
panded with more combustions model options, includ-
ing cycle-resolved in-cylinder behavior. By introduc-
ing the effects of pressure pulses and improving the
internal loss model, the turbo model can also be fur-
ther improved.

DOI
10.3384/ecp12076101

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

111

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics ...

JModelica.org was used for the optimization of param-
eters for the heat transfer and thermal dynamics and
Dymola was used to export the FMU model. JModel-
ica has extended the Modelica language for increased
optimization functionality. The derivative-free sim-
plex method used worked very well for parameter op-
timization for a model of this complexity without re-
quiring any model modifications. Other tools also ex-
ists that can perform calibration using similar meth-
ods, for example the model calibration feature in Dy-
mola or Isight. Isight was also tested for the same op-
timization task and the simplex method available there
gave equivalent results to JModelica regarding opti-
mization time and result.

The simulation speed is about 2.5 times faster than
real-time using the Dymola integrated Radau solver.
This is a variable step-length solver, and the fast aver-
age simulation speed does not guarantee that the cur-
rent model can be used in applications with hard real-
time requirements, but this was not in the scope for
this model. For hard real-time simulations, fixed-step
solvers must be used. This introduces harder require-
ments on the model regarding fast dynamics and func-
tion evaluation time.

As the models of the PNLT engine managed to cap-
ture the engine out conditions and the dynamical be-
havior in the air gas path, the model can be used to
develop engine control strategies that reduce the re-
quirement on the EATS. With transient control strate-
gies that reduce transient emissions, the EATS vol-
umes (e.g. DOC, DPF and SCR) may be reduced. Also
by adapting the engine control strategies based on the
condition of the EATS (e.g. temperature, aging and
poisoning) the EATS volumes may be reduced. The
fuel cost of the different engine control actions de-
pends significantly on the engine hardware and each
has an optimal trade-off between fuel cost and prod-
uct cost. Engine models based on EDL together with a
SIL environment which includes the control strategies
is a powerful approach in the investigation of finding
the optimal trade-off.

7 Conclusions

In this article it has been demonstrated that the newly
developed Engine Dynamics library and Dymola can
be used for simulation of the gas exchange, transient
flow and temperatures and emission trends for a 13L
Volvo PNLT engine. All components and parame-
ters have been calibrated component wise without any
global compensation. Calibration data comes from

an engine screening where measurements are made to
isolate the different components. Therefore a compo-
nent can be replaced without any need of a new com-
plete engine screening, allowing for virtual prototyp-
ing of new concepts. This is an important advantage
compared to black-box modeling of the complete en-
gine, which would require a complete new screening
when changing a single component. Finding param-
eter values for the heat transfer and thermal dynamic
in the exhaust that matches measurements is an opti-
mization problem that has been solved using JModel-
ica. The parameters were successfully optimized re-
sulting in good estimation of the exhaust temperature
dynamics. The models captured the essential system
properties in the gas exchange such as non-minimum
phase behavior and sign reversal. As the exhaust mass
flow, exhaust temperature and emissions were shown
to be well captured the model can be used in order to
evaluate control strategies of the air gas management
and to find a trade-off between fuel-economy, transient
response, engine emissions and EATS requirements.
The system identification of the NOx emissions gave
good results in the operating area of the JEOS cycle and
captured the trends. This indicates that the selected in-
puts to the emission model contain most of the entities
that affect the emissions. Using variable step-length
solvers, the engine model simulates faster than real-
time for the JEOS cycle. This is a very transient cycle,
and therefore the expectation is that other transient cy-
cles will also simulate with real-time like simulation
times.

References

[1] T. Johnson Diesel Emissions in Review, SAE
Technical Paper 2011-01-0304, 2011.

[2] R. Cloudt and F. Willems. Integrated Emission
Management strategy for cost-optimal engine-
aftertreatment operation, SAE Technical Paper
2011-01-1310, 2011.

[3] Dymola User Manual, Volume 1, Lund, 2011

J. Batteh, M. Tiller and C. Newman. Simulation
of Engine Systems in Modelica, Proceedings of
the 3rd Modelica Conference, Linkdping, Swe-
den, 2003.

A. Picarelli and M. Dempsey. Investigating the
Multibody Dynamics of the Complete Powertrain
System, Proceedings of the 7th Modelica Confer-
ence, Como, Italy, 2009.

112

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076101

Session 1C: Power and Energy

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

L. Guzzella and C.H. Onder. Introduction to
Modeling and Control of Internal Combustion
Engine Systems, 2nd edition, 2010. ISBN 978-
3-642-10774-0.

R. Johansson. System modeling & Identification,
2009. ISBN 0-13-482308-7.

HIH Saravanamuttoo, GFC Rogers and H Cohen.
Gas Turbine Theory, Fifth Edition, 2001. ISBN
978-0-13-015847-5.

B.J. McBride, M.J. Zehe and S. Gordon. NASA
Glenn Coefficients for Calculating Thermody-
namic Properties of Individual Species. NASA
report TP-2002-211556, 2002.

J. D’Errico. Understanding GRID-
FIT, 2006. Available for download at
http://www.mathworks.com/matlabcentral/
fileexchange/8998 (last accessed 20120228).

J. Akesson, K-E. Arzén, M. Gifvert, T. Bergdahl
and H. Tummescheit. Modeling and Optimiza-
tion with Optimica and JModelica.org - Lan-
guage and Tools for Solving Large-Scale Dy-
namic Optimization Problems, Computers and
Chemical Engineering, 34:11, pp. 1737-1749,
November 2010

S. Gedda. Calibration of Modelica models us-
ing derivative-free optimization, Master’s thesis
2011:E46, Lund University, Faculty of Engineer-
ing, Centre For Mathematical Sciences, Mathe-
matics, 2011.

S. Gedda, C. Andersson, J. Akesson and S. Diehl.
Derivative-free Parameter Optimization of Func-
tional Mock-up Units. In 9th International Mod-
elica Conference, 2012.

MODELISAR(07006). Functional Mock-up In-
terface for Model Exchange Available for
download at: http://www.functional-mockup-
interface.org/ (last accessed 20120228).

J. Wahlstrom and L. Eriksson. Modeling of a
diesel engine with VGT and EGR capturing
Sign Reversal and Non-minimum Phase Behav-
ior. Proceedings of the Institution of Mechanical
Engineers, Part D, J. of Automobile Engineering,
Volume 225, Issue 7, July 2011.

M. Grahn and T. McKelvey. MA Structure and
Calibration Method for Data-driven Modeling of

NOX and Soot Emissions from a Diesel Engine.
SAE Technical Paper 2012-XX-0351, 2012.

DOI

10.3384/ecp12076101

Proceedings of the 9™ International Modelica Conference 113

September 3-5, 2012, Munich, Germany

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics ...

114 Proceedings of the 9" International Modelica Conference DOl
September 3-5, 2012, Munich Germany 10.3384/ecp12076101

Library for First-Principle Models of Proton Exchange Membrane
Fuel Cells in Modelica

Kevin L. Davies

Christiaan J.J. Paredis

Comas L. Haynes

Georgia Institute of Technology
Atlanta, Georgia USA

Abstract

This paper describes the architecture and key equa-
tions of FCSys, a library to model proton exchange
membrane fuel cells (PEMFCs) in Modelica. The mo-
tivating goal of this work is to reconcile many of the
published models of PEMFCs and combine them in a
reconfigurable PEMFC model that is effective for a va-
riety of uses. It is necessary to distill equations from
fuel cell literature into forms that at once capture the
essence of the physical interactions, are conducive to
the physical modularity of the device, and work within
the constraints and take full advantage of the Modelica
language.

Since the behavior of PEMFCs depends on both
advection and diffusion, a suitable alternative to the
Modelica Fluid library and the stream concept is nec-
essary. The proposed solution uses a “mixing” scheme
based on the exponential of the Péclet numbers for
each transport process. Storage and transport pro-
cesses are co-located in each subregion of a rectilin-
ear grid—all in the same base model. The Onsager
formulation is used, whereby the effort and flow rate
are conjugates of the entropy flow rate associated with
energy transfer.

The implementation is modular. It allows species to
be enabled independently for each region. In addition,
the geometric axes may be independently enabled (up
to 3D) and shearing (transverse momentum) may be
optionally included. Chemical/electrochemical inter-
actions are communicated in a fully acausal manner
through expandable connectors.

This paper focuses on the motivation, background,
and approach. Future publications will describe the
ongoing work to calibrate, validate, and utilize the
model for particular case studies. The library is made
available as open source.

Keywords: PEMFC; three dimensional; fluid dynam-
ics; electrochemistry; heat transfer,; advection; diffu-
sion; momentum,; Onsager

1 Introduction

In certain power applications, fuel cell (FC) systems
are preferable because they can convert fuel energy
to work more efficiently than internal combustion en-
gines and have energy-to-power ratios that can be eas-
ily adapted, unlike batteries. A FC system can be refu-
eled quickly like an internal combustion engine (ICE)
system, or it can be designed to recharge like a battery
by operating in electrolysis mode [4]. Of the various
fuel cell technologies, PEMFCs are best suited to meet
the power-cycling and packaging requirements of ve-
hicles and portable devices.

However, the cost and durability, and to a lesser ex-
tent, size and weight, of PEMFCs are not yet adequate
to justify their use beyond niche devices and select
demonstrations. Much work is being done to investi-
gate the modes of failure and degradation, develop new
materials and structures, improve manufacturing pro-
cesses, and design better systems [26]. Mathematical
models of PEMFCs are being used to help understand
the relevant physical phenomena, study the effects of
design choices, and perform model-based control. The
breadth of these goals has led to a multitude of special-
ized models.

PEMFCs have a solid polymer-based electrolyte
(the PEM) and operate at low temperatures (typically
below 100°C). As shown in Figure 1, a single-
cell PEMFC has few core components: PEM, elec-
trodes, gas diffusion layers (GDLs), and flow plates
[14]. However, most applications require a higher
electrochemical potential difference than a single-cell
PEMEFC can provide; therefore, two or more cells are
joined back-to-back to form a PEMFC stack.

A PEMFC operates on the electrochemical energy
released by the reaction of hydrogen and oxygen to
produce water (Eq. 1c). Its PEM (electrolyte) controls
the reaction by selectively passing protons while act-
ing as a barrier layer to hydrogen, oxygen, and elec-
trons (see Fig. 1). This forces the reaction to occur

DOI
10.3384/ecp12076115

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich, Germany

115

Library for First-Principle Models of Proton Exchange Membrane Fuel Cells in Modelica

Cathode
A

% |
PEM Electrode GDL v Flowplate
H,0

GDL Electrode

—
MEA

Flowplate
i Channel

e > e
External load

Figure 1: Layers of a single-cell PEMFC and the pri-
mary paths of hydrogen (H,), oxygen (O;), protons
(H™), electrons (H'), and water (H,0) during normal
operation

in two sub-reactions: the hydrogen oxidation reaction
(HOR) whereby hydrogen is consumed and protons
and electrons are produced (Eq. 1a) and the oxygen
reduction reaction (ORR) whereby oxygen, protons,
and electrons are consumed and water is produced (Eq.
1b). In order to complete the full reaction, the elec-
trons must traverse an external path. The path is pro-
vided by an external load which can harness the energy
of the net reaction.

2(Hy = 2H" +2¢7) (1a)
4H" +4e +0, - 2H,0 (1b)
2H, 4+ 0, — 2H,0 (1c)

A broadly applicable PEMFC model library would
need to contain models that are physically representa-
tive, meaning their predictions of behavior match re-
ality (i.e., accuracy) and their structure corresponds
to the physical domain. The PEMFC model library
should approximate the dynamic voltage-current re-
sponse of actual cells at nominal operating conditions
and varying large signal electrical currents (e.g., [27,
p. 3787, Figs. 2b and 2c]). It should capture the oper-
ational effects of design parameters including compo-
nent sizes and material properties (for hardware analy-
sis and design) and should be capable of linearization
(for control analysis and design). It should be able to
describe relevant phenomena including electrochemi-
cal reactions, chemical/electrochemical transport, heat
transport, and heat generation. It should have variable
fidelity, that is, degree of spatial, dynamic, or behav-
ioral detail. Finally, it should be modular, meaning its
components can be interconnected in various ways to
build models of larger systems. Unfortunately, how-
ever, no current PEMFC model library can provide
these features and capabilities over the required range
of operating conditions.

2 Related work

For reasons elaborated later, the acausal formalism
and the Modelica language in particular is ideal for
a dynamic, variable-fidelity, modular, and systems-
oriented model of a PEMFC. There are hundreds of
published PEMFC models [28], yet most of these use
computational fluid dynamics (CFD) or causal (signal-
based) models. Only four acausal, dynamic, and cell-
level FC models are known to have been published;
three are of PEMFCs and one is of a solid oxide fuel
cell (SOFQC).

Rubio et al. openly shared a 1D (through-the-cell)
declarative PEMFC model which includes electro-
osmotic drag, double layer capacitance, variable
choice of assumptions, and detailed diffusion with
pore and species interactions (Knudsen flow and
Maxwell-Stefan eqs.). However, the model is isother-
mal, does not include heat generation or a model of
the flow plate, and only interacts with its surround-
ings electrically (no external thermal or fluid termi-
nals) [22, 23].

Davies and Moore published a quasi-2D (through-
the-cell and along-the-channel) declarative PEMFC
model which includes material and heat transport and
storage, electro-osmotic drag, and variable choice of
assumptions. However, the models of the cell’s lay-
ers are not defined in a physical manner; for example,
the electrode layers do not include chemical transport
(only reactions and charge transport) [7, 8]. The last
published version was based on the Modelica Fluid li-
brary [9]. As a result, it raised concerns (at the 7th
Modelica Conference) and had issues related to the in-
tegration of advection and diffusion, since Modelica
Fluid offers a solution that is limited to purely advec-
tive flow.

McCain et al. implemented the model of McKay
et al. [18] (mentioned previously) within a declara-
tive formalism in order to linearize the model for con-
trol studies. However, the sub-models of the chemical
species do not interact except in the flow plates and the
PEM [17].

Salogni and Colonna published a 1D (along-the-
channel) declarative model of a SOFC. It is well-
constructed, but since it treats each anode-to-cathode
section of the cell as a integrated unit, its modularity
does not resolve the physical layers of the cell [24].

A related approach is chemical bond graphs. Bond
graphs have been used for decades to chemical reac-
tions [5] and even applied to fuel cells [3, p. 355].
They are physical (in terms of energy) and are useful
to trace causality, but they are not acausal. According

116

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp12076115

Session 1C: Power and Energy

to Cellier, bond graphs have not yet been successfully
applied to problems in fluid dynamics. The reason is
that fluid systems require mass conservation in addi-
tion to energy conservation [5, p. 331].

3 Architecture

The present model is described in differential alge-
braic equations (DAEs). Spatial variances are repre-
sented in terms of differences rather than derivatives.
As stated by Mattiussi [15, pp. 2-3], this representa-
tion has three advantages: (i) it provides a unified per-
spective that is appropriate for many theories, (ii) it
directly correlates the discretization of the physical re-
gion and the structural properties of the applied theo-
ries, and (iii) it is based on intuitive geometrical and
physical concepts that help distinguish the numerical
methods (e.g., finite difference method, finite volume
method, and finite element method) from the under-
lying theories. In addition, powerful modeling tools
(e.g., Dymola [12]) exist that can solve a model for
the imposed causality, partition a dynamic model into
the most numerically efficient systems of algebraic
equations (i.e., resolve algebraic loops through tear-
ing), perform index reduction (i.e., eliminate structural
singularities), and linearize a model. Ultimately, this
can result in a flexible and robust model that simulates
quickly.

Table 1 summarizes the four base types of connec-
tors that are used in the Modelica implementation.
Figure 2 shows the hierarchy of the connectors, with
the lowest level at the bottom. The flows of the ma-
terial, linear momentum, and energy connectors are
the rates of those quantities. The flow variable of the
volume connector is the volume itself (not the vol-
ume flow rate). This allows the volume connector to
be used to impose additivity of volume or Amagat’s
law—that the sum of the total volume of the region is
the partial volumes of the species evaluated at the to-
tal pressure [20]. The effort variable is chosen such
that the product of effort and the rate of the quan-
tity is the entropy flow rate associated with the energy
transfer. This approach is convenient for representing
behavior in terms of Onsager reciprocal relations [1],
as shown below. However, it departs from the tradi-
tional approach of power conjugate variables, which
are generally used in the Package Modelica (excep-
tions include the rotational, translational, and thermal
libraries) [19].

The physical quantities and units are represented
using the approach described in [10]. Using that ap-

Interaction

(I . -
| S ’
’ \ - e
1 N ’
1 N
1 (N -
N

1

i

L.

Vad 1 Vil /’r
Volumeg” Momen _->Ener
OU}? °¢'E${'T', cne

gy “Material

o O O
Figure 2: Hierarchy of the connectors

proach, the gas constant and the Faraday constant are
both normalized to one. This simplifies the expression
of the equations and allows electrons to be described
in the same manner as other electrochemical species.

The model contains multiple rectilinear subregions
of fixed length (and volume). Each subregion is an
instance of the model shown in Figure 5b. Each of
the region’s six faces contains a bus connector (ex-
pandable). The bus may be populated with a sub-bus
for each chemical or electrochemical species present
in the region. Optionally, the sub-buses may be first
grouped into buses for the mixtures or phases. By de-
fault, the length of the vector of momentum connectors
is one—representing only normal velocity and force.
However, the transverse directions may be included as
well; the models adapt accordingly.

environment

testProfile

Figure 3: Diagram of a test model that imposes bound-
ary conditions on the cell

In addition to the connectors, the subregion model
may contain instances of models to represent species,
reactions, and the total volume. A species model de-
scribes the advection, diffusion, and storage of mate-
rial and momenta for a single electrochemical species
(e”, H", Hp, HyO, N, or O,). The species model con-

DOI
10.3384/ecp12076115

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

117

Library for First-Principle Models of Proton Exchange Membrane Fuel Cells in Modelica

Within Icon(s) Name/Quantity Flow Effort
Volume Pressure per temperature

@ Volume V [L3] P/T [NL73]

Linear momentum Force Velocity per temperature
. O . . m® [MLT2] ¢/T[NTL'M™]

Ener Power Reciprocal of temperature
® 000 24 ULAMT3] 1/T [NT2L2M™!]

. Current Chemical potential per temperature

N N Material NINT w/T(]

Table 1: Summary of connectors used in the models. The dimensions are noted in terms of mass (M), length
(L), time (T), and particle number (N). Since the gas constant and the Faraday constant are both normalized to
one, charge and thermodynamic temperature are not taken to be independent dimensions.

anFPPosY caFPPosY

an|-P -P

J— ? anGDL anCL PE!
' ¢

o
anFPNegY

caFPX
O

Figure 4: Diagram of a quasi-2D cell

nects to the boundaries and the interaction connector.
Optionally, the species models may be nested within a
mixture models, in which case the connections to the
boundaries are indirect. The species, mixture, and sub-
region models allow the Cartesian axes to be enabled
independently (by parameter), as long as one axis is
enabled. As such, the boundary bus connectors of the
subregion and mixture models are conditional. The ar-
ray of boundary connectors in the species model has
size {2, 1}, {2, 2}, or {2, 3}, where the first index
represents the face (1 or 2) and the second index rep-
resents one of the enabled axes.

The species are connected through the expand-
able interaction connector. In the connection, each
species’s chemical connector is named by the chem-
ical formula of the species. The inert connector is
simply named “inert.” In order to prevent nonlinear
systems of equations, the connection among species is
mathematically direct. Each of the species interacts
as if all other species were the same. For instance,
each gaseous species interacts equally well with other
gaseous species as with the solid. Stated alternatively,
the species are “colorblind,” which, in the case of vol-
ume, is consistent with the basis of Amagat’s law [29].
While this is a strong assumption, it can be alleviated
by choosing smaller regions, especially where the sub-
region boundaries are at or near the phase boundaries.

A reaction model exchanges material, momentum,
and energy among multiple species. The reaction

models may be used to model chemical or electro-
chemical reactions. In the chemical case, no material,
momentum, or energy is stored. Then, the reaction
model simply imposes the stoichiometric constraints
(conservation of material), momentum rate balances
(without loss), and energy rate balance. Chemical po-
tentials, velocities, and temperatures, are equal in the
chemical reaction model. There is no irreversibility;
all of the loss is included in the instances of the species
model. In the case of an electrochemical reaction, the
electrochemical double-layer capacitance is included
to account for the electrostatic potential. In the case
of the HOR, electrons and protons are stored in equal
amounts. Since there is no loss in the reactions mod-
els, the net reactions may be partitioned according to
convenience, with no mathematical effect. For exam-
ple, the ORR (Eq. 1b) is modeled as the net PEMFC
reaction (Eq. 1c) and the HOR in reverse (Eq. la).
Since H; is not present in the cathode according to the
model, it is only an intermediate step without storage
and without loss. If additional species are present and
interacting (e.g., HyO;), they must be included as in-
stances of the species model and joined with the ap-
propriate side-reactions.

At the top level of the subregion, an instance of the
volume model is included. It connects to the “inert”
sub-connector of the interaction bus to subtract the to-
tal volume of the region. Since volume is the flow vari-
able, the partial volumes of the species must sum to the
total volume.

Multiple instances of the subregion model are ar-
ranged and connected in up to three dimensions to
create a region. Figure 5a shows a region, where the
subRegions icon represents a 3D array of subregions.
The layers of the PEMFC are regions. They are con-
nected as shown in Figure 4 to create the cell model.

118

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp12076115

Session 1C: Power and Energy

positiveY

negativeZ

negativeX positiveX

negativeY

(a) Region or layer

positiveY

negativeZ

,,,,,,,,,,,,,
| volfme

. ion(mer

negativeX positiveX

(b) Subregion

positiveY

H2_02_H20

negativeZ

negativeX positiveX

(c) Gaseous mixture. Others are mixtures
are graphite and ionomer.

Figure 5: Diagrams of low-level models
At the top/test level of the model, shown in Figure 3,
an instance of the cell model is connected to models
that impose boundary conditions.

4 Equations

4.1 Physical characteristics

The thermodynamic properties are implemented using
the approach of McBride et al. [16], which gives spe-
cific heat capacities at constant pressure as seventh-
order polynomials of temperature. These are the corre-
lations which are used for ideal gases in the Modelica
Media library. The pressure-volume-temperature cor-

relations are implemented using the virial equation of
state in the form that is explicit in specific volume [11].
That way, incompressible species and ideal gases can
be represented by the same equation with only changes
to the constants.

The generalized resistivities for material, momen-
tum, energy, and volume are gathered from a mul-
titude of sources. First, the rigid-sphere assumption
may be used from kinetic theory [21]. Second, the cor-
relations of NASA Glenn (formerly Lewis) are imple-
mented where available for the momentum and ther-
mal resistivity (from viscosity and thermal conductiv-
ity) [25, 25]. Finally, property tables may used to set
parameters (e.g., [13]). The implementation allows
any of these options.

4.2 Species Model

Material is exchanged or transported into port i accord-
ing to equation 2a, where A ;, L; and ®@; are the length
and linear momentum along the axis of transport, re-
spectively. The generalized material resistivity is I'y.
The effective cross-sectional area is the product of the
geometric cross-sectional area (A ;) and a factor (k) that
accounts for roughness, porosity, tortuosity, and simi-
lar properties of the solid structure through which the
transport occurs. The parameters 3 are the Onsager
coupling coefficients. By Onsager reciprocal theory,
the coefficients 3;; equals 3 ;;, where i and j are in-
dexes to the quantities selected according to the theory
[1]. The other variables in the equation are efforts and
flows from Table 1.

DOI
10.3384/ecp12076115

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

119

Library for First-Principle Models of Proton Exchange Membrane Fuel Cells in Modelica

Li v 1w Pi P\ g (0 ¢ L _IN _(_m =y
kA./FN[N’+BNV< ; T> ﬂNd’(T,- T)+[3NU< , T>_ _<Tl- T (He)
(2a)
L FVP 1% Hi u ¢l ¢ 1 1\] B P; P +® Ty /kA
kA, T [& M(, 7)) Pvelgt7)Pl —7) | = \7 7 (1+eromin)
(2b)
Lj Fq;.] . P; P Hi U 1 1\] ¢1 ¢ +® T /KA
wa; mr "t Pev\ 7 o7) P\ T 7) HPeu 77) | =\ (1+e0rii)
(2¢)
Ly Tyl. Pi P\ ;¢\ mi opN]_ (1 1 10Ty /KA,
kATZ[Ul—'_BUV(,' T> ﬁUcb(i T Buw T, T |~ 7. T <1+€ ! ’)
(2d)
ON .
E—ZNi (3a)
65"@ +mNa =) m®; (3b)
thermal volumetric mechanical electrochem. thermal volumetric mechanical electrochem.

The factors of the form (1+exp (+®;I'/kA;)) ac-
count for mixed advection and diffusion. The argu-
ment to the exponential is the Péclet number (Pe),
which is ratio of advective to diffusive flow. In the
case that the advective flow is in the positive direction,
the argument will be negative for the negative-facing
boundary and positive for the positive-facing bound-
ary. The factor can be interpreted as adjusting the
length of diffusive transport according to the extent of
drift current or bulk velocity. In the case that there is
no bulk velocity, the factor is two; the length from the
center of the region to the port is half of the length of
the subregion along that axis. Under isothermal condi-
tions, the equations reduce to Fick’s law (in the case of
chemical species) and Ohm’s law (in the case of elec-
trons or holes). In the case that Pe — oo, the effort at
the positive-facing boundary is equal to the value in
the bulk of the region. That is, properties are prop-
agated in the downstream direction. Meanwhile, the
relationship between the effort of the negative-facing
boundary is related to the effort in the bulk of the re-
gion by pure diffusion with the full length of the sub-
region. The relationships reverse when advective flow
is in the opposite direction.

The exchange and transport equations for volume,
momentum, and energy are similar to that for material.

[

If there is only diffusion, then the transport equations
for transverse momentum, if included, reduce to the
case of Couette flow. The transport equation for en-
ergy reduces to thermal conduction when there is no
advection and the other efforts are uniform. It is dif-
ferentially equivalent to Fourier’s law. Otherwise, the
case is thermal convection—combined advection and
diffusion.

In the case of exchange rather than transport, the
A/L factor is combined as characteristic length (L*).
It must be calibrated by parameter identification or de-
termined empirically.

The exchange equation for momentum, like the
Stefan-Maxwell equation, describes the drag forces
between species traveling at different velocities
through a mixture [2, p. 538]. However, this approach
more manageable. As stated by Cussler, the “Stefan-
Maxwell equation is almost never used because it is
difficult to solve mathematically, even in the simplest
cases” [6].

The Onsager formulation allows gradient of one
type of effort to affect the flow rate of quantities be-
sides its conjugate pair. Advection is described in this
manner; the same gradient that drives material flow

120

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp12076115

Session 1C: Power and Energy

also drives other flows.' The difference in velocity nor-
mal to the face is coupled to the material flow rate in a
reciprocal manner as the difference in chemical poten-
tial is coupled to the momentum flow rate.

The exchange/transport equations allow there to be
storage within the region, even due to transport along
a single axis, because the rates into two faces is not
necessarily equal and opposite. In the case of pure dif-
fusion, the rate of intake is proportionally to the second
gradient of the effort. The rate balance or conservation
equations are given by Equation 3. Einstein notation
is used in the summations of the energy rate balance.
The form of the energy equation follows from the On-
sager approach [1].

5 Discussion

The exchange and transport parameters are cast in
terms of resistivity instead of conductivity so that in-
dex reduction may be initiated by setting the resis-
tance(s) to zero as final. A typical assumption is
that all species (at least within a mixture) are at the
same temperature. In addition, the total pressures of
the species are expected to be the same after a very
short time. If liquid water is added, it may be ap-
propriate to assume that it is in equilibrium with the
water vapor. With these assumptions, the number of
degrees of freedom reduces to that given by Gibbs’
phase rule. It states that the number of thermodynamic
degrees of freedom is equal to two plus the number
of species minus the number of phases [20], [1, pp.
24-49]. In the case of the assumptions that have been
mentioned, the natural thermodynamic state variables
would be temperature (the same for all species) and
the particle numbers of each chemically independent
species or group of species in phasic equilibrium. In
the model, index reduction generally introduces non-
linear equations and there is a performance tradeoff
between fewer states and fewer nonlinear equations.

6 Conclusion

The architecture and equations for the PEMFC model
library have been described at a high level. The imple-
mentation is modular and flexible. The same approach
would support other electrochemical devices such as
batteries. The library is being refined and tested. Re-
sults will be given and discussed in a future publication

IThe factor which includes the exponential only amplifies or
attenuates the effect of an effort gradient on its own conjugate.

after validation and calibration.

The library is being made available as open source
and should appear on the Modelica website (www.
modelica.org). Collaboration would be welcomed.

DOI
10.3384/ecp12076115

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

121

Library for First-Principle Models of Proton Exchange Membrane Fuel Cells in Modelica

Nomenclature
Symbols
A Area [L?]
c Specific heat capacity [1]
U Energy [L2MT 2]
k Area factor [1]
L Length [L]
m Specific mass [1]

T =3

S H/HEIHEE T <N

e

Linear momentum [LM T~!]
Particle number [N]

Pressure [ML ! T~2]

Peclet number [1]

Temperature [L>MN~! T~2]

Time [T]

Volume [L?]

Specific volume L3N]

Global acceleration [L T 2]
Onsager coupling coefficient [misc.]
Generalized resistivity [L TN™!]
Chemical potential [L> M N—! T—2]
Particle number times velocity [L N T™ N
Linear velocity [L T~!]

Accents

Flow rate of [xT™!]

Superscripts

*

Effective or characteristic _

Subscripts

i

T e < v =2~

_of index i

_of index j

_ of material

_ at constant pressure
_ of volume

_of linear momentum
_ of energy

Acknowledgments

The authors wish to acknowledge support from the
Presidential Fellowship of the Georgia Institute of
Technology and the Robert G. Shackelford Fellowship [12]
of the Georgia Tech Research Institute.

References

[1]

(2]

[10]

[11]

A. Bejan. Advanced Engineering Thermodynam-
ics. John Wiley & Sons, 3rd edition, 2006.

R. B. Bird, W. E. Stewart, and E. N. Lightfoot.
Transport Phenomena. John Wiley & Sons, 2nd
edition, 2002.

W. Borutzky. Bond Graph Modelling of Engi-
neering Systems: Theory, Applications and Soft-
ware Support. Springer, 2011.

K. A. Burke. Unitized regenerative fuel cell
system development. NASA report TM—2003-
212739, Glenn Research Center, Cleveland, OH,
Dec. 2003.

