
INTERNATIONAL

 CONFERENCE
MODELICA9th
September 3-5, 2012
Munich, Germany
www.modelica.org

Editors:
Martin Otter
Dirk Zimmer

Mechanical

Electrical

Fluids

Systems

Tools

Controls

Robotics and Mechatronics Center

of the
Proceedings

2 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076

Proceedings of the 9th International Modelica Conference
Munich, Germany, September 3-5, 2012

Editors:
Prof. Dr.-Ing. Martin Otter and Dr. Dirk Zimmer (DLR-RMC-SR)

Published by:
Modelica Association and Linköping University Electronic Press

ISBN: 978-91-7519-826-2
Series: Linköping Electronic Conference Proceedings, No. 76
ISSN: 1650-3686
eISSN: 1650-3740
DOI: http://dx.doi.org/10.3384/ecp12076

Organized by:
Modelica Association
c/o PELAB, IDA, Linköpings
Universitet
S-58183 Linköping
Sweden

and German Aerospace Center (DLR)
Robotics and Mechatronic Center (RMC)
Institute for System Dynamics and Control (SR)
D-82234 Wessling
Germany

Conference location:
Veranstaltungsforum Fürstenfeld,
Fürstenfeld 12
D-82256 Fürstenfeldbruck
Germany

Copyright © Modelica Association, 2012

http://www.robotic.dlr.de/Martin.Otter
http://www.robotic.dlr.de/dirk.zimmer
http://dx.doi.org/10.3384/ecp12076
https://www.modelica.org/
http://www.dlr.de/rm/en
http://www.fuerstenfeld.de/

DOI Proceedings of the 9th International Modelica Conference 3
10.3384/ecp12076 September 3-5, 2012, Munich, Germany

Preface

The 9th International Modelica Conference is the main event for users, library developers, tool vendors and
language designers to share their knowledge and learn about the latest scientific and industrial progress
related to Modelica, to the Modelica Association and to the Functional Mockup Interface. Highlights of the
conference:

• 80 regular papers, 22 poster papers, and 6 libraries for the Modelica Library Award.

• 2 Keynotes.

• 8 tutorials (3.5 hours each, descriptions).

• 10 vendor sessions (45 min. each) where the latest news of Modelica and FMI tools are presented.

• 17 exhibitors in the exhibition area.

Please note that to some of the papers a Modelica library or model is attached. These files are accessible in
the electronic proceedings.

The conference provides also the most important news from the Modelica Association:

• The new version of the Modelica language version 3.3 was released on May 9, 2012. There are several
papers and a tutorial at the conference that discusses and demonstrates the new features.

• The working process of the Modelica Association has been changed and the work is now organized in
Modelica Association Projects (MAP) with an extended board. More details are given in the presentation
“Modelica News” on Tuesday, Sept.4, 9:10 – 9:25.

• The further development of the FMI (Functional Mockup Interface) standard is performed in a MAP. A
draft version of FMI 2.0 will be available before the conference. An overview of this new version is
given in a conference paper. In two sessions, applications and tool support for FMI are presented and
discussed.

• Since July, the Modelica Association provides an open source FMI compliance checker for FMI 1.0 at
https://svn.fmi-standard.org/fmi/trunk/Test_FMUs. Its purpose is to check exported FMUs for validity.
The checker can also produce reference simulation results with a fixed step explicit Euler method.
Shortly after FMI 2.0 is released, the compliance checker will also be available for FMI 2.0.

Finally, we want to acknowledge the support we received from the program board and program committee.
We are grateful for the help by the Modelica Association and Monika Klauer from DLR. Last but not least,
let us thank all authors for their contributions to these proceedings. We wish all participants an enjoyable and
successful conference.

Weßling, July 20, 2012

Martin Otter and Dirk Zimmer

https://www.modelica.org/events/modelica2012
http://www.functional-mockup-interface.org/
https://www.modelica.org/events/modelica2012/tutorials/tutorials
https://www.modelica.org/events/modelica2012/exhibitors
https://svn.fmi-standard.org/fmi/trunk/Test_FMUs

4 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076

Organizing Committees

Program Chairs
Prof. Dr.-Ing. Martin Otter, DLR-RMC-SR, Weßling, Germany
Dr. Dirk Zimmer, DLR-RMC-SR, Weßling, Germany

Program Board
Dr. Hilding Elmqvist, Dassault Systèmes, Lund, Sweden
Prof. Peter Fritzson, Linköping University, Sweden
Dr. Michael Tiller, Dassault Systèmes, Paris, France

Program Committee
Dr. Johan Åkesson, Modelon AB, Lund, Sweden
Dr. Peter Aronsson, MathCore - A Wolfram Company, Linköping, Sweden
Prof. Karl-Erik Årzén, Lund University, Lund, Sweden
Prof. Bernhard Bachmann, Univ. Applied Sciences Bielefeld, Bielefeld, Germany
Daniel Bouskela, EDF R&D, Paris, France
Dr. David Broman, UC Berkeley, California, USA
Dr. John Batteh, Emmeskay, Michigan, USA
Dr. Ingrid Bausch-Gall, BAUSCH-GALL GmbH, Munich, Germany
Prof. Francesco Casella, Politecnico di Milano, Milano, Italy
Prof. François E. Cellier, ETH Zürich, Zürich, Switzerland
Prof. Liping Chen, Huazhong University of Science and Technology, Wuhan, China
Dr. Christoph Clauß, Fraunhofer IIS EAS, Dresden, Germany
Mike Dempsey, Claytex Services Ltd, UK
Prof. Gianni Ferretti, Politecnico di Milano, Italy
Dr. Rui Gao, Dassault Systèmes Japan, Tokyo, Japan
Anton Haumer, Technical consultant, St. Andrae-Woerdern, Austria
Prof. Alberto Leva, Politecnico di Milano, Italy
Kilian Link, Siemens AG, Erlangen, Germany
Dr. Sven-Erik Mattsson, Dassault Systèmes, Lund, Sweden
Dr. Jakob Mauss, QTronic GmbH, Berlin, Germany
Ramine Nikoukhah, Altair Development France, Antony, France
Dr. Mattias Nyberg, Scania AB, Södertälje, Sweden
Dr. Hans Olsson, Dassault Systèmes, Lund, Sweden
Prof. Chris Paredis, Georgia Institute of Technology, Atlanta, Georgia, USA
Prof. Peter Pepper, TU Berlin, Berlin, Germany
Dr. Nicolas Pernet, IFP Energies nouvelles, Rueil-Malmaison, France
Dr. Adrian Pop, Linköping University, Sweden
Prof. Gerhard Schmitz, Technical University Hamburg-Harburg, Germany
Dr. Peter Schneider, Fraunhofer IIS EAS, Dresden, Germany
Dr. Stefan-Alexander Schneider, BMW, Munich, Germany
Dr. Wilhelm Tegethoff, TLK-Thermo GmbH and TU Braunschweig, Germany
Eric Thomas, Dassault-Aviation, Paris, France
Dr. Hubertus Tummescheit, Modelon AB, Lund, Sweden
Dr. Andreas Uhlig, ITI GmbH, Dresden, Germany
Prof. Alfonso Urquía, UNED, Spain
Prof. Hans Vangheluwe, University of Antwerp, Belgium and McGill University, Canada

Local Organizers
Prof.-Dr.-Ing. Martin Otter, DLR-RMC-SR, Weßling, Germany
Dr. Dirk Zimmer, DLR-RMC-SR, Weßling, Germany
Monika Klauer, DLR-RMC-SR, Weßling, Germany

DOI Proceedings of the 9th International Modelica Conference 5
10.3384/ecp12076 September 3-5, 2012, Munich, Germany

Content

Session 1A: Hybrid Modeling ..15

Fundamentals of Synchronous Control in Modelica ..15

A Library for Synchronous Control Systems in Modelica ..27

State Machines in Modelica ...37

PNlib - An Advanced Petri Net Library for Hybrid Process Modeling ..47

Session 1B: Thermofluid Systems ...57

Simulation of Non-Newtonian Fluids using Modelica ..57

HelmholtzMedia — A Fluid Properties Library ...63

Object-Oriented Library of Switching Moving Boundary Models for Two-phase Flow Evaporators and
Condensers ...71

High-Speed Compressible Flow and Gas Dynamics ..81

Session 1C Power and Energy: ..101

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics Library
 ..101

Library for First-Principle Models of Proton Exchange Membrane Fuel Cells in Modelica115

The Modeling of Energy Flows in Railway Networks using XML-Infrastructure Data125

Implementation of a Modelica Library for Energy Management based on Economic Models133

Session 1D: Electromagnetic Systems I ..143

Modeling and Simulation of a Linear Piezoelectric Stepper Motor in MapleSim143

Magnetic Hysteresis Models for Modelica ...151

Motor Management of Permanent Magnet Synchronous Machines ..159

An approach for modelling quasi-stationary magnetic circuits ...167

Session 2A: FMI Standard I ..173

Functional Mockup Interface 2.0: The Standard ...173

Generation of Sparse Jacobians for the Function Mock-Up Interface 2.0 ..185

Designing models for online use with Modelica and FMI ...197

Co-simulation with communication step size control in an FMI compatible master algorithm205

Session 2B: Numerical Methods ..215

On the Formulation of Steady-State Initialization Problems in Object-Oriented Models of Closed Thermo-
Hydraulic Systems ..215

Probability-One Homotopy for Robust Initialization of Differential-Algebraic Equations223

Simulating Modelica models with a Stand-Alone Quantized State Systems Solver237

Fast Simulation of Fluid Models with Colored Jacobians ...247

6 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076

Session 2C: Climate Systems I ...253

Modelling and Calibration of a Thermal Model for an Automotive Cabin using HumanComfort Library
 ..253

Holistic vehicle simulation using Modelica –An application on thermal management and operation
strategy for electrified vehicles...263

Modelling of Radiative Heat Transfer in Modelica with a Mobile Solar Radiation Model and a View
Factor Model ..271

VEPZO – Velocity Propagating Zonal Model for the prediction of airflow pattern and temperature
distribution in enclosed spaces ...279

Session 2D: Mechanic Systems I..287

Modeling and Testing of the Hydro-Mechanical Synchronization System for a Double Clutch
Transmission...287

Predicting the launch feel of automatic and dual clutch transmissions ...295

Modelling of Elastic Gearboxes Using a Generalized Gear Contact Model ...303

Revised and Improved Implementation of the Spur Involute Gear Dynamical Model311

Session 3A: Mixed Simulation Techniques I ..323

Accessing External Data on Local Media and Remote Servers Using a Highly Optimized File Reader
Library ..323

Detailed geometrical information of aircraft fuel tanks incorporated into fuel system simulation models
 ..333

Simulation of Artificial Intelligence Agents using Modelica and the DLR Visualization Library339

Session 3B: Embedded and Real-Time Systems ..347

Functional Development with Modelica ...347

Translating Modelica to HDL: An Automated Design Flow for FPGA-based Real-Time Hardware-in-the-
Loop Simulations ..355

A Modelica Library for Real-Time Coordination Modeling ..365

Session 3C: Language and Compilation Concepts I ..375

Implementation of a Graphical Modelica Editor with Preserved Source Code Formatting375

Model-based Requirement Verification : A Case Study ...385

A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core Platforms393

Session 3D: Mechanic Systems II ..405

Modelling and Simulation of the Coupled Rigid-flexible Multibody Systems in MWorks405

A Modelica Library of Anisotropic Flexible Beam Structures for the Simulation of Composite Rotor
Blades ...417

Modeling and Simulation of a Fault-Tolerant Electromechanical Actuation System for Helicopter
Swashplates in Modelica ..425

DOI Proceedings of the 9th International Modelica Conference 7
10.3384/ecp12076 September 3-5, 2012, Munich, Germany

Session 4A: Language and Compilation Concepts II ..433

Survey of appropriate matching algorithms for large scale systems of differential algebraic equations ..433

Static and Dynamic Debugging of Modelica Models ...443

Session 4B: Control ..455

A Modelica Sub- and Superset for Safety-Relevant Control Applications ...455

A Modelica Library for Industrial Control Systems ...477

Session 4C: Handling Simulation Output ..485

Modelica3D - Platform Independent Simulation Visualization ..485

Proposal for a Standard Time Series File Format in HDF5 ..495

Session 4D: Electromagnetic Systems II ...507

Towards a Memristor Model Library in Modelica ...507

Fault Detection of Power Electronic Circuit using Wavelet Analysis in Modelica513

Session 5A: Simulation Tools ..523

PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure523

An OpenModelica Python Interface and its use in PySimulator ..537

WebMWorks: A General Web-Based Modeling and Simulation Envi-ronment for Modelica549

Session 5B: Mixed Simulation Techniques II ...557

Using BCVTB for Co-Simulation between Dymola and MATLAB for Multi-Domain Investigations of
Production Plants ...557

FEM models in System Simulations using Model Order Reduction and Functional Mockup Interface565

Using Modelica models for Driver-in-the-loop simulators ..571

Session 5C: Automotive Systems ...579

Development of New Concept Vehicles Using Modelica and Expectation to Modelica from Automotive
Industries ..579

A Modular Technique for Automotive System Simulation ..589

Modeling Vehicle Drivability with Modelica and the Vehicle Dynamics Library599

Session 5D: Power Plants ...609

Status of ClaRaCCS: Modelling and Simulation of Coal-Fired Power Plants with CO2 Capture609

Start-up Optimization of a Combined Cycle Power Plant ..619

Modeling and Simulation of a Vertical Wind Power Plant in Dymola/Modelica631

8 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076

Session 6A: Optimization ...641

First and second order parameter sensitivities of a metabolically and isotopically non-stationary
biochemical network model ..641

Collocation Methods for Optimization in a Modelica Environment ..649

Parallel Multiple-Shooting and Collocation Optimization with OpenModelica ..659

Optimization Library for Interactive Multi-Criteria Optimization Tasks ..669

Session 6B: Mechanic Systems III ...681

A Planar Mechanical Library for Teaching Modelica ...681

DyMoRail: A Modelica Library for modelling railway buffers ..691

Natural frequency analysis of Modelica powertrain models ..697

Achieving O(n) Complexity for Models from Modelica.Mechanics.Multibody ..705

Session 6C: Climate Systems II ...713

Modeling the discontinuous individual channel injection into fin-and-tube evaporators for residential air-
conditioning ..713

Validation and Application of the Room Model of the Modelica Buildings Library727

The Indoor Climate Library and its Application to Heat and Moisture Transfer in a Vehicle Cabin737

Dynamic Modelling of a Condenser/Water Heater with the ThermoSysPro Library745

Session 6D: FMI Standard II ...759

FMI implementation in LMS Virtual.Lab Motion and application to a vehicle dynamics case759

Generating Functional Mockup Units from Software Specifications ...765

Functional Mock-up Interface in Mechatronic Gearshift Simulation for Commercial Vehicles775

Using Functional Mock-up Units for Nonlinear Model Predictive Control ..781

DOI Proceedings of the 9th International Modelica Conference 9
10.3384/ecp12076 September 3-5, 2012, Munich, Germany

Poster Session ..791

Modeling a Low-temperature Compressed Air Energy Storage with Modelica ..791

Natural Unit Representation in Modelica ..801

Modelica Code Generation with Polymorphic Arrays and Records Used in Wind Turbine Modeling......809

Derivative-free Parameter Optimization of Functional Mock-up Units ..819

Stochastic Simulation and Inference using Modelica ...829

A Toolchain for Real-Time Simulation using the OpenModelica Compiler ...839

Time varying mass and inertia in paper winding multibody simulation ..847

Collaborative complex system design applied to an aircraft system ..855

Backward simulation - A tool for designing more efficient mechatronic systems867

Modelling of new vehicle suspension concept with integrated electric drive ...877

Dynamic modeling and simulation of a multi-effect distillation plant ...883

Modeling a drum motor for illustrating wearout phenomena ..889

“Green Building” – Modelling renewable building energy systems and electric mobility concepts using
Modelica ...897

High-Fidelity Transmission Simulation for Hardware-in-the-Loop Applications907

ADGenKinetics: An Algorithmically Differentiated Library for Biochemical Networks Modeling via
Simplified Kinetics Formats ...915

Variable Structure Modeling for Vehicle Refrigeration Applications ..927

Thermal Simulation of Power-Controlled Micro-CHP Systems for Residential Buildings935

Modeling of a falling film evaporator ..941

Integration of Modelica models into an existing simulation software using FMI for Co-Simulation949

Chemical Process Modeling in Modelica ...955

FMI Add-on for NI VeriStand for HiL Simulation ...963

Using Static Parametric Design to Support Systems Engineering of Industrial Automation Systems971

10 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076

Exhibitors ..981

BAUSCH-GALL GmbH ..981

CENIT ...981

Claytex ..981

CyDesign Labs ..982

Dassault Systèmes ..982

ITI GmbH ...982

LMS International ..983

MapleSoft ..983

Modelon GmbH ..983

Open Modelica ...984

QTronic GmbH ...984

Schlegel Simulation GmbH ...984

SIMPACK AG ...985

TLK-Thermo GmbH ..985

Transcat PLM GmbH ...985

Wolfram ..986

XRG Simulation GmbH ..986

DOI Proceedings of the 9th International Modelica Conference 11
10.3384/ecp12076 September 3-5, 2012, Munich, Germany

Author Index

Abel, Andreas 775
Åkesson, Johan 173, 185, 375,

619, 649, 819
Andersson, Christian 819
Andersson, Daniel 101, 737
Andreasson, Johan 599
Anthonis, Jan 759
Antretter, Florian 949
Arnold, Martin 173, 205
Asghar, Adeel 443, 537
Bachmann, Bernhard 47, 185, 247,

659
Baharev, Ali 955
Bäker, Bernard 897
Bals, Johann 513
Baltzer, Sidney 263
Batteh, John 599
Bausch-Gall, Ingrid 495
Bayer, Christian 889
Beitelschmidt, Michael 705
Berenguel, Manuel 883
Bergdahl, Tove 375
Bergero, Federico 237
Blochwitz, Torsten 173, 355, 775
Bodenmüller, Tim 339
Bödrich, Thomas 151
Bonilla, Javier 71
Bonvini, Marco 477
Bouskela, Daniel 745
Bouvy, Claude 263
Braun, Willi 185, 247
Breitenecker, Felix 557
Brunnemann, Johannes 609
Budt, Marcus 791
Burhenne, Sebastian 949
Casella, Francesco 215, 443
Cellier, François E. 71, 237
Chen, Liping 405, 549
Clauss, Christoph 173, 205, 507
Dahl, Johan 101
Davies, Kevin 115, 801
de La Calle, Alberto 883, 941
Delgado Beltran, Juan
Gabriel

697

Dempsey, Mike 295, 571, 697
Diehl, Stefan 819

Donders, Stijn 759
Dormido, Sebastián 71, 941
Drenth, Edo 847
Dumont, Elisabeth 691
Dupont, Francois 37
Dziwok, Stefan 365
Eckstein, Lutz 263
Eichberger, Alexander 775
Eiden, Joerg 609
El Hefni, Baligh 745
Elmegaard, Brian 713
Elmqvist, Hilding 15, 27, 37, 173
Elsheikh, Atiyah 915
Enge-Rosenblatt, Olaf 889
Erdélyi, Hunor 759
Eriksson, Lars 659
Fernández, Joaquín 237
Fish, Garron 571, 697
Floros, Xenofon 237
Förster, Michael 641
Frenkel, Jens 433, 705
Friedrich, Markus 173
Fritzson, Peter 385, 393, 433,

443, 537, 659,
809

Gallardo Yances,
Stephanie

247, 619

Ganeson, Anand 537
Gao, Jianbo 513
Gaucher, Fabien 37
Gebremedhin, Mahder 393, 659
Gedda, Sofia 819
Gentilini, Guillaume 745
Gissing, Jörg 263
Gödecke, Andreas 565
Goossens, Paul 907
Gottelt, Friedrich 609
Gräber, Manuel 781
Griffin, John 599
Grün, Gunnar 271, 279
Gühmann, Clemens 287
Günther, Felix 589
Gusev, Ilya 311
Hafner, Irene 557
Hajek, Manfred 417
Hamann, Peter 775

12 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076

Hannemann-Tamás,
Ralf

641

Hartweg, Stefan 523
Hasenbein, Christoph 609
Hauger, Svein Olav 197
Haumer, Anton 159
Haynes, Comas 115
Heckmann, Andreas 125
Heinzl, Bernhard 557
Hellerer, Matthias 339, 523
Herkel, Sebastian 949
Hillmann, Claudio 809
Hirano, Yutaka 579
Hodrius, Thomas 355
Hofmann, Tobias 347
Höger, Christoph 485
Huang, Hua 287
Huber, Jörg 323
Isakovic, Karsten 485
Isaksson, Pär 631
Jahangiri, Pooyan 57
Jeck, Peter 263
Ji, Hongchao 971
Ji, Yang 513
Junghanns, Andreas 173
Kærn, Martin Ryhl 713
Kastner, Wolfgang 557
Kehrer, Christian 897
Kempf, Karl 971
Kennel, Ralph 513
Kirches, Christian 781
Kittilsen, Pål 197
Knoblich, René 287
Kofman, Ernesto 237
Köllner, Christian 355
Körner, Andreas 557
Kosenko, Ivan 311
Kral, Christian 159
Krüger, Imke 927
Kubiak, Rick 485
Kunze, Günter 433, 705
Landsiedl, Michael 557
Leva, Alberto 477
Liang, Feng 385
Lichius, Thomas 263
Liermann, Matthias 867
Lind, Alexandra 619
Lind, Ingela 333
Lindholm, Petter 185
Link, Kilian 247, 619
Liu, Qi 549

Liu, Qinghua 549
Ljubijankic, Manuel 323
Loh, Chia Choon 365
Magnusson, Fredrik 649
Mai, Pierre R. 455
Majetta, Kristin 507
Mallebrein, Georg 589
Malmheden, Martin 855
Marquardt, Wolfgang 641
Mattias, Nyberg 385
Mattsson, Jesper 375
Mattsson, Sven Erik 15, 37
Mattsson, Tobias 375
Maurer, Werner 691
Mauss, Jakob 173
Mehlhase, Alexandra 485, 927
Mikelsons, Lars 839, 971
Mikoleit, Beate 897
Moghadam, Afshin
Hemmati

393

Mühlbauer, Monika 565
Müller, Dirk 57, 935
Müller, Jakob 877
Naumann, Uwe 641
Neumaier, Arnold 955
Neumerkel, Dietmar 173
Nezhadali, Vaheed 659
Nieveler, Joerg 565
Nöh, Katharina 641
Norrefeldt, Victor 271, 279, 737
Nouidui, Thierry
Stephane

727

Nowoisky, Sebastian 287
Nytsch-Geusen,
Christoph

323, 485

Ochel, Lennart 659
Olsson, Hans 173
Oprea, Alexandra 333
Otter, Martin 15, 27, 173,

495, 523
Palma, Cosimo 963
Paredis, Christiaan 115, 801
Pathak, Arnav 271, 737
Pazold, Matthias 949
Petersson, Joel 631
Pfeiffer, Andreas 495, 523, 537,

669
Phalak, Kaustubh 727
Picarelli, Alessandro 571
Pohlmann, Uwe 365, 765
Pop, Adrian 443

DOI Proceedings of the 9th International Modelica Conference 13
10.3384/ecp12076 September 3-5, 2012, Munich, Germany

Prescott, William 759
Proß, Sabrina 47
Provan, Gregory 829
Pruckner, Alfred 877
Quincy, Jean Baptiste 855
Raabe, Nick 167
Rädler, Jörg 323
Radon, Jan 949
Ravachol, Michel 855
Reddehase, Hendrik 765
Rein, Udo 775
Reiner, Matthias 523
Renz, Ala 609
Roberts, Neil 295, 697
Roca, Lidia 883
Röckemann, Jens 765
Rodemann, Tobias 897
Roeder, Volker 609
Rogovchenko, Olena 385, 537
Romanoni, Marco 963
Rössler, Matthias 557
Ruge, Vitalij 659
Saadat, Ali 63
Sadeghi, Sara 385
Sällberg, Elin 619
Samlaus, Roland 809
Schäfer, Wilhelm 765
Schamai, Wladimir 385
Scharff, Dirk 781
Schaub, Alexander 339
Schierz, Tom 205
Schlabe, Daniel 133
Schlegel, Clemens 425
Schmidt, Torsten 507
Schmitz, Gerhard 609, 927
Schmitz, Moritz 641
Schneider, Stefan-
Alexander

347, 455

Schnüttgen, Joachim 889
Schramm, Dieter 971
Schubert, Christian 705
Schulze, Christian 609
Schwan, Torsten 897
Seemann, Sebastian 425
Sielemann, Michael 81, 223
Sivertsson, Martin 659
Sjölund, Martin 443
Soroka, Orysia 143
Span, Roland 791
Spieß, Christian 417
Stavåker, Kristian 393

Sten, Jon 375
Stinner, Sebastian 935
Streblow, Rita 57
Streit, Sebastian 125
Strobel, Michael 809
Suck, Julian 365
Tegethoff, Wilhelm 781
Thiele, Bernhard 27, 455
Thomas, Eric 855
Thorade, Matthis 63
Thüring, André 609
Tichy, Matthias 365
Tillack, Jana 641
Tobolar, Jakub 877
Tummescheit,
Hubertus

631, 737

Ulbrich, Heinz 589
Unger, René 897
Vahid, Orang 143, 907
van der Linden,
Franciscus

303

Velut, Stéphane 619
Venturini, Alberto 829
Viel, Antoine 173
Vittorias, Iason 565
von Lieres, Eric 641
Vontz, Thomas 565
Wagner, Robert 765
Wasbø, Stein 197
Wellner, Kai 609
Wetter, Michael 727
Wiechert, Wolfgang 641
Wischhusen, Stefan 253
Wolf, Boris 365
Wolf, Daniel 791
Worschech, Niklas 839
Wright, Derek 143
Wyes, Jutta 641
Xie, Gang 405
Xiong, Tifan 549
Yebra, Luis J. 71, 883, 941
Ylikiiskilä, Johan 631
Zhao, Yan 405
Zhou, Fanli 405
Zimmer, Dirk 133, 681
Ziske, Johannes 151
Zuga, Adam 809
Zuo, Wangda 727

14 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076

Session 1A: Hybrid Modeling

Fundamentals of Synchronous Control in Modelica

Fundamentals of Synchronous Control in Modelica
Hilding Elmqvist1 Martin Otter2 Sven Erik Mattsson1

1Dassault Systèmes AB, Ideon Science Park, SE-223 70 Lund, Sweden
2DLR Institute of System Dynamics and Control, D-82234 Wessling, Germany

Hilding.Elmqvist@3ds.com Martin.Otter@dlr.de SvenErik.Mattsson@3ds.com

Abstract
The scope of Modelica 3.3 has been extended from a
language primarily intended for physical systems
modeling to modeling of complete systems by allow-
ing the modeling of control systems and enabling
automatic code generation for embedded systems.

This paper describes the fundamental synchronous
language primitives introduced for increased cor-
rectness of control systems implementation. The ap-
proach is based on associating clocks to the variable
types. Special operators are needed when accessing
variables of another clock. This enables clock infer-
ence and increased correctness of the code since
many more checks can be done during translation.

Keywords: Modelica; Synchronous; Control; Sam-
pled Data Systems, Periodic Systems

1 Introduction
The scope of Modelica has been extended from a
language primarily intended for physical systems
modeling to modeling of complete systems by allow-
ing the modeling of control systems and by enabling
automatic code generation for embedded systems.

This paper describes the fundamental synchro-
nous language primitives introduced for increased
correctness of control systems implementation since
many more checks can be done at compile time. A
companion paper (Elmqvist, et.al, 2012) describes
the state machine features of Modelica 3.3. Yet an-
other companion paper (Otter, et.al, 2012) describes
a Modelica library, Modelica_Synchronous, which
supports a graphically oriented approach to synchro-
nous control systems implementation.

The new language elements follow the synchro-
nous approach (Benveniste et. al. 2002). They are
based on the clock calculus and inference system
proposed by (Colaco and Pouzet 2003) and imple-
mented in Lucid Synchrone version 2 and 3 (Pouzet
2006). However, the Modelica approach also uses
multi-rate periodic clocks based on rational arithme-
tic introduced by (Forget et. al. 2008), as an exten-

sion of the Lucid Synchrone semantics. Additionally,
the built-in operators introduced in Modelica 3.3 also
support non-periodic and event based clocks.

In the following sections the new language ele-
ments are discussed. Afterwards, in section 5, a ra-
tional is given why they have been introduced by
comparing the new possibilities with the features of
Modelica 3.2 to model sampled data systems.

2 Synchronous Features of Modelica
The synchronous features of Modelica 3.3 will be
gradually introduced by means of examples illustrat-
ing how to use them. This paper uses a completely
textual approach. The companion paper (Otter, et.al,
2012) describes a Modelica library, Modeli-
ca_Synchronous, which supports a graphically ori-
ented approach to synchronous control systems im-
plementation.

2.1 Plant and Controller Partitioning

We will consider control of a mass and spring-
damper system with a force actuator. A Modelica
model is shown below:

model MassWithSpringDamper
 parameter Modelica.SIunits.Mass m=1;
 parameter Modelica.SIunits.TranslationalSpringConstant k=1;
 parameter
 Modelica.SIunits.TranslationalDampingConstant d=0.1;
 Modelica.SIunits.Position x(start=1,fixed=true) "Position";
 Modelica.SIunits.Velocity v(start=0,fixed=true) "Velocity";
 Modelica.SIunits.Force f "Force";
equation
 der(x) = v;
 m*der(v) = f - k*x - d*v;
end MassWithSpringDamper;

A simple discrete-time speed controller can be im-
plemented as follows:

model SpeedControl
 extends MassWithSpringDamper;
 parameter Real K = 20 "Gain of speed P controller";
 parameter Modelica.SIunits.Velocity vref = 100 "Speed ref.";
 discrete Real vd;

DOI Proceedings of the 9th International Modelica Conference 15
10.3384/ecp1207615 September 3-5, 2012, Munich, Germany

 discrete Real u(start=0);
equation
 // speed sensor
 vd = sample(v, Clock(0.01));

 // P controller for speed
 u = K*(vref-vd);

 // force actuator
 f = hold(u);
end SpeedControl;

The SpeedControl model extends the continuous-time
plant model MassWithSpringDamper. The speed control-
ler is a discrete-time controller. The boundaries be-
tween continuous-time equations and discrete-time
equations are defined by the operators sample and
hold.

The sample operator samples a continuous-time
variable and returns a discrete-time variable. The
sample rate is specified by the second Clock argument
to sample. In this case, a periodic clock which ticks
with a period of 0.01 second is specified.

Since sample returns a discrete-time result that is
associated to clock Clock(0.01), the variable vd be-
comes discrete-time and is associated to the same
clock as well. Variable vd appears in equation
u = K*(vref-vd) and therefore all time varying variables
in this equation, i.e., u, must be also discrete-time
and associated to the same clock. If further equations
would be present, then all equations in which vd and
u appear, would be again associated to the same
clock. This approach to identify the equations be-
longing to the same clock is called clock inference
and is a key element in the new approach.

The hold operator converts from discrete-time to
continuous-time by holding the value between the
clock ticks. More precisely, the hold(u) operator re-
turns the start value of u if the operator is called be-
fore the first tick of the clock of u. Otherwise, the
most recently available value of u is returned.

To summarize, the sample(v..) and hold(..) operators
define the boundaries between clocked and continu-
ous-time partitions. Equations and variables belong-
ing to the same clocked partition are identified by
clock inference.

2.2 Discrete-time State Variables

More advanced features will be introduced using a
position controller using an inner P controller and an
outer PI controller. The first version is using one
clock:

model ControlledMassBasic
 extends MassWithSpringDamper;
 parameter Real KOuter = 10 "Gain of position PI controller";
 parameter Real KInner = 20 "Gain of speed P controller";
 parameter Real Ti = 10 "Integral time for pos. PI controller";

 parameter Real xref = 10 "Position reference";

 discrete Real xd;
 discrete Real eOuter;
 discrete Real intE(start=0);
 discrete Real uOuter;

 discrete Real vd;
 discrete Real vref;
 discrete Real uInner(start=0);
equation
 // position sensor
 xd = sample(x, Clock(0.01));

 // outer PI controller for position
 eOuter = xref-xd;
 intE = previous(intE) + eOuter;
 uOuter = KOuter*(eOuter + intE/Ti);

 // speed sensor
 vd = sample(v);

 // inner P controller for speed
 vref = uOuter;
 uInner = KInner*(vref-vd);

 // force actuator
 f = hold(uInner);
end ControlledMassBasic;

In this model, the sample operator for v does not
have an associated Clock specification since it is in-
ferred (sample(v) is implicitly associated to clock
Clock(0.01) because xd is on this clock, and therefore
eOuter, and therefore uOuter, and therefore vref and
therefore vd, and therefore sample(v)).

Since a PI controller is used, it is necessary to in-
troduce a discrete-time state variable for the integral
part. The operator previous(..) is used to access the
value of intE at the previous clock tick. Note that due
to this use of previous(..),intE becomes a discrete-time
state and needs to have a start value specified in the
declaration (at the first clock tick, previous(intE) re-
turns the start value of intE).

The behavior of the system is shown in the figure
below: x, xref and xd (upper diagram) and the actua-
tor signal uInner (lower diagram).

2.3 Base- clocks and Sub-clocks

A Modelica model will typically have several con-
trollers for different parts of the plant. Such control-
lers might not need synchronization and can have
different base clocks. Equations belonging to differ-
ent base clocks can be implemented by asynchronous
tasks of the used operating system.

Fundamentals of Synchronous Control in Modelica

16 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207615

It is also possible to introduce sub-clocks that tick a
certain factor slower than the base clock. Such sub-
clocks are perfectly synchronized with the base
clock, i.e. the definitions and uses of a variable are
sorted in such a way that when sub-clocks are acti-
vated at the same clock tick, then the definition is
evaluated before all the uses.

Such sub-clocks can, for example, be used to save
CPU resources. In some cases, an outer controller of
a cascade control architecture does not need to be
evaluated as often as the inner controller.

When using several clocks, it is convenient and
clear to declare them. Modelica 3.3 introduces a new
base type, Clock, for this purpose:
 Clock cControl = Clock(0.01);
 Clock cOuter = subSample(cControl, 5);

The subSample operator creates a clock which is a fac-
tor slower; in this case cOuter becomes 5 times slower
than cControl. The subSample operator can also operate
on a discrete-time variable and then picks the value
at every factor clock tick of the clock of this varia-
ble.

Such clock variables can then be used as argument
to the sample operator:
 xd = sample(x, cOuter);
 vd = sample(v, cControl);

The outer controller now calculates uOuter at the rate
of cOuter. uOuter is the velocity reference, vref, for the
inner controller which is compared to the sampled
velocity measurement, vd. vd has clock cControl, i.e., 5
times faster than uOuter. Trying to directly calculate
uOuter-vd would give a clocking error since the se-
mantics is not clear. The user needs to state the intent
by using a clock conversion operator. In this case
uOuter needs to be converted to the faster clock by
using the superSample operator:
 vref = superSample(uOuter, 5);

superSample replicates a factor 5 times the value of
the variable with the slower clock to have a clock a
factor faster.

The simulation results are shown below. Note
that xd and uOuter have a slower sample rate than uIn-
ner.

2.4 Interval of Clock

It is possible to inquire the actual interval of a clock
by using the interval() operator. One example of the
need is when using difference approximations. As-
sume that no speed sensor is available and the speed
needs to be estimated from changes of position. A
first order approximation is shown below. It uses a
faster sampling of the position, x:

 Clock cFast = superSample(cControl, 2);

 xdFast = sample(x, cFast);
 vd = subSample((xdFast-previous(xdFast))/interval(), 2);

After approximating the derivative at the higher rate,
the result is sub-sampled with a factor of 2 to get the
required rate of vd.

2.5 Phase of Clock

To better control the scheduling of calculations, it is
possible to shift the phase of a clock. For example,
the calculation of the outer controller code will be
done before the inner controller code due to the data
flow. This might give jittering in the actuator signal
uInner caused by the slight delay due to the computa-
tion time. One way to avoid this is to schedule the

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 17
10.3384/ecp1207615 September 3-5, 2012, Munich, Germany

outer code to be executed later in the cycle and to
accept the use of an old value of uOuter. This is ac-
complished in the following way:
 Clock cOuter = subSample(shiftSample(cControl, 2, 3), 5);

The shiftSample operator shifts the clock a part of the
interval. In this case 2/3 of the interval of the clock
cControl.

By changing the clock cOuter in this way, the cal-
culation of uOuter will be delayed and will not be
synchronized to vd. This needs to be compensated by
using backSample which shifts the clock in the oppo-
site direction to shiftSample:
 vref = backSample(superSample(uOuter, 5), 2, 3);

It should be noted that this means that a start value
must be given to uOuter which is used before the
clock of uOuter has started ticking.

The complete model including all aspects dis-
cussed above is given below:

model ControlledMass
 extends MassWithSpringDamper;
 parameter Real KOuter = 10 "Gain of position PI controller";
 parameter Real KInner = 20 "Gain of speed P controller";
 parameter Real Ti = 10 "Integral time for pos. PI controller";
 parameter Real xref = 10 "Position reference";

 discrete Real xd;
 discrete Real eOuter;
 discrete Real intE(start=0);
 discrete Real uOuter(start=0);

 discrete Real xdFast;
 discrete Real vd;
 discrete Real vref;
 discrete Real uInner(start=0);

 Clock cControl = Clock(0.01);
 Clock cOuter = subSample(shiftSample(cControl, 2, 3), 5);
 Clock cFast = superSample(cControl, 2);
equation
 // position sensor
 xd = sample(x, cOuter);

 // outer PI controller for position
 eOuter = xref-xd;
 intE = previous(intE) + eOuter;
 uOuter = KOuter*(eOuter + intE/Ti);

 // speed estimation
 xdFast = sample(x, cFast);
 vd = subSample((xdFast-previous(xdFast))/interval(), 2);

 // inner P controller for speed
 vref = backSample(superSample(uOuter, 5), 2, 3);
 uInner = KInner*(vref-vd);

 // force actuator
 f = hold(uInner);
end ControlledMass;

The simulation results are shown below. In particular
it can be noted how uOuter is shifted 2/3 of the inter-
val on uInner.

An interesting question is when a clock starts to tick.
In principal there are two useful approaches: A clock
starts ticking at time = 0 seconds or it starts ticking at
the simulation start time (or when a device is
switched on). The synchronous extensions of Model-
ica use the second approach because from the view
of a hardware device, there is no absolute but only
relative time.

Operator y = shiftSample(u, c, r) defines a new clock
that basically shifts the first activation of the clock of
y in time c/r*interval(u) later than the first activation of
the clock of u. This definition gives not a precise
time definition because interval(u) is of type Real. Fur-
thermore, it only holds in special cases, such as for
periodic clocks with a fixed period. The precise time
definition that holds for all clocks is achieved by
constructing (conceptually) a clock cBase:
 Clock cBase = subSample(superSample(u, r), c);

and the clock of y = shiftSample(u, c, r) starts at the se-
cond clock tick of cBase and y is set to the most re-
cently available value of u.

In a similar way the operator y = backSample(u, c, r)
defines a new clock that basically shifts the first ac-
tivation of the clock of y in time c/r*interval(u) before
the first activation of the clock of u. Similarly to
shiftSample, the precise time definition is achieved by
constructing (conceptually) a clock cBase :
 Clock cBase = subSample(superSample(u, r), c);

Fundamentals of Synchronous Control in Modelica

18 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207615

and the clock of y = backSample(u, c, r) is shifted a time
duration before the clock of u, such that this duration
is identical to the duration between the first and se-
cond clock tick of cBase.

The backSample(..) operator is more critical than the
shiftSample(..) operator: The clock of v starts before the
clock of u and therefore a start value for u is needed
and before the first tick of the clock of u, the operator
returns this start value. Additionally, there is the re-
striction that the clock of v cannot start before the
simulation start time.

On first view, one could have only provided one
operator to shift the start of a clock forward or back-
ward in time. However, shifting backwards in time
requires providing a start value, whereas this is not
the case when shifting forward in time. Since these
are therefore structurally different cases, it is better
to use two different operators.

2.6 Exact Periodic Clocks

In the previous sections, periodic clocks are defined
with the Clock(period) constructor, where period is of
type Real and defines the sample period. The seman-
tics is that two clocks of this kind are not time syn-
chronized to each other. Example:
 Clock c1 = Clock(0.1);
 Clock c2 = superSample(c1,3);
 Clock c3 = Clock(0.1/3);

Clock c1 and c2 are precisely time synchronized to
each other and at every third tick of c2, clock c1 ticks.
However, clock c3 is not time synchronized to c1 or
c2 and there is no guarantee that c3 ticks at every
third tick of c1. The reason is that calculations with
Real numbers are not exact and subject to small nu-
merical errors.

Alternatively, a periodic clock can be defined
with the Clock(c,r) operator, where c and r are of type
Integer, and the fixed sample period is defined as the
rational number c/r. The semantics is that all clocks
defined in this way are precisely time synchronized
to each other. Example:
 Clock c1 = Clock(1,10); // period = 1/10
 Clock c2 = superSample(c1,3); // period = 1/30
 Clock c3 = Clock(1,30); // period = 1/30

Clocks c1, c2, and c3 are precisely time synchronized
to each other and at every third tick of c2 and of c3,
clock c1 ticks.

An interesting question is which periods can be
defined with exact periodic clocks? Basically, a peri-
od is defined as the quotient of two Modelica Integer
numbers, which are usually 32 bit integers. There-
fore, periods in the range 10-9 ... 109 s can be directly
defined. However, clocks can be sub- and super-
sampled, e.g,

 superSample(Clock(1, 1000000000) , 1000000000);

The resulting clock will have a period of 10-18 s. In
other words, from a Modelica point of view, any pe-
riod that can be represented by a rational number
with unlimited precision can be defined. In the Mod-
elica 3.3 specification it is stated that “it is required
that accumulated sub- and super sampling factors in
the range of 1 to 263 can be handled”. Therefore, eve-
ry tool should support internally at least 64 bit inte-
gers and therefore periods in the range 10-18 ... 1018 s.

2.7 Clocked When Clause

Although the new synchronous operators allow de-
fining clocked equations implicitly due to clock in-
ference, it is sometimes still useful to explicitly de-
fine that a group of equations is associated with the
same clock. In order to not introduce yet another new
keyword, the already existing when-clause is over-
loaded for this purpose. Example:
 import Modelica.Utilities.Streams.print;
equation
 when Clock(0.1) then
 x = A*previous(x) + B*u;
 y = C*previous(x) + D*u;
 print("Clock ticks at time = " + String(sample(time)));
 end when

If a clock is used in a when-clause then all equations
in the when-clause are associated with this clock. In
such a case, the equations in the when-clause can be
arbitrary equations (recall that for standard when-
clauses with a Boolean condition, all equations in the
when-clause must have a variable reference on the
left hand side of every equation, i.e., equations must
be of the form “x = expr”).

In the example above, all three equations in the
when-clause belong to the same partition that is are
associated to clock Clock(0.1). When-clauses might be
used to clearly define that equations are associated
with the same clock. Furthermore, there are excep-
tional cases as in the example above, where it would
be not possible to associate the print(..) statement to
Clock(0.1) without a when-clause because no variable
of the clocked partition is used in the print statement.
If the clock of the when-clause is defined somewhere
else and shall be deduced by clock inference, then
the clock Clock() needs to be used in the when-clause:
 when Clock() then // clock is inferred
 x = A*previous(x) + B*u;
 y = C*previous(x) + D*u;
 print("Clock ticks at time = " + String(sample(time)));
 end when

In Modelica 3.3, clocked when-clauses are restricted:
The condition must be a clock (and not, say a Boole-
an expression of clocks such as “c1 or c2”), an else-

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 19
10.3384/ecp1207615 September 3-5, 2012, Munich, Germany

when part is not allowed, and the clocked when
clause can only appear in an equation section.

2.8 Varying Interval Clocks

It is also possible to define clocks with a varying
interval between the sampling points. As an exam-
ple, consider
model VaryingClock
 Integer nextInterval(start=1);
 Clock c = Clock(nextInterval, 100);

 Real v(start=0.2);
 Real d = interval(v);
 Real d0 = previous(nextInterval)/100.0;
equation
 when c then
 nextInterval = previous(nextInterval) + 1;
 v = previous(v) + 1;
 end when;
end VaryingClock;

It defines a Clock c with varying interval, nextInterval.
A definition of the form
 Clock c = Clock(nextInterval, 100)
states that clock c ticks at the simulation start and
then every nextInterval/100 seconds, and at every clock
tick, nextInterval can be newly computed. Since at the
first clock tick, previous(nextInterval) is equal to the
start value of nextInterval (= 1), the value of nextInterval
at the first clock tick is 1+1 = 2, and therefore the
second clock tick is at 2/100 seconds. The further
ticks are at 5/100, 9/100 etc. The behavior of the var-
iable v is shown in the following plot:

The variables d = interval(v) and
 d0 = previous(nextInterval)/100.0 are equal.

Let us sub-sample v by adding to the model:

 Real vs3 = subSample(v, 3) ;
 Real ds3 = interval(vs3);

As the plot shows, vs3 samples each third point of v.
We can also super-sample:

 Real vS5 = superSample(v, 5) ;
 Real dS5 = interval(vS5);

The 5 super-sampling points are evenly distributed in
time within the intervals of clock c as shown by the
plot of dS5. Let us now sub-sample dS5:

 Real vS5s3 = subSample(vS5, 3) ;
 Real ds3S5 = interval(vs3S5);

The result is that vS5s3 is every third sample of vS5
resulting in a more irregular sampling interval. The
equation vS5s3 = subSample(vS5, 3) can be expanded as
vS5s3 = subSample(superSample(v, 5), 3).

What is the result if we do it in the reverse order,
vs3S5 = superSample(subSample(v, 3), 5)? For the clock c,
the time to the next tick is known at the current tick.

Fundamentals of Synchronous Control in Modelica

20 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207615

However, this is not the case for the clock of subSam-
ple(v, 3). The interval to its next tick is the sum of 3
future intervals of c and only the first term is known.
The definition of super-sampling does not require the
intervals of super-sampling to be equidistant in time.
The definition is instead based on counting ticks. It
means that vs3S5 = vS5s3.

In Modelica, a non-periodic clock can only be in-
troduced by using an explicit clock constructor. The
factors of sub-sampling or super-sampling must be
parameter expressions, which mean that neither sub-
sampling nor super-sampling can construct a clock
with varying interval from a periodic clock. It is also
required that there must be only one clock construc-
tor, c, in the same base-clock partition if c is a non-
periodic clock. All this means that we can construct a
new clock c0 that is a super-sampled clock of c, such
that all other clocks can be modeled as pure sub-
sampling clocks of c0. As we have described, there
are no issues in making a faster clock c0 by super-
sampling c. The sub-sampling of c0 to implement all
the sub-clocks is then just a matter of counting ticks
and picking the nth samples.

2.9 Boolean Clocks

It is also possible to define clocks that tick when a
Boolean expression changes from false to true. For
example assume that a clock shall tick whenever the
shaft of a drive train passes 180o. This can be defined
as (Otter, et.al. 2012):
 w = der(angle);
 J*der(w) = tau;
 when Clock(angle >= hold(offset)+Modelica.Constants.pi) then
 offset = sample(angle);
 end when;

At the simulation start the discrete variable offset has
a start value of zero. Therefore, the first clock tick
appears when angle becomes larger as 180o. Then,
offset is set to the actual angle, and the next clock tick
appears at another full rotation of the shaft. Note,
that the Boolean expression is continuous-time, and
therefore the clocked variable offset cannot be direct-
ly used, but must be casted from a clocked to a con-
tinuous-time variable with operator hold. A typical
simulation result is shown in the next figure:

Operators subSample, superSample, shiftSample and back-
Sample can also be applied on Boolean clocks. How-
ever, there are restrictions. For example, superSample(..)
cannot introduce new ticks because the next clock
tick is not known in advance. Example:
 Clock u = Clock(sine(time) > 0);
 Clock y1 = subSample(u,4);
 Clock y2 = superSample(y1,2); // fine y2 = subSample(u,2)
 Clock y3 = superSample(u, 2); // error

2.10 Discretized continuous time

A partition (i.e., a set of equations) that is marked by
sample, hold, subSample, superSample etc. operators is
called a “clocked partitions”. There are two different
kinds of clocked partitions:

Clocked discrete-time partition
This is the type of partition discussed so far, consist-
ing of algebraic equations, potentially using opera-
tors previous(..) and interval(..) in the equations.

Clocked discretized continuous-time partition
This is a partition where the operator der(..) is used
(and then previous(..) and interval(..) must not be pre-
sent). In such a case a set of differential and algebra-
ic equations is marked to be a clocked partition. The
semantics is that at clock ticks these equations are
solved with a specified integration method from the
previous to the next clock tick. The integrator for
such a partition is propagated (inferred) similarly as
a clock and therefore it suffices to define it at a few
places.

This is a powerful feature since in many cases it is
no longer necessary to manually implement discrete-
time components but it suffices to just build-up a
controller with continuous-time components and
then sample the input signals and hold the output
signals.

In the following example a continuous-time PI
controller that gets a reference and a measurement
signal as input is automatically transformed to a
clocked partition:
model ClockedPI
 parameter Real k;
 parameter Real T;
 input Real y_ref;
 input Real y_mes;
 output Real u(start=0.0);
 discrete Real e;
 discrete Real x;
 discrete Real ud;
 Clock c = Clock(Clock(0.1), solverMethod="ImplicitEuler");

equation
 // Sampling the inputs
 e = sample(y_ref,c) - sample(y_mes);

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 21
10.3384/ecp1207615 September 3-5, 2012, Munich, Germany

 // PI controller
 der(x) = e/T;
 ud = k*(x + e);

 // Holding the output
 u = hold(ud);
end ClockedPI;

With the declaration Clock(c, solverMethod), the solver-
Method (defined as String) is associated to clock c and
the partitions to which this clock is associated are
solved with the specified solver method (= integra-
tion method). As already mentioned, this feature can
be used to discretize continuous-time blocks. Also,
nonlinear plant models can be inverted and the in-
verse model can be discretized and used, say, as
feedforward controller part in a sampled data con-
troller, see (Otter, et. al. 2012). Furthermore, this
feature can be utilized for multi-rate real-time simu-
lations where a model is partitioned in different parts
and these parts are solved with different integration
methods and step sizes.

3 Synchronous Operators
All newly introduced operators of the synchronous
extension to Modelica have been sketched so far. In
this section, a short overview of these operators is
given:

Clock Constructors
Clock(): Returns a clock that is inferred
Clock(i,r): Returns a variable interval clock where the

next interval at the current clock tick is defined
by the rational number i/r. If i is parameteric,
i.e., a literal, a constant, a parameter or an ex-
pression of those kinds, the clock is periodic.

Clock(ri): Returns a variable interval clock where the
next interval at the current clock tick is defined
by the Real number ri. If ri is parametric, the
clock is periodic.

Clock(cond, ri0): Returns a Boolean clock that ticks
whenever the condition cond changes from false
to true. The optional ri0 argument is the value
returned by operator interval() at the first tick of
the clock.

Clock(c,m): Returns clock c and associates the solver
method m to the returned clock .

Base-clock conversion operators
sample(u,c): Returns continuous-time variable u as

clocked variable that has the optional argument
c as associated clock.

hold(u): Returns the clocked variable u as piecewise
constant continuous-time signal. Before the

first tick of the clock of u, the start value of u is
returned.

Sub-clock conversion operators
subSample(u,factor): Sub-samples the signal or clock u

by the integer factor. If factor is not present, it is
inferred.

superSample(u,factor): Super-samples the signal or clock
u by the integer factor. If factor is not present, it is
inferred.

shiftSample(u,c,r): Shifts the clock of a signal or clock u
forward in time.

backSample(u,c,r): Shifts the clock of a signal or clock u
backward in time. Before the first tick of the
clock of u, the start value of u is returned.

Other operators
previous(u): At the first tick of the clock of u, the start

value of u is returned. At subsequent clock
ticks, the value of u from the previous clock ac-
tivation is returned.

interval(u): Returns the interval between the previous
and the present tick of the clock to which signal
u is associated. The interval is returned as a Re-
al number.

4 Base-clock and Sub-clock
Partitioning

Consider the example SpeedControl in section 2.1. The
variables and equations of MassWithSpringDamper form
a well-defined continuous-time model together with
the equation f = hold(u) from SpeedControl if we view u
as a known input. Similarly the variables and equa-
tions added in SpeedControl when extending from
MassWithSpringDamper form a well-defined discrete
system if we disregard the equation f = hold(u), which
already is used in the continuous time system and if
we view v, referred in the equation
vd = sample(v, Clock(0.01)) as a known input. We have
now decomposed the system in a continuous-time
partition and in a discrete-time partition.

For the general case, we observe that the sample
and hold operators serve an important role as identi-
fying the interfaces between the two kinds of parti-
tions. The first argument of sample identifies inputs to
discrete-time partitions that must be provided by
continuous time partitions. Similarly the first argu-
ment of hold identifies inputs to continuous-time par-
tions that must be provided by discrete-time parti-
tions. If the first arguments are expressions, auxiliary
variables are introduced.

Fundamentals of Synchronous Control in Modelica

22 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207615

The idea of the base-clock decomposition is to
decompose the variables and the equations into sets
where the equations only refer to variables of its own
set if we neglect references of the first argument of
sample and hold. There are simple algorithms for do-
ing this, for details, see (Modelica Association 2012).

It must then be possible to classify a partition as
either continuous-time or discrete-time. Use of previ-
ous, subSample, superSample, shiftSample or backSample or
appearances of clocks or clock constructors requires
the partition to be discrete-time. The global variable
time can only be referenced in a continuous time par-
tition.

The derivative operator is clearly a continuous-
time operator. However, it may appear in a discrete-
time partition, because there are features to have
them automatically discretized by defining appropri-
ate solver clocks, see section 2.10.

The discrete time partitions are further divided in-
to sub-clock partitions by the same procedure while
treating the first argument of the operators subSample,
superSample, shiftSample or backSample as known inputs.

The result of sub-clock partitioning for the model
ControlledMass in section 2.5 is:

Continuous-time partition:
 der(x) = v;
 m*der(v) = f - k*x - d*v;
 f = hold(uInner);

Discrete-time sub-partition 1:
 xd = sample(x, cOuter);
 eOuter = xref-xd;
 intE = previous(intE) + eOuter;
 uOuter = KOuter*(eOuter + intE/Ti);

Discrete-time sub-partition 2:
 xdFast = sample(x, cFast);
 aux1 = (xdFast-previous(xdFast))/interval();

Discrete-time sub-partition 3:
 vd = subSample(aux1, 2);
 vref = backSample(aux2, 2, 3);
 uInner = KInner*(vref-vd);

Discrete-time sub-partition 4:
 aux2 = superSample(uOuter, 5);

5 Rationale for Clocked Semantics
This section describes why the synchronous lan-
guage elements have been introduced in Modelica
3.3, by analyzing the issues of Modelica 3.2 regard-
ing control systems implementation.

Modelica 3.2 has both continuous-time and dis-
crete-time equations. Discrete-time equations are
enclosed in when-clauses and are only executed at
certain events, i.e. these equations are only valid in-

stantaneously, not always. Furthermore, the discrete-
time equations are not general equations, since the
left hand-side of an equation in a when-clause must
be a variable reference. It is for example not allowed
to write in a when-clause: “A*x = b”. The synchro-
nous features of Modelica 3.3 remove this restriction
and general equations are allowed in clocked parti-
tions and in particular also in clocked when-clauses.

In order to handle such instantaneous equations, a
special semantics regarding the definition of varia-
bles was introduced. A variable that is assigned by
an instantaneous equation keeps its value until the
next event when it is assigned again (= automatic
“hold” semantics). This implies that the value of
such a discrete-time variable could be read at any
time by another instantaneous equation or continu-
ous-time equation.

Such semantics can, however, be error prone
when different discrete-time equations are not cor-
rectly synchronized (see example below). The syn-
chronous features of Modelica 3.3 remove this prob-
lem.

Periodically sampled control systems can be de-
fined with standard Modelica 3.2 when-clauses and
the sample operator. For example:

 when sample(0,3) then
 xd = A*pre(xd) + B*y;
 u = C*pre(xd) + D*y;
 end when;

This approach to define periodically sampled data
systems has the following drawbacks that are not
present with the solution using clocks and clocked
equations described earlier in this paper:

Sampling errors cannot be detected:
All current Modelica libraries modeling sampled
data systems, such as Modelica.Blocks.Discrete, or
Modelica_LinearSystems2.Controller (Baur, et.al.
2009) provide a set of blocks where at every block
instance the sample period has to be defined in some
way. For example, the following figure shows part of
a control system modeled with the Modeli-
ca_LinearSystems2 library:

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 23
10.3384/ecp1207615 September 3-5, 2012, Munich, Germany

At every discrete block (here: sampler1, sampler2,
PI1) a sampleFactor has to be given defining that the
block equations are sampled at a multiple of a base
sampling rate (which is propagated via inner/outer to
all instances). This factor is shown in the icons (here:
“2”). If the modeler accidentally gives a different
number at one of the blocks (e.g., at “sampler1”),
then this is still a correct Modelica model and a
translator has to accept it, although this controller is
erroneous.

Furthermore note that component “feedback” is
still a continuous-time model without a when-clause.
If everything is correctly modeled, the “effect” of the
above model is that of a sampled data system with
one periodic sampling rate. However, it is easy to
make a mistake (e.g. forgetting “sampler1”, or using
a sampleFactor of 3 at one component), and then the
resulting model does no longer describe the desired
controller, but is still a valid Modelica model.

Worse, there is no easy way for a tool to figure
out which equations belong to one partition that
should be downloaded to a hardware device (e.g.,
describes the above figure one controller with one
sample rate, or three different controllers that are
connected by the continuous-time block “feed-
back”?). Due to the automatic sample and hold se-
mantics of when-clauses in Modelica, it is not possi-
ble to fix this with Modelica 3.2 language elements.

With the synchronous language elements parti-
tions are identified that belong to the same clock.
The sampling rate has to be defined only at one
place. Sampling errors can be easily detected, since
then the requirement is violated somewhere that all
variables in a clocked equation must belong to the
same clock.

Unnecessary initial values have to be defined:
Due to the automatic sample and hold semantics, all
variables assigned in a when-clause must have an
initial value because they might be used before they
are assigned a value the first time. Example:
 when b then
 y1 = 2*x;
 end when;
 y2 = 2*y1;

Since the continuous-time equation y2 = 2*y1 is valid
all the time, including during initialization, a value
for y1 is needed all the time. The when-clause in the
example is not active during initialization, and there-
fore an initial value for y1 has to be provided. In gen-
eral, it is too difficult and probably impossible that a
tool can figure out whether an initial value for a dis-
crete-time variable in Modelica 3.2 is needed or not.
The only safe way is therefore to provide initial val-
ues for all discrete-time variables, although in reali-

ty, only a small sub-set of the discrete-time variables
needs an initial value.^

With the synchronous language elements this is
different: Start values are required for the first argu-
ments of some operators (previous, hold, backSample).
For all other variables, it is guaranteed that a start
value is not needed for initialization (it might be
needed as guess value for an iteration variable of a
nonlinear equation system).

Inverse models not supported in discrete systems:
It is not possible to use a continuous-time model in
when clauses. However, this feature is highly desira-
ble. For example, some advanced controllers use an
inverse model of a plant in a controller, see (Looye
et. al. 2005). This powerful feature of Modelica to
use a nonlinear plant model in a controller is only
available for continuous-time systems, but not for
discrete-time systems. With Modelica 3.2, modelers
therefore have to export an inverse plant model and,
e.g. Dymola provides the export option to include an
integration method and treat the exported component
from the outside as discrete-time system. It is then
possible to import this discrete-time component in
another environment, but not in a Modelica model.
With clocked equations of Modelica 3.3, clocked
controllers with continuous-time models can be di-
rectly defined in Modelica, see section 2.10.

Efficieny degradation at event points:
Simulating a continuous-time plant and a discrete-
time controller in Modelica 3.2 together results in an
event iteration at a sample instant. A when-clause
with a sample(..) condition is evaluated exactly once at
such an event instant. However, the continuous-time
model to which the sampled data controller is con-
nected will be evaluated typically three times at a
sample instant: Once, when the sample instant is
reached, once to evaluate the continuous equations at
the sample instant, and once when an event iteration
occurs since a discrete variable v is changed and
pre(v) appears in the equations. Since a sampled sys-
tem is only evaluated once at a sample instant, i.e., at
a particular time instant, event iteration should not be
necessary since the discrete-time variables cannot be
changed by the event iteration. However, it seems to
be difficult to figure this out automatically for a
Modelica 3.2 model and therefore Modelica tools,
including Dymola, have usually at least one unneces-
sary evaluation of the continuous-time equations at a
sample instant.

With clocked equations described in the next sec-
tions a tool does not need to trigger an event itera-
tion, because it is guaranteed that all equations be-
longing to a periodic or non-periodic interval clock
are evaluated exactly once at an event instant, and

Fundamentals of Synchronous Control in Modelica

24 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207615

variables computed in such a partition cannot be
used outside of the partition (only with a cast opera-
tor the most recent available value of a clocked vari-
able v can be inquired outside of the clocked parti-
tion, but not previous(v)), and therefore event iteration
cannot give a different result. Therefore, it is easy for
a tool to avoid the unnecessary re-evaluation of the
continuous-time equations at an event triggered by a
clock.

6 Conclusions
We have introduced synchronous features in Modeli-
ca. For a discrete-time variable, its clock is associat-
ed with the variable type. Special operators have to
be used to convert between clocks. This gives an
additional safety since correct synchronization is
guaranteed by the compiler. It would have been very
hard to correctly implement the last version of the
example control system without such help from the
compiler.

7 Acknowledgements
The authors are very thankful to Albert Benveniste,
Marc Pouzet, Benoit Caillaud, Timothy Bourke,
Francois Dupont, Daniel Weil, Fabien Gaucher, Tor-
sten Blochwitz, Peter Fritzson, Hans Olsson and
Modelica Association members for stimulating dis-
cussions and feedback during evolutions of the Mod-
elica 3.3 specification.

Parts of this work were supported by the German
BMBF (Förderkennzeichen: 01IS08002), and the
Swedish VINNOVA (funding number: 2008-02291)
within the ITEA2 MODELISAR project
(http://www.itea2.org/project/result/download/result/
5533). The authors appreciate the partial funding of
this work.

References
Baur M., Otter M., and Thiele B. (2009): Modelica Li-

braries for Linear Control Systems. Proceedings
of 7th International Modelica Conference, Como,
Italy, September 20-22.
www.ep.liu.se/ecp/043/068/ecp09430068.pdf

Benveniste A., Caspi P., Edwards S.A., Halbwachs N., Le
Guernic P., and Simone R. (2003): The Synchro-
nous Languages Twelve Years Later. Proc. of the
IEEE, Vol., 91, No. 1. www.irisa.fr/distribcom/-
benveniste/pub/synch_ProcIEEE_2002.pdf

Colaco J.-L., and Pouzet M. (2003): Clocks as First Class
Abstract Types. In Third International Conference
on Embedded Software (EMSOFT'03),

Philadelphia, Pennsylvania, USA, October 2003.
www.di.ens.fr/~pouzet/lucid-
synchrone/papers/emsoft03.ps.gz

Elmqvist H., Gaucher F., Mattsson S.E, and Dupont F.
(2012): State Machines in Modelica. Proceedings
of 9th International Modelica Conference, Munich,
Germany, September 3-5.

Forget J., F. Boniol, D. Lesens, C. Pagetti (2008): A Mul-
ti-Periodic Synchronous Data-Flow Language. In
11th IEEE High Assurance Systems Engineering
Symposium (HASE'08), Dec. 3-5 2008, Nanjing,
China, pp. 251-260.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reoa
d=true&arnumber=4708883&contentType=Confere
nce+Publications

Modelica Association (2012): Modelica Language
Specification Version 3.3.
https://www.modelica.org/documents/ModelicaSpec
33.pdf.

Otter M., Thiele B., and Elmqvist H. (2012): A Library
for Synchronous Control Systems in Modelica.
Proceedings of 9th International Modelica
Conference, Munich, Germany, September 3-5.

Pouzet M. (2006): Lucid Synchrone, Version 3.0, Tuto-
rial and Reference Manual.
http://www.di.ens.fr/~pouzet/lucid-synchrone/

Looye G., Thümmel M., Kurze M., Otter M., and Bals J.
(2005): Nonlinear Inverse Models for Control.
Proceedings of 4th International Modelica
Conference, ed. G. Schmitz, Hamburg, March 7-8.
https://www.modelica.org/events/Conference2005/o
nline_proceedings/Session3/Session3c3.pdf

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 25
10.3384/ecp1207615 September 3-5, 2012, Munich, Germany

Fundamentals of Synchronous Control in Modelica

26 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207615

A Library for Synchronous Control Systems in Modelica
A Library for Synchronous Control Systems in Modelica

Martin Otter1, Berhard Thiele1, Hilding Elmqvist2
1DLR Institute of System Dynamics and Control, D-82234 Wessling, Germany

2Dassault Systèmes AB, Ideon Science Park, SE-223 70 Lund, Sweden
Martin.Otter@dlr.de, Bernhard.Thiele@dlr.de, Hilding.Elmqvist@3ds.com

Abstract
Based on the synchronous language elements intro-
duced in Modelica 3.3, a library is described to uti-
lize the new features in a convenient way for graph-
ical model definition of sampled data systems. The
library has elements to define periodic clocks and
event clocks that trigger elements to sample, sub-
sample or super-sample partitions synchronously.
Optionally, quantization effects, computational delay
or noise can be simulated. Continuous-time equa-
tions can be automatically discretized and utilized in
a sampled data system. This is demonstrated by us-
ing the inverse of a nonlinear plant model in the feed
forward path of a discrete controller of a mixing unit.

Keywords: Synchronous models, sampled data sys-
tems, periodic systems, clock, inverse systems

1 Introduction
In the Modelica language version 3.3 (Modelica As-
sociation 2012) synchronous language features have
been introduced to precisely define and synchronize
sampled data systems with different sampling rates.
This paper is a companion paper to (Elmqvist et.al.
2012) which should be first inspected to understand
why new language elements have been introduced,
as well as the syntax and semantics of them.

The new language elements follow the synchro-
nous approach (Benveniste et. al. 2002). They are
based on the clock calculus and inference system
proposed by (Colaco and Pouzet 2003) and imple-
mented in Lucid Synchrone version 2 and 3 (Pouzet
2006). However, the Modelica approach also uses
multi-rate periodic clocks based on rational arithme-
tic introduced by (Forget et. al. 2008), as an exten-
sion of the Lucid Synchrone semantics. Additionally,
the built-in operators of Modelica 3.3 also support
non-periodic and event based clocks1.

In order to utilize these elements in an actual
model in a convenient way, a free library “Modeli-
ca_Synchronous” has been developed using a proto-
type of Dymola (Dassault Systèmes 2012) for the

1 A non-periodic clock is defined by a varying interval and
an event clock by a Boolean condition.

new language elements. This library is in a prototype
status. After an evaluation period it is planned to in-
clude this library into the Modelica Standard Library.
Note, all Modelica libraries designed so far for sam-
pled systems, such as Modelica.Blocks.Discrete,
Modelica_LinearSystems2.Controller (Baur et. al.
2009) and Modelica_EmbeddedSystems (Elmqvist
et.al. 2009) are becoming obsolete and should be
replaced by this new library.

In the figure to the right a
screenshot of the library is
shown with the first sub li-
brary level. The most im-
portant sub libraries are:

 Clocks:
Library of blocks that
generate clocks.

 SamplerAndHolds:
Library of blocks that
sample, sub-sample, su-
per-sample and hold signals.

 NonPeriodic:
Library of blocks that operate on periodically
and non-periodically clocked signals (the blocks
depend explicitly on the actual sample interval).

 Periodic:
Library of blocks that are designed to operate
only on periodically clocked signals, mainly de-
scribed by z transforms (the blocks do not ex-
plicitly depend on the sample period, but implic-
itely, since the block parameters need to be de-
signed for one specific sample period).

In the following subsections, the most important
blocks are discussed and their usage demonstrated in
examples.

2 Clocks
A “Clock” is a new base data type introduced in
Modelica 3.3 (additionally to Real, Integer, Boolean,
String) that defines when a particular partition of
equations of a model is active. Every variable and
every equation is either continuous-time or is associ-

DOI Proceedings of the 9th International Modelica Conference 27
10.3384/ecp1207627 September 3-5, 2012, Munich, Germany

ated exactly to one clock (Elmqvist et.al. 2012). This
feature is visualized in the figure below where c(ti) is
a clock that is active at particular time instants and
r(ti) is a variable that is associated to this clock. A
clocked variable has only a value when the corre-
sponding clock is active:

Similarly to RealInput, RealOutput etc., clock input
and output connectors are defined in sub library “In-
terfaces” in order to propagate clocks via connec-
tions:

Icon Modelica Definition

 connector ClockInput = input Clock;

connector ClockOutput = output Clock;

Sub library “Clocks”, see
screenshot to the right, de-
fines the following compo-
nents that generate clocks,
and provide the respective
clock via its ClockOutput
connector to other components:

 PeriodicRealClock defines a periodic clock
where the period is defined with a Real number
(e.g. “period = 0.1” for 0.1 s). If clocks are relat-
ed relatively to each other (see section 4), then
only one of them can be a PeriodicRealClock.

 PeriodicExactClock defines a periodic clock
with a resolution defined by enumeration
“Types.Resolution” (with values “y, d, h, min, s,
ms, us, ns”) and an integer multiple “factor” of
this resolution. For example “factor = 3” and
“resolution = Types.Resolution.ms” defines a pe-
riodic clock with sample period 3 ms.

 EventClock defines a clock that is active when
the Boolean input to this component changes
from false to true.

The implementation of these clocks is a direct map-
ping to the new clock generators. Example:

block PeriodicRealClock
 parameter Modelica.SIunits.Time period;
 extends Modelica_Synchronous.Interfaces.PartialClock;

equation
 y = Clock(period);
end PeriodicRealClock;

partial block PartialClock
 parameter Boolean useSolver = true
 annotation(Dialog(tab="Advanced"));
 parameter Modelica_Synchronous.Types.SolverMethod
 solverMethod="External"
 annotation(Dialog(tab="Advanced",enable=useSolver));
 Modelica_Synchronous.Interfaces.ClockOutput y;
end PartialClock;

All these clocks have an “Advanced” menu in which
an optional integration method (such as “explicit Eu-
ler method”) can be associated to the clock, see next
figure. The effect of such a definition will be ex-
plained below.

3 Sample and Hold

Within the sub library
“SamplerAndHolds”
various blocks are de-
fined to sample, sub-
sample, super-sample
and hold signals. Since
Modelica does not have
generic types, for every
base type a separate
sub-library is present,
such as Sam-
plerAndHolds.RealSig
nals, see screenshot to
the right. All these
components define
boundaries between
different partitions,
especially:

 Sample requires that the input signal is continu-
ous-time. The block samples the input and pro-
vides it as clocked output signal. The equations
that have a dependency to that output, are col-
lected/grouped into the same clocked partition.

 Hold requires that the input signal is clocked and
provides it as continuous-time signal to the out-
put with a zero order hold. Before the first tick of
the clock that is associated to the input, the out-
put is set to parameter y_start (this value is al-
so displayed in the icon, see Figure 1).

time t
t0 t1 t3

r(ti)

t2

c(ti)

A Library for Synchronous Control Systems in Modelica

28 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207627

 SampleWithADeffects, HoldWithDAeffects
are similar to Sample and Hold, but provide ad-
ditionally the options to simulate particular ef-
fects, such as noise, signal limitations and quan-
tization effects, as well as computational delays.

The Sample and Hold blocks have again a direct
mapping to the corresponding new language ele-
ments. For example, the RealSignals.Sample block is
implemented as:

block Sample
 parameter Boolean useClock=false;
 Modelica.Blocks.Interfaces.RealInput u;
 Modelica.Blocks.Interfaces.RealOutput y;
 Modelica_Synchronous.Interfaces.ClockInput
 clock if useClock;
protected
 Modelica_Synchronous.Interfaces.ClockInput c_internal;
equation
 connect(clock, c_internal);
 if useClock then
 y = sample(u,c_internal);
 else
 y = sample(u);
 end if;
end Sample;

With the default option useClock=false, just the
input u is sampled, y = sample(u), and the clock
of the output y is deduced by clock inference due to
the clock definition somewhere else (Elmqvist et.al.
2012).

If useClock=true, the input clock connector
clock is enabled and the clock propagated to this con-
nector is used as clock for the output:
y=sample(u,clock), see block sample2 in Fig-
ure 1.

Figure 1 demonstrates all blocks that have been
discussed so far within an illustrative example mod-
el. This model consists of a load inertia that is driven
by a torque. The goal is to control the speed of the

inertia. For this, a feedback controller is provided in
form of a periodic sampled data system described
with clocked equations. The reference part is again a
continuous-time model and provides the desired
speed of the inertia.

The boundaries of the feedback controller are de-
fined with components sample1, sample2 and
hold1 that are instances of blocks Sample and
Hold respectively. All equations inside this partition
(“feedback controller”) need to be associated to a
clock. For this, the Sample block has an optional
ClockInput connector that can be enabled. In the
figure, a periodic clock with period 0.1 s is connect-
ed to sample2 and therefore the “feedback control-
ler” partition is active every 0.1 s. Note, it would
also be fine to connect the clock additionally to sam-
ple1, since associating the same clock definition
several times to a partition is allowed.

The PI component is a clocked block from Mod-
elica_Synchronous.NonPeriodic. It is implemented
as (note, previous(x) defines that x is clocked and
that the value from the previous clock tick is used;
interval(u) is the time duration from the previous
to the actual clock tick as Real number):

block PI "From Modelica_Synchronous.NonPeriodic"
 extends Modelica_Synchronous.Interfaces.PartialClockedSISO;
 parameter Real k "Gain of continuous PI controller";
 parameter Real T "Time constant of continuous PI controller";
 output Real x(start=0) "Discrete PI state";
protected
 Real Ts = interval(u) "Sample period";
equation
 x = previous(x) + u*Ts/T;
 y = k*(x + u);
end PI;

This PI controller is parameterized with the coeffi-
cients of a continuous-time PI controller and with the
actual sample period the coefficients of the discre-
tized (clocked) PI controller are computed. Changing

Figure 1: Simple drive train with clocked PI controller, samplers, hold and periodic clock.

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 29
10.3384/ecp1207627 September 3-5, 2012, Munich, Germany

the sample period will therefore result in a similar
controller behavior.

It would also be possible to utilize the PI control-
ler from the Modelica_Synchronous.Periodic sub-
library. In this sub-library it is assumed that the
blocks are utilized only with periodic clocks and the
block parameters have been designed for a particular
sample period. The corresponding PI controller is
implemented as:

block PI "From Modelica_Synchronous.Periodic"
 extends Modelica_Synchronous.Interfaces.
 PartialPeriodicallyClockedSISO;
 parameter Real kd "Gain of discrete PI controller";
 parameter Real Td "Time constant of discrete PI controller";
 output Real x(start=0) "Discrete PI state";
equation
 x = previous(x) + u/Td;
 y = kd*(x + u);
end PI;

The PI coefficients kd and Td are designed for a par-
ticular sample period. Changing this sample period,
without changing kd and Td, will significantly
change the controller behavior.

It would also be possible to use a continuous-time
block, in particular the continuous-time PI controller
from Modelica.Blocks.Continuous.PI that is basical-
ly implemented as:

block PI "From Modelica.Blocks.Continuous "
 parameter Real k=1 "Gain";
 parameter Modelica.SIunits.Time T "Time Constant";
 extends Modelica.Blocks.Interfaces.SISO;
 output Real x "State of block";
equation
 der(x) = u/T;
 y = k*(x + u);
end PI;

In this case the PI controller is described by a differ-
ential equation. Since the input signal to this block is
a clocked signal when present in the block diagram
of Figure 1, the differential equation is automatically
discretized by integrating from the previous to the
actual clock tick with the integration method defined
in component “periodicClock”. In Figure 1, solver
“External” is defined (see icon of the clock). This
means that the solver defined in the simulation envi-
ronment is used to integrate the continuous-time
block: This might be a variable step-solver with error
control where the step size is selected such that it hits
the clock tick always exactly.

On the other hand, if solverMethod = ”Implic-
itEuler” is selected, then the differential equation of
the PI component will be discretized with a fixed
step implicit Euler method. This approach is also
called “inline integration”. For details, see (Elmqvist
et.al. 1995). In this case exactly the same result will
be obtained as with the previous two PI components.

This approach is very powerful, since every linear or
non-linear continuous-time block can be utilized in
the clocked partition. It is therefore in many cases is
is no longer necessary to derive discretized blocks
manually as, e.g., done in the Modelica_Linear-
Systems2.Controller library (Baur et.al. 2009).

Typical simulation results are shown in the next
figure. Note, here it is clearly visualized by Dymola,
that the input to hold1 (= hold1.u) is a clocked
signal.

4 SubSample and SuperSample
With blocks “SubSample” and “SuperSample” it can
be defined that a partition is sub- or super-sampled
with respect to another clocked partition:

At every “factor” ticks of the
input (here: factor = 2), the
output ticks and is set to the
input.
At every “factor” ticks of the
output (here: factor = 3), the
input ticks. The output is set to
the last available value of the
input.

The factor of a sub- or super-sampled partition can
either be explicitly defined with the block, or it can
be inferred, since either the factor is defined at an-
other element or exact periods are associated with
the partitions (see below). In the next figure an ex-
ample is shown, where the signal sample.y is sub-
sampled by a factor of 3 (= subSample.y) and su-
per-sampled by a factor of 2 (= superSample.y).

A Library for Synchronous Control Systems in Modelica

30 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207627

There are now many possible ways to define the
clocks of time-synchronized partitions. In Figures 2-
Figure 4 on the next page some useful variants are
demonstrated at hand of a cascade control system for
a very simple drive system. The goal is that the load
inertia travels according to the desired reference an-
gle. This angle is defined with block KinematicPTP2
from the Modelica Standard Library (the reference
signal is constructed so that it moves from a start to
an end angle as fast as possible for given maximal
speed and maximum acceleration). The “slow” con-
troller part is a simple P-controller to control the po-
sition, whereas the “fast” controller part is a PI con-
troller to control the speed.

In Figure 2 one real periodic clock with a sample
period of 0.02 s is defined. This clock is then sub-
sampled with a factor of 5 which defines a second
clock with a sample period of 0.1 s. The “slow” and
the “fast” controller partitions are separated by the
super1 block (an instance of SuperSample) and
therefore it is defined that the output of super1 is
faster than the input of super1 (the input clock is an
integer multiple of the output clock). The two de-
fined clocks are associated with sample3 and su-
per1 and therefore the clocks are associated with the
partitions ”slow controller” and “fast controller”.
Note, the factor at super1 is inferred to be 5.

In Figure 3 only one real clock with a sample pe-
riod of 0.02 s is defined. This clock is associated to
the “fast controller” partition via component su-
per1. Now, in component super1 a factor of “5” is
defined. This means that the fast partition is 5-times
faster as the slow partition, and therefore the clock of
the “slow controller” partition is implicitly defined.

In Figure 4 two “exact” clocks are defined: One
clock with a period of 20 ms and one clock with a
period of 100 ms. These “absolute” clocks are asso-
ciated with the “slow” and “fast” partition respec-
tively. Since component super1 defines that the
“fast” partition must be an integer factor faster as the
“slow” partition, an implicit constraint is present,
that the clocks of the two partitions must have peri-
ods that are an integer multiple of each other. There-
fore, defining 20 ms and 100 ms is fine. However,

defining periods of 30 ms and 100 ms would result in
an error, since this constraint is violated.

The preferred modeling style is a matter of taste.
Note, the relative definitions of Figure 2 and Figure
3 have the advantage that parameter factor can still
be changed after the model is translated (provided a
tool supports this feature). Instead, in the definition
of Figure 4 it would be typically no longer possible
to change the (absolute) periods after translation,
since there is a constraint between the two defini-
tions (one period must be an integer multiple of the
other period).

5 Nonlinear Inverse Models
Since a long time, Modelica is used to model ad-
vanced nonlinear control systems. Especially, Mod-
elica allows a semi-automatic treatment of inverse
nonlinear plant models. In the fundamental article
(Looye et.al. 2005) this approach is described and
several controller structures are presented to utilize
an inverse plant model in the controller. This ap-
proach is attractive because it results in a systematic
procedure to design a controller for the whole operat-
ing range of a plant. This is in contrast to standard
controller design techniques that usually design a
linear controller for a plant model that is linearized at
a specific operating point. Therefore the operating
range of such controllers is inherently limited. Up to
Modelica 3.2, controllers with inverse plant models
can only be defined as continuous-time systems. Via
the export mechanism of Dymola they could be ex-
ported with solvers embedded in the code and then
used as sampled data system in other environments.
However, it is not possible to re-import the sampled
data system to Modelica.

The synchronous features of Modelica 3.3 togeth-
er with the Modelica_Synchronous library offer now
completely new possibilities, so that the inverse
model can be designed and evaluated as sampled
data system within Modelica and a Modelica simula-
tion environment such as Dymola. The approach is
sketched at hand of a simple nonlinear plant model
of a mixing unit (Föllinger 1998, page 279) and the
design of a nonlinear feed-forward controller accord-
ing to (Looye et.al. 2005):

A substance A is flowing continuously into a
mixing reactor. Due to a catalyst, the substance re-
acts and splits into several base substances that are
continuously removed. The reaction generates ener-
gy and therefore the reactor is cooled with a cooling
medium. The cooling temperature Tc(t) in [K] is the
primary actuation signal. Substance A is described
by its concentration c(t) in [mol/l] and its tempera-
ture T(t) in [K] according to the following

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 31
10.3384/ecp1207627 September 3-5, 2012, Munich, Germany

Simple Drive with cascade controller for position and speed control

Figure 2: Two clocks are defined with sub-sampling and partitions with super-sampling.

Figure 3: One clock is defined and the second clock is inferred by the factor of the super-sample block.

Figure 4: Partitions are defined with exact (integer) clocks that need to be compatible to each other.

A Library for Synchronous Control Systems in Modelica

32 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207627

nonlinear differential algebraic equation system:

/
0

11 12 13

21 22 23

T

c

c k e

c a c a a

T a T a a b T






  

     

       




 (1)

with
14

0 11 21

12 22

13 23

1.24 10 0.00446 0.0303

10578 0.0141 2.41

0.0258 0.00378 1.37

k a a

a a

b a a



   

  

  

For the given input Tc(t) these are 1 algebraic equa-
tion for the reaction speed (t) and two differential
equations for c(t) and T(t). The concentration c(t) is
the signal to be primarily controlled and the temper-
ature T(t) is the signal that is measured. These equa-
tions are collected together in an input/output block:

The design of the control system proceeds now in the
following steps:

5.1 Design of Pre-Filter

Inverting a model usually means that equations need
to be symbolically differentiated and that higher de-
rivatives of the inputs are needed (that are usually
not available). One approach is to filter the inputs, so
that a Modelica tool can determine the derivatives of
the filtered input from the filter states. The minimum
needed filter order is determined by first inverting
the continuous-time plant model from the variable to
be primarily controlled (here: “c”) to the actuator
input (here: “Tc”). This is performed with the help of
block “Modelica.Blocks.Math.InverseBlockCons-

traints” that allows connecting an external input
(c_ref below) to an output (c below):

Translating this model will generate the continuous-
time inverse plant model. However, Dymola gives
(correctly) an error message:

This message states, that Dymola has to differentiate
the model, but this requires the second derivative of
the external input c_ref and this derivative is not
available. The conclusion is that a low pass filter of
at least second order has to be connected between
c_ref and c, for example Modelica.Blocks.-
Continuous. Filter. Only filter types should be used
that do not have “vibrations” in the time domain for
a step input. Therefore, parameter analogFilter
of the component should be selected as “Critical-
Damping” (= only real poles), or “Bessel” (= nearly
no vibrations, but steeper frequency response as
“CriticalDamping”). The cut-off frequency f_cut is
manually selected by simulations of the closed loop
system. In the example, we use a CriticalDamping
filter of third order (the third order is selected to get
smoother signals) and a cut-off frequency of 1/300
Hz.

Figure 5: Sampled data controller for mixing unit including the inverse plant model.

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 33
10.3384/ecp1207627 September 3-5, 2012, Munich, Germany

5.2 Design of Controller

The controller for the mixing unit is shown in Figure
5. It consists of the filter discussed in the previous
section. The input to the filter is the reference con-
centration which is filtered by the low pass filter.
The output of the filter is used as input to the con-
centration c in the inverse plant model. This model
computes the desired cooling temperature T_c
(which is used as desired cooling temperature at the
output of the controller) and the desired temperature
T (which is used as desired value for the feedback
controller). This part of the control system is the
“feed forward” part that computes the desired actua-
tor signal. As feedback controller a simple P-
Controller with one gain is used.

This controller could be defined as continuous-
time system in previous Modelica versions. Howev-
er, with Modelica 3.3 it is now also possible to de-
fine the controller as sampled data system. For this,
the two inputs are sampled (sample1 and sample2)
and the actuator output is hold (hold1).

The controller partition is then associated with a
periodic clock (via sample2) that has a sample peri-
od of 1 s and a solverMethod = “ExplicitEuler”.
Since the controller partition is a continuous-time
system, it is discretized and solved with an explicit
Euler method at every clock tick (by integrating from
the previous to the actual time instant of the clock).

The controller works perfectly if the same param-
eters for the plant and the inverse plant model are
used (follows perfectly the filtered reference concen-
tration). Changing all parameters of the inverse plant
model by 50 % (with exception of ε since the plant is
very sensitive to it) still results in a reasonable con-
trol behavior as shown by the following simulation
results (the desired concentration jumps from 0.492
to 0.237):

The piecewise constant (blue) curve in the upper
window is the output of the filter (that is, it is the
desired concentration). The red curve in the upper
window is the concentration of model mixingUnit,
which is the concentration in the plant. Obviously,
the concentration follows reasonably well the desired
one. By using a more involved feedback controller,
the control error could be substantially reduced.

6 Event Clocks –Engine Control
All previous sections concentrated on periodic
clocks. However, also non-periodic synchronous
sampled data systems can be defined with Modelica
3.3. This is demonstrated at hand of a closed-loop
throttle control synchronized to the crankshaft angle
of an internal combustion engine. This system has
the following properties:
 Engine speed is regulated with a throttle actuator.
 Controller execution is synchronized with the

engine crankshaft angle.
 The influence of disturbances, such as a change in

load torque, is reduced.
The complete system is shown in Figure 6. Block

Figure 6: Sampled data engine controller that is synchronized with the crankshaft angle.

A Library for Synchronous Control Systems in Modelica

34 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207627

speedControl is the discrete control system. The
boundaries of this controller are defined by sample1
and hold1. A special element triggeredSpeed
has the crankshaft angle as input and provides the
sampled crankshaft speed as output. Additionally,
the clock associated with the output (and therefore
also to component speedControl) ticks, at every
180 degree rotation of the crankshaft angle. This
special application is implemented in the text layer
of component triggeredSpeed as:

 N = der(angle);
 when Clock(angle >= hold(offset)+Modelica.Constants.pi) then
 offset = sample(angle);
 N_clocked = sample(N);
 end when;

Here, N is the derivative of the crankshaft angle.
Whenever this angle becomes larger as 180 degree
an event clock is activated due to Clock(..). In
such a case the when-clause becomes active, and the
speed N is sampled, and the new offset for the next
event is computed.

7 Interfaces to External Devices
Bellmann presented in (Bellmann 2009) a Modelica
library with capabilities for creating interactive simu-
lation models with advanced (3D-) visualization2. It
included support for standard input devices such as
keyboard and joysticks, as well as communication
mechanisms like UDP or shared memory. These de-
vice interfaces have been adapted to work with the
Modelica synchronous extensions, and have been
extended to also support the Linux OS. Furthermore
additional functionality such as support for Softing
CAN interface cards3 and the (Linux specific)
Comedi4 control and measurement device interface
have been added. In the next figure some of the
blocks are shown that are currently available in the
external devices library.

8 Cyber-Physical Models
Modelica is designed for modeling of systems con-
taining both physical parts and control systems. It is
possible to hierarchically assemble a system out of
smart subsystems, i.e. which includes their local con-
trol systems.

In (Elmqvist et.al. 2009) it is described how parts
of the model which is used for evaluating the system

2 Today the visualization part of that library has evolved
into the commercially available product “Visualization
Library”, which is distributed by BAUSCH-GALL
GmbH, http://www.bausch-gall.de/.
3 Softing AG (2012), http://www.softing.com.
4 The Comedi project (2012), http://www.comedi.org/.

architecture and performance can be used for differ-
ent studies and for generation of embedded code.
The solution in the Modelica_EmbeddedSystems
library is to introduce generic “communication
blocks” between the partitions. Such communication
blocks can then be configured in different ways, for
example to just contain an ideal Sample block or a
block with A/D effects. It can also contain a device
driver for a A/D converter for the input to the dis-
crete-time partition. It is then possible to use the
code of this partition for embedding to control hard-
ware.

If instead, the communication block contains a
D/A converter, for the output of the continuous-time
partition, the code for the continuous-time partition
can be used for hardware-in-the-loop simulation.

The point is that this configuration can be done
without changing the original model. It is done by
using redeclarations of the content of the communi-
cation blocks by using a hierarchical modifier in a
model extending the original model. This approach is
beneficial with regards of maintaining the original
model since only one version is needed.

It is planned that this technique, already evaluated
in the Modelica_EmbeddedSystems library, is in-
cluded in the Modelica_Synchronous library.

9 Summary
A new, free Modelica library is presented that pro-
vides a convenient graphical user interface for the
synchronous language elements introduced in Mod-
elica 3.3. This library is planned to replace all previ-
ous Modelica libraries designed for sampled data
systems, since

 the clocking for a partition needs to be defined
only at one block (and not at every block of a
controller),

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 35
10.3384/ecp1207627 September 3-5, 2012, Munich, Germany

 every continuous-time block (including inverse
models) can be directly utilized in the clocked
partition, thereby making it unnecessary in most
cases to provide a manually implemented dis-
crete-time version,

 errors to define the sample periods can be de-
tected by the translator (because all variables and
equations of a clocked partition must be associ-
ated exactly to one clock),

 more efficient simulation of an overall model
consisting of plant (= continuous-time) and con-
troller (= clocked partitions),

 providing the possibility to easily identifying the
controller part that shall be downloaded to actual
hardware (because all equations and variables of
a clocked partition are associated exactly to one
clock).

10 Acknowledgement
Sven Erik Mattsson developed the Dymola prototype
supporting the synchronous features of Modelica 3.3.
Without this prototype, it would not have been pos-
sible to develop the Modelica_Synchronous library.

References
Baur M., Otter M., and Thiele B. (2009): Modelica Li-

braries for Linear Control Systems. Proceedings
of 7th International Modelica Conference, Como,
Italy, September 20-22.
www.ep.liu.se/ecp/043/068/ecp09430068.pdf

Benveniste A., Caspi P., Edwards S.A., Halbwachs N., Le
Guernic P., and Simone R. (2003): The Synchro-
nous Languages Twelve Years Later. Proc. of the
IEEE, Vol., 91, No. 1. www.irisa.fr/distribcom/-
benveniste/pub/synch_ProcIEEE_2002.pdf

Bellmann T. (2009): Interactive Simulations and
advanced Visualization with Modelica.
Proceedings of 7th International Modelica
Conference, Como, Italy, September 20-22.
www.ep.liu.se/ecp/043/062/ecp09430056.pdf

Colaco J.-L., and Pouzet M. (2003): Clocks as First Class
Abstract Types. In Third International Conference
on Embedded Software (EMSOFT'03),
Philadelphia, Pennsylvania, USA, October 2003.
http://www.di.ens.fr/~pouzet/lucid-
synchrone/papers/emsoft03.ps.gz

Dassault Systèmes (2012): Dymola.
http://www.Dymola.com

Elmqvist H., Otter M. and Cellier F.E. (1995): Inline
Integration: A New Mixed Symbolic/Numeric
Approach for Solving Differential-Algebraic
Equation Systems. Keynote Address, Proceedings
ESM'95, European Simulation Multiconference,

Prague, Czech Republic, June 5-8, pp. xxiii-xxxiv.
http://citeseerx.ist.psu.edu/viewdoc/download;jsessi
onid=6E666F4221CFED902DCA7BDF8DC51AB6
?doi=10.1.1.127.3787&rep=rep1&type=pdf

Elmqvist H., Otter M., Henriksson D., Thiele B., Mattsson
S.E. (2009): Modelica for Embedded Systems,
Proceedings 7th Modelica Conference, Como, Italy,
Sep. 20-22.
http://www.ep.liu.se/ecp/043/040/ecp09430096.pdf

Elmqvist H., Otter M., and Mattsson S.E. (2012):
Fundamentals of Synchronous Control in
Modelica. Proceedings of 9th International
Modelica Conference, Munich, Germany, Sep. 3-5.

Föllinger O. (1998): Nichtlineare Regelungen I,
Oldenbourg Verlag, 8. Auflage.

Forget J., F. Boniol, D. Lesens, C. Pagetti (2008): A Mul-
ti-Periodic Synchronous Data-Flow Language. In
11th IEEE High Assurance Systems Engineering
Symposium (HASE'08), Dec. 3-5 2008, Nanjing,
China, pp. 251-260.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reoa
d=true&arnumber=4708883&contentType=Confere
nce+Publications

Looye G., Thümmel M., Kurze M., Otter M., and Bals J.
(2005): Nonlinear Inverse Models for Control.
Proceedings of 4th International Modelica
Conference, ed. G. Schmitz, Hamburg, March 7-8.
https://www.modelica.org/events/Conference2005/o
nline_proceedings/Session3/Session3c3.pdf

Modelica Association (2012): Modelica Language
Specification Version 3.3.
https://www.modelica.org/documents/ModelicaSpec
33.pdf.

Pouzet M. (2006): Lucid Synchrone, Version 3.0, Tuto-
rial and Reference Manual.
http://www.di.ens.fr/~pouzet/lucid-synchrone/

A Library for Synchronous Control Systems in Modelica

36 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207627

State Machines in Modelica

State Machines in Modelica

Hilding Elmqvist
1
 Fabien Gaucher

2
 Sven Erik Mattsson

1
 Francois Dupont

3

1
Dassault Systèmes AB, Ideon Science Park, SE-223 70 Lund, Sweden

2
Dassault Systèmes, 84, Allée Galilée, 38330-Montbonnot-St-Martin, France

3
Dassault Systèmes, 120, rue René Descartes, 29280 – Plouzané, France

Hilding.Elmqvist@3ds.com Fabien.Gaucher@3ds.com

SvenErik.Mattsson@3ds.com Francois.Dupont@3ds.com

Abstract

The scope of Modelica has been extended from a

language primarily intended for physical systems

modeling to modeling of complete systems by allow-

ing the modeling of control systems including state

machines.

This paper describes the state machines intro-

duced in Modelica 3.3. Any block without conti-

nuous-time equations or algorithms can be a state of

a state machine. Transitions between such blocks are

modeled by a new kind of connections associated

with transition conditions.

The paper gives the details for building state ma-

chines and includes several examples. In addition,

the complete semantics is described using only 13

Modelica equations.

Keywords: Modelica; State Machines; Control;

1 Introduction

The scope of Modelica has been extended from a

language primarily intended for physical systems

modeling to modeling of complete systems by allow-

ing the modeling of control systems including state

machines and enabling automatic code generation for

embedded systems.

This paper presents state machines in Modelica.

A companion paper (Elmqvist, et.al, 2012) describes

the fundamental synchronous language primitives

introduced for increased correctness of control sys-

tems implementation since many more checks can be

done at compile time.

The paper describes language elements to define

state machines. Any block without continuous-time

equations or algorithms can be a state of a state ma-

chine. Transitions between such blocks are

represented by a new kind of connections associated

with transition conditions.

The paper gives the details for building state ma-

chines and includes several examples. In addition,

the complete semantics is described using only 13

Modelica equations.

2 States and Transitions

Modelica State Machines will be introduced gradual-

ly by means of examples.

Modelica block instances without continuous-

time equations or algorithms can potentially be states

of a state machine. A cluster of block instances at the

same hierarchical level which are coupled by transi-

tion equations constitutes a state machine. All parts

of a state machine must have the same clock. One

and only one instance in each state machine must be

marked as initial by appearing in an initialState equ-

ation.

2.1 A Simple State Machine

As a first example, consider the trivial state machine

of Figure 1.

Figure 1. A simple state machine

DOI Proceedings of the 9th International Modelica Conference 37
10.3384/ecp1207637 September 3-5, 2012, Munich, Germany

An inner variable i is defined in the model which has

two block instances state1 and state2. In the corres-

ponding block definitions, i is declared as „outer out-

put‟ which means that i is an output from both of the

blocks. In state1, i is incremented by 2 and in state2,

i is decremented by 1. How such multiple definitions

are handled is described below.

If state1 is active, a transition to state2 is made

when i>10. If state2 is active, a transition to state1 is

made when i<1.

The simulation result is shown in Figure 2.

Figure 2. Plot of v of simple state machine

The Modelica code (without annotations) is:

model StateMachine1
 inner Integer i(start=0);

 block State1
 outer output Integer i;
 equation
 i = previous(i) + 2;
 end State1;
 State1 state1;

 block State2
 outer output Integer i;
 equation
 i = previous(i) - 1;
 end State2;
 State2 state2;

equation
 initialState(state1);
 transition(state1, state2, i > 10, immediate=false);
 transition(state2, state1, i < 1, immediate=false);
end StateMachine1;

2.2 Merging Variable Definitions

When a state class uses a variable in an outer output

declaration, the equations have access to the corres-

ponding variable declared inner. Special rules are

then needed to maintain the single assignment rule

since multiple definitions of such outer variables in

different mutually exclusive states of one state ma-

chine need to be merged.

In each state, the outer output variables (vj) are

solved for (exprj) and, for each such variable, a sin-

gle definition is automatically formed:

v := if activeState(state1) then expr1

 elseif activeState(state2) then expr2

 elseif … else last(v)

last() is a special internal semantic operator return-

ing its input. It is just used to mark for the sorting

that the incidence of its argument should be ignored.

A start value must be given to the variable if not as-

signed in the initial state.

Such a newly created assignment equation might

be merged on higher levels in nested state machines.

2.3 Defining a state machine

The following special kinds of connect-equations are

used to define transitions between states and to de-

fine the initial state:

transition(from, to, condition, immediate, reset,

 synchronize, priority)

Arguments “from” and “to” are block instances and

“condition” is a Boolean expression. The optional

arguments “immediate”, “reset”, and “synchronize”

are of type Boolean, have parametric variability

and a default of true, true, false respectively. The

optional argument “priority” is of type Integer, has

parametric variability and a default of 1.

This operator defines a transition from instance

“from” to instance “to”. The “from” and “to” in-

stances become states of a state machine. The tran-

sition fires when condition = true if immediate =

true (this is called an “immediate transition”) or

previous(condition) when immediate = false (this

is called a “delayed transition”).

The argument “priority” defines the priority of fir-

ing when several transitions could fire. priority=1

is the highest priority.

If reset = true, the states of the target state are reini-

tialized, i.e. state machines are restarted in initial

state and state variables are reset to their start val-

ues.

If synchronize=true, the transition is disabled until

all state machines within the from-state have

reached the final states, i.e. states without outgoing

transitions.

initialState(state)

The argument “state” is the block instance that is

defined to be the initial state of a state machine. At

the first clock tick of the state machine, this state

becomes active.

State Machines in Modelica

38 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207637

The attributes of transitions are shown graphically as

illustrated in Figure 3.

Figure 3. Graphical conventions for transitions

A transition has a perpendicular bar representing the

condition which is close to the destination state for

an immediate transition, else close to the source

state. The arrow is filled for a reset transition other-

wise non-filled. A synchronize transition has an “in-

verted fork” at the source state. Priority is shown

preceding the condition if not equal to one. For the 5

transitions in Figure 3, the settings are as follows,

from left to right:

 immediate = true, false, true, false, true;

 reset = true, true, false, false, true;

 synchronize = false, false, false, false, true;

 priority = 1, 2, 3, 4, 5.

All transitions leaving the same state must have dif-

ferent priorities.

It is possible to query the status of the state ma-

chine by using the following operators:

activeState(state)

Argument “state” is a block in-

stance. The operator returns true,

if this instance is a state of a

state machine and this state is

active at the actual clock tick. If

it is not active, the operator re-

turns false.

It is an error if the instance is not

a state of a state machine.

ticksInState()

Returns the number of clock

ticks since a transition was made

to the currently active state. This

function can only be used in

transition conditions of state ma-

chines not present in states of

higher level state machines.

timeInState()

Returns the time duration as Real

in [s] since a transition was made

to the currently active state. This

function can only be used in

transition conditions of state ma-

chines not present in states of

higher level state machines.

2.4 Immediate and Delayed Transitions

If we attempt to simulate the state machine in Figure

1 with transitions having immediate=true, we get the

error message in Dymola:
An algebraic loop involving Integers or

Booleans has been detected.

The reason is that since the transition conditions

involve i, the variable defined in the equations, there

is a cyclic dependency or algebraic loop between the

update equations for i and the update equations for

state machine evolution.

2.5 Conditional Data Flows

An alternative to using outer output variables is to

use conditional data flows. Since instances of blocks

can be used as states of a state machine, the connec-

tion semantics of Modelica has been extended to al-

low several outputs to be connected to one input.

Consider the combined state machine and data

flow diagram in Figure 4:

Figure 4. Combined state machine and data flow

diagram

The states are instances of the block:

block Increment
 extends Modelica.Blocks.Interfaces.PartialIntegerSISO;
 parameter Integer increment;
equation
 y = u + increment;
end Increment;

with increment values 2 and -1 respectively. The

outputs are connected to a protected connector called

i in order to be able to use i in the transition condi-

tions. The connector i is connected to an instance of

the block:

block Prev
 extends Modelica.Blocks.Interfaces.PartialIntegerSISO;
equation
 y = previous(u);

state1

state2

a

2: b

3: c

4: d
5: e

add2

sub1

prev
i > 10

i < 1

i

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 39
10.3384/ecp1207637 September 3-5, 2012, Munich, Germany

end Prev;

The connections from the state instances to i in Fig-

ure 4 are handled in a special way. It is possible to

connect several outputs to inputs if all the outputs

come from states of the same state machine. In such

cases, we get the following constraint equations:

u1 = u2 = … = y1 = y2 = …

with ui inputs and yi outputs. The semantics is de-

fined as follows. Introduce a variable v representing

the signal flow and rewrite the equation above as a

set of equations for ui and a set of assignment equa-

tions for v:

v := if activeState(state1) then y1 else last(v);

v := if activeState(state2) then y2 else last(v);

…

u1 = v

u2 = v

…

The merge of the definitions of v is then made ac-

cording to section „Merging Variable Definitions‟.

The result of the merge is:

v = if activeState(state1) then y1

 elseif activeState(state2) then y2

 elseif … else last(v)

…

Plotting i shows the same behavior as the plot of i of

the example using inner outer declarations.

3 Hierarchical State Machine

Example

Consider the hierarchical state machine in Figure 5:

Figure 5. Hierarchical state machine

The model demonstrates the following properties:

 state1 is a meta state with two parallel state ma-

chines in it.

 stateA declares v as „outer output‟. state1 is on

an intermediate level and declares v as „inner

outer output‟, i.e. matches lower level outer v by

being inner and also matches higher level inner v

by being outer. The top level declares v as inner

and gives the start value.

 count is defined with a start value in state1. It is

reset when a reset transition (v>=20) is made to

state1.

 stateX declares the local variable w to be equal

to v declared as „inner input‟.

 stateY declares a local counter j. It is reset at

start and as a consequence of the reset transition

(v>=20) from state2 to state1. However, the reset

of j is deferred until stateY is entered by transi-

tion (stateX.i>20) although this transition is not a

reset transition. This is done by marking that sta-

teY should be reset when making the reset tran-

sition v>=20 and deferring the reset until stateY

is actually entered. Synchronizing the exit from

the two parallel state machines of state1 is done

by using a synchronized transition.

State Machines in Modelica

40 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207637

The behavior of the state machine can be seen in the

plots of v and w and i of Figure 6:

Figure 6. Behavior of hierarchical state machine

4 Adaptive Cruise Control Example

As a more useful example, we will consider a vehicle

with adaptive cruise control, i.e. controller that can

drive the car at a certain speed or follow the car in

front at a safe distance.

The example is simplified considerably to be able

to explain all the details in limited space. And the

data is just designed for illustrative purposes.

The vehicle dynamics is described by the follow-

ing model (without annotations):

model Vehicle
 parameter Real k=5000;
 parameter Real m=1000;
 parameter Real loss=5;
 Modelica.Blocks.Interfaces.RealInput ud;
 Modelica.Blocks.Interfaces.RealOutput xd;
 Modelica.Blocks.Interfaces.RealOutput vd;

 Modelica.SIunits.Distance x(start=0, fixed=true);
 Modelica.SIunits.Velocity v(start=0, fixed=true);
 Real tau;
equation
 der(x) = v;
 m*der(v) = k*tau - loss*v*abs(v);

 tau = hold(ud);
 xd = sample(x, Clock(1, 10));
 vd = sample(v, Clock(1, 10));
end Vehicle;

The power train is considered ideal.

A vehicle with the cruise control system is shown

in Figure 7. It has an instance of the vehicle dynam-

ics (with a car icon) with a sampled input ud on the

left and two sampled outputs (period=1/10 second),

xd and vd (counting from the top) to the right.

Figure 7. Vehicle with adaptive cruise controller

The top level state machine has two modes: normal

and emergency. Both produces the control signal u

connected to ud of the vehicle. The normal mode has

vd and xrel as inputs. xrel is formed as the difference

between the vehicle position and the position of the

vehicle in front, available as an input.

The normal state has three states: manual, cruise

and follow. The manual state is a simple start up state

“stepping on the gas” until the desired speed has

been achieved. The cruise state contains a speed con-

troller implemented as a simple P-controller with

limitation.

When the vehicle comes within 100 meters of the

vehicle in front, follow state is entered. It contains a

position controller with xref=-100. Since the vehicle

is essentially a double integrator from throttle to po-

sition, a PD controller is needed. In this case a naïve

implementation without filtering is shown. When the

distance is larger than 150 meters, cruise mode is

reentered.

The emergency state is entered when the distance

to the car in front is less than 25 meters independent-

ly in which substate normal is in. Maximum braking

power (-3) is then applied until the car has stopped.

When the distance is again 200 meters, the normal

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 41
10.3384/ecp1207637 September 3-5, 2012, Munich, Germany

state is entered with a reset transition, i.e. the sub-

state of manual of state normal is activated.

The architecture with two entirely different con-

trollers for speed and position was chosen to illu-

strate the possibility in particular regarding how the

data flow connections can be used. (Adaptive cruise

control can also be achieved using a cascade control-

ler with an inner speed loop.)

A model of a platoon of 5 CruisingVehicles was

built. The desired speed vref is set as {100, 60, 65,

50, 25} km/h. The initial speeds are the same except

for the last car (cruisingVehicle) which is standing

still. The distances between the cars are 200 meters.

The results of simulation are shown in Figure 8:

position on top and velocity below. All cars slow

down to follow the first car (cruisingVehicle4) at 25

km/h at a distance of 100 meter.

Figure 8. Positions and velocities of vehicles

in a platoon

The control signals are shown in Figure 9.

Figure 9: Control signals

The implementation of the cruise state shown in Fig-

ure 7 is a bit simplified using a parameter vref for the

velocity set point. Usually, the triggering of going

from manual to cruise mode is done by a button. The

cruise mode is then picking up the current speed and

uses that as a set point. Such an implementation can

be made as follows:

model Cruise
 parameter Real K = 1;
 Real c, vref;
 Boolean reinit(start=true) = false;
 Modelica.Blocks.Interfaces.RealOutput u;
 Modelica.Blocks.Interfaces.RealInput v;
equation
 vref = if previous(reinit) then v else previous(vref);
 c = K*(vref-v);
 u = max(min(c, 1),-0.5);
end Cruise;

This is a general modeling idiom for special treat-

ment when a state is entered. The equation for reinit

is reinit = false. However, the start value is true, so

previous(reinit) gives a pulse at the first cycle if a

reset transition is made to the state.

So the desired behavior is achieved by a reset

transition from manual to cruise, but a non-reset

transition from follow to cruise, since in the last

case, the stored vref should be used.

A platoon of 100 vehicles can easily be con-

structed using an array of CruisingVehicles:

model Platoon
 parameter Integer n=100;
 CruisingVehicle cruisingVehicle[n](vref=linspace(100, 50.5, n));
 Modelica.Blocks.Sources.Constant const(k=10000);
equation
 connect(const.y, cruisingVehicle[n].xFront);
 for i in 1:n-1 loop
 connect(cruisingVehicle[i+1].xd,

 cruisingVehicle[i].xFront);
 end for;
end Platoon;

State Machines in Modelica

42 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207637

This is a good example of how well the state ma-

chine concept is integrated in Modelica allowing to

use data flows between states, using modifiers for

parameterization, using redeclare of classes and

components and using arrays of a mixture of state

machines and continuous dynamical models.

5 State Machine Semantics

This section is not intended for normal users of

Modelica state machines. It is included since the pre-

cise semantics can be described using only 13 Mod-

elica equations and is thus a convenient reference for

advanced users and tool developers.

For the purpose of defining the semantics of state

machines, assume that the data of all transitions are

stored in an array of records, t:

record Transition
 Integer from;
 Integer to;
 Boolean immediate = true;

 Boolean reset = true;

 Boolean synchronize = false;
 Integer priority = 1;
end Transition;

The transitions are sorted with lowest priority num-

ber last in the array. The states are enumerated from

1 and up. The transition conditions are stored in a

separate array c[:] since they are time varying.

The semantics model is a discrete-time system

with inputs {c[:], active, reset}, outputs {activeState,

activeReset, activeResetStates[:]} and states

{nextState, nextReset, nextResetStates[:]}. For a top

level state machine, active is always true. For sub-

state machines, active is true only when the parent

state is active. For a top level state machine, reset is

true at the first activation only. For sub-state ma-

chine, reset is propagated from the state machines

higher up.

5.1 State Activation

The state update starts from nextState, i.e.,what has

been determined to be the next state at the previous

time. selectedState takes into account if a reset of the

state machine is to be done.

 output Integer selectedState =

 if reset then 1 else previous(nextState);

The integer fired is calculated as the index of the tran-

sition to be fired by checking that selectedState is the

from-state and the condition is true for an immediate

transition or previous(condition) is true for a delayed

transition. The max function returns the index of the

transition with highest priority or 0.

 Integer fired =

 max(if (if t[i].from == selectedState then (if t[i].immediate

 then c[i] else previous(c[i])) else false) then i else 0

 for i in 1:size(t,1));

The start value of c is false. This definition would

require that the previous value is recorded for all

transitions conditions. Below is described an equiva-

lent semantics which just requires to record the value

of one integer variable delayed. The integer imme-

diate is calculated as the index of the immediate

transition to potentially be fired by checking that

selectedState is the from-state and the condition is

true. The max function returns the index of the tran-

sition with true condition and highest priority or 0.

 Integer immediate =

 max(if (if t[i].immediate and t[i].from == selectedState then

 c[i] else false) then i else 0 for i in 1:size(t,1));

In a similar way, the Integer delayed is calculated as

the index for a potentially delayed transition, i.e. a

transition taking place at the next clock tick. In this

case the from-state needs to be equal to nextState:

 Integer delayed =

 max(if (if not t[i].immediate and t[i].from == nextState then

 c[i] else false) then I else 0 for i in 1:size(t,1));

The transition to be fired is determined as follows,

taking into account that a delayed transition might

have higher priority than an immediate:

 Integer fired = max(previous(delayed), immediate);

nextState is set to the found transitions to-state:

 Integer nextState = if active then (if fired > 0 then t[fired].to

 else selectedState) else previous(nextState);

In order to define synchronize transitions, each state

machine must determine which are the final states,

i.e. states without from-transitions and to determine

if the state machine is in a final state currently:

 Boolean finalStates[nStates] =

 {max(if t[j].from == i then 1 else 0 for j in 1:size(t,1)) == 0

 for i in 1:nStates};

 Boolean stateMachineInFinalState = finalStates[activeState];

To enable a synchronize transition, all the stateMachi-

neInFinalState conditions of all state machines within

the meta state must be true.

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 43
10.3384/ecp1207637 September 3-5, 2012, Munich, Germany

5.2 Reset Handling

A state can be reset for two reasons:

 The whole state machine has been reset from its

context. In this case, all states must be reset, and

the initial state becomes active.

 A reset transition has been fired.

Then, its target state (and its sub-state machines)

are reset, but not other states.

The first reset mechanism is handled by the activeRe-

setStates and nextResetStates vectors. The state machine

reset flag is propagated and maintained to each state

individually:

 output Boolean activeResetStates[nStates] =

 {if reset then true else previous(nextResetStates[i])

 for i in 1:nStates};

until a state is eventually executed, then its corres-

ponding reset condition is set to false:

 Boolean nextResetStates[nStates] = if active then

 {if activeState == i then false else activeResetStates[i]

 for i in 1:nStates}

The second reset mechanism is implemented with

the selectedReset and nextReset variables. If no reset

transition is fired, the nextReset is set to false for the

next cycle.

5.3 Activation handling

The execution of a sub-state machine has to be sus-

pended when its enclosing state is not active. This

activation flag is given as a Boolean input active.

When this flag is true, the sub-state machine main-

tains its previous state, by guarding the equations of

the state variables nextState, nextReset and
nextResetStates.

5.4 Semantics Summary

The entire semantics model is given below:

model StateMachineSemantics "Semantics of state machines"
 parameter Integer nStates;
 parameter Transition t[:]

 "Array of transition data sorted in priority";
 input Boolean c[size(t,1)]

 "Transition conditions sorted in priority";

 Boolean active "true if the state machine is active";
 Boolean reset "true when the state machine should be reset";

 Integer selectedState = if reset then 1 else previous(nextState);
 Boolean selectedReset = if reset then true

 else previous(nextReset);

// For strong (immediate) and weak (delayed) transitions
 Integer immediate = max(if (if t[i].immediate and t[i].from ==

 selectedState then c[i] else false) then i else 0

 for i in 1:size(t,1));

 Integer delayed = max(if (if not t[i].immediate and t[i].from ==

 nextState then c[i] else false) then i else 0 for i in 1:size(t,1));

 Integer fired = max(previous(delayed), immediate);
 output Integer activeState = if reset then 1

 elseif fired > 0 then t[fired].to else selectedState;
 output Boolean activeReset = if reset then true

 elseif fired > 0 then t[fired].reset else selectedReset;

// Update states
 Integer nextState = if active then activeState

 else previous(nextState);
 Boolean nextReset = if active then false

 else previous(nextReset);

// Delayed resetting of individual states
 output Boolean activeResetStates[nStates] = {if reset then true

 else previous(nextResetStates[i]) for i in 1:nStates};
 Boolean nextResetStates[nStates] = if active then

 {if selectedState == i then false else activeResetStates[i]

 for i in 1:nStates}

 else previous(nextResetStates);

 Boolean finalStates[nStates] = {max(if t[j].from == i then 1 else 0

 for j in 1:size(t,1)) == 0 for i in 1:nStates};

 Boolean stateMachineInFinalState = finalStates[activeState];

end StateMachineSemantics;

6 Comparison to Other State Ma-

chine Formalisms

State machines needed to be introduced in Modelica

to enable modeling of complete systems. Several

attempts have been made: (Mosterman et. al. 1998),

defines state machines in an object-oriented way

with Boolean equations. A more powerful state ma-

chine formalism was introduced in StateGraph (Otter

et. al. 2005). A prototype mode automata formalism

was implemented (Malmheden et. al. 2008) using a

built-in concept of modes. Certain problems of po-

tentially unsafe models in StateGraph were removed

in the StateGraph2 library (Otter et. al. 2009). These

efforts showed that state machine support must be

natively supported in the language.

The presented state machines of Modelica 3.3

have a similar modeling power as Statecharts (Harel,

1987) and State Machine Diagrams of SysML (Frie-

denthal 2008).

The semantics of the state machines defined in

this paper is inspired by mode automata (Maraninchi

2002) and basically the same as Lucid Synchrone 3.0

(Pouzet 2006), or its clone LCM (Logical Control

Module) (Gaucher et.al. 2009). Some minor proper-

ties are different compared to Lucid Synchrone 3.0,

State Machines in Modelica

44 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207637

in particular regarding transition conditions. Lucid

Synchrone has two kinds of transitions: namely

“strong” and “weak”. Strong transitions are executed

before the actions of a state are evaluated while weak

transitions are executed after. This can lead to sur-

prising behavior, because the actions of a state are

skipped if it is activated by a weak transition and

exited by a true strong transition. For this reason, the

state machines in Modelica use “immediate” (= the

same as “strong”) and “delayed” transitions. Delayed

transitions are “immediate” transitions where the

condition is automatically delayed with an implicit

previous(...).

Note that safety critical control software in air-

crafts is often defined with such kind of state ma-

chines, such as using the Scade 6 Tool Suite from

Esterel Technologies (Dormoy 2008) that provides a

similar formalism as Lucid Synchrone, with minor

differences such as the ability to associate actions to

transitions in addition to states. Scade also provides

synchronize semantics by means of synchronization

transitions between several parallel sub-state ma-

chines being in states which have been declared fi-

nal.

Stateflow (Mathworks 2012), while being very

expressive, suffers from “numerous, complex and

often overlapping features lacking any formal defini-

tion”, as reported by (Hamon, et.al, 2004).

The presented Modelica approach has the impor-

tant feature that at one clock tick, there is only one

assignment to every variable (for example, it is an

error if state machines are executed in parallel and

they assign to the same variable at the same clock

tick; such errors are detected at compile-time).

Modelica, Lucid Synchrone, LCM and Scade 6

all have the property that data flow and state ma-

chines can be mutually hierarchically structured, i.e.

that, for example a state of a state machine can con-

tain a block diagram in which the blocks might con-

tain state machines.

7 Conclusions

We have described how state machines can be mod-

eled in Modelica 3.3. Instances of blocks connected

by transitions with one such block marked as an ini-

tial state constitute a state machine. Hierarchical

state machines can be defined with reset or resume

semantics, when re-entering a previously executed

state. Parallel sub-state machines can be synchro-

nized when they reached their final states. Special

merge semantics have been defined for multiple out-

er output definitions in mutually exclusive states as

well as conditional data flows.

8 Acknowledgements

The authors are very thankful to Albert Benveniste,

Marc Pouzet, Martin Otter, Martin Malmheden, Da-

niel Weil, Torsten Blochwitz, Peter Fritzson, Carl-

Fredrik Abelson, Hans Olsson and other Modelica

Association members for stimulating discussions and

feedback during evolutions of the Modelica 3.3 spe-

cification.

The authors appreciate the partial funding of this

work by the Swedish funding organization VINNO-

VA (funding number: 2008-02291) within the

ITEA2 MODELISAR project (http://www.itea2.org/

project/result/download/result/5533).

References

Dormoy F.X. (2008): SCADE 6 A Model Based

Solution For Safety Critical Software

Development, ERTS EMBEDDED REAL

TIME SOFTWARE 2008, TOULOUSE,

FRANCE, http://www.esterel-

technologies.com/EN-50128/files/ERTS2008-

SCADE-6-A-Model-Based-Solution-For-

Safety-Critical-Software.pdf

Elmqvist H., Otter M., and Mattsson S.E. (2012):

Fundamentals of Synchronous Control in

Modelica. Proceedings of 9th International

Modelica Conference, Munich, Germany,

September 3-5.

Friedenthal S., Moore A., and Steiner R. (2008): A

Practical Guide to SysML –The Systems

Modeling Language, Elsevier Inc.

Gaucher F., Closse E., Weil D. (2009): The LCM

Language Primer, Dassault Systèmes Internal

Report, Grenoble, France, 2009

Hamon G., and Rushby J. (2004). An operational

semantics for Stateflow. In Fundamental

Approaches to Software Engineering

(FASE)’04, volume 2984 of LNCS, pages 229–

243, Barcelona, Spain, 2004. Springer.

http://fm.csl.sri.com/~rushby/papers/sttt07.pdf

Harel, D. (1987): Statecharts: A Visual Formalism

for Complex Systems. Science of Computer

Programming 8, 231-274. Department of Ap-

plied Mathematics, The Weizmann Institute of

Science, Rehovot, Israel.

www.inf.ed.ac.uk/teaching/courses/seoc1/-

2005_2006/resources/statecharts.pdf

Malmheden M., Elmqvist H., Mattsson S.E., He-

nriksson D., and Otter M. (2008): ModeGraph

- A Modelica Library for Embedded Control

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 45
10.3384/ecp1207637 September 3-5, 2012, Munich, Germany

Based on Mode-Automata. B. Bachmann

(editor), in Proc. of Modelica‟2008 conference,

Bielefeld, Germany.

www.modelica.org/events/modelica2008/Proce

edings/sessions/session3a3.pdf

Maraninchi, F. and Rémond, Y. (2002): Mode-

Automata: a New Domain-Specific

Construct for the Development of Safe

Critical Systems.
http://wwwverimag.imag.fr/~maraninx/SCP200

2.html

MathWorks (2012): R2012a Documentation -

Stateflow

http://www.mathworks.com/help/toolbox/statef

low/

Modelica Association (2012): Modelica Language

Specification Version 3.3.

https://www.modelica.org/documents/Modelica

Spec33.pdf.

Mosterman P., M. Otter, and H. Elmqvist. (1998):

Modeling Petri Nets as Local Constraint

Equations for Hybrid Systems using Modeli-

ca. Proceedings of SCSC‟98, Reno, Nevada,

USA, Society for Computer Simulation Inter-

national, pp. 314–319.

Otter M., K.-E. Årzén, and I. Dressler (2005): Sta-

teGraph – A Modelica Library for Hierar-

chical State Machines. Proceedings of the 4th

International Modelica Conference, Hamburg,

Germany, ed. G. Schmitz, pp. 569-578.

http://www.modelica.org/events/Conference20

05/online_proceedings/Session7/Session7b2.pd

f

Otter M., Malmheden M., Elmqvist H., S.E.

Mattsson, and C. Johnsson (2009): A New

Formalism for Modeling of Reactive and

Hybrid Systems. Proceedings of the 7th Inter-

national Modelica Conference, Como, Italy,

20-22 September 2009.

http://www.ep.liu.se/ecp/043/041/ecp09430108

.pdf

Pouzet M. (2006): Lucid Synchrone, Version 3.0,

Tutorial and Reference Manual.

http://www.di.ens.fr/~pouzet/lucid-synchrone/

State Machines in Modelica

46 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207637

PNlib - An Advanced Petri Net Library for Hybrid Process Modeling

PNlib - An Advanced Petri Net Library

for Hybrid Process Modeling

Sabrina Proß Bernhard Bachmann

University of Applied Sciences, Department of Engineering and Mathematics

Am Stadtholz 24, 33609 Bielefeld

sabrina.pross@fh-bielefeld.de Bernhard.bachmann@fh-bielefeld.de

Abstract

A new Petri net library, called PNlib, is presented to

enable graphical hierarchical modeling, hybrid simu-

lation, and animation of processes in life sciences,

technical applications, among others. In order to

model these most different processes, a new power-

ful and universally usable mathematical modeling

concept – xHPN (extended Hybrid Petri Net) – has

been established. This formalism is used as specifi-

cation for the PNlib (Petri Net library) realized by

the object-oriented modeling language Modelica.

The application of the new environment is demon-

strated by three selected examples. The first example

demonstrates the representation of functional princi-

ples by a model of a Senseo coffee machine and the

second one is a model of a printing production pro-

cess. The third example presents the applicability of

modeling business processes. All models are provid-

ed as application cases in the library.

Keywords: Petri nets; hybrid modeling; xHPN; pro-

cess modeling

1 Introduction

The Petri net formalism was first introduced by Carl

Adam Petri in 1962 for modeling and visualization

of concurrency, parallelism, synchronization, re-

source sharing, and non-determinism [1]. A Petri net

is a graph with two different kinds of nodes, called

transitions and places; thereby, places and transi-

tions are connected by arcs. Every place in a Petri

net can contain a non-negative integer number of

tokens. These tokens initiate transitions to fire ac-

cording to specific conditions. These firings lead to

changes of the tokens in the places.

In the recent years, Petri nets with their various

extensions are becoming increasingly popular. They

have been proven to be a universal graphical model-

ing concept for representing different systems in

nearly all degrees of abstraction. They support the

qualitative modeling approach as well as the quanti-

tative one. Furthermore, the processes can be mod-

eled discretely as well as continuously, refer to [2].

In addition, discrete and continuous processes can

also be combined within a Petri net model to so-

called hybrid Petri nets first introduced by David

and Alla [3]. The Petri net formalism with all its ex-

tensions is so powerful that nearly all other formal-

isms are included. Hence, only one formalism is

needed regardless of the approach (qualitative vs.

quantitative, discrete vs. continuous vs. hybrid, de-

terministic vs. stochastic) which is appropriate for

the respective system. The Petri net formalism is

easy to understand for researchers from different dis-

ciplines. It is an ideal way for intuitive representing

and communicating data and new knowledge of

mechanisms and processes. Furthermore, Petri nets

allow hierarchical structuring of models and, there-

fore, offer the possibility of different detailed views

for every observer of the model.

Figure 1: Relationships between the different formalisms

There are already three Petri net libraries availa-

ble on the Modelica homepage (www.modelica.org).

The first was developed by Mosterman et al. and

enables the modeling of a restricted class of discrete

DOI Proceedings of the 9th International Modelica Conference 47
10.3384/ecp1207647 September 3-5, 2012, Munich, Germany

Petri nets, called normal Petri nets [4]. The places of

normal Petri nets can only contain zero or one token.

Additionally, all arcs have the weight one and exter-

nal signals initiate the firing of transitions. If a con-

flict occurs between two or more transitions, the

transition with the highest priority fires. Hence, only

deterministic behavior is represented by this kind of

Petri net.

The second Petri net library is an extension of the

previous one and was developed by Fabricius [5].

The places are able to contain a non-negative integer

number of tokens and can be provided with non-

negative integer minimum and maximum capacities.

Furthermore, the transitions are timed with fixed or

stochastic delays.

The third library, called StateGraph, is based on

Grafcharts which combines the function chart for-

malism of Grafcet with the hierarchical states of

Statecharts [6]. The StateGraph library is part of the

Modelica standard library and was developed by Ot-

ter et al. [7].

The relationships between the mentioned con-

cepts are displayed in Figure 1. To enable modeling

of different systems with Petri nets in Modelica, the

existing libraries have to be extended by the follow-

ing aspects:

 Transfer of the discrete Petri net concept to a con-

tinuous one,

 Support of edges with (functional) weightings,

 Support of test-, inhibitor, and read arcs,

 Support of (different) conflict resolutions (ran-

dom decisions),

 Combination of discrete and continuous Petri net

elements to hybrid Petri nets.

2 Extended Hybrid Petri Nets

The extended Hybrid Petri Net (xHPN) formalism

comprises three different processes, called transi-

tions: discrete, stochastic, and continuous transition,

two different states, called places: discrete and con-

tinuous places, and four different arcs: normal, in-

hibitor, test, and read arcs. The icons of the formal-

ism are shown in Figure 2.

Discrete places contain a non-negative integer quan-

tity, called tokens or marks, while continuous plac-

es contain a non-negative real quantity. These marks

initiate transitions to fire according to specific condi-

tions and the firings lead to changes of the marks in

the connected places.

Discrete transitions are provided with delays and

firing conditions and fire first when the associated

delay is passed and the conditions are fulfilled. The-

se fixed delays can be replaced by exponentially dis-

tributed random variables, then, the corresponding

transition is called stochastic transition. Thereby,

the characteristic parameter λ of the exponential dis-

tribution can depend functionally on the markings of

several places and is recalculated at each point in

time when the respective transition becomes active

or when one or more markings of involved places

change. Based on the characteristic parameter, the

next putative firing time of the

transition can be evaluated and it fires when this

point in time is reached.

Figure 2: Icons of the xHPN formalism

Both - discrete and stochastic transitions - fire by

removing the arc weight from all input places and

adding the arc weight to all output places. On the

contrary, the firing of continuous transitions takes

place as a continuous flow determined by the firing

speed which can depend functionally on markings

and/or time.

Places and transitions are connected by normal

arcs which are weighted by non-negative integers

and real numbers, respectively. But also functions

can be written at the arcs depending on the current

markings of the places and/or time. Places can also

be connected to transitions by test, inhibitor, and

read arcs. Then their markings do not change during

the firing process. In the case of test and inhibitor

arcs, the markings are only read to influence the time

of firing while read arcs only indicate the usage of

the marking in the transition, e.g. for firing condi-

tions or speed functions. If a place is connected to a

transition by a test arc, the marking of the place must

be greater than the arc weight to enable firing. If a

place is connected to a transition by an inhibitor arc,

the marking of the place must be less than the arc

weight to enable firing. In both cases the markings of

the places are not changed by firing.

The conversion of a discrete to a continuous

marking is realized by connecting a discrete transi-

tion to a continuous place and the conversion from a

continuous to a discrete marking is realized by con-

(time-)discrete process
(event)

continuous process
(flow)

stochastic process
(random event)

Transitions

Places

Arcs

(time-)discrete state
(integer quantity)

continuous state
(real quantity)

„normal“ arc

inhibitor arc

test arc

read arc

xHPN: Extended Hybrid Petri Nets

PNlib - An Advanced Petri Net Library for Hybrid Process Modeling

48 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207647

necting a continuous place to a discrete transition.

However, the conversion process is always per-

formed by discrete transitions, discrete places can

only influence the time when continuous transitions

fire but their marking cannot be changed during the

continuous firing process. Figure 3 shows examples

of these two basic principles:

 T1 can only fire when P1 has more than zero

marks and P3 has at least one mark (influence),

 T2 can only fire when P4 has at least one mark

and P6 has at least 5.4 marks (influence),

 T3 fires by removing one mark from P7 and add-

ing 1.8 marks to P8 (conversion),

 T4 fires by removing 0.8 marks from P9 and add-

ing one mark to P10 (conversion).

Figure 3: Basic concepts of hybrid Petri nets and marking

evolution of places and achieved by firing with

a delay of 1 of the bottom left Petri net.

It is important to mention that a discrete transition

fires always in a discrete manner by removing and

adding marks after a delay is passed regardless of

whether a discrete or a continuous place is connected

to it. However, a continuous transition fires always

by a continuous flow so that a discrete place can only

be connected to continuous transition if it is input as

well as output of the transition with arcs of same

weight. In this way continuous transitions can only

be influenced by discrete places but discrete mark-

ings cannot be changed by continuous firing.

Several conflicts can occur when the places have

to enable their connected active transitions. Possibly,

a discrete place or a continuous place connected to

discrete transitions has not enough marks to enable

all discrete output transitions simultaneously or can-

not receive marks from all active input transitions

due to the maximum capacity. Then a conflict arises

that has to be resolved (type-1-conflict, see Figure

4).

Figure 4: Example of a type-1-conflict; P1 has not enough

tokens to fire T1 and T2 simultaneously.

This can be either done by providing the transi-

tions with priorities or probabilities. In the first case,

a deterministic process decides which place enables

which transition and in the second case the enabling

is performed at random; thereby transitions assigned

with a high probability are chosen preferentially.

Figure 5: Example of a type-2-conflict; the input speed of

P2 and P3 is not sufficient to fire T5 and T6 with the de-

termined speed.

Another conflict can occur between a continuous

place and two or more continuous transitions when

the input speed is not sufficient to fire all output

transitions with the respective speed or when the

output speed is not sufficient to fire all input transi-

tions with the respective speed (type-2-conflict, see

Figure 5). This conflict is solved by sharing the

speeds proportional to the assigned maximum speeds

(cf. [8]).

Figure 6: Example of a type-3-conflict; at time 0, T1 be-

comes active and fires continuously. At time 2, the delay

of T2 is passed and it becomes firable. At this point in

time, P3 has a conflict because it cannot fire tokens in T1

and T2, simultaneously. Hence, T2 takes priority over T1

and fires.

P4 T2 P5

P6
8.9

P1
8.6

T1
P2
1.8

P3

1 1 1 1

P7 T31

5.45.4

P8
0.0

1.8 P10T40.8
P9
3.4

1

11

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

M
a

rk
s

Time

P7 P8

P1

T1

T2

P2

P3

1

2

1

1

T1

T2

T3

P1
0

P2
0

P3
0

T5

T6

1

1

1

3

1

3

1

v1=3

v2=10.5

v3=11.7

v5=3

v6=2

T4
P4
0

v4=1

1

2

2

T1

T2

T3

P1
0

P2
0

P3
0

T5

T6

1

1

1

3

1

3

1

v1=3

v2=7.5

v3=6

v5=3

v6=2

T4
P4
0

v4=1

1

2

2

P1
8.6

T1
P2
1.8

P3

1 1

11

T21

d2=2

T3
P4
2

T4

T5

1

1

1

d5=1

v3=1

v4=2

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 49
10.3384/ecp1207647 September 3-5, 2012, Munich, Germany

If a conflict occurs between a place and continu-

ous as well as discrete/stochastic transitions, the dis-

crete/stochastic transitions take always priority over

the continuous transitions (type-3-conflict, see Fig-

ure 6).

Figure 7: Example of a type-4-conflict; at time 0, P3 can

either enable T1 or T2 but not both simultaneously. This

conflict can be solved by prioritization of the transitions.

A last conflict can occur when a discrete place

has not enough marks to enable all connected con-

tinuous transitions. This is solved by prioritization of

the involved transitions (type-4-conflict, see Figure

7).

Visitor

Push lever

Lever

Lift flapper

Water
flows

Sink
flapper

Tank fill-
valve

o
p

en
cl

o
se

w
at

er

fl
o

w
s

Visitor enters
toilet

Flush valve

flapper
Water in

tank

Level of
float

Sewer

Water in
bowl

T1

T2

T3T4

T5

T6

T7

T8

T9

P1

P2

P3

P4

P5

P6 P7

Figure 8: Hybrid modeling of a flush toilet with the aid of

xHPN formalism

Figure 8 shows an example of hybrid modeling

by the xHPN formalism. The model represents a

flush toilet. A visitor enters the toilet; thereby, the

time between two visitors is not exactly known so

that it is modeled by a stochastic transition with an

exponentially distributed delay (). The visitor

() pushes () the lever () which lifts the flush

valve flapper (). Then the water can flow ()

from the tank () to the bowl () and afterwards

to the sewer (). When the water flows to the bowl,

the float () sinks in the toilet tank. If the float falls

below a specific level (inhibitory arc), the tank fill-

valve (is opened () and new water can flow

() into the tank. This causes also that the float ris-

es and when a specific level is reached (test arc), the

tank fill-valve is closed (). If the lever has re-

turned to its starting position, the flush valve flapper

sinks back to the bottom () and no water can flow

into the bowl anymore.

3 PNlib

The advanced Petri Net library, called PNlib, enables

the modeling of extended hybrid Petri Nets (xHPN).

It comprises

 a discrete (PD) and a continuous place (PC),

 a discrete (TD), a stochastic (TS), and a continu-

ous transitions (TC), and

 a test (TA), an inhibitor (IA), and a read arc (RA).

Figure 9: Component icons of the PNlib.

The main package PNlib is divided into the fol-

lowing sub-packages:

 Interfaces: contains the connectors of the Petri net

component models.

 Blocks: contains blocks with specific procedures

that are used in the Petri net component models.

 Functions: contains functions with specific algo-

rithmic procedures which are used in the Petri net

component models.

 Constants: contains constants which are used in

the Petri net component models.

 Models: contains several examples and offers the

possibility to structure further Petri net models.

Additionally, the package contains the component

settings which enables the setting of global parame-

ters for the display and the animation of Petri net

models.

P1
8.6

T1
P2
1.8

P3

1 1

11

P4
8.6

T2
P5
1.8

1 1

1 1

v1=2

v2=3

PNlib - An Advanced Petri Net Library for Hybrid Process Modeling

50 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207647

Places, transitions, and arcs are represented by the

icons depicted in Figure 9. Thereby, the discrete

place is represented by a circle and the continuous

place by a double circle. The transitions are boxes

which are black for discrete transitions, black with a

white triangle for stochastic transitions, and white for

continuous transitions. The test arc is represented by

a dashed arc, the inhibitor arc by an arc with a white

circle at its end, and the read arc by an arc with a

black square at its end.

3.1 Connectors

The PNlib contains four different connectors:

PlaceOut, PlaceIn, TransitionOut, and Tran-

sitionIn. The connectors PlaceOut and PlaceIn

are part of place models and connect them to output

and input transitions, respectively. Similar, Transi-

tionOut and TransitionIn are connectors of the

transition model and connect them to output and in-

put places, respectively. Figure 10 shows which con-

nector belongs to which Petri net component model.

Figure 10: Connectors of the PNlib.

The connectors of the Petri net component models

are vectors to enable the connection to an arbitrary

number of input and output components. Therefore,

the dimension parameters nIn and nOut are declared

in the place and transition models with the con-

nectorSizing annotation.

3.2 Places

The parameters of places are summarized in Table 1.

If the type-1-conflict is resolved by priorities, the

corresponding priorities of the transitions are given

by the indices of the connections, i.e. the transition

connected to the place with the index 1 has also the

priority 1, the transition connected to the place with

the index 2 has also the priority 2 etc. Otherwise, if

the probabilistic enabling type is chosen, the corre-

sponding probabilities for the transitions have to be

entered as a vector. Thereby, the first vector element

corresponds to the connection with the index 1, the

second to the connection with the index 2 etc. The

input of enabling probabilities as vectors in the place

model, and not at the corresponding arcs, is neces-

sary due to the fact that properties cannot be as-

signed to connections according to the Modelica

Specification 3.2.

Table 1: Parameters and modification possibilities of dis-

crete (d) and continuous (c) places

Name

Description
Type Default

startTokens/

startMarks
Marking at the beginning

of the simulation

scalar 0

minTokens/

minMarks
Minimum capacity

scalar 0

maxTokens/

maxMarks
Maximum capacity

scalar infinite

enablingType
Type of enabling if type-

1-conflicts occur; the

priorities are defined by

the connection indices

and the probabilities by

the variables ena-

blingProbIn/Out

choice/

scalar

Priority

enablingProbIn
Enabling probabilities of

input transitions

vector fill(1/nIn,nIn)

enablingProbOut
Enabling probabilities of

output transitions

vector fill(1/nOut,nOut)

N
Amount of levels for sto-

chastic simulation

scalar settings1.N

restart

Condition for resetting

the marking to

reStartTokens/Marks

condition

expres-

sion

false

reStartTokens/

reStartMarks
When the reStart condi-

tion is fulfilled, the mark-

ing is set to reStartTo-

kens/Marks

scalar 0

The input of enabling probabilities as vector is

demonstrated by Figure 11. Place P1 is connected to

the transitions T1, T2, and T3 and the connection to

T1 is indexed by 1, the connection to T2 is indexed

by 2, and the connection to T3 is indexed by 3. Thus,

the corresponding connect-equations are

connect(P1.outTransition[1],
T1.inPlaces[1]);

connect(P1.outTransition[2],
T2.inPlaces[1]);

connect(P1.outTransition[3],
T3.inPlaces[1]);

The enabling probabilities 0.3 for T1, 0.25 for T2,

and 0.45 for T3 have to be entered by the parameter

vector
enablingProbOut={0.3,0.25,0.45}.

PlaceOut

PlaceInTransitionIn

TransitionOut

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 51
10.3384/ecp1207647 September 3-5, 2012, Munich, Germany

Figure 11: Input of enabling probabilities.

The main process in the place model is the recal-

culation of the marking after firing a connected tran-

sition. In the case of the discrete place model, this is

realized by the discrete equation

when tokeninout or pre(reStart) then
 t=if tokeninout then pre(t)+

 firingSumIn - firingSumOut else

 reStartTokens;

end when;

whereby pre(t) accesses the marking t immediate-

ly before the transitions fire. To this amount, the arc

weight sum of all firing input transitions is added

and the arc weight sum of all firing output transitions

is subtracted from it. Additionally, the tokens are

reset to reStartTokens when the user-defined

condition reStart becomes true.

The marking of continuous places can change

continuously as well as discretely. This is imple-

mented by the following construct

der(t)=conMarkChange;
when disMarksInOut then
 reinit(t,t+disMarkChange);
end when;
when reStart then
 reinit(t,reStartMarks);
end when;

whereby the der-operator access the derivative of

the marking t according to time. The continuous

mark change is performed by a differential equation

while the discrete mark change is performed by the

reinit-operator within a discrete equation. This

operator causes a re-initialization of the continuous

marking every time when a connected discrete tran-

sition fires. Additionally, the marking is re-initialized

by reStartMarks when the condition reStart

becomes true.

3.3 Transitions

The parameters of transitions are summarized in Ta-

ble 2. Thereby, it has to be distinguished between the

following input types: scalar, vector, scalar function,

vector function, and condition expression. The input

of arc weights as vectors in the transition model and

not at the respective arcs is necessary due to the fact

that connections cannot be provided with properties

according to the Modelica Specification 3.2.

Table 2: Parameters and modification possibilities of dis-

crete (d), stochastic (s), and continuous (c) transitions

Name

Description

Type Part

of

Default

Allowed
delay

Delay of timed

transitions

scalar d 1

non-negative

real values
h

Hazard function

to determine the

characteristic

value of exponen-

tial distribution

scalar or

scalar

function

s 1

non-negative

real values

maximumSpeed

Maximum speed
scalar or

scalar

function

c 1

non-negative

real values
arcWeightIn

Weights of input

arcs

vector or

vector

function

d,s,c 1

non-negative

integers (d,s),
non-negative

real values (c)
arcWeightOut

Weights of output

arcs

vector or

vector

function

d,s,c 1

non-negative

integers (d,s),
non-negative

real values (c)
firingCon

Firing condition
condition

expression

d,s,c true

Boolean con-

dition expres-

sion

The input is demonstrated by the following ex-

amples. Figure 12 shows a discrete Petri net. The

indices of the connections are written at the arcs

within square brackets, e.g. the connection

 has the input index [1] and has the

output index [3]. The input of the arc weights dis-

played after the indices to property dialog or as mod-

ification equation is performed by the vector func-

tions

arcWeightIn = {2*P1.t,4} and

arcWeightOut = {2,1,5*P1.t},

whereby the expression P1.t accesses the current

marking of P1. Thus, the weights of the arcs

 and are functions which de-

pend on the marking of P1.

Figure 12: Input of arc weights.

P1

T1

T2

T3

[1]; 0.3

[2]; 0.25

[3]; 0.45

T1

P1

P2

P3

P4

P5

[1]; 2∙m(P1)

[2]; 4

[1]; 2

[2]; 1

[3]; 5∙m(P1)

PNlib - An Advanced Petri Net Library for Hybrid Process Modeling

52 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207647

Transitions can also be provided with additional

conditions that have to be satisfied to permit the ac-

tivation. The condition
firingCon = time>9.7

causes that the transition cannot be activated as long

as time is less than 9.7.

Figure 13 shows two continuous Petri nets. Transi-

tion T1 has a maximum speed function which de-

pends on the makings of P1 and P2. The input of this

function to the property dialog or as modification

equation is performed by the expression

maximumSpeed = 0.75*P1.t*P2.t,

whereby P1.t and P2.t accesses the marks of P1

and P2, respectively. Transition T2 has a maximum

speed function that depends on time and can be en-

tered by the expression

maximumSpeed = if time<=6.5 then 2.6
 else 1.7.

Figure 13: Input of maximum speed functions.

Based on the current markings of the places, it is

checked in the transition model by an algorithmic

procedure if the transition can become active. Dis-

crete transitions wait then as long as the delay is

passed and stochastic transitions wait till the next

putative firing time is reached. Based on this infor-

mation, the places enable some of the active transi-

tion to fire. At this point, several conflicts can occur

which have to be resolved appropriately by the

methods mentioned in [8] to get a successful and

reliable simulation. When a transition is enabled by

all its connected places, it is firable and reports this

via the connector variable fire to the connected plac-

es. The places recalculate then their markings based

on this information.

3.4 Arcs

xHPNs comprise four different kinds of arcs: normal,

test, inhibitor, and read arc. The Modelica language

do not support the assignment of properties to arcs

that are generated by connect equations. Due to that

fact, test, inhibitor, and read arcs are realized by

component models which are interposed between

places and transitions (see Figure 14); the normal arc

is simply generated by the connect equation. Test

and inhibitor arc can be normal arcs simultaneously.

Figure 14: Modeling of normal (top left), test (bottom

left), inhibitor (top right), and read arcs (bottom right)

with the PNlib.

Table 3: Parameters and modification possibilities of test

and inhibitor arcs (read arcs have no parameters)

Name

Description

Type Default

Allowed
testValue

The marking of the place

must be greater to enable

firing of transitions (test

arc);

the marking of the place

must be smaller to enable

firing (inhibitor arc).

scalar 1

non-negative inte-

gers if connected

to discrete places,

non-negative real

values otherwise

normalArc

If yes is chosen, then the

arc is also a normal arc to

change the marking by

firing (called double

arc).

choice/

scalar

no

no or yes

4 Animation and Connection to

Matlab/Simulink

A possibility to represent the simulation results of an

xHPN model is an animation. Thereby, several set-

tings can be made in the property dialog of the set-

tings-box. These settings are global and, thus, affect

all components of the Petri net model. By using the

prefixes inner and outer, it is achieved that the set-

tings are common to all Petri net components of a

model. An animation offers a way to analyze the

marking evolutions of large and complex xHPNs.

Figure 15 shows four selected points in time of the

animation of an xHPN example. All display and an-

imation options are realized with the DynamicSe-

lect annotation.

To simulate the established xHPN model several

times with different parameter settings and use the

arising simulation results for parameter estimation,

sensitivity analysis, deterministic and stochastic hy-

brid simulation, or process optimization [8], the

Modelica models in Dymola are connected to

P1

T1

P3

P4P2

P5

T2

P7

P8P6

   1 0 75 1 2v . m P m P  

2 6 time 6 5
2

1 7 time 6 5

. .
v

. .


 



T2P3 P4

T3P5 P6

T4P7 P8

T1P1 P2

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 53
10.3384/ecp1207647 September 3-5, 2012, Munich, Germany

Matlab/Simulink. This is realized with the aid of a

Dymola interface in Simulink and a set of Matlab m-

files utilities [9].

3

P1

4

P2

d=1.8

T1

2.0

11.43

P3

14.34

P4

0.0

P5

1.0

4.30

T2

1.20

T3

4.98

P6

14.23

P7
SETTINGS

d=5.5

T4

P1_t

P3_t

P6_t

P5_t

Time = 1

2

P1

4

P2

d=1.8

T1

2.0

3.83

P3

3.34

P4

0.0

P5

1.0

4.30

T2

1.20

T3

8.16

P6

29.08

P7
SETTINGS

d=5.5

T4

P1_t

P3_t

P6_t

P5_t

Time = 3

1

P1

4

P2

d=1.8

T1

2.0

2.22

P3

0.0

P4

0.0

P5

1.0

4.30

T2

1.20

T3

8.23

P6

29.94

P7
SETTINGS

d=5.5

T4

P1_t

P3_t

P6_t

P5_t

Time = 4

0

P1

4

P2

d=1.8

T1

2.0

3.22

P3

0.0

P4

1.0

P5

1.0

4.30

T2

1.20

T3

8.23

P6

29.94

P7
SETTINGS

d=5.5

T4

P1_t

P3_t

P6_t

P5_t

Time = 6

Figure 15: Animation of an xHPN model.

All markings which should be available in Matlab

have to be declared with the prefix output on the

highest level. This is achieved by creating a connect-

or of the output connector at the top of the place

icon. In the case of discrete places it is an orange

IntegerOutput connector and in the case of con-

tinuous places it is a blue RealOutput connector. In

Figure 15 the markings of , , , and are

available in Matlab.

5 Application

The PNlib is so powerful but also so universal and

generic that it is an ideal all-round-tool for model-

ing and simulation of nearly all kinds of processes,

such as business processes, production processes,

logistic processes, work flows, traffic flows, data

flows, multi-processor systems, communication pro-

tocols, and functional principals. This section gives

an overview of the different application fields using

the PNlib. Three selected examples

 Modeling a Senseo coffee machine,

 Modeling a printing process, and

 Modeling a business process

are part of the PNlib and should demonstrate the

huge application field. Additionally, the application

of the PNlib for modeling biological processes is

shown in [10].

Figure 16: Hierarchical model of a Senseo coffee machine and simulation results.

A model of a Senseo coffee machine is presented. The

main feature of a Senseo coffee machine is that the coffee

is placed in the machine in a pre-portioned form by so-

called coffee pads. One pad is generally used to make one

cup of coffee (125°ml) and two pads reach for two cups at

125 ml or one big cup at 250 ml. After a warm-up time of

about 60 seconds and the insertion of a coffee pad, the

coffee can be made. In this warm-up phase, the water is

heated at 90°C and then pressed with a pressure of about

1.4 bar within 40 seconds through the pad. In contrast to a

normal coffee machine that boils the water continuously

and transports it by its own buoyancy (hot bubbles) up

into the filter, the Senseo machine heats a portion of water

completely in a heating chamber and pumps it then

through the pad. To ensure that the heating chamber in the

machine is always filled with water, a float is placed in the

USER INSERT PAD

REFILL WATER WATER TANK

SENSEO MACHINE

heating

20

TWpumping

cooling

d=1

stop_or_next

0.25water_hc

d=0T2

0

 decision1

d=1

T3

d=1

T4

0

one_cup

0

two_cups

d=1

T5

d=1

T6

scalding

coffee_cup

0

ready

d=0counting

amount_cups

0

amount

0

on
0

pad_in

0

0

Water Tank

Cups Total

11

Start

Refill Stop/Next

Refill Water

Insert Pad

Coffee Cup

Temperature

77

s
ta

rt
in

g

0

s
ta

rt

1

 s
to

p
d

=
1

T
8

d
=

1

T
7

0

n
e

x
t_

c
o

ff
e

e
d

=
1

T
9

0

d
e

c
is

io
n

2

0
d

=
1

T
1

d=30

refilling2

0

pufferd=1

refilling1

0.5

water_tank

inserting

0

puffer

0.00E0 2.50E3 5.00E3 7.50E3 1.00E4 1.25E4 1.50E4 1.75E4
0

4

8

12

16

20

24

28

32

36

40

A
m

o
u

n
t
o

f
C

o
ff
e

e
 C

u
p

s

Time [s]

0.00E0 2.50E3 5.00E3 7.50E3 1.00E4 1.25E4 1.50E4 1.75E4
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

W
a

te
r

in
 T

a
n

k
 [
l]

Time [s]

0.00E0 2.50E3 5.00E3 7.50E3 1.00E4 1.25E4 1.50E4 1.75E4
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

C
o

ff
e

e
 i
n

 C
u

p
 [
l]

Time [s]
0.00E0 2.50E3 5.00E3 7.50E3 1.00E4 1.25E4 1.50E4 1.75E4
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

W
a

te
r

T
e

m
p

e
ra

tu
re

 i
n

 H
e

a
ti
n

g
 C

a
m

b
e

r
[°

C
]

Time [s]

1.33E4 1.34E4 1.35E4 1.36E4 1.37E4 1.38E4 1.39E4 1.40E4 1.41E4
15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

W
a

te
r

T
e

m
p

e
ra

tu
re

 i
n

 H
e

a
ti
n

g
 C

a
m

b
e

r
[°

C
]

Time [s]

5750 6000 6250 6500 6750
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

W
a

te
r

in
 T

a
n

k
 [

l]

Time [s]

7000 7025 7050 7075 7100 7125 7150
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

C
o

ff
e

e
 i
n

 C
u

p
 [

l]

Time [s]

PNlib - An Advanced Petri Net Library for Hybrid Process Modeling

54 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207647

removable water tank which allows measuring the mini-

mal capacity. If the minimum level is exceeded, the heater

is turned off. If there is sufficient water level, the next

portion of water is heated directly after the scalding and

filling. These functional principles are represented by the

hierarchically structured model shown in

Figure 16 and also some simulation results. Addi-

tionally, a detailed description of the model can be

found in the PNlib.

The applicability of the PNlib for modeling pro-

duction processes is shown by a model of a printing

process. It is also modeled hierarchically to provide a

compact and clear view on the highest level contain-

ing all important facts (see Figure 17). The process

starts with paper on a role and ends with printed leaf-

lets for supermarkets. During the process, misprints,

also called maculation, could occur due to several

reasons. If the worker at the printing machine detects

these misprints, he presses a button and all incorrect

exemplars are transferred outward. When the macu-

lation is over, he presses the button again and the

process is continued. With the help of this model

several new insights can be detected, e.g.

 How and when maculation occurs? What are the

causes and how can maculation be prevented?

 How much paper is need for the particular order?

 How long does the order take? …

Orders

2

Exemplars

31887

Maculation

9623

Paper

49812

Duration

7223

Stop/Start

Maculation Press

maculation

2706

exemplars

21045

orders

2

meters on role

11045

 paper

28500

duration

5651

Figure 17: Model of a printing process on the highest lev-

el.

The PNlib can also be used for modeling and simu-

lating business processes. A business processes de-

scribes a sequence of activities or tasks which have

to be carry out in order to achieve a particular busi-

ness goal e.g. a service or product for a particular

customer. Figure 18 shows a small part of a business

process model. The major advantages of this ap-

proach are (1) the hierarchical structure, which pro-

vides a compact and clear view of the processes on

the highest level, and (2) the simulation and anima-

tion option which enable analyzing and optimizing

of the processes. A possible question may arise in

this juncture is, how much employees are needed to

accomplish the requests and orders of the customers

or simple how the profit can be maximized. All ques-

tions of this kind can be answered by simulating the

model with different parameter settings.

h=1.00
pt=206.53

raise request

request offer

0
request

↓

offer
5

offer

↓

order

203
162

d=8

offer to customer

offer at customer

waiting for response

waiting time

over

responsing?

response

no response

calling?

resulting?

no order

order

d=0

T1

Waiting

d=40
XOR

0.8

0.2

XOR
0.5

0.5

XOR
0.2

0.8

d=0

T1

d=0

T2P1d=0

T3

order complete

14

14

...

Consultants

2

Figure 18: Part of a business process model.

6 Conclusions

A powerful Petri net environment has been devel-

oped for graphical hierarchical modeling and hybrid

simulation as well as animation of processes from

most different application fields. Thereby, the math-

ematical modeling concept xHPN serves as specifi-

cation for performing a hybrid simulation. The

xHPN elements are modeled object-oriented by dis-

crete, differential, and algebraic equations in the

Modelica language. This allows an easy way to

maintain, extend, and modify the components.

Moreover, the connection to Matlab/Simulink of-

fers the whole Matlab power for post-processing the

simulation results of Modelica models. The Matlab-

based tool AMMod (Analysis of Modelica Models)

provides already several mathematical methods for

data pre-processing, relationship analysis, parameter

estimation, sensitivity analysis, deterministic and

stochastic hybrid simulation, and process optimiza-

tion [10].

The application of the new Petri net simulation

environment has been demonstrated by a model of a

Senseo coffee machine, a model of a printing pro-

cess, and a model of a business process. All models

show the applicability of the xHPN formalism as

well as graphical hierarchical modeling and hybrid

simulation with the PNlib.

A future goal is to provide an open source Petri-

net simulation tool. This demands a further devel-

opment of the open source Modelica-tool OpenMod-

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 55
10.3384/ecp1207647 September 3-5, 2012, Munich, Germany

elica to get the PNlib work with it because some

Modelica features are not supported so far.

Moreover, the xHPN formalism as well as the

PNlib will be extended by fuzzy logic (e.g. [11]) and

the color concept (e.g. [12]) to enhance the range of

application fields further.

Furthermore, the PNlib is already connected to

VANESA, an open source tool for visualization and

analysis of networks, in order to enable modeling,

editing, visualization, and animation of xHPN mod-

els by an easy-to-use interface [13]. This connection

will be further improved.

References

[1] Petri C.A. Kommunikation mit Automaten.

PhD thesis, Rheinisch-Westfälisches Institut

für Instrumentelle Mathematik, Bonn, Ger-

many, 1962.

[2] David R., Alla H. Continuous petri nets. Pro-

ceedings of 8th European Workshop on Ap-

plication and Theory of Petri nets:275-294,

1987.

[3] David R., Alla H. On Hybrid Petri Nets. Dis-

crete Event Dynamic Systems: Theory and

Applications(11): 9–40, 2001.

[4] Mosterman P.J., Otter M., Elmqvist H. Mod-

eling Petri nets as local constraint equations

for hybrid systems using Modelica. Proceed-

ings of SCS Summer Simulation Confer-

ence:314–319, 1998.

[5] Fabricius S.M. Extensions to the Petri Net

Library in Modelica. ETH Zurich, Switzer-

land, 2001

[6] Johnsson C., Årzén K.-E., Grafchart and

grafcet: A comparison between two graphical

languages aimed for sequential control appli-

cations, Preprints 14th World Congress of

IFAC(A): 19-24, 1999.

[7] Otter M., Årzén K.E., Dressler I. StateGraph-

a Modelica library for hierarchical state ma-

chines. Proceedings of 4th International

Modelica Conference:21-33, 2005

[8] Proß S. Hybrid Modeling and Optimization

of Biological Processes. Bielefeld, Germany,

PhD thesis (in preparation), Faculty of Tech-

nology, Bielefeld University, Germany,

2012.

[9] Dynasim AB Dymola-Dynamic Modeling

Laboratory-User Manual Volume 2, Lund,

Sweden, 2010

[10] Proß S., Bachmann B. Hybrid Modelling and

Process Optimization of Biological Systems,

MATHMOD Conference, Wien, Austria

2012.

[11] Chen S, Ke J, Chang J Knowledge represen-

tation using fuzzy Petri nets. Knowledge and

Data Engineering, IEEE Transactions on

2(3):311–319, 1990

[12] Jensen K Coloured petri nets. Petri nets: cen-

tral models and their properties: 248–299,

Springer Verlag, Berlin Heidelberg, 1987

[13] Proß S., Janowski S. J., Bachmann B., Kalt-

schmidt C., Kaltschmidt B. PNlib - A Model-

ica Library for Simulation of Biological Sys-

tems based on Extended Hybrid Petri Nets,

3rd International Workshop on Biological

Processes & Petri Nets (accepted), Hamburg,

Germany, 2012.

PNlib - An Advanced Petri Net Library for Hybrid Process Modeling

56 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207647

Session 1B: Thermofluid Systems

Simulation of Non-Newtonian Fluids using Modelica Simulation of Non-Newtonian Fluids using Modelica
Pooyan Jahangiri Rita Streblow Dirk Müller

RWTH Aachen University - E.ON Energy Research Center
Mathieustr. 10, 52074 Aachen, Germany

pjahangiri@eonerc.rwth-aachen.de

Abstract

Many fluids used today in different applications
show a non-Newtonian behavior. In order to simulate
this behavior, many different approaches exist but
are not fully implemented in a simulation program.
One of the problems with these kinds of simulations
is the lack of compatibility with existing models.
This makes the modeling very time consuming.
In this paper, a simple approach is shown that pro-
vides a general set of equations which can then be
used to model both Newtonian as well as non-
Newtonian behavior of fluids in the same model in
Modelica. Since the implementation is in base mod-
els, existing components can easily be used to simu-
late non Newtonian fluids without sacrificing simula-
tion times.

Keywords: Non-Newtonian; Medium Model; Pres-
sure Drop

1 Introduction

In many applications such as food industries, resi-
dential heating and cooling systems, some power
plants as well as other energy systems, a non-
Newtonian fluid is chosen as the working fluid. The
non-Newtonian behavior has a great influence on
both flow as well as heat transfer properties of the
fluid; therefore, for simulation of such systems, it is
necessary to have compatible models and compo-
nents with this type of fluids.

2 Theory

2.1 The Governing Equations

Non-Newtonian fluids are fluids in which the viscos-
ity changes with respect to the applied stress. Ac-
cording to the correlation between the shear stress
and shear rate, fluids can be divided into different
categories (see Figure 1).

Figure 1: Fluid classification according to shear rate
and shear stress

Many available fluids can fully or partly be de-
scribed by Ostwald-de Waele relationship (Power-
law fluids) shown in equation (1).

 𝜏 = 𝐾𝛾̇𝑛 (1)

where
𝜏 : Shear stress [Pa]
𝐾 : Flow consistency index [Pa.sn]
𝛾̇ : Shear rate [s-1]
𝑛 : Flow behavior index

Flow behavior index “n” as well as flow consistency
index “K” are among the properties of the fluid and
are considered constant at a given temperature.

By “n” equal 1, the Ostwald-de Waele relationship
describes Newtonian fluid behavior. For n<1, Pseu-
doplastic fluids and for n>1 Dilatant fluids can be
described.

2.2 Pressure Drop

For the calculation of the pressure drop in a pipe,
when the mass flow rate is known, the dimensionless
Darcy friction factor “λ” as well as physical
parameters of the pipe are used according to equation
(2) [1].

DOI Proceedings of the 9th International Modelica Conference 57
10.3384/ecp1207657 September 3-5, 2012, Munich, Germany

 ∆𝑝 = 𝜆 ∙
𝑙
𝐷
∙
𝜌 ∙ 𝑣2

2
 (2)

where
∆𝑝 : Pressure drop [Pa]
𝜆 : Darcy friction factor
𝑙 : Length of the pipe [m]
𝐷 : Diameter of the pipe [m]
𝜌 : Density of the fluid [kg/m3]
𝑣 : Flow velocity [m/s]

In order to calculate the Darcy friction factor, a
Fanning friction factor “𝑓” has been introduced by
[2] and is shown in equation (3):

 𝑓 =
𝜆
4

 (3)

The Fanning friction factor for the laminar region
can be calculated from equation (4) and for turbulent
region from equations (5) and (6) where “𝑅𝑒” corre-
sponds to the Reynolds number. [2, 3, 4]

 𝑓 =
16
𝑅𝑒

 (4)

 𝑓 = 0.0014 +
0.125
𝑅𝑒0.32 (5)

 𝑓 =
0.0791
√𝑅𝑒4 (6)

2.3 Reynolds Number

In order to calculate the Reynolds number for Power-
law fluids, [2] also introduces the general Reynolds
number in equation (7).

 𝑅𝑒 =
𝑣(2−𝑛) ∙ 𝐷𝑛 ∙ 𝜌

𝛾
 (7)

where
 𝛾 = 𝐾′ ∙ 8𝑛−1 (8)

and

 𝐾′ = 𝐾 �
3𝑛 + 1

4𝑛
�
𝑛

 (9)

Note that using n=1, the Reynolds number can be
simplified to the Reynolds number in Newtonian
fluids as in equation (10).

 𝑅𝑒 =
𝜐 ∙ 𝐷 ∙ 𝜌

𝜇
 (10)

Depending on the fluid, the turbulent region can start
from Reynolds number between 4000 up to 70,000.
On the other hand, the boundary Reynolds number
between the laminar and the transitional region can
be calculated according to [5] using equation (11).

 𝑅𝑒𝑙𝑎𝑚 =
6464𝑛

(3𝑛 + 1)2 ∙
(2 + 𝑛)�

2+𝑛
1+𝑛� (11)

3 Implementation in Modelica

3.1 Existing Flow Models

In Newtonian fluids, the viscosity does not depend
on the applied stress or in other words the volume
flow rate; hence, it can be calculated within the me-
dium model using just the base properties of the fluid
such as the pressure and the temperature.

In existing models in Modelica standard library, at
each calculation step, the viscosity of the fluid is cal-
culated within the medium model. This is then used
to estimate the Reynolds number according to equa-
tion (10). By knowing the Reynolds number, the
flow region can be chosen and the governing equa-
tions for that region are used to calculate the Darcy
friction factor and then the pressure drop.

Note that since Reynolds number is a function of
velocity, the procedure mentioned above is only val-
id when the velocity is known by knowing either the
mass flow rate or the volume flow rate and the ge-
ometry of the pipe. For this reason, a new set of
equations are also implemented to calculate the mass
flow rate in a pipe when the pressure difference be-
tween two pints is the known variable.

This is helpful for many hydraulic components such
as pumps which produce a certain pressure differ-
ence and the result will be the flow of the medium;
therefore, in order to be able to simulate the flow of
the medium properly, it is also necessary to be able
to calculate the mass flow rate from the pressure
drop.

In this procedure, a second friction factor “λ2” is in-
troduced which is independent of the velocity and is
shown in equation (12).

 𝜆2 =
2 ∙ 𝐷3 ∙ 𝜌
𝑙 ∙ 𝜇

∙ ∆𝑝 (12)

Using the second friction factor, the Reynolds num-
ber can be estimated by the Reynolds number equa-
tion for the laminar region and be corrected if the
estimation result falls above the turbulent boundary

Simulation of Non-Newtonian Fluids using Modelica

58 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207657

using the equations governing the turbulent region.
The velocity and the mass flow rate are then calcu-
lated using the Reynolds equation.

3.2 Non-Newtonian Medium Model

Since the viscosity of Non-Newtonian fluids cannot
be calculated using only the base properties, the
main calculation should be in the flow model. In or-
der to correlate flow model and medium model with
the smallest change possible, an extra function is
required in the “Partial Medium Model”. This func-
tion will describe the flow behavior index “n” and is
written as follow:

replaceable partial function flowBehaviorIndex
 extends Modelica.Icons.Function;
 input ThermodynamicState state "thermodynamic state record";
 output Real n "flow behavior index";
end flowBehaviorIndex;

Since the flow behavior index is only a function of
the states of the fluid such as the temperature, it can
be defined and calculated in the medium model. By
adding this partial function for the definition of the
flow behavior index in the base medium model, im-
plementing the governing equations or tables for all
the fluid models is made possible.

In case the fluid is a Newtonian fluid such as water,
the flow behavior index should be set to the constant
number of “1”.

By comparing equations (7), (8) and (10) it can be
seen that having n=1, the coefficient 𝐾′ is equal the
dynamic viscosity “𝜇”. This means that the “dynam-
icViscosity” function in the partial medium model
can also be used to calculate the consistency
dex 𝐾′. Like the flow behavior index, the consistency
index does only depend on the base properties of the
fluid and not the flow parameters. Therefore it can
also be calculated in the medium model.

3.3 Non-Newtonian Flow Models

Having the flow behavior and consistency indices
from the medium model, the Reynolds number can
be calculated when the volume flow rate is known
using the general Reynolds number shown in equa-
tion (7). Using the Reynolds number, the fanning
friction factor can be calculated using equation (4)
for the laminar region and equation (6) for the turbu-
lent region. The pressure drop is then calculated with
the help of equations (2) and (3).

For the transitional region between laminar and tur-
bulent, the laminar region is connected to the turbu-
lent region using a cubic Hermite spline.

As already discussed in the existing flow models, it
is necessary to have a function for calculation of
mass flow with respect to pressure difference in the
system. Since pressure drop as well as Reynolds
number and hence the Darcy friction factor are a
function of velocity which is derived from the mass
flow rate, here is also not possible to use the general
Reynolds number and Darcy friction factor directly
for these calculations. To solve the problem, a varia-
ble which is independent of velocity is introduced in
equation (13) and is called the modified Darcy fric-
tion factor “𝜆𝑚”.

 𝜆𝑚 = 𝜆 ∙ 𝑅𝑒�
2

2−𝑛� (13)

Combining equations (2), (7) and (13), the modified
Darcy friction factor can be calculated as follow:

 𝜆𝑚 =
2 ∙ 𝐷�

2+𝑛
2−𝑛� ∙ 𝜌�

𝑛
2−𝑛�

𝑙 ∙ 𝛾�
2

2−𝑛�
∙ ∆𝑝 (14)

By having a flow behavior index of “1” as for New-
tonian fluids, the modified Darcy friction factor is
reduced to equation (12).

When the modified Darcy friction factor is known,
the Reynolds number can be calculated under the
assumption that the flow is laminar using equation
(15) achieved from equations (3), (4) and (13).

 𝑅𝑒 = �
𝜆𝑚
64
�
�2−𝑛𝑛 �

 (15)

If the calculated Reynolds number according to
equation (15) is greater than the turbulent Reynolds
number, then the Reynolds number is calculated for
the turbulent region using equation (16) derived from
equations (3), (6) and (13).

 𝑅𝑒 = �
0.3164
𝜆𝑚

�
4�𝑛−2𝑛+6�

 (16)

By knowing the Reynolds number, the mass flow
rate can be calculated as follow:

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 59
10.3384/ecp1207657 September 3-5, 2012, Munich, Germany

 𝑚̇ = �
�𝜋4�

2−𝑛
∙ 𝛾 ∙ 𝑅𝑒

𝐷3𝑛−4 ∙ 𝜌𝑛−1
�

1
2−𝑛

 (17)

The transitional region here is also generated by a
cubic Hermite spline as before.

4 Simulation Results

The specified functions are directly implemented in
the “detailed wall friction model”. The model is test-
ed for a Paraffin-Water dispersion shown in Figure 2
with 30% paraffin dispersed in water. The fluid
shows a pseudoplastic behavior. The dispersed paraf-
fin goes through a phase change at a certain tempera-
ture which not only affects the thermal properties but
also the flow properties of the fluid.

Figure 2: Paraffin-Water dispersion used as working
fluid in energy systems

The measured flow behavior and consistency indices
at different temperatures for the Paraffin-Water dis-
persion are shown in Figure 3 and are implemented
in the medium model.

Figure 3: Measured flow behavior and consistency
indices for Paraffin-Water dispersion1

1 Data provided by Fraunhofer UMSICHT

To calculate the pressure drop from a known mass
flow rate, Paraffin-Water dispersion model at 22°C,
with n=0.5889 and K=0.1877, is used in a simple
simulation model (consisting of a pipe with a length
of 1 m and diameter of 0.05 m. The results are
shown in Figure 4.

Figure 4: Pressure drop of Paraffin-Water dispersion
with respect to mass flow rate

The mass flow rate is then calculated in a simple
simulation model when the pressure difference is
known for a pipe with 1 m length and 0.05 m diame-
ter and is shown in Figure 5.

Figure 5: Mass flow rate of Paraffin-Water disper-
sion with respect to pressure drop

Since the model can be used for all the fluids gov-
erned by Ostwald-de Waele relationship, the pres-
sure drop is compared for simulations with 3 differ-
ent flow behavior indices and is shown in Figure 6.
The closer the behavior index to 1 is, the closer the
fluid behaves as a Newtonian fluid.

Simulation of Non-Newtonian Fluids using Modelica

60 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207657

Figure 6: Comparison between different pressure-
drops in fluids with different flow behavior indices

4.1 Compatibility

In all the equations described for the non-Newtonian
flow, the equations for the Newtonian fluids are de-
rived when the flow behavior index is set to “1”,.
These are the exact equations which are already im-
plemented in the wall friction model in Modelica
standard library. Therefore, the same flow model can
be used for all the existing medium models in all
existing components without any compatibility is-
sues.

Since the non-Newtonian flow model is an extension
to the available flow model in Modelica 3.2, it is also
compatible with the entire fluid library. This will
omit the need to design new components just for
non-Newtonian systems.

4.2 Simulation Times

To substitute the existing model for the general flow
model, it is important to maintain the fast simulation
speed. Therefore, a simple dynamic simulation is
done using Paraffin-Water dispersion and water with
the general model described in this paper and is
compared to the same simulation setup using water
and the existing flow models. The CPU times are
compared in Table 1.

Table 1: CPU Time comparison between different
models and fluids

CPU Time
Modified Model Existing Model

Dispersion Water Water
0.106 s 0.109 s 0.105 s

It can be seen that although more complicated equa-
tions are used, the solving time stays almost in the
same range. This will result in simulation times

which are almost the same as in existing flow models
in Modelica.

5 Conclusions

There are many applications for simulating the be-
havior of non-Newtonian fluids such as food pro-
cessing plants and energy distribution systems.

In order to implement the non-Newtonian behavior,
an extra function is added to the base medium model.
This function describes the flow behavior index of a
fluid and enables the interaction between the medi-
um model and the flow model. The flow behavior
index corresponds to the degree of non-Newtonian
behavior of each fluid. Having the necessary interac-
tion between the models, more general equations
regarding pressure drops in the system can be im-
plemented. These equations contain both the Newto-
nian as well as non-Newtonian behavior of a fluid.

Since the changes are in the base models, any other
component that uses the model directly or indirectly
can be used for the simulation of both Newtonian
and non-Newtonian fluids without any additional
changes and compatibility issues.

Using the flow behavior index, the non-Newtonian
behavior of fluids can later be expanded to the heat
transfer properties of fluids in the Modelica thermal
libraries.

6 Acknowledgement

Grateful acknowledgement is made for the financial
support by BMWi (Federal Ministry of Economics
and Technology), promotional reference 032747B
and for great help and support by Fraunhofer UM-
SICHT.

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 61
10.3384/ecp1207657 September 3-5, 2012, Munich, Germany

References

[1] Wagner, W.; Strömung und Druckverlust;
3rd Ed. Germany : Vogel Publication, 1992.

[2] Metzner, A.B. und Reed, J.C.; Flow of Non-
Newtonian Fluids - Correlation of the Lami-
nar, Transition, and Turbulent-flow Regions;
A.I.Ch.E. Journal. December 1955, pp. 434-
440.

[3] Dodge, D.W. und Metzner, A.B.; Turbulent
Flow of Non-Newtonian Systems; A.I.Ch.E.
Journal. June 1959, pp. 189-204.

[4] Wronski, Jorrit.; Untersuchungen zur Be-
stimmung des Feststoffgehalts von Dispersi-
onen - Entwicklung eines Ladesensors für
PCS-Systeme; Ruhr-Universität Bochum -
Lehrstuhl für Feststoffverfahrenstechnik,
2010.

[5] Chhabra, R.P. und Richardson, J.F; Non-
Newtonian Flow in the Process Industries;
Oxford, 1999.

Simulation of Non-Newtonian Fluids using Modelica

62 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207657

HelmholtzMedia — A Fluid Properties Library

HelmholtzMedia — A Fluid Properties Library
Matthis Thorade, Ali Saadat

Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences

Abstract
HelmholtzMedia is a library for the calculation of fluid
properties. It is implemented in Modelica and pub-
lished under the Modelica license. All thermodynamic
state properties and their partial derivatives are calcu-
lated from a Helmholtz energy equation of state. Fur-
ther properties that can be calculated include surface
tension, viscosity and thermal conductivity.

Keywords: thermodynamic properties, Helmholtz
energy, surface tension, viscosity, thermal conductiv-
ity

1 Introduction
For the simulation and design of power or refrigera-
tion cycles, accurate properties of the working fluid
are indispensable. Themost accurate equations of state
(EoS) available today for a variety of working fluids are
fundamental EoS in terms of Helmholtz energy. From
such EoS all thermodynamic state properties, like pres-
sure 𝑝 or specific entropy 𝑠, as well as all partial deriva-
tives of thermodynamic state variables can be calcu-
lated.

Further properties of interest are surface tension,
viscosity and thermal conductivity. For each of these
properties an independent correlation is necessary.

Both the Helmholtz energy EoS as well as correla-
tions for additional properties have been implemented
in the HelmholtzMedia library. Details of the imple-
mentation are given in the following text.

2 Helmholtz energy fundamental
equation of state

A historical overview over the development of fun-
damental EoS in general is given by [2](in German),
an overview over the functional form used today by
almost all Helmholtz EoS is given by [8]. The inde-
pendent variables of the Helmholtz EoS are temper-
ature 𝑇 and specific volume 𝑣 or density 𝜚. Both
are non-dimensionalised by their critical values. The

Helmholtz energy 𝑓 is non-dimensionalised by the
specific gas constant 𝑅 and the temperature 𝑇 and split
up into an ideal gas part 𝛼0 and a residual part 𝛼r . This
allows for developing a functional form for the two
parts independently.

𝜏 = 𝑇c
𝑇 , 𝛿 = 𝑣c

𝑣 = 𝜚
𝜚c

, 𝛼 = 𝑓
R𝑇 = 𝛼0 + 𝛼r

The functional form for the description of the ideal
part of the Helmholtz energy results from the thermal
equation of state of the ideal gas and a two-fold inte-
gration of the heat capacity of the ideal gas. The heat
capacity of the ideal gas can be described by polynom-
inal terms, by so-called Planck-Einstein terms or by
a combination of the two. Alternatively, hyperbolic
functions can be used, but these have not been imple-
mented so far.

𝛼0(𝛿, 𝜏) = log (𝛿)

+
𝑖=𝑛𝐿

𝑖්=1
𝑙[𝑖,1] log බ𝜏 𝑙[𝑖,2]භ

+
𝑖=𝑛𝑃

𝑖්=1
𝑝[𝑖,1] ⋅ 𝜏𝑝[𝑖,2]

+
𝑖=𝑛𝐸

𝑖්=1
𝑒[𝑖,1] ⋅ log බ1 − exp(𝑒[𝑖,2] ⋅ 𝜏)භ

The functional form for the description of the resid-
ual part of the Helmholtz energy as implemented uses
three groups of terms: polynominal terms, so-called
Benedict-Webb-Rubin terms and Gaussian bell-shaped
terms. For some fluids (e. g. CO2 or water) the func-
tional form contains additional non-analytical terms

DOI Proceedings of the 9th International Modelica Conference 63
10.3384/ecp1207663 September 3-5, 2012, Munich, Germany

Table 1: Thermodynamic state properties [7]
Property Algorithm

pressure 𝑝 = 𝜚𝑇𝑅 බ1 + 𝛿𝛼r
δභ

entropy 𝑠 = 𝑅 බ𝜏(𝛼0
τ + 𝛼r

τ) − (𝛼0 + 𝛼r)භ
internal energy 𝑢 = 𝑇𝑅 බ𝜏(𝛼0

τ + 𝛼r
τ)භ

enthalpy ℎ = 𝑇𝑅 බ(1 + 𝛿𝛼r
δ) + 𝜏(𝛼0

τ + 𝛼r
τ)භ

Gibbs-energy 𝑔 = 𝑇𝑅 බ1 + (𝛼0 + 𝛼r) + 𝛿𝛼r
δභ

that have not been implemented so far.

𝛼r(𝛿, 𝜏) =
𝑖=𝑛𝑃

𝑖්=1
𝑝[𝑖,1] ⋅ 𝛿𝑝[𝑖,3] ⋅ 𝜏𝑝[𝑖,2]

+
𝑖=𝑛𝐵

𝑖්=1
𝑏[𝑖,1] ⋅ 𝛿𝑏[𝑖,3] ⋅ 𝜏𝑏[𝑖,2] ⋅ exp බ−𝛿𝑏[𝑖,4]භ

+
𝑖=𝑛𝐺

𝑖්=1
𝑔[𝑖,1] ⋅ 𝛿𝑔[𝑖,3] ⋅ 𝜏𝑔[𝑖,2] ⋅ exp [

𝑔[𝑖,6] ⋅ (𝛿 − 𝑔[𝑖,9])2

+𝑔[𝑖,7] ⋅ (𝜏 − 𝑔[𝑖,8])2භ

A short discussion of all terms is given in [13, Section
5], a very comprehensive discussion is given in [7]. The
parameters of the two contributions to the Helmholtz
energy are then fitted to experimental data for each
fluid. Details on the fitting procedure can be found
in [7].

Once the functional form and values for the param-
eters are known, all state properties can be calculated
as simple combinations of the partial derivatives of the
Helmholtz energy1. Algorithms for the calculation of
the state properties are given in [7], an extract is re-
peated in Table 1.

In addition to the state properties, the partial
derivaties of state properties are often needed in engi-
neering applications, for example specific heat capaci-

1The partial derivatives of the Helmholtz energy are abbrevi-
ated as follows:

𝛼0
τ = ว

𝜕𝛼0

𝜕𝜏 ศ𝛿
, 𝛼0

ττ = ว
𝜕2𝛼0

𝜕𝜏2 ศ𝛿
, 𝛼0

τδ = ว
𝜕2𝛼0

𝜕𝜏𝜕𝛿 ศ

𝛼0
δ = ว

𝜕𝛼0

𝜕𝛿 ศ𝜏
, 𝛼0

δδ = ว
𝜕2𝛼0

𝜕𝛿2 ศ𝜏

𝛼r
τ = ว

𝜕𝛼r

𝜕𝜏 ศ𝛿
, 𝛼r

ττ = ว
𝜕2𝛼r

𝜕𝜏2 ศ𝛿
, 𝛼r

τδ = ว
𝜕2𝛼r

𝜕𝜏𝜕𝛿 ศ

𝛼r
δ = ว

𝜕𝛼r

𝜕𝛿 ศ𝜏
, 𝛼r

δδ = ว
𝜕2𝛼r

𝜕𝛿2 ศ𝜏

Table 2: Partial derivatives of state properties [10]
Property Algorithm

ว
𝜕𝑝
𝜕𝜚ศ𝑇

= 𝑇𝑅 බ1 + 2𝛿𝛼r
δ + 𝛿2𝛼r

δδභ

ว
𝜕𝑝
𝜕𝑇 ศ𝜚

= 𝜚𝑅 බ1 + 𝛿𝛼r
δ − 𝛿𝜏𝛼r

τδභ

ว
𝜕𝑠
𝜕𝜚ศ𝑇

= 𝑅
𝜚 බ−(1 + 𝛿𝛼r

δ) + 𝜏𝛿𝛼r
τδභ

෷
𝜕𝑠
𝜕𝑇 ෸𝜚

= 𝑅
𝑇 බ−𝜏2(𝛼0

ττ + 𝛼r
ττ)භ

ว
𝜕𝑢
𝜕𝜚ศ𝑇

= 𝑇𝑅
𝜚 බ𝜏𝛿𝛼r

τδභ

෷
𝜕𝑢
𝜕𝑇 ෸𝜚

= 𝑅 බ−𝜏2(𝛼0
ττ + 𝛼r

ττ)භ

ว
𝜕ℎ
𝜕𝜚 ศ𝑇

= 𝑇𝑅
𝜚 බ𝜏𝛿𝛼r

τδ + 𝛿𝛼r
δ + 𝛿2𝛼r

δδභ

෷
𝜕ℎ
𝜕𝑇 ෸𝜚

= 𝑅 බ1 − 𝜏2(𝛼0
ττ + 𝛼r

ττ)
+𝛿𝛼r

δ − 𝜏𝛿𝛼r
τδභ

ว
𝜕𝑔
𝜕𝜚ศ𝑇

= 𝑇𝑅
𝜚 බ1 + 2𝛿𝛼r

δ + 𝛿2𝛼r
δδභ

ว
𝜕𝑔
𝜕𝑇 ศ𝜚

= 𝑅 බ(𝛼0 + 𝛼r) + (1 + 𝛿𝛼r
δ)

−𝜏(𝛼0
τ + 𝛼r

τ) − 𝜏𝛿𝛼r
τδභ

ties, the thermal expansion coefficient 𝛽, or the isother-
mal compressibility 𝜅. Any partial derivative can be
calculated in a two-step procedure: First, the partial
derivatives with respect to temperature and density, the
independent variables of the EoS, are formed. These
are given in [10] and repeated in Table 2. Second, all
further derivatives with respect to arbitrary state prop-
erties can then be transformed into simple combina-
tions of the partial derivatives with respect to temper-
ature and density, using the rules for Jacobian matrix
transformations.

For example, the partial derivatives of density with
respect to pressure and enthalpy, which are helpful for
transient simulation of power cycles, can be expressed
as

ว
𝜕𝜚
𝜕𝑝ศℎ

=
๙ว

𝜕𝑝
𝜕𝜚ศ𝑇

− ว
𝜕𝑝
𝜕𝑇 ศ𝜚 ว

𝜕ℎ
𝜕𝜚 ศ𝑇

෷
𝜕ℎ
𝜕𝑇 ෸

−1

𝜚 ๚

−1

HelmholtzMedia — A Fluid Properties Library

64 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207663

and

ว
𝜕𝜚
𝜕ℎศ𝑝

=
๙ว

𝜕ℎ
𝜕𝜚 ศ𝑇

− ෷
𝜕ℎ
𝜕𝑇 ෸𝜚 ว

𝜕𝑝
𝜕𝜚ศ𝑇 ว

𝜕𝑝
𝜕𝑇 ศ

−1

𝜚 ๚

−1

.

More examples are given in [10].

3 Vapor-liquid equilibrium and two-
phase state

The vapour-liquid equilibrium (VLE) of a pure fluid is
characterized by three conditions:

thermal equilibrium: Δ𝑇 = (𝑇 າ − 𝑇 ຳ) = 0
mechanical equilibrium: Δ𝑝 = (𝑝າ − 𝑝ຳ) = 0

chemical equilibrium: Δ𝑔 = (𝑔າ − 𝑔ຳ) = 0.

For a given temperature 𝑇 the equilibrium state can
be determined by simultaneously solving the equation
for mechanical and chemical equilibrium. Using the
relations from Table 1 the mechanical equilibrium can
be rewritten as

Δ𝑝 = 𝜚າR බ1 + 𝛿າ𝛼r
δ(𝛿າ, 𝜏)භ

− 𝜚ຳR බ1 + 𝛿ຳ𝛼r
δ(𝛿ຳ, 𝜏)භ = 0

and the chemical equilibrium as

Δ𝑔 = 𝑇R බ1 + 𝛼0(𝛿າ, 𝜏) + 𝛼r(𝛿າ, 𝜏) + 𝛿າ𝛼r
δ(𝛿າ, 𝜏)භ

− 𝑇R බ1 + 𝛼0(𝛿ຳ, 𝜏) + 𝛼r(𝛿ຳ, 𝜏) + 𝛿ຳ𝛼r
δ(𝛿ຳ, 𝜏)භ = 0

resulting in two equations with 𝜚າ and 𝜚ຳ as two un-
knowns. These two equations can be simplified by
canceling out the constant and purely temperature-
dependent parts and then be solved simoultaneously
using a Newton-Raphson algorithm as described in [1].
A simplified flowchart for this algorithm is shown in
Figure 1. The actual implementation uses dimension-
less, scaled variables and gradients.

Once the VLE and the respective saturation states
are known, all state properties can be calculated using
the vapour mass fraction 𝑥. It is defined as

𝑥 = 𝑚ຳ

𝑚າ + 𝑚ຳ = mass of vapour
mass of liquid + mass of vapour .

Using 𝑚 = 𝑚າ + 𝑚ຳ and 𝑣 = 𝑉/𝑚 this can be re-written
as

𝑥 = 𝑣 − 𝑣າ

𝑣ຳ − 𝑣າ = 1/𝜚 − 1/𝜚າ

1/𝜚ຳ − 1/𝜚າ .

..Specify T.

Guess
𝜚ᄤ and 𝜚"

.

Calculate
Δ𝑝 = 𝑝(𝑇, 𝜚ᄤ) − 𝑝(𝑇, 𝜚")
Δ𝑔 = 𝑔(𝑇, 𝜚ᄤ) − 𝑔(𝑇, 𝜚")

.

Δ𝑝 = 0 and
Δ𝑔 = 0?

.

Calculate better
𝜚ᄤ and 𝜚"
by using

Δ𝑝 and Δ𝑔
and

ึ
𝜕𝑝
𝜕𝜚ื𝑇

and ึ
𝜕𝑔
𝜕𝜚 ื𝑇

.

𝜚ᄤ and 𝜚" found

.

No

.

Yes

Figure 1: Simplified flowchart for finding the vapour-
liquid-equilibrium iteratively, adapted from [1]

Solving for 𝑣 yields

𝑣 = 𝑥𝑣ຳ + (1 − 𝑥)𝑣າ = 𝑣າ + 𝑥(𝑣ຳ − 𝑣າ) .

All other state properties can be calcuted in the same
manner.

In order to calculate the partial derivatives of state
properties within the two-phase region, the derivatives
along the saturation line are needed. The derivatives
of saturation pressure and temperature along the satu-
ration line are given by the Clausius-Clapeyron equa-
tion:

ว
d𝑝σ
d𝑇 ศ = 𝑠ຳ − 𝑠າ

𝑣ຳ − 𝑣າ = 1
𝑇

ℎຳ − ℎາ

𝑣ຳ − 𝑣າ

ว
d𝑇σ
d𝑝 ศ = 𝑣ຳ − 𝑣າ

𝑠ຳ − 𝑠າ = 𝑇 𝑣ຳ − 𝑣າ

ℎຳ − ℎາ .

These derivatives can then be used to calculate arbi-
trary derivatives along the saturation line, and, in a
second step, partial derivaties within the two-phase
state [10].

4 Iterative procedures
So far, it was assumed that temperature 𝑇 and density 𝑑
are known. But the thermodynamic state can as well be
defined by specifying any other combination of two in-
dependent state variables. In engineering applications,

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 65
10.3384/ecp1207663 September 3-5, 2012, Munich, Germany

..Specify:
𝑝 and 𝑇

.

Check 𝑇

.

Iteratively determine
vapour-liquid equilibrium

→ 𝑝σ

.

Check 𝑝

.

liquid:
𝜚ᄤ < 𝜚 < 𝜚max

.

two-phase region:
𝑝 and 𝑇 coupled

.

Gas:
0 < 𝜚 < 𝜚ᄥ

.

super-critical:
0 < 𝜚 < 𝜚max

.

𝑇 < 𝑇c

.

𝑝 > 𝑝σ

.

𝑝 = 𝑝σ

.

𝑝 < 𝑝σ

.

𝑇 > 𝑇c

Figure 2: Simplified flowchart for determination of
density iteration bounds when pressure and tempera-
ture are specified

the known variable combinations often are (𝑝, 𝑇), (𝑝, ℎ)
or (𝑝, 𝑠). When any of these combinations is given, the
corresponding (𝑇, 𝑑) have to be determined iteratively.
Two examples of such iterative procedures are given
below.

4.1 Density as a function of temperature and
pressure

By specifying pressure and temperature, only single-
phase states can be described, because in the two-phase
region pressure and temperature are not independent.
In order to find the density correspondig to the given
pressure in the single-phase region, a residual function
is defined as

𝑅𝐸𝑆(𝜚) = 𝑝 − 𝑝calc(𝜚, 𝑇) .

As 𝑝 = 𝑝(𝜚) is strictly montonic for a given temper-
ature, the residual function is as well strictly mono-
tonic and has one single root. Finding the root of the
residual function is then equal to finding the density
corresponding to the specified pressure. In literature
many algorithms for root finding are known, this li-
brary uses the algorithm byBrent [3]. It is implemented
in theModelica Standard Library as Modelica.Math.
Nonlinear.solveOneNonlinearEquation. The
mandatory input for this algorithm is a residual func-
tion and a lower and upper bound. A flowchart for find-
ing the upper and lower bounds of density is shown in
Figure 2.

Once the density is known, all state properties can
be calculated using the relations given in Table 1 with

..Specify
𝑝 and ℎ

.

Check 𝑝

.

Iteratively determine
vapour-liquid equilibrium

→ 𝑇σ and ℎᄤ and ℎᄥ

.

Check ℎ

.

liquid:
𝑇min < 𝑇 < 𝑇σ

.

two-phase region:
𝑇 = 𝑇σ und 𝑥 = 𝑥(ℎ)

.

vapour:
𝑇σ < 𝑇 < 𝑇max

.

super-critical:
𝑇min < 𝑇 < 𝑇max

.

𝑝 < 𝑝c

.

ℎ < ℎᄤ

.

ℎᄤ ≤ ℎ ≤ ℎᄥ

.

ℎ > ℎᄥ

.

𝑝 > 𝑝c

Figure 3: Simplified flowchart for determination of
temperature iteration bounds when pressure and en-
thalpy are specified

density and temperature as input. In the following sec-
tion, enthalpy and entropy are needed as a function of
pressure and temperature. These are calculated by first
calculating the density iteratively and then calculating
enthalpy and entropy using temperature and density as
input variables.

4.2 Density and temperature as a function of
pressure and enthalpy

By specifying pressure and specific enthalpy, it is pos-
sible to describe single-phase as well as two-phase
states. If the pressure is below critical pressure, the
first step thus is to determine the vapour-liquid equi-
librium corresponding to the specified pressure. The
algorithm for VLE determination as described in sec-
tion 3 uses temperature as input. When the VLE is to
be determined from a specified pressure, the residual
funtion

𝑅𝐸𝑆(𝑇) = 𝑝 − 𝑝σ,calc(𝑇)

is used. The lower bound and uper bound for the tem-
perature are the triple temperature and the critical tem-
perature. The VLE information is then used to deter-
mine the region and temperature iteration bounds as
shown in Figure 3.

Density and temperature can then be determined us-
ing the Brent algorithm and the residual funtion

𝑅𝐸𝑆(𝑇) = ℎ − ℎcalc(𝑝, 𝑇) ,

where ℎcalc(𝑝, 𝑇) already is an iterative funtion, as de-
scribed earlier.

HelmholtzMedia — A Fluid Properties Library

66 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207663

5 Ancillary equations
For the determination of the region during the iter-
ative procedures the vapour pressure and the satura-
tion states have to be evaluated. In order to mini-
mize the computational effort, three ancillary equa-
tions are given that are sufficiently precise for a first
region check. Only if the thermodynamic state is very
close to or within the two-phase region the VLE has to
be determined from the EoS for best consistency.

Additionally, the results from the ancillary equations
are used as start values for the iterative determination
of the VLE from the EoS.

5.1 Vapour pressure
The vapour pressure increases sharply with increasing
temperature, as shown in Figure 4. The HelmholtzMe-
dia library uses the vapour pressure equation suggested
by [12]:

ln ว
𝑝σ
𝑝c ศ = 𝑇c

𝑇 ⋅ ් 𝑎𝑖 ว1 − 𝑇
𝑇c ศ

𝑛𝑖
.

This vapour pressure equation can be solved for tem-
perature numerically only.

5.2 Density of saturated liquid and saturated
vapour

Six models are implemented for the saturated density.
These are similar to the models implemented in Ref-
Prop [5]. As before the reduced density 𝛿 and the re-
duced inverse temperature 𝜏 are defined as

𝛿 = 𝜚
𝜚c

𝜏 = 𝑇c
𝑇 .

The reduced density 𝛿 at saturation is calculated in a
two-step procedure:

Θ =
⎧⎪
⎪
⎨
⎪
⎪⎩

ว1 − 𝑇
𝑇c ศ model 1,3 or 5

ว1 − 𝑇
𝑇c ศ

1/3
model 2,4 or 6

and

𝛿 =

⎧⎪
⎪
⎨
⎪
⎪⎩

1 + ් 𝑎𝑖Θ𝑛𝑖 model 1 or 2

exp ෷් 𝑎𝑖Θ𝑛𝑖෸ model 3 or 4

exp ෷𝜏 ් 𝑎𝑖Θ𝑛𝑖෸ model 5 or 6.

Multiplying the reduced density 𝛿 with the critical den-
sity 𝜚c then yields the density 𝜚.

6 Further properties
6.1 Surface Tension
The surface tension 𝜎 between liquid and vapour phase
decreases with saturation temperature approaching the
critical temperature. This is modeled according to [6]:

𝜎 = ් 𝑎𝑖 ว
𝑇c − 𝑇σ

𝑇c ศ
𝑛𝑖

.

6.2 Viscosity
In this library two viscosity models are implemented
that are similar to the models implemented in Ref-
Prop [5]. In both models, the viscosity is split into three
contributions: the dilute gas viscosity 𝜂0, the initial
density viscosity 𝜂1 and the residual viscosity 𝜂r . This
allows for an individual model for each contribution.

𝜂 = 𝜂0(𝑇) + 𝜂1(𝜚, 𝑇) + 𝜂r(𝜚, 𝑇) .

6.3 Thermal conductivity
One thermal conductivity model has been imple-
mented that is similar to the model implemented in
RefProp [5]. The thermal conductivity is split into
three contributions: the dilute gas thermal conductiv-
ity 𝜆0, the residual thermal conductivity 𝜆r and the crit-
ical enhancement contribution 𝜆c. Each contribution is
then individually modeled.

𝜆 = 𝜆0(𝑇) + 𝜆r(𝜚, 𝑇) + 𝜆c(𝜚, 𝑇) .

7 Modelica implementation
This library is compatible to and based on
Modelica.Media [4]. HelmholtzMedia defines a
partial package PartialHelmholtzMedium which
extends from Modelica.Media.Interfaces.
PartialTwoPhaseMedium. All functions available in
the base class are either inherited without modification
or they are modified by implementing a new algorithm.

The Record ThermodynamicState contains den-
sity, temperature, pressure, specific enthalpy, specific
internal energy and specific entropy. Compared to the
base class, specific entropy was added. The Record
SaturationProperties was modified by adding the
states liq and vap.

Where possible, annotation(inverse=…); and
annotation(derivative=…); were used.

For fluids that can be modeled by the implemented
algorithms, adding a new fluid is done by extending

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 67
10.3384/ecp1207663 September 3-5, 2012, Munich, Germany

.....

Propane

.

R134a

.

n-Butane

.
100
.

200
.

300
.

400
.0 .

1

.

2

.

3

.

4

.

𝑇/K

.

𝑝 σ
/M

Pa

.....

R134a

.

n-Butane

.

Propane

.
0
.

1
.

2
.

3
.

4
.

5
.−30 .

−20

.

−10

.

0

.

𝑇c/𝑇

.

ln
ึ

𝑝 σ 𝑝 c
ื

Figure 4: Vapour pressure as a function of temperature

from PartialHelmholtzMedium and modifying the
parameters for the algorithms. The parameters need to
be copied from the respective publications and saved
in the format used by HelmholtzMedia. RefProp [5]
comes with a comprehensive compilation of these pa-
rameters, so that RefProp licencees could alternatively
copy them from the RefProp fluid files. So far, six
fluids have been implemented: n-Butane, Isobutane,
Isopentane Propane, R134a and Ethanol. The parame-
ters for these six fluids have been copied fromRefProp.

8 Summary and Outlook
The most accurate equations of state (EoS) available
today for a variety of working fluids are fundamental
EoS in terms of Helmholtz energy. The HelmholtzMe-
dia library implements the Helmholtz energy EoS in
a generalized form that makes adding more fluids very
easy. In addition to the equation of state, algorithms for
the calculation of viscosity, thermal conductivity and
surface tension are given, as well as ancillary equations
for saturation properties that speed up iterative proce-
dures. Apart from these ancillary equations, the library
is not optimized for speed.

Possible extensions for future versions include the
addition of non-analytic terms for the residual part of
the Helmholtz energy and hyperbolic terms for the
ideal part of the Helmholtz energy. For viscosity and
thermal conductivity twomore models could be added,
an extended corresponding states model and a model
based on the generalized friction theory.

In order to add accurate EoS for mixtures like the

GERG-2008 model, a template for multi-component
multi-phase media would be necessary. The structure
of Modelica.Media might change in a future version
of the Modelica Standard Library [11].

The library is completely written in Modelica and
released as open-source under the terms of the Model-
ica license. Anybody interested in the library is invited
to contribute; the source code and an issue tracker are
available at [9].

Acknowledgment
The authors would like to thank Eric W. Lemmon for
answering an abundance of questions and for providing
a modified version of RefProp capable of outputting
additional intermediate results.
This work was performed in the framework of the
GeoEn project and was funded by the Federal Min-
istry of Education and Reasearch of Germany (Grant
03G0767A).

References
[1] R. Akasaka. “A Reliable and Useful Method to

Determine the Saturation State from Helmholtz
Energy Equations of State”. In: Journal of
Thermal Science and Technology 3.3 (2008),
pp. 442–451. DOI: 10.1299/jtst.3.442.

HelmholtzMedia — A Fluid Properties Library

68 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207663

[2] H. D. Baehr. “Thermodynamische Fun-
damentalgleichungen und charakteristis-
che Funktionen”. In: Forschung im Inge-
nieurwesen 64.1 (1998), pp. 35–43. DOI:
10.1007/PL00010764.

[3] R. Brent. Algorithms for minimization without
derivatives. Prentice-Hall, 1973.

[4] H. Elmqvist, H. Tummescheit, and M. Otter.
“Object-oriented modeling of thermo-fluid sys-
tems”. In: Proceedings of the 3rd International
Modelica Conference. 2003, pp. 269–286.

[5] E. W. Lemmon, M. L. Huber, andM. O. McLin-
den. NIST Standard Reference Database 23:
Reference Fluid Thermodynamic and Transport
Properties - REFPROP. 9.0. National Institute
of Standards and Technology, Standard Refer-
ence Data Program. Gaithersburg, 2010.

[6] G. R. Somayajulu. “A generalized equation for
surface tension from the triple point to the crit-
ical point”. In: International Journal of Ther-
mophysics 9.4 (1988), pp. 559–566. DOI: 10.
1007/BF00503154.

[7] R. Span. Multiparameter equations of state:
an accurate source of thermodynamic property
data. Springer Verlag, 2000.

[8] R. Span, W. Wagner, E. W. Lemmon, and R. T.
Jacobsen. “Multiparameter equations of state—
recent trends and future challenges”. In: Fluid
Phase Equilibria 183-184.1-2 (2001), pp. 1–20.
DOI: 10.1016/S0378-3812(01)00416-2.

[9] M. Thorade. HelmholtzMedia. 2012. URL:
https : / / github . com / thorade /
HelmholtzMedia/.

[10] M. Thorade and A. Saadat. “Partial derivatives
of thermodynamic state properties for dynamic
simulation”. In: will be submitted to: Environ-
mental Earth Sciences (2012).

[11] H. Tummescheit. Ticket 85: Re-design and
simplification of Modelica.Media. 2008. URL:
https://trac.modelica.org/Modelica/
ticket/85.

[12] W. Wagner. Eine mathematisch statistische
Methode zum Aufstellen thermodynamis-
cher Gleichungen — gezeigt am Beispiel der
Dampfdruckkurve reiner fluider Stoffe. Vol. 3.
Fortschrittberichte der VDI Zeitschriften 39.
VDI Verlag, 1974.

[13] W.Wagner and A. Pruß. “The IAPWS Formula-
tion 1995 for the Thermodynamic Properties of
Ordinary Water Substance for General and Sci-
entific Use”. In: Journal of Physical and Chem-
ical Reference Data 31.2 (2002), pp. 387–535.
DOI: 10.1063/1.1461829.

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 69
10.3384/ecp1207663 September 3-5, 2012, Munich, Germany

HelmholtzMedia — A Fluid Properties Library

70 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207663

Object-Oriented Library of Switching Moving Boundary Models for Two-phase Flow Evaporators and Condensers

Object-Oriented Library of Switching Moving Boundary Models
for Two-phase Flow Evaporators and Condensers

Javier Bonilla a Luis J. Yebra a Sebastián Dormido b François E. Cellier c

a Centro de Investigaciones Energéticas MedioAmbientales y Tecnológicas (CIEMAT)
Plataforma Solar de Almería (PSA), Almería, Spain
b National Distance Education University (UNED),

Department of Computer Science and Automatic Control, Madrid, Spain
c Swiss Federal Institute of Technology (ETH Zurich),
Department of Computer Science, Zurich, Switzerland

Abstract

This paper discusses a Modelica library of switching
moving boundary models for two-phase flow heat ex-
changers: evaporators and condensers. The equation-
based object-oriented modeling paradigm has been
considered by means of designing basic models ap-
plying the conservation laws for each flow state: sub-
cooled liquid, two-phase flow and superheated vapor.
Evaporator and condenser models have been devel-
oped by interconnecting the basic models and includ-
ing mechanisms to switch between different configu-
rations: general, flooded and dry evaporators and con-
densers. Finally, simulation results are presented by
an integrity and stability test case.

Keywords: Moving boundary model; switching;
two-phase flow; evaporator; condenser

1 Introduction

Heat exchangers play a very important role in indus-
try; the modeling and control of these elements is
a key part in the process plant control. Two of the
most common discretization approaches used in fluid
dynamic modeling are the finite-volume distributed-
parameter method [21] and the moving-boundary
lumped-parameter method [8]. Dynamic modeling is
always a challenging task in which the trade-off be-
tween accuracy and speed must be evaluated depend-
ing on the purpose of the model. Moving boundary
models are low-order and much faster models than fi-
nite volume models; additionally they can describe the
dynamic behavior of evaporators and condensers with
high accuracy [1]. In the context of real-time simu-
lation, dynamic system optimization and model-based

control, where fast computation is required, the mov-
ing boundary method seems to be appropriate.

The moving boundary method divides the evapora-
tor/condenser in different regions, also called Control
Volumes (CVs), depending on the fluid phase. In each
CV, the lumped thermodynamic properties are aver-
aged; the barrier is not fixed and it may move between
adjacent CVs. The main idea is to dynamically track
the lengths of the different regions [16].

The three basic flow states are: subcooled liq-
uid (SC), two-phase flow (TP) consisting of vapor
and liquid present simultaneously in the same vol-
ume, and superheated vapor (SH) as represented in
Fig. 1. Considering these three basic flow states, com-
pound configurations can be created. Fig. 2 shows
these configurations: general, flooded and dry evap-
orators/condensers.

A state-of-the-art study in moving boundary mod-
els for two-phase flow heat exchangers was previ-
ously presented in [2] together with a new switching
flooded evaporator model. This paper extends previ-
ous work by new switching moving boundary models
for general/dry evaporators and general/flooded/dry
condensers. To the knowledge of the authors, there
are three papers related to moving boundary models
developed using Modelica [17, 27, 13]. The novelty
of this paper is that a strictly object-oriented design is
followed.

(a) (b) (c)

Figure 1: Basic flow states

DOI Proceedings of the 9th International Modelica Conference 71
10.3384/ecp1207671 September 3-5, 2012, Munich, Germany

(a) General evaporator (b) Flooded evaporator (c) Dry evaporator

(d) General condenser (e) Flooded condenser (f) Dry condenser

Figure 2: Evaporator and condenser configurations

2 Mathematical modeling

This section first describes the assumptions made in
the development of the mathematical models, after
that the governing equations in their general form are
listed, the one-dimensional CV concept is then intro-
duced, and finally the basic and compound models are
explained together with some additional equations re-
quired to complete the models.

2.1 Assumptions

With the aim of developing a low-order model that re-
flects the principal dynamics, a number of assump-
tions have been made: horizontal orientation; one-
dimensional case; constant pipe cross-sectional area;
time-dependent uniform pressure along the evapora-
tor; homogeneous two-phase flow; average properties
and time-dependent uniform heat flux per unit length
in each CV; negligible gravitational forces; negligi-
ble changes in the kinetic energy; negligible viscous
stress; heat conduction and radiation in the fluid and
heat conduction in the pipe wall are also neglected.

2.2 Governing equations

The straightforward way to derive the model equations
is from the time-dependent equations for conservation
laws. Considering the assumptions presented in the
previous section, the differential formulation for the
conservation of mass and energy in the fluid are repre-
sented by Eqs. 1 and 2, respectively [18]. Eq. 3 [18]
defines the conservation of energy in the pipe wall and
Table 1 summarizes the nomenclature.

∂Aρ

∂ t
+

∂ ṁ
∂ z

= 0, (1)

∂Aρu
∂ t

+
∂ ṁh
∂ z

= q̇i, (2)

Awρwcp,w
∂Tw

∂ t
= q̇o− q̇i. (3)

Var. Description Units
t Time [s]
z Spatial coordinate [m]
A Cross-sectional area [m2]
cp Isobaric specific heat capacity [J/(K·kg)]
ṁ Mass flow rate [kg/s]
x Vapor quality [-]
p Pressure [Pa]
Q̇ Heat flow rate [W]
q̇ Heat flux [W/m2]
γ Void fraction [-]
γ̄ Mean void fraction [-]
h Specific enthalpy [J/kg]
h̄ Mean specific enthalpy [J/kg]
h′ h of saturated liquid [J/kg]
h′′ h of saturated vapor [J/kg]
ρ Density [kg/m3]
ρ̄ Mean density [kg/m3]
ρ ′ Density of saturated liquid [kg/m3]
ρ ′′ Density of saturated vapor [kg/m3]
T Temperature [K]
T̄ Mean temperature [K]
ε Pipe roughness [m]
Subs. Description Subs. Description
a Inlet to CV b Outlet to CV
sc Subcooled t p Two-phase
sh Superheated w Pipe wall
i Inner to CV o Outer to CV

Table 1: Nomenclature

2.3 One-dimensional Control Volume

The moving boundary method is based on the divi-
sion of the heat exchanger in different CVs. Fig. 3
represents a CV; the lumped thermodynamic proper-
ties in the CV are averaged and they are uniform but
time-dependent (h̄, T̄ , ρ̄); the pressure (p) is not de-
noted by a mean value, because there is only one
time-dependent pressure value for the entire evapo-
rator. The cross-sectional areas (A,Aw) are constant.
Each CV has three interfaces or boundaries. One is ad-
jacent to the pipe wall where the thermodynamic prop-
erties are also considered in its mean values (T̄w, ρ̄w).

Object-Oriented Library of Switching Moving Boundary Models for Two-phase Flow Evaporators …

72 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207671

ρa

ha

ma
.

ρb

hb

mb

.

za
zb

Tw

 h T ρ

_ _ _

p

_
ρw

_

Tw

_
ρw

_

A

Aw

Aw

Figure 3: Control Volume (CV)

The other two interfaces connect to adjacent CVs or
the inlet or outlet boundaries of the heat exchanger. In
Fig. 3 the flow direction is defined by the arrow, so
the inlet flow thermodynamic properties correspond to
the a subscript variables (ρa,ha, ṁa), whereas the out-
let flow thermodynamic properties are defined by the
b subscript variables (ρb,hb, ṁb).

2.4 Basic Volume Models

The derivation of the mass and energy balance equa-
tions for the CV models is not presented due to
space limitation. From the-state-of-the-art study in
two-phase flow moving boundary models useful in-
formation was obtained [2]. The derivation of the
model is analogous to the developed in [16, 17] but
not neglecting the mean void fraction time derivative
(dγ̄/dt), where a new calculation method has been in-
troduced. Additionally, the thermodynamic properties
at the boundaries are not fixed to any particular value,
by means of considering the density or specific en-
thalpy of saturated liquid/vapor, so the basic volume
models can be used in any evaporator/condenser.

2.4.1 One-phase Flow Volume Model

The mass and energy balance equations for the sub-
cooled liquid and superheated vapor CV models are
described by Eqs. 4 and 5 where the subscript cv can
be substituted by sc or sh to consider the particular CV.

A
(

zcv
dρ̄cv

dt
+ ρ̄cv

dzcv

dt

)
+ρaA

dza

dt
−ρbA

dzb

dt

= ṁa− ṁb.

(4)

A
(

ρ̄cvh̄cv
dzcv

dt
+ ρ̄cv

dh̄cv

dt
zcv +

dρ̄cv

dt
h̄cvzcv

)
−Azcv

d p
dt

+Aρaha
dza

dt
−Aρbhb

dzb

dt
= ṁaha− ṁbhb + q̇i,cvzcv.

(5)

2.4.2 Two-phase Flow Volume Model

The mass and energy balance equations for the two-
phase flow CV model are described by Eqs. 6 and 7.
The way the mean void fraction and its time derivative
are calculated is described in [2].

A
(

dzt p

dt
(γ̄ρ

′′+(1− γ̄)ρ ′)+ zt p

(
dγ̄

dt
(ρ ′′−ρ

′)+

γ̄
dρ ′′

d p
d p
dt

+(1− γ̄)
dρ ′

d p
d p
dt

))
+ρaA

dza

dt
−ρbA

dzb

dt

= ṁa− ṁb.

(6)

A
(

dzt p

dt
(γ̄ρ

′′h′′+(1− γ̄)ρ ′h′)+ zt p

(
dγ̄

dt

(
ρ
′′h′′ −

ρ
′h′
)
+ γ̄

dρ ′′

d p
d p
dt

h′′+ γ̄ρ
′′ dh′′

d p
d p
dt

+(1− γ̄)
dρ ′

d p
d p
dt

h′

+(1− γ̄)ρ ′
dh′

d p
d p
dt

))
−Azt p

d p
dt

+Aρaha
dza

dt
−

Aρbhb
dzb

dt
= ṁaha− ṁbhb + q̇i,t pzt p.

(7)

2.5 Heat Exchanger Models

When modeling the compound models (not only one
CV model), additional equations are required besides
the CV governing equations; these equations depend
on the kind of heat exchanger and relate the outlet CV
specific enthalpies with the values at saturation condi-
tions.

2.5.1 Evaporator

If a general or flooded evaporator is considered (cf.
Figs. 2(a) and 2(b)), Eq. 9(a) is required for the sub-
cooled liquid CV, and also the initial value for hb must
be set to h′.

An easy way to accomplish this is to only intro-
duce Eq. 8. However, there is a problem with that
approach if switching moving boundaries models are
considered.

hb = h′. (8)

Suppose that a flooded evaporator is being modeled,
where the outlet fluid is two-phase flow; hb for the
subcooled liquid CV is not a state variable because
it depends on pressure, and therefore Eq. 8 is valid

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 73
10.3384/ecp1207671 September 3-5, 2012, Munich, Germany

and hb is an algebraic variable. However, if the out-
let fluid turns into subcooled liquid due to a change
in the model inputs, Eq. 8 is no longer valid and hb is
a state variable. Such a model is called a variable-
structure model. In a variable-structure model the
number/type of equations or variables can change, on
the other hand a static-structure model implies that the
number of equations as well as the number of alge-
braic and state variables remains the same. Variable-
structure models are not currently supported by most
modeling and simulations tools (including Modelica
tools). Whereas there exist some modeling languages
and tools that support variable-structure models, none
of the existing variable-structure modeling tools sup-
ports the handling of higher-index systems [28]. For
that reason, Modelica is still our preferred modeling
language, but it must be taken into account that only
static-structure models can be simulated.

For this reason, the number of equations must re-
main the same in all different configurations of our
model, and hb for the different CVs must always be
a state variable so its value cannot be fixed to any al-
gebraic variable and neither can ha, because it is con-
nected to hb from the CV to the left, except for the
case of the first CV where the ha value can be freely
establish.

If a general or dry-expansion evaporator is consid-
ered (cf. Figs. 2(a) and 2(c)), Eq. 9(b) is required for
the two-phase flow CV, and also the initial value for hb
must be set to h′′.

2.5.2 Condenser

If a general or flooded condenser is considered (cf.
Figs. 2(d) and 2(e)), Eq. 9(a) is required for the two-
phase flow CV, and also the initial value for hb must
be set to h′. If a general or dry condenser is considered
(cf. Figs. 2(d) and 2(f)), Eq. 9(b) is required for the
superheated vapor CV, and also the initial value for hb
must be set to h′′.

dhb

dt
=

dh′

dt
(a),

dhb

dt
=

dh′′

dt
(b). (9)

2.6 Pipe Wall Model

The energy balance equation for each pipe wall CV is
described by Eq. 10. This equation is derived in [27],
where Tw,a and Tw,b are the wall temperature values at
the interfaces. This approach is closer to the practical
situation as it remains continuous and smooth during

the switching between different configurations.

Awρwcp,w

(
dT̄w

dt
+

T̄w−Tw,b

zab

dzb

dt
+

Tw,a− T̄w

zab

dza

dt

)
= q̇o− q̇i.

(10)

2.7 Additional Equations

Some additional equations are required in order to
complete the heat exchanger model. These equations
are not detailed here due to space limitations but they
can be easily found in the literature [16]. The remain-
ing equations are: the heat flow rates between the pipe
wall and the ambient and between the pipe wall and
the fluid and the geometric constraints, i.e., the total
heat exchanger length and the pipe geometry. The pipe
geometry considered in this manuscript has been the
cylindrical geometry.

2.8 Switching

Switching from one configuration to another implies
the disappearance of an existing CV or the appear-
ance of a new one, e.g. when switching from a general
evaporator to a flooded evaporator or vice versa. This
section elaborates how such transitions are captured
by the model. Additional equations for the new CV
may be required. When the CV is active, its govern-
ing equations correspond to the equations described in
Sections 2.4.1 or 2.4.2 depending on the fluid phase;
however a different set of equations is required to de-
scribed the CV in its inactive state. This is also ex-
plained in this section. It is assumed that the appear-
ance or disappearance of a CV can only occur at the
end of the heat exchanger.

2.8.1 Disappearance of a Control Volume

A CV disappears (becomes inactive) when Eq. 11(a)
becomes true, where zmin denotes a threshold that
specifies the minimum length of an active CV. This
value cannot be zero in order to avoid structural sin-
gularities, therefore the CV length must be greater that
zero. The default value for this parameter has been set
to 10−6 m.

2.8.2 Control Volume in an Inactive State

When any of the CVs is inactive, the mass and en-
ergy balance equations (Eqs. 4 and 5 or Eqs. 6 and 7
depending on the CV fluid phase) are substituted by

Object-Oriented Library of Switching Moving Boundary Models for Two-phase Flow Evaporators …

74 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207671

Eqs. 11(b) and 11(c), respectively. These equations
guarantee that the CV is inactive and does not act on
the fluid.

zcv < zmin (a), ṁa = ṁb (b),

dha

dt
=

dhb

dt
(c),

dzcv

dt
= 0 (d).

(11)

Moreover, Eq. 9(a) or 9(b) must be substituted by
Eq. 11(d) depending on the inactive CV and on the
kind of heat exchanger considered.

2.8.3 Appearance of a Control Volume

The event triggering the appearance of a CV depends
on the particular CV and also on the kind of heat ex-
changer.

Evaporator. The superheated vapor CV appears (cf.
Figs. 2(a) and 2(c)) when the vapor quality in the two-
phase flow CV becomes greater than 1.0, Eq. 12(a).
The two-phase flow CV appears (cf. Figs. 2(a) and
2(b)) when the outlet specific enthalpy in the sub-
cooled liquid CV becomes greater than the specific en-
thalpy of saturated liquid, Eq. 12(b).

Condenser. The subcooled liquid CV appears (cf.
Figs. 2(d) and 2(e)) when the outlet specific enthalpy
in the two-phase flow CV is lower than the specific
enthalpy of saturated liquid, Eq. 12(c). The two-phase
flow CV appears (cf. Figs. 2(d) and 2(f)) when the
outlet specific enthalpy in the superheated vapor CV
becomes lower than the specific enthalpy of saturated
vapor, Eq. 12(d).

x > 1 (a), hb > h′ (b),

hb < h′ (c), hb < h′′ (d).
(12)

3 Description of the Library

This section describes the Modelica library that imple-
ments the mathematical models previously described,
the MBMs (Moving Boundary Models) library.

3.1 Library Structure and Interfaces

Fig. 4(a) shows the main packages that make up
the MBMs library, and Fig. 4(b) shows the Compo-
nents.Water.MBM package in expanded view, where
the basic and compound models can be seen. The

(a) Packages (b) Components

Figure 4: The MBMs library

former do not support switching, whereas the latter
do. Modelica Fluid and Modelica Thermal ports have
been used throughout in order to define the interfaces
in the MBMs library. This guarantees that the MBMs
library is compatible with any component from the
Modelica standard library 3.2 [20] or from third-party
components that also make use of these interfaces.

3.2 Partial Base Classes

The most remarkable partial base classes in the MBMs
library are: the Volume class, the MultipleVolume
class, the HeatTransferCorrelation class and the Fric-
tionFactor class.

3.2.1 Volume Class

The Volume class defines the fluid and heat ports, the
medium, some additional thermodynamic properties,
as well as the state and geometry of the CV. This class
is the base class for the basic volume models. The
volume class also includes a heat transfer correlation
(HTC) and a friction factor model (FFM).

3.2.2 MultipleVolume Class

The MultipleVolume class defines two or three CVs
that can be redeclared in classes that inherit from it.
The CVs are connected through the fluid connectors,
and this is the base class for all heat exchangers. We

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 75
10.3384/ecp1207671 September 3-5, 2012, Munich, Germany

(a) Icon (b) Component diagram

Figure 5: MultipleVolume base class (3 CVs)

followed strictly an object-oriented design for heat ex-
changers. Figs. 5(a) and 5(b) show the icon and com-
ponent diagram of the 3 CVs MultipleVolume class.

3.2.3 Heat Transfer Correlations and Friction
Factor Models

There are two base classes for heat transfer correla-
tions (HTCs) and friction factor models (FFMs). The
user can inherit from them to define new HTCs or
FFMs. FFMs have been implemented because the
Petukhov and Gnielinski HTCs require a friction fac-
tor which can be caculated from those FFMs, further-
more there are plans for extending the library with
pressure loss. A HTC can be restricted to only one
particular fluid phase (one-phase or two-phase) or to
only one particular process (evaporation or condensa-
tion), if required. Moreover, there are some HTCs for
evaporation and FFMs for smooth and rough pipes, al-
ways considering turbulent flow, already implemented
in the library. They are summarized in Table 2. The
implemented HTCs and FFMs have been also adapted
to switching in order to avoid discontinuities and nu-
merical problems during the simulation. The HTCs
and FFMs have been validated against an independent
implementation [26]. The HTC and FFM can be se-
lected in each CV through the GUI. A test case for the
implemented two-phase flow HTCs is shown in Fig. 6.

3.3 Volume Components

Fig. 7 shows the icons of the subcooled liquid, two-
phase flow and superheated vapor models. These mod-
els inherit from the Volume class and add their partic-
ular equations, although the subcooled liquid and the
superheated vapor models inherit from an intermedi-
ate class in the hierarchy, the OnePhaseVolume class,
because both models share the same equations.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 10

4

Steam quality (−)

H
e
a
t
tr

a
n
s
fe

r
c
o
e
ff
ic

ie
n
t
(W

/(
m

2
K

))

Chen (1966)

Shah (1982)

Kandlikar (1990)

Gungor−Winterton (1986)

Goebel (1998)

Figure 6: Comparison of two-phase flow HTCs (p = 3
MPa, Q̇ = 5,827 Kw, ṁ = 0.6 kg/s, ε = 3 ·10−5 m)

Heat Transfer Correlations Fluid phase
Ideal any
Constant any
[9] Dittus-Boelter (1930) One-phase
[3] Chen (1966) Two-phase
[22] Petukhov (1970) One-phase
[11] Gnielinski (1976) One-phase
[25] Shah (1982) Two-phase
[14] Gungor-Winterton (1986) Two-phase
[19] Kandlikar (1990) Two-phase
[12] Goebel (1998) Two-phase
Fanning Friction Factor Model Kind of pipe
None -
Constant any
[5] Colebrook (1939) any
[4] Chen (1979) any
Explicit simplified Chen (1979) any
[24] Karman-Prandtl (1930) Rough
[7] Denn (1980) Smooth
[15] Haaland (1983) any

Table 2: HTCs for evaporation and fanning FFMs im-
plemented in the MBMs library

(a) (b) (c)

Figure 7: Volume components

Object-Oriented Library of Switching Moving Boundary Models for Two-phase Flow Evaporators …

76 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207671

(a) (b)

(c) (d)

(e) (f)

Figure 8: Evaporator components

3.4 Heat Exchanger Components

Redeclaring the partial Volume classes in the Multi-
pleVolume (2 or 3 CVs) class with the volume com-
ponents: subcooled liquid, two-phase flow and super-
heated vapor models, evaporators and condenser can
be defined.

3.4.1 Evaporator Components

Fig. 8 shows the general, flooded and dry-expansion
evaporator models. The figures on the left represent
the icons whereas the figures on the right are the com-
ponent diagrams, where the partial Volume classes
have been redeclared appropriately.

3.4.2 Condenser Components

For condensers, the situation is the same, but changing
the order of the interconnected basic volumes models.
Fig. 9 shows the general, flooded and dry condenser
icons and component diagrams.

(a) (b)

(c) (d)

(e) (f)

Figure 9: Condenser components

3.5 Pipe Wall Component

The pipe wall component includes the pipe wall model
previously introduced in Section 2.6 adapted to sup-
port switching. The pipe wall component together
with the Volume class depend on the geometry. The
geometry is a partial class. Different geometries can
be implemented by inheriting from the geometry class;
the library already includes a cylindrical geometry
model. Moreover, the pipe wall component inherits
from a partial wall class, so different wall models can
be implemented and used.

3.6 The initialization problem

The initialization problem is always a cumbersome
task and it is especially difficult when considering in-
active CVs in the initialization. For that reason, the
initialization has been taken into account in the de-
sign of the MBMs library; the initialization options
can be establish through the GUI in the initialization
tab of evaporators and condensers. Fig. 10 shows the
initialization options for a switching general evapora-
tor. Here, it can be specified, which CVs are inactive
in the initialization, the initial inlet pressure can be set
as well as the initial outlet temperature (this value is

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 77
10.3384/ecp1207671 September 3-5, 2012, Munich, Germany

Figure 10: Initialization options for general evapora-
tors

only required when the outlet fluid is two-phase flow),
and it can be specified whether the inlet specific en-
thalpy time derivative is available. Sometimes when
considering experimental data as input, this thermody-
namic property may not be available and cannot be es-
timated, in which case the inlet specific enthalpy time
derivative is set to zero.

4 Simulation

This section shows the simulation of the mathematical
models previously introduced and implemented in the
MBMs library. The medium in these simulations is the
two-phase flow water-steam mixture from the Model-
ica Media library [20]. Dymola 2013 [6] has been the
Modelica tool used for these simulations. The numer-
ical solver used has been DASSL [23] and the relative
tolerance has been set to 10−6. All of the developed
models have been thoroughly tested in integrity and
stability tests, however due to space limitation only a
few can be presented in this article. A simulation test
for a switching flooded evaporator was presented in
[2].

4.1 Model Integrity

The simulation results must be verified and the govern-
ing equations of the model must be validated both in
steady-state and in transient predictions. To this end,
the mathematical model and library implementation
results were compared to those of an independently de-
veloped finite volume model and code from the Mod-
elica Fluid library [10] that belongs to the Modelica
Standard Library 3.2. The Modelica Fluid library has
been meticulously designed and tested and is widely
used in the Modelica community.

Fig. 11 shows the outlet temperature for a test
case considering a switching moving boundary gen-
eral evaporator model from the MBMs library (dashed

0 5 10 15

x 10
4

400

450

500

550

600

650

700

750

800

850

900

Time (s)

O
u
tl
e
t
te

m
p
e
ra

tu
re

 (
K

)

MBM FVM 3CVs FVM 10CVs FVM 20CVs FVM 50CVs

Figure 11: Integrity and stability test

Model CPU-Time (s) State events
MBM 0.87 104
FVM 3 CVs 2.34 45
FVM 10 CVs 6.93 124
FVM 20 CVs 21.4 228
FVM 50 CVs 103 551

Table 3: Simulation statistics

blue line) and finite volume models from the Model-
ica Fluid library considering different numbers of CVs
(3,10,20,50). It can be seen that the simulation results
obtained with the MBMs library are in good agree-
ment with those from the Modelica Fluid library and
that the MBMs library model runs considerably faster
(cf. Table 3), because the finite volume model requires
at least 20 CVs to yield acceptably accurate results.

4.2 Model Stability

Model stability, especially the switching stability, was
checked by holding certain inputs constant during the
simulation while varying sinusoidally others to force
repeated switching. Variations in the heat flow rate,
mass flow rate, inlet specific enthalpy and outlet pres-
sure have been tested. Fig. 11 shows the outlet tem-
perature in a switching general evaporator when vary-
ing sinusoidally the inlet heat flow rate over the pipe
(cf. Fig. 12). The outlet fluid phase changes from sub-
cooled liquid to two-phase flow (constant temperature)
to superheated vapor. Fig. 13 shows the CV lengths
in the moving boundary model where it can be ob-
served, which CVs are inactive during the simulation
(CVs with zero length), the length of the evaporator is
500 m.

Object-Oriented Library of Switching Moving Boundary Models for Two-phase Flow Evaporators …

78 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207671

0 5 10 15

x 10
4

0

2

4

6

8

10

12

14

16

18
x 10

5

Time (s)

H
e
a
t
fl
o
w

 r
a
te

 (
W

)

Figure 12: Heat flow rate over the pipe

0 5 10 15

x 10
4

0

100

200

300

400

500

Time (s)

C
o

n
tr

o
l
v
o

lu
m

e
 l
e

n
g

th
 (

m
)

SC CV length TP CV length SH CV length

Figure 13: Control volume lengths

5 Conclusions

This paper details mathematical moving boundary
models for heat exchangers, considering basic CVs
and compound models: general, flooded and dry evap-
orators and condensers, independent of the two-phase
flow medium. The pipe wall model is also shown. It
is independent of the geometry, particularized for a
cylindrical geometry in this paper. The switching cri-
teria was also introduced allowing the disappearance
of the CVs at the end of the heat exchanger. A new
equation-based object-oriented Modelica library, the
MBMs library, implementing all of the detailed mod-
els has been presented. This library provides models
of different HTCs and FFMs. It also tackles the initial-
ization problem, which is specially tough in the case
of moving boundary models. The mathematical mod-
els and the MBMs library have been tested thoroughly
using integrity and stability tests.

6 Future work

The MBMs library is currently still in its beta version,
and some of the following open tasks will be consid-
ered for future library extensions: pressure drop in
each CV and disappearance of CVs at the beginning
of the heat exchanger. It is planned to use and vali-
date the switching condenser models in the modeling
of a double effect absorption heat pump in the ambit of
the POWER project. The switching evaporator models
are intended to be also validated in the HIBIOSOLEO
project for the development of a direct steam genera-
tion linear Fresnel solar thermal power plant.

References

[1] S. Bendapudi, J. Braun, and E. Groll. A
comparison of moving-boundary and finite-
volume formulations for transients in centrifugal
chillers. International Journal of Refrigeration,
31(8):1437–1452, December 2008.

[2] J. Bonilla, L.J. Yebra, S. Dormido, and F.E. Cel-
lier. Object-Oriented Modeling of Switching
Moving Boundary Models for Two-phase Flow
Evaporators. In Proceedings MATHMOD 2012
- 7th Vienna International Conference on Mathe-
matical Modelling, 2012.

[3] J.C. Chen. Correlation for Boiling Heat Transfer
to Saturated Fluids in Convective Flow. Indus-
trial Engineering Chemistry Process Design and
Development, 5(3):322–329, 1966.

[4] N.H. Chen. An Explicit Equation for Fric-
tion Factor in Pipe. Industrial & Engineering
Chemistry Fundamentals, 18(3):296–297, Au-
gust 1979.

[5] C.F. Colebrook. Turbulent Flow in Pipes, with
particular reference to the Transition Region
between the Smooth and Rough Pipe Laws.
Journal of the Institution of Civil engineers,
11(4):133–156, 1939.

[6] Dassault Systèmes. Dymola 2013 - Dynamic
Modeling Laboratory. http://www.3ds.com/
products/catia/portfolio/dymola, 2012.

[7] M.M. Denn. Process Fluid Mechanics. Num-
ber 6. Prentice-Hall, Englewood Cliffs, 1980.

[8] M. Dhar and W. Soedel. Transient Analysis of
a Vapor Compression Refrigeration System. In

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 79
10.3384/ecp1207671 September 3-5, 2012, Munich, Germany

Proceedings of the 15th International Congress
of Refrigeration, pages 1031 – 1067, Venice,
Italy, 1979.

[9] F.W. Dittus and L.M.K. Boelter. Heat transfer in
automobile radiators of the tubular type. Univer-
sity of California Publications in Engineering,
2(1):443–461, 1930.

[10] R. Franke, F. Casella, M. Sielemann, K. Proelss,
M. Otter, and M. Wetter. Standardization of
Thermo-Fluid Modeling in Modelica.Fluid. In
Proc. of the 7th Int. Modelica Conference, pages
122–131, Italy, September 2009.

[11] V. Gnielinski. New equations for heat and mass
transfer in turbulent pipe flow and channel flow.
International Chemical Engineering, 2(16):359–
368, 1976.

[12] O. Goebel. Thermohydraulics of Direct Steam
Generation. In Proceedings of the 9th Interna-
tional Symposium on Solar Thermal Concentrat-
ing Technologies, Odeillo-Font-Romeu, 1998.

[13] M. Gräber, N.C. Strupp, and W. Tegethoff. Mov-
ing Boundary Heat Echanger Model and Vali-
dation Procedure. In Proceeding of EUROSIM,
2010.

[14] E. Gungor and R.H.S. Winterton. A general cor-
relation for flow boiling in tubes and annuli. In-
ternational Journal of Heat and Mass Transfer,
29(3):351–358, 1986.

[15] S.E. Haaland. Simple and Explicit Formulas for
the Friction Factor in Turbulent Pipe Flow. Jour-
nal of Fluids Engineering, 105(1):89–90, 1983.

[16] J.M. Jensen. Dynamic modeling of Thermo-Fluid
Systems-With focus on evaporators for refrigera-
tion. PhD thesis, Technical University of Den-
mark, 2003.

[17] J.M. Jensen and H. Tummescheit. Moving
boundary models for dynamic simulations of
two-phase flows. In Proc. of the 2nd Int. Mod-
elica Conference, 2002.

[18] R.W. Johnson. The Handbook of Fluid Dynam-
ics. CRC Press, 1998.

[19] S.G. Kandlikar. A general correlation for satu-
rated two-phase flow boiling heat transfer inside
horizontal and vertical tubes. Journal of heat
transfer, 112:219 – 228, 1990.

[20] Modelica Association. Modelica Standard Li-
brary 3.2, 2010.

[21] S.V. Patankar. Numerical Heat Transfer and
Fluid Flow. Hemisphere, Washington,D.C,
1980.

[22] B.S. Petukhov. Heat Transfer and Friction in Tur-
bulent Pipe Flow with Variable Physical Proper-
ties. Advances in Heat Transfer, 6(C):504–564,
1970.

[23] L.R. Petzold. A description of DASSL: a Difer-
ential/Algebraic System Solver. Scientific Com-
puting, pages 65–68, 1983.

[24] H. Schlichting and K. Gersten. Boundary-layer
theory. Springer, 2000.

[25] M.M. Shah. Chart correlation for saturated
boiling heat transfer: equations and further
study. ASHRAE TransUnited States, 88(CONF-
820112-):185–196, 1982.

[26] E. Zarza. The Direct Steam Generation with
Parabolic Collectors. The DISS project (in Span-
ish). PhD thesis, Escuela Superior de Ingenieros
Industriales de Sevilla, Seville, Spain, November
2000.

[27] W. Zhang and C. Zhang. A generalized
moving-boundary model for transient simulation
of dry-expansion evaporators under larger distur-
bances. International Journal of Refrigeration,
29(7):1119–1127, November 2006.

[28] D. Zimmer. Equation-Based Modeling of
Variable-Structure Systems. PhD thesis, Swiss
Federal Institute of Technology (ETH), 2010.

Acknowledgments

This work has been financed by CIEMAT research
centre, by the INNPACTO project, Hibridación de tec-
nologías renovables en una planta de generación de
energía. (HIBIOSOLEO), IPT-440000-2010-004 and
the National Plan Project, Predictive COntrol tech-
niques for efficient management of reneWable Energy
micro-gRids. (POWER), DPI2010-21589-C05-02 of
the Spanish Ministry of Economy and Competitive-
ness and FEDER funds.

Object-Oriented Library of Switching Moving Boundary Models for Two-phase Flow Evaporators …

80 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207671

High-Speed Compressible Flow and Gas Dynamics

High-Speed Compressible Flow
and Gas Dynamics

Michael Sielemann
Deutsches Zentrum für Luft- und Raumfahrt, Robotics and Mechatronics Center,
System Dynamics and Control, Münchner Strasse 20, 82234 Wessling, Germany

Abstract

Discretization schemes suitable for gas dynamics are
reviewed and applied to the declarative concepts of
Modelica. Here, a suitable connector definition is in-
troduced to enable both robust simulation and higher-
order schemes, which require larger stencils than typ-
ically available on established thermo-fluid dynamics
connectors.

Keywords: Finite volume method, shock waves,
monotone flux, total variation diminishing, essentially
non-oscillatory

1 Introduction

System-level simulation of thermo-fluid dynamics us-
ing Modelica is a wide topic yet relatively mature.
Several authors present applications using the lan-
guage in various technical domains. For instance,
Casella [3, 4] considers power plant simulation, Pfaf-
ferott [20], Tummescheit et al. [36], Richter [24],
and Prölß [21] study applications in sub-critical vapor
compression cycles, Casas [2, 1] addresses air condi-
tioning using desiccant assisted cycles, and Vasel and
Schmitz [40] consider air conditioning using trans-
critical cycles.

In all of the given applications, the governing equa-
tions are adapted to the specifics of the underlying
flow phenomena. With the exception of López [5],
the assumptions are identical for all applications re-
ported in literature. The corresponding flow, which
allows to make these assumptions, is called a low-
speed compressible flow herein. All authors referenced
in the first paragraph assume that the flow is incom-
pressible with respect to the flow phenomena, as it is
low-speed. Density variation is only encountered due
to heat transfer and in lumped parameter components
such as compressors. Density variation due to flow
phenomena is neglected, i.e., the Mach number is typ-
ically below 0.3.

In particular, an analysis of model code revealed
that the difference between static and total pressure is
neglected as the dynamic pressure is considered small
and not of interest. For the given applications in power
plants or vapor compression cycle refrigeration sys-
tems this is reasonable. Only in special devices, which
involve large variations in flow cross-section such as
adapters between different pipe diameters or nozzles,
total pressure is of interest. Total or stagnation en-
thalpy is often treated similarly; the kinetic term v2/2
is neglected. A typical argument is that the order of
magnitude of change in specific enthalpy due to heat
transfer is larger than that of such kinetic terms.

If kinetic terms in pressure and specific enthalpy
are not neglected for such applications and the com-
mon assumption of a steady-state momentum balance
is made then coupled nonlinear algebraic equation sys-
tems arise for density, which is required to establish
flow velocity. These coupled equation systems deteri-
orate simulation performance.

Certain applications involve a different type of flow,
which is called high-speed compressible flow herein.
Kinetic terms and dynamic pressure may not be ne-
glected and have to be included in compressible for-
mulations. Density variation is also encountered with
respect to flow phenomena, in particular dynamic con-
servation of momentum is relevant and also shock
waves may be part of the solution. The Mach num-
ber may be > 0.3 (including the supersonic regime).
The term “gas dynamics” refers to the same type of
flow.

The key theoretical area to enable applications
involving high-speed compressible flow is the dis-
cretization method for the governing equations. The
foundations of numerical solution methods in thermo-
fluid dynamics are well understood. However, in the
framework of equation-based, object-oriented model-
ing languages, only methods suitable for low-speed
compressible flow have been applied. The clas-
sic finite volume method has been studied in par-

DOI Proceedings of the 9th International Modelica Conference 81
10.3384/ecp1207681 September 3-5, 2012, Munich, Germany

ticular by Tummescheit [35]. Moving boundary
methods have been applied by Jensen [14, 15] and
Tummescheit [35]. Casella [4] proposed a mean den-
sity discretization, which is non-conservative but re-
sults in continuous and continuously differentiable
thermodynamic properties at phase boundaries of two-
phase flow. Prölß and Schmitz [22] discretized the
governing equations for frost formation on heat ex-
changer surfaces.

López [5] proposed an approach to model and simu-
late gas dynamics. Due to robustness issues, which are
certainly linked to deficiencies in the connector defini-
tion used in [5] (c.f. reference [7]), the approach did
not become widely supported. In an attempt to finally
extend the applicability of Modelica also to high-speed
compressible flow and gas dynamics, this paper and
reference [29] contribute to the state of the art in the
following areas.

• Relevant concepts of the theory in numerical so-
lution methods for high-speed compressible flow
are reviewed and translated from the algorithmic
perspective taken in literature to the acausal con-
cepts of equation-based, object-oriented model-
ing languages.

• The elements of discretization schemes are de-
composed in an object-oriented fashion and im-
plemented in a generic library. Object-oriented
concepts are exploited for increased flexibility
such as parametric polymorphism for exchange-
able thermodynamic property models.

2 The governing equations in com-
pact flux form

To address high-speed compressible flow, a compact
flux formulation as described by Toro [34] is consid-
ered. It is posed using conserved variables u and flux
f .

ut(x, t)+ f (u(x, t))x = s(u(x, t)) (1)

u(x, t) =

 ρ

ρv
ρu0

 (2)

f (u(x, t)) =

 ρv
ρv2 + p

v(ρu0 + p)

 (3)

If the cross-sectional area A is supposed to vary
smoothly with time and position, then the following

source term including heat transfer and viscous wall
friction can be used [34].

s(u(x, t)) =

 0
∆p f r

ρ q̇e

− 1
A

dA
dt

 ρ

ρv
ρu0 + p

 (4)

3 Conservative methods

An approach to discretize the governing equations of
thermo-fluid dynamics is now introduced based on
Toro [34]. It is formulated in conserved variables and
therefore called a conservative method.

The use of conservative methods is motivated by
the presence of discontinuities such as shock waves in
the solution of certain problems such as gas dynamics.
Hou and LeFloch [13] have shown that formulations
based on variables other than the conserved ones fail
to correctly predict the solution at shock waves. They
result in wrong jump conditions and thus wrong shock
strength, speed, and location. The theorem of Lax and
Wendroff [17] in turn states that conservative meth-
ods, if convergent, do converge to the weak solution
of the conservation law. Consequently, conservative
methods are an obvious choice if shock waves are po-
tentially contained in the solution.

In this section, the compact formulation of the con-
servation laws introduced in equation (1) is used. The
vector of conserved quantities is denoted by u(x, t) =
(ρ,ρv,ρu0). In order to include weak solutions of (1),
an integral form of the equations is used, a finite vol-
ume method.

As done in several numerical methods, the prob-
lem domain is discretized on a suitable computational
mesh. The control volumes are defined based on a grid
of cell side coordinates on an interval [a,b]

a = x1/2 < x3/2 < .. . < xn−1/2 < xn+1/2 = b (5)

Based on it, cells, cell centers and cell sizes are defined
for i = 1,2, . . . ,n.

Ii =
[
xi−1/2,xi+1/2

]
xi =

1
2

(
xi−1/2 + xi+1/2

)
∆xi = xi+1/2− xi−1/2

(6)

In this notation, xi+1/2 is the coordinate of the right
side of a computational cell Ii with cell center xi. This
grid is colocated. Furthermore, the maximum cell size
is defined as follows.

∆x = max
16i6n

(∆xi) (7)

High-Speed Compressible Flow and Gas Dynamics

82 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207681

The discretization scheme allows to deduce alge-
braic equations or differential algebraic equations that
properly approximate the governing equations. Note
that, in the context of Modelica, the goal is to deduce
differential algebraic equations and thus the equa-
tions have only to be discretized in space, not in time
(“semi-discretized”).

The set of cell centers, which is used in a discretiza-
tion scheme to deduce such equations for each cell, is
called the stencil. For the most simple schemes, the
stencil for cell Ii includes Ii itself and the cells to the
left and to the right,

S (i) = {Ii−1, Ii, Ii+1} (8)

Therefore, equation (1) is integrated over the inter-
val Ii to obtain

du(xi, t)
dt

=s(u(xi, t))− (9)

1
∆xi

(
f
(
u
(
xi+1/2, t

))
− f

(
u
(
xi−1/2, t

)))
Herein, a cell average is used

u(xi, t) =
1

∆xi

∫ xi+1/2

xi−1/2

u(ξ , t)dξ

Equation (9) is approximated by a semi-discretized
conservative scheme, which results in a differential al-
gebraic equation,

dui (t)
dt

= s(ui (t))−
1

∆xi

(
fi+1/2− fi−1/2

)
(10)

Herein, ui (t) is a numerical approximation of the exact
cell average u(xi, t), and fi±1/2 is a numerical flux, an
approximation of the physical flux f

(
u
(
xi±1/2, t

))
.

The remainder of this section is concerned with the
construction of numerical fluxes. All these fluxes con-
sist of a monotone flux and a reconstruction. Practi-
cally, a monotone flux is a flux free of spurious oscil-
lations. Due to Godunov’s Theorem such linear fluxes
are however first-order accurate only. Therefore, these
monotone fluxes are often used together with recon-
structions in order to build higher-order schemes. The
reconstruction provides an approximation of the vec-
tor of conserved variables u (or any other variable of
interest) based on the cell averages. Its higher-order
accuracy yields, together with a first-order monotone
flux, higher-order numerical flux.

3.1 Monotone flux and first-order schemes

A monotone numerical flux is defined using a function
g,

fi+1/2 = g
(

u−i+1/2,u
+
i+1/2

)
(11)

Here, u−i+1/2 is in general an approximation of the vec-
tor of conserved variables at xi+1/2 in the left limit,
and u+i+1/2 in the right limit. Each monotone flux can
be used without reconstruction with the approximation
u−i+1/2 ≈ ui and u+i+1/2 ≈ ui+1. The results are first-
order schemes. Alternatively, any more sophisticated
approach may be used to reconstruct u±i+1/2.

In the following presentation of monotone fluxes,
qr will refer to the right limit q+i+1/2 of a quantity q.
Similarly, q−i+1/2 is abbreviated as ql .

Monotone fluxes are classified as either upwind
methods or central methods. Upwind methods dis-
cretize equations on a mesh according to the direction
of propagation of information on that mesh. Central
methods do not make a distinction based on the direc-
tion of information propagation. Within the upwind
methods, both Godunov-type methods and flux vector
splitting methods are presented based on [34].

3.1.1 Godunov-type Upwind Methods

These methods are also called flux difference splitting
methods or Riemann approach methods. In the general
case, u−i+1/2 6= u+i+1/2, i.e., at position xi+1/2 a disconti-
nuity is present. The original Godunov monotone flux
therefore interpreted this as Riemann problem and pro-
vided the conserved variables at xi+1/2, ui+1/2. This is
the state that will be present instantly at this position
and will remain constant over a time step. Then, the
flux can be evaluated at this position, f

(
ui+1/2

)
. The

result is the Godunov monotone flux.
As the Godunov monotone flux uses the exact so-

lution to the Riemann problem, the resulting method
is computationally relatively expensive and is rarely
used for practical computations. Godunov-type mono-
tone fluxes follow the approach of the Godunov mono-
tone flux but employ an approximate Riemann solver.
This reduces the computational expense significantly
and results in rather accurate monotone fluxes.

Roe’s Monotone Flux: This Godunov-type flux uses
one of the most well-known approximate Riemann
solvers. The approximate Riemann solver is due to
Roe [26] and works as follows. The original Rie-
mann problem is replaced by an approximate Rie-
mann problem, which is solved exactly. The ap-
proximate problem is based on linearized conservation
laws, ut +Alrux = 0.

The linearized problem has to be established for
each combination of governing equations (e.g., Euler
equations) and thermodynamic property model (e.g.,
ideal gas).

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 83
10.3384/ecp1207681 September 3-5, 2012, Munich, Germany

Roe [26] established a methodology using averaged
values such that Alr

(
u+i+1/2−u−i+1/2

)
= Alr (u) fulfills

the given conditions. The vector u is the vector of Roe
average values. For the one-dimensional Euler equa-
tions and ideal gas, the Roe average values are as fol-
lows.

ρ =
ρr +ρl√
ρr +
√

ρl

v =
√

ρrvr +
√

ρlvl√
ρr +
√

ρl

h0 =

√
ρrh0,r +

√
ρlh0,l√

ρr +
√

ρl

and

c2 = (κ−1)
(

h0−
1
2

v2

)
Due to specific properties [26], the linearized sys-

tem can be transformed into a system of independent
transport equations. The data difference ∆u = ur− ul
is projected onto the right eigenvectors of Alr. This
establishes the wave strengths αi. Proper integral rela-
tions allow to establish the numerical flux as

gRoe (ul,ur) =
1
2
(fl + fr)−

1
2

3

∑
i=1

αi |λi|Ki

with eigenvalues λi and right eigenvectors Ki.
For the problem of interest, the wave strengths are

α1 =
1
2c

[∆m−∆ρ (v+ c)]− 1
2

α2

α2 =−
κ−1

c2

[
∆ρ
(
v2−h

)
− v∆m+∆ē

]
α3 = ∆ρ−α1−α2

Here, the data difference ∆m for example refers to
the difference in momentum.

HLLE Monotone Flux: The Harten, Lax and van
Leer [12] monotone flux simplifies the approximate
Riemann problem even further. It neglects the con-
tact surfaces and consequently assumes that between
the shock and the expansion fan only a single homo-
geneous state is present. For hyperbolic systems of
two equations this is correct, but for the Euler equa-
tions addressed herein this is a rough approximation.
Even if the resolution of contact surfaces is poor, this
monotone flux is still a robust and efficient one, whose
accuracy is, on global level, often sufficient.

An advantage of this flux is that it can be applied
easily to different thermodynamic property models.
The approximate Riemann solver of Roe for exam-
ple is not straight-forward to apply to several problems

such as ones involving real gas equations. It is there-
fore a relevant candidate for equation-based, object-
oriented modeling languages applications, as the spe-
cific thermodynamic property models are often fac-
tored out of the component models, in which the dis-
cretized Euler equations are implemented.

The scheme is implemented via an a-priori estima-
tion for the fastest signal speeds and its monotone flux
is defined as

gHLLE (ul,ur) =
c+r f (ul)− c−l f (ur)

c+r − c−l

+
c+r c−l

c+r − c−l
(ur−ul)

Here, the signal speeds are c+r = max(0,vr + cr,v+ c)
and c−l = min(0,vl− cl,v− c) respectively. In these
equations the Roe average velocity v and the Roe av-
erage speed of sound c have been used.

3.1.2 Flux Vector Splitting Upwind Methods

In Patankar [19] for instance, a simple first-order up-
wind scheme in primitive variables was introduced.
Based of the sign of a characteristic quantity (usually,
this is a velocity normal to the cell boundary), any vari-
able on the boundary was established to have either
the value from the left or the right side. In the con-
text of the present approach to conservative methods
and high-speed compressible flow, there is no simple
scheme of this type. This becomes obvious from the
hyperbolicity of the Jacobian ∂ f/∂u and its eigenval-
ues.

In general, the real part of the eigenvalues can have
any sign and a simple one-sided differencing scheme
will be appropriate only if the real parts of all eigen-
values have the same sign. The general system will
however have some eigenvalues with a positive real
part, and one side will be upwind for them, while the
others have a negative sign on the real part and conse-
quently the upwind side will be opposite for them. A
typical way to resolve this problem is to split such a
system into one with a positive real part of the eigen-
values and one with a negative real part and to treat
them separately. These are the flux vector splitting
methods discussed in this section.

The flux vector splitting approach is also called
Boltzmann approach and works as follows [34]. As
before, the Jacobian of the system of nonlinear hyper-
bolic conservation laws (1) is of interest.

A(u) =
∂ f (u)

∂u

High-Speed Compressible Flow and Gas Dynamics

84 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207681

Due to hyperbolicity, it may be expressed as

A = KΛK−1 (12)

Here, Λ is the diagonal matrix of eigenvalues λi of A.
The matrix K is the matrix of right column eigenvec-
tors Ki. The flux vector splitting methods aim at split-
ting the flux f (u) into components f+(u) and f−(u)
based on the following equality.

f (u) = f+(u)+ f−(u)

Following the introduction of this section, the split
fluxes are established such that the eigenvalues ˆ

λ
+
i , ˆ

λ
−
i

of the Jacobian

Â+ =
∂ f+ (u)

∂u
,

Â− =
∂ f− (u)

∂u

fulfill Re
(

ˆ
λ
+
i

)
≥ 0 and Re

(
ˆ

λ
−
i

)
≤ 0.

The Steger-Warming Monotone Flux: In order to
establish such a splitting, the homogeneity property
of (1) may be exploited. If the system of hyperbolic
conservation laws fulfills this property, then

f (u) = A(u)u (13)

like in the linear constant coefficient case. The un-
steady Euler equations fulfill this property and conse-
quently the splitting may utilize the structure exposed
in (12), that is, the splitting may be applied to the di-
agonal matrix Λ. Steger and Warming [30] proposed a
splitting of the eigenvalues λi,

λi = λ
+
i +λ

−
i (14)

Here, λ
+
i ≥ 0 and λ

−
i ≤ 0. Consequently, Λ is split as

Λ = Λ
++Λ

− (15)

Λ± are the diagonal matrices of the split eigenvalues
λ
±
i . This leads directly to the splitting of A.

A = A++A− (16)

where A± = KΛ±K−1. If the property (13) is fulfilled,
one arrives at an expression for the flux splitting.

f (u) = f+(u)+ f−(u) (17)

Here, f±(u) = A±u.

The crucial question is how to choose λ
±
i in (14).

Steger and Warming [30] suggested to use to following
equations.

λ
+
i =

1
2
(λi + |λi|) = max(λi,0) (18)

λ
−
i =

1
2
(λi−|λi|) = min(λi,0) (19)

When exercising this approach, the following Steger-
Warming monotone flux is established.

gSW (u) = f+(u)+ f−(u)

with

f± (u) =
ρ

2κ λ
±
1 +2(κ−1)λ

±
2 +λ

±
3

(v− c)λ
±
1 +2(κ−1)vλ

±
2 +(v+ c)λ

±
3

(h− vc)λ
±
1 +(κ−1)v2λ

±
2 +(h+ vc)λ

±
3


The eigenvalues are given by (18) and (19). The re-
maining variables have to be evaluated according to
the definition of the flux, i.e., for f+(u) the values
from the left such as ρl , ul and for f−(u) the values
from the right such as ρr, ur.

3.1.3 Centered Methods

Schemes, whose support does not depend on the
sign of the characteristic speeds, are called centered
schemes.

The Rusanov Monotone Flux, a local Lax-
Friedrichs Flux: The Lax-Friedrichs flux is one of
the simplest and most approximate methods consid-
ered herein. It was originally developed in the con-
text of finite-difference methods and later applied to
the finite-volume context.

Similarly to the HLLE method, only an expansion
and a compression wave are considered. In the orig-
inal Lax-Friedrichs flux, the speed of each wave was
assumed to be such that it reached the cell boundaries
exactly within a time step ∆t. For uniform grids, each
wave of the global problem therefore had the same
speed, which is an even more approximate solution
than in the HLLE method. As, in the present context,
no fully explicit scheme is employed but the method
of lines, no time step ∆t is defined. For this reason
and to slightly improve accuracy, a local form of the
Lax-Friedrichs monotone flux, the Rusanov monotone
flux [27], is considered. In the Lax-Friedrichs flux,

gLF (ul,ur) =
1
2
(f (ur)+ f (ul))−

1
2

∆x
∆t

(ur−ul)

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 85
10.3384/ecp1207681 September 3-5, 2012, Munich, Germany

the signal speed ∆x/∆t is replaced by λmax =
max((|v|+ c)l ,(|v|+ c)r). Then, the Rusanov mono-
tone flux is defined as follows.

gRus (ul,ur) =
1
2
(f (ur)+ f (ul))−

1
2

λmax (ur−ul)

First-Order Centered Monotone Flux: The First-
Order Centered Monotone flux (FORCE scheme) [33]
is obtained when replacing the random sampling of
Riemann problems in Random Choice Methods with
deterministic integral averages.