F.E. Cellier and J. Greifeneder. Modeling chemi-
cal reactions in modelica by use of chemo-bonds.
In F Casella, editor, Proc. 7th Int. Modelica
Conf., Como, Italy, Sep. 2009. Modelica Assoc.,
Linkdping University Electronic Press.

E. L.. Cussler. Diffusion: Mass Transfer in Fluid
Systems. Cambridge University Press, 2nd edi-
tion, 1997.

K. L. Davies and R. M. Moore. Object-oriented
fuel cell model library. Electrochem. Soc. T,
11(1):797-808, Oct. 2007.

K. L. Davies and R. M. Moore. PEMFCSim:
A fuel cell model library in Modelica. In 31st

Fuel Cell Seminar & Exposition, San Antonio,
TX, Oct. 2007.

K. L. Davies, R. M. Moore, and G. Bender.
Model library of polymer electrolyte membrane
fuel cells for system hardware and control de-
sign. In F. Casella, editor, Proc. 7th Int. Modelica
Conf., Como, Italy, Sep. 2009. Modelica Assoc.,
Linkdping University Electronic Press.

K. L. Davies and C. J. Paredis. Natural unit repre-
sentation in Modelica. In Proc. 9th Int. Modelica
Conf., Munich, Germany, Sep. 2012 (submitted).
Modelica Assoc.

J. H. Dymond, K. N. Marsh, R. C. Wilhoit, and
K. C. Wong. Virial Coefficients of Pure Gases.
Numerical Data and Functional Relationships in
Science and Technology. Springer-Verlag, 2002.

Dynasim AB. Dymola: Dynamic Modeling Lab-
oratory, Mar. 2010. Ver. 7.4.

122

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp12076115

Session 1C: Power and Energy

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

F. P. Incropera and D. P. DeWitt. Fundamentals
of Heat and Mass Transfer. John Wiley & Sons,
5th edition, 2002.

J. Larminie and A. Dicks. Fuel Cell Systems Ex-
plained. John Wiley & Sons, 2nd edition, 2003.

C. Mattiussi. The finite volume, finite element,
and finite difference methods as numerical meth-
ods for physical field problems. volume 113
of Advances in Imaging and Electron Physics,
pages 1-146. Elsevier Academic Press, 2000.

B. J. McBride, M. J. Zehe, and S. Gordon.
NASA Glenn coefficients for calculating thermo-
dynamic properties of individual species. NASA
report TP—2002-211556, Glenn Research Cen-
ter, Cleveland, OH, Sep. 2002.

B. A. McCain, A. G. Stefanopoulou, and
K. R. Butts. A study toward minimum
spatial discretization of a fuel cell dynamics
model. In Proc. Int. Mech. Eng. Congr. Exposi-
tion (IMECE2006), number IMECE2006-14509,
Chicago, IL, Nov. 2006. ASME.

D. A. McKay, W. T. Ott, and A. G. Ste-
fanopoulou. Modeling, parameter identification,
and validation of water dynamics for a fuel cell
stack. In Conf. on Fuel Cell Science, Engineer-
ing and Technology, Orlando, FL, Nov. 2005.
ASME. FUELCELL2005-81484.

Modelica Association. Modelica Standard
Library. http://www.modelica.org/
libraries/Modelica, Dec. 2009. Ver.
3.1.

M. J. Moran and H. N. Shapiro. Fundamentals
of Engineering Thermodynamics. John Wiley &
Sons, 6th edition, 2008.

R. D. Present.
McGraw-Hill, 1958.

Kinetic Theory of Gases.

M. A. Rubio, A. Urquia, L. Gonzjjlez,
D. Guinea, and S. Dormido. FuelCellLib: A
modelica library for modeling of fuel cells.
In Proc. 4th Int. Modelica Conf., Hamburg-
Harburg, Germany, Mar. 2005. Modelica Asso-
ciation.

M. A. Rubio, A. Urquiaa, and S. Dormidoa. Dy-
namic modelling of PEM fuel cells using the Fu-
elCellLib Modelica library. Math. Comp. Model.
Dyn., 16(3):165-194, Jun. 2010.

[24]

[25]

[26]

[27]

[28]

[29]

A. Salogni and P. Colonna. Modeling of solid
oxide fuel cells for dynamic simulations of inte-
grated systems. Appl. Therm. Eng., 30(5):464—
477, 2010.

R. A. Svehla. Transport coefficients for the
nasa lewis chemical equilibrium program. NASA
Technical Memorandum NASA, Lewis Research
Center, Cleveland, OH, Apr. 1995.

U.S. Department of Energy. Hydrogen, fuel cells
& infrastructure technologies program: Multi-
year research, development and demonstration
plan. Technical report, Energy Efficiency and
Renewable Energy, Oct. 2007. Section 3.4: Fuel
Cells.

N. Wagner, W. Schnurnberger, B. Mueller, and
M. Lang. Electrochemical impedance spectra
of solid-oxide fuel cells and polymer membrane
fuel cells. Electrochim. Acta, 43(24):3785-3793,
1998.

A. Z. Weber, R. M. Darling, and J. S. Newman.
Modeling two-phase behavior in PEFCs. J. Elec-
trochem. Soc., 151(10):A1715-A1727, 2004.

K. W. Woo and S. I. Yeo. Dalton’s Law vs. Am-
agat’s Law for the mixture of real gases. SNU J.
Educ. Res., 5:127-134, 1995.

DOI

10.3384/ecp12076115

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

123

Library for First-Principle Models of Proton Exchange Membrane Fuel Cells in Modelica

124 Proceedings of the 9" International Modelica Conference DOI
September 3-5, 2012, Munich Germany 10.3384/ecp12076115

The Modeling of Energy Flows in Railway Networks using
XML-Infrastructure Data

Andreas Heckmann* and Sebastian Streit®
German Aerospace Center (DLR)
* Institute of System Dynamics and Control, Oberpfaffenhofen, D-82234 Wessling
¢ Institute of Vehicle Concepts, Pfaffenwaldring 38-40, D-70569 Stuttgart

Abstract

This paper introduces a new Modelica package called
RailwaySystem Library that provides the capabilities
of simulating the energy flow in electrical railway net-
works on which a fleet of railway vehicles is running.
The focus of the library is set upon the interaction of
the vehicle and its energy infrastructure, so that energy
management aspects may be investigated from a holis-
tic point of view taking the vehicle and the energy sup-
ply by the electric power grid into account. However
this intention substantially relies on the provision of
reliable data of the infrastructure, on the railway net-
work and its power grid. To this purpose the library
refers to an open XML-based data format dedicated
to railway IT applications. Furthermore, the library
is supposed to be used together with arbitrary compo-
nent libraries to model the energy subsystems such as
the vehicle or the power station.

1 Introduction

As public transport in general, railway transport as
well has to cope with increasing demands on the re-
duction of energy consumption and CO, emission.
This fact motivates activities of the DLR project Next
Generation Train [1] regarding energy management in
railway vehicles and recently led to the implementa-
tion of the Modelica RailwaySystem Library. This
package provides the capabilities of simulating the en-
ergy flow in electrical railway networks on which rail-
way vehicles are running.

From the modeling point of view two specific prob-
lems had to be taken into account. Railway vehicles
may be interpreted as energy sources or sinks that are
moving in an inhomogeneous network, see e.g. [2].
The network consists of catenaries or third rails that
are supplied by power stations and may or may not be
separated in isolated sections. Depending on the num-

ber and the instantaneous position and running state of
the vehicles different types of flows may occur in par-
allel: energy may flow from power station to vehicle,
or vice versa or from one vehicle to another vehicle.

As a second important aspect, the evaluation of the
energy consumption of a vehicle is of course a func-
tion of the track characteristics such as length, slope,
radius, positions of power station etc. so that data on
the infrastructure topology and properties are required
[3]. To this purpose, the library provides access to ex-
ternal infrastructure data, that are filed using the rail-
way markup language railML®. This is a XML-based
data format, advanced by the railML.org initiative [4]
and licensed under creative commons conditions (CC
By 2.0) [5].

The initial implementation in this paper is dedicated
to consider energy consumption due to conduction
losses, traction and auxiliary systems such as heating,
ventilating and air-conditioning systems in DC urban-
railway-networks. cp. e.g. [6]. However the simula-
tion framework of the Railway System library does
not introduce any restrictions on the modeling of the
energy subsystems and is open for further extensions.
In particular, the Railway System Library is supposed
to be used together with component libraries such as
the AlternativeVehicles [7] or the PowerTrain Library

[8].

2 RailML® Data Interface

The non-profit railML.org initiative [4] is a consortium
of railway companies, software and consulting firms,
and academic institutions, that jointly define and ad-
vance a common data standard to be used in different
railway simulation tools, see e.g. [9]. The addressed
fields of applications are rather comprehensive and
among others concern operation planning of rolling
stock, resource planning of railroads, design of timeta-

DOl
10.3384/ecp12076125

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich, Germany

125

The Modeling of Energy Flows in Railway Networks using XML-Infrastructure Data

bles, event and delay handling. As a consequence, the
XML data standard railML®contains subschemas for
three main areas: infrastructure, timetable, and rolling
stock.

Compared to the scope of the railML.org initiative
the piece of work to be presented here only covers spe-
cific aspects since it is focused on energy consump-
tion. The initial implementation only considers data
regarding track topology and geometry. The following
section of an railML®file that specifies a track section
of 2.7 km length is supposed to serve as an illustrative
example:

<track id="t4">
<trackTopology>
<trackBegin pos="0" id="b4">
<macroscopicNode ocpRef="PS3" />
</trackBegin>
<trackEnd pos="2700" id="e4">
<macroscopicNode ocpRef="PS5"/>
</trackEnd>
</trackTopology>
<trackElements>
<radiusChanges>
<radiusChange id="rC4"
pos="0" radius="900"/>
<radiusChange id="rC5"
pos="400" radius="0"/>
</radiusChanges>
<gradientChanges>
<gradientChange id="gC4"
pos="0" slope="5" />
<gradientChange id="gC42"
pos="1000" slope="0"/>
</gradientChanges>
</trackElements>
</track>

The data set above specifies that the track starts as a
curve with 900 m radius which changes to a straight
track after 400 m. The gradient at the beginning of the
track section is 5 per mill and changes after 1 km to
be horizontally aligned. Note that every data element
is specified by a XML-file-wide unique identifier id,
which is required for later referencing that element.
Each Modelica model that wants to access
railML®data has to contain an instance of the Mod-
elica railML®class, see Fig. 1, and has to provide an
XML file name as parameter. The railML®instance
manages an external object that contains a Document
Object Model (DOM) [10] tree of the XML data. The
railML®instance may be addressed by the inner/outer

mechanism so that other model components may eas-
ily acquire information from the railML®data.

During initialization of the Modelica model the
XML-file is read using the XML parser library expat
[11] published under MIT license [12] together with
the wrapper scew [13] available under LGPL license
[14]. Both open source tools are written in C and
therefore may easily be compiled and bound together
with translated Modelica code by every Modelica sim-
ulation environment such as OpenModelica, Dymola
or SimulationX. As well from the legal point of view
these two libraries may be distributed with a Modelica
library as long as they are delivered as a self-contained
code library which is not mixed up with other C-code.

During initialization a railML®object is instanti-
ated and the DOM tree is built up by the two parser
tools. In addition every track element found in the
railML®data is assigned to an integer index number
and a mapping of each index number to the XML-wide
unique track id is organized.

3 Specific Modeling Issues

Fig. 1 presents a trivial network in order to give a
first impression of the main modeling components of
the RailwaySystem Library that are shortly introduced
now.

3.1 Connectors

The library defines the following three connectors.
The first one is an aggregation of the 3D-mechanical
connector frame and the electrical connector pin and
is tailored to connect catenary sections. The following

powerstation_4

powerStation 3

powerStation_2

powerStation_6

rallmL:

Figure 1: Diagram layer of a trivial network with 3
tracks, 4 power stations and 1 vehicle.

126

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076125

Session 1C: Power and Energy

presentation will reveal that the capabilities of the 3D
multibody framework are hardly exploited. Neither
force or torques balances nor rotations are so far in-
volved in the modeling approach of the library. How-
ever future applications may also consider longitudi-
nal dynamics of train sets e.g. during braking or driv-
ing up-hill scenarios. In view of such use cases the
3D-mechanical connector frame are employed as de-
scribed below:

connector frame_pin
"supposed to connect catenary
sections mechanically and
electrically"
import Modelica.Mechanics.
MultiBody.Interfaces.Frame;
import Modelica.Electrical.
Analog.Interfaces.Pin;
Frame frame;
Pin pin;
end frame_pin;

Two other connectors are defined in order to pro-
vide the capability of attaching vehicles to the cate-
nary. These connectors only differ in the prefix of the
local position variable s, which is an output quantity
on the vehicle side, while it is an input variable from
the point of view of the catenary.

connector slidingContact_a
"catenary side of catenary-
pantograph connection"
extends RailwaySystem.
Interfaces.frame_pin;
input Real s "local position"
end slidingContact_a ;

connector slidingContact_b
"pantograph side of catenary-
pantograph connection"
extends RailwaySystem.
Interfaces.frame_pin;
output Real s
end slidingContact_b ;

"local position"

In particular the definition and the purpose of the
variable s is further motivated and explained in the fol-
lowing three sections.

3.2 Vehicle

The Vehicle model is a base class and supposed to be
extended in order to characterize the energy system of
a railway vehicle. The energy system itself may be
arbitrary complex and may be modelled using com-
ponents from the Standard Modelica library together

with components from commercial libraries such as
the AlternativeVehicles [7] or the PowerTrain Library
[8].

Important parameters of the Vehicle model are
tracksToPass and tracksPassOver:

e The parameter tracksToPass, e.g. tracksToPass=
{5,2,3} in Fig. 1, is an integer vector containing
the indices of the tracks the vehicle is supposed
to run on. The order of the indices corresponds to
the sequence of the tracks.

e The real vector tracksPassOver, e.g.
tracksPassOver={0, 3200, 6800, 9800} in
Fig. 1, specifies points on the path of the vehicle,
at which one track is left and the following is
entered.

Important transient variables of the vehicle model
are trackindicator and the real quantities s and S:

e The boolean vector tracklndicator is of the same
length as tracksToPass. One and only one ele-
ment of tracklndicator is true, namely the ele-
ment that is associated to the track the vehicle is
currently running on.

e The variable s defines a specific point on the
track, the vehicle is currently running on. It is
a local, track-specific variable on contrary to S.

e The variable S is a global vehicle-path-specific
quantity. In the present implementation S is pre-
defined as a function of time, so that motion of
the vehicle along its path is preset e.g. as a result
of the timetable. Alternatively it is also possible
to give the velocity profile as a function of S and
evaluate S = S(¢) accordingly.

The following table again summarizes the important
variables explained above:

parameters

track indices
specific path points

tracksToPass
tracksPassOver

transient variables

S local track position
S global path position
trackIndicator ~ boolean track switch

From the purely structural point of view a vehicle
instance is connected to all catenary sections that are
listed in the parameter vector tracksToPass using the

DOI
10.3384/ecp12076125

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

127

The Modeling of Energy Flows in Railway Networks using XML-Infrastructure Data

sliding contact connector classes, see Sec. 3.1. How-
ever by employing ideal closing switches from the
Standard Modelica.Electrical library it is guaranteed
that only that electrical connection is closed to which
the corresponding value of tracklndicator is set to true.
In order to access the railML®data and provide in-
formation on the e.g. the current gradient, the cur-
rent values of s and trackIndicator together with track-
sToPass are interpreted and passed to appropriate C-
functions that extract data from the DOM tree.

3.3 Catenary

The Catenary model represents a track segment
parametrized with the local length coordinate s. Its ge-
ometrical and electrical properties such as radius, gra-
dient and electric resistance vary as a function of s.
The integer parameter ID specifies the index to access
the RailML database so that the necessary information
on the track segment given by the RailML database
may be acquired.

A sliding contact connector serves as an interface
between vehicle and track and the current value of s
denotes the current local position of the vehicle. Since
the Vehicle instance as well as the Catenary instance
both rely on the value s, the definition of the two con-
nectors slidingContact_a and sliding Contact_b in Sec.
3.1 considers the exchange of this variable.

The two other frame_pin connectors are supposed to
connect different catenary sections. Future versions of
the RailwaySystem Library will include the capability
to automatically instantiate and connect all track sec-
tions found in the railML®database, so that the mod-
eling of a complex network structure is substantially
facilitated. So far the network structure is to be built
up by manually instantiate and connect Catenary ob-
jects.

Note that variants of the Catenary model class are
available that consider more than one vehicle running
along the same track.

3.4 PowerStation and Origin

The PowerStation model is used to introduce trans-
former substations along the track that serve as voltage
supply sources.

The railML®data only contains relative informa-
tion like track lengths specifying the distances to travel
form one point to another. In order to be able to set up
an at least schematic animation of the traveling vehi-
cles one absolute position has to be defined. This is
done by the Origin model class.

— vehicle.s [m] — vehicle.S [m]
1E4

8E3-

6E3+

4E34

2E34

0EO-

0 1 60 260 X 360 460
time [s]

— catenary_2.overheadConnector.s [m]

4000
2000
0

0 100 200, 300 400
time [s]

Figure 2: Plot of the variables s and S as a function of
time.

3.5 Exemplary Simulation Sequence

In order to present the general simulation set-up of the
RailwaySystem Library the simulation sequence of the
trivial network shown in Fig. 1 will now be explained.
The considered vehicle parameters are:

e tracksToPass= {5,2,3},
e tracksPassOver={0, 3200, 6800, 98001},
e S=20m/s- ¢

where tracksToPass and S are specified by user in-
put, while the values of tracksPassOver are gener-
ated by a function that gains information from the
railML®object during initialization.

According to the upper plot of Fig. 2, the vehicle
leaves the first catenary section after 160 s, and the
second after 340 s. This corresponds to the length of
3200 m and 3600 m of the first (/D = 5) and the sec-
ond catenary (ID = 2) and the constant velocity of 20
m/s. The plot below shows the value of s seen from the
catenary_2 point of view. As long as the vehicle is not
running on this catenary or track section, respectively,
s 1s set to zero.

Fig. 3 demonstrates that the value of the first ele-
ment of the vector trackIndicater is set to true as long
as the vehicle is moving along the catenary specified
by the first element of trackToPass. This applies for
the second and the third element of trackindicater ac-
cordingly.

The vector trackIndicater controls a vector of elec-
trical switches so that the vehicle energy system is
linked to that catenary or track section only, the ve-
hicle is currently running on.

In summary, it is the general idea of the simulation
set-up that the vehicle instance gathers all information.

128

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076125

Session 1C: Power and Energy

— vehicle trackIndicater|1]

0.8+

0.4+

0.0+

0 100 200, 300 400
time [s]

— vehicle trackindicater[2]
1.2

0.8+

0.4+

0.0

0 100 200, 300 400
time [s]

— vehicle trackindicater[3]

0.8+

0.4+

0.0

200
time [s]

Figure 3: Plot of the boolean variable vehi-

cle.trackIndicater.

The vehicle "knows" where, on which track or cate-
nary section it is currently running and it is enabled to
access the railML®data to acquire infrastructure in-
formation accordingly. The vehicle hooks itself up to
the current catenary section in order to manage its own

energy supply.

4 Application Example

The example model in Fig. 4 presents a small DC-
powered urban light-rail network supplied by six
power stations where two vehicles are running on six
tracks.

Today power stations in DC-powered light-rail net-
works use rectifiers to provide a load-dependent con-
trol of the DC voltage. That means within the
valid limits the output voltage is freely adjustable [2].
Therefore it is feasible to model the power stations as
constant voltage sources. The nominal voltage used
in this case is 750 V which is typical for DC-powered
urban light-rail networks.

At a given load the traction current of the railway
vehicle depends on the input voltage of the vehicle and
thus of the specific position on the track [6]. For this
reason the voltage drop alongside of the catenary has
to be considered. Taking the resistance load per length
into consideration, the voltage drop along the catenary
can be calculated according to the length between the

feeding point at the traction substation and the panto-
graph of the vehicle.

The basis for the calculation of the energy flow
within the given network is the simulation of the ve-
hicle trajectory. Based on the available nominal power
of the vehicle and the tractive force at starting the trac-
tive force-to-velocity characteristic is calculated. Thus
the maximum available traction force can be calcu-
lated depending on the actual velocity. Depending on
basic parameters of the vehicle e.g. weight, rolling
resistance or aerodynamic resistance the driving resis-
tance of the vehicle can also be calculated for each
given velocity.

In addition specific parameters of the track resulting
from curves, gradients or tunnel (provided via RailML
data) lead to additional resisting forces that need to be
considered. The movement of the vehicle is simulated
by applying all resulting forces to a point mass. From
the movement of this mass all necessary data for cal-
culation of the electric network can be derived. The
calculated mechanical power is used to derive the elec-
trical power consumption of the vehicle. This power
consumption is needed to calculate the traction cur-
rent during simulation of the electrical network. The
vehicle trajectory is performed for a predetermined ve-
locity profile corresponding to the tracks to pass.

To simulate the energy flow within this network the
vehicles are modeled as variable current sources us-
ing the actual required electric power consumption as
input. In this way it is possible to calculate the re-
sulting current sharing based on the electric power re-

Figure 4: Diagram layer of the network.

DOI
10.3384/ecp12076125

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

129

The Modeling of Energy Flows in Railway Networks using XML-Infrastructure Data

quirement of the vehicles, the supply voltage and the
voltage drop alongside of the catenaries.

As an example Fig. 5 shows the resulting voltage at
the pantographs as well as the traction currents of two
vehicles on their pass through section 2 of the exem-
plary network shown in Fig. 4. The first vehicle (red
curves in Fig. 5) enters this section at about # = 115's.
It enters the section at a velocity of 40 km/h. Since the
scheduled velocity in this section is 80 km/h the ve-
hicle accelerates until it reaches the allowed velocity
at about r = 132 s. This acceleration is associated to
high traction forces resulting in a strongly increasing
traction current.

Due to the increasing current the voltage at the pan-
tograph drops during the acceleration to about 700 V.
At approximately t = 183 s the traction current is again
significantly increasing. At this specific point the gra-
dient of the track changes from 0 to 30%o. This gra-
dient abruptly increases the resisting force. To keep
the scheduled velocity the traction force has to be in-
creased as well resulting in a higher required mechan-
ical and consequently electrical power consumption of
the vehicle.

The traction current remains high until the gradi-
ent changes again from 30 to 0%cat approximately
t =257 s. Fig. 5 presents the voltage at the pantograph
to jump up to 650 V during this passage.

200 — Voltage at 2nd Vehicle — Voltage at 1st Vehicle

. 7604
2
=
S 720
<3
O
T 680
©
a
T 5401
[
=]
=
E 600
560
150 zoq'ime Is] 250 300
— Current of 2nd Vehicle — Current of 1st Vehicle
1400-
12004
Z
= 10004
o
g 800
c
S 600
o
o
= 400+
200
=LV

150 20q'ime Is] 250 300

Figure 5: Simulation result of the voltages of both ve-
hicles as a function of time.

The second vehicle (blue curves in Fig. 5) enters
this section at about t = 30 s later already at a veloc-
ity of 80 km/h so that there is no further acceleration
needed. When the second vehicle approaches the gra-
dient change its traction current increases for the same
reasons as mentioned before. At this point in time both
vehicles have a high power consumption that leads to
an additional voltage drop in the whole section. The
voltage at the pantographs of both vehicles then drops
significantly under 600 V which is critical since the
minimum permitted voltage in DC-powered light rail
networks with a nominal voltage of 750 V is 500 V.

To investigate the influence of energy storage de-
vices as part of an energy management of railway net-
works a basic model of an electric double layer capac-
itor a so called Super Cap was also included within the
vehicle model.

The Figures 6 and 7 each compare two different sce-
narios for the usage of these Super Caps. Fig. 6 shows
the voltage drop at the pantograph of one vehicle pass-
ing the same section as shown in Fig. 5 as well as
the state of charge of the Super Cap for two different
cases.

Initially the vehicle is at rest and then accelerates up
to 80 km/h. It stops at the end of the section. The Fig. 6
demonstrates the influence on the voltage drop during
acceleration if state of charge is at 100% at starting
time. In the sequence the voltage does not drop until

— Voltage: Starting at SOC of 0% — Voltage: Starting at SOC of 100%

= 760

EL 740

2 720

€

8 7004

‘® 680+

_'é-fw 660

S 640 ! | ! | \) | .

= 0 20 40 60 Bq'ime [éIPO 120 140 160 180
— State of Charge (SOC) starting at 0%

1.2

S,

o 0.8

=4

©

S 044

-

o

T 00

7]
0 20 40 60 Bq'ime [51]00 120 140 160 180
— State of Charge (SOC) starting at 100%

— 1.2

=)

o 0.8+

2

[of

£

O 0.4+

-

o

[

T 0.0

%}

0 20 40 60 a'oﬁme [3]60 120 140 160 180

Figure 6: Simulation results presuming two different
initial states of the Super Cap.

130

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076125

Session 1C: Power and Energy

— — SC used during acceleration — SC used for voltage stability

= 760

£

@ 740

S 7204

E 7004

T 680

]

E’ 660

S 640 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 20 40 60 Blil. 1?0 120 140 160 180

ime [s
1o — State of Charge using SuperCaps (SC) during acceleration

S,

o 0.8

2

]

=

O 0.4

Pt

=)

O

T 0.0

o T T T T T T T T
0 20 40 60 89. 1PO 120 140 160 180

ime [s

— State of Charge using SuperCaps (SC) for voltage stability

— 1.2

S

o 0.8

2

]

£

O 0.4

st

°

)

® 0.0

5]

0 20 40 60 8Q [g?o 120 140 160 180
Figure 7: Simulation results associated to two different
regimes for the use of Super Caps in operation.

the Super Cap is fully discharged at about r = 17 s.
Until that point in time the full traction power is pro-
vided by the energy storage and no current is flowing
between substation and vehicle.

When the vehicle starts braking at the end of the
section, the Super Cap is fully charged and the stored
energy can be used for the next run. Considering the
same vehicle trajectory as in Fig. 6 Fig. 7 delineates
another exemplary regime to employ an energy storage
device. The Super Cap may not only be used to pro-
vide energy for acceleration but may also be exploited
in order to ensure voltage stability. Fig. 7 presents the
Super Cap not to be discharged until the voltage drops
below 650 V. As soon as the voltage drops below this
threshold the required electrical power is provided by
the energy storage and for about 17 s the traction cur-
rent is fully supplied through the Super Cap. This way

instantaneous current at power station

power stations

t__-_____‘___,.- vehicles —

Figure 8: Schematic animation of the simulation.

a temporary voltage drop below critical values can be
avoided.

Fig. 8 depicts an animation of the scenario when
one vehicle is running along Track 3, while the other is
moving between Power Station 3 and 5 at Track 4. The
height of the red bars positioned close to each power
station illustrate the instantaneous current provided by
the associated power station.

The given examples have shown in principle that
future investigations of energy flows within complex
electric networks including the consideration of en-
ergy storage devices can be done using standardized
data sets in Modelica.

5 Conclusions and Outlook

In the course of the DLR project Next Generation
Train the RailwaySystem Library will be used in order
to evaluate the energy reduction potential of an energy
managément system that takes the vehicle energy sys-
tem and the power supply infrastructure into account.

Future versions of the RailwaySystem Library
will include the capability to automatically instan-
tiate and connect all track sections found in the
railML®database, so that the modeling of a complex
network structure is substantially facilitated.

References

[1] J. Winter, E. Mittelbach, and J. Schykowski, ed-
itors. RTR Special - Next Generation Train. Eu-
railpress, DVV Media Group, 2011.

[2] H. Biesenack, G. George, G. Hofmann, A.
Schmieder, E. Braun, K. Girbert, R.C. Klinge, R.
Puschmann, S. Rohlig, E. Schlechter, E. Schnei-
der, A. Stephan, and G. Zimmert. Energiever-
sorgung elektrischer Bahnen. Teubner Verlag,

Wiesbaden, 2006.

D. Hiirlimann. Objektorientierte Modellierung
von Infrastrukturelementen und Betriebsvorgdn-
gen im Eisenbahnwesen. PhD thesis, ETH
Ziirich, 2001.

[4] RailML®. http://www.railml.org/web/.
[Online; accessed 20-February-2012].
[5] Creative Commons License. http:

//en.wikipedia.org/wiki/Creative_
Commons_license. [Online; accessed 15-May-
2012].

DOI
10.3384/ecp12076125

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

131

The Modeling of Energy Flows in Railway Networks using XML-Infrastructure Data

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

S. Rohlig. Beschreibung und Berech-
nung der Bahnbelastung von Gleichstrom-
Nahverkehrsbahnen. PhD thesis, TU Dresden,
1992.

Th. Braig, H. Dittus, J. Ungethiim, and T. En-
gelhardt. The Modelica library Alternative Vehi-
cles for vehicle system simulation. In 21. Sympo-
sium Simulationstechnik, SIM 2011, Winterthur,
Suisse, Sept., 7. - 9. 2011.

J. Toboldt, M. Otter, and T. Biinte. Modelling
of Vehicle Powertrains with the Modelica Pow-
erTrain Library. In Systemanalyse in der Kfz-
Antriebstechnik 1V, pages 204-216. expert Ver-
lag, 2007.

A. Nash and D. Hiirlimann. Railroad simulation
using OpenTrack. In J. Allan, C.A. Brebbia, R.J.
Hill, G. Sciutto, and S. Sone, editors, Computers
in Railways IX. WIT Press, 2004.

Document Object Model (DOM). http:
//en.wikipedia.org/wiki/Document_

object_model. [Online; accessed 15-May-
2012].

expat. The expat XML parser. expat.
sourceforge.net/. [Online; accessed 16-
March-2012].

MIT License. http://en.wikipedia.org/
wiki/MIT_License. [Online; accessed 15-
May-2012].

scew. Simple C expat wrapper. wWww.nongnu.
org/scew/. [Online; accessed 16-March-2012].

LGPL License. http://en.wikipedia.org/
wiki/LGPL_license. [Online; accessed 15-
May-2012].

132

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076125

Implementation of a Modelica Library
for Energy Management based on Economic Models

Dirk Zimmer, Daniel Schlabe
Deutsches Zentrum fir Luft- und Raumfahrt.
Minchner Strasse 20, 82234 WeRling, Deutschland
{dirk.zimmer, daniel.schlabe}@dIr.de

Abstract

The use of modeling paradigms for physical systems
can in some instances be stretched to reach other
domains. This paper presents one such example: it
describes the design of a Modelica library that im-
plements economic models to be used for the pur-
pose of energy management. The design principles
of this library such as the use of pseudo-physical
connectors are outlined and examples for managing
energy sources and loads are discussed.

Keywords: Energy management, Load management,
Economic models, Object-oriented modeling.