According to Toro [34], for fully explicit schemes,
the result is the arithmetic mean of the Lax-Friedrichs
and Richtmyer [25] fluxes. The Richtmyer flux is a
second-order scheme with constant coefficients and is
thus, according to Godunov’s classic theorem [9], not
monotone and results in spurious oscillations.

For the fully explicit version of the Richtmyer flux,
an intermediate state is first defined,

uRi =
1
2
(ul +ur)+

1
2

∆t
∆x

(f (ul)+ f (ur))

and then the flux is evaluated at it.

gRi (ul,ur) = f (uRi)

Then, the FORCE flux is the arithmetic mean of the
Lax-Friedrichs and Richtmyer fluxes [34]

gForce (ul,ur) =
1
2
(gLF (ul,ur)+gRi (ul,ur))

Again, the local version of the Lax-Friedrichs flux
(the Rusanov flux presented in previous section) and a
local version of the Richtmyer flux are used, is again
obtained by replacing ∆x/∆t with λmax.

After introducing some monotone numerical fluxes,
methods to obtain higher-order approximations of the
solution to (1) are considered.

3.2 Total Variation Diminishing schemes

Godunov’s theorem [9] was mentioned already. It
provides the theoretical foundation to the observation
that linear second-order schemes are more accurate
in smooth regions of a problem solution to (1) than
first-order schemes. Near strong gradients and shocks,
these methods produce spurious oscillations however.
Monotone methods however do not exhibit such spu-
rious oscillations. In case of linear schemes, their lim-
ited first-order accuracy is disadvantageous however.

One option to eliminate or reduce spurious oscilla-
tions for higher-order methods is to introduce artifi-
cial viscosity. This can be tuned such that it is large

enough to suppress oscillations in the neighborhood
of discontinuities and small elsewhere to maintain ac-
curacy. A disadvantage of this approach is however,
that the quantity of artificial viscosity is problem de-
pendent and therefore requires fine-tuning by the user.
This approach is not followed here and instead a less
empirical approach to introduce viscosity is adopted.

Therefore, in order to circumvent the limitations
formulated by Godunov’s theorem, schemes with vari-
able coefficients, i.e., nonlinear schemes, are consid-
ered. Such schemes can adapt themselves to the local
nature of the solution.

Harten [10] defined High-Resolution Methods as
numerical methods with the following properties.

1. Second or higher-order of accuracy in smooth
parts of the solution

2. The solution is free of spurious oscillations.

3. The resolution of discontinuities in the solution
is high, i.e., the number of cells containing the
numerical reproduction of the discontinuity is
smaller in comparison with that of first-order
monotone schemes.

A class of methods fulfilling these properties is that
of Total Variation Diminishing methods [10]. See this
reference for a definition of the total variation. For
brevity, only the case of a smooth function u(t), for
which the total variation is

TV (u) =
∫

∞

−∞

∣∣u′ (x)∣∣dx

and the case of a mesh function un = {un
i } are men-

tioned. For the latter, the total variation is defined as

TV (un) =
∞

∑
i=−∞

∣∣un
i+1−un

i

∣∣
Fundamental properties of the exact solution of the
conservation law (1) such as no creation of new local
extrema lead to the conclusion that the total variation
TV (u(t)) is a decreasing function of time [10]. Conse-
quently, Total Variation Diminishing methods mimic a
property of the exact solution.

For a general scalar conservation law, Harten [10]
provided a theorem on a sufficient condition for a par-
ticular class of nonlinear schemes with two coeffi-
cients to be Total Variation Diminishing (TVD). These
conditions are essentially four inequalities on these
two coefficients. As the coefficients may in general be
data dependent, Harten’s theorem provides a tool for

High-Speed Compressible Flow and Gas Dynamics

86 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207681

the construction of nonlinear schemes that circumvent
Godunov’s theorem stated above.

The classic TVD approach to adaptively switch be-
tween the characteristics of a monotone first-order nu-
merical flux gLO and those of a higher-order constant
coefficient flux gHI is to make the following assump-
tion [32].

gTV D = gLO +ϕ
[
gHI−gLO]

Here, ϕ is a flux limiter function that implements the
adaptive algorithm. Analysis of Harten’s theorem led
to the identification of the Sweby TVD region [32].
In this region, various flux limiters have been defined
such as the well-known limiters Superbee, Minbee,
and Ultrabee.

In the following sections, this approach is not fol-
lowed directly. Instead of flux limiters, slope limiters
are used, which are analogous to the flux limiters.

For the reasons described in section 3.1.3, both an
upwind TVD and a central TVD method are consid-
ered.

3.2.1 A MUSCL Upstream TVD Scheme

Van Leer [37, 38, 39] introduced a higher-order
method along the concept of reconstruction mentioned
in the introduction of this paper. MUSCL stands for
Monotone Upstream-Centered Scheme for Conserva-
tion Laws.

The first-order schemes discussed so far use mono-
tone fluxes directly by assuming piecewise constant
data over the cells Ii, i.e., u−i+1/2≈ ui and u+i+1/2≈ ui+1.
In the simplest MUSCL scheme, piecewise linear lo-
cal reconstructions are used. The reconstruction has
to maintain the integral average, which is trivially ful-
filled for piecewise linear local reconstructions.

First, slope vectors ∆i±1/2 are defined as follows.

∆i−1/2 = ui−ui−1 (20)

∆i+1/2 = ui+1−ui (21)

Strictly speaking, these slopes are not slopes but differ-
ences of the vector of conserved quantities in adjacent
cells. The terminology used in literature is adopted
however and therefore ∆i±1/2 are called slope vectors.
In order to implement a TVD scheme, the approach of
limited slopes described by Quirk [23] is used.

∆̂i =



max[0,
min

(
β∆i−1/2,∆i+1/2

)
,

min
(
∆i−1/2,β∆i+1/2

)
] ∆i+1/2 > 0

min[0,
max

(
β∆i−1/2,∆i+1/2

)
,

max
(
∆i−1/2,β∆i+1/2

)
] ∆i+1/2 < 0

The value β = 1 does, in the scalar case, reproduce
the Minbee flux limiter, and β = 2 the Superbee flux
limiter.

Based on the piecewise linear local reconstruction,

ui (x, t) = ui (t)+
x− xi

∆xi
∆̂i

The values at the extreme points of the cell Ii are es-
tablished.

u+i−1/2 = ui−
1
2

_

∆i (22)

u−i+1/2 = ui +
1
2

_

∆i (23)

In order to finally obtain the second-order accurate
upstream flux, some first-order monotone upstream
flux is employed with the reconstructed values u−i+1/2,
u+i+1/2.

gTV Du
i+1/2 = gmu

i+1/2

(
u−i+1/2,u

+
i+1/2

)
Note that u−i+1/2 is obtained from a reconstruction in
cell Ii, and u+i+1/2 from a reconstruction in cell Ii+1.

3.2.2 A MUSCL Centered TVD Scheme

As mentioned before, also a second-order TVD cen-
tered scheme is introduced. It also follows the concept
of the MUSCL scheme but uses a first-order monotone
centered flux.

This approach is base on a slope limiter ξi, for which
the following equation holds.

∆̂i = ξi∆i

Here, the slope vector of the cells, ∆i, is used.

∆i =
1
2
(1+ω)∆i−1/2 +

1
2
(1−ω)∆i+1/2

This is a weighted average of the side slope vectors
∆i±1/2, see (20) and (21). The weighting parameter has
to fulfill ω ∈ [−1,1]. In computations conducted for
this paper, the value of ω = 0 was used. Additionally,
the ratio ri of the cell side slope vectors is introduced.

ri =
∆i−1/2

∆i+1/2

Then, a slope limiter analogous to the Superbee flux
limiter is [34]

ξsb (r) =


0 r 6 0
2r 0 6 r 6 1

2
1 1

2 6 r 6 1
min(r,ξr (r) ,2) r > 1

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 87
10.3384/ecp1207681 September 3-5, 2012, Munich, Germany

A van Leer-type slope limiter is [34]

ξvl (r) =
{

0 r 6 0
min

(2r
1+r ,ξr (r)

)
r > 0

A Minbee-type slope limiter is [34]

ξmb (r) =


0 r 6 0
r 0 6 r 6 1
min(1,ξr (r)) r > 1

Above, ξr(r), a TVD region limit that is defined as
follows, was used.

ξr (r) =
2

1−ω +(1+ω)r

As before, the conservative variable vector is ap-
proximated via the limited slope ∆̂i and equations (22)
and (23). Then, the second-order accurate centered
flux is obtained via a first-order monotone centered
flux with the reconstructed values u−i+1/2, u+i+1/2. For
this purpose, the FORCE flux can be used.

gTV Dc
i+1/2 = gForce

i+1/2

(
u−i+1/2,u

+
i+1/2

)
Note again that u−i+1/2 is obtained from a reconstruc-
tion in cell Ii, and u+i+1/2 from a reconstruction in cell
Ii+1.

3.3 Weighted Essentially Non-Oscillatory
schemes

One disadvantage of TVD schemes is that the accu-
racy near discontinuities is reduced. In the schemes
presented above, this was directly visible in the slope
for example. Also, the accuracy necessarily is reduced
to first-order near smooth extrema.

In this section, both Essentially Non-Oscillatory
and Weighted Essentially Non-Oscillatory schemes
are presented, which are self-similar (i.e., there is no
mesh size dependent parameter), uniformly high-order
accurate, yet essentially non-oscillatory for piecewise
smooth functions (i.e., the magnitude of the oscilla-
tions decays with order of accuracy of the scheme).
Piecewise smooth functions are smooth except at
finitely many isolated points. At these points, the func-
tion and its derivatives are assumed to have finite left
and right limits.

The key element of these schemes is the reconstruc-
tion. This is a specific interpolation technique, which
was developed for piecewise smooth functions. It
works by automatically choosing the locally smoothest

stencil, and by that avoiding crossing discontinuities in
the interpolation procedure as much as possible.

The Essentially Non-Oscillatory reconstruction al-
gorithm starts with a stencil containing one or two
cells only. It then adds either the cell to the right or
the one to the left of the stencil, depending on which
results in the less oscillatory interpolant.

Instead of choosing one of the candidate stencils
and discarding the others, Weighted Essentially Non-
Oscillatory reconstruction uses a convex combination
of the interpolant through all candidate stencils.

First, the given two reconstructions are presented
and then it is described how to establish a numerical
flux from the corresponding reconstructions. This sec-
tion is based on Shu [28].

3.3.1 Essentially Non-Oscillatory Reconstruction

Before describing the Essentially Non-Oscillatory
(ENO) reconstruction, an important detail of interpo-
lation methods used for reconstruction has to be ad-
dressed. In section 3.2 it was mentioned that linear in-
terpolation in the MUSCL scheme was uncritical with
respect to maintaining the proper cell average of the
interpolant. In the context of the present methods,
higher-order interpolation is considered and therefore
the interpolant must be established in a way that main-
tains the cell average.

Assume that some function, say, velocity, is con-
sidered. The cell averages vi of that function v(x) are
given on a grid. One is interested in a polynomial pi(x)
of degree k−1 for each cell Ii. This then forms a k-th
order approximation to v(x) in the cell Ii. The poly-
nomial shall be constructed such that its cell average
shall agree with that of the original function vi.

Assume that, additionally to the cell Ii and the order
of accuracy k, one is given a stencil S(i) of k consecu-
tive cells. The stencil is given via the left shift r, i.e.,
the stencil includes r cells to the left and s cells to the
right of Ii, with r+ s+1 = k.

S (i) = {Ii−r, . . . , Ii+s} (24)

In order to preserve the cell average, the interpolant
over the stencil is established via the primitive function
of v(x).

V (x) =
∫ x

−∞

v(ξ)dξ

Then, the interpolant can be established. In computa-
tional implementations, this interpolation step is usu-
ally accelerated via the computation of so-called re-
construction coefficients. This is possible, because one

High-Speed Compressible Flow and Gas Dynamics

88 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207681

is usually not interested in the complete interpolant but
only in values of it at specific stations such as xi+1/2.
Due to the linearity of the mapping from the cell aver-
ages vi to the interpolated values, these reconstruction
coefficients depend on the left shift of the stencil r, the
order k, and the mesh spacing ∆xi, but not on the func-
tion v itself.

The actual ENO approximation is addressed next.
Here, an adaptive stencil is used. This means that the
left shift r is not constant. A left shift r that is constant
over the cells Ii would lead to a fixed stencil approxi-
mation (e.g., a central stencil) for which it was shown
that it leads to spurious oscillations if of order two or
higher with constant coefficients. In ENO approxima-
tion, the left shift is thus established for each cell Ii in
a way that avoids including a cell with a discontinuous
change in the stencil.

Harten et al. [11] showed that a robust criterion to
identify the stencil with the “smoother” interpolant is
to choose the one with the smaller absolute value of
the Newton divided difference.

Recall the definition of the Newton divided differ-
ences. For the primitive function V (x) the 0-th degree
divided difference is

V
[
xi−1/2

]
=V

(
xi−1/2

)
and the general j-th degree divided difference with j≥
1 is defined as

V
[
xi−1/2, . . . ,xi+ j−1/2

]
=

V
[
xi+1/2, . . . ,xi+ j−1/2

]
−V

[
xi−1/2, . . . ,xi+ j−3/2

]
xi+ j−1/2− xi−1/2

Similarly, the divided differences of the cell averages
are

v [xi] = vi

and in general

v [xi, . . . ,xi+ j] = (25)
v [xi+1, . . . ,xi+ j]− v [xi, . . . ,xi+ j−1]

xi+ j− xi

Note that the zeroth degree divided difference of vi is
identical to the first degree divided difference of V (x)
due to the definition of the primitive function.

V
[
xi−1/2,xi+1/2

]
=

V
(
xi+1/2

)
−V

(
xi−1/2

)
xi+1/2− xi−1/2

(26)

= vi

This equality allows to express the divided differences
of V (x) of degree j ≥ 1 by those of vi of degree j ≥ 0.

Taking the derivative of the k-th degree interpolation
polynomial P(x) to approximate V (x), one finds that
only divided difference of vi of degree j ≥ 1 are re-
quired to express p(x).

The ENO approximation thus identifies the
“smoothest” stencil in vi via a stencil of V (x), which
is labeled Ŝ(i). Notice that from the latter the cor-
responding stencil in vi can be identified via (26).
First, the divided differences of the primitive function
V (x) are computed using (26) and, for degrees j ≥ 2,
using (25). Then, the algorithm starts with a two point
stencil in V (x),

Ŝ2 (i) =
{

xi−1/2,xi+1/2
}

This stencil is then consecutively enlarged for l =
2, . . . ,k. From the preceding step the following sten-
cil is known

Ŝl (i) =
{

xi+1/2, . . . ,x j+l−1/2
}

and one of the neighboring points x j−1/2 and x j+l+1/2
is added to the stencil. If∣∣V [x j−1/2, . . . ,x j+l−1/2

]∣∣< ∣∣V [x j+1/2, . . . ,x j+l+1/2
]∣∣

then x j−1/2 is added to Ŝl(i) to obtain Ŝl+1(i). If the
inequality is not fulfilled, then x j+l+1/2 is added to the
stencil.

As soon as the stencil is completely established, La-
grange or Newton interpolation can be used to find the
interpolants. In computational implementations the re-
construction coefficients mentioned at the beginning
of this section are usually used instead. By the choice
of the stencil the left shift r is established. Then, the
proper reconstruction coefficients can be used to in-
stantly establish the interpolated values at the interface
locations.

Figure 1 illustrates the interpolants chosen by Es-
sentially Non-Oscillatory schemes. For the exam-
ple v = {10,10.4,10.25,10,3,2.5,2.25,2} and x =
{1,2,3,4,5,6,7,8} were assumed. First, consider the
resulting interpolant for cell 3. The scheme described
above starts the stencil with this cell and extends it
twice (i.e., order− 1 times) to the left or right. As
described, the schemes includes either neighbor point
that results in a smoother interpolant according to the
criterion of divided differences. For cell 3, the scheme
once selects a cell to the left and once a cell to the right
for inclusion in the stencil. For cell 4 in turn, including
the right cell (cell 5) would lead to rather large gradi-
ents in the interpolant each time. Therefore, the stencil
is extended twice to the left. The interpolant for cell 4

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 89
10.3384/ecp1207681 September 3-5, 2012, Munich, Germany

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

Cell 3 Cell 4

Cell 5 Cell 6

Coordinate x

Q
ua

nt
ity

v

Data
Interpolant for cell 3
Interpolant for cell 4
Interpolant for cell 5
Interpolant for cell 6

Figure 1: Third-order ENO reconstruction

is therefore identical to that of cell 3. For cells 5 and
6, the stencil is only extended to points to the right for
similar reasons.

The left limit of v4+1/2 is established based on the
interpolant of cell 4, i.e., v−4+1/2 = 9.84. The right limit
is v+4+1/2 = 3.33.

3.3.2 Weighted Essentially Non-Oscillatory Re-
construction

ENO schemes are uniformly high-order accurate right
up to the discontinuity, which is achieved by adap-
tively switching the stencil used for interpolation.
However, certain properties leave room for improve-
ments [28]:

• The stencil may change near zeros of the solution
even by a round-off error perturbation.

• As the left shift of the stencil may change at
neighboring points, the resulting numerical flux
is not smooth.

• To the reconstruction scheme, 2k− 1 cells are
available. In the end, only k cells are used. This
results in k-th order accuracy when 2k− 1-th or-
der accuracy is theoretically possible in smooth
regions of the solution.

The idea of Weighted Essentially Non-Oscillatory
(WENO) reconstruction is to use a convex combina-
tion of the interpolants through several stencils. If,
however, a candidate stencil contains a discontinuity,
its weight shall be close to zero to mimic the success-
ful properties of ENO schemes.

For each cell Ii k candidate stencils are consequently
available.

Sr (i) = {xi−r, . . . ,xi−r+k−1}

with r = 0, . . . ,k− 1. Using the reconstruction coeffi-
cients, each stencil produces a different reconstruction
of vi+1/2, which is labeled v(r)i+1/2. A convex combina-
tion of these values is used to define the reconstruction
using the WENO method.

vi+1/2 =
k−1

∑
r=0

ωrv
(r)
i+1/2

For stability and consistency, ωr ≥ 0 and
k−1
∑

r=0
ωr = 1

need to be imposed. In smooth regions, these weights
should approximate optimal high-order weights to k−
1-th order, which would imply (2k−1)-th order of the
complete reconstruction scheme. The question is now
what these optimal weights are. In the general case,
this leads to an overdetermined system of equations,
which can be solved, e.g., by using a least-squares al-
gorithm. In the case of a uniform mesh, the equation
system becomes square and an explicit solution can be
computed. Jiang and Shu [16] gave optimal weights
dr for uniform grids and 1 ≤ k ≤ 3. Herein, k = 3 is
considered. For this value of k, the following optimal
weights have been established.

d0 =
3
10

, d1 =
3
5
, d2 =

1
10

Furthermore, Jiang and Shu [16] suggested the fol-
lowing form of the weights

ωr =
αr

k−1
∑

s=0
αs

High-Speed Compressible Flow and Gas Dynamics

90 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207681

for r = 0, . . . ,k−1. Coefficients αr in turn are defined
as follows

αr =
dr

(ε +βr)
2

Here, ε > 0 is introduced to avoid division by zero.
Following Jiang and Shu [16], ε = 10−6 was used in
computations. βr are called smooth indicators in the
given reference and have been defined as follows

βr =
k−1

∑
l=1

∫ xi+1/2

xi−1/2

∆x2l−1
(

∂ l pr (x)
∂xl

)2

dx

This is the sum of the squares of the scaled L2

norms for all derivatives of the interpolation polyno-
mial pr(x) over the interval

(
xi−1/2,xi+1/2

)
. For k = 3,

the result is a 2k−1 = 5-th order accurate reconstruc-
tion.

Figure 2 illustrates Weighted Essentially Non-
Oscillatory reconstruction on the same example as fig-
ure 1. The reconstruction of the left limit of v4+1/2
is considered, i.e., v−4+1/2. For this, the scheme uses
three stencils Sr(4) with increasing left-shift r. The in-
terpolants based on these stencils are illustrated in the
figure. Note the strong gradients in the interpolants us-
ing S0(4) and S1(4). This is also an illustration that the
stencil selection of the ENO scheme shown in figure 1
for cell 4 was reasonable.

The WENO scheme proceeds with the different re-
construction values v(0)4+1/2 to v(2)4+1/2, which are each
marked with a filled circle in figure 2. For this par-
ticular example, the scheme results in weights ω0 =
1.3 · 10−6, ω1 = 15.6 · 10−6, ω2 = 0.999983. This
means, that the interpolant with left-shift r = 2 domi-
nates and v−4+1/2 ≈ v(2)4+1/2.

3.3.3 ENO and WENO numerical fluxes

So far, two different algorithms for the reconstruc-
tion of piecewise smooth functions were introduced.
The question is now how to construct corresponding
higher-order numerical fluxes for the system of hyper-
bolic conservation laws (1) from these reconstructions.

Probably, the easiest way to do this is to apply the
reconstruction to each component of the vector of con-
served variables u separately and thus reconstruct the
left and right limit u±i+1/2 at the location xi+1/2. Then,
a monotone first-order flux can be used to establish
an essentially non-oscillating higher-order numerical
flux.

Shu [28] remarks that only low-order schemes are
highly sensitive to the choice of first-order monotone

flux. This sensitivity decreases with increasing or-
der of accuracy and therefore a simple Lax-Friedrichs
monotone flux is used in the given reference to con-
struct higher-order WENO numerical fluxes.

The given component-wise approach to construct
a numerical flux based on ENO and WENO recon-
structions is simple to implement. Also, the resulting
schemes work reasonably well for many applications,
in particular if the order of the scheme is not high.
Shu [28] mentions “second or sometimes third-order”.

If the order of the scheme is high or a more demand-
ing test problem shall be solved, the following charac-
teristic decomposition is much more robust and should
be implemented instead.

Recall the diagonal decomposition of the Jacobian
of the flux in section 3.1.2 on flux vector splitting, (12).
A change of variables v = K−1u leads to a decou-
pling of the system of conservation laws (1). Then,
the component-wise application of the ENO or WENO
reconstruction is fundamentally justified. The recon-
structed values v±i+1/2 are then transformed back into
the physical space of conserved variables,

u±i+1/2 = Kv±i+1/2

A remaining question is the choice of K, which de-
pends on u, K = K(u). For this purpose, the Roe av-
erages introduced in section 3.1.1 were used, as this
leads to advantageous properties such as the satisfac-
tion of the mean value theorem.

Based on the reconstructed left and right limit u±i+1/2
at the location xi+1/2, a monotone first-order flux is
used again to establish an essentially non-oscillating
higher-order numerical flux.

4 Object-oriented implementation

Two libraries for object-oriented modeling and simu-
lation of gas dynamics were developed for [29] and
this paper. Both were written in Modelica. The first
one is a library specific to ideal gases, which allows
several simplifications and results in little computa-
tional overhead. The second one is a gas dynam-
ics library for generic thermodynamic property mod-
els. These thermodynamic property models are im-
plemented according to the object-oriented interface
MODELICA.MEDIA [6]. This interface had to be ex-
tended with two additional methods to be suitable for
applications in gas dynamics. These and other imple-
mentation aspects are discussed in this section.

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 91
10.3384/ecp1207681 September 3-5, 2012, Munich, Germany

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

Cell 2 Cell 3 Cell 4

Cell 5 Cell 6

Coordinate x

Q
ua

nt
ity

v

Data
Interpolant using S0(4)
Interpolant using S1(4)
Interpolant using S2(4)

Figure 2: Fifth-order WENO reconstruction

4.1 Ideal gas and generic thermodynamic
property models

A large fraction of the literature on discretization
methods using conservative methods considers ideal
gas equations of state only. Discretizations using real
gas1 equations of state in turn consider non-ideal me-
dia, too. Several articles make assumptions on the
structure of the real gas equations of state however
(e.g,. Liou et al. [18] assume a “general pressure func-
tion” but require that is be explicit in density, specific
internal energy, and mass fractions, and Gallouët et
al. [8] explicitly assume Tammann and van der Waals
equations of state).

In equation-based, object-oriented modeling and
simulation, one aims to encapsulate the equations of
state in separate classes and implement discretization
methods independently using a generic interface. As
the given real gas schemes require structural assump-
tions on the equations of state, too, a generic interface
had to be extended with several methods specific to
these structural assumptions. A clean separation be-
tween discretization scheme and equation of state ap-
pears to be difficult in this case.

A large fraction of the methods described in the pre-
vious section 3 are specific to ideal gases with con-
stant specific heat capacity cp. Specialized Riemann
solvers can be constructed easily for some of these
methods (such as the HLLE method described in sec-
tion 3.1.1). In the context of equation-based, object-
oriented modeling languages, such approximate Rie-
mann solvers had to be exchanged concurrently with
the equations of state. A more practical solution is the

1In this thesis, a real gas is one that is not both thermally and
calorically ideal.

use of centered schemes. These schemes are indepen-
dent of any Riemann solver and can thus be used with
any thermodynamic property model. As described in
section 3.1.3, the support of these schemes does not
depend on the sign of the characteristic speeds. While
the upwind schemes as discussed in sections 3.1.1
and 3.1.2 are more accurate in several cases than their
centered counterparts, they are usually more com-
plex and computationally expensive [34]. Therefore,
in the libraries described herein, monotone and TVD
centered schemes as well as schemes using higher-
order reconstruction with a centered scheme are im-
plemented for general thermodynamic property mod-
els and upwind methods are restricted to ideal gases.

4.2 Generic interface to thermodynamic
property computations

As described above, the object-oriented interface of
MODELICA.MEDIA [6] is used for thermodynamic
property computations. In order to be applicable to
gas dynamics, this interface has to be extended with
two additional methods.

The first extension is required for the conversion
of conserved variables to primitive variables. In the
gas dynamics library for generic equations of state the
primitive variables are velocity v and the thermody-
namic state record of the medium2. For the conver-
sion of the vector u as defined in equation (2) to the
primitive variables an additional setState function
is thus required. From u, density and specific inter-
nal energy can be established. Therefore, a function

2In place of the velocity the mass flow rate could have been
used, too. This selection is ambiguous and was eventually made
for similarity with conventional implementations of gas dynamics.

High-Speed Compressible Flow and Gas Dynamics

92 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207681

setState_duX is used.
The second extension is required for the conversion

of the classic primitive variables {ρ,v, p} to the ones
used in the object-oriented implementation for generic
thermodynamic property computations, the thermody-
namic state record and velocity. This is necessary in
case of a characteristic decomposition such as the one
discussed in section 3.3.3. For this purpose, a func-
tion setState_pdX is required. Note that this is only
required if a gas dynamics library for generic thermo-
dynamic property models shall also be used with ideal
gases.

4.3 Conservative and non-conservative for-
mulations

In order to obtain valid simulation results, the con-
served quantities in the governing equations and the
conservation statements they imply have to make
physical sense [34]. Formulations that are conser-
vative purely in a mathematical sense (i.e., formally,
they can be expressed as (1), but there is no corre-
sponding conservation law in physics) will, in case of
shock waves, result in wrong shock speeds and there-
fore wrong solutions [34].

In the context of equation-based, object-oriented
modeling languages, a simple solution is to explicitly
select the conserved variables themselves as state vari-
ables, i.e., u(x, t). This is done in the gas dynamics
library specific to ideal gases. For ideal gases that are
both thermally and calorically ideal (in particular, cp

is not a function of temperature), all intensive quan-
tities can be established in closed form based on any
two thermodynamic potentials. Therefore, no distinc-
tion between independent and dependent variables is
required for such media.

For generic thermodynamic property models this is
different. In general, such models are explicit in a
number of thermodynamic potentials only (e.g., pres-
sure and specific enthalpy). As long as the physical
flux is not changed, it is then possible to use the inde-
pendent variables of a thermodynamic property model
as state variables instead. This is the approach fol-
lowed in the gas dynamics library for generic thermo-
dynamic property models.

4.4 Inhomogeneous problems

In several references on computational methods for
gas dynamics, fully explicit conservative methods are
considered in contrast to (10). In the context of

equation-based, object-oriented modeling, it is nat-
ural however to use a semi-discretized formulation.
Furthermore, this has advantages for inhomogeneous
problems. No source term splitting schemes [31] are
required for the present approach. With the semi-
discretization (also called method of lines) both the
numeric fluxes and the source term are algebraic ex-
pressions and no further complications arise for inho-
mogeneous problems.

4.5 Library design

In this section, the design of the two gas dynamics li-
braries is sketched. The one considering generic ther-
modynamic property models is emphasized and some
remarks are made on the one specific to ideal gases.
For readability, the code illustrates single-substance
media only. Mass fractions of multiple-substance me-
dia can be covered analogously to the other primi-
tive variables, because they are similarly dominated by
convection.

The connector has to implement the stencil defined
in equation (8). Its length depends on the stencil length
required by the discretization scheme. If the stencil
for a flux computation has to include n cells, then at
least n/2 of these cells are inside the domain modeled
by the respective component and need not be accessed
via the connector. This implies that at most n/2 cells
of the stencil have to be provided by the connector.
Therefore, the connector definition given in listing 1 is
used.

Note the replaceable discretization package
(“Discretization”) in the connector definition in
addition to the replaceable package containing the
thermodynamic property model (“Medium”). A vector
of thermodynamic states and one of velocities of
the given length are defined twice. Different causal
prefixes are used to handle how one component “pre-
scribes” and “reads” which variables3. The library
considering ideal gases only uses density and pressure
vectors in place of the thermodynamic state.

Additionally, information about the computational
mesh has to be included in the connector. In the pro-
posed connector definition, the coordinates of the sides
of the cells are used. They are defined in a local coor-
dinate system, whose origin is set to the side shared by
two components connected together. The coordinate
of this shared side can thus be omitted and the same
number of side coordinates and cell center variables on

3The causal prefixes are used in the acausal modeling language
just to define a nominal causality, not an actual one.

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 93
10.3384/ecp1207681 September 3-5, 2012, Munich, Germany

1 connector Stencil_a
2 "Interface for quasi one-dimensional high-speed flow"
3
4 replaceable package Medium =
5 Modelica.Media.Interfaces.PartialMedium "Medium model";
6
7 replaceable package Discretization =
8 GasDynamics.Discretizations.Partial.PartialDiscretization
9 "Discretization";

10
11 output Medium.ThermodynamicState
12 state_a[Discretization.halfStencilLength]
13 "Thermodynamic state stencil";
14 output SI.Velocity v_a[Discretization.halfStencilLength]
15 "Velocity stencil";
16 output SI.Length x_side_a[Discretization.halfStencilLength]
17 "Cell side coordinate";
18
19 input Medium.ThermodynamicState
20 state_b[Discretization.halfStencilLength]
21 "Thermodynamic state stencil";
22 input SI.Velocity v_b[Discretization.halfStencilLength]
23 "Velocity stencil";
24 input SI.Length x_side_b[Discretization.halfStencilLength]
25 "Cell side coordinate";
26 end Stencil_a;

Listing 1: Connector for high-speed compressible flow

the thermodynamic state and velocity is included. The
side coordinates for Stencil_a are defined strictly
positive; those for Stencil_b strictly negative.

Analogous to the Stencil_a connector definition
in listing 1, a connector Stencil_b is defined. It dif-
fers only in inverted causality prefixes (input instead
of output and vice versa).

The discretization package contains structural pa-
rameters including the stencil length, conversion func-
tions, an exchangeable thermodynamic properties
model, and flux functions. Its interface is defined in
listings 2 to 4.

The structural parameters of a Discretization are its
name, whether it uses equations applicable to ideal
gases, its order of accuracy, and the stencil length.

The conversion functions of a Discretization convert
the set of primitive variables (thermodynamic state
record and velocity) to the vector of conserved vari-
ables as defined in equation (2) and vice versa. Note
that these functions need not be replaceable, because
the implementations are generally valid. Note that in
the second conversion function in listing 3 one of the

additional functions mentioned in section 4.2 is used
(setState_duX()).

The key elements of a Discretization are the flux
functions. Their interfaces are described in listing 4.
For readability, interfaces are defined for both a mono-
tone first-order flux and the arbitrary-order numerical
flux. This allows to clearly separate the reconstruction
and the Riemann solver for instance. In models, only
the arbitrary-order numerical flux is used and therefore
the use of the monotone flux function is optional. The
monotone flux arguments are the left and right ther-
modynamic state and the flow velocities. It returns
the flux vector. The arbitrary-order flux function has a
stencil of thermodynamic states and of velocity as well
as the cell side coordinates as inputs and also returns
the flux vector. The Discretization package also con-
tains a replaceable package implementing thermody-
namic properties. This is not shown in listings 2 to 4.
Discretization packages were implemented using the
Local Lax-Friedrichs flux, Roe’s Riemann solver, the
HLLE Riemann solver, the Steger-Warming flux vec-
tor splitting, the First-Order Centered flux, the Muscl-

High-Speed Compressible Flow and Gas Dynamics

94 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207681

1 partial package PartialDiscretization
2 "Interface for discretization in compact flux form"
3
4 // Description
5 constant String discretizationName =
6 "unusablePartialDiscretization"
7 "Name of the discretization";
8
9 // Type of discretization

10 constant Boolean idealGasOnly = false
11 " = true, if contains specifics of ideal gases";
12 constant Integer order(min=1) = 1
13 "Order of discretization method";
14
15 // Stencil definition
16 constant Integer halfStencilLength = 1
17 "Half of length of stencil for flux f_(i+1/2)";
18 final constant Integer stencilLength = 2*halfStencilLength
19 "Length of stencil for flux f_(i+1/2)";
20
21 // ...
22
23 end PartialDiscretization;

Listing 2: Discretization interface, structural parameters

Hancock TVD scheme with several limiters and mono-
tone fluxes both in upstream and in centered versions,
third- to ninth-order ENO schemes and several fifth-
order WENO schemes with and without characteristic
decomposition.

The implementation of a Discretization is illustrated
for a second-order Muscl-Hancock scheme with a Su-
perbee limiter and a Local Lax-Friedrichs flux in [29]
and omitted here due to space constraints.

4.6 Applications

Results of a Sod-type problem are shown in figure 3.
Here, the results of computations using the Local
Lax-Friedrichs scheme (a first-order monotone cen-
tered method) are compared to those using a fifth-
order WENO scheme (using Roe’s first-order mono-
tone flux and a characteristic decomposition). The fig-
ure illustrates the generally accepted result that proper
higher-order reconstructions lead to higher resolution
of shock waves, expansion fans, and contact discon-
tinuities [34]. That is, such phenomena are smeared
over fewer computational cells.

5 Conclusions

A conceptually meaningful structure for numerical gas
dynamics using Modelica was introduced. The re-
viewed discretization schemes were implemented in
the resulting framework and delivered robust and effi-
cient simulation of the corresponding thermo-fluid dy-
namics problems.

References

[1] W. Casas. Untersuchung und Optimierung
sorptionsgestützter Klimatisierungsprozesse.
PhD thesis, Technical University of Hamburg-
Harburg, Institute of Thermo-Fluid Dynamics,
2006.

[2] W. Casas and G. Schmitz. Experiences with a gas
driven, desiccant assisted air conditioning system
with geothermal energy for an office building.
Energ. Buildings., 37(5):493–501, 2005.

[3] F. Casella and A. Leva. Modelica open library for
power plant simulation: design and experimen-
tal validation. In P. Fritzson, editor, Proceedings

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 95
10.3384/ecp1207681 September 3-5, 2012, Munich, Germany

1 partial package PartialDiscretization
2 "Interface for discretization in compact flux form"
3
4 // ...
5
6 function primitiveToConserved
7 "Convert primitive variables to conserved variables"
8 input Medium.ThermodynamicState state "Thermodynamic state";
9 input SI.Velocity v "Velocity";

10 output Real u[3] "Vector of conserved variables";
11 algorithm
12 u := {Medium.density(state), Medium.density(state)*v,
13 Medium.density(state)*
14 (Medium.specificInternalEnergy(state) + 1/2*v*v)};
15 end primitiveToConserved;
16
17 function conservedToPrimitive
18 "Convert conserved variables to primitive variables"
19 input Real u[3] "Vector of conserved variables";
20 output Medium.ThermodynamicState state "Thermodynamic state";
21 output SI.Velocity v "Velocity";
22 algorithm
23 v := u[2]/u[1];
24 state := Medium.setState_duX(u[1], u[3]/u[1]-1/2*v*v,
25 Medium.X_default);
26 end conservedToPrimitive;
27
28 // ...
29
30 end PartialDiscretization;

Listing 3: Discretization interface, conversion functions

of the Third International Modelica Conference,
pages 41–50, Linköping, Sweden, 2003.

[4] F. Casella and A. Leva. Modelling of thermo-
hydraulic power generation processes using
Modelica. Math. Comput. Model. Dyn. Syst.,
12(1):19–33, 2006.

[5] J. Díaz López. Shock wave modeling for Mod-
elica.Fluid library using oscillation-free logarith-
mic reconstruction. In Proceedings of the Fifth
International Modelica Conference, pages 641–
649, 2006.

[6] H. Elmqvist, H. Tummescheit, and M. Otter.
Object-oriented modeling of thermo-fluid sys-
tems. In P. Fritzson, editor, Proceedings of the
Third International Modelica Conference, pages
269–286, Linköping, Sweden, 2003.

[7] R. Franke, F. Casella, M. Otter, M. Sielemann,
S.-E. Mattson, H. Olsson, and H. Elmqvist.
Stream connectors—an extension of Modelica
for device-oriented modeling of convective trans-
port phenomena. In F. Casella, editor, Proceed-
ings of the seventh International Modelica con-
ference, pages 108–121, Como, September 2009.

[8] T. Gallouët, J. Hérard, and N. Seguin. Some
recent finite volume schemes to compute euler
equations using real gas eos. Int. J. Numer. Meth.
Fl., 39(12):1073–1138, 2002.

[9] S. K. Godunov. A finite difference method for
the computation of discontinuous solutions of
the equations of fluid dynamics. Mat. Sbornik.,
47:357–393, 1959.

[10] A. Harten. High resolution schemes for hy-

High-Speed Compressible Flow and Gas Dynamics

96 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207681

1 partial package PartialDiscretization
2 "Interface for discretization in compact flux form"
3
4 // ...
5
6 replaceable partial function monotoneFlux
7 "First-order flux approximation"
8 input Medium.ThermodynamicState state_l
9 "Stencil of thermodynamic states on left (i)";

10 input Medium.ThermodynamicState state_r
11 "Stencil of thermodynamic states on right (i+1)";
12 input SI.Velocity v_l "Velocity in x-dir on left, v_(i)";
13 input SI.Velocity v_r "Velocity in x-dir on right, v_(i+1)";
14 output Real flux[3] "Fluxes f_(i+1/2)";
15 end monotoneFlux;
16
17 replaceable partial function flux "Numeric flux approximation"
18 input Medium.ThermodynamicState state[stencilLength]
19 "Thermodynamic state stencil";
20 input SI.Velocity v[stencilLength] "Velocity stencil";
21 input Real x_side[stencilLength + 1]
22 "Coordinates of cell sides (i-1/2), (i+1/2) etc.";
23 output Real flux[3] "Fluxes f_(i+1/2)";
24 end flux;
25
26 // ...
27
28 end PartialDiscretization;

Listing 4: Discretization interface, flux functions

perbolic conservation laws. J. Comput. Phys.,
49:357–393, 1983.

[11] A. Harten, B. Engquist, S. Osher, and
S. Chakravarthy. Uniformly high order es-
sentially non-oscillatory schemes, III. J.
Comput. Phys., 71:231–303, 1987.

[12] A. Harten, P. D. Lax, and B. van Leer. On up-
stream differencing and Godunov-type schemes
for hyperbolic conservation law. SIAM Rev.,
25(1):35–61, 1983.

[13] T. Y. Hou and P. LeFloch. Why non-conservative
schemes converge to the wrong solutions: Error
analysis. Math. Comput., 62:497–530, 1994.

[14] J. Jensen, J. Jensen, and H. Tummescheit. Mov-
ing boundary models for dynamic simulations of
two-phase flows. In Proceedings of the Second
International Modelica Conference, 2002.

[15] J. M. Jensen. Dynamic Modeling of Thermo-
Fluid Systems with focus on evaporators for re-
frigeration. PhD thesis, Technical University of
Denmark, Department of Mechanical Engineer-
ing, 2003.

[16] G. Jiang and C.-W. Shu. Effcient implementation
of weighted ENO schemes. J. Comput. Phys.,
126:202–228, 1996.

[17] P. D. Lax and B. Wendroff. Systems of conserva-
tion laws. Comm. Pure Appl. Math., 13:217–237,
1960.

[18] M. Liou, B. Leer, and J. Shuen. Splitting of in-
viscid fluxes for real gases. J. Comput. Phys.,
87(1):1–24, 1990.

[19] S. Patankar and D. Spalding. A calculation pro-
cedure for heat, mass and momentum transfer in
three-dimensional parabolic flows. Int. J. Heat.
Mass. Tran., 15:1787–1806, 1972.

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 97
10.3384/ecp1207681 September 3-5, 2012, Munich, Germany

0 0.2 0.4 0.6 0.8 1
200

400

600

Coordinate x

Te
m

pe
ra

tu
re

T

0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

Coordinate x

V
el

oc
ity

v

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

·105

Coordinate x

Pr
es

su
re

p
Lax-Friedrichs
Weno5

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

Coordinate x

D
en

si
ty

ρ

Figure 3: Comparison of Local Lax-Friedrichs and fifth-order WENO schemes on a Sod-type problem

[20] T. Pfafferott. Dynamische Simulation von
CO2-Kälteprozessen für mobile Anwendungen.
PhD thesis, Technical University of Hamburg-
Harburg, Institute of Thermo-Fluid Dynamics,
2005.

[21] K. Prölß. Untersuchung von Energie- und Mass-
espeicherungsvorgängen in Pkw-Kälteanlagen.
PhD thesis, Technical University of Hamburg-
Harburg, Institute of Thermo-Fluid Dynamics,
2009.

[22] K. Prölßand G. Schmitz. Modeling of frost
growth on heat exchanger surfaces. In Proceed-
ings of the Fifth International Modelica Confer-
ence, 2006.

[23] J. J. Quirk. An alternative to unstructured grids
for computing gas dynamic flows around arbi-
trarily complex two dimensional bodies. Com-
put. Fluid., 23(1):125–142, 1994.

[24] C. C. Richter. Proposal of New Object-Oriented
Equation-Based Model Libraries for Thermody-
namic Systems. PhD thesis, Technical Univer-

sity Braunschweig, Institute for Thermodynam-
ics, 2008.

[25] R. D. Richtmyer and K. W. Morton. Dif-
ference Methods for Initial Value Problems.
Interscience-Wiley, New York, 1967.

[26] P. L. Roe. Approximate Riemann solvers, param-
eter vectors, and difference schemes. J. Comput.
Phys., 43:357–372, 1981.

[27] V. V. Rusanov. Calculation of interaction of non-
steady shock waves with obstacles. USSR J.
Comput. Math. Phys., 1:267–279, 1961.

[28] C.-W. Shu. Essentially non-oscillatory and
weighted essentially non-oscillatory schemes for
hyperbolic conservation laws. Advanced numeri-
cal approximation of nonlinear hyperbolic equa-
tions, 1697:325–432, 1998.

[29] M. Sielemann. Device-Oriented Modeling and
Simulation in Aircraft Energy Systems Design.
PhD thesis, Technical University of Hamburg-
Harburg, Institute of Thermo-Fluid Dynamics,
2012.

High-Speed Compressible Flow and Gas Dynamics

98 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207681

[30] J. L. Steger and R. F. Warming. Flux vector split-
ting of the inviscid gasdynamic equations with
applications to finite difference methods. J. Com-
put. Phys., 40:263–293, 1981.

[31] G. Strang. On the construction and comparison
of difference schemes. SIAM J. Numer. Anal.,
5(3):506–517, 1968.

[32] P. K. Sweby. High resolution schemes using flux
limiters for hyperbolic conservation laws. SIAM
J. Numer. Anal., 21:995–1011, 1984.

[33] E. F. Toro. On two Glimm-related schemes for
hyperbolic conservation laws. In Proceedings of
the Fifth Annual Conference of the CFD Society
of Canada, pages 3.49–3.54. University of Vic-
toria, Canada, 1997.

[34] E. F. Toro. Riemann Solvers and Numerical
Methods for Fluid Dynamics: A Practical Intro-
duction. Springer, 1997.

[35] H. Tummescheit. Design and Implementation of
Object-Oriented Model Libraries using Model-
ica. PhD thesis, Lund University, Department of
Automatic Control, 2002.

[36] H. Tummescheit, J. Eborn, and K. Prölß.
Airconditioning–a Modelica library for dynamic
simulation of AC systems. In G. Schmitz, editor,
Proceedings of the Fourth International Model-
ica Conference, Hamburg, Germany, 2005.

[37] B. van Leer. Towards the ultimate conservative
difference scheme I. the quest for monotonicity.
Lect. Notes. Phys., 18:163–168, 1973.

[38] B. van Leer. Towards the ultimate conservative
difference scheme II. monotonicity and conser-
vation combined in a second order scheme. J.
Comput. Phys., 14:361–370, 1974.

[39] B. van Leer. Towards the ultimate conservative
difference scheme III. upstream-centered finite
difference schemes for ideal compressible flow.
J. Comput. Phys., 23:263–275, 1977.

[40] J. Vasel and G. Schmitz. Transient simulation
of a direct-evaporating CO2 cooling system for
an aircraft. In 25th International Congress of
the Aeronautical sciences (ICAS), Proceedings of
the, Hamburg, Germany, September 2006.

Session 1B: Thermofluid Systems

DOI Proceedings of the 9th International Modelica Conference 99
10.3384/ecp1207681 September 3-5, 2012, Munich, Germany

High-Speed Compressible Flow and Gas Dynamics

100 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207681

Session 1C Power and Energy

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics Library Gas Exchange and Exhaust Condition Modeling of a Diesel
Engine using the Engine Dynamics Library

Johan Dahl † Daniel Andersson ‡
†Volvo Group Truck Technology, Control Systems, Gothenburg, Sweden

‡Modelon AB, Lund, Sweden

Abstract

In this paper the newly developed Engine Dynamics
Library is presented. Ever increasing consumer and
regulatory demand for improved fuel economy and
lower emissions forces the engines and Engine After-
Treatment Systems (EATS) to be improved continu-
ously. Since the complete system is very complex,
models are useful in cost effectively developing new
control strategies and select hardware. The library is
based on a mean-value combustion model and the fo-
cus lies on modeling the gas exchange with real-time
like simulation times, useful for engine optimization
and for evaluation of control strategies. The library
contains models of the standard engine components
such as manifolds, pipe, turbines, compressors, valves,
mechanics, etc. Simulation results from Dymola for a
13 L Volvo truck engine demonstrate that the model
captures the transient flow and temperatures and emis-
sion trends, and has sufficient accuracy to be useful in
engine optimization. The physical modeling approach
allows for virtual prototyping by replacing individ-
ual components, which is an important advantage over
black-box modeling. It is shown that the model cap-
tures essential system properties in the gas exchange,
such as non-minimum phase behavior and sign rever-
sal for VGT and EGR valve actuation. The model has
been calibrated using surface fitting of maps and least-
squares estimation of parameters in Matlab, as well as
parameter optimization using JModelica and FMI.

Keywords: Engine modeling; Engine simulation;
Air Gas management

1 Introduction

As the requirements on the engine and EATS become
more strict, a new development process of control
strategies and hardware concept selection is needed as
only using engine test cells and vehicles in the devel-
opment process is too time consuming and expensive.

In the new development process at Volvo, Software-
In-the-Loop (SIL) simulations are used more exten-
sively in the control strategy and hardware develop-
ment. With the introduction of US10 and soon EU6
legislation ultra low on-road emissions are required.
Future emission legislation will also include CO2, N2O
and NO2 [1]. To fulfill these requirements with opti-
mal fuel consumption, the significant interaction be-
tween the engine and EATS must be considered and
control strategies for both components need to be opti-
mized together [2]. This requires good engine models
with accurate modeling of the engine out conditions.
In particular, focus has been on predicting the sensitiv-
ity of the dynamic response and engine exhaust tem-
perature with respect to the air gas management. Is-
sues about control system design or strategy are not in
the scope of this paper. Nevertheless, a good physical
model of the engine provides useful insights for both
the control system designers and hardware selection.
The engine model is also useful for finding suitable
requirements of the EATS system. For example the
emission transient response can be a limiting require-
ment for the needed volumes of the Diesel Oxidation
Catalyst (DOC), Diesel Particulate Filter (DPF) and
Selective Reduction Catalyst (SCR) in order to fulfill
the EU6 emission legislation.
In this paper the Engine Dynamics Library (EDL) is
presented. The library is implemented in Modelica
and consists of mean-value models of standard en-
gine components. The focus of the model has been
on capturing the transient engine response and the en-
gine outlet conditions as these features are important
for the total engine and EATS optimization. Compar-
ison results between test cell measurements and simu-
lation results of a 13 liter Volvo truck engine certified
for the Post New Long-Term (PNLT) emission legis-
lation, introduced in 2009, are presented. The Engine
Dynamics Library is a new commercial library offered
by Modelon.

DOI Proceedings of the 9th International Modelica Conference 101
10.3384/ecp12076101 September 3-5, 2012, Munich, Germany

2 Engine modeling in Dymola

Today several tools exist in which physical or semi-
physical models can be implemented. Dymola [3],
which is based on the open standard Modelica lan-
guage, was chosen as the tool for developing an engine
model library. The main reasons for choosing Model-
ica are the flexibility, expressiveness and openness of
the language, as compared to domain specific tools,
and the possibility to extend tools and libraries with
in-house IP and know-how. Others have demonstrated
that Modelica is suitable for engine modeling [4, 5],
but the focus has not been on gas exchange modeling
or predicting the exhaust gas temperature entering the
EATS.
The following sections describe EDL and the compo-
nent and medium models that have been implemented.

2.1 Library structure

Figure 1: EDL and sub packages (left), Engines pack-
age (right)

The structure of EDL is shown to the left in Fig. 1.
The library is divided into packages for each physi-
cal component, plus some additional packages for sup-
porting components and classes. There is also a pack-
age named Engines, shown to the right of Fig. 1,

which contains examples of configured engine mod-
els and experiments.
EDL is not based on the Modelica.Media or Mod-
elica.Fluid packages. Medium property models and
base classes for fluid systems modeling are based on
classes in the Modelon Base Library, which is deliv-
ered with EDL. EDL share base classes with Mode-
lon’s Liquid Cooling Library (LCL), Heat Exchanger
Library (HXL) and Vehicle Dynamics Library (VDL),
making them all compatible. The libraries can be used
together for different kinds of vehicle analysis, for ex-
ample EDL, LCL and HXL together forms a powerful
solution for thermal management analysis, and EDL
and VDL can be used together for drivability analysis.

2.2 Cylinder

Figure 2:
Cylinder

The cylinder component (Fig. 2) is based
on a mean value combustion model as
described in [6]. The component bound-
ary conditions are boost pressure and
temperature, exhaust manifold pressure,
engine speed, fuel injection and other
control signals. The empirical correlations described
in the following sections (often 2-dimensional maps)
can easily be replaced by any equation based models,
for example simple qualitative models found in litera-
ture, regression models or neural network models.

Flow model

The cylinder mass flow is modelled by means of a vol-
umetric efficiency defined as:

ṁcharge = ρin ·λ (pBoost ,ωe) ·
Vd

N
· ωe

2π
(1)

where λ is the volumetric efficiency, Vd is the dis-
placed volume, N is the number of revolutions per cy-
cle, pBoost is the inlet manifold pressure and ωe is the
engine rotational speed. λ (pBoost ,ωe) is modelled by
a two-dimensional map obtained from measurements.

Torque model

For the torque model we define brake mean effective
pressure, pme and fuel mean effective pressure, pmϕ ,
as:

pme =
Te ·4π

Vd
pmϕ =

Hl ·mϕ

Vd
(2)

where Te is the engine torque, Hl is the fuel lower
heating value and mϕ is the mass of fuel burnt per

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics …

102 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076101

combustion cycle. The engine efficiency can then be
written as:

ηe = pme/pmϕ (3)

Following the Willans Approximation [6], a torque
model on the following form is implemented:

pme = e(pmϕ ,ωe) · pmϕ − pme0 f (ωe)− pme0g (4)

where the energy conversion efficiency, e is
modelled by a two-dimensional map obtained from
measurements, the mechanical friction, pme0 f , is
mapped from engine speed, pme0g, is the cycle-
averaged pressure difference between inlet and
exhaust manifolds.

Exhaust gas properties

The outlet exhaust gas temperature is mapped from
engine speed and injected fuel. The transferred heat
to the cylinder block is obtained from energy balance
over the component boundaries.
The composition of species in the exhaust gas is mod-
elled by a stoichiometry matrix for the combustion.
Complete combustion of the injected fuel is assumed.
The NOx and soot generation is modelled by a regres-
sion model [7] on the form:

y(t) = φ
T

θ + e(t) (5)

where y = (CNOx,CSoot)
T are the NOx and soot con-

centrations of the exhaust gas, the regressor φ =
(1,u1,u2

1, ...,u
N
1 ,u2, ...)

T contains the first and higher
order terms of the following signals:

• Injected fuel amount, m f

• Fuel injection timing, ζ

• Needle opening angle (controls the fuel injection
pressure), β f

• CO2 concentration in the inlet manifold, CCO2

• Inverse stoichiometric air to fuel ratio, λ−1

• Engine speed, ωe

θ are the model parameters and e is the model error.
In the experiment described in section 3.2, all of the
input signals to the model come directly from model
control signals or boundary conditions, except for the
inlet manifold CO2 concentration and air to fuel ra-
tio. These variables are simulated in the engine sys-
tem model and the simulated values are used as inputs
to the emission model.

2.3 Compressor and turbine

Figure 3: Compressor and VGT

The compressor and variable geometry turbine (VGT)
components (Fig. 3) are both parameterized by maps
for mass flow rate and isentropic efficiency. The
components model a polytropic thermodynamic pro-
cess with mechanical power crossing the component
boundary via a rotational mechanical flange. Quasi-
static balance equations for conservation of substance
mass and energy are used, i.e. storage of mass and
energy is not considered and the outlet properties re-
spond instantly to property changes of the inlet flow.
These equations assume:

• The amount of mass inside the component is
small compared to that in the upstream and down-
stream pipes, which is covered by volume com-
ponents connected to these components.

• The heat capacity of the solid parts are lumped to-
gether with the wall heat capacities of the volume
components connected upstream and downstream
of these components.

• The rotational kinetic energy of the solid parts
is modeled by a separate inertia component con-
nected to the rotational flange connector of these
components.

The mapped isentropic efficiency, ηis, defines the
deviation from an isentropic process [8].

ηis =
hout,isentropic−hin

hout −hin
(Compressor) (6)

ηis =
hout −hin

hout,isentropic−hin
(Turbine) (7)

where hin is the inlet specific enthalpy, hout is the
outlet specific enthalpy and hout,isentropic is the outlet
specific enthalpy of an isentropic process.
The variable geometry turbine is modeled using sev-
eral maps of isentropic efficiency and mass flow rate
for different positions, the properties are interpolated
linearly between the mapped geometry settings. The
turbine model currently contains no compensation for
the upstream pressure oscillations. Internal losses

Session 1C: Power and Energy

DOI Proceedings of the 9th International Modelica Conference 103
10.3384/ecp12076101 September 3-5, 2012, Munich, Germany

from heat transfer to the housing and mechanical fric-
tion are currently modeled as a constant efficiency fac-
tor. The turbo moment of inertia is captured by a sep-
arate inertia component connected between the com-
pressor and turbine components in the engine system
model.

2.4 Heat exchangers

Figure 4:
Heat
exchanger

A quasi-static heat exchanger model with
table based efficiency is implemented
in EDL. It does not contain storage of
mass or energy and the outlet fluid prop-
erties respond instantly to inlet prop-
erty changes. The component has inter-
changeable friction models with different
levels of detail for the primary and sec-
ondary flow channels. A model on the following form
was chosen because it is easily calibrated to fit mea-
sured data:

d p = f · ρ
2
· vn (8)

Here d p is the pressure drop over the channel, f is the
friction factor, ρ is the fluid density, v is the flow ve-
locity and n is a constant. Note that for n = 2, this
corresponds to the Darcy-Weisbach equation for pres-
sure loss due to friction in a pipe. The constants f and
n are chosen to fit measurement data.
The heat transfer is modeled by defining heat ex-
changer efficiency as ε = Q/Qmax. The maximum
transferable heat Qmax is calculated from the heat ca-
pacity flow and inlet temperatures of the two chan-
nels. The model is parameterized by specifying a two-
dimensional map for the efficiency from the mass flow
rates in the two channels.

2.5 Volumes

Figure 5:
Two port
air volume

All fluid mass and energy storage is mod-
elled in volume components by dynamic
mass and energy balance equations. An
ideal mixture is assumed and a number
of different components are available,
which have different port configurations. The volume
models have the option to consider wall heat capac-
ity, heat transfer between fluid and wall (constant heat
transfer coefficient model) and heat transfer to the sur-
roundings. There is a special volume model for the in-
let manifold that can handle incoming flow in a differ-
ent medium model representation by mapping the fluid
species between the mass fraction vectors of the two
medium models. This is necessary if separate models

for air and exhaust gas are used. Outgoing flows from
the volume carry the average medium properties of the
total volume.

2.6 Pipes

Figure 6:
Air pipe
model

The pipe models provided in the library
consider pressure drop due to friction
and optionally also heat transfer effects.
Several friction models can be chosen,
but also here eq. 8 is used. The
heat transfer model is interchangeable as
well, with the options: 1) Constant heat
transfer coefficient, 2) Dittus-Boelter correlation for
forced convection in turbulent flow (Coefficients can
be adjusted by the user). Optionally a dynamic mo-
mentum balance can be used.

2.7 Valves

Figure 7:
Valve
model

There are a number of valve models
available in EDL. The first one is de-
signed to be easily parameterized from
measured data. It defines a flow equa-
tion for the fully opened setting as eq. 8.
The valve characteristics are represented
by means of a relative open area that is
governed by the actuation signal. Lin-
ear, quadratic and tabulated characteristics are avail-
able. The second one is implemented according to
the IEC 534/ISA S.75 standards for valve sizing. It
accounts for fluid compressibility effects, as well as
choked conditions. For the engine model presented in
this paper, the first model is used because it is easier
to parameterize from measurements and choked con-
ditions do not occur under normal operation.
A butterfly type valve model has been implemented as
well, including flap mechanism, torque generation on
the flap by the gas flow and mechanical friction.

2.8 Medium models

The medium property models are implemented as re-
placeable packages with high flexibility, similar to that
of the Modelica.Media package. Ideal gas mixtures
based on the NASA coefficients [9] can be created and
used.
In addition to this, a simplified medium model as-
suming a linear function for specific heat capacity of
temperature, Cp(T), has been implemented for perfor-
mance reasons. By definition, the specific enthalpy
function, h(T), will become quadratic in temperature

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics …

104 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076101

under this assumption. In static component models,
the upstream temperature T (h) is calculated from the
specific enthalpy of the inlet fluid connector. An ex-
plicit function for this calculation greatly improves
simulation performance for system models with sev-
eral such components, as the non-linear systems of
equations can be reduced or completely avoided. The
medium models are compatible, so all component
models can carry any of the medium model types.
Available in EDL are some pre-defined mixtures, used
as air or exhaust gas models. The components in-
cluded are CO2, H2O, O2, N2 and Ar for both NASA
and linear Cp(T) models. Also a single component
dry air model is provided. To model emissions, some
pre-defined exhaust gas mixtures include trace compo-
nents for NOx, Soot, HC and CO. The trace compo-
nents are assumed to be carried by fluid flow but don’t
affect the thermodynamic properties of the fluid.

2.9 Mechanical

Basic rotational mechanical components are available
in EDL, such as inertia and ideal gear models. The
mechanical connectors of the turbo components and
cylinder component are compatible with the mechani-
cal components in the Modelica Standard Library.

3 Engine system model

A 13 liter Volvo engine certified for the Post New
Long-Term (PNLT) emission legislation has been
modeled using EDL. The engine is equipped with vari-
able geometry turbine, exhaust gas recirculation gov-
erned by a valve, throttle, EGR cooler, intercooler and
unit injectors. The purpose of the simulation model
is to perform similar experiments that are performed
in engine test cells, where the engine is mounted to an
electrical dynamometer which directly controls the en-
gine speed.

3.1 Model description

The engine system model is configured as shown in
Fig. 8. The upper left connector is the air inlet connec-
tor that should be connected externally to a component
defining air temperature and pressure boundary condi-
tions. The components in the air path are connected
to represent the engine system design, indicated with
light blue in the figure. First there is a pipe component
modeling the pressure drop over the air filter (1). Then
follows compressor (2), intercooler (3) and throttle (4)

Figure 8: Engine system model with: Air filter (1),
Compressor (2), Intercooler (3), Throttle (4), Turbo in-
ertia (5), Inlet manifold (6), Cylinder block (7), Drive
shaft (8), Exhaust manifold (9), EGR valve (10), EGR
cooler (11), Venturi (12), VGT (13), Muffler (14),
Heat transfer (15, and more)

components, each separated by volume components.
The compressor is connected to an inertia model (5)
that is also connected to the VGT component (13).
The throttle in the lower left is connected to the inlet
manifold component (6). This is a volume model that
also accounts for the thermal mass of the wall and heat
transfer between the gas and wall. The inlet manifold
has two more connectors for gas (orange). One is con-
nected to the cylinder block and the other is the inlet
for EGR gas.
The cylinder block (7) has a rotational connector for
the drive shaft that is connected to an external connec-
tor to the right in the figure (8). It is also possible to en-
able a support connector for the reactive torque, but it
is not used here. There are real input signal connectors
for injected fuel, injection timing and needle opening
angle. The exhaust gas port is connected to the exhaust
manifold (9), which is also a volume model including
thermal mass of the wall. There is an outlet port for
the exhaust gas recirculation path that is connected di-
rectly the the EGR valve (10). This is connected to a
volume and then to the EGR cooler (11) and venturi
(12). The venturi component is a pure sensor model
that does not affect the gas flow rate or properties. The
EGR gas path is then fed back to the inlet manifold.

Session 1C: Power and Energy

DOI Proceedings of the 9th International Modelica Conference 105
10.3384/ecp12076101 September 3-5, 2012, Munich, Germany

For each volume model there is a unique pressure and
temperature state introduced. As a consequence of the
model layout the flow through the EGR valve is cal-
culated from the pressure difference between the ex-
haust manifold and EGR volume components. The
pressures are calculated during model simulation by
means of numerical integration.
The exhaust manifold is also connected to the turbine
component (13). Additionally, the turbine has an in-
put signal for varying the geometry, a rotational flange
connector and an outlet gas connector. The turbine
component calculates a torque that is generated on the
flange. Thus, the turbo rotational speed is obtained
during simulation by integration of the dynamic mo-
mentum equation introduced in the inertia component,
with torque terms from the turbine and compressor
components. After the turbine the gas is fed to a vol-
ume model and then a pipe model that accounts for the
pressure drop over the muffler (14).
The volume model in the exhaust path has a thermal
connector (red square) that holds the wall temperature
of the exhaust pipe. This is connected to a heat trans-
fer component (15) that contains a linear heat transfer
equation. This is also connected to an external heat
connector where the ambient temperature should be
provided as boundary condition. Such heat transfer
components are also used to cover heat transfer be-
tween the cylinder block and coolant water, and be-
tween cylinder block and inlet manifold. The coolant
path is indicated with dark blue connections. The set
of connector variables in the air, gas and water con-
nectors are identical. Only the color differ for a clearer
visual model representation.

3.2 Simulation model

The engine model described above can be used in var-
ious simulation models or virtual experiments. Sim-
ulation models are created by instantiating the engine
model and assigning values or signal to boundary con-
ditions and input control signals. The following sig-
nals from the engine electrical control unit (EECU) are
set as input signals:

• Injected fuel, injector timing and needle opening
angle (controls the fuel pressure)

• VGT, EGR valve and throttle positions

The following physical boundary conditions are set:

• Engine coolant temperature and mass flow rate

• Ambient air temperature and pressure

Figure 9: Simulation model of the engine in a test
cell. The engine component corresponds to the engine
model as shown in Figure 8.

• Engine driveshaft speed

This experiment is set up in Dymola, as shown in
Fig. 9. The centered engine icon represents the engine
model as shown in Fig. 8. The components with ta-
ble icons are used to read signals from the engine test
cell measurements from an external file. The engine
component need not be connected directly to source
components, but could be used in larger system mod-
els together with drive line, vehicle dynamics, coolant
system or exhaust after treatment system models.

4 Calibration

The calibration is done component by component.
The benefit with this approach is that it is possible
to change a component and only recalibrate the new
component without needing to recalibrate the whole
systems. Validation is performed both component by
component and for the overall system using steady-
state and dynamic data. The exhaust gas thermal dy-
namics is calibrated using an exhaust gas path sub-
system model.

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics …

106 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076101

4.1 Static correlations

The calibration of the static engine correlations is
performed in Matlab using steady state measurement
data. Flow model parameters for pipe, valve and heat
exchanger models are calibrated with a Least-Squares
method using static engine screening data. For the
compressor and VGT the maps supplied by the man-
ufacturer were used. Heat exchanger measurements
were also supplied separately, and not identified from
the screening data. The maps for energy conversion
efficiency, volumetric efficiency and exhaust gas tem-
perature used in the cylinder component were cali-
brated using the surface fitting tool gridfit [10]. The
calibration data for this component consisted of a par-
tial load map collected from an engine test cell. For
the valves, one dimensional look-up tables for relative
open area from the control signal were created. Some
results from the calibration procedure are presented in
the following figures. Fig. 10 shows the fitted surface
for volumetric efficiency together with measurements.
Fig. 11 shows the measured mass flow rate through the
intercooler at different pressure drops together with a
calibrated model using equation 8. Fig. 12 shows the
fitted look-up table for throttle relative open area.

Figure 10: Volumetric efficiency map, fitted map and
measured data

4.2 Emission model

The linear regression model is calibrated by least
squares estimation [7]. For calibration, the initial 10
minutes of the dynamic JE05 cycle, further described
in section 5, were used. The remaining 20 minutes are
then used for validation of the calibration result. The

Figure 11: Intercooler flow friction model

Figure 12: Throttle relative open area

following regressor found to best best result

φ = (1,m f ,m2
f ,m

3
f ,

ζ ,ζ 2,ζ 3,

β f ,β
2
f ,β

3
f ,

CCO2,C2
CO2,C

3
CO2,

λ
−1,λ−2,λ−3,

ω,ω2,ω3) (9)

4.3 Parameter optimization in JModelica.org

JModelica.org [11] has been used for optimization of
model parameters for heat transfer and thermal dy-
namics in the exhaust gas path. The method used is the
derivative free Nelder-Mead simplex method [12, 13].
Derivative free methods do not require that the model
provides derivatives of the objective function with re-
spect to tuner variables. That makes them well suited

Session 1C: Power and Energy

DOI Proceedings of the 9th International Modelica Conference 107
10.3384/ecp12076101 September 3-5, 2012, Munich, Germany

for optimization of more complex models, and model
modifications for optimization purposes are not nec-
essary. The following parameters were optimized to
obtain the best possible result for the exhaust gas tem-
perature during transient cycles:

• Thermal conductance between exhaust gas and
wall

• Heat capacity of the exhaust pipe wall

• Thermal conductance between the wall and the
surrounding air

The dynamic exhaust gas temperature response,
presented in Fig. 23, is very different from the instan-
taneous outlet gas temperature from the quasi-static
VGT model. This is both due to thermal mass of
the metal parts, and heat transfer to the surrounding
air. The heat capacity and thermal conductances men-
tioned above model the dynamic exhaust temperature
response from the VGT outlet temperature. The initial
10 minutes of the JE05 cycle were used for parameter
optimization. The remaining 20 minutes are then used
for validation of the calibration result.

5 Validation

The models have been validated, both by individual
component experiments, and by complete engine sys-
tem simulation. The used data was collected from an
engine test cell and consisted of partial load map data
and of the Japanese emission cycle, JE05. The JE05
cycle is one of the legislation requirements in the Post
New Long-Term (PNLT) legislation.

5.1 Turbo model validation

The turbo model with rotational speed as dynamic
state was validated separately with boundary condi-
tions from a partial load map. An experiment model
is set up where a compressor and VGT component are
connected with an inertia model in between. Upstream
and downstream pressure and temperatures and VGT
position are prescribed and the resulting mass flow
rate, outlet temperature and rotational speed are val-
idated for the compressor and turbine models. Fig. 13
shows a comparison of the turbo flow rates. In Fig. 14
the turbo model outlet temperatures are shown.

Figure 13: Turbo model validation. Top: Exhaust flow
rate [kg/s], simulated (solid) and measured (dashed).
Bottom: Air flow rate [kg/s], simulated (solid) and
measured (dashed)

Figure 14: Turbo model validation. Top: Turbine out-
let temperature [K], simulated (solid) and measured
(dashed). Bottom: Compressor outlet temperature
[K], simulated (solid) and measured (dashed)

5.2 EGR model validation

The EGR valve model is validated with part load map
data. Upstream and downstream pressures are pre-
scribed and the simulated EGR flow rate is compared
to measurements. The result is presented in Fig. 15.

5.3 Verification of non-minimum phase and
sign reversal

An engine equipped with VGT and EGR valve
has some essential system properties such as non-
minimum phase behavior in the intake manifold pres-
sure and a non-minimum phase behavior and a sign re-

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics …

108 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076101

Figure 15: EGR flow model validation. EGR flow
[kg/s], simulated (solid) and measured (dashed)

versal in the compressor flow [15]. Fig. 16 shows that
the the model captures the non-minimum phase behav-
ior between the EGR valve position, uegr, change and
inlet manifold pressure, pin.

Figure 16: Dynamic verification of the non-minimum
phase between uegr and pin using steps. Operating
point: ωe = 1500 rpm, Te = 670 Nm, uvgt = 0.5 ra-
tio.

Fig. 17 shows that the model capture the non-
minimum phase behavior between the VGT position,
uvgt , and the compressor mass flow ṁc. Notice that
initially the DC gain between uvgt and ṁc is negative
but after a while it becomes positive. This phenom-
ena is even better seen in Fig. 18 where the uvgt is

slowly changed from complete opened vanes towards
closed position. As the sweep is performed slowly and
the other operating conditions are kept constant, the
results can be regarded as steady state results.

Figure 17: Dynamic verification of the non-minimum
phase between uvgt and ṁc using steps. Operating
point: ωe = 1500 rpm, Te = 670 Nm, uegr = 1 ratio.

Figure 18: Slow sweep of the uvgt from fully open to-
wards closed position. Operating point: ωe = 1500
rpm, Te = 670 Nm, uegr = 1 ratio.

Session 1C: Power and Energy

DOI Proceedings of the 9th International Modelica Conference 109
10.3384/ecp12076101 September 3-5, 2012, Munich, Germany

5.4 Dynamic validation

The engine system model is validated with JE05
boundary conditions using the experiment setup in
Fig. 9. The cycle is 1830 seconds long and the simu-
lation time for the whole cycle was 735 seconds (2.5x
faster than real-time) on a standard laptop. The JE05 is
a very transient cycle which contains mostly city driv-
ing with some high way driving. The engine speed
variations during the complete cycle are shown in Fig.
19 and the load variations are shown in Fig. 20.

Figure 19: JE05 engine speed [rpm]

Figure 20: JE05 engine torque [Nm]

The resulting full cycle exhaust gas temperature is
shown in Fig. 21 and NOx emissions are shown in
Fig. 22. Both the modeled exhaust temperature and
the NOx emission captures most of the behavior. The
modeled exhaust temperature differs from the mea-
sured temperature in the end of the JE05 cycle. The
temperature before the VGT capture the temperature
behavior correct also in the end of the cycle this indi-
cate that there are still heat transfer effects that need to
be incorporated in the model.

Figure 21: Complete model validation. Exhaust
gas temperature [K], simulated (solid) and measured
(dashed)

Figure 22: Complete model validation. Exhaust NOx
concentration [kg/kg], simulated (solid) and measured
(dashed)

Figures 23 - 27 show simulation results for engine
torque, mass flow rates and exhaust gas temperature
from a part of the cycle (750 - 1000 s). The exhaust gas
temperature is measured in the pipe 1 meter after the
turbine. As can be seen in Fig. 23 the model captures
most of the behavior. Figures 24 - 26 show that the
model captures the dynamics of the exhaust, EGR and
air mass flows. The ERG flow in Fig. 25 shows a
small time lag of the measured flow compared to the
simulated. This is likely due to a time lag in the EGR
flow sensor.

Figure 23: Complete model validation. Exhaust
gas temperature [K], simulated (solid) and measured
(dashed)

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics …

110 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076101

Figure 24: Complete model validation. Exhaust
gas flow rate [kg/s], simulated (solid) and measured
(dashed)

Figure 25: Complete model validation. EGR flow rate
[kg/s], simulated (solid) and measured (dashed)

Figure 26: Complete model validation. Air flow rate
[kg/s], simulated (solid) and measured (dashed)

Figure 27: Complete model validation. Engine torque
[Nm], simulated (solid) and measured (dashed)

The model captures most of the dynamics of the en-
gine torque, but for the idling part (e.g. 850-890s)
there is an offset between modeled and measured

torque (Fig. 27). The difference may be explained
by the fact that the friction or the pumping loss mea-
surements which the model is based on are not correct
in this region.

Fig. 28 shows the NOx emissions. The black-box
model succeeds to capture the behavior. The NOx lev-
els are quite close to the measured level in steady state
operation, and the peaks are often quiet close to the
measured level regarding timing and level. The NOx
level was measured by a Horiba system, which isn’t
capable of measuring fast transients and the measure-
ments can be regarded as a filtered values.

Figure 28: Complete model validation. Exhaust NOx
concentration [kg/kg], simulated (solid) and measured
(dashed)

6 Discussion

The components in the 13L Volvo PNLT engine are
primarily modeled by a physical first-principle ap-
proach. The selected inputs for the emission model
does not capture the effect of the wall temperature and
a next step can be to parametrize a cylinder wall tem-
perature model in order to model the effects of cold
starts. The current simple emission model captures
most of the transient effects and in order to further im-
prove the transient optimization based on the models
the accuracy needs to be improved. Instead of assum-
ing CO2 in the exhaust manifold based on stoichio-
metric combustion, it can be added as an output of the
emission model. This may improve the estimation of
the CO2 in the inlet manifold which is one of the inputs
to the emission model. There exists several data driven
emission models with similar computational complex-
ity that would be interesting to compare against [16].
The plan for the future is that EDL will be ex-
panded with more combustions model options, includ-
ing cycle-resolved in-cylinder behavior. By introduc-
ing the effects of pressure pulses and improving the
internal loss model, the turbo model can also be fur-
ther improved.

Session 1C: Power and Energy

DOI Proceedings of the 9th International Modelica Conference 111
10.3384/ecp12076101 September 3-5, 2012, Munich, Germany

JModelica.org was used for the optimization of param-
eters for the heat transfer and thermal dynamics and
Dymola was used to export the FMU model. JModel-
ica has extended the Modelica language for increased
optimization functionality. The derivative-free sim-
plex method used worked very well for parameter op-
timization for a model of this complexity without re-
quiring any model modifications. Other tools also ex-
ists that can perform calibration using similar meth-
ods, for example the model calibration feature in Dy-
mola or Isight. Isight was also tested for the same op-
timization task and the simplex method available there
gave equivalent results to JModelica regarding opti-
mization time and result.
The simulation speed is about 2.5 times faster than
real-time using the Dymola integrated Radau solver.
This is a variable step-length solver, and the fast aver-
age simulation speed does not guarantee that the cur-
rent model can be used in applications with hard real-
time requirements, but this was not in the scope for
this model. For hard real-time simulations, fixed-step
solvers must be used. This introduces harder require-
ments on the model regarding fast dynamics and func-
tion evaluation time.
As the models of the PNLT engine managed to cap-
ture the engine out conditions and the dynamical be-
havior in the air gas path, the model can be used to
develop engine control strategies that reduce the re-
quirement on the EATS. With transient control strate-
gies that reduce transient emissions, the EATS vol-
umes (e.g. DOC, DPF and SCR) may be reduced. Also
by adapting the engine control strategies based on the
condition of the EATS (e.g. temperature, aging and
poisoning) the EATS volumes may be reduced. The
fuel cost of the different engine control actions de-
pends significantly on the engine hardware and each
has an optimal trade-off between fuel cost and prod-
uct cost. Engine models based on EDL together with a
SIL environment which includes the control strategies
is a powerful approach in the investigation of finding
the optimal trade-off.

7 Conclusions

In this article it has been demonstrated that the newly
developed Engine Dynamics library and Dymola can
be used for simulation of the gas exchange, transient
flow and temperatures and emission trends for a 13L
Volvo PNLT engine. All components and parame-
ters have been calibrated component wise without any
global compensation. Calibration data comes from

an engine screening where measurements are made to
isolate the different components. Therefore a compo-
nent can be replaced without any need of a new com-
plete engine screening, allowing for virtual prototyp-
ing of new concepts. This is an important advantage
compared to black-box modeling of the complete en-
gine, which would require a complete new screening
when changing a single component. Finding param-
eter values for the heat transfer and thermal dynamic
in the exhaust that matches measurements is an opti-
mization problem that has been solved using JModel-
ica. The parameters were successfully optimized re-
sulting in good estimation of the exhaust temperature
dynamics. The models captured the essential system
properties in the gas exchange such as non-minimum
phase behavior and sign reversal. As the exhaust mass
flow, exhaust temperature and emissions were shown
to be well captured the model can be used in order to
evaluate control strategies of the air gas management
and to find a trade-off between fuel-economy, transient
response, engine emissions and EATS requirements.
The system identification of the NOx emissions gave
good results in the operating area of the JE05 cycle and
captured the trends. This indicates that the selected in-
puts to the emission model contain most of the entities
that affect the emissions. Using variable step-length
solvers, the engine model simulates faster than real-
time for the JE05 cycle. This is a very transient cycle,
and therefore the expectation is that other transient cy-
cles will also simulate with real-time like simulation
times.

References

[1] T. Johnson Diesel Emissions in Review, SAE
Technical Paper 2011-01-0304, 2011.

[2] R. Cloudt and F. Willems. Integrated Emission
Management strategy for cost-optimal engine-
aftertreatment operation, SAE Technical Paper
2011-01-1310, 2011.

[3] Dymola User Manual, Volume 1, Lund, 2011

[4] J. Batteh, M. Tiller and C. Newman. Simulation
of Engine Systems in Modelica, Proceedings of
the 3rd Modelica Conference, Linköping, Swe-
den, 2003.

[5] A. Picarelli and M. Dempsey. Investigating the
Multibody Dynamics of the Complete Powertrain
System, Proceedings of the 7th Modelica Confer-
ence, Como, Italy, 2009.

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics …

112 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076101

[6] L. Guzzella and C.H. Onder. Introduction to
Modeling and Control of Internal Combustion
Engine Systems, 2nd edition, 2010. ISBN 978-
3-642-10774-0.

[7] R. Johansson. System modeling & Identification,
2009. ISBN 0-13-482308-7.

[8] HIH Saravanamuttoo, GFC Rogers and H Cohen.
Gas Turbine Theory, Fifth Edition, 2001. ISBN
978-0-13-015847-5.

[9] B.J. McBride, M.J. Zehe and S. Gordon. NASA
Glenn Coefficients for Calculating Thermody-
namic Properties of Individual Species. NASA
report TP-2002-211556, 2002.

[10] J. D’Errico. Understanding GRID-
FIT, 2006. Available for download at
http://www.mathworks.com/matlabcentral/
fileexchange/8998 (last accessed 20120228).

[11] J. Åkesson, K-E. Årzén, M. Gäfvert, T. Bergdahl
and H. Tummescheit. Modeling and Optimiza-
tion with Optimica and JModelica.org - Lan-
guage and Tools for Solving Large-Scale Dy-
namic Optimization Problems, Computers and
Chemical Engineering, 34:11, pp. 1737-1749,
November 2010

[12] S. Gedda. Calibration of Modelica models us-
ing derivative-free optimization, Master’s thesis
2011:E46, Lund University, Faculty of Engineer-
ing, Centre For Mathematical Sciences, Mathe-
matics, 2011.

[13] S. Gedda, C. Andersson, J. Åkesson and S. Diehl.
Derivative-free Parameter Optimization of Func-
tional Mock-up Units. In 9th International Mod-
elica Conference, 2012.

[14] MODELISAR(07006). Functional Mock-up In-
terface for Model Exchange Available for
download at: http://www.functional-mockup-
interface.org/ (last accessed 20120228).

[15] J. Wahlström and L. Eriksson. Modeling of a
diesel engine with VGT and EGR capturing
Sign Reversal and Non-minimum Phase Behav-
ior. Proceedings of the Institution of Mechanical
Engineers, Part D, J. of Automobile Engineering,
Volume 225, Issue 7, July 2011.

[16] M. Grahn and T. McKelvey. MA Structure and
Calibration Method for Data-driven Modeling of

NOX and Soot Emissions from a Diesel Engine.
SAE Technical Paper 2012-XX-0351, 2012.

Session 1C: Power and Energy

DOI Proceedings of the 9th International Modelica Conference 113
10.3384/ecp12076101 September 3-5, 2012, Munich, Germany

Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics …

114 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076101

Library for First-Principle Models of Proton Exchange Membrane Fuel Cells in Modelica

Library for First-Principle Models of Proton Exchange Membrane
Fuel Cells in Modelica

Kevin L. Davies Christiaan J.J. Paredis Comas L. Haynes
Georgia Institute of Technology

Atlanta, Georgia USA

Abstract

This paper describes the architecture and key equa-
tions of FCSys, a library to model proton exchange
membrane fuel cells (PEMFCs) in Modelica. The mo-
tivating goal of this work is to reconcile many of the
published models of PEMFCs and combine them in a
reconfigurable PEMFC model that is effective for a va-
riety of uses. It is necessary to distill equations from
fuel cell literature into forms that at once capture the
essence of the physical interactions, are conducive to
the physical modularity of the device, and work within
the constraints and take full advantage of the Modelica
language.

Since the behavior of PEMFCs depends on both
advection and diffusion, a suitable alternative to the
Modelica Fluid library and the stream concept is nec-
essary. The proposed solution uses a “mixing” scheme
based on the exponential of the Péclet numbers for
each transport process. Storage and transport pro-
cesses are co-located in each subregion of a rectilin-
ear grid—all in the same base model. The Onsager
formulation is used, whereby the effort and flow rate
are conjugates of the entropy flow rate associated with
energy transfer.

The implementation is modular. It allows species to
be enabled independently for each region. In addition,
the geometric axes may be independently enabled (up
to 3D) and shearing (transverse momentum) may be
optionally included. Chemical/electrochemical inter-
actions are communicated in a fully acausal manner
through expandable connectors.

This paper focuses on the motivation, background,
and approach. Future publications will describe the
ongoing work to calibrate, validate, and utilize the
model for particular case studies. The library is made
available as open source.
Keywords: PEMFC; three dimensional; fluid dynam-
ics; electrochemistry; heat transfer; advection; diffu-
sion; momentum; Onsager

1 Introduction

In certain power applications, fuel cell (FC) systems
are preferable because they can convert fuel energy
to work more efficiently than internal combustion en-
gines and have energy-to-power ratios that can be eas-
ily adapted, unlike batteries. A FC system can be refu-
eled quickly like an internal combustion engine (ICE)
system, or it can be designed to recharge like a battery
by operating in electrolysis mode [4]. Of the various
fuel cell technologies, PEMFCs are best suited to meet
the power-cycling and packaging requirements of ve-
hicles and portable devices.

However, the cost and durability, and to a lesser ex-
tent, size and weight, of PEMFCs are not yet adequate
to justify their use beyond niche devices and select
demonstrations. Much work is being done to investi-
gate the modes of failure and degradation, develop new
materials and structures, improve manufacturing pro-
cesses, and design better systems [26]. Mathematical
models of PEMFCs are being used to help understand
the relevant physical phenomena, study the effects of
design choices, and perform model-based control. The
breadth of these goals has led to a multitude of special-
ized models.

PEMFCs have a solid polymer-based electrolyte
(the PEM) and operate at low temperatures (typically
below 100 ◦C). As shown in Figure 1, a single-
cell PEMFC has few core components: PEM, elec-
trodes, gas diffusion layers (GDLs), and flow plates
[14]. However, most applications require a higher
electrochemical potential difference than a single-cell
PEMFC can provide; therefore, two or more cells are
joined back-to-back to form a PEMFC stack.

A PEMFC operates on the electrochemical energy
released by the reaction of hydrogen and oxygen to
produce water (Eq. 1c). Its PEM (electrolyte) controls
the reaction by selectively passing protons while act-
ing as a barrier layer to hydrogen, oxygen, and elec-
trons (see Fig. 1). This forces the reaction to occur

DOI Proceedings of the 9th International Modelica Conference 115
10.3384/ecp12076115 September 3-5, 2012, Munich, Germany

O2

Electrode GDLPEMElectrodeGDL

MEA

Anode Cathode

2H

H O2

External load

Flowplate Flowplate

Channel

2H

e- H+

H O2

e-

O2

e-

Figure 1: Layers of a single-cell PEMFC and the pri-
mary paths of hydrogen (H2), oxygen (O2), protons
(H+), electrons (H+), and water (H2O) during normal
operation
in two sub-reactions: the hydrogen oxidation reaction
(HOR) whereby hydrogen is consumed and protons
and electrons are produced (Eq. 1a) and the oxygen
reduction reaction (ORR) whereby oxygen, protons,
and electrons are consumed and water is produced (Eq.
1b). In order to complete the full reaction, the elec-
trons must traverse an external path. The path is pro-
vided by an external load which can harness the energy
of the net reaction.

2 (H2→ 2 H++2 e−) (1a)

4 H++4 e−+O2→ 2 H2O (1b)

2 H2 +O2→ 2 H2O (1c)

A broadly applicable PEMFC model library would
need to contain models that are physically representa-
tive, meaning their predictions of behavior match re-
ality (i.e., accuracy) and their structure corresponds
to the physical domain. The PEMFC model library
should approximate the dynamic voltage-current re-
sponse of actual cells at nominal operating conditions
and varying large signal electrical currents (e.g., [27,
p. 3787, Figs. 2b and 2c]). It should capture the oper-
ational effects of design parameters including compo-
nent sizes and material properties (for hardware analy-
sis and design) and should be capable of linearization
(for control analysis and design). It should be able to
describe relevant phenomena including electrochemi-
cal reactions, chemical/electrochemical transport, heat
transport, and heat generation. It should have variable
fidelity, that is, degree of spatial, dynamic, or behav-
ioral detail. Finally, it should be modular, meaning its
components can be interconnected in various ways to
build models of larger systems. Unfortunately, how-
ever, no current PEMFC model library can provide
these features and capabilities over the required range
of operating conditions.

2 Related work

For reasons elaborated later, the acausal formalism
and the Modelica language in particular is ideal for
a dynamic, variable-fidelity, modular, and systems-
oriented model of a PEMFC. There are hundreds of
published PEMFC models [28], yet most of these use
computational fluid dynamics (CFD) or causal (signal-
based) models. Only four acausal, dynamic, and cell-
level FC models are known to have been published;
three are of PEMFCs and one is of a solid oxide fuel
cell (SOFC).

Rubio et al. openly shared a 1D (through-the-cell)
declarative PEMFC model which includes electro-
osmotic drag, double layer capacitance, variable
choice of assumptions, and detailed diffusion with
pore and species interactions (Knudsen flow and
Maxwell-Stefan eqs.). However, the model is isother-
mal, does not include heat generation or a model of
the flow plate, and only interacts with its surround-
ings electrically (no external thermal or fluid termi-
nals) [22, 23].

Davies and Moore published a quasi-2D (through-
the-cell and along-the-channel) declarative PEMFC
model which includes material and heat transport and
storage, electro-osmotic drag, and variable choice of
assumptions. However, the models of the cell’s lay-
ers are not defined in a physical manner; for example,
the electrode layers do not include chemical transport
(only reactions and charge transport) [7, 8]. The last
published version was based on the Modelica Fluid li-
brary [9]. As a result, it raised concerns (at the 7th

Modelica Conference) and had issues related to the in-
tegration of advection and diffusion, since Modelica
Fluid offers a solution that is limited to purely advec-
tive flow.

McCain et al. implemented the model of McKay
et al. [18] (mentioned previously) within a declara-
tive formalism in order to linearize the model for con-
trol studies. However, the sub-models of the chemical
species do not interact except in the flow plates and the
PEM [17].

Salogni and Colonna published a 1D (along-the-
channel) declarative model of a SOFC. It is well-
constructed, but since it treats each anode-to-cathode
section of the cell as a integrated unit, its modularity
does not resolve the physical layers of the cell [24].

A related approach is chemical bond graphs. Bond
graphs have been used for decades to chemical reac-
tions [5] and even applied to fuel cells [3, p. 355].
They are physical (in terms of energy) and are useful
to trace causality, but they are not acausal. According

Library for First-Principle Models of Proton Exchange Membrane Fuel Cells in Modelica

116 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076115

to Cellier, bond graphs have not yet been successfully
applied to problems in fluid dynamics. The reason is
that fluid systems require mass conservation in addi-
tion to energy conservation [5, p. 331].

3 Architecture

The present model is described in differential alge-
braic equations (DAEs). Spatial variances are repre-
sented in terms of differences rather than derivatives.
As stated by Mattiussi [15, pp. 2–3], this representa-
tion has three advantages: (i) it provides a unified per-
spective that is appropriate for many theories, (ii) it
directly correlates the discretization of the physical re-
gion and the structural properties of the applied theo-
ries, and (iii) it is based on intuitive geometrical and
physical concepts that help distinguish the numerical
methods (e.g., finite difference method, finite volume
method, and finite element method) from the under-
lying theories. In addition, powerful modeling tools
(e.g., Dymola [12]) exist that can solve a model for
the imposed causality, partition a dynamic model into
the most numerically efficient systems of algebraic
equations (i.e., resolve algebraic loops through tear-
ing), perform index reduction (i.e., eliminate structural
singularities), and linearize a model. Ultimately, this
can result in a flexible and robust model that simulates
quickly.

Table 1 summarizes the four base types of connec-
tors that are used in the Modelica implementation.
Figure 2 shows the hierarchy of the connectors, with
the lowest level at the bottom. The flows of the ma-
terial, linear momentum, and energy connectors are
the rates of those quantities. The flow variable of the
volume connector is the volume itself (not the vol-
ume flow rate). This allows the volume connector to
be used to impose additivity of volume or Amagat’s
law—that the sum of the total volume of the region is
the partial volumes of the species evaluated at the to-
tal pressure [20]. The effort variable is chosen such
that the product of effort and the rate of the quan-
tity is the entropy flow rate associated with the energy
transfer. This approach is convenient for representing
behavior in terms of Onsager reciprocal relations [1],
as shown below. However, it departs from the tradi-
tional approach of power conjugate variables, which
are generally used in the Package Modelica (excep-
tions include the rotational, translational, and thermal
libraries) [19].

The physical quantities and units are represented
using the approach described in [10]. Using that ap-

Energy MaterialMomentumVolume

Inert

Interaction

Chemical Boundary

Figure 2: Hierarchy of the connectors
proach, the gas constant and the Faraday constant are
both normalized to one. This simplifies the expression
of the equations and allows electrons to be described
in the same manner as other electrochemical species.

The model contains multiple rectilinear subregions
of fixed length (and volume). Each subregion is an
instance of the model shown in Figure 5b. Each of
the region’s six faces contains a bus connector (ex-
pandable). The bus may be populated with a sub-bus
for each chemical or electrochemical species present
in the region. Optionally, the sub-buses may be first
grouped into buses for the mixtures or phases. By de-
fault, the length of the vector of momentum connectors
is one—representing only normal velocity and force.
However, the transverse directions may be included as
well; the models adapt accordingly.

environment

a

cell

anSource caSource

anSink caSink

an
E

nd

caE
nd

testProfiletestProfile

Figure 3: Diagram of a test model that imposes bound-
ary conditions on the cell

In addition to the connectors, the subregion model
may contain instances of models to represent species,
reactions, and the total volume. A species model de-
scribes the advection, diffusion, and storage of mate-
rial and momenta for a single electrochemical species
(e−, H+, H2, H2O, N2, or O2). The species model con-

Session 1C: Power and Energy

DOI Proceedings of the 9th International Modelica Conference 117
10.3384/ecp12076115 September 3-5, 2012, Munich, Germany

Within Icon(s) Name/Quantity Flow Effort

Volume
Volume Pressure per temperature
V [L3] P/T [N L−3]

Linear momentum
Force Velocity per temperature
ṁΦΦΦ [M L T−2] φφφ/T [N T L−1 M−1]

Energy
Power Reciprocal of temperature
U̇ [L2 M T−3] 1/T [N T2 L−2 M−1]

Material
Current Chemical potential per temperature
Ṅ [N T−1] µ/T [1]

Table 1: Summary of connectors used in the models. The dimensions are noted in terms of mass (M), length
(L), time (T), and particle number (N). Since the gas constant and the Faraday constant are both normalized to
one, charge and thermodynamic temperature are not taken to be independent dimensions.

anFP

anGDLanGDL anCLanCL pEMpEM caCLcaCL caGDLcaGDL

caFP

anFPX caFPX

anFPPosY caFPPosY

caFPNegYanFPNegY

Figure 4: Diagram of a quasi-2D cell
nects to the boundaries and the interaction connector.
Optionally, the species models may be nested within a
mixture models, in which case the connections to the
boundaries are indirect. The species, mixture, and sub-
region models allow the Cartesian axes to be enabled
independently (by parameter), as long as one axis is
enabled. As such, the boundary bus connectors of the
subregion and mixture models are conditional. The ar-
ray of boundary connectors in the species model has
size {2, 1}, {2, 2}, or {2, 3}, where the first index
represents the face (1 or 2) and the second index rep-
resents one of the enabled axes.

The species are connected through the expand-
able interaction connector. In the connection, each
species’s chemical connector is named by the chem-
ical formula of the species. The inert connector is
simply named “inert.” In order to prevent nonlinear
systems of equations, the connection among species is
mathematically direct. Each of the species interacts
as if all other species were the same. For instance,
each gaseous species interacts equally well with other
gaseous species as with the solid. Stated alternatively,
the species are “colorblind,” which, in the case of vol-
ume, is consistent with the basis of Amagat’s law [29].
While this is a strong assumption, it can be alleviated
by choosing smaller regions, especially where the sub-
region boundaries are at or near the phase boundaries.

A reaction model exchanges material, momentum,
and energy among multiple species. The reaction

models may be used to model chemical or electro-
chemical reactions. In the chemical case, no material,
momentum, or energy is stored. Then, the reaction
model simply imposes the stoichiometric constraints
(conservation of material), momentum rate balances
(without loss), and energy rate balance. Chemical po-
tentials, velocities, and temperatures, are equal in the
chemical reaction model. There is no irreversibility;
all of the loss is included in the instances of the species
model. In the case of an electrochemical reaction, the
electrochemical double-layer capacitance is included
to account for the electrostatic potential. In the case
of the HOR, electrons and protons are stored in equal
amounts. Since there is no loss in the reactions mod-
els, the net reactions may be partitioned according to
convenience, with no mathematical effect. For exam-
ple, the ORR (Eq. 1b) is modeled as the net PEMFC
reaction (Eq. 1c) and the HOR in reverse (Eq. 1a).
Since H2 is not present in the cathode according to the
model, it is only an intermediate step without storage
and without loss. If additional species are present and
interacting (e.g., H2O2), they must be included as in-
stances of the species model and joined with the ap-
propriate side-reactions.

At the top level of the subregion, an instance of the
volume model is included. It connects to the “inert”
sub-connector of the interaction bus to subtract the to-
tal volume of the region. Since volume is the flow vari-
able, the partial volumes of the species must sum to the
total volume.

Multiple instances of the subregion model are ar-
ranged and connected in up to three dimensions to
create a region. Figure 5a shows a region, where the
subRegions icon represents a 3D array of subregions.
The layers of the PEMFC are regions. They are con-
nected as shown in Figure 4 to create the cell model.

Library for First-Principle Models of Proton Exchange Membrane Fuel Cells in Modelica

118 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076115

subRegionsnegativeX positiveX

negativeY

positiveY

negativeZ

positiveZ

(a) Region or layer

volume

gasgraphiteionomer

HOR

negativeX positiveX

negativeY

positiveY

negativeZ

positiveZ

interaction

(b) Subregion

H2H2ON2O2

H2_O2_H2O

negativeX positiveX

negativeY

positiveY

negativeZ

positiveZ

interaction

(c) Gaseous mixture. Others are mixtures
are graphite and ionomer.

Figure 5: Diagrams of low-level models
At the top/test level of the model, shown in Figure 3,
an instance of the cell model is connected to models
that impose boundary conditions.

4 Equations

4.1 Physical characteristics

The thermodynamic properties are implemented using
the approach of McBride et al. [16], which gives spe-
cific heat capacities at constant pressure as seventh-
order polynomials of temperature. These are the corre-
lations which are used for ideal gases in the Modelica
Media library. The pressure-volume-temperature cor-

relations are implemented using the virial equation of
state in the form that is explicit in specific volume [11].
That way, incompressible species and ideal gases can
be represented by the same equation with only changes
to the constants.

The generalized resistivities for material, momen-
tum, energy, and volume are gathered from a mul-
titude of sources. First, the rigid-sphere assumption
may be used from kinetic theory [21]. Second, the cor-
relations of NASA Glenn (formerly Lewis) are imple-
mented where available for the momentum and ther-
mal resistivity (from viscosity and thermal conductiv-
ity) [25, 25]. Finally, property tables may used to set
parameters (e.g., [13]). The implementation allows
any of these options.

4.2 Species Model

Material is exchanged or transported into port i accord-
ing to equation 2a, where A j, L j and ΦΦΦ j are the length
and linear momentum along the axis of transport, re-
spectively. The generalized material resistivity is ΓN .
The effective cross-sectional area is the product of the
geometric cross-sectional area (A j) and a factor (k) that
accounts for roughness, porosity, tortuosity, and simi-
lar properties of the solid structure through which the
transport occurs. The parameters β are the Onsager
coupling coefficients. By Onsager reciprocal theory,
the coefficients β i j equals β j i, where i and j are in-
dexes to the quantities selected according to the theory
[1]. The other variables in the equation are efforts and
flows from Table 1.

Session 1C: Power and Energy

DOI Proceedings of the 9th International Modelica Conference 119
10.3384/ecp12076115 September 3-5, 2012, Munich, Germany

L j

kA j
ΓN

[
Ṅ i +β NV

(
Pi

T i
− P

T

)
−βββ NΦΦΦ

(
φφφ i

T i
− φφφ

T

)
+β NU

(
1
T i
− 1

T

)]
=

(
µ i

T i
− µ

T

)(
1+ e±ΦΦΦ jΓN/kA j

)
(2a)

L j

kA j

ΓV P
vT

[
δV
δ t
−βV N

(
µ i

T i
− µ

T

)
−βββV ΦΦΦ

(
φφφ i

T i
+

φφφ

T

)
+β V U

(
1
T i
− 1

T

)]
=−

(
Pi

T i
− P

T

)(
1+ e±ΦΦΦ jΓV /kA j

)
(2b)

L j

kA j

ΓΓΓΦΦΦ j

mT

[
ṁΦΦΦi +βΦΦΦV

(
Pi

T i
− P

T

)
−βββΦΦΦN

(
µ i

T i
− µ

T

)
+β ΦΦΦU

(
1
T i
− 1

T

)]
=

(
φφφ i

T i
− φφφ

T

)(
1+ e±ΦΦΦ jΓΓΓΦΦΦ j/kA j

)
(2c)

L j

kA j

ΓU

T 2

[
U̇ i +βUV

(
Pi

T i
− P

T

)
−βββUΦΦΦ

(
φφφ i

T i
− φφφ

T

)
−β U N

(
µ i

T i
− µ

T

)]
=−

(
1
T i
− 1

T

)(
1+ e±ΦΦΦ jΓU/kA j

)
(2d)

δN
δ t

= ∑ Ṅ i (3a)

δmΦΦΦ

δ t
+mNa = ∑ ṁΦΦΦi (3b)

cP
δT
δ t︸ ︷︷ ︸

thermal

+ P
δV
δ t︸ ︷︷ ︸

volumetric

− φφφ
δmΦΦΦ

δ t︸ ︷︷ ︸
mechanical

− µ
δN
δ t︸ ︷︷ ︸

electrochem.

= T

 1
T i

U̇ i︸ ︷︷ ︸
thermal

+
Pi

T i

δV
δ t︸ ︷︷ ︸

volumetric

− φφφ i

T i
ṁΦΦΦi︸ ︷︷ ︸

mechanical

− µ i

T i
Ṅ i︸ ︷︷ ︸

electrochem.

 (3c)

The factors of the form (1+ exp(±ΦΦΦ jΓ/kA j)) ac-
count for mixed advection and diffusion. The argu-
ment to the exponential is the Péclet number (Pe),
which is ratio of advective to diffusive flow. In the
case that the advective flow is in the positive direction,
the argument will be negative for the negative-facing
boundary and positive for the positive-facing bound-
ary. The factor can be interpreted as adjusting the
length of diffusive transport according to the extent of
drift current or bulk velocity. In the case that there is
no bulk velocity, the factor is two; the length from the
center of the region to the port is half of the length of
the subregion along that axis. Under isothermal condi-
tions, the equations reduce to Fick’s law (in the case of
chemical species) and Ohm’s law (in the case of elec-
trons or holes). In the case that Pe→ ∞, the effort at
the positive-facing boundary is equal to the value in
the bulk of the region. That is, properties are prop-
agated in the downstream direction. Meanwhile, the
relationship between the effort of the negative-facing
boundary is related to the effort in the bulk of the re-
gion by pure diffusion with the full length of the sub-
region. The relationships reverse when advective flow
is in the opposite direction.

The exchange and transport equations for volume,
momentum, and energy are similar to that for material.

If there is only diffusion, then the transport equations
for transverse momentum, if included, reduce to the
case of Couette flow. The transport equation for en-
ergy reduces to thermal conduction when there is no
advection and the other efforts are uniform. It is dif-
ferentially equivalent to Fourier’s law. Otherwise, the
case is thermal convection—combined advection and
diffusion.

In the case of exchange rather than transport, the
A/L factor is combined as characteristic length (L?).
It must be calibrated by parameter identification or de-
termined empirically.

The exchange equation for momentum, like the
Stefan-Maxwell equation, describes the drag forces
between species traveling at different velocities
through a mixture [2, p. 538]. However, this approach
more manageable. As stated by Cussler, the “Stefan-
Maxwell equation is almost never used because it is
difficult to solve mathematically, even in the simplest
cases” [6].

The Onsager formulation allows gradient of one
type of effort to affect the flow rate of quantities be-
sides its conjugate pair. Advection is described in this
manner; the same gradient that drives material flow

Library for First-Principle Models of Proton Exchange Membrane Fuel Cells in Modelica

120 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076115

also drives other flows.i The difference in velocity nor-
mal to the face is coupled to the material flow rate in a
reciprocal manner as the difference in chemical poten-
tial is coupled to the momentum flow rate.

The exchange/transport equations allow there to be
storage within the region, even due to transport along
a single axis, because the rates into two faces is not
necessarily equal and opposite. In the case of pure dif-
fusion, the rate of intake is proportionally to the second
gradient of the effort. The rate balance or conservation
equations are given by Equation 3. Einstein notation
is used in the summations of the energy rate balance.
The form of the energy equation follows from the On-
sager approach [1].

5 Discussion

The exchange and transport parameters are cast in
terms of resistivity instead of conductivity so that in-
dex reduction may be initiated by setting the resis-
tance(s) to zero as final. A typical assumption is
that all species (at least within a mixture) are at the
same temperature. In addition, the total pressures of
the species are expected to be the same after a very
short time. If liquid water is added, it may be ap-
propriate to assume that it is in equilibrium with the
water vapor. With these assumptions, the number of
degrees of freedom reduces to that given by Gibbs’
phase rule. It states that the number of thermodynamic
degrees of freedom is equal to two plus the number
of species minus the number of phases [20], [1, pp.
24–49]. In the case of the assumptions that have been
mentioned, the natural thermodynamic state variables
would be temperature (the same for all species) and
the particle numbers of each chemically independent
species or group of species in phasic equilibrium. In
the model, index reduction generally introduces non-
linear equations and there is a performance tradeoff
between fewer states and fewer nonlinear equations.

6 Conclusion

The architecture and equations for the PEMFC model
library have been described at a high level. The imple-
mentation is modular and flexible. The same approach
would support other electrochemical devices such as
batteries. The library is being refined and tested. Re-
sults will be given and discussed in a future publication

iThe factor which includes the exponential only amplifies or
attenuates the effect of an effort gradient on its own conjugate.

after validation and calibration.
The library is being made available as open source

and should appear on the Modelica website (www.
modelica.org). Collaboration would be welcomed.

Session 1C: Power and Energy

DOI Proceedings of the 9th International Modelica Conference 121
10.3384/ecp12076115 September 3-5, 2012, Munich, Germany

Nomenclature

Symbols

A Area [L2]
c Specific heat capacity [1]
U Energy [L2 M T−2]
k Area factor [1]
L Length [L]
m Specific mass [1]
mΦΦΦ Linear momentum [L M T−1]
N Particle number [N]
P Pressure [M L−1 T−2]
Pe Peclet number [1]
T Temperature [L2 M N−1 T−2]
t Time [T]
V Volume [L3]
v Specific volume [L3 N−1]
a Global acceleration [L T−2]
β Onsager coupling coefficient [misc.]
Γ Generalized resistivity [L T N−1]
µ Chemical potential [L2 M N−1 T−2]
ΦΦΦ Particle number times velocity [L N T−1]
φφφ Linear velocity [L T−1]

Accents

˙ Flow rate of [×T−1]

Superscripts

? Effective or characteristic

Subscripts

i of index i
j of index j
N of material
P at constant pressure
V of volume
ΦΦΦ of linear momentum
U of energy

Acknowledgments

The authors wish to acknowledge support from the
Presidential Fellowship of the Georgia Institute of
Technology and the Robert G. Shackelford Fellowship
of the Georgia Tech Research Institute.

References

[1] A. Bejan. Advanced Engineering Thermodynam-
ics. John Wiley & Sons, 3rd edition, 2006.

[2] R. B. Bird, W. E. Stewart, and E. N. Lightfoot.
Transport Phenomena. John Wiley & Sons, 2nd
edition, 2002.

[3] W. Borutzky. Bond Graph Modelling of Engi-
neering Systems: Theory, Applications and Soft-
ware Support. Springer, 2011.

[4] K. A. Burke. Unitized regenerative fuel cell
system development. NASA report TM—2003-
212739, Glenn Research Center, Cleveland, OH,
Dec. 2003.

[5] F. E. Cellier and J. Greifeneder. Modeling chemi-
cal reactions in modelica by use of chemo-bonds.
In F. Casella, editor, Proc. 7th Int. Modelica
Conf., Como, Italy, Sep. 2009. Modelica Assoc.,
Linköping University Electronic Press.

[6] E. L. . Cussler. Diffusion: Mass Transfer in Fluid
Systems. Cambridge University Press, 2nd edi-
tion, 1997.

[7] K. L. Davies and R. M. Moore. Object-oriented
fuel cell model library. Electrochem. Soc. T.,
11(1):797–808, Oct. 2007.

[8] K. L. Davies and R. M. Moore. PEMFCSim:
A fuel cell model library in Modelica. In 31st
Fuel Cell Seminar & Exposition, San Antonio,
TX, Oct. 2007.

[9] K. L. Davies, R. M. Moore, and G. Bender.
Model library of polymer electrolyte membrane
fuel cells for system hardware and control de-
sign. In F. Casella, editor, Proc. 7th Int. Modelica
Conf., Como, Italy, Sep. 2009. Modelica Assoc.,
Linköping University Electronic Press.

[10] K. L. Davies and C. J. Paredis. Natural unit repre-
sentation in Modelica. In Proc. 9th Int. Modelica
Conf., Munich, Germany, Sep. 2012 (submitted).
Modelica Assoc.

[11] J. H. Dymond, K. N. Marsh, R. C. Wilhoit, and
K. C. Wong. Virial Coefficients of Pure Gases.
Numerical Data and Functional Relationships in
Science and Technology. Springer-Verlag, 2002.

[12] Dynasim AB. Dymola: Dynamic Modeling Lab-
oratory, Mar. 2010. Ver. 7.4.

Library for First-Principle Models of Proton Exchange Membrane Fuel Cells in Modelica

122 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076115

[13] F. P. Incropera and D. P. DeWitt. Fundamentals
of Heat and Mass Transfer. John Wiley & Sons,
5th edition, 2002.

[14] J. Larminie and A. Dicks. Fuel Cell Systems Ex-
plained. John Wiley & Sons, 2nd edition, 2003.

[15] C. Mattiussi. The finite volume, finite element,
and finite difference methods as numerical meth-
ods for physical field problems. volume 113
of Advances in Imaging and Electron Physics,
pages 1–146. Elsevier Academic Press, 2000.

[16] B. J. McBride, M. J. Zehe, and S. Gordon.
NASA Glenn coefficients for calculating thermo-
dynamic properties of individual species. NASA
report TP—2002-211556, Glenn Research Cen-
ter, Cleveland, OH, Sep. 2002.

[17] B. A. McCain, A. G. Stefanopoulou, and
K. R. Butts. A study toward minimum
spatial discretization of a fuel cell dynamics
model. In Proc. Int. Mech. Eng. Congr. Exposi-
tion (IMECE2006), number IMECE2006-14509,
Chicago, IL, Nov. 2006. ASME.

[18] D. A. McKay, W. T. Ott, and A. G. Ste-
fanopoulou. Modeling, parameter identification,
and validation of water dynamics for a fuel cell
stack. In Conf. on Fuel Cell Science, Engineer-
ing and Technology, Orlando, FL, Nov. 2005.
ASME. FUELCELL2005-81484.

[19] Modelica Association. Modelica Standard
Library. http://www.modelica.org/

libraries/Modelica, Dec. 2009. Ver.
3.1.

[20] M. J. Moran and H. N. Shapiro. Fundamentals
of Engineering Thermodynamics. John Wiley &
Sons, 6th edition, 2008.

[21] R. D. Present. Kinetic Theory of Gases.
McGraw-Hill, 1958.

[22] M. A. Rubio, A. Urquia, L. Gonzá¡lez,
D. Guinea, and S. Dormido. FuelCellLib: A
modelica library for modeling of fuel cells.
In Proc. 4th Int. Modelica Conf., Hamburg-
Harburg, Germany, Mar. 2005. Modelica Asso-
ciation.

[23] M. A. Rubio, A. Urquiaa, and S. Dormidoa. Dy-
namic modelling of PEM fuel cells using the Fu-
elCellLib Modelica library. Math. Comp. Model.
Dyn., 16(3):165–194, Jun. 2010.

[24] A. Salogni and P. Colonna. Modeling of solid
oxide fuel cells for dynamic simulations of inte-
grated systems. Appl. Therm. Eng., 30(5):464–
477, 2010.

[25] R. A. Svehla. Transport coefficients for the
nasa lewis chemical equilibrium program. NASA
Technical Memorandum NASA, Lewis Research
Center, Cleveland, OH, Apr. 1995.

[26] U.S. Department of Energy. Hydrogen, fuel cells
& infrastructure technologies program: Multi-
year research, development and demonstration
plan. Technical report, Energy Efficiency and
Renewable Energy, Oct. 2007. Section 3.4: Fuel
Cells.

[27] N. Wagner, W. Schnurnberger, B. Mueller, and
M. Lang. Electrochemical impedance spectra
of solid-oxide fuel cells and polymer membrane
fuel cells. Electrochim. Acta, 43(24):3785–3793,
1998.

[28] A. Z. Weber, R. M. Darling, and J. S. Newman.
Modeling two-phase behavior in PEFCs. J. Elec-
trochem. Soc., 151(10):A1715–A1727, 2004.

[29] K. W. Woo and S. I. Yeo. Dalton’s Law vs. Am-
agat’s Law for the mixture of real gases. SNU J.
Educ. Res., 5:127–134, 1995.

Session 1C: Power and Energy

DOI Proceedings of the 9th International Modelica Conference 123
10.3384/ecp12076115 September 3-5, 2012, Munich, Germany

Library for First-Principle Models of Proton Exchange Membrane Fuel Cells in Modelica

124 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076115

The Modeling of Energy Flows in Railway Networks using XML-Infrastructure Data

The Modeling of Energy Flows in Railway Networks using
XML-Infrastructure Data

Andreas Heckmann∗ and Sebastian Streit�

German Aerospace Center (DLR)
∗ Institute of System Dynamics and Control, Oberpfaffenhofen, D-82234 Wessling

� Institute of Vehicle Concepts, Pfaffenwaldring 38-40, D-70569 Stuttgart

Abstract

This paper introduces a new Modelica package called
RailwaySystem Library that provides the capabilities
of simulating the energy flow in electrical railway net-
works on which a fleet of railway vehicles is running.
The focus of the library is set upon the interaction of
the vehicle and its energy infrastructure, so that energy
management aspects may be investigated from a holis-
tic point of view taking the vehicle and the energy sup-
ply by the electric power grid into account. However
this intention substantially relies on the provision of
reliable data of the infrastructure, on the railway net-
work and its power grid. To this purpose the library
refers to an open XML-based data format dedicated
to railway IT applications. Furthermore, the library
is supposed to be used together with arbitrary compo-
nent libraries to model the energy subsystems such as
the vehicle or the power station.

1 Introduction

As public transport in general, railway transport as
well has to cope with increasing demands on the re-
duction of energy consumption and CO2 emission.
This fact motivates activities of the DLR project Next
Generation Train [1] regarding energy management in
railway vehicles and recently led to the implementa-
tion of the Modelica RailwaySystem Library. This
package provides the capabilities of simulating the en-
ergy flow in electrical railway networks on which rail-
way vehicles are running.

From the modeling point of view two specific prob-
lems had to be taken into account. Railway vehicles
may be interpreted as energy sources or sinks that are
moving in an inhomogeneous network, see e.g. [2].
The network consists of catenaries or third rails that
are supplied by power stations and may or may not be
separated in isolated sections. Depending on the num-

ber and the instantaneous position and running state of
the vehicles different types of flows may occur in par-
allel: energy may flow from power station to vehicle,
or vice versa or from one vehicle to another vehicle.

As a second important aspect, the evaluation of the
energy consumption of a vehicle is of course a func-
tion of the track characteristics such as length, slope,
radius, positions of power station etc. so that data on
the infrastructure topology and properties are required
[3]. To this purpose, the library provides access to ex-
ternal infrastructure data, that are filed using the rail-
way markup language railML R©. This is a XML-based
data format, advanced by the railML.org initiative [4]
and licensed under creative commons conditions (CC
By 2.0) [5].

The initial implementation in this paper is dedicated
to consider energy consumption due to conduction
losses, traction and auxiliary systems such as heating,
ventilating and air-conditioning systems in DC urban-
railway-networks. cp. e.g. [6]. However the simula-
tion framework of the Railway System library does
not introduce any restrictions on the modeling of the
energy subsystems and is open for further extensions.
In particular, the Railway System Library is supposed
to be used together with component libraries such as
the AlternativeVehicles [7] or the PowerTrain Library
[8].

2 RailML R© Data Interface

The non-profit railML.org initiative [4] is a consortium
of railway companies, software and consulting firms,
and academic institutions, that jointly define and ad-
vance a common data standard to be used in different
railway simulation tools, see e.g. [9]. The addressed
fields of applications are rather comprehensive and
among others concern operation planning of rolling
stock, resource planning of railroads, design of timeta-

DOI Proceedings of the 9th International Modelica Conference 125
10.3384/ecp12076125 September 3-5, 2012, Munich, Germany

bles, event and delay handling. As a consequence, the
XML data standard railML R©contains subschemas for
three main areas: infrastructure, timetable, and rolling
stock.

Compared to the scope of the railML.org initiative
the piece of work to be presented here only covers spe-
cific aspects since it is focused on energy consump-
tion. The initial implementation only considers data
regarding track topology and geometry. The following
section of an railML R©file that specifies a track section
of 2.7 km length is supposed to serve as an illustrative
example:

<track id="t4">
<trackTopology>

<trackBegin pos="0" id="b4">
<macroscopicNode ocpRef="PS3" />

</trackBegin>
<trackEnd pos="2700" id="e4">

<macroscopicNode ocpRef="PS5"/>
</trackEnd>

</trackTopology>
<trackElements>

<radiusChanges>
<radiusChange id="rC4"

pos="0" radius="900"/>
<radiusChange id="rC5"

pos="400" radius="0"/>
</radiusChanges>
<gradientChanges>

<gradientChange id="gC4"
pos="0" slope="5" />

<gradientChange id="gC42"
pos="1000" slope="0"/>

</gradientChanges>
</trackElements>

</track>

The data set above specifies that the track starts as a
curve with 900 m radius which changes to a straight
track after 400 m. The gradient at the beginning of the
track section is 5 per mill and changes after 1 km to
be horizontally aligned. Note that every data element
is specified by a XML-file-wide unique identifier id,
which is required for later referencing that element.

Each Modelica model that wants to access
railML R©data has to contain an instance of the Mod-
elica railML R©class, see Fig. 1, and has to provide an
XML file name as parameter. The railML R©instance
manages an external object that contains a Document
Object Model (DOM) [10] tree of the XML data. The
railML R©instance may be addressed by the inner/outer

mechanism so that other model components may eas-
ily acquire information from the railML R©data.

During initialization of the Modelica model the
XML-file is read using the XML parser library expat
[11] published under MIT license [12] together with
the wrapper scew [13] available under LGPL license
[14]. Both open source tools are written in C and
therefore may easily be compiled and bound together
with translated Modelica code by every Modelica sim-
ulation environment such as OpenModelica, Dymola
or SimulationX. As well from the legal point of view
these two libraries may be distributed with a Modelica
library as long as they are delivered as a self-contained
code library which is not mixed up with other C-code.

During initialization a railML R©object is instanti-
ated and the DOM tree is built up by the two parser
tools. In addition every track element found in the
railML R©data is assigned to an integer index number
and a mapping of each index number to the XML-wide
unique track id is organized.

3 Specific Modeling Issues

Fig. 1 presents a trivial network in order to give a
first impression of the main modeling components of
the RailwaySystem Library that are shortly introduced
now.

3.1 Connectors

The library defines the following three connectors.
The first one is an aggregation of the 3D-mechanical
connector frame and the electrical connector pin and
is tailored to connect catenary sections. The following

Figure 1: Diagram layer of a trivial network with 3
tracks, 4 power stations and 1 vehicle.

The Modeling of Energy Flows in Railway Networks using XML-Infrastructure Data

126 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076125

presentation will reveal that the capabilities of the 3D
multibody framework are hardly exploited. Neither
force or torques balances nor rotations are so far in-
volved in the modeling approach of the library. How-
ever future applications may also consider longitudi-
nal dynamics of train sets e.g. during braking or driv-
ing up-hill scenarios. In view of such use cases the
3D-mechanical connector frame are employed as de-
scribed below:

connector frame_pin
"supposed to connect catenary

sections mechanically and
electrically"

import Modelica.Mechanics.
MultiBody.Interfaces.Frame;

import Modelica.Electrical.
Analog.Interfaces.Pin;

Frame frame;
Pin pin;

end frame_pin;

Two other connectors are defined in order to pro-
vide the capability of attaching vehicles to the cate-
nary. These connectors only differ in the prefix of the
local position variable s, which is an output quantity
on the vehicle side, while it is an input variable from
the point of view of the catenary.

connector slidingContact_a
"catenary side of catenary -

pantograph connection"
extends RailwaySystem.

Interfaces.frame_pin;
input Real s "local position"

end slidingContact_a ;

connector slidingContact_b
"pantograph side of catenary -

pantograph connection"
extends RailwaySystem.

Interfaces.frame_pin;
output Real s "local position"

end slidingContact_b ;

In particular the definition and the purpose of the
variable s is further motivated and explained in the fol-
lowing three sections.

3.2 Vehicle

The Vehicle model is a base class and supposed to be
extended in order to characterize the energy system of
a railway vehicle. The energy system itself may be
arbitrary complex and may be modelled using com-
ponents from the Standard Modelica library together

with components from commercial libraries such as
the AlternativeVehicles [7] or the PowerTrain Library
[8].

Important parameters of the Vehicle model are
tracksToPass and tracksPassOver:

• The parameter tracksToPass, e.g. tracksToPass=
{5,2,3} in Fig. 1, is an integer vector containing
the indices of the tracks the vehicle is supposed
to run on. The order of the indices corresponds to
the sequence of the tracks.

• The real vector tracksPassOver, e.g.
tracksPassOver={0, 3200, 6800, 9800} in
Fig. 1, specifies points on the path of the vehicle,
at which one track is left and the following is
entered.

Important transient variables of the vehicle model
are trackIndicator and the real quantities s and S:

• The boolean vector trackIndicator is of the same
length as tracksToPass. One and only one ele-
ment of trackIndicator is true, namely the ele-
ment that is associated to the track the vehicle is
currently running on.

• The variable s defines a specific point on the
track, the vehicle is currently running on. It is
a local, track-specific variable on contrary to S.

• The variable S is a global vehicle-path-specific
quantity. In the present implementation S is pre-
defined as a function of time, so that motion of
the vehicle along its path is preset e.g. as a result
of the timetable. Alternatively it is also possible
to give the velocity profile as a function of S and
evaluate S = S(t) accordingly.

The following table again summarizes the important
variables explained above:

parameters
tracksToPass track indices
tracksPassOver specific path points

transient variables
s local track position
S global path position
trackIndicator boolean track switch

From the purely structural point of view a vehicle
instance is connected to all catenary sections that are
listed in the parameter vector tracksToPass using the

Session 1C: Power and Energy

DOI Proceedings of the 9th International Modelica Conference 127
10.3384/ecp12076125 September 3-5, 2012, Munich, Germany

sliding contact connector classes, see Sec. 3.1. How-
ever by employing ideal closing switches from the
Standard Modelica.Electrical library it is guaranteed
that only that electrical connection is closed to which
the corresponding value of trackIndicator is set to true.

In order to access the railML R©data and provide in-
formation on the e.g. the current gradient, the cur-
rent values of s and trackIndicator together with track-
sToPass are interpreted and passed to appropriate C-
functions that extract data from the DOM tree.

3.3 Catenary

The Catenary model represents a track segment
parametrized with the local length coordinate s. Its ge-
ometrical and electrical properties such as radius, gra-
dient and electric resistance vary as a function of s.
The integer parameter ID specifies the index to access
the RailML database so that the necessary information
on the track segment given by the RailML database
may be acquired.

A sliding contact connector serves as an interface
between vehicle and track and the current value of s
denotes the current local position of the vehicle. Since
the Vehicle instance as well as the Catenary instance
both rely on the value s, the definition of the two con-
nectors slidingContact_a and slidingContact_b in Sec.
3.1 considers the exchange of this variable.

The two other frame_pin connectors are supposed to
connect different catenary sections. Future versions of
the RailwaySystem Library will include the capability
to automatically instantiate and connect all track sec-
tions found in the railML R©database, so that the mod-
eling of a complex network structure is substantially
facilitated. So far the network structure is to be built
up by manually instantiate and connect Catenary ob-
jects.

Note that variants of the Catenary model class are
available that consider more than one vehicle running
along the same track.

3.4 PowerStation and Origin

The PowerStation model is used to introduce trans-
former substations along the track that serve as voltage
supply sources.

The railML R©data only contains relative informa-
tion like track lengths specifying the distances to travel
form one point to another. In order to be able to set up
an at least schematic animation of the traveling vehi-
cles one absolute position has to be defined. This is
done by the Origin model class.

Figure 2: Plot of the variables s and S as a function of
time.

3.5 Exemplary Simulation Sequence

In order to present the general simulation set-up of the
RailwaySystem Library the simulation sequence of the
trivial network shown in Fig. 1 will now be explained.
The considered vehicle parameters are:

• tracksToPass= {5,2,3},

• tracksPassOver={0, 3200, 6800, 9800},

• S = 20 m/s · t

where tracksToPass and S are specified by user in-
put, while the values of tracksPassOver are gener-
ated by a function that gains information from the
railML R©object during initialization.

According to the upper plot of Fig. 2, the vehicle
leaves the first catenary section after 160 s, and the
second after 340 s. This corresponds to the length of
3200 m and 3600 m of the first (ID = 5) and the sec-
ond catenary (ID = 2) and the constant velocity of 20
m/s. The plot below shows the value of s seen from the
catenary_2 point of view. As long as the vehicle is not
running on this catenary or track section, respectively,
s is set to zero.

Fig. 3 demonstrates that the value of the first ele-
ment of the vector trackIndicater is set to true as long
as the vehicle is moving along the catenary specified
by the first element of trackToPass. This applies for
the second and the third element of trackIndicater ac-
cordingly.

The vector trackIndicater controls a vector of elec-
trical switches so that the vehicle energy system is
linked to that catenary or track section only, the ve-
hicle is currently running on.

In summary, it is the general idea of the simulation
set-up that the vehicle instance gathers all information.

The Modeling of Energy Flows in Railway Networks using XML-Infrastructure Data

128 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076125

Figure 3: Plot of the boolean variable vehi-
cle.trackIndicater.

The vehicle "knows" where, on which track or cate-
nary section it is currently running and it is enabled to
access the railML R©data to acquire infrastructure in-
formation accordingly. The vehicle hooks itself up to
the current catenary section in order to manage its own
energy supply.

4 Application Example

The example model in Fig. 4 presents a small DC-
powered urban light-rail network supplied by six
power stations where two vehicles are running on six
tracks.

Today power stations in DC-powered light-rail net-
works use rectifiers to provide a load-dependent con-
trol of the DC voltage. That means within the
valid limits the output voltage is freely adjustable [2].
Therefore it is feasible to model the power stations as
constant voltage sources. The nominal voltage used
in this case is 750 V which is typical for DC-powered
urban light-rail networks.

At a given load the traction current of the railway
vehicle depends on the input voltage of the vehicle and
thus of the specific position on the track [6]. For this
reason the voltage drop alongside of the catenary has
to be considered. Taking the resistance load per length
into consideration, the voltage drop along the catenary
can be calculated according to the length between the

feeding point at the traction substation and the panto-
graph of the vehicle.

The basis for the calculation of the energy flow
within the given network is the simulation of the ve-
hicle trajectory. Based on the available nominal power
of the vehicle and the tractive force at starting the trac-
tive force-to-velocity characteristic is calculated. Thus
the maximum available traction force can be calcu-
lated depending on the actual velocity. Depending on
basic parameters of the vehicle e.g. weight, rolling
resistance or aerodynamic resistance the driving resis-
tance of the vehicle can also be calculated for each
given velocity.

In addition specific parameters of the track resulting
from curves, gradients or tunnel (provided via RailML
data) lead to additional resisting forces that need to be
considered. The movement of the vehicle is simulated
by applying all resulting forces to a point mass. From
the movement of this mass all necessary data for cal-
culation of the electric network can be derived. The
calculated mechanical power is used to derive the elec-
trical power consumption of the vehicle. This power
consumption is needed to calculate the traction cur-
rent during simulation of the electrical network. The
vehicle trajectory is performed for a predetermined ve-
locity profile corresponding to the tracks to pass.

To simulate the energy flow within this network the
vehicles are modeled as variable current sources us-
ing the actual required electric power consumption as
input. In this way it is possible to calculate the re-
sulting current sharing based on the electric power re-

Figure 4: Diagram layer of the network.

Session 1C: Power and Energy

DOI Proceedings of the 9th International Modelica Conference 129
10.3384/ecp12076125 September 3-5, 2012, Munich, Germany

quirement of the vehicles, the supply voltage and the
voltage drop alongside of the catenaries.

As an example Fig. 5 shows the resulting voltage at
the pantographs as well as the traction currents of two
vehicles on their pass through section 2 of the exem-
plary network shown in Fig. 4. The first vehicle (red
curves in Fig. 5) enters this section at about t = 115 s.
It enters the section at a velocity of 40 km/h. Since the
scheduled velocity in this section is 80 km/h the ve-
hicle accelerates until it reaches the allowed velocity
at about t = 132 s. This acceleration is associated to
high traction forces resulting in a strongly increasing
traction current.

Due to the increasing current the voltage at the pan-
tograph drops during the acceleration to about 700 V.
At approximately t = 183 s the traction current is again
significantly increasing. At this specific point the gra-
dient of the track changes from 0 to 30h. This gra-
dient abruptly increases the resisting force. To keep
the scheduled velocity the traction force has to be in-
creased as well resulting in a higher required mechan-
ical and consequently electrical power consumption of
the vehicle.

The traction current remains high until the gradi-
ent changes again from 30 to 0hat approximately
t = 257 s. Fig. 5 presents the voltage at the pantograph
to jump up to 650 V during this passage.

Figure 5: Simulation result of the voltages of both ve-
hicles as a function of time.

The second vehicle (blue curves in Fig. 5) enters
this section at about t = 30 s later already at a veloc-
ity of 80 km/h so that there is no further acceleration
needed. When the second vehicle approaches the gra-
dient change its traction current increases for the same
reasons as mentioned before. At this point in time both
vehicles have a high power consumption that leads to
an additional voltage drop in the whole section. The
voltage at the pantographs of both vehicles then drops
significantly under 600 V which is critical since the
minimum permitted voltage in DC-powered light rail
networks with a nominal voltage of 750 V is 500 V.

To investigate the influence of energy storage de-
vices as part of an energy management of railway net-
works a basic model of an electric double layer capac-
itor a so called Super Cap was also included within the
vehicle model.

The Figures 6 and 7 each compare two different sce-
narios for the usage of these Super Caps. Fig. 6 shows
the voltage drop at the pantograph of one vehicle pass-
ing the same section as shown in Fig. 5 as well as
the state of charge of the Super Cap for two different
cases.

Initially the vehicle is at rest and then accelerates up
to 80 km/h. It stops at the end of the section. The Fig. 6
demonstrates the influence on the voltage drop during
acceleration if state of charge is at 100% at starting
time. In the sequence the voltage does not drop until

Figure 6: Simulation results presuming two different
initial states of the Super Cap.

The Modeling of Energy Flows in Railway Networks using XML-Infrastructure Data

130 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076125

Figure 7: Simulation results associated to two different
regimes for the use of Super Caps in operation.

the Super Cap is fully discharged at about t = 17 s.
Until that point in time the full traction power is pro-
vided by the energy storage and no current is flowing
between substation and vehicle.

When the vehicle starts braking at the end of the
section, the Super Cap is fully charged and the stored
energy can be used for the next run. Considering the
same vehicle trajectory as in Fig. 6 Fig. 7 delineates
another exemplary regime to employ an energy storage
device. The Super Cap may not only be used to pro-
vide energy for acceleration but may also be exploited
in order to ensure voltage stability. Fig. 7 presents the
Super Cap not to be discharged until the voltage drops
below 650 V. As soon as the voltage drops below this
threshold the required electrical power is provided by
the energy storage and for about 17 s the traction cur-
rent is fully supplied through the Super Cap. This way

Figure 8: Schematic animation of the simulation.

a temporary voltage drop below critical values can be
avoided.

Fig. 8 depicts an animation of the scenario when
one vehicle is running along Track 3, while the other is
moving between Power Station 3 and 5 at Track 4. The
height of the red bars positioned close to each power
station illustrate the instantaneous current provided by
the associated power station.

The given examples have shown in principle that
future investigations of energy flows within complex
electric networks including the consideration of en-
ergy storage devices can be done using standardized
data sets in Modelica.

5 Conclusions and Outlook

In the course of the DLR project Next Generation
Train the RailwaySystem Library will be used in order
to evaluate the energy reduction potential of an energy
managément system that takes the vehicle energy sys-
tem and the power supply infrastructure into account.

Future versions of the RailwaySystem Library
will include the capability to automatically instan-
tiate and connect all track sections found in the
railML R©database, so that the modeling of a complex
network structure is substantially facilitated.

References

[1] J. Winter, E. Mittelbach, and J. Schykowski, ed-
itors. RTR Special - Next Generation Train. Eu-
railpress, DVV Media Group, 2011.

[2] H. Biesenack, G. George, G. Hofmann, A.
Schmieder, E. Braun, K. Girbert, R.C. Klinge, R.
Puschmann, S. Röhlig, E. Schlechter, E. Schnei-
der, A. Stephan, and G. Zimmert. Energiever-
sorgung elektrischer Bahnen. Teubner Verlag,
Wiesbaden, 2006.

[3] D. Hürlimann. Objektorientierte Modellierung
von Infrastrukturelementen und Betriebsvorgän-
gen im Eisenbahnwesen. PhD thesis, ETH
Zürich, 2001.

[4] RailML R©. http://www.railml.org/web/.
[Online; accessed 20-February-2012].

[5] Creative Commons License. http:
//en.wikipedia.org/wiki/Creative_
Commons_license. [Online; accessed 15-May-
2012].

Session 1C: Power and Energy

DOI Proceedings of the 9th International Modelica Conference 131
10.3384/ecp12076125 September 3-5, 2012, Munich, Germany

[6] S. Röhlig. Beschreibung und Berech-
nung der Bahnbelastung von Gleichstrom-
Nahverkehrsbahnen. PhD thesis, TU Dresden,
1992.

[7] Th. Braig, H. Dittus, J. Ungethüm, and T. En-
gelhardt. The Modelica library AlternativeVehi-
cles for vehicle system simulation. In 21. Sympo-
sium Simulationstechnik, SIM 2011, Winterthur,
Suisse, Sept., 7. - 9. 2011.

[8] J. Tobolář, M. Otter, and T. Bünte. Modelling
of Vehicle Powertrains with the Modelica Pow-
erTrain Library. In Systemanalyse in der Kfz-
Antriebstechnik IV, pages 204–216. expert Ver-
lag, 2007.

[9] A. Nash and D. Hürlimann. Railroad simulation
using OpenTrack. In J. Allan, C.A. Brebbia, R.J.
Hill, G. Sciutto, and S. Sone, editors, Computers
in Railways IX. WIT Press, 2004.

[10] Document Object Model (DOM). http:
//en.wikipedia.org/wiki/Document_
object_model. [Online; accessed 15-May-
2012].

[11] expat. The expat XML parser. expat.
sourceforge.net/. [Online; accessed 16-
March-2012].

[12] MIT License. http://en.wikipedia.org/
wiki/MIT_License. [Online; accessed 15-
May-2012].

[13] scew. Simple C expat wrapper. www.nongnu.
org/scew/. [Online; accessed 16-March-2012].

[14] LGPL License. http://en.wikipedia.org/
wiki/LGPL_license. [Online; accessed 15-
May-2012].

The Modeling of Energy Flows in Railway Networks using XML-Infrastructure Data

132 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076125

Implementation of a Modelica Library for Energy Management based on Economic Models

Implementation of a Modelica Library
for Energy Management based on Economic Models

Dirk Zimmer, Daniel Schlabe
Deutsches Zentrum für Luft- und Raumfahrt.

Münchner Strasse 20, 82234 Weßling, Deutschland
{dirk.zimmer, daniel.schlabe}@dlr.de

Abstract

The use of modeling paradigms for physical systems
can in some instances be stretched to reach other
domains. This paper presents one such example: it
describes the design of a Modelica library that im-
plements economic models to be used for the pur-
pose of energy management. The design principles
of this library such as the use of pseudo-physical
connectors are outlined and examples for managing
energy sources and loads are discussed.
Keywords: Energy management, Load management,
Economic models, Object-oriented modeling.

1 Introduction

This paper presents the modeling of energy man-
agement tasks by the use of economic models. In this
approach, each provider of energy and each consum-
er is characterized by a specific cost function. A
global market or a set of local markets then decide
about the distribution of energy flow.

To this end, a new Modelica library has been de-
veloped. It supports the modeler in the design of his
or her energy distribution system and derives an (at
least partly) optimal solution for the distribution
based on the provided cost functions.

The library is not coupled to any specific physical
domain. All its components concern energy in its
most abstract form. In fact, many energy manage-
ment tasks involve multiple physical domains and
therefore a domain-specific approach would be of
limited value.

The library is currently split into two sub-libraries
that are geared towards different application do-
mains: source management and load management. It
is still under development and currently not publicly
available.

2 Economic Models for Energy Man-
agement

2.1 State of the Art

The links between models and theories used in mi-
cro-economics and typical tasks of an energy man-
agement function are very close. In both cases, there
is a set of providers and a set of consumers. The con-
sumers pay a price of a utility depending on the
availability or production of the providers. The main
difference is the type of the utilities. In micro-
economics this is typical any kind of product, for an
energy management the utility is power or energy.

The application of economic models for a power
management is already demonstrated in [9]. An en-
ergy manager based on economic models for the
electrical system of automobiles, especially for hy-
brid cars, has been studied in [1] and [6]. Additional-
ly, available methods for energy management of air-
craft electrical systems can be found in [8].

The main idea behind this market-oriented ap-
proach is the usage of power p over price v functions
for each source/provider and consumer/load as illus-
trated in Figure 1.

p = f(v)

These functions describe how much price a load is
able to pay for a dedicated power and how much
power a source will provide for a certain price re-
spectively. These functions could be determined by
e.g. the efficiency or the priority of a component.

Since p denotes the outflowing power, the cost
functions are typically positive for sources and nega-
tive for loads.

Subsequently for all sources and loads the sum-
functions are calculated as shown in Figure 2. The
intersection of load and source sum-functions deter-
mines the current price and thus the power of each
component.

DOI Proceedings of the 9th International Modelica Conference 133
10.3384/ecp12076133 September 3-5, 2012, Munich, Germany

Load 1

Load 2

Load 3

Source 2

Source 1

Power p [W]

Power p [W]

Power p [W]

Power p [W]

Power p [W]

0

0

0

0

0 Price v [$/W]

Price v [$/W]

Price v [$/W]

Price v [$/W]

Price v [$/W]

Figure 1: Cost-functions of single loads and sources.

Price v [$/W]

Power p [W]

Equilibrium

Negated sum of loads
Sum of sources

0

Figure 2: Sum-functions and equilibrium.

The advantage of such an approach is the integration
of different relevant aspects like efficiency of the
sources or availability of the consumers for an ener-
gy manager in one single characteristic cost function.
Furthermore, this enables the modeling of sources
and consumers in an object-oriented way and thus an
easy set-up of an energy management function of a
dedicated system within an early stage of design.

2.2 Limitations

To guarantee the existence of a unique intersection
of load and source cost-functions, these have to be
monotone and continuous. If this restriction is not
maintained, one has to guarantee with other means
that a stable intersection can be found in either case.

In addition, economic models are best suited for
finding an optimal solution at one specific time in-

stant, but not for optimizing the energy consumption
predictively regarding dynamic influences. For this
case, further means are needed that have to be inte-
grated to these models.

2.3 Scientific Contributions of this paper

Based on the described state of the art, this paper
demonstrates the implementation of a market-
oriented energy management library in Modelica.
Therefore the library including its components and
the working principles are outlined in the following
sections.

New concepts for dealing with non-monotone
cost functions of sources are introduced. For this
task, several rounds of negotiation are being used.
Multiple negotiation rounds are also used for dealing
with switchable and continuous loads in one system
to reach a maximum availability of loads.

The modeling of energy systems is not confined
to models for sources and loads. Hence also further
components like limiters or transformers are consid-
ered that modify the cost-functions in a dedicated
way.

3 Fundamental design of the library

The goal of this paper is to describe how such eco-
nomical models for energy management can be
modeled in a truly object-oriented way. The idea is
that energy distribution systems can be assembled
from basic components such as producers and con-
sumers. Also the modeler shall not be directly con-
cerned with the cost functions. Instead the cost-
functions should be derived by parameters such as
efficiency or priority levels.

To this end, a Modelica library has been devel-
oped. In this section, we present its common inter-
face and the most basic components.

3.1 Connector design

The connector of the energy management library is a
so-called pseudo physical connector. This means that
it mimics the characteristics of classic physical con-
nectors without describing actual physical quantities.
In concrete terms: the connector contains a pair of a
potential variable and a flow variable just like a
physical connector. In this way, we profit from the
advanced support of physical connectors (like the
check of balanced models) in Modelica.

The potential variable of the connector is the
price per watt [$/W] and the flow variable is the
power outflow [W]. A positive value for the power

Implementation of a Modelica Library for Energy Management based on Economic Models

134 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076133

outflow is typical for a source. Consequently con-
sumers have negative values of their flow variable.
Similar pairs have already been suggested during the
1970s in [2] and [3] and enable a more natural mod-
eling than sheer System Dynamics for Modelica [5].

The product of the potential variable and the flow
results in the amount of money that is transmitted
through the connector (negative values represent
costs, positive values represent income). The money
is of course virtual and not related to any real curren-
cy.

A connection between a set of connectors thus
represents an ideal market where all participants pay
or receive an equivalent price for an equivalent
product.

Listing 1: Code of the power socket.

connector Socket

 parameter Integer n=1;

 PricePerWatt price[n];
 flow SI.Power power[n];

end Socket;

Listing 1 presents the Modelica code of the connect-
or. Evidently, price and power represent not scalars
but vectors of a parameterized size n. The reason for
this is explained in section 4.6. For the moment, let
us continue by pretending these are scalars. We
simply assume: n=1.

3.2 Icons

A component of the library may represent a source
of energy, a consumer, a transformer of energy or
redistributors.

These are all components that also occur in many
physical domains such as electric systems. However,
since this library shall be domain independent, no
symbols of such libraries shall be used.

There are only a few domain neutral symbol lan-
guages. One of them is bond graphs. For our purpose
bond graphs [4] are however too low-level and too
technical. For instance there is no distinction be-
tween a source and a sink in bond graphs.

Another set of icons has been developed for the
Energy Systems Language developed in the field of
ecology by Howard T. Odum [7]. It is also not di-
rectly usable for our purpose, but at least the abstract
forms used in this language inspired the design of
our set of symbols that is listed in Table 1.

Table 1: Icons used for energy management.

Source / Producer

Sink / Consumer / Load

Waste

Transformer

Split

Limiter

One-way

A source can represent a source of fuel or an energy
producer such as a power plant. The sink is its coun-
terpart element. It mostly represents a consumer. The
waste element is a special case for the sink that ena-
bles the system to waste energy.

Energy can be transformed into other forms by
imposing further costs using a transformer. The split
element can be used to distribute energy into differ-
ent branches. For instance in a combined heat and
power plant 40% of the power is electricity and the
remaining 60% are available as heating power.

The components one-way and limiter are ex-
plained in section 4.4 and section 5.2 respectively.

3.3 Example

Given the set of components, it is now possible to
compose an energy distribution system. Figure 3
shows the model diagram of an example system.
Here, two sources are available: one for heating and
one for electricity. Two consumers model the respec-
tive demand. In addition there is the possibility to
use electricity for heating. A waste element ensures
that energy can be dumped in the unlikely case that
the electricity demand may fall below the idle power
output of the electricity generation plant.

Session 1C: Power and Energy

DOI Proceedings of the 9th International Modelica Conference 135
10.3384/ecp12076133 September 3-5, 2012, Munich, Germany

Figure 3: The model diagram of an example market.

3.4 Solving the non-linear systems of equations

All component models contain a description of their
cost function that expresses the price as function of
the power. The connection of this components leads
then to (typically) non-linear equation systems. If all
cost functions are strictly monotonic increasing or
decreasing, there will be a unique solution.

Depending on the cost-function and the specific
connection structure, a simulation software such as
Dymola might be able to solve this non-linear equa-
tion system, but in some practical examples this
turns out not to be the case.

Hence we have developed an auxiliary controller
unit that regulates the price v on the market by a
simple differential equation. The controller may
compensate for any lack or excess of power p. It in-
creases the market price in case of a power outflow
(p > 0) due to a lack of power and decreases the price
in case of a power inflow (p < 0) due to excess of
power.

dv/dt ∙ T = p

where T is an arbitrary time constant.

This controller is typically applied to a connection
set. In the diagram of Figure 3, it is depicted as grey
“$” placed in a circle. With this element, it is possi-
ble to find the solution in robust way by approaching
steady state. The drawback of such a controller is
that it makes the system potentially stiff and requires
implicit solvers such as DASSL for the efficient
simulation of the system.

The application of such a controller could proba-
bly be avoided if there exists a Modelica language
construct to suggest suitable tearing variables.

4 Application Domain: Source Man-
agement.

4.1 Motivation

In this application domain, we want to fulfill a given
consumer demand by using the most efficient com-
bination of sources available. Hence the cost func-
tions take into account the efficiency of sources and
subsequent processes of energy transformation.

4.2 Derivation of cost functions

In this scenario, the consumer demand is regarded as
a given that is required to be fulfilled at any cost.
Hence modeling the cost function of a consumer is
very simple: A consumer is the equivalent to an ideal
flow sink. Prescribing the flow variable for any po-
tential price per watt while leaving the price to be
determined by other parts of the system:

p = ‐demand

The waste element is a special case of a consumer.
An ideal waste element is similar to an ideal diode. It
is a sink of zero flow for prices above zero and con-
sumes arbitrary amounts of energy at a price of zero.
A price below zero means that the producers would
have to pay for their energy to be consumed. Alt-
hough this actually occurs in real markets, the waste
element can be used to prevent such cases.

s = if (s > 0) then p else v;
0 = if (s > 0) then v else p;

where s is a curve parameter

Figure 4: Cost function of a waste element.

Modeling sources is a little more difficult. The price
shall reflect the efficiency of energy use. The sim-
plest case is a source of constant efficiency. In the
ideal case, this source stipulates the price for any

CE

electricity

CE

heat

electricConsumption

T

heatConsumption

T

waste

$

Implementation of a Modelica Library for Energy Management based on Economic Models

136 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076133

arbitrary power output to be the inverse of the effi-
ciency:

v = 1/efficiency

No real source of energy is unbounded. All sources
have a maximum capacity and many of them have an
idle power output beyond which their production
cannot decrease. These limitations can be modeled
by a step function.

Power
[W]

ideal source

ideally limited source

regularized limited source

idle power

max. power

Price [$/W]0

Figure 5: Cost function of different source models.

Finally, a split element can be used to model the sep-
aration of power into distinct branches by a fixed
fraction. It distributes the power inflow pin into two
power outflows pout1 and pout2 by a given fraction R.
The split element is connected to markets with a dif-
ferent price per watt. The price per watt of the power
inflow vin is then the weighted mean of the two out-
flow prices: vout1 and vout2. Here are the correspond-
ing equations to relate the three connectors:

pin + pout1 + pout2 = 0;
pout1 ∙ (1‐R) = pout2 ∙ R;

vin = vout1 ∙ R + vout2 ∙ (1‐R);

4.3 Regularizing the cost functions

For the numerical solution, it is advantageous if all
cost functions are continuous and strictly monotonic
functions. Then a unique solution is guaranteed in
case the total demand can be met. But the curves for
the ideal limiter or the ideal waste element substan-
tially differ from this requirement. They represent
multi-valued functions that are also strictly monoton-
ic increasing or decreasing. Indeed their modeling
would require the use of parametric curves such as
for ideal diodes. To avoid this effort and the resulting

numerical problems, a regularization scheme is ap-
plied.
The regularization is indicated by the grey curves in
Figure 4 and Figure 5. For its realization, a mixture
of sigmoid and exponential functions is used. The
precise realization is somewhat arbitrary and also of
no particular importance and hence has been omitted
here.

The regularization is of course a further potential
cause of stiffness and/or implies a loss of precision.
The trade-off between precision and stiffness can be
set by fudge parameters. These are provided globally
by an outer model so they do not have to be set of
each element individually.

4.4 Example 1: A combined power generator

Figure 6: Model diagram of a combined power generator
and two corresponding consumers for electricity and
thermal energy (heat).

Figure 6 presents the example of a combined power
generator of electricity and heat. Up to 60% of the
thermal energy can be converted into electricity. This
is modeled by a combination of a split element and a
one-way component that acts like a diode: power can
only flow in one direction.

The loss in conversion between thermal and elec-
tric energy is modeled by a transformer component.
Both consumer models stipulate the total power de-
mand that is varying over time.

For the simulation, the electric consumption is
constantly decreasing from 250 kW to 100 kW. The
demand of thermal energy is constantly increasing
from 50 kW to 500 kW. The impact on the price can
be observed in Figure 7. It contains the simulation
result for the price per Watt for both consumers.

Due to the initial high demand for electricity, the
consumers of thermal energy do not have to pay any-
thing at all (the price is actually even slightly below
zero because of the regularization of the waste ele-
ment). The generation of electric energy produces
sufficient heat as side product.

heat

T

split

0.4

CR

plant

electricity

T

waste

$ $

oneWay

conversion

Session 1C: Power and Energy

DOI Proceedings of the 9th International Modelica Conference 137
10.3384/ecp12076133 September 3-5, 2012, Munich, Germany

During the simulation, the demand shifts towards
the need for thermal energy. Then the bill needs to
be split. Electric energy still remains more expensive
than thermal energy because it needs to be converted
(at loss) from thermal energy and the combined pro-
ducer can control how much of that needs to be con-
verted.

This example demonstrates how the cost-function
of a more complex source like a combined generator
can be modeled in a true object-oriented way by
combining simple components.

Figure 7: Price development of thermal energy (red) and
electric energy (blue).

4.5 Treatment of non-monotonic cost-functions

The presumption that the cost function is strictly
monotonic increasing is not realistic for a large set of
power generators. Many of them have an ideal oper-
ating range that does not start at idle power. This
means that when these generators are used for low
power output they can be very inefficient. The mul-
tivalued cost-function of Figure 8 represents such a
characteristic curve.

The solution of systems with such cost functions
can be numerically very difficult and often there are
multiple equilibriums in the market. Finding the op-
timal equilibrium is a very demanding optimization
problem that in general cannot be handled in poly-
nomial time. Hence a robust handling of such non-
monotonic cost function requires a good solution
strategy.

Price [$/W]

Power
[W]

0

Figure 8: A non-monotonic, multi-valued cost function
(red) and a corresponding monotonic, single-valued hull
curve (grey).
In this paper, we propose a bullying strategy. It re-
flects a behavior that also exists in real markets. Big
players, in our case large and potentially very effi-
cient power generators, compete for a contract. They
pretend to be more efficient than they actually are.
When the order finally turns out to be too small to be
efficiently handled by the big player, the contracts
are handed over to small players by issuing sub-
contracts. The final point of equilibrium is hence
determined in several rounds of negotiation: first the
big players then the smaller players.

In our library such a bullying strategy is imple-
mented by creating hull curves in multiple rounds of
negotiation. Figure 8 shows the effective cost-
functions for our producer. However, in the first
round of negotiation this curve is not used but the
grey hull curve instead.

The hull curve must be monotonic increasing and
must always be greater or equal than the effective
cost curve. Within these constraints, it should be as
low-valued as possible. In those sections where the
hull curve does not coincide with the effective cost
curve, the producer is hence pretending to be more
efficient than he actually is.

Price [$/W]

Power
[W]

p1

v1’v10

Figure 9: A new hull curve is generated for the non-
monotonic cost-function based on the previous market
solution (v1, p1).

10 20
-1

0

1

2

3

4

5

6

[$/W]

[min]

Implementation of a Modelica Library for Energy Management based on Economic Models

138 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076133

Since all participants in the market use monotonic
hull curves, a solution can easily be found. If the so-
lution (v1, p1) is now placed in a section where the
hull curve does not coincide with the effective cost
curve, the correspondent producer has to “reveal” its
effective costs (v1’, p1) in the second round of nego-
tiation.

To this end, a new hull curve is generated. Again it
must be monotonic increasing. But the solution of
the first round now splits the hull curve in two parts:

 For v < v1’, the curve must again be greater or
equal than the part of the effective cost curve
that is lower than p1 and within these con-
straints as low-valued as possible.

 For v >= v1’ the curve must be greater or equal
to than the effective cost curve or equal to p1,
again, as low-valued as possible.

Figure 9 illustrates such a new hull curve for a given
market equilibrium. The procedure can be iterated
for several rounds of negotiation. In general, this
iteration scheme cannot be proven to approximate
the optimal solution, but since each hull curve will
be smaller valued than its predecessor the process is
at least bound to converge.

In practice, however, this iteration scheme has at
least shown to work very well. Therefore let us illus-
trate it by an example.

4.6 Example2: Non-monotonic behavior.

Figure 10: Two sources compete for one consumer. The
consumer demand is rising at a constant rate.

In this example, two generators compete to fulfill the
power demand of one source. One small generator
that is rather inefficient and limited to a small ca-
pacity and a large generator that is very efficient for
high-load values and very inefficient for low load
values. The small generator shall thus be used to
overcome the efficiency gap of the large one.

Price [$/W]

Power
[W]

0

Figure 11: Sketch of the two cost functions for the large
(red) and small (green) generator.
Figure 11 sketches the two cost functions and Figure
10 displays the corresponding model diagram. To
enable several iterations for the final solution, the
price per watt and the power have been implemented
as vectors (see Section 3.1). By the parameter n, the
number of iterations can be determined. In this case,
we choose n=4. This means that the model contains
now 4 parallel market models that each represents
one round of negotiation.

During simulation the power demand is increas-
ing with a constant rate. Figure 12 and Figure 13
presents the results of the simulation for the different
rounds of negotiation. We can see the produced
power of each generator.

Clearly, in the first round (blue), the large genera-
tor pushes aside its smaller counterpart. But in the
following rounds of negotiation, the small generator
can make its point. The resulting final behavior (ma-
genta) almost leads to a discrete switch as soon as
the large generator becomes more efficient as its
smaller counterpart. The simulated results reflects an
almost optimal behavior.

consumer

T

waste

CR

non_monotonic

CR

monotonic
4

market

Session 1C: Power and Energy

DOI Proceedings of the 9th International Modelica Conference 139
10.3384/ecp12076133 September 3-5, 2012, Munich, Germany

Figure 12: Power output of the large generator for differ-
ent rounds of negotiation (round 1: blue, round 2: red,
round 3: green, round 4: magenta).

Figure 13: Power output of the small generator for differ-
ent rounds of negotiation (round 1: zero valued, round 2:
red, round 3: green, round 4: magenta).

5 Application Domain: Load Man-
agement

5.1 Motivation

A typical load management (e.g. as applied in the
electrical system of an aircraft) can cut and reconnect
loads depending on its priority. The priorities can
directly be translated into prices. Thus low priority
loads just pay low prices for a certain amount of
power whereas high priority loads pay high prices.

The goal is to get a stable, object-oriented load
management function. Thus it is possible to get an
implementation very quick and enable an early inte-
gration of the function into design process of system
to be controlled. Furthermore, modular functionality
like dealing with switchable and continuous loads in
one system can easily be added.

5.2 Derivation of cost functions

Other than source management, the model of a typi-
cal source for load management looks rather differ-
ent. The focus is on maximum availability of loads
and stability, not on energy efficiency. A source
function as illustrated in Figure 14 is implemented
having linear segments in three areas.

In area I, all loads are on. So there is no special
requirement on the function rather than being mono-
tone and continuous. Area III defines the maximum
power capacity of the generator by means of a con-
stant value. In this area all controllable loads shall be
off. Within area II, cutting of switchable loads and
decreasing of continuous loads take part.

Price [$/W]

Power
[W]

I II III

0

Figure 14: Cost-function of a source having three areas: I
– all loads on, II – shedding, decreasing loads with respect
to its priority, III – all controllable loads off.
As shown in Figure 15 the cost-functions of switcha-
ble and continuous loads are quite equal in principle.

Price [$/W]

Power [W]
I II III

Price [$/W]

I II III

Negated cost function

Control signal

0 0

Figure 15: Negated cost functions and control signals of
switchable loads (left) and continuous loads (right).
They consist of a full-power area, a linear decreasing
area, and a zero-power area. The main difference is
the slope of the function. The following inequation
applies:

slope(switchable loads) >> slope(continuous loads)

0.0 0.1 0.2
0

20
40
60
80

100
120
140
160
180
200

0.0 0.1 0.2
0

20
40
60
80

100
120
140
160
180
200

[min]

[min]

[W]

[W]

Implementation of a Modelica Library for Energy Management based on Economic Models

140 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076133

Furthermore, the control signal is different for the
two types of loads. All switchable loads receive an
off-signal, if the current price is not within full-
power area whereas all continuous loads receive a
continuous power signal as determined in the cost-
function. Since the location of the linear decreasing
segment is determined via the priority of the loads
and a global market model prescribes the location of
the areas I, II, and III it can be guaranteed that this
linear segment lies entirely in area II.

As the switchable loads are cut at the linear de-
creasing segment, one must avoid having two loads
with the same priority. Otherwise both loads will be
cut, even if not needed. Thus, each load should have
its own priority.

If there are switchable and continuous loads in
one system, multiple rounds of negotiations can be
used to determine the power inflow for the continu-
ous loads. This is done via setting a price in a first
negotiation round using all cost-functions as de-
scribed previously for calculating the control signals
for the switchable loads. A second and final negotia-
tion round for the continuous loads can then use the-
se discrete control signals and assume all cost-
functions of the switchable loads to be constant in all
three areas (on or off). Thus less generator-capacity
is wasted.

In typical load management systems, there are
usually additional restrictions rather than the availa-
ble generator capacity (e.g. a feeder that limits
transmitted power or current to a set of loads). This
can be modeled easily by means of a limiter as
shown in Table 1. On the output plug, a price can be
increased if a prescribed limit is exceeded. The pre-
ferred implementation includes qualitatively the
same cost-function as for the generator (see Figure
14). At the output plug, a maximum function is ap-
plied that defines either the price at the input plug
(i.e. from the price coming from the generator) or the
price of the limiter. This ensures compliance with the
restriction as well as an optimal availability of high
priority loads.

5.3 Example

Figure 16 shows a simple setup of a load manage-
ment model consisting of one source, three feeders
(limiters) and six different loads. The model is set up
in the same way like the corresponding physical
electrical system

Figure 16: Example of a load management model having
one source, 3 feeders and 6 loads (mixed continuous and
switchable).
After specifying the nominal values for the source
(generator) and the feeders as well as setting the pri-
ority of the loads, the load management function is
ready to be used. Depending on actual power de-
mand (input not illustrated in the figure), loads will
be shed, reconnected, or reduced to comply with all
restrictions of the source and limiters.

6 Conclusion and future work

This work represents our first approach towards a
market-oriented modeling of energy-management
tasks using a Modelica library. The current results
look promising and demonstrate the principal func-
tionality of the library. It can be used both for source
and load management and also more difficult tasks
such as non-monotonic cost functions can be reason-
ably well handled.

Although, we have analyzed only rather small
systems so far, the simulation performance was al-
ways very good. We expect thus that the approach is
also for feasible for larger systems with hundreds of
generators and consumers.

One mayor advantage of having an energy man-
agement function directly implemented in Modelica
is the easy coupling to the physical system it shall
control. This enables an improved development pro-

Session 1C: Power and Energy

DOI Proceedings of the 9th International Modelica Conference 141
10.3384/ecp12076133 September 3-5, 2012, Munich, Germany

cess of the system in conjunction with its control
function and thus early optimization of both.

In case of source management, certain tasks need
to be approached in order to create a solution that is
more intuitively applicable for engineers. The import
of characteristic curves (based on real data) for the
efficiency of generators shall be supported by the
library. In addition, the library needs to be tested at a
larger set of more realistic examples. Further future
potential concerns the modeling of dynamic charac-
teristics. Power generators typically cannot increase
their output power at any arbitrary rate. Also storage
components like batteries have a dynamic pricing of
their energy.

In case of load management, further functionality
like variable cost functions shall be added to the li-
brary by allowing variable priorities. This enables a
more flexible energy management, since the im-
portance and availability of a load can change during
operation. In addition, sources like generators can
often be overloaded due to their heat capacity. Thus
they shall also influence the cost function dynamical-
ly. Furthermore, additional elements like switches
can be added to allow adaption of the management
function in case of a network re-configuration.

One further major step is to combine both sub-
libraries in a suitable way. This means to manage
priorities of the loads as well as energy efficiency by
one cost function. To this end, a more elaborated
determination of price according to load priority,
energy efficiency, and further restrictions is needed.

References

[1] Büchner, Stefan. Energiemanagement-
Strategien für elektrische Energiebordnetze
in Kraftfahrzeugen. Dresden, Germany: PhD
thesis, faculty of Transportation and traffic
sciences Friedrich List, TU Dresden, 2008.

[2] Brewer, J. W. Bond Graphs of Microeco-
nomic Systems. Automatic Control Division,
ASME, New York, 1976

[3] Brewer, J. W. and P. C. Craig. Bilinear, Dy-
namic Single-ports and Bond Graphs of Eco-
nomic Systems. Journal of The Franklin In-
stitute, No 185, 1991

[4] Cellier, F. E., Continuous System Modeling.
Springer Verlag New York, 1991.

[5] Cellier, F.E., World3 in Modelica: Creating
System Dynamics Models in the Modelica
Framework, Proc. 6th International Modeli-
ca Conference, Bielefeld, Germany, Vol.2,
pp. 393-400, 2008.

[6] Engstle, Armin. Energiemanagement in Hyb-
ridfahrzeugen. Munich, Germany: PhD the-
sis, Fakultät Elektrotechnik und Infromati-
onstechnik, TU München, 2008.

[7] Odum, H.T, Ecological and General Sys-
tems: An Introduction to Systems Ecology,
Colorado University Press, Colorado, USA,
1994.

[8] Schlabe, D., and J. Lienig, “Energy Man-
agement of Aircraft Electrical Systems -
State of the Art and Further Directions,” In-
ternational Conference on Electrical Systems
for Aircraft, Railway and Ship Propulsion
(ESARS), Italy, October 2012.

[9] Ygge, Fredrik, Market-Oriented Program-
ming and its Application to Power Load
Management. Lund, Sweden: PhD thesis,
Department of Computer Science, Lund Uni-
versity, 1998.

Implementation of a Modelica Library for Energy Management based on Economic Models

142 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076133

Session 1D: Electromagnetic Systems I

Modeling and Simulation of a Linear Piezoelectric Stepper Motor in MapleSim

Modeling and Simulation of a Linear

Piezoelectric Stepper Motor in MapleSim

Orysia Soroka Derek Wright Orang Vahid

Maplesoft

Waterloo, Ontario, Canada

ooasorok@uwaterloo.ca, dwright@maplesoft.com, ovahid@maplesoft.com

Abstract

Devices based on piezoelectric materials have tradi-

tionally been modeled in PDE simulation software.

These simulations are expensive to create and run. In

this paper it is shown that lumped-parameter models

of such devices can provide good fidelity with low

computational cost. Modelica models of supporting

components, along with a system-level model of a

linear piezoelectric stepper motor are presented. The

simulation results show good agreement with pub-

lished experimental results. Future research is pro-

posed based on the components and model.

Keywords: Piezoelectric, Linear Motor, MapleSim

1 Introduction

Piezoelectric materials experience mechanical

stress under the influence of an electric field and,

inversely, produce an electric field with the applica-

tion of a mechanical stress. Materials that exhibit the

piezoelectric effect are used in diverse applications,

including a variety of sensors and actuators, and spe-

cifically in stepper motors. Detailed PDE simulations

of these materials are achievable using simulation

software such as COMSOL, but lumped-parameter

models suitable for component- and system-level

simulations are rare. Developing piezoelectric mate-

rials models in Modelica makes modeling and simu-

lation at the system-level possible. A resulting li-

brary of parametrically-defined component models,

like motors and actuators, would increase the effi-

ciency of modeling and simulating piezoelectric de-

vices routinely deployed in new engineering designs.

In this research, Modelica components imple-

menting piezoelectric material properties, electrostat-

ic forces, and time-varying frictions were developed

and integrated into a device-level model of a linear

piezoelectric stepper motor. The model is parametric

and extensible: the parameters can be changed to suit

application-specific requirements, and nonlinear ef-

fects can be easily included.

MapleSim is a Modelica-based system-level

modeling and simulation platform provided by

Maplesoft [1]. MapleSim simulation results matched

those in [2] when similar values were implemented.

Most importantly, the relative execution speed of the

model permits multi-parameter optimizations not

possible in full PDE simulations. This is demonstrat-

ed via the investigation of the effects of the motor

clamp voltage on velocity using a compiled MapleS-

im procedure in Maple. Future work is then de-

scribed.

1.1 Related Work

To the authors’ knowledge, there is no formal Mod-

elica library available for piezoelectric materials.

However, there have been a variety of disparate

works that have implemented piezoelectric models in

a lumped-parameter framework. For example, a

MEMS library and airbag deployment example in-

cluding piezoelectric elements were implemented in

VHDL-AMS in [3] and [4], respectively. Lumped-

parameter models of piezoelectric devices derived

from high-order FEM models, are presented in [5],

but are not Modelica-specific implementations. They

would retain some of the discretized nature of the

original FEM models and would therefore be further

away from the benefits of using Modelica. In [6],

bond graph and equivalent circuit methods are used

to model piezoelectric motors. Finally, several tool-

independent lumped-parameter physics-based mod-

els are presented in Chapter 6 of [7].

2 Linear Motor Operation

Figure 1 shows the configuration and operation of

the linear motor. The operation is similar to other

slip-stick motors, but is unique in that an electrostat-

ic clamp is used to aid the “stick” portion of the cy-

DOI Proceedings of the 9th International Modelica Conference 143
10.3384/ecp12076143 September 3-5, 2012, Munich, Germany

cle. Periodic waveforms are applied to extend and

relax the piezoelectric material along its longitudinal

direction, pushing the lead weight along with it. The

electrostatic clamp is active during the extension part

of the cycle to prevent the motor assembly from

slipping along the surface. An abrupt voltage is ap-

plied to the piezoelectric material when it is in its

extended state and the clamp is deactivated to cause

the assembly to retract towards its new center of

mass, moving it forward.

Figure 1: Linear motor configuration and operation.

a) The electrostatic clamp is activated. b) The piezo-

electric material extends longitudinally with an ap-

plied voltage, moving the center of mass to the right.

c) The clamp is deactivated. d) The piezoelectric

voltage is quickly removed to cause a snapping mo-

tion, breaking the static friction between the motor

assembly and the surface. The assembly retracts to-

wards its new center of gravity, moving forward.

To model this in MapleSim via Modelica, several

new components were needed: A 1D model of the

piezoelectric material which couples the electrical

and translational domains, an electrostatic clamp that

also couples the electrical and translational domains,

and a time-varying friction model. Their develop-

ment is described next.

3 Component Models

In the following sections, variables indicated in bold

face correspond to port variables. Numbers in brack-

ets preceding an equation (like (), for example)

indicate equations that appear in the final Modelica

component.

These components were first created as MapleS-

im Custom Components, which directly implement

their governing equations developed in Maple. Es-

sentially, the equations are written unsimplified and

MapleSim automatically rearranges and manipulates

them as needed. Upon creation of the component,

Modelica code is auto-generated which was then

manually further modified.

3.1 Piezoelectric Material Model

The development of a 1D piezoelectric model relied

heavily on Chapter 6 of [7]. The full tensor solution

was reduced to the (3,3) direction to select the longi-

tudinal translational mode of operation. Losses and

nonlinearities, such as hysteresis, were neglected as a

first-order approximation. Such effects can be easily

included in the core equations, or included externally

using Modelica Standard Library components. Max-

well’s equations were accordingly simplified. Refer

to Figure 2 for referencing of the port variables.

Figure 2: Through- and across-variable references

for the piezoelectric component.

In one dimension, the traction (stress) of a piezoe-

lectric material is

where T is the traction, c

D
 is the mechanical stiffness

of the material, S is the mechanical strain, h is a pie-

zoelectric coupling coefficient with units of V/m,

and D is the electrical displacement field. Neglecting

inertia, the forces at either end of a slab of length l

and area A of this material are

 | , |
noting that traction is referenced positive in the ten-

sile direction. Therefore

 (
)|

Teflon

Weight (Pb)

PZT 5H

Piezo Terminals (off/on)

Clamp Terminals (off/on)

a)

b)

c)

d)

Motor

Assembly

Surface

F3 F4

s1 s2

I, Vp-I, Vn

Modeling and Simulation of a Linear Piezoelectric Stepper Motor in MapleSim

144 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076143

The strain can be approximated by taking the first

derivative of the material’s displacement in Eulerian

coordinates, , so that

and therefore

 (

|

)

The D field can be replaced with the charge, Q, as

follows:

∮

Since

()

 ∫

|

where Jdisp is the displacement current and I is the

electrical current. Noting that

|

()
Therefore,

()

()
To incorporate inertia, one-half of the calculated

mass is placed on either side of the piezoelectric ma-

terial. It is calculated from its density, , length and

area. Damping could also be included in these equa-

tions, but was not necessary for this particular analy-

sis.

()

()

Finally, the terminal voltage, V, can be calculated as

the integral of the electrical field, , as

 ∫

Since can be defined as a function of D and S via

where e is the (3,3) element of the piezoelectric

stress matrix. It can be defined as

where is the electrical permittivity of the piezoe-

lectric material under constant strain conditions.

Therefore,

and

 ∫ (

)

()

where

() .

3.2 Electrostatic Force Model

An electrostatic force model was implemented that

couples the electrical and translational domains. Un-

like in the piezoelectric model which did incorporate

a linear stress-strain relationship, the stress-strain

relationship of the dielectric material under the influ-

ence of the applied electrostatic force was not in-

cluded. It is present in the system-level model as a

translational spring. This decision was made so that

the component could be easily modified as needed.

For example, more accurate models would use a

translational spring-damper to incorporate losses,

and keeping it outside the electrostatic force compo-

nent facilitates this change. Refer to Figure 3 for ref-

erencing of the port variables.

Figure 3: Through- and across-variable references

for the electrostatic force component.

Neglecting edge effects, the force between two

plates of a parallel capacitor and current are

()

()

()

()

where

()
and

() .

F -F

s1 s2

I, Vp-I, Vn

Session 1D: Electromagnetic Systems I

DOI Proceedings of the 9th International Modelica Conference 145
10.3384/ecp12076143 September 3-5, 2012, Munich, Germany

3.3 Smooth Time-Varying Friction Model

The purpose of this model was twofold: First, a time-

varying friction was needed where the normal force

and coefficients were time-dependent. This was due

to the electrostatic clamp changing the applied nor-

mal force. Second, whereas the standard friction

model is discontinuous when transitioning from stat-

ic to dynamic, a continuous model would produce

similar results and would speed simulation time by

avoiding events. It also eliminated the need to pro-

vide scaling information to the solver to detect

events within such a narrow band of operation. Refer

to Figure 4 for referencing of the port variables.

Figure 4: Through- and across-variable references

and input signals for the time-varying friction com-

ponent.

Beginning with the smooth friction model, a sum

of two hyperbolic tangents was used to create the

approximation.

() () ()
 () ()

In its intended usage, x would be the relative ve-

locity, A1 would be the static friction, and (A2 – A1)

would be the dynamic friction. The coefficients c1

and c2 are chosen so that c1 > c2, which gives the de-

sired function shape. An example is shown in

Figure 5 and its similarity to the basic discontinuous

friction model should be noted.

Similarly, a smooth step-like function was used to

ensure that when non-positive normal force is ap-

plied, there is no resultant “negative” friction. Such a

function was implemented using

() ()

(())

and an example plot is shown in Figure 6.

Using these smooth equations, the friction model

is then implemented as

()

()

() ()
()

 ()
() ()

 ()
where d is the damping coefficient.

Figure 5: Example plot of the smooth friction model

for parameters: A1 = 10, A2 = 5, c1 = 10000,

c2 = 2500.

Figure 6: Example plot of the smooth step function

for the parameter c3 = 10000.

4 Slip-Stick Motor Model

The three new Modelica components were assem-

bled in MapleSim along with library 1D translational

and signal components to create the overall model,

shown in Figure 7.

F -F

s1 s2

μstatic μdynamic

Fnormal d

Modeling and Simulation of a Linear Piezoelectric Stepper Motor in MapleSim

146 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076143

Figure 7: The MapleSim schematic of the parametrically-defined linear motor model.

The model was defined parametrically, using the

parameters summarized in [2] as nominal values.

Amazingly, the results matched quite well just by

using the physical parameters and using some basic

assumptions on the undocumented parameters, in

particular, the characteristics of the driver wave-

forms. For example, it is stated in [2] that step sizes

of 0.07 – 1.1 μm were observed for piezoelectric

voltages of 60 – 340 V. The MapleSim model

achieved 0.061 – 0.371 μm step sizes for the same

applied voltages without any tuning or optimization

of the unknown parameters. Adjusting the magnitude

of the clamp voltage and frequency cutoff of the fil-

ters are two of the easiest was of changing the step

size to help it match the experimental results. There-

fore, the MapleSim model represents a reasonable

approximation to the system behavior without the

burden of a full PDE solution.

4.1 MapleSim Model and Preliminary Results

As stated previously, the model matches the experi-

mental results quite well and provides additional de-

grees of freedom to back-fit to the available data.

Figure 8 and Figure 9 show the applied driver signals

and resulting motor motion, respectively. A compari-

son to the results in [2] shows good qualitative and

numerical agreement.

Figure 8: 1 kHz clamp (green) and piezoelectric (red)

drive voltage signals. The slight overshoot is due to a

low-pass filter set to 10 kHz to limit discontinuities

present in the simulation.

Session 1D: Electromagnetic Systems I

DOI Proceedings of the 9th International Modelica Conference 147
10.3384/ecp12076143 September 3-5, 2012, Munich, Germany

Figure 9: Plots of the position (red) and velocity

(green) versus time of the linear motor.

4.2 Platform for Optimization

One of the goals of this research is to demonstrate

the value of system-level models of devices that tra-

ditionally have only been modeled in PDE software.

As an example of the execution speed and optimiza-

tions possible, consider the results in Figure 10, and

further summarized in Figure 11. They show the po-

sition versus time and velocity versus Vclamp results

for 100 simulations, respectively. When comparing

to the results presented in Fig. 10 in [2], it can be

seen that the results are quite consistent.

Figure 10: Position versus time plots for Vclamp values

from 0 to 1000 V. The nominal value,

Vclamp = 500 V, is shown in blue.

Figure 11: Calculated average velocity values for

various Vclamp. Note how the electrostatic clamp im-

proves the speed of the motor by preventing reverse

motion during extension of the piezoelectric materi-

al.

The per-simulation execution time was 63.8 ms

on a modest Intel Core2 Duo CPU running at

2.80 GHz. Similar results would take a tremendous

amount of time in PDE simulation software. Though

the PDE results would arguably be more accurate,

the marginal accuracy is of questionable value in

light of the orders of magnitude increase in simula-

tion time.

5 Conclusions and Further Research

This paper has demonstrated the creation of a linear

piezoelectric stepper motor in MapleSim. To pro-

duce the motor model, three new components were

created and their derivations were documented. Ini-

tial results correlate well with published experi-

mental results, indicating that lumped-parameter sys-

tem-level models may provide a new platform for

development and optimization of such devices.

The follow-up research currently underway in-

volves multi-parameter optimizations in a multi-

threaded, multicore architecture in Maple. The goal

would be to demonstrate that fast MapleSim models

can be used to optimize for goals like motor speed

and power consumption, as well as to more accurate-

ly fit the experimental data. This will be accom-

plished directly in Maple via its threads and grid

computing capabilities, and in Optimus, a global op-

Modeling and Simulation of a Linear Piezoelectric Stepper Motor in MapleSim

148 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076143

timization and design-of-experiments package by

Noesis [8].

Using the piezoelectric material model as a start-

ing point, further developments include a full multi-

body (6 DoF) model of the material behavior. It is

created using the full tensor description of the piezo-

electric material. This will enable the development of

novel devices using torsional modes, and a more ac-

curate look into the behavior of existing devices, like

the motor presented in this paper.

References

[1] www.maplesim.com

[2] Judy J W, Polla D L, and Robbins W P. A

Linear Piezoelectric Stepper Motor With

Submicrometer Step Size and Centimeter

Travel Range. IEEE Trans. UFFC, Vol. 37,

No. 5, 1990.

[3] Schwarz P, and Schneider P. Model Library

and Tool Support for MEMS Simulation.

SPIE Proc. Microelectronic and MEMS

Technology, Vol. 4407, 2001.

[4] Pecheux F, Allard B, Lallement C, Vachoux

A, and Morel H. Modeling and Simulation of

Multi-Discipline Systems Using Bond

Graphs and VHDL-AMS. Proc. ICBGM,

2005.

[5] Gentili L, Bassi L, Macchelli A, Melchiorri

C, and Borsari R. Model Reduction for High-

Order Port-Hamiltonian Systems. Applica-

tion to Piezo-Electric Systems. Proc. IEEE

Conf. Decision and Control, 2009.

[6] Essalam B A, and Mabrouk K. Generation of

analytical redundancy relations for fault de-

tection and isolation of ultrasonic linear mo-

tor. Nature & Technology, Vol. 4, 2011.

[7] Cobbold R S C. Foundations of Biomedical

Ultrasound (New York: Oxford University

Press). 2007.

[8] www.noesissolutions.com

Session 1D: Electromagnetic Systems I

DOI Proceedings of the 9th International Modelica Conference 149
10.3384/ecp12076143 September 3-5, 2012, Munich, Germany

Modeling and Simulation of a Linear Piezoelectric Stepper Motor in MapleSim

150 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076143

Magnetic Hysteresis Models for Modelica

Magnetic Hysteresis Models for Modelica

Johannes Ziske, Thomas Bödrich

Technische Universität Dresden, Institute of Electromechanical and Electronic Design

01062 Dresden, Germany

Johannes.Ziske@tu-dresden.de Thomas.Boedrich@tu-dresden.de

Abstract

Modelica models for transient simulation of magnet-

ic hysteresis are currently being developed at Tech-

nische Universität Dresden. This paper gives an

overview about the present state of the work. Two

hysteresis models have been implemented so far in

Modelica and are currently optimised and tested: the

rather simple but efficient Tellinen model and the

more complex and accurate Preisach model. Utilisa-

tion of the Tellinen model together with components

of the Modelica.Magnetic.FluxTubes library is ex-

emplarily shown with transient simulation of a three-

phase autotransformer. Additionally, an efficient im-

plementation of the Preisach model is described and

a first comparison between the Tellinen and the clas-

sical Preisach hystesis model is presented. It is

planned to include the developed hysteresis models

into the above-mentioned FluxTubes library after

their further optimisation and validation with own

measurements. These models will especially allow

for the estimation of iron losses and for accurate

computation of saturation behaviour during Modeli-

ca-based design of electromagnetic components and

systems. This becomes increasingly important with

the growing requirements regarding energy efficien-

cy and mass power densities of such systems.

Keywords: magnetic hysteresis, lumped magnetic

network; hysteresis model; Tellinen; Preisach; iron

losses; Modelica.Magnetic.FluxTubes library

1 Introduction

The Modelica.Magnetic.FluxTubes library included

in the Modelica Standard Library [1] is intended for

rough design and system simulation of magnetic

components and devices, e.g. actuators, motors,

transformers or holding magnets [2, 3]. This library

is based on the well-established concept of magnetic

flux tubes, which enables modelling of magnetic

fields with lumped networks [4].

At present, ferromagnetic hysteresis is not consid-

ered in the above-mentioned library. However, the

prediction of losses due to static (ferromagnetic) and

dynamic (eddy current) hysteresis becomes more and

more important during the design of electromagnetic

components. This is due to the increasing demands

on energy efficiency of electromagnetic systems and

due to increasing power densities of those systems.

Prominent examples for this engineering trend are

electromobility and more electric aircraft, where the

necessity of high mass power densities and loss

power minimisation are obvious.

In general, the reliable prediction of hysteresis-

related losses with lumped magnetic network models

is difficult and demanding and has been a topic of

research for a long time. Simplified empirical equa-

tions for loss calculation, e.g. the well-known

Steinmetz formula [5] are based on time-harmonic

flux densities of known magnitude and frequency

[6]. The delayed penetration of magnetic fields into

bulk and laminated ferromagnetic materials can be

approximated in lumped magnetic networks with

Cauer circuits [7].

Transient simulation of magnetic hysteresis in

lumped magnetic network models is possible with

dedicated hysteresis models. Well-known such mod-

els are for example the phenomenological one pub-

lished by Preisach in 1935 [8], the physical model

developed by Jiles and Atherton [9] or the compara-

tively simple model developed by Tellinen [10].

Those models are currently analysed at Technische

Universität Dresden, and selected hysteresis models

are implemented in Modelica for inclusion into the

Modelica.Magnetic.FluxTubes library.

The Tellinen hysteresis model and the Preisach mod-

el have been implemented and are currently tested

and optimised. Theory and Modelica implementation

of these two models and their utilisation in compo-

nents of the Modelica.Magnetic.FluxTubes library

will be presented in the following sections. It must

be noted that this is a report about work in progress

rather than a final presentation of the projected Mod-

elica.Magnetic.FluxTubes library extension. Both

DOI Proceedings of the 9th International Modelica Conference 151
10.3384/ecp12076151 September 3-5, 2012, Munich, Germany

implemented hysteresis models are still subject to

optimisation and validation, e.g. with measurements.

2 The Tellinen Hysteresis Model

2.1 Theory

The hysteresis model developed by Tellinen is thor-

oughly described in [10]. The big advantage of this

model is its simplicity. Thus, it is well suited for fast

simulations when used in lumped magnetic network

models. It works without information about the his-

tory of the magnetic field strength H in ferromagnet-

ic components and can completely be configured

with the limiting increasing and decreasing branches

λi(H) and λd(H), respectively, of the limiting hystere-

sis loop of a ferromagnetic material (Figure 1).

Figure 1: Limiting increasing and decreasing branch

λi(H) and λd(H), respectively, of a hysteresis loop

with magnetic polarization J and magnetic field

strength H (a) and corresponding slope functions

ρλi(H) and ρλd(H) (b).

Together with the corresponding slope functions

ρλi(H) and ρλd(H) the actual slope ρj at the operating

point O(h, j) can be determined as

{

 ()

 () ()
 ()

 ()

 () ()
 ()

 (1)

Thus, the time–based slope of j can be easily com-

puted at every integration step to

 (2)

Hence the slope of the magnetic flux density db/dt of

 ()

 (3)

µ0 is the slope db/dh of the limiting hysteresis loops

within the saturation region.

2.2 Implementation in Modelica

The Tellinen model described above was integrated

into a reluctance element of the Modelica.Mag-

netic.FluxTubes library, and can thus similarly

be used in electromagnetic network models (in [2]

the magnetic library is explained in detail). The re-

luctance model can be configured with the cross sec-

tion and the length of a ferromagnetic core and the

limiting hysteresis loop of the core material. On the

one hand hysteresis loops can be defined by the hy-

perbolic tangent function and definition of the three

parameters JS (saturation polarization), JR (rema-

nence) and HC (coercivity) (see Figure 1a). On the

other hand table data can be used to define the in-

creasing and decreasing hysteresis branches. Thus,

almost arbitrary hysteresis loops can easily be im-

plemented and also easily be derived from measure-

ments. In addition a small experimental library was

built using exemplary table data of some common

ferromagnetic materials (Figure 2).

Figure 2: Exemplarily simulated limiting hysteresis

loops: curve 1 described by a hyperbolic tangent

function and curves 2 to 4 described by tabular B(H)

data extracted from [11].

Magnetic Hysteresis Models for Modelica

152 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076151

2.3 Autotransformer as an Example

The implemented Tellinen hysteresis models were

tested with a simple electromagnetic network model

of a three-phase autotransformer. A sketch of the EI-

shaped ferromagnetic core of the transformer with

indicated corresponding network elements is shown

in Figure 3a and the complete electromagnetic net-

work model in Figure 3b.

Figure 3: Sketch of a three-phase autotransformer

with an EI-shaped ferromagnetic core (a) and corre-

sponding simple electromagnetic network model

with hysteresis elements representing the transformer

core (b).

Figure 4: Simulated magnetic flux densities B vs.

magnetic field strength H of the three hysteresis

elements Rmag1 (blue), Rmag2 (red) and Rmag3

(green) representing the three transformer legs.

Transient oscillations of the magnetic flux densities

in the three transformer legs after power-on are ex-

emplarily shown in Figure 4. Selected corresponding

voltages and currents are depicted in Figure 5.

Figure 5: Results of the autotransformer simulation:

source voltage V1.v and voltage drop RL1.v of load

resistance (a), magnetic flux densities of the three

hysteresis elements Rmag1.b to Rmag3.b (b) and

source currents V1.i to V3.i.

3 The Preisach Hysteresis Model

3.1 Overview on the Classical Preisach Model

In this section a very short overview on the classical

Preisach model is given. More detailed information

on this model can be found e.g. in [12]. The Preisach

model describes the behaviour of an output signal j(t)

in dependence on an input signal h(t) and on its his-

tory. Here, j(t) and h(t) are the magnetic polarisation

of a ferromagnetic material and the magnetic field

strength, respectively. The model assumes an infinite

set of elementary hysteresis operators γαβ. The opera-

tors’ output () can only hold the polarisation

values of -1 or +1 dependent on the upper and lower

switching limits α and β, on the input signal h(t) and

on its history. The behaviour of γαβh(t) is shown in

Figure 6. It is defined as

Session 1D: Electromagnetic Systems I

DOI Proceedings of the 9th International Modelica Conference 153
10.3384/ecp12076151 September 3-5, 2012, Munich, Germany

 () {

 ()
 ()

 (4)

Figure 6: Elementary Preisach operator γαβ (hyster-

on).

The upper switching limit of each operator is always

greater than or equal to the lower limit (α ≥ β). Thus,

the switching limits α and β span a right triangular

region, often referred to as Preisach plane (Figure 7).

Figure 7: Preisach plane.

For each point (α, β) on this plane exactly one ele-

mentary hysteresis operator γαβ exists with upper and

lower switching limits α and β, respectively. The

Preisach distribution function P(α, β) gives a weight

to all operators in the region α ≥ β and is 0 out of that

region. Thus, the output polarisation j(t) of the sys-

tem results in

 () ∬ () ()

 (5)

(JS saturation polarisation). An exemplary Preisach

distribution function is shown in Figure 8.

Figure 8: Exemplary Preisach distribution function

P(α, β) defined over the Preisach plane (α ≥ β).

The Preisach plane can be divided into two regions

S+ and S- in which all operator outputs γαβh(t) are in

+1 and -1 state, respectively (Figure 7). Together

with Eq. (5) this leads to

 () (∬ ()

 ()

 ∬ ()

 ()

) (6)

With the integral of P(α, β) over the region α ≥ β

∬ ()

 ∬ ()

 ()

 ∬ ()

 ()

(7)

being equal to 1, Eq. (6) leads to

 () (∬ ()

 ()

) (8)

3.2 Implementation in Modelica

In general, the double integral of applied Preisach

distribution functions P(α, β) cannot be expressed

analytically. For that reason the numerical solution

of Eq. (8) at every iteration step would be very com-

putationally expensive. Thus, a more efficient calcu-

lation method has to be found in order to implement

applicable magnetic network components in

Modelica.

The evolution of both regions S+(t) and S-(t) due to a

varying input signal h(t) can easily be visualized in

the Preisach plane (Figure 9) [12]. The hypotenuse

of the Preisach plane defines the α = β line. The in-

put signal h(t) moves as a point along that line if

αmin < h(t) < αmax.

Magnetic Hysteresis Models for Modelica

154 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076151

Figure 9: Geometric interpretation of the time-based

evolution of the regions S+(t) and S-(t) in dependence

on the input signal h(t).

Starting from negative saturation (all operators are in

-1 state and the whole Preisach plane is filled out by

the S- region) an increasing input moves a horizontal

line L (border between S- and S+) towards the posi-

tive direction of the α-axis, expanding the S+ region

(Figure 9a). When h(t) changes direction the maxi-

mum value is stored in α1 and L is extended by a ver-

tical line moving towards negative direction of the β

axis, hereby shrinking again the S+ region (Figure

9b). If h(t) increases again, the point (α1, β1) is fix

and β1 is also stored. Dependent on the course of the

input signal a corresponding number n of corner

points (αi, βi) must be stored. Figure 9c and d show

the wiping out of stored points when h(t) becomes

larger than the α value of any stored point (αi, βi).

Then this point can be deleted since it doesn’t con-

tribute any longer to the border between S+(t) and

S-(t). A similar event occurs when h(t) becomes

smaller than the last stored βi value. Dependent on

the number n of stored points, the region S+, over

which P(α, β) must be integrated, becomes more and

more complex. However, it can be shown that there

is a single triangular region Sdif (dotted triangles in

Figure 9a to d) for which applies

∬ ()

 ()

∬ ()

 ()

 (9)

Thus, Eq. (8) and (9) lead to

 ()

∬ ()

 ()

 (10)

Sdif belongs to S+ for increasing h(t) and to S- for de-

creasing h(t). It’s hypotenuse is part of the α = β line

of the Preisach plane and thus Sdif can be written as

difference of the two regions S1 and S2, both having

their lower left vertexes at the point (αmin, βmin)

(Figure 10). This allows to evaluate the integral of

P(α, β) over the region Sdif by two integrals with the

same lower integration limits αmin and βmin respec-

tively:

∬ ()

 ∫ ∫ ()

 ⏟
∬ ()

 ∫ ∫ ()

 ⏟
∬ ()

(11)

With αmin = βmin= const., Sdif is completely defined by

the integration limits α´2, β´1, β´2. Figure 10 shows

the integration limits for increasing and decreasing

h(t) respectively and their variation due to a change

of the input signal h(t).

Figure 10: Integration limits and of the

region Sdif for increasing (a) and decreasing (b) input

signal h(t).

From the integral

 () ∫ ∫ ()

 (12)

and Eq. (11) follows

Session 1D: Electromagnetic Systems I

DOI Proceedings of the 9th International Modelica Conference 155
10.3384/ecp12076151 September 3-5, 2012, Munich, Germany

∬ ()

 () () (13)

With Eq. (10) and (13) one obtains

 ()

(() ()) (14)

In the Preisach hysteresis model implemented in

Modelica, the integral IP of the Preisach distribution

function P(α,β) is numerically computed only once

at the start of a simulation run for discrete grid points

and stored in a two-dimensional array AIP. All values

of IP between the grid points of AIP can then be ob-

tained by bilinear interpolation of adjacent AIP val-

ues. This is an enormous reduction of the computa-

tional effort, namely from the numerical solution of

the double integral of P(α, β) to two table look-ups

and bilinear interpolations of IP values in the array

AIP (see Eq. (14)). Figure 11 shows the values of AIP

for the exemplary Preisach distribution function de-

picted in Figure 8.

Figure 11: Array data AIP of the integral of the

Preisach distribution function P(α, β) shown in Fig-

ure 8.

3.3 First Simulation Results

A simple network model of an inductor with a closed

ferromagnetic core was used for first tests of the im-

plemented Preisach hysteresis model (Figure 12).

Figure 12: Simple electromagnetic model of an in-

ductor with closed ferromagnetic core for testing of

the Preisach hysteresis model.

Simulation results, especially the simulated B(H)

hysteresis of the iron core, are shown in Figure 13.

The increasing exponential sine voltage causes grow-

ing hysteresis loops. The resulting B(H) loops are not

centered around the origin, because the flux density

B of this simulation starts for H = 0 A/m at negative

remanence.

Figure 13: Simulation results of the inductor model:

source voltage expSine.v and flux density ironCore.b

in the core (a) and B(H) plot of the growing hystere-

sis loops in the iron core (b).

4 Model Comparison

To show the different behaviour between the classi-

cal Preisach and the Tellinen hysteresis model two

simulations were carried out. An identical magnetic

field strength H(t) was applied to the input of both

hysteresis elements, which were configured to have

equal limiting hysteresis loops. The models output

characteristics B(H) were then plotted together in

one diagram. In the first simulation a decreasing ex-

ponential sine wave was used as input signal. The

corresponding simulation results are shown in Figure

14. Only small differences in the models output are

obvious. The different behaviour can be seen more

clearly in the results of the second simulation, in

which a slightly more complex input signal of two

superposed sine waves of different amplitude and

frequency (Figure 15a) was applied. The B(H) char-

acteristics in Figure 15b show the deviation between

both models, especially in the region of the minor

Magnetic Hysteresis Models for Modelica

156 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076151

loops. In contrast to the Tellinen model, the minor

loops of the classical Preisach model are closed.

Figure 14: B(H) characteristics of the Preisach and

the Tellinen hysteresis model for a decreasing expo-

nential sine wave input signal H(t).

Figure 15: Output of the Preisach and Tellinen model

(b) for the identical input signal (a).

Due to the significantly higher computational effort

for the Preisach model the network simulation with

the Tellinen model performs a lot faster. Dependent

on the fineness of the mesh of the discretised

Preisach integral, a simulation with one Preisach

hysteresis element takes about 3 to 8 times as long as

a similar simulation with a Tellinen hysteresis net-

work element.

5 Summary and Outlook

Two different magntic hysteresis models have been

implemented in Modelica: the simple but efficient

model developed by Tellinen and the more accurate

but complex Preisach model. For latter model, a par-

ticular simple and efficient Modelica implementation

was derived, hereby reducing the effort for numerical

calculation of a double integral over portions of the

Preisach plane to two bilinear interpolations in a ta-

ble.

Utilisation of the Tellinen model together with com-

ponents of the Modelica.Magnetic.FluxTubes library

was exemplarily shown with transient simulation of

a three-phase autotransformer.

With further work, the developed hysteresis models

will be optimised and tested. Estimation of hysteresis

losses from simulated hysteretic behaviour will be

implemented. Those simulated iron losses will be

provided to a conditional heat port and thus can be

input to subsequent thermal simulations, e.g. with

models built from Modelica.Thermal.Heat-

Transfer. Further improvements of the developed

hysteresis models will focus on proper initialisation

as well as on numerical stability and computational

efficiency. If reasonable, the well-known Jiles-

Atherton model of magnetic hysteresis will be also

implemented. All implemented hysteresis models

will be compared with regard to behaviour, accuracy

and computation time.

For model validation, measurements of the magnetic

properties of selected magnetically soft materials

according to EN 60404 are planned. A measurement

setup utilising a highly accurate electronic fluxmeter

is currently realised. With data obtained from these

measurements, the materials sublibrary of Modeli-

ca.Magnetic.FluxTubes will be extended and im-

proved. For the Preisach hysteresis model a corre-

sponding parameter identification needs also to be

developed for fitting the model behaviour to litera-

ture or measured hysteresis data.

Session 1D: Electromagnetic Systems I

DOI Proceedings of the 9th International Modelica Conference 157
10.3384/ecp12076151 September 3-5, 2012, Munich, Germany

6 Acknowledgement

The authors would like to thank the Clean Sky Joint

Technology Initiative for funding of the presented

work within Project No. 296369 MoMoLib “Modeli-

ca Model Library Development for Media, Magnetic

Systems and Wavelets”.

References

[1] Modelica Association, Modelica Standard Li-

brary, https://www.modelica.org/libraries/-

Modelica (May 11, 2012).

[2] T. Bödrich and T. Roschke, A Magnetic Li-

brary for Modelica, in Proc. of the 4th Interna-

tional Modelica Conference, 2005, pp. 559–

565.

[3] T. Bödrich, Electromagnetic Actuator Model-

ling with the Extended Modelica Magnetic Li-

brary, Proc. of 6th Int. Modelica Conf., Biele-

feld, Germany, March 3-4, pp. 221–227, 2008.

[4] H. Roters, Electromagnetic Devices. New York:

John Wiley & Sons, 1941.

[5] C. Steinmetz, Hysteresis loss, Electrician 26, p.

261 ff., 1891.

[6] T. Roschke, Entwurf geregelter elektromagneti-

scher Antriebe für Luftschütze, ser. Fortschritt-

Berichte VDI. VDI Verl., 2000.

[7] D. Ribbenfjärd, Electromagnetic Modelling

Including the Electromagnetic Core, Ph.D. dis-

sertation, KTH Royal Institute of Technology,

Stockholm, 2010.

[8] F. Preisach, Über die magnetische Nachwir-

kung, Zeitschrift für Physik A Hadrons and Nu-

clei, vol. 94, pp. 277–302, 1935.

[9] D. Jiles and D. Atherton, Theory of Ferromag-

netic Hysteresis, Journal of Magnetism and

Magnetic Materials, vol. 61, no. 1–2, pp. 48 –

60, 1986.

[10] J. Tellinen, A Simple Scalar Model for Magnet-

ic Hysteresis, IEEE Transactions on Magnetics,

vol. 24, no. 4, pp. 2200 – 2206, July 1998.

[11] Soft Magnetic Cobalt-Iron-Alloys, Vacuum-

schmelze GmbH, 2001, http://www.vacuum-

schmelze.com/fileadmin/docroot/medialib/-

documents/broschue-ren/htbrosch/Pht-

004_e.pdf (05.21.2012).

[12] I. Mayergoyz, Mathematical Models of Hyste-

resis and their Application. Elsevier, 2003.

Magnetic Hysteresis Models for Modelica

158 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076151

Motor Management of Permanent Magnet Synchronous Machines

Motor Management of Permanent Magnet Synchronous

Machines

Anton Haumer Christian Kral

AIT Austrian Institute of Technology GmbH

Giefinggasse 2, 1210 Vienna, Austria

a.haumer@haumer.at christian.kral@ait.ac.at

Abstract

In this paper the principle of loss and current related

motor management of permanent magnet synchronous

machines is demonstrated. For this purpose a simpli-

fied Modelica model of an interior permanent magnet

machine synchronous machine drive is presented.

In this model copper, core and friction losses are

considered. Simulations then used to determine

operating points of minimum current demand and

losses, respectively. Based on simulation results some

basic insights into motor management are presented.

General aspects of motor management modeling are

then discussed.

Keywords: Permanent Magnet Synchronous Machine,

Field Oriented Control, Optimization of Field Current

1 Introduction

Due to the rising demand on mobility together with

contradictions such as climate change and scarce re-

sources a rising variety of electric and hybrid electric

vehicles is currently offered. For such vehicles high

torque densities and efficiencies of the electric drive

are demanded. In particular the total losses of the

electric drive shall be as low as possible considering

a given derive cycle.

Nowadays, three types of electric machines are com-

monly used:

• induction machine with squirrel cage

• electrically excited synchronous machines

• permanent magnet (PM) synchronous machine

Typically, asynchronous induction machines are very

reliable due to the robust design of the squirrel cage.

However, they need a magnetizing current component

to excite the magnetic field. Electrically excited syn-

chronous machines have a separate field winding in

the rotor which – for vehicle applications – is usually

supplied through slip rings. For induction and electri-

cally excited synchronous machines, additional cop-

per losses arise due to the currents required for excit-

ing magnetic field. In permanent magnet synchronous

machines the magnetic field is mainly excited by the

permanent magnets. Rare earth magnets have a high

energy density and show thus a very high torque and

power density.

In the base speed range of either machine, voltage

is more or less linearly proportional to speed. Since

the voltage is limited by the available battery volt-

age, higher speeds can only be realized by reducing

the magnetic field in the machine – this is the field

weakening range. In induction and electrically excited

synchronous machines this measure is performed by

reducing the field current. In permanent magnet syn-

chronous machines, the permanent magnets cannot be

switched off. In order to yet operate the machine in the

field weakening range, a current component has to be

controlled such way that it counteracts the field caused

by the permanent magnet.

For all kinds of machines, one and the same mechani-

cal operating point can be accomplished by different

combinations of field and torque generating current

components. So obviously, there exists a certain po-

tential of operating an electric drive such way that the

total current or losses, respectively, are as low as pos-

sible [1, 2, 3]. In this paper the case of a permanent

magnet synchronous machine drive is investigated in

order to reveal some basic insights on optimal motor

management [4].

In particular, the two optimization cases are investi-

gated. First, minimum losses of the machine are ex-

amined, since low losses represent a high efficiency of

DOI Proceedings of the 9th International Modelica Conference 159
10.3384/ecp12076159 September 3-5, 2012, Munich, Germany

the machine and thus enable higher energy utilization.

Second, minimum current are investigated, since the

maximum current is limited by the power electronics

and current also influences the total losses of the power

converter.

2 Field Oriented Control of PM Ma-

chine

The functional principles of induction and syn-

chronous machines are the same: if we feed three si-

nusoidal currents i1, i2 and i3 with a time phase shift

of 120° to three windings in the stator that are spaced

by 120° at the circumference, we achieve a magnetic

field wave in the air gap of constant amplitude, rotating

with an angular velocity dependent on the frequency of

the currents. The rotating magnetic field can be repre-

sented by a complex current space phasor,

i =
2

3

(

i1 + ai2 + a2i3
)

(1)

where

a = ej
2π
3 (2)

The zero component

i0 =
1

3
(i1 + i2 + i3) (3)

is usually avoided by normal drive designs since it has

no effect on power exchange with the rotor. The cur-

rent space phasor (1) and the zero component (3) can

be interpreted as a linear transformation of the three

winding current i1, i2 and i3. Rotating the current

space phasor (1) into a rotor fixed coordinate frame,

it can be represented by current components of the d

and q axis,

ir = ie−jγ = id + jiq, (4)

see Fig. 1, where γ is the angle between stator and

rotor frame. The space phasor transformation can be

applied to voltages and flux linkages as well to model

the machine behavior. The flux linked with the stator

winding can be determined by

Ψ = ΨPM + Lmdid + jLmqiq, (5)

see Fig. 2, where the flux of the permanent magnet,

ΨPM, is aligned with the d axis.

The number of pole pairs, p, is defined by the repe-

tition of the stator winding along the circumference.

Since the rotor is equipped with a permanent magnet

Figure 1: Transformation for the current phasor from

the stator to the rotor frame, considering the transfor-

mation angle γ

Figure 2: The total stator flux linkage phasorΨ is com-

posed of the flux of the magnet ΨPM and the inductive

components due the total main inductance and current

components

arrangement showing the same number of pole pairs, it

is evident that the rotor will try to align in the rotating

magnetic field. Thus it is useful to decompose the sta-

tor current space phasor into a component aligned with

the rotor poles, id, and a perpendicular component, iq
(pointing to the pole gap). Having information about

the rotor orientation – and therefore about the field ori-

entation – it is possible to control the field current id
and the torque generating current iq independent from

each other – similar as in DC machines.

2.1 Torque Generation

The electromagnetic torque generated in the air gap

of a PM machine is a reaction between magnetic flux

linked with the stator winding, Ψ , and the conjugate

complex current space phasor:

τel = −

3p

2
Im (Ψ i∗) (6)

Taking into account the nature of the permanent mag-

net synchronous machine with different magnetic con-

ductances in the direction of the poles (d-axis) and in

direction of the pole gaps (q-axis), we obtain:

τel =
2p

3
(ΨPMiq + (Lmd − Lmq) idiq) (7)

Motor Management of Permanent Magnet Synchronous Machines

160 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076159

In this equation, Lmd and Lmq are the total main in-

ductances in the d and q axis, respectively, represent-

ing the magnetic reluctances of these axes. For mag-

netically isotropic machines with Lmd = Lmq the

electromagnetic torque is directly proportional to the

product of the magnetic flux linkage of the permanent

magnet, ΨPM, and the current in the q axis. The per-

meability of permanent magnets is almost equal to air.

Thus, magnetically isotropic machines typically have

the magnets mounted on the surface of the rotor, see

Fig. 3a.

It is evident from (7) that for machines with differ-

ent magnetic reluctances in d and q axis an additional

torque component arises – the reluctance torque. This

torque component is proportional to the product of the

d and q axis current and the difference between the in-

ductances of the d and q axis. An anisotropic rotor

configuration is shown in Fig. 3b interior permanent

magnets. In order to gain a higher reluctance torque it

is desirable to make the difference between the induc-

tances of the d and q axis as large as possible.

Even though surface mounted permanent magnet syn-

chronous machine reveal a certain potential for min-

imizing losses [5, 6], the potential is much higher

in case of interior mounted permanent magnet syn-

chronous machines [7, 8, 9, 10, 11].

2.2 Losses

In order to minimize current consumption or losses,

respectively, the total losses of the PM machine have

to be taken into account. For the investigated machine,

ohmic losses, core losses and friction losses are con-

sidered.

Ohmic losses (copper losses) are directly proportional

to the total stator winding resistance, Rs, and the sum

of the squared winding currents,

PCu = Rs(i
2
1 + i22 + i23) =

3

2
Rsisi

∗

s. (8)

Core losses are usually separated into eddy current

losses and hysteresis losses [12, 13]. Some models

even take excess losses into account, but these losses

are usually inherently considered by the eddy current

loss model. In the presented paper machine models of

the Modelica Standard Library (MSL) 3.2 are used, so

hysteresis losses are not taken into account. The total

core losses are thus modeled dependent on the voltage

induced by the flux Ψ, linked with the stator winding,

Pc =
3

2
Gc

(

dΨ

dt

)2

. (9)

(a) surface magnets (b) interior magnets

Figure 3: Permanent magnet rotor configurations

Friction torque is modeled as a power of rotor speed –

represented by parameter af . Friction losses are thus

determined by

Pf = Pf,ref

(

Ω

Ωref

)af+1

, (10)

where Ω is the mechanical angular rotor speed and in-

dex ref indicates a reference point.

Due to the great dependency of torque from the current

components id and iq in (7), a high potential for saving

current and losses, respectively, is obvious.

2.3 Voltage Induction

The induced voltage under stationary operating condi-

tions is given by

v = jωΨ = jω (ΨPM + Lmdid)− ωLmqiq. (11)

For zero current in the q axis, the induced voltage

solely depends on the flux linkage due to the perma-

nent magnet and the current of the d axis and the elec-

trical angular speed,

ω =
Ω

p
. (12)

For zero current in both axes the induced voltage rises

linearly with speed ω. When the induced voltage ex-

ceeds the maximum voltage, determined by the avail-

able battery voltage, the field has to be weakened in or-

der to further increase speed. This can be achieved by

injecting a negative d axis current component which

reduces the total flux linked with the stator winding,

see (5).

3 Modelica Model of the Drive

Fig. 4 shows the Modelica model used for investigat-

ing the motor management of the drive. A permanent

magnet synchronous machine model – taken from the

Session 1D: Electromagnetic Systems I

DOI Proceedings of the 9th International Modelica Conference 161
10.3384/ecp12076159 September 3-5, 2012, Munich, Germany

Figure 4: Modelica model of the drive

MSL 3.2 – is fed by a signal current source. This sim-

plification represents an idealized supply case without

modeling the details of a power inverter. This way

pulse width modulation (PWM) specific effects are

not taken into account, since the reference values of

the d and q axis current are directly injected into the

machine after an inverse space phasor transformation,

i.e., calculating the instantaneous three phase currents

(block currentController).

The shaft of the machine is coupled by an ideal speed

source. An angle sensor is used to feed back the angle

between stator and rotor frame, γ, to the inverse space

phasor transformation.

The field exciting current, id, is varied linearly within a

given range; the block limitVoltage ensures that

the actual terminal voltage does not exceed the avail-

able DC voltage source, representing the battery volt-

age of an electric or hybrid electric vehicle. The q cur-

rent component is determined by a integral controller

which is fed by the difference between desired and ac-

tual torque. The integral time of this controller is very

small such that control specific effects are negligible

in the performed investigation.

A certain point of operation as well as the range for

optimization are determined by

• torque,

• speed, and

• the range for varying the current component id.

Output variables of the investigated model are the to-

tal current consumption and the total machine losses.

In the presented paper the optimum point of opera-

tion is determined manually by either varying speed or

parameter value unit

number of pole pairs

nominal frequency 50 Hz

nominal RMS voltage per phase 100 V

nominal RMS no load voltage per phase 75 V

nominal torque 180 Nm

nominal stator resistance per phase 0.03 Ω

nominal stator stray reactance per phase 0.1 Ω

nominal main reactance per phase, d axis 0.3 Ω

nominal main reactance per phase, q axis 0.6 Ω

nominal core losses 500 W

Table 1: Machine parameters used for the analysis of

the motor management

0

100

200

300

400

500

600

60 40 20 0 20 40

Id [A]

Lo
ss
e
s
[W

]

10%

25%

50%

75%

100%

min

Figure 5: Losses at 25% nominal torque, motor op-

eration, speed variation 10-25-50-75-100% nominal

speed

torque, and fixing the remaining parameters and vari-

ables, respectively. This way characteristic curves are

obtained, see section 4. The machine parameters used

for the analysis are presented in Tab. 1.

4 Simulation Results

In this chapter simulation results at different loads,

both for motor and generator operation, and differ-

ent speeds at varying direct axis current are summa-

rized. The optimal d axis currents for minimal ma-

chine losses is indicated in the figures.

Fig. 5 shows at 25% nominal torque – motor operation

– that machine losses rise with rising speed, due to the

increase of core losses. Fig. 6 extends the trend to field

weakening. Since only eddy current losses are taken

into account, core losses are nearly constant. Decreas-

ing the q axis current demand (limitation of torque

proportional to the inverse of speed) decreases copper

Motor Management of Permanent Magnet Synchronous Machines

162 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076159

0

100

200

300

400

500

600

60 40 20 0 20 40

Id [A]

Lo
ss
e
s
[W

]

100%

110%

120%

130%

150%

min

Figure 6: Losses at 25% nominal torque, motor opera-

tion, speed variation 100-110-120-130-150% nominal

speed

1200

1300

1400

1500

1600

1700

1800

1900

2000

100 80 60 40 20 0

Id [A]

Lo
ss
e
s
[W

]

10%

25%

50%

75%

100%

min

Figure 7: Losses at 100% nominal torque, motor op-

eration, speed variation 10-25-50-75-100% nominal

speed

losses, whereas increasing the d axis current – in order

to limit the stator voltage – increases copper losses.

The trend depends strongly on the actual machine pa-

rameters, i.e., inductances and reference losses.

Fig. 7 and Fig. 8 show the same dependencies, but at

100% nominal torque – motor operation. Since for

higher torque demand and therefore higher current the

influence of copper losses is higher, losses decrease

in the field weakening region with rising speed. Ad-

ditionally it can be observed that a variation of the d

axis current is limited by the need of field weakening

to avoid exceeding the voltage limit.

Fig. 9 and Fig. 10 depict the same dependencies at

100% nominal torque, but for generator operation,

with only small differences compared to motor oper-

ation.

Additionally to determining the optimal d axis cur-

rent for minimum machine losses, minimum total cur-

1200

1300

1400

1500

1600

1700

1800

1900

2000

100 80 60 40 20 0

Id [A]

Lo
ss
e
s
[W

]

100%

110%

120%

130%

150%

min

Figure 8: Losses at 100% nominal torque, motor op-

eration, speed variation 100-110-120-130-150% nom-

inal speed

1200

1300

1400

1500

1600

1700

1800

1900

2000

100 80 60 40 20 0

Id [A]

Lo
ss
e
s
[W

]

10%

25%

50%

75%

100%

min

Figure 9: Losses at 100% nominal torque, generator

operation, speed variation 10-25-50-75-100% nominal

speed

1200

1300

1400

1500

1600

1700

1800

1900

2000

100 80 60 40 20 0

Id [A]

Lo
ss
e
s
[W

]

100%

110%

120%

130%

150%

min

Figure 10: Losses at 100% nominal torque, genera-

tor operation, speed variation 100-110-120-130-150%

nominal speed

Session 1D: Electromagnetic Systems I

DOI Proceedings of the 9th International Modelica Conference 163
10.3384/ecp12076159 September 3-5, 2012, Munich, Germany

110

112

114

116

118

120

122

124

126

128

130

100 80 60 40 20 0

Id [A]

to
ta
l
cu
rr
e
n
t
co
n
su
m
p
ti
o
n
[A
]

10%

25%

50%

75%

100%

min

Figure 11: Total current consumption at 100% nomi-

nal torque, motor operation, speed variation 10-25-50-

75-100% nominal speed

85

90

95

100

105

110

115

120

125

130

100 80 60 40 20 0

Id [A]

to
ta
l
cu
rr
e
n
t
co
n
su
m
p
ti
o
n
[A
]

100%

110%

120%

130%

150%

min

Figure 12: Total current consumption at 100% nomi-

nal torque, motor operation, speed variation 100-110-

120-130-150% nominal speed

110

112

114

116

118

120

122

124

126

128

130

100 80 60 40 20 0

Id [A]

to
ta
l
cu
rr
e
n
t
co
n
su
m
p
ti
o
n
[A
]

10%

25%

50%

75%

100%

min

Figure 13: Total current consumption at 100% nomi-

nal torque, generator operation, speed variation 10-25-

50-75-100% nominal speed

85

90

95

100

105

110

115

120

125

130

100 80 60 40 20 0

Id [A]

to
ta
l
cu
rr
e
n
t
co
n
su
m
p
ti
o
n
[A
]

100%

110%

120%

130%

150%

min

Figure 14: Total current consumption at 100% nom-

inal torque, generator operation, speed variation 100-

110-120-130-150% nominal speed

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

100 80 60 40 20 0

Id [A]

Lo
ss
e
s
[W

]

10%

25%

50%

75%

100%

min

Figure 15: Losses at 125% nominal torque, motor op-

eration, speed variation 10-25-50-75-100% nominal

speed

rent is analyzed. The total current consumption for

100% nominal torque in motor operation is depicted

in Fig. 11, showing increasing total current for rising

speed. This is due to the fact that losses – including

rising core losses – have to be covered by electric ac-

tive power consumption. For the field weakening re-

gion – depicted in Fig. 12 – decreasing losses lead to

decreasing electric power consumption and therefore

decreasing current consumption.

Fig. 13 and Fig. 14 show the same dependencies at

100% nominal torque, but for generator operation.

The main difference compared with motor operation

results from the fact that core losses cause a braking

torque, which reduces the demand for electric torque.

In the region of constant magnetic field this leads to

decreasing current demand at rising speed.

Fig. 15 shows at 125% nominal torque – overload mo-

tor operation – that machine losses rise with rising

Motor Management of Permanent Magnet Synchronous Machines

164 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076159

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

100 80 60 40 20 0

Id [A]

Lo
ss
e
s
[W

]

100%

110%

120%

130%

150%

min

Figure 16: Losses at 125% nominal torque, motor op-

eration, speed variation 100-110-120-130-150% nom-

inal speed

speed, due to the increase of core losses. Fig. 16 ex-

tends the trend to field weakening. For speed above

nominal speed a high d axis current demand can be

noticed. The optimum for each speed can be found at

the minimum d axis current that is sufficient to limit

stator voltage.

5 Discussion

The presented simulation results rely on a simplified

model of a permanent magnet synchronous machine.

Based on the obtained results, one could implement an

interpolation table, for controlling the optimum d and

q axis current in a real application. In this case for

a particular speed, torque and available battery volt-

age, the optimum d and q axis currents have to be pre-

calculated and stored in such interpolation table.

However, in a real drive application, some even more

complex effects arise which have to be considered

properly. In the following the most relevant effects are

be discussed:

• The main field inductances are non-linearly de-

pendent on currents due to the saturating charac-

teristic of the core [14]. Additionally, the flux

contributions with respect to the d and q axis are

not fully magnetically decoupled as suggested in

(5). Therefore, cross saturation effects may have

to be taken into account [15].

• The ohmic losses are temperature dependent. In

order to correctly estimate ohmic losses or the op-

timal d and q axis currents, temperature has to be

either measured or estimated. Temperature, how-

ever, complicates setting the optimum operating

point in an online application, since an additional

dimension of variability – for picking the opti-

mum d and q axis currents – is added.

• In a real application, the contribution of hystere-

sis loss may have a significant impact on the exact

total core losses. However, this is can be accom-

plished by modifying the core loss equation (9)

according to [13].

• In the proposed model, eddy current losses of the

permanent magnets are not taken into account.

Such losses most likely have to be considered in

a real application, sometimes even if the magnets

are segmented [16].

• The PWM supply of the power inverter gives rise

to certain voltage harmonics which in turn influ-

ence the total core losses. In the proposed eddy

current model high frequency skin effects with re-

spect to the core flux are not taken into account.

However, in particular, PWM related voltage har-

monics give rise to additional hysteresis losses

due to minor hysteresis loops [17].

• More precisely, in order to maximize the total

efficiency of an electric or hybrid electric vehi-

cle, the total losses of the machine and the power

converter and the battery have to be minimized,

considering all actual current limits and temper-

atures. In particular the system optimization is

a great challenge due the interdependency of the

individual losses from the control variables and

the (time dependent) limits.

6 Conclusions

The concept of optimizing the field current or the

losses of an anisotropic permanent magnet syn-

chronous machine has been demonstrated using a sim-

plified Modelica model. Simulation results have been

presented for the base speed and the field weakening

region. In the performed investigations the maximum

available voltage of the battery is taken into account.

Limitations of the presented model are discussed and

compared to real drive applications.

References

[1] S. Morimoto, Y. Tong, Y. Takeda, and T. Hirasa,

“Loss minimization control of permanentmagnet syn-

chronous motor drives,” Industrial Electronics, IEEE

Session 1D: Electromagnetic Systems I

DOI Proceedings of the 9th International Modelica Conference 165
10.3384/ecp12076159 September 3-5, 2012, Munich, Germany

Transactions on, vol. 41, no. 5, pp. 511 –517, oct

1994.

[2] S. Shinnaka and T. Sagawa, “New optimal current

control methods for energy-efficient and wide speed-

range operation of hybrid-field synchronous motor,”

Electric Machines and Drives, 2005 IEEE Interna-

tional Conference on, pp. 535 –542, may 2005.

[3] M. Cao and N. Hoshi, “Electrical loss minimization

strategy for interior permanent magnet synchronous

motor drives,” Vehicle Power and Propulsion Confer-

ence (VPPC), 2010 IEEE, pp. 1 –6, sept. 2010.

[4] R. F. Schiferl and T. A. Lipo, “Power capability of

salient pole permanent magnet synchronous motors in

variable speed drive applications,” IEEE Transactions

on Industry Applications, vol. 26, no. 1, pp. 115–123,

January/February 1990.

[5] C. Mademlis, J. Xypteras, and N. Margaris, “Loss

minimization in surface permanent-magnet syn-

chronous motor drives,” IEEE Transactions on Indus-

trial Electronics, vol. 47, no. 1, pp. 115–122, February

2000.

[6] J.-J. Chen and K.-P. Chin, “Minimum copper loss

flux-weakening control of surface mounted permanent

magnet synchronous motors,” IEEE Transactions on

Power Electronics, vol. 18,4, pp. 929–936, 2003.

[7] C. Mademlis and N. Margaris, “Loss minimization

in vector-controlled interior permanent-magnet syn-

chronous motor drives,” Industrial Electronics, IEEE

Transactions on, vol. 49, no. 6, pp. 1344 – 1347, dec

2002.

[8] C. Mademlis, I. Kioskeridis, and N. Margaris, “Opti-

mal efficiency control strategy for interior permanent-

magnet synchronous motor drives,” Energy Conver-

sion, IEEE Transactions on, vol. 19, no. 4, pp. 715 –

723, dec. 2004.

[9] S. Vaez-Zadeh, M. Zamanifar, and J. Soltani, “Non-

linear efficiency optimization control of ipm syn-

chronous motor drives with online parameter esti-

mation,” Power Electronics Specialists Conference,

2006. PESC ’06. 37th IEEE, pp. 1 –6, june 2006.

[10] S. Shinnaka and T. Sagawa, “New optimal current

control methods for energy-efficient and wide speed-

range operation of hybrid-field synchronous motor,”

IEEE Transactions on Industrial Electronics, vol. 54,

no. 5, pp. 2443–2450, October 2007.

[11] M. Cao, “Online loss minimization control of ipmsm

for electric scooters,” pp. 1388 –1392, june 2010.

[12] C. P. Steinmetz, “On the law of hysteresis,” Proceed-

ings of the IEEE (reprint of the American Institute of

Electrical Engineers Transactions, vol. 9, pp. 3–64,

1892), vol. 72, no. 2, pp. 197–222, 1984.

[13] D. Lin, P. Zhou, W. Fu, Z. Badics, and Z. Cendes, “A

dynamic core loss model for soft ferromagnetic and

power ferrite materials in transient finite element anal-

ysis,” Conference Proceedings COMPUMAG, 2003.

[14] C. Jo, J.-Y. Seol, and I.-J. Ha, “Flux-weakening con-

trol of ipm motors with significant effect of magnetic

saturation and stator resistance,” Industrial Electron-

ics, IEEE Transactions on, vol. 55, no. 3, pp. 1330

–1340, march 2008.

[15] P. Guglielmi, M. Pastorelli, and A. Vagati, “Cross-

saturation effects in IPM motors and related impact

on sensorless control,” IEEE Transactions on Indus-

try Applications, vol. 42, pp. 1516–1522, 2006.

[16] K. Yamazaki and A. Abe, “Loss analysis of inte-

rior permanent magnet motors considering carrier har-

monics and magnet eddy currents using 3-d FEM,”

IEEE International Electric Machines & Drives Con-

ference, vol. 2, pp. 904–909, May 2007.

[17] Z. Gmyrek, A. Boglietti, and A. Cavagnino, “Estima-

tion and analysis of iron losses in induction motors

under sinusoidal and pwm excitation,” Electrical Ma-

chines, 2008. ICEM 2008. 18th International Confer-

ence on, pp. 1 –6, sept. 2008.

Motor Management of Permanent Magnet Synchronous Machines

166 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076159

An approach for modelling quasi-stationary magnetic circuits

An approach for modelling quasi-stationary
magnetic circuits

Nick Raabe
Sterling Industry Consult GmbH

Lindenstraße 170, 25524 Itzehoe, Germany
nick.raabe@sterlingsihi.de

Abstract

For the design of electrical machines the magnetic cir-
cuit has to be modeled. If only the winding layout or
the stack length of the motor is changed a complete
FEA analysis mostly is not necessary. In this case
Modelica is well suited to model the magnetic circuit
for quasi-stationary simulations. A new library based
on existing standard libraries MagneticQS is presented.
An induction motor example under no-load conditions
shows the basic concept of this library. To enhance and
improve the library new models for different types of
machines and the possibility of an integral simulation
independent from the load conditions is planned.

Keywords: electrical machines; magnetic library;
quasi-stationary magnetic circuits

1 Introduction

Up to now the Modelica Standard Library (MSL) con-
tains two packages with different magnetic connectors.
Both are subpackages of Modelica.Magnetic: Flux-
Tubes [1] and FundamentalWave [7]. The Modelica
concept of providing one potential and one flow vari-
able is implemented here by using the magnetic volt-
age Vm (A) and the magnetic flux Φ (Vs). The vari-
ables in the FluxTube-package are of type Real. The
change of the magnetic flux with respect to time leads
to an induced voltage. This package is suitable for all
types of transient induction problems. The Fundamen-
talWave-package provides the same variables but they
are of type Complex. These connectors are used for
modelling multiphase electric machines in transient
operation. The machines presented in this package are
identical from the outside behaviour to the machines
in Modelica.Electrical.Machines. The user has
the choice between transforming the electrical stator
quantities to space phasors (Modelica.Electrical.
Machines) or to the magnetic circuit (Modelica.Ma-

gnetic.FundamentalWave). The equivalence of both
models is shown in Modelica.Magnetic.Fundamen-
talWave.Examples.BasicMachines.AIMC_DOL.

2 Why another magnetic library?

When designing electric machines the first step is to
find a proper geometry. This means to find the best
shape for stator and rotor slots, the diameter of the ma-
chine and the stack length. Once the winding layout is
defined the magnetic circuit can be calculated to deter-
mine the magnetizing curve of the machine. This it-
erative design process means either using a FEA tool
or analytical algorithms. After defining the geometry
of the machine there are still many options to devi-
ate from this in day-to-day business, e. g. the winding
layout can be changed or the quality of the lamina-
tions. In this case the FEA mostly is not suitable due
to its complexity. This is why Modelica is very helpful
to implement a magnetic circuit that is based on algo-
rithms known from the literature but a lot more flexible
and clearly described.

These quasi-stationary problems can hardly be sim-
ulated with the two existing magnetic packages. Since
MSL 3.2 there is the Modelica.Electrical.Quasi-
Stationary package available which unfortunately
has no connection to the magnetic domain yet. The
goal of this paper is to introduce a new magnetic li-
brary MagneticQS which is similar to the existing ones
but takes into account some special requirements for
the design of electric machines.

3 Basic concept

The connectors of MagneticQS contain complex vari-
ables so that they are equal to the connectors of Fun-
damentalWave. The difference is that the law of in in-
duction is also defined in a complex way. Instead of

DOI Proceedings of the 9th International Modelica Conference 167
10.3384/ecp12076167 September 3-5, 2012, Munich, Germany

saying vind ∼ dΦ/dt the quasi-stationary representa-
tion vind ∼ jωΦ is used. The transformation between
electric and magnetic domain is done by the Electro-
MagneticConverter. Listings 1 and 2 show the differ-
ence of this converter taken from FluxTubes and Ma-
gneticQS.

Listing 1: FluxTube converter

model ElectroMagneticConverter
SI.Voltage v;
SI.Current i(start = 0,

stateSelect=StateSelect.prefer);
SI.MagneticPotentialDifference V_m;
SI.MagneticFlux Phi;
parameter Real N(start=1) "Number of

turns";
equation

v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

V_m = port_p.V_m - port_n.V_m;
0 = port_p.Phi + port_n.Phi;
Phi = port_p.Phi;

// converter equations:
V_m = i * N; // Ampere 's law
N * der(Phi) = -v; // Faraday 's law

end ElectroMagneticConverter;

Listing 2: MagneticQS converter

model ElectroMagneticConverter
SI.AngularVelocity omega =

der(port_p.reference.gamma);
SI.ComplexVoltage v;
SI.ComplexCurrent i;
SI.ComplexMagneticPotentialDifference V_m;
SI.ComplexMagneticFlux Phi;
parameter Real N(start=1) "Number of
turns";
equation

v = p.v - n.v;
Complex(0,0) = p.i + n.i;
i = p.i;

V_m = port_p.V_m - port_n.V_m;
Complex(0,0) = port_p.Phi + port_n.Phi;
Phi = port_p.Phi;

// converter equations:
V_m = i * N; // Ampere 's law
N * j*omega*Phi = -v; // Faraday 's law

// Frequency equations
Connections.branch(p.reference ,

port_p.reference);
p.reference.gamma =

port_p.reference.gamma;
Connections.branch(n.reference ,

port_n.reference);
n.reference.gamma =

port_n.reference.gamma;
end ElectroMagneticConverter;

The main equations are the same for both libraries.
The only change is that MagneticQS contains complex
variables. The specific characteristic of the Modelica.
Electric.QuasiStationary has to be taken into ac-
count: The frequency needs also to be considered and
transported from one domain to another.

Figure 1: MagneticQS library layout

Once again the differences of the three magnetic li-
braries (see section 2) should be clarified in the fol-
lowing listing:

• FluxTubes

– Flux and magnetic voltage are of type Real

An approach for modelling quasi-stationary magnetic circuits

168 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076167

– Derivative of flux used in Faraday’s law
– Link to electrical domain via Modelica.

Electric.Analog.Basic
– Best choice for transient magnetics (e. g.

moving actuators)

• FundamentalWave

– Flux and magnetic voltage are of type Com-
plex

– Derivative of flux used in Faraday’s law
– Link to electrical domain via Modelica.

Electrical.Machines.SpacePhasors
– Best choice for space-phasor magnetics

(e. g. transient operation of electrical ma-
chines)

• MagneticQS

– Flux and magnetic voltage are of type Com-
plex

– Angular frequency used in Faraday’s law
(no derivative of flux)

– Link to electrical domain via Modelica.
Electric.QuasiStationary

– Best choice for quasi-stationary magnet-
ics (e. g. magnetic circuits in electrical ma-
chines)

4 Complex permeability

As long as ideal reluctances are considered the fre-
quency has no impact on the magnetic flux and po-
tential. The magnetic circuit acts as a coil (in air)
and consumes reactive power. For the calculation of
iron losses the frequency and the geometry of the flux
path haven to be taken in to account. If losses are
present the magnetic two-pole not only consumes re-
active power but also produces heat (active power).
Therefore a heat port is added like it is known from
an ohmic resistance in the MSL.

The iron losses consist of two parts: hysteresis and
eddy current losses. It is quite common to define the
iron losses as the sum of both parts depending on the
square of the flux density [5]:

Pfe = kfe ·P15 ·
(

f
50Hz

)kfreq

·
(

B
1T

)2

mfe. (1)

kfe is a correction coefficient that depends on the
type of machine (synchronous, asynchronous, DC)
and the part of the magnetic circuit (tooth or yoke).
P15 is listed in standards (e. g. IEC 60404-8-4 [2]) and
is also given in material certificates by the lamination

Table 1: Examples for laminations according to IEC
60404-8-4 [2]

Lamination Thickness P15 P10
mm W/kg W/kg

M270-50A 0.50 2.7 1.1
M400-50A 0.50 4.0 1.7
M800-65A 0.65 8.0 3.6

manufacturer. This value specifies the losses per kg in
W and is determined for 50 Hz and 1.5 T. As an alter-
native also P10 (50 Hz, 1 T) can be used. Typical val-
ues are given in table 1. If the frequency differs from
50 Hz the exponent kfreq (determined emperically) cor-
rects the losses.

In the quasi-stationary domain it is also possible to
define the relative permeability as a complex number.
Hence the real part describes the magnetic behaviour
and the imaginary part describes the losses [3]:

µ
r
= µ

′− jµ ′′. (2)

Consequently the reluctance becomes a complex mag-
netic impedance:

Zm = Rm + jωLm. (3)

For a cuboid it can be calculated from the geometry (l:
length, A: cross section):

Zm =
l

µ0µ
r
A
. (4)

Thus for the magnetic resistance and the magnetic in-
ductance one can write:

Rm =
l

µ0A
· µ ′

µ2
r
, (5)

Lm =
l

µ0A
· µ
′′

µ2
r
. (6)

In analogy to electric circuits the effects of resis-
tance and inductance change: The magnetic resistance
Rm leads to reactive power (corresponds with µ ′),
whereas the magnetic inductance Lm produces losses
(corresponds with µ ′′).

µ ′ is defined by the approximation function for the
magnetizing curve explained in the FluxTubes-library.
In most cases Lm and µ ′′ are unknown but Pfe is known
so that an additional equation based on the power bal-
ance is needed to calculate them:

Session 1D: Electromagnetic Systems I

DOI Proceedings of the 9th International Modelica Conference 169
10.3384/ecp12076167 September 3-5, 2012, Munich, Germany

Table 2: Data of example motor [4]

Nominal power Pn 11 kW
Nominal voltage Un 380 V
Nominal frequency fn 50 Hz
No. polpairs p 2
No. stator slots Z1 36
No. rotor slots Z2 28
Stator winding factor ξ1 0.945
No. turns per phase w1 168
Stack length lstack 160 mm

Lm =
Pfe

ω2 ·Φ2 . (7)

These equations are part of the model MagneticQS.
Shapes.Cuboid. Up to now only one type of shape
is implemented: the cuboid. Since every part of
electrical machines (e. g. yoke, tooth) is simplified
when modelling magnetic circuits to a rectangular
shape this is not a limitation at this early stage of
the library. However for further developements other
shapes might be useful.

5 Example: Induction machine un-
der no-load condition

In order to verify the proposed implementation an in-
duction machine is modeled under no-load condition.
The motor design is taken from [4]. Table 2 shows the
nominal data of the motor, the geometry is given in
figure 2.

According to the calculation in [4] the magnetic cir-
cuit is divided into five parts:

• stator yoke,
• stator teeth,
• airgap,
• rotor teeth,
• rotor yoke.

For analytical calculations (in contrast to FEA) some
special restrictions and simplifications apply:

• The field strength in the stator yoke is strongly
nonlinear. Therefore either an additional magne-
tizing curve for this part of the magnetic circuit is
given or a reduction factor [5].

• The flux density in the airgap depends on the
width of the stator and rotor slot openings. The
airgap length is increased by the so called Carter-
Factor.

Figure 2: Stator and rotor geometry [4]

• The magnetic behaviour of the rotor shaft is han-
dled by defining one third of the diameter as iron
[4] so that the rotor yoke is enlarged.

• Stray inductances are not taken into account. This
approximation is only valid under no-load condi-
tion.

The MagneticQS-representation is shown in figure 3.
Each magnetic impedance is a MagneticQS.Shapes.
Cuboid. In accordance to [4] only stator yoke and
tooth produce losses which is feasible due to the very
low frequency in the rotor. In comparison with the cal-
culations in [4] the following deviation has to be men-
tioned: The book neglects the stator resistance which
is quite common when calculating magnetic circuits
by hand.

The connection of the electrical and magnetic do-
main is performed by the model MagneticQS.Basic.
ElectroMagneticConverterS which is adapted to ro-
tating electrical machine but still based on the con-
verter presented in section 2:

V m = j · I1 ·
3
√

2 ·ξ1 ·w1

p ·π
, (8)

−U1 = ωΦ · ξ1 ·w1√
2

. (9)

Table 3 shows the simulation results for the magnetiz-

An approach for modelling quasi-stationary magnetic circuits

170 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076167

Figure 3: Induction machine no-load example

Table 3: Simulation results (Indices: y: yoke, t: tooth,
cu: stator resistance)

Calculation I1 Pcu Py Pt
A kW kW kW

by hand [4] 5.19 0.00 192.05 85.55
MagneticQS 5.20 31.87 190.97 85.14
MagneticQS, R1 = 0 5.23 0.00 191.88 85.39

ing current and the losses.
When neglecting all losses the example shows the

same results as in [4]. By introducing losses in Ma-
gneticQS slight deviations (see second row of table 3)
become present. This proofes that the simplifications
for hand calculations are valid. The minor influence of
the stator resistance is shown in the third row of table
3.

The results show that MagneticQS is well suited for
the magnetic circuit implementation of electric ma-
chines. In comparision with analytical hand calcula-
tions it is e. g. no more necessary to calculate the mag-
netic behaviour and the losses in two steps. Magnetic-
QS delivers an integral solution for magnetic circuits in
quasi-stationary mode.

6 Summary and future work

This article presents a new magnetic library called Ma-
gneticQS. It is based on existing libraries but intro-

duces complex variables. The purpose is a clear phys-
ical modelling of quasi-stationary magnetic circuits.
These are needed in the design phase of electrical ma-
chines. The library is designed similar to the exist-
ing ones in the MSL. To fulfil the requirements on
physical modelling a complex permeability is also in-
troduced. The simulation results show that the new
library is well suited to assist the design process for
electrical machines. The next step for developing the
library is to test different types of machines under load
conditions and compare the results with analytical al-
gorithms and FEA. Once this goal is achieved an in-
tegral electrical machine magnetic circuit model can
be implemented that can be used independently from
the state of the machine (no-load, load) which is a
great advantage in comparison with existing analytical
models. Additional research is needed to find general
approaches that eliminate the restriction mentioned in
section 5.

References

[1] Bödrich T. Electromagnetic Actuator Modelling
with the Extended Modelica Magnetic Library.
Modelica 2008 Conference, Bielefeld, Germany,
pp. 221-227, March 3-4, 2008.

[2] IEC 600404-8-4 Magnetic materials - Part 8-4:
Specifications for individual materials - Cold-
rolled non-oriented electrical steel sheet and strip
delivered in the fully-processed state. 1998.

[3] Coey J-M-D. Magnetism and Magnetic Materi-
als. 2009.

[4] Vaske P, Riggert J-H. Elektrische Maschinen
und Umformer Teil 2: Berechnung elektrischer
Maschinen (Calculation of electrical machines).
1974.

[5] Pyrhönen J, Jokinen T, Hrabovcova V. Design
of Rotating Electrical Machines. John Wiley &
Sons. 2008.

[6] Richter R. Elektrische Maschinen Band 1 (Elec-
trical machines part 1). 3rd edition. Birkhäuser
Verlag. 1967.

[7] Kral C, Haumer A. The New FundamentalWave
Library for Modeling Rotating Electrical Three
Phase Machines. Modelica 2011 Conference,
Dresden, Germany, March 20-22, 2011.

Session 1D: Electromagnetic Systems I

DOI Proceedings of the 9th International Modelica Conference 171
10.3384/ecp12076167 September 3-5, 2012, Munich, Germany

An approach for modelling quasi-stationary magnetic circuits

172 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076167

Session 2A: FMI Standard I

Functional Mockup Interface 2.0: The Standard

Functional Mockup Interface 2.0: The Standard
for Tool independent Exchange of Simulation Models

T. Blochwitz1, M. Otter2,

 J. Akesson3, M. Arnold4, C. Clauß5, H. Elmqvist6
M. Friedrich7, A. Junghanns8, J. Mauss8, D. Neumerkel9, H. Olsson6,, A. Viel10

Germany: 1ITI GmbH, Dresden; 2DLR Oberpfaffenhofen; 4University of Halle, 5Fraunhofer
IIS EAS, Dresden; 7SIMPACK, Gilching; 8QTronic, Berlin;9Daimler AG, Stuttgart;

Sweden: 6Dassault Systèmes, Lund; 3Modelon, Lund;

France: 10LMS Imagine, Roanne

Abstract

The Functional Mockup Interface (FMI) is a tool
independent standard for the exchange of dynamic
models and for Co-Simulation. The first version,
FMI 1.0, was published in 2010. Already more than
30 tools support FMI 1.0. In this paper an overview
about the upcoming version 2.0 of FMI is given that
combines the formerly separated interfaces for Mod-
el Exchange and Co-Simulation in one standard.
Based on the experience on using FMI 1.0, many
small details have been improved and new features
introduced to ease the use and increase the perfor-
mance especially for larger models. Additionally, a
free FMI compliance checker is available and FMI
models from different tools are made available on
the web to simplify testing.
Keywords: Simulation; Co-Simulation, Model Ex-
change; Functional Mockup Interface (FMI); Func-
tional Mockup Unit (FMU);

1 Introduction

The Functional Mockup Interface (FMI) standard
version 1.0 (see [1]) was published in 2010 as one
result of the ITEA2 project MODELISAR, see Fig-
ure 1. In a short time after this first release several
modeling and simulation tools started to support
FMI. Today, more than 30 tools support FMI 1.0,
and it is heavily used in industrial and scientific pro-
jects, not only in the automotive sector.

Figure 1: Improving model-based design between OEM and

supplier with FMI.

The MODELISAR project ended in Dec. 2011. The
maintenance and further development is now per-
formed by the Modelica Association in form of the
Modelica Association Project FMI (see
https://www.modelica.org/projects). FMI was initiat-
ed and organized by Daimler AG with the goal to
improve the exchange of simulation models between
suppliers and OEMs. The further FMI development
is performed by 16 companies and research institutes
(see Annex). The FMI project is open for FMI inter-
ested persons1 and for (Modelica and non-Modelica)
tool vendors supporting FMI.

In this article an overview about the upcoming
version 2.0 of FMI is given. This new version com-
bines the formerly separated interfaces for Model
Exchange and Co-Simulation in one standard. The
specification document was clarified which increases
the compatibility of implementations. New features
ease the use and increase the performance especially
for larger models.

1 Members of the MA project FMI need not be Modelica As-

sociation members, with exception of the project leader.

DOI Proceedings of the 9th International Modelica Conference 173
10.3384/ecp12076173 September 3-5, 2012, Munich, Germany

2 The Functional Mock-Up Interface

2.1 Main Design Ideas

The FMI 2.0 standard consists of two main parts:

1. FMI for Model Exchange:
The intention is that a modeling environment can
generate C-Code of a dynamic system model in
the form of an input/output block, see Figure 2,
that can be utilized by other modeling and simu-
lation environments. Models (without solvers)
are described by differential, algebraic and dis-
crete equations with time-, state- and step-
events.

2. FMI for Co-Simulation:
The intention is to couple two or more models
with solvers in a co-simulation environment. The
data exchange between subsystems is restricted
to discrete communication points. In the time be-
tween two communication points, the subsys-

tems are solved independently from each other
by their individual solver. Master algorithms
control the data exchange between subsystems
and the synchronization of all slave simulation
solvers. The interface allows standard, as well as
advanced master algorithms, e.g., the usage of
variable communication step sizes, higher order
signal extrapolation, and error control.

y

v 0 0, ,inital values (a subset of ())t tp v

t time
p parameters of type T
u inputs of type T
v all exposed variables
y
T

outputs of type T
Real, Integer, Boolean, or String

 FMU instance
(model exchange or co-simulation)

u

Figure 2: Data flow between the environment and the FMU
Blue/red arrows: Information provided by/to the FMU.

Figure 3: Complete XML schema of upcoming FMI 2.0 (but without attributes and without time synchronization).

Enclosing Model

Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation …

174 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076173

2.2 Distribution

A component which implements the FMI is called
Functional Mockup Unit (FMU). It consists of one
zip-file with extension “.fmu” containing all neces-
sary components to utilize the FMU either for Model
Exchange, for Co-Simulation or for both:

1. An XML-file contains the definition of all varia-
bles of the FMU that are exposed to the envi-
ronment in which the FMU shall be used, as well
as other model information. It is then possible to
run the FMU on a target system without this in-
formation, i.e., with no unnecessary overhead.

2. A set of C-functions is provided to execute mod-
el equations for the Model-Exchange case and to
setup and run the slaves for the Co-Simulation
case. These C-functions can either be provided
in source and/or binary form. Binary forms for
different platforms can be included in the same
model zip-file.

3. Further data can be included in the FMU zip-file,
especially a model icon (bitmap file), documen-
tation files, maps and tables needed by the mod-
el, and/or all object libraries or DLLs that are
utilized.

2.3 Description Schema

All information about a model and a co-simulation
setup that is not needed during execution is stored in
an XML-file called “modelDescription.XML”. The
benefit is that every tool can use its favorite pro-
gramming language to read this XML-file (e.g., C,
C++, C#, Java, Python) and that the overhead, both
in terms of memory and simulation efficiency, is re-
duced. The XML-file is defined by an XML-schema
file called “fmiModelDescription.xsd”. In FMI 2.0,
the XML-file contains the information both for
Model-Exchange and for Co-Simulation.

In Figure 2, the complete XML schema definition
is shown. All parts are the same for the two FMI-
cases, with exception of the elements “Mod-
elExchange” and “CoSimulation” that contain defini-
tions specific to the respective case. If either one or
both of the two elements are present in the XML file,
then the respective C-functions are available in the
zip-file (usually in binary form as DLL for Win-
dows, and/or as shared object for Linux or Mac).
Another essential difference to FMI 1.0 is the new
element “ModelStructure” that exposes and provides
more details of the model structure.

2.4 C-Interface

The execution interface of FMI 2.0 consists of three
header files that define the C-types and –interfaces.
The header file “fmiTypesPlatform.h” contains all
definitions that depend on the target platform:
#define fmiTypesPlatform "standard32"
#define fmiTrue 1
#define fmiFalse 0
#define fmiUndefinedValueReference
 (fmiValueReference)(-1)

typedef void* fmiComponent;
typedef void* fmiComponentEnvironment;
typedef void* fmiFMUState;
typedef unsigned int fmiValueReference;
typedef double fmiReal ;
typedef int fmiInteger;
typedef char fmiBoolean;
typedef const char* fmiString ;
typedef char fmiByte;

The underlined, blue type definitions have been new-
ly introduced into FMI 2.0. This header file must be
used both by the FMU and by the target simulator. If
the target simulator has different definitions in the
header file (e.g., “typedef float fmiReal” in-
stead of “typedef double fmiReal”), then the
FMU needs to be re-compiled with the header file
used by the target simulator. The header file plat-
form, for which the model was compiled, as well as
the version number of the header files, can be in-
quired in the target simulator with FMI functions.

The type fmiValueReference defines a handle
for the value of a variable: The handle is unique at
least with respect to the corresponding base type
(such as fmiReal) besides alias variables that can
have the same handle. All structured entities, such as
records and arrays, are “flattened” into a set of scalar
values of type fmiReal, fmiInteger etc. A
fmiValueReference references one such scalar.
The coding of fmiValueReference does not need
to be exposed by the modeling environment that
generated the model. The data exchange is per-
formed using the functions fmiSetXXX(...) and
fmiGetXXX(...). XXX stands for one of the types
Real, Integer, Boolean, and String. One argument of
these functions is an array of fmiValueReference,
which defines which variables are accessed. The
mapping between the FMU variables and the
fmiValueReferences is stored in the model de-
scription XML file.

For simplicity, a “flat” structure of variables is
used. Still, the original hierarchical structure of the
variables can be retrieved, if a flag is set in the
XML-file that a particular convention of the variable

Session 2A: FMI Standard I

DOI Proceedings of the 9th International Modelica Conference 175
10.3384/ecp12076173 September 3-5, 2012, Munich, Germany

names is used. For example, the Modelica variable
name “pipe[3,4].T[14]” defines a variable
which is the (3.4) element of an array of records
“pipe” of vector T (“.” separates hierarchical levels
and “[...]” defines array elements).

Header-file “fmiFunctionTypes.h” contains
typedef definitions of all function prototypes of an
FMU. When dynamically loading the DLL or shared
object of an FMU, these definitions can be used to
type-cast the function pointers to the respective func-
tion definition. Example for a definition in this head-
er file:
 typedef fmiStatus fmiSetTimeTYPE
 (fmiComponent, fmiReal);
This header file was newly introduced in FMI 2.0 to
ease the dynamic loading.

Finally, header file “fmiFunctions.h” contains the
function prototypes of an FMU that can be accessed
in simulation environments. This header file includes
the other two header files from above. Example for a
definition in this header file:
 DllExport fmiSetTimeTYPE fmiSetTime;

The goal is that both textual and binary represen-
tations of models are supported and that several
models using FMI might be present at link time in an
executable (e.g., model A may use a model B). For
this to be possible the names of the FMI-functions in
different models must be different or function point-
ers must be used. To support the first variant macros
are provided in “fmiFunctions.h” to build the
actual function names by using a function prefix that
depends on how the FMU is shipped. Typically,
FMU functions are used as follows:
// FMU is shipped with C source code,
// or with static link library
#define FUNCTION_PREFIX MyModel_
#include "fmiFunctions.h"
< usage of the FMU functions >

// FMU is shipped with DLL/SharedObject
#define FUNCTION_PREFIX
#include "fmiFunctions.h"
< usage of the FMU functions >

If an FMU is shipped with C source code, or with a
static link library, then a function that is defined as
“fmiGetReal” is changed by the macros to the ac-
tual function name “MyModel_fmiGetReal”. The
function prefix is hereby defined in the XML file. A
simulation environment can therefore construct the
relevant function names by generating code for the
actual function call. In case of a static link library,
the name of the library is MyModel.lib on Windows,
and libMyModel.a on Linux, in other words the
function prefix attribute is used as library name.

If an FMU is shipped with a DLL/SharedObject,
the constructed function name is “fmiGetReal”, in
other words it is not changed. A simulation environ-
ment will then dynamically load this library and will
explicitly import the function symbols by providing
the FMI function names as strings. The name of the
library is MyModel.dll on Windows or MyModel.so
on Linux, in other words the function prefix attribute
is used as library name.

An FMU can be optionally shipped so that it ba-
sically contains only the communication to another
tool. This is particularly common for co-simulation
tasks. In FMI 1.0, the function names are always pre-
fixed with the model name and therefore a
DLL/Shared Object has to be generated for every
model. FMI 2.0 improves this situation since model
names are no longer used as prefix in case of
DLL/Shared Objects: Therefore one DLL/Shared
Object can be used for all models in case of tool
coupling.

3 New Features of FMI 2.0

In this section the main new features introduced by
FMI 2.0 are sketched. Note, also many other minor
improvements have been introduced, based on the
experience in using FMI 1.0. Especially:
• When instantiating an FMU, the simulation envi-

ronment must report the absolute path to the
FMU resource directory also in Model Ex-
change, in order that the FMU can read all of its
resources (for example maps, tables, ...) inde-
pendently of the "current directory" of the simu-
lation environment where the FMU is used.

• Enumerations have an arbitrary (but unique)
mapping to integers (in FMI 1.0, the mapping
was automatically assigned to 1,2,3,...).

• When enabling logging, log categories can be
defined, so that the FMU needs to only generate
logs of the defined categories (in FMI 1.0, logs
had to be generated for all log categories and
they had to be filtered afterwards).

• Explicit alias/antiAlias variable definitions have
been removed, to simplify the interface: If varia-
bles of the same base type (such as fmiReal)
have the same valueReference, they have
identical values. A simulation environment may
ignore this completely (this was not possible in
FMI 1.0), or can utilize this information to more
efficiently store results on file.

• Continuous state variables are explicitly listed as
FMU variables, and an ordering is introduced for

Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation …

176 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076173

them, as well as for inputs, and outputs in the
XML file, in order that not an (arbitrary) order is
selected by the simulation environment. This is
essential, for example when linearizing an FMU,
or when providing "sparsity" information (see
below).

3.1 Unification of FMI for Model Exchange
and Co-Simulation

In FMI 1.0 the Model Exchange and Co-Simulation
interfaces were defined in two different documents.
The XML-description and function definitions were
slightly different. In version 2.0 both interfaces are
combined in one document and unified. Now one
FMU can implement both interfaces at the same
time. The presence of the “ModelExchange” or “Co-
Simulation” elements in the XML-description indi-
cates which interface is implemented. Which inter-
face is used by the environment is decided by calling
the appropriate instantiation function (fmiInstan-
tiateModel or fmiInstantiateSlave).

In this way the distributed use case (see [1])
which was applicable for Co-Simulation in FMI 1.0
only is supported in the Model Exchange case too. In
this use case only the ability of a tool to evaluate the
model equations is used, not its solver.

3.2 Classification of Interface Variables

Variables exposed by the FMU are now categorized
in a slightly different way in FMI 2.0:

Attribute “causality” is an enumeration that defines
the causality of the variable. Allowed values are:
• parameter: An independent variable that must

be constant during simulation.
• input: The variable value can be provided from

another model.
• output: The variable value can be used by an-

other model. The algebraic relationship to the
inputs is defined in element ModelStructure.

• local: Local variable that is calculated from other
variables. It is not allowed to use the variable
value in another model

Attribute “variability” is an enumeration that de-
fines the time dependency of the variable, in other
words it defines the time instants when a variable
can change its value. Allowed values are:
• constant: The value of the variable never chang-

es.
• fixed: The value of the variable is fixed after

initialization.
• tunable: The value of the variable is constant

between externally triggered events due to

changing variables with causality = "parameter"
or "input" (see explanation below).

• discrete: The value of the variable is constant
between internal events (= time, state, step
events defined implicitly in the FMU).

• continuous: No restrictions on value changes.
The new value “tunable” introduced in FMI 2.0 al-
lows a modeling environment to expose independent
parameters that can be manually “tuned” during sim-
ulation (for example, during simulation a modeler
might change the gain of a PID controller, or the
load mass of a drive train in order to quickly improve
the design).

“Tuning a parameter” during simulation does not
mean to “change the parameter online” during simu-
lation (since this might introduce Dirac impulses).
Instead, this is a short hand notation for:
1. Stop the simulation at an event instant (usually, a

step event, in other words after a successful inte-
gration step).

2. Change the values of the tunable parameters.
3. Compute all parameters that depend on the tuna-

ble parameters.
4. Resume the simulation using as initial values the

current values of all variables and the new values
of the parameters.

With this interpretation, changing parameters online
is “clean”, as long as these changes appear at an
event instant.

3.3 Save and Restore of FMU state

An FMU has an internal state consisting of all values
that are needed to continue a simulation. This inter-
nal state consists especially of the values of the con-
tinuous states, discrete states, iteration variables, pa-
rameter values, input values, file identifiers and
FMU internal status information. With newly intro-
duced (optional) functions, the internal FMU state
can be copied and the pointer to this copy is returned
to the environment. The FMU state copy can be set
as current FMU state, in order to continue the simu-
lation from it. This feature introduced in FMI 2.0 can
be for example used:
• For iterative co-simulation master algorithms

(get the FMU state for every accepted communi-
cation step; if the follow-up step is not accepted,
restart co-simulation from this FMU state).

• For nonlinear Kalman filters (get the FMU state
just before initialization; in every sample period,
set new continuous states from the Kalman filter
algorithm based on measured values; integrate to
the next sample instant and inquire the predicted

Session 2A: FMI Standard I

DOI Proceedings of the 9th International Modelica Conference 177
10.3384/ecp12076173 September 3-5, 2012, Munich, Germany

continuous states that are used in the Kalman fil-
ter algorithm as basis to set new continuous
states).

• For nonlinear model predictive control (get the
FMU state just before initialization; in every
sample period, set new continuous states from an
observer, initialize and get the FMU state after
initialization. From this state, perform many
simulations that are restarted after the initializa-
tion with new input signals proposed by the op-
timizer).

Furthermore, the FMU state can be serialized and
copied into a byte vector. This can, for example be
used to perform an expensive steady-state initializa-
tion, copy the received FMU state in a byte vector
and store this vector on file. Whenever needed, the
byte vector can be loaded from file, can be deserial-
ized and the simulation can be restarted from this
FMU state, in other words from the steady-state ini-
tialization.

3.4 Dependency Information

In FMI 1.0 only the dependencies of outputs on in-
puts could be defined by the element “DirectDe-
pendency” in the XML-description. In FMI 2.0 this
information and the dependencies of outputs w.r.t.
state variable and of derivatives w.r.t. inputs and
state variables can be provided using the element
“ModelStructure”. Under this element ordered lists
of inputs, derivatives (with their associated state var-
iable names) and outputs are provided. At each out-
put and derivative additional attributes define the
dependency on inputs and state variables. Not only
the dependency itself but also the kind of dependen-
cy is defined here. It can be indicated whether the
dependency is nonlinear, fixed (the dependency
is linear, the factor is constant after initialization) or
discrete (the factor might change after events).
Using this information a tool can decide at which
stage of the solution process the respective entries of
the Jacobian matrices are to be retrieved.

The dependency information of outputs can be
utilized for detection of algebraic loops when FMUs
are connected with other parts of a model. In addi-
tion to that dependency information is necessary for
usage of sparse matrix techniques on Jacobian matri-
ces.