1 Introduction

This paper presents the modeling of energy man-
agement tasks by the use of economic models. In this
approach, each provider of energy and each consum-
er is characterized by a specific cost function. A
global market or a set of local markets then decide
about the distribution of energy flow.

To this end, a new Modelica library has been de-
veloped. It supports the modeler in the design of his
or her energy distribution system and derives an (at
least partly) optimal solution for the distribution
based on the provided cost functions.

The library is not coupled to any specific physical
domain. All its components concern energy in its
most abstract form. In fact, many energy manage-
ment tasks involve multiple physical domains and
therefore a domain-specific approach would be of
limited value.

The library is currently split into two sub-libraries
that are geared towards different application do-
mains: source management and load management. It
is still under development and currently not publicly
available.

2 Economic Models for Energy Man-
agement

2.1 State of the Art

The links between models and theories used in mi-
cro-economics and typical tasks of an energy man-
agement function are very close. In both cases, there
is a set of providers and a set of consumers. The con-
sumers pay a price of a utility depending on the
availability or production of the providers. The main
difference is the type of the utilities. In micro-
economics this is typical any kind of product, for an
energy management the utility is power or energy.

The application of economic models for a power
management is already demonstrated in [9]. An en-
ergy manager based on economic models for the
electrical system of automobiles, especially for hy-
brid cars, has been studied in [1] and [6]. Additional-
ly, available methods for energy management of air-
craft electrical systems can be found in [8].

The main idea behind this market-oriented ap-
proach is the usage of power p over price v functions
for each source/provider and consumer/load as illus-
trated in Figure 1.

p =flv)

These functions describe how much price a load is
able to pay for a dedicated power and how much
power a source will provide for a certain price re-
spectively. These functions could be determined by
e.g. the efficiency or the priority of a component.

Since p denotes the outflowing power, the cost
functions are typically positive for sources and nega-
tive for loads.

Subsequently for all sources and loads the sum-
functions are calculated as shown in Figure 2. The
intersection of load and source sum-functions deter-
mines the current price and thus the power of each
component.

DOl
10.3384/ecp12076133

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich, Germany

133

Implementation of a Modelica Library for Energy Management based on Economic Models

Power p [W]
Price v [$/W] Power p [W]
Load 1 Source 1
o Power p [W]
“orice v (/W] 0 Price v [$/W]
Load 2 Power p [W]
Source 2
o Power p [W] Price v [$/W] /—
Load 3 0 Price v [$/W]

Figure 1: Cost-functions of single loads and sources.

Negated sum of loads
Sum of sources

A Powerp [W]

0 Equilibrium Price v [S/W]'

Figure 2: Sum-functions and equilibrium.

The advantage of such an approach is the integration
of different relevant aspects like efficiency of the
sources or availability of the consumers for an ener-
gy manager in one single characteristic cost function.
Furthermore, this enables the modeling of sources
and consumers in an object-oriented way and thus an
easy set-up of an energy management function of a
dedicated system within an early stage of design.
2.2 Limitations
To guarantee the existence of a unique intersection
of load and source cost-functions, these have to be
monotone and continuous. If this restriction is not
maintained, one has to guarantee with other means
that a stable intersection can be found in either case.
In addition, economic models are best suited for
finding an optimal solution at one specific time in-

stant, but not for optimizing the energy consumption
predictively regarding dynamic influences. For this
case, further means are needed that have to be inte-
grated to these models.

2.3 Scientific Contributions of this paper

Based on the described state of the art, this paper
demonstrates the implementation of a market-
oriented energy management library in Modelica.
Therefore the library including its components and
the working principles are outlined in the following
sections.

New concepts for dealing with non-monotone
cost functions of sources are introduced. For this
task, several rounds of negotiation are being used.
Multiple negotiation rounds are also used for dealing
with switchable and continuous loads in one system
to reach a maximum availability of loads.

The modeling of energy systems is not confined
to models for sources and loads. Hence also further
components like limiters or transformers are consid-
ered that modify the cost-functions in a dedicated
way.

3 Fundamental design of the library

The goal of this paper is to describe how such eco-
nomical models for energy management can be
modeled in a truly object-oriented way. The idea is
that energy distribution systems can be assembled
from basic components such as producers and con-
sumers. Also the modeler shall not be directly con-
cerned with the cost functions. Instead the cost-
functions should be derived by parameters such as
efficiency or priority levels.

To this end, a Modelica library has been devel-
oped. In this section, we present its common inter-
face and the most basic components.

3.1 Connector design

The connector of the energy management library is a
so-called pseudo physical connector. This means that
it mimics the characteristics of classic physical con-
nectors without describing actual physical quantities.
In concrete terms: the connector contains a pair of a
potential variable and a flow variable just like a
physical connector. In this way, we profit from the
advanced support of physical connectors (like the
check of balanced models) in Modelica.

The potential variable of the connector is the
price per watt [$/W] and the flow variable is the
power outflow [W]. A positive value for the power

134

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076133

Session 1C: Power and Energy

outflow is typical for a source. Consequently con-
sumers have negative values of their flow variable.
Similar pairs have already been suggested during the
1970s in [2] and [3] and enable a more natural mod-
eling than sheer System Dynamics for Modelica [5].

The product of the potential variable and the flow
results in the amount of money that is transmitted
through the connector (negative values represent
costs, positive values represent income). The money
is of course virtual and not related to any real curren-
cy.

A connection between a set of connectors thus
represents an ideal market where all participants pay
or receive an equivalent price for an equivalent
product.

Listing 1: Code of the power socket.

Table 1: Icons used for energy management.

connector Socket
parameter Integer n=1;

PricePerWatt price[n];
flow SI._Power power[n];

end Socket;

Listing 1 presents the Modelica code of the connect-
or. Evidently, price and power represent not scalars
but vectors of a parameterized size n. The reason for
this is explained in section 4.6. For the moment, let
us continue by pretending these are scalars. We
simply assume: n=1.

3.2 lcons

A component of the library may represent a source
of energy, a consumer, a transformer of energy or
redistributors.

These are all components that also occur in many
physical domains such as electric systems. However,
since this library shall be domain independent, no
symbols of such libraries shall be used.

There are only a few domain neutral symbol lan-
guages. One of them is bond graphs. For our purpose
bond graphs [4] are however too low-level and too
technical. For instance there is no distinction be-
tween a source and a sink in bond graphs.

Another set of icons has been developed for the
Energy Systems Language developed in the field of
ecology by Howard T. Odum [7]. It is also not di-
rectly usable for our purpose, but at least the abstract
forms used in this language inspired the design of
our set of symbols that is listed in Table 1.

> Source / Producer
source
C)T Sink / Consumer / Load
consumer
g Waste
“‘*__\l/
~1 -
waste
y_ - Transformer
transformer
Split
¥ 8
0.4
split
Limiter
limiter
One-way
oneWay

A source can represent a source of fuel or an energy
producer such as a power plant. The sink is its coun-
terpart element. It mostly represents a consumer. The
waste element is a special case for the sink that ena-
bles the system to waste energy.

Energy can be transformed into other forms by
imposing further costs using a transformer. The split
element can be used to distribute energy into differ-
ent branches. For instance in a combined heat and
power plant 40% of the power is electricity and the
remaining 60% are available as heating power.

The components one-way and limiter are ex-
plained in section 4.4 and section 5.2 respectively.
3.3 Example
Given the set of components, it is now possible to
compose an energy distribution system. Figure 3
shows the model diagram of an example system.
Here, two sources are available: one for heating and
one for electricity. Two consumers model the respec-
tive demand. In addition there is the possibility to
use electricity for heating. A waste element ensures
that energy can be dumped in the unlikely case that
the electricity demand may fall below the idle power
output of the electricity generation plant.

DOl
10.3384/ecp12076133

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

135

Implementation of a Modelica Library for Energy Management based on Economic Models

> 9,

electricity electricConsumption

> 'o

heat @

@

heatConsumption

\/
~_1

waste
Figure 3: The model diagram of an example market.

3.4 Solving the non-linear systems of equations
All component models contain a description of their
cost function that expresses the price as function of
the power. The connection of this components leads
then to (typically) non-linear equation systems. If all
cost functions are strictly monotonic increasing or
decreasing, there will be a unique solution.

Depending on the cost-function and the specific
connection structure, a simulation software such as
Dymola might be able to solve this non-linear equa-
tion system, but in some practical examples this
turns out not to be the case.

Hence we have developed an auxiliary controller
unit that regulates the price v on the market by a
simple differential equation. The controller may
compensate for any lack or excess of power p. It in-
creases the market price in case of a power outflow
(p > 0) due to a lack of power and decreases the price
in case of a power inflow (p < 0) due to excess of
power.

dv/dt-T=p
where T is an arbitrary time constant.

This controller is typically applied to a connection
set. In the diagram of Figure 3, it is depicted as grey
“$” placed in a circle. With this element, it is possi-
ble to find the solution in robust way by approaching
steady state. The drawback of such a controller is
that it makes the system potentially stiff and requires
implicit solvers such as DASSL for the efficient
simulation of the system.

The application of such a controller could proba-
bly be avoided if there exists a Modelica language
construct to suggest suitable tearing variables.

4 Application Domain: Source Man-
agement.

4.1 Motivation

In this application domain, we want to fulfill a given
consumer demand by using the most efficient com-
bination of sources available. Hence the cost func-
tions take into account the efficiency of sources and
subsequent processes of energy transformation.

4.2 Derivation of cost functions

In this scenario, the consumer demand is regarded as
a given that is required to be fulfilled at any cost.
Hence modeling the cost function of a consumer is
very simple: A consumer is the equivalent to an ideal
flow sink. Prescribing the flow variable for any po-
tential price per watt while leaving the price to be
determined by other parts of the system:

p =-demand

The waste element is a special case of a consumer.
An ideal waste element is similar to an ideal diode. It
is a sink of zero flow for prices above zero and con-
sumes arbitrary amounts of energy at a price of zero.
A price below zero means that the producers would
have to pay for their energy to be consumed. Alt-
hough this actually occurs in real markets, the waste
element can be used to prevent such cases.

s=if (s>0)thenpelsev;
0=if (s> 0) then v else p;

where s is a curve parameter

4 Power [W]

o

N

Price [S/W']

—

ideal waste element

regularized waste element

Figure 4: Cost function of a waste element.

Modeling sources is a little more difficult. The price
shall reflect the efficiency of energy use. The sim-
plest case is a source of constant efficiency. In the
ideal case, this source stipulates the price for any

136

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076133

Session 1C: Power and Energy

arbitrary power output to be the inverse of the effi-
ciency:

v = 1/efficiency

No real source of energy is unbounded. All sources
have a maximum capacity and many of them have an
idle power output beyond which their production
cannot decrease. These limitations can be modeled
by a step function.

— ideal source
ideally limited source

regularized limited source

power 1
(W]
max. power
idle power
[S
0 | Price [S/W]

Figure 5: Cost function of different source models.

Finally, a split element can be used to model the sep-
aration of power into distinct branches by a fixed
fraction. It distributes the power inflow p;, into two
power outflows pou: and poua by a given fraction R.
The split element is connected to markets with a dif-
ferent price per watt. The price per watt of the power
inflow v;, is then the weighted mean of the two out-
flow prices: voun and veu,. Here are the correspond-
ing equations to relate the three connectors:

Pin * Poutr + Pout2 = 0;
Pout1* (1'R) = Pout2* R;
Vin = Vour1* R+ Vou* (1'R)/

4.3 Regularizing the cost functions

For the numerical solution, it is advantageous if all
cost functions are continuous and strictly monotonic
functions. Then a unigque solution is guaranteed in
case the total demand can be met. But the curves for
the ideal limiter or the ideal waste element substan-
tially differ from this requirement. They represent
multi-valued functions that are also strictly monoton-
ic increasing or decreasing. Indeed their modeling
would require the use of parametric curves such as
for ideal diodes. To avoid this effort and the resulting

numerical problems, a regularization scheme is ap-
plied.

The regularization is indicated by the grey curves in
Figure 4 and Figure 5. For its realization, a mixture
of sigmoid and exponential functions is used. The
precise realization is somewhat arbitrary and also of
no particular importance and hence has been omitted
here.

The regularization is of course a further potential
cause of stiffness and/or implies a loss of precision.
The trade-off between precision and stiffness can be
set by fudge parameters. These are provided globally
by an outer model so they do not have to be set of
each element individually.

4.4 Example 1: A combined power generator

© ©

@ <C_>> ?
electricity conversion heat

waste
Figure 6: Model diagram of a combined power generator
and two corresponding consumers for electricity and
thermal energy (heat).

Figure 6 presents the example of a combined power
generator of electricity and heat. Up to 60% of the
thermal energy can be converted into electricity. This
is modeled by a combination of a split element and a
one-way component that acts like a diode: power can
only flow in one direction.

The loss in conversion between thermal and elec-
tric energy is modeled by a transformer component.
Both consumer models stipulate the total power de-
mand that is varying over time.

For the simulation, the electric consumption is
constantly decreasing from 250 kW to 100 kW. The
demand of thermal energy is constantly increasing
from 50 kW to 500 kW. The impact on the price can
be observed in Figure 7. It contains the simulation
result for the price per Watt for both consumers.

Due to the initial high demand for electricity, the
consumers of thermal energy do not have to pay any-
thing at all (the price is actually even slightly below
zero because of the regularization of the waste ele-
ment). The generation of electric energy produces
sufficient heat as side product.

DOl
10.3384/ecp12076133

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

137

Implementation of a Modelica Library for Energy Management based on Economic Models

During the simulation, the demand shifts towards
the need for thermal energy. Then the bill needs to
be split. Electric energy still remains more expensive
than thermal energy because it needs to be converted
(at loss) from thermal energy and the combined pro-
ducer can control how much of that needs to be con-
verted.

This example demonstrates how the cost-function
of a more complex source like a combined generator
can be modeled in a true object-oriented way by
combining simple components.

TN T @
Figure 7: Price development of thermal energy (red) and
electric energy (blue).

45 Treatment of non-monotonic cost-functions
The presumption that the cost function is strictly
monotonic increasing is not realistic for a large set of
power generators. Many of them have an ideal oper-
ating range that does not start at idle power. This
means that when these generators are used for low
power output they can be very inefficient. The mul-
tivalued cost-function of Figure 8 represents such a
characteristic curve.

The solution of systems with such cost functions
can be numerically very difficult and often there are
multiple equilibriums in the market. Finding the op-
timal equilibrium is a very demanding optimization
problem that in general cannot be handled in poly-
nomial time. Hence a robust handling of such non-
monotonic cost function requires a good solution
strategy.

PowerA
(W]

—

0 Price [S/W]>

Figure 8: A non-monotonic, multi-valued cost function
(red) and a corresponding monotonic, single-valued hull
curve (grey).

In this paper, we propose a bullying strategy. It re-
flects a behavior that also exists in real markets. Big
players, in our case large and potentially very effi-
cient power generators, compete for a contract. They
pretend to be more efficient than they actually are.
When the order finally turns out to be too small to be
efficiently handled by the big player, the contracts
are handed over to small players by issuing sub-
contracts. The final point of equilibrium is hence
determined in several rounds of negotiation: first the
big players then the smaller players.

In our library such a bullying strategy is imple-
mented by creating hull curves in multiple rounds of
negotiation. Figure 8 shows the effective cost-
functions for our producer. However, in the first
round of negotiation this curve is not used but the
grey hull curve instead.

The hull curve must be monotonic increasing and
must always be greater or equal than the effective
cost curve. Within these constraints, it should be as
low-valued as possible. In those sections where the
hull curve does not coincide with the effective cost
curve, the producer is hence pretending to be more
efficient than he actually is.

PowerA
(W]
| < -
- ,
0 v, vy’ Price [$/W]

Figure 9: A new hull curve is generated for the non-
monotonic cost-function based on the previous market
solution (v4, py).

138

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076133

Session 1C: Power and Energy

Since all participants in the market use monotonic
hull curves, a solution can easily be found. If the so-
lution (v4, p;) is now placed in a section where the
hull curve does not coincide with the effective cost
curve, the correspondent producer has to “reveal” its
effective costs (v4’, p1) in the second round of nego-
tiation.

To this end, a new hull curve is generated. Again it
must be monotonic increasing. But the solution of
the first round now splits the hull curve in two parts:

e For v<vy, the curve must again be greater or
equal than the part of the effective cost curve
that is lower than p, and within these con-
straints as low-valued as possible.

e For v>=v, the curve must be greater or equal
to than the effective cost curve or equal to p,
again, as low-valued as possible.

Figure 9 illustrates such a new hull curve for a given
market equilibrium. The procedure can be iterated
for several rounds of negotiation. In general, this
iteration scheme cannot be proven to approximate
the optimal solution, but since each hull curve will
be smaller valued than its predecessor the process is
at least bound to converge.

In practice, however, this iteration scheme has at
least shown to work very well. Therefore let us illus-
trate it by an example.

4.6 Example2: Non-monotonic behavior.

T

. R

non_monotonic consumer

@]
monotonic
4
C
© market
\/
~1
waste

Figure 10: Two sources compete for one consumer. The
consumer demand is rising at a constant rate.

In this example, two generators compete to fulfill the
power demand of one source. One small generator
that is rather inefficient and limited to a small ca-
pacity and a large generator that is very efficient for
high-load values and very inefficient for low load
values. The small generator shall thus be used to
overcome the efficiency gap of the large one.

Power 1
(W]

0 Price [$/W]>

Figure 11: Sketch of the two cost functions for the large
(red) and small (green) generator.

Figure 11 sketches the two cost functions and Figure
10 displays the corresponding model diagram. To
enable several iterations for the final solution, the
price per watt and the power have been implemented
as vectors (see Section 3.1). By the parameter n, the
number of iterations can be determined. In this case,
we choose n=4. This means that the model contains
now 4 parallel market models that each represents
one round of negotiation.

During simulation the power demand is increas-
ing with a constant rate. Figure 12 and Figure 13
presents the results of the simulation for the different
rounds of negotiation. We can see the produced
power of each generator.

Clearly, in the first round (blue), the large genera-
tor pushes aside its smaller counterpart. But in the
following rounds of negotiation, the small generator
can make its point. The resulting final behavior (ma-
genta) almost leads to a discrete switch as soon as
the large generator becomes more efficient as its
smaller counterpart. The simulated results reflects an
almost optimal behavior.

DOl
10.3384/ecp12076133

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

139

Implementation of a Modelica Library for Energy Management based on Economic Models

200
180
160
140+

120 [

/]
[W]100+ “
/]
801 1
60-] / w
/]
/ |
40— / |
pan
20 — <
0 : : | | | | . . . :
0.0 0.1 [min] 0.2

Figure 12: Power output of the large generator for differ-
ent rounds of negotiation (round 1: blue, round 2: red,
round 3: green, round 4: magenta).

200

180
160
140
120
[W] 100 '{W
80 o |
A
40 1

201 ‘

0

0.0 dl ‘[nﬂﬁ] dz ‘
Figure 13: Power output of the small generator for differ-
ent rounds of negotiation (round 1: zero valued, round 2:
red, round 3: green, round 4: magenta).

5 Application Domain: Load Man-
agement

5.1 Motivation
A typical load management (e.g. as applied in the
electrical system of an aircraft) can cut and reconnect
loads depending on its priority. The priorities can
directly be translated into prices. Thus low priority
loads just pay low prices for a certain amount of
power whereas high priority loads pay high prices.
The goal is to get a stable, object-oriented load
management function. Thus it is possible to get an
implementation very quick and enable an early inte-
gration of the function into design process of system
to be controlled. Furthermore, modular functionality
like dealing with switchable and continuous loads in
one system can easily be added.

5.2 Derivation of cost functions

Other than source management, the model of a typi-
cal source for load management looks rather differ-
ent. The focus is on maximum availability of loads
and stability, not on energy efficiency. A source
function as illustrated in Figure 14 is implemented
having linear segments in three areas.

In area I, all loads are on. So there is no special
requirement on the function rather than being mono-
tone and continuous. Area Ill defines the maximum
power capacity of the generator by means of a con-
stant value. In this area all controllable loads shall be
off. Within area Il, cutting of switchable loads and
decreasing of continuous loads take part.

PFV‘\“/’]QF, | I i

0 3 é PHce[S/iV]

Figure 14: Cost-function of a source having three areas: |
—all loads on, 1l — shedding, decreasing loads with respect
to its priority, 111 —all controllable loads off.

As shown in Figure 15 the cost-functions of switcha-
ble and continuous loads are quite equal in principle.

Control signal
Negated cost function

Power [W] . . .
[1 11 | 1} ; 11

0 ‘ Price [$/W] O Price [$/W]

Figure 15: Negated cost functions and control signals of
switchable loads (left) and continuous loads (right).

They consist of a full-power area, a linear decreasing
area, and a zero-power area. The main difference is
the slope of the function. The following inequation
applies:

slope(switchable loads) >> slope(continuous loads)

140

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076133

Session 1C: Power and Energy

Furthermore, the control signal is different for the
two types of loads. All switchable loads receive an
off-signal, if the current price is not within full-
power area whereas all continuous loads receive a
continuous power signal as determined in the cost-
function. Since the location of the linear decreasing
segment is determined via the priority of the loads
and a global market model prescribes the location of
the areas I, Il, and Il it can be guaranteed that this
linear segment lies entirely in area Il.

As the switchable loads are cut at the linear de-
creasing segment, one must avoid having two loads
with the same priority. Otherwise both loads will be
cut, even if not needed. Thus, each load should have
its own priority.

If there are switchable and continuous loads in
one system, multiple rounds of negotiations can be
used to determine the power inflow for the continu-
ous loads. This is done via setting a price in a first
negotiation round using all cost-functions as de-
scribed previously for calculating the control signals
for the switchable loads. A second and final negotia-
tion round for the continuous loads can then use the-
se discrete control signals and assume all cost-
functions of the switchable loads to be constant in all
three areas (on or off). Thus less generator-capacity
is wasted.

In typical load management systems, there are
usually additional restrictions rather than the availa-
ble generator capacity (e.g. a feeder that limits
transmitted power or current to a set of loads). This
can be modeled easily by means of a limiter as
shown in Table 1. On the output plug, a price can be
increased if a prescribed limit is exceeded. The pre-
ferred implementation includes qualitatively the
same cost-function as for the generator (see Figure
14). At the output plug, a maximum function is ap-
plied that defines either the price at the input plug
(i.e. from the price coming from the generator) or the
price of the limiter. This ensures compliance with the
restriction as well as an optimal availability of high
priority loads.

5.3 Example
Figure 16 shows a simple setup of a load manage-
ment model consisting of one source, three feeders
(limiters) and six different loads. The model is set up
in the same way like the corresponding physical
electrical system

&

market

1

®

feeder1

load2

8

1/

o

gen feeder2

load4

o

5
=1
T

1/

o

feeder3

loadB
Figure 16: Example of a load management model having

one source, 3 feeders and 6 loads (mixed continuous and
switchable).

After specifying the nominal values for the source
(generator) and the feeders as well as setting the pri-
ority of the loads, the load management function is
ready to be used. Depending on actual power de-
mand (input not illustrated in the figure), loads will
be shed, reconnected, or reduced to comply with all
restrictions of the source and limiters.

6 Conclusion and future work

This work represents our first approach towards a
market-oriented modeling of energy-management
tasks using a Modelica library. The current results
look promising and demonstrate the principal func-
tionality of the library. It can be used both for source
and load management and also more difficult tasks
such as non-monotonic cost functions can be reason-
ably well handled.

Although, we have analyzed only rather small
systems so far, the simulation performance was al-
ways very good. We expect thus that the approach is
also for feasible for larger systems with hundreds of
generators and consumers.

One mayor advantage of having an energy man-
agement function directly implemented in Modelica
is the easy coupling to the physical system it shall
control. This enables an improved development pro-

DOl
10.3384/ecp12076133

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

141

Implementation of a Modelica Library for Energy Management based on Economic Models

cess of the system in conjunction with its control
function and thus early optimization of both.

In case of source management, certain tasks need
to be approached in order to create a solution that is
more intuitively applicable for engineers. The import
of characteristic curves (based on real data) for the
efficiency of generators shall be supported by the
library. In addition, the library needs to be tested at a
larger set of more realistic examples. Further future
potential concerns the modeling of dynamic charac-
teristics. Power generators typically cannot increase
their output power at any arbitrary rate. Also storage
components like batteries have a dynamic pricing of
their energy.

In case of load management, further functionality
like variable cost functions shall be added to the li-
brary by allowing variable priorities. This enables a
more flexible energy management, since the im-
portance and availability of a load can change during
operation. In addition, sources like generators can
often be overloaded due to their heat capacity. Thus
they shall also influence the cost function dynamical-
ly. Furthermore, additional elements like switches
can be added to allow adaption of the management
function in case of a network re-configuration.

One further major step is to combine both sub-
libraries in a suitable way. This means to manage
priorities of the loads as well as energy efficiency by
one cost function. To this end, a more elaborated
determination of price according to load priority,
energy efficiency, and further restrictions is needed.

References

[1]

2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

Biichner, Stefan. Energiemanagement-
Strategien flr elektrische Energiebordnetze
in Kraftfahrzeugen. Dresden, Germany: PhD
thesis, faculty of Transportation and traffic
sciences Friedrich List, TU Dresden, 2008.

Brewer, J. W. Bond Graphs of Microeco-
nomic Systems. Automatic Control Division,
ASME, New York, 1976

Brewer, J. W. and P. C. Craig. Bilinear, Dy-
namic Single-ports and Bond Graphs of Eco-
nomic Systems. Journal of The Franklin In-
stitute, No 185, 1991

Cellier, F. E., Continuous System Modeling.
Springer Verlag New York, 1991.

Cellier, F.E., World3 in Modelica: Creating
System Dynamics Models in the Modelica
Framework, Proc. 6th International Modeli-
ca Conference, Bielefeld, Germany, Vol.2,
pp. 393-400, 2008.

Engstle, Armin. Energiemanagement in Hyb-
ridfahrzeugen. Munich, Germany: PhD the-
sis, Fakultat Elektrotechnik und Infromati-
onstechnik, TU Minchen, 2008.

Odum, H.T, Ecological and General Sys-
tems: An Introduction to Systems Ecology,
Colorado University Press, Colorado, USA,
1994,

Schlabe, D., and J. Lienig, “Energy Man-
agement of Aircraft Electrical Systems -
State of the Art and Further Directions,” In-
ternational Conference on Electrical Systems
for Aircraft, Railway and Ship Propulsion
(ESARS), Italy, October 2012.

Ygge, Fredrik, Market-Oriented Program-
ming and its Application to Power Load
Management. Lund, Sweden: PhD thesis,
Department of Computer Science, Lund Uni-
versity, 1998.

142

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076133

Modeling and Simulation of a Linear
Piezoelectric Stepper Motor in MapleSim

Orysia Soroka

Derek Wright

Orang Vahid

Maplesoft
Waterloo, Ontario, Canada
ooasorok@uwaterloo.ca, dwright@maplesoft.com, ovahid@maplesoft.com

Abstract

Devices based on piezoelectric materials have tradi-
tionally been modeled in PDE simulation software.
These simulations are expensive to create and run. In
this paper it is shown that lumped-parameter models
of such devices can provide good fidelity with low
computational cost. Modelica models of supporting
components, along with a system-level model of a
linear piezoelectric stepper motor are presented. The
simulation results show good agreement with pub-
lished experimental results. Future research is pro-
posed based on the components and model.

Keywords: Piezoelectric, Linear Motor, MapleSim

1 Introduction

Piezoelectric materials experience mechanical
stress under the influence of an electric field and,
inversely, produce an electric field with the applica-
tion of a mechanical stress. Materials that exhibit the
piezoelectric effect are used in diverse applications,
including a variety of sensors and actuators, and spe-
cifically in stepper motors. Detailed PDE simulations
of these materials are achievable using simulation
software such as COMSOL, but lumped-parameter
models suitable for component- and system-level
simulations are rare. Developing piezoelectric mate-
rials models in Modelica makes modeling and simu-
lation at the system-level possible. A resulting li-
brary of parametrically-defined component models,
like motors and actuators, would increase the effi-
ciency of modeling and simulating piezoelectric de-
vices routinely deployed in new engineering designs.

In this research, Modelica components imple-
menting piezoelectric material properties, electrostat-
ic forces, and time-varying frictions were developed
and integrated into a device-level model of a linear
piezoelectric stepper motor. The model is parametric
and extensible: the parameters can be changed to suit

application-specific requirements, and nonlinear ef-
fects can be easily included.

MapleSim is a Modelica-based system-level
modeling and simulation platform provided by
Maplesoft [1]. MapleSim simulation results matched
those in [2] when similar values were implemented.
Most importantly, the relative execution speed of the
model permits multi-parameter optimizations not
possible in full PDE simulations. This is demonstrat-
ed via the investigation of the effects of the motor
clamp voltage on velocity using a compiled MapleS-
im procedure in Maple. Future work is then de-
scribed.

1.1 Related Work

To the authors’ knowledge, there is no formal Mod-
elica library available for piezoelectric materials.
However, there have been a variety of disparate
works that have implemented piezoelectric models in
a lumped-parameter framework. For example, a
MEMS library and airbag deployment example in-
cluding piezoelectric elements were implemented in
VHDL-AMS in [3] and [4], respectively. Lumped-
parameter models of piezoelectric devices derived
from high-order FEM models, are presented in [5],
but are not Modelica-specific implementations. They
would retain some of the discretized nature of the
original FEM models and would therefore be further
away from the benefits of using Modelica. In [6],
bond graph and equivalent circuit methods are used
to model piezoelectric motors. Finally, several tool-
independent lumped-parameter physics-based mod-
els are presented in Chapter 6 of [7].

2 Linear Motor Operation

Figure 1 shows the configuration and operation of
the linear motor. The operation is similar to other
slip-stick motors, but is unique in that an electrostat-
ic clamp is used to aid the “stick” portion of the cy-

DOl
10.3384/ecp12076143

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich, Germany

143

Modeling and Simulation of a Linear Piezoelectric Stepper Motor in MapleSim

cle. Periodic waveforms are applied to extend and
relax the piezoelectric material along its longitudinal
direction, pushing the lead weight along with it. The
electrostatic clamp is active during the extension part
of the cycle to prevent the motor assembly from
slipping along the surface. An abrupt voltage is ap-
plied to the piezoelectric material when it is in its
extended state and the clamp is deactivated to cause
the assembly to retract towards its new center of
mass, moving it forward.

Motor
a) Assembly

Surface

D Teflon D. Piezo Terminals (off/on)
D Weight (Pb) D. Clamp Terminals (off/on)
B PzrsH

Figure 1: Linear motor configuration and operation.
a) The electrostatic clamp is activated. b) The piezo-
electric material extends longitudinally with an ap-
plied voltage, moving the center of mass to the right.
c) The clamp is deactivated. d) The piezoelectric
voltage is quickly removed to cause a snapping mo-
tion, breaking the static friction between the motor
assembly and the surface. The assembly retracts to-
wards its new center of gravity, moving forward.

To model this in MapleSim via Modelica, several
new components were needed: A 1D model of the
piezoelectric material which couples the electrical
and translational domains, an electrostatic clamp that
also couples the electrical and translational domains,
and a time-varying friction model. Their develop-
ment is described next.

3 Component Models

In the following sections, variables indicated in bold
face correspond to port variables. Numbers in brack-
ets preceding an equation (like (1), for example)
indicate equations that appear in the final Modelica
component.

These components were first created as MapleS-
im Custom Components, which directly implement
their governing equations developed in Maple. Es-
sentially, the equations are written unsimplified and
MapleSim automatically rearranges and manipulates
them as needed. Upon creation of the component,
Modelica code is auto-generated which was then
manually further modified.

3.1 Piezoelectric Material Model

The development of a 1D piezoelectric model relied
heavily on Chapter 6 of [7]. The full tensor solution
was reduced to the (3,3) direction to select the longi-
tudinal translational mode of operation. Losses and
nonlinearities, such as hysteresis, were neglected as a
first-order approximation. Such effects can be easily
included in the core equations, or included externally
using Modelica Standard Library components. Max-
well’s equations were accordingly simplified. Refer
to Figure 2 for referencing of the port variables.

-1, V,

!

r,— I «— .

S1 S2

Figure 2: Through- and across-variable references
for the piezoelectric component.

In one dimension, the traction (stress) of a piezoe-

lectric material is

T=c?-S—h-D
where T is the traction, c® is the mechanical stiffness
of the material, S is the mechanical strain, h is a pie-
zoelectric coupling coefficient with units of V/m,
and D is the electrical displacement field. Neglecting
inertia, the forces at either end of a slab of length |
and area A of this material are

Fi==A-T|;z0, F; = —A-T|,
noting that traction is referenced positive in the ten-
sile direction. Therefore

F, = —A(?-S—h-D)|,—0

144

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076143

Session 1D: Electromagnetic Systems |

The strain can be approximated by taking the first
derivative of the material’s displacement in Eulerian
coordinates, &, so that

and therefore
9
- .D—cP. 2>
2 —A(h D—cP.=— z:O)
The D field can be replaced with the charge, Q, as
follows:

aD
E=]disp
f]disp dA=1
_ 1
"]disp —Z
oD I
Tot A
Since 20
D1 =7

9
—_ . —_— . D._
Fi=h-Q-A-c 3zl

where Jgisp IS the displacement current and | is the
electrical current. Noting that

73 26 J
— o =ds
aZ 72=0 l
(Z)dS:SZ—Sl—l
Therefore,

ds
3 F; Eh-Q—A-cD-T
(4') F,=-F

To incorporate inertia, one-half of the calculated
mass is placed on either side of the piezoelectric ma-
terial. It is calculated from its density, p, length and
area. Damping could also be included in these equa-
tions, but was not necessary for this particular analy-
sis.

1 azsl
(5)F3—F1=E,01AW
(6) F, —F Ll 9%y

Finally, the terminal voltage, V, can be calculated as
the integral of the electrical field, &, as

l
V=fE'dz

0
Since &€ can be defined as a function of D and S via
D=e-S+¢&5-&
where e is the (3,3) element of the piezoelectric
stress matrix. It can be defined as
e=¢5-h

where &5 is the electrical permittivity of the piezoe-
lectric material under constant strain conditions.

Therefore,
_ Q 0¢
5_3 h-S:A o5 h-&
and
l
B Q ¢
V_fo(A-ES h az) dz
DV = @l 4
T A-&S S
where

@)V =V,—V,

3.2 Electrostatic Force Model

An electrostatic force model was implemented that
couples the electrical and translational domains. Un-
like in the piezoelectric model which did incorporate
a linear stress-strain relationship, the stress-strain
relationship of the dielectric material under the influ-
ence of the applied electrostatic force was not in-
cluded. It is present in the system-level model as a
translational spring. This decision was made so that
the component could be easily modified as needed.
For example, more accurate models would use a
translational spring-damper to incorporate losses,
and keeping it outside the electrostatic force compo-
nent facilitates this change. Refer to Figure 3 for ref-
erencing of the port variables.

4LVe LV,
O *§

F—»l”—> |[]<—-F
Sy S2

Figure 3: Through- and across-variable references
for the electrostatic force component.

Neglecting edge effects, the force between two
plates of a parallel capacitor and current are

(1)F=—Q'V=C'V2
d Ad
_So.gr.
(Z)C——d ;
(3)I=E(C-V)
where
4)d=5;—5,

and
GV =V,—Vy

DOI
10.3384/ecp12076143

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

145

Modeling and Simulation of a Linear Piezoelectric Stepper Motor in MapleSim

3.3 Smooth Time-Varying Friction Model

The purpose of this model was twofold: First, a time-
varying friction was needed where the normal force
and coefficients were time-dependent. This was due
to the electrostatic clamp changing the applied nor-
mal force. Second, whereas the standard friction
model is discontinuous when transitioning from stat-
ic to dynamic, a continuous model would produce
similar results and would speed simulation time by
avoiding events. It also eliminated the need to pro-
vide scaling information to the solver to detect
events within such a narrow band of operation. Refer
to Figure 4 for referencing of the port variables.

I:normal d
v v

F_..f— b

A A

Mstatic
Figure 4: Through- and across-variable references
and input signals for the time-varying friction com-
ponent.

udynamic

Beginning with the smooth friction model, a sum
of two hyperbolic tangents was used to create the
approximation.

(1) g(x, A1,42) = A; - tanh(c; - x)
+(4, — A;) - tanh(c, - x)

In its intended usage, x would be the relative ve-
locity, A; would be the static friction, and (A; — A)
would be the dynamic friction. The coefficients c;
and c, are chosen so that ¢; > ¢,, which gives the de-
sired function shape. An example is shown in
Figure 5 and its similarity to the basic discontinuous
friction model should be noted.

Similarly, a smooth step-like function was used to
ensure that when non-positive normal force is ap-
plied, there is no resultant “negative” friction. Such a
function was implemented using

(2) h(x) = %(tanh(c3 ‘x)+ 1)

and an example plot is shown in Figure 6.
Using these smooth equations, the friction model
is then implemented as
(3) Syer =52 — 51
Srel
(4) Vye, = d:fe
(5) Fstatic = Hstatic * Fnormal ' h(Fnormal)

(6) denamic = Hdynamic Frormal

: h(Fnormal)
(7)F = g(vRel' Fstatics denamic - static)
. T d- (Vge)
where d is the damping coefficient.

i)

[

-0.004 -0.002 0 0.002

X

0.004

Figure 5: Example plot of the smooth friction model
for parameters: A;=10, A,=5, c¢;=10000,
C, = 2500.

02

0é

04

0z

-1 -0.5 0 05 1
x

Figure 6: Example plot of the smooth step function
for the parameter c; = 10000.

4 Slip-Stick Motor Model

The three new Modelica components were assem-
bled in MapleSim along with library 1D translational
and signal components to create the overall model,
shown in Figure 7.

146

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076143

Session 1D: Electromagnetic Systems |

PZT 5H Linear

Stepper Motor NormalForce

DampingCoefficient LowpassB Trapezoid

M0

Piezoelectric

o |
SV .
2 LeadMass V!

Glider

i §'°—J=P—f—‘kn4’—'ﬂ-b—*nﬂ
ipgFrictionM

n Time\aryj| —_— —
s'_o. e i PiezoelectricM
Miscellaneous Parameters 3 i ! !
ol E s, f 1
i amp !
== Q £ o™ % T ('DAssembly
. G
. —iw 0 B 8 StaticFrictionCoefflciert
Driver Parameters a—a . 8 S,V
[Ty

LowpassB
1

ClampPulse

DynamicFrictionCoeffigient

M —Py

£ 7777

F
G 2

Figure 7: The MapleSim schematic of the parametrically-defined linear motor model.

The model was defined parametrically, using the
parameters summarized in [2] as nominal values.
Amazingly, the results matched quite well just by
using the physical parameters and using some basic
assumptions on the undocumented parameters, in
particular, the characteristics of the driver wave-
forms. For example, it is stated in [2] that step sizes
of 0.07-1.1um were observed for piezoelectric
voltages of 60-340V. The MapleSim model
achieved 0.061 —0.371 um step sizes for the same
applied voltages without any tuning or optimization
of the unknown parameters. Adjusting the magnitude
of the clamp voltage and frequency cutoff of the fil-
ters are two of the easiest was of changing the step
size to help it match the experimental results. There-
fore, the MapleSim model represents a reasonable
approximation to the system behavior without the
burden of a full PDE solution.

4.1 MapleSim Model and Preliminary Results
As stated previously, the model matches the experi-
mental results quite well and provides additional de-
grees of freedom to back-fit to the available data.
Figure 8 and Figure 9 show the applied driver signals
and resulting motor motion, respectively. A compari-
son to the results in [2] shows good qualitative and
numerical agreement.

[A [[AP
400 -
| 400
300 4
B2 L300
z £
a i L]
i 200 200
100 - 100
ol I - i - —r?
T T T T T T T T
0 0002 0004 0006 0008 0010

t

Figure 8: 1 kHz clamp (green) and piezoelectric (red)
drive voltage signals. The slight overshoot is due to a
low-pass filter set to 10 kHz to limit discontinuities
present in the simulation.

DOI
10.3384/ecp12076143

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

147

Modeling and Simulation of a Linear Piezoelectric Stepper Motor in MapleSim

5.% 1075+ | 0003
LA
. 0.004
4.2 1078 b
- . b
H) '“-D“JE;
83 %109 3
g i g
E B):.'E
- ~ 0.002
2.2 1075 1
™ 0.001
1.%107% '\
i i}

T T T T T T T T T T T
0 0002 0004 0006 Q008 0010

t
Figure 9: Plots of the position (red) and velocity
(green) versus time of the linear motor.

4.2 Platform for Optimization

One of the goals of this research is to demonstrate
the value of system-level models of devices that tra-
ditionally have only been modeled in PDE software.
As an example of the execution speed and optimiza-
tions possible, consider the results in Figure 10, and
further summarized in Figure 11. They show the po-
sition versus time and velocity versus Veamp results
for 100 simulations, respectively. When comparing
to the results presented in Fig. 10 in [2], it can be
seen that the results are quite consistent.

6. 1079 4

% 10°% o

=

%1078 4

(=]

Displacemert ()

%1078

[n]

1.%10°% o

0 tag

T T T
0.004 0.004 0.002

titie (5)
Figure 10: Position versus time plots for Vjam, Values
from 0 to 1000V. The nominal value,
Veiamp = 500 V, is shown in blue.

T
0.002

0.64 +

062

0.60

0.58 o

0.56 o

Velocity (mms)

0.54 o

0.52 A

0.50 o

0.48

—T T - T T T T T T T
0 100 200 300 400 500 @00 700 =200 900
Velattip (V)

Figure 11: Calculated average velocity values for
various Vgamp. NoOte how the electrostatic clamp im-
proves the speed of the motor by preventing reverse
motion during extension of the piezoelectric materi-
al.

The per-simulation execution time was 63.8 ms
on a modest Intel Core2 Duo CPU running at
2.80 GHz. Similar results would take a tremendous
amount of time in PDE simulation software. Though
the PDE results would arguably be more accurate,
the marginal accuracy is of questionable value in
light of the orders of magnitude increase in simula-
tion time.

5 Conclusions and Further Research

This paper has demonstrated the creation of a linear
piezoelectric stepper motor in MapleSim. To pro-
duce the motor model, three new components were
created and their derivations were documented. Ini-
tial results correlate well with published experi-
mental results, indicating that lumped-parameter sys-
tem-level models may provide a new platform for
development and optimization of such devices.

The follow-up research currently underway in-
volves multi-parameter optimizations in a multi-
threaded, multicore architecture in Maple. The goal
would be to demonstrate that fast MapleSim models
can be used to optimize for goals like motor speed
and power consumption, as well as to more accurate-
ly fit the experimental data. This will be accom-
plished directly in Maple via its threads and grid
computing capabilities, and in Optimus, a global op-

148

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076143

Session 1D: Electromagnetic Systems |

timization and design-of-experiments package by
Noesis [8].

Using the piezoelectric material model as a start-
ing point, further developments include a full multi-
body (6 DoF) model of the material behavior. It is
created using the full tensor description of the piezo-
electric material. This will enable the development of
novel devices using torsional modes, and a more ac-
curate look into the behavior of existing devices, like
the motor presented in this paper.

References

[1] www.maplesim.com

[2] Judy J W, Polla D L, and Robbins W P. A
Linear Piezoelectric Stepper Motor With
Submicrometer Step Size and Centimeter
Travel Range. IEEE Trans. UFFC, Vol. 37,
No. 5, 1990.

[3] Schwarz P, and Schneider P. Model Library
and Tool Support for MEMS Simulation.
SPIE Proc. Microelectronic and MEMS
Technology, Vol. 4407, 2001.

[4] Pecheux F, Allard B, Lallement C, Vachoux
A, and Morel H. Modeling and Simulation of
Multi-Discipline Systems Using Bond
Graphs and VHDL-AMS. Proc. ICBGM,
2005.

[5] Gentili L, Bassi L, Macchelli A, Melchiorri
C, and Borsari R. Model Reduction for High-
Order Port-Hamiltonian Systems. Applica-
tion to Piezo-Electric Systems. Proc. IEEE
Conf. Decision and Control, 20009.

[6] Essalam B A, and Mabrouk K. Generation of
analytical redundancy relations for fault de-
tection and isolation of ultrasonic linear mo-
tor. Nature & Technology, Vol. 4, 2011.

[7] Cobbold R S C. Foundations of Biomedical
Ultrasound (New York: Oxford University
Press). 2007.

[8] www.noesissolutions.com

DOl Proceedings of the 9™ International Modelica Conference 149

10.3384/ecp12076143 September 3-5, 2012, Munich, Germany

Modeling and Simulation of a Linear Piezoelectric Stepper Motor in MapleSim

150 Proceedings of the 9" International Modelica Conference DOl
September 3-5, 2012, Munich Germany 10.3384/ecp12076143

Magnetic Hysteresis Models for Modelica

Johannes Ziske, Thomas Badrich
Technische Universitat Dresden, Institute of Electromechanical and Electronic Design
01062 Dresden, Germany

Johannes.Ziske@tu-dresden.de

Abstract

Modelica models for transient simulation of magnet-
ic hysteresis are currently being developed at Tech-
nische Universitat Dresden. This paper gives an
overview about the present state of the work. Two
hysteresis models have been implemented so far in
Modelica and are currently optimised and tested: the
rather simple but efficient Tellinen model and the
more complex and accurate Preisach model. Utilisa-
tion of the Tellinen model together with components
of the Modelica.Magnetic.FluxTubes library is ex-
emplarily shown with transient simulation of a three-
phase autotransformer. Additionally, an efficient im-
plementation of the Preisach model is described and
a first comparison between the Tellinen and the clas-
sical Preisach hystesis model is presented. It is
planned to include the developed hysteresis models
into the above-mentioned FluxTubes library after
their further optimisation and validation with own
measurements. These models will especially allow
for the estimation of iron losses and for accurate
computation of saturation behaviour during Modeli-
ca-based design of electromagnetic components and
systems. This becomes increasingly important with
the growing requirements regarding energy efficien-
cy and mass power densities of such systems.

Keywords: magnetic hysteresis, lumped magnetic
network; hysteresis model; Tellinen; Preisach; iron
losses; Modelica.Magnetic.FluxTubes library

1 Introduction

The Modelica.Magnetic.FluxTubes library included
in the Modelica Standard Library [1] is intended for
rough design and system simulation of magnetic
components and devices, e.g. actuators, motors,
transformers or holding magnets [2, 3]. This library
is based on the well-established concept of magnetic
flux tubes, which enables modelling of magnetic
fields with lumped networks [4].

Thomas.Boedrich@tu-dresden.de

At present, ferromagnetic hysteresis is not consid-
ered in the above-mentioned library. However, the
prediction of losses due to static (ferromagnetic) and
dynamic (eddy current) hysteresis becomes more and
more important during the design of electromagnetic
components. This is due to the increasing demands
on energy efficiency of electromagnetic systems and
due to increasing power densities of those systems.
Prominent examples for this engineering trend are
electromobility and more electric aircraft, where the
necessity of high mass power densities and loss
power minimisation are obvious.

In general, the reliable prediction of hysteresis-
related losses with lumped magnetic network models
is difficult and demanding and has been a topic of
research for a long time. Simplified empirical equa-
tions for loss calculation, e.g. the well-known
Steinmetz formula [5] are based on time-harmonic
flux densities of known magnitude and frequency
[6]. The delayed penetration of magnetic fields into
bulk and laminated ferromagnetic materials can be
approximated in lumped magnetic networks with
Cauer circuits [7].

Transient simulation of magnetic hysteresis in
lumped magnetic network models is possible with
dedicated hysteresis models. Well-known such mod-
els are for example the phenomenological one pub-
lished by Preisach in 1935 [8], the physical model
developed by Jiles and Atherton [9] or the compara-
tively simple model developed by Tellinen [10].
Those models are currently analysed at Technische
Universitat Dresden, and selected hysteresis models
are implemented in Modelica for inclusion into the
Modelica.Magnetic.FluxTubes library.

The Tellinen hysteresis model and the Preisach mod-
el have been implemented and are currently tested
and optimised. Theory and Modelica implementation
of these two models and their utilisation in compo-
nents of the Modelica.Magnetic.FluxTubes library
will be presented in the following sections. It must
be noted that this is a report about work in progress
rather than a final presentation of the projected Mod-
elica.Magnetic.FluxTubes library extension. Both

DOI
10.3384/ecp12076151

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich, Germany

151

Magnetic Hysteresis Models for Modelica

implemented hysteresis models are still subject to
optimisation and validation, e.g. with measurements.

2 The Tellinen Hysteresis Model

2.1 Theory

The hysteresis model developed by Tellinen is thor-
oughly described in [10]. The big advantage of this
model is its simplicity. Thus, it is well suited for fast
simulations when used in lumped magnetic network
models. It works without information about the his-
tory of the magnetic field strength H in ferromagnet-
ic components and can completely be configured
with the limiting increasing and decreasing branches
Ai(H) and A4(H), respectively, of the limiting hystere-
sis loop of a ferromagnetic material (Figure 1).

A

! /

e

Ai(H)

Ai(h)

Figure 1: Limiting increasing and decreasing branch
Ai(H) and J4(H), respectively, of a hysteresis loop
with magnetic polarization J and magnetic field
strength H () and corresponding slope functions
pi(H) and pra(H) (b).

Together with the corresponding slope functions
mi(H) and p,q(H) the actual slope p; at the operating
point O(h, j) can be determined as

Ag(h) —j
a(h)])-pal-(h) fordH >0

dj Aq(h) — A;(h M
Pi=ag =\ J-An) 1
A—d(h)) pai(h) fordH <0
0 else.

Thus, the time—based slope of j can be easily com-
puted at every integration step to

dj dj dH _ dH

= = L —_— 2
dt _dH dt P 2)

Hence the slope of the magnetic flux density db/dt of

db

= ®)

dH
= (pj + o) P
MO is the slope db/dh of the limiting hysteresis loops
within the saturation region.

2.2 Implementation in Modelica

The Tellinen model described above was integrated
into a reluctance element of the Modelica.Mag-
netic.FluxTubes library, and can thus similarly
be used in electromagnetic network models (in [2]
the magnetic library is explained in detail). The re-
luctance model can be configured with the cross sec-
tion and the length of a ferromagnetic core and the
limiting hysteresis loop of the core material. On the
one hand hysteresis loops can be defined by the hy-
perbolic tangent function and definition of the three
parameters Js (saturation polarization), Jz (rema-
nence) and Hc (coercivity) (see Figure 1a). On the
other hand table data can be used to define the in-
creasing and decreasing hysteresis branches. Thus,
almost arbitrary hysteresis loops can easily be im-
plemented and also easily be derived from measure-
ments. In addition a small experimental library was
built using exemplary table data of some common
ferromagnetic materials (Figure 2).

= tanh() example
= Vacodur 50
Vacoflux 17
Vacoflux 48

magnetic flux density B [T]

-200 0 200 400
magnetic field stregth / [A/m]

Figure 2: Exemplarily simulated limiting hysteresis
loops: curve 1 described by a hyperbolic tangent
function and curves 2 to 4 described by tabular B(H)
data extracted from [11].

152

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp12076151

Session 1D: Electromagnetic Systems |

2.3 Autotransformer as an Example

The implemented Tellinen hysteresis models were
tested with a simple electromagnetic network model
of a three-phase autotransformer. A sketch of the EI-
shaped ferromagnetic core of the transformer with
indicated corresponding network elements is shown
in Figure 3a and the complete electromagnetic net-
work model in Figure 3b.

i Z.
= -
SRl SR SR
O T O 1ith O [
)

b) Qrc:nc 1

ground

Figure 3: Sketch of a three-phase autotransformer
with an El-shaped ferromagnetic core (a) and corre-
sponding simple electromagnetic network model
with hysteresis elements representing the transformer
core (b).

magnetic flux density 8 [T]

I i
-100 0 100
magnetic field strength H [A/m]

Figure 4: Simulated magnetic flux densities B vs.
magnetic field strength H of the three hysteresis
elements Rmagl (blue), Rmag2 (red) and Rmag3
(green) representing the three transformer legs.

Transient oscillations of the magnetic flux densities
in the three transformer legs after power-on are ex-
emplarily shown in Figure 4. Selected corresponding
voltages and currents are depicted in Figure 5.

— WiV

RL1.wv
400

1/~

T T T
0.001 0.002 0.003 0.004

1[s]

Rmagl.b —— Rmag2.b

Rmag3.b

,/\ - . /‘"-.\
E 0 /

T d

T T T
0.001 0.002 0.003

b) 0.000

— Vi —V2i —— V3.

200

—_

= o\
-V

-400
C) 0.000

CI.IJID1 IJ.DIIJ2 O.IJIDB IES] 0.004

Figure 5: Results of the autotransformer simulation:
source voltage V1.v and voltage drop RL1.v of load
resistance (a), magnetic flux densities of the three
hysteresis elements Rmagl.b to Rmag3.b (b) and

source currents V1.i to V3.i.

3 The Preisach Hysteresis Model

3.1 Overview on the Classical Preisach Model
In this section a very short overview on the classical
Preisach model is given. More detailed information
on this model can be found e.g. in [12]. The Preisach
model describes the behaviour of an output signal j(t)
in dependence on an input signal h(t) and on its his-
tory. Here, j(t) and h(t) are the magnetic polarisation
of a ferromagnetic material and the magnetic field
strength, respectively. The model assumes an infinite
set of elementary hysteresis operators y,. The opera-
tors’ output y4gh(t) can only hold the polarisation
values of -1 or +1 dependent on the upper and lower
switching limits a and S, on the input signal h(t) and
on its history. The behaviour of y.gh(t) is shown in
Figure 6. It is defined as

DOI
10.3384/ecp12076151

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

153

Magnetic Hysteresis Models for Modelica

-1 forh(t) <
Yaph(®) = +1 forh(t) = a (4)
previous else.
A
yaph(?)
1 <> <>
Y A
ST o kO
<> -—-1

Figure 6: Elementary Preisach operator y,g (hyster-
on).

The upper switching limit of each operator is always
greater than or equal to the lower limit (a >). Thus,
the switching limits « and g span a right triangular
region, often referred to as Preisach plane (Figure 7).

ﬁmin ﬁ

Omax

ﬁl:l’lax

Omin |
Figure 7: Preisach plane.

For each point (a, f) on this plane exactly one ele-
mentary hysteresis operator y,s exists with upper and
lower switching limits a and S, respectively. The
Preisach distribution function P(a,) gives a weight
to all operators in the region « > £ and is 0 out of that
region. Thus, the output polarisation j(t) of the sys-
tem results in

ﬂw=k-ﬂpwﬁyMMUMMﬁ

azf

()

(Js saturation polarisation). An exemplary Preisach
distribution function is shown in Figure 8.

305
o
,
;.;,v{.‘], ,’“

Figure 8: Exemplary Preisach distribution function
P(a, p) defined over the Preisach plane (a > f).

The Preisach plane can be divided into two regions
S. and S. in which all operator outputs y,gh(t) are in
+1 and -1 state, respectively (Figure 7). Together
with Eqg. (5) this leads to

f f P(a, B)dadf — f f P(a, ,B)dadﬁ). ©)

Si(t) S-(®)

K0=h(

With the integral of P(a,) over the region a > S

f f P(a, B)dadp = f f P(a,p)dadf

azp S4(0) @
+S_J;ft)P(a,ﬂ)dadﬁ =1
being equal to 1, Eqg. (6) leads to
i® =Js- (2. ﬂ P(a, B)dadf — 1). ®)
s+

3.2 Implementation in Modelica

In general, the double integral of applied Preisach
distribution functions P(a, f) cannot be expressed
analytically. For that reason the numerical solution
of Eq. (8) at every iteration step would be very com-
putationally expensive. Thus, a more efficient calcu-
lation method has to be found in order to implement
applicable magnetic network components in
Modelica.

The evolution of both regions S.(t) and S.(t) due to a
varying input signal h(t) can easily be visualized in
the Preisach plane (Figure 9) [12]. The hypotenuse
of the Preisach plane defines the a = # line. The in-
put signal h(t) moves as a point along that line if
Omin < h(t) < Omax-

154

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp12076151

Session 1D: Electromagnetic Systems |

Gmin

o

Figure 9: Geometric interpretation of the time-based
evolution of the regions S.(t) and S.(t) in dependence
on the input signal h(t).

Starting from negative saturation (all operators are in
-1 state and the whole Preisach plane is filled out by
the S. region) an increasing input moves a horizontal
line L (border between S. and S.) towards the posi-
tive direction of the a-axis, expanding the S, region
(Figure 9a). When h(t) changes direction the maxi-
mum value is stored in oy and L is extended by a ver-
tical line moving towards negative direction of the g
axis, hereby shrinking again the S. region (Figure
9b). If h(t) increases again, the point (a4, f1) is fix
and S, is also stored. Dependent on the course of the
input signal a corresponding number n of corner
points (a;, i) must be stored. Figure 9¢c and d show
the wiping out of stored points when h(t) becomes
larger than the « value of any stored point (i, B).
Then this point can be deleted since it doesn’t con-
tribute any longer to the border between S.(t) and
S(t). A similar event occurs when h(t) becomes
smaller than the last stored f; value. Dependent on
the number n of stored points, the region S., over
which P(a, f) must be integrated, becomes more and

%ﬂ P(a,ﬁ)dadﬁ=% ﬂ Pa, p)dadf. (q)

S+(®) Saif ()
Thus, Eq. (8) and (9) lead to

w =2/ % ﬂ- P(a,B)dadp.

dt (10)

Saif(t)
Sgir belongs to S. for increasing h(t) and to S. for de-
creasing h(t). It’s hypotenuse is part of the a = £ line
of the Preisach plane and thus Sy can be written as
difference of the two regions S; and S,, both having
their lower left vertexes at the point (amin, Pmin)
(Figure 10). This allows to evaluate the integral of
P(a, p) over the region Sy by two integrals with the
same lower integration limits omin and Bmin respec-
tively:

B2 a2
ffP(a,ﬁ)dadﬂ = J. J- P(a,B)dadp
B=PBmin A=min
Jls, PlaB)dadp
B a’,
— f f P(a, B)dadp.
B=Pmin a=Amin

[ls, P(@p)dadp

Saif

(11)

With amin = Bmin=const., Sqis is completely defined by
the integration limits a',, f"1, f"2. Figure 10 shows
the integration limits for increasing and decreasing
h(t) respectively and their variation due to a change
of the input signal h(t).

% ﬁmm .B ﬁmax ﬁ

(@2.32)
(h(1).f1)

,;h-(-r)a’z =h(f)

fo=hty |

f=h(1)

Omin

a)

b)

Figure 10: Integration limits a5, 'y and B’,of the
region Sg;s for increasing (a) and decreasing (b) input
signal h(t).

From the integral

B a

more complex. However, it can be shown that there Ip(a’,B) = P(a,p)dadp (12)
is a single triangular region Sy (dotted triangles in B=Fmin a=min
Figure 9a to d) for which applies
g) PP and Eq. (11) follows
DOl Proceedings of the 9™ International Modelica Conference 155

10.3384/ecp12076151

September 3-5, 2012, Munich, Germany

Magnetic Hysteresis Models for Modelica

[Pamdads = tp@np) - @up. g

Saif
With Eqg. (10) and (13) one obtains

4g® _

I (14)

2-Js- dt (Ip(a »B72) —Ip(a’y, B 1))
In the Preisach hysteresis model implemented in
Modelica, the integral I of the Preisach distribution
function P(a,5) is numerically computed only once
at the start of a simulation run for discrete grid points
and stored in a two-dimensional array Ajp. All values
of 1 between the grid points of Ajp can then be ob-
tained by bilinear interpolation of adjacent A val-
ues. This is an enormous reduction of the computa-
tional effort, namely from the numerical solution of
the double integral of P(a, §) to two table look-ups
and bilinear interpolations of I values in the array
Aip (see Eq. (14)). Figure 11 shows the values of Ajp
for the exemplary Preisach distribution function de-
picted in Figure 8.

s‘“

/) |
'::'MMH \\\\\\‘

100

Figure 11: Array data Ap of the integral of the
Preisach distribution function P(a, S) shown in Fig-
ure 8.
3.3 First Simulation Results

A simple network model of an inductor with a closed

ferromagnetic core was used for first tests of the im-
plemented Preisach hysteresis model (Figure 12).

winding

Figure 12: Simple electromagnetic model of an in-
ductor with closed ferromagnetic core for testing of
the Preisach hysteresis model.

Simulation results, especially the simulated B(H)
hysteresis of the iron core, are shown in Figure 13.
The increasing exponential sine voltage causes grow-
ing hysteresis loops. The resulting B(H) loops are not
centered around the origin, because the flux density
B of this simulation starts for H =0 A/m at negative
remanence.

20

cxpSlnc v

10 ir 011(“011 b

voltage [V], B [T]

t[s] 0.050

flux density B [T]
T

b) 71IUU I I I I UI I I HIr[A/];]] 100
Figure 13: Simulation results of the inductor model:
source voltage expSine.v and flux density ironCore.b
in the core (a) and B(H) plot of the growing hystere-
sis loops in the iron core (b).