Assume for example that the following equations
are defined:

1 1 2
2

2 2 1 2 1 3

3 3 1 3 1 2 3

1 2 3

()
() 3 2 3
(, , , ,)

(,)

x f x
d x f x p x u u
dt

x f x x u u u
y g x x

   
   = + ⋅ ⋅ + ⋅ + ⋅   
      

=

where u1 and u2 are continuous-time inputs (variabil-
ity=”continuous”), u3 is a discrete-time input (var-
iability=”discrete”), and p is a fixed parameter
(variability=”fixed”). The structure of these equa-
tions can then be defined optionally in the following
way in the XML file:
<ModelStructure>
 <Inputs>
 <Input name="u1"/>
 <Input name="u2"/>
 <Input name="u3"/>
 </Inputs>

 <Derivatives>
 <Derivative name="der(x1)" state="x1"
 stateDependencies="2"
 inputDependencies="" />
 <Derivative name="der(x2)" state="x2"
 stateDependencies="1 2"
 stateFactorTypes ="nonlinear fixed"
 inputDependencies="1 3"
 inputFactorTypes ="fixed fixed" />
 <Derivative name="der(x3)" state="x3"
 stateDependencies="1 3" />
 </Derivatives>

 <Outputs>
 <Output name="y"
 stateDependencies="2 3"
 inputDependencies="" />
 </Outputs>
</ModelStructure>

3.5 Jacobian Matrices

Partial derivatives of FMU variables with respect to
inputs or state variables (Jacobian matrices) are
needed for implicit integration methods, for lineari-
zation of FMUs, or for usage in extended Kalman
filters. Especially for large models the numerical
computation of Jacobian matrices is time consuming.
For that reason FMUs can optionally provide func-
tions to retrieve partial derivatives (complete Jacobi-
ans) or directional derivatives of some variables
w.r.t. some others.

The sparsity pattern defined under “ModelStrucu-
tre” (see section above) can be utilized for efficient
data storage and matrix operations on sparse Jacobi-
ans. FMI does not define a specific storage schema.
The calling environment is free to use its own sche-
ma by the following approach. The environment has
to provide a function pointer to a call back function
setMatrix as argument of fmiGetPartialDe-

Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation …

178 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076173

rivatives. The FMU calls this function to set re-
spective matrix elements.

The FMU internally is free to use efficient nu-
merical methods for Jacobian computation, use a
symbolically deduced algorithm or automatic differ-
entiation.

3.6 Precise Time Event Handling

The details of precise time event handling in FMI
were still under discussion before the editorial dead-
line of this paper. Hence we cannot present a detailed
description here. The development work is compli-
cated since several aspects have to be considered:
• The synchronous features of Modelica 3.3 [2]

should be supported.
• FMI should also be useable by tools that do not

support synchronous time event handling.
• The time event handling is to be defined in a

way that allows backward compatible exten-
sions.

3.7 Improved Unit Definitions

The unit definitions have been improved in FMI 2.0:
The tool-specific unit-name can optionally be ex-
pressed as function of the 7 SI base units and the SI
derived unit “rad”. It is then possible to check units
when FMUs are connected together (without stand-
ardizing unit names as needed in FMI 1.0), or to
convert variable values that are provided in different
units (for the same physical quantity). In the specifi-
caiton it is sketched how to utilize this information
for connection checks, dimensional checks, or unit
propagation. The trick is to treat the derived unit
“rad” either as “rad” (for connection checks and unit
propagation) or as “1” (for dimensional checks) de-
pending on the situation.

4 Examples

In this section two examples are shown that demon-
strate the structure of the XML file and especially
how FMUs can be connected together. The use case
is an often occurring situation where two FMUs shall
be connected that have a mechanical interface.

4.1 FMU as Force Element

In the first example, FMU 1 consists of a one-
dimensional rotational drive train with an inertia that
is connected to a rotational spring/damper system
and the end point of the spring/damper system shall
be used as interface of this FMU, see next figure:

In multi-body system terminology, this is called a
“force element”. Typically, FMU 1 would be a com-
plicated device, e.g., a controlled electrical motor
with a gearbox, but the essential part is the force el-
ement at the interface. The inputs to FMU 1 are the
angle phi and the angular velocity w of the end point
of the spring/damper system. The output would be
the torque generated by the spring/damper. It is cal-
culated with the simple equation
 torque = c*(phi - inertia.phi) +
 d*(w – inertia.w)

where c is the spring and d is the damper constant.
This FMU is then connected to a multi-body sys-

tem FMU, for example a robot, and drives a revolute
joint. The FMU 2 provides phi and w as output
(from the relative joint coordinates) and gets the
torque as input.

The XML-file of FMU 1 has the following structure:
<?XML version="1.0" encoding="UTF-8"?>
<fmiModelDescription
 XMLns:xsi="http://www.w3.org/2001/.."
 xsi:noNamespaceSchemaLocation="fmiModel.."
 fmiVersion="2.0"
 modelName="FMU_Coupling.DriveTrain_TorqueAtEnd"
 guid="{a4976b5c-b9f7-432a-9dd3-e80bafaac060}"
 generationTool="..."
 generationDateAndTime="2012-07-15T12:52:13Z"
 variableNamingConvention="structured"
 numberOfEventIndicators="0">

 <ModelExchange
 modelIdentifier="FMU_0Coupling_..."
 canGetAndSetFMUstate="true"
 providesPartialDerivativesOf_Derivative
 Function_wrt_States="true"
 ...
 providesDirectionalDerivatives="true"/>

 <CoSimulation
 modelIdentifier="FMU_0Coupling_..."
 canHandleVariableCommunicationStepSize="true"
 canHandleEvents="true"
 canInterpolateInputs="true"
 canSignalEvents="true"
 canGetAndSetFMUstate="true"
 .../>

Session 2A: FMI Standard I

DOI Proceedings of the 9th International Modelica Conference 179
10.3384/ecp12076173 September 3-5, 2012, Munich, Germany

 <UnitDefinitions>
 <Unit name="N.m">
 <BaseUnit kg="1" m="2" s="-2"/> </Unit>
 </UnitDefinitions>

 <TypeDefinitions>
 <SimpleType
 name="Modelica.SIunits.Torque">
 <Real quantity="Torque" unit="N.m"/>
 </SimpleType>
 ...
 </TypeDefinitions>

 <DefaultExperiment startTime="0.0"
 stopTime="1.0" tolerance="0.0001"/>

 <ModelVariables>
 <ScalarVariable
 name="torque"
 valueReference="335544320"
 description="Torque in flange"
 causality="output">
 <Real
 declaredType=
 "Modelica.Blocks.Interfaces.RealOutput"
 unit="N.m"/>
 ...
 </ModelVariables>

 <ModelStructure>
 <Inputs>
 <Input name="phi"/>
 <Input name="w" derivative="1"/>
 </Inputs>
 <Derivatives>
 <Derivative
 name="der(inertia.phi)"
 state="inertia.phi"
 stateDependencies="2"
 inputDependencies=""/>
 <Derivative
 name="der(inertia.w)"
 state="inertia.w"/>
 </Derivatives>
 <Outputs>
 <Output name="torque"
 inputDependencies="1 2"
 inputFactorKinds="fixed fixed"/>
 </Outputs>
 </ModelStructure>
</fmiModelDescription>

Most of the elements should be self-explanatory. The
interesting part for the connection is element
“ModelStructure” at the end. Output torque de-
pends on the first and the second input, i.e. on phi
and w. Furthermore, the attributes fixed define that
the inputs enter the equation for the output with fixed
linear factors:

torque = p1*phi + p2*w + f(..)

where p1 and p2 are constants that are fixed after
initialization. Additionally, for input w the attribute
derivative = ”1” is defined. The meaning is that
w is the derivative of the first input, i.e. of phi. This
derivative information for inputs and outputs is es-
sential in order that a coupling tool can check that an
input is really the derivatives of another input by
checking the derivative attributes of the outputs from
another FMU.

The XML-file for FMU 2 looks similar. We will
concentrate only on the ModelStructure element:
 <ModelStructure>
 <Inputs>
 <Input name="torque"/>
 </Inputs>
 <Derivatives>
 ...
 <Outputs>
 <Output
 name="phi"
 stateDependencies="1"
 inputDependencies=""/>
 <Output
 name="w"
 derivative="1"
 stateDependencies="2"
 inputDependencies=""/>
 </Outputs>
 </ModelStructure>

The important point is that empty inputDependen-
cies lists are defined for the outputs. This means
that the outputs phi and w do not directly depend on
the input torque. As a result, when connecting FMU
2 to FMU 1, the outputs phi and w are provided by
FMU 2. FMU 1 computes its output torque that is
an input to FMU 2. Since the FMU 2 outputs do not
depend on this input, there is no algebraic loop and
the computation is simple.

4.2 FMUs with Coupling Constraint

The second example is the more often occurring
case, but is more involved. FMU 1 is again a one-
dimensional rotational drive train, but ends this time
with a rotational inertia, see next figure:

Since FMU 1 is connected to a joint of FMU 2, the
coupling leads to a constraint equation that states that
the angle of the revolute joint of FMU 2 is identical
to the angle of inertia2 in FMU 1. It is well-
known that such a model cannot be transformed by
purely algebraic transformations into a state space

Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation …

180 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076173

form (this is a so called higher index system2), and
that the first and second derivatives of this constraint
equation is needed. For this reason, FMU 2 provides
the angle phi of the revolute joint, its first derivative
w (the angular velocity) as well as its second deriva-
tive a (the angular acceleration) to FMU 1. In turn
FMU 1 provides the reaction torque to FMU 2. The
“ModelStructure” elements of the two FMUs have
now the following structure:

FMU 1:
 <ModelStructure>
 <Inputs>
 <Input name="phi"/>
 <Input name="w" derivative="1"/>
 <Input name="a" derivative="2"/>
 </Inputs>
 <Derivatives>
 ...
 <Outputs>
 <Output
 name="torque"
 inputDependencies="3"
 inputFactorKinds="fixed"/>
 </Outputs>
 </ModelStructure>

FMU 2:
 <ModelStructure>
 <Inputs>
 <Input name="torque"/>
 </Inputs>
 <Derivatives>
 ...
 <Outputs>
 <Output
 name="phi"
 stateDependencies="1"
 inputDependencies=""/>
 <Output
 name="w"
 derivative="1"
 stateDependencies="2"
 inputDependencies=""/>
 <Output
 name="a"
 derivative="2"
 stateDependencies="1"/>
 </Outputs>
 </ModelStructure>

The ModelStructure of FMU 1 states that its output
torque depends on its 3rd input a and that a enters
with a fixed factor. Therefore, the following equation
is present:
 torque = J*a + f1(<states>)

where J is a constant quantity that is fixed after ini-
tialization (this is the inertia of component iner-
tia2) and f1(..) is an additional functional de-
pendency of the states of the FMU, but not of its in-
puts.

2 Simulating such a higher index system of index 3 directly

will usually fail with an error message of the integrator that
there is no convergence.

The ModelStructure of FMU 2 states that it’s 3rd
output a depends on all of its inputs, i.e. on torque
(since no inputDependencies attribute is defined):

a = f2(torque, <states>)

Therefore, when the two FMUs are connected to-
gether an algebraic loop in the angular acceleration a
and in the reaction torque appears. The environ-
ment has therefore to either use a differential-
algebraic equation solver, or has to solve a non-
linear algebraic loop over the two FMUs. The latter
case can be improved by using Jacobian information:

As will be explained below, it is possible to com-
pute the factor J once after initialization and the term
f1 at every model evaluation (which turns out to be a
cheap operation for a drive train). It is then only nec-
essary to solve a nonlinear algebraic loop over FMU
2 and the simple equation of FMU 1. Additionally,
the Jacobian of the FMU 2 equation can be comput-
ed. Since for all mechanical systems the FMU 2
equation depends linearly on the unknowns, a non-
linear solver will converge with the provided Jacobi-
ans within one step.

An often occurring situation is that FMU 1 is im-
ported into a multi-body program and coupled to a
joint. In such a case, the multi-body code gets the
information about the linear equation of FMU 1.
Since the multi-body program has to solve a linear
equation system in the accelerations and in the forc-
es/torques of its mechanical system, just the simple
linear equation of FMU 1 has to be added and in eve-
ry model evaluation only one linear equation system
has to be solved.

To summarize, the coupling in this example be-
comes more complicated and linear or non-linear
equation systems have to be solved. This is relatively
cheap provided the information about linear depend-
encies and/or Jacobians are utilized.

The partial derivatives of output variables with
respect to input variables can be computed with
function fmiGetDirectionalDerivative. For the
case of one output variable y as function of states x
and of one input u, this function assumes an equation
of the form:

((), (),)=y g t u t tx
The function calculates:

∂
∆ = ∆

∂
gy u
u

where the seed Δu is given as an explicit input argu-
ment. Therefore, calling fmiGetDirectionalDe-
rivative for the output torque with respect to in-
put a and with Δa=1, the function will return the par-
tial derivative, that is J. The value of f1 is computed
by providing an input a=0 and computing the output
torque, that is torque = f1(<states>). Similari-

Session 2A: FMI Standard I

DOI Proceedings of the 9th International Modelica Conference 181
10.3384/ecp12076173 September 3-5, 2012, Munich, Germany

ly, the partial derivative of the FMU 2 equation can
be computed.

As a final remark: When FMU 1 is modeled in
Modelica, then the derivative relationships between
the inputs of the FMU must be defined, otherwise a
Modelica translator cannot process the model. There
is no direct Modelica language element available to
define this. However, with component Modeli-
ca.Mechanics.Rotational.Sources.Move from the
Modelica Standard library this relationship is ex-
pressed (based on language elements to express that
a function is a derivative of another function).

5 Increasing Quality of FMI Imple-
mentations

The FMI project provides an infrastructure to in-
crease the quality and compatibility of implementa-
tions in different tools. A repository of FMUs gener-
ated by different tools and reference results are pub-
lically available at the svn server:

https://svn.fmi-standard.org/fmi/trunk/Test_FMUs
In this way tool vendors are able to cross check their
implementations in an easy way. We hereby would
like to ask tool vendors that export FMUs, to provide
FMUs of their tools by sending an email with the
FMUs to info@fmi-standard.org.

Additionally, the Modelica Association contract-
ed the development of an open source FMI compli-
ance checker. This tool is now available for FMI 1.0
in source code, and as executable for Windows and
Linux under the svn address from above. It will be
available for FMI 2.0 soon after FMI 2.0 is released.

6 FMI Usage

FMI is used in industrial and scientific projects by
several companies and research institutions:

In all new gearbox projects for Mercedes-Benz
passenger cars FMI is used for software-in-the-loop
simulations [3]. Control software and FMUs coming
from different modeling environments run in closed-
loop in the virtual ECU tool Silver on Windows PC
in order to validate, test and debug control software.

Before FMI, vehicle models had to be imported
through various vendor and version specific import
procedures into Silver. This was expensive and error
prone. Thanks to the FMI, these bridges have now
been replaced by a uniform import interface, increas-
ing thereby the cost-benefit ratio of simulation in this
domain.

In mechatronic gearshift simulations for commer-
cial vehicles at Daimler AG FMI is utilized twice
[4]. At first controller software is connected to a de-
tailed 1D powertrain model in SimulationX. After-
wards this model is exported as FMU and imported
to the multibody system simulation tool Simpack.
There it is connected to a detailed truck model. This
allows the holistic simulation and optimization of the
shifting comfort.

At IFP Energies Nouvelles, FMI for Model Ex-
change is used to parallelize the execution of com-
plex internal combustion engine models in the tool
xMOD (see [5]). The models have around 100 - 300
state variables, with integration step-sizes that can
reach some microseconds. Their use is mainly in-
dented to validate engine controls. The final target is
to enable the execution in real-time, for hardware in
the loop simulations.

In [6], an algorithm is implemented for deriva-
tive-free optimization implemented in Python and
applied to parameter optimization of FMUs is intro-
duced. The FMUs are loaded and simulated using the
PyFMI package (http://www.pyfmi.org). The opti-
mization algorithm is applied to a Volvo truck en-
gine to identify model parameters based on meas-
urement data from a test cycle.

In [7] the FMI based co-simulation master from
Fraunhofer is used to develop, implement and test
sophisticated algorithms for the co-simulation of
FMUs generated by Dymola.

Dassault Systèmes uses FMI for academically
trainings. Student teams work with CATIA V6 and
define both a 3D CATIA representation of a NXT
robot as well as the controller software. Practically,
the real robot has sensors and actuators and is piloted
from a smartphone remote command, while the FMU
based logical control is executed in a CATIA ses-
sion. All these items are FMI and Bluetooth connect-
ed.

The solution has been delivered to Georgia Insti-
tute of Technology and University of Detroit Mercy
(US High Schools), also related to a cooperation
with Ford Motors Foundation.

In the field of modeling and simulation of build-
ing energy systems FMI is also used. In [8] FMI is
utilized to connect a building model with a Modelica
model of the heating system.

In 2012, the International Energy Agency, under
the implementing agreement on Energy Conserva-
tion in Buildings and Community Systems, approved
the five-year Annex 60 proposal "New generation
computational tools for building and community en-
ergy systems based on the Modelica and Functional
Mockup Interface standards." Eleven countries are
expected to participate in sharing, developing and

Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation …

182 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076173

deploying free open-source contributions for model-
ing and simulation of energy systems of buildings
and communities, based on Modelica and Functional
Mockup Interface standard.

The Lawrence Berkeley National Laboratory
(LBNL) released an FMI for co-simulation import
interface in version 7.1 of the EnergyPlus building
simulation program. Work is also in progress to ex-
port EnergyPlus as a FMU for Co-Simulation. UC
Berkeley and LBNL have been developing JFMI, a
Java Wrapper for FMI for Co-Simulation and Model
Exchange. JFMI will be used to integrate an FMI
import interface in Ptolemy II, a software environ-
ment for design and analysis of heterogeneous sys-
tems.

The Institute for the Sustainable Performance of
Buildings has been developing a web-based eLearn-
ing tool, Learn Green Buildings
(http://learngreenbuildings.org), in which a Web in-
terface communicates with an FMU for Co-
Simulation that computes the dynamic response of
building energy and control systems. The tool will
allow students to interactively operate a simulated,
realistic building system, to test energy-saving
measures and to explore the effects of faults in
equipment and controls.

7 Conclusions and Outlook

FMI is an established standard for Model Exchange
and Co-Simulation. The upcoming version 2.0 im-
proves the compatibility of implementations by a
clarified specification. New features increase usabil-
ity and performance especially for large models.

This version will be stable for the next years. If
necessary, minor backwards compatible releases will
be available to improve and clarify the specification
and to support new features. Current development
tasks are the exchange of structured data and arrays
of variable size and support of the new synchronous
features of the Modelica language [2].

The further development of FMI is organized un-
der the hood of the Modelica Association. The FMI
Modelica Association Project is of course open for
non Modelica tool vendors and organizations. From
the 16 members of the FMI Steering Committee and
Advisory Group, only five are Modelica Tool ven-
dors.

Companies and organizations which are interest-
ed to contribute to FMI development or request fea-
tures are invited to contact the FMI project via
info@fmi-standard.org.

8 Acknowledgements
The authors wish to thank all the contributors to the
FMI specification (see Annex).
Parts of this work were supported by the German
BMBF (Förderkennzeichen: 01IS08002), the French
DGCIS, and the Swedish VINNOVA (funding num-
ber: 2008-02291) within the ITEA2 MODELISAR
project
(http://www.itea2.org/project/result/download/result/
5533) The authors appreciate the partial funding of
this work.

9 References

[1] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C.
Clauß, H.Elmqvist, A. Junghanns, J. Mauss, M.
Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-
V. Peetz, S. Wolf: The Functional Mockup Inter-
face for Tool independent Exchange of Simulation
Models. 8th International Modelica Conference.
Dresden 2011. Download:
http://www.ep.liu.se/ecp/063/013/ecp11063013.pdf

[2] Modelica Association: Modelica – A Unified Ob-
ject-Oriented Language for Systems Modeling.
Language Specification, Version 3.3. May 9, 2012.

[3] E. Chrisofakis, A. Junghanns, C. Kehrer, A. Rink:
Simulation-based development of automotive con-
trol software with Modelica. 8th International
Modelica Conference. Dresden 2011. Download:
http://www.ep.liu.se/ecp/063/001/ecp11063001.pdf

[4] A. Abel, T. Blochwitz, A. Eichberger, P. Hamann,
U. Rein: Functional Mock-up Interface in Mecha-
tronic Gearshift Simulation for Commercial Ve-
hicles. 9th International Modelica Conference. Mu-
nich, 2012.

[5] Abir Ben Khaled, Mongi Ben Gaid, D. Simon, G.
Font: Multicore simulation of powertrains using
weakly synchronized model partitioning. Accept-
ed for 2012 IFAC Workshop on Engine and Power-
train Control, Simulation and Modeling. Rueil-
Malmaison, 2012

[6] S. Gedda, C. Andersson, J. Åkesson, S. Diehl: De-
rivative-free Parameter Optimization of Func-
tional Mock-up Units. 9th International Modelica
Conference. Munich, 2012.

[7] T. Schierz, M. Arnold, C. Clauss: Co‐simulation
with Communication Step Size Control in an FMI
Compatible Master Algorithm. 9th International
Modelica Conference. Munich, 2012.

[8] S. Burhenne, M. Pazold, F. Antretter, F. Ohr, S. Her-
kel, J. Radon: WUFI Plus Therm: Co-Simulation
unter Verwendung von Modelica Modellen.
Presentation at the Symposium „Integrale Planung
und Simulation in Bauphysik und Gebäudetechnik.“
Dresden, March 2012.

Session 2A: FMI Standard I

DOI Proceedings of the 9th International Modelica Conference 183
10.3384/ecp12076173 September 3-5, 2012, Munich, Germany

Annex
Members of the FMI Modelica Association Project:

The Steering Committee is open for additional members that actively support FMI. Requirements: Must have
(a) participated at least at two FMI meetings in the last 24 months, (b) must either provided the FMI standard
or part of it in a commercial or open source tool, and/or must actively use FMI in industrial projects, (c) the
Steering Committee members agree with qualified majority.

The Advisory Committee is open for additional members that proofed to actively support FMI. Require-
ments: Must have (a) participated at least at two FMI meetings in the last 24 months, and (b) the Steering
Committee members agree with qualified majority.

Contributors to the FMI 2.0 Specification:
The following persons participated at FMI 2.0 design meetings and contributed to the discussion (alphabeti-
cal list):

Martin Arnold, University Halle, Germany
Johan Akesson, Modelon, Sweden
Mongi Ben-Gaid, IFP, France
Torsten Blochwitz, ITI GmbH Dresden, Germany
Christoph Clauss, Fraunhofer IIS EAS, Germany
Alex Eichberger, SIMPACK AG, Germany
Hilding Elmqvist, Dassault Systèmes AB, Sweden
Markus Friedrich, SIMPACK AG, Germany
Peter Fritzson, PELAB, Sweden
Andreas Junghanns, QTronic, Germany
Petter Lindholm, Modelon, Sweden
Kristin Majetta, Fraunhofer IIS EAS, Germany
Sven Erik Mattsson, Dassault Systèmes AB, Sweden
Jakob Mauss, QTronic, Germany
Dietmar Neumerkel, Daimler AG, Germany
Peter Nilsson, Dassault Systèmes AB, Sweden
Hans Olsson, Dassault Systèmes AB, Sweden
Martin Otter, DLR (RMC-SR), Germany
Bernd Relovsky, Daimler AG, Germany
Tom Schierz, University Halle, Germany
Bernhard Thiele, DLR (RMC-SR), Germany
Antoine Viel, LMS International, Belgium

The following people contributed with comments (alphabetical list):
Peter Aaronsson, MathCore, Sweden
Bernhard Bachmann, University of Bielefeld, Germany
Iakov Nakhimovski, Modelon, Sweden
Andreas Pfeiffer, DLR (RMC-SR), Germany

Project Leader Torsten Blochwitz (ITI GmbH Dresden, Germany)
Steering Committee Atego, Daimler, Dassault Systèmes, IFP EN, ITI, LMS, Modelon, QTronic,

SIMPACK
Advisory Board Armines, DLR, Fraunhofer (IIS/EAS, First, SCAI), Open Modelica Consortium,

TWT, University of Halle
Guests Altair Engineering, Berkeley University, Bosch, ETAS, Siemens, Equa Simula-

tion

Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation …

184 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076173

Generation of Sparse Jacobians for the Function Mock-Up Interface 2.0

Generation of Sparse Jacobians for
the Function Mock-Up Interface 2.0

J. Åkessona,c, W. Braund , P. Lindholmb, B. Bachmannd

aLund University, Department of Automatic Control, Lund, Sweden
bLund University, Department of Mathematics, Lund, Sweden

cModelon AB, Lund, Sweden
dUniversity of Applied Sciences Bielefeld, Bielefeld, Germany

Abstract

Derivatives, or Jacobians, are commonly required by
numerical algorithms. Access to accurate Jacobians
often improves the performance and robustness of al-
gorithms, and in addition, efficient implementation of
Jacobian computations can reduce the over-all exe-
cution time. In this paper, we present methods for
computing Jacobians in the context of the Functional
Mock-up Interface (FMI), and Modelica. Two pro-
totype implementations, in JModelica.org and Open-
Modelica are presented and compared in industrial as
well as synthetic benchmarks.

Keywords: FMI; Analytic Jacobians; Automatic
Differentiation; JModelica.org; OpenModelica;

1 Introduction

Algorithms for solving computational problems nu-
merically often require access to derivatives, or ap-
proximations thereof. Examples include simulation
algorithms, where implicit integration schemes use
derivative information in Newton type algorithms, op-
timization algorithms, where derivatives are used to
compute search directions, and steady-state solvers.
The quality of the derivatives typically affects perfor-
mance and robustness of such algorithms. Often, the
execution time is strongly affected by the calculation
time of Jacobians.

During the last two years, the Functional Mock-up
Interface 1 (FMI) standard has had a strong impact
amongst software tools for modeling and simulation.
The goal of the standard is to promote model reuse and
tool interoperability by providing a tool and language
independent exchange format for models in compiled
or source code form. Following the introduction of

1https://fmi-standard.org/

FMI 1.0 in January 2010, the next version of the stan-
dard, FMI 2.0, will support sparse Jacobians, in order
to enable increased efficiency of algorithms supporting
FMI. The target of this extension is to provide deriva-
tive information for two different use cases of Func-
tional Mock-up Units (FMUs). The first use case is
simulation of a single FMU. In this case, sparse Ja-
cobians for the model equations enable increased effi-
ciency of iterative integration algorithms. The second
use case is the composition of multiple FMUs, poten-
tially blended also by elements from a modeling lan-
guage such as Modelica, where directional derivatives
are useful in order to efficiently construct Jacobians
for systems of equations spanning several FMUs.

In this paper, we describe methods for generating
sparse Jacobians and directional derivatives to fulfill
the corresponding requirements of FMI 2.0. The meth-
ods are described in the context of compilation of
Modelica models into FMUs, although the employed
techniques are generally applicable to other model de-
scription formats. Two prototype implementations,
one in OpenModelica2 and one in JModelica.org3 are
presented. The implementations of sparse Jacobians in
the respective tools are compared based on industrial
benchmark models.

The paper is organized as follows. In Section 2,
material on FMI, Jacobians and differentiation tech-
niques are provided. Section 3 describes two different
implementations of sparse Jacobians in JModelica.org
and OpenModelica respectively. Benchmark results
are provided in Section 4, and the paper ends with a
summary and conclusions in Section 5.

2http://www.openmodelica.org
3http://www.jmodelica.org

DOI Proceedings of the 9th International Modelica Conference 185
10.3384/ecp12076185 September 3-5, 2012, Munich, Germany

2 Background

2.1 The Functional Mock-up Interface

FMI emerged as a new standard resulting from the
ITEA2 project MODELISAR, in 2010. The standard
is a response to the industrial need to connect differ-
ent environments for modeling, simulation and control
system design. Commonly, different tools are used for
different applications, whereas simulation analysis at
the system integration level requires tools to be con-
nected. FMI provides the means to perform such inte-
grated simulation analysis.

FMI specifies an XML format for model interface
information and a C API for model execution. The
XML format, specified by an XML schema, contains
information about model variables, including names,
units and types, as well as model meta data. The
C API, on the other hand, contains C functions for
data management, e.g., setting and retrieving param-
eter values, and evaluation of the model equations.
The implementation of the C API may be provided in
source code format, or more commonly as a compiled
dynamically linked library.

FMI comes in two different flavors: FMI for Model
Exchange (FMI-ME) [2] and FMI for Co-Simulation
(FMI-CS) [3]. FMI-ME exposes a hybrid Ordinary
Differential Equation (ODE), which may integrated
stand-alone or which may be incorporated in a com-
posite dynamic model in a simulation environment.
The FMI-ME C API exposes functions for computa-
tion of the derivatives of the ODE, and accordingly,
in FMI-ME the integration algorithm is provided by
the importing application. FMI-CS, on the other hand,
specifies that the integration algorithm is included in
the FMU, and the FMU-CS C API provides functions
for integrating the dynamics of the contained ODE for
a specified period of time.

The FMI standard is supported by several model-
ing and simulation tools, including Dymola, Simula-
tionX, JModelica.org and OpenModelica. Also, there
are FMI interfaces to MATLAB, National Instruments
Veristand and several additional tools.

FMI 2.0 is a unification of the Model Exchange
and Co-simulation standards and contains several im-
provements. One of those are the sparse Jacobians,
which are also topic of this paper. The sparse Jacobian
interface in FMI 2.0 consists of three different parts:

• A C API function for evaluation of directional
derivatives of the model equations.

• A C API function for evaluation of sparse Jaco-

bian matrices corresponding to the ODE repre-
sentation of an FMU.

• A section in the XML document contained in an
FMU providing the incidence pattern for the Ja-
cobian matrices.

In this paper, algorithms for generating this function-
ality are discussed.

2.2 Causalization of DAEs

In the first step of the compilation process in a Model-
ica tool chain, a compiler front-end transforms Model-
ica source code into a flat representation, consisting
essentially of lists of variables, functions, equations
and algorithms. Based on this model representation,
symbolic operations such as alias elimination and in-
dex reduction are applied, in order to reduce the size
of the model and to ensure that the resulting Differen-
tial Algebraic Equation (DAE) is of index 1. In this
section, we outline the following steps that are of par-
ticular relevance for the generation of Jacobians. In
particular, the causalization procedure, i.e., transfor-
mation of an index-1 DAE into an equivalent ODE, as
required by the FMI standard, is discussed.

FMI specifies Jacobians and directional deriva-
tives with respect to the continuous model equations.
Therefore, without lack of generality, and for clarity of
the presentation, only the continuous part of the DAE
is considered in the following.

We consider index-1 DAEs in form of

F(ẋ(t),x(t),u(t),w(t)) = 0, t ∈ [t0, t f]

x(0) = x0
(1)

where ẋ(t) ∈ Rnx are the state derivatives, x(t) ∈ Rnx is
the state, u(t) ∈ Rnu are the inputs and w(t) ∈ Rnw are
the vector of algebraic variables. The initial conditions
of DAE state is given by x0. Introducing z = (ẋ w),
denoting the unknowns of the DAE, and v = (x u), de-
noting the known variables, the DAE written

F(z,v) = 0 (2)

The conceptual idea of DAE causalization commonly
used in Modelica tools is then to compute the inverse
relationship of F

z = G(v), (3)

and the ODE may then be written

ẋ = f (x,u)

y = h(x,u)
(4)

Generation of Sparse Jacobians for the Function Mock-Up Interface 2.0

186 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076185

where y are the outputs of the system. Note that the
algebraic variables are considered to be internal to
the ODE in this representation. In general, there is
no closed expression for the functions f and g, but
rather, iterative techniques, e.g., Newton’s method, is
employed to solve algebraic loops for z.

Modelica models are typically of large scale but
sparse in the sense that each model equation contains
references only to a small number of equations. In or-
der to exploit this structure, graph algorithms can be
employed. Two commonly used algorithms that are
used for this purpose are matching algorithms, e.g., the
Hopcroft Karp algorithm, and Tarjan’s algorithms for
computing strong components, [4]. The result of Tar-
jan’s algorithm is then used to permute the variables
and equations of the DAE into Block Lower Triangu-
lar (BLT) form.

Let us consider a DAE with five equations and five
unknowns, i.e., F ∈ R5 and z ∈ R5, where the DAE
equations are given by

F1(z1,z5,v) = 0

F2(z3,v) = 0

F3(z1,z2,z3,z4,v) = 0 (5)

F4(z1,z3,z5,v) = 0

F5(z2,z5,v) = 0

Note that the variables v = [x,u] are known and need
not be considered in the following analysis. The de-
pendence of the z-variables can be shown in the fol-
lowing incidence matrix,

z1 z2 z3 z4 z5
F1 ∗ 0 0 0 ∗
F2 0 0 ∗ 0 0
F3 ∗ ∗ ∗ ∗ 0
F4 ∗ 0 ∗ 0 ∗
F5 0 ∗ 0 0 ∗

(6)

A * in the incidence matrix at row i and column j de-
notes that the residual function Fi contains a reference
to the variable z j. Application of the BLT procedure,
now yields the following DAE system

z3 z1 z5 z2 z4
F2 1 0 0 0 0
F4 1 1 1 0 0
F1 0 1 1 0 0
F5 0 0 1 1 0
F3 1 1 0 1 1

(7)

The implicit DAE system (5) is now given by a se-
quence of assignment statements and implicit systems

of equations

z̄1 := g1(v)

F̄2(z̄1, z̄2,v) = 0

F̄3(z̄2, z̄3,v) = 0

z̄4 := g4(z̄1, z̄2, z̄3,v)

(8)

where z̄1 = z3, z̄2 = (z1 z5)
T , z̄3 = z2, z̄4 = z4. The

functions g1 and g2 corresponds to explicit solutions
of the corresponding DAE equations, whereas F̄2 =
(F4 F1)

T and F̄3 = F5 corresponds to implicit (systems
of) equations that require iteration. It is typical for
Modelica models to contain only a small number of
implicit systems of equations and a large number of
trivial, e.g., linear equations that may be solved sym-
bolically.

For a general DAE, the BLT procedure results in a
sequence of scalar and non-scalar equation blocks on
the form

F̄1(z̄1,v) = 0
...

F̄i(z̄1, ...,zi,v) = 0
...

F̄b(z̄1, ...,zb,v) = 0

(9)

where the unknown of each residual F̄i is z̄i. Further,
some of the residual functions may be solved explicitly
by symbolic manipulation and the remaining blocks
needs the to be solved by iterative methods.

Computation of the sequence of solved and non-
solved blocks (9), given values of the known variables
in v then produces the corresponding state derivative
and algebraic vectors contained in z. Accordingly, the
DAE has been causalized in to an ODE on the form
(4).

2.3 Computation of Jacobians

The Jacobian of a vector valued function f (x) ∈ Rm,
x ∈ Rn is given by

∂ f
∂x

=


∂ f1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

· · · ∂ fm
∂xn

 (10)

A useful tool when computing Jacobians is directional
derivatives. The directional derivative of a vector val-
ued function f (x) is defined by

d f =
∂ f
∂x
·dx, (11)

Session 2A: FMI Standard I

DOI Proceedings of the 9th International Modelica Conference 187
10.3384/ecp12076185 September 3-5, 2012, Munich, Germany

where dx ∈ Rn represents the direction in which the
directional derivative, denoted d f ∈ Rm, is evaluated.
dx is also referred to as a seed vector.

In the following, directional derivatives will be used
extensively to construct Jacobians. A straight forward,
although naive, approach to construct a Jacobian from
directional derivative evaluations is as follows. Using
the identity matrix I of dimension n, and the unit vec-
tors e1 . . .en we have that

∂ f
∂x

=
∂ f
∂x

I =
∂ f
∂x

(
e1, . . . en

)
=(

∂ f
∂x · e1 . . . ∂ f

∂x · en

)
. (12)

Using this relation, a Jacobian with n columns may be
constructed from n evaluations of directional deriva-
tives. In Section 2.7, an overview of methods to ex-
plore sparsity to improve efficiency in this respect will
be given.

There are three widely used methods for computing
Jacobians, namely finite difference methods, symbolic
differentiation and automatic (or algorithmic) differ-
entiation.

2.4 Finite Difference Approximation

In the finite difference method, a numerical approxi-
mation of the directional derivative of a vector valued
function f is calculated using the formula

∂ f (x)
∂x
· ei =

f (x+ eih)− f (x)
h

. (13)

where h is the increment. On one hand, even if the
increment is chosen optimal in nature of that method is
an accuracy error ε , which is the sum of εt + εr where
εt is the truncation error and εr the round-off error. The
truncation error εt |ḣ̇ f (x)| is the result of the Taylor-
series truncation. The round-off error εr ε f | f (x)/h|
where ε f is the fractional accuracy ε f ≥ εm depends
on machine accuracy εm. On the other hand, it is easy
to implement and also almost applicable.

2.5 Symbolic Differentiation

In general the “calculus” of symbolic derivatives is
done by difference quotients. where the derivative of a
function is the limit

∂ f
∂x

= lim
h→0

f (x+h)− f (x)
h

(14)

difference quotients. This is also the way the basic dif-
ferentiation rules are found. From a practical view the

“calculus” of the symbolic derivatives is done by ap-
plying basic differentiation rules and table of deriva-
tives for common functions on the expressions to find
the formulas for the derivatives. Since a Modelica
model results during the compilation in symbolic ex-
pressions which are manipulated to simplify the orig-
inal system. So it is quite typical for a Modelica Tool
to use symbolical methods also for the differentiation.
Finding the symbolic formula may take time, space
and a symbolic kernel for simplifications, but once de-
termined it’s fast to evaluate them [7]. A further draw-
back is that symbolic differentiation is not applicable
on algorithms (with for-loops and branches).

2.6 Automatic Differentiation

Automatic Differentiation (AD) is a method for com-
puting derivatives with machine precision, which is
applicable to expressions as well as algorithmic func-
tions [1]. The key idea in AD techniques is to prop-
agate derivative information through a sequence of
atomic operations, which is represented by an expres-
sion graph. Computation of a sequence of AD oper-
ations results in the evaluation of a directional deriva-
tive with respect to a given seed vector.

There are two different modes of operation of AD—
forward and reverse. The forward mode AD is con-
ceptually simple, and is based on forward propagation
of values and derivatives through an expression graph.
The result of a forward AD sweep is a vector corre-
sponding to the Jacobian multiplied by the seed vector.
Commonly, Jacobian matrices are constructed from a
number of forward AD evaluations.

The reverse AD technique is more involved than the
forward mode, and includes a forward and a backward
evaluation sweep over the expression graph, and the
result is a vector corresponding to the seed vector mul-
tiplied by the Jacobians. This mode of operation is
particularly useful in the case of scalar functions that
depends on many independent variables—in this case,
reverse AD is referred to the cheap gradient computa-
tion. Reverse AD is also commonly used to construct
higher-order derivatives, e.g., Hessian matrices in op-
timization applications.

Implementation of AD tools comes two different
flavors: Operator Overloading (OO) and Source Code
Transformation (SCT). In OO tools, the expression
graph is represented by data structures that are repeat-
edly traversed during forward and reverse mode eval-
uations. This strategy has been popularized by tools

Generation of Sparse Jacobians for the Function Mock-Up Interface 2.0

188 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076185

such as CppAD4 and ADOL-C5 which both enable
AD to be applied to C code with minor modifications.
Tools in this category are typically based on operator
overloading, e.g., in C++, to construct a data structure
referred to as a tape, which is then used as a basis for
derivative computations. Tools based on the SCT ap-
proach, on the other hand, generate code that, when
executed, compute derivatives. The ADIFOR6 pack-
age falls into this category.

In this paper, forward mode AD using the SCT tech-
nique will be used. The remainder of this section will
therefore focus on explaining this methods.

A key to understanding forward AD, is the observa-
tion that expressions can be evaluated, and differenti-
ated, by considering a sequence of atomic operations.
The elementary arithmetic operations can be differen-
tiated by applying the derivation rules

d
dx

(u(x)± v(x)) =
du
dx
± dv

dx
d
dx

(u(x)v(x)) = u(x)
dv
dx

+ v(x)
du
dx

d
dx

(u
v

)
=

v(x)du
dx −u(x) dv

dx
v(x)2

In addition, the chain rule

d
dx

φ(u(x)) =
dφ

du
du
dx

applies to the elementary arithmetic functions, such as
sin, cos etc.

In the following example, we illustrate how these
building blocks are used to apply the forward AD tech-
nique. We consider the function

f (x1,x2) = x1 · x2 + sin(x1), (15)

for which we would like to compute the directional
derivative according to relation (11). Assuming the
seed vector dx = (1 0)T , it follows that

d f =
∂ f
∂x

dx =
(

∂ f
∂x1

∂ f
∂x2

)
·
(

1
0

)
=

∂ f
∂x1

. (16)

Using the seed vector in (16), f (x) will be differenti-
ated with respect to x1.

The expression graph corresponding to the function
in (15) is shown in Figure 1.

In the figure, the leaves represent the independent
variables and the root node represents the function it-
self.

4http://www.coin-or.org/CppAD/
5http://www.coin-or.org/projects/ADOL-C.xml
6http://www.mcs.anl.gov/research/projects/adifor/

x1 1 x2 2

sin 3 × 4

+ 5

f (x1,x2) 6

Figure 1: Expression graph of the function (15)

A forward AD sweep is performed as follows. The
computation sequence starts at the independent vari-
ables. Intermediate variables, vi:s, are introduced to
hold the value of each node, and in addition, variables
for the derivative values of each node, di, are intro-
duced. The expression of a particular variable vi is
given by the corresponding node type, i.e., arithmetic
operation, and the derivative value, di, is given by dif-
ferentiation of the same operation. Application of this
procedure to the function (15) gives the following se-
quence of operations.

v1 := x1

d1 := dx1

v2 := x2

d2 := dx2

v3 := sin(v1)

d3 := d1 · cos(v1)

v4 := v1 · v2

d4 := d1 · v2 + v1 ·d2

v5 := v3 + v4

d5 := d3 +d4

v6 := v5

d6 := d5

The variable v6 now holds the value of the function it-
self and d6 holds the value of the directional derivative.
Note that the evaluation is done for particular values of
the independent variables, in this case x1 and x2, and
seed values, dx1 and dx2. Note that auxiliary variables
v1, v2, d1 and d2 are introduced here for clarity.

2.7 Exploiting Sparsity

Modelica models, also after the causalization proce-
dure described above, are often sparse, i.e., each equa-

Session 2A: FMI Standard I

DOI Proceedings of the 9th International Modelica Conference 189
10.3384/ecp12076185 September 3-5, 2012, Munich, Germany

tion of a model depends only on a fraction of the to-
tal number of variables. Exploiting sparsity of Mod-
elica models can be done in two different contexts.
Firstly, the efficiency of computation of Jacobian ma-
trices based on directional derivative evaluations can
be much improved by considering sparsity. This strat-
egy is called compression and will be described briefly
in this section. Secondly, a simulation environment
importing an FMU providing sparse Jacobians may
utilize this information to improve the performance of
numerical algorithms. A typical example of such al-
gorithms are sparse linear solvers, e.g., UMFPACK7,
CSparse8 and PARDISO9. This usage is, however, not
related to the procedures required to generate Jaco-
bians, and it is therefore beyond the scope of this pa-
per.

As noted above, a naive method for evaluation di-
rectional derivatives to generate Jacobian matrices is
to simply make one such evaluation for each column
of the Jacobian, with seed vectors corresponding to the
unit vectors of appropriate dimension. If the Jacobian
is sparse, however, the number of evaluations can be
drastically reduced, by observing that several columns
can be computed in a single directional derivative eval-
uation if the sparsity patterns of these columns do not
overlap. As an example, consider the incidence ma-
trix (6). Here, we note that columns four and five does
not contain overlapping entries, and they can therefore
be computed by one single directional derivative eval-
uation with the seed vector chosen as the sum of the
corresponding unit vectors. Note also that this strat-
egy is applicable to all three differentiation methods
described above: finite differences, AD and symbolic
differentiation.

While this strategy is simple to implement, comput-
ing a column grouping of minimal size is well known
to be an NP-hard problem—this problem corresponds
precisely to the graph coloring problem [5, 6]. There
are, however, efficient algorithms capable of comput-
ing practically useful approximations of the optimal
solutions. Specific algorithms will be discussed in
Section 3.

7http://www.cise.ufl.edu/research/sparse/

umfpack/
8http://people.sc.fsu.edu/~jburkardt/c_src/

csparse/csparse.html
9http://www.pardiso-project.org/

3 Computation of Jacobians for
Modelica Models

In Section 2.2, it was shown how a DAE is transformed
into an ODE by means of the BLT transformation. In
this section, methods for computing the Jacobians of
the resulting ODE (4) are presented. We consider

∂ z
∂v

=

(
∂ ẋ
∂v
∂y
∂v

)
=

(
∂ ẋ
∂x

∂ ẋ
∂u

∂w
∂x

∂w
∂u

)
=

(
A B
C D

)
(17)

In this section, we present two methods for comput-
ing the matrices A, B, C and D by means of direc-
tional derivatives. One of the methods, which is im-
plemented in JModelica.org, relies on a forward AD
implementation in an SCT setting, whereas the other
method, which is implemented in OpenModelica, re-
lies on symbolic differentiation and symbolic expres-
sion simplification. In addition, an algorithm for com-
puting the sparsity pattern of the Jacobian matrices,
which is common for both methods, is presented.

The key idea in this section is the following. Differ-
entiating the DAE (2) yields the relation

∂F
∂ z

dz+
∂F
∂v

dv = 0, (18)

where dv is the input seed vector and dz works as the
directional derivative of the relation (3) with respect to
the direction dv. By solving the system of equations
(18) for a particular seed dv, the directional derivative
of the DAE is obtained. It is important to note that
the system of equations to be solved is linear in the
unknowns, dz, and thus does not require iteration.

The Jacobian matrices are then constructed from re-
peated evaluation of directional derivatives. In addi-
tion, coloring algorithms and compression is used to
reduce the number of directional derivative evaluations
in both implementations.

Evaluation of Jacobians based on the compression
of the columns requires access to sparsity pattern, as
stated in Section 2.7. The determination of the spar-
sity pattern for a Modelica model could be done by
means of graph theory. Since the non-zero values in
a Jacobian expresses which output variable has a con-
nection to which input variable. Thus the determina-
tion problem could be formulated as a st-connectivity
problem in a directed graph, where input variables are
the sources and the output variables are the sinks. The
st-connectivity is a decision problem that asks if the
vertex t is reachable from the vertex s, particular which
output variable is connected to which input variable.
Specific algorithms for this purpose will be discussed
below.

Generation of Sparse Jacobians for the Function Mock-Up Interface 2.0

190 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076185

3.1 Implementation of Directional Deriva-
tives in JModelica.org

The performance of the approach outlined above can
be improved significantly by exploiting the BLT struc-
ture described in Section 2.2. In particular, forward
AD may be applied directly to the sequence of compu-
tations given in (9). In the implementation in JModel-
ica.org, C code corresponding to a forward AD sweep
over the sequence of BLT blocks is generated. The
symbolic expression graphs in the compiler is a ba-
sis for the code generation. As noted in Section 2.2,
there are two kinds of blocks produced by the BLT
transformation, i.e solved equation blocks and non-
solved equation blocks requiring iterative numerical
solution. Below, we explain how directional deriva-
tives are propagated in these two cases.

3.1.1 Propagation of Directional Derivatives in
Equation Blocks

For blocks corresponding to solved equation blocks of
the form

z̄i := gi(z̄1, . . . , z̄i−1,v) (19)

it is straight forward to apply the forward AD ap-
proach. In this case, AD code is simply generated bas-
ing on the expression graph for gi, in order to produce
the directional derivative

dz̄i =
∂gi

∂ z̄1
dz̄1 + . . .+

∂gi

∂ z̄1−i
dz̄i−1 +

∂gi

∂v
dv. (20)

Note that the input seed dv and the directional deriva-
tives for previous blocks, z̄i, . . . z̄i−1 are known at this
point in the computation sequence. Commonly, the ex-
pression gi does not depend on all previous vectors of
unknowns, z̄1, . . . , z̄i−1, a property which is exploited
in the implementation.

For a block corresponding to a system of equations,
the block residual is given by

F̄i(z̄1, . . . ,zi,v) = 0. (21)

In order to compute the directional derivative, dz̄i, for
such a block, the residual equation is differentiated to
yield

∂ F̄i

∂ z̄1
dz̄1 + · · ·+

∂ F̄i

∂ z̄i
dz̄i +

∂ F̄i

∂v
dv = 0 (22)

which in turn gives the linear system

∂ F̄i

∂ z̄i
dz̄i =−

i−1

∑
k=1

∂ F̄i

∂ z̄k
dz̄k−

∂ F̄i

∂v
dv (23)

to be solved for dz̄i. All Jacobians in this relation are
generated to C code using forward AD. Note that the
system Jacobian of the linear system (23) is provided
also to the Newton solver that computes the solution
of the system of equations (21). Therefore, this code is
reused in the computation of the directional derivative
of the block.

3.1.2 Computation of Sparsity Patterns

Computation of sparsity patterns for the Jacobian ma-
trices A, B, C and D is a non-trivial problem, because
of the sequence of operations required to compute the
state derivatives x and the algebraic variables w. In
comparison, computation of the Jacobian matrix of a
DAE system (2) is straightforward and can be done by
simply collecting references to unknown variables in
each residual equation. As noted above, the problem
of computing sparsity patterns for the ODE Jacobian
is a connectivity problem, where the dependencies of
the dependent variables z of the independent variables
contained in v need to be computed.

The BLT form of the DAE offers means to compute
the required sparsity patterns for the ODE Jacobians.
While the general form of a block in the BLT sequence
is

F̄i(z̄1, ...,zi,v) = 0, (24)

particular blocks typically do not depend on all vari-
ables in z1, . . .zi and in v. In order to reflect this situa-
tion, we introduce the notation

F̃i(z̃i,zi, ṽi) = 0, (25)

where z̃i contains the variables in the z vector upon
which the equation block residual F̃i depends. ṽi is de-
fined correspondingly. As a first approximation, which
will be relaxed in the following, we assume that all
variables solved for in the block i, i.e., zi, depends
on all variables in z̃i and in ṽi. Clearly, this relation-
ship defines the direct dependency of zi on ṽi. Now,
the dependency of zi on the variables contained in
ṽ1, . . . , ṽi−1 is given implicitly by z̃i. The connectiv-
ity graph of the BLT form reveals these dependencies.
Edges in this graph corresponds to non-zero entries in
the lower left part of the transformed incidence matrix,
below the block diagonal. In the connectivity graph,
dependency information is propagated top-down in the
sequence of blocks. For each block, the complete set
of variables in v upon which the block depends is col-
lected from the predecessors in the dependency graph.

For a block consisting of a system of equations, the
assumption that all variables solved for in the block,

Session 2A: FMI Standard I

DOI Proceedings of the 9th International Modelica Conference 191
10.3384/ecp12076185 September 3-5, 2012, Munich, Germany

zi, depends on all variables in z̃i may lead to an over-
estimation of the sparsity pattern. Specifically, since
the sparsity pattern of the inverse of a sparse matrix
may also be sparse, the computation may result in non-
zero entries which are in fact structural zeros. In or-
der to take this into account, the sparsity pattern of
the inverse of the corresponding block Jacobian may
be computed, [8]. The result of this analysis is then
taken into account when variable dependencies are
computed. Note that this analysis remains to be im-
plemented in JModelica.org

3.2 Implementation of Directional Deriva-
tives in OpenModelica

The directional derivatives in OpenModelica are gen-
erated basically by setup a new symbolic equation sys-
tem inside the OMC with the differentiated equations.
This system contains the desired partial derivatives dz̄
as unknowns, the seed vector dv̄ and all other variables
from the original system are considered as known. The
resulting equation system is the desired one as in equa-
tion (18).

This approach differs from the previously published
procedure (see [10]), in a way that now each equation
is derived only once. This leads to linearity in the com-
pilation time and in the generated code size.

All methods mentioned in section 2 are used for
the differentiation of the original system. Equations
are differentiated symbolically, algorithm sections and
Modelica functions without an derivative annotation
are differentiate by the forward AD approach and ex-
ternal functions, where nothing else is possible, are
differentiated numerically.

The generated equation system is then optimized
like the original system. In detail it is transformed
to an explicit form with the BLT machinery of Open-
Modelica, further expression-based simplification are
done and some common sub-expressions are filtered.
The resulting equation system is then written to the C-
Code.

For the purpose of generating the four matrices in
(17) for each matrix one new equation system is gener-
ated with the corresponding variables. Note therefore
the original system is filtered for the necessary equa-
tions.

The exploration of the sparsity pattern for a fast
evaluation of the compressed Jacobians is applied on
the generated directional derivatives. A detailed de-
scription of the algorithms used for that task in Open-
Modelica can be found in [9].

3.3 Comparison of Implementations

The implementations in OpenModelica and in JMod-
elica.org share common characteristics, but there are
also differences. Both algorithms are based on gen-
eration of C code that evaluates directional deriva-
tives, which in turn are used to compute Jacobians.
Also, both algorithms rely on compression for reduc-
ing the number of directional derivative evaluations.
The computation of sparsity patterns for the ODE Ja-
cobians also proceeds in the same manner.

The main difference between the implementations
is rather the way in which the directional derivatives
are generated. In the JModelica.org implementation,
the same BLT structure as for the underlying ODE is
used. Code generation is done by traversing the BLT
structure in a separate code generation pass and for-
ward AD code is then generated for solved equations
and systems of equations, as described in 3.1. In the
OpenModelica implementation, on the other hand, a
new data structure containing all model equations in
symbolically differentiated form is first constructed.
The symbolic kernel of the compiler is then invoked to
simplify the differentiated equations, and a new BLT
structure is computed prior to code generation.

Both approaches have advantages and disadvan-
tages. In the JModelica.org implementation, no new
data structures are created, which reduces memory
consumption. Also, since the same BLT structure as
for the underlying ODE is used, Jacobians for systems
of equations corresponding to algebraic loops are gen-
erated. These, in turn are useful also in case of apply-
ing iterative techniques to solve algebraic loops. The
main advantage of the OpenModelica implementation
is that symbolic simplifications done by the compiler
can yield simpler code that is faster to execute. Also,
since a new BLT computation is done, properties of
the new, differentiated system of equations may be ex-
plored in order to further speed up Jacobian computa-
tions.

4 Benchmarks

Three different aspects are considered in the bench-
marks presented in this section, namely, i) model com-
pilation time, ii) generated code size, and iii) Jaco-
bian evaluation time. In the case of model compila-
tion time, both the time spent in the respective Model-
ica compilers, OpenModelica and JModelica.org, and
the time spent in the C compiler, gcc in both cases,
when compiling the generated code is measured. This

Generation of Sparse Jacobians for the Function Mock-Up Interface 2.0

192 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076185

measure seems to be the most interesting for the user,
since both phases are included in the model compila-
tion time from a user’s perspective. As for the size
of the generated code, only the size of the code that
is generated by the Modelica compilers is measured,
i.e., no code originating from run-time systems or sim-
ilar is included. Finally, the time for 1000 Jacobian
evaluations is measured and the mean evaluation times
are reported. In all benchmarks, the system Jacobian,
i.e., the Jacobian of the derivatives with respect to the
states, is evaluated.

It is worth noting that the benchmarks in this sec-
tion does not only reflect the particular details of the
respective Jacobian evaluation strategies. In particu-
lar, the measurements are biased by other code op-
timization strategies in the compilers, including alias
elimination, symbolic processing, tearing, and the ef-
ficiency of non-linear solvers used to solve algebraic
loops. In addition, the compilation time measure-
ments, the optimization and debugging flags supplied
to the respective C compilers influence the result.

All measurements in this paper are performed
on a 64-bits architecture computer having one Intel
Q9550@2.83GHz CPU and 16 GB of RAM. It runs
Ubuntu 12.04 Linux, kernel 3.2.0-25.

4.1 Combined Cycle Power Plant

The first benchmark is a model of a combined cycle
power plant model, see Figure 2. The model con-
tains equation-based implementations of the thermo-
dynamic functions for water and steam, which in turn
are used in the components corresponding to pipes and
and the boiler. The model also contains components
for the economizer, the super heater, as well as the
gas and steam turbines. The model has 10 states and
131 equations. For additional details on the model,
see [11].

The benchmark results are shown in Table 1. As can
be seen, the model compilation times and the file sizes
are similar. Both implementations obtained six col-
ors for the Jacobian, i.e., 6 directional derivative eval-
uations were required to compute the Jacobian. The
Jacobian evaluation time does, however, differ in a
way that the OpenModelica implementation performs
faster.

4.2 Synthetic Benchmarks

In order to analyze the scalability properties of the re-
spective implementations, synthetic benchmark mod-
els were automatically generated. The underlying as-

Figure 2: Modelica component diagram for a com-
bined cycle power plant.

Table 1: Benchmark results for combined cycle power
plant.

Generation [s] Code size [kB] Jac eval
Tool No Jac Jac No Jac Jac time[ms]
OM 2.98 3.87 519 711 0.018
JM 3.64 5.92 266 456 0.090

sumption of the synthetic models is that a single Mod-
elica equation contains references to fixed maximum
number of variables, a number which does not in-
crease with model size. This assumption is realistic,
given that Modelica models are typically constructed
from a large number of simple component models,
where the equations in each component are local in the
sense that they refer mainly variables in the same, or
neighboring, components. Another important feature
of Modelica models are algebraic loops, or implicit
systems of equations, which require iterative solution
techniques. Therefore, the synthetic benchmark mod-
els contain implicit systems of equations, composed
from linear and non-linear terms, in the form of sin
functions, terms.

Three suits of benchmark models were constructed,
using different assumptions on the number of variable
references in a single equation. This aspect was quan-
tified by the sizes of the implicit systems of equations,
where sizes of two, four and eight, respectively, were
used to generate the benchmark models. Within each
suite of benchmark models, four different models of
increasing size were constructed, essentially by dou-
bling the number of variables while keeping the size
of all the implicit equation systems constant. For de-
tailed statistics and structural analysis of the models

Session 2A: FMI Standard I

DOI Proceedings of the 9th International Modelica Conference 193
10.3384/ecp12076185 September 3-5, 2012, Munich, Germany

Table 2: Statistics and structural analysis of the syn-
thetic models. #N denotes the number of variables,
#N-z. denotes the number of reported non-zero ele-
ments and #Col. denotes the number of colors result-
ing from the coloring algorithms. #N-z. and #Col. are
equal in both implementations.

#N #States #Alg. loops #N-z. #Col.
1-1 22 4 9 7 2
1-2 42 8 17 21 4
1-3 82 16 33 47 4
1-4 162 32 65 104 4
2-1 40 4 9 7 2
2-2 76 8 17 21 4
2-3 148 16 33 53 4
2-4 292 32 65 117 4
3-1 76 4 9 7 2
3-2 144 8 17 21 4
3-3 280 16 33 53 4
3-4 552 32 65 117 4

consider table 2. Note that for both implementations,
the number of non-zero elements and the number of
colors produced by the respective coloring algorithms
are equal.

Table 3: Benchmarks of synthetic models for Open-
Modelica

Generation [s] Code size [kB] Jac. eval.
No Jac. Jac. No Jac. Jac. time [ms]

1-1 0.57 1.3 41 121 0.008
1-2 0.87 2.0 72 225 0.033
1-3 1.51 3.7 134 435 0.068
1-4 2.82 7.4 260 860 0.142
2-1 0.88 2.1 64 208 0.017
2-2 1.51 4.1 114 393 0.067
2-3 2.75 7.5 218 781 0.144
2-4 5.36 15.5 429 1569 0.308
3-1 2.22 6.6 117 457 0.048
3-2 4.20 13.7 219 889 0.198
3-3 8.45 27.7 432 1789 0.421
3-4 17.02 56.9 857 3583 0.873

The results in terms of model compilation time, gen-
erated code size, and Jacobian evaluation time for the
different models are shown in Tables 3 and 4, for
the OpenModelica and the JModelica.org implemen-
tations respectively. Figures 3, 4, and 5 depict the
corresponding results graphically. Each curve corre-
sponds to one benchmark suite. As can be seen from
the tables, all three measures exhibit essentially lin-

Table 4: Benchmarks of synthetic models for JModel-
ica.org

Generation [s] Code size [kB] Jac. eval.
No Jac. Jac. No Jac. Jac. time [ms]

1-1 1.02 1.88 36 138 0.037
1-2 1.24 3.16 54 247 0.089
1-3 1.78 5.71 93 484 0.163
1-4 3.16 10.71 171 957 0.316
2-1 1.37 4.39 61 388 0.104
2-2 2.04 8.17 102 737 0.334
2-3 3.44 15.35 187 1435 0.673
2-4 6.42 31.52 360 2843 1.269
3-1 3.05 15.65 146 1371 0.558
3-2 5.28 30.33 264 2581 2.078
3-3 9.93 63.49 511 5146 4.027
3-4 19.66 136.05 1009 10315 8.827

ear complexity for a fixed size of the algebraic loops.
This result is the key to scalability of the methods. The
smallest model in each benchmark suite deviates from
the linear trend for Jacobian evaluation time, which is
due to the fact that fewer colors are needed in these
cases.

While model compilation time and generated code
size without Jacobians are similar in all cases for
OpenModelica and JModelica.org, the corresponding
numbers with Jacobians differ. The difference in code
size is due to the fact that JModelica.org relies on
generation of forward AD code, without simplifica-
tions, which results in verbose code. Also, inherent in
the forward AD strategy is that both the model equa-
tions in their original form and the directional deriva-
tives are evaluated simultaneously. In comparison,
the OpenModelica implementation differentiates the
equations symbolically and then applies symbolic sim-
plification. In this case, the resulting expressions that
are generated are simpler, and also, no additional code
is generated for the original model equations.

In terms of execution speed, the OpenModelica im-
plementation performs faster. The main reason for this
is that the application of forward AD in the JModel-
ica.org implementation results in more verbose code,
and also the model equations, along with the direc-
tional derivatives, are evaluated.

It is worth noting that either the effect of different
versions of LAPACK/BLAS, used to solve linear sys-
tems in both implementations, nor the the influence
of different compiler optimization and debugging flags
have been considered in the benchmarks. Rather, the
performance experienced by users has been reported.

Generation of Sparse Jacobians for the Function Mock-Up Interface 2.0

194 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076185

Both implementations may be further optimized in
these respects in order to improve compilation and
execution times. Therefore, the reported benchmarks
do not solely measure the efficiency of the respective
methods described in the paper, but are rather biased
with the details of the particular implementations.

Figure 3: Model compilation time with Jacobians.

Figure 4: Generated code size with Jacobian.

5 Conclusions

In this paper, the generation of Jacobians for ODEs
originating from DAEs, in particular Modelica mod-
els, has been discussed. The algorithmic machinery
employed consists of known methods and algorithms,
such as numerical, symbolic, and automatic differen-

Figure 5: Execution time for one Jacobian evaluation

tiation, as well as graph theoretic methods such as the
BLT transformation. Two methods, sharing similari-
ties as well as differences have been presented. One
of the methods is a straight forward application of
forward automatic differentiation and generation of C
code, which results in functions for the evaluation of
directional derivatives, which in turn are used to com-
pute Jacobians. The other method relies mainly on
symbolic differentiation and makes use of symbolic
simplification algorithms in a Modelica compiler to
generate directional derivative functions. Both meth-
ods provide sparsity patterns for the ODE Jacobians,
and they both make efficient use of sparsity in order
to reduce the number of directional derivative evalua-
tions, a technique referred to as compression.

The two approaches are implemented in JModel-
ica.org and OpenModelica, respectively, and com-
pared in an industrial benchmark as well as in several
synthetic benchmarks. Both implementations show
linear growth in key measures such as model compi-
lation time, generated code size and execution time,
under realistic assumptions on model structure. In
terms of execution speed, the method relying on sym-
bolic differentiation and symbolic processing, as im-
plemented in OpenModelica, performed faster.

Memory consumption in the model compilation
step was not included in the benchmarks, because of
the inherent difficulties in accurately measuring this
quantity. Indeed, this measure would have been an in-
teresting addition to the benchmarks presented in this
paper, especially since the two methods take different
approaches to generate directional derivatives. How-
ever, measurements of memory consumption is left for

Session 2A: FMI Standard I

DOI Proceedings of the 9th International Modelica Conference 195
10.3384/ecp12076185 September 3-5, 2012, Munich, Germany

future work.

6 Acknowledgments

Modelon’s contribution to this work was partially
funded by Vinnova within the ITEA2 project OPEN-
PROD (dnr: 2010-00068). University of Applied
Sciences Bielefeld’s contribution to this work was
partially funded by The German Ministry BMBF
(01IS09029C) within the ITEA2 project OPENPROD.
Johan Åkesson acknowledges financial support from
Lund Center for Control of Complex systems, funded
by the Swedish research council. The authors also
would like to acknowledge the kind support from
Francesco Casella, who provided the power plant
model used for benchmarks.

References

[1] A. Griewank A. Walther. Evaluating Derivatives:
Principles and Techniques of Algorithmic Differ-
entiation, Second Edition. SIAM, 2008.

[2] The Functional Mock-up Interface
for Model Exchange 1.0, http:

//functional-mockup-interface.org/

specifications/FMI_for_ModelExchange_

v1.0.pdf, January 2010.

[3] The Functional Mock-up Inter-
face for Co-simulation 1.0, http:

//functional-mockup-interface.org/

specifications/FMI_for_CoSimulation_

v1.0.pdf, October 2010.

[4] R. Tarjan. “Depth-first search and linear graph
algorithms.” SIAM J. Computing, 1:2, pp. 146–
160, 1972.

[5] D. H. Al-Omari K. E. Sabri. “New graph col-
oring algorithms.” American Journal of Mathe-
matics and Statistics, 2006.

[6] T. F. Coleman J. J. More. “Estimation of sparse
Jacobian matrices and graph coloring problems.”
Society for Industrial and Applied Mathematics,
1983.

[7] Dürrbaum A., Klier W., Hahn H.: Comparison
of Automatic and Symbolic Differentiation in
Mathematical Modeling and Computer Simula-
tion of Rigid-Body Systems. In: Multibody Sys-
tem Dynamics. Springer Netherlands, 2002.

[8] Y. B. Gol’dshtein. “Portrait of the inverse of a
sparse matrix.” Cybernetics and Systems Analy-
sis, 28, pp. 514–519, 1992.

[9] Braun W, Gallardo Yances S, Link K, Bachmann
B. Fast Simulation of Fluid Models with Colored
Jacobians . In: Proceedings of the 9th Modelica
Conference, Munich, Germany, Modelica Asso-
ciation, 2012.

[10] Braun W, Ochel L, Bachmann B. Symbolically
Derived Jacobians Using Automatic Differentia-
tion - Enhancement of the OpenModelica Com-
piler. In: Proceedings of the 8th Modelica Con-
ference, Dresden, Germany, Modelica Associa-
tion, 2011.

[11] Casella, F., Donida, D., Åkesson, J. Object-
Oriented Modeling and Optimal Control: A Case
Study in Power Plant Start-Up. In: Proceedings
of the 18th IFAC World Congress, Milan, Italy,
2011.

Generation of Sparse Jacobians for the Function Mock-Up Interface 2.0

196 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076185

Designing models for online use with Modelica and FMI

Designing models for online use with Modelica and FMI

Pål Kittilsen1,2 Svein Olav Hauger1 Stein O. Wasbø1

1Cybernetica AS, 7038 Trondheim, Norway
2Statoil Research Centre, 7005 Trondheim, Norway

pkit@statoil.com
{svein.o.hauger, stein.wasbo}@cybernetica.no

Abstract

Model-based online applications such as soft-sensing,
fault detection or model predictive control require rep-
resentative models. Basing models on physics has
the advantage of naturally describing nonlinear pro-
cesses and potentially describing a wide range of op-
erating conditions. Implementing adaptivity is essen-
tial for online use to avoid model performance degra-
dation over time and to compensate for model imper-
fection. Requirements for identifiability and observ-
ability, numerical robustness and computational speed
place an upper limit on model complexity. These con-
siderations motivate that models for online use should
be balanced-complexity, physically based with online
adaption possible.

Despite potential benefits, the effort required to im-
plement balanced-complexity models, particularly at
large scales, may deter their use. This paper presents
techniques used in the design of balanced-complexity
models. A Modelica-based approach is chosen to
reduce implementation effort by interfacing exported
Modelica models with application code by means of
the generic interface FMI. The suggested approach is
demonstrated by parameter estimation for a process
of offshore oil production: a subsea well-manifold-
pipeline production system.

Keywords: modeling, process control, process mod-
els, process simulators, offshore oil and gas pro-
duction, Modelica, subsea production, multiphase
flow, balanced-complexity models, nonlinear model-
predictive control, FMI

1 Introduction

In this paper the term online model refers to a model
that tracks the state of a process over time and is im-
plemented with adaptivity. Adaptivity in this paper can
refer to either state estimation, parameter estimation,

or both.
Applications that can benefit from online models in-

clude online simulators for “what-if” and look-ahead
analysis, data reconciliation, soft-sensors, fault detec-
tion, advisory decision support systems, (nonlinear-)
model predictive control (nMPC) and real-time op-
timization. Such applications have in common that
real-time computations are performed on a model that
hopefully represents the process with sufficient ac-
curacy. Evaluating and comparing multiple simula-
tion scenarios internally within real-time requirements
place conditions on computational speed. Algorithms
that evaluate models at different combinations of in-
puts, states and parameters place requirements on nu-
merical robustness.

Unless the process is time-invariant and the fitted
model matches the process perfectly, the model’s abil-
ity to track process states will degrade over time. For
industrial processes, both time-variation and model
imperfections must be expected, which makes adaptiv-
ity a crucial factor in the maintenance of model-based
online applications. Adaptivity can also be exploited
to simplify aspects of modeling for online use, to be
discussed.

Identifiability and observability considerations
place limits on how many states and parameters that
can be uniquely adapted to a given set of measure-
ments of a process. As a consequence, adapting all
the parameters and states that are uncertain or time-
varying in complex models will often be an ill-posed
problem for the available set of measurements. Some
authors have suggested converting full-complexity
engineering simulators into online models, see for
instance [11], but few references are found in the
literature of the use of such models for the online
applications listed above.

Balanced-complexity models in this paper refer to
models based mainly on physics which are specifically
designed to adhere to requirements set by online use

DOI Proceedings of the 9th International Modelica Conference 197
10.3384/ecp12076197 September 3-5, 2012, Munich, Germany

for identifiability, observability, numerical robustness
and computational speed. In control literature many
references to purpose-built online models are found,
some recent applications related to process control and
oil and gas applications are; industrial batch process:
[14], thin-rim oil reservoirs: [13] and [15], riser slug-
ging in multiphase flows: [9] and drilling: [7].

Balanced-complexity models cited in the literature
are usually quite small in scope, and for the applica-
tions listed above they typically describe a particular
piece of equipment or a specific phenomenon of inter-
est in a subsection of a larger plant. Often such mod-
els found in the literature are small-scale, on the or-
der of 10 states or less and are feasible to hand-code.
There may be synergies to monitoring and control-
ling large plants in a unified manner instead of as a
series of smaller subsystems, a recent discussion of
this idea applied to subsea fields is found in [1]. A
balanced-complexity model of such larger systems can
have hundreds of states, for instance when modeling
an entire offshore processing plant, see [16]. At this
scale, balanced-complexity models become challeng-
ing to code and maintain manually, and it can be chal-
lenging to re-use code and to collaborate on model
design. Large-scale in this paper refers to balanced-
complexity models which attempt to describe large
systems, and where challenges related to the scale of
the model can potentially deter their use.

Modelica has several advantages that can aid in
the synthesis of large-scale balanced-complexity mod-
els for online use. First, Modelica is declarative and
equation-based, meaning that models are expressed
by writing differential and algebraic equations, and
Modelica compilers interpret these equations into al-
gorithmic code (usually to the C programming lan-
guage). Second, Modelica is object-oriented and sup-
ports building larger models by connecting smaller
sub-models. Third, Modelica supports collecting sub-
models into libraries that can be shared, re-used and
combined as needed. Fourth, most Modelica environ-
ments support exporting models with functional-mock
up interface(FMI), to be discussed in Section 3.

An earlier reference to work on interfacing trans-
lated Modelica code with online control applications is
found in [8]. A reference to a similar vendor-specific
approach is found in [6]. Several authors have con-
sidered interfacing translated Modelica code with op-
timization algorithms offline, see for instance [10] and
[2] for trajectory planning in power plant control.

This paper is to a large extent motivated by de-
velopment of nMPC for offshore oil and gas produc-

tion, however much of the discussion is independent
of process and application. The excitation resulting
from normal operation in offshore oil and gas fields
can be very low as documented in [3], and this moti-
vates the use of physical modeling and nNMPC, as this
approach has reduced need for excited data, see [5].
Some recent applications of nMPC to smart wells are
[12], who used a full reservoir simulator as a process
model, and [15] who took a balanced-complexity mod-
eling approach. Earlier references to work on large-
scale balanced-complexity modeling for offshore oil
and gas production are found in [8], which considered
the topside processing system, and in [16] which con-
sidered a well-pipeline-riser-processing system.

Despite the widespread use of balanced-complexity
models reported in control engineering literature, the
idea that models for online use should be purpose-built
is not widely accepted by industry practitioners with
backgrounds in other engineering disciplines. Moti-
vated by this observation, the first purpose of this pa-
per is to present argumentation for the use of balanced-
complexity models and then present techniques used
in their design. Secondly, this paper discusses how
Modelica can be used to simplify the process of syn-
thesizing large-scale balanced-complexity models and
to integrate them in online applications.

The paper is structured as follows: Section 2 out-
lines techniques for the design of balanced-complexity
models. Next, Section 3 discusses techniques for inter-
facing models written in Modelica with control appli-
cations. Section 4 presents a case study of using Mod-
elica to build a large-scale balanced-complexity model
of an offshore processing plant for state estimation.

2 Synthesis of balanced-complexity
models for online use

2.1 The purpose dictates the model

Modeling is to map a real world object into a sim-
pler representation - in this context, into a set of equa-
tions. It is the modeler’s choice which of the real ob-
ject’s properties and features the model should mimic.
Emphasis on the purpose of the model leads naturally
to a set of required model properties. Including de-
tails not contributing to fulfilling the model’s purpose
adds computational load, degrades identifiability and
increases challenges of robustness.

Example 1. If the purpose of a model based tool is
to control the pressure in a gas tank, it is sufficient to
model the pressure with the ideal gas law (or poten-

Designing models for online use with Modelica and FMI

198 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076197

tially modified with a compressibility factor), lumping
all gas components into one pseudo-component. How-
ever, if the purpose is to control e.g. the CO2 fraction,
one needs to include a component balance and have
at least two components: CO2 and the ‘remaining’-
component.

2.2 Techniques for developing balanced-
complexity models

This section introduces some techniques that can be
useful for developing balanced-complexity models.
The techniques are illustrated with examples from an
in-house Modelica library developed for online use
(see Section 3):

Adaptivity: Candidate adaptivity parameters have
significant influence on the solution, yet are
known to be difficult or complicated to model
with accuracy and/or are slowly time-varying.
Which parameters to adapt is determined by anal-
ysis of the equation set, literature and by com-
parison with real-world data. Adaptivity has the
ability to reduce model complexity as it may re-
duce the need for complex empirical correlations
in the equation set.

Example 2. Modeling multiphase flow in
pipelines is complex, as key parameters such as
pressure drop coefficients and gas-liquid velocity
distributions depend on many factors that may be
difficult to describe accurately with experimen-
tal correlations, and as these parameters may also
vary with time. The ratio of gas velocity to liquid
velocity in multiphase flow can depend on many
factors such as flow-regime, Reynolds-numbers,
incline angles or others. By choosing the slip fac-
tor, the ratio of gas velocity to liquid velocity, as
an adaption parameter the challenge of accurately
modeling this ratio is mitigated. As modeling the
gas-liquid velocity distribution can be complex
and can add to model uncertainty, the resulting
online model with adaption in slip ratio need not
be less accurate than offline counterparts.

Example 3. Centrifugal compressor models are
static and based on compressor maps of poly-
tropic head versus volumetric rate, parameterized
in compressor speed. The compressor maps sup-
plied by equipment vendors may be subject to
inaccuracies and slow changes over time due to
wear and tear. A single adaption parameter is
introduced to linearly scale the compressor map.

Thereby inaccuracies and time-varying effects in
the compressor can be adjusted for in online com-
pressor models.

Explicit models: Deriving model equations from
physics often results in models which are
differential-algebraic equations sets (DAEs).
Solving such equation sets can be both time con-
suming and subject to numerical stability issues.
It is desirable to re-formulate such models as or-
dinary differential equation sets (ODEs) to im-
prove numerical speed and stability. Especially
implicit algebraic equations requiring dedicated
solvers should be avoided. Simple algebraic re-
lations can often be solved by rearranging equa-
tions. Artificial dynamic variables can be intro-
duced in more challenging cases to break alge-
braic loops.

State selection: Another key to avoid implicit equa-
tions is to formulate the problem explicitly in
terms of states. State variables should be se-
lected so that other dependent properties can be
calculated explicitly. This is a common chal-
lenge particularly when calculating thermody-
namic properties. For instance, if thermodynamic
relations are explicit in pressure and temperature,
pressures and temperatures should be chosen as
states. The Modelica language has support for
setting preferred state variables while still formu-
lating derivatives using other variables. A Mod-
elica compiler will automatically differentiate the
differential equations in order to change the state
variables to the preferred set, see [4].

Smoothing: When models are used in conjunction
with optimization algorithms it is important that
they are continuous and differentiable. To ensure
this property, all equations used must be analyzed
with regard to smoothness before use, and where
needed, artificial transition functions can be in-
cluded to enforce smoothness.

Right level of detail: For efficient models, the level
of detail for a specific phenomenon in the model
should match the importance of that particular
phenomenon. As discussed in Section 2.1, phe-
nomena which do not contribute to fulfill the pur-
pose of the model should be left out, illustrated
by the example below:

Example 4. A common approach in process
simulators is to model hydrocarbon fluids with a
multi-component mixture, often with 10 or more

Session 2A: FMI Standard I

DOI Proceedings of the 9th International Modelica Conference 199
10.3384/ecp12076197 September 3-5, 2012, Munich, Germany

components. The high number of components
leads to a large number of thermodynamic state
variables. For phase equilibrium calculations the
common approach is to use iterative algorithms
for solving the resulting equation set.

A multiphase medium in an in-house model li-
brary is implemented using a low number of com-
ponents: The gas phase normally contains only
one high and one low molecular weight compo-
nent. This is sufficient to make any gas mix-
ture with an average molecular weight between
the two components. A similar approach is taken
with the oil/condensate phases, optionally with a
water component to be used if water content in
oil/condensate is of interest. In addition to the
low number of state variables resulting from this
approach, an advantage is that a phase equilib-
rium in a two component mixture can always be
calculated explicitly. This is considered as a suf-
ficient level of detail for the purposes of pressure
and level control.

Utilize operational conditions: Knowledge of the
operational conditions for which the model is ap-
plied can simplify the model considerably. It
is unnecessary to include descriptions of oper-
ational conditions which will never occur. For
example, if it is known that the model will be
used for a process with strict temperature control,
it will be a good approximation to drop the en-
ergy balance and use constant temperature in the
model.

Pre-computation of properties: A common model
simplification technique is to tabulate complex
relations, for instance thermodynamic properties.
In this way, complex calculations can be pre-
computed, and when used online models can ac-
cess the ready solutions. If tables are used, at-
tention should be paid to the selection of table
interpolation algorithm as to avoid non-smooth
derivatives of the interpolated functions. Since
searching through large tables is time consuming,
simple function approximations is a good alterna-
tive.

Data-driven modeling: Data from operation of a
process can be used for selecting the right model.
Process data with excitations can reveal hints of
what model structures can emulate the process.
One could either look for a physical phenomenon
giving the same response as the data, or consider

introducing a semi-empirical model component
which replicates the observed response. For em-
pirical equations, care should be taken when ex-
trapolating.

3 Efficient large-scale modeling by
the use of Modelica

The approach to efficient large-scale modeling consid-
ered in this paper is outlined in Figure 1. The ap-
proach is based on implementing the Functional-mock
up interface (FMI)1 in software used in online control
applications. An FMI-standard model component is
shared as a functional mock-up unit (FMU).

Figure 1: Flow of information between models
(rounded edges) and applications (straight edges).

Since the translation from Modelica to FMI is done
by a compiler, and as all low-level code to interface
model and online application is model-independent
and re-usable, the transition from Modelica to online
applications can be made in a matter of minutes. This
framework supports an iterative modeling work flow,
as repeating the conversion from model to application
multiple times is not workload-intensive.

Aside from the advantages of Modelica listed in
Section 1, a benefit of designing models in a Modelica
environment is that sub-modules can be imported from
multiple external sources. The ability to import mod-
ules as FMUs means that the process owner, equip-
ment suppliers or others can supply proprietary mod-
els as pre-compiled FMUs. This also opens an avenue
for suppliers of process simulators to export their mod-
els seamlessly into control applications, provided they
implement support for export of models as FMUs. For
the reasons mentioned in Section 1, it will still be ad-
vantageous for such models to be designed with the
techniques discussed in Section 2.

When designing large-scale models, it is often de-
sirable to model selected subsystems or components

1see http://www.modelisar.com/

Designing models for online use with Modelica and FMI

200 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076197

Figure 2: Overview subsea-pipeline-riser-separator system as implemented in Dymola, with piping (solid),
handles to the estimator via FMI (dashed), and PI-control (dashdot).

of the larger system using empirical models, for in-
stance fitted curves or state-space models inferred
from data. An efficient manner of incorporating such
sub-models in a larger Modelica-based framework is
to express empirical models in the Modelica language.
Exporting empirical models in Modelica-form is a task
that can be automated by software for system iden-
tification. The modular buildup of Modelica allows
such exported models to be seamlessly integrated with
physics-based Modelica models.

4 Case-study: Estimation of gas-oil
ratio in offshore oil and gas produc-
tion

The aim of this case study is to illustrate that a large-
scale balanced-complexity model which has been de-
signed along the principles outlined in Section 2 can
be implemented efficiently by the methods outlined in
Section 3. The case considered is stylized in that for
demonstration purposes, the estimator used has a rel-
atively low number of fitted parameters and measure-
ments.

The system considered is shown in Figure 2, and
consists of the joint production of oil, gas and water

from two different wells. The fluids from the wells are
mixed in a subsea template before traveling along a
horizontal pipeline, through a vertical riser, into a top-
side manifold before reaching the topside processing
plant. The production rates from the two wells are not
measured directly, yet these flow rates are of great in-
terest as they determine production revenues and the
feed rates to which the process plant must adapt.

There is a significant static pressure drop from the
reservoir to the sea bead (elevation often being of order
thousands of meters) and from the sea bed to the float-
ing production unit (elevation often of order hundreds
of meters). The static pressure dropdepends on the ra-
tio of gas-to-liquid, and as the proportion of total pro-
duction that is water is often fairly constant, it should
be possible to infer about the gas-oil ratio by model-
ing its relationship to pressure in well and pipeline.
Since pressure in the pipeline depends on the settings
of chokes on each well and upstream of the separator,
these chokes must also be modeled.

A typical full-complexity multiphase pipe flow sim-
ulator could for the well-pipeline-separator system
considered have hundreds or thousands of control vol-
umes, and a full-complexity thermodynamic model
could have on the order of 20 states for each control
volume. Thermodynamic relations would in a full-

Session 2A: FMI Standard I

DOI Proceedings of the 9th International Modelica Conference 201
10.3384/ecp12076197 September 3-5, 2012, Munich, Germany

complexity model depend on implicit relations, and a
large number of different empirical closure relations
for different conditions would be used in multiphase
flow models.

From our perspective such a full-complexity model
would be unsuitable for the purposes of estimating
gas-oil ratio online, due to the issues mentioned in
Section 1.

4.1 Modeling

Modules from an in-house Modelica library were used
and put together with the aim of finding the right level
of detail to achieve the desired goal of estimating gas-
oil ratio. It was elected to model flow as a two-phase
flow, lumping oil and water flows into a single liquid
flow. Modules describing wells, horizontal and verti-
cal pipelines and chokes were combined to create the
large-scale model. Each of these modules were origi-
nally designed by combining first-principles with em-
pirical closure relations from the literature that were
revised for simplicity, to obtain smoothness and to
avoid implicit relations. The number of different clo-
sure relations was kept as low as possible, and the
resulting models were validated module-for-module
against real-world data. The modules include han-
dles for introducing adaptivity as needed through ad-
justable parameters such as gas-liquid velocity ratios,
valve coefficients and friction factors. Adapting the
mentioned parameters was omitted here for simplicity.

Some examples of the balanced-complexity princi-
ples in the current case-study follows:

• Exclude flashing. From experience and analysis
of real-world data similar to this case, the flash-
ing (evaporation of dissolved gas in the oil) as
the pressure drops in the pipeline is not expected
to be significant relative to amount of free gas.
Excluding flashing from the model was therefore
judged to be the right level of detail.

• Few discrete mixing volumes. Riser and
pipeline models are finite-volume spatial dis-
cretizations of the underlying partial-differential
flow equations, and the number of discrete vol-
umes for each of these modules are design param-
eters that the user should select at design while
evaluating resulting model accuracy. It is our
experience that no fine discretization is required
for estimators such as considered here to work.
Lumping pipeline submodels into two or even
just one volume is often found to be the right level
of detail. For each volume in each sub-model, a

mass-balance equation is formulated and a sim-
plified thermodynamic relation with a low num-
ber of components that is smooth and explicit, as
described in Example 4, was used.

• Limiting the scope of the model. The three-
phase separator model uses a thermodynamic
equilibrium equation for flashing/vaporization, in
combination with a mass balance that takes in
account separator geometry. Since the estima-
tor considers the portion of the offshore oil and
gas system spanning from wells to the separa-
tor, it was not considered necessary to model fur-
ther downstream process equipment for the de-
sired estimator, motivated by the concept of the
purpose dictating the model.

All the models were expressed in equation-form in
the Modelica language, and the translation capabilities
of Dymolawere used to convert this equation-based
model into an imperative, C-language code that is suit-
able for online use. The model shown as drawn by
Dymolais shown in Figure 2. That the imperative
code of the model is generated rather than hand-coded
directly is useful for iteratively deciding the right level
of detail in the model. The degree of model detail is
easily adjustable in the high-level, modular, equation
based language Modelica, from which multiple esti-
mators based on different low-level implementations
of the model in C can be compared.

4.2 Estimation

Simulations were done for a model with only a sin-
gle node for pipeline and riser. The resulting model
has 48 states, Dymolachoosing five states (pressure
+ 4 component mass fractions) for each of the nodes:
well 1, well 2, subsea manifold, pipeline, riser, topside
manifold and inlet separator.

Pressures at the topside separator (y1) and subsea
manifold (y2) were chosen as outputs. Parameters
were chosen as gas-oil ratios of well 1 (θ1) and well
2 (θ1). Choke openings of valves on well 1 (u1), well
2 (u2) and the topside valve (u3) are varied during the
simulation. The estimator used is a recursive Extended
Kalman Filter (EKF). The model was implemented in
Modelica, compiled as an FMU using Dymola, and
interfaced with a generic and re-usable recursive Ex-
tended Kalman Filter (EKF).

The dataset considered is synthetic, generated by
simulating a copy of the model where the gas-oil ra-
tios of both wells were set equal to 811. Noise of 2%
of average amplitude was added to both pressures.

Designing models for online use with Modelica and FMI

202 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076197

19

20

21

y
1
 [bar]

35

40

45

50

55

y
2
 [bar]

0

0.5

1

u [−]

0 50 100 150 200
600

800

1000

1200

t [min]

θ [−]

measured estimated

measured estimated

u
1

u
2

u
3

θ
1
 (pGOR1) θ

2
 (pGOR2) true value

Figure 3: Simulation results. Top subplot shows measured and estimated separator pressures. Subplot 2 shows
measured and estimated line pressures. Subplot 3 shows relative choke opening of wells 1 and 2 (u1 and u2)
and of the topside valve (u3). Subplot 4 shows recursive estimates of gas-oil ratios of wells 1 and 2 compared
with the true value.

4.3 Simulations

Estimated and measured pressures and estimated gas-
oil ratios for wells 1 and 2 are shown in Figure 3. The
initial estimate for the gas-oil ratio of well 1 was set
to 1200, while the actual gas-oil ratio for both wells
is 811. The inaccurate initial estimate of gas-oil ra-
tio resulted in an offset between measured and mod-
eled pressures, which the estimator attempts to correct
during simulation. The excitation shown in Figure 3
made it possible to uniquely determine gas-oil ratios
for both wells from the data set, and as the simulation
progresses, the estimated gas-oil ratios move toward
the real value of 811.

4.4 Discussion

The main contribution of this case study is the technol-
ogy and workflow used to implement an online model
including Kalman Filter estimators. The solution was
implemented in a low-level language suitable for on-
line use, yet no line of low-level code was manually
written. The model used has 48 states, and manu-
ally implementing low-level model code would be a
challenging task already at this scale if you consider
that modeling requires several design iterations, col-
laboration among multiple designers, code-reuse and
code validation. Our experience indicates that the
approach could accommodate working efficiently on

Session 2A: FMI Standard I

DOI Proceedings of the 9th International Modelica Conference 203
10.3384/ecp12076197 September 3-5, 2012, Munich, Germany

much larger models as well.

5 Conclusion

Balanced-complexity modeling is an approach to bring
physics-based models online while adhering to re-
quirements for online use. Modelica and FMI have
advantages that aid the development of such systems:
efficient model development; reuse of models; and ef-
ficient integration with other software. By calling at-
tention to this topic it is hoped for an increasd recogni-
tion for online applications with purpose-built models
developed with Modelica and FMI.

References

[1] B. Bringedal, E. Storkaas, M. Dalsmo,
M. Aaarset, and H. M. With. Recent de-
velopments in control and monitoring of remote
subsea fields. In SPE Intelligent Energy Confer-
ence and Exhibition, Utrecht, The Netherlands,
2010.

[2] F. Casella, F. Donida, and J. Akesson. Object-
oriented modeling and optimal control: A case
study in powerplant start-up. In Proc. 18th IFAC
World Congress, Milano, Italy, volume 18, 2011.

[3] S. Elgsæter, O. Slupphaug, and T. A. Johansen.
Challenges in parameter estimation of models for
offshore oil and gas production optimization. In
International Petroleum Technology Conference,
Dubai, 2007.

[4] H. Elmqvist, H. Tummescheit, and M. Otter.
Object-oriented modeling of thermo-fluid sys-
tems. Proceedings of 3rd Int. Modelica Confer-
ence, pages 269–286, 2003.

[5] B. A. Foss and T. S. Schei. Putting nonlinear
model predictive control into use. In Assess-
ment and Future Directions Nonlinear Model
Predictive Control, LNCIS 358, pages 407–417.
Springer Verlag, 2007.

[6] R. Franke, B. S. Babji, M. Antoine, and A. Isaks-
son. Model-based online applications in the abb
dynamic optimization framework. In Model-
ica’2008, Bielefeld, Germany, 2008.

[7] J. M. Godhavn, A. Pavlov, G. O. Kaasa, and N. L.
Rolland. Drilling seeking automatic control so-
lutions. In Proc. 18th IFAC World Congress, Mi-
lano, Italy, volume 18, Milano,Italy, 2011.

[8] L. Imsland, P. Kittilsen, and T. S. Schei. Model-
based optimizing control and estimation using
modelica models. In Modelica’2008, Bielefeld,
Germany, 2008.

[9] E. Jahanashahi and S. Skogestad. Simplified
dynamical models for control of severe slug-
ging in multiphase risers. In Proc. 18th IFAC
World Congress, Milano, Italy, volume 18, Mi-
lano,Italy, 2011.

[10] K. Krueger, M. Rode, R. Franke, and B. A. Foss.
Optimization of boiler start-up using a nonlin-
ear boiler model and hard constraints. Energy,
29(12-15):2239–2251, 2004.

[11] S. McArdle, D. Cameron, and K. Meyer. The
life cycle simulator: From concept to commis-
sioning... and beyond. In SPE Intelligent En-
ergy Conference and Exhibition, pages 246–267,
Utrecht, The Netherlands, 2010.

[12] P. Meum, P. Tøndel, J. M. Godhavn, and O. M.
Aaamo. Optimization of smart well produc-
tion through nonlinear model predictive control.
In Intelligent Energy Conference and Exhibition,
Amsterdam, The Netherlands, 2008.

[13] A. Mjaavatten, Robert Aasheim, Steinar Saelid,
and Oddvar Gronning. Model for gas coning and
rate-dependent gas/oil ratio in an oil-rim reser-
voir. SPE Reservoir Evaluation & Engineering,
11(5), 2008.

[14] Z. K. Nagy, B. Mahn, R. Franke, and
F. Allgöwer. Nonlinear model predicitive control
of batch processes: an industrial case study. In
Proc. 16th IFAC World Congress, Prague, Czech
Republic, volume 16, 2005.

[15] R. van der Linden and A. Leemhuis. The use
of model predictive control for asset production
optimization: Application to a thin-rim oil field
case. In SPE Annual Technical Conference and
Exhibition, Florence, Italy, 2010.

[16] A. Willersrud, L. Imsland, S. O. Hauger, and
P. Kittlsen. Short-term production optimization
of offshore oil and gas production using nonlin-
ear model predictive control. In Proc. 18th IFAC
World Congress, Milano, Italy, volume 18, Mi-
lano,Italy, 2011.

Designing models for online use with Modelica and FMI

204 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076197

Co-simulation with communication step size control in an FMI compatible master algorithm

Co-simulation with communication step size control
in an FMI compatible master algorithm

Tom Schierz∗ Martin Arnold∗ Christoph Clauß#

∗ Martin Luther University Halle-Wittenberg
NWF II - Institute of Mathematics
D - 06099 Halle (Saale), Germany

martin.arnold@mathematik.uni-halle.de
tom.schierz@mathematik.uni-halle.de

Fraunhofer Institute for Integrated Circuits IIS
Design Automation Division EAS

Zeunerstr. 38
D - 01069 Dresden, Germany

christoph.clauss@eas.iis.fraunhofer.de

Abstract

Complex multi-disciplinary models in system dynam-
ics are typically composed of subsystems. This mod-
ular structure of the model reflects the modular struc-
ture of complex engineering systems. In industrial ap-
plications, the individual subsystems are often mod-
eled separately in different mono-disciplinary simula-
tion tools. The Functional Mock-Up Interface (FMI)
provides an interface standard for coupling physical
models from different domains and addresses prob-
lems like export and import of model components in
industrial simulation tools (FMI for Model Exchange)
and the standardization of co-simulation interfaces in
nonlinear system dynamics (FMI for Co-Simulation),
see [8]. In November 2011, the third β -version of
FMI for Model Exchange and Co-Simulation v2.0 was
released [13] that supports advanced numerical tech-
niques in co-simulation like higher order extrapolation
and interpolation of subsystem inputs, step size con-
trol including step rejection and Jacobian based lin-
early implicit stabilization techniques. Well known
industrial simulation tools for applied dynamics sup-
port Version 1.0 of this standard and plan to support
the forthcoming Version 2.0 in the near future, see the
“Tools” tab of website [8] for up-to-date information.
The renewed interest in algorithmic and numerical as-
pects of co-simulation inspired some new investiga-
tions on error estimation and stabilization techniques
in FMI for Model Exchange and Co-Simulation v2.0
compatible co-simulation environments. The present
paper extends recent results from [3] on reliable er-
ror estimation and communication step size control
in the framework of FMI for Model Exchange and
Co-Simulation v2.0. Based on a strict mathematical
analysis, we study the asymptotic behaviour of the lo-
cal error and two error estimates that may be used to

adapt the communication step size automatically to the
changing solution behaviour during time integration.
These theoretical results are illustrated by numerical
tests for a (linear) quarter car model and provide a ba-
sis for future investigations with more complex cou-
pled engineering systems.

Keywords: FMI; error estimation; step size control

1 Introduction

Co-simulation is a rather general approach to the simu-
lation of coupled technical systems and coupled physi-
cal phenomena in engineering with focus on instation-
ary (time-dependent) problems. From the mathemati-
cal viewpoint, co-simulation results in a class of time
integration methods for coupled systems which are de-
scribed by time dependent ordinary differential equa-
tions (ODE) or differential algebraic equations (DAE).
In that context, we consider r ≥ 2 coupled subsystems
in nonlinear state-space form

ẋi = fi(t,xi,ui),

yi = gi(t,xi,ui),

}
i = 1, . . . ,r, t ∈ [tstart, tstop]

(1a)

with the state vectors xi, inputs ui and outputs yi. The
subsystems are coupled by input-output relations

ui = ci(y1, . . . ,yi−1,yi+1, . . . ,yr), (i = 1, . . . ,r),
(1b)

see [12]. Summarizing all components in vector form,
we get a coupled system in the more compact form

ẋ = f(t,x,u),
y = g(t,x,u), u = c(y),

(2)

with x = (xT
1 , . . . ,xT

r)
T , . . .

DOI Proceedings of the 9th International Modelica Conference 205
10.3384/ecp12076205 September 3-5, 2012, Munich, Germany

The simulation time interval is split by a grid of
communication points tstart = T0 < T1 < .. . < TN =
tstop, where the data exchange between the subsystems
is restricted to these discrete points. In each communi-
cation step Tn→ Tn +Hn =: Tn+1, (n = 0, . . . ,N−1),
with communication step size Hn, the subsystems are
solved separately and independently from each other.

Since the update of the inputs u is restricted to the
time discrete communication points, these terms have
to be approximated by signal extrapolation for the cur-
rent communication step Tn→ Tn+1

ū(t)≈ u(t), t ∈ [Tn,Tn+1],

where the approximation ū(t), is based on information
u(Tn−ι), (ι = 0, . . . ,k) from k+ 1 previous communi-
cation points.

This leads to the new coupled problem for t ∈
[Tn,Tn +Hn]

˙̄x(t) = f(t, x̄, ū),
ȳ(t) = g(t, x̄, ū).

(3)

The coupled system (3) is composed of subsystems
that are solved separately from each other, where we
get the numerical solution x̄(t)≈ x(t) and ȳ(t)≈ y(t),
(t ∈ [Tn,Tn+Hn]). Typically, different time integration
methods and / or different (micro) step sizes are used in
the individual subsystems resulting in a multi-method
and / or multi-rate method for the coupled system.

Following Jackson [10], the time integration meth-
ods to solve the coupled system (3) are called modular
to underline the modular structure of the approach.

In practical applications, usually constant commu-
nication step sizes Hn := H with n = 0, . . . , N−1 are
used, since the simulation results and the behavior
of the underlying integration methods can reliably be
controlled. Further gains in efficiency and robustness
of numerical co-simulation techniques are expected
by variable communication step sizes Hn := Tn+1−Tn

that are adapted automatically to the solution behavior
(communication step size control).

2 Estimation of the local error

For a reliable communication step size control an er-
ror estimate EST for the local error of the numerical
solution is needed and is compared to user defined er-
ror bounds (tolerances), since for coupled systems (2)
without algebraic loops the global error is bounded by
a multiple of the maximum local error [3].

Richardson extrapolation is a time-consuming but
reliable way to estimate local errors in ODE and DAE

time integration and considers two (small) consecu-
tive communication steps of size Hn = Hn+1 = H from
Tn→ Tn +H =: Tn+1 and Tn+1→ Tn +2H =: Tn+2. To
get an estimate for the local error, the solution of these
two steps is compared with a second numerical solu-
tion that is computed for a (large) communication step
Tn→ Tn+2H =: Tn+2. Substantial savings of comput-
ing time result from an algorithmic modification of the
Richardson extrapolation that is tailored to the FMI co-
simulation framework. Both approaches will be stud-
ied theoretically (by an asymptotic error analysis) as
well as practically (by numerical tests for a quarter car
benchmark problem). For the theoretical analysis, we
neglect the discretization errors in the subsystems that
should be kept small in a practical implementation by
appropriate settings of error tolerances.

To keep the notation compact, we restrict the the-
oretical analysis of the local error estimates to pure
polynomial signal extrapolation in all subsystems [3].
Consider the polynomial ū(t), that interpolates the an-
alytical solution u(t) of (2) at the k+1 equidistant pre-
vious communication points Tn−ι , (ι = 0, . . . ,k). The
approximation error of this interpolating polynomial
ū(t) is for all t ∈ [Tn,Tn +H] bounded by [7]

ū(t)−u(t) =−u(k+1)(Tn)

(k+1)!

k

∏
ι=0

(t−Tn−ι)

+O(Hk+2).

(4)

In the first (small) communication step Tn→ Tn+H
(first step of the error estimation by Richardson ex-
trapolation) we have to solve system (3) starting from
x̄(Tn) = x(Tn). Linearization shows that the error in
the state and output vectors satisfy

˙̄x(t)− ẋ(t) = An(x̄(t)−x(t))+Bn(ū(t)−u(t))+

+O(Hk+2),

ȳ(t)−y(t) = Cn(x̄(t)−x(t))+Dn(ū(t)−u(t))+

+O(Hk+2),

where the system matrices An, Bn, Cn, Dn denote the
Jacobians fx, fu, gx, gu evaluated at x = x(Tn), u =
u(Tn). Up to higher order terms, the error in the state
vector is given by the solution of a linear time invariant
system for t ∈ [Tn,Tn +Hn] and may be expressed as

x̄(t)−x(t) = exp(An(t−Tn))

= 0︷ ︸︸ ︷
(x̄(Tn)−x(Tn))

+
∫ t

Tn

exp(An(t− s))Bn(ū(s)−u(s))ds

+O(Hk+3).

(5)

Co-simulation with communication step size control in an FMI compatible master algorithm

206 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076205

With (4) and (5) and the substitution σ := (s−Tn)/H,
Hdσ = ds the error of the output vector is

ȳ(Tn+1)−y(Tn+1) =

−CnBn
u(k+1)(Tn)

(k+1)!

∫ 1

0

k

∏
ι=0

(σ + ι)dσ︸ ︷︷ ︸
=: γk

Hk+2

−Dnu(k+1)(Tn)︸ ︷︷ ︸
=: δk

Hk+1 +O(cDHk+2 +Hk+3)

with constant cD, which is set to cD = 0 if ∂g/∂u≡ 0
and cD = 1 otherwise.

In the next (small) communication step Tn +H →
Tn +2H the input function is substituted by a polyno-
mial ¯̄u(t) that interpolates c(ȳ) at t = Tn +H and u(t)
at t = Tn−ι , (ι = 0, . . . ,k−1).

The error in the output vector ¯̄y(Tn+2) is then given
by

¯̄y(Tn+2)−y(Tn+2) =

−2γkHk+2

−
(

δk +(k+1)DnLnδk

)
Hk+1

+O(cDHk+2 +Hk+3)

(6)

with Ln = ∂c/∂y(Tn).
For error estimation by Richardson extrapolation,

we consider in time interval [Tn,Tn + 2H] a second
numerical solution for the output vector ỹ(Tn+2) and
input function ũ(t) that is defined by the interpola-
tion polynomial for data points (Tn−2ι ,u(Tn−2ι)), (ι =
0, . . . ,k). Analogously to the first step we get the error

ỹ(Tn+2)−y(Tn+2) =−γk(2H)k+2−δk(2H)k+1

+O(cDHk+2 +Hk+3).
(7)

In ODE and DAE time integration, the comparison
of the numerical results for a double-step with (small)
step size H and a single (large) step with step size 2H
allows to estimate the leading term of the local error
[9]. For modular time integration, this error estimate
is given by [11]

ESTRich :=
¯̄y(Tn+2)− ỹ(Tn+2)

(1−2k+1)
.

The comparison of (6) and (7) shows

¯̄y(Tn+2)−y(Tn+2) = ESTRich

+
(k+1)2k+1

(1−2k+1)
DnLnδkHk+1

+O(cDHk+2 +Hk+3).

Here we can see, that in the context of co-simulation,
Richardson extrapolation may give asymptotically
wrong results if DnLnδk 6= 0, i. e. , for coupled systems
with direct feed-through in at least one subsystem.
If there are no subsystems with direct feed-through
(∂g j/∂u j ≡ 0, (j = 1, . . . ,r)), ESTRich reproduces all
components of the local error in the output variables
correctly up to higher order terms.

In the ITEA2 project MODELISAR, several modi-
fications of error estimate ESTRich were tested [15] to
reduce the large extra effort for computing ỹ. Here we
use ū(t) = ũ(t) for t ∈ [Tn,Tn +H] such that the inter-
mediate results x̄(Tn+1) and x̃(Tn+1) coincide. From
the view point of numerical efficiency, it would be fa-
vorable to use one and the same approximation ū(t) of
the input function u(t) for both numerical solutions in
the first communication step Tn → Tn +H and to re-
strict the use of different input functions to the second
communication step, i. e. , to t ∈ [Tn+1,Tn+2].

In that way, co-simulation may proceed with a large
communication step Tn → Tn + 2H of size 2H that is
temporarily interrupted at t = Tn+1 to provide input
data ȳ(Tn+1) and c(ȳ(Tn+1)) for the second numeri-
cal solution to be used for error estimation. Alterna-
tively, a small communication step Tn → Tn +H may
be completed in the classical way and the two differ-
ent numerical solutions on time interval [Tn+1,Tn+2]
are evaluated in parallel. With this second strategy, no
subsystem solver has to go backward in time and the
practical implementation might be simplified.

According to [3] the error estimate is then given by

ESTmod :=
¯̄y(Tn+2)− ȳ(Tn+2)

(1− pk)
,

where pk is given for constant (k = 0), linear (k = 1)
and quadratic (k = 2) extrapolation by

p0 = 2,

p1 = 14/5,

p2 = 32/9.

To demonstrate the estimation of the local error and
the communication step size control in co-simulation,
we use a low dimensional linear benchmark problem.
The quarter car model which goes along a road pro-
file is defined by a one-dimensional oscillator with two
mass points mc and mw for the chassis and the wheel.
Both masses are coupled by a spring-damper element
with spring constant kc and damping constant dc, see
Figure 1. Moreover, the connection between wheel
and road is represented by a spring-damper element

Session 2A: FMI Standard I

DOI Proceedings of the 9th International Modelica Conference 207
10.3384/ecp12076205 September 3-5, 2012, Munich, Germany

with constants kw and dw. For typical parameter values
(see below), the eigenfrequency of subsystem wheel is
ten times larger than the one of subsystem chassis.

The displacements of the mass points are given by
ηc, ηw and the profile of the road is defined by a time
dependent function z(t). For numerical tests we use
the following parameter configuration:

mw

mc

dckc

z(t)

ηc

ηw

dwkw

Figure 1: Quarter car model.

wheel mass mw = 40kg,
chassis mass mc = 400kg,
wheel spring kw = 150000Nm−1,
chassis spring kc = 15000Nm−1,
wheel damper dw = 0Nsm−1,
chassis damper dc = 1000Nsm−1,

initial values at t = 0

ηc(0) = 0

η̇c(0) = 0

ηw(0) = 0

η̇w(0) = 0

and excitation function

z(t) :=

{
0, t < 0,
0.1, t ≥ 0

to get the system in motion. The equations of motion
are given by

mcη̈c(t) = kc(ηw(t)−ηc(t))+dc(η̇w(t)− η̇c(t)),

mwη̈w(t) = kw(z(t)−ηw(t))+dw(ż(t)− η̇w(t))

− kc(ηw(t)−ηc(t))−dc(η̇w(t)− η̇c(t)).

For co-simulation this system is split into two subsys-
tems (chassis and wheel) of the form

ẋ1 = f1(x1,u1),

y1 = g1(x1,u1),

u1 = y2,

ẋ2 = f2(x2,u2),

y2 = g2(x2,u2),

u2 = y1

with the state vectors x1 = (ηc, η̇c)
T and x2 =

(ηw, η̇w)
T , right hand sides of the subsystems f1 =

(η̇c, η̈c)
T , f2 = (η̇w, η̈w)

T , inputs u1, u2 and outputs
y1, y2. We consider a displacement-displacement
and a displacement-force coupling [5]. For the
displacement-displacement coupling the input and
output vectors are given by

u2 = y1 = x1,

u1 = y2 = x2.

In the case of displacement-force coupling, the output
of the second subsystem (wheel) is defined by the cou-
pling force of the spring-damper element between the
two masses mc and mw which is also the input of the
other subsystem (chassis):

u2 = y1 = (ηc, η̇c)
T ,

u1 = y2 = kc(ηw(t)−ηc(t))+dc(η̇w(t)− η̇c(t)).

In that case, the subsystem wheel has a direct feed-
through of its input, ∂g2/∂u2 6= 0.

Figs. 2 and 3 show the local errors for the quarter car
benchmark and illustrate that the new error estimate
ESTmod is as reliable as the classical estimate ESTRich.

3 Variable communication step sizes

The communication step size control in co-simulation
is an extension of the step size control in classical time
integration methods for ODEs [9].

In the context of co-simulation, the error estimator
EST should estimate in each consecutive communi-
cation step Tn → Tn+1 → Tn+2 all errors in the slave
outputs ¯̄yn+2 := ¯̄y(Tn+2), that result from the solution
of (3) by a numerical time integration method with ap-
proximated slave inputs ū(t), t ∈ [Tn,Tn+1] and ¯̄u(t),
t ∈ [Tn+1,Tn+2]. We consider the scalar error indicator

ERR :=

√√√√ 1
m

m

∑
j=1

(
EST j

ATOL j +RTOL j| ¯̄y j
n+2|

)2

(8)

with the vector

¯̄yn+2 := (¯̄yT
1,n+2, . . . , ¯̄yT

r,n+2)
T ∈ Rm,

Co-simulation with communication step size control in an FMI compatible master algorithm

208 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076205

10
−4

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

communication step size H [s]

lo
ca

l e
rr

or

local error
EST

Rich

EST
mod

k=0

10
−4

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

communication step size H [s]

lo
ca

l e
rr

or

local error
EST

Rich

EST
mod

k=1

Figure 2: Benchmark Quarter car - co-simulation for
a coupled system (2) without feed-through: Local er-
ror (“5”) and error estimates ESTRich (“◦”), ESTmod
(“×”). Constant (k = 0, upper plot) and linear extrap-
olation (k = 1, lower plot).

that contains all outputs of the r≥ 2 subsystems at t =
Tn+2. The error indicator (8) shows whether the com-
munication step size H = Hn was sufficiently small to
meet some user defined error bounds ATOL j, RTOL j

or not. Analogously to the classical approach [9] a
communication step is accepted, if ERR ≤ 1. When
ERR > 1, then the estimated error was too large and
the communication step has to be repeated with a
smaller step size to meet the accuracy requirements.

The ratio between the error indicator ERR and its
optimal value 1.0 may be used to define a posteriori an
“optimal” communication step size

Hopt := αHn

(
1

ERR

)1/P

with P = k + 1 if there exist subsystems with direct
feed-through, otherwise P = k+2, a safety factor α ∈
[0.8,0.9] to reduce the risk of a rejection of the next
communication step if the current step was accepted
and k denoting the approximation order of the signal
extrapolation for slave inputs ū(t). Note, that Hopt is
always smaller than the current communication step
size Hn if the error estimate EST exceeds the given

10
−4

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

communication step size H [s]

lo
ca

l e
rr

or

local error
EST

Rich

EST
mod

k=0

10
−4

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

communication step size H [s]

lo
ca

l e
rr

or

local error
EST

Rich

EST
mod

k=1

Figure 3: Benchmark Quarter car - co-simulation for
a coupled system (2) with feed-through: Local er-
ror (“5”) and error estimates ESTRich (“◦”), ESTmod
(“×”). Constant (k = 0, upper plot) and linear extrap-
olation (k = 1, lower plot).

tolerances (ERR > 1).
In practical applications the step size is not allowed

to increase nor to decrease too fast [9]. Therefore, pa-
rameters θmin ∈ [0.2,0.5] and θmax ∈ [1.5,5] are used
to restrict the step size change. It is clear that choosing
both parameters too small may increase the computa-
tional work. Moreover, choosing them too large can
increase the risk of rejected steps. The resulting com-
munication step size is given by

Hopt = Hn ·min{θmax,max{θmin,α · (1/ERR)1/P}}.

4 Generic implementation scheme in
FMI 2.0

The Functional Mock-up Interface (FMI) for Model
Exchange and Co-Simulation v2.0, see [2, 8], is a
standard for the coupling and exchange of models and
simulator coupling. A component implementing the
FMI is called Functional Mock-up Unit (FMU). It
consists of C-functions in source code or preprocessed
binaries (like dll or shared object) and an XML
description file, that contains all static information

Session 2A: FMI Standard I

DOI Proceedings of the 9th International Modelica Conference 209
10.3384/ecp12076205 September 3-5, 2012, Munich, Germany

for calling the FMU [4]. The C-functions are called
to set and get values in the FMU (FMI-functions
fmiSetReal and fmiGetReal). If the FMU is used
for simulator coupling it contains the full model and a
simulator (slave). The slave is controlled by a function
fmiDoStep [13] to process one communication
step. With this FMI-function the computation of a
communication step in a slave is started with the
input parameters currentCommunicationPoint
(current communication point Tn of the
master), communicationStepSize (step
size Hn of the communication step) and
noSetFMUStatePriorToCurrentPoint. The Pa-
rameter noSetFMUStatePriorToCurrentPoint
is true (fmiTrue) if the FMI-function
fmiSetFMUState will no longer be called for
time instants prior to currentCommunicationPoint.
This is an important information for a slave, that
is able to reject communication steps, since the
FMU states have to be restored to the last accepted
communication point in that case. With the flag
noSetFMUStatePriorToCurrentPoint the slave
can use this information to flush a result buffer. For
the Richardson extrapolation based step size control
the master has to repeat the simulation from the last
accepted communication point, that means it has to
save and restore the FMU states to this point for the
computation of the reference solution to estimate the
error or if a step was rejected because the step size
was too large. fmiGetFMUState makes a copy of
the internal FMU state and returns a pointer to this
copy and fmiSetFMUState copies the content of
the previously copied FMUstate back and uses it as
current new FMU state.

A generic implementation scheme for a double
step Tn→ Tn+1→ Tn+2 with Richardson extrapolation
based communication step size control is given by:

(A) tcurr = Tn. Get slave states slavei,n, (i = 1, . . . ,r),
calling fmiGetFMUState for all r slave FMUs.

(B) Define subsystem inputs ũi(t) providing
derivatives dlũi/dt l(Tn), (l = 0, . . . ,k) by
fmiSetRealInputDerivatives.

(C) Perform large communication step
Tn → Tn + 2H = Tn+2 calling fmiDoStep
for all r slave FMUs and get outputs ỹ(Tn+2) by
fmiGetRealOutputDerivatives.

(D) Reset all slave FMUs to state slavei,n, (i =
1, . . . ,r), calling fmiSetFMUState.

(E) Define subsystem inputs ūi(t) providing
derivatives dlūi/dt l(Tn), (l = 0, . . . ,k) by
fmiSetRealInputDerivatives.

(F) Perform first small communication step Tn →
Tn + H = Tn+1 calling fmiDoStep for all
r slave FMUs and get outputs ȳ(Tn+1) by
fmiGetRealOutputDerivatives.

(G) Evaluate ¯̄u(Tn+1) = c(ȳ(Tn+1)) and define
subsystem inputs ¯̄ui(t) providing deriva-
tives dl ¯̄ui/dt l(Tn+1), (l = 0, . . . ,k) by
fmiSetRealInputDerivatives.

(H) Perform second small communication step
Tn+1 → Tn+1 +H = Tn+2 calling fmiDoStep for
all r slave FMUs and get outputs ¯̄y(Tn+2) by
fmiGetRealOutputDerivatives.

(I) Evaluate error estimate ESTRich, error indicator
ERR and optimal communication step size Hopt.

The function fmiDoStep returns fmiOK if the com-
munication step was computed successfully until its
end. fmiDiscard is returned if the slave computed
successfully only a subinterval of the communication
step, which may occur if the communication step size
is too large and the simulation should be repeated
with a smaller one. fmiError will be returned by
fmiDoStep if the simulation of the communication
step could not be carried out at all.

The capabilities of a slave are de-
scribed in the XML file. A capability flag
canHandleVariableCommunicationStepSize
set to true indicates, that a slave is able to accept
variable communication steps, which is important to
implement a master with communication step size
control. The complete interface description can be
found in [13].

5 Numerical test for the FMI com-
patible master

For developing and testing new master algorithms,
a master prototype was implemented by Fraunhofer
IIS/EAS and Halle University [4, 6]. This master sup-
ports basic functions of FMI for Co-Simulation ver-
sion 1.0, see [14], and has implemented several so-
phisticated master algorithms like communication step
size control and the rejection of communication steps.

To use the Fraunhofer master with the given FMUs
the compiled C-code of the master has to be linked
to the slaves binaries, which may even be C-code that

Co-simulation with communication step size control in an FMI compatible master algorithm

210 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076205

0 1 2 3 4
10

−6

10
−4

10
−2

10
0

10
2

t [s]

 k=0, Richardson extrapolation

error indicator
communication step size H

Figure 4: Benchmark Quarter car, displacement-
displacement coupling. Error indicator and commu-
nication step size of the simulation with Richardson
extrapolation based step size control with the Fraun-
hofer master.

is compiled with the master. The resulting executable
consists of the master and the slaves.

For the numerical tests with the Fraunhofer master,
the quarter car benchmark with the two slaves “chas-
sis” and “wheel” is implemented in Dymola. We ap-
ply the communication step size control strategy from
Section 3 with error estimates ESTRich and ESTmod
and study the influence of the order k of signal ex-
trapolation and of the coupling strategy (displacement-
displacement vs. displacement-force). From a prac-
tical viewpoint constant (k = 0), linear (k = 1) and
quadratic (k = 2) signal extrapolation are most inter-
esting since higher order extrapolations increase the
risk of numerical instability, see also [1]. In all nu-
merical tests, the error tolerances for slave FMUs are
chosen two orders of magnitude smaller than the mas-
ter tolerances ATOL j, RTOL j in (8).

Since the current implementation of the Fraunhofer
master is limited to constant extrapolation with er-
ror estimation by Richardson extrapolation, only these
numerical results are depicted in Figure 4 for the
displacement-displacement coupling.

Extending these results, we will also consider the
numerical simulations in a MATLAB-based test envi-
ronment for the verification of the theoretical analy-
sis. The numerical test for variable communication
step sizes with error estimates ESTRich and ESTmod
for constant (k = 0) and linear (k = 1) extrapolation
is depicted for the two coupling strategies in Figures 5
and 6 within the simulation time interval t ∈ [0,4]. The
simulation results for Richardson extrapolation and its
modification are identical for k = 0, where the small
differences in Table 1 are caused by implementation

0 1 2 3 4
10

−6

10
−4

10
−2

10
0

10
2

t [s]

211 11 11 11 111 11 11 1
 k=0, Richardson extrapolation

0 1 2 3 4
10

−6

10
−4

10
−2

10
0

10
2

t [s]

211 11 11 11 111 11 11 11
 k=0, mod. Rich. extrapolation

0 1 2 3 4
10

−6

10
−4

10
−2

10
0

10
2

t [s]

21 11 2 2 2 2 3 4
 k=1, Richardson extrapolation

0 1 2 3 4
10

−6

10
−4

10
−2

10
0

10
2

t [s]

2 11 1 11 11 2 2 3
 k=1, mod. Rich. extrapolation

error indicator
communication step size H
rejected step

Figure 5: Benchmark Quarter car, displacement-
displacement coupling. Number of step rejections, er-
ror indicator and communication step size of the sim-
ulation with error estimates ESTRich and ESTmod.

Session 2A: FMI Standard I

DOI Proceedings of the 9th International Modelica Conference 211
10.3384/ecp12076205 September 3-5, 2012, Munich, Germany

0 1 2 3 4
10

−6

10
−4

10
−2

10
0

10
2

t [s]

21 121 211 21 211 121 21 211
 k=0, Richardson extrapolation

0 1 2 3 4
10

−6

10
−4

10
−2

10
0

10
2

t [s]

21 121 211 21 211 21 211 211
 k=0, mod. Rich. extrapolation

0 1 2 3 4
10

−6

10
−4

10
−2

10
0

10
2

t [s]

31111111121111111211113 1 2111112 211111 21112 211112 111111 12111 211
 k=1, Richardson extrapolation

0 1 2 3 4
10

−6

10
−4

10
−2

10
0

10
2

t [s]

4111111111111111111111212111111311 2111111 111111112 1211111 11111111 1111111 121111 1211
 k=1, mod. Rich. extrapolation

error indicator
communication step size H
rejected step

Figure 6: Benchmark Quarter car, displacement-force
coupling. Number of step rejections, error indicator
and communication step size of the simulation with
error estimates ESTRich and ESTmod.

0 1 2 3 4
10

−6

10
−4

10
−2

10
0

t [s]

gl
ob

al
 e

rr
or

 k=0 constant step size H=1 ms
variable steps, Rich. EP

0 1 2 3 4
10

−6

10
−4

10
−2

10
0

t [s]

gl
ob

al
 e

rr
or

 k=1 constant step size H=1 ms
variable steps, Rich. EP
variable steps, mod. Rich. EP

Figure 7: Benchmark Quarter car, displacement-
displacement coupling. Global error of the simulation
with constant step sizes compared to variable steps
based on error estimates ESTRich and ESTmod.

issues, since the first (small) Richardson step is saved
and therefore the inputs at t = Tn +H have to be in-
terpolated which causes problems if in the big step
Tn→ Tn+2 only one micro step is taken.

The global error of the numerical solution with
step size control is very well controlled to a mean
value of 10−4, see Figure 7, which corresponds to
the predefined error bounds ATOL j = RTOL j = 10−4

for displacement-displacement coupling (in the case
of displacement-force coupling we use ATOL j =
RTOL j = 10−3). In the transient phase t ∈ [0,0.5] very
small communication steps are chosen and at later sim-
ulation time, the algorithm uses larger communication
steps than in the beginning, since the subsystems be-
have slower and the distance between two communica-
tion points for an update of the subsystem inputs is in-
creased. In time intervals, where the larger mass of the
chassis has a strong influence on the wheel by chang-
ing the direction of motion, this is also triggered by
the communication step size control resulting in a re-
duction of the step size such that the error bounds are
met (see slow oscillation of the communication step
size and also the rejected steps in Figure 5, where the
communication steps are repeated with smaller step

Co-simulation with communication step size control in an FMI compatible master algorithm

212 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076205

size). In the transient phase, we can see that the er-
ror is greater than the pre-defined error bound of 10−4.
In this phase smaller steps should be taken, which is
triggered correctly by the step size control algorithm.
If we compare the simulation results with communi-
cation step size control with ESTRich and ESTmod to
the simulation with constant communication step size
H = 10−3 (with a micro tolerance in the subsystems
of 10−6) in Figure 7 and Table 1, we can see, that
the global error for constant extrapolation is decreas-
ing during the simulation because the step size is not
adapted to the solution behaviour. The accuracy is
raised, if higher order extrapolations are used. We
can also compare the computing times and see that
the master algorithm with communication step size
control is much faster resulting in a high efficiency
(nearly the same mean global error in the simulation
time interval compared to constant step sizes with con-
stant extrapolation), even with Richardson extrapola-
tion, where in every communication step the simula-
tion is performed at least twice. Using the modifica-
tion ESTmod or a higher order of extrapolation (k≥ 1)
further improves the simulation results and the com-
puting time. This is a nice example for the advan-
tage of controlling the step size compared to the brute
force approach of using always constant communica-
tion step sizes.

Furthermore, we observe in Table 1 if we use a mi-
cro tolerance of 10−8 in the subsystems for the simu-
lation with constant step sizes H = 10−3 that the com-
putation time is growing. Moreover, the accuracy of
the simulation is improved, since the influence of the
discretization error of the solution of the subsystems
is reduced. The simulation with step size control with
micTOL=1e-6 on the other hand is robust and reliable
and controls the error of the simulation results to the
predefined tolerance of macTOL=1e-4, even if the in-
fluence of the discretization error of the subsystems is
not neglected.

6 Conclusions

We have discussed the error estimation in co-
simulation by classical Richardson extrapolation and
by a modified algorithm for a reliable communication
step size control based on an extension of the step size
control of classical time integration. The local error of
the simulation is estimated very well by these strate-
gies.

The communication step size control was applied to
a benchmark problem from vehicle dynamics which

Table 1: Benchmark Quarter car - Simulation results
for the displacement-displacement coupling.

k error time [s] steps rej
H = 1ms, 0 8.922E-004 33.335 4000 0
micTOL=1e-6 1 4.094E-004 29.295 4000 0

2 4.138E-004 31.022 4000 0
H = 1ms, 0 5.301E-004 51.280 4000 0
micTOL=1e-8 1 6.049E-005 43.364 4000 0

2 1.967E-005 43.073 4000 0
Rich. EP, 0 1.050E-003 28.361 1610 18
micTOL=1e-6, 1 3.197E-004 10.379 402 20
macTOL=1e-4 2 3.180E-004 7.050 210 20
Mod. Rich. EP, 0 1.061E-003 19.712 1612 19
micTOL=1e-6, 1 3.317E-004 7.057 413 16
macTOL=1e-4 2 2.735E-004 4.835 218 17

was implemented in a master prototype that is com-
patible to FMI for Co-Simulation v1.0. We have seen
that communication step size control is possible, reli-
able and can improve the performance of the master
algorithm significantly, especially the computing time
and accuracy.

References

[1] M. Arnold. Stability of sequential modular time
integration methods for coupled multibody sys-
tem models. J. Comput. Nonlinear Dynam.,
5:031003, 2010.

[2] M. Arnold, T. Blochwitz, C. Clauß, T. Neidhold,
T. Schierz, and S. Wolf. FMI-for-CoSimulation.
In The International Journal of Multiphysics.
Special Edition: Multiphysics Simulations. Ad-
vanced Methods for Industrial Engineering. Se-
lected contributions from 1st Fraunhofer Multi-
physics Conference, pages 345–356, Brentwood,
Essex, UK, 2011. Multi-Science Publishing Co.
Ltd.

[3] M. Arnold, C. Clauß, and T. Schierz. Nu-
merical aspects of FMI for Model Exchange
and Co-Simulation v2.0. In P. Eberhard and
P. Ziegler, editors, Proc. of The 2nd Joint Inter-
national Conference on Multibody System Dy-
namics, Stuttgart, Germany, May 29 - June 1,
2012, ISBN 978-3-927618-32-9, 2012.

[4] J. Bastian, C. Clauß, S. Wolf, and P. Schnei-
der. Master for Co-Simulation Using FMI.
In C. Clauß, editor, Modelica Association,
Linköping: 8th International Modelica Confer-

Session 2A: FMI Standard I

DOI Proceedings of the 9th International Modelica Conference 213
10.3384/ecp12076205 September 3-5, 2012, Munich, Germany

ence 2011 : Dresden, Germany, 20-22 March
2011, Dresden: Fraunhofer IIS / EAS, 2011.

[5] M. Busch and B. Schweizer. Numerical stabil-
ity and accuracy of different co-simulation tech-
niques: Analytical investigations based on a 2-
DOF test model. In Proc. of The 1st Joint Interna-
tional Conference on Multibody System Dynam-
ics, May 25–27, 2010, Lappeenranta, Finland,
2010.

[6] C. Clauß, M. Arnold, T. Schierz, and J. Bas-
tian. Master zur Simulatorkopplung via FMI.
In X. Liu-Henke, editor, Tagungsband der
ASIM/GI-Fachgruppen STS und GMMS, Wolfen-
büttel, 23.02.-24.02.2012, Ostfalia Hochschule
für Angewandte Wissenschaften, Wolfenbüttel,
2012.