4 Model Comparison

To show the different behaviour between the classi-
cal Preisach and the Tellinen hysteresis model two
simulations were carried out. An identical magnetic
field strength H(t) was applied to the input of both
hysteresis elements, which were configured to have
equal limiting hysteresis loops. The models output
characteristics B(H) were then plotted together in
one diagram. In the first simulation a decreasing ex-
ponential sine wave was used as input signal. The
corresponding simulation results are shown in Figure
14. Only small differences in the models output are
obvious. The different behaviour can be seen more
clearly in the results of the second simulation, in
which a slightly more complex input signal of two
superposed sine waves of different amplitude and
frequency (Figure 15a) was applied. The B(H) char-
acteristics in Figure 15b show the deviation between
both models, especially in the region of the minor

156

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp12076151

Session 1D: Electromagnetic Systems |

loops. In contrast to the Tellinen model, the minor
loops of the classical Preisach model are closed.

2.0

Tellinen

Preisach

0.5+

B[]

0.0+

054

HLA/m]

Figure 14: B(H) characteristics of the Preisach and
the Tellinen hysteresis model for a decreasing expo-
nential sine wave input signal H(t).

100
E
Z 0
I
=100 T T T T T T T
0 time [z]
a) 2
Preizach Tellinen
E
m
_2 T T T T T T T T T
b:] -EQ 0 50

H [Adm]

Figure 15: Output of the Preisach and Tellinen model
(b) for the identical input signal (a).

Due to the significantly higher computational effort
for the Preisach model the network simulation with
the Tellinen model performs a lot faster. Dependent
on the fineness of the mesh of the discretised
Preisach integral, a simulation with one Preisach
hysteresis element takes about 3 to 8 times as long as
a similar simulation with a Tellinen hysteresis net-
work element.

5 Summary and Outlook

Two different magntic hysteresis models have been
implemented in Modelica: the simple but efficient
model developed by Tellinen and the more accurate
but complex Preisach model. For latter model, a par-
ticular simple and efficient Modelica implementation
was derived, hereby reducing the effort for numerical
calculation of a double integral over portions of the
Preisach plane to two bilinear interpolations in a ta-
ble.

Utilisation of the Tellinen model together with com-
ponents of the Modelica.Magnetic.FluxTubes library
was exemplarily shown with transient simulation of
a three-phase autotransformer.

With further work, the developed hysteresis models
will be optimised and tested. Estimation of hysteresis
losses from simulated hysteretic behaviour will be
implemented. Those simulated iron losses will be
provided to a conditional heat port and thus can be
input to subsequent thermal simulations, e.g. with
models built from Modelica.Thermal.Heat-
Transfer. Further improvements of the developed
hysteresis models will focus on proper initialisation
as well as on numerical stability and computational
efficiency. If reasonable, the well-known Jiles-
Atherton model of magnetic hysteresis will be also
implemented. All implemented hysteresis models
will be compared with regard to behaviour, accuracy
and computation time.

For model validation, measurements of the magnetic
properties of selected magnetically soft materials
according to EN 60404 are planned. A measurement
setup utilising a highly accurate electronic fluxmeter
is currently realised. With data obtained from these
measurements, the materials sublibrary of Modeli-
ca.Magnetic.FluxTubes will be extended and im-
proved. For the Preisach hysteresis model a corre-
sponding parameter identification needs also to be
developed for fitting the model behaviour to litera-
ture or measured hysteresis data.

DOI
10.3384/ecp12076151

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

157

Magnetic Hysteresis Models for Modelica

6 Acknowledgement

The authors would like to thank the Clean Sky Joint
Technology Initiative for funding of the presented
work within Project No. 296369 MoMoL.ib “Modeli-
ca Model Library Development for Media, Magnetic
Systems and Wavelets”.

References

[1] Modelica Association, Modelica Standard Li-
brary, https://www.modelica.org/libraries/-
Modelica (May 11, 2012).

[2] T.Bodrich and T. Roschke, A Magnetic Li-
brary for Modelica, in Proc. of the 4th Interna-
tional Modelica Conference, 2005, pp. 559—
565.

[3] T.Bddrich, Electromagnetic Actuator Model-
ling with the Extended Modelica Magnetic Li-
brary, Proc. of 6th Int. Modelica Conf., Biele-
feld, Germany, March 3-4, pp. 221-227, 2008.

[4] H. Roters, Electromagnetic Devices. New York:
John Wiley & Sons, 1941.

[5] C. Steinmetz, Hysteresis loss, Electrician 26, p.
261 ff., 1891.

[6] T.Roschke, Entwurf geregelter elektromagneti-
scher Antriebe fur Luftschitze, ser. Fortschritt-
Berichte VVDI. VDI Verl., 2000.

[7] D. Ribbenfjérd, Electromagnetic Modelling
Including the Electromagnetic Core, Ph.D. dis-
sertation, KTH Royal Institute of Technology,
Stockholm, 2010.

[8] F. Preisach, Uber die magnetische Nachwir-
kung, Zeitschrift fiir Physik A Hadrons and Nu-
clei, vol. 94, pp. 277-302, 1935.

[9] D.Jiles and D. Atherton, Theory of Ferromag-
netic Hysteresis, Journal of Magnetism and
Magnetic Materials, vol. 61, no. 1-2, pp. 48 —
60, 1986.

[10] J. Tellinen, A Simple Scalar Model for Magnet-
ic Hysteresis, IEEE Transactions on Magnetics,
vol. 24, no. 4, pp. 2200 — 2206, July 1998.

[11] Soft Magnetic Cobalt-Iron-Alloys, Vacuum-
schmelze GmbH, 2001, http://www.vacuum-
schmelze.com/fileadmin/docroot/medialib/-
documents/broschue-ren/htbrosch/Pht-
004_e.pdf (05.21.2012).

[12] 1. Mayergoyz, Mathematical Models of Hyste-
resis and their Application. Elsevier, 2003.

158 Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp12076151

Motor Management of Permanent Magnet Synchronous
Machines

Anton Haumer

Christian Kral

AIT Austrian Institute of Technology GmbH
Giefinggasse 2, 1210 Vienna, Austria

a.haumer@haumer.at

Abstract

In this paper the principle of loss and current related
motor management of permanent magnet synchronous
machines is demonstrated. For this purpose a simpli-
fied Modelica model of an interior permanent magnet
machine synchronous machine drive is presented.
In this model copper, core and friction losses are
considered. ~ Simulations then used to determine
operating points of minimum current demand and
losses, respectively. Based on simulation results some
basic insights into motor management are presented.
General aspects of motor management modeling are
then discussed.

Keywords: Permanent Magnet Synchronous Machine,
Field Oriented Control, Optimization of Field Current

1 Introduction

Due to the rising demand on mobility together with
contradictions such as climate change and scarce re-
sources a rising variety of electric and hybrid electric
vehicles is currently offered. For such vehicles high
torque densities and efficiencies of the electric drive
are demanded. In particular the total losses of the
electric drive shall be as low as possible considering
a given derive cycle.

Nowadays, three types of electric machines are com-
monly used:

¢ induction machine with squirrel cage
e electrically excited synchronous machines
e permanent magnet (PM) synchronous machine

Typically, asynchronous induction machines are very
reliable due to the robust design of the squirrel cage.

christian.kral @ait.ac.at

However, they need a magnetizing current component
to excite the magnetic field. Electrically excited syn-
chronous machines have a separate field winding in
the rotor which — for vehicle applications — is usually
supplied through slip rings. For induction and electri-
cally excited synchronous machines, additional cop-
per losses arise due to the currents required for excit-
ing magnetic field. In permanent magnet synchronous
machines the magnetic field is mainly excited by the
permanent magnets. Rare earth magnets have a high
energy density and show thus a very high torque and
power density.

In the base speed range of either machine, voltage
is more or less linearly proportional to speed. Since
the voltage is limited by the available battery volt-
age, higher speeds can only be realized by reducing
the magnetic field in the machine — this is the field
weakening range. In induction and electrically excited
synchronous machines this measure is performed by
reducing the field current. In permanent magnet syn-
chronous machines, the permanent magnets cannot be
switched off. In order to yet operate the machine in the
field weakening range, a current component has to be
controlled such way that it counteracts the field caused
by the permanent magnet.

For all kinds of machines, one and the same mechani-
cal operating point can be accomplished by different
combinations of field and torque generating current
components. So obviously, there exists a certain po-
tential of operating an electric drive such way that the
total current or losses, respectively, are as low as pos-
sible [1, 2, 3]. In this paper the case of a permanent
magnet synchronous machine drive is investigated in
order to reveal some basic insights on optimal motor
management [4].

In particular, the two optimization cases are investi-
gated. First, minimum losses of the machine are ex-
amined, since low losses represent a high efficiency of

DOl
10.3384/ecp12076159

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich, Germany

159

Motor Management of Permanent Magnet Synchronous Machines

the machine and thus enable higher energy utilization.
Second, minimum current are investigated, since the
maximum current is limited by the power electronics
and current also influences the total losses of the power
converter.

2 Field Oriented Control of PM Ma-
chine

The functional principles of induction and syn-
chronous machines are the same: if we feed three si-
nusoidal currents i1, 7o and i3 with a time phase shift
of 120° to three windings in the stator that are spaced
by 120° at the circumference, we achieve a magnetic
field wave in the air gap of constant amplitude, rotating
with an angular velocity dependent on the frequency of
the currents. The rotating magnetic field can be repre-
sented by a complex current space phasor,

2
zzg(n+gm+g%@ (1)
where Y
a=éd% 2)
The zero component
. 1. , ,
o= 3 (i1 +d2 +13) (3)

is usually avoided by normal drive designs since it has
no effect on power exchange with the rotor. The cur-
rent space phasor (1) and the zero component (3) can
be interpreted as a linear transformation of the three
winding current %1, i3 and ¢3. Rotating the current
space phasor (1) into a rotor fixed coordinate frame,
it can be represented by current components of the d
and q axis,

i =ie T = ig + jig,)
see Fig. 1, where «y is the angle between stator and
rotor frame. The space phasor transformation can be
applied to voltages and flux linkages as well to model
the machine behavior. The flux linked with the stator

winding can be determined by

2 = Upym + Lmdid +ijqiqa (5)

see Fig. 2, where the flux of the permanent magnet,
Wpy, is aligned with the d axis.
The number of pole pairs, p, is defined by the repe-

Jig
rotor frame

Statoy fl.ame

Figure 1: Transformation for the current phasor from
the stator to the rotor frame, considering the transfor-
mation angle vy

Aq

Linaiq

Wpnm

Figure 2: The total stator flux linkage phasor W is com-
posed of the flux of the magnet Upy; and the inductive
components due the total main inductance and current
components

arrangement showing the same number of pole pairs, it
is evident that the rotor will try to align in the rotating
magnetic field. Thus it is useful to decompose the sta-
tor current space phasor into a component aligned with
the rotor poles, ¢4, and a perpendicular component, i,
(pointing to the pole gap). Having information about
the rotor orientation — and therefore about the field ori-
entation — it is possible to control the field current 74
and the torque generating current ¢, independent from
each other — similar as in DC machines.

2.1 Torque Generation

The electromagnetic torque generated in the air gap
of a PM machine is a reaction between magnetic flux
linked with the stator winding, ¥ , and the conjugate
complex current space phasor:

3
m=—§m@m

Taking into account the nature of the permanent mag-
net synchronous machine with different magnetic con-
ductances in the direction of the poles (d-axis) and in
direction of the pole gaps (g-axis), we obtain:

(6)

tition of the stator winding along the circumference. 2p ; .
= — (¥ Lpg— L 7
Since the rotor is equipped with a permanent magnet Tel 3 (emiq + (Lmd ma) lalq) M
160 Proceedings of the 9" International Modelica Conference DOl
September 3-5, 2012, Munich Germany 10.3384/ecp12076159

Session 1D: Electromagnetic Systems |

In this equation, L,,q and L, are the total main in-
ductances in the d and ¢ axis, respectively, represent-
ing the magnetic reluctances of these axes. For mag-
netically isotropic machines with L,,; = L, the
electromagnetic torque is directly proportional to the
product of the magnetic flux linkage of the permanent
magnet, Upy;, and the current in the g axis. The per-
meability of permanent magnets is almost equal to air.
Thus, magnetically isotropic machines typically have
the magnets mounted on the surface of the rotor, see
Fig. 3a.

It is evident from (7) that for machines with differ-
ent magnetic reluctances in d and ¢ axis an additional
torque component arises — the reluctance torque. This
torque component is proportional to the product of the
d and q axis current and the difference between the in-
ductances of the d and ¢ axis. An anisotropic rotor
configuration is shown in Fig. 3b interior permanent
magnets. In order to gain a higher reluctance torque it
is desirable to make the difference between the induc-
tances of the d and ¢ axis as large as possible.

Even though surface mounted permanent magnet syn-
chronous machine reveal a certain potential for min-
imizing losses [5, 6], the potential is much higher
in case of interior mounted permanent magnet syn-
chronous machines [7, 8, 9, 10, 11].

2.2 Losses

In order to minimize current consumption or losses,
respectively, the total losses of the PM machine have
to be taken into account. For the investigated machine,
ohmic losses, core losses and friction losses are con-
sidered.
Ohmic losses (copper losses) are directly proportional
to the total stator winding resistance, R, and the sum
of the squared winding currents,
2 .2 2 3 -
Pou = Rs(i] +1i5 + 13) = ERSQSQS. (8)
Core losses are usually separated into eddy current
losses and hysteresis losses [12, 13]. Some models
even take excess losses into account, but these losses
are usually inherently considered by the eddy current
loss model. In the presented paper machine models of
the Modelica Standard Library (MSL) 3.2 are used, so
hysteresis losses are not taken into account. The total
core losses are thus modeled dependent on the voltage
induced by the flux W, linked with the stator winding,

3 dw 2
P.=2G. [—) .
o () ®

(a) surface magnets (b) interior magnets

Figure 3: Permanent magnet rotor configurations

Friction torque is modeled as a power of rotor speed —
represented by parameter a . Friction losses are thus
determined by

Q af+1
Pf = Pf,ref (@))

where (2 is the mechanical angular rotor speed and in-
dex ref indicates a reference point.

Due to the great dependency of torque from the current
components ¢4 and 7, in (7), a high potential for saving
current and losses, respectively, is obvious.

(10)

2.3 Voltage Induction

The induced voltage under stationary operating condi-
tions is given by

an

v =jw¥ = jw (Ypm + Lindid) — wLinglq.

For zero current in the ¢ axis, the induced voltage
solely depends on the flux linkage due to the perma-
nent magnet and the current of the d axis and the elec-
trical angular speed,

12)

Q
w=—.
p
For zero current in both axes the induced voltage rises
linearly with speed w. When the induced voltage ex-
ceeds the maximum voltage, determined by the avail-
able battery voltage, the field has to be weakened in or-
der to further increase speed. This can be achieved by
injecting a negative d axis current component which
reduces the total flux linked with the stator winding,
see (5).

3 Modelica Model of the Drive

Fig. 4 shows the Modelica model used for investigat-
ing the motor management of the drive. A permanent
magnet synchronous machine model — taken from the

DOl
10.3384/ecp12076159

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

161

Motor Management of Permanent Magnet Synchronous Machines

I
L\

duration=2

limitVoltage

lar 54'—‘ torqueController

k=1/1e-3

nDeubls
2
HQ

feedback

k=t180

tau constantSpeed
L
——

exact= 3
o w_ref
torqueSensor

k=n*1500"2"pi/60

smpm

Figure 4: Modelica model of the drive

MSL 3.2 —is fed by a signal current source. This sim-
plification represents an idealized supply case without
modeling the details of a power inverter. This way
pulse width modulation (PWM) specific effects are
not taken into account, since the reference values of
the d and ¢ axis current are directly injected into the
machine after an inverse space phasor transformation,
i.e., calculating the instantaneous three phase currents
(block currentController).

The shaft of the machine is coupled by an ideal speed
source. An angle sensor is used to feed back the angle
between stator and rotor frame, -y, to the inverse space
phasor transformation.

The field exciting current, ¢4, is varied linearly within a
given range; the block 1imitVoltage ensures that
the actual terminal voltage does not exceed the avail-
able DC voltage source, representing the battery volt-
age of an electric or hybrid electric vehicle. The ¢ cur-
rent component is determined by a integral controller
which is fed by the difference between desired and ac-
tual torque. The integral time of this controller is very
small such that control specific effects are negligible
in the performed investigation.

A certain point of operation as well as the range for
optimization are determined by

* torque,
* speed, and
* the range for varying the current component 7.

Output variables of the investigated model are the to-
tal current consumption and the total machine losses.
In the presented paper the optimum point of opera-
tion is determined manually by either varying speed or

parameter value unit
number of pole pairs

nominal frequency 50 Hz
nominal RMS voltage per phase 100 v
nominal RMS no load voltage per phase 75 A\
nominal torque 180 Nm
nominal stator resistance per phase 0.03 Q
nominal stator stray reactance per phase 0.1 Q
nominal main reactance per phase, d axis 0.3 Q
nominal main reactance per phase, g axis 0.6 Q
nominal core losses 500 W

Table 1: Machine parameters used for the analysis of
the motor management

—10%

—25%

—50%

Losses [W]
w
8
8

—75%
—100%

100 ® min

-60 -40 -20 0 20 40
1d [A]

Figure 5: Losses at 25% nominal torque, motor op-
eration, speed variation 10-25-50-75-100% nominal
speed

torque, and fixing the remaining parameters and vari-
ables, respectively. This way characteristic curves are
obtained, see section 4. The machine parameters used
for the analysis are presented in Tab. 1.

4 Simulation Results

In this chapter simulation results at different loads,
both for motor and generator operation, and differ-
ent speeds at varying direct axis current are summa-
rized. The optimal d axis currents for minimal ma-
chine losses is indicated in the figures.

Fig. 5 shows at 25% nominal torque — motor operation
— that machine losses rise with rising speed, due to the
increase of core losses. Fig. 6 extends the trend to field
weakening. Since only eddy current losses are taken
into account, core losses are nearly constant. Decreas-
ing the ¢ axis current demand (limitation of torque
proportional to the inverse of speed) decreases copper

162

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp12076159

Session 1D: Electromagnetic Systems |

@
3
3

«
<]
3

—100%

—110%

—120%

Losses [W]
w
8
8

—130%

~
S
3

— 150%

-
1
3

= min

o

1d [A]

Figure 6: Losses at 25% nominal torque, motor opera-
tion, speed variation 100-110-120-130-150% nominal
speed

2000

1900

1800
—10%

1700
—25%

1600 I~
1500 —75%
1400 T 00%
= min
1300
00 -80 -60 -40 20 0

Losses [W]

1200
-1

1d [A]

Figure 7: Losses at 100% nominal torque, motor op-
eration, speed variation 10-25-50-75-100% nominal
speed

losses, whereas increasing the d axis current — in order
to limit the stator voltage — increases copper losses.
The trend depends strongly on the actual machine pa-
rameters, i.e., inductances and reference losses.

Fig. 7 and Fig. 8 show the same dependencies, but at
100% nominal torque — motor operation. Since for
higher torque demand and therefore higher current the
influence of copper losses is higher, losses decrease
in the field weakening region with rising speed. Ad-
ditionally it can be observed that a variation of the d
axis current is limited by the need of field weakening
to avoid exceeding the voltage limit.

Fig. 9 and Fig. 10 depict the same dependencies at
100% nominal torque, but for generator operation,
with only small differences compared to motor oper-
ation.

Additionally to determining the optimal d axis cur-
rent for minimum machine losses, minimum total cur-

2000
1900
1800

—100%
1700

—110%
1600

—120%

Losses [W]

1500 —130%

1400 T 1s0%

= min
1300

1200

i
]
S

-80 -60 -40 -20 0

Figure 8: Losses at 100% nominal torque, motor op-
eration, speed variation 100-110-120-130-150% nom-
inal speed

2000
1900
1800

1700

1600 \-—/
1500
1400
1300

1200

Losses [W]

N
S
3
&
8
&
3
IS
S
o
S
o

Figure 9: Losses at 100% nominal torque, generator
operation, speed variation 10-25-50-75-100% nominal
speed

2000

1900

1800

1700 \A_/
1600
1500

1400

—100%

—110%

—120%

Losses [W]

—130%

—150%

= min
1300

1200

o
S
38
do
3
&
8
IS
3

-20 0

Figure 10: Losses at 100% nominal torque, genera-
tor operation, speed variation 100-110-120-130-150%
nominal speed

DOl
10.3384/ecp12076159

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

163

Motor Management of Permanent Magnet Synchronous Machines

—10%

—25%

—50%

—75%

total current consumption [A]
o
]
8

~——100%

114 4 = min

Figure 11: Total current consumption at 100% nomi-
nal torque, motor operation, speed variation 10-25-50-
75-100% nominal speed

—100%

—110%

—120%

—130%

total current consumption [A]
[
E & B B
5 & 3 &

—150%

® min

Figure 12: Total current consumption at 100% nomi-
nal torque, motor operation, speed variation 100-110-
120-130-150% nominal speed

total current consumption [A]
o
I
8

Figure 13: Total current consumption at 100% nomi-
nal torque, generator operation, speed variation 10-25-
50-75-100% nominal speed

-
j
S

total current consumption [A]
B oRr B BB
5 2 B B B
& 5 & 8 &

—100%

—110%

—120%

—130%

=
S
3

——150%

©
&

= min

©
S

o
&

Figure 14: Total current consumption at 100% nom-
inal torque, generator operation, speed variation 100-
110-120-130-150% nominal speed

2500

2400

2300 \l

2200
2100
2000
1900
1800

1700

—10%

—25%

Losses [W]

—50%

—75%

—100%

= min
1600

1500

N
S
3

-80 -60 -40 -20 0

Figure 15: Losses at 125% nominal torque, motor op-
eration, speed variation 10-25-50-75-100% nominal
speed

rent is analyzed. The total current consumption for
100% nominal torque in motor operation is depicted
in Fig. 11, showing increasing total current for rising
speed. This is due to the fact that losses — including
rising core losses — have to be covered by electric ac-
tive power consumption. For the field weakening re-
gion — depicted in Fig. 12 — decreasing losses lead to
decreasing electric power consumption and therefore
decreasing current consumption.

Fig. 13 and Fig. 14 show the same dependencies at
100% nominal torque, but for generator operation.
The main difference compared with motor operation
results from the fact that core losses cause a braking
torque, which reduces the demand for electric torque.
In the region of constant magnetic field this leads to
decreasing current demand at rising speed.

Fig. 15 shows at 125% nominal torque — overload mo-
tor operation — that machine losses rise with rising

164

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp12076159

Session 1D: Electromagnetic Systems |

2500
2400 \-
2300
2200 \- —100%
2100 \- —110%
\.
N

2000 —120%

Losses [W]

1900 —130%

1800 ——150%

1700 = min

1600

1500

Figure 16: Losses at 125% nominal torque, motor op-
eration, speed variation 100-110-120-130-150% nom-
inal speed

speed, due to the increase of core losses. Fig. 16 ex-
tends the trend to field weakening. For speed above
nominal speed a high d axis current demand can be
noticed. The optimum for each speed can be found at
the minimum d axis current that is sufficient to limit
stator voltage.

5 Discussion

The presented simulation results rely on a simplified
model of a permanent magnet synchronous machine.
Based on the obtained results, one could implement an
interpolation table, for controlling the optimum d and
q axis current in a real application. In this case for
a particular speed, torque and available battery volt-
age, the optimum d and ¢ axis currents have to be pre-
calculated and stored in such interpolation table.
However, in a real drive application, some even more
complex effects arise which have to be considered
properly. In the following the most relevant effects are
be discussed:

e The main field inductances are non-linearly de-
pendent on currents due to the saturating charac-
teristic of the core [14]. Additionally, the flux
contributions with respect to the d and ¢ axis are
not fully magnetically decoupled as suggested in
(5). Therefore, cross saturation effects may have
to be taken into account [15].

e The ohmic losses are temperature dependent. In
order to correctly estimate ohmic losses or the op-
timal d and ¢ axis currents, temperature has to be
either measured or estimated. Temperature, how-
ever, complicates setting the optimum operating

point in an online application, since an additional
dimension of variability — for picking the opti-
mum d and ¢ axis currents — is added.

* In a real application, the contribution of hystere-
sis loss may have a significant impact on the exact
total core losses. However, this is can be accom-
plished by modifying the core loss equation (9)
according to [13].

¢ In the proposed model, eddy current losses of the
permanent magnets are not taken into account.
Such losses most likely have to be considered in
areal application, sometimes even if the magnets
are segmented [16].

e The PWM supply of the power inverter gives rise
to certain voltage harmonics which in turn influ-
ence the total core losses. In the proposed eddy
current model high frequency skin effects with re-
spect to the core flux are not taken into account.
However, in particular, PWM related voltage har-
monics give rise to additional hysteresis losses
due to minor hysteresis loops [17].

* More precisely, in order to maximize the total
efficiency of an electric or hybrid electric vehi-
cle, the total losses of the machine and the power
converter and the battery have to be minimized,
considering all actual current limits and temper-
atures. In particular the system optimization is
a great challenge due the interdependency of the
individual losses from the control variables and
the (time dependent) limits.

6 Conclusions

The concept of optimizing the field current or the
losses of an anisotropic permanent magnet syn-
chronous machine has been demonstrated using a sim-
plified Modelica model. Simulation results have been
presented for the base speed and the field weakening
region. In the performed investigations the maximum
available voltage of the battery is taken into account.
Limitations of the presented model are discussed and
compared to real drive applications.

References

[1] S. Morimoto, Y. Tong, Y. Takeda, and T. Hirasa,
“Loss minimization control of permanent magnet syn-
chronous motor drives,” Industrial Electronics, IEEE

DOl
10.3384/ecp12076159

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

165

Motor Management of Permanent Magnet Synchronous Machines

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

Transactions on, vol. 41, no. 5, pp. 511 -517, oct
1994.

S. Shinnaka and T. Sagawa, “New optimal current
control methods for energy-efficient and wide speed-
range operation of hybrid-field synchronous motor,”
Electric Machines and Drives, 2005 IEEE Interna-
tional Conference on, pp. 535 —542, may 2005.

M. Cao and N. Hoshi, “Electrical loss minimization
strategy for interior permanent magnet synchronous
motor drives,” Vehicle Power and Propulsion Confer-
ence (VPPC), 2010 IEEE, pp. 1 -6, sept. 2010.

R. F. Schiferl and T. A. Lipo, “Power capability of
salient pole permanent magnet synchronous motors in
variable speed drive applications,” IEEE Transactions
on Industry Applications, vol. 26, no. 1, pp. 115-123,
January/February 1990.

C. Mademlis, J. Xypteras, and N. Margaris, “Loss
minimization in surface permanent-magnet syn-
chronous motor drives,” IEEE Transactions on Indus-
trial Electronics, vol. 47,no. 1, pp. 115-122, February
2000.

J.-J. Chen and K.-P. Chin, “Minimum copper loss
flux-weakening control of surface mounted permanent
magnet synchronous motors,” IEEE Transactions on
Power Electronics, vol. 18,4, pp. 929-936, 2003.

C. Mademlis and N. Margaris, “Loss minimization
in vector-controlled interior permanent-magnet syn-
chronous motor drives,” Industrial Electronics, IEEE
Transactions on, vol. 49, no. 6, pp. 1344 — 1347, dec
2002.

C. Mademlis, I. Kioskeridis, and N. Margaris, “Opti-
mal efficiency control strategy for interior permanent-
magnet synchronous motor drives,” Energy Conver-
sion, IEEE Transactions on, vol. 19, no. 4, pp. 715 —
723, dec. 2004.

S. Vaez-Zadeh, M. Zamanifar, and J. Soltani, “Non-
linear efficiency optimization control of ipm syn-
chronous motor drives with online parameter esti-

mation,” Power Electronics Specialists Conference,
2006. PESC ’06. 37th IEEE, pp. 1 —6, june 2006.

S. Shinnaka and T. Sagawa, “New optimal current
control methods for energy-efficient and wide speed-
range operation of hybrid-field synchronous motor,”
IEEE Transactions on Industrial Electronics, vol. 54,
no. 5, pp. 2443-2450, October 2007.

M. Cao, “Online loss minimization control of ipmsm
for electric scooters,” pp. 1388 —1392, june 2010.

C. P. Steinmetz, “On the law of hysteresis,” Proceed-
ings of the IEEE (reprint of the American Institute of
Electrical Engineers Transactions, vol. 9, pp. 3—64,
1892), vol. 72, no. 2, pp. 197-222, 1984.

[13]

[14]

[15]

[16]

[17]

D. Lin, P. Zhou, W. Fu, Z. Badics, and Z. Cendes, “A
dynamic core loss model for soft ferromagnetic and
power ferrite materials in transient finite element anal-
ysis,” Conference Proceedings COMPUMAG, 2003.

C. Jo, J.-Y. Seol, and I.-J. Ha, “Flux-weakening con-
trol of ipm motors with significant effect of magnetic
saturation and stator resistance,” Industrial Electron-
ics, IEEE Transactions on, vol. 55, no. 3, pp. 1330
—1340, march 2008.

P. Guglielmi, M. Pastorelli, and A. Vagati, “Cross-
saturation effects in IPM motors and related impact
on sensorless control,” IEEE Transactions on Indus-
try Applications, vol. 42, pp. 1516-1522,2006.

K. Yamazaki and A. Abe, “Loss analysis of inte-
rior permanent magnet motors considering carrier har-
monics and magnet eddy currents using 3-d FEM,”
IEEE International Electric Machines & Drives Con-
ference, vol. 2, pp. 904-909, May 2007.

Z. Gmyrek, A. Boglietti, and A. Cavagnino, “Estima-
tion and analysis of iron losses in induction motors
under sinusoidal and pwm excitation,” Electrical Ma-
chines, 2008. ICEM 2008. 18th International Confer-
ence on, pp. 1 -6, sept. 2008.

166

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOI
10.3384/ecp12076159

An approach for modelling quasi-stationary
magnetic circuits

Nick Raabe
Sterling Industry Consult GmbH
Lindenstrale 170, 25524 Itzehoe, Germany
nick.raabe @sterlingsihi.de

Abstract

For the design of electrical machines the magnetic cir-
cuit has to be modeled. If only the winding layout or
the stack length of the motor is changed a complete
FEA analysis mostly is not necessary. In this case
Modelica is well suited to model the magnetic circuit
for quasi-stationary simulations. A new library based
on existing standard libraries MagneticQS is presented.
An induction motor example under no-load conditions
shows the basic concept of this library. To enhance and
improve the library new models for different types of
machines and the possibility of an integral simulation
independent from the load conditions is planned.