[7] P. Deuflhard and A. Hohmann. Numerical Anal-
ysis in Modern Scientific Computing: An Intro-
duction. Number 43 in Texts in Applied Mathe-
matics. Springer, 2nd edition, 2003.

[8] FMI. The functional mockup interface. http://
www.functional-mockup-interface.org/.

[9] E. Hairer, S.P. Nørsett, and G. Wanner. Solv-
ing Ordinary Differential Equations. I. Nonstiff
Problems. Springer–Verlag, Berlin Heidelberg
New York, 2nd edition, 1993.

[10] K. Jackson. A survey of parallel numerical meth-
ods for initial value problems for ordinary differ-
ential equations. IEEE Transactions on Magnet-
ics, 27:3792–3797, 1991.

[11] R. Kübler. Modulare Modellierung und Sim-
ulation mechatronischer Systeme. Fortschritt-
Berichte VDI Reihe 20, Nr. 327. VDI–Verlag
GmbH, Düsseldorf, 2000.

[12] R. Kübler and W. Schiehlen. Two methods of
simulator coupling. Mathematical and Com-
puter Modelling of Dynamical Systems, 6:93–
113, 2000.

[13] Modelisar. Functional Mock-up In-
terface for Model Exchange and Co-
Simulation v2.0 Beta 3. http://www.
functional-mockup-interface.org/
specifications/FMI_for_ModelExchange_
and_CoSimulation_v2.0_Beta3.pdf,
November 2011.

[14] Modelisar. Functional Mock-up Inter-
face for Co-Simulation. http://www.
functional-mockup-interface.org/
specifications/FMI_for_CoSimulation_
v1.0.pdf, October 2010.

[15] H. Olsson. Private communication within FMI
2.0 development, June 2011.

Co-simulation with communication step size control in an FMI compatible master algorithm

214 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076205

Session 2B: Numerical Methods

On the Formulation of Steady-State Initialization Problems in Object-Oriented Models of Closed Thermo-Hydraulic Systems

On the Formulation of Steady-State Initialization Problems
in Object-Oriented Models of Closed Thermo-Hydraulic Systems

Francesco Casella
Dipartimento di Elettronica e Informazione, Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milano, Italy
casella@elet.polimi.it

Abstract

The object-oriented formulation of steady-state initial-
ization for models of closed thermo-hydraulic systems
yields singular problems, due to system-wide struc-
tural issues. The paper proposes how to solve this
problem in an object-oriented fashion, by means of an
additional component that helps to uniquely determine
the initial conditions of the system. A method based
on the analysis of the null space of the Jacobian of
the initialization problem and on suitable annotations
is also proposed to provide the end user with meaning-
ful, high-level, context-relevant diagnostic messages,
in case the singular problem arises. This diagnostic
method can also be applied to other cases, such as
closed systems with constant density fluid and elec-
trical circuits lacking a ground connection.

Keywords: Thermo-hydraulic system modelling,
Initialization, User-friendly error diagnostics

1 Introduction

Dynamic modelling of thermo-hydraulic systems in
Modelica is becoming increasingly popular in many
application fields: energy conversion systems, air con-
ditioning and ventilation plants for civil and airborne
applications, etc.

The steady-state initialization of such models is
well-known to be a critical issue. The two typical al-
ternatives available to practitioners are:

• set the initial values of all the state variables to
estimates of the steady-state one (the exact value
is not known a priori), then simulate a relaxation
transient until a steady-state is reached;

• set the initial derivatives of all the state variable
to zero and let the tool numerically solve for the
exact steady-state values.

The first choice has the advantage that finding a con-
sistent initial state is numerically easy, so the simu-
lation always starts, but the ensuing transient can be
problematic, because of potentially large swings of
flow variables that can require a very long simulation
time and possibly lead to solver failures.

The second choice is more appealing: if the solver
converges, the time spent to solve the steady-state
initialization problem is typically much lower than
the time spent simulating the (meaningless) relaxation
transient. However, there are three categories of issues
that can prevent getting the desired initial state:

1. the initialization problem is well-posed, but a so-
lution is not found because of convergence failure
of the iterative solver (typically, the initial guess
values are not close enough to the solution);

2. the initialization problem is structurally well-
posed, but the values of some parameters are such
that a physically valid solution does not exist;

3. the initialization problem is not structurally well-
posed, e.g., it is singular.

Recently proposed improvements [7, 4] based on
simplified models and homotopy transformations,
have been proved effective to enhance the likelyhood
of convergence (issue 1.) and also to point out prob-
lems stemming from the wrong parametrization of the
model (issue 2.). However, they do not address issue
3. at all.

If the thermo-hydraulic system under consideration
is closed, i.e., it does not exchange mass with the out-
side world, initialization problems where all compo-
nents are set up for steady-state initialization turn out
to be singular. The singularity arises at the system
level, so it doesn’t take place if parts of the closed sys-
tem are first tested separately, with suitable boundary
conditions that make the system an open one, but only

DOI Proceedings of the 9th International Modelica Conference 215
10.3384/ecp12076215 September 3-5, 2012, Munich, Germany

when the final closed system is assembled. This be-
haviour can be puzzling for inexperienced users.

The goal of this paper is to propose an elegant,
object-oriented way to completely determine the ini-
tial conditions for closed systems, as well as a method
based on numerical analysis and suitable annotations
to issue meaningful diagnostics when such system-
level singularities do arise, guiding the end-user to-
wards the solution of the problem.

The paper is structured as follows: in Section 2,
the structure of steady-state initialization problems in
closed circuits is analysed; in Section 3, an object-
oriented solution to the problem is proposed and then
applied in Section 4 to two case studies. Section 5 dis-
cusses how a tool can report the singularity to the end
user in a meaningful way, while Section 6 ends the pa-
per with concluding remarks.

2 Singular initialization problems of
closed systems

Consider a generic closed thermo-hydraulic system.
Dynamic models of such a system contain mass bal-
ance equations of three kinds. The first corresponds to
mass balances inside control volumes where the stored
mass can change over time:

dMi

dt
= ∑

j
wi, j, i = 1, . . . ,Nd , (1)

where Mi is the mass contained within the i-th vol-
ume, wi, j are the flow variables of its fluid ports, i.e,
all the mass flow rates crossing the component bound-
ary through the ports assumed positive when entering,
and Nd is the number of control volumes having such
dynamic balances. The second kind corresponds to
mass balances inside components where the change
over time of stored mass is neglected:

0 = ∑
j

wi, j, i = Nd +1, . . . ,Nd +Ns, (2)

where wi, j has the same meaning as above, and Ns is
the number of control volumes with such static bal-
ances. The third kind corresponds to the mass bal-
ance equations formulated over infinitesimally small
control volumes spanning each connection set of fluid
ports, which are automatically generated by the com-
piler:

0 = ∑
m

wk,m, k = 1, . . .Nc (3)

where Nc is the number of connection sets and, for the
k-th connection set, wk,m are the flow variables of all
the ports belonging to it.

It is essential to note that both in (1) and (2), all
mass flow rates appearing in the mass balance equa-
tions correspond to flow through the ports. Thus,
source and sink components, which represent flows
exchanged between the system and the outer world,
are explicitly excluded. The system is closed, as it
cannot exchange mass with the outer environment, but
only with other components belonging to it.

Assume now one wants to initialize the system in
steady state. In an object-oriented formulation of the
system model, which is formed by connecting com-
ponent models through their ports, one typically se-
lects a steady state initialization option for each com-
ponent, possibly via some system-level default op-
tion which is passed to all the components via in-
ner/outer constructs. This approach is followed by
the Modelica.Fluid library [6]. This option adds an
steady-state initial equation for each control volume
with dynamic mass balance:

dMi

dt
= 0, i = 1, . . . ,Nd . (4)

The system of equations (1)-(4) is always singular,
because its equations are not linearly independent.

Proof: the sum of all dynamic balance equations (1)
minus the sum of all initial equations (4) plus the sum
of all static balance equations (2) yields

0 = ∑
i=1...Ns+Nd , j

wi, j. (5)

On the other hand, the sum of all connection equations
(3) yields

0 = ∑
k=1...Nc,m

wk,m. (6)

Now, each flow variable in the right-hand-side of (5)
belongs to one and only one connection set (for un-
connected ports, default connection sets are automati-
cally generated). Therefore each variable appearing in
(5) appears once and only once in (6). It follows that
the difference between equation (5) and (6), which is
a non-trival linear combination of (1)-(4), gives

0 = 0. (7)

Hence, equations (1)-(4) are not linearly independent
and thus the system is singular, q.e.d.

The physical interpretation of this singularity is that
the initial conditions (4) do not give any information
on the total amount of mass contained in the system at
initialization.

On the Formulation of Steady-State Initialization Problems in Object-Oriented Models …

216 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076215

3 Object-oriented formulation of
well-posed initialization problems

3.1 Mathematical formulation

One way to make the initialization problem non-
singular is to avoid the initial equation (4) for one
of the control volumes in the circuit, substituting it
with some other equation that makes the problem well
posed. This is convenient for those systems where one
component has the specific purpose of enforcing the
pressure at some point of the circuit.

For example, closed pressurized circuits contain-
ing liquid water usually feature dedicated components
which determine the pressure level of the system and
accommodate the thermal expansion of the fluid: ac-
cumulators in domestic heating systems, pressurizers
in cooling circuits for PWR nuclear reactors, etc. In
this case, the initial conditions for those components
are not given as (4), but rather by specifying the initial
value of the pressure (and possibly of other variables,
depending on the actual level of detail of the model).

Unfortunately, this approach is not always conve-
nient for two reasons. One is that some closed systems
that use a compressible fluid as working medium may
not contain such a specialized component. The other
one, which is more fundamental, is that the extra ini-
tial condition which is needed to make the initializa-
tion well-posed might refer to the entire system and
not just to a specific component. For example, it is of-
ten the case that refrigeration circuits must be initial-
ized so that the total mass of the fluid contained in the
circuit, also known as the charge, has a certain value.

In this paper, a modular approach is proposed to
solve this issue. The idea is to add an extra compo-
nent to the system model which contains the equation

0 = wNd+Ns+1,1 +wb, (8)

where wNd+Ns+1,1 is the flow variable of the only port
of this additional component and wb is an unknown
parameter, as well as an extra initial equation to com-
pletely determine the initial state, such as, e.g.

p = pstart (9)

(where p is the port pressure and pstart a known pa-
rameter), or, e.g.,

∑
i

Mi = Mstart (10)

where Mstart is again a known parameter.

Including this extra component to the system adds
two more equations, e.g., (8),(9) or (8),(10), and two
more unknowns, wNd+Ns+1,1 and wb, to the initializa-
tion problem, which thus remains balanced.

If (8) is added to the set of static mass balance equa-
tions (2), equation (5) will change to

0 = wb + ∑
i=1...Ns+Nd+1, j

wi, j, (11)

and the difference between (11) and (6) will now yield

0 = wb (12)

as the term wb is not a flow through a port, so it is not
cancelled out. Therefore, the mass balance equations
and initial equations are no longer linearly dependent,
and the value of the flow rate wb potentially entering
the system will be computed to be zero during initial-
ization, so the additional component will have no ef-
fect on the model during simulation.

It is not trivial to prove that the initialization prob-
lem will be non-singular in general. The user building
the model should select the extra initial condition (e.g.,
(9) or (10)) so that the corresponding system of equa-
tions uniquely determine the initial state of the system,
based on his understanding and expertise.

If a compressible fluid model is employed, typi-
cally (9) is a good choice, leading to a numerical prob-
lem which is easier to solve than the one obtained by
adding (10).

3.2 Modelica formulation

The Modelica code of the initialization component is
now presented, based on the mathematical formulation
laid out in the previous sub-section, in order to be com-
patible with the Modelica.Fluid library.

model ClosedSystemInitializer

replaceable package Medium =

Modelica.Media.Interfaces.PartialMedium;

parameter Medium.AbsolutePressure p_start;

final parameter Medium.MassFlowRate

w_b(fixed = false) = 0;

Modelica.Fluid.Interfaces.FluidPort_a

port(redeclare package Medium = Medium ,

m_flow(min = 0),

p(start = p_start));

Modelica.Blocks.Interfaces.RealInput

initialConditionResidual;

equation

0 = port.m_flow + w_b; // Mass balance

port.h_outflow = 0;

port.Xi_outflow = zeros(Medium.nXi);

initial equation

0 = initialConditionResidual;

end ClosedSystemInitializer;

Session 2B: Numerical Methods

DOI Proceedings of the 9th International Modelica Conference 217
10.3384/ecp12076215 September 3-5, 2012, Munich, Germany

Figure 1: Brayton cycle plant model.

When instantiating the model, the extra initial con-
dition can be specified by connecting a RealExpres-
sion block containing its residual to the component’s
input port.

Note that the min annotation on the fluid port speci-
fies that the fluid will never flow out of it, so the values
of the stream variables h_outflow and Xi_outflow

(which must be given in order to get a balanced model)
are never actually used outside the component itself,
when computing the incoming stream quantity via the
inStream() operator [6]. Therefore, once the initial
solution of the problem has been found, in particular
w_b = 0, this additional component has no influence at
all on the remaining equations of the closed system.

In order to improve the convergence of the solver
when (10) is used as initial condition, it might be pos-
sible to use a homotopy transformation, where the sim-
plified initial equation is (9). The initial equation sec-
tion is correspondingly changed to:

initial equation

0 = homotopy(

actual = initialConditionResidual ,

simplified = port.p - p_start);

4 Example applications

4.1 Brayton cycle for power generation

Advanced energy conversion cycles are being consid-
ered for high-temperature heat sources, such as cen-
tral receiver solar plants and IV generation nuclear
plant, using supercritical CO2 as a working medium
and a closed Brayton cycle configuration [1, 5], featur-
ing two separate compressors to achieve optimal effi-
ciency of the overall cycle. The object diagram of the
plant model is shown in Fig. 1. In order to control
the pressure levels in the system, in particular at the
main compressor inlet, it is possible to add or remove

mass from two points of the circuit, through appro-
priate sub-systems which are modelled here as ideally
controlled flow rate sources or sinks. When the plant
model is considered together with the pressure con-
troller model in a closed-loop configuration, then a full
steady-state formulation of the initialization problem,
as in (4), is well-posed, because the pressure level (and
thus the mass) of the fluid contained in the circuit is de-
termined implicitly by the controller to be equal to the
set point.

During the control system design phase, though, it
is usually necessary to analyse the dynamic behaviour
in open loop around equilibrium points, which in this
case means there is no pressure controller and both
flow rates are set to zero, so that the system is effec-
tively closed.

In this case, a convenient way to make the ini-
tialization problem well-posed is to connect the
ClosedSystemInitializer component at the com-
pressor inlet, so that it sets the initial pressure at that
point. This condition, together with the flow charac-
teristics of the turbo-machines and with the thermal
interaction with the heat source and sink, uniquely de-
termines the amount of gas contained in the system
and the pressure and temperature distribution.

The model was set up using the ThermoPowerLight
library, which is a simplified version of the Ther-
moPower library [2, 3] currently under development
for optimization studies, and successfully solved us-
ing Dymola 2013.

4.2 Refrigeration cycle

Refrigeration systems are usually carefully sealed, in
order to avoid leaks of refrigerant fluid to the environ-
ment, so they always qualify as closed system. The
static and dynamic behaviour of the system is heavily
influenced by the amount of refrigerant which is ini-
tially loaded in the system (the charge).

A simple model of a refrigeration circuit, built with
the ThermoPower library, is shown in Fig. 2. Ho-
mogeneous flow and constant heat transfer coefficients
are assumed for simplicity; pressure losses along the
condenser and evaporator are lumped at the pipe ends.

The initialization problem has been set up by adding
an extra condition specifying the total mass contained
in the condenser and evaporator pipes. In order to
avoid convergence problem, homotopy-based initial-
ization is performed, starting from a simplified model
where the condenser inlet pressure is fixed. The model
was successfully initialized in steady-state using Dy-
mola 2013.

On the Formulation of Steady-State Initialization Problems in Object-Oriented Models …

218 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076215

Figure 2: Refrigeration cycle plant model.

5 Diagnostics of ill-posed initializa-
tion problems

This section addresses the problem of giving end-users
meaningful feedback in case they do not specify the
initialization problem correctly and fall into the singu-
lar case presented in Sect. 2.

The situation with currently available Modelica
tools is not satisfactory. The complete steady-state ini-
tialization problem is usually large (hundreds or thou-
sands of unknowns, depending on the degree of de-
tail of the model) and strongly non-linear. The pres-
ence of linearly dependent equations makes its Jaco-
bian singular. As a consequence, during iterations the
unknowns, which typically include pressures, temper-
atures and specific enthalpies of control volumes in the
model, will fluctuate wildly, causing repeated out-of-
bounds errors from the fluid property calculation func-
tions, until the solver eventually gives up. The error
messages typically shown to the end user will point to
these out-of-bounds errors and, possibly, to the very
high condition number of the Jacobian. By no means
this diagnostic information points explicitly to the ac-
tual root cause, which has been shown in Sect. 2.

One possible solution to this problem is sketched
in the remainder of this Section, based on numerical
analysis and suitable annotations in the model library.

5.1 Numerical identification of singular sub-
systems

Let the initialization problem be formulated in residual
form (as it is usually the case if nonlinear solvers are
to be employed):

F(x, ẋ,v, p) = 0 (13)

where x ∈ ℜn is the vector of state variables, v ∈
ℜm is the vector of algebraic variables, and p ∈ ℜq

is the vector of unknown parameters (having the at-
tribute fixed =false). The analysis of under- and
over-constrained initialization problems, though ex-
tremely interesting, is outside the scope of this pa-
per, so it is assumed here that the initialization prob-
lem is square, i.e., the function returning the residuals
of the dynamic and initial equations of the system is
F : ℜn×ℜn×ℜm×ℜq→ ℜ2n+m+q. Define the vec-
tors of unknowns

z =


x
ẋ
v
p

 , (14)

z ∈ ℜ2n+m+q, and let Fz be the Jacobian matrix of the
function F with respect to z. The ill-posed initializa-
tion problem described in Section 2 leads to a singular
Jacobian, since it is shown there that there exist a non-
zero vector v such that

Fzv = 0 (15)

having non-zero entries (plus/minus one) only in cor-
respondence to the mass balance equations and initial
equations. If many disconnected closed systems exist
in the model, then there will be a corresponding num-
ber of linearly independent vectors v j that satisfy eq.
(15). Note that there might also be other such vectors
because of other parts of the problem being singular
on there own. The set of linearly independent v j’s sat-
isfying eq. (15) spans the so-called nullspace or kernel
of Fz.

It is now possible to identify the set(s) of linearly de-
pendent equations in the initialization problem by nu-
merically computing the nullspace of the Jacobian Fz,
i.e. a set of orthonormal vectors v j that forms a basis
for the nullspace. For each of these vectors, all entries
whose absolute value is greater than a suitable small
threshold identify the equations in the initial problem
that are part of a singular subsystem, which can be re-
ported to the end-user.

Session 2B: Numerical Methods

DOI Proceedings of the 9th International Modelica Conference 219
10.3384/ecp12076215 September 3-5, 2012, Munich, Germany

The selection of the threshold might be critical, be-
cause due to numerical approximations, the zero en-
tries will actually have a small non-zero value, and
it might not be trivial to avoid false positives or false
negatives. It is then essential to use a state-of-the-art
numerically robust algorithm to compute the orthonor-
mal basis of the nullspace of Fz, with the lowest pos-
sible effect effect of numerical rounding errors on the
result.

Since the sum of square of the elements of each ba-
sis vector is one, it is expected that there will be a sharp
difference between the elements that correspond to the
involved equations (which will have order of magni-
tude of one) and the other ones (which will have order
of magnitude of machine ε , around 10−16 for double
precision arithmetic). Some experimentation in real-
life-sized test cases is however necessary to fine tune
such a method, but this has not been possible yet for
the lack of available implementation of the method in
Modelica compilers.

Another issue to be taken care of is the proper han-
dling of cases when N > 1 disconnected closed sub-
systems are present in the model. In this case, the ba-
sis of the nullspace will contain N orthonormal vec-
tors, but there is no guarantee that the non-zero entries
of one of them will only refer to one sub-system. The
reason of this fact is that the orthonormal basis of the
nullspace is not unique, as other perfectly valid bases
can be found by taking one and multiplying its vectors
by an orthogonal matrix, i.e., obtaining a basis which
is rotated with respect to the previous one. It is then
possible that the basis vectors which are obtained from
the SVD decomposition are linear combinations of the
ones that each refer to one singular sub-system.

However, once that these basis vectors v1, . . . ,vN

have been found for the null space, obtaining vec-
tors whose non-zero entries point to one sub-system
is fairly straightforward, by means of a pivoting algo-
rithm. The idea is to look for linear combinations of
the originally found vectors that have the least possi-
ble number of non-zero entries. A possible sketch of
the algorithm is:

1. Build the matrix M = [mi, j] = [v1 v2 . . . vN].

2. Look for the rows with more than one element
having absolute value greater than the threshold;
if none are found, stop.

3. If at least row one is found, select among them
the elements mi, j and mi,k which have the largest
absolute value, such that |mi, j| ≥ |mi,k|.

4. Subtract column j multiplied by mi,k/mi, j from
column k.

5. Go to step 2.

When the algorithm terminates, the elements above
threshold of each column of M correspond to the sin-
gular equations of just one sub-system.

Last, but not least, it is essential to point out that
the proposed analysis must be performed on the full
initialization problem (13), prior to any optimization
such as alias elimination, symbolic simplification, and
BLT partitioning of the problem. Such optimizations
make it easier and more efficient to solve the prob-
lem from a numerical point of view, but effectively de-
stroy the structural information that is required to issue
meaningful diagnostic errors to the end user.

For example, equations (4) could be used to stat-
ically determine that the initial values of the mass
derivatives are zero, so these equations could be elimi-
nated from the set of initial equations and all instances
of dMi

dt could be replaced by zeros in equation (1). Ob-
viously, this makes it impossible to point out to the
root cause of the problem, which lies in the equations
(4). It is of course possible to first try solving the prob-
lem with all optimizations active, and only if that fails,
generate the Jacobian Fz of the full problem and eval-
uate it using the values of the unknowns thus found.

As a final remark, although these methods can be
fairly expensive in terms of CPU load, the computa-
tion is only performed once after the initialization has
failed, and a waiting time of a few seconds (or even of
a minute or two) is largely preferrable to quickly get-
ting diagnostic output that gives no meaningful infor-
mation in order to trace the root cause of the problem.

5.2 High-level error diagnostics for the user

It is possible to infuse in the model additional expert
knowledge from the modeller, which can further help
the end user to identify the root cause of the singu-
larity. In the case under consideration, thanks to the
analysis carried out in Section 2, the expert library de-
veloper knows that a bad choice of steady-state ini-
tial equations will lead to a singular problem, in which
those equations will form a singular sub-system. It
would then be possible to annotate those equations
with meaningful error messages, that will be reported
to the end-user in case they are found to be part of such
a singular sub-system, e.g.:

initial equation

der(M) = 0

On the Formulation of Steady-State Initialization Problems in Object-Oriented Models …

220 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076215

annotation(PartOfSingularSystemError =

"Ill-posed initial conditions for closed

system.\n Please connect a

ClosedSystemInitializer component to

the system to completely specify the

initial state");

Instead of just reporting the raw set of equations
which form a singular subsystem, the tool could report
their associated error annotation strings, that would
help even an inexperienced user to fix the problem
quickly. A hot link to the documentation of the
ClosedSystemInitializer, e.g. marked-up using
a modelica:// URL, could lead with one click to a
documentation page that explains the problem in more
detail, and possibly even link to this paper on the Web
for further information. Note that annotations on equa-
tions are allowed by the Modelica language grammar,
though they have never been used so far for any defi-
nite purpose.

5.3 Application to other cases

The mechanism proposed in this Section could also
be used for diagnostic purposes in other situations that
suffer of the same syndrome, namely, a sub-set of the
system equations being singular due to the system-
wide structural issues.

A first example is models of thermo-hydraulic sys-
tems with constant density fluid, which is a modelling
assumptions sometimes used if the working medium
is liquid and one is not interested in the very fast pres-
sure dynamics, nor in the thermal expansion and buoy-
ancy effects. In this case, the sets of equations (1) and
(4) are empty, and all the mass balance equations of
the control volumes that make up the system are con-
tained in set (2). The linear combination of equations
mentioned in Section 2 still yields 0 = 0, so the sys-
tem is singular. In this case, however, the singular-
ity does not involve the initial equations, so both the
initialization problem and the simulation problem are
singular. An annotation could then be applied to the
static mass balances of the components using incom-
pressible fluid, e.g. with error message "Closed sys-
tem with constant density fluid yields singular system
of equations. Please add a component such as pres-
surizer or accumulator to determine the pressure in the
circuit uniquely".

Another example is the well-known case of elec-
trical circuits with missing ground component. In
this case, the system of dynamic equations is singu-
lar because the pin voltages are not uniquely deter-
mined. Various solutions have been proposed, based
on structural analysis, to issue meaningful diagnos-

tic messages to the end user. Using the numerical
method proposed in this paper, it would suffice to
add the PartOfSingularSystemError annotation to
the equation v = p.v - n.v contained in the OnePort
partial model, e.g. with error message "Electrical cir-
cuit without ground connection yields singular system
of equations. Please connect a ground component to
the circuit where appropriate".

6 Conclusions

Models of closed thermo-hydraulic circuits can lead to
singular steady-state initialization problems due their
system-wide structure. This paper proposes a way
to solve this problem in an object-oriented fashion,
by means of an additional component that helps to
uniquely determine the initial conditions of the sys-
tem.

A method based on the analysis of the null space
of the Jacobian of the initialization problem is also
proposed to provide the end user with meaningful,
high-level, context-relevant diagnostics, by suitably
annotating those equations that might potentially lead
to such singular problems. This allows the library
designer to infuse expert knowledge about potential
system-level issues, helping inexperienced end-users
to pin-point the root cause of the problem easily, con-
trary to the current state-of-the-art with existing tools,
that will output hard-to-understand low-level numeri-
cal diagnostic messages.

The proposed method for high-level singular system
diagnostics can also be applied to other cases, such as
closed circuits with constant-density fluid, or electrical
circuits lacking a ground connection.

References

[1] F. Casella and P. Colonna. Development of a Mod-
elica dynamic model of solar supercritical CO2
Brayton cycle power plants for control studies.
In Proceedings of the Supercritical CO2 Power
Cycle Symposium, pages 1–7, Boulder, Colorado,
USA, May 24–25 2011.

[2] F. Casella and A. Leva. Modelica open library for
power plant simulation: Design and experimental
validation. In P. Fritzson, editor, Proceedings 3rd
International Modelica Conference, pages 41–
50, Linköping, Sweden, Nov. 3–4 2003. Mod-
elica Association. http://www.elet.polimi.

it/upload/casella/thermopower/.

Session 2B: Numerical Methods

DOI Proceedings of the 9th International Modelica Conference 221
10.3384/ecp12076215 September 3-5, 2012, Munich, Germany

[3] F. Casella and A. Leva. Modelling of thermo-
hydraulic power generation processes using Mod-
elica. Mathematical and Computer Modeling of
Dynamical Systems, 12(1):19–33, Feb. 2006.

[4] F. Casella, M. Sielemann, and L. Savold-
elli. Steady-state initialization of object-oriented
thermo-fluid models by homotopy methods. In
C. Clauss, editor, Proceedings 8th International
Modelica Conference, pages 86–96, Dresden,
Germany, Mar. 20–22 2011. Modelica Associa-
tion.

[5] V. Dostal. A Supercritical Carbon Dioxide Cycle
for Next Generation Nuclear Reactors. PhD the-
sis, MIT, 2004.

[6] R. Franke, F. Casella, M. Sielemann, K. Proelss,
M. Otter, and M. Wetter. Standardization of
thermo-fluid modeling in Modelica.Fluid. In
F. Casella, editor, Proceedings 7th International
Modelica Conference, pages 122–131, Como,
Italy, Sep. 20–22 2009. The Modelica Associa-
tion.

[7] M. Sielemann, F. Casella, M. Otter, C. Clauß,
J. Eborn, S. E. Mattsson, and H. Olsson. Ro-
bust initialization of differential-algebraic equa-
tions using homotopy. In C. Clauss, editor, Pro-
ceedings 8th International Modelica Conference,
pages 75–85, Dresden, Germany, Mar. 20–22
2011. Modelica Association.

On the Formulation of Steady-State Initialization Problems in Object-Oriented Models …

222 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076215

Probability-One Homotopy for Robust Initialization of Differential-Algebraic Equations

Probability-One Homotopy for Robust Initialization
of Differential-Algebraic Equations

Michael Sielemann
Deutsches Zentrum für Luft- und Raumfahrt, Robotics and Mechatronics Center,
System Dynamics and Control, Münchner Strasse 20, 82234 Wessling, Germany

Abstract

An evolution of the recently introduced operator
homotopy() is proposed, which further improves the
solution of difficult initialization problems. The back-
ground and motivation for this approach are discussed
and it is demonstrated how to apply it for electrical
and fluid systems. The key difference to the earlier ap-
proach is the supporting theory, which guarantees that
the method converges globally with probability one.

Keywords: Initialization, DAE, homotopy, nonlin-
ear equations

1 Introduction

A dynamic model describes how the state variables
and thus the entire system behave over time. The state
variables define the current condition of the model
and have to be initialized when simulation starts. For
this purpose, Modelica provides language constructs
to define initial conditions such as initial equation sec-
tions [12]. The resulting constraints and all equations
and algorithms that are utilized during the simulation
form the initialization problem. Based on its solution,
all variables, derivatives and pre-variables are assigned
consistent values before the simulation starts.

Mathematically, the resulting problem is an initial
value problem for a differential algebraic equation sys-
tem (DAE) with dim(f) = nx+nw equations:

f(ẋ,x,w, t) = 0, x(t) ∈ Rnx, w(t) ∈ Rnw, t ∈ R

Here, x is the vector of state variables and w is the
vector of algebraic unknowns. For simplicity of the
discussion, we assume that the DAE has no hybrid part
and is index-reduced, i.e. it has index 1, which means
that the following expression is regular:[

∂ f
∂ ẋ

∂ f
∂w

]

Note that all the following results still hold for hybrid,
higher index DAEs with small adaptations. Initializa-
tion means to provide consistent initial values for ẋ0,
x0, w0 so that the DAE is fulfilled at the initial time t0.
Since these are 2 ·nx+nw unknowns and the DAE has
nx + nw unknowns, additional nx equations must be
provided which are called "initial equations" in Mod-
elica:

g(ẋ0,x0,w0, t0) = 0, dim(g) = nx

The most often used initial equations are:

g(ẋ0,x0,w0, t0) = ẋ0 = 0

that is, steady-state initialization.
The result is usually a nonlinear system of algebraic

equations, which has to be solved numerically. This
does not always work right away for industrial prob-
lems as the commonly employed gradient-based lo-
cal algorithms [2, 10, 3], such as the damped Newton
method, provide local convergence only (even when
using globalizations such as trust regions).

Modelica allows users to describe any model math-
ematically, which makes it highly flexible and pow-
erful for simulation of heterogeneous multi-domain
physical systems. However, this also means that no
knowledge of the mathematical character of the prob-
lem equations can be introduced into the solver. In-
stead, an algorithm has to work on a general numerical
problem (in contrast to domain-specific algorithms for
nonlinear problems).

As a result, the success to solve initialization prob-
lems of state-of-the-art implementations of Modelica
tools depends on the choice of iteration variables and
the guess values for these variables defined with the
start attribute. As a result it may become difficult
for a library developer to provide a robust initializa-
tion capability.

Since a model becomes useless whenever initializa-
tion fails, and the current state-of-the-art is not fully

DOI Proceedings of the 9th International Modelica Conference 223
10.3384/ecp12076223 September 3-5, 2012, Munich, Germany

satisfactory in this regard, we conclude that more re-
liable and robust methods are needed for a wider ap-
plication of the Modelica modeling language by prac-
titioners.

In a previous paper, we introduced a homotopy
operator in [19]. It maps homotopy(actual =
..., simplified = ...) to λ · actual +(1− λ) ·
simpli f ied. Successful application examples were
given for electronic circuits and multibody systems
in [19] and for power plants in [1].

This homotopy operator is typically used to simplify
governing equations of components, sweep boundary
conditions and the like. The advantages of this ap-
proach are that the concept is simple and easy to under-
stand. Also, it was successfully tested on relevant test
cases. It has certain limitations however, in particular
that the homotopy map is hard-wired into the language
specification, that convergence is based on heuristics,
and that a naive application can lead to singular prob-
lems (e.g., with a singular Jacobian at λ = 0).

The objective of this contribution is thus to pro-
pose a more powerful homotopy operator, which can
be used as the original one, enables a declarative def-
inition of arbitrary homotopy maps, and allows global
convergence via probability-one homotopy, an estab-
lished method from topology.

2 Theory

2.1 Definitions

We first define a generic nonlinear algebraic problem
with a vector of unknowns z = [ẋ0;x0;w0] and residu-
als F = [f;g].

Then, a homotopy is a continuous deformation from
one map to another via the homotopy map ρ(z,λ).
The homotopy map is a map with one higher dimen-
sion as it additionally depends on λ , the homotopy
or continuation parameter. The corresponding under-
determined system of equations ρ(z,λ)= 0 can be fol-
lowed using continuation algorithms.

Homotopy maps are carefully constructed such that
for one value of the homotopy parameter, e.g., λ = 0,
the equation system is easy to solve and for another
value, e.g., λ = 1, the equation system is the one of
interest, i.e., F(z) = 0.

Then, the root finding procedure works a follows.
A curve (z,0) is followed from ρ(z,0) = 0 along
ρ(z,λ) = 0 until λ = 1 as ρ(z,1) = F(z). This curve
{z|ρ(z,λ) = 0} is called the root curve ρ−1(0).

Root curves have to be followed numerically and

therefore they must not contain singularities such as
bifurcations or divergence to ±∞. Also, they must not
be closed loops without crossing λ = 1 (so called iso-
lae).

2.2 Probability-one homotopy

It is possible to prove that a problem satisfies these
requirements using a particular type of homotopy
method called probability-one homotopy. This method
allows to avoid running into one of the ill-posed traces
and thus delivers global convergence. It requires pos-
ing the problem equations F and ρ in a particular fash-
ion and was used with vast success in domain-specific
simulation to resolve the convergence issues motivat-
ing this paper, in particular in analog electronic circuit
simulation [14, 24, 16].

Informally, the key elements of probability-one ho-
motopy are

• A well-defined random element to guarantee the
full rank of the Jacobian matrix of ρ ,

• A boundedness argument, and

• An embedding, which essentially corresponds to
the simplifications of component governing equa-
tions applied in [19, 1].

In order to summarize the supporting theory,
transversality to zero [26] is defined.

Definition 1. Let U ⊂ Rm and V ⊂ Rn be open sets,
and let ρ : U× [0,1)×V →Rn be a C2 map. ρ is said
to be transversal to zero if the Jacobian matrix ∂ρ has
full rank on ρ−1(0).

Here, n = nx+ nw holds. In the definition, an ad-
ditional parameter dependency on a random vector
a ∈ Rn is shown. This is the random element men-
tioned above. The Jacobian matrix of ρ is ∂ρ . It is a
n× (2n+1) matrix and can be written as concatena-
tion of three sub-matrices.

∂ρ =
[

∂ρ

∂a
∂ρ

∂λ

∂ρ

∂z

]
(1)

Similarly to ρ−1(0) introduced above, we can now
consider ρ−1

a (0) as a set of root curves. Formally, we
define it as follows.

ρ
−1
a (0) = {(a,λ ,z) |a ∈ Rn,

0≤ λ < 1,

z ∈ Rn,

ρ (a,λ ,z) = 0}

Probability-One Homotopy for Robust Initialization of Differential-Algebraic Equations

224 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076223

The following theorem, which is based on differen-
tial geometry and the Parametrized Sard’s Theorem,
is a generic formulation of probability-one homotopy
methods.

Theorem 1. Let F : Rn→ Rn be a C2 map, ρ : Rn×
[0,1)×Rn→Rn a C2 map, and ρa (λ ,z) = ρ (a,λ ,z).
Suppose that

1. ρ is transversal to zero, and, for each fixed a ∈
Rn,

2. ρa (0,z) has a unique nonsingular solution z0,

3. ρa (1,z) = F(z).

Then, for almost all a∈Rn, there exists a zero curve Γa

of ρa emanating from (0,z0), along which the Jacobian
matrix ∂ρa has full rank. If, in addition,

4. ρ−1
a (0) is bounded, then Γa reaches a point

(1,z∗) such that F(z∗) = 0. Furthermore, if
∂F(z∗) has full rank, then Γa has finite arc length.

This theorem is due to Watson [26] and is therefore
called Watson’s Theorem in this work. In order to ap-
ply this theorem, homotopy maps are constructed to
meet prerequisites (2) and (3) by design. Prerequisite
(1) may be trivial to verify for some homotopy maps
and harder for others, in which λ and a are involved
nonlinearly. According to [27], prerequisite 4 may be
hard to verify and often is a “deep result” as (1)–(4)
holding implies the existence of a solution to F(z) = 0.

A remark is in order on the statement of probabil-
ity one. This characteristic of the theorem is inherited
from the Parametrized Sard’s Theorem and is moti-
vated by probability of failure being 0 in the sense of a
Lebesgue measure. Figuratively speaking, this means
that the set of points leading to failure forms at most
an n− 1 dimensional manifold inside n-dimensional
space, that is, it does not occupy any “volume”.

Informally, Watson’s Theorem can be understood as
a statement on the probability of singularities along a
continuation path. A bifurcation for instance may oc-
cur on a problem fulfilling this theorem. But a random
variation of the parameter vector a will be sufficient
to avoid the singularity on a following attempt (with
probability one). On problems with more than one so-
lution, this choice of a determines what solution the
homotopy map converges to.

A number of additional theorems on probability-one
homotopies are reviewed in [18]; herein, the given one
shall suffice.

3 Implementation in Modelica Tools

3.1 Convergence proofs

For applications, the key issue is to show how a prob-
lem satisfies the given theorem. While some appli-
cations successfully utilize general physical principles
such as conservation of energy (see [23] for instance),
research by the authors [18] shows that it is not possi-
ble to generalize such proofs to arbitrary physical do-
mains. This was mentioned in reference [19] already.
Instead, problem-specific arguments are used in this
contribution. They are introduced together with ho-
motopy maps below.

Conceptually, they work via a general no-gain prop-
erty, as exposed by, e.g., electric resistors, diodes,
and transistors, and via saturation (an amplifier for in-
stance has a constant gain only until the amplified sig-
nal reaches the supply voltage).

3.2 Declarative definition of arbitrary homo-
topy maps

Modelica is meant to allow a declarative problem de-
scription. That is one in which no information has to
be provided on how to solve the problem. Instead, the
problem itself is described. The solution algorithms
are encapsulated in the language compilers and simu-
lators.

In order to be useful for practitioners, the notion of
problem-specific homotopy maps has to be integrated
into simulation tools. The goal was thus to extend the
declarative description to homotopies.

Using Modelica, one structures a model in terms of
classes and objects. Therefore, it is proposed to spec-
ify a homotopy map ρa (z,λ) on the level of the equa-
tion set of the model classes, too.

In order to implement the suggested approach, it
is proposed to utilize a built-in operator, lambda()1.
Any expression involving λ , which describes the
problem-specific homotopy map, can be written using
the operator lambda(). It is used for each occurrence
of variable λ . This operator may return a value in [0,1]
during the numeric solution of algebraic equation sys-
tems and strictly 1 during the generation of simula-
tion results. If the operator lambda() is used with-
out an argument then a single-phase homotopy map
is implemented. If integer arguments are used then a

1Note that the previously proposed operator can be expressed
using this operator. Furthermore, except for the cases with multi-
stage homotopies, the previously proposed homotopy-operator
can be used since lambda()=homotopy(simplified=0,
actual=1).

Session 2B: Numerical Methods

DOI Proceedings of the 9th International Modelica Conference 225
10.3384/ecp12076223 September 3-5, 2012, Munich, Germany

homotopy map is implemented, which consists of n
phases, where n is the maximum over all arguments
of the operator lambda(). For example, when using
lambda(1) and lambda(2), then a homotopy map is
implemented in which λ1 values are first swept from 0
to 1. After this is finished, λ2 values are swept from
0 to 1. λ has to be swept from 0 to 1 during these se-
quential continuation runs of λi in order to infuse the
random element required by theory2.

In order to simulate a given model efficiently, Mod-
elica tools may apply symbolic preprocessing steps. A
step that has to be considered in the context of homo-
topy is equation sorting. A typical example of a sort-
ing algorithm used for equation-based, object-oriented
modeling languages is the Block Lower Triangular
(BLT) transformation [6], using a graph-theoretical al-
gorithm by Tarjan [21]. Conceptually speaking, the
continuation must be applied to the equation set as a
whole. That is, all the equations that are either directly
or indirectly influenced by the homotopy operator have
to be solved simulatenously.

Note that if any of the probability-one homotopy
theorems, such as the one introduced before, is ful-
filled, then a large fraction of potential problems is
avoided. For example, no singular Jacobian matrix at
λ = 0 can arise.

3.3 Test implementation

In order to validate the methodology, a test implemen-
tation was developed. It was based on the Modelica
compiler Dymola R© in versions 7.3 and 6.1. This test
implementation utilized the LOCA continuation algo-
rithms of Trilinos [8] and had the following properties.

• It provided three options for the treatment of the
suggested homotopy operator. Normally, it was
expanded according to a homotopy map. Al-
ternatively, reduced equation sets were obtained
by inlining the homotopy expression assuming
λi = 1.0 or λi = 0.0. In the latter case, maxi-
mum structural simplification of the equation sys-
tem resulted.

• The user was able to manually prescribe whether
to use homotopy initialization or not. This was

2When using the homotopy operator with integer arguments,
several distinct continuation runs have to be started as the trajec-
tories will in general not be smooth at the joining point of traces
in any λi and λi+1 . In general, the trajectories will be continuous
but not differentiable. Even if a continuation algorithm manages
to “hop over” such a joining point, starting continuation separately
may be more efficient.

an important feature for library development and
debugging, and may be useful for users, too.

• Verbose information on the homotopy was op-
tionally provided, which was useful for library
development and debugging. In particular, the
homotopy traces were visualized. Like this, it
was possible to reconstruct what happened dur-
ing the solution of the simplified problems and
the homotopy transformation.

Several implementation aspects such as automatic
scaling and solver configuration via XML files have
been described in [20, 18] and equally apply to this
solver implementation.

4 Application Examples

As mentioned in the introduction, the use of
probability-one homotopy is particularly well-
developed in the area of analog electronic circuit
simulation [23, 24, 25, 14, 13, 9, 7, 22, 11, 17, 29, 16].
First application examples are thus based on this
work.

4.1 Operational amplifier µA741

The first example is an operational amplifier, which
was discussed in [19] already. It uses bipolar junc-
tion transistors. Results are presented on probability-
one homotopy using two different homotopy maps, the
variable stimulus and the variable gain method. They
are introduced next.

4.1.1 Variable Stimulus

Melville et al. [14] proposed the Variable Stimulus
Probability-One Homotopy. Its homotopy map is as
follows.

ρ (z,λ) = (1−λ)G(z−a)+F(z,λ) (2)

Here, the residual equations F(z,λ) are posed in the
nodal analysis form [4] and the node voltages of the
nonlinear elements are multiplied by λ . Therefore, the
influence of the nonlinear elements is removed from
the circuit at λ = 0.0 and a linear circuit has to be
solved. The matrix G defines the leakage from voltage
sources of value a. These voltage sources and the as-
sociated vector a provide the random element needed
in the probability-one approach. The leakage matrix G
is a diagonal matrix with coefficients Gleak.

Probability-One Homotopy for Robust Initialization of Differential-Algebraic Equations

226 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076223

In order to substantiate that the Variable Stimulus
Homotopy is globally convergent, Melville et al. [14]
utilize Watson’s Theorem as stated in section 2.2.
Their arguments are as follows.

• The homotopy map (2) is twice continuously dif-
ferentiable if and only if the device models used
to assemble the residual equations in nodal form
F(z) are sufficiently smooth. It is assumed that
this is fulfilled.

• The homotopy map ρ is transversal to zero as
∂ρ/∂a in (1) is a diagonal matrix with entries
−(1−λ) · Gleak. For λ < 1, this matrix has full
rank.

• ρa(z,0) has a unique non-singular solution, be-
cause for λ = 0 the circuit consists of resistors
and voltage sources only. Such a linear problem
has a unique non-singular solution.

• ρa(z,1) = F(z) because the leakage circuitry is
removed completely at λ = 1 and each nonlinear
device model is stimulated by the actual voltage.

• The zero set ρ−1
a (0) is bounded due to the no-

gain property of the actual circuit and any par-
tially stimulated circuit with leakage circuitry.

Additionally, Melville et al. [14] make the engineer-
ing assumption that the Jacobian of ρa has full rank at
the solution z∗.

This Variable Stimulus Homotopy can be imple-
mented on analog circuits using the proposed homo-
topy operator. First, a model of a NPN bipolar junction
transistor is provided (see listing 1).

Here, three functions iCollectorNpn(),
iEmitterNpn(), and iBaseNpn() are used to
establish the collector, emitter, and base currents
respectively. In order to implement the leakage
circuitry, a model instance of a class is attached to
each connection set (see listing 2).

Note the negative sign in front of the summation of
the currents of the pins. This is necessary as the nodal
analysis form [4] summarizes the currents going into
the components attached to a node.

According to the experiments of Melville et al. [14],
the solution trajectories of this homotopy are “much
smoother” than those of the generic homotopy maps
mentioned in section 2.1 of [19]. Additionally, “the
action is spread out evenly over all values of λ”.

4.1.2 Variable Gain

Melville et al. [14] also proposed the Variable Gain
homotopy, which is similar to the Variable Stimulus
homotopy but addresses bipolar transistors differently.
Instead of multiplying the terminal voltages of all non-
linear elements by λ , the forward current gain αF and
the reverse current gain αR are multiplied by λ . The
simplified problem with αF = 0 and αR = 0 therefore
consists of resistors, voltage sources, and diodes only.

ρ (z,λ) = (1−λ)G(z−a)+F(z,λα) (3)

Again, the residual equations F(z,λα) are posed in
the nodal analysis form [4]. Due to the diodes, the
leakage circuitry is not necessary to avoid floating
nodes. However, it is still included in this homotopy to
provide the random element to avoid bifurcations [14].

Originally, the Variable Gain homotopy was im-
plemented as a two-stage procedure. First, the Vari-
able Stimulus homotopy was used to solve the λ = 0
problem of the Variable Gain homotopy. Then, con-
tinuation was started on the Variable Gain homotopy
map (3) and the actual problem was solved. Today,
Variable Gain Homotopy is commonly understood as
what was originally labeled the “hybrid approach” in
reference [14]. A local gradient-based algorithm is
used to solve the λ = 0 problem and the continuation is
applied directly on the Variable Gain homotopy map.
The robust convergence of a local gradient-based al-
gorithm on the λ = 0 problem is justified by Melville
et al. [14] in case of norm-reducing algorithms (algo-
rithms using so-called globalizations) by the work of
Duffin [5]. The single-stage procedure is “two to three
times faster than using homotopy alone” [14].

In order to show that the Variable Gain Homotopy
is globally convergent, Melville et al. [14] again utilize
Watson’s Theorem. Their arguments are as follows.

• As before, the homotopy map (3) is twice con-
tinuously differentiable if and only if the device
models used to assemble the residual equations in
nodal form F(z) are sufficiently smooth. Again,
it is assumed that this is fulfilled.

• The homotopy map ρ is transversal to zero as
∂ρ/∂a in (1) is a diagonal matrix with entries
−(1−λ) · Gleak. For λ < 1, this matrix has full
rank.

• ρa(z,0) has a unique non-singular solution, be-
cause for λ = 0 the circuit consists of resistors,
voltage sources, and diodes only. Duffin [5]
proved that such a problem has a unique solution.

Session 2B: Numerical Methods

DOI Proceedings of the 9th International Modelica Conference 227
10.3384/ecp12076223 September 3-5, 2012, Munich, Germany

1 model NPN
2 // Connectors
3 Modelica.Electrical.Analog.Interfaces.Pin C "Collector";
4 Modelica.Electrical.Analog.Interfaces.Pin B "Base";
5 Modelica.Electrical.Analog.Interfaces.Pin E "Emitter";
6
7 // Parameters
8 parameter Real af = 0.995 "Forward current gain";
9 parameter Real ar = 0.5 "Reverse current gain";

10
11 equation
12 C.i = iCollectorNpn(
13 lambda()*B.v, lambda()*C.v, lambda()*E.v, af, ar);
14 E.i = iEmitterNpn(
15 lambda()*B.v, lambda()*C.v, lambda()*E.v, af, ar);
16 B.i = iBaseNpn(
17 lambda()*B.v, lambda()*C.v, lambda()*E.v, af, ar);
18 end NPN;

Listing 1: NPN transistor model using variable stimulus

• ρa(z,1) = F(z) because the leakage circuitry is
removed completely at λ = 1 and each nonlin-
ear device model uses the nominal forward and
reverse current gains.

• The zero set ρ−1
a (0) is bounded as Melville et

al. [14] showed. This is due to the results of [28],
which showed that bipolar transistors exhibit the
no-gain property as long as the absolute values of
the current gains remain less than or equal to one.

This Variable Gain Homotopy can be implemented
on analog circuits using the proposed homotopy oper-
ator. Again, a model of a NPN bipolar junction tran-
sistors is given (see listing 3).

As before, three functions iCollectorNpn(),
iEmitterNpn(), and iBaseNpn() are used to estab-
lish the collector, emitter, and base currents respec-
tively. Instead of the terminal voltages, the current
gains are multiplied with λ . The leakage circuitry
can be implemented using model instances of the class
listed in section 4.1.1 and is not repeated here.

According to Melville et al. [14], this is their fastest
converging homotopy map. In particular, “the time re-
quired to solve a system of operating point equations
with this homotopy [map] is not more than two to three
times slower than the time required to solve the same
equations by less widely convergent methods”.

4.1.3 Results

Figure 1 shows robustness profiles [20] of both
homotopy-based solvers and a local gradient-based al-
gorithm [15] for comparison. A robustness profile, in
essence, shows the probability of convergence over the
quality of a start iterate. The probability of conver-
gence Pconv is estimated by sampling. The quality of
the start iterate in turn is measured by a scaled dis-
tance of the start iterate z̃ to the next solution s̃ j. Al-
gorithms, which deliver constantly full probability of
convergence, i.e., Pconv = 1, independently of the qual-
ity of the start iterate, are called globally convergent
herein.

4.2 Inverter Chain

This example involves Metal-Oxide-Semiconductor
Field-Effect Transistors (MOSFETs). The circuit it is
based on is not found in practical devices, however, it
can be scaled via the number of inverters in the chain.
For the results discussed here, n = 50 inverters were
used. For MOSFETs, the ATANSH homotopy is cur-
rently state of the art.

4.2.1 Arc-Tangent Shichman-Hodges

The Arc-Tangent Shichman-Hodges or ATANSH
model was proposed by Roychowdhury and
Melville [16, 17] for probability-one homotopy
and large-scale integrated circuits of metal-oxide

Probability-One Homotopy for Robust Initialization of Differential-Algebraic Equations

228 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076223

1 model ElectricalNode
2 // Connectors
3 parameter Integer n=0 "Number of pins"
4 annotation(Evaluate=true, Dialog(connectorSizing=true));
5 Modelica.Electrical.Analog.Interfaces.Pin pin[n] "Pin array";
6
7 // Parameters
8 parameter Real Gleak "Leakage";
9 parameter Real a "Random source voltage";

10
11 equation
12 0 = -sum(pin[:].i) + (1.0 - lambda())*Gleak*(pin[1].v-a);
13 for i in 1:n-1 loop
14 pin[i].v = pin[i+1].v;
15 end for;
16 end ElectricalNode;

Listing 2: Electrical node class

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

min(||z̃− s̃ j||2)

P c
on

v

Variable Stimulus
Variable Gain
Minpack

Figure 1: Robustness profiles [20] for Operational
Amplifier 741 (60/60/1000 samples per bin)

semiconductor field-effect transistors. Conceptually,
it is similar to the Variable Gain homotopy in that it
varies key nonlinearity in component models. The
ATANSH model uses two homotopy parameters λ1
and λ2. Parameter λ1 influences the drain–source
driving point characteristic without affecting the gain.
Parameter λ2 in turn controls the transfer characteris-
tic, i.e., the gain, without affecting the driving point
characteristic.

ρ (z,λ ,λ1,λ2) = (1−λ)G(z−a)+F (z,λ1,λ2) (4)

The ATANSH MOS homotopy model is a single-
piece model. The drain–source current Ids is given via

the following equation [16].

Ids =
β

2
[
V ′gs
(
Vgb,Vdb,Vsb,λ2,λ1

)]2 (5)

·h(Vdb−Vsb,λ1)

Roychowdhury and Melville [16, 17] remark that
their probability-one homotopy map is a heuristic. In
an attempt to justify its success, Watson’s Theorem as
stated in section 2.2 is considered.

• The homotopy map (4) is twice continuously dif-
ferentiable if and only if the device models used
to assemble the residual equations in nodal form
F(z) are sufficiently smooth. For the given MOS
model this is fulfilled.

• The homotopy map ρ is transversal to zero as
∂ρ/∂a in (1) is a diagonal matrix with entries
−(1−λ) · Gleak. For λ < 1, this matrix has full
rank.

• ρa(z,0) has a unique non-singular solution, be-
cause for λ = 0 the circuit consists of resistors,
voltage sources, and simplified MOS transistors
only. At λ1 = 0 and λ2 = 0 the simplified MOS
devices become two-terminal almost-linear resis-
tors. It is a reasonable engineering assumption
to assume that such a problem has a unique non-
singular solution.

• ρa(z,1) = F(z) because the leakage circuitry is
removed completely and each MOS device model
is restored to its original form.

Session 2B: Numerical Methods

DOI Proceedings of the 9th International Modelica Conference 229
10.3384/ecp12076223 September 3-5, 2012, Munich, Germany

1 model NPN
2 // Connectors
3 Modelica.Electrical.Analog.Interfaces.Pin C "Collector";
4 Modelica.Electrical.Analog.Interfaces.Pin B "Base";
5 Modelica.Electrical.Analog.Interfaces.Pin E "Emitter";
6
7 // Parameters
8 parameter Real af = 0.995 "Forward current gain";
9 parameter Real ar = 0.5 "Reverse current gain";

10
11 equation
12 C.i = iCollectorNpn(
13 B.v, C.v, E.v, lambda()*af, lambda()*ar);
14 E.i = iEmitterNpn(
15 B.v, C.v, E.v, lambda()*af, lambda()*ar);
16 B.i = iBaseNpn(
17 B.v, C.v, E.v, lambda()*af, lambda()*ar);
18 end NPN;

Listing 3: NPN transistor model using variable gain

• The zero set ρ−1
a (0) is bounded due to the no-gain

property of the actual circuit and the simplified
one with leakage circuitry and simplified MOS
device models.

Additionally, one can make the engineering as-
sumption that the Jacobian of ρa has full rank at the
solution z∗.

This MOS model for probability-one homotopy can
be implemented using the proposed homotopy oper-
ator. Listing 4 illustrates this on an n-channel MOS
transistor.

Function idsNchannel() implements equation (5)
for this type of transistor. Note how the lambda()
operator is used as described in section 3.2 with an in-
teger argument. As Roychowdhury and Melville [16]
first ramp λ2 and then λ1, their homotopy is imple-
mented using λ2 =lambda(1) and λ1 =lambda(2).
The leakage circuitry can be implemented using model
instances of the class listed in section 4.1 and is not re-
peated here.

Roychowdhury and Melville [16, 17] report that lo-
cal gradient-based algorithms are two to three times
faster than the ATANSH homotopy on average if they
converge. They additionally provide data to show
however that the ATANSH homotopy took “consider-
ably less time to obtain the DC operating point of the
circuit than conventional methods took to give up” on
their test cases. This illustrates that the extra wall time
is an acceptable price to pay for robust convergence on
large-scale problems.

4.2.2 Results

See figure 2 for results on using probability-one ho-
motopy methods3 and on using local gradient-based
algorithms in comparison.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

min(||z̃− s̃ j||2)

P c
on

v

ATANSH
Minpack

Figure 2: Robustness profiles [20] for Inverter Chain
(60/1000 samples per bin)

3The ATANSH homotopy map cannot be compared to the vari-
able gain or variable stimulus homotopy maps. The reason is that
they are specific to a type of transistor, either the MOSFET or the
BJT.

Probability-One Homotopy for Robust Initialization of Differential-Algebraic Equations

230 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076223

1 model NMOS
2 // Connectors
3 Modelica.Electrical.Analog.Interfaces.Pin G "Gate";
4 Modelica.Electrical.Analog.Interfaces.Pin D "Drain";
5 Modelica.Electrical.Analog.Interfaces.Pin S "Source";
6 Modelica.Electrical.Analog.Interfaces.Pin B "Bulk";
7
8 equation
9 // Drain-source current according to ATANSH

10 D.i = idsNchannel(G.v-B.v, D.v-B.v, S.v-B.v,
11 lambda(1), lambda(2));
12 S.i = -D.i;
13 // Gate, source
14 G.i = 0;
15 B.i = 0;
16 end NMOS;

Listing 4: MOS-FET model using ATANSH

4.3 Air distribution network

In this section, a basic but robust probability-one ho-
motopy for thermo-fluid dynamic applications with
unidirectional flow is introduced and applied to an Air
Distribution test case. This is a thermo-hydraulic ex-
ample with pipes transporting gases under wall friction
and heat transfer, heat loads in cabin volumes, fans and
so on. More details are given in [18].

4.3.1 Unidirectional Thermofluid Probability-
One Homotopy

The notion of a nodal approach for probability-one ho-
motopy is adopted. Therefore, the mass and energy
balances are addressed in this context. Pressure is a
potential variable and thus the established approach
of leakage circuitry used in sections 4.1.1, 4.1.2, and
4.2.1 can be applied trivially. Therefore, the compo-
nents implementing the mass balance in the homotopy
map are written in nodal form as follows.

ρhyd (zhyd,zth,λ) = (6)

(1−λ)Ghyd (ahyd− zhyd)+Fhyd (zhyd,zth,λ)

The subscript in ρhyd (zhyd,zth,λ) refers to the mass
balance as hydraulic part. Consequently, zhyd = p,
i.e., the vector of unknowns of this part of the homo-
topy map is the vector of unknown pressures. Ghyd
is the hydraulic leakage, ahyd is the vector of pres-
sure values introducing the random element required
by probability-one homotopy. The vector of residual
equations Fhyd (zhyd,zth,λ) for the hydraulic part are

the mass balances, that is the sums of the connection
set mass flow rates. Of course these residual equa-
tions also depend on zth, the vector of thermal un-
knowns. These can be either temperatures or specific
enthalpies. As it does only matter to the model of ther-
modynamic properties which one is used and all equa-
tions can be transformed accordingly, it is assumed
without loss of generality that they correspond to tem-
perature, i.e., zth = T.

For the thermal part the situation is more involved.
As the temperatures or specific enthalpies zth are not
potentials (note that their values are not equal over all
connectors in a connection set in the general case), a
mechanistic application of the concept to the energy
balance will fail. A modified nodal homotopy map
component for the energy balance is written in the di-
mension of a specific enthalpy. It can equally be used
with and without conduction (analogeous to the leack-
age in the hydraulic part). .

ρth (zhyd,zth,λ) =(1−λ)Gth (ath− zth) (7)

+Fth (zhyd,zth,ath,λ)

Here, the thermal node value zth is used in the spe-
cific enthalpy computation. The mass flow rate leav-
ing the connection set is the sum of the mass flow rates
over the outlet connectors plus the mass flow rate due
to leakage in equation (6). The superscripts ± on the
mass flow rates indicate that they have been limited to
a positive or negative epsilon flow using a C2 regular-
ization.

Session 2B: Numerical Methods

DOI Proceedings of the 9th International Modelica Conference 231
10.3384/ecp12076223 September 3-5, 2012, Munich, Germany

The residual equations involving λ are as follows.

Fth (zhyd,zth,ath,λ) =(1−λ)hpT (ahyd,ath) (8)

+λ

∑
inlets

ṁ+
i ·hi

∑
inlets

ṁ+
i

−hpT (zhyd,zth)

The homotopy map has been established in terms of
the connection set equations. Optionally, one may cre-
ate embeddings in the device models. For wall friction
correlations, a convex combination of a secant approx-
imation through some operating point and the actual
wall friction correlation was successfully tested. Heat
transfer may be established equally based on secant
approximations or even zero heat transfer at λ = 0.

In order to substantiate that the thermo-fluid homo-
topy is globally convergent, theorem 1 (Watson’s The-
orem) is applied. The arguments are as follows.

• The homotopy map based on components (6)
and (7) is twice continuously differentiable if and
only if the device models used to assemble the
residual equations in nodal form F(z) are suffi-
ciently smooth. It is assumed that this is fulfilled.

• The homotopy map ρ is transversal to zero as
∂ρ/∂a with a = [ahyd;ath] in (1) contains a di-
agonal matrix with entries−(1−λ) ·G with G =[
Ghyd ;Gth

]
if a conductance is used. If the con-

ductance is not used, i.e., Gth = 0, then ∂ρ/∂a
contains −(1−λ) ·Ghyd for the hydraulic part.
For the thermal part, ∂ρ/∂a contains (1−λ)cp.
In any case ∂ρ/∂a and the Jacobian (1) have full
rank for λ < 1.

• The homotopy map ρa(z,0) has a unique non-
singular solution, because for λ = 0 the circuit
consists of adiabatic linear pressure loss models
and boundary conditions only. Such a problem
has a unique non-singular solution.

• ρa(z,1) = F(z) because the balance equations are
restored completely at λ = 1 and each device
model exposes the actual behavior.

• For the hydraulic part, the zero set ρ−1
a (0) is

bounded due to the no-gain property of the pres-
sure loss correlations. See [18] for further details.
For the thermal part, the zero set is bounded due
to the Second Law of Thermodynamics4.

4At a first glance, one could argue that going from λ = 0 to
λ = 1 is not necessarily “forward” in time. However, the Second
Law is used here on a set of steady-state problems. Therefore, no
issues arise from the “direction” of time.

The code for a model class to be instantiated in each
connection set is given in listing 5. This node model
implements the homotopy map on the thermodynamic
balance equations of mass and energy, in particular,
equation (6) in lines 30 and 31 and equation (7) in
lines 42 to 47. The implementation of the device mod-
els is straight-forward. As an example, in listing 6,
the steady-state part of a simple dynamic pipe model
is presented (the transient equations do not matter for
initialization and are thus omitted for readability).

4.3.2 Results

Figure 3 shows a robustness profile for the result-
ing unidirectional thermo-fluid dynamics probability-
one homotopy. The results illustrate that the pro-
posed homotopy map and the probability-one homo-
topy method provide robust convergence, even in light
of large variations of the start iterate and random vec-
tor.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

min(||z̃− s̃ j||2)

P c
on

v

UTP
Minpack

Figure 3: Robustness profiles for Air Distribution
(60/1000 samples per bin)

5 Conclusions

The key result is that the theoretically predicted global
convergence of probability-one homotopy can be real-
ized in practice. This can be inferred from figures 1
to 3.

The associated coercivity proofs and the construc-
tion of underlying embeddings are rather involved
however and require considerable understanding and
a substantial investment in engineering time.

Probability-One Homotopy for Robust Initialization of Differential-Algebraic Equations

232 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076223

References

[1] F. Casella, L. Savoldelli, and M. Sielemann.
Steady-state initialization of object-oriented
thermo-fluid models by homotopy methods. In
Proceedings of Eighth International Modelica
Conference, Dresden, Germany, March 2011.

[2] J. E. Dennis and R. B. Schnabel. Numeri-
cal methods for unconstrained optimization and
nonlinear equations. SIAM Classics in Applied
Mathematics, 1996.

[3] P. Deuflhard. Newton Methods for Nonlinear
Problems. Affine Invariance and Adaptive Algo-
rithms. Springer Verlag, 2004.

[4] P. Dimo. Nodal analysis of power systems. Tay-
lor & Francis, 1975.

[5] R. Duffin. Nonlinear networks lIa. B. Am. Math.
Soc., 53:963–971, 1947.

[6] H. Elmqvist. A Structured Model Language for
Large Continuous Systems. PhD thesis, Lund
University, Department of Automatic Control,
Sweden, May 1978.

[7] M. Green and R. Melville. Sufficient conditions
for finding multiple operating points of dc cir-
cuits using continuation methods. In IEEE In-
ternational Symposium on Circuits and Systems,
pages 117–120, Seattle, 1995.

[8] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J.
Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq,
K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G.
Salinger, H. K. Thornquist, R. S. Tuminaro, J. M.
Willenbring, A. Williams, and K. S. Stanley. An
overview of the Trilinos project. Acm. T. Math.
Software., 31(3):397–423, 2005.

[9] Y. Inoue. A practical algorithm for DC operating-
point analysis of large-scale circuits. Electronics
and Communications in Japan (Part III: Funda-
mental Electronic Science), 77(10):49–62, 1994.

[10] C. T. Kelley. Solving nonlinear equations with
Newton’s method. SIAM Classics in Applied
Mathematics, 2003.

[11] W. Mathis, L. Trajkovic, M. Koch, and U. Feld-
mann. Parameter embedding methods for find-
ing DC operating points of transistor circuits. In
Third international specialist workshop on Non-
linear Dynamics of Electronic Systems, NDES

1995, pages 147–150, Dublin, Ireland, July
1995.

[12] S. Mattsson, H. Elmqvist, M. Otter, and H. Ols-
son. Initialization of hybrid differential-algebraic
equations in Modelica 2.0. In Proceedings of
the Second International Modelica Conference,
2002.

[13] R. Melville, S. Moinian, P. Feldmann, and
L. Watson. Sframe: An efficient system for de-
tailed DC simulation of bipolar analog integrated
circuits using continuation methods. Analog. In-
tegr. Circ. S., 3(3):163–180, 1993.

[14] R. C. Melville, L. Trajkovic, S.-C. Fang, and
L. T. Watson. Artificial parameter homotopy
methods for the DC operating point problem.
IEEE T. Comput. Aid. D., 12(6):861–877, June
1993.

[15] J. J. Moré, B. S. Garbow, and K. E. Hillstrom.
User guide for MINPACK-1. Technical Re-
port ANL-80-74, Argonne National Laboratory,
1980.

[16] J. Roychowdhury and R. Melville. Deliver-
ing global DC convergence for large mixed-
signal circuits via homotopy/continuation meth-
ods. IEEE T. Comput. Aid. D., 25(1):66–78, Jan-
uary 2006.

[17] J. S. Roychowdhury and R. C. Melville. Homo-
topy techniques for obtaining a DC solution of
large-scale mos circuits. In Proceedings of the
33rd Design Automation Conference, pages 286–
291, 1996.

[18] M. Sielemann. Device-Oriented Modeling and
Simulation in Aircraft Energy Systems Design.
PhD thesis, Technical University of Hamburg-
Harburg, Institute of Thermo-Fluid Dynamics,
2012.

[19] M. Sielemann, F. Casella, M. Otter, C. Clauss,
J. Eborn, S. Mattsson, and H. Olsson. Robust ini-
tialization of differential-algebraic equations us-
ing homotopy. In Proceedings of Eighth Interna-
tional Modelica Conference, Dresden, Germany,
March 2011.

[20] M. Sielemann and G. Schmitz. A quantita-
tive metric for robustness of nonlinear alge-
braic equation solvers. Math. Comput. Simulat.,
81(12):2673–2687, 2011.

Session 2B: Numerical Methods

DOI Proceedings of the 9th International Modelica Conference 233
10.3384/ecp12076223 September 3-5, 2012, Munich, Germany

[21] R. Tarjan. Depth-first search and linear graph al-
gorithms. SIAM J. Comput., 1:146–160, 1972.

[22] L. Trajkovic and W. Mathis. Parameter embed-
ding methods for finding DC operating points:
formulation and implementation. In 1995 Inter-
national Symposium on Nonlinear Theory and its
Applications, NOLTA 1995, pages 1159–1164,
Las Vegas NE, USA, December 1995.

[23] L. Trajkovic, R. Melville, and S.-C. Fang. Pas-
sivity and no-gain properties establish global
convergence of a homotopy method for DC op-
erating points. In IEEE International Symposium
on Circuits and Systems, volume 2, pages 914–
917, May 1990.

[24] L. Trajkovic, R. C. Melville, and S.-C. Fang.
Finding DC operating points of transistor circuits
using homotopy methods. In Proc. IEEE Int Cir-
cuits and Systems Sympoisum, pages 758–761,
1991.

[25] L. Trajkovic, R. C. Melville, and S.-C. Fang. Im-
proving DC convergence in a circuit simulator
using a homotopy method. In Proc. Custom In-
tegrated Circuits Conf. the IEEE 1991, 1991.

[26] L. T. Watson. Globally convergent homotopy
methods: A tutorial. Appl. Math. Comput.,
31:369–396, May 1989.

[27] L. T. Watson. Probability-one homotopies in
computational science. J. Comput. Appl. Math.,
140:785–807, 2002.

[28] A. N. Willson Jr. The no-gain property for net-
works containing three-terminal elements. IEEE
T. Circuits. Syst., 22(8):678–687, August 1975.

[29] K. Yamamura, T. Sekiguchi, and Y. Inoue. A
fixed-point homotopy method for solving mod-
ified nodal equations. Circuits and Systems
I: Fundamental Theory and Applications, IEEE
Transactions on, 46(6):654–665, 1999.

Probability-One Homotopy for Robust Initialization of Differential-Algebraic Equations

234 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076223

1 model ThermoFluidDynamicsNode
2 replaceable package Medium = PartialPureSubstanceMedium;
3
4 // Connectors
5 parameter Integer nInlets = 0 "Number of inlets"
6 annotation(Evaluate=true, Dialog(connectorSizing=true));
7 parameter Integer nOutlets = 0 "Number of outlets"
8 annotation(Evaluate=true, Dialog(connectorSizing=true));
9 Modelica.Fluid.Interfaces.FluidPort_a inlet[nInlets](

10 redeclare package Medium = Medium);
11 Modelica.Fluid.Interfaces.FluidPort_b outlet[nOutlets](
12 redeclare package Medium = Medium);
13
14 // Parameters
15 parameter Medium.AbsolutePressure a_hyd "Random pressure";
16 parameter Medium.Temperature a_th "Random temperature";
17 parameter Real G_hyd "Leakage in hydraulic part"
18
19 // Variables
20 Medium.AbsolutePressure p "Pressure in node";
21 SI.MassFlowRate m_flow_plus[nInlets] "Limited inlet flow";
22 equation
23 // Hydraulic part
24 for i in 1:nInlets loop
25 inlet[i].p = p;
26 end for;
27 for i in 1:nOutlets loop
28 outlet[i].p = p;
29 end for;
30 0 = (1-lambda())*G_hyd*(a_hyd - p) +
31 sum(inlet[:].m_flow) + sum(outlet[:].m_flow);
32
33 // Thermal part, no conductance
34 for i in 1:nInlets loop
35 // Hypothetical case
36 inlet[i].h_outflow = Medium.h_default;
37 end for;
38 for i in 1:nOutlets loop
39 // Actual case
40 outlet[i].h_outflow = Medium.h_pT(p, T);
41 end for;
42 0 = ((1-lambda())*Medium.h_pT(a_hyd, a_th) +
43 lambda() * sum({
44 m_flow_plus[i]*
45 inStream(inlet[i].h_outflow) for i in 1:nInlets}
46)/sum({m_flow_plus[i] for i in 1:nInlets}) -
47 Medium.h_pT(p, T));
48 m_flow_plus[:] = f(inlet[:].m_flow, ...);
49 end ThermoFluidDynamicsNode;

Listing 5: Thermo-fluid dynamics node class

Session 2B: Numerical Methods

DOI Proceedings of the 9th International Modelica Conference 235
10.3384/ecp12076223 September 3-5, 2012, Munich, Germany

1 model Pipe
2 replaceable package Medium = PartialPureSubstanceMedium;
3
4 // Connectors
5 Modelica.Fluid.Interfaces.FluidPort_a port_a[nInlets](
6 redeclare package Medium = Medium);
7 Modelica.Fluid.Interfaces.FluidPort_b port_b[nOutlets](
8 redeclare package Medium = Medium);
9

10 // Parameters
11 parameter SI.Length diameter "Pipe inside diameter";
12 parameter SI.Length length "Pipe length";
13 parameter SI.Length Delta "Surface roughness";
14 final parameter SI.Area heatTransferArea =
15 Modelica.Constants.pi*diameter*length;
16 parameter SI.Temperature T_amb "Ambient temperature";
17 parameter SI.Pressure dp_nominal "Nominal dp";
18
19 // Variables
20 SI.SpecificEnthalpy dh "Change of h over device"
21 SI.CoefficientOfHeatTransfer kc;
22 Real effectiveness "NTU effectiveness";
23 SI.Density rho "Upstream density";
24 SI.DynamicViscosity eta "Upstream dynamic viscosity";
25 SI.SpecificHeatCapacity cp "At constant pressure";
26 SI.ThermalConductivity lambda "Thermal conductivity";
27
28 equation
29 // Static mass balance
30 port_a.m_flow + port_b.m_flow = 0;
31
32 // Static energy balance
33 port_b.h_outflow = inStream(port_a.h_outflow) + dh;
34 port_a.h_outflow = Medium.h_default;
35
36 // Static momentum balance
37 m_flow =
38 lambda()*wallFriction_mflow_dp(dp, ...) +
39 (1-lambda())*dp/dp_nominal*
40 wallFriction_mflow_dp(dp_nominal, ...);
41
42 // Heat transfer
43 kc = heatTransfer_kc_mflow(m_flow, ...);
44 effectiveness = 1-exp(-(kc*heatTransferArea/(cp*m_flow)));
45 dh = lambda()*effectiveness*cp*(T_amb - state.T);
46
47 // Auxiliary equations for thermodynamic,
48 // transport properties
49 // ...
50 end Pipe;

Listing 6: Pipe model using UTP

Probability-One Homotopy for Robust Initialization of Differential-Algebraic Equations

236 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076223

Simulating Modelica models with a Stand-Alone Quantized State Systems Solver

Simulating Modelica models with a Stand–Alone
Quantized State Systems Solver

Federico Bergero1 Xenofon Floros2 Joaquín Fernández1 Ernesto Kofman1 François E. Cellier2

1CIFASIS-CONICET, Rosario, Argentina
{bergero, fernandez, kofman}@cifasis-conicet.gov.ar

2Department of Computer Science, ETH Zurich, Switzerland
{xenofon.floros, francois.cellier}@inf.ethz.ch

Abstract

This article describes an extension of the OpenMod-
elica Compiler that translates regular Modelica mod-
els into a simpler language, called Micro–Modelica
(µ–Modelica), that can be understood by the re-
cently developed stand–alone Quantized State Sys-
tems (QSS) solvers. These solvers are very efficient
when simulating systems with frequent discontinu-
ities. Thus, strongly discontinuous Modelica models
can be simulated noticeably faster than with the stan-
dard discrete time solvers.

The simulation of two discontinuous models is
analyzed in order to demonstrate the correctness
of the proposed implementation as well as the
advantages of using the QSS stand-alone solvers.

Keywords: OpenModelica, Quantized State
Systems, Micro–Modelica, efficient simulation,
discontinuous systems

1 Introduction

There are numerous reasons to desire efficient sim-
ulation of hybrid dynamical systems. Nowadays
the attention is focused on various aspects of par-
allelizing the simulation process, while keeping un-
touched the heart of any simulation pipeline, namely
the numerical solver. Indeed, for most researchers
and practitioners, the problem of defining an effi-
cient, general-purpose DAE solver is considered to be
solved, with DASSL being the default method for all
commercial simulation tools. Besides DASSL, there
exists a vast variety of solvers targeting different sim-
ulation requirements and families of models.

We argue that the attention should be drawn again

to the "basics" and question the underlying assump-
tion of time discretization that traditional solvers
use. Already at the end of the nineties, Zeigler in-
troduced a new class of algorithms for numerical in-
tegration based on state quantization and the Dis-
crete Event Simulation (DEVS) formalism [18]. Im-
proving the original approach of Zeigler, Kofman de-
veloped a first-order non-stiff Quantized State Sys-
tem (QSS) algorithm in 2001 [16], followed later
by second- and third-order accurate non-stiff solvers,
called QSS2 [13] and QSS3 [15], respectively. Cur-
rently, the family of QSS methods includes also stiff
system solvers (LIQSS [17]) as well as solvers for
marginally stable systems (CQSS [5]).

There is now plenty of evidence that the QSS
solvers offer several advantages over the classical
approaches [17, 7, 15, 14]. QSS methods allow
for asynchronous variable updates, a feature par-
ticularly suited to real-world sparse systems where
a significant reduction of the computational costs is
achieved. Furthermore, QSS algorithms inherently
provide dense output, i.e., they do not need to it-
erate to detect the discontinuities. They rather pre-
dict them. This feature, besides improving on the
overall computational performance of these solvers,
enables real-time simulation. Finally, QSS solvers
come with theoretical global error bounds that other
solvers lack [4] and recently parallel version of QSS
methods have been developed [3].

Originally, QSS algorithms were implemented un-
der DEVS simulation engines such as PowerDEVS
[2]. While these implementations were correct, some
features of the DEVS engines introduced a large over-
head. Recently, a family of stand–alone QSS solvers
were developed in order to overcome this issue [6].
The new solvers achieve a speed-up of one order of

DOI Proceedings of the 9th International Modelica Conference 237
10.3384/ecp12076237 September 3-5, 2012, Munich, Germany

magnitude over DEVS implementations.
The stand–alone QSS solvers simulate models de-

scribed in a C language interface that contains the
ODEs and zero crossing functions as well as addi-
tional structural information needed by the QSS al-
gorithms. The C interface can be automatically gen-
erated from a simple ODE description by a tool de-
veloped for that purpose.

Modelica [10, 11] is a multi-domain, modern lan-
guage for modeling of complex physical systems. It
is an object-oriented language built on acausal mod-
eling with mathematical equations and designed to
effectively support modular libraries and a standard-
ized model exchange.

There are various commercial environments, such
as Dymola, along with open-source implementations,
such as OpenModelica [9], that support the Model-
ica language specification. All of these tools take
as input a Modelica model and perform a series of
preprocessing steps (model flattening, index reduc-
tion, equation sorting and optimization). An opti-
mized DAE representation of the original system is
achieved and efficient C++ code is generated to per-
form the simulation.

There have been previous attempts to simulate
Modelica models with QSS algorithms. In [8, 7] an
interface between OpenModelica and PowerDEVS
(OMPD interface) has been implemented and ana-
lyzed taking a first step towards using QSS solvers in
the simulation of general Modelica models. The in-
terface allows the automatic transformation of large-
scale models to the DEVS formalism in a suitable
way, thus enabling simulation in the PowerDEVS en-
vironment using QSS methods. However, as this in-
terface uses a DEVS engine it suffers from the previ-
ously mentioned overhead issues.

In this work, we extended the OpenModelica Com-
piler (OMC) in order to automatically translate regu-
lar Modelica models into a subset of the Modelica
language called µ–Modelica. Then, we developed
a tool that automatically generates the C interface
structure needed by the stand–alone QSS solver from
the µ–Modelica description and simulates it. That
way, our work enables Modelica users to exploit the
benefits of QSS solvers directly from the OpenMod-
elica environment without any further knowledge, us-
ing them just like any other traditional solver.

We also conducted an extensive comparative per-
formance analysis between the QSS solvers and
OpenModelica DASSL over two discontinuous mod-
els. The results show a noticeable improvement in

terms of simulation time and robustness.
The article is organized as follows: Section 2 pro-

vides a brief description of the components needed
for the solver. Section 3 uncovers the details behind
the implemented stand–alone QSS solver, while in
Section 4 specific simulation results of two example
models are presented and discussed. Finally Section
5 concludes this study, lists open problems and offers
directions for future work.

2 Background

2.1 QSS Simulation

Consider a time invariant ODE system:

ẋ(t) = f(x(t)) (1)

where x(t) ∈Rn is the state vector. The QSS method,
[16], approximates the ODE in Eq. 1 as:

ẋ(t) = f(q(t)) (2)

where q(t) is a vector containing the quantized state
variables, which are quantized versions of the state
variables x(t). Each quantized state variable qi(t) fol-
lows a piecewise constant trajectory via the following
quantization function with hysteresis:

qi(t) =
{

xi(t) if |qi(t−)− xi(t)|= ∆Qi,
qi(t−) otherwise.

(3)

where the quantity ∆Qi is called quantum. In other
words, the quantized state qi(t) only changes when
it differs from xi(t) more than ∆Qi. In QSS, the
quantized states q(t) are following piecewise con-
stant trajectories, and since the time derivatives, ẋ(t),
are functions of the quantized states, they are also
piecewise constant, and consequently, the states, x(t),
themselves are composed of piecewise linear trajec-
tories.

Unfortunately, QSS is a first-order accurate
method only, and therefore, in order to keep the simu-
lation error small, the number of steps performed has
to be large.

To circumvent this problem, higher-order methods
have been proposed. In QSS2 [13], the quantized
state variables evolve in a piecewise linear way with
the state variables following piecewise parabolic tra-
jectories. In the third-order accurate extension, QSS3
[15], the quantized states follow piecewise parabolic
trajectories, while the states themselves exhibit piece-
wise cubic trajectories.

Simulating Modelica models with a Stand-Alone Quantized State Systems Solver

238 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076237

QSS methods have Linearly Implicit counterparts
(LIQSS1, LIQSS2 and LIQSS3) [17]. The LIQSS
methods are explicit (they do not invert matrices or
perform iterations) but, under certain conditions, they
can efficiently integrate stiff systems.

2.2 Stand–Alone QSS Solvers

The stand–alone QSS solver [6] is a tool that imple-
ments the complete QSS family of algorithms with-
out using a DEVS engine.

The tool is composed by two main modules:

1. The simulation engine that integrates the equa-
tion ẋ = f(q, t) assuming that the quantized state
trajectory q(t) is given.

2. The solvers that given x(t), effectively calculate
q(t) using the corresponding QSS algorithm.

An important feature of QSS methods is that state
variables are updated at different times. Thus, at each
simulation step, only some components of f(q, t) are
evaluated. In consequence, the simulation engine re-
quires the model to be described so that each compo-
nent of f(q, t) can be evaluated separately. Similarly,
each zero crossing condition must be given by a sep-
arate function together with the corresponding event
handler. In addition, structural information describ-
ing the dependencies between variables and equa-
tions must be provided.

All the simulation framework, including the simu-
lation engine, the solvers and the models are written
in plain C.

Since it is very uncomfortable for an end-user to
describe a model providing all this information, the
QSS solver tool includes a translator that generates
the C interface with all the structural information
from a regular ODE description.

This ODE description can have the following com-
ponents:

• ODEs of the form ẋ j = f j(x,a,d, t) where x are
continuous state, a are algebraic and d are dis-
crete state variables

• Algebraic equations of the form a j =
g j(x,a,d, t) with the restriction that a j can
only depend on a1,··· , j−1.

• Zero crossing functions of the form z j =
h j(x,a,d, t).

• Associated to each zero crossing function, two
handlers (one for positive and the other for neg-
ative crossings) where discrete as well as con-
tinuous state variables can be updated.

This description is processed by a parser that com-
putes all the structure, including

• the incidence matrices from continuous and dis-
crete state variables to ODE equations,

• the incidence matrices from continuous and dis-
crete state variables to zero crossing functions,

• the incidence matrices from handlers to ODE
equations and zero crossing functions.

This information is then used by a code generator that
produces the C interface describing the model.

3 Simulation of Modelica Models
with Stand–Alone QSS Methods

As we mentioned above, the stand–alone QSS solver
has a tool to extract the structural information from
a simple ODE description. In order to exploit this
feature, we first developed a language called µ–
Modelica and then we extended the stand–alone QSS
parser so it understands this language and converts
it into the ODE description used by the stand–alone
QSS solver.

Then, we extended the OMC so that it generates
µ–Modelica models from regular Modelica models.

In this way, regular Modelica models can be auto-
matically simulated by the stand–alone QSS solvers.

In Figure 1 we see the complete compilation and
simulation process involved.

Figure 1: Pipeline of the compilation/simulation pro-
cess

Below, we first introduce the µ–Modelica lan-
guage and then we describe the translation process
from Modelica to µ–Modelica

Session 2B: Numerical Methods

DOI Proceedings of the 9th International Modelica Conference 239
10.3384/ecp12076237 September 3-5, 2012, Munich, Germany

3.1 The µ-Modelica subset

The language µ–Modelica was defined to be a sub-
set of Modelica as close as possible to the ODE de-
scription accepted by the stand–alone QSS solver. µ–
Modelica contains only the necessary Modelica key-
words and structures to define an ODE based hybrid
model.

The µ-Modelica language has the following re-
strictions:

• The model is in a flat form, i.e. no classes are
allowed.

• All variables are Real and there are only three
classes of variables: continuous states (x[]),
discrete states(d[]) and algebraics (a[]).

• Parameters also belong to class Real and they
can have arbitrary names.

• Equations are given in explicit ODE form.

• An algebraic variable a[i] can only de-
pend on previously defined algebraic variables
(a[1:i-1]).

• Discontinuities are expressed only by when

clauses inside the algorithm section. Con-
ditions on when clauses can only be relations
(<,≤,>,≥) and, inside the clauses, only as-
signment of discrete state variables (d[]) and
reinits are allowed.

This restricted language is not meant to be used by
an end user, but only as an intermediate language be-
tween OpenModelica and the QSS solver. The end
user is supposed to use the complete Modelica lan-
guage and then use the OMC to get a µ-Modelica
file.

3.2 Simulating µ–Modelica models with the
stand–alone QSS solver

As we mentioned above, the QSS solver includes a
parser that extracts all the structural information from
an ODE representation.

This parser was extended in order to understand µ–
Modelica language. After this extension, the parser
performs the following actions:

• It recognizes Modelica keywords for parame-
ters, and discrete states.

• It takes equations of the form
der(x[i])=expr(), generating the corre-
sponding ODE and structural information.

• It recognizes clauses of the form
when expr1>expr2 then, generating a
zero crossing function zc=expr1-expr2

with a handler for the positive crossing
containing the expressions that are found
inside the clause. If it then finds a clause
elsewhen expr1<expr2 then, it generates
the handler for the negative crossing.

• It also generates the structural information cor-
responding to the zero–crossing functions and
the handlers.

3.3 Converting Modelica models to µ-
Modelica

In order to complete the process to simulate regular
Modelica models with the stand alone QSS solver, we
added a new output target for the OMC to generate µ-
Modelica models.

Most of the work is done by what OMC already
does without any modification: It first simplifies
expressions, sorts the equations and transforms the
DAE into an ODE, producing the necessary code for
solving the algebraic loops. It also recognizes zero
crossing conditions.

Thus, we take the structures generated by OMC
and process them as follows:

1. Find the continuous state variables (those where
the der operator is used), algebraic variables
(those solved in the ODE equation that are
not states), and discrete state variables (those
defined as discrete, including Integer and
Boolean variables.). Boolean variables are re-
placed by real valued variables where 1.0 is true
and 0.0 is false.

2. Parameter names are changed replacing dot(s)
for underscore(s). This is done for all identifiers.

3. Continuous state, discrete state and algebraic
variables (Real x[], Real d[], Real a[])
are defined and code is generated with their ini-
tial values.

4. In each equation of the ODE section, each ap-
pearance of continuous state, discrete state and
algebraic variables is replaced by their corre-
sponding µ–Modelica alias x[], a[] or d[].

Simulating Modelica models with a Stand-Alone Quantized State Systems Solver

240 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076237

5. If the equation is part of an algebraic loop, an ex-
ternal solving C function is generated and a call
to that function is generated in the µ-Modelica.

6. For each zero crossing function, when and
elsewhen clauses are generated. The extra
elsewhen is necessary to assign different val-
ues to the discrete state variable associated with
the crossing function.

7. when clauses are emitted also replacing continu-
ous states, algebraic and discrete state variables
in the condition and in the body of the clause.

8. sample operators are expanded using an extra
discrete state variable.

9. elsewhen clauses are emitted as regular when in
the algorithm section.

For example a model of a bouncing ball in Model-
ica:

model bball1

Real y(start = 1),v,a;

Boolean flying(start = true);

parameter Real m = 1;

parameter Real g = 9.8;

parameter Real k = 10000;

parameter Real b = 10;

equation

der(y) = v;

der(v) = a;

flying = y>0;

a = if flying then -g else -g -

- (b * v + k * y)/m;

end bball1;

would be translated to µ-Modelica as follows:

model bball1

constant Integer N = 2;

Real x[N](start=xinit());

discrete Real d[1](start=dinit());

Real a[1];

parameter Real m = 1.0;

parameter Real g = 9.8;

parameter Real k = 10000.0;

parameter Real b = 10.0;

function xinit

output Real x[N];

algorithm

x[2]:= 1.0 /* y */;

x[1]:= 0.0 /* v */;

end xinit;

function dinit

output Real d[1];

algorithm

d[1]:=(1.0) /* flying*/;

end dinit;

/* Equations */

equation

der(x[2]) = x[1];

a[1] = -d[1] * g + (1.0 - d[1]) *

(((-b) * x[1] + (-k) * x[2]) / m - g);

der(x[1]) = a[1];

algorithm

/* Discontinuities */

when x[2] > 0.0 then

d[1] := 1.0;

elsewhen x[2] < 0.0 then

d[1] := 0.0;

end when;

end bball1;

We see easily that the model has two continuous
states, one algebraic and one discrete state variable
together with a discontinuity on x[2] that updates the
discrete state.

When the original Modelica model contains an al-
gebraic loop, it will be detected by OMC and µ-
Modelica will include a piece of code of the form

...

function fsolve15

input Real i0;

input Real i1;

output Real o0;

output Real o1;

output Real o2;

external "C" ;

end fsolve15;

...

equation

...

(a[1],a[2],a[3])=fsolve15(x[2],d[1])

together with a C function that solves the loop us-
ing GNU Scientific Library (GSL) [12].

This call indicates that variables a[1:3] are com-
puted by a simple C external function, so the QSS
parser treats it as a regular function for obtaining the
structural information.

In the mentioned external function we improved
what was done by OMC taking into account a feature
of linear algebraic loops. A linear algebraic equation
usually has the form A · z = b (with z being the un-
known), where A usually depends on discrete state
variables only. Thus, when the change in the contin-
uous state variable only affects the term b, then it is
not necessary to invert matrix A in that step.

Session 2B: Numerical Methods

DOI Proceedings of the 9th International Modelica Conference 241
10.3384/ecp12076237 September 3-5, 2012, Munich, Germany

4 Examples and Simulation Results

In this section we analyze the results obtained using
the tools presented in this work.

4.1 Benchmark Framework

As benchmark problems we focused on two systems
exhibiting heavily discontinuous behavior, namely a
buck converter and a DC-DC buck interleaved cir-
cuit. All models were constructed using the Model-
ica Standard Library 3.1 and can be downloaded from
[1].

For each of the examples we used the modified
OMC (r11645) to generate the corresponding µ-
Modelica model and then the QSS solver to simulate
them. In each case, we compare the run-time effi-
ciency and accuracy of the QSS methods against the
standard DASSL solver of OpenModelica v1.8.1.

In order to measure the execution time for
each simulation algorithm, the reported simula-
tion time from each environment was used. Al-
though OpenModelica provides several ways to
measure the CPU time needed for simulation (in-
cluding a profiler) we observed significant dif-
ferences in the reported timings. After con-
sulting the OpenModelica developers we finally
used time ./model_executable -lv LOG_STATS

to measure the pure simulation time. We note here
that the timing results obtained this way are signifi-
cantly smaller than the "official" simulation time re-
ported in the OMShell or the profiler. Therefore, the
speedups we get can be considered to be rather con-
servative.

Testing has been carried out on a Dell 32bit desk-
top with a quad core processor @ 2.66 GHz and 4 GB
of RAM and in a Intel i7-970 (32 bits) @ 3.20GHz
and 2 GB of RAM.

The measured CPU time should not be considered
as an absolute ground-truth since it will vary from
one computer system to another, but the relative or-
dering of the algorithms is expected to remain the
same.

Calculating the accuracy of the simulations can
only be performed approximately, since the state tra-
jectories of the models cannot be computed analyt-
ically. To estimate the accuracy of the simulation
algorithms for a given setting, reference trajectories
(tref,yref) have to be obtained. To this end, the
LIQSS2 solver was used with a tight tolerance of
10−7.

To calculate the simulation error, each simulated

+
-

R
=10

C
=0.0001

L=0.00015

R1C1

L1
0

1

T=0.0001

Figure 2: Buck Circuit

trajectory was compared against the reference solu-
tion. To achieve this goal, we forced all solvers to
output points on the same equidistant grid obtaining
simulation trajectories (tref,ysim) without changing
the integration step. Then, the normalized mean ab-
solute error is calculated as:

error =
mean(|ysim−yref|)

mean(|yref|)
(4)

4.2 Buck circuit

In Figure 2, a DC-DC converter circuit, known as
Buck Circuit, is sketched. The circuit has two contin-
uous state variables, namely the current through the
inductor L1 and the voltage across the capacitor C1.
The presence of the switch introduces hybrid behav-
ior to the system. For the simulation error we focus
on the C1.V state variable. The model was simulated
for 0.01 sec. and the ground-truth trajectory can be
seen in Fig 3.

 0

 2

 4

 6

 8

 10

 12

 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

V
ol

ta
ge

 o
n

th
e

ca
pa

ci
to

r (
V

)

Time (sec)

Buck Converter

Figure 3: Buck Circuit - Simulation

Initially we simulated the model in OMC using the
default number of 500 output points. We observed

Simulating Modelica models with a Stand-Alone Quantized State Systems Solver

242 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076237

that the DASSL solver in OMC fails to detect and
handle correctly the events. On the other hand, when
we forced OMC to output more points the error de-
creases because the extra evaluation needed to gener-
ate the output forces DASSL to re-evaluate the zero
crossing functions, thus detecting the events. This is
why we compared OMC’s native DASSL solver with
different precisions and different number of output
points against the QSS solver using the stiff LIQSS2
and LIQSS3 methods. The results are summarized in
Table 1.

Indeed we observe that for 500 output points the
DASSL solver in OMC doesn’t manage to reduce the
achieved error when tightening the precision require-
ments, a clear sign that it fails to simulate correctly
the model. When the output points are increased to
10000 the OMC results get closer to the ground-truth
trajectory and the error is reduced.

Therefore, it makes sense to compare the runtime
efficiencies for the case of 10000 points where we
clearly see that QSS methods are more efficient than
DASSL in OMC. To perform the simulation for an
achieved error of the order of 10−5, LIQSS3 required
12 msec while DASSL needed 74 msec Therefore,
the use of the LIQSS3 solver instead of the stan-
dard DASSL in OpenModelica speeds up the sim-
ulation by a factor of 6x. The achieved reduction in
both simulation accuracy and time is depicted graph-
ically in Fig. 4. The results are plotted in a log-log
plot where the closer the lines are to the origin the
better the corresponding algorithm performs.

Performing an internal comparison between the
QSS methods, we see that the third-order LIQSS3
method is slightly more efficient than LIQSS2, es-
pecially when the tolerance requirement, thus the
achieved error, gets smaller. This is expected, since
the LIQSS2 solver needs to take smaller steps com-
pared to LIQSS3 to reach the desired accuracy (e.g.
for an error of 10−6 LIQSS2 needs 53391 steps while
LIQSS3 only used 11314). Thus, we can conclude
that the third-order LIQSS3 algorithm should be
preferred for practical applications. We see also
that as QSS algorithms provide dense output, the
number of output points does not affect the simula-
tion timings.

Finally, another characteristic of the QSS methods
is evident from the obtained results. We verify that in
general DASSL performs significantly less steps than
any of the QSS methods. However, each one of these
steps is much more complicated and time-consuming
than the ones performed in a QSS solver, as it in-

volves -in general- estimation of the whole function
f(·). On the other hand, each step in QSS updates
one state variable, therefore requiring the evaluation
of the corresponding fi(·). As the simulated systems
get bigger, more complex and sparse, evaluating fi(·)
is much more efficient than the global f(·).

LIQSS2
LIQSS3

OMC−DASSL

10−6

10−5

10−4

10−3

10−2

M
ea

n
si

m
ul

at
io

n
er

ro
r

10 100

Simulation time (msec)
20 40 704 8

Figure 4: CPU time vs Error for the buck converter
model (10000 output points)

4.3 Interleaved DC-DC Circuit

Figure 5 depicts the model of an interleaved buck
converter. This circuit is similar to the buck converter
analyzed above but it contains several switching sec-
tions that are activated at different times in order to
reduce the output voltage ripple. In this case, we con-
sider a circuit with four branches.

To build this model, all the components were taken
from the MSL 3.1, except for the booleanDelay that
implements a boolean delay that outputs its received
boolean input after a fixed period T. The delay has no
memory, i.e. when an input is received, any sched-
uled output is cancelled and overwritten by the new
input.

L=0.0001

R
=1

0

C
=0

.0
00

1

boolean delaysboolean pulse

T = 0.0001

+
-

buck subsystem

12 V

R1C1

Figure 5: DC-DC interleaved circuit

We have simulated this model for 0.01 sec. again

Session 2B: Numerical Methods

DOI Proceedings of the 9th International Modelica Conference 243
10.3384/ecp12076237 September 3-5, 2012, Munich, Germany

Table 1: This table depicts the simulation results of various solvers for the buck converter circuit for a requested
simulation time of 0.01 sec. The comparison performed includes required CPU time (in msec), number of steps
taken, as well as the simulation accuracy relative to the reference trajectory obtained with LIQSS2 and tolerance
of 10−7.

500 output points 10000 output points
CPU time Steps Simulation CPU time Steps Simulation

(msec) Error (msec) Error

QSS

LIQSS3 10−2 4 3351 5.84E-03 4 3351 5.83E-03
LIQSS3 10−3 8 4163 7.31E-04 8 4163 7.32E-04
LIQSS3 10−4 12 6804 4.60E-05 12 6804 4.61E-05
LIQSS3 10−5 20 11314 1.07E-06 20 11314 1.08E-06
LIQSS2 10−2 4 3863 7.83E-03 4 3863 7.84E-03
LIQSS2 10−3 8 6715 1.32E-03 8 6715 1.32E-03
LIQSS2 10−4 12 18519 1.15E-04 12 18519 1.15E-04
LIQSS2 10−5 32 53391 6.42E-06 32 53391 6.42E-06

OpenModelica
DASSL 10−3 22 4273 3.56E-03 70 5249 2.66E-04
DASSL 10−4 28 5636 3.17E-03 72 5955 1.75E-04
DASSL 10−5 32 7781 3.28E-03 74 7623 2.40E-05

focusing on the capacitor voltage, getting the simu-
lated trajectory seen in Fig 6. The same experiments
as for the buck circuit case were performed and listed
in Table 2 where we made the same comparisons as
in the previous example (Sec 4.2).

 0

 1

 2

 3

 4

 5

 6

 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

V
ol

ta
ge

 o
n

th
e

ca
pa

ci
to

r (
V

)

Time (sec)

DC-DC Interleaved

Figure 6: DC-DC Interleaved - Simulation

We see from Fig. 7 that for obtaining a mean error
of the order of 10−3 OpenModelica’s DASSL takes
488 msec while it takes LIQSS2 12 msec and 60 msec
for LIQSS3. This shows 40x and 8x speedups for
LIQSS2 and LIQSS3. The difference in timings be-
tween LIQSS2 and LIQSS3 is because the implemen-
tation of LIQSS3 is not yet completely optimized and
some problems are still present. Also, when asking

10−6

10−5

10−4

10−3

10−2

M
ea

n
si

m
ul

at
io

n
er

ro
r

10−1

100
Simulation time (msec)

400 100010 20 40

LIQSS2
LIQSS3

OMC−DASSL

500

Figure 7: CPU time vs Error for the DC-DC inter-
leaved model (10000 output points)

the QSS solver for 10000 number of output points,
neither the error nor the number of steps changes be-
cause of the dense output.

In Figure 8 we show the different steady state val-
ues obtained with different setups. We see that the
discontinuity detection of OMC is heavily influenced
by the number of output steps. Here we included
Dymola 6.0 result in order to provide a generally-
accepted ground-truth solution. We note here that no
timing measurements were conducted with Dymola.

5 Conclusion and Future Work

In this article, the integration of the novel stand-
alone QSS solvers in the OpenModelica environment
is presented and analyzed. The implementation has
been tested successfully for both correctness and ef-
ficiency in simulating real-world Modelica models.

Simulating Modelica models with a Stand-Alone Quantized State Systems Solver

244 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076237

Table 2: This table depicts the simulation results of various solvers for the DC-DC interleaved circuit for a
requested simulation time of 0.01 sec. The comparison performed includes required CPU time (in msec),
number of steps taken, as well as the simulation accuracy relative to the reference trajectory obtained with
LIQSS2 and tolerance of 10−7.

500 output points 10000 output points
CPU time Steps Simulation CPU time Steps Simulation

(msec) Error (msec) Error

QSS

LIQSS3 10−2 32 18396 1.32E-02 32 18396 1.32E-02
LIQSS3 10−3 60 33426 7.31E-04 60 33426 7.31E-04
LIQSS3 10−4 48 29408 1.57E-04 48 29408 1.57E-04
LIQSS3 10−5 64 39951 6.48E-06 64 39951 6.48E-06
LIQSS2 10−2 12 10715 4.08E-03 12 10715 4.08E-03
LIQSS2 10−3 20 29082 3.63E-04 20 29082 3.63E-04
LIQSS2 10−4 56 73218 1.26E-04 56 73218 1.26E-04
LIQSS2 10−5 128 198001 8.80E-06 128 198001 8.80E-06

OpenModelica
DASSL 10−3 310 14421 4.96E-02 428 17571 2.37E-02
DASSL 10−4 363 22375 5.03E-02 442 18574 2.37E-02
DASSL 10−5 496 31387 5.41E-02 488 23625 5.57E-03

 5.1

 5.15

 5.2

 5.25

 5.3

 5.35

 0.00272 0.00273 0.00274 0.00275 0.00276 0.00277 0.00278 0.00279 0.0028 0.00281 0.00282

V
ol

ta
ge

 o
n

th
e

ca
pa

ci
to

r (
V

)

Time (sec)

OMC-DASSL(1e-3, 500 points)

LIQSS2 (1e-7, 10000 points)
Dymola 6-DASSL (1e-5,10000 points)

OMC-DASSL(1e-3, 10000 points)

OMC-DASSL (1e-5, 10000)

LIQSS2 (1e-3, 10000 points)

Figure 8: Comparison of the final steady state for dif-
ferent setups

Comparisons on two example models were per-
formed, demonstrating the increased efficiency of
the stiff LIQSS solvers over the default DASSL
solver of OpenModelica. Consistent speedups were
achieved and the required CPU time was reduced
up to 40 times. Furthermore, for the two systems
simulated we observed that the default DASSL solver
failed to generate the correct results if we didn’t force
many output points. Increasing the number of output
points, though, means increasing the number of steps
taken by the DASSL algorithm, thus the computation
time. On the other hand, not only the QSS solvers

simulated correctly the models at all setups but, be-
cause of the dense output they inherently generate,
the number of steps taken remains constant regard-
less of how many output points are requested.

However, there still remain open problems to be
addressed in the future. First of all, our proposed so-
lution was tested on few examples. A larger set of
models has to be simulated and tested for correctness,
as well as efficiency, of the implementation. In par-
ticular, we should focus on large-scale hybrid mod-
els because their dynamics should uncover the power
and efficiency of QSS methods. To this end, the µ-
Modelica has to be extended to handle more complex
systems.

An interesting line of research could be the utiliza-
tion of the µ-Modelica language as an intermediate
language to enable other tools to include Modelica
models. Its simplicity makes the burden on the com-
piler a lot lighter.

The ultimate goal is to integrate the family of QSS
solvers (by use of the µ-Modelica translation step)
in OpenModelica as native solvers. To achieve this
the QSS solver should generate output results in the
format expected by the OpenModelica environment.
Finally, we need to note that work is also ongoing on
improving the QSS solver itself.

Session 2B: Numerical Methods

DOI Proceedings of the 9th International Modelica Conference 245
10.3384/ecp12076237 September 3-5, 2012, Munich, Germany

6 Acknowledgments

This work was in part funded by CTI grant
Nr.12101.1;3 PFES-ES and supported by the
OPENPROD-ITEA2 project.

References

[1] Modelica models for download at.
http://www.fceia.unr.edu.ar/~fbergero/modelica2012.

[2] F. Bergero and E. Kofman. Powerdevs: a tool
for hybrid system modeling and real-time sim-
ulation. SIMULATION, 2010.

[3] F. Bergero, E. Kofman, and C. F. E. A novel
parallelization technique for DEVS simulation
of continuous and hybrid systems. Simulation,
2012. In press.

[4] F. E. Cellier and E. Kofman. Continuous System
Simulation. Springer-Verlag, New York, 2006.

[5] F. E. Cellier, E. Kofman, G. Migoni, and
M. Bortolotto. Quantized State System Simu-
lation. In Proceedings of SummerSim 08 (2008
Summer Simulation Multiconference), Edin-
burgh, Scotland, 2008.

[6] J. Fernandez and E. Kofman. Implementación
autónoma de métodos de integración numérica
qss. Technical report, FCEIA - UNR, Rosario,
Argentina, 2012.

[7] X. Floros, F. Bergero, F. E. Cellier, and E. Kof-
man. Automated Simulation of Modelica Mod-
els with QSS Methods : The Discontinuous
Case. In 8th International Modelica Con-
ference 2011, Dresden, Germany, Linköping
Electronic Conference Proceedings, pages 657–
667. Linköping University Electronic Press,
Linköpings universitet, 2011.

[8] X. Floros, F. E. Cellier, and E. Kofman. Dis-
cretizing Time or States? A Comparative Study
between DASSL and QSS. In 3rd International
Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools, EOOLT, Oslo,
Norway, October 3, 2010, pages 107–115,
2010.

[9] P. Fritzson, P. Aronsson, H. Lundvall, K. Nys-
trom, A. Pop, L. Saldamli, and D. Broman. The

OpenModelica Modeling, Simulation, and De-
velopment Environment. Proceedings of the
46th Conference on Simulation and Modeling
(SIMS’05), pages 83–90, 2005.

[10] P. Fritzson and P. Bunus. Modelica - A General
Object-Oriented Language for Continuous and
Discrete-Event System Modeling and Simula-
tion. In Annual Simulation Symposium, pages
365–380, 2002.

[11] P. Fritzson and V. Engelson. Modelica - a uni-
fied object-oriented language for system mod-
eling and simulation. In E. Jul, editor, ECOOP
’98 - Object-Oriented Programming, volume
1445 of Lecture Notes in Computer Science,
pages 67–90. Springer Berlin / Heidelberg,
1998. 10.1007/BFb0054087.

[12] M. Galassi. GNU Scientific Library Reference
Manual, third edition, 2009.

[13] E. Kofman. A Second-Order Approximation for
DEVS Simulation of Continuous Systems. Sim-
ulation, 78(2):76–89, 2002.

[14] E. Kofman. Discrete Event Simulation of Hy-
brid Systems. SIAM Journal on Scientific Com-
puting, 25:1771–1797, 2004.

[15] E. Kofman. A Third Order Discrete Event Sim-
ulation Method for Continuous System Sim-
ulation. Latin America Applied Research,
36(2):101–108, 2006.

[16] E. Kofman and S. Junco. Quantized-state sys-
tems: a DEVS Approach for continuous sys-
tem simulation. Trans. Soc. Comput. Simul. Int.,
18(3):123–132, 2001.

[17] G. Migoni and E. Kofman. Linearly Implicit
Discrete Event Methods for Stiff ODEs. Latin
American Applied Research, 2009. In press.

[18] B. P. Zeigler and J. S. Lee. Theory of Quan-
tized Systems: Formal Basis for DEVS/HLA
Distributed Simulation Environment. En-
abling Technology for Simulation Science II,
3369(1):49–58, 1998.

Simulating Modelica models with a Stand-Alone Quantized State Systems Solver

246 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076237

Fast Simulation of Fluid Models with Colored Jacobians

Fast Simulation of Fluid Models with Colored Jacobians

Willi Brauna Stephanie Gallardo Yancesb Kilian Linkb Bernhard Bachmanna

aUniversity of Applied Sciences Bielefeld, Bielefeld, Germany
bSiemens AG, Energy Sector, Erlangen

Abstract

The industrial usage of the open-source Modelica tool
OpenModelica was limited so far for power plant ap-
plications, due to the performance of large fluid sys-
tems. This paper presents some efforts to improve the
simulation time on benchmark fluid models proposed
by Siemens Energy. The main aspects presented here
to achieve a faster simulation are an efficient evalu-
ation of the jacobian matrix by a coloring technique,
that exploits the sparsity pattern of a modelica model.
Therefore the techniques are scratched and applied to
benchmark models provided by Siemens Energy.

Keywords: OpenModelica, Fluid Simulation,
Benchmark, Simulation, Jacobian, Coloring, Sparsity-
Pattern, DASSL

1 Introduction

In power plant applications, detailed analysis of the
dynamic behaviour of heat recovery steam generators
result in very large fluid systems.

Modelica is the preferred modeling language for dy-
namic simulations within Siemens Energy [5] due to
its applicability for multi-domain modeling of phys-
ical systems, the high degree of maintainability of
Modelica models and the possibility of rapid develop-
ment of new components in Modelica.

The commercial tool Dymola is mainly used for
modeling and simulation. The open-source Modelica
enviroment OpenModelica for industrial and academic
usage is getting more and more an alternative and
has the large benefit that it is freely available. Fluid
modeling with Openmodelica was limited by missing
implementation of some special features like Model-
ica.Media. The OpenModelica compiler flattens now
the complete Modelica.Media library. Nevertheless
the missing functions are still replaced in all bench-
mark models by external libraries. In order to make
OpenModelica an established Modelica tool, the ac-
curacy and performance have to be comparable with

Dymola.

The aim of the current paper is to present the im-
provement of the simulation time for special bench-
mark fluid models using an efficient technique to eval-
uate jacobians. The benchmark fluid models are devel-
oped by Siemens AG, Energy Sector, using the com-
mercial Modelica environment Dymola. Siemens En-
ergy has presented fluid models before, which are suit-
able for the benchmark of the accuracy and the perfor-
mance of a Modelica Tool. The complexity of these
models have been further refined to build up realis-
tic plant models like used in daily business and to
reach model sizes which are suitable for performance
tests. On the other hand University of Applied Sci-
ences Bielefeld has developed techniques to generate
symbolic jacobians in OpenModelica before ([4],[3]).
The derivatives are useful for simulating a model as
well as for the sensitivity analysis or the optimization
of models. Further, jacobians are necessary to support
the next FMI1 version 2.0 [1]. In the work before it
was not possible to show improvements for the sim-
ulation. This can be explained mainly by the model
size we had tested our implementation on, this was
caused by the fact that the generation of symbolic ja-
cobians was not applicable to large scale models. This
is solved by generating generic partial derivatives and
utilise them to compute the full jacobains. Here we
catch up and apply the generation of symbolic jaco-
bians on large scale models provided by Siemens En-
ergy [6].

The paper is structured as follows: In section 2 the
usage of the jacobian for the simulation purpose is
specified. Further, the coloring and the determination
of the sparsity pattern are stated and the application of
the coloring to the solving process is described. In sec-
tion 3 there are given some information about the used
benchmark fluid models. Whose perfomance is mea-
sured in section 4. Section 5 summarizes the results of
this paper and gives proposals for future work.

1http://fmi-standard.org/

DOI Proceedings of the 9th International Modelica Conference 247
10.3384/ecp12076247 September 3-5, 2012, Munich, Germany

2 Jacobian for Simulation

A Modelica model is typically translated to a basic
mathematical representation of differential and alge-
braic equations (DAEs), before being able to simulate
the model. Further, these DAEs are transformed to
ODEs (ordinary differential equations) with an alge-
braic part, which is the starting point.(

ẋ(t)
y(t)

)
=

(
h(x(t),u(t), p, t)
k(x(t),u(t), p, t)

)
(1)

The jacobian of interest for simulation purpose con-
sists of partial derivatives of the ODE-Block h with
respect to the states.

JA =
∂h
∂x

=


∂h1
∂x1

. . . ∂h1
∂xn

...
. . .

...
∂hn
∂x1

. . . ∂hn
∂xn

 (2)

For solving equation 1 with an integration method like
DASSL, the derivatives are needed with respect to the
states x(t) [7]. After all, DASSL uses the iteration ma-
trix

M =
∂h
∂x

+ c j ∗ ∂h
∂ ẋ

(3)

for solving a nonlinear system in each step by a modi-
fied newton method. This matrix M is almost the same
as the partial derivatives with respect to the states be-
side the c j∗ ∂h

∂ ẋ part. But that part is the identity matrix
multiplied with a scalar value calculated by DASSL.
By default DASSL calculates the iteration matrix M
by means of numerical finite differentiation. Therefore
it is necessary to evaluate the ODE function h n+ 1
times. However, it is also possible to equip DASSL
with an user-specific routine that provides manually
calculated iteration matrix M. Considering issues of
performance, the calculation of M is the most criti-
cal part. In table 1 are summarized the results for one
simulation of two different benchmark models (see 3),
where are denoted ts as simulation time, Jevals as num-
ber of jacobain evaluations and Jtime as time of evalu-
ation of the jacobian Jevals times. One can see that the
calculation of the jacobian matrix takes the major time
of the simulation time.

N x eqns
19 231 942

N x eqns
10 140 826

ts Jevals Jtime ts Jevals Jtime

10.8 111 9.7 2.4 69 1.4

Table 1: Simulation times vs. Jacobian evaluations

So at that point it’s possible to reduce the DASSL
solving time. It is quite evident that this could be tack-
led by exploiting the sparse structure of a Modelica
Model. One approach which uses the sparsity pattern
to reduce the amount of ODE-function calls is the par-
titioning of columns in colors and calculating them at
once [2]. Additionally the matrix M can be determined
in a symbolic way and combined with the coloring ap-
proach.

Therefore we test 4 different methods to calculate
the jacobians:

• finite difference approximations.

• finite difference approximations with coloring.

• symbolical jacobian generated by OpenModelica.

• symbolical jacobian generated by OpenModelica
with coloring.

For the numerical approximation of the jacobian the
forward finite differentiation is used, where h is deter-
mined by DASSL and it depends on x, ẏ, current step
size.

ẏ =
f (x+h)− f (x)

h
(4)

The symbolical jacobians are generated within the
OpenModelica compiler (for more details see [3],[1]).

2.1 Coloring Jacobians

The coloring of a matrix means first of all to color
columns that have no non-zero-elements in the same
row. Thus, the starting point for coloring is the sparsity
pattern of a matrix. The determination of the sparsity
pattern of a Modelica model is described in the next
section 2.2.

Assuming the matrix J with it’s sparsity pattern is
given as:

J =


j11 0 0 0 j15
0 j22 j23 0 0
j31 j32 0 0 0
0 0 j43 0 j45
0 0 0 j54 j55

 (5)

In this matrix J for example the columns 1 and 3 and
also the columns 2 and 4 have no shared non-zero
elements in the rows. Thus, this columns could be
calculated at once, since they are structural orthogo-
nal. Finding those structural orthogonal rows could
be done by re-formulating the problem as graph col-
oring of a bipartite graph. The bipartite graph G =

Fast Simulation of Fluid Models with Colored Jacobians

248 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076247

((V1,V2),E) consists of vertexes V1,V2, where V1 are
all rows and V2 are all columns. And for every non-
zero element an edge ei is defined between the in-
volved row and the corresponding column, vice versa.
For the matrix above the corresponding bipartite graph
is drawn in figure 1.

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

Figure 1: Bipartite graph G

Next step is coloring the column vertexes with the
minimum number of colors, so that no row vertex has a
connection to columns with the same color. This prob-
lem is well-known as NP-hard [2], but for the current
purpose it’s not very critical to find the optimum, so a
fast approximation is well-suited. Therefore a modi-
fied partial distance-2 coloring algorithm for bipartite
graphs is used as suggested also in [2]. In our tests it
reveals a good performance meaning that the solution
was really close to the chromatic number χ(G,V2),
which describes the optimal solution. This observa-
tion could be done since there exists a lower bound for
χ(G,V2). It is also shown in [2] that χ(G,V2) ≥ ∆V1
is true. This sounds intuitional for the reason that the
minimal partition size depends on the maximum num-
ber of non-zero elements in the rows. The time com-
plexity for the algorithm is O(|E| ∗∆V1), where ∆V1 is
the maximum degree of the vertex vi ∈ V1. For exam-
ple in the jacobian above, it’s easy to see that there are
several possible solutions as shown in figure 2.

After a coloring C of the columns is found, it’s pos-
sible to apply it to the calculation of the jacobians.
Now all columns with the same color are structural or-
thogonal and can be calculated at once. Therefore the
expected speed up for the calculation is speedup= |V2|

C .

2.2 Sparsity Pattern

The sparsity pattern for JA (see equation (2)) of a
Modelica Model could also be determined by means
of graph theory, because roughly spoken the sparsity

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

Figure 2: Bipartite graph G

pattern expresses which output variable has a connec-
tion to which state. So this could be formulated as a
st-connectivity problem in a directed graph. The st-
connectivity is a decision problem that asks if the ver-
tex t is reachable from the vertex s. A directed graph
is also naturally used in a Modelica tool for the sorting
of the equations with the tarjan algorithm. For exam-
ple if one has a system with 5 equations, and 5 states
a directed graph for sorting could look like the one in
figure (3).

f1 |z4 f5 |z3

f3 |z5

f4 |z1

f2 |z2

Figure 3: Directed graph for sorting the example sys-
tem

f1 |z4 f5 |z3

f3 |z5

f4 |z1

f2 |z2

x1

x2

x3

x4

x5

Figure 4: Expanded directed graph for sorting the ex-
ample system

For the ordinary sorting task by tarjan only the un-
knowns are considered, since the states are assumed to
be known. So for the determination of sparsity pattern
one would need to expand the graph by the states. This
is done in the way that every equation vertex gets an

Session 2B: Numerical Methods

DOI Proceedings of the 9th International Modelica Conference 249
10.3384/ecp12076247 September 3-5, 2012, Munich, Germany

additional incoming connection by the states that are
present in it. Finally the directed graph could look like
the one in figure (4).

The sparsity pattern in equation (6) could than be
obtained by finding all reachable vertexes for every
state. For every connection that could be found the
corresponding element is unequal zero. Finding the
reachable vertexes for one state results in one column
of the sparsity pattern.

J =


∗ 0 ∗ 0 ∗
0 ∗ 0 0 0
0 ∗ 0 ∗ ∗
0 0 0 0 ∗
0 0 0 0 ∗

 (6)

However, the determination of the sparsity pattern
via st-connectivity would require to traverse the whole
graph for every state, what is of course not applicable
for a large system. Thus one could benefit from the
already sorted system and also use additional informa-
tion from the adjacency matrix. For example consider
the following possible sorted adjacency matrix (7) for
the system above with the expansion about the states
and the equation where they occur.

z1 z3 z4 z2 z5 x1 x2 x3 x4 x5
f 4
f 5
f 1
f 2
f 3


1 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0 0 0
0 1 0 1 1 0 0 0 1 0


(7)

In this BLT-sorted adjacency matrix we consider
row after row and propagate the dependent states
downwards to every equation. The accumulation of
the non-zero elements is arranged in an array of lists
for every equation. For the first equation we just add
the dependent states x5 to the corresponding list. For
the second equation there are no direct dependencies,
but we need to propagate the dependencies for the in-
volved variables. In this case for the variable z1 which
occurs in the first column the lists of f5 and f4 are
joined. For the next row it is necessary to add the
direct dependent variables x1,x3 and union them with
the indirect dependencies from variable z3 and so on.
This approach results in algorithm with a complexity
that depends on the amount of non-zero elements. Our
tests indicate even a logarithmic dependence for non-
zero elements. Thus the sparsity pattern can be deter-
mined efficiently.

3 Benchmark Fluid Models

The first benchmark model (see figure 5) consists of
three heated pipes in a row. The first pipe in flow di-
rection is connected to a water source which supplies
the liquid flow. The one-dimensional energy, mass and
momentum balances are discretized in flow direction.
The number of nodes which represent the connection
between the discrete elements is N. The heated metal
wall of the pipe represents a cylindrical metal wall
with L numbers of layers.

Figure 5: Pipes benchmark model

Figure 6: Heat exchanger benchmark model

The central part of our second more complex bench-
mark is an evaporator model (see figure 6) with paral-
lel tube rows. A parallel flow evaporator consists of
several heated tubes connected by an internal splitter
at the inlet and an internal mixer at the outlet. For each
of the Nl (number of parallel layers) exists a subaggre-
grate which also models the gas-side, using a simple
quasi stationary pressure drop. The water and steam
flow and the inner heat transfer is modeled using the

Fast Simulation of Fluid Models with Colored Jacobians

250 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076247

N x eqns colors
19 231 942 79

N x eqns colors
50 603 2430 203

N x eqns colors
100 1203 4830 403

method steps F-Eval J-Eval time steps F-Eval J-Eval time steps F-Eval J-Eval time
num 922 27184 111 10.8 1014 72854 118 85.3 1058 144874 119 372.3

numC 922 8929 94 4.5 1023 26914 124 38.4 1064 46835 112 144.2
sym 937 1539 103 8.5 976 1643 119 65.2 1052 1732 126 287.2

symC 937 1539 103 4.3 976 1643 119 30.3 1052 1732 126 139.3
Dymola 783 8772 90 1.6 915 23453 106 11.3 1035 43707 103 53.4

Table 2: Simulation time for Tube3Test

N x eqns colors
40 500 2986 95

N x eqns colors
80 980 5866 175

N x eqns colors
160 1940 11626 335

method steps F-Eval J-Eval time steps F-Eval J-Eval time steps F-Eval J-Eval time
num 492 38192 75 23.3 537 79131 80 94.7 542 140390 72 436.5

numC 516 10841 106 9.9 505 13810 75 27.3 596 28595 83 152.4
sym 544 774 74 44.9 536 726 77 176.7 556 752 83 792.1

symC 544 774 74 11.9 536 726 77 42.8 556 752 83 206.8
Dymola 359 7306 69 7.36 387 12531 67 22.4 408 23964 69 142

Table 3: Simulation times for HeatExchanger

pipe model. The outer heat transfer is assumed to be
constant. This model is suitable for building up huge
systems with many states since the number of tube lay-
ers of the evaporator can be adapted easily. Compared
to a complete and detailed heat recovery steam gener-
ator model the model in figure 6 is still small. This
justifies the requirement to improve the performance
to use in future OpenModelica for power plant simu-
lations.

4 Performance Measurements

The performance measurements are done on a work-
station machine(Intel CPU Q9550 @ 2.83GHz). For
the time measurements we run the simulation five
times take the mean, in addition the initialization pro-
cess is deducted. Here are depicted the results for the
benchmark models 3 with the four modes described
above in OpenModelica. Additionally, the results are
compared to Dymola. For all simulation was chosen a
tolerance of 1e−6, which is propagate in OpenModel-
ica as absolute and relative tolerance. This may be one
reason for the difference in the steps performed by the
Integrator.

In the top of the tables 2 and 3 are stated the model
details, where the variable N is used for resizing the
model resulting in numbers of states, equations for
the ODE-function and the colors. The method called

“num” calculates the jacobians numerically and the
method “sym” performs it symbolically. The addi-
tional “C” marks that the coloring is applied to these
methods.

First, it can be stated that the simulation time is ef-
fected a lot by the coloring as expected. The factor is
a bit lower than expected due to the different number
of steps and thus a different number of jacobian eval-
uation in each simulation. This can be considered as
numerical artefacts which are propagated and then in-
duce small differences in the step-size chosen by the
integrator. This effect can’t be observed for the sym-
bolic solution. Further, it can be stated for the numer-
ical solution the amount of ODE-function evaluation
is reduced dramatically and it tends to be close to Dy-
mola. This suggests that Dymola uses a similar tech-
niques.

5 Conclusions

The aim of this paper was to show that one key element
for a Modelica Tool to perform a fast simulation is the
exploiting of the sparsity pattern for the determination
of jacobians. Therefore it is necessary to determine the
sparsity pattern and partition the jacobians calculation
in order to reduce the evaluation time. This is realized
by graph theoretical means in OpenModelica. Further
it was shown on the presented benchmark models that

Session 2B: Numerical Methods

DOI Proceedings of the 9th International Modelica Conference 251
10.3384/ecp12076247 September 3-5, 2012, Munich, Germany

the effect is significant, moreover this feature pushes
OpenModelica further to an efficient simulation envi-
ronment for relevant industrial problems.

Acknowledgments

The German Ministry BMBF has partially
funded this work (BMBF Förderkennzeichen:
01IS09029C) within the ITEA2 project OPENPROD
(http://www.openprod.org).

References

[1] Åkesson J, Braun W, Lindholm P, Bachmann
B. Generation of Sparse Jacobians in the Func-
tion Mock-Up Interface 2.0. In: Proceedings of
the 9th Modelica Conference, Munich, Germany,
Modelica Association, 2012.

[2] Assefaw H. Gebremedhin, Fredrik Manne, and
Alex Pothen. What color is your jacobian? graph
coloring for computing derivatives. SIAM Rev.,
47(4):629–705, 2005.

[3] Braun W, Ochel L, Bachmann B. Symbolically
Derived Jacobians Using Automatic Differentia-
tion - Enhancement of the OpenModelica Com-
piler. In: Proceedings of the 8th Modelica Con-
ference, Dresden, Germany, Modelica Associa-
tion, 2010.

[4] Fritzson P. et. al.: OpenModelica System Doc-
umentation, PELAB, Department of Computer
and Information, Linköpings universitet, 2010.

[5] Siemens Energy: https://www.energy.

siemens.com

[6] Link K, Vogel S, Mynttinen I. Fluid Simulation
and Optimization using Open Source Tools. In:
In: Proceedings of the 8th Modelica Conference
2010, Dresden, Germany, Modelica Association,
20th to 22nd 2011 2010.

[7] Petzold L. R.: A Description of DASSL: A Dif-
ferential/Algebraic System Solver, Sandia Na-
tional Laboratories Livermore, 1982.

Fast Simulation of Fluid Models with Colored Jacobians

252 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076247

Session 2C: Climate Systems I

Modelling and Calibration of a Thermal Model for an Automotive Cabin using HumanComfort Library

Modelling and Calibration of a Thermal Model for an Automotive
Cabin using HumanComfort Library

Stefan Wischhusen
XRG Simulation GmbH

Harburger Schlossstraße 6-12, 21079 Hamburg, Germany
wischhusen@xrg-simulation.de

Abstract

This article aims to describe a modular system level
modeling approach for the thermal behavior of an
automotive cabin. The model is parameterized with
geometric and physical data. At the end a set of 6
parameters is used to calibrate the model with two
measurement data sets: one for a passive heat up and
active pull down and one for a cold heat up. The pro-
cedure can be used as a recipe for developing own
models of the same kind which may be used in inte-
grated thermal management studies.