Keywords: electrical machines; magnetic library;
quasi-stationary magnetic circuits

1 Introduction

Up to now the Modelica Standard Library (M SL) con-
tains two packages with different magnetic connectors.
Both are subpackages of Modelica.Magnetic: Flux-
Tubes [1] and FundamentalWave [7]. The Modelica
concept of providing one potential and one flow vari-
able is implemented here by using the magnetic volt-
age Vi, (A) and the magnetic flux & (Vs). The vari-
ables in the FluxTube-package are of type Real. The
change of the magnetic flux with respect to time leads
to an induced voltage. This package is suitable for all
types of transient induction problems. The Fundamen-
talWave-package provides the same variables but they
are of type Complex. These connectors are used for
modelling multiphase electric machines in transient
operation. The machines presented in this package are
identical from the outside behaviour to the machines
in Modelica.Electrical.Machines. The user has
the choice between transforming the electrical stator
quantities to space phasors (Modelica.Electrical.
Machines) or to the magnetic circuit (Modelica.Ma-

gnetic.FundamentalWave). The equivalence of both
models is shown in Modelica.Magnetic.Fundamen-
talWave.Examples.BasicMachines.AIMC_DOL.

2 Why another magnetic library?

When designing electric machines the first step is to
find a proper geometry. This means to find the best
shape for stator and rotor slots, the diameter of the ma-
chine and the stack length. Once the winding layout is
defined the magnetic circuit can be calculated to deter-
mine the magnetizing curve of the machine. This it-
erative design process means either using a FE A tool
or analytical algorithms. After defining the geometry
of the machine there are still many options to devi-
ate from this in day-to-day business, e. g. the winding
layout can be changed or the quality of the lamina-
tions. In this case the FE A mostly is not suitable due
to its complexity. This is why Modelica is very helpful
to implement a magnetic circuit that is based on algo-
rithms known from the literature but a lot more flexible
and clearly described.

These quasi-stationary problems can hardly be sim-
ulated with the two existing magnetic packages. Since
MSL 3.2 there is the Modelica.Electrical.Quasi-
Stationary package available which unfortunately
has no connection to the magnetic domain yet. The
goal of this paper is to introduce a new magnetic li-
brary MagneticQS which is similar to the existing ones
but takes into account some special requirements for
the design of electric machines.

3 Basic concept

The connectors of MagneticQS contain complex vari-
ables so that they are equal to the connectors of Fun-
damentalWave. The difference is that the law of in in-
duction is also defined in a complex way. Instead of

DOl
10.3384/ecp12076167

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich, Germany

167

An approach for modelling quasi-stationary magnetic circuits

saying ving ~ d®/dr the quasi-stationary representa-
tion vipg ~ joP is used. The transformation between
electric and magnetic domain is done by the Electro-
MagneticConverter. Listings 1 and 2 show the differ-
ence of this converter taken from FluxTubes and Ma-
gneticQsS.

Listing 1: FluxTube converter

model ElectroMagneticConverter
SI.Voltage v;

SI.Current i(start 0,
stateSelect=StateSelect.prefer);
SI.MagneticPotentialDifference V_m;

SI.MagneticFlux Phi;
parameter Real N(start=1)

"Number of

turns";
equation
V = p.Vv - n.V;
0 =p.i + n.i;
i = p.i;
V_m = port_p.V_m - port_n.V_m;
0 = port_p.Phi + port_n.Phij;

Phi

= port_p.Phi;

//converter equations:

V_m i * N; //Ampere's law

N * der (Phi) -v; //Faraday's law
end ElectroMagneticConverter;

Listing 2: MagneticQS converter

model ElectroMagneticConverter

SI.AngularVelocity omega
der (port_p.reference.gamma) ;

SI.ComplexVoltage v;

SI.ComplexCurrent ij;

SI.ComplexMagneticPotentialDifference V_m;

SI.ComplexMagneticFlux Phij;

parameter Real N(start=1) "Number of

turns";
equation
V = p.V - n.v;
Complex(0,0) = p.i + n.i;
i = p.i;
V_m = port_p.V_m - port_n.V_m;
Complex (0,0) = port_p.Phi + port_n.Phij;
Phi = port_p.Phi;

//converter equations:
V_m i * N; //Ampere's law
N * j*omega*Phi //Faraday's law

-v;
//Frequency equations
Connections.branch(p.reference,
port_p.reference) ;
p.reference.gamma
port_p.reference.gamma;
Connections.branch(n.reference,

port_n.reference);

n.reference.gamma
port_n.reference.gamma;

end ElectroMagneticConverter;

The main equations are the same for both libraries.
The only change is that MagneticQS contains complex
variables. The specific characteristic of the Modelica.
Electric.QuasiStationary has to be taken into ac-
count: The frequency needs also to be considered and
transported from one domain to another.

[E MagneticQS
Examples
=1 [JBasic

= Ground

»Reluctance

- 1)< ElectroMagneticConverter

=3 f-~{fEIectroMagneticConverterS

g % [FrequencyConverter

= Shapes

- = «Cuboid

! -AirgapTorque

= Material

= [B] softMagnetic
EgBaseData
EgM530_504
ImuU_rApprox

(O]Losses

(+ @ HardMagnetic

Sensors

Sources

- FG Interfaces

Figure 1: MagneticQS library layout

Once again the differences of the three magnetic li-
braries (see section 2) should be clarified in the fol-
lowing listing:

* FluxTubes

— Flux and magnetic voltage are of type Real

168
September 3-5, 2012

Proceedings of the 9" International Modelica Conference

DOl

, Munich Germany 10.3384/ecp12076167

Session 1D: Electromagnetic Systems |

— Derivative of flux used in Faraday’s law

— Link to electrical domain via Modelica.
Electric.Analog.Basic

— Best choice for transient magnetics (e.g.
moving actuators)

* FundamentalWave

— Flux and magnetic voltage are of type Com-
plex

— Derivative of flux used in Faraday’s law

— Link to electrical domain via Modelica.
Electrical.Machines.SpacePhasors

— Best choice for space-phasor magnetics
(e. g. transient operation of electrical ma-
chines)

* MagneticQS

— Flux and magnetic voltage are of type Com-
plex

— Angular frequency used in Faraday’s law
(no derivative of flux)

— Link to electrical domain via Modelica.
Electric.QuasiStationary

— Best choice for quasi-stationary magnet-
ics (e. g. magnetic circuits in electrical ma-
chines)

4 Complex permeability

As long as ideal reluctances are considered the fre-
quency has no impact on the magnetic flux and po-
tential. The magnetic circuit acts as a coil (in air)
and consumes reactive power. For the calculation of
iron losses the frequency and the geometry of the flux
path haven to be taken in to account. If losses are
present the magnetic two-pole not only consumes re-
active power but also produces heat (active power).
Therefore a heat port is added like it is known from
an ohmic resistance in the MSL.

The iron losses consist of two parts: hysteresis and
eddy current losses. It is quite common to define the
iron losses as the sum of both parts depending on the
square of the flux density [5]:

f kfreq B 2
P = -Pis- | —— |l — . 1
te = ke - P15 (50 e [T) M (1)

ke. s a correction coefficient that depends on the
type of machine (synchronous, asynchronous, DC)
and the part of the magnetic circuit (tooth or yoke).
Pys is listed in standards (e. g. IEC 60404-8-4 [2]) and
is also given in material certificates by the lamination

Table 1: Examples for laminations according to IEC
60404-8-4 [2]

Lamination Thickness Pis P

mm W/kg Wikg
M270-50A 0.50 2.7 1.1
M400-50A 0.50 4.0 1.7
MS800-65A 0.65 8.0 3.6

manufacturer. This value specifies the losses per kg in
W and is determined for 50 Hz and 1.5 T. As an alter-
native also Pjg (S0Hz, 1 T) can be used. Typical val-
ues are given in table 1. If the frequency differs from
50 Hz the exponent kfq (determined emperically) cor-
rects the losses.

In the quasi-stationary domain it is also possible to
define the relative permeability as a complex number.
Hence the real part describes the magnetic behaviour
and the imaginary part describes the losses [3]:

(@)

Consequently the reluctance becomes a complex mag-
netic impedance:

po=u—ju.

Z. =R+ jOLp. 3)

For a cuboid it can be calculated from the geometry (/:
length, A: cross section):

l
B Hou A '

)

Zm

Thus for the magnetic resistance and the magnetic in-
ductance one can write:

[y

Rm:m'77 (5
l 'u//

" A ©

In analogy to electric circuits the effects of resis-
tance and inductance change: The magnetic resistance
Ry, leads to reactive power (corresponds with u’),
whereas the magnetic inductance Ly, produces losses
(corresponds with u”).

u' is defined by the approximation function for the
magnetizing curve explained in the FluxTubes-library.
In most cases Ly, and p”” are unknown but P is known
so that an additional equation based on the power bal-
ance is needed to calculate them:

DOI
10.3384/ecp12076167

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

169

An approach for modelling quasi-stationary magnetic circuits

Table 2: Data of example motor [4]

Nominal power P, 11 kW
Nominal voltage U, 380V
Nominal frequency Ja 50Hz
No. polpairs 4 2
No. stator slots 7 36
No. rotor slots Z 28
Stator winding factor &, 0.945
No. turns per phase wi 168
Stack length lstack 160 mm
P
In= s @

These equations are part of the model MagneticQs.
Shapes.Cuboid. Up to now only one type of shape
is implemented: the cuboid. Since every part of
electrical machines (e.g. yoke, tooth) is simplified
when modelling magnetic circuits to a rectangular
shape this is not a limitation at this early stage of
the library. However for further developements other
shapes might be useful.

5 Example: Induction machine un-
der no-load condition

In order to verify the proposed implementation an in-
duction machine is modeled under no-load condition.
The motor design is taken from [4]. Table 2 shows the
nominal data of the motor, the geometry is given in
figure 2.

According to the calculation in [4] the magnetic cir-
cuit is divided into five parts:

* stator yoke,
e stator teeth,
* airgap,

¢ rotor teeth,
* rotor yoke.

For analytical calculations (in contrast to FEA) some
special restrictions and simplifications apply:

e The field strength in the stator yoke is strongly
nonlinear. Therefore either an additional magne-
tizing curve for this part of the magnetic circuit is
given or a reduction factor [5].

e The flux density in the airgap depends on the
width of the stator and rotor slot openings. The
airgap length is increased by the so called Carter-

o 240
20.7

7.3

0.4

8.6 2 150

265 |
1055

Figure 2: Stator and rotor geometry [4]

* The magnetic behaviour of the rotor shaft is han-
dled by defining one third of the diameter as iron
[4] so that the rotor yoke is enlarged.

 Stray inductances are not taken into account. This
approximation is only valid under no-load condi-
tion.

The MagneticQS-representation is shown in figure 3.
Each magnetic impedance is a MagneticQS.Shapes.
Cuboid. In accordance to [4] only stator yoke and
tooth produce losses which is feasible due to the very
low frequency in the rotor. In comparison with the cal-
culations in [4] the following deviation has to be men-
tioned: The book neglects the stator resistance which
is quite common when calculating magnetic circuits
by hand.

The connection of the electrical and magnetic do-
main is performed by the model MagneticQS.Basic.
ElectroMagneticConverterS which is adapted to ro-
tating electrical machine but still based on the con-
verter presented in section 2:

V. o—j-.1 .3\@'51"4}1
X m J 4 P)

Ei-wi
7

®)

U, =02 ©)

Factor. Table 3 shows the simulation results for the magnetiz-
170 Proceedings of the 9" International Modelica Conference DOl
September 3-5, 2012, Munich Germany 10.3384/ecp12076167

Session 1D: Electromagnetic Systems |

r1
rm1_yoke
converter =
s w+_ L
o R=1.18
a .
8)]
5)
= |
z
1 3
QI B
ground1 ground E
o
S % 2
s, 3
£ g &
E %§
=
©
s}
i3l
o
3
rm2_yoke

Figure 3: Induction machine no-load example

Table 3: Simulation results (Indices: y: yoke, t: tooth,
cu: stator resistance)

Calculation L Py Py P

A kW kW kW
by hand [4] 5.19 0.00 192.05 85.55
MagneticQS 520 31.87 190.97 85.14
MagneticQS,R; =0 523 0.00 191.88 85.39

ing current and the losses.

When neglecting all losses the example shows the
same results as in [4]. By introducing losses in Ma-
gneticQs slight deviations (see second row of table 3)
become present. This proofes that the simplifications
for hand calculations are valid. The minor influence of
the stator resistance is shown in the third row of table
3.

The results show that MagneticQS is well suited for
the magnetic circuit implementation of electric ma-
chines. In comparision with analytical hand calcula-
tions it is e. g. no more necessary to calculate the mag-
netic behaviour and the losses in two steps. Magnetic-
QS delivers an integral solution for magnetic circuits in
quasi-stationary mode.

6 Summary and future work

This article presents a new magnetic library called Ma-
gnetic@S. It is based on existing libraries but intro-

duces complex variables. The purpose is a clear phys-
ical modelling of quasi-stationary magnetic circuits.
These are needed in the design phase of electrical ma-
chines. The library is designed similar to the exist-
ing ones in the MSL. To fulfil the requirements on
physical modelling a complex permeability is also in-
troduced. The simulation results show that the new
library is well suited to assist the design process for
electrical machines. The next step for developing the
library is to test different types of machines under load
conditions and compare the results with analytical al-
gorithms and FEA. Once this goal is achieved an in-
tegral electrical machine magnetic circuit model can
be implemented that can be used independently from
the state of the machine (no-load, load) which is a
great advantage in comparison with existing analytical
models. Additional research is needed to find general
approaches that eliminate the restriction mentioned in
section 5.

References

[1] Bodrich T. Electromagnetic Actuator Modelling
with the Extended Modelica Magnetic Library.
Modelica 2008 Conference, Bielefeld, Germany,
pp. 221-227, March 3-4, 2008.

[2] IEC 600404-8-4 Magnetic materials - Part 8-4:
Specifications for individual materials - Cold-
rolled non-oriented electrical steel sheet and strip

delivered in the fully-processed state. 1998.

[3] Coey J-M-D. Magnetism and Magnetic Materi-

als. 2009.

Vaske P, Riggert J-H. Elektrische Maschinen
und Umformer Teil 2: Berechnung elektrischer
Maschinen (Calculation of electrical machines).

1974.

Pyrhonen J, Jokinen T, Hrabovcova V. Design
of Rotating Electrical Machines. John Wiley &
Sons. 2008.

Richter R. Elektrische Maschinen Band 1 (Elec-
trical machines part 1). 3rd edition. Birkhauser
Verlag. 1967.

Kral C, Haumer A. The New FundamentalWave
Library for Modeling Rotating Electrical Three
Phase Machines. Modelica 2011 Conference,
Dresden, Germany, March 20-22, 2011.

DOI
10.3384/ecp12076167

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

171

An approach for modelling quasi-stationary magnetic circuits

172 Proceedings of the 9" International Modelica Conference DOl
September 3-5, 2012, Munich Germany 10.3384/ecp12076167

Functional Mockup Interface 2.0: The Standard
for Tool independent Exchange of Simulation Models

T. Blochwitz*, M. Otter?,
J. Akesson®, M. Arnold*, C. ClauR®, H. EImqvist®
M. Friedrich’, A. Junghanns®, J. Mauss®, D. Neumerkel®, H. Olsson®, A. Viel*

Germany: ITI GmbH, Dresden; °DLR Oberpfaffenhofen; *University of Halle, °Fraunhofer
11S EAS, Dresden; 'SIMPACK, Gilching; 8QTronic, Berlin;’Daimler AG, Stuttgart;

Sweden: °Dassault Systémes, Lund; *Modelon, Lund:;

France: °LMS Imagine, Roanne

Abstract

The Functional Mockup Interface (FMI) is a tool
independent standard for the exchange of dynamic
models and for Co-Simulation. The first version,
FMI 1.0, was published in 2010. Already more than
30 tools support FMI 1.0. In this paper an overview
about the upcoming version 2.0 of FMI is given that
combines the formerly separated interfaces for Mod-
el Exchange and Co-Simulation in one standard.
Based on the experience on using FMI 1.0, many
small details have been improved and new features
introduced to ease the use and increase the perfor-
mance especially for larger models. Additionally, a
free FMI compliance checker is available and FMI
models from different tools are made available on
the web to simplify testing.

Keywords: Simulation; Co-Simulation, Model Ex-
change; Functional Mockup Interface (FMI); Func-
tional Mockup Unit (FMU);

1 Introduction

The Functional Mockup Interface (FMI) standard
version 1.0 (see [1]) was published in 2010 as one
result of the ITEA2 project MODELISAR, see Fig-
ure 1. In a short time after this first release several
modeling and simulation tools started to support
FMI. Today, more than 30 tools support FMI 1.0,
and it is heavily used in industrial and scientific pro-
jects, not only in the automotive sector.

g % ﬂ | ﬁ "
S Ao
2 oi‘i /w‘ bl

S
Thermal
systems

fal

Automated Chassis ¢
cargodoor roadway, E

Gearbox
with ECU

Engine
with ECU

mponents,
U(e.g. ESP)

(o]

functional mockup interface for model exchange and tool coupling

Figure 1: Improving model-based design between OEM and
supplier with FMI.

The MODELISAR project ended in Dec. 2011. The
maintenance and further development is now per-
formed by the Modelica Association in form of the
Modelica Association Project FMI (see
https://www.modelica.org/projects). FMI was initiat-
ed and organized by Daimler AG with the goal to
improve the exchange of simulation models between
suppliers and OEMs. The further FMI development
is performed by 16 companies and research institutes
(see Annex). The FMI project is open for FMI inter-
ested personst and for (Modelica and non-Modelica)
tool vendors supporting FMI.

In this article an overview about the upcoming
version 2.0 of FMI is given. This new version com-
bines the formerly separated interfaces for Model
Exchange and Co-Simulation in one standard. The
specification document was clarified which increases
the compatibility of implementations. New features
ease the use and increase the performance especially
for larger models.

1 Members of the MA project FMI need not be Modelica As-
sociation members, with exception of the project leader.

DOl
10.3384/ecp12076173

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich, Germany

173

Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation ...

2 The Functional Mock-Up Interface

2.1 Main Design ldeas

The FMI 2.0 standard consists of two main parts:

1. FMI for Model Exchange:

The intention is that a modeling environment can
generate C-Code of a dynamic system model in
the form of an input/output block, see Figure 2,
that can be utilized by other modeling and simu-
lation environments. Models (without solvers)
are described by differential, algebraic and dis-
crete equations with time-, state- and step-
events.

FMI for Co-Simulation:

The intention is to couple two or more models
with solvers in a co-simulation environment. The
data exchange between subsystems is restricted
to discrete communication points. In the time be-
tween two communication points, the subsys-

tems are solved independently from each other
by their individual solver. Master algorithms
control the data exchange between subsystems
and the synchronization of all slave simulation
solvers. The interface allows standard, as well as
advanced master algorithms, e.g., the usage of
variable communication step sizes, higher order
signal extrapolation, and error control.

t,,p,inital values (asubsetof v(t,)) | 4 v

Y

Enclosing Model

time

parameters of type T

inputs of type T

all exposed variables

outputs of type T

Real, Integer, Boolean, or String

FMU instance
(model exchange or co-simulation)

A< < cT

Figure 2: Data flow between the environment and the FMU
Blue/red arrows: Information provided by/to the FMU.

=

g

L CoSimulation

| fmilinit

fmiModelDescription E]{""_IT}

.- BaseUnit !

-E TypeDefinitions E}'
""""""""" ‘-‘.‘\‘,’4

0.

................. - ama=

- LogCategories EI-:'—--—\ Category

.................. P
Lo Sy
5

0.

- DefaultExperiment !

fmiAnnotation

-~ VendorAnnotations - —eee— [= ==
--------------------- _—

I 0.

=i
w

UnitDefinitions E}-f —--\l
(4]

#
A

#

£ e [=H DisplayUnit

S

2
0.

Integer

pCR

0..

fmiSimpleType

< g Smenwe (B CE P | o]
(] '.

S

¥

¢

L
0.

Integer

8\1

i fmiScalarVariable

any #dany

.....

—| ModelVariables E}'—--—\L_'_, I

" .'\‘,'o

..............

: 0

e

—ese— [—H Derivative
]
L0

Figure 3: Complete XML schema of upcoming FMI 2.0 (but without attributes and without time synchronization).

DOl
10.3384/ecp12076173

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

174

Session 2A: FMI Standard |

2.2 Distribution

A component which implements the FMI is called
Functional Mockup Unit (FMU). It consists of one
zip-file with extension “.fmu” containing all neces-
sary components to utilize the FMU either for Model
Exchange, for Co-Simulation or for both:

1. An XML-file contains the definition of all varia-
bles of the FMU that are exposed to the envi-
ronment in which the FMU shall be used, as well
as other model information. It is then possible to
run the FMU on a target system without this in-
formation, i.e., with no unnecessary overhead.

2. A set of C-functions is provided to execute mod-
el equations for the Model-Exchange case and to
setup and run the slaves for the Co-Simulation
case. These C-functions can either be provided
in source and/or binary form. Binary forms for
different platforms can be included in the same
model zip-file.

3. Further data can be included in the FMU zip-file,
especially a model icon (bitmap file), documen-
tation files, maps and tables needed by the mod-
el, and/or all object libraries or DLLs that are
utilized.

2.3 Description Schema

All information about a model and a co-simulation

setup that is not needed during execution is stored in

an XML-file called “modelDescription.XML". The
benefit is that every tool can use its favorite pro-

gramming language to read this XML-file (e.g., C,

C++, C#, Java, Python) and that the overhead, both

in terms of memory and simulation efficiency, is re-

duced. The XML-file is defined by an XML-schema

file called “fmiModelDescription.xsd”. In FMI 2.0,

the XML-file contains the information both for

Model-Exchange and for Co-Simulation.

In Figure 2, the complete XML schema definition
is shown. All parts are the same for the two FMI-
cases, with exception of the elements “Mod-
elExchange” and “CoSimulation” that contain defini-
tions specific to the respective case. If either one or
both of the two elements are present in the XML file,
then the respective C-functions are available in the
zip-file (usually in binary form as DLL for Win-
dows, and/or as shared object for Linux or Mac).
Another essential difference to FMI 1.0 is the new
element “ModelStructure” that exposes and provides
more details of the model structure.

2.4 C-Interface

The execution interface of FMI 2.0 consists of three
header files that define the C-types and —interfaces.
The header file “fmiTypesPlatform.h” contains all
definitions that depend on the target platform:

#define fmiTypesPlatform "standard32"
#define fmiTrue 1
#define fmiFalse 0O
#define fmiUndefinedValueReference
(fmiValueReference) (-1)
typedef void* fmiComponent;
typedef void* fmiComponentEnvironment;
typedef void* fmiFMUState;
typedef unsigned int fmiValueReference;
typedef double fmiReal
typedef int fmilnteger;
typedef char fmiBoolean;
typedef const char* fmiString ;
typedef char fmiByte;

The underlined, blue type definitions have been new-
ly introduced into FMI 2.0. This header file must be
used both by the FMU and by the target simulator. If
the target simulator has different definitions in the
header file (e.g., “typedef float fmiReal” in-
stead of “typedef double fmiReal”), then the
EMU needs to be re-compiled with the header file
used by the target simulator. The header file plat-
form, for which the model was compiled, as well as
the version number of the header files, can be in-
quired in the target simulator with FMI functions.

The type fmiValueReference defines a handle
for the value of a variable: The handle is unique at
least with respect to the corresponding base type
(such as fmiReal) besides alias variables that can
have the same handle. All structured entities, such as
records and arrays, are “flattened” into a set of scalar
values of type fmiReal, fmilnteger etc. A
fmiValueReference references one such scalar.
The coding of fmivalueReference does not need
to be exposed by the modeling environment that
generated the model. The data exchange is per-
formed using the functions fmiSetxXxX(...) and
fmiGetXXX(...). XXX stands for one of the types
Real, Integer, Boolean, and String. One argument of
these functions is an array of fmivalueReference,
which defines which variables are accessed. The
mapping between the FMU variables and the
fmiValueReferences is stored in the model de-
scription XML file.

For simplicity, a “flat” structure of variables is
used. Still, the original hierarchical structure of the
variables can be retrieved, if a flag is set in the
XML-file that a particular convention of the variable

DOI
10.3384/ecp12076173

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

175

Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation ...

names is used. For example, the Modelica variable
name “pipe[3,4].T[14]” defines a variable
which is the (3.4) element of an array of records
“pipe” of vector T (“.” separates hierarchical levels
and “[...]” defines array elements).

Header-file “fmiFunctionTypes.h” contains
typedef definitions of all function prototypes of an
FMU. When dynamically loading the DLL or shared
object of an FMU, these definitions can be used to
type-cast the function pointers to the respective func-
tion definition. Example for a definition in this head-
er file:

typedef fmiStatus fmiSetTimeTYPE

(fmiComponent, fmiReal);
This header file was newly introduced in FMI 2.0 to
ease the dynamic loading.

Finally, header file “fmiFunctions.h” contains the
function prototypes of an FMU that can be accessed
in simulation environments. This header file includes
the other two header files from above. Example for a
definition in this header file:

DIIExport fmiSetTimeTYPE fmiSetTime;

The goal is that both textual and binary represen-
tations of models are supported and that several
models using FMI might be present at link time in an
executable (e.g., model A may use a model B). For
this to be possible the names of the FMI-functions in
different models must be different or function point-
ers must be used. To support the first variant macros
are provided in “fmiFunctions.h” to build the
actual function names by using a function prefix that
depends on how the FMU is shipped. Typically,
FMU functions are used as follows:

// FMU is shipped with C source code,
// or with static link library
#define FUNCTION_PREFIX MyModel_
#include "fmiFunctions.h"

< usage of the FMU functions >

// FMU is shipped with DLL/SharedObject
#define FUNCTION_PREFIX

#include "fmiFunctions.h"

< usage of the FMU functions >

If an FMU is shipped with C source code, or with a
static link library, then a function that is defined as
“fmiGetReal” is changed by the macros to the ac-
tual function name “MyModel_fmiGetReal”. The
function prefix is hereby defined in the XML file. A
simulation environment can therefore construct the
relevant function names by generating code for the
actual function call. In case of a static link library,
the name of the library is MyModel.lib on Windows,
and libMyModel.a on Linux, in other words the
function prefix attribute is used as library name.

If an FMU is shipped with a DLL/SharedObject,
the constructed function name is “fmiGetReal”, in
other words it is not changed. A simulation environ-
ment will then dynamically load this library and will
explicitly import the function symbols by providing
the FMI function names as strings. The name of the
library is MyModel.dll on Windows or MyModel.so
on Linux, in other words the function prefix attribute
is used as library name.

An FMU can be optionally shipped so that it ba-
sically contains only the communication to another
tool. This is particularly common for co-simulation
tasks. In FMI 1.0, the function names are always pre-
fixed with the model name and therefore a
DLL/Shared Object has to be generated for every
model. FMI 2.0 improves this situation since model
names are no longer used as prefix in case of
DLL/Shared Objects: Therefore one DLL/Shared
Object can be used for all models in case of tool
coupling.

3 New Features of FMI 2.0

In this section the main new features introduced by
FMI 2.0 are sketched. Note, also many other minor
improvements have been introduced, based on the
experience in using FMI 1.0. Especially:

e When instantiating an FMU, the simulation envi-
ronment must report the absolute path to the
FMU resource directory also in Model Ex-
change, in order that the FMU can read all of its
resources (for example maps, tables, ...) inde-
pendently of the "current directory" of the simu-
lation environment where the FMU is used.

e Enumerations have an arbitrary (but unique)
mapping to integers (in FMI 1.0, the mapping
was automatically assigned to 1,2,3,...).

e When enabling logging, log categories can be
defined, so that the FMU needs to only generate
logs of the defined categories (in FMI 1.0, logs
had to be generated for all log categories and
they had to be filtered afterwards).

o Explicit alias/antiAlias variable definitions have
been removed, to simplify the interface: If varia-
bles of the same base type (such as fmiReal)
have the same valueReference, they have
identical values. A simulation environment may
ignore this completely (this was not possible in
FMI 1.0), or can utilize this information to more
efficiently store results on file.

o Continuous state variables are explicitly listed as
FMU variables, and an ordering is introduced for

176

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076173

Session 2A: FMI Standard |

them, as well as for inputs, and outputs in the
XML file, in order that not an (arbitrary) order is
selected by the simulation environment. This is
essential, for example when linearizing an FMU,
or when providing "sparsity” information (see
below).

3.1 Unification of FMI for Model Exchange

and Co-Simulation

In FMI 1.0 the Model Exchange and Co-Simulation
interfaces were defined in two different documents.
The XML-description and function definitions were
slightly different. In version 2.0 both interfaces are
combined in one document and unified. Now one
FMU can implement both interfaces at the same
time. The presence of the “ModelExchange” or “Co-
Simulation” elements in the XML-description indi-
cates which interface is implemented. Which inter-
face is used by the environment is decided by calling
the appropriate instantiation function (fmi Instan-
tiateModel or fmi InstantiateSlave).

In this way the distributed use case (see [1])
which was applicable for Co-Simulation in FMI 1.0
only is supported in the Model Exchange case too. In
this use case only the ability of a tool to evaluate the
model equations is used, not its solver.

3.2 Classification of Interface Variables

Variables exposed by the FMU are now categorized
in a slightly different way in FMI 2.0:

Attribute “causality” is an enumeration that defines

the causality of the variable. Allowed values are:

e parameter: An independent variable that must
be constant during simulation.

e input: The variable value can be provided from
another model.

e output: The variable value can be used by an-
other model. The algebraic relationship to the
inputs is defined in element ModelStructure.

e local: Local variable that is calculated from other
variables. It is not allowed to use the variable
value in another model

Attribute “variability” is an enumeration that de-

fines the time dependency of the variable, in other

words it defines the time instants when a variable

can change its value. Allowed values are:

e constant: The value of the variable never chang-
es.

e fixed: The value of the variable is fixed after
initialization.

e tunable: The value of the variable is constant
between externally triggered events due to

changing variables with causality = "parameter"
or "input" (see explanation below).

e discrete: The value of the variable is constant
between internal events (= time, state, step
events defined implicitly in the FMU).

e continuous: No restrictions on value changes.

The new value “tunable” introduced in FMI 2.0 al-
lows a modeling environment to expose independent
parameters that can be manually “tuned” during sim-
ulation (for example, during simulation a modeler
might change the gain of a PID controller, or the
load mass of a drive train in order to quickly improve
the design).

“Tuning a parameter” during simulation does not
mean to “change the parameter online” during simu-
lation (since this might introduce Dirac impulses).
Instead, this is a short hand notation for:

1. Stop the simulation at an event instant (usually, a
step event, in other words after a successful inte-
gration step).

2. Change the values of the tunable parameters.

3. Compute all parameters that depend on the tuna-
ble parameters.

4. Resume the simulation using as initial values the
current values of all variables and the new values
of the parameters.