Keywords: automotive cabin; calibration; thermal
simulation; air conditioning; integrated thermal
management

1 Introduction

The assessment of the thermal behavior of an auto-
motive cabin as a part of the whole vehicle becomes
more and more important while the air conditioning
system is not just responsible to cool and heat the
passenger compartment but also has to condition
other sensitive parts. Alternative, energy-saving ve-
hicle concepts require innovative concepts to manage
multiple heating and cooling loads. This has to be
achieved by thoroughly optimizing many factors:
e.g., energy consumption, component utilization as
well as life-time reduction and last but not least pas-
senger comfort.

Simulation models are required to allow a system-
wide analysis on a conceptual level. The Modelica
technology offers a multi-domain platform which
allows users to combine different physical systems in
order to predict their interaction. Such a configura-
tion is for instance given by a combination of air
conditioning cycle, air distribution system and cabin.

Automotive air conditioning cycles were modeled
using Modelica since 2000 using different free and
commercial libraries (ThermoFlow, ThermoFluid,
ACLib [2], AirConditioning [3] and TIL by TLK-
Thermo GmbH). The AirConditioning library is used
by many European companies since 2004 and has
become a standard tool for German automotive com-
panies. In order to model the interaction between the
vapor compression cycle and the cabin a modular
and flexible model for the cabin was missing,
though. Therefore, XRG Simulation decided to de-
velop such an approach in the EuroSysLib-D project
[1] which is provided by the resulting HumanCom-
fort library. This model can be directly connected to
open Modelica.Fluid air distribution models or to the
AirConditiong library (version 1.8 and higher).

Tools for the thermal simulation of automotive cab-
ins are THESEUS-FE [4], EXA PowerFLOW and
PowerTHERM, which use CFD approaches for their
models. Those models easily count up to some
10.000 nodes in order to capture the complex interior
geometry and the required grid size for transient
simulations. A coupling of CFD cabin models to air
cycle models is possible by using simulator interfac-
es like TISC by TLK-Thermo GmbH.

Other system level models were developed by:
IFT/TLK-Thermo [5], Baumgart et al. [6], Mezrhab
[7] and others. The Modelica model of IFT/TLK-
Thermo works with a single air volume and multiple
walls and windows. Moreover, the cabin model of
Baumgart is using multiple volumes and irradiating
numbers for its surfaces.

2 Physical Cabin Modeling

The HumanComfort library[1] enables very flexible
modular layouts for modeling physical effects. Any

DOI Proceedings of the 9th International Modelica Conference 253
10.3384/ecp12076253 September 3-5, 2012, Munich, Germany

HumanComfort automotive cabin model may inte-
grate the following physical entities in arbitrary
numbers:

• Partitions (opaque or transparent) for multi-
layer wall setups

• Air volumes
• Air exchange models and/or flow models
• Internal load models (e.g., passengers, waste

heat)
• Irradiation balance models
• Internal surfaces
• Thermal comfort models
• External boundary conditions (e.g., climate,

air leakage)

The following physical effects are modeled by the
component models of the library:

• Heat transfer by convection
• Heat transfer by conduction
• Heat transfer by direct and diffuse irradia-

tion, distinction between short wave and
long wave irradiance

• Convective mass transfer
• Condensation of moisture
• Carbon dioxide emission and balance for re-

circulation air controls

The assessment of parameters starts with geometrical
parameters. The required discretization of the cabin
model with regard to number of air volumes, walls

and wall layers depends on the desired resolution for
temperature (and other states). Focusing on air tem-
peratures the following layouts are appropriate:

• Single air volume for pure convective driv-
en simulations (e.g. during air conditioning
operation)

• 2 air volumes in top/bottom layout if a pre-
conditioning of the cabin during which the
AC system is switched off has to be simu-
lated

Fig. 2 Automotive cabin layout

A single air volume approach for a very popular
middle class sedan car (Fig. 2) is shown in Fig. 1.
The model consists of external wall partitions that
are exposed to external boundary conditions on the
outside for the ceiling, the floor, the left side wall,
the right side wall and two smaller parts for the left
and right opaque top hull part. Windows are divided
into windscreen, two side windows left, two side
windows right and rear window. Furthermore, inter-

nal surfaces were integrated for the panel, the fire-
wall, two front seats, the rear bench and trunk shelf.

Fig. 1 HumanComfort Modelica cabin model - Single volume approach

Modelling and Calibration of a Thermal Model for an Automotive Cabin using HumanComfort …

254 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076253

Since only a single air volume is considered the air
distribution modeling is very simple. A single design
inlet and a single design outlet were integrated.
Please note that a more complex distribution requires
additional volumes and flow models that calculate
mass flow rates between nodes. Nevertheless, even
the single volume approach can be easily extended
by more inlets and outlets (see Fig. 3), if required by
the measurement setup since the fluid flow connector
is according to Modelica.Fluid specification includ-
ing the stream connector concept.

The 2-volume approach shown in Fig. 3 was created
starting from the single volume approach. The upper
volume is displaying the air state in the head area of
the car. The bottom volume is standing for the aver-
age air state in the space below the windowed cabin
area. Thus, the convective heat transfer connections
of the walls have to consider the location of the parti-
tion (top or bottom). The convective heat transfer
connectors are represented by the red and gray con-
nectors while the radiation connectors are full red in
Fig. 1 and Fig. 3. Additional elements are required
for the flow exchange between the top and the bot-
tom volume. For demonstration reasons air spaces
have been integrated into the ceiling and side walls
in order to simulate air temperatures here as well.

A partition is modeled as a flat but inclined wall with
one-dimensional parameters. It may consist of up to
9 layers with independent properties. The outer heat
transfer is due to irradiance and convective heat
transfer. Optional one can also determine a heated-
layer for wall heating (e.g. for seat heating). Fig. 4
explains how geometry parameters are specified. The
azimuth angle of a wall describes the horizontal di-
rection of the outside, ambient surface normal. A
south bound direction is defined to have an angle of
0°. Furthermore, the user has to specify the tilt angle
(or zenith angle) between horizontal plain and the
walls surfaces. If the zenith angle is 0° or 180° the
azimuth angle is meaningless. For surfaces with sig-
nificant curvature it is straightforward to separate the
wall section into parallel partition models.

It is usually not easy to determine properties of the
multi-layered cabin walls. Another challenge is de-
fined by the later calibration of the cabin model since
the physical parameters of each layer are potentially
uncertain. Therefore, it may be a better approach to
calculate average properties for a compound of mate-
rials and calibrate three property parameters for a
wall.

Fig. 3 HumanComfort Modelica cabin model - 2 air volume approach

Session 2C: Climate Systems I

DOI Proceedings of the 9th International Modelica Conference 255
10.3384/ecp12076253 September 3-5, 2012, Munich, Germany

Fig. 4 Partition model orientation parameterization

The average heat capacity can be found by:

���� � ∑�� ∙ 	�∑	�

with

cavg average heat capacity [J/(kg.K)]
ci specific heat capacity for material
 fraction [J/(kg.K)]
M i mass of material fraction [kg]

The average density with respect to thermal behavior
follows from:

��� � ∑	�	�
�

with

ρavg average density [kg/m³]
V tot total volume of compound [m³]

The average thickness of the compound in the sense
of heat conduction is defined by:

���� � �
�
���

with

savg average thickness of compound [m]
AHT projected heat transferring area [m2]

In order to determine the average heat conductivity
of a compound one can choose from two approaches
that will be detailed subsequently.

Approach 1 “ideal one-dimensional layers“

���� � � 1∑ ����� ∙ �
�

with

λavg average heat conductivity [W/(m.K)]

λi heat conductivity of material fraction
 [W/(m.K)]
si average thickness of one ideal layer
 [m]
stot total thickness of compound
 [m]

Approach 2 “measurement”

���� � ������� ∙ ��� � ��� ∙ ����

with
 �� oi heat flow rate from outside to inside
 [W]

Modelling and Calibration of a Thermal Model for an Automotive Cabin using HumanComfort …

256 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076253

Ti Average inside surface temperature
 [K]
To Average surface temperature on
 outside [K]

It has to be pointed out that the main contribution to
the heat conduction of cabin hulls is defined by insu-
lations and air. A detailed model of air gaps inside
doors and ceilings is also possible to create with
HumanComfort library (see Fig. 3).

Typical values for materials found in automotive
cabins are listed in the Tab. 1 below.

Tab. 1 Material thermal property data

Material ρ
[kg/m³]

λ
[W/(m.K)]

c
[J/(kg.K)]

Tin (Steel)
Insulation
Carpet
Glass
Plastic

7800
60
750
2500
1300

58
0.047
0.072

1
0.21

480
1680
1000
800
1470

Window partitions are characterized by further pa-
rameters for emissivity and absorption of irradiance.
Those parameters are usually well known although
there might be also manufacturers who provide the
solar heat gain coefficient (SHGC) instead. This fac-
tor does not distinguish between the temporary inter-
nal and external heat transfer coefficients which is a
problem, when boundary conditions change. Thus,
the experimental heat transfer coefficients have to be
known in addition.

Typical values for short wave transmission factors
τsw, short wave absorption factors αsw and long wave
emission factors εlw of different single pane glasses
are given in Tab. 2 (refer also to [8]). Those factors
have a considerable impact on the heat load of a cab-
in.

Tab. 2 Window irradiance transmission, absorption and
emission data

Glass τsw
[-]

αsw
[-]

ε lw

[-]
Clear
Green
IR

0.84
0.60
0.50

0.08
0.32
0.41

0.91
0.80
0.80

Such factors are also required for opaque internal
and external surfaces as part of the cabin hull (see
Tab. 3).

Tab. 3 Hull surface irradiance factors

Hull αsw
[-]

εlw

[-]
White
Dark blue
Black
Internal

 0.30
0.80
0.99
0.80

0.85
0.90
0.98
0.80

2.1 Boundary Conditions for Simulation

Measurements from an experimental facility were
supplied for two experiments at different boundary
conditions:

1. Passive heat up and pull down scenario at
45°C ambient temperature and 1000 W/m²
vertical, direct irradiation (summer), refer to
Fig. 5 to 7

2. Heat up scenario at -20°C ambient tempera-
ture (winter), refer to Fig. 8 to 10

The passive heat up and active pull down scenario
starts with a passive preconditioning of the cabin.
This is achieved by radiant heaters installed above
the cabin. After one hour of heating the driver enters
the car and starts the engine as well as the AC sys-
tem. The driving cycle started after the precondition-
ing consists of three speed intervals: 1. 32 km/h,
2. 0 km/h (idle), 3. 64 km/h. The driver introduces a
sensible heat flow rate of at least 80 W as well as a
moisture input of 6.5 g/h.

Fig. 5 Boundary conditions for passive heat up and active
pull down simulation - Speed, ambient temperature and heat
flow rate of passengers

 It is important to understand that the car is located in
an artificial experimental setup and will not move
during all driving cycles. Instead, the air velocity of
the surrounding air is changed accordingly. During
the passive heat up the vehicle is actually exposed to
a small air flux to prevent overheating on some ex-

−3000 −2000 −1000 0 1000 2000 3000
−10

0

10

20

30

40

50

60

70

80

90

[W
, k

m
/h

]

Time in [s]

30

32

34

36

38

40

42

44

46

48

50

T
em

p
in

 [d
eg

C
]

Heat flow rate PAX [W] Vehicle speed [km/h] Ambient temp. [degC]

Session 2C: Climate Systems I

DOI Proceedings of the 9th International Modelica Conference 257
10.3384/ecp12076253 September 3-5, 2012, Munich, Germany

ternal surfaces. The exact wind speed is unfortunate-
ly not known but was assumed to be small. Another
large impact on the car’s heat balance is imposed by
walls of the experimental facility which emit long
wave radiation.

The air distribution system of the car is equipped
with six measurement sensors for air temperature:

• (Front) Face Center
• (Front) Face Side (Left & Right)
• Face Rear
• Foot Front
• Foot Rear
• Defrost

The mass flow rate of air is recalculated from the fan
characteristic assuming a certain fixed distribution
between the outlets.

During pull down in summer only the upper outlets
are used and foot outlets are closed. The total mass
flow rate of air sums up to constant 550 kg/h. Note
that the air temperature measured during passive heat
up is due to heat dissipation only.

Fig. 6 Outlet air temperatures for passive heat up and active
pull down – no outflow for time less than 0 sec.

Fig. 7 Outlet mass flow rate of air distribution system for
passive heat up and active pull down

In case of the winter scenario a preconditioning of
the cabin model is not required, since all partitions
are having nearly the same temperature slightly
above -20°C. Here, the driving cycle is simpler:
1. 50 km/h, 2. 0 km/h (idle).

Comparing Fig. 9 with Fig. 10 reveals that the air
temperature of the rear face outlet is nearly constant
until 500 sec although a mass flow rate is shown by
the measurement. This deviation from a plausible
physical behavior indicates that the Face Rear Outlet
is just opened at that time point in order to prevent
passenger’s exposition to cold draft. It is assumed
that the total mass flow rate is correct though. Never-
theless, in order to create correct energy balances it
was decided to consider just those outlets which had
a temperature larger than -19°C. The total mass flow
was evenly distributed across the remaining open
outlets.

Fig. 8 Boundary conditions for active heat up - Speed, ambi-
ent temperature and heat flow rate of passengers

Fig. 9 Outlet air temperatures for active heat up

−3000 −2000 −1000 0 1000 2000 3000
0

10

20

30

40

50

60

70

80

Time in [s]

T
em

p
in

 [d
eg

C
]

Outlet Face Center
Outlet Face Side
Outlet Face Rear
Outlet Defrost

−3000 −2000 −1000 0 1000 2000 3000
0

50

100

150

200

250

Time in [s]

M
as

s
flo

w
 r

at
e

in
 [k

g/
h]

Face Center →

Face Side →

Face Rear →
Defrost →

Outlet Face Center
Outlet Face Side
Outlet Face Rear
Outlet Defrost

0 500 1000 1500 2000 2500
−10

0

10

20

30

40

50

60

70

80

90

[W
, k

m
/h

]

Time in [s]

−30

−28

−26

−24

−22

−20

−18

−16

−14

−12

−10

T
em

p
in

 [d
eg

C
]

Heat flow rate PAX [W] Vehicle speed [m/s] Ambient temp. [degC]

0 500 1000 1500 2000 2500
−40

−20

0

20

40

60

80

Time in [s]

T
em

p
in

 [d
eg

C
]

Outlet Face Side
Outlet Face Rear
Outlet Foot Front
Outlet Foot Rear
Outlet Defrost

Modelling and Calibration of a Thermal Model for an Automotive Cabin using HumanComfort …

258 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076253

Fig. 10 Outlet mass flow rate of air distribution system for
active heat up

3 Calibration Process of the Cabin
Model

3.1 Comments on Planning Measurements for
Calibrating Cabin Models

There are some pitfalls in using cabin temperature
measurements for calibration of cabin models. A
general problem is to define correct boundary condi-
tions of the cabin. Especially, the air temperature
measurement has to provide at least all temperatures
at the virtual outlets of the air distribution system as
well as the exhaust/return air inlet since a considera-
ble heat transfer is taking place in the usually not
insulated air channels. The effect of temperature
gains on the heat load in recirculation mode can be
up to 20%.

For multi-volume approaches it is helpful to know
approximately the actual mass flow distribution by
the air distribution system, since it can become labo-
rious to determine active air outlets at each time
point (see section 2.1).

3.2 Calibration Results

The calibration process of the HumanComfort model
is required in order to determine important, unknown
parameters that have a large impact on the thermal
behavior of the cabin. Those are usually:

• Internal and external heat transfer coeffi-
cients

• Emission and absorption factors of internal
and external surfaces (in this case known)

• The average number of reflections between
internal surfaces until the remaining rest of a
portion of external short wave irradiance is
reflected to ambience (decay of short wave
irradiance)

The influence of the cabin hull (ignoring windows) is
small on the static heat transfer. Nevertheless the
cabin hull walls should not be ignored during transi-
ent simulations due to their large heat capacity which
causes high heat flow rates to the cabin air in air
conditioning or heating mode.

In this study it was possible to calibrate convective
heat transfer and heat transfer due to solar irradiation
separately since in the winter case simulated on a test
facility solar irradiation was not present. Thus, a two
step calibration is performed starting with the as-
sessment of the heat transfer coefficients. After-
wards, a calibration of the radiation model’s parame-
ters was carried out. In order to simplify the calibra-
tion process it was decided to work with average
heat transfer parameters. Since there is in all cases a
strong variation of air velocity present, a generic heat
transfer model in the following form was used:

����	��
 � � �!"
	��
 +	�!�$	��
�!�$	��
%&'&()*+,
∙ ���

and

����	�!
 = � �!"
	�!
 +	
�!�$	�!

�!�$	�!
%&'&(
)-.,

∙ ��!

The parameters αconst and γ were fitted by using the
XRG’s ModelOptimizer optimization tool to obtain a
minimum integral deviation from the average cabin
air temperature. ModelOptimizer offers both global
and local optimization schemes so that a global op-
timum can be found.

The external air velocity cext is equal to the vehicle
speed while the internal air velocity cint shows a huge
variation across the cabin. In order to simplify the
calibration process an average velocity in an arbi-
trary cross section of the cabin has been chosen:

0 500 1000 1500 2000 2500
0

20

40

60

80

100

Time in [s]

M
as

s
flo

w
 r

at
e

in
 [k

g/
h]

↓ Foot Front/Rear

↑ Defrost

↑ Face Side/Rear

Outlet Face Side/Rear
Outlet Foot Front/Rear
Outlet Defrost

Session 2C: Climate Systems I

DOI Proceedings of the 9th International Modelica Conference 259
10.3384/ecp12076253 September 3-5, 2012, Munich, Germany

��!
 =
/� �!

	� 0�""

The calibration process yielded different values for
both measurements due to smaller uncertainties. In
the winter case external heat transfer coefficients
turned out to be lower than in the passive heat up and
pull down case. A very small deviation for both cas-
es was found with the same parameters:

• αconst = 7.0 [W/(m2.K)] for internal and
external heat transfer,

• γext = 0.5 [J/(m³.K)],
• γint = 40.0 [J/(m³.K)],
• Integer number of reflections for short wave

irradiance in top node: 1,
• Integer number of reflections in bottom

node: 3.

The number of reflections was calibrated by compar-
ison of heat transfer coefficients for different settings
in the heat up and pull down case.

Fig. 11 Calibration result for winter case – comparison of
average air temperature

Fig. 12 Calibration result for passive heat up and active pull
down – comparison of average air temperature

In Fig. 11 and Fig. 12 the result for the average air
temperature inside the cabin is shown. The integral
deviation of the squared temperature difference is
3790 [K²s] in the heat up case and 6140 [K²s] in the
passive heat up and active pull down case, which
corresponds to an average deviation of approx. 0.9 to
1.2 K. During heat up the temperature slope is cap-
tured in a good way. For both cases there are higher
deviations present at the end of each cycle. In the
heat up case the temperature deviation starts to in-
crease at 1800 sec when the car speed is decreased to
0 km/h. It was not possible to find heat transfer coef-
ficients that could display the measured behavior
though. Thus, this deviation could also be due to
wrong assumptions or interpretations of the meas-
urements. In the passive heat up and pull down case
a static deviation of approximately 2 K is present in
always every speed interval when the AC is on. An
exclusive calibration for this case yielded better re-
sults with higher heat transfer coefficients. But since
both cases required a small deviation average heat
transfer coefficients were chosen. Nevertheless, the
static temperature deviation is not larger than 1.5 K,
again.

Fig. 13 Seat temperature for the active heat up case

An interesting auxiliary variable (which was not cal-
ibrated) is the seat temperature provided for both
measurements (refer to Fig. 13 and 14). The plot re-
veals that the temperature slope shows in general a
comparable plot. It has to be stated that the position
of the measurement sensor inside the seat was not
known. During the calibration it was found that the
internal heat transfer coefficient had a large impact
on both plots. The coefficients that were determined
at the end of the calibration process yielded a good
solution which indicates a successful calibration
again.

0 500 1000 1500 2000 2500
−20

−10

0

10

20

30

Time in [s]

T
em

pe
ra

tu
re

 in
 [d

eg
C

]

Air temp. Sim
Average air temp. Meas

−3000 −2000 −1000 0 1000 2000 3000
20

30

40

50

60

70

80

Time in [s]

T
em

pe
ra

tu
re

 in
 [d

eg
C

]

Air temp. Sim
Average bottom temp. Meas
Average top temp. Meas
Average temp. Meas

0 500 1000 1500 2000 2500
−20

−10

0

10

20

30

Time in [s]

T
em

pe
ra

tu
re

 in
 [d

eg
C

]

Seat temp. Sim
Seat temp. Meas

Modelling and Calibration of a Thermal Model for an Automotive Cabin using HumanComfort …

260 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076253

Fig. 14 Seat temperature for the passive heat up and active
pull down case

4 Conclusions

The models in XRG’s HumanComfort library was
successfully used for thermal automotive cabin simu-
lations. The models consider all kinds of thermal
heat transfer which is mandatory for using the model
in different applications. Due to its modular design
the user can easily and quickly exchange compo-
nents and modify the layout for his needs. Coupling
to other Modelica libraries, e.g. for modeling air dis-
tribution systems or air conditioning systems is pos-
sible since Modelica.Fluid compatible interfaces
were used. The modeling process for a single car can
be done within one day including parameterization
with data provided.

This article was aiming to present a way to calibrate
an efficient system level model such that it achieves
a comparable accuracy as for more complex ap-
proaches (refer to [4]) with much less effort. The
time to model the cabin and calibrate it takes approx-
imately two weeks or even less when starting from a
template. Furthermore, it was shown that a calibra-
tion has to take at least two different cases into ac-
count: one case with and one without external short
wave irradiance (winter and summer case). The
measurements should include a broad range of vehi-
cle speeds and inlet air low rates. With regard to the
last point the distribution and amount of air has to be
identified as accurate as possible.

5 Acknowledgements

The author would like to thank Denso Automotive
Deutschland GmbH for the kind provision of meas-
urement data used in this study.

References

[1] Michaelsen B., Eiden J.: HumanComfort in
Buildings and Mobile Applications: In pro-
ceedings of the 7th Modelica Conference,
Como, Italy, 2009, pp. 403-412.

[2] Pfafferott T., Schmitz G.: Modelling and
transient simulation of CO2-refrigeration
systems with Modelica, International Journal
of Refrigeration, Elsevier, Volume 27, Issue
1, 2004, pp. 42-52.

[3] Modelon AB, AirConditioning Library
version 1.8, Users Guide, Modelon AB,
Sweden, Oct. 2010.

[4] Neacsu C.-A., Ivanescu M., Tabacu I.: The
influence of the solar radiation on the interior
temperature of the car, http://www.theseus-
fe.com/downloads, 2009.

[5] Kaiser C., Försterling S., Tegethoff W., Köh-
ler J.: Untersuchungen von Regelstrategien
für die Omnibusklimatisierung mit Hilfe ei-
ner Gesamtfahrzeugsimulation, In procee-
dings of ASIM GI Workshop, Wolfenbüttel
(Germany), Feb. 2012.

[6] Baumgart R., Tenberge P., Urbaneck T.:
Senkung des Kraftstoffverbrauchs durch Op-
timierung der Klimaanlage: In proceedings of
14th international congress and exhibition
SIMVEC – Numerical Analysis and Simula-
tion in Vehicle Engineering 2008, Baden-
Baden (Germany), 2008.

[7] Mezrhab A., Bouzidi M.: Computation of
thermal comfort inside a passenger car com-
partment, Journal of Applied Thermal Engi-
neering, Elsevier, Volume 26, 2006, pp.
1697–1704.

[8] Grossmann, H.: PKW-Klimatisierung, Sprin-
ger Verlag, Berlin, 2010.

−3000 −2000 −1000 0 1000 2000 3000
30

40

50

60

70

80

Time in [s]

T
em

pe
ra

tu
re

 in
 [d

eg
C

]

Seat temp. Sim
Seat temp. Meas

Session 2C: Climate Systems I

DOI Proceedings of the 9th International Modelica Conference 261
10.3384/ecp12076253 September 3-5, 2012, Munich, Germany

Modelling and Calibration of a Thermal Model for an Automotive Cabin using HumanComfort …

262 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076253

Holistic vehicle simulation using Modelica –An application on thermal management and operation strategy for electrified vehicles

Holistic Vehicle Simulation using Modelica – An Application on
Thermal Management and Operation Strategy for Electrified Vehicles

Claude Bouvy
Forschungsgesellschaft Kraftfahrwesen mbH

Steinbachstraße 7, 52074 Aachen
bouvy@fka.de

Sidney Baltzer Peter Jeck Jörg Gissing Thomas Lichius Lutz Eckstein
Institut für Kraftfahrzeuge – RWTH Aachen University, Aachen

Steinbachstraße 7, 52074 Aachen
baltzer@ika.rwth-aachen.de

Abstract

The increasing electrification of the drive train in the
automotive environment leads to higher require-
ments for automotive systems and their design.
Therefore, a computer based methodology to support
the engineer in the design phase of car concepts,
components and control algorithms is desirable. All
relevant sections of a vehicle development process,
e.g. longitudinal and lateral dynamics, thermal man-
agement or the power supply should be considered.
Due to this necessity a new holistic vehicle library is
developed at the Forschungsgesellschaft
Kraftfahrwesen mbH Aachen (fka) and Institute of
Automotive Engineering (ika) of RWTH Aachen
University. The introduced holistic method is applied
exemplarily on architecture with the traction battery
as thermal storage to determine the potential of such
a design on the overall efficiency and to analyse dif-
ferent operational strategies.

Keywords: thermal management; vehicle simulation;
traction battery, electric vehicle, range extender,
thermal storage, control strategy

1 Introduction

Due to ecologic and economic reasons, the overall
efficiency and the emissions, both local and global,
of individual mobility have to be improved. An in-
creased electrification of the drive train is currently
being considered as a promising approach for reduc-
ing both the energy demand and the emissions.
However, an increased electrification of the drive

train, i.e. replacing or partly substituting the internal
combustion engine, implies the integration of new
components as well as a higher number of energy
conversion units.

The augmented number of components, as well as
their diverging requirements and operating condi-
tions will clearly increase the complexity of electri-
fied car architectures. On the thermal side for exam-
ple, the integration of temperature sensitive compo-
nents, e.g. lithium ion batteries, may imply more
complex cooling circuit architectures, as the relevant
operating temperatures clearly differ to those of an
electric machine or an internal combustion engine.
On a mechanical level for example, there are several
possibilities to couple an internal combustion engine
and an electric machine: e.g. parallel and serial hy-
brids.

Furthermore the increased efficiency of the electric
machine compared to the internal combustion en-
gine, will also increase the complexity of both the
architecture and the operation strategies. For battery
electric vehicles (BEV) for example, the cabin has to
be heated by means of electric energy, as in general
no or little waste heat is available at a sufficiently
high temperature level. Thus, for highly electrified
concepts the cabin heating will directly influence the
drive train, the power net and the design of the con-
trol strategies. To minimise the used electric energy
heat pump systems and improved heating control
strategies are possible alternatives (cf. e.g. [1]).

The given examples clearly show that a strongly in-
creased complexity has to be expected for the design
phase of future cars. Currently an overall design ap-

DOI Proceedings of the 9th International Modelica Conference 263
10.3384/ecp12076263 September 3-5, 2012, Munich, Germany

proach is missing. In general different and mostly
incompatible tools are applied for different design
tasks and the overall design process is strongly hier-
archic. Up to now such a top-down approach was
practicable, as the correlation of the energy flows
was minor. In general the internal combustion en-
gine, as the core energy conversion unit, implicated
the design of most other units, e.g. the cooling cir-
cuit.

Furthermore, the different energy forms, chemical,
mechanical, electrical and thermal, are increasingly
correlated for electrified car concepts. The higher
complexity as well as the necessity of a holistic ap-
proach requires new tools to support the engineer in
the design process.

2 Library description

The holistic model library developed at
Forschungsgesellschaft Kraftfahrwesen mbH Aachen
(fka) and Institute of Automotive Engineering (ika)
of RWTH Aachen University (cf. [2]) takes into
consideration all energetic (mechanical, electrical,
thermal and chemical) and logical (sensors, actors
and control units) flows including dynamic boundary
conditions (e.g. drive cycles, ambient conditions) of
automotive concerns. It follows a layer based level
approach. Basically the modeling library is struc-
tured as illustrated in Fig. 1.

Fig. 1: The four level structure of the holistic tool

2.1 Base Level

At the lowest level generalized elements are imple-
mented which can easily be adapted due to the object
oriented modeling property of inheritance or instan-
tiation. On the base level the following packages are
implemented. All elements on that level are not
computable and are combined later on the compo-
nents level.

• ThermalLib
• ElectricLib
• MechanicLib
• StateModelLib
• Utilities

The ThermalLib contains all base classes of thermal
concern. Based on a general volume element with
generalized mass and energy balances and proper-
ties, a fluid and a solid element are derived and used
for all calculations. Secondly the geometric infor-
mation of these elements is defined.

For a fluid element the dynamic momentum bal-
ance is calculated. A variable modeling depth of
pressure drop calculation method may be adapted by
choosing a flow model. A heat transfer model calcu-
lates the coefficient of heat transfer and provides the
necessary interface to e.g. the surrounding ambient.
For the solids variable geometries are implemented
based on a solidElement, so that new models can
easily be generated on the components level. This is
illustrated in Fig. 1 where a standardized shell ele-
ment is used for electric machine housing, the tube
of a heat exchanger or a cylindrical battery cell.

The other packages contain e.g. voltage sources
(ElectricLib), inertias (MechanicLib) or general
mathematical functions (Utilities).

The StateModelLib uses both a model based and a
function based approach, wherein data of literature
or specific measured fluids can be chosen.

For physical values thermal, fluid, electric and
mechanical connectors are defined using the flow
and stream properties. For the logical signals ex-
pandable connectors are used.

Interfaces are provided, so that the library stays
compatible with the Modelica Standard Library con-
nectors (cf. [3], [4]) and the Vehicle Interface Li-
brary (cf. [5]).

Base
level

Component
level

System
level

Overall level
e.g. vehicle

Holistic vehicle simulation using Modelica –An application on thermal management and …

264 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076263

2.2 Component Level

At the components level a variable number of base
elements are combined to generate models to a cho-
sen level of design. At present the components level
has the following structure:

• HydraulicComponents
• DriveTrainComponents
• PassengerCabinComponents

E.g. tubes, valves, heat exchangers or pumps are el-
ements of the Hydraulic Components, whereas gears,
clutches, electric machines, internal combustion en-
gines or the traction battery are part of the
DriveTrainComponents. The different kinds of car
body types are integrated e.g. in the Passenger
CabinComponents. All the components inherit from
the lower base class level as described above.
Fig. 2 demonstrates the approach of the library by
the example of the traction battery. It consists of the
electrical model, a thermal model and a Battery
management system (BMS). All sub models are im-
plemented as replaceable models. Depending on the
issue to be investigated the level of detail may be
chosen for the single models. However, for the de-
tailed component design, e.g. the exact shape of the
cooling duct of a battery pack, a strongly increased
level of detail, i.e. a strongly discretised modelling of
the coolant flow, is needed, to judge both the heat
transfer and the pressure losses as Thermal model
(cf. Fig. 2). For the electric model a modeling ap-
proach using manufacture data map or a more de-
tailed calculation on the chemical level may be cho-
sen. The BMS may be simulated as a single Read-
Only system or more intelligent systems including a
control unit may be chosen.
The single models are linked via standardized con-
nectors. For sensor models expandable connectors of
the Modelica Standard Library (cf. [3]) are used.

Fig. 2: Modeling approach of the traction battery

2.3 System

At the system level the interactions of energy and
signal flow between all components are implement-
ed. The thermal fluid part of the system level is ex-
emplarily shown for the low temperature cooling
circuit of a battery electric vehicle in Fig. 3:

Fig. 3: schematic diagram of a battery cooling circuit

Fig. 4 shows the respective exemplary Modelica
model of the configuration, including electrical,
thermal and logical signals.

Fig. 4: Examplary model of the battery circuit

2.4 Overall Level

The vehicle level combines all vehicle sub models
such as the power train, the respective cooling cir-
cuits, the power supply and the passenger cabin.
Beside the global boundary conditions, such as the
driving cycle, the route profile, ambient conditions

Battery simulation model

Sensor signals

Battery management

� ����� ���� 	
�� �
�

�����
�

� �
�

�����
 ����
�
�	
�

� ����
 �� ���	����
 �����

Thermal model

� ��������	 	��	���

� �
�� ������
�

� ��	�
�
 ��
���� ����
�

Electrical model

� !�
	���	�� 	��	���

� !�
	���	�� 	
�����
�

� "�����
� 	���
���
��
� ����
�

Ploss, cells

Tcells

Session 2C: Climate Systems I

DOI Proceedings of the 9th International Modelica Conference 265
10.3384/ecp12076263 September 3-5, 2012, Munich, Germany

or initial conditions a control block which consists of
the driver and the ECU manages all concerns of con-
trol.

Fig. 5: schematic view of the overall level

3 The traction battery as thermal
storage for range extended vehicles

In this chapter an application example is given for
the use of the holistic vehicle simulation model ap-
proach.

A major challenge for electrified vehicles is to cover
the heating demand for the passenger cabin in an
efficient way. As stated in Bouvy et al., (cf. [6]) the
application of a heat pump system in combination
with a preheated traction battery as heat source pro-
vides an efficient solution for passenger cabin heat-
ing, leading to higher range. In most cases the heat
losses of the battery and the thermal capacity are not
high enough to cover the heat demand of the passen-
ger cabin so the battery cools down. To avoid an un-
derrun of a critical minimal cell temperature an addi-
tional electric heater needs to be switched on so the
overall energetic benefit is rather low. Regarding a
range extended electric vehicle the waste heat of the
internal combustion engine may, besides providing
the heat for the passenger cabin, be used to reheat the
battery. By this, the overall efficiency of this cogene-
ration (i.e. producing heat and power) unit may be
maximized. Bouvy et al. (cf. [7]) have shown the
important benefit of a cogeneration unit on the effi-
ciency of passenger cars.

3.1 System architectures

For this paper two system architectures are discussed
for a BEV with a range extender unit.

The first one represents a state of the art range ex-
tender design. The cooling circuit of the range ex-
tender is connected to the heating and ventilation and
air conditioning unit (HVAC) so its waste heat may
be used for cabin heating. An additional heat pump
system is not considered in this scenario and thermal
peak loads are covered by a high voltage electric
heater. The operation strategy of the range extender
is SOC controlled: it starts when the SOC reaches
20 % and is turned off at a value of 30 % (Charge
Sustaining – Mode). The schematic vehicle architec-
ture is illustrated in Fig. 6.

Fig. 6: Vehicle architecture 1

For the second architecture the internal combustion
engine cooling circuit is connected to the battery
cooling circuit by a fluid/fluid heat exchanger (cf.
Fig. 7). Due to this design the battery can be ther-
mally charged. A heat pump system is considered
using the battery as heat source to provide an energy
efficient heating of the passenger cabin when the
internal combustion engine is turned off. The opera-
tion strategy of the range extender is thermally con-
trolled by a two level controller. To keep the cell
temperatures of the traction battery within an optimal
range, the two temperature margins are set to 20°C
and 30°C. This operation strategy guarantees high
coefficients of performance (COPs) of the heat pump
system and an excessive cool down of the battery is
avoided.

For both architectures the thermal peak loads of the
passenger cabin heating demand are covered by an
electric high voltage heater (5 kW).

Cooling circles

Power train (including
longitudinal dynamics)

AC / heat
pump

Passenger
cabin

Power supply

Vehicle

Ambient Driver

VCU

Holistic vehicle simulation using Modelica –An application on thermal management and …

266 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076263

Fig. 7: Vehicle architecture 2

3.2 Simulation setup

In this analysis both layouts have a 44 kW range
tender unit, an 80 kW ASM electric engine and a
lithium-ion-battery with a nominal capacity of
8.6 kWh (about 40 km BEV range determined on the
basis of the NEDC). The data are chosen according
to Hartmann and Renner (cf. [8]).

The defined vehicle has a cabin volume of 3
a surrounding window surface of about 2 m
determination of the cabin heat demand a single pa
senger is assumed and the HVAC is controlled by
the passenger cabin air temperature accor
Strupp and Lemke (cf. [10]).

All simulations are performed for a Central Eur
pean winter scenario with an ambient temperature of
0 °C and solar radiation values according to Strupp
and Lemke (cf. [10]). At simulation start all thermal
masses are in equilibrium at ambient condition. The
battery is conditioned to allow regenerative braking
immediately at the beginning of the simulation ride
(5 consecutive NEDCs). The preconditioning is pe
formed by a 5 kW externally supplied electric heater.

More detailed information concerning model depth
and simulation setup can be found in Bouvy et al.
(cf. [9]).

3.3 Operational strategies

For the first architecture the battery is
charged (SOC= 90%) and thermally
so that a min. cell temperature of 5 °C is reached
The internal combustion engine only operates
“Charge sustaining modus”. The internal combustion
engine is operated with the power correspondi
the lowest specific fuel consumption to charge the
battery. If an SOC of 30% is reached
tender is deactivated (state of the art operation of a
range extender).

For the second architecture a thermal operation
strategy is applied. The battery is

In this analysis both layouts have a 44 kW range ex-
tender unit, an 80 kW ASM electric engine and a

battery with a nominal capacity of
kWh (about 40 km BEV range determined on the

basis of the NEDC). The data are chosen according

The defined vehicle has a cabin volume of 3 m3 and
a surrounding window surface of about 2 m2. For the
determination of the cabin heat demand a single pas-
senger is assumed and the HVAC is controlled by
the passenger cabin air temperature according to

re performed for a Central Euro-
pean winter scenario with an ambient temperature of

°C and solar radiation values according to Strupp
At simulation start all thermal

rium at ambient condition. The
tioned to allow regenerative braking

ately at the beginning of the simulation ride
(5 consecutive NEDCs). The preconditioning is per-
formed by a 5 kW externally supplied electric heater.

concerning model depth
setup can be found in Bouvy et al.

battery is electrically
thermally preconditioned,

so that a min. cell temperature of 5 °C is reached.
only operates in the

The internal combustion
operated with the power corresponding to

the lowest specific fuel consumption to charge the
. If an SOC of 30% is reached, the range ex-

(state of the art operation of a

thermal operation
 thermally condi-

tioned similar to variant 1 but a lower SOC is
to enable electric and thermal charging from the b
ginning on. A reduced operating
extender is chosen, in order to better fit the power to
heat ratio to demand (cf. [7],

Variant Operational

Strategy

1st Without using
battery as the
mal storage

2nd Using battery as
thermal storage
Without battery
preheating

Tab. 1: Investigated variants

In Fig. 8 the Dymola model of the overall system
level is shown for the analysed szenario

Fig. 8: overall system level in Dymola

4 Simulation Results

Fig. 9 shows the dynamic profile of the average cell
temperatures. After the preconditioning phase
thermally operated range extender of variant 2 is
turned on. At beginning the thermostatic valve of the
internal combustion engine i

tioned similar to variant 1 but a lower SOC is chosen
to enable electric and thermal charging from the be-

. A reduced operating power of the range
in order to better fit the power to

, [11]).

Operational Range Ex-
tender Control
Strategy

Without using
battery as ther-

SOC controlled
Pmech = 19000
W

Using battery as
thermal storage
Without battery

Thermally con-
trolled
Pmech = 10000
W

the Dymola model of the overall system
nalysed szenarios.

: overall system level in Dymola

Simulation Results

shows the dynamic profile of the average cell
temperatures. After the preconditioning phase the
thermally operated range extender of variant 2 is

At beginning the thermostatic valve of the
internal combustion engine is closed until the ther-

Session 2C: Climate Systems I

DOI Proceedings of the 9th International Modelica Conference 267
10.3384/ecp12076263 September 3-5, 2012, Munich, Germany

mal masses are heated up. Afterwards the waste heat
is used both for cabin heating and to thermally
charge the traction battery to a temperature of 30°C.
When reaching the threshold the engine is turned off
and the heat pump system cools down the traction
battery by providing the heating demand for the pas-
senger cabin.
For variant 1 the battery slowly heats up due to
charge/discharge losses.

Fig. 9: average cell temperature for the simulated
variants

Fig. 10 visualizes the time dependent state of charge
curve. Variant 1 is operated purely electrically in the
charge depleting mode until the defined SOC of
20 % is reached. Subsequently the range extender is
turned on after and the battery is charged again to a
SOC of 30 % (charge-sustaining).

Fig. 10: State of charge of each variant

The operating times vary due to the power require-
ment for the drive cycle as seen in the velocity pro-
file in Fig. 11.

In the second variant the engine is turned off at about
23 minutes. Over the whole ride the SOC is deplet-
ing because of the thermally controlled operation
strategy. At the end of the ride the electric charge of
the battery remains at about 50 %. Using this strate-
gy the operation intervals of the range extender are

nearly constant except for the first operation interval.
Here the battery heating starts from the thermal pre-
conditioning level (5°C) and must consequently be
operated for a longer time. Afterwards the varying
heat transfer due to the vehicle velocity is rather low
so a thermally stationary state is reached.

Fig. 11: Range extender operation

Next, the time dependent heat flow rate distributions
of the different heating components are discussed. In
the analysis it is assumed, that the electrical PTC
heater has an efficiency of 100 %, so the electric
demand and the heat flow rate are the same. When
the internal combustion engine is not operated, its
cooling circuit pump is switched off and the remain-
ing heat is not used. This is illustrated in Fig. 12.

Fig. 12: Passenger cabin heating 1st variant

Regarding variant 2, Fig. 13 shows that due to the
high temperature level of the battery´s coolant circuit
high COP-values are reached by the heat pump sys-
tem so an efficient cover of the passenger cabin is
achieved while operating purely electrically.

0

5

10

15

20

25

30

35

0 900 1800 2700 3600 4500 5400 6300 7200

T
em

p
er

at
u

re
 [

K
]

Time [s]

Min. Cell Temp. Max. Cell Temp.

1st variant

2nd variant

Start Driving

0%

20%

40%

60%

80%

100%

0 900 1800 2700 3600 4500 5400

S
ta

te
 o

f
C

h
ar

g
e

[%
]

Time [s]

1st variant 2nd variant

charge-depleting charge-sustaining

0

10

20

30

40

50

60

0 900 1800 2700 3600 4500 5400

V
el

o
ci

ty
 [

m
/s

]

Time [s]

2nd Variant / 54,6 %

1st Variant / 25,1 %

R
an

g
e

E
xt

en
d

er
ac

ti
v

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 900 1800 2700 3600 4500 5400

H
ea

t
F

lo
w

 R
at

e
[W

]

Time [s]

Passenger Cabin HEX Air PTC

1st variant

Holistic vehicle simulation using Modelica –An application on thermal management and …

268 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076263

Fig. 13: Passenger cabin heating 2nd variant

Furthermore, an energetic evaluation of both systems
is performed. For the sake of comparability, the
amount of used primary energy is evaluated for the
two variants. In order to evaluate the overall effi-
ciency the overall energy input has to be accumulat-
ed. For the discussed variants two different kind of
energy forms are used, fuel and electric energy from
the grid. For this analysis a primary energy factor of
1.26 is chosen for the fuel (cf. [12]) and 2.6 for elec-
tric energy (cf. [13]). This approximately corre-
sponds to the energetic supply situation in Germany.

Fig. 14: Primary energy demand for both variants

The results show primary energy saving up to 12 %
for architecture 2 in combination with a thermal op-
erational strategy. Thus, for the considered winter
scenario the benefit of a cogeneration approach in
combination with a heat pump and a thermal storage
is clearly stated out.

5 Conclusion

The increasing complexity of actual and future vehi-
cle leads to the need of a holistic modeling develop-
ment tool taking into account all the classical auto-
motive disciplines such as longitudinal dynamics,
electric system or thermal management but also their
connection vis-à-vis. Such a holistic library is cur-
rently being developed at Forschungsgesellschaft
Kraftfahrwesen mbH Aachen (fka) and Institute of

Automotive Engineering (ika) of RWTH Aachen
University and was presented in the paper.

An application example was given of the traction
battery as a thermal storage of range extended elec-
tric vehicles. In the example the benefit of an en-
hanced cogeneration is shown. A further advantage
of such an approach is that the traction battery will
mostly be operated in an optimal temperature range
and thus, best charge/discharge efficiencies and life-
times are reached if the range is wisely chosen.
However, the influence of this control strategy on the
battery’s lifetime has to be investigated further on.
Due to the scalability of the model library a highly
detailed model to determine lifetime strategies of the
battery could be chosen for that or/and experimental
could be carried out.

References

[1] M. Jung, A. Kemle, T. Strauss, und M.
Wawzyniak, „Innenraumheizung von Hybrid-
und Elektrofahrzeugen“, ATZ - Automobiltech-
nische Zeitschrift, Nr. 05/2011, 2011.

[2] P. Jeck, C. Bouvy, T. Lichius, und L. Eckstein,
„Holistic method of thermal management de-
velopment illustrated by the example of the
traction battery for an electric vehicle“, pre-
sented at the 20th Aachen Colloquium „Auto-
mobile and Engine Technology“, Aachen,
2011.

[3] Modelica Association, „Modelica® - Release
Notes of the Modelica Standard Library Ver-
sion 3.2“, 2010.

[4] R. Franke, F. Casella, M. Sielemann, K.
Proelss, M. Otter, und M. Wetter, „Standardi-
zation of Thermo-Fluid Modeling in
Modelica.Fluid“, in Proceedings 7th Modelica
Conference, Como, 2009.

[5] M. Dempsey, M. Gäfvert, P. Harman, C. Kral,
M. Otter, und P. Treffinger, „Coordinated au-
tomotive libraries for vehicle system model-
ling“, in Proceedings 5th Modelica Confer-
ence, Vienna, 2006.

[6] C. Bouvy, P. Jeck, J. Gissing, T. Lichius, S.
Baltzer, und L. Eckstein, „Die Batterie als
thermischer Speicher: Auswirkung auf die In-
nenraumklimatisierung, die thermische Archi-
tektur und die Betriebsstrategie von Elektro-
fahrzeugen“, Wärmemanagement des Kraft-
fahrzeugs, Bd. VIII, Essen 2012.

[7] C. Bouvy, T. Lichius, und P. Jeck, „On the in-
fluence of the thermal demand on the overall

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 900 1800 2700 3600 4500 5400

H
ea

t
F

lo
w

 R
at

e
[W

]
C

o
m

p
re

ss
o

r
P

o
w

er
 [

W
]

Time [s]
Passenger Cabin HEX Air PTC
Heat Pump Condensor Heat Pump Compressor

2nd Variant

1,0

17,3

26,3

44,7

1,0

7,6

30,5

39,2

0

5

10

15

20

25

30

35

40

45

50

Battery
Preconditioning

Battery
(af ter recharge)

Fuel Total Demand

P
ri

m
ar

y
E

n
er

g
y

D
em

an
d

 [
kW

h
]

1st Variant 2nd Variant

Session 2C: Climate Systems I

DOI Proceedings of the 9th International Modelica Conference 269
10.3384/ecp12076263 September 3-5, 2012, Munich, Germany

efficiency of future drive train architectures for
passenger cars“, Int. J. Electric and Hybrid
Vehicles, Bd. Vol. 3, Nr. No. 3, 2011.

[8] B. Hartmann und C. Renner, „Conventional
HEV, Plug-In or Range Extender? A conceptu-
al comparison of modern HEVs based on simu-
lations“, presented at the 18th Aachen Collo-
quium „Automobile and Engine Technology“,
Aachen, 2009.

[9] C. Bouvy, P. Jeck, S. Baltzer, J. Gissing, T.
Lichius, und L. Eckstein, „The battery as ther-
mal storage in range extender vehicles: Influ-
ence on the architecture and the operating
strategy“, in Hybrid and Electric Drivetrains
2012, Aachen.

[10] N. C. Strupp und N. Lemke, „Klimatische Da-
ten und Pkw-Nutzung: Klimadaten und Nut-
zungsverhalten zu Auslegung, Versuch und
Simulation an Kraftfahrzeug-Kälte-
/Heizanlagen in Europa, USA, China und Indi-
en“, Frankfurt a. Main, 2009.

[11] C. Bouvy, T. Lichius, und P. Jeck, „On the in-
fluence of cabin heating on the overall effi-
ciency of car concepts“, presented at the 20th
Aachen Colloquium „Automobile and Engine
Technology“, Aachen, 2011.

[12] R. Frischknecht und M. Tuchschmid, „Primär-
energiefaktoren von Energiesystemen“, Aa-
chen, 2009.

[13] N.N., Verordnung über energiesparenden
Wärmeschutz und energiesparende Anlagen-
technik bei Gebäuden (Energieeinsparverord-
nung - EnEV). 2009.

Holistic vehicle simulation using Modelica –An application on thermal management and …

270 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076263

Modelling of Radiative Heat Transfer in Modelica with a Mobile Solar Radiation Model and a View Factor Model Modelling of Radiative Heat Transfer in Modelica with a Mobile Solar

Radiation Model and a View Factor Model

Arnav Pathak, Victor Norrefeldt, Gunnar Grün
Fraunhofer Institute for Building Physics, Dept. Indoor Climate, 83626 Valley, Germany

arnav.pathak@ibp.fraunhofer.de, victor.norrefeldt@ibp.fraunhofer.de,

gunnar.gruen@ibp.fraunhofer.de

Abstract

This paper presents a model to estimate the solar

radiation under clear sky conditions over stationary,

moving as well as flying objects. For the latter it is

important to predict the peak solar irradiance under

clear sky condition to calculate maximum possible

solar thermal loading. In this paper results of

irradiation over surface on ground and over aircraft

windows and windshields at cruise altitude are

presented. Another model implemented, calculates

the view factor between two or more surfaces.

Determination of the long-wave radiant heat

exchange between two or more surfaces or heat

exchange with a surface itself requires a view factor

matrix. There are several analytical solutions

available to calculate view factors for simple and

known configurations. Many building simulation

programs estimate the view factors in a simplified

way, especially when complex geometries are

involved. The simplified approach may result in high

errors of surface temperatures, which can further

cause error in energy balance and estimation of

comfort level. The purpose of creating this model is

to calculate view factors between complex

geometries. The view factor matrices of an enclosed

space and of a geometry with openings on its

surfaces are presented in this paper. A sensitivity

analysis of a view factor matrix is also presented.

Keywords: Solar radiation modeling, View factor

calculation, Modelica models, Long-wave radiant

heat exchange

1 Introduction

Methods to predict solar radiation have a wide range

of applications such as:

 Calculation of cooling loads for air conditioners

 Solar heat load on buildings, automobile, aircraft

 Material deterioration under sunlight

 Solar thermal power generation

Absorption and scattering of a solar beam in the

atmosphere lead to attenuation of solar radiation. The

outer space provides almost complete vacuum due to

which there is no attenuation of solar radiation in the

outer space. The main sources of absorption and

scattering are atmospheric gases and aerosol in the

atmosphere respectively. The longer the path

travelled by a solar beam through the atmosphere

before reaching the surface, the greater is the

likelihood that more of it will be scattered or

absorbed [1]. Especially for aircrafts the impact of

solar radiation at cruise altitude can be high as

radiation at cruise altitude can go up to 1200 W/m².

A further objective of this research work is to

simulate long-wave radiant heat exchange between

complex geometries. Thus the view factors between

these geometries have to be determined. Calculation

of view factors is a quite complex process, as it

requires solving a double area integral. There are

several analytical solutions available to calculate

view factors for simple and known configurations

[2]. In the procedure presented here a pre-processor

does the triangular surface meshing and creates a file

in stl-format which serves as input for the Modelica

model. The results of different geometries are

presented in this paper

2 Solar Radiation Model

The solar radiation model can be used to predict

clear sky solar radiation over stationary surfaces like

building façades or parked automobiles, moving

surfaces like vehicles following a predefined path, as

well as flying surfaces like aircraft during climb,

cruise and descent.

There are two basic models:

 Sun position model

 Surface radiation model

DOI Proceedings of the 9th International Modelica Conference 271
10.3384/ecp12076271 September 3-5, 2012, Munich, Germany

2.1 Sun position model

The sun position model is the global solar model

which calculates the position of the sun in the sky at

a particular time and at a particular location on the

earth [6][7]. This information and the surface

orientation are inputs to the surface irradiation

model. Both models are set as an inner outer system,

so there is no need of physically connecting them.

The input parameters for the global solar model

depend on the type of application. If it is a stationary

model, then the input parameters are longitude,

latitude, altitude, standard time longitude, ground

albedo, single scattering albedo, thickness of

precipitable water [cm], ozone content of the

atmosphere [cm NTP] and forward scatterance.

Meaningful default values are implemented to allow

simulations even if the user lacks some of this

information (see Figure 1). Apart from above

mentioned parameters the modeller must select the

modelling approach from a drop down menu. There

are three modelling approaches implemented to

estimate radiation. If visibility data is not available

the modeller can select between a modified Pinazo

model [3][4] and a hybrid model for estimating

global solar radiation [5]. If visibility data is

available, the model will calculate angstrom’s

turbidity from this visibility data. Figure 1 shows the

parameter window of the global sun position model

for stationary surfaces.

Figure 1 : Parameterization of stationary global sun

position model

In case of moving or flying objects, the modeller has

to use the mobile global sun position model. As

location of a vehicle and orientation of surfaces are

constantly changing, this information is set as input.

Figure 2 shows the model block of the mobile global

sun position model. All the variables changing with

time are in the transition profile which is connected

to the global model.

Figure 2 : Mobile sun position model connected with

a flight profile

From the location, the day of the year and time of the

day, the sun position model calculates the position of

the sun in the sky and extraterrestrial radiation. From

the altitude and the sun position in the sky, the model

calculates the air mass. To determine the solar beam

attenuation and irradiation on a horizontal surface,

the model calculates absorption and scattering of a

solar beam. The direct normal irradiance for a clear

sky [3][4] is expressed as

gowarscon tttttIEI9751.0 (1)

where Eo is the earth’s orbit eccentricity correction

factor; Isc is the solar constant (1367 W/m
2
); tr, ta, tw,

to and tg are the transmittance due to Rayleigh

scattering, aerosol absorption and scattering, water

vapour, ozone and other gases absorptions

respectively.

To determine the direct solar radiation on horizontal

surfaces using equation (1) it is necessary to know

the value of Angstrom’s turbidity coefficient. The

model implemented will calculate angstrom’s

turbidity by three different methods. The modeller

can select the method from a parameter window. If

the horizontal visibility is known, the model

computes the value of ß (Angstrom’s turbidity

coefficient) by equations (2) or (3) [9]:





















 132.1

18

5.44.0
.01162.0.

912.3
.55.0

Vis

Vis

a (2)

Equation (2) proves to be accurate enough when the

value of particle size distribution exponent a is 1.3.

For the values of a different to 1.3 equation (3)

proves to be more accurate.

   HaGFVis
Vis









 ..23285.16.01162.0

912.3


(3)

Modelling of Radiative Heat Transfer in Modelica with a Mobile Solar Radiation Model …

272 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076271

Where

Vis=Horizontal visibility [km]

F = 2.3575E
-02

,

G = 9.387E
-03

 and

H = 0.278863

Equation (2) and (3) do not cover visibilities in fog.

During fog, the size of the particles becomes very

big hence none of these equations are applicable in

that condition. The estimation of diffuse radiation is

done by using modified Pinazo model [4].

2.2 Surface radiation model

Two types of surface models are implemented here,

one is for stationary surfaces and the other is for

moving as well as for flying surfaces. The modeller

has to define the surface orientation of each surface

in the surface model parameter window. If the

surface is moving, then modeller has to give the

initial surface orientation in the surface model and

the change in surface orientation with time in the

global model. The surface model reads the change in

surface orientation from the global system and

calculates the solar incident angle on each surface for

each time step. Figure 3 shows the parameter

window of the surface radiation model

Figure 3: Surface radiation model parameter window

Four different radiation models are implemented [6].

The modeller has to select one of the following

radiation models from the drop down menu,

 Isotropic model: All diffuse radiation is

uniformly distributed over the sky dome.

 Circumsolar model: The effect of circumsolar

radiation and horizon brightening is taken into

account.

 Iso-circumsolar model: The portion of the diffuse

radiation is treated as circumsolar and the

remaining portion is treated as isotropic.

 Horizon brightening model: In addition to

isotropic diffuse and circumsolar radiation, the

Reindl model also accounts for horizon

brightening.

When the model calculates clear sky radiation, the

results of circumsolar model and isotropic model are

the same. All four models are implemented to use

under clear sky conditions as well as under overcast

conditions. The surface radiation model can further

be connected to wall models and/or window models.

3 Estimated solar radiation

3.1 Stationary surface at ground

Figure 4 shows a comparison between estimated

solar radiation under clear sky conditions and the

measured solar radiation. The measured data shown

in the figure 4 were taken from Fraunhofer IBP’s

weather station for the 10
th
 of September 2011 [8].

Figure 4 : Comparison of estimated radiation with

measured radiation (top) and difference in measured

and estimated radiation (bottom)

For almost the whole day, there were no clouds in

the sky except for some time between 7 am and

9 am, where one can see a larger deviation between

measured and simulated beam radiation. This

difference can be reduced if the cloud factor is

known. The current model can calculate overcast

conditions if the cloud factor is known in advance.

For the clear sky condition, the difference between

simulated and measured beam radiation is less than +

20 W/m
2
.

Session 2C: Climate Systems I

DOI Proceedings of the 9th International Modelica Conference 273
10.3384/ecp12076271 September 3-5, 2012, Munich, Germany

3.2 High altitude solar radiation

At cruise altitudes, solar radiation intensity is much

higher because the solar beam has to travel less

distance in the atmosphere.

Figure 5 : Ground level and high altitude solar

radiation

Figure 5 shows the difference between the solar

radiation on a horizontal surface at ground level (in

Holzkirchen, Fraunhofer IBP, Germany) and at

cruise altitude of 35,000 ft. Results shown are for the

spring time. During hot summer days, solar radiation

at cruise altitude can go up to 1200 W/m
2
.

3.3 Solar radiation on aircraft

Solar heating can contribute significantly to thermal

loads of an aircraft, especially when flying at high

altitudes. Solar radiation affects e.g. aircraft cockpits

directly through the windshield and cabins through

windows. Heat dissipated by internal heat sources

and heating by direct solar radiation has an adverse

effect on thermal comfort of passengers, cabin crew

and pilots which requires considerable amount of

cooling air in the cabin and in the cockpit. When the

aircraft is on ground at some hot and humid place the

effect of solar heating is significant. While the

aircraft is on ground, temperature of the surfaces

exposed to direct solar radiation are typically 20 K

higher than ambient temperature, depending on the

thermal capacity of the surface material and

geographic location. Figure 6 shows the global sun

position model and environment model connected

with a flight profile. It also shows a wall structure

model and window model connected with the surface

orientation model.

Figure 6 : Model to simulate solar radiation on an

aircraft

The model shown in the figure 6 reads the flight

profile (longitude, latitude, altitude, time, day of the

year) and accordingly calculates the irradiation on

differently oriented surfaces of the aircraft skin. The

assumption of clear sky condition is fairly accurate

and viable to use at cruise altitude, as there are not

much clouds present at this altitude. Environmental

parameters such as ambient pressure, ambient

temperature, humidity, skin temperature etc. are

implemented as functions depending on the flight

profile.

The surface orientation model for the aircraft

fuselage is a discretised cylinder model. The

cylindrical surface is discretized into a number of

rectangular strips where each strip has a different

surface orientation and each strip is an individual

surface which will calculate its new orientation as

per its initial position and the given flight profile.

The incident angle for each surface is different. This

cylindrical surface model is then further connected to

the window and wall model.

Figure 7 shows the solar irradiation on aircraft

windows and windshield. The simulation is done for

a flight from Munich international airport to

Johannesburg international airport. There are several

assumptions made such as: flight duration is 10 h

30 min, departure time from Munich is 7 am,

duration of taxing at departure airport and at arrival

airport is ignored, initial take-off and approach is

ignored. The simulation is done for 21-March, 21-

June and 21-Dec. It is assumed that the flight takes

30 min to reach cruise altitude and 45 min for

descent and initial approach. The time to reach cruise

altitude depends on the several factors like type of

aircraft, weight of aircraft, allowable angle of attack

and angle of turn etc. The flight profile considered

here cannot be applied as a standard profile; it is

Modelling of Radiative Heat Transfer in Modelica with a Mobile Solar Radiation Model …

274 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076271

purely based on close approximation. The cruise

altitude considered for this simulation is 39,370 ft.

Figure 7 : Incoming solar radiation on window and

windshield outer surface.

While observing the figure 7, one should keep in

mind that when it is winter in the northern

hemisphere, it is summer in the southern hemisphere.

The three dates considered in the simulation

represent the summer solstice, winter solstice and

equinox. The results shown in the figure 7 can be

considered as irradiance over the outer surface of

windshield and window, and not as the amount of

irradiance entering into cockpit and cabin. The

window and windshield will absorb some of the solar

radiation, some of the radiation will be reflected and

the remaining will be transmitted.

4 View Factor Model

4.1 Basics

View factors between two surfaces are dependent on

the geometry of the surfaces and their orientation.

The view factor can be interpreted as the fraction of

diffusive radiant heat exchange between surface i

and surface j. The view factor between two

infinitesimal surface elements dAi and dAj is defined

by equation (4). [10][11]

ji

ji

AjAii

ij dAdA
rA

F  
2.

cos.cos1





(4)

Equation (4) is the general equation of a view factor

between surface i and surface j, as shown in figure 8,

where r is the distance between the centres and cosθi

and cosθj are the directional cosines. Cosθi and cosθj

can be determined by using following equation [11].

Figure 8: View factor between two infinitesimal

surface elements

r

zznyymxxl ijiijiiji

i

)()()(
cos


 (5)

r

zznyymxxl jijjijjij

j

)()()(
cos


 (6)

Where x,y,z are the coordinates of a centre of the

element under consideration. When discretizing

surfaces i and j with triangular elements to solve

equation (4) the distance r is determined from the

centres of the triangles. The areas of the elements are

determined using the parallelogram theorem. The

discretization yields equation (7) :

ji

ji

i

ij dAdA
rA

F .
.

cos.cos1
2




 (7)

Once Fij is known one can calculate Fji from equation

(8):

jijiji FAFA ..  (8)

4.2 Modelling approach

A pre-processor is used to create a triangular surface

mesh and to store it as .stl-file. This file is the input

for the Modelica model described here. The model

reads vertex and normal vector of each triangular

facet from the .stl-file and creates both coordinate

matrix and normal vector matrix. In the next step, the

model will calculate the centres of each triangle, the

distance r for each triangle with all the other

triangles and similarly directional cosines for each

triangle. The ‘area function’ call in the model will

calculate area of each triangle. The ‘view factor’

function call in the model will calculate the view

factor of each triangle with all the other triangles.

Session 2C: Climate Systems I

DOI Proceedings of the 9th International Modelica Conference 275
10.3384/ecp12076271 September 3-5, 2012, Munich, Germany

Finally the ‘sum view factors’ function call will give

the final view factor of the whole surface with all the

other surfaces. Summation of view factors is done as

shown in the equation (7). All of the above functions

are implemented in a view factor model. The

modeller has to give only the .stl-file for each

surface.

5 Application of view factor model

5.1 Closed geometry

The accuracy of the model is dependent on the

meshing size. With finer meshing the accuracy of

results is improved. If the meshing is coarse, the

results are less accurate but the model will take less

computational time.

Figure 9 : Closed geometry (box)

Figure 9 shows a rectangular box with 6 surfaces.

The box is 1 m long, 0.5 m high and 0.5 m wide. It is

easy to solve the double area integral (DAI) for this

geometry and that is the reason why such simple

geometry is considered, so that the results of the

Modelica model can be compared with the DAI

solution. There are 6 surfaces of the box. Each

surface of the box can see the other surface, so there

will be 6x6 view factors but none of the surface can

see itself as all the surfaces are flat surfaces hence

there will be 6x6 view factors with a zeros on the

diagonal of the view factor matrix. Table 1 shows the

result of the Modelica model and the actual view

factor values calculated by DAI and their

comparison.

Table 1 : Comparison of view factors of a box

meshed into 4000 triangles.

1

e

%
2

e

%
3

e

%

1
Modelica 0.000

0.00
0.119

2.23
0.244

1.19
DAI 0.000 0.116 0.241

2
Modelica 0.238

2.21
0.000

0.00
0.238

2.21
DAI 0.233 0.000 0.233

3
Modelica 0.244

1.19
0.119

2.23
0.000

0.00
DAI 0.241 0.116 0.000

4
Modelica 0.238

2.21
0.069

0.03
0.238

2.21
DAI 0.233 0.069 0.233

5
Modelica 0.286

0.19
0.119

2.23
0.244

1.19
DAI 0.286 0.116 0.241

6
Modelica 0.244

1.19
0.119

2.23
0.286

0.19
DAI 0.241 0.116 0.286

4

e

%
5

e

%
6

e

%

1
Modelica 0.119

2.23
0.286

0.19
0.244

1.19
DAI 0.116 0.286 0.241

2
Modelica 0.069

0.03
0.238

2.21
0.238

2.21
DAI 0.069 0.233 0.233

3
Modelica 0.119

2.23
0.244

1.19
0.286

0.19
DAI 0.116 0.241 0.286

4
Modelica 0.000

0.00
0.238

2.21
0.238

2.21
DAI 0.000 0.233 0.233

5
Modelica 0.119

2.23
0.000

0.00
0.244

1.19
DAI 0.116 0.000 0.241

6
Modelica 0.119

2.23
0.244

1.19
0.000

0.00
DAI 0.116 0.241 0.000

Results shown in table 1 are for a box meshed into

4000 triangles. The maximal error is 2.23 % for F12,

F32, F52, F62, F14, F34, F54 and F64. The minimal error

is 0.03 % for F24 and F42.

Table 2 shows the similar results as table 1 but with

a bit finer meshing. The maximal error in table 2 is

0.57 % and the minimal error is 0.01 %.

Table 2 : Comparison of view factors of a box

meshed into 6000 triangles.

1

e

%
2

e

%
3

e

%

1
Modelica 0.000

0.00
0.117

0.52
0.242

0.57
DAI 0.000 0.116 0.241

2
Modelica 0.234

0.49
0.000

0.00
0.234

0.49
DAI 0.233 0.000 0.233

3
Modelica 0.242

0.57
0.117

0.52
0.000

0.00
DAI 0.241 0.116 0.000

4
Modelica 0.234

0.49
0.069

0.01
0.234

0.49
DAI 0.233 0.069 0.233

Modelling of Radiative Heat Transfer in Modelica with a Mobile Solar Radiation Model …

276 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076271

5
Modelica 0.286

0.08
0.117

0.52
0.242

0.57
DAI 0.286 0.116 0.241

6
Modelica 0.242

0.57
0.117

0.52
0.286

0.08
DAI 0.241 0.116 0.286

4

e

%
5

e

%
6

e

%

1
Modelica 0.117

0.52
0.286

0.08
0.242

0.57
DAI 0.116 0.286 0.241

2
Modelica 0.069

0.01
0.234

0.49
0.234

0.49
DAI 0.069 0.233 0.233

3
Modelica 0.117

0.52
0.242

0.57
0.286

0.08
DAI 0.116 0.241 0.286

4
Modelica 0.000

0.00
0.234

0.49
0.234

0.49
DAI 0.000 0.233 0.233

5
Modelica 0.117

0.52
0.000

0.00
0.242

0.57
DAI 0.116 0.000 0.241

6
Modelica 0.117

0.52
0.242

0.57
0.000

0.00
DAI 0.116 0.241 0.000

For a box with 8000 triangles (see table 3) the error

is even less. The maximal error for a box meshed

into 8000 triangles is 0.086 % and the minimal error

is 0.00 %. It is obvious that the error can be reduced

by fine meshing but it would be interesting to see the

effect of fine meshing on the computation time.

Table 3 summarized results and indicates the needed

computation time on an computer with – ‘Intel ®

Core ™ i5, M 520@2.40 GHz, 2.92 GB RAM,

Window 32-bit’

Table 3 : Result summary for view factor calculation

No of

Triangles

Max

Error

[%]

Min

Error

[%]

Total

error of

closed

geometry

[%]

Computati

on time

[min]

4000 2.233 0.030 1.10 34

6000 0.566 0.013 0.40 86

8000 0.086 0.000 0.05 170

The geometry under consideration is symmetric. The

computation time for non-symmetric geometries can

be even higher. The meshing size is the defining

factor one has to define as per the level of accuracy

required and computational time.

5.2 Geometry with openings

Figure 10 shows the geometry with openings on

surface 1 and surface 2. The geometry shown in

figure 10 is meshed into 4000 triangles. The results

of a Modelica model are shown in table 4.

Figure 10 : Geometry with openings

The size of the rectangular box is the same as it was

in the closed geometry. Therefore, only view factors

concerning surface 1 and surface 2 will be different

while all other results will be the same. The size of

the opening on surface 1 is 0.2m x 0.2m and on

surface 2 is 0.2m x 0.4m.

Table 4 : View factor matrix for the geometry with

openings on surface-1 and surface-2

 1 2 3 4 5 6

1 0.000 0.215 0.240 0.240 0.068 0.240

2 0.107 0.000 0.246 0.274 0.127 0.246

3 0.101 0.207 0.000 0.244 0.119 0.286

4 0.101 0.230 0.244 0.000 0.119 0.244

5 0.057 0.213 0.238 0.238 0.000 0.238

6 0.101 0.207 0.286 0.244 0.119 0.000

6 Conclusion & Future Work

A step towards better modelling of radiative heat

transfers with Modelica has been taken in the

presented work. An overview of the solar irradiation

modelling for stationary, moving and flying surfaces

is outlined in this paper. Comparison with weather

data for a clear day shows that results of estimated

clear sky radiation at ground level are accurate. A

further model has been developed to determine the

view factor between differently oriented surfaces.

Comparison with an analytical solution shows that

the accuracy increases with the number of surface

elements used to discretize surfaces. For the future,

we intend to include a model which can calculate

obstructed view factors as well. Computational time

is also an area of scrutiny where we intend to

investigate solutions allowing for higher speed.

These developments will allow for better modelling

Session 2C: Climate Systems I

DOI Proceedings of the 9th International Modelica Conference 277
10.3384/ecp12076271 September 3-5, 2012, Munich, Germany

of radiative heat transfers when considering thermal

management in stationary and mobile spaces.

7 References

[1] L.Elterman : UV, Visible and IR Attenuation

for Altitudes to 50 km, Air Force Cambridge

Research Laboratories, L.G. NANSCOM

FIELD, BEDFORD, MASSACHUSETTS,

1968.

[2] John R. Howell.: A Catalog of Radiation Heat

Transfer Configuration Factors, 3
rd

 Edition,

Department of Mechanical Engineering, The

University of Texas at Austin, Visited on

16.March 2012,
http://www.engr.uky.edu/rtl/Catalog/

[3] J.M. Pinazo, J.Canada, J.V.Bosca.: A New

Method to Determine Angstrom’s Turbidity

Coefficient: Its Application for Valencia, Solar

Energy, Vol. 54, No. 4, pp. 219-226, 1995

[4] A.Q. Malik.: A modified method of estimating

Angstrom's turbidity coefficient for solar

radiation models, Renewable Energy 21

(2000) 537-552.

[5] K.Yang,G.W.Huang and N.Tamai.: A hybrid

model for estimating global solar radiation,

Solar Energy Vol. 70, No. 1, pp. 13–22, 2001

[6] Soteris A. Kalogirou : Slolar Energy

Engineering Processes and Systems, Elsevier

Inc, 2009.

[7] John A.Duffie, William A.Beckman.: Solar

Engineering of Thermal Processes, John Wiley

& Sons. Inc. 1980.

[8] Fraunhofer IBP Weather Station Website,

consulted on 06.March 2012,

http://www.ibp.fraunhofer.de/wetter

[9] Meinrand A. Mächler: Parameterization of

solar irradiation under clear skies, Diploma

Maschineningenier, Eidg.Techn. Hochschule

Zürich, 1977.

[10] Michael F. Modest, Radiative Heat Transfer –

Second Edition, Academic Press, Elsevier

Science, 2003.

[11] Lilian Dobrowolski de Carvalho Augusto,

Bruno Giacomet and Nathan Mendes.:

Numerical Method for Calculating View

Factor Between Two Surfaces, Proceedings:

Building Simulation 2007

Modelling of Radiative Heat Transfer in Modelica with a Mobile Solar Radiation Model …

278 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076271

VEPZO – Velocity Propagating Zonal Model for the prediction of airflow pattern and temperature distribution in enclosed spaces

VEPZO – Velocity Propagating Zonal Model for the prediction of air-
flow pattern and temperature distribution in enclosed spaces

Victor Norrefeldt Gunnar Grün
Fraunhofer-Institute for Building Physics

Fraunhoferstr. 10, 83626 Valley, Germany
victor.norrefeldt@ibp.fraunhofer.de

Abstract

This paper presents the VEPZO-model (VElocity
Propagating ZOnal model), the first three dimen-
sional airflow model for indoor spaces that has been
implemented in Modelica. The model predicts air-
flow and temperature distribution in a room. The
main feature of the VEPZO model is that each zone
has a characteristic velocity depending on entering
and leaving airflows. This characteristic velocity is
propagated into space ensuring the propagation of
driving airflows. The VEPZO model can be inter-
faced to other models of the Modelica.Standard li-
brary. In an application example a displacement ven-
tilation in a twin-aisle aircraft cabin is investigated.
The temperature in the occupied zones is predicted
between 20.6 and 23.0 °C.

Keywords: zonal model, airflow modeling, Modelica

1 Introduction

Accurate energetic modeling of buildings and vehi-
cles requires the consideration of included air. In a
multizone model the air in a room or zone is consid-
ered perfectly mixed. Air exchanges occur between
rooms or with the environment. This approach is im-
plemented in the “Buildings” library [1]. If a higher
level of detail is needed, the zonal model is an alter-
native that can be implemented in Modelica. A zonal
model divides a room into typically 10 to 100 zones
exchanging air through flow paths. At the last Mod-
elica conference Bonvini and Leva [2] presented an
implementation of a two-dimensional zonal model.
In parallel to their work another Modelica-based
zonal model, VEPZO (Velocity Propagating Zonal
Model) has been built at the Fraunhofer-Institute for
Building Physics. Former zonal models have some
drawbacks that make them unsuitable for the use in
Modelica. The airflow is supposed to rest in the
zones and to move in the flow models. Once air en-
ters a zone, its velocity is dissipated. Therefore, the

zonal formulation is not valid in areas with driving
flows due to jets or plumes [3]. Here, Inard et al. [4]
suggest using jet-, plume- or thermal boundary layer
correlations to compute the amount of air entrained
from the surrounding “normal” zones. A Modelica
implementation of this suggestion would require the
model to change its set of equations during runtime
to be able to switch from the zonal model to a corre-
lation model where needed. However, this feature is
currently not provided by Modelica. Furthermore,
the flow models are based on the Bernoulli-equation
resulting in a square root function of the pressure
difference. At zero pressure difference, the square
root is numerically unstable due to its infinite gradi-
ent. Therefore, the following modifications have
been made in the VEPZO model:

 Calculation of the acceleration or decelera-
tion of the airflow between two adjacent
zones with a viscous loss model

 Introduction of the length of an airflow path
into the zonal equations

 Use of the airflow velocity as a property in
the zones

Bonvini and Leva [2] use a similar approach, how-
ever the VEPZO model differs from their implemen-
tation in the following points:

 Use of Modelica.Media-models for air prop-
erties computation

 Use of stream-connectors
 A flow model connects to two zones only

and not to adjacent flow models
 Three dimensions implemented
 Viscosity is a parameter with value 0.001

2 Implementation of the VEPZO
model

The two main components of the VEPZO model are
a zone model and a flow model (Figure 2). The zone

DOI Proceedings of the 9th International Modelica Conference 279
10.3384/ecp12076279 September 3-5, 2012, Munich, Germany

(cube) and the flow (grey rectangle) models are con-
nected by ports (rhombs) to form a room. These
ports allow the exchange of relevant information be-
tween the flow and the zone model:

Figure 1: Implementation of connector, position and
velocities contain coordinates and characteristic ve-
locity of zone, dv_perp is the gradient of characteris-
tic velocity perpendicular to flow direction,
sum_d2v_perp_weighted is a quantity used for vis-
cosity computation

The flow models have two ports to connect adjacent
zones. Each zone has six ports, one for each bounda-
ry. A Boolean parameter is assigned to each port to
make the distinction whether the port is connected to
a flow model or whether it is adjacent to a room
boundary surface. Furthermore, each zone has a heat
port (red square) allowing heat exchanges with mod-
els of other components like e.g. heat sources or
walls. Air properties are computed from Modeli-
ca.Media. Depending on the application, the air
model can be changed from dry to moist air. Even
pollutants could be taken into account.

Figure 2: VEPZO model in x-z direction (y not
shown); cubes: zones; grey rectangles: flows;
rhombs: airflow ports; red solid squares: heat ports.

The main task of the zone model is to compute the
mass and enthalpy balance and air properties (densi-
ty, enthalpy, pressure, temperature, etc) using air
models of Modelica.Media. Furthermore it deter-
mines a characteristic velocity and viscous losses.
The main task of the flow model is to compute the
airflow rate between two adjacent zones. Further-
more, the flow models are used to calculate the ve-
locity gradient needed for the calculation of viscous
losses. The governing equations will be more pre-
cisely described in the following sections.

2.1 Zone model

The mass and energy conservation are implemented
in the VEPZO model in the same way as in former
zonal models. Air contained in a zone i of volume Vi
with density ρi and specific enthalpy hi is assumed to
be perfectly mixed. In the zones, the dynamic con-
servation of mass (Equation (1)) and enthalpy
(Equation (2)) are implemented. The mass conser-
vation takes into account the amount of air mi,j ex-
changed with adjacent zones and airflows provided
by various sources or sinks msource,i (ventilation,
openings, etc.) in zone i. When steady state is
reached the sum of all exchanged airflows in a zone
becomes zero. Mass flows are defined as flow varia-
ble and enthalpies as streams. This ensures the prop-
er sign attribution to flows an enthalpy selection de-
pending on flow direction. Heat flows Q due to con-
vection to walls or heat sources contained in the zone
are added to the thermal energy balance.

i

j sources
i,sourcej,i

i

V

mm

t

 







 (1)












flowsheatsources
source/isource

j
j/ij,i

i
ii

Qhm

hm
t

h
V





 (2)

A new feature of the VEPZO model is that a charac-
teristic velocity vector (u,v,w) is assigned to the
zones. Knowing the mass flow and its direction
across each of the zone’s surfaces, the flow velocity
across these surfaces is determined: uleft, uright, vfront,
vback, wbottom, wtop for the left, right, front, back, bot-
tom and top surfaces. If a zone is adjacent to a wall,
the mass flow and velocity across the corresponding

replaceable package Medium = Modelica.Media.Air.SimpleAir
 Modelica.SIunits.Pressure p;
 Records.Position position;
 Records.Velocities velocities;
 flow Modelica.SIunits.MassFlowRate mdot;
 stream Modelica.SIunits.SpecificEnthalpy h;
 stream Modelica.SIunits.Density d;
 stream Modelica.SIunits.MassFraction Xi[Medium.nXi];
 stream Real ExtraProperty[Medium.nC];
 Real dv_perp[2];
 Real sum_d2v_perp_weighted;

VEPZO – Velocity Propagating Zonal Model for the prediction of airflow pattern and temperature …

280 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076279

surface are considered to be zero. For each Cartesian
direction the flow pattern is checked. If air flows
through the zone, the entering velocity is assigned to
the characteristic velocity component. If air enters
from both sides, the difference of the velocities is
assigned. If air leaves on both sides, zero is assigned
(shown for x-direction in Figure 3 and Table 1)).
Iterating this procedure for all Cartesian directions
yields the characteristic velocity of a zone.

Figure 3: Assignment of characteristic velocity to a
zone, dotted arrows: airflow across zone boundaries,
solid arrow: characteristic velocity of zone. Left:
flow through the zone, case a) left to right, case b)
right to left, Middle: Air enters zone from both sides,
Right: Air leaves zone on both sides

Table 1: Assignment of characteristic velocity com-
ponents of a zone

Flow through zone Characteristic

velocity

left → right uleft

right → left uright

left and right → zone uleft – uright

zone → left and right 0

The zone shares the information about its character-
istic velocity with the flow models surrounding it.
This enables the VEPZO model to propagate the air-
flow velocity throughout the room without needing
special correlations like jets or plumes.

2.2 Flow model

Two adjacent zones are connected by a flow model
computing the exchange of air between them. The
VEPZO model uses flow models in x-, y- and z-
directions. The assumption of the VEPZO model is
that air only flows along these specific directions. A
new feature of the flow model used in the VEPZO
model is that the length of a flow path is taken into
account.

The air densities ρ considered in the flow models are
the average densities of the air contained in the adja-
cent zones. The use of the actualStream-notation for

the density showed to result in longer simulation
times. Furthermore, density differences in indoor
applications are not considered important enough to
introduce a major error to the simulation when aver-
aging.

2.2.1 Geometrical properties of the flow model

Figure 4 shows the definition of zones and flows in
the z-direction. Two zones i,j of height Δzi, Δzj and
equal ground area A = Δx·Δy are connected by the
flow model “Flow_ij”. The flow model is of area A
and height Δzij. This height is equal to the distance
between centres of zone i and j. The definition of
flow models in the x- and y-direction is analogous.

Figure 4: Definition of zones and flows in z-
direction.

2.2.2 Forces acting on flow path

The flow model computes the airflow acceleration or
deceleration from the forces acting on it. These forc-
es are briefly described.

Pressure difference

Air contained in each zone has a certain pressure.
When two zones of common surface A are connected
by a flow model they process their pressure infor-
mation pi and pj. The flow model calculates the re-
sulting force FP (Equation (3)).

 ijP ppAF  (3)

Session 2C: Climate Systems I

DOI Proceedings of the 9th International Modelica Conference 281
10.3384/ecp12076279 September 3-5, 2012, Munich, Germany

Momentum difference

The characteristic velocity vectors of adjacent zones
are processed to the flow model. According to the
flow direction (x, y or z) the flow model chooses the
proper component of the velocity vectors (ui, vi, wi
and uj, vj, wj) to compute the force FM resulting from
the momentum difference between the adjacent
zones (Equation (4) for x-direction).

 2
i

2
jx,M uuAF  (4)

Gravitational forces

Gravitational force FG only occurs in the z-direction.
For the x- and y-direction, this force is zero. To
compute the gravitational force, the area and length
of the flow path are considered according to Figure
4.

ijG zAgF  (5)

Viscous forces

The viscous forces act parallel to the flow direction.
In the selected approach of the VEPZO model, flows
are connected and exchange information with zones
only. However, to calculate the shear stress, an in-
formation exchange between parallel flow models
would be necessary. To avoid connections between
the flow models, viscous losses are calculated in the
zone models but used in the flow models.

The characteristic velocity vector provided by zones
enables the flow model to calculate the gradient of
the two velocity components perpendicular to the
flow model direction. For example, a flow model in
z-direction can deliver the variation of the character-
istic velocities ui, uj and vi, vj along the height Δzij
(Figure 5). If a wall is adjacent to the zone, the ve-
locity at the wall is assumed to be zero. Therefore,
the gradient is equal to the characteristic velocity
divided by half the distance of the zone’s centre from
the wall. Equation (6) provides an overview of gra-
dient calculations in x-direction.

Gradient in flow
model

Gradients at walls

ij

ij

x

v





ij

ij

x

w





i

i

x

v2




i

i

x

w2




 (6)

Figure 5: Computation of velocity gradient if lower
wall of zone i is a wall

The gradient information is transmitted from the
flow model to the zone model. In the zone model this
gradient causes shear stresses on its boundaries.
Summing these shear stresses along the boundaries
yields the viscous forces FV,x, FV,y, and FV,z in the
zones (µ: dynamic viscosity of air):































































































yx
z

u

z

u

zx
y

u

y

u

F

downup

frontback

Zone,Vx

(7)

Because the flow model covers half of the length of
each adjacent zone (Figure 4) the resulting viscous
force in the flow model is the sum of half of the vis-
cous forces in the zones.

 j,Zone,Vxi,Zone,VxFlow,Vx FF
2

1
F  (8)

2.2.3 Computation of airflow between zones with
viscous loss model

The forces acting on a flow path are summed up.
This yields the acceleration of the portion of air con-
tained in the flow path connecting two zones.

Flow,Vxx,MPij FFF
dt

du
xA  (9)

VEPZO – Velocity Propagating Zonal Model for the prediction of airflow pattern and temperature …

282 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076279

By this procedure, the distance between two zones
and the area of the flow path are introduced into the
model. The total loss along a flow path therefore be-
comes independent from the number of zones. Fur-
thermore, no square root function is needed and nu-
merical problems due to an infinite derivative do not
occur.

The mass flow is obtained straightforward from the
velocity in a flow path. This mass flow information
is then transmitted to the zone model.

uAmx  (10)

2.2.4 Modifications for non-cubic boundary zones

The idea of zonal modelling is to decompose a space
into rectangular elements. However, if the modelled
space is non-rectangular, non-cubic zone elements
might be needed at boundaries. For this, a zone type
similar to the standard zone type described in the
previous sections is introduced where the sizes of
each of the six boundaries surfaces, the zone’s vol-
ume, its centre of gravity and its characteristic
lengths can be entered manually to better match the
actual geometry. For other geometries such as trian-
gles, not needed sides of the element are attributed a
very small size slightly above zero.

2.2.5 Estimation of model coefficients

In the viscous loss model, the viscosity is used as a
parameter to tune the model. Similar to the idea of
using a turbulent viscosity to take into account loss-
es, an apparent viscosity is used instead of the dy-
namic viscosity. During implementation of the VE-
PZO model, µ = 0.001 Pa·s produced results that are
in good accordance at steady state with case studies
presented in previous publications [5-7]. Transient
results have not been validated yet.

3 Investigation of a novel aircraft
cabin ventilation

In this application example of the VEPZO model a
novel ventilation system for an aircraft cabin will be
investigated.

In current cabin designs air is supplied by ceiling
inlets and extracted by slots in the dado-area on the
left and right side of the cabin (Figure 6). This venti-
lation design leads to mixing ventilation.

Figure 6: Cabin mixing ventilation air supply and
extraction

In this paper a displacement ventilation is investigat-
ed where air is supplied by the aisle (60%), dado
(20%) and side (20%) inlets. The total airflow rate is
0.5 kg/s.

Figure 7: Cabin displacement ventilation air supply
and extraction

3.1.1 Aircraft cabin ventilation – Model

The implemented aircraft cabin model is derived
from the Airbus A310 mock-up placed in the Fraun-
hofer Flight Test Facility [8] and represents a 9.3 m
long and 5.3 m wide cross-section of the fuselage
including the crown area, stowage bins, cabin, left
and right triangle areas, cargo compartment and bilge
(Figure 8). The air volume of the cabin is modelled
by the VEPZO model, the air volumes of other com-
partments are modelled by a thermal capacitor with
the appropriate thermal mass.

The cabin is subdivided into 5 x 3 zones in the lower,
occupied zone and into one zone for the upper part.
In depth, the cabin is divided into three zones. The
air supplies at the side, aisle and dado openings are
modelled as mass flow sources. The ceiling outlet is
modelled as a fixed pressure of 750 hPa correspond-
ing to cabin pressure at flight altitude. The tempera-

Session 2C: Climate Systems I

DOI Proceedings of the 9th International Modelica Conference 283
10.3384/ecp12076279 September 3-5, 2012, Munich, Germany

ture of supplied air flows is controlled by the tem-
perature in the adjacent zones (side and dado) or the
average temperature in the occupied zone (aisle)
(Table 2).

Figure 8: Fuselage section: blue arrows: in-
lets/outlets, red lines: zone limits in VEPZO model,
black lines: walls

Table 2: Temperature setpoints and control locations

Inlet Contol by Setpoint
Side Adjacent zone 22 °C

Dado Adjacent zone 21 °C

Aisle Average in occupied zone 22 °C

Walls are modelled by a succession of heat capaci-
tances and heat resistances from the Modeli-
ca.Thermal library. Three materials (Table 3) are
used in five wall layouts (Table 4) to model fuselage
enclosures. Walls in the cabin are further decom-
posed into facets according to the size of the adjacent
zones. These facets exchange convective heat with
the air volumes. For the radiation model, surface
temperatures of the facets of one wall are averaged.
Radiation is calculated between these averaged wall
surfaces using a radiation model suggested by Wetter
et al. [9]. In other compartments, walls are not fur-
ther decomposed into facets but exchange convective
heat with the air node and radiative heat with other
walls in the compartment.

Further admitted parameters (heat source intensities,
convective heat transfer coefficients, long wave
emissivity of surfaces, outside air temperature) are
shown in Table 5.

Table 3: Material Parameters

Material Density
(kg/m³)

Specific Heat
Capacity
(J/kg·K)

Thermal
Conductivity
(W/m·K)

Aluminium 2700 835 235

Lining 1000 1500 0.16

Polyimide 1.2 1006 0.04

Table 4: Wall models

Name Layers Used for

Aluminium
Aluminium:
3 mm

Outside Wall Bilge
Cabin Floor
Cargo Floor

Thin Lining Lining: 3 mm Stowage bin

Thick Lining Lining: 10 mm
Walls Car-
go/Triangle

Cabin Outside
Wall

Aluminium:
3 mm
Polyimide:
80 mm
Lining: 5 mm

Outside Walls
Cabin

Other Outside
Wall

Aluminium:
3 mm
Polyimide:
80 mm

Outside Walls
Crown and Trian-
gle

Table 5: Heat flow related parameters

Parameter Value
Convective Heat Transfer Coefficient 5 W/m²·K

Long Wave Emissivity of surfaces 0,95

Outside Air Temperature -27 C

Heat dissipation by passengers

…by radiation
…by convection
(…total)

72 x 37,5 W
72 x 37,5 W
(5400 W)

Heat dissipation by lights

…by radiation
…by convection
(…total)

1000 W
1000 W
(2000 W)

3.1.2 Aircraft Cabin Ventilation – Results

The simulation takes 31.9 s to converge on an Intel®
Core™ i5 CPU @ 2.35 GHz 2.98 GB Ram comput-
er. The simulation time is set to 10000 s as steady-
state is achieved by then. “Radau IIa – order 5 stiff”
is used to solve the equations. Figure 9 shows the

VEPZO – Velocity Propagating Zonal Model for the prediction of airflow pattern and temperature …

284 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076279

resulting supply and exhaust temperatures, tempera-
tures in the zones and in the other compartments.

Figure 9: Results for cabin displacement venitlation
system (Temperatures of zones in °C)

The warmest point in the occupied zone is just below
the middle overhead bin. Here, air supply openings
providing fresh air are relatively far away but heat
production by passengers is relatively high. In spite
of these adverse effects, the temperature is still in a
comfortable range. Under the left and right overhead
bins the lateral air supply avoids that the tempera-
tures further raises compared to the zone below.

4 Conclusion

This paper presents the VEPZO model, a zonal mod-
el implemented in Modelica. The model makes use
of and can be interfaced to models of the Modelica-
Standard libraries. Compared to former zonal mod-
els, the VEPZO model is better suited for use in the
Modelica environment.

In the shown application example the VEPZO model
is used to estimate the impact of a displacement ven-
tilation system in a two-aisle aircraft cabin. The sim-
ulation time is acceptable.

The use of Modelica to solve this problem showed to
be advantageous as many of the auxiliary compo-
nents (walls, air in other compartments, air proper-
ties in zones) are modeled with predefined models
allowing the research engineer to concentrate on the
core of the development, in this case the VEPZO
model.

5 Acknowledgements

This research work has been conducted with finan-
cial support from the German Bundesministerium für
Bildung und Forschung (support code 20Y0907E).
The author is responsible for the content of this pub-
lication.

6 References

[1] Wetter, M., Zuo, W., Nouidui, T.: Recent
developments in the Modelica "Buildings"
Library for Building Energy and Control
Systems, 8th International Modelica Confer-
ence, 20.-22. march 2011, Dresden, Germany

[2] Bonvini, M., Leva, A.: Object-oriented sub-
zonal room models for energy-related build-
ing simulation, 8th International Modelica
Conference, 20.-22. march 2011, Dresden,
Germany

[3] Wurtz, E., Nataf, J. M., Winkelmann, F.:
Two- and three-dimensional natural and
mixed convection simulation using modular
zonal models in buildings, International
Journal of Heat and Mass Transfer, Volume
42, pp. 923-940, 1999

[4] Inard, C., Bouia, H., Dalicieux, P.: Prediction
of air temperature distribution in buildings
with a zonal model, Energy and Buildings,
Volume 24, pp. 125-132, 1996

[5] Norrefeldt, V., Nouidui, T., van Treeck, C. et
al.: Erstellung eines isothermen, zonalen
Modells mit Impulserhaltung, BauSIM 2010,
22.-24. september 2010, Vienna, Austria

[6] Norrefeldt, V., Grün, G.: Validation of the
velocity propagating zonal model – VEPZO,
Roomvent 2011, 19.-22. june 2011, Trond-
heim, Norway

[7] Norrefeldt, V., Grün, G., Sedlbauer, K.: VE-
PZO - Velocity propagating zonal model for
the estimation of the airflow pattern and tem-
perature distribution in a confined space,
Building and Environment, Volume 48, pp.
183-194, 2012

[8] Fraunhofer IBP: Indoor Climate Systems
Flyer, 2012

[9] Wetter, M., Zuo, W., Nouidui, T.: Modeling
of heat transfer in rooms in the Modelica
"Buildings" Library, Building Simulation
2011, 14.-16. november 2011, Sydney, Aus-
tralia

Session 2C: Climate Systems I

DOI Proceedings of the 9th International Modelica Conference 285
10.3384/ecp12076279 September 3-5, 2012, Munich, Germany

VEPZO – Velocity Propagating Zonal Model for the prediction of airflow pattern and temperature …

286 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076279

Session 2D: Mechanic Systems I

Modeling and Testing of the Hydro-Mechanical Synchronization System for a Double Clutch Transmission

Modeling and Testing of
the Hydro-Mechanical Synchronization System

for a Double Clutch Transmission

Hua Huang Sebastian Nowoisky René Knoblich Clemens Gühmann
Technische Universität Berlin

Chair of Electronic Measurement and Diagnostic Technology
Sekr. EN 13, Einsteinufer 17, 10587 Berlin

{hua.huang@campus., sebastian.nowoisky@, r.knoblich@, clemens.guehmann@}tu-berlin.de

Abstract

Synchronization is a core component in the automo-
tive powertrain. It uses friction and locking elements
to synchronize the occurring speed difference during
gear shifting. The optimization of this shifting process
is of high interest in respect to fuel consumption
and comfort considerations. Moreover, for the
model-based calibration of automated transmissions,
detailed simulation models of the synchronization
system are also necessary. Highly accurate models
allow simulation of nonlinear effects having a major
influence on the shifting process. Currently, with less
detailed models only rough estimations of the shifting
process are possible, it has a reduced meaning for the
precise calibration.

This paper uses a popular double clutch transmission
(DCT) as the research object and presents the detailed
hydro-mechanical synchronization model. Firstly, an
introduction to the theory of the synchronization is
given. Subsequently, a Modelica R© based synchro-
nization model consisting of hydro-mechanic actua-
tors and gear shifting synchronizers is presented. Fi-
nally, these modules are discussed in detail and eval-
uated based on different simulations. A comparison
with measurement data from a test bench is also in-
cluded in the end.
Keywords: synchronization; hydraulic; gear shifting;
double clutch transmission; physical modeling; auto-
motive

1 Introduction

Due to the location of the synchronization in the au-
tomotive powertrain, this system has a crucial influ-

ence on the shifting quality. The shifting quality can
be judged by:

• the duration of the shifting process
• the changes of vehicle longitudinal acceleration

during shifting (shifting jerk)
• the oscillation to the powertrain
• the acoustic phenomena like shifting or impact

noise

With conventional, less detailed models of the syn-
chronization containing simple clutch elements as syn-
chronization [1, 2], only three stages of the synchro-
nization process is modeled:

• neutral position
• friction phase (synchronization)
• engaged position

In this paper a more complex simulation model of the
synchronization is derived to describe certain detailed
nonlinear phenomena during shifting (see section 2).
Such a detailed modeling of synchronization is nec-
essary for the model based calibration. The purpose
of this calibration process is the adaption of control
parameters to improve the shift quality between
successive shifts. Furthermore an in-depth model
provides the user with a fundamental understanding of
the components composition principle and the system
working function.

A 7-speed DCT with dry clutches is used here as the
research object. For this transmission, a dynamic sim-
ulation model of the hydro-mechanical synchroniza-
tion system is derived. This model could be used for
the function development within the V-development
process [3].

DOI Proceedings of the 9th International Modelica Conference 287
10.3384/ecp12076287 September 3-5, 2012, Munich, Germany

hydraulic pump

motor
M

filter

non-return valvetank

pressure accumulator
pressure sensorpressure limiting valve

tank tank

GSV1 GSV2 GSV3 GSV4CV1 CV2

VP1 VP2

gearshift
cylinder 1-3

gearshift
cylinder 5-7

gearshift
cylinder 4-2

gearshift
cylinder 6-R

clutch actuator
cylinder K1

clutch actuator
cylinder K2

P1

P2

P3 q

sub-gearbox 1 sub-gearbox 2

power pack

Fig. 1: Hydraulic system plan [4, 5]

In section 2 the basic components of the hydro-
mechanical actuators are introduced and the synchro-
nization process is described in detail. Then section 3
presents the simulation results of the physical model.
The test bench measurements from an AMT with sim-
ilar synchronization components are also compared.
Finally, a summary and further research objectives are
concluded.

2 Modeling

The whole synchronization system is divided into 2
parts: hydraulic and mechanical components. The hy-
draulic components are mainly supplying required oil
pressure and flow while the remaining components are
used to perform the mechanical actuator behavior and
the synchronization process.

2.1 Hydraulic Components

The hydraulic subsystem consists of:

• a hydraulic pump
• magnetic valves
• gearshift cylinders

Hydraulic fluid is pumped from the tank to the
pressure accumulator where it is stored under high
pressure. The pump is controlled by a bang-bang
controller which guarantees a pressure level between
40 and 60 bars [4]. When the oil circuit has got

enough power to drive the gearshift cylinders, the
magnetic valves will control pressure and flow of
relevant branches.

There are mainly two types of magnetic valves in-
cluded: pressure-control valves and flow-volume
valves. The pressure-control valves are used to sup-
ply the corresponding sub-gearboxes under constant
pressure levels. The flow-volume valves are used to
control the movement of the gearshift and clutch actu-
ator cylinders. The hydraulic plan is depicted in Figure
1, in which each flow-volume valve controls the left
chamber of a gearshift cylinder while its right cham-
ber is controlled directly by a pressure-control valve.

2.2 Mechanical Components

2.2.1 Synchronizer and Actuation Module

Synchronizers reduce speed difference through fric-
tion and locking elements during the gear shifting
process. In this paper, a widely used single-taper
synchronizer based on the "Borg-Warner" system
(refer to [6]), shown in Figure 2, is used as a detailed
example for the synchronization process.

The components of the synchronization are named
(compare [7]):

1 idler gears with needle bearings
2 synchronizer hub with selector teeth and friction

Modeling and Testing of the Hydro-Mechanical Synchronization System for a Double Clutch …

288 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076287

taper
3 synchronizer ring with counter-taper and locking

toothing
4 synchronizer body
5 gearshift sleeve
6 transmission shaft

53
2

1

4

6

532

Fig. 2: Draft of the synchronization [6, 7]

During the synchronizing process, the selector fork
supplies the gearshift force FS for synchronization as
the resultant of 4 forces exerted upon it: Shifting force
FC from the hydraulic cylinder, locking force Flml from
the detent pin, bearing friction F f l , and acceleration
force Fal , as expressed in Equation 1. The mechanic
diagram of the shift actuator is presented in Figure 3.

FS = FC −Flml −Ff l −Fal (1)

FC FS p

Flml
F f l

FS
Fal=ml al

FS

α

µ f t d m
s

d K
S

detent pin

bearing

FN

3 2

Fig. 3: Force diagram of shift actuator [7]

The detent pin showed in Figure 3 is designed to sup-
port the gearshift movement and guarantee determined
positions. During the gearshift process from the neu-
tral position to a shifted position, the detent pin intro-
duces a counter force to the movement of the selec-
tor fork at the beginning and accelerates the fork af-
ter synchronization. This force characteristic can be

calculated by Equation 2 and is depicted in Figure 4.
The locking force depends on the spring force FSp, the
ramp angle γ relative to initial basis and the friction
angle δ F acting against the movement direction [7, 8]

Flml = FSp tan(γ +δF) (2)

0 5 10 15 20 25
-20

-10

0

10

20

gearshift travel [mm]
ge

ar
sh

if
tf

or
ce

[N
]

forward
backward

synchronization
point

synchronization
point

Fig. 4: Contour of ramp profile

The gearshifting process can be divided into five
stages according to the gearshift position, speed
difference, actuation forces and torques [6]. This
classification is based on the assumption that at the
beginning the gearshift sleeve is in the neutral position
(see Figures 2, 3 and 5):

Stage 1: Gearshift force FS causes an axial move-
ment of the gearshift sleeve 5 and triggers the
gearshifting process. The movement stops when the
synchronizer ring blocks the gearshift sleeve.

Stage 2: The axial force is transmitted from the
gearshift sleeve to the synchronizer ring 3 , resulting
in a friction torque TR which is much larger than the
gearing torque TZ . At this stage the speed difference
between the idler gear and transmission shaft will be
reduced to zero.

Stage 3: When the speed difference is close to zero,
the friction torque TR vanishes. At this moment the
synchronizer ring turns back to release the gearshift
sleeve.

Stage 4: The gearshift sleeve begins to move until it
encounters the synchronizer hub’s 2 external gearing.
Speed difference increases again as the synchronizing
torque diminishes.

Stage 5: The whole synchronization process is
completed as soon as the gearshift sleeve toothing
engages the synchronizer hub’s gearing. The power
flow is transmitted from the transmission shaft 6 to

Session 2D: Mechanic Systems I

DOI Proceedings of the 9th International Modelica Conference 289
10.3384/ecp12076287 September 3-5, 2012, Munich, Germany

the gear 1 .

Figure 5 shows the synchronization process with lock-
ing of the synchronizer ring and synchronizer hub.

Stage 1

Stage 2

Stage 4

Stage 5

Stage 3

∆ω , 0

∆ω , 0

∆ω ≈ 0

∆ω ≈ 0

∆ω = 0

FS

TR

32 5

FS

TR

TZ

FS

FS

FS

TZ

Fig. 5: Synchronizing process

2.2.2 Status Determination Module

This module is created based on Modelica R©, it uses
these 3 factors as mentioned above: the gearshifting
position, difference speeds, actuation force and
torque, to determine the synchronization process
(Figure 6 shows the flowchart of status determina-
tion). The appropriate calculations of the friction
torque TR and gearing torque TZ are also realized here.

The detailed torque values are changed according to
the synchronization stages: The friction torque TR,
given by Equation 3 (applied to stages 1 and 2), is
calculated through the gearshift force FS, the number
of friction surfaces j and some other geometric val-
ues. The gearing torque TZ , expressed as Equation
4 (used in stages 2 and 3), is calculated by gearshift
force FS, clutch diameter dKS, teeth angle β and fric-
tion µ lt between gearshift sleeve and synchronization
ring [7, 9, 10].

TR = jFS
dms

2
µ

sinα
(3)

TZ =
FSdKS

2

(
cos β

2 −µltsin β

2

sin β

2 +µltcos β

2

)
(4)

neutral
position

Stage 1

Stage 2 Stage 3

Stage 4

Stage 5

ssync<s<shub

FS>0

s=ssync

|ω1 − ω2| > 0
FS>0

s=ssync

|ω1 − ω2| = 0
FS>0

s>sneutral

FS>0
s≥shub

FS>0

FS<0

Fig. 6: Flowchart for status determination

2.2.3 Assembly of mechanical submodules

The mechanical subsystem consists of the 3 parts de-
scribed above (compare Figure 7).

1) The gearshifting displacement part, used to sim-
ulate the movement of the selector fork

2) The synchronization part, functioning to simu-
late the synchronization process between syn-
chronizer ring and synchronizer hub

3) The synchronization status determination and
torques calculation part, working to deter-
mine the synchronization stages, calculate cor-
responding friction forces, and coordinate the
gearshifting displacement part with the synchro-
nization part

2.3 Modeling Result

Figure 8 shows the relevant physical model. The hy-
draulic components are modeled with hydraulic li-
brary HyLib R© [11], the mechanical components with
Modelica Standard Library (MSL) [12] and some new
created blocks based on Modelica R©. In order to
simplify the model structure and improve the model
portability, subsystems are built here. For example,
Gear_Selector is used as a subsystem block, which
stands for all mechanical components (see Figure 7).

Modeling and Testing of the Hydro-Mechanical Synchronization System for a Double Clutch …

290 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076287

Vehicle Driving Process, Shift Process 1 -…

1.

2.

3.

f

LockingForce

SelectorForkforceSe…

f

forceSen…

f

positionSen…

s

torque

tau

Load

k=TLoad

JLoad

J=JLoad torqueSensor

tau

torqueSensor1

tau bearingFriction

add

+1 +1 add+
+1+1

k=-1

vor2back

f

FrictionForce

ro
ta

te
sp

ee
… w

ro
ta

te
sp

ee
… w

RingandHub

JFront

J=JFront

speedSen…v

accSen…

a

friction

status

RampCon…

w_load

Status

w_front

Position

flange_a

direction

Fig. 7: Mechanical model

Gear_Selector

open

startTime=0
vibration

freqHz=fre

close

startTime=0

fixed

position…

s

forceSe…

f

signal_press…

startTime=5

ShiftCylinder

qM
eas

Pump

pM
eas

pM
ea

s1

pM
eas2

speedS…

v

timeTable

offset=0
Magnetic_Valve

Fig. 8: Synchronization model

3 Testing

In order to verify this dynamic model’s rationality and
effectiveness, the following testing steps are carried
out:

1) testing of the hydraulic model

2) testing of the mechanical model

3) testing of the whole hydro-mechanical model

4) comparison of the simulation results with real
AMT test bench measurements

During testing, the dynamic model is driven under an
open-loop control. Step- and constant-signals are used
for stimulations (see Figure 8).

3.1 Hydraulic Model

The hydraulic supply circuit is first examined against
measurement data from real DCT. In this process all
magnetic valves are closed, only the oil pump is work-
ing. Simulation result, shown in Figure 9 depicts a
small model error in comparison to the measurement
data, the normalized root mean square error (NRMSE)
of eNRMS = 4.9%. From beginning the pump is kept
working until hydraulic pressure reaches the required
value. Then the pump stops to wait for restart when
pressure level drops, as the result of leakage in the
whole hydraulic system, below a predefined threshold
value.

Session 2D: Mechanic Systems I

DOI Proceedings of the 9th International Modelica Conference 291
10.3384/ecp12076287 September 3-5, 2012, Munich, Germany

0

0.2

0.4

0.6

0.8

1

norm. time [-]

no
rm

.p
re

ss
ur

e
[-

]

simulation result
measurement data

stop

start start

Fig. 9: Comparison of oil pump

Figure 10 shows the movement simulation of the hy-
draulic gearshift cylinder. In this simulation, the
pressure-control valve (VP1 in Figure 1) is controlled
by a constant value while the flow-volume valve
(GSV2 in Figure 1) is controlled by a stimulation sig-
nal, as shown in Figure 10 (b). Figure 10 (a) shows
change of oil pressures during this process, in which
P1 denotes the oil pressure from the hydraulic pump,
P2 the hydraulic pressure in the right cylinder cham-
ber and P3 the pressure in the left chamber. P2 is
controlled by VP1 and the control current is constant;
hence P2 keeps a almost constant pressure value dur-
ing this process. Figure 10 (b) shows the flow rate into
the left cylinder chamber (denoted by q, see Figure 1)
and the control signal for the flow-volume valve. The
constant control signal of GSV2 (from 0.5 to 1s, from
1.5 to 2.1s) leads to a constant flow rate during the
movement of the gearshift cylinder. The displacement
process of the cylinder from the middle to right end
and reverse is displayed in Figure 10 (c).

0

20

40

60

pr
es

su
re

[b
ar

]

0

10

20

30

time [s]

po
si

tio
n

[m
m

]

P1
P2
P3

0
0.5

1

flo
w

ra
te

[l
/m

in
]

si
gn

al
[-

]

(a)

(b)

(c)

-0.5
-1

0

1

-1

0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5

Fig. 10: Simulation results of hydraulic cylinder

3.2 Mechanical Model

This subsection describes the testing of the mechan-
ical model and states that a correct synchronization
process can be achieved. Therefore, the typical
movement behavior (fast-slow-fast) and the results of
the synchronization state determination are examined
both.

In Figure 11 the upshifting simulation results are de-
picted, and its state shows that the model works as ex-
pected. Even the speed difference increases due to the
missing connection between the toothing of the syn-
chronizer hub and ring in stage 4 is also reproduced.

10

20

30

po
si

tio
n

[m
m

]

0

1000

2000

sp
ee

d
[r

pm
]

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

time [s]

st
at

us
[-

]

ω1
ω2

1 2 5430

speed difference increases
0 0.05 0.1 0.15 0.2 0.25 0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

Fig. 11: Simulation results of synchronization

Self-return, an important characteristic of the detent
pin (refer to Figure 4), is also tested, see Figure 12.
The behavior when shifting force FC vanishes behind
the synchronization point (24mm, upshifting synchro-
nization point is 18mm) is shown on the left-hand side,
and the right-hand side shows the behavior of self-
return in front of the synchronization point (15mm).

3.3 Hydro-Mechanical Model

Figure 13 shows different synchronizing processes un-
der different working pressures. Synchronization time
is reduced as expected when oil pressure increases.

3.4 Comparison with Measurements

Finally, the simulated synchronization process is com-
pared with test bench measurement data from an auto-
mated manual transmission (AMT) system (compare
[13]) having similar synchronization components. The
AMT shifting valves are driven by constant currents

Modeling and Testing of the Hydro-Mechanical Synchronization System for a Double Clutch …

292 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076287

0 0.5 1
10

20

30

po
si

tio
n

[m
m

]
behind synchronization point

0 0.2 0.4
10

20

30
in front of synchronization point

0 0.5 1
-100

0

100

time [s]

fo
rc

e
[N

]

0 0.2 0.4
-100

0

100

time [s]

F
C

F
lml

F
R

F
C

F
lml

F
R

self-return

synchronization

self-return

Fig. 12: Simulation results of self-return during up-
shifting

and the DCT model shifting valves are driven by step
signals. Figure 14 shows the comparison between
the representative simulated and the measured shift-
ing processes. The simulation result has a normalized
root mean square error (NRMSE) of eNRMS = 1.5%. It
can be stated that the presented model reproduces the
characteristic details of the shifting process (pre-sync,
locking, unlocking, turning hub and engagement).

0 0.2 0.4 0.6 0.8 1
12

14

16

18

20

22

24

26

time [s]

po
si

tio
n

[m
m

]

45 bars
40 bars
35 bars
30 bars
25 bars

synchronization

Fig. 13: Synchronization with different pressure

0

0.2

0.4

0.6

0.8

1

norm. time [-]

no
rm

.p
os

iti
on

[-
]

measurement data
simulation result

0

5

2
3

1

4

Fig. 14: Synchronization: Comparison of simulation
results with measurements

4 Summary and Outlook

This paper gives a detailed introduction to the synchro-
nization process and presents a dynamic Modelica R©

model for the hydro-mechanical actuation and syn-
chronization system based on a popular DCT. This
model has following features:

1) Gives a detailed representation of the synchro-
nization process with 5 stages instead of sim-
ple 3 stages. Additionally in-depth reflection of
the nonlinear dynamic system is also presented.
This could provide a good reference for shifting
quality optimization and more reliable standard
for the model-based calibration.

2) Reveals the phenomenon that speed difference
increases after the synchronization process be-
cause of power interruption in this stage. This
is important to judge shift quality control strate-
gies because during this phase serious problems
as tooth breaking and shifting noise may occur.

3) Presents the user a fundamental understanding
of the components composition principle and the
system working function.

4) Shows that the tested hydraulic and mechani-
cal modules have a good modularity for other
similar system setups only through parameters
changes.

5) Provides a good platform for the model-based
calibration and function development.

Based on this dynamic simulation model, follow-up
researches become possible: such as the integration of

Session 2D: Mechanic Systems I

DOI Proceedings of the 9th International Modelica Conference 293
10.3384/ecp12076287 September 3-5, 2012, Munich, Germany

a clutch system (refer to [14]) and an appropriate con-
trol algorithms into a complete transmission model.
The further important research field of model-based
calibration on AMTs and DCTs in order to optimize
shifting quality can also be identified.

References

[1] B. Wede. Modellierung eines 6-Gang-
Schaltgetriebes mit Hilfe der Model-
lierungssprache Modelica. GRIN Verlag
GmbH, 2010.

[2] U. Schreiber, J. Schindler, and E. Steinmetz. Sys-
temanalyse in der KFZ–Antriebstechnik, Objek-
torientierte Modellbildung und Simulation kom-
pletter KFZ–Antriebsstränge. 6. Band. Expert
Verlag, Renningen, 2001.

[3] C. Gühmann. Model-based testing of automo-
tive electronic control units. In 3rd Interna-
tional Conference on Materials Testing, Nürn-
berg, 2005.

[4] M. Schäfer, A. Damm, Th. Pape, and etc.
The control unit of volkswagen’s new dual-
clutch transmission. In 6. Internationales
CTI-Symposium Innovative Fahrzeug-Getriebe,
Berlin, 2007.

[5] Volkswagen. Self-study Programme 390: The 7-
speed Double -clutch Gearbox 0AM. Volkswa-
gen AG, 2007.

[6] G. Lechner and B. Bertsche. Automotive Trans-
missions: Fundamentals, Selection, Design and
Application. Springer, 1999.

[7] S. Nowoisky, R. Knoblich, and C. Gühmann.
Comparison of different model types based on a
synchronization of an automated manual trans-
mission. In Clemens Gühmann, Jens Riese, and
Thieß-Magnus Wolter, editors, Simulation und
Test für die Automobilelektronik IV, page 38...47,
Wankelstra13 D-71272 Renningen, 2012. Expert
Verlag.

[8] INA. Detent Pins for Automotive Transmissions.
Schaeffler Technologies AG & Co. KG, 8 2007.

[9] INA. Intermediate Rings for Multi-Cone Syn-
chronizer Systems. Schaeffler Technologies AG
& Co. KG, 8 2007.

[10] E. Kirchner. Leistungsübertragung in
Fahrzeuggetrieben. Springer, 2007.

[11] Hylib (2009), version 2.7. Product help, Mode-
lon, 2009.

[12] Modelica standard library (2008), version 3.1.
Product help, Modelica Association, 2008.

[13] R. Knoblich, J. Beilharz, and C. Gühmann.
Modellbasierte steuergeräteentwicklung für kfz-
getriebesysteme am prüfstand. In Tagungsband
Mechatronik 2011, Dresden, 31.Maerz - 1.April
2011. T. Betram, B. Corves, K. Janschek, 2011.

[14] S. Nowoisky, C. Shen, and C. Gühmann. De-
tailed model of a hydromechanical double clutch
actuator with a suitable control algorithm. In
Proceedings of the 8th International Model-
ica Conference. The Modelica Association and
Fraunhofer Institute for Integrated Circuits IIS;
Design Automation Division EAS, 2011.

Modeling and Testing of the Hydro-Mechanical Synchronization System for a Double Clutch …

294 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076287

Predicting the launch feel of automatic and dual clutch transmissions

Predicting the launch feel of automatic and dual clutch transmissions

Neil Roberts Mike Dempsey
Claytex Services Ltd.

Edmund House, Rugby Road, Leamington Spa, CV32 6EL
neil.roberts@claytex.com mike.dempsey@claytex.com

Abstract

The Powertrain Dynamics Library (PTDynamics)
has been developed using a new approach to model-
ling the mechanics of rotating MultiBody systems.
This paper will highlight the recent developments
within the PTDynamics library with a focus on the
dynamic torque converter and wet clutch models that
enable the prediction of the launch feel of automatic
and dual clutch transmission equipped vehicles. Two
examples are presented: one that compares the effect
of oil temperature on the initial launch of a vehicle
with a dual wet-clutch transmission; and a second
that compares the behaviour of steady state and dy-
namic torque converter models.
Keywords: powertrain dynamics, driveability, dy-
namic torque converter, wet clutch, automatic
transmission, dual-clutch transmission

1 Introduction

The transmission and driveline of a vehicle have a
large influence on the customer driving experience
and perception of quality, as well as the efficiency
and performance of the vehicle. The influence of
hybridization within a vehicle has greatly increased
the architecture variants available to vehicle manu-
facturers and consequently has complicated the se-
lection of the most efficient hardware solution.

The Powertrain Dynamics (PTDynamics) library
has been developed as a commercial Modelica li-
brary to aid evaluation of the many technology and
topology options. It also provides the capability to
model powertrain systems in sufficient detail to sup-
port the design and validation of the associated con-
trol systems and to optimize the vehicle’s response to
driver inputs.

The initial application of the library has been the
transmissions and drivelines within automotive ap-
plications but it can be applied to any powertrain
system. This paper explores some of the recent addi-
tions to the library that are used in the simulation of
vehicle transients such as initial launch, tip-in and

tip-out and gear shifting. Two examples are present-
ed illustrating how the new additions enhance the
level of detail that can be included in models to pre-
dict the initial launch of vehicles with automatic and
dual clutch transmissions.

2 Powertrain Dynamics Library

2.1 Overview

Transmission and driveline systems comprise a
number of key components that influence their dy-
namic behaviour and efficiency. The PTDynamics
library has been developed to provide models for all
of these components and assemblies as easy to use
MultiBody models. The design objective is to make
it easy to assemble a MultiBody powertrain model
and achieve good simulation performance and results
without having to develop a detailed knowledge of
Modelica.

The range of components included in the first
version of the PTDynamics library and the funda-
mental approach used to model the mechanics are
described in [1]. This range of components is con-
tinually enhanced and refined with this paper de-
scribing some of the more significant recent devel-
opments.

2.2 Dynamic torque converter

In automatic transmissions the engine and gearbox
are coupled by a torque converter. This is typically
modelled using the steady state performance curves
for the torque converter that relate speed ratio, torque
ratio and capacity factor (k-factor, MPC2000, or c-
factor), see Figure 1 for an example of these curves.
These curves are readily available from the torque
converter manufacturers and make it relatively easy
to implement a steady state torque converter model.
Most simulation tools only offer this type of steady
state torque converter model that works well for
drive cycle studies but is inadequate for the simula-

DOI Proceedings of the 9th International Modelica Conference 295
10.3384/ecp12076295 September 3-5, 2012, Munich, Germany

tion of transient events such as launch, tip-in, tip-out
or gear shifting.

The problem is that models based on these curves
cannot capture the transient behaviour of the torque
converter which has a significant impact on the driv-
ing experience. During large transient events such as
initial launch, gear shifting and driver tip-in and tip-
out events the transient response of the torque con-
verter has an impact on the vehicle response and the
perception of performance experienced by the driver.

A dynamic torque converter model has been im-
plemented to overcome this problem and enable the
torque converters fluid inertia and stator dynamic
behaviour to be included in simulations. The model
is based on the nonlinear lumped parameter model
derived in Hrovat and Tobler [3] that describes the
converter dynamics. It has been implemented to fit
within the PTDynamics framework for a torque con-
verter model which means that the user can very eas-
ily switch between an existing steady state torque
converter model and the new dynamic torque con-
verter model.

The basic layout of a 3 element torque converter
is shown in Figure 2 with the key parts identified.
The impeller is connected to the engine, the turbine
is connected to the gearbox and the stator is connect-

ed to the gearbox housing via a one-way clutch. En-
ergy is transferred between these 3 components by
the hydraulic fluid within these control volumes (im-
peller, stator, turbine).

The moment-of-momentum equation is applied to
each of these control volumes and relates the rota-
tional velocity of the mechanical components and the
torque to a fluid flow velocity along the torque con-
verter rotational axis. This results in a single first
order state equation for each element and for the im-
peller this gives the following equation:

���� � � ���	�
 	�
����� � �� �� tan�� ������ �
�� �� tan���	 � �� (1)

This equation relates the speed of the impeller

(ωi), torque on the impeller (τi), its radii at the centre
of its outlet port (Ri), the angle of the blade surface
to the normal (αi) and the fluid volume flow rate (Q)
is related to the conditions at its input from the sta-
tor. The state equations for the turbine and stator are
of a similar form.

The fluid state equation links the relationship be-
tween the fluid volume flow rate (Q) and the me-
chanical inertia velocities (ωi,t,s) using a conservation
of momentum energy balance given by:

������ � � ���� � � ���� �	� � ���
� 	�
 	�������� �

������ � ������ � ������� � ������� � �������� �
�� �� 	���� tan �� � �� tan��� � �� �� 	���� tan�� ��� tan��� � �� �� 	���� tan �� � �� tan��� � �(2)

Where the pL term represents the losses in the

familiar form of shock losses from non-ideal flow
conditions and fluid friction losses. These are de-
fined as shock velocity coefficients (Csh,i,t,s) and a
fluid friction factor (f).

 �
 �

� !"#�	��$�%,�'�%,�� � $�%,�'�%,�� �
$�%,�'�%,�� � � �(

� 	!"#�	��'�∗� � '�∗� � '�∗��(3)

These equations fully characterize the dynamic

behaviour up to sufficiently large frequencies
(~50Hz) to model fast transient phenomena occur-
ring during throttle steps and rapid speed ratio
changes.

Due to the ‘free body’ formulation approach tak-
en, the model relies upon knowing some key internal
geometry parameters of the torque converter; most
notably the radii and blade angles that are not nor-
mally quoted/released by torque converter manufac-

50

100

150

200

250

300

350

400

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1

K
-f

a
ct

o
r

T
o

rq
u

e
 R

a
ti

o

Speed Ratio

Torque…

K-Factor

Figure 1: Steady state torque converter performance
curves (speed ratio, torque ratio and k-factor)

Figure 2: Schematic of a 3 element torque converter
showing the fluid flow direction in the driven condition

Predicting the launch feel of automatic and dual clutch transmissions

296 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076295

tures. These parameters have to be calibrated before
the dynamic model can be used and this is done in
two stages using the Optimisation toolbox available
for Dymola.

The first stage of the optimization process is to
tune the model parameters so that the dynamic
torque converter model accurately predicts the steady
state performance. This is achieved by running the
torque converter under steady state conditions and
comparing the quoted steady state performance
curves with the simulation results. After the optimi-
sation of the parameters to match the steady state
response, additional experimental data captured un-
der transient driving conditions is required to cali-
brate the dynamic response of the torque converter
model. This approach does allow the user to tune
these design parameters to obtain good agreement
with experimental data.

2.3 Wet clutches

Wet clutches are key components in both automatic
and dual-clutch transmissions and a new model for
predicting the torque response of a wet clutch pack
has been developed. The torque across a wet clutch
is a direct function of automatic transmission fluid
(ATF) film thickness, pressure distribution and as-
perity pressure at the interface. The model calculates
the total torque across the wet clutch as the sum of
the hydrodynamic torque and asperity torque.

The hydrodynamic torque is created early in the
clutch engagement phase through fluid shear with
the hydraulic pressure supporting the normal load
and preventing physical contact of the clutch plates.
As the film thickness decreases to a similar magni-
tude to the surface roughness of the friction plates,
the asperities of the friction material make contact,
supporting the normal load on the clutch and reduc-
ing the fluid hydrodynamic torque to zero. The as-
perity torque then determines the total torque trans-
fer. It is these phenomena that heavily influence the
torque characteristics during a clutch engagement.

The hydrodynamic torque is based on the ATF
film thickness (h) calculated using an approximate
Reynolds equation for a rough and permeable sur-
face which has been shown to be very similar to the
full modified Reynolds equation [4]. The contribu-
tion of the hydrodynamic pressure (ξ), material per-
meability (δ), surface roughness (g) and the real con-
tact area (Ared) is given by:

*%+
*�
	,�%+�-�%+�.�%+�/�%+��012 3ℎ56 (4)

The normalized oil film thickness ℎ5
 ℎ ℎ78 is used

directly in the hydrodynamic torque calculation:

 9%
 :	;(�<(�<(�� = = >?@01A
% BCBCD	>E>F

�G
7 (5)

where h0 is the steady state oil film thickness, and
the pressure and shear stress flow factors (ϕf, ϕfs)
from Patir and Cheng [5] account for flow between
rough surfaces. The kinematic viscosity of the fluid
(µ) is calculated using the ASTM D341 standard [6]
as:

 log. log	�: � 0.7�
 N � O	log	�9� (6)

where A and B are two coefficients calculated from
two known viscosity-temperature operating points of
the ATF.

The asperity torque is calculated from the friction
coefficient (µf), number of friction surfaces (Nf),
clutch radii (ri,ro), and the applied pressure (Pa).

 9P
	:(;(= = B�QPCBCD	>E>F
�G
7 (7)

The applied pressure on the asperities on a rough
surface is considered to be proportional to the area in
contact and the Young’s modulus of the friction ma-
terial.

 Due to the dependency on the ATF film thick-
ness on clutch torque, under multiple engagements
the time taken for the oil film to be replenished after
an engagement would affect the torque profile for the
next engagement.

As no description for this film replenishment
phase seems to be available in published literature,
an exponential rise time has been introduced to in-
clude the effects of multiple engagements on the oil
film thickness with a parameter riseTime to describe
the time taken for the film thickness to return to its
pre-engagement full film thickness (h0):

 R
 ST%U
>��VW�XV� YZ[
� ��XVT\��XV

>��VW�XV �]^ (8)

This models ability to account for the hydrody-

namic torque contribution enables the significant
thermal effects to be accounted for within the torque
response in wet clutches; a common cause for nega-
tive feedback on dual clutch transmissions particular-
ly in low temperatures at initial launch due to the
high oil viscosity. This also provides a more detailed
description of the real system to enable calibration of
control strategies during clutch slip control and en-
gagement.

The availability of parameter data for the clutches
of interest such as the lining thickness and permea-
bility as well as the availability of a thermal model

Session 2D: Mechanic Systems I

DOI Proceedings of the 9th International Modelica Conference 297
10.3384/ecp12076295 September 3-5, 2012, Munich, Germany

that can account for the thermal performance of the
system are the two significant limiting factors for the
prediction of wet clutches.

2.4 Aggregated shafts

In the PTDynamics library, an aggregated shaft
method has been developed to model the cardan
shafts and joints within a driveline. The kinematic
relationship of the shaft and its associated joints is
described using a single aggregated joint between the
two ends. Figure 3 shows an example of a shaft
with a joint such as a constant velocity joint at each
end of the shaft. Using this approach the shaft itself
can be considered to have a fixed or variable length.

Figure 3: Diagram of an aggregated shaft with a joint at
each end

This approach is consistent with the aggregated joint
approach in the Modelica MultiBody library [7]
where the removal of the constraint equations elimi-
nates the nonlinear equations generated and the mo-
tion equations are solved analytically to enhance the
simulation performance. Figure 4 shows how this is
implemented in the PTDynamics library with the
degrees of freedom for both joints being modelled in
the special joint shown at the bottom of the diagram.