With this interpretation, changing parameters online
is “clean”, as long as these changes appear at an
event instant.

3.3 Save and Restore of FMU state

An FMU has an internal state consisting of all values
that are needed to continue a simulation. This inter-
nal state consists especially of the values of the con-
tinuous states, discrete states, iteration variables, pa-
rameter values, input values, file identifiers and
FMU internal status information. With newly intro-
duced (optional) functions, the internal FMU state
can be copied and the pointer to this copy is returned
to the environment. The FMU state copy can be set
as current FMU state, in order to continue the simu-
lation from it. This feature introduced in FMI 2.0 can
be for example used:

e For iterative co-simulation master algorithms
(get the FMU state for every accepted communi-
cation step; if the follow-up step is not accepted,
restart co-simulation from this FMU state).

e For nonlinear Kalman filters (get the FMU state
just before initialization; in every sample period,
set new continuous states from the Kalman filter
algorithm based on measured values; integrate to
the next sample instant and inquire the predicted

DOI
10.3384/ecp12076173

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

177

Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation ...

continuous states that are used in the Kalman fil-
ter algorithm as basis to set new continuous
states).

e For nonlinear model predictive control (get the
FMU state just before initialization; in every
sample period, set new continuous states from an
observer, initialize and get the FMU state after
initialization. From this state, perform many
simulations that are restarted after the initializa-
tion with new input signals proposed by the op-
timizer).

Furthermore, the FMU state can be serialized and

copied into a byte vector. This can, for example be

used to perform an expensive steady-state initializa-
tion, copy the received FMU state in a byte vector
and store this vector on file. Whenever needed, the
byte vector can be loaded from file, can be deserial-
ized and the simulation can be restarted from this

FMU state, in other words from the steady-state ini-

tialization.

3.4 Dependency Information

In FMI 1.0 only the dependencies of outputs on in-

puts could be defined by the element “DirectDe-

pendency” in the XML-description. In FMI 2.0 this

information and the dependencies of outputs w.r.t.

state variable and of derivatives w.r.t. inputs and

state variables can be provided using the element

“ModelStructure”. Under this element ordered lists

of inputs, derivatives (with their associated state var-

iable names) and outputs are provided. At each out-
put and derivative additional attributes define the
dependency on inputs and state variables. Not only
the dependency itself but also the kind of dependen-
cy is defined here. It can be indicated whether the
dependency is nonlinear, fixed (the dependency
is linear, the factor is constant after initialization) or
discrete (the factor might change after events).

Using this information a tool can decide at which

stage of the solution process the respective entries of

the Jacobian matrices are to be retrieved.

The dependency information of outputs can be
utilized for detection of algebraic loops when FMUs
are connected with other parts of a model. In addi-
tion to that dependency information is necessary for
usage of sparse matrix techniques on Jacobian matri-
ces.

Assume for example that the following equations
are defined:

X f,(x,)
f,(x)+3-p> %X +2-Uu +3-U,

X3 f3(X1'X3’u1’u2’u3)

y= 91()(2) Xa)
where u; and u, are continuous-time inputs (variabil-
ity="continuous”), Uz is a discrete-time input (var-
iability="discrete”), and p is a fixed parameter
(variability="fixed”). The structure of these equa-
tions can then be defined optionally in the following
way in the XML file:
<ModelStructure>
<Inputs>
<Input name="'ul"/>
<Input name="u2"/>

<Input name="u3"/>
</Inputs>

d

<Derivatives>
<Derivative name="der(x1)"
stateDependencies="2"
inputDependencies="" />
<Derivative name="der(x2)" state="x2"
stateDependencies="1 2"
stateFactorTypes ="nonlinear fixed"
inputDependencies="1 3"
inputFactorTypes ="fixed Fixed" />
<Derivative name="der(x3)" state="x3"
stateDependencies="1 3" />
</Derivatives>

state=""x1"

<Outputs>

stateDependencies="2 3"
inputDependencies="" />
</Outputs>
</ModelStructure>

3.5 Jacobian Matrices

Partial derivatives of FMU variables with respect to
inputs or state variables (Jacobian matrices) are
needed for implicit integration methods, for lineari-
zation of FMUs, or for usage in extended Kalman
filters. Especially for large models the numerical
computation of Jacobian matrices is time consuming.
For that reason FMUs can optionally provide func-
tions to retrieve partial derivatives (complete Jacobi-
ans) or directional derivatives of some variables
w.r.t. some others.

The sparsity pattern defined under “ModelStrucu-
tre” (see section above) can be utilized for efficient
data storage and matrix operations on sparse Jacobi-
ans. FMI does not define a specific storage schema.
The calling environment is free to use its own sche-
ma by the following approach. The environment has
to provide a function pointer to a call back function
setMatrix as argument of fmiGetPartialDe-

178

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076173

Session 2A: FMI Standard |

rivatives. The FMU calls this function to set re-

spective matrix elements.

The FMU internally is free to use efficient nu-
merical methods for Jacobian computation, use a
symbolically deduced algorithm or automatic differ-
entiation.

3.6 Precise Time Event Handling

The details of precise time event handling in FMI

were still under discussion before the editorial dead-

line of this paper. Hence we cannot present a detailed
description here. The development work is compli-
cated since several aspects have to be considered:

e The synchronous features of Modelica 3.3 [2]
should be supported.

e FMI should also be useable by tools that do not
support synchronous time event handling.

e The time event handling is to be defined in a
way that allows backward compatible exten-
sions.

3.7 Improved Unit Definitions

The unit definitions have been improved in FMI 2.0:

The tool-specific unit-name can optionally be ex-

pressed as function of the 7 Sl base units and the Sl

derived unit “rad”. It is then possible to check units
when FMUs are connected together (without stand-
ardizing unit names as needed in FMI 1.0), or to
convert variable values that are provided in different
units (for the same physical quantity). In the specifi-
caiton it is sketched how to utilize this information
for connection checks, dimensional checks, or unit
propagation. The trick is to treat the derived unit

“rad” either as “rad” (for connection checks and unit

propagation) or as “1” (for dimensional checks) de-

pending on the situation.

4 Examples

In this section two examples are shown that demon-
strate the structure of the XML file and especially
how FMUs can be connected together. The use case
is an often occurring situation where two FMUs shall
be connected that have a mechanical interface.

4.1 FMU as Force Element

In the first example, FMU 1 consists of a one-
dimensional rotational drive train with an inertia that
is connected to a rotational spring/damper system
and the end point of the spring/damper system shall
be used as interface of this FMU, see next figure:

FMU1 FMuUz
SpringAtENd MBS_force .~
W d'—————————————iuv
phi ———phi
torque fP—————witorque
inertia zpringDamper \
J_—J_
L —
|
=

In multi-body system terminology, this is called a
“force element”. Typically, FMU 1 would be a com-
plicated device, e.g., a controlled electrical motor
with a gearbox, but the essential part is the force el-
ement at the interface. The inputs to FMU 1 are the
angle phi and the angular velocity w of the end point
of the spring/damper system. The output would be
the torque generated by the spring/damper. It is cal-
culated with the simple equation
torque = c*(phi - inertia.phi) +
d*(w — inertia.w)

where c is the spring and d is the damper constant.

This FMU is then connected to a multi-body sys-
tem FMU, for example a robot, and drives a revolute
joint. The FMU 2 provides phi and w as output
(from the relative joint coordinates) and gets the
torque as input.

The XML-file of FMU 1 has the following structure:

<?XML version="1.0" encoding="UTF-8"?>

<fmiModelDescription
XMLns:xsi="http://www.w3.0rg/2001/.."
xsi:noNamespaceSchemalLocation="fmiModel . ."
fmiVersion="2.0"
mode IName=""FMU_Coupling.DriveTrain_TorqueAtEnd"
guid=""{a4976b5c-b9f7-432a-9dd3-e80bafaac060}""
generationTool="___"
generationDateAndTime="2012-07-15T12:52:132"
variableNamingConvention="structured"
numberOfEventindicators="0">

<ModelExchange
model ldentifier="FMU_OCoupling_...""
canGetAndSetFMUstate=""true"
providesPartialDerivativesOf Derivative
Function_wrt_States=""true"

providesDirectionalDerivatives="true"/>

<CoSimulation
model ldentifier="FMU_OCoupling_..."
canHandleVariableCommunicationStepSize="true"
canHandleEvents=""true"
canlnterpolatelnputs="true"
canSignalEvents="true"
canGetAndSetFMUstate=""true"
/>

DOI
10.3384/ecp12076173

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

179

Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation ...

<UnitDefinitions>
<Unit name="N.m">
<BaseUnit kg="1" m="2" s="-2"/> </Unit>
</UnitDefinitions>

<TypeDefinitions>
<SimpleType
name=""Modelica.Slunits.Torque">
<Real quantity="Torque' unit="N.m"/>
</SimpleType>

</+9ﬁeDefinitions>

<DefaultExperiment startTime="0.0"
stopTime="1.0" tolerance="0.0001"/>

<ModelVariables>
<ScalarVariable
name=""torque"
valueReference="335544320"
description="Torque in flange"
causal ity="output'>
<Real
declaredType=
“"Modelica.Blocks. Interfaces.RealOutput"
unit="N.m"/>

</ModelVariables>

<ModelStructure>
<Inputs>
<Input name="phi"/>

</Inputs>
<Derivatives>
<Derivative
name=""der(inertia.phi)"
state="inertia.phi"

inputDependencies="""/>
<Derivative
name="'der(inertia.w)""
state="inertia.w"/>
</Derivatives>
<Outputs>
<Output name="torque"
inputDependencies="1 2"
inputFactorKinds="fixed fixed"/>
</Outputs>
</ModelStructure>
</fmiModelDescription>
Most of the elements should be self-explanatory. The
interesting part for the connection is element
“ModelStructure” at the end. Output torque de-
pends on the first and the second input, i.e. on phi
and w. Furthermore, the attributes Fixed define that
the inputs enter the equation for the output with fixed

linear factors:
torque = pl*phi + p2*w + F(..)

where p1 and p2 are constants that are fixed after
initialization. Additionally, for input w the attribute
derivative = ”1” is defined. The meaning is that
w is the derivative of the first input, i.e. of phi. This
derivative information for inputs and outputs is es-
sential in order that a coupling tool can check that an
input is really the derivatives of another input by
checking the derivative attributes of the outputs from
another FMU.

The XML-file for FMU 2 looks similar. We will
concentrate only on the ModelStructure element:

<ModelStructure>
<Inputs>
<Input name="torque'/>
</Inputs>
<Derivatives>

<Outputs>
<Output
name=""phi""
stateDependencies="1"
inputDependencies="""/>
<Output
name="w"
derivative=""1"
stateDependencies="2"
inputDependencies="""/>
</Outputs>
</ModelStructure>
The important point is that empty inputDependen-
cies lists are defined for the outputs. This means
that the outputs phi and w do not directly depend on
the input torque. As a result, when connecting FMU
2 to FMU 1, the outputs phi and w are provided by
FMU 2. FMU 1 computes its output torque that is
an input to FMU 2. Since the FMU 2 outputs do not
depend on this input, there is no algebraic loop and
the computation is simple.
4.2 FMUs with Coupling Constraint
The second example is the more often occurring
case, but is more involved. FMU 1 is again a one-
dimensional rotational drive train, but ends this time
with a rotational inertia, see next figure:

FMU1 FMU2 7
InertiastEnd ru1EIS_|:nnstraint/f
ald——a d
Wil ——w -
phi leg——phi
torque F———witorque

AL

Fi h‘-"-tq-_h‘" n,

springCamper inertia?
1L |
ot I
el
J=0.1

inertiz
1
Lo —
(=T

J=0.05

(=)

=N
=

Since FMU 1 is connected to a joint of FMU 2, the
coupling leads to a constraint equation that states that
the angle of the revolute joint of FMU 2 is identical
to the angle of inertia2 in FMU 1. It is well-
known that such a model cannot be transformed by
purely algebraic transformations into a state space

180

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076173

Session 2A: FMI Standard |

form (this is a so called higher index system?), and
that the first and second derivatives of this constraint
equation is needed. For this reason, FMU 2 provides
the angle phi of the revolute joint, its first derivative
w (the angular velocity) as well as its second deriva-
tive a (the angular acceleration) to FMU 1. In turn
FMU 1 provides the reaction torque to FMU 2. The
“ModelStructure” elements of the two FMUs have
now the following structure:

FMU 1:
<ModelStructure>
<Inputs>
<Input name="phi"/>

</Inputs>

<Derivatives>

<Outputs>

<Output

name=""torque"’
inputDependencies="3"
inputFactorKinds="fixed"/>

</Outputs>

</ModelStructure>

FMU 2:
<ModelStructure>
<Inputs>
<Input name="torque"/>
</Inputs>
<Derivatives>
<Outputs>
<Output
name="phi""

<Output

derivative="1"

stateDependencies="2"

inputDependencies="""/>
<Output

derivative="2"
stateDependencies="1"/>
</Outputs>
</ModelStructure>

The ModelStructure of FMU 1 states that its output
torque depends on its 3 input a and that a enters
with a fixed factor. Therefore, the following equation
is present:

torque = J*a + fl(<states>)

where J is a constant quantity that is fixed after ini-
tialization (this is the inertia of component iner-
tia2) and f1(..) is an additional functional de-
pendency of the states of the FMU, but not of its in-
puts.

2 Simulating such a higher index system of index 3 directly
will usually fail with an error message of the integrator that
there is no convergence.

The ModelStructure of FMU 2 states that it’s 3"
output a depends on all of its inputs, i.e. on torque
(since no inputDependencies attribute is defined):

a = f2(torque, <states>)

Therefore, when the two FMUs are connected to-
gether an algebraic loop in the angular acceleration a
and in the reaction torque appears. The environ-
ment has therefore to either use a differential-
algebraic equation solver, or has to solve a non-
linear algebraic loop over the two FMUs. The latter
case can be improved by using Jacobian information:

As will be explained below, it is possible to com-
pute the factor J once after initialization and the term
T1 at every model evaluation (which turns out to be a
cheap operation for a drive train). It is then only nec-
essary to solve a nonlinear algebraic loop over FMU
2 and the simple equation of FMU 1. Additionally,
the Jacobian of the FMU 2 equation can be comput-
ed. Since for all mechanical systems the FMU 2
equation depends linearly on the unknowns, a non-
linear solver will converge with the provided Jacobi-
ans within one step.

An often occurring situation is that FMU 1 is im-
ported into a multi-body program and coupled to a
joint. In such a case, the multi-body code gets the
information about the linear equation of FMU 1.
Since the multi-body program has to solve a linear
equation system in the accelerations and in the forc-
es/torques of its mechanical system, just the simple
linear equation of FMU 1 has to be added and in eve-
ry model evaluation only one linear equation system
has to be solved.

To summarize, the coupling in this example be-
comes more complicated and linear or non-linear
equation systems have to be solved. This is relatively
cheap provided the information about linear depend-
encies and/or Jacobians are utilized.

The partial derivatives of output variables with
respect to input variables can be computed with
function fmiGetDirectionalDerivative. For the
case of one output variable y as function of states x
and of one input u, this function assumes an equation
of the form:

y = g(x(t),u(t).t)
The function calculates:
a9
Ay Y Au
where the seed 4u is given as an explicit input argu-
ment. Therefore, calling fmiGetDirectionalDe-
rivative for the output torque with respect to in-
put a and with 4a=1, the function will return the par-
tial derivative, that is J. The value of f1 is computed
by providing an input a=0 and computing the output
torque, that is torque = fl(<states>). Similari-

DOI
10.3384/ecp12076173

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

181

Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation ...

ly, the partial derivative of the FMU 2 equation can
be computed.

As a final remark: When FMU 1 is modeled in
Modelica, then the derivative relationships between
the inputs of the FMU must be defined, otherwise a
Modelica translator cannot process the model. There
is no direct Modelica language element available to
define this. However, with component Modeli-
ca.Mechanics.Rotational.Sources.Move from the
Modelica Standard library this relationship is ex-
pressed (based on language elements to express that
a function is a derivative of another function).

5 Increasing Quality of FMI Imple-
mentations

The FMI project provides an infrastructure to in-
crease the quality and compatibility of implementa-
tions in different tools. A repository of FMUs gener-
ated by different tools and reference results are pub-
lically available at the svn server:

https://svn.fmi-standard.org/fmi/trunk/Test FMUs

In this way tool vendors are able to cross check their
implementations in an easy way. We hereby would
like to ask tool vendors that export FMUs, to provide
FMUs of their tools by sending an email with the
FMUs to info@fmi-standard.org.

Additionally, the Modelica Association contract-
ed the development of an open source FMI compli-
ance checker. This tool is now available for FMI 1.0
in source code, and as executable for Windows and
Linux under the svn address from above. It will be
available for FMI 2.0 soon after FMI 2.0 is released.

6 FMI Usage

FMI is used in industrial and scientific projects by
several companies and research institutions:

In all new gearbox projects for Mercedes-Benz
passenger cars FMI is used for software-in-the-loop
simulations [3]. Control software and FMUs coming
from different modeling environments run in closed-
loop in the virtual ECU tool Silver on Windows PC
in order to validate, test and debug control software.

Before FMI, vehicle models had to be imported
through various vendor and version specific import
procedures into Silver. This was expensive and error
prone. Thanks to the FMI, these bridges have now
been replaced by a uniform import interface, increas-
ing thereby the cost-benefit ratio of simulation in this
domain.

In mechatronic gearshift simulations for commer-
cial vehicles at Daimler AG FMI is utilized twice
[4]. At first controller software is connected to a de-
tailed 1D powertrain model in SimulationX. After-
wards this model is exported as FMU and imported
to the multibody system simulation tool Simpack.
There it is connected to a detailed truck model. This
allows the holistic simulation and optimization of the
shifting comfort.

At IFP Energies Nouvelles, FMI for Model Ex-
change is used to parallelize the execution of com-
plex internal combustion engine models in the tool
XMOD (see [5]). The models have around 100 - 300
state variables, with integration step-sizes that can
reach some microseconds. Their use is mainly in-
dented to validate engine controls. The final target is
to enable the execution in real-time, for hardware in
the loop simulations.

In [6], an algorithm is implemented for deriva-
tive-free optimization implemented in Python and
applied to parameter optimization of FMUs is intro-
duced. The FMUSs are loaded and simulated using the
PyFMI package (http://www.pyfmi.org). The opti-
mization algorithm is applied to a Volvo truck en-
gine to identify model parameters based on meas-
urement data from a test cycle.

In [7] the FMI based co-simulation master from
Fraunhofer is used to develop, implement and test
sophisticated algorithms for the co-simulation of
FMUs generated by Dymola.

Dassault Systemes uses FMI for academically
trainings. Student teams work with CATIA V6 and
define both a 3D CATIA representation of a NXT
robot as well as the controller software. Practically,
the real robot has sensors and actuators and is piloted
from a smartphone remote command, while the FMU
based logical control is executed in a CATIA ses-
sion. All these items are FMI and Bluetooth connect-
ed.

The solution has been delivered to Georgia Insti-
tute of Technology and University of Detroit Mercy
(US High Schools), also related to a cooperation
with Ford Motors Foundation.

In the field of modeling and simulation of build-
ing energy systems FMI is also used. In [8] FMI is
utilized to connect a building model with a Modelica
model of the heating system.

In 2012, the International Energy Agency, under
the implementing agreement on Energy Conserva-
tion in Buildings and Community Systems, approved
the five-year Annex 60 proposal "New generation
computational tools for building and community en-
ergy systems based on the Modelica and Functional
Mockup Interface standards." Eleven countries are
expected to participate in sharing, developing and

182

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076173

Session 2A: FMI Standard |

deploying free open-source contributions for model-
ing and simulation of energy systems of buildings
and communities, based on Modelica and Functional
Mockup Interface standard.

The Lawrence Berkeley National Laboratory
(LBNL) released an FMI for co-simulation import
interface in version 7.1 of the EnergyPlus building
simulation program. Work is also in progress to ex-
port EnergyPlus as a FMU for Co-Simulation. UC
Berkeley and LBNL have been developing JFMI, a
Java Wrapper for FMI for Co-Simulation and Model
Exchange. JFMI will be used to integrate an FMI
import interface in Ptolemy II, a software environ-
ment for design and analysis of heterogeneous sys-
tems.

The Institute for the Sustainable Performance of
Buildings has been developing a web-based eLearn-
ing tool, Learn Green Buildings
(http://learngreenbuildings.org), in which a Web in-
terface communicates with an FMU for Co-
Simulation that computes the dynamic response of
building energy and control systems. The tool will
allow students to interactively operate a simulated,
realistic building system, to test energy-saving
measures and to explore the effects of faults in
equipment and controls.

7 Conclusions and Outlook

FMI is an established standard for Model Exchange
and Co-Simulation. The upcoming version 2.0 im-
proves the compatibility of implementations by a
clarified specification. New features increase usabil-
ity and performance especially for large models.

This version will be stable for the next years. If
necessary, minor backwards compatible releases will
be available to improve and clarify the specification
and to support new features. Current development
tasks are the exchange of structured data and arrays
of variable size and support of the new synchronous
features of the Modelica language [2].

The further development of FMI is organized un-
der the hood of the Modelica Association. The FMI
Modelica Association Project is of course open for
non Modelica tool vendors and organizations. From
the 16 members of the FMI Steering Committee and
Advisory Group, only five are Modelica Tool ven-
dors.

Companies and organizations which are interest-
ed to contribute to FMI development or request fea-
tures are invited to contact the FMI project via
info@fmi-standard.org.

8 Acknowledgements

The authors wish to thank all the contributors to the
FMI specification (see Annex).

Parts of this work were supported by the German
BMBF (Forderkennzeichen: 011S08002), the French
DGCIS, and the Swedish VINNOVA (funding num-
ber: 2008-02291) within the ITEA2 MODELISAR
project
(http://www.itea2.org/project/result/download/result/
5533) The authors appreciate the partial funding of
this work.

9 References

[1] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C.
Clau?, H.EImgqvist, A. Junghanns, J. Mauss, M.
Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-
V. Peetz, S. Wolf: The Functional Mockup Inter-
face for Tool independent Exchange of Simulation
Models. 8th International Modelica Conference.
Dresden 2011. Download:
http://www.ep.liu.se/ecp/063/013/ecp11063013.pdf

[2] Modelica Association: Modelica — A Unified Ob-
ject-Oriented Language for Systems Modeling.
Language Specification, Version 3.3. May 9, 2012.

[3] E. Chrisofakis, A. Junghanns, C. Kehrer, A. Rink:
Simulation-based development of automotive con-
trol software with Modelica. 8th International
Modelica Conference. Dresden 2011. Download:
http://www.ep.liu.se/ecp/063/001/ecp11063001.pdf

[4] A. Abel, T. Blochwitz, A. Eichberger, P. Hamann,
U. Rein: Functional Mock-up Interface in Mecha-
tronic Gearshift Simulation for Commercial Ve-
hicles. 9th International Modelica Conference. Mu-
nich, 2012.

[5] Abir Ben Khaled, Mongi Ben Gaid, D. Simon, G.
Font: Multicore simulation of powertrains using
weakly synchronized model partitioning. Accept-
ed for 2012 IFAC Workshop on Engine and Power-
train Control, Simulation and Modeling. Rueil-
Malmaison, 2012

[6] S.Gedda, C. Andersson, J. Akesson, S. Diehl: De-
rivative-free Parameter Optimization of Func-
tional Mock-up Units. 9th International Modelica
Conference. Munich, 2012.

[7] T. Schierz, M. Arnold, C. Clauss: Co-simulation
with Communication Step Size Control in an FMI
Compatible Master Algorithm. 9th International
Modelica Conference. Munich, 2012.

[8] S.Burhenne, M. Pazold, F. Antretter, F. Ohr, S. Her-
kel, J. Radon: WUFI Plus Therm: Co-Simulation
unter Verwendung von Modelica Modellen.
Presentation at the Symposium ,,Integrale Planung
und Simulation in Bauphysik und Gebdudetechnik.*
Dresden, March 2012.

DOI
10.3384/ecp12076173

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

183

Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation ...

Annex
Members of the FMI Modelica Association Project:

Project Leader Torsten Blochwitz (ITI GmbH Dresden, Germany)

Steering Committee | Atego, Daimler, Dassault Systéemes, IFP EN, ITI, LMS, Modelon, QTronic,
SIMPACK

Advisory Board Armines, DLR, Fraunhofer (1IS/EAS, First, SCAI), Open Modelica Consortium,
TWT, University of Halle

Guests Altair Engineering, Berkeley University, Bosch, ETAS, Siemens, Equa Simula-
tion

The Steering Committee is open for additional members that actively support FMI. Requirements: Must have
(a) participated at least at two FMI meetings in the last 24 months, (b) must either provided the FMI standard
or part of it in a commercial or open source tool, and/or must actively use FMI in industrial projects, (c) the
Steering Committee members agree with qualified majority.

The Advisory Committee is open for additional members that proofed to actively support FMI. Require-
ments: Must have (a) participated at least at two FMI meetings in the last 24 months, and (b) the Steering
Committee members agree with qualified majority.

Contributors to the FMI 2.0 Specification:

The following persons participated at FMI 2.0 design meetings and contributed to the discussion (alphabeti-
cal list):
Martin Arnold, University Halle, Germany
Johan Akesson, Modelon, Sweden
Mongi Ben-Gaid, IFP, France
Torsten Blochwitz, ITI GmbH Dresden, Germany
Christoph Clauss, Fraunhofer 11S EAS, Germany
Alex Eichberger, SIMPACK AG, Germany
Hilding EImqvist, Dassault Systémes AB, Sweden
Markus Friedrich, SIMPACK AG, Germany
Peter Fritzson, PELAB, Sweden
Andreas Junghanns, QTronic, Germany
Petter Lindholm, Modelon, Sweden
Kristin Majetta, Fraunhofer IIS EAS, Germany
Sven Erik Mattsson, Dassault Systemes AB, Sweden
Jakob Mauss, QTronic, Germany
Dietmar Neumerkel, Daimler AG, Germany
Peter Nilsson, Dassault Systémes AB, Sweden
Hans Olsson, Dassault Systemes AB, Sweden
Martin Otter, DLR (RMC-SR), Germany
Bernd Relovsky, Daimler AG, Germany
Tom Schierz, University Halle, Germany
Bernhard Thiele, DLR (RMC-SR), Germany
Antoine Viel, LMS International, Belgium

The following people contributed with comments (alphabetical list):

Peter Aaronsson, MathCore, Sweden

Bernhard Bachmann, University of Bielefeld, Germany
lakov Nakhimovski, Modelon, Sweden

Andreas Pfeiffer, DLR (RMC-SR), Germany

184 Proceedings of the 9" International Modelica Conference DOl
September 3-5, 2012, Munich Germany 10.3384/ecp12076173

Generation of Sparse Jacobians for
the Function Mock-Up Interface 2.0

J. Akesson®¢, 'W. Braun?,

d

P. Lindholm?, B. Bachmann

“Lund University, Department of Automatic Control, Lund, Sweden
bLund University, Department of Mathematics, Lund, Sweden

“Modelon AB,

Lund, Sweden

dUniversity of Applied Sciences Bielefeld, Bielefeld, Germany

Abstract

Derivatives, or Jacobians, are commonly required by
numerical algorithms. Access to accurate Jacobians
often improves the performance and robustness of al-
gorithms, and in addition, efficient implementation of
Jacobian computations can reduce the over-all exe-
cution time. In this paper, we present methods for
computing Jacobians in the context of the Functional
Mock-up Interface (FMI), and Modelica. Two pro-
totype implementations, in JModelica.org and Open-
Modelica are presented and compared in industrial as
well as synthetic benchmarks.

Keywords: FMI; Analytic Jacobians; Automatic
Differentiation; JModelica.org;, OpenModelica;

1 Introduction

Algorithms for solving computational problems nu-
merically often require access to derivatives, or ap-
proximations thereof. Examples include simulation
algorithms, where implicit integration schemes use
derivative information in Newton type algorithms, op-
timization algorithms, where derivatives are used to
compute search directions, and steady-state solvers.
The quality of the derivatives typically affects perfor-
mance and robustness of such algorithms. Often, the
execution time is strongly affected by the calculation
time of Jacobians.

During the last two years, the Functional Mock-up
Interface ! (FMI) standard has had a strong impact
amongst software tools for modeling and simulation.
The goal of the standard is to promote model reuse and
tool interoperability by providing a tool and language
independent exchange format for models in compiled
or source code form. Following the introduction of

Uhttps://fmi-standard.org/

FMI 1.0 in January 2010, the next version of the stan-
dard, FMI 2.0, will support sparse Jacobians, in order
to enable increased efficiency of algorithms supporting
FMI. The target of this extension is to provide deriva-
tive information for two different use cases of Func-
tional Mock-up Units (FMUs). The first use case is
simulation of a single FMU. In this case, sparse Ja-
cobians for the model equations enable increased effi-
ciency of iterative integration algorithms. The second
use case is the composition of multiple FMUs, poten-
tially blended also by elements from a modeling lan-
guage such as Modelica, where directional derivatives
are useful in order to efficiently construct Jacobians
for systems of equations spanning several FMUs.

In this paper, we describe methods for generating
sparse Jacobians and directional derivatives to fulfill
the corresponding requirements of FMI 2.0. The meth-
ods are described in the context of compilation of
Modelica models into FMUs, although the employed
techniques are generally applicable to other model de-
scription formats. Two prototype implementations,
one in OpenModelica’ and one in JModelica.org> are
presented. The implementations of sparse Jacobians in
the respective tools are compared based on industrial
benchmark models.

The paper is organized as follows. In Section 2,
material on FMI, Jacobians and differentiation tech-
niques are provided. Section 3 describes two different
implementations of sparse Jacobians in JModelica.org
and OpenModelica respectively. Benchmark results
are provided in Section 4, and the paper ends with a
summary and conclusions in Section 5.

Zhttp://www.openmodelica.org
3hitp://www.jmodelica.org

DOl
10.3384/ecp12076185

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich, Germany

185

Generation of Sparse Jacobians for the Function Mock-Up Interface 2.0

2 Background

2.1 The Functional Mock-up Interface

FMI emerged as a new standard resulting from the
ITEA2 project MODELISAR, in 2010. The standard
is a response to the industrial need to connect differ-
ent environments for modeling, simulation and control
system design. Commonly, different tools are used for
different applications, whereas simulation analysis at
the system integration level requires tools to be con-
nected. FMI provides the means to perform such inte-
grated simulation analysis.

FMI specifies an XML format for model interface
information and a C API for model execution. The
XML format, specified by an XML schema, contains
information about model variables, including names,
units and types, as well as model meta data. The
C API, on the other hand, contains C functions for
data management, e.g., setting and retrieving param-
eter values, and evaluation of the model equations.
The implementation of the C API may be provided in
source code format, or more commonly as a compiled
dynamically linked library.

FMI comes in two different flavors: FMI for Model
Exchange (FMI-ME) [2] and FMI for Co-Simulation
(FMI-CS) [3]. FMI-ME exposes a hybrid Ordinary
Differential Equation (ODE), which may integrated
stand-alone or which may be incorporated in a com-
posite dynamic model in a simulation environment.
The FMI-ME C API exposes functions for computa-
tion of the derivatives of the ODE, and accordingly,
in FMI-ME the integration algorithm is provided by
the importing application. FMI-CS, on the other hand,
specifies that the integration algorithm is included in
the FMU, and the FMU-CS C API provides functions
for integrating the dynamics of the contained ODE for
a specified period of time.

The FMI standard is supported by several model-
ing and simulation tools, including Dymola, Simula-
tionX, JModelica.org and OpenModelica. Also, there
are FMI interfaces to MATLAB, National Instruments
Veristand and several additional tools.

FMI 2.0 is a unification of the Model Exchange
and Co-simulation standards and contains several im-
provements. One of those are the sparse Jacobians,
which are also topic of this paper. The sparse Jacobian

bian matrices corresponding to the ODE repre-
sentation of an FMU.

e A section in the XML document contained in an
FMU providing the incidence pattern for the Ja-
cobian matrices.

In this paper, algorithms for generating this function-
ality are discussed.

2.2 Causalization of DAEs

In the first step of the compilation process in a Model-
ica tool chain, a compiler front-end transforms Model-
ica source code into a flat representation, consisting
essentially of lists of variables, functions, equations
and algorithms. Based on this model representation,
symbolic operations such as alias elimination and in-
dex reduction are applied, in order to reduce the size
of the model and to ensure that the resulting Differen-
tial Algebraic Equation (DAE) is of index 1. In this
section, we outline the following steps that are of par-
ticular relevance for the generation of Jacobians. In
particular, the causalization procedure, i.e., transfor-
mation of an index-1 DAE into an equivalent ODE, as
required by the FMI standard, is discussed.

FMI specifies Jacobians and directional deriva-
tives with respect to the continuous model equations.
Therefore, without lack of generality, and for clarity of
the presentation, only the continuous part of the DAE
is considered in the following.

We consider index-1 DAEs in form of

F(x(2),x(t),u(t),w(t)) = 0,
x(0) = xo

t € [to,1y] 0

where x(¢) € R"™ are the state derivatives, x() € R"™ is
the state, u(¢) € R™ are the inputs and w(z) € R™ are
the vector of algebraic variables. The initial conditions
of DAE state is given by xo. Introducing z = (% w),
denoting the unknowns of the DAE, and v = (x u), de-
noting the known variables, the DAE written

F(z,v)=0 2)

The conceptual idea of DAE causalization commonly
used in Modelica tools is then to compute the inverse
relationship of F

interface in FMI 2.0 consists of three different parts: z=G(v), 3)
e A C API function for evaluation of directional and the ODE may then be written
derivatives of the model equations.
£= f(xu) .
o A C API function for evaluation of sparse Jaco- y = h(x,u @
186 Proceedings of the 9" International Modelica Conference DOl
September 3-5, 2012, Munich Germany 10.3384/ecp12076185

Session 2A: FMI Standard |

where y are the outputs of the system. Note that the
algebraic variables are considered to be internal to
the ODE in this representation. In general, there is
no closed expression for the functions f and g, but
rather, iterative techniques, e.g., Newton’s method, is
employed to solve algebraic loops for z.

Modelica models are typically of large scale but
sparse in the sense that each model equation contains
references only to a small number of equations. In or-
der to exploit this structure, graph algorithms can be
employed. Two commonly used algorithms that are
used for this purpose are matching algorithms, e.g., the
Hopcroft Karp algorithm, and Tarjan’s algorithms for
computing strong components, [4]. The result of Tar-
jan’s algorithm is then used to permute the variables
and equations of the DAE into Block Lower Triangu-
lar (BLT) form.

Let us consider a DAE with five equations and five
unknowns, i.e., F € R’ and z € R°, where the DAE
equations are given by

Fi(z1,25,v) =
F(z3,v)
F (ZI,ZZ,Z3,Z47V)

®)

Fi(z1,23,25,V)
F5(z2,25,v)

I
ooooo

Note that the variables v = [x,u] are known and need
not be considered in the following analysis. The de-
pendence of the z-variables can be shown in the fol-
lowing incidence matrix,

<1 22 I3 24 15
Frlx 0 0 0 =«
|0 0 x 0 O
Flx x *x x 0 ©)
Flx 0 % 0 =«
F5 0 * 0 O *

A * in the incidence matrix at row i and column j de-
notes that the residual function F; contains a reference
to the variable z;. Application of the BLT procedure,

of equations
Z1:=g1(v)
(217227) 0
3
F3(22,23,v) =0
Z4:=g4(21,22,23,V)
where Zj = z3, 22 = (21 25)", 3 = 22, Z4 = z4. The

functions g and g, corresponds to explicit solutions
of the corresponding DAE equations, whereas F> =
(Fy Fy)" and F; = F5 corresponds to implicit (systems
of) equations that require iteration. It is typical for
Modelica models to contain only a small number of
implicit systems of equations and a large number of
trivial, e.g., linear equations that may be solved sym-
bolically.

For a general DAE, the BLT procedure results in a
sequence of scalar and non-scalar equation blocks on
the form

Fi(z1,v)=0
F}'(Zl,u-,Zi,V):O (9)
Fb(zl,...,zb,v) =0

where the unknown of each residual F; is z;. Further,
some of the residual functions may be solved explicitly
by symbolic manipulation and the remaining blocks
needs the to be solved by iterative methods.

Computation of the sequence of solved and non-
solved blocks (9), given values of the known variables
in v then produces the corresponding state derivative
and algebraic vectors contained in z. Accordingly, the
DAE has been causalized in to an ODE on the form
4).

2.3 Computation of Jacobians

The Jacobian of a vector valued function f(x) € R™,
x € R" is given by

now yields the following DAE system If i
8f ox 0x,
3 A %5 2 4 Fri : : (10)
FH{1/0 0 0 O Y ... Ifm
E[1[T 1]0 0 ox o
F{0o|1 170 O) A ; ians is directi
useful tool when computing Jacobians is directional
510 0 1T]1]0 derivatives. The directional derivative of a vector val-
Bl o1 0 1 L‘ ued function f(x) is defined by
The implicit DAE system (5) is now given by a se- af
quence of assignment statements and implicit systems df = O ~dx, (11)
DOl Proceedings of the 9™ International Modelica Conference 187
10.3384/ecp12076185 September 3-5, 2012, Munich, Germany

Generation of Sparse Jacobians for the Function Mock-Up Interface 2.0

where dx € R" represents the direction in which the
directional derivative, denoted df € R", is evaluated.
dx is also referred to as a seed vector.

In the following, directional derivatives will be used
extensively to construct Jacobians. A straight forward,
although naive, approach to construct a Jacobian from
directional derivative evaluations is as follows. Using
the identity matrix / of dimension », and the unit vec-
tors ej ...e, we have that

df _df, _df _
a—al—g(é’h en)—
(e o Foe) (2

Using this relation, a Jacobian with #n columns may be
constructed from »n evaluations of directional deriva-
tives. In Section 2.7, an overview of methods to ex-
plore sparsity to improve efficiency in this respect will
be given.

There are three widely used methods for computing
Jacobians, namely finite difference methods, symbolic
differentiation and automatic (or algorithmic) differ-
entiation.

2.4 Finite Difference Approximation

In the finite difference method, a numerical approxi-
mation of the directional derivative of a vector valued
function f is calculated using the formula

9f(x) fx+eih) — f(x)

o cep = h . (13)

where £ is the increment. On one hand, even if the
increment is chosen optimal in nature of that method is
an accuracy error €, which is the sum of & + €, where
& is the truncation error and &, the round-off error. The
truncation error & |hf(x)| is the result of the Taylor-
series truncation. The round-off error &, &¢|f(x)/h|
where & is the fractional accuracy & > &, depends
on machine accuracy &,,. On the other hand, it is easy
to implement and also almost applicable.

2.5 Symbolic Differentiation

In general the “calculus” of symbolic derivatives is

done by difference quotients. where the derivative of a

function is the limit
of

— = lim
ox h—0

CETIR (O

difference quotients. This is also the way the basic dif-
ferentiation rules are found. From a practical view the

“calculus” of the symbolic derivatives is done by ap-
plying basic differentiation rules and table of deriva-
tives for common functions on the expressions to find
the formulas for the derivatives. Since a Modelica
model results during the compilation in symbolic ex-
pressions which are manipulated to simplify the orig-
inal system. So it is quite typical for a Modelica Tool
to use symbolical methods also for the differentiation.
Finding the symbolic formula may take time, space
and a symbolic kernel for simplifications, but once de-
termined it’s fast to evaluate them [7]. A further draw-
back is that symbolic differentiation is not applicable
on algorithms (with for-loops and branches).

2.6 Automatic Differentiation

Automatic Differentiation (AD) is a method for com-
puting derivatives with machine precision, which is
applicable to expressions as well as algorithmic func-
tions [1]. The key idea in AD techniques is to prop-
agate derivative information through a sequence of
atomic operations, which is represented by an expres-
sion graph. Computation of a sequence of AD oper-
ations results in the evaluation of a directional deriva-
tive with respect to a given seed vector.

There are two different modes of operation of AD—
forward and reverse. The forward mode AD is con-
ceptually simple, and is based on forward propagation
of values and derivatives through an expression graph.
The result of a forward AD sweep is a vector corre-
sponding to the Jacobian multiplied by the seed vector.
Commonly, Jacobian matrices are constructed from a
number of forward AD evaluations.

The reverse AD technique is more involved than the
forward mode, and includes a forward and a backward
evaluation sweep over the expression graph, and the
result is a vector corresponding to the seed vector mul-
tiplied by the Jacobians. This mode of operation is
particularly useful in the case of scalar functions that
depends on many independent variables—in this case,
reverse AD is referred to the cheap gradient computa-
tion. Reverse AD is also commonly used to construct
higher-order derivatives, e.g., Hessian matrices in op-
timization applications.

Implementation of AD tools comes two different
flavors: Operator Overloading (OO) and Source Code
Transformation (SCT). In OO tools, the expression
graph is represented by data structures that are repeat-
edly traversed during forward and reverse mode eval-
uations. This strategy has been popularized by tools

188

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076185

Session 2A: FMI Standard |

such as CppAD* and ADOL-C> which both enable
AD to be applied to C code with minor modifications.
Tools in this category are typically based on operator
overloading, e.g., in C++, to construct a data structure
referred to as a tape, which is then used as a basis for
derivative computations. Tools based on the SCT ap-
proach, on the other hand, generate code that, when
executed, compute derivatives. The ADIFOR® pack-
age falls into this category.

In this paper, forward mode AD using the SCT tech-
nique will be used. The remainder of this section will
therefore focus on explaining this methods.

A key to understanding forward AD, is the observa-
tion that expressions can be evaluated, and differenti-
ated, by considering a sequence of atomic operations.
The elementary arithmetic operations can be differen-
tiated by applying the derivation rules

d du dv
- + - =24
75 (0 £v(x) P
d dv du
o) = u) v S
4y - V() g — ul) g
dx \v/) v(x)?
In addition, the chain rule
d d¢ du
dx (u(x))—aa

applies to the elementary arithmetic functions, such as
sin, cos etc.

In the following example, we illustrate how these
building blocks are used to apply the forward AD tech-
nique. We consider the function

f(x1,x2) = x1 - x2 +sin(xy), (15)

for which we would like to compute the directional
derivative according to relation (11). Assuming the
seed vector dx = (1 0)7, it follows that

) (o)

Using the seed vector in (16), f(x) will be differenti-
ated with respect to x;.

The expression graph corresponding to the function
in (15) is shown in Figure 1.

In the figure, the leaves represent the independent
variables and the root node represents the function it-
self.

_9f

Jd
df = fdxz(ﬁ a =L

- g ox; 0xp (16)

“http://www.coin-or.org/CppAD/
Shttp://www.coin-or.org/projects/ADOL-C.xml
Shttp://www.mcs.anl.gov/research/projects/adifor/

Figure 1: Expression graph of the function (15)

A forward AD sweep is performed as follows. The
computation sequence starts at the independent vari-
ables. Intermediate variables, v;:s, are introduced to
hold the value of each node, and in addition, variables
for the derivative values of each node, d;, are intro-
duced. The expression of a particular variable v; is
given by the corresponding node type, i.e., arithmetic
operation, and the derivative value, d;, is given by dif-
ferentiation of the same operation. Application of this
procedure to the function (15) gives the following se-
quence of operations.

V1 i=X1
d] = dx1
V2 1= X
dz ::d)CQ

v3 1= sin(vy)
ds :=d; -cos(vy)

V4i=V1-V)
dy:=dy-va+v)-dy
Vs i =Vv3+Vy
ds:=ds+dy

Vg := Vs

de == ds

The variable vg now holds the value of the function it-
self and dg holds the value of the directional derivative.
Note that the evaluation is done for particular values of
the independent variables, in this case x; and x;, and
seed values, dx| and dx;. Note that auxiliary variables
v1, V2, d1 and d, are introduced here for clarity.

2.7 Exploiting Sparsity

Modelica models, also after the causalization proce-
dure described above, are often sparse, i.e., each equa-

DOI
10.3384/ecp12076185

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

189

Generation of Sparse Jacobians for the Function Mock-Up Interface 2.0

tion of a model depends only on a fraction of the to-
tal number of variables. Exploiting sparsity of Mod-
elica models can be done in two different contexts.
Firstly, the efficiency of computation of Jacobian ma-
trices based on directional derivative evaluations can
be much improved by considering sparsity. This strat-
egy is called compression and will be described briefly
in this section. Secondly, a simulation environment
importing an FMU providing sparse Jacobians may
utilize this information to improve the performance of
numerical algorithms. A typical example of such al-
gorithms are sparse linear solvers, e.g., UMFPACK,
CSparse® and PARDISO’. This usage is, however, not
related to the procedures required to generate Jaco-
bians, and it is therefore beyond the scope of this pa-
per.

As noted above, a naive method for evaluation di-
rectional derivatives to generate Jacobian matrices is
to simply make one such evaluation for each column
of the Jacobian, with seed vectors corresponding to the
unit vectors of appropriate dimension. If the Jacobian
is sparse, however, the number of evaluations can be
drastically reduced, by observing that several columns
can be computed in a single directional derivative eval-
uation if the sparsity patterns of these columns do not
overlap. As an example, consider the incidence ma-
trix (6). Here, we note that columns four and five does
not contain overlapping entries, and they can therefore
be computed by one single directional derivative eval-
uation with the seed vector chosen as the sum of the
corresponding unit vectors. Note also that this strat-
egy is applicable to all three differentiation methods
described above: finite differences, AD and symbolic
differentiation.

While this strategy is simple to implement, comput-
ing a column grouping of minimal size is well known
to be an NP-hard problem—this problem corresponds
precisely to the graph coloring problem [5, 6]. There
are, however, efficient algorithms capable of comput-
ing practically useful approximations of the optimal
solutions. Specific algorithms will be discussed in
Section 3.

"http://www.cise.ufl.edu/research/sparse/
umfpack/

8http://people.sc.fsu.edu/~ jburkardt/c_src/
csparse/csparse.html

http://www.pardiso-project.org/

3 Computation of Jacobians for

Modelica Models

In Section 2.2, it was shown how a DAE is transformed
into an ODE by means of the BLT transformation. In
this section, methods for computing the Jacobians of
the resulting ODE (4) are presented. We consider

5 (3)-(% §)-(218) o

5=
In this section, we present two methods for comput-
ing the matrices A, B, C and D by means of direc-
tional derivatives. One of the methods, which is im-
plemented in JModelica.org, relies on a forward AD
implementation in an SCT setting, whereas the other
method, which is implemented in OpenModelica, re-
lies on symbolic differentiation and symbolic expres-
sion simplification. In addition, an algorithm for com-
puting the sparsity pattern of the Jacobian matrices,
which is common for both methods, is presented.

The key idea in this section is the following. Differ-
entiating the DAE (2) yields the relation

JoF JoF
a—zdz + Ed\/ = 07

where dv is the input seed vector and dz works as the
directional derivative of the relation (3) with respect to
the direction dv. By solving the system of equations
(18) for a particular seed dv, the directional derivative
of the DAE is obtained. It is important to note that
the system of equations to be solved is linear in the
unknowns, dz, and thus does not require iteration.

The Jacobian matrices are then constructed from re-
peated evaluation of directional derivatives. In addi-
tion, coloring algorithms and compression is used to
reduce the number of directional derivative evaluations
in both implementations.

Evaluation of Jacobians based on the compression
of the columns requires access to sparsity pattern, as
stated in Section 2.7. The determination of the spar-
sity pattern for a Modelica model could be done by
means of graph theory. Since the non-zero values in
a Jacobian expresses which output variable has a con-
nection to which input variable. Thus the determina-
tion problem could be formulated as a st-connectivity
problem in a directed graph, where input variables are
the sources and the output variables are the sinks. The
st-connectivity is a decision problem that asks if the
vertex ¢ is reachable from the vertex s, particular which
output variable is connected to which input variable.
Specific algorithms for this purpose will be discussed
below.

9x
u

=

du

(18)

190

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076185

Session 2A: FMI Standard |

3.1 Implementation of Directional Deriva-
tives in JModelica.org

The performance of the approach outlined above can
be improved significantly by exploiting the BLT struc-
ture described in Section 2.2. In particular, forward
AD may be applied directly to the sequence of compu-
tations given in (9). In the implementation in JModel-
ica.org, C code corresponding to a forward AD sweep
over the sequence of BLT blocks is generated. The
symbolic expression graphs in the compiler is a ba-
sis for the code generation. As noted in Section 2.2,
there are two kinds of blocks produced by the BLT
transformation, i.e solved equation blocks and non-
solved equation blocks requiring iterative numerical
solution. Below, we explain how directional deriva-
tives are propagated in these two cases.

3.1.1 Propagation of Directional Derivatives in
Equation Blocks

For blocks corresponding to solved equation blocks of
the form

Zi=gi(Z1,..-,Zi-1,V) (19)

it is straight forward to apply the forward AD ap-
proach. In this case, AD code is simply generated bas-
ing on the expression graph for g;, in order to produce
the directional derivative

dgi dgi

dzi—1+ —=—dv.

Pre
R =
—1

d7

(20)

Note that the input seed dv and the directional deriva-
tives for previous blocks, Z;,...Z;—1 are known at this
point in the computation sequence. Commonly, the ex-
pression g; does not depend on all previous vectors of
unknowns, Zi,...,Zj—1, a property which is exploited
in the implementation.

For a block corresponding to a system of equations,
the block residual is given by

FI‘(Z],...,Z,‘,V):O. 20

In order to compute the directional derivative, dz;, for
such a block, the residual equation is differentiated to
yield

JF; oF; oF;

g e T dz e Ty =0 22
7, i+ +aziz+avv (22)
which in turn gives the linear system
oF; il OF,; oF;
—dzi=—) ——di——=—d 23
9z k;azk -5, 39

to be solved for dZz;. All Jacobians in this relation are
generated to C code using forward AD. Note that the
system Jacobian of the linear system (23) is provided
also to the Newton solver that computes the solution
of the system of equations (21). Therefore, this code is
reused in the computation of the directional derivative
of the block.

3.1.2 Computation of Sparsity Patterns

Computation of sparsity patterns for the Jacobian ma-
trices A, B, C and D is a non-trivial problem, because
of the sequence of operations required to compute the
state derivatives x and the algebraic variables w. In
comparison, computation of the Jacobian matrix of a
DAE system (2) is straightforward and can be done by
simply collecting references to unknown variables in
each residual equation. As noted above, the problem
of computing sparsity patterns for the ODE Jacobian
is a connectivity problem, where the dependencies of
the dependent variables z of the independent variables
contained in v need to be computed.

The BLT form of the DAE offers means to compute
the required sparsity patterns for the ODE Jacobians.
While the general form of a block in the BLT sequence
is

E(Zla"°7zi7v):0) (24)

particular blocks typically do not depend on all vari-
ables in zj,...z; and in v. In order to reflect this situa-
tion, we introduce the notation
Fi(Zi,2i,7;) = 0, (25)
where Z; contains the variables in the z vector upon
which the equation block residual F; depends. ¥; is de-
fined correspondingly. As a first approximation, which
will be relaxed in the following, we assume that all
variables solved for in the block i, i.e., z;, depends
on all variables in Z; and in 7;. Clearly, this relation-
ship defines the direct dependency of z; on v;. Now,
the dependency of z; on the variables contained in
V1,...,V;_1 is given implicitly by Z;. The connectiv-
ity graph of the BLT form reveals these dependencies.
Edges in this graph corresponds to non-zero entries in
the lower left part of the transformed incidence matrix,
below the block diagonal. In the connectivity graph,
dependency information is propagated top-down in the
sequence of blocks. For each block, the complete set
of variables in v upon which the block depends is col-
lected from the predecessors in the dependency graph.
For a block consisting of a system of equations, the
assumption that all variables solved for in the block,

DOI
10.3384/ecp12076185

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

191

Generation of Sparse Jacobians for the Function Mock-Up Interface 2.0

zi, depends on all variables in Z; may lead to an over-
estimation of the sparsity pattern. Specifically, since
the sparsity pattern of the inverse of a sparse matrix
may also be sparse, the computation may result in non-
zero entries which are in fact structural zeros. In or-
der to take this into account, the sparsity pattern of
the inverse of the corresponding block Jacobian may
be computed, [8]. The result of this analysis is then
taken into account when variable dependencies are
computed. Note that this analysis remains to be im-
plemented in JModelica.org

3.2 Implementation of Directional Deriva-
tives in OpenModelica

The directional derivatives in OpenModelica are gen-
erated basically by setup a new symbolic equation sys-
tem inside the OMC with the differentiated equations.
This system contains the desired partial derivatives dZ
as unknowns, the seed vector dv and all other variables
from the original system are considered as known. The
resulting equation system is the desired one as in equa-
tion (18).

This approach differs from the previously published
procedure (see [10]), in a way that now each equation
is derived only once. This leads to linearity in the com-
pilation time and in the generated code size.

All methods mentioned in section 2 are used for
the differentiation of the original system. Equations
are differentiated symbolically, algorithm sections and
Modelica functions without an derivative annotation
are differentiate by the forward AD approach and ex-
ternal functions, where nothing else is possible, are
differentiated numerically.

The generated equation system is then optimized
like the original system. In detail it is transformed
to an explicit form with the BLT machinery of Open-
Modelica, further expression-based simplification are
done and some common sub-expressions are filtered.
The resulting equation system is then written to the C-
Code.

For the purpose of generating the four matrices in
(17) for each matrix one new equation system is gener-
ated with the corresponding variables. Note therefore
the original system is filtered for the necessary equa-
tions.

The exploration of the sparsity pattern for a fast
evaluation of the compressed Jacobians is applied on
the generated directional derivatives. A detailed de-
scription of the algorithms used for that task in Open-
Modelica can be found in [9].

3.3 Comparison of Implementations

The implementations in OpenModelica and in JMod-
elica.org share common characteristics, but there are
also differences. Both algorithms are based on gen-
eration of C code that evaluates directional deriva-
tives, which in turn are used to compute Jacobians.
Also, both algorithms rely on compression for reduc-
ing the number of directional derivative evaluations.
The computation of sparsity patterns for the ODE Ja-
cobians also proceeds in the same manner.

The main difference between the implementations
is rather the way in which the directional derivatives
are generated. In the JModelica.org implementation,
the same BLT structure as for the underlying ODE is
used. Code generation is done by traversing the BLT
structure in a separate code generation pass and for-
ward AD code is then generated for solved equations
and systems of equations, as described in 3.1. In the
OpenModelica implementation, on the other hand, a
new data structure containing all model equations in
symbolically differentiated form is first constructed.
The symbolic kernel of the compiler is then invoked to
simplify the differentiated equations, and a new BLT
structure is computed prior to code generation.

Both approaches have advantages and disadvan-
tages. In the JModelica.org implementation, no new
data structures are created, which reduces memory
consumption. Also, since the same BLT structure as
for the underlying ODE is used, Jacobians for systems
of equations corresponding to algebraic loops are gen-
erated. These, in turn are useful also in case of apply-
ing iterative techniques to solve algebraic loops. The
main advantage of the OpenModelica implementation
is that symbolic simplifications done by the compiler
can yield simpler code that is faster to execute. Also,
since a new BLT computation is done, properties of
the new, differentiated system of equations may be ex-
plored in order to further speed up Jacobian computa-
tions.

4 Benchmarks

Three different aspects are considered in the bench-
marks presented in this section, namely, i) model com-
pilation time, ii) generated code size, and iii) Jaco-
bian evaluation time. In the case of model compila-
tion time, both the time spent in the respective Model-
ica compilers, OpenModelica and JModelica.org, and
the time spent in the C compiler, gcc in both cases,
when compiling the generated code is measured. This

192

Proceedings of the 9" International Modelica Conference
September 3-5, 2012, Munich Germany

DOl
10.3384/ecp12076185

Session 2A: FMI Standard |

measure seems to be the most interesting for the user,
since both phases are included in the model compila-
tion time from a user’s perspective. As for the size
of the generated code, only the size of the code that
is generated by the Modelica compilers is measured,
i.e., no code originating from run-time systems or sim-
ilar is included. Finally, the time for 1000 Jacobian
evaluations is measured and the mean evaluation times
are reported. In all benchmarks, the system Jacobian,
i.e., the Jacobian of the derivatives with respect to the
states, is evaluated.

It is worth noting that the benchmarks in this sec-
tion does not only reflect the particular details of the
respective Jacobian evaluation strategies. In particu-
lar, the measurements are biased by other code op-
timization strategies in the compilers, including alias
elimination, symbolic processing, tearing, and the ef-
ficiency of non-linear solvers used to solve algebraic
loops. In addition, the compilation time measure-
ments, the optimization and debugging flags supplied
to the respective C compilers influence the result.

All measurements in this paper are performed
on a 64-bits architecture computer having one Intel
Q9550@2.83GHz CPU and 16 GB of RAM. It runs
Ubuntu 12.04 Linux, kernel 3.2.0-25.

4.1 Combined Cycle Power Plant

The first benchmark is a model of a combined cycle
power plant model, see Figure 2. The model con-
tains equation-based implementations of the thermo-
dynamic functions for water and steam, which in turn
are used in the components corresponding to pipes and
and the boiler. The model also contains components
for the economizer, the super heater, as well as the
gas and steam turbines. The model has 10 states and
131 equations. For additional details on the model,
see [11].

The benchmark results are shown in Table 1. As can
be seen, the model compilation times and the file sizes
are similar. Both implementations obtained six col-
ors for the Jacobian, i.e., 6 directional derivative eval-
uations were required to compute the Jacobian. The
Jacobian evaluation time does, however, differ in a
way that the OpenModelica implementation performs
faster.

4.2 Synthetic Benchmarks

In order to analyze the scalability properties of the re-
spective implementations, synthetic benchmark mod-
els were automatically generated. The underlying as-

alpha_SP

feedback

e Fulload steady seate]

Isjeayladns
000005=9

R

‘ojelodens

00000£1=9
Y I19ZIWwouoos

A

gasTurbine
eeeeeeeeee

Figure 2: Modelica component diagram for a com-
bined cycle power plant.

Table 1: Benchmark results for combined cycle power
plant.

Generation [s] Code size [kB] Jac eval

Tool || No Jac ‘ Jac ‘ No Jac ‘ Jac ‘ time[ms]
OM 2.98 3.87 519 711 0.018
M 3.64 | 592 266 456 0.090

sumption of the synthetic models is that a single Mod-
elica equation contains references to fixed maximum
number of variables, a number which does not in-
crease with model size. This assumption is realistic,
given that Modelica models are typically constructed
from a large number of simple component models,
where the equations in each component are local in the
sense that they refer mainly variables in the same, or
neighboring, components. Another important feature
of Modelica models are algebraic loops, or implicit
systems of equations, which require iterative solution
techniques. Therefore, the synthetic benchmark mod-
els contain implicit systems of equations, composed
from linear and non-linear terms, in the form of sin
functions, terms.

Three suits of benchmark models were constructed,
using different assumptions on the number of variable
references in a single equation. This aspect was quan-
tified by the sizes of the implicit systems of equations,
where sizes of two, four and eight, respectively, were
used to generate the benchmark models. Within each
suite of benchmark models, four different models of
increasing size were constructed, essentially by dou-
bling the number of variables while keeping the size
of all the implicit equation systems constant. For de-
tailed statistics and structural analysis of the models

DOI
10.3384/ecp12076185

Proceedings of the 9™ International Modelica Conference
September 3-5, 2012, Munich, Germany

193

Generation of Sparse Jacobians for the Function Mock-Up Interface 2.0

Table 2: Statistics and structural analysis of the syn-
thetic models. #N denotes the number of variables,
#N-z. denotes the number of reported non-zero ele-
ments and #Col. denotes the number of colors result-
ing from the coloring algorithms. #N-z. and #Col. are

equal in both implementations.
| #N | #States | #Alg. loops | #N-z. | #Col.

1-1 || 22 4 9 7 2
1-2 || 42 8 17 21 4
1-3 || 82 16 33 47 4
1-4 || 162 32 65 104 4
2-1 | 40 4 9 7 2
2-2 | 76 8 17 21 4
2-3 || 148 16 33 53 4
2-4 | 292 32 65 117 4
3-1 | 76 4 9 7 2
3-2 || 144 8 17 21 4
3-3 | 280 16 33 53 4
3-4 | 552 32 65 117 4

consider table 2. Note that for both implementations,
the number of non-zero elements and the number of
colors produced by the respective coloring algorithms
are equal.

Table 3: Benchmarks of synthetic models for Open-
Modelica

Generation [s] Code size [kB] Jac. eval.

No Jac. ‘ Jac. ‘ No Jac. ‘ Jac. ‘ time [ms]
1-1 0.57 1.3 41 121 0.008
1-2 0.87 2.0 72 225 0.033
1-3 1.51 3.7 134 435 0.068
1-4 2.82 7.4 260 860 0.142
2-1 0.88 2.1 64 208 0.017
2-2 1.51 4.1 114 393 0.067
2-3 2.75 7.5 218 781 0.144
2-4 5.36 15.5 429 1569 0.308
3-1 2.22 6.6 117 457 0.048
3-2 4.20 13.7 219 889 0.198
3-3 8.45 27.7 432 1789 0.421
34 17.02 | 56.9 857 3583 0.873

The results in terms of model compilation time, gen-
erated code size, and Jacobian e