Figure 4: Internal diagram of an aggregated shaft model

One problem that can be introduced by these aggre-
gated joints is that the MultiBody frames in the relat-
ed connectors can appear to be rotated at 180 degrees
relative to one another. This would make any result-
ing rotation that is tracked in the flange connector
appear to be in the wrong direction at this point in
the model (see [1] for further details on the basic
Rotation3D methodology). To handle this we use
special blocks that resolve the rotation direction in
the flange connector to make sure that it is consistent
with the orientation of the bearingFrame wherever
such a rotation is possible in a component model.
The resolve rotation blocks are used at both ends of
the aggregated shaft model.

The topology of the shaft model can remain con-
stant for both plunging and fixed length shafts with a

simple replacement of the shaft joint at the bottom of
the diagram shown in Figure 4.

The torsional compliance of the shafts in the
driveline play a key role in the longitudinal response
of the vehicle, with the driveshafts and propshafts
often containing the largest proportion of the total
compliance within the system. A compliance model
is therefore included within the central shaft compo-
nent and within both joints as shown in Figure 3.
This compliance model can be configured to be Rig-
id, Linear, Linear with Backlash, Nonlinear and
Nonlinear with plastic deformation to cover the dif-
ferent use cases and model fidelities required for
driveline testing.

To aid bringing simulation earlier into the design
cycle and extend the usability of the library, a num-
ber of shaft options have the ability to estimate the
mechanical properties (stiffness, mass and inertia) by
entering simple geometry and material properties.
This can ease the burden of knowing many parame-
ters not available early in the design stage and where
simple torsion theory using geometry can yield rea-
sonably accurate results.

3 Vehicle Systems

The components described have been used to model
two different powertrain configurations. Built using
the templates provided in the PTDynamics library,
they maintain the same high level vehicle architec-
ture but they represent very different physical sys-
tems. The template approach is based on the Vehi-
cleInterfaces library [2]. Within the PTDynamics
library this architecture structure has been extended
to provide templates for common transmission and
driveline arrangements.

Two different powertrain architectures are con-
sidered: first, a mid-engined rear wheel drive trans-
axle vehicle with a dual clutch transmission; second,
a front-engined rear wheel drive vehicle with an au-
tomatic transmission and torque converter.

These examples both represent a car with a mass
of 1500kg using a chassis model with pitch, bounce
and roll degrees of freedom as well as the longitudi-
nal motion. A mean-value engine model developed
using the Engines Library [1] is used in both cases:
for the four-wheel drive vehicle we use a V6 engine
and for the rear-engined vehicle an inline 4 cylinder
engine is used. The engine and transmission assem-
blies are mounted in the vehicle body using an elas-
tomeric mount with a linear force-displacement
characteristic.

Predicting the launch feel of automatic and dual clutch transmissions

298 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076295

3.1 The Transmission

The transmissions are built using templates from the
PTDynamics library as shown in Figure 5. These
templates split the gearbox into 3 main sub-systems,
the engagement device, the gearset and the gear se-
lection mechanism. An engagement device in the
form of a clutch assembly or torque converter sits
between the engine and the gearset. The gearset in-
cludes the gears, shafts, bearings and synchronisers
or clutches used to engage different gears. The gear
selection mechanism defines the actuation system
that translates the driver movement of the hand lever
or control system gear demand into actuation of a
clutch or synchroniser. This system architecture
suits many applications commonly seen in automo-
tive transmissions.

The dual clutch transmission comprises two
concentric wet clutches with a three shaft type
gearset as shown in Figure 6. Simple synchroniser
models for each gear are included to enable the gear-
box to be used to run tests in different gears but the
detailed shift dynamics are not currently included
and will be introduced in a future development of the
PTDynamics library.

The automatic transmission is a 6 speed gearbox
consisting of a front Epicyclic and a rear Ravigneaux
gearset with 2 brakes and 3 clutches to control the
overall gear ratio (see Figure 7). The gearset is cou-
pled to the engine via a torque converter. The speed
and torque dependent losses are lumped for conven-
ience and based on the current gear signal. Where the
data is available the losses can be distributed to the
appropriate bearings and gear mesh models.

3.2 The Driveline

A range of templates for commonly occurring
driveline configurations are provided in the PTDy-
namics library. The example in Figure 8 illustrates
one of the four wheel drive templates that is availa-
ble. In this case the driveline includes a central dif-
ferential that is mounted to the transmission case.
The front and rear differentials are independently,
elastically mounted within the vehicle body. All of
the components are replaceable so that the user can
select the appropriate model for their application.

Figure 5: Automatic transmission used in the vehicle
model

Di?

ge?

bage?ge?

ge?

ba
ge?ge?

bage?ge?

ge?ge?
ba

ge?ge?

ge?

ge?

ba
ge?ge?

baev? baev? baev?i?

i? i?

i?

i?

i?

ba bama? bama? bama? bama? bama? bama?

baod? baod? baod?

bare?
I? I? I?

I?

I? I?

I? I?I?

ba
ge?ge?

ge?

bage?ge?

ge?

bage?ge?

ge?

baod?

ba
od?

flang? flang?

ho
us

in
g

f lang?

fla? fla? fla? fla?

Figure 7: Dual clutch transmission 3 shaft gearset

Figure 6: Gearset model for the automatic transmission
model

Session 2D: Mechanic Systems I

DOI Proceedings of the 9th International Modelica Conference 299
10.3384/ecp12076295 September 3-5, 2012, Munich, Germany

4 Results

4.1 Test definition

The two powertrain examples were used to model a
vehicle launch from standstill in 1st gear. In these
tests the engine starts at idle speed and we are inter-
ested in the vehicle longitudinal response which is
what the driver will experience. We will focus on
the behaviour and influence of the engagement de-
vices (i.e. torque converter and wet clutch) on the
longitudinal acceleration.

4.2 Vehicle with dual clutch transmission

The vehicle model used for these experiments is a
mid-engined car with a 7 speed dual-clutch transmis-
sion and integrated rear differential. The model in-
cludes all effects that influence the initial launch of
the vehicle such as the power-unit mounting system,
tyre slip, suspension (including the fore-aft compli-
ance) and the torsional compliance of all the shafts.

This example will look at the effect of oil temper-
ature on the initial pull-away of the vehicle. With
the oil in the wet clutch at the normal operating tem-
perature the pull-away of this type of vehicle will be
calibrated to deliver the acceleration profile that best
matches the brand image of the manufacturer. This
could result in a very smooth pull-away or be cali-
brated to give a more aggressive start with a higher

jerk at the start of the launch. However the start is
calibrated, the aim for the manufacturer is for this to
be consistent at all operating temperatures of the
clutch. At low temperatures though, this becomes
more difficult to achieve due to the change in viscos-
ity of the oil. This change is usually obvious to the
driver because the launch will not be as smooth and a
lot of effort with the calibration is required to mini-
mise the effect.

The launch test is a gentle acceleration with the
driver requesting a small amount of the available
engine torque resulting in the vehicle accelerating to
just 20kmh in 5 seconds. Figure 9 shows the results
of this pull away for the cold and warm gearbox
tests. In the case of the warm pull away the accelera-

Figure 8: Four wheel drive driveline template with cen-
tre differential

Figure 9: Comparison of pullaway with warm and cold oil
in the wet clutch. Top is the driver accelerator demand;
2nd plot is the engine and gearbox input speeds; 3rd is the
longitudinal acceleration; and bottom is the clutch demand

Predicting the launch feel of automatic and dual clutch transmissions

300 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076295

tion builds very smoothly.
With the cold gearbox though a smooth pull-away

is not achieved even though the clutch demand is
significantly reduced due to the low oil temperature.
The bottom plot in Figure 9 shows the change in the
clutch demand between the warm and cold oil tem-
peratures. Despite the large reduction in the clutch
demand during the first 0.2s, when the oil tempera-
ture is low we still get a relatively large acceleration
as soon as the clutch pressure begins to rise. This is
due to a large amount of torque that gets generated as
soon as the fluid layer begins to be compressed re-
sulting in a torque spike and corresponding longitu-
dinal acceleration.

How the driver judges the driveability perfor-
mance of a vehicle is often related to 3 objective var-
iables: delay time; peak acceleration and jerk [8].
Looking at these 3 objective measures using Figures
9 and 10 we can interpret the vehicle response and
compare the cold and warm performance. There is
no change in delay time but there is a big increase in
the jerk (See Figure 10) and a related change in the
acceleration profile (see Figure 9). For the cold pull-
away event, the jerk is 2.5x higher than with a warm
clutch. This will all effect the drivers perception of
how smooth the car is.

To cope with the low oil temperature the clutch
engagement profile has to be reshaped as well as re-
ducing the actual applied pressure during the early
phases of the engagement.

Figure 10: Longitudinal jerk during pullaway

4.3 Vehicle with automatic transmission

The vehicle model used for these experiments is a
front-engined, rear-wheel drive vehicle. It is fitted
with a 6 speed automatic transmission with a torque
converter and lock-up clutch. The model includes all
effects that influence the initial launch of the vehicle
such as engine and differential mounting systems,
tyre slip, suspension (including the fore-aft compli-
ance) and the torsional compliance of all the shafts.

The torque converter model can be easily
changed between a steady state model and the cali-
brated dynamic model. This analysis focuses on the
detailed differences in the vehicle response due to

the use of a steady state and dynamic torque convert-
er model.

The experiment is a launch from rest with the
driver releasing the brake pedal and then applying
the accelerator pedal. The rate of pedal actuation is
the same in both tests and the engine is running at
idle speed with first gear engaged in the transmission
at the start of the test. Therefore the only difference
between the two tests is the torque converter model.

Figure 11 shows the normalised driver pedal posi-

Figure 11: Pullaway comparing the steady state and dy-
namic torque converter models. Top: driver demands; 2nd

plot is the impeller and turbine speeds with the dynamic
model results in dashed lines; 3rd is the longitudinal accel-
eration; Bottom is the longitudinal jerk

Session 2D: Mechanic Systems I

DOI Proceedings of the 9th International Modelica Conference 301
10.3384/ecp12076295 September 3-5, 2012, Munich, Germany

tions (top graph) aligned with the impeller and tur-
bine speeds (middle graph) and the vehicle longitu-
dinal acceleration (bottom graph).

The longitudinal acceleration of this vehicle can
be broken down into two phases. Phase 1 occurs
between 5.0 and 7.0s while the brakes are slowly
released and phase 2 begins as the driver steps across
from the brake pedal to the accelerator pedal.

During phase 1 the acceleration profile is domi-
nated by the release characteristics of the brake sys-
tem. This is because while the vehicle is held sta-
tionary the torque converter is applying torque to the
gearbox input. As soon as the friction torque in the
brakes reduces below a certain level the vehicle will
will start to creep forward. This model includes a
very simple brake system and so the brake pedal re-
lease profile is modified to limit the acceleration dur-
ing phase 1.

Phase 2 of the launch is where we see the differ-
ences between the steady state and dynamic torque
converter models. At this stage in the test the driver
is quickly applying the accelerator pedal to demand
100% torque from the engine and it is during the
time 7.5 to 8.0s that we see the effect of the torque
converter model on the results.

With the dynamic torque converter model we see
an increased delay between the driver demand and
the vehicle acceleration combined with an increase
in the jerk once the dynamic model starts to acceler-
ate. Both of these metrics are known to influence the
drivers perception of driveability [8].

Accurate prediction of these driveability metrics
together with other measurements such as fuel usage,
emissions and thermal effects enable the launch
strategy within the engine control software to be ad-
justed and calibrated to deliver the desired balance
between vehicle performance feel, fuel economy and
emissions.

5 Conclusions

An overview of the developments made within the
Powertrain Dynamics Library is presented and fo-
cused on the prediction of initial launch for two
types of vehicle. In the first case, the effect of oil
temperature on the initial launch of a dual wet-clutch
transmission equipped vehicle is presented followed
by a look at how a dynamic torque converter model
can improve the accuracy of the initial launch predic-
tion of an automatic transmission equipped vehicle.

Two key areas for transmission modelling have
been addressed through the introduction of more de-
tailed wet clutch models and a dynamic torque con-
verter model. These enable more dynamic driving

events such as launch and gear shifting to be mod-
elled and accurately predicted using Modelica based
models.

References

[1] Dempsey M., and Picarelli A. Investigating
the MultiBody Dynamics of the Complete
Powertrain System. Como, Italy: Proceedings
7th Modelica Conference, 2009.

[2] Dempsey M., Gäfvert M., Harman P., Kral
C., Otter M., and Treffinger P., Coordinated
automotive libraries for vehicle system mod-
elling, Vienna, Austria, Proceedings of the
5th International Modelica Conference, 2006.

[3] Hrovat D., and Tobler W.E., Bond-graph
modelling and computer simulation of auto-
motive torque converters. Journal of the
Franklin Institute 319,93-114, 1985

[4] Yang Y., Lam R., and Fujii T., Prediction of
Torque Response During the Engagement of
Wet Friction Clutch. SAE Technical Paper,
981097, 1998.

[5] Patir N., and Cheng H., Application of Aver-
age Flow Model to Lubrication Between
Rough Sliding Surfaces. ASME Journal of
Lubrication Technology, 101, 220, 1979

[6] American Society for Testing and Materials
(ASTM) International. D341 -09 Standard
Practise for Viscosity-Temperature Charts
for Liquid Petroleum Products, Accessed
08/05/2012
http://www.astm.org/Standards/D341.htm

[7] Otter M., Elmqvist H., and Mattsson S.E.:
The New Modelica MultiBody Library,
Linkoping, Sweden, Proceedings of the
Modelica 2003 Conference, 2003

[8] E. Cacciatori, Advanced Control Concepts
for a Parallel Hybrid Powertrain with Innitely
Variable Transmission," Ph.D. dissertation,
Cranfield University, Cranfield, 2007.

Predicting the launch feel of automatic and dual clutch transmissions

302 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076295

Modelling of Elastic Gearboxes Using a Generalized Gear Contact Model

Modelling of Elastic Gearboxes
Using a Generalized Gear Contact Model

F.L.J. van der Linden, German Aerospace Center (DLR)
Münchner Straße 20, 82234 Weßling, Germany

franciscus.linden@dlr.de

Abstract

The object of this paper is to present an universal
model that describes the gear contact between two
gears in a planar environment. The model includes
elastic effects between the gear wheels. Using this
model it is possible to create arbitrary spur gear con-
nections as well as all kinds of epicyclic gearing
configurations by supplying the proper external con-
straints. The presented model is implementated in the
Modelica language and Dymola is used for the simu-
lations.
Keywords: Elasticity, Gearbox, Epicyclic Gearing,
System Modeling

1 Introduction

Gear transmissions are widely used in almost all engi-
neering applications. These range from cheap plastic
consumer printers, aircraft actuators up to high pre-
cision positioning drive systems. The design of these
transmissions is dependent on the application. This de-
sign process ranges from "‘looking up a standard gear
in a catalog and hope it will work"’ up to detailed dy-
namic analysis using Finite Elements Methods.
At the moment gear research is mainly focused on the
understanding of gearboxes. Özgüven and Houser [4]
wrote a model review in 1988, Parey and Tandon [6]
did the same in 2003. These works present a good
overview of the work done up till that time. More re-
cent works can be sorted into 3 groups:

1. Rigid models or simple elastic systems with only
rotational degrees of freedom [7, 3]

2. Coupled torsional and transversional elastic
models[9, 1, 8, 5]

3. Self excited gears models; gear eccentricitiy,
transmission errors and stiffness variations [3, 1,
9, 5]

Some of these mentioned works have friction effects
included. Most of the recent works include a full
transversional-torsional coupled model including ei-
ther detailed friction effects or self excitation. There
is a clear trend on an increasing model detail and com-
plexity.
However, all the models above, are not flexible when
gearing configurations like compound planetary gears
or even more exotic configurations are used. In the
pre-design stage of such a gearbox, reduction ratios as
well as internal vibrations are usually important. In
this paper a model will be presented that can simu-
late arbitrary elastic gearbox configurations by relying
on a planar library. This approach makes it very easy
to evaluate several model configurations without a lot
of design work. To keep the simulation time low, the
presented model does not include any friction effects,
since they are often not directly necessary in the pre-
design stage.

2 Gear Forces and Equations

In this chapter the forces and torques on the gear
wheels are evaluated. Since these forces and torques
differ for internal- and external toothing, these aspects
are treated as separate cases.

2.1 Force and Moment balance of external
toothing

In Figure 1 a schematic overview of two gear wheels
in contact are shown. The rotation of the gear wheels
are φA and φB, shown by the angles to the body-fixed
red and blue markers on the gear wheels.
The gear ratio is defined by:

rA

rB
=−i (1)

This ratio is constant for each gear angle and position.

DOI Proceedings of the 9th International Modelica Conference 303
10.3384/ecp12076303 September 3-5, 2012, Munich, Germany

rA

rB φGear
φA

φB

Gear A

Gear B

Figure 1: Schematic overview of two gearwheels in
contact. The blue and red line are fixed markers on the
gear wheels. In the figure φ̇A > 0 and Gear A drives
Gear B.

Figure 2 shows a free body diagram of the two gears
in contact. The forces of only one contact point are
displayed.

rA

rB

Fn

Fn

x

y

φGear

FyA

FxA
FyB

FxB

Gear A

Gear B

Figure 2: Free body diagram of the two gearwheels
from Figure 1.

Using Figure 2, it is possible to create the torque and
force balances of each gear wheel for external toothing
configurations. These forces and torques are resolved
in the fixed coordinate system shown in Figure 2. The
use of a fixed coordinate system and gear angle φgear

makes it possible to use the contact model also in more
complex gear systems (e.g. all kinds of Epicyclic gear-
ing configurations).

τA = FnrA (2)

τB = FnrB (3)

FxA =−sin(φgear)Fn (4)

FyA = cos(φgear)Fn (5)

FxB =−FxA (6)

FyB =−FyA (7)

φA

αA

αB

φB

r B

r A

Gear A

Gear B

Figure 3: Schematic overview of two gearwheels in
contact. The blue and red line are fixed markers on the
gear wheels. In the figure ωA > 0 and Gear A drives
Gear B.

2.2 Force and Moment balance of internal
toothing

Just like in Section 2.1, the force and moment balance
can be created by examining Figure 3 together with
Figure 4:

τA = FnrA (8)

τB =−FnrB (9)

FxA =−sin(φgear)Fn (10)

FyA = cos(φgear)Fn (11)

FxB =−FxA (12)

FyB =−FyA (13)

3 Meshing distance

To keep track how the gear wheels move with respect
to each other, the mesh distance xmesh is introduced.
This distance is defined as the distance the gear has
traveled through the meshing point and can be calcu-
lated for both gear wheels. For the complete descrip-
tion of the mesh position the following assumption is
postulated:

Assumption 1 The mesh contact position is on the di-
rect connection between the center of gear A and B at
a distance rA from the center of A

Modelling of Elastic Gearboxes Using a Generalized Gear Contact Model

304 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076303

Fn Fn

x

y

FyB

FxB
FyA

FxA

Gear A

Gear B

Figure 4: Free body diagram of the two gearwheels
from Figure 3.

This assumption is valid for all cases in which the de-
formation of the tooth is small. In all engineering ap-
plications this must be the case for gearwheels under
normal loading conditions.

3.1 Mesh Distance External Toothing

For external toothing the mesh distance can be cal-
culated as follows using the geometry and definitions
from Figure 1.

xmesh,A = φArA−φgearrA (14)

xmesh,B =−φBrB +φgearrB (15)

From this equation it becomes clear that the mesh dis-
tance (xmesh,A or xmesh,B) can be constant although the
gear wheels are rotating. This is the case if φA = φgear

or φB = φgear. This is not only a theoretical implica-
tion; in e.g. bicycle gear hubs this is often the case.
The difference between the mesh positions is the elas-
ticity of the gear contact:

∆AB = xmesh,A− xmesh,B (16)

Assuming the meshing position is always halfway the
elastic deformation, together with using the equations
14 to 16 the mesh velocity is:

vmesh = ẋmesh,A−
∆̇AB

2
(17)

3.2 Mesh Distance Internal Toothing

The same analysis method can be applied to the inter-
nal toothing:

xmesh,A = φArA−φgearrA (18)

xmesh,B = φBrB−φgearrB (19)

The difference between the mesh positions is as men-
tioned above the elasticity of the gear contact:

∆AB = xmesh,A− xmesh,B (20)

Assuming the meshing position is always halfway the
elastic deformation, together with using the equations
18 to 20 the mesh velocity is:

vmesh = ẋmesh,A−
∆̇AB

2
(21)

4 Gear Wheel Coupling

The gear wheels A and B are coupled by a spring-
damper combination. This yields:

Fn = ∆ABc(φgear,φA,φB)+ ∆̇ABd(φgear,φA,φB) (22)

In this equation c(φgear,φA,φB) is the angle dependent
spring constant and d(φgear,φA,φB) is the angle depen-
dent damping constant.

4.1 Position Dependent Stiffness

The angle dependency can be used to simulate a non
constant tooth stiffness. The total tooth stiffness is the
combined stiffness of both gearwheels. Since the cir-
cumference of a gearwheel is periodic by definition,
the following assumption can be postulated:

Assumption 2 The position dependent stiffness and
damping of a gearwheel can be described by a Fourier
decomposition.

One of the most basic forms of Assumption 2 is a sin-
gle harmonic with zero phase offset that represents the
tooth of the gear wheel. The stiffness over the circum-
ference of a gearwheel can therefore be written as:

cA(γA) = cconst + c∆,A sin(2πntooth,AγA) (23)

cB(γB) = cconst + c∆,B sin(2πntooth,BγA) (24)

In this equation γA is the angle which describes the po-
sition of the material on the gear wheel. The stiffness
at the contact position however, is dependent on which

Session 2D: Mechanic Systems I

DOI Proceedings of the 9th International Modelica Conference 305
10.3384/ecp12076303 September 3-5, 2012, Munich, Germany

part of the gearwheel is in contact. The local stiffness
can be obtained for an external gear by using:

γA = φA−φgear (25)

γB =−φB +φgear (26)

Substituting Equations 25 and 26 into Equations 23
and 24 leads to the stiffness at the contact position.

ccont,A = cconst + c∆,A sin(2πntooth,A(φA−φgear))
(27)

ccont,B = cconst + c∆,b sin(2πntooth,B(−φB +φgear))
(28)

An internal gear configuration would yield:

γA = φA−φgear (29)

γB = φB−φgear (30)

leading to a contact stiffness of:

ccont,A = cconst + c∆,A sin(2πntooth,A(φA−φgear))
(31)

ccont,B = cconst + c∆,B sin(2πntooth,B(φB−φgear))
(32)

The overall stiffness can be calculated by putting both
springs in series:

c =
(

1
ccont,A

+
1

ccont,B

)−1

(33)

5 Modelica Implementation

The presented gear contact model must be supplied by
constraints in the x, y and φ direction (standard planar
constraints). The Planar library from D. Zimmer [11]
is used to supply these constraints. Features like (rota-
tional) bearings, connection rods, inertias e.g. are all
represented. The library will be used to create the total
gearbox setup.
Implementation of the gear model in Modelica is
straightforward using the sections above. The gear
model is implemented with 2 planar interface connec-
tors; each with 3 degrees of freedom (x,y,φ). These
connectors are the connections to the gearwheels A and
B. To sense the total revolution angle φgear (φgear ∈R),
the atan3 function is modified to supply a continuous
and differentiable angle.
In Figure 5 the icons of the gear models are shown. No
inertia’s or constraints are included in the model.
Using the planar library, it is possible to create all kind
of different gear configurations. Everything between

Figure 5: Modelica Icon of the inner and outer gear-
wheel connections

Figure 6: Spur Gear in Dymola

simple spur gears models (Figure 6 and 7) up to com-
plex epicyclic gearing configurations (Figure 8 and 9)
is easily generated. In these models, the gearbox mod-
els (Figure 5) are defined as described in this paper, all
other components are components of the planar library
(see [11]).

6 Simulation Results

6.1 Eigenfrequency Analysis

Using the Modelica LinearSystems2 library, it is pos-
sible to create a Bode-Diagram of a linear system.
Since a linear spring and damper are used for the con-
tact stiffness, is is possible to use this toolbox. Using
an eigenfrequency analysis it is possible to check the

Figure 7: Spur Gear in Dymola

Modelling of Elastic Gearboxes Using a Generalized Gear Contact Model

306 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076303

Figure 8: Epicyclic Gear

Figure 9: Epicyclic Gear

behavior of the models.

6.1.1 Spur Gear Analysis

A Single Input Single Output (SISO) system of a sim-
ple spur gear model (as shown in Figure 6) is gener-
ated by applying a torque input on gearwheel A, and
using as output the angular position of gearwheel B.
The Bode-Diagram of this system 1 is shown in Fig-
ure 10. In the diagram a clear peak can be found

0.1 1

0.01

1

100
Bode-Diagram

m
ag

ni
tu

de

0.1 1
-200

0

ph
as

e
[d

eg
]

Frequency [Hz]

Figure 10: Bode-Diagram of the spur gear from Figure
6

at 0.225 Hz. This is exactly the expected frequency

ω =

√
k
m

2π
=

√
2
1

2π
∼= 0.225. The stiffness k = 2 N

m and
mass m = 1kg have to be used since the system is a
symmetrical system using only one spring (see e.g.
[2]). Lowering of the eigenfrequency due to damping
can be neglected due to the low damping coefficient.

6.1.2 Epicyclic Gear Analysis

A SISO system is created by defining an input torque
on the sun (middle (blue) gear in Figure 9), as output
the angular position of the carrier (grey structure). The
Ring (red) is fixed, thereby eliminating vibrations of
the ring structure. Each small planet is coupled to the
planet rotating on the same axis. All bodies have the
following properties: Mass 1 kg, Inertia 1 kgm2. All
gear connections have a stiffness of 1 N

m , and a damp-
ing coefficient of 1e-3 Ns

m . The radius of the sun is

1The bodies have a rotational inertia of 1 kgm2, the spring con-
stant of the gear is 1 N

m , and a damping coefficient is 1e-3 Ns
m . Both

gearwheels have a radius of 1m.

Session 2D: Mechanic Systems I

DOI Proceedings of the 9th International Modelica Conference 307
10.3384/ecp12076303 September 3-5, 2012, Munich, Germany

1m, the connecting planet has a radius of 0.5m. The
other gear part of the stepped planet has a radius of
1m. The ring has a diameter of 2.5m. Using this set
up, a Bode-Diagram is made (see Figure 11). When

0.1 1
0.001
0.01
0.1

1
10

Bode-Diagram

m
ag

ni
tu

de

0.1 1

0

400

ph
as

e
[d

eg
]

Frequency [Hz]

Figure 11: Bode-Diagram of the epicyclic gear from
Figure 8

evaluating the Bode diagram, two peaks and a single
dip can be found in the magnitude diagram. These
features correspond to the 3 eigenfrequencies of the
system. The fact that only 3 peaks can be found in the
Bode diagram is due to the fact that the planets all have
the same masses and stiffnesses. When the stiffness of
one of the Sun-Planet gear connections is lowered to
0.5 N

m , another peak and dip in the magnitude diagram
occurs, since now one of the planets will swing in an
other frequency as the others (see Figure 12).

6.2 Internal vibrations

In Section 4.1 the possibility of an internal excitation
of the gear through varying stiffness is shown (to sim-
ulate gear mesh effects). A demonstation of this ex-
citation is shown for a simple spur gear. Gear A is
accelerated from 0 rad

s to 1 rad
s with a constant acceler-

ation. A radius of 1m and 10 teeth for both gearwheels
are assumed for this calculation. The constant tooth
stiffness in the simulation is 1 N

m , the stiffness ripple on
both wheels is assumed to be 0.1%. Using a damping
coefficient of 0.2 Ns

m this yields a lightly damped sys-
tem with a damping ratio ς ≈ 0.071. In Figure 13 the
elastic deformation (∆AB) of the gear is shown.
In Figure 13 also shows that the system is excited by
the internal mesh stiffness variation. The response of
the system is the largest when the eigenfrequency of

0.1 1

0.001
0.01
0.1

1
10

Bode-Diagram

m
ag

ni
tu

de

0.1 1

0

400

ph
as

e
[d

eg
]

Frequency [Hz]

Figure 12: Bode-Diagram of the epicyclic gear from
Figure 8 with reduced stiffness of one of the gear con-
tacts.

Figure 13: Time simulation of an elastic spur gear with
increasing velocity.

the system approximates the excitation by the stiffness
variation.

7 Conclusion

In this paper a model is presented to describe the con-
tact between two gear wheels. Using an external pla-
nar library, it is possible to model arbitrary gear con-
figurations ranging from simple spur gears up to com-
plex epicyclic gear configurations. An option to simu-
late gear meshing effects by varying the stiffness of the
gear contact is presented. The presented models make
it possible to analyze complex gear configuration by
means of time simulations as well as eigenfrequency

Modelling of Elastic Gearboxes Using a Generalized Gear Contact Model

308 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076303

analyses. The presented simulation results show the
power of the method, and illustrate the capability of
the model.

Acknowledgements I thank Martin Otter for his
help on Modelica related issues and Dirk Zimmer for
his help with Modelica and his work on the Planar li-
brary.

References

[1] HOWARD, I., JIA, S., AND WANG, J. The dy-
namic modelling of a spur gear in mesh includ-
ing friction and a crack. Mechanical Systems and
Signal Processing 15 (2001), 831–853.

[2] KELLY, S. Fundamentals of mechanical vibra-
tions. McGraw-Hill series in mechanical engi-
neering. McGraw-Hill, 2000.

[3] OTTEWILL, J. R., NEILD, S. A., AND WILSON,
R. E. Intermittent gear rattle due to interactions
between forcing and manufacturing errors. Jour-
nal of Sound and Vibration 321, 3-5 (2009), 913
– 935.

[4] ÖZGÜVEN, N., AND HOUSER, D. Mathematical
models used in gear dynamics - a review. Journal
of Sound and Vibration 121, 3 (1988), 383–411.

[5] PAREY, A., EL BADAOUI, M., GUILLET, F.,
AND TANDON, N. Dynamic modelling of spur
gear pair and application of empirical mode
decomposition-based statistical analysis for early
detection of localized tooth defect. Journal of
Sound and Vibration 294 (2006), 547–561.

[6] PAREY, A., AND TANDON, N. Spur gear dy-
namic models including defects: A review. The
Shock and Vibration Digest 35 (2003), 465–478.

[7] PEDERSEN, R., SANTOS, I. F., AND HEDE,
I. A. Advantages and drawbacks of applying pe-
riodic time-variant modal analysis to spur gear
dynamics. Mechanical Systems and Signal Pro-
cessing 24, 5 (2010), 1495 – 1508. Special Issue:
Operational Modal Analysis.

[8] PELCHEN, C., SCHWEIGER, C., AND OTTER,
M. Modeling and simulating the efficiency
of gearboxes and of planetary gearboxes. In
2nd International Modelica Conference (2002),
pp. 257–266.

[9] SAWALHI, N., AND RANDALL, R. Simulating
gear and bearing interactions in the presence of
faults: Part i. the combined gear bearing dynamic
model and the simulation of localised bearing
faults. Mechanical Systems and Signal Process-
ing 22, 8 (2008), 1924 – 1951.

[10] VAN DER LINDEN, F., AND VAZQUES DE

SOUZA SILVA, P. Modelling and simulating the
efficiency and elasticity of gearboxes. In Pro-
ceedings of the 7th International Modelica Con-
ference, Como, Italy (20-22 September 2009),
pp. 270–277.

[11] ZIMMER, D. A planar mechanical library for
teaching modelica. In review for the Proceed-
ings of the 9th International Modelica Confer-
ence (2012).

Session 2D: Mechanic Systems I

DOI Proceedings of the 9th International Modelica Conference 309
10.3384/ecp12076303 September 3-5, 2012, Munich, Germany

Modelling of Elastic Gearboxes Using a Generalized Gear Contact Model

310 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076303

Revised and Improved Implementation of the Spur Involute Gear Dynamical Model

Revised and Improved Implementation of the Spur Involute Gear
Dynamical Model

Ivan Kosenko∗ Ilya Gusev∗∗
∗Dorodnitsyn Computing Center of Russian Academy of Sciences, Department of Mechanics

Moscow, 119333, Russia
∗∗Russian State University of Tourism and Service, Department of Natural and

Engineering Sciences, Cherkizovo-1, Moscow region, 141221, Russia

Abstract

An improved model having new, more realistic, prop-
erties is constructed with use of previously imple-
mented approach for building up a model of the spur
involute gear dynamics. First of all, an algorithm for
contact tracking of cylindrical surfaces directed by in-
volutes was rearranged. This algorithm is “simply”
reduced to tracking the two involutes. A result is that
common line normal to these contact curves always
coincides with the line of action. This property permits
obtaining direct simple formulae for contact computa-
tions.

A backlash in gearbox is also taken into account in
the model under consideration. This means that a loss
of contact between the teeth is possible as gearwheels
rotate. This may then cause an appearance of a contact
patch during the reversal. Furthermore, a dynamical
reasons may force the mesh process to return to the
former mode of the forward stroke and so fourth. All
such scenarios for switching modes are implemented
in the model in a unified way.

A time overlapping of contacts between teeth pairs
is used to ensure the mesh reliability. This property is
also implemented in the described dynamical model.
New contact of the next pair of teeth arises and starts
its motion along the line of action before the old con-
tact leaves this line at the point of teeth disengage-
ment.

Keywords: spur gear; involute; mesh properties;
tracking algorithm; mesh ratio; multiple contact;
backlash

1 Introduction

One can highlight two poles among all approaches to
computer modeling and simulation of the gear dynam-
ics. Computational algorithms of high accuracy are

relocated at one end of the corresponding scale. These
algorithms take into account elasto-plastic properties
of the material that the contacting bodies are made of,
plus a variety of boundary conditions of different types
[1]. Such high accuracy simulation models simultane-
ously require significant computational resources. One
might point out different simplified models, see e. g.
[2], on the other end of the scale. These models pro-
vide the highest efficiency.

The compromise model presented in [3] might be
improved upon in a way so as to take into account es-
sential properties of real gear: (a) backlash, (b) contact
multiplicity. The latter property is always provided in
real gears in order to prevent jamming in teeth. In ad-
dition, the contact tracking algorithm turned out to be
simplifiable and simultaneously essentially accelerate-
able in the case of the involute mesh. For definiteness,
we use the Johnson [4] model for the cylindrical bod-
ies contact as was previously done [3] for the case of
spur mesh.

2 Preliminaries

Using methodics [5, 6] previously developed for com-
puter modeling of the rigid bodies 3D-motions let us
consider planar motion for bodies of cylindrical shape,
denoted asA andB in our case, in the plane orthogonal
to generatrix of cylinders. We connect this plane with
an additional bodyC, see Figure 1, an auxiliary frame
OCxyz of coordinates is assumed to be rigidly con-
nected with that latter body in a way such that cylin-
drical generatrix is always orthogonal to the axisOCz.
One might express this latter requirement using the
following geometrical conditions:kα = kC (α = A,B),
wherekα (α = A,B,C) are the unit vectors defining
the axesOαz connected with the bodiesα = A,B. To
ensure the motion of the bodies in the plane parallel

DOI Proceedings of the 9th International Modelica Conference 311
10.3384/ecp12076311 September 3-5, 2012, Munich, Germany

to the planeOCxy let us require a fulfillment of yet
two more algebraic conditions for the bodiesA andB
z-coordinates:zOA = const, zOB = const. All the coor-
dinates are given with respect to (w. r. t.) the system
OCxyz.

Figure 1: Coordinate systems for the model: (a) base
frame of referenceO0x0y0z0; (b) the gearbox hous-
ing coordinate systemOCxyz; (c) the pinion coordi-
nate systemOAxAyAzA; (d) the gear coordinate system
OBxByBzB

One can easily implement algebraic equations enu-
merated above in implicit form. To fix the bodiesA
andB w. r. t. the bodyC one can use, for instance, con-
straints of the joint type [5, 6]. In this case the body
C itself performs arbitrary 3D-motions being regarded
as a convective motion w. r. t. certain inertial frame of
reference. Thus calling the bodyC as the reduction-
gear housing is quite natural, if the bodiesA andB are
models of gearwheels. After the reduction to the plane
OCxyperformed above building up a technique for the
cylindrical bodies using 2D-geometry properties [3] is
quite natural as well.

Note that all the bodiesA, B,C in the model perform
their 3D-motions according to the spatial dynamics
of rigid body encapsulated in the corresponding base
class. And relative cylindrical symmetry of bodiesA
andB w. r. t. the bodyC is kept due to the reaction
forces between them. These forces are generated dy-
namically in an acausal mode due to kinematical con-
straints encapsulated in a contact class, rather a tem-

plate, being further constructed in this paper.

3 Account of the backlash

First of all, let us simplify and as a consequence essen-
tially accelerate a performance of the previously im-
plemented algorithm of the contact tracking for two
involute surfaces of the teeth pair at the contact for the
spur gear meshing. Such a simplification allows us
building up the mesh model quite easily for the mesh
ratio greater than one, and simultaneously accounting
for the backlash.

As was found earlier [3] that in the case of the in-
volute mesh the sought pointsPA andPB, see Figure 1,
lying both on the perpendicular common for involutes
of gearwheels teeth in vicinity of contact, are located
simultaneously on the mesh line of actionKAKB, see
Figure 2. Evidently, the common perpendicular men-
tioned above also coincides with the line of action
KAKB. Thus, from the geometric point of view the
pointPA lies permanently in time on the intersection of
the gearwheel tooth involute and the lineKAKB. Simi-
lar statement takes place for the pointPB: it lies on the
intersection of the gearwheelB tooth involute and the
same line of actionKAKB.

Figure 2: Gear mesh for forward stroke

Thus in case of involutes computing coordinatessA

andsB of pointsPA andPB respectively on the strait
line KAKB replacing a cumbersome algorithm using
differential-algebraic equations is sufficient for contact
tracking. One can compute coordinatessA, sB with an
extremely simple procedure, see Figure 3.

Let the coordinatessA, sB denote the distances from

Revised and Improved Implementation of the Spur Involute Gear Dynamical Model

312 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076311

Figure 3: Contact tracking coordinates

the respective pointsKA, KB. We assume values ofsA,
sB at these source points being set to zero. Thus for
sA + sB ≥ L = |KAKB| a contact takes place, and for
sA + sB < L the contact is absent. In the first case the
depthh of the bodies mutual penetration is computed
by the simple formulah = L− sA− sB ≤ 0. Left ar-
rows in Figure 3 show a direction in which the contact
patch moves for the forward mode and as pinion ro-
tates clockwise.

When computing the valueh the pair of teeth being
in contact is under analysis. In case of forward stroke
we assume for definiteness that the wheelA, pinion,
rotates clockwise while the wheelB, gear, supposed to
rotate counterclockwise. The anglesϕA, ϕB of rota-
tion of the bodiesA, B respectively are defined by the
axis OCx of the gearbox housing and by the axes be-
ginning from bodies’ pointsOA, OB and going through
the points of their base circles where corresponding in-
volutes “grow”, see Figure 2.

Furthermore, if the wheelA, for definiteness, rotates
such that the angleϕA appears outside its admissible
limits (being defined below) then the model generates
an event corresponding to fulfilment of the condition
ϕA /∈ [ϕAmin,ϕAmax]. In such a case the values of angles
ϕA = ϕ−A , ϕB = ϕ−B are to be automatically corrected
according to equations (we assume that contact of the
forward stroke exists currently):

ϕ+
A = ϕ−A +m∆ϕA, ϕ+

B = ϕ−B −m∆ϕB

for the case ofϕA < ϕAmin and equations:

ϕ+
A = ϕ−A −m∆ϕA, ϕ+

B = ϕ−B +m∆ϕB

for the case ofϕA > ϕAmax. Here∆ϕA, ∆ϕB are an-
gular widths per one tooth of the wheelsA andB re-
spectively;m is the mesh multiplicity (the least integer
greater than the mesh ratio). Note that the anglesϕA

andϕB are not exactly the bodies angles of rotation.

They are indeed the angles of rotation for wheels’ teeth
w. r. t. the axisOCx. These teeth are supposed to lie
currently in the zone of possible contact. This zone is
defined by the conditionϕA ∈ [ϕAmin,ϕAmax].

Formulae from above have to simply switch con-
tact in the same sense as it was arranged in [3]. The
following approximate rule is used: at the very same
moment when the contact patch “instantly vanishes”
behind an upper or lower limits of admissible segment
[ϕAmin,ϕAmax] this patch should appear immediately
on the other end of the same segment. For simplicity
the wheelA is considered as a “leading” object respon-
sible for the event generation process.

Thus a current contact object of the model “jumps”
to the next pair of teeth overm−1pairs being currently
in contact if the object individual angleϕA of tooth
rotation goes out of its admissible limits. Recall that
m is the mesh multiplicity, and in general we assume
m≥ 1.

Limit valuesϕAmin, ϕAmax for angle of inclination
of an involute at contact for the current pair of teeth
are computed with natural restrictions being imposed
on the contact area. Minimal valueϕAmin corresponds
to the final pointb of contacting along the line of ac-
tion for the case of forward stroke, see Figure 2. One
can see easily that the valueϕAmin is computed by the
formula

ϕAmin = αw− |KAa|+ |ab|
rAb

, (1)

corresponding to the selection of pointsa andb where
the contact process of starts and ends respectively. One
might find details for such matching in [3]. Hereαw is
the pressure angle, andrAb is the wheelA base circle
radius. Equation (1) has a simple geometrical expla-
nation, see Figure 4. Indeed, consider the pinion base
circle. Its arc length from the pointKA downwards to
the position corresponding to the angleϕAmax should
be equal to the segment[KA,b] length according to the
known involute property. This circumstance leads im-
mediately to property (1). We recall that the pointb on
the gear mesh line of action defines the position where
contact patch vanishes.

If the wheel A angular positionϕA = ϕAmin cor-
responds to the instant for contact finishing then the
angleϕA = ϕAmax has to correspond to this process
beginning for the current pair of teeth. One easily
sees that the assumptionϕAmax = ϕAmin + m∆ϕA has
to hold.

Similarly, obtaining formulae for computation of

Session 2D: Mechanic Systems I

DOI Proceedings of the 9th International Modelica Conference 313
10.3384/ecp12076311 September 3-5, 2012, Munich, Germany

Figure 4: Limit angleϕAmin

the pointsPA, PB coordinatessA, sB as

sA =
{

rAb(αw−ϕA) for ϕA < αw,
0 for ϕA ≥ αw,

sB =
{

rBb(αw +π−ϕB) for ϕB < π+αw,
0 for ϕB ≥ π+αw,

whererBb is the wheelB base circle radius, is not very
difficult.

One has to provide additional contact (between
wheelsA and B) objects to take into account all the
possible contacts of teeth pairs if the mesh ratio is
greater than one. To simulate the gearbox forward
stroke one has to provide generallym instances of such
contact objects.

Furthermore, clearly, if contact of teeth in the for-
ward stroke vanishes then it is almost evident that con-
tact of reversal arises. This latter arises between the
teeth pair closest to contact lost before and being lo-
cated through the tooth trough on the involutes of the
teeth sides previously unused in the forward stroke
mode.

To simulate the reversal one has to use line of action
derived from the line of Figure 2 by mirroring it w. r. t.
the axis connecting pointsOA andOB. All the mesh
geometric properties considered for the forward stroke
are mirrored for the case of reversal. In particular, co-
ordinatessA andsB for this case have expressions

sA =
{

rAb(αw +ϕA) for ϕA >−αw,
0 for ϕA ≤−αw,

sB =
{

rBb(αw−π+ϕB) for ϕB > π−αw,
0 for ϕB ≤ π−αw.

Note that what we have meant under “the forward
stroke” or “reversal” is not a kinematical property
whether to rotate clockwise or counterclockwise but
it is a dynamical property switching into work/contact
between driving/driven surfaces of teeth. Thus, we

will see the forward stroke in cases of the pinionA
clockwise accelerated and counterclockwise deceler-
ated rotation. Similarly, reversal takes place in general
if pinion A accelerates when rotating counterclock-
wise and decelerates simultaneously rotating clock-
wise. Simplifying formulations let us call the rotation
with line of action shown in Figure 2 as the forward
stroke. Likewise, the rotation with line of action mir-
rored w. r. t. the axisOAOB of Figure 2 be called as
reversal. The reversal requires correct switching be-
tween pairs of teeth, as well as, it was implemented
for the forward stroke.

When contacting in reversal mode switching of the
teeth pairs takes place if the contact patch leaves the
segmenta′b′ of line of actionK′

AK′
B, see Figure 5, or

by the pointa′ or through the pointb′. For that one has
to apply the same relations as above replacing the seg-
ment[ϕAmin,ϕAmax] of admissible values for the angle
ϕA by the segment[ϕ′Amin,ϕ

′
Amax] for the angleϕ′A such

thatϕ′Amin =−ϕAmax, ϕ′Amax =−ϕAmin.

4 Case of multiple contact

Previously mesh ratio was supposed equal to one in
the simplified model of the gear mesh [3]. This means
that exactly at the moment of contact loss at the point
b new contact at the pointa arises. Such an arrange-
ment leads frequently to a low reliability of a gear-
box as well-known however in practice, mostly due
to jamming caused by manufacturing errors. Due to
this reason ensuring a reliable gearbox work one pro-
vides overlapping for time intervals of contacts in teeth
pairs. Namely, new contact at the pointa arises earlier
than the current contact vanishes at the pointb.

Let us return to the example being analysed in [3]
where a virtual setup for computational experimenting
was constructed, see Figure 6 and also Figure 1 for ge-

Revised and Improved Implementation of the Spur Involute Gear Dynamical Model

314 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076311

Figure 5: Gearmesh for reversal mode

ometry of the whole construct. This setup consists of
two gearwheels: pinionA and gearB. For simplicity
we assume the gearbox housingC fixed w. r. t. the
base body of a whole multibody system. Furthermore,
origin OC of an inertial frameOCxyzof reference coin-
cides with the pinionA center where the revolute joint
which connects bodiesA andC is located. The gear
B center locates on the horizontal axisOCx. There ex-
ists the second revolute joint connecting the bodyB
and auxiliary sliderS. The sliderS in turn may freely
slip w. r. t. the bodyC along the axisOCx. This slip-
ping however is decelerated by a spring of very large
stiffness. The spring connects the bodiesC andS thus
providing a compliance between the bodiesB andC
through the intermediate sliderS. This compliance has
direction along the lineOAOB connecting the wheels
centers and coinciding with the axisOCx. Such a con-
struct prevents static indefiniteness in the model for the
case of the rigid point-contact in the gearmesh of the
wheelsA andB.

We define in the model the following independent
parameters:

• zA = 20 is number of the pinion teeth;

• zB = 30 is number of the gear teeth;

• rA = 0.2m is the pinion pitch circle radius.

Other (dependent) geometric parameters are com-
puted as follows

• n = zB/zA is the transmission ratio;

• rB = nrA is the gear pitch circle radius;

• ∆γA = 2π/zA, ∆γB = 2π/zB are the pitch angles of
the pinion and gear.

For further definition of the gear mesh choosing the
pressure angle value is important. This value has to
satisfy the conditionαw > αwinf , whereαwinf = inf αw

is the lower bound for all possible pressure angles
which are admissible by parameters selected above.
One can compute this bound according to the formula

αwinf = arctan
2π

zA(1+n)
.

The lower bound obtained above is a simple conse-
quence of the mesh natural condition

|−−−→KAKB|> |−→ab|.

For definiteness let us choose the value

αw = 2.8αwinf .

Furthermore, with the help of the pressure angle
value and the value of the transmission ratio we can
compute all the geometric parameters needed shown
in Figure 2. Firstly of all one can obtain radii of base
circles as

rαb = rα cosαw (α = A,B).

Then one can compute full length of the line of action
in the following way

|−−−→KAKB|= rA(1+n)sinαw.

At the same time, the length of any segment of con-
tact[a,b]⊂ (KAKB) along this line is exactly the length
of the base circle arc corresponding to the pitch angle
∆γA or ∆γB for any wheel of the gearbox. Thus we
have

|−→ab|= rαb∆γα (α = A,B).

One easily computes the distance between wheels
centers asL = rA + rB. For computing initial condi-
tions in the model performing additional calculations
is necessary. Suppose for definiteness that the coor-
dinate systemOCxCyCzC has its origin at the pointOA

of the pinionA center:OC = OA, so that these points
initial absolute coordinates coincide. Thus

rOC = rOA = (0,0,0)T ,

and the initial position of the gear center is defined by

rOB = (L,0,0)T .

Session 2D: Mechanic Systems I

DOI Proceedings of the 9th International Modelica Conference 315
10.3384/ecp12076311 September 3-5, 2012, Munich, Germany

Figure 6: Virtual setup for computational experiments

Initial positions of the pointsKA andKB are com-
puted by vector formulae

rKA = rOA + rAb(cosαw,sinαw,0)T ,

rKB = rOB− rBb(cosαw,sinαw,0)T

being deduced easily. Furthermore, a directing vector
for the line of action is defined as

−−−→
KAKB = rKB − rKA.

So that the contact starting pointa initial position may
be defined as

ra = rKA +
1
2

(
|−−−→KAKB|− |−→ab|

) −−−→
KAKB

|−−−→KAKB|
,

and the initial position for the pointb of contact finish-
ing as

rb = ra +
|−→ab|
|−−−→KAKB|

−−−→
KAKB.

Let us take into account that the distance between
the pointsa andOB is exactly equal to the addendum
circle radiusrBa for the wheelB, and the initial dis-
tance from the pointb to OA is equal to the addendum
circle radiusrAa for the wheelA. Namely

rAa = |rb− rOA| , rBa = |ra− rOB| .

To ensure overlapping of the mesh cycles for wheels
with transmission ration = 3/2 let us consider the
case withzA = 22 and zB = 33 providing the same
transmission ratio. Note that the real angular widths
∆ϕA = π/11 and∆ϕB = 2π/33 for teeth become less
than their nominal, pitch, widths∆γA = π/10 and
∆γB = 2π/30.

Simultaneous coexistence of two contacts in the
model obtained requires, both in the forward stroke
and in reversal, the use of four contact objects in the
mesh computer model — two for the forward stroke

plus two for reversal. Visual model of the experimen-
tal setup is represented in Figure 7. HereContactf1
andContactf2 are objects for the forward stroke,
and Contactb1 and Contactb2 are ones for re-
versal. Thus as a result models for the pinion, the left
wheel objectLeftWheel , and gear, the right wheel
objectRightWheel , each has four input ports for in-
formation about wrenches arising at patches of an elas-
tic contacts. ObjectPlatform simulates dynamics
of the base body (absolute world), gearbox housingC
(relative world), having a predefined motion, resting in
our case. Thus two mentioned worlds coincide for the
model of Figure 7.

Figure 7: The testbench visual model

Note that each contact object mentioned above
works virtually independently. Coordination of their
on/off switching is achieved using proper and correct
selection of initial conditions for the state variables in-
side contact objects. In case of our dynamical example

Revised and Improved Implementation of the Spur Involute Gear Dynamical Model

316 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076311

these conditions are defined in the following way.
Angular velocities of wheels are assumed to be zero.

For definiteness we also suppose that the bodyA axis
OAxA goes through the involute root point lying on the
pinion base circle. This involute defines exactly the
tooth surface, and initially it goes through the pointa
thus starting a contact. Likewise, the axisOBxB of the
wheelB initially goes through the gearB involute root
point.

At initial instant of time one pair of the wheelsA
andB teeth is supposed to have contact at the pointa,
see Figure2, with a zero depth of mutual penetration.
For definiteness this contact is supposed to be in the
forward stroke mode. One can easily conclude from
Figure 2 that in initial position of teeth for angles of
inclination ϕA, ϕB of radius vectors for the involute
root points, lying on the base circles, the equations

ϕA
f1
0 = atan2(ay,ax)−θA,

ϕB
f1
0 = atan2(ay−yCB,ax−xCB)−θB,

(2)

whereθA, θB are the pointa polar angles on teeth in-
volutes, hold. These angles are computed in the form

θA =

√
|a|2− r2

Ab

rAb
−arccos

(
rAb

|a|
)

,

θB =

√
|a− rCB|2− r2

Bb

rBb
−arccos

(
rBb

|a− rCB|
)

.

Thus wheels initial angles of inclination in the ob-
ject Contactf1 are defined by formulae (2). Fur-
thermore, for the mesh ratio being greater than one if
one pair of teeth starts contact at the pointa then an-
other neighbour pair being ahead of the previous one
will have a contact somewhere on the segment[a,b].
This latter contact is supposed to be defined in the ob-
ject Contactf2 . Initial values of auxiliary angles
ϕA, ϕB defining the angles of involute rotation for the
forward stroke (or reversal) and being respectively in
segments[ϕAmin,ϕAmax], [ϕBmin,ϕBmax] are to be dis-
tanced from the angles of the objectContactf1 ex-
actly by the tooth angular width (which is smaller than
the angular pitch of the gear mesh under simulation).
Namely, the following formulae

ϕA
f2
0 = ϕA

f1
0 −∆ϕA, ϕB

f2
0 = ϕB

f1
0 −∆ϕB, (3)

are to be satisfied.
An initial data selection for the objects

Contactb1 , Contactb2 servicing the rever-
sal is not so evident. Indeed, involutive surfaces of the
teeth pair being tracked by the objectContactb1

will be situated on the same teeth as the surfaces
being tracked by the objectContactf2 . The only
difference is that they should be relocated on other
sides of the teeth mentioned, see Figure 2. So from
geometrical point of view contact of reversal being
tracked by the objectContactb1 on initial stage
of motion should be located between the contacts
of the forward stroke being tracked by the objects
Contactf1 andContactf2 .

Note that for a particular tooth the radius vectors of
the involute root points (lying on the base circles) of
its two sides rotate w. r. t. each other exactly by an
angular width of one tooth without accounting for the
tooth trough. Note that all angular widths are to be
counted along the arcs of the base circle. Denote these
angular widths of teeth bytAwid, tBwid. Then one can
compute initial data in the objectContactb1 by the
formulae

ϕA
b1
0 = ϕA

f2
0 + tAwid, ϕB

b1
0 = ϕB

f1
0 + tBwid.

Let us remark here that really at the initial in-
stant of the computational experiment the objects
Contactb1 , Contactb2 generate zero-valued
wrenches of contact forces. All this is due to the
contacts absence for reversal mode though objects
Contactb1 , Contactb2 always continue to track
the pointsPA, PB inside each of them.

The objectContactb2 of the second contact for
the reverse mode has the following initial data for the
involute angles of inclination (rather angles of incli-
nation of their root points radius vectors for the case
m= 2)

ϕA
b2
0 =

{
c for c > ϕAmin,
d for c≤ ϕAmin,

wherec = ϕA
f1
0 −2∆ϕA + tAwid, d = ϕA

f1
0 + tAwid and

ϕB
b2
0 =

{
q for c > ϕAmin,
r for c≤ ϕAmin,

whereq = ϕB
f1
0 +∆ϕB+ tBwid, r = ϕB

f1
0 −∆ϕB+ tBwid.

In the latter equations we take into account the fact
that for the case of the mesh multiplicity for the rever-
sal mode there exist several possibilities, two in our
example, of contact implementations along the line of
actionK′

AK′
B, see Figure 5.

Ensuring the initial data selection from above in the
objects of contact we thus automatically provide cor-
rect switching of modes of contact inside the objects
and correct tracking for involutes contact switching
in the process of wheels rotation. The built up mesh

Session 2D: Mechanic Systems I

DOI Proceedings of the 9th International Modelica Conference 317
10.3384/ecp12076311 September 3-5, 2012, Munich, Germany

model provides a possibility to simulate motions of
any type in the gearbox with any combination for con-
tact between teeth. This model enables us able to con-
struct effectively the gearboxes virtual prototypes of
any complexity for the case of the spur involute gear.

5 Behavioral Model of Contact
Object

Let us return to the gearbox visual model presented
in Figure 7. It has been built with the help of ear-
lier proposed [5, 6] technologies for constructing the
physically–oriented models. For each physically im-
plemented contact of the model there exists one ob-
ject of visual model, see Figure 7. Meanwhile, from
the functional viewpoint there is no difference how
contacts of specific type, Nos. 1 and 2 for the for-
ward stroke and Nos. 1 and 2 for reversal, are redis-
tributed over an array of unified contact objects. Thus,
the same class code is able “to play a role” of contact
of any type within the spur involute gear model. In
virtue of the circumstances outlined above organizing
an array for all four contact objects in virtual model
is reasonable. There should also be an array of four
connectors reserved for transmitting data of wrenches
from contact objects to objects of bodies, the wheels
LeftWheel , RightWheel in Figure 7. In this case
corresponding wrench ports are to be really arrays of
ports [7] in objectsLeftWheel andRightWheel .

Figure 8: Base template for contact model

Note that according to the approach previously im-

plemented in [8] contact objects have a class being
a template which has four class parameters responsi-
ble for implementation of: (a) geometry of surfaces
at contact; (b) model of normal elastic contact forces;
(c) model of normal viscous forces; (d) model of tan-
gent (ususally friction) forces. Visual representation
of base template with empty sockets for the above four
parameters see in Figure 8. The final derived class is
shown in Figure 9 with mentioned sockets filled, ac-
tually redeclared, respectively by the following model
parameters: (a) involute cylinder – involute cylinder;
(b) the Johnson contact model for cylindrical bodies;
(c) non-linear normal viscous model; (d) simplified
Coulomb model of friction for tangent forces.

Figure 9: Final derived class for contact model of the
example

The anglesϕA, ϕB of the wheels relative rotation
are fundamental properties of the contact model under
consideration. The angleϕA is defined clearly in Fig-
ure 4. The angleϕB has a similar sense for the wheel
B. These angles remain always bounded throughout
simulation: ϕα ∈ [ϕαmin,ϕαmax] (α = A,B). Simul-
taneously for derivatives the equationsϕ̇α(t) ≡ ψ̇α(t)
are fulfilled almost everywhere fort ∈ [t0, t1] wheret0
is the starting instant of the simulation process,t1 is
the instant of the simulation finish. Here the values
ψα (α = A,B) are assumed angles of the gearwheels
rotation w. r. t. the gearbox housing. The variables
ψα (α = A,B) are defined by dynamical equations of
the model. In general the angleψα(t) may grow or
decrease infinitely. At the same time the anglesϕα(t)
always remain bounded. The property described above

Revised and Improved Implementation of the Spur Involute Gear Dynamical Model

318 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076311

Figure 10: Dynamical transmission error

is implemented using the technique of event process-
ing.

Namely, in usual mode ifϕα(t) ∈ [ϕαmin,ϕαmax]
then we assume that the valueϕα(t) satisfies the dif-
ferential equation

dϕα

dt
=

dψα

dt
(α = A,B), (4)

where the derivative is supposed to be expressed de-
pending on state variables of the problem. When one
of the events:ϕα(t) < ϕαmin or ϕα(t) > ϕαmax occurs
then the initial condition of Cauchy problem is cor-
rected immediately in the corresponding differential
equation of the system (4) at the instantt = t∗ of the
event according to the formula

ϕα(t∗) =





ϕαmax for ϕα(t∗−) = ϕαmin and
ϕ̇α(t∗−) < 0,

ϕαmin for ϕα(t∗−) = ϕαmax and
ϕ̇α(t∗−) > 0.

The technique of event processing outlined above
provides us with the correct model for simulating

physical switching for teeth at contact for the gearbox
model simulation.

6 Numerical experiments

To verify an improved model of the gearbox numer-
ical experiments were performed similar to those of
the work [3]. Graphs for the dynamical transmission
error (DTE) and value of the normal elastic force at
contact were under verification. For DTE the current
model clarifies the time dependence tracking as it has
been done in [9, 10] instants for increasing/decreasing
of the contact multiplicity. One can observe splashes
of the value under observation, DTE here, as it was
observed also in [9, 10] at these moments, see graph
of DTE in Figure 10.

The DTE graph for the previous model from [3] is
represented here by the blue curve (variable DTE1):
the mesh multiplicity is equal to one, and then the teeth
contacts overlapping is absent. The red curve (variable

Session 2D: Mechanic Systems I

DOI Proceedings of the 9th International Modelica Conference 319
10.3384/ecp12076311 September 3-5, 2012, Munich, Germany

Figure 11: Normal forces at contacts

DTE2) corresponds to the case of the mesh multiplic-
ity being equal to two. In this case there are time in-
tervals for two simultaneously existing contacts, see
subplot zoomed in in Figure 10. Interval of two con-
tacts begins with the left splash. Then DTE instantly
decreases because total contact stiffness increases with
two contacts. Right splashes correspond to the instant
of the old contact vanishing. Then only new contact
remains. Anyway, in the case under description there
exists an overlapping in time for contacts. And yet an-
other observation: as one can also see from the graph
an effect of overlapping causes a systematic shift of
the mesh cycle. Indeed, total duration of each individ-
ual contact mesh cycle remains the same as it was in
case of unit multiplicity. At the same time the period-
icity in meshing for the case of two contacts becomes
shorter by the duration of ovelapping interval.

When exploring a behavior of the normal elas-
tic force we can observe yet another interesting phe-
nomenon. Usually following an engineering tradition

one applies the so-called restricted formulation of dy-
namical problem with multiple contacts: for comput-
ing the normal elastic forces at each contact one sim-
ply divides the total elastic force by the number of con-
tacts being currently in action, see for instance [9, 10].
In our current approach, on the contrary, we com-
pute normal elastic force at each contact individually
from dynamics and with the use of the Johnson contact
model. So one may say that we have implemented so-
to-speak unrestricted problem for teeth contact of the
spur involute gear. The normal contact force behavior
along the mesh cycle is shown in Figure 11.

In the Figure 11 one exhibits the time dependence
for elastic forces being generated in two different con-
tact objects of the model. One assumes in the case
under analysis that the constant accelerating torque
acts upon the pinionA, while the gearB is under the
torque of viscous resistance which is proportional to
the value of the wheel angular velocity. The graph
presents us yet another interesting, though quite nat-

Revised and Improved Implementation of the Spur Involute Gear Dynamical Model

320 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076311

ural, observation: an engineering approach which has
been described above is indirectly verified by the exact
dynamical model with an unrestricted contact model
– values of normal elastic forces for contacts concur-
rently existing turned out to be almost identical. This
observation takes place at least for the case of large
contact stiffness corresponding to the steel our gear-
wheels are supposed to be made of.

7 Conclusions

Comparing results obtained in [3] with results of cur-
rent work we can highlight the following properties:

1. The model is capable of simulating both the for-
ward stroke and reversal of the gearbox taking
into account a possibility of backlash between
teeth.

2. The model is capable of simulating the involute
mesh with multiple contacts.

3. The most effective, for the case of involute as
tooth profile, contact tracking algorithm is imple-
mented in the model. All this is due to differ-
ential or algebraic equations were excluded from
the model, and only direct computations were in
use.

4. To ensure an accuracy of the model of contact the
most suitable implementation turned out to be an
array of contact objects. Coordination of their be-
havior is provided by proper selection of initial
conditions for the object variables.

8 Acknowledgements

The paper was prepared with partial support of Rus-
sian Foundation for Basic Research, projects: 11-01-
00354-a, 12-01-00536-a, 12-08-00637-a.

References

[1] Ziegler, P., Eberhard, P. Simulation of Geartrains
with an Elastic Model. In: Proceedings of Multi-
body Dynamics 2011. An ECCOMAS Thematic
Conference, Université catholique de Louvain,
Brussels, Belgium, July 4–7, 2011, 11 pp. ISBN
978-2-8052-0116-5.

[2] Pelchen, C., Schweiger, C., Otter, M. Model-
ing and Simulating the Efficiency of Gearboxes

and of Planetary Gearboxes. In: Proceed-
ings of 2nd International Modelica Conference,
Deutsches Zentrum für Luft- und Raumfahrt e. V.
(DLR), Oberpfaffenhofen, Germany, March 18–
19, 2002, pp. 257–266.

[3] Kosenko, I., Gusev I. Implementation of the spur
involute gear model on Modelica. In: Proceed-
ings of the 8th International Modelica Conference,
Auditorium Centre of the Technische Universitat
Dresden, Germany, March 20–22, 2011, pp. 315–
328.

[4] Johnson, K. L.: Contact Mechanics. Cambridge:
Cambridge University Press, 2001.

[5] Kosenko, I. I., Loginova, M. S., Obraztsov, Ya. P.,
Stavrovskaya, M. S. Multibody Systems Dynam-
ics: Modelica Implementation and Bond Graph
Representation. In: Proceedings of the 5th Inter-
national Modelica Conference, arsenal research,
Vienna, Austria, September 4–5, 2006, pp. 213–
223.

[6] Kosenko, I. I. Physically Oriented Approach to
Construct Multibody System Dynamics Models
Using Modelica Language. In: Proceedings of
Multibody 2007, Multibody Dynamics 2007. An
ECCOMAS Thematic Conference, Politecnico di
Milano, Milano, Italy, June 25–28, 2007.

[7] Fritzson, P. Principles of Object-Oriented Mod-
eling and Simulation with Modelica 2.1. Piscat-
away, NJ: IEEE Press, 2004.

[8] Kosenko, I., Aleksandrov, E., Implementation of
the Contensou–Erismann Model of Friction in
Frame of the Hertz Contact Problem on Modelica.
In: Proceedings of the 7th International Modelica
Conference, Como, Italy, 20–22 September 2009.
Francesco Casella, editor. Linköping University
Electronic Press, 2009. ISBN 978-91-7393-513-
5. Linköping Electronic Conference Proceed-
ings, ISSN:1650-3740. DOI: 10.3384/ecp0943,
pp. 288–298.

[9] Vaishya, M., Singh, R. Sliding Friction–induced
Non–Linearity and Parametric Effects in Gear Dy-
namics. Journal of Sound and Vibration, Vol. 248,
pp. 671–694, 2001.

[10] Vaishya, M., Singh R. Strategies for modeling
friction in gear dynamics. Journal of Mechanical
Design, Vol. 125, pp. 383–393, 2003.

Session 2D: Mechanic Systems I

DOI Proceedings of the 9th International Modelica Conference 321
10.3384/ecp12076311 September 3-5, 2012, Munich, Germany

Revised and Improved Implementation of the Spur Involute Gear Dynamical Model

322 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076311

Session 3A: Mixed Simulation Techniques I

Accessing External Data on Local Media and Remote Servers Using a Highly Optimized File Reader Library

Abstract
ncDataReader2 [1] is an open-source solution for the
efficient interpolating access to external data sets.
The library of C-functions can be used with different
applications and works well with Modelica. Data sets
can be easily accessed as continuous functions using
different interpolation and extrapolation methods.
The application range covers reading generated or
measured data, the integration of simulation results
from Modelica or other systems and the validation,
parametrization and optimization of models using
external data. Data sources may be local files or
remote servers. Using the netCDF file format [2], the
DAP network protocol [3] and different optimization
approaches the data access can be surprisingly fast,
even for large remote files with many variables
containing millions of values.

1 Introduction
Getting external data into a simulation model is an
important task for a lot of applications: buildings and
energy plants are exposed to weather factors,
complex models need to be validated with measured
values and some simulations require results from
other simulation runs.

The access conditions can vary significantly. A
dense grid of data can be interpolated in small or in
large intervals, and so can a wide grid. A large
dataset may be evaluated only in one point to
compute initial values or interpolated a million
times, moving backward, forward or randomly on
the x-axis. For some of these conditions and small
amounts of data the Table-like classes of the
Modelica Standard Library are a good choice, but for
different application scenarios the ncDataReader2
offers some real advantages:

• very fast, even with large amounts of data

• load on demand (only needed data is read and
processed)

• low memory consumption (adjustable, suitable
for embedded simulations)

• clever caching mechanisms, tunable for different
access characteristics

• different interpolation and extrapolation methods

• offset and scaling of values for unit conversion
and memory-efficient storage

• API1 (ANSI C) and data files work the same way
in Modelica systems and other applications

• data can be accessed locally or with a highly
efficient network protocol (DAP)

Although used mainly for 1D data sets the library
includes basic support for variables depending on
two dimensions (scattered 3D-points)2. This paper
will focus on the 1D functions.

1.1 History and Development
The development of the file reader library started
more than 10 years ago as a tool for the DAE
simulation system SMILE. Until now it was
constantly improved and tested with SMILE [5],
ANSYS CFX [6], the Modelica systems
OpenModelica and Dymola and with proprietary
applications.

ncDataReader2 is open-source software, everybody
is invited to use and improve it under the terms of
the GNU LGPL [7].

1 API - Application Programmers Interface: the data and
functions available for the programmer

2 using the csa library from [4]

Accessing External Data on Local Media and Remote Servers
Using a Highly Optimized File Reader Library

Dipl.-Ing.
Jörg Rädler

Dipl.-Ing. Manuel
Ljubijankic

Prof. Dr.-Ing. Christoph
Nytsch-Geusen

M.Sc.Dipl.-Ing.(Fh)
Jörg Huber

Berlin University of the Arts / Universität der Künste Berlin (UdK)
Hardenbergstrasse 33, 10623 Berlin, Germany

jraedler@udk-berlin.de manuel@udk-berlin.de nytsch@udk-berlin.de jhuber@udk-berlin.de

DOI Proceedings of the 9th International Modelica Conference 323
10.3384/ecp12076323 September 3-5, 2012, Munich, Germany

1.2 netCDF – the file format
netCDF is a binary file format3 and a program library
developed for large amounts of multi-dimensional
geoscientific data. The big advantage over other
formats is the ability to access pieces of data without
reading whole data sets or even whole files. netCDF
files are self-describing and may contain structured
data of different dimensions. This makes a very good
format to archive numerical data and a perfect base
for a file reader used in DAE simulations.

1.3 Interpolation and Extrapolation
ncDataReader2 includes the interpolation methods
Akima (most used), linear, discrete and smoothed
steps4 (see figure 1). Akima interpolation is a cubic
method that gives smooth results (C1-continuity)
without the tendency to overshoot. In contrast to
classical cubic spline interpolation the points have
only local influence, which perfectly complements
the local access in netCDF. To get an interpolated
value only some of the neighbouring points have to
be read and processed after the search for the
matching interval.

Extrapolation methods are implemented as periodic
or natural (depending on the interpolation method).

3 Recent versions of the netCDF format are based on the
HDF5 file format which is now used in MATLAB and
many other applications.

4 Adjustable continuous approximation of discrete
characteristics with C1-continuity, using linear parts
and sin()-functions. Strictly speaking this is no real
interpolation since the points are often not hit.

1.4 Tuning and Optimization
Variables may be fully loaded at initialization time,
loaded in chunks of a specific size or as single values
on demand. Three different caches may be enabled
and changed in size:

• a lookup cache stores results of the interval
search,

• a parameter cache holds the parameters of the
linear or cubic function of an interval (both for
successive requests of nearby values) and

• a value cache contains the last computed values
(for successive requests of the same values).

The effect of these optimizations strongly depends
on the access characteristics but may give a speedup
factor of 100 and more in some cases.

The methods for interpolation and extrapolation as
well as all parameters regarding loading, scaling and
caches are preset to reasonable default values. All
settings may be adjusted using attributes in the
netCDF file or with the C API (full API only, see
below).

Performance Example

The effect of clever using the optimization methods
can be demonstrated with the example BigFile
contained in the library. A data file with a size of
840 MB contains 10 variables each with 10 million
random values. A Modelica class integrates the
interpolated values of two of these variables (Akima
method) over a sub-range of the abscissa. The result
of the 500000 time steps is written to the result file.

With OpenModelica using default settings on a
common PC5 the program finishes in about 5
seconds! This includes the complete run with
initialization, data reading, more than one million
interpolations, numerical integration and writing of
the results. Some other approaches would need much
longer just to load the data file.

This performance is achieved by a combination of
the lookup and parameter caches and by loading the
data in chunks on demand.

5 OpenModelica 1.8.1, Ubuntu Linux,
Intel Core2 Duo E7200@2.53GHz, 4GB RAM

Fig 1: Interpolation methods

 1

 2

 3

 4

 5

 6

 7

 8

 3 4 5 6 7 8

In
te

rp
o
la

te
d
 V

a
lu

e
s

Abscissa

Discrete
SinSteps

Linear
Akima
Points

Accessing External Data on Local Media and Remote Servers Using a Highly Optimized File …

324 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076323

2 Modelica API
ncDataReader2 offers a full API and a so called easy
API. The latter limits the configuration options and
requires compliance to some restrictions, but it can
be used in Modelica without writing C code. The full
API is slightly faster and offers access to all options,
but uses data types not available in Modelica.
Therefore it requires adapted external functions and
a bit more programming.

Both methods require the prior installation of the
libraries ncDataReader2 and netCDF (which may
depend on other libraries). The names of the files
actually needed depend on the operating system,
simulation software and compiler6.

Most Linux distributions already contain the required
packages for netCDF. For Windows precompiled
files (.dll, .lib, .h) are provided by the developers.

The structure of the different APIs and libraries is
shown in figure 2.

6 The search for files by the compiler on Windows
systems may be confusing. Copy all files to the current
working directory if in doubt.

2.1 Easy API
The Modelica package NcDataReader2 contains
definitions of all functions of the easy API. A very
basic example demonstrates the usage:

Two functions of this package are used here:

• ncEasyGetAttributeDouble reads a
scalar attribute to initialize a. The first and third
arguments are the names of the file and the
attribute. The second argument may be a variable
name or empty (to use a global file attribute).
Similar functions exist for attributes of integer
and string types.

• ncEasyGet1D returns the interpolated value of
the variable v1 at the point time. A similar
function for 3D-points exists.

model NcEasyTest
 import nc = NcDataReader2.Functions;
 parameter String fn = "etest.nc";
 Real t;
 Real a = nc.ncEasyGetAttributeDouble(
 fn, "", "start_value");
 equation
 t = nc.ncEasyGet1D(fn, "v1", time);
 der(a) = t;
end NcEasyTest;

Fig 2: Different ways of using ncDataReader2 with Modelica and other applications

Modelica ModelModelica Model ANSYS
CFX

ANSYS
CFX

ncDataReader2 library
interpolation, extrapolation, caching, data handling

ncDataReader2 library
interpolation, extrapolation, caching, data handling

netCDF library
data storage (netCDF, HDF5, DAP)

netCDF library
data storage (netCDF, HDF5, DAP)

DAP-Server
OpenDAP, Pydap

DAP-Server
OpenDAP, Pydap

Remote data files
data.nc, data.hdf,

data.mat, data.csv, ...

Remote data files
data.nc, data.hdf,

data.mat, data.csv, ...

Local data files
data01.nc, data02.nc,

data03.nc, ...

Local data files
data01.nc, data02.nc,

data03.nc, ...

Full API Easy API

Modelica
Model

Modelica
Model

Other
Applications

Other
Applications

C-WrapperC-Wrapper

Internet /
Intranet

DAP
client

Session 3A: Mixed Simulation Techniques I

DOI Proceedings of the 9th International Modelica Conference 325
10.3384/ecp12076323 September 3-5, 2012, Munich, Germany

At the first call to ncEasyGet1D the file is opened,
the abscissa and dimensions of the variable are
determined, optional attributes are evaluated and
internal data structures are created and stored for
later use. Subsequent calls with the same file name
and variable name reuse these structures. Different
variables depending on different abscissas in
different files can be used at the same time.

2.2 Full API
The full API can only be used in C, not in Modelica.
To utilize this API wrapper functions are required to
hide the complexity from Modelica. The function
definitions are split up in two parts:

a) A C-file which defines wrapper functions with
simple interfaces (arguments and return values)
to be used in Modelica. Inside these functions the
full API may be used. A common case is to have
one function with initialization code and one
small function for each variable to return the
interpolated values. This can usually be done
within a couple of lines. All settings and options
of the library may be changed in this file.

b) A Modelica file containing mappings of the C-
functions to Modelica functions (usually 1:1).
This includes the number and types of arguments
and return values.

Although these steps are quite simple, an example
would be too big to show here. Please have a look at
the example in NcDataReader2.Examples.FullAPI.

3 Preparation of Files
Converting data into the netCDF format may be the
hardest task for users without prior knowledge of
netCDF. There exists no general graphical tool for
this job, but besides command line tools for the
conversion of an ASCII-based format there are
libraries for all major programming languages (C,
C++, Java, Python, Perl, Octave, MATLAB, …) and
platforms.

A new project [8] from Microsoft Research provides
a .NET-API, a graphical data viewer, command line
tools and a plug-in for MS EXCEL to read and
manipulate netCDF files on Windows systems.

The favourite method of the authors is scripting in
Python. A lot of file formats can be read with

Python, and consistency checks and unit conversions
may be included in a script. The conversion of a
simple CSV file can be done within 7 lines of Python
code. This method works on all platforms.

When using a DAP server the conversion may be
omitted entirely for some file formats.

4 Data Server with DAP
DAP is a protocol for the transport of
multidimensional gridded data over networks. It is
based on HTTP, but allows the request and the
transport of specific parts of a file in different
formats. DAP servers are able to serve requests like
“send me the values 1500...2000 of the variable
'temperature' in the file 'data.mat' converted to CSV
format”. Clients can browse and request data with
ease and efficiency. Data formats are converted on
demand by the software (supported formats depend
on the actual implementation).

Since newer versions of the netCDF library
implement the client side of the DAP protocol, a
DAP server can be used with ncDataReader2 like a
local file, just by replacing the file name with an
URI.

For Modelica users this combination offers a lot of
options. External data used by simulations can be
hosted on different servers worldwide. During
simulation, only the actually needed parts are
transferred to the simulation system. This ensures the
up-to-dateness and the consistency of data across
simulations and allows the cooperation of different
institutions without sending complete files.

4.1 DAP server at the UdK
A new server at the Berlin University of the Arts
(UdK) was installed for this purpose. It provides
different kinds of data to a research group:

• Weather files for different locations worldwide,
generated with METEONORM [9] and
converted to netCDF (see 5.1).

• Data from the monitoring of a photovoltaic
system located at the UdK main building. The
data is read from the monitoring hardware and
stored in netCDF files in regular intervals (see
5.3).

Accessing External Data on Local Media and Remote Servers Using a Highly Optimized File …

326 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076323

• Results from different simulations of the
research group.

The server runs on common PC hardware using
Linux, Apache and the Pydap [10] software.

5 Current Applications in Research

5.1 Reading Weather Files
Data sets with weather parameters were the first
application for the data reader and still are most
used. Thermal building simulation and simulations
of solar systems require reliable information about
the environmental conditions as functions of time.
These conditions include:

• temperature, pressure and moisture of the air,

• wind speed and direction,

• direct and diffuse radiation, cloud cover.

For the evaluation of the radiation on different
surfaces the position of the sun is needed, which can
be calculated from the latitude, longitude and time
zone of the location.

All this information can be easily stored in a netCDF
file. Over the years some conventions regarding the
file structure, the units and the names of variables
and attributes have evolved and proved to be useful.

All this data is read and processed by a Modelica
class (DataWeatherNetCDF). With the file name or
URI as a parameter of this class the complete
environmental conditions of a location may be set
and changed. The contained quantities and some
derived quantities are available as continuous
functions of time. Common problems like negative
radiation values caused by the cubic interpolation are
handled. For different oriented surfaces the radiation
values will be converted by a helper class
(RadiationTransformer). All these classes are now
part of the new Modelica library BuildingSystems
[11] which is developed by the authors.

Generating Files

The files may be created from different data sources.
The authors mainly used weather information from
the TRY/Testreferenzjahr [12] and data sets
generated with the application METEONORM. The
latter let the user define own ASCII-based export
formats, which can be easily converted to netCDF by

a Python script. Our script now includes consistency
checks, unit conversions, preparation for periodic
extrapolation and much more.

With this method a library of weather files for
different locations is built and expanded. The files
reside on the DAP server (see 4.1) and are accessible
by the whole research group. Data for new locations
or new conditions can be generated and made
available within minutes.

The time grid of most data files is equally spaced in
hourly steps covering one year, but the software
stack (DAP, netCDF, ncDataReader2, Modelica
classes) works perfectly with different and variable
steps and in other scales.

5.2 Loose Coupling of ANSYS CFX with
Dymola

A research project at the UdK covers the co-
simulation of a solar thermal plant. For pre-studies of
a use case the ncDataReader2 is used for loose
coupling. It reads the results of a Modelica
simulation into the boundary conditions of a CFD7
simulation with ANSYS CFX.

The main components of the plant are:

• an evacuated tube collector,

• a hot water storage and

• an external plate heat exchanger, transferring the
produced thermal energy from the solar loop to
the storage loop.

By using a two-point-controller the solar pump and
the storage pump are simultaneously switched on.
The system is modelled with Modelica, most
components are based on the Modelica library
BuildingSystems for thermo-hydraulic network
simulation. The weather data is provided by the
technology described in the previous section.

The storage model (marked in Fig. 3) can be either
implemented in Modelica (1D) or in CFX (3D). The
co-simulation of Modelica and CFX is described in
[13]. It gives more accurate results regarding the
details of the storage, but it runs much slower than
the pure Modelica simulation.

Additionally stand-alone CFX simulations of the
storage component were needed in the project. One

7 Computational Fluid Dynamics

Session 3A: Mixed Simulation Techniques I

DOI Proceedings of the 9th International Modelica Conference 327
10.3384/ecp12076323 September 3-5, 2012, Munich, Germany

of the questions to answer was the best resolution of
the grid for the 3D model under typical conditions in
the solar system. A high resolution will slow down
the simulations, a wide grid will not reach the
desired accuracy. A complete co-simulation model
proved to be too slow to study this point in detail.

For a transient stand-alone CFX simulation of the
thermal storage some boundary conditions are
necessary to describe the installation situation. It
would be possible to generate the time-dependant
conditions with C-functions emulating the behaviour
of the whole system, but the effort for this would be
enormous. At this point it's much more comfortable
to use the results from the system simulation with the
simple storage model implemented in pure Modelica.

Dymola creates a result files in MATLAB format
during the simulation. The structure of this file is
quite complex, but can be read and converted with
different tools. One is the Python package DyMat
[14] which directly exports variables to different
formats including netCDF.

The CFD model needs values for three quantities:

• inlet mass flow,

• inlet temperature,

• outlet pressure.

The time series for these variables can now be saved
in a netCDF file.

ANSYS-CFX provides an API to implement
dynamic conditions as Fortran functions. Since it is
possible (but tricky) to call C-functions from this
Fortran-API, ncDataReader2 can be used from this
API with a small wrapper file to provide the values
as interpolated functions of time.

The complete workflow is now:

a) Run simulations in Modelica using the pure
Modelica storage model.

b) Convert the required results from the mat-file to
netCDF format using DyMat.

c) Run CFX simulation of the complex storage
model, reading boundary conditions from the
netCDF file using ncDataReader2 and a Fortran
wrapper.

Fig 3: Modelica view of the co-simulation model of the solar thermal plant

Accessing External Data on Local Media and Remote Servers Using a Highly Optimized File …

328 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076323

With this technology a stand-alone ANSYS-CFX
simulation for the thermal storage can be started with
dynamic adapted boundary conditions after each
time step. Thus the CFX model is embedded in the
same environment as the Modelica storage model in
the system simulation for the solar thermal plant
before.

This made it possible to research and tune the CFX
model with respect to grid resolution and other
parameters under typical conditions. Similar
conditions appear in the real co-simulation which is
the main topic of the research project [15].

5.3 Parametrization of the Model of a
Photovoltaic Plant

The ncDataReader2 was used for the integration of
measured data from a real photovoltaic (PV) system
into a simulation model of the system. The complete
field has an electrical power output (peak) of
15.5 kW and is located on the roof of the UdK Berlin
main building. The measured values such as air and
module temperature, solar irradiation, electrical
output are used as climate boundary conditions of the
Modelica system model and as comparison values
for the model validation (see Fig. 5 and 6).

The Modelica model was configured by the use of
the BuildingSystems library. One of the three strings
of the photovoltaic field was modelled by the
assumption of 22 serial connected PV modules. Each
module (Type TSM-PC05) has a peak performance
of about 230 W, so the total peak performance of the

Fig 4: Storage model: a) Modelica connection component for the 3D model, b) grid of the CFX model,
c) example of a temperature field using boundary conditions from the Modelica simulation

Inlet:
mass-flow
temperature

Outlet:
pressure

Fig 5: Photovoltaic system on the roof of the UdK
main building with sensors for solar irradiation,

wind speed, temperatures of air and modules

Fig 6: Model of the photovoltaic
system, modelled with the
BuildingSystems library

Session 3A: Mixed Simulation Techniques I

DOI Proceedings of the 9th International Modelica Conference 329
10.3384/ecp12076323 September 3-5, 2012, Munich, Germany

string is about 5.060 W. The simplified model of a
PV module of the BuildingSystems library was used,
which works with an electrical one-diode model and
an empirical thermal approach for the calculation of
the cell temperature, depending on the air
temperature of the cell environment [16].

Figure 7 shows the measured and the simulated
values (temperatures, voltage, current and electric
power) of the string of 22 PV modules during three
summer days. All quantities have similar values for
the real PV plant and for its simulation model. The
cell temperature runs up two 20°C higher than the
environment air temperature. Also the string voltage
values are similar during the sunshine, in which the
simulated values are higher than the measured
values, the same goes for the current. After sunset
the values of the simulation model are greater than
zero, which is only a result of the modelling
approach.

During the first two days the generated electrical
power reaches the peak power for a short period. The
collapse of the calculated electrical power during the
morning hours is caused by a shading of the
radiation sensor. The simulated performance drops

because of the measured radiation, but the real
measured performance is not affected. The position
of the sensor will be moved to a better place in the
future.

It is typical for a one-diode model that the voltage
and current values are higher than the real values,
because a part of the internal losses of the PV cells is
neglected. Therefore a constant correction factor is
used in this model for the calculation of the power
from the voltage and current. This factor is a model
parameter that depends on the real qualities of a
module (materials and construction). Unfortunately it
can not be derived easily from the properties that are
usually known.

With simulations using measured values of the real
system this factor can be approximated. For the three
days of the shown configuration a value of 0.82
proved to be ideal to bring the calculated electrical
power close to the real (measured) values.

The plant is monitored permanently and all values
are archived on a data server (see 4.1). This makes it
possible to adjust the correction factor of the model
with simulations using recent measurements. This
task can even be done fully automated.

Fig 7: Comparison of measured and simulated values for three summer days:

a) cell temperature: simulated (blue), measured (red); measured air temperature (green)
b) string voltage: simulated (blue), measured (red)
c) string current: simulated (blue), measured (red)
d) string power: simulated (blue), measured (red)

Accessing External Data on Local Media and Remote Servers Using a Highly Optimized File …

330 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076323

6 Conclusions and Outlook
The library was used for more than 10 years in a
wide range of applications. It can be used with
Modelica and other systems to access data in
different ways. In combination with a DAP server it
offers the remote access to different data sources.

The most used application today is reading weather
data in Modelica simulations of buildings and solar
systems. But it is easy to use the library for other
purposes and with different software packages.

Although the library is in a stable state there are
some possible improvements for the future:

• better integration with Modelica runtime systems
(e.g. error handling and reporting),

• supplying information on derivatives of
functions for improved integration performance,

• implementing optimizations for special cases
like equally spaced grids,

• providing better tools for the conversion and
preparation of data files,

• possibly including the library and its
dependencies in Modelica systems (Dymola,
OpenModelica, jModelica) to avoid the complex
installation process on the different platforms by
the user,

• finding a better name for the project. :-)

References
[1] ncDataReader2:

http://j-raedler.de/projects/ncDataReader2
[2] netCDF:

http://www.unidata.ucar.edu/software/netcdf/
[3] DAP/OpenDAP:

http://www.opendap.org/
[4] CSA:

http://code.google.com/p/csa-c/
[5] Ernst, T., Klein-Robbenhaar, C., Nordwig, A.,

Schrag, T.: Modeling and simulation of hybrid
systems with SMILE, in: Informatik,
Forschung undEntwicklung, 15:33-55, 2000

[6] ANSYS CFD:
http://alturl.com/m8fpb

[7] LGPL:
http://www.gnu.de/documents/lgpl-2.1.en.html

[8] Dmitrov:
http://alturl.com/g8wzk

[9] METEONORM:
http://www.meteonorm.com

[10] Pydap:
http://pydap.org

[11] BuildingSystems:
http://www.modelica-buildingsystems.de

[12] TRY:
http://www.dwd.de/TRY

[13] Ljubijankić, M., Nytsch-Geusen, C., Rädler, J.,
Löffler, M.: Numerical coupling of Modelica
and CFD for building energy supply systems,
in: Proceedings of the 8th International
Modelica Conference, 2011

[14] DyMat:
http://j-raedler.de/projects/DyMat

[15] Ljubijankić, M., Nytsch-Geusen, C., Jänicke,
A., Schmidt, M.: Advanced analysis of coupled
1D / 3D simulation models by the use of a solar
thermal system, in: Proceedings of the Building
Simulation, 2011

[16] Nytsch, C., Quaschning, V., Scholtz, G.:
Photovoltaik Modelle für die
Simulationsumgebung SMILE, in:
Tagungsband: 15. Symposium Photovoltaische
Solarenergie in Staffelstein,
OTTI-Technologiekolleg, Regensburg, 2000

Session 3A: Mixed Simulation Techniques I

DOI Proceedings of the 9th International Modelica Conference 331
10.3384/ecp12076323 September 3-5, 2012, Munich, Germany

Accessing External Data on Local Media and Remote Servers Using a Highly Optimized File …

332 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076323

Detailed geometrical information of aircraft fuel tanks incorporated into fuel system simulation models

Detailed geometrical information of aircraft fuel tanks incorporated
into fuel system simulation models

Ingela Lind Alexandra Oprea
SAAB Aeronautics

SE 581 88 Linköping, Sweden
ingela.lind@saabgroup.com alexandra.oprea@saabgroup.com

Abstract

Fuel tanks in fighter aircraft have an irregular shape
which is given by a detailed CAD model. To simu-
late a fuel system with sufficient amount of detail to
solve the design issues, necessary geometrical in-
formation need to be given in a compact and compu-
tationally fast form. A function approximation using
radial basis functions is suggested and compared
with some other methods. The complete process
from production scale CAD model to system simula-
tion model is considered.
Keywords: aircraft design; fuel systems simulation;
geometrical representation; surrogate model; radial
basis functions

1 Introduction

A fighter aircraft fuel system is a system of many
parts. Fuel fills up large parts of the aircraft not oc-
cupied with other equipment and the many different
systems of the aircraft often pass through the tanks.
To keep control of the center of gravity the tanks are
divided into smaller parts and are interconnected by
pipes. Fuel is pumped between the tanks to a collec-
tor tank which has a negative g-load compartment to
enable the aircraft to fly inverted. The tanks are also
pressurized to avoid evaporation of the fuel at high
altitudes.

When designing aircraft fuel systems several is-
sues demand detailed simulation models for analysis.
The most important are

 Is it possible to provide the engine with fuel
with enough pressure regardless of what pi-
lot maneuvers and equipment faults that oc-
cur?

 Can the amount of accessible fuel be cor-
rectly determined at all times?

 Can the structural strength of the hull and all
installation parts be estimated with good
precision?

When these problems are solved, questions re-
lated to optimization of weight, fuel consumption,
and heat storing capabilities as well as other issues
need to be considered.

The fuel system simulation models needed to de-
scribe the system tend to be large (~400 state vari-
ables, ~16000 time-varying variables) due to the
high number of parts involved. The combination of
fuel (incompressible fluid) and pressurization air
(compressible fluid) and the necessity to handle both
fast time constants (as when a tank get full) and slow
time constants (heat storage) make the models stiff
and a bit awkward to work with. Still, the informa-
tion gained from using the simulation models more
than pays off the work spent to keep the models ex-
ecutable and is seen as a prerequisite for successful
fuel system design work at Saab Aeronautics. A
theoretical background on fuel system design can be
found in [1] and how Dymola and other simulation
tools are used in the system design process is de-
scribed in [2] and [3].
In the past few years the idea of bringing geometrical
information from CAD models into simulation mod-
els has gone from a distant dream to something actu-
ally achievable. To investigate if it was possible to
get better accuracy of the fuel tank representation in
the simulation models used, a study [4] was made to
show the feasibility of extracting geometrical infor-
mation from CAD models, do a function approxima-
tion of the data and then use the function in a tank
model in Dymola. The work is not yet finalized to
the level of inclusion in production processes, but the
major steps and an evaluation of results are done.
The intention is that the accuracy of the simulation
models shall meet the measurement precision de-
mands on the aircraft, and to improve the efficiency
of the loads computations while simulation times are
kept at the same level as before.

DOI Proceedings of the 9th International Modelica Conference 333
10.3384/ecp12076333 September 3-5, 2012, Munich, Germany

This can be done using two types of model im-
provements. First, the geometrical representation of
the fuel tanks is changed from a simple two-
dimensional square box to a full three dimensional
representation of the complex geometry. Next, the
aircraft model is changed from a point model where
all accelerations act on the same point to a rigid body
where accelerations in each tank depend on both the
accelerations in the aircraft’s center of gravity and
the torque acting around it.

In this paper the major steps of the procedure will

be discussed as well as later results showing that the
process [4] can be scaled to full production size CA-
TIA models as well as full size fuel simulation mod-
els.

2 Assumptions

A typical fighter plane fuel tank has a complicated
shape; an example is shown in Figure 1. It is made
up of many non-convex surfaces and even internal
parts where bulky equipment is immersed in fuel.
Due to the high order of complexity, describing the
details of the fuel tank geometry in a simulation
model is not feasible at the moment.

Figure 1 Typical body fuel tank shape, which is one of
several different basic shapes. Note that equipment is
immersed in fuel and fills up space within the tank.

It is assumed that the case is semi-static, such that
the fuel surface is perpendicular to the acceleration
vector of the tank at each time instant and that there
is no fuel sloshing. Although a bit contradictory, it is
also assumed that the fuel undergoes enough slosh-
ing so that all fuel surfaces of the different compart-
ments within the same tank are at exactly the same
height, as if they were connected beneath the surface
(which often is the case).

The information needed to perform a fuel system
simulation is, given the orientation of the accelera-
tion vector, the center of gravity of the fuel in a par-
ticular tank and the position of a point on the fuel
surface. Both these vectors depend on the volumetric
amount of fuel in the tank which is connected to the
fuel mass state variable through the temperature de-
pendent density. This means that it is enough to have
a function that transforms the four variables
fuelVolume and the 3D acceleration vector to the six
variables given by the two 3D vectors representing
the point on the fuel’s surface and the fuel’s center of
gravity. The means to represent this function could
be a table, but the assumption has been made that a
function approximation would be both faster and less
memory consuming.

3 Geometric data transformation

The first prerequisite for a fuel system simulation is
the extraction of the geometric data from CATIA.

3.1 Extraction of geometric information

Each fuel tank in the Jas 39 Gripen has its own CAD
model, and an analysis extracting the center of grav-
ity (CG) and fuel surface data needs to be performed
on each of them. The analysis itself consists of a
macro written in VBScript. An early version of it can
be found in [4]. In a nutshell, the steps of the analy-
sis are as follows:

 Transforming the original fuel tank into a
“dumb” solid, without construction history
or identifiable individual features. This is
done in order to reduce the file size, which
affects the analysis time considerably.

 Creating the 2 bodies for the analysis: a “ref-
erence” body for comparison purposes and a
“fuel” body on which the actual analysis will
be performed. The dimensions of the “refer-
ence” body are recorded and saved.

 Creating the required elements for the analy-
sis: the acceleration vector line, the section-
ing plane perpendicular to the line which
will split the “fuel” body in steps of pre-set
length and the measurements on the “fuel”
body which will update every time the body
is sectioned.

 Performing the actual analysis. For each ac-
celeration vector orientation in the aircraft’s
maneuverable range, the fuel body is split in
steps of around 10 liters. For each split the

Detailed geometrical information of aircraft fuel tanks incorporated into fuel system …

334 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076333

values of the resulting fuel volume, center of
gravity and of the position of a point on the
fuel’s surface are saved to a text file.

3.2 Function approximation of data

The CATIA step generates around 20,000 to 40,000
distinct data entries for each fuel tank, with 10 pa-
rameters each. Although numerous, these are not
enough since the simulation needs the CG and sur-
face point coordinates for other acceleration vectors
and volumes, as well. Therefore, a data interpolation
step is required. To do the interpolation using Dy-
mola interpolation tables would be feasible with a
small amount of data in a low-dimensional case, but
the high dimension and the amount of data calls for
other methods. In this case the data interpolation is
done using a parameterized function approximation
called radial basis functions (RBF) networks. They
are thought to be one of the best ways of approxima-
tion multi-variate scattered data, due to their excel-
lent approximation properties [5], although in some
cases vulnerable to the Runge phenomenon [8]. In
short, they can be visualized as an "input - process -
output" system. The input is the data generated from
CATIA - the X, Y, Z orientations of the acceleration
vector, the fuel volume, the X, Y, Z coordinates of the
fuel surface and the corresponding ones of the tank's
center of gravity. The output is a function, s, which
can give a good approximation of the data for inputs
different than the ones where the value of the exact
function is known. The approximating function is
defined using fewer points than the ones available in
the input data (points which will be called centers).
This means that a data reduction with maintained
generalization ability is done. For visualization, see
Figure 2.

Figure 2 The Gaussian functions at the selected centers
(dash-dotted) and the resulting approximating func-
tion (solid) based on the input data (points). In this

plot, the Runge phenomenon is visible at the right edge
of the interval (the solid line drops), but it might also
be a part of the explanation for the drop of the curve
around x=5.
The middle layer, the so-called "process", is defined
using the RBF functions themselves. The approxi-
mating function xxkfWWxs i

ni
i

...2
1 is

given by a weighted sum of a uni-variate function f
with the Euclidian distance between the xi and x as
argument, where x are the points at which the ap-
proximation function is calculated, and xi are the
centers with respect to which the function is defined.
The weighting factor Wi is associated to each center
xi. It is determined such that the error between the
approximating function and the input data is mini-
mized. The scaling factor k influences the support
area of the function f.
The centers are selected using the orthogonal for-
ward regression algorithm, presented in [6] and [7].
They could be selected at random, but the algorithm
uses the modified Gram-Schmidt orthogonalization
procedure to select the centers which minimize the
error in the least-squares sense. The benefit of using
the modified Gram-Schmidt method is that the re-
sulting approximation is sparse in parameters. It
starts from a large set of potential centers - basically,
all the data resulting from the CATIA analysis, filter-
ing them until the error sinks below a specified
threshold. To be able to handle the very large data
sets an approach where the data sets are divided into
smaller pieces and the results recomputed several
times is used, see [4]. When all data is processed, the
algorithm returns the selected centers and their cor-
responding weights and writes them to a file to be
used in the dynamic simulation in Dymola.

All RBF networks work according to the same
principles. The differing factor is the function f,
which makes up the linear combination defining the
approximating function s. The ideal for the fuel tank
problem, which is local and almost smooth in its na-
ture, is to have a function with local support, so that
new input data would not influence points situated
far from it. Several possible functions have been
tested to determine which ones are good choices with
respect to sparseness of the parameters in the ap-
proximation and computational speed in the Dymola
implementation. The typical number of parameters
of the approximation is in the range 300 to 3000, a
data reduction of a factor 100 to 1000.

Session 3A: Mixed Simulation Techniques I

DOI Proceedings of the 9th International Modelica Conference 335
10.3384/ecp12076333 September 3-5, 2012, Munich, Germany

A standard choice of a Gaussian function, see Figure
2, seems to fit the fuel tank problem best. There were
concerns regarding computational effectiveness in
Dymola as the exponential function is not considered
cheap so other choices were considered.
Using xxr i , the investigated options were

 the inverse quadratic function,

21
1
kr

rf

 the inverse multiquadric function,

21

1

kr
rf

 the rational quadratic, 2

2

1
1

r
rrf

 Wendland's functions,

otherwise
orrrrrf

,0
)5.0(1,151 5

They all give less sparse results and need both more
memory to store parameters and more multiplica-
tions to compute s(x). Also B-splines outside a RBF
framework have been considered, but do not fit ide-
ally to high-dimensional non-latticed data.

3.3 Tank model implementation

Implementing the radial basis functions in the exist-
ing tank model of the commercial library Aircraft-
FluidSystems (developed mainly by Modelon AB
and partly by Saab Aeronautics) was a simple task.
The only modification needed was the replacement
of the existing distance computation between the
position of the fuel surface and the tank ports of the
connected pipes. This is now done using a scalar
product and the approximating function s(x).

The change in the acceleration vector definition
brought by viewing the aircraft as a rigid body in-
stead of a point mass was also straightforward.

4 Results

4.1 Influence on accuracy

A comparison between two fuel system simulations
performed using the old two-dimensional tank repre-
sentation and two simulations incorporating the new
three-dimensional representation is presented in [4].
Both the 2D and 3D simulations are performed for
two levels of accuracy of the CATIA analysis. The
results show that there is only a minor difference in
the system simulation precision between the two

CATIA target sampling accuracies of 18 and 12 li-
ters. Compared to the CAD measurements of three
different points for several acceleration vectors, the
simulations resulted in an error of 3.3 kg for the 18 l
precision (with a maximum error of 10 kg) and a 3.1
kg error for the 12 l precision (with a maximum error
of 6 kg). For the two-dimensional tank representation
the same average difference is 42 kg (with a maxi-
mum of 89 kg). It then follows that a three-
dimensional representation of a moderate size makes
a large improvement in the simulation accuracy of
the fuel measurements. Comparison with a real fuel
tank is not achievable since the tanks are not yet
built, but it has been shown earlier that ‘fuel meas-
urements’ in CAD models correspond well with fuel
sensor calibration measurements in built tanks.
This accuracy improvement affects all parts of the
fuel system simulation model, as the fuel flow
through pumps and pipes depends on the fuel level in
each tank.

4.2 Influence on simulation times

A comparison between the different possible kernel
functions revealed that the initial choice of the Gaus-
sian was the correct one. The evaluated functions,
along with their training, computation times in
MATLAB and simulation times in Dymola for a
simple test model are given in Table 1. All the simu-
lations are performed on the same tank, with the
same parameters (the scaling factor k=0.8 where nec-
essary and the error threshold set at 5 mm). The
MATLAB computation time take only computation
of the function s(x) into account, while the Dymola
simulation time also involves computations of all
other equations necessary for a tank, two pipes and
two sources in a test case.
Table 1 Comparison of training and simulation times
for different kernel functions

Function Training
time, s

MATLAB
computation

time, s

Dymola
simulation

time, s
Gaussian 36.63 0.84 157
Inverse

quadratic
58.85 1.12 190

Inverse mul-
tiquadric

139.26 4.15 161

Rational
quadratic

63.57 1.11 155

Wendland, r
< 1.0 mm

218.13 2.93 158

Wendland, r
< 0.5 mm

318.08 2.95 176

Detailed geometrical information of aircraft fuel tanks incorporated into fuel system …

336 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076333

As for the variation of the Gaussian function with
its defining parameters, simulations showed that
there are optimum values of the scaling factor and of
the error threshold. Any values different from these
optimal ones lead to extended simulation times,
without a significant improvement in accuracy. For
the simulations with an error value of 0.01 mm, the
MATLAB training time was between 3000 and
4000s, while for errors of 1 mm it dropped to several
hundreds of seconds. The Dymola simulation results
are summarized in Table 2. If the Runge phenome-
non influences the function approximation, the simu-
lation times easily grow a factor 10 or more, so care
must be taken to avoid it.
Table 2 Dymola simulation times for different Gaus-
sian settings
Settings Dymola simulation time, s
k = 0.05, err= 0.01 166
k=0.4, err = 0.01 182
k = 0.8, err = 0.01 177

When a complete fuel system simulation model with
four three-dimensional tank representations is com-
pared to the same model having two-dimensional
tank representations the times in Table 3 are
achieved. The translation/compilation time depends

strongly on the number of defining parameters re-
quired by the function approximation, which is a rea-
son to use sparse representations. The simulation
time only grows by a factor 3, which is considered to
be successful, given the higher accuracy of the re-
sults. The comparison case is representative of a
typical simulation analysis.
Table 3 Comparison of simulation times
 Translation/compilation

time (min)
Simulation
time (min)

2D tank 1.5 10
3D tank 10.5 30

4.3 Influence on system insight

An animation of the tank models was implemented
in order to identify what can be achieved, see Figure
4. This addition proved to be worthwhile from the
very first simulations. The insight into the system
behavior it provides shortens the time to learn the
system. It is also a fast means of finding errors. For
instance, one of the easiest errors to perform and
most difficult to find is orienting the acceleration
vector the wrong way. This can easily occur since

Figure 3 Visualization/animation of the fuel system using graphics from CATIA and simulation re-
sults from the fuel system simulation model. The green and black surfaces show the fuel level in the
tanks. The yellow arrows show the acceleration vector for each tank and the colored balls show inlets
and outlets of pipes for different purposes.

Session 3A: Mixed Simulation Techniques I

DOI Proceedings of the 9th International Modelica Conference 337
10.3384/ecp12076333 September 3-5, 2012, Munich, Germany

different departments use different coordinate sys-
tems and boundary conditions for simulations have
many different sources. But in the animation this
error is easily detected.

5 Conclusions

A full geometrical representation of fuel tanks at a
given accuracy tailor made to accommodate fuel sys-
tem simulation is no more a distant dream but a fully
achievable task. The work has shown that

 it is possible to achieve an appropriate level
of accuracy for all intended design studies,

 it is important to get a sparse representation
(to keep the translation/compilation time
down),

 several different choices of radial basis func-
tions are usable and that the Gaussian is
comparable to the others with respect to
simulation time, but give more sparse repre-
sentations,

 care is needed to avoid the Runge phenome-
non [8] (which may slow down simulations
considerably when the fuel level is close to a
pipe end), and

 using RBF as function approximation keeps
simulation times in the same level of magni-
tude as the simple and much less accurate
2D square box approximation previously
used.

6 Acknowledgements

Jonas Wikström (Linköpings University) has dedi-
cated his master’s project to this project at Saab
Aeronautics.
Sara Ekermann (Linköpings University) has worked
with visualization and large-scale testing of results.
Thanks to Dassault Systémes who has provided an
evaluation license for the work in Catia as well as
acted discussion partner of what is achievable.

References

[1] Gavel. H. (2007) On Aircraft Fuel Systems
– Conceptual Design and Modeling. Dis-
sertation No.1067, Division of Machine
Design, Department of Mechanical Engi-
neering, Linköpings University. ISBN 978-
91-85643-04-2

[2] Lind. I. & Andersson. H. (2011) Model
Based Systems Engineering for Aircraft
Systems – How does Modelica Based Tools
Fit? In proceedings of the 8th International
Modelica Conference, Dresden, 2011

[3] Steinkellner S., Andersson H., Gavel H.
and Krus P. Modeling and simulation of
Saab Gripen’s vehicle systems, AIAA
Modeling and Simulation Technologies
Conference, Chicago, USA, AIAA 2009-
6134, 2009

[4] Wikström J., 3D Model of Fuel Tank for
System Simulation: A methodology for
combining CAD models with simulation
tools, Masters thesis LIU-IEI-TEK-A—
11/01201—SE, Linköpings University,
2011,
http://urn.kb.se/resolve?urn=urn:nbn:se:li
u:diva-71370

[5] Buhmann, M. D. Radial Basis Functions,
Acta Numerica (2000) 1—38.

[6] Chen. S., Billings. S.A. & Lou. W. (1989)
Orthogonal least squares methods and
their application to non-linear system iden-
tification. Internal Journal of Control, 50:5,
1873 -1896

[7] Chen. S., Billings. S.A., Cowan. C.F.N. &
Grant. P.M. (1990) Practical identification
of NARMAX models using radial basis
functions. Internal Journal of Control, 52:6,
1327 -1350

[8] Boyd, J.P., Six strategies for defeating the
Runge Phenomenon in Gaussian radial ba-
sis functions on a finite interval. Com-
puters and Mathematics with Applications,
60 (2010), 3108-3122.

Detailed geometrical information of aircraft fuel tanks incorporated into fuel system …

338 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076333

Simulation of Artificial Intelligence Agents using Modelica and the DLR Visualization Library

Simulation of Artificial Intelligence Agents
using Modelica and the DLR Visualization Library

Alexander Schaub Matthias Hellerer Tim Bodenmüller
German Aerospace Center, Robotics and Mechatronics Center

Münchner Straße 20, 82234 Weßling

Abstract

This paper introduces a scheme for testing artificial
intelligence algorithms of autonomous systems using
Modelica and the DLR Visualization Library. The
simulation concept follows the ’Software-in-the-loop’
principle, whereas no adaptations are made to the
tested algorithms. The environment is replaced by an
artificial world and the rest of the autonomous system
is modeled in Modelica. The scheme is introduced and
explained by using the example of the ROboMObil,
which is a robotic electric vehicle developed by the
DLR’s Robotics and Mechatronics Center.

Keywords: Simulation of Artificial Intelligence
Agents; Autonomous Systems; Software-in-the-Loop;
DLR Visualization Library; ROboMObil

1 Introduction

The variety of autonomous systems, or also known
as artificial intelligence agents (AIA), can range from
small toys like Lego mindstorms to full-sized robotic
cars like the ROboMObil (ROMO)[1]. In all cases
an agent consists of three essential parts: sensors, the
core artificial intelligence for the agent’s functionality,
and actuators [2]. The agent perceives its current en-
vironment through its sensors, interprets it and plans
the next actions to reach its goal before acting upon
the environment through its actuators. For a sufficient
simulation of an autonomous system the bidirectional
connection of an agent to its environment must be con-
sidered.
In the past decade several open source simulation envi-
ronments for autonomous systems, mostly for robots,
have been launched due to increasing computational
power and decreasing hardware costs, which have
made the use of autonomous (mobile) robots feasible
for education.
Published in 2001, the socket-based device server
Player in combination with the multi-robot systems

simulator Stage [3] was widely used in academia and
industry. Player provides simple TCP sockets to exter-
nal devices like sensors and actuators. Player is lan-
guage neutral and uses the UNIX abstraction of de-
vices being considered as files. Stage is a simulation
environment for multiple robots with computationally
cheap, but in terms of fidelity only sufficient models.
The linear scaling with the population of the simulated
world was very important. It is a 2D simulator for in-
door scenarios. The simulated sensors are rather sim-
ple laser range finders or sonar than complex sensors
like cameras.
In 2003 Gazebo [4] was released to satisfy the need
for a 3D simulation environment for Player. It enables
the simulation of cameras, uses rigid body models, and
still works, despite the increased complexity, with sim-
ulating several autonomous systems concurrently.
Nowadays the Robot Operating System ROS [5] is the
most popular environment for connecting algorithms,
sensors, and actuators of robot systems. Many func-
tions and drivers were adopted from Player. Moreover,
it also uses interfaces to Stage for 2D and to Gazebo
for 3D simulations.
Microsoft’s Robotics Developer Studio [6] is a free,
but not open source, development suite using user
friendly techniques for visual programming, easy par-
allelization, and debugging via web-interfaces. It is
equipped with a DirectX based Visualization, its own
rigid-body physics engine, and provides interfaces to
commercial products from FischerTechnik, iRobot,
Lego etc.
Furthermore, there are also several commercial robot
simulators like the Virtual Robot Experimentation
Platform V-Rep [7] or Webots [8].
Proprietary simulation environments were developed
for larger projects like Junior - Stanford’s robotic car
for the DARPA Urban Challenge [9]. That proprietary
software can be adapted to special demands, which are
not completely fulfilled by generalized tools like the
ones named before.

DOI Proceedings of the 9th International Modelica Conference 339
10.3384/ecp12076339 September 3-5, 2012, Munich, Germany

All of the mentioned simulation environments use
physics engines like Bullet Physics Engine [10] or
Open Dynamics Engine [11], which have a strong
gaming or computer animation background and pro-
vide rigid body modeling and collision detection.
They try to reach a fast computation while providing a
sufficient accuracy of the physics. Modelica provides
several advantages being able to model complex phys-
ical systems containing e.g. flexible-bodies, electrical
and hydraulic components. To be used for the sim-
ulation of artificial intelligence agents Modelica has
to be extended by an advanced visualization like the
DLR Visualization Library [12]. The combination of
Modelica with the DLR Visualization Library creates
a powerful tool for an efficient development of com-
plex physical agent and environment models.
Our motivation for the presented scheme is a bidirec-
tional autonomous systems simulation, which com-
bines complex Modelica models of the ROMO with
the artificial intelligence system used in the real vehi-
cle.
The remaining chapters are organized as followed:
The second chapter provides an overview of our simu-
lation concept. Chapter three gives a detailed explana-
tion of the used tools and interfaces. Afterwards, the
results of a simple example will demonstrate the func-
tionality of the AIA simulation scheme. Finally, we
will conclude with a brief summary and outlook.

2 Concept of the AIA Simulation

The main target for the proposed scheme is a
’Software-in-the-Loop’ simulation, which means that
no changes are made to the algorithm that should be
tested. In order to test the artificial intelligence of
an autonomous system the perception, planning, and
control algorithms are kept and its hardware and the
environment are simulated. The system’s hardware
is substituted by a Modelica model, where the detail
of the model varies depending on the purpose of the
simulation. It can range from a rigid body model to
an overall system model containing electrical, flexible,
hydraulic, thermal, and tire (sub-)models.
The second step is the replacement of the environ-
ment by using the DLR Visualization Library, which
extends Modelica by an advanced visualization and
interactive simulation. Standard sensors for velocity,
torque etc. are part of the basic Modelica library, but
complex perception sensors like cameras require this
advanced visualization for a sufficient simulation. The
algorithms tested with this scheme and also their inter-

faces to the rest of the autonomous system do not have
to be changed. Hence, the algorithms have to run out-
side the Modelica environment during the simulation,
which is made possible by the interactive interfaces
provided by the DLR Visualization Library.
The proposed simulation scheme using the example of
the ROMO is depicted in Figure 1. The main distinc-
tion is made between the autonomy hardware and the
simulation hardware. Both can run on the same PC,
but the hardware of the autonomous system usually
consists of several connected processing units. The in-
tention is to follow the ’Hardware-in-the-Loop’ prin-
ciple and to connect the AIA system to a simulation
PC.
The primary perception sensors of the ROMO are
cameras, which are widely used in modern au-
tonomous systems, as they provide a great variety of
information [13]. A typical cycle of the scheme starts
with the virtual cameras taking images of the simu-
lated environment. The images and other sensor data is
packed according to the SensorNet format and passed
into the shared memory of the autonomy hardware.
The interface from the Visualization library to Sensor-
Net is described later in detail. Different algorithms
that process and interpret those data can access the
shared memory concurrently. The processed data is
passed to the planning module both directly and via
a module that updates the environment representation.
The planned trajectory and other control data is passed
via an interactive interface to the Modelica model.
Sensors are triggered and the controller gets its refer-
ence input. In this example the vehicle dynamics con-
troller is nested in the simulation module, since it does
not run on the same hardware as the autonomous driv-
ing components in the real vehicle. With the controller
commanding the actuators the ROMO model moves in
the virtual world and the loop is closed.
Such a ’Software-in-the-loop’ scheme for autonomous
systems has several advantages. It is possible to test an
algorithm under reproducible settings, which is usu-
ally not the case in reality. The camera-based percep-
tion is very sensitive to changing light conditions. Ad-
ditionally, it is difficult to keep relative positions and
velocities of objects the same in every test. The re-
producibility is also desirable for comparing different
algorithms and an essential requirement for reverse en-
gineering.
Moreover, algorithms can be tested with optimal con-
ditions. At the very beginning of an algorithm de-
velopment it is helpful to see if the general concept
is working while neglecting sensor and actuator noise

Simulation of Artificial Intelligence Agents using Modelica and the DLR Visualization …

340 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076339

Autonomy Hardware Simulation Hardware

SensorNet

Shared

Memory

DLR Visualization Library

3D Environment

Modelica

ROMO CAD-Model

Camera Model

...C1 Cn

Sensor Data
TCP/IP

ROMO

Multi-

Physics-

Model

S
im

u
la

te
d

M
o

ti
o

n

Vision Algorithms

3D-Reconstruction

Optical Flow

..
.

Lane Detection

In
te

ra
ct

iv
e

In
te

rf
a
ce

Local Map Global Map

Planning
Control Data

TCP/IP

C
am

e
ra

A
ct

iv
a
ti
o

nEnvironment Representation

GPS/IMU

Data

V
eh

ic
le

D
yn

am
ic

s

C
o

n
tr

o
lle

r

Reactive Classical

Figure 1: ROMO AI-Simulation Concept

and other disturbing influences. After the basic func-
tionality has been proven the noise can be increased
step by step to test different levels of robustness.
Another advantage is the adjustable level of abstrac-
tion. Autonomous driving software can be evaluated
firstly with a simple model of the system’s dynamics.
Limitations of actuators can be neglected, sensors can
be considered as all knowing and physical constraints
can be softened. During the development process the
model complexity can be raised to achieve a more re-
alistic behavior of the simulated system. Furthermore,
the developer can build a virtual world according to
his needs. New types of sensors and systems can be
modeled that do not exist yet. The preparation and
execution of tests done by the simulation scheme is
much faster than tests in reality. The simulation can
be run faster than real time causing less costs and pos-
ing no harm for people and equipment. Nevertheless,
there is still the need for tests with the real system, but
their frequency can be considerably decreased. Hence,
the ’Software-in-the-Loop’ principle is very helpful
for rapid prototyping.

3 Combining Virtual Reality with
Perception

An essential part of the proposed simulation concept
is the link between 3D simulation provided by the
DLR Visualization Library and image processing al-
gorithms, which utilize SensorNet for image data dis-
patching.

3.1 The DLR Visualization Library

The DLR Visualization Library is an extension to
Modelica for 3D visualization of simulations. It is
composed of two parts: a Modelica library and a stan-
dalone program.
The library part defines Modelica multi-body elements
which do not influence the simulation’s physics but
are used for configuration of the simulation’s visual-
ization. The visualization is then displayed in a sepa-
rate application called SimVis. An example of this can
be seen in Figure 2. On the left it shows a Modelica
model using the DLR Visualization Library library and
on the right the corresponding visualization in SimVis.
The DLR Visualization Library library provides a

Session 3A: Mixed Simulation Techniques I

DOI Proceedings of the 9th International Modelica Conference 341
10.3384/ecp12076339 September 3-5, 2012, Munich, Germany

Figure 2: A Modelica model of the ROMO and the corresponding visualization

wide range of 3D objects from simple elements like
boxes and gearwheels to complex 3D files to objects
defining the representation like Head-Up-Displays
showing variables or camera positions both in the 3D
environment and their images on the screen.
From a technical perspective this is achieved by uti-
lizing Modelicas C language interface to establish a
TCP/IP connection between the simulation and the
SimVis application, transmitting information about the
configuration of the 3D elements to be displayed [12].

3.2 SensorNet

Modern robotics applications often use cameras and
require the real-time analysis of images. The problem
for this application is twofold:
First the amount of data is immense. For example a
single VGA camera generates about 640 ·480 ·3Byte ·
30Hz = 28MByte/s of raw data. Moreover, recent
video compression methods, e.g. mpeg4 or divx, are
computational expensive and also degenerates the im-
age quality and therefore should be avoided in image
processing tasks. Additionally, robots interact with
their environment. Therefore, real-time restrictions
apply to the image processing. The time from image
acquisition to a possible reaction has to be minimized.
This requires extremely efficient dispatching of image
data which is achieved by the communication frame-
work SensorNet. It is designed to provide sensor
data, e.g. from cameras, with low latency to multiple,
concurrent applications. Therefore, previous concepts
on local real-time communication via shared memory
[14] and on unified description of camera and range
sensor data [15] are combined and extended in the
SensorNet data streaming concept. In detail, a ring
buffer on a shared memory in conjunction with a sig-
naling mechanism is used to distribute data from a
server process to multiple client processes with low

latency (<100 µs). The interface also comprises data
type metadata that allows for type checking. Further,
predefined, unified data types are used, e.g. color im-
age or depth image, and act as a abstraction layer. As
a result, sensors of same type can easily be exchanged
by just replacing the server process. Data can be dis-
tributed across system borders by connecting shared
memories on the different systems with UDP- or TCP-
based data transfer. Additionally, a separate TCP-
based configuration channel allows for setting and get-
ting parameters, e.g. camera shutter time, without in-
fluencing real-time data streaming.

3.3 Interface

Acquiring images with real cameras under controlled
conditions is not always feasible as described above.
The intention is to reuse the existing solutions for 3D
simulation and image data dispatching.
The DLR Visualization Library cameras are designed
for displaying images on screen. Since Modelica is an
object-oriented language the new camera model is de-
rived from the existing solution and extended by addi-
tional parameters. The cameras are by default aligned
within the 3D environment using rigid body transfor-
mations and displayed either in the SimVis window or
full screen. In both cases the camera resolution is de-
termined as a ratio of either the window size or the
screen size for easier portability from one PC to an-
other. In contrast real cameras have a fixed resolution
in pixels. The simulation therefore requires this reso-
lution as new parameter. Likewise the image data is
always displayed on screen in RGB format, yet cam-
eras often use different formats. This implementation
currently supports two alternative formats: YUV and
grayscale. Furthermore, SensorNet needs a name for
the shared memory object to identify a specific camera
and a role for the camera in a stereo setup. If the cam-

Simulation of Artificial Intelligence Agents using Modelica and the DLR Visualization …

342 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076339

era is part of a stereo setup, both cameras use the same
shared memory object. One camera has to be set as
master and one camera has to be the slave. Both im-
ages will then be acquired simultaneously and put in
the same shared memory object, whenever the master
camera is triggered.
With these additional parameters set up in the DLR Vi-
sualization Library, SimVis can also reuse the majority
of its existing camera implementation. The main dif-
ference lies in the render target. Normal cameras ren-
der to a frame buffer that is then displayed on screen.
For the simulated cameras the render target is redi-
rected to a frame buffer object (FBO), which is not
displayed but read back to the main memory. Thereby,
the image is rendered the same way but off-screen and
accessible by the application as a data array in RGB
format. This image data first has to be converted to the
desired image format. Conversion into YUV is carried
out using the following equation per pixel:

Y = 0.299R+0.587G+0.114B

U = 0.493(B−Y)

V = 0.877(R−Y)

This equation is also applicable for conversion in
grayscale by only using the Y component describing
the pixels luminance [16]. The preprocessed image is
then packed into one of SensorNets default image for-
mats, a time-stamp corresponding to the current simu-
lation time is added and the image is released. Releas-
ing an image in the SensorNet context makes it avail-
able for other applications. The primary focus lies on
image interpretation algorithms that are part of an ar-
tificial intelligence agent.

4 Experimental Results

The proposed scheme is evaluated by a simple exam-
ple, in which a testing environment for a vision based
control (VBC) platooning algorithm is created.
The basic idea is that the ROMO follows a preceding
car, while using only a front stereo camera pair for per-
ception. Initially, the ROMO has only an image of the
back of the target car, which was taken from an appro-
priate distance for following.
After the platooning mode is activated the ROMO tries
to find the target car in the current camera image. Ana-
log to vision based robot control [17] the goal is to see
the target object in the same size and at the same an-
gle as in the reference image. Therefore, the ROMO
tries to reach and hold the very same relative position

in which the initial image was taken. The target posi-
tion can also be made velocity dependent for keeping
the minimum safety clearance.
A simulation model in Dymola is created. First, the
ROMO’s top front camera pair, refer to Figure 3, is
modeled by using the DLR Visualization Library’s
SensorNet camera class, which was developed for the
proposed simulation scheme, with the appropriate pa-
rameterization. They are attached at their respective
positions to a 3D geometry model of the ROMO,
which is extracted from CAD. An overall model of the
ROMO containing all actuators, sensors, the electrical
systems etc. can be used, but the example focuses on
the perception part, which is the main interest in this
paper. Buildings, streets, and a surrounding land-

Figure 3: The DLR’s ROboMObil

scape are placed in the virtual environment. For this
the DLR Visualization Library provides an integration
block for common 3D files like the ’.3ds’ format. The
target car consists of an animated 3D model bound
to a trajectory block that moves the object within the
virtual world. Now the simulation is started and im-
ages are sent to the shared memory via SensorNet.
The AIA algorithms receive a notification that new im-
ages are available and begin to run. First, a SensorNet
implementation of the DLR’s 3D reconstruction algo-
rithm, called Semi-Global Matching (SGM)[18], cal-
culates depth information out of the two images from
the stereo camera. The result can be seen in Figure
4, whereas the left part shows the scene recorded by
the stereo cam and the right part a visualization of the
depth values. The color value of every pixel is set ac-

Session 3A: Mixed Simulation Techniques I

DOI Proceedings of the 9th International Modelica Conference 343
10.3384/ecp12076339 September 3-5, 2012, Munich, Germany

Figure 4: Semi Global Matching applied to the virtual images

(a)

(b)

x

z

x

z

target
position

target
position

Figure 5: Matching features for estimating the relative position: (a) At target position (b) 4 meters deviation in
camera direction

cording to the depth value at that point. Small values
are colored red and with increasing depth they go from
orange to green to blue. Black parts of the depth image
are either too far away like the sky or cannot be recon-

structed. This is often the case in regions with homo-
geneously textured surfaces, where the reconstruction
algorithm cannot find matching points in both images.
After calculating the depths the SGM writes a struc-

Simulation of Artificial Intelligence Agents using Modelica and the DLR Visualization …

344 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076339

ture consisting of a rectified actual image, a quality
map, and the depth image back into the shared mem-
ory. This structure is accessed by the VBC car fol-
lowing algorithm, which starts with running a feature
detection algorithm, e.g. AGAST [19], on the actual
image. A descriptor for matching is calculated for ev-
ery feature point and the 3D coordinates of every fea-
ture point are determined using the depth image from
SGM. The keypoints of the target image with their de-
scriptors and 3D values are available a priori and so
descriptors are compared to find matches in both im-
ages. The results can be seen in Figure 5, whereas the
right is the target and the left one is the current camera
image of the simulation. Matching keypoints are con-
nected with a green line. Besides the markings there
is no color in Figure 5, as the feature detection works
with grayscale images. At least four matching key-
points are randomly selected. By using their respective
3D coordinates the rotation matrix R and translation
vector T between the current keypoints and the target
keypoints are calculated. The quality of the estimated
R,T is measured by applying R,T to all keypoints of
the current image that have matches. After that they
are projected back into the 2D image space and the
distance to their matching points in the target image
is measured and summed up over all keypoints. The
whole procedure is repeated with other sets of features
until the quality of R,T is sufficient or a certain num-
ber of iterations is exceeded and the best iteration will
be kept.
The preceeding car in the simulation starts at the tar-
get relative position and moves four meters in the cam-
era’s z direction, whereas the ROMO remains station-
ary. The matches at the beginning can be seen in Fig-
ure 5a and that the end of the movement is depicted
in Figure 5b. The number of found correspondences
decreases during the movement. This is normal on the
one hand due to the changed perspective, but on the
other hand it is additionally disadvantaged here by the
simple textures, which lead to weak feature points. In-
correctly matched or too few feature points can disturb
the results of the algorithm immensely.
Nevertheless, the simulation has shown the general
functionality of the algorithm as can be seen in Fig-
ure 6. The z value of the deviation to the goal posi-
tion changes from 0 to 4000mm, while the target car
moves in z-direction. The deviaton to the real position
can be due to badly chosen feature points, depth mea-
surement errors, or imprecise calibration of the virtual
cameras. Based on the computed rotation and trans-
lation a trajectory can be calculated and fed back into

the Modelica simulation via a TCP/IP channel to con-
trol the simulated ROMO in its virtual environment.
In this early state of the algorithm’s development the
AIA simulation scheme is very helpful to identify
weaknesses and increase robustness before tests with
the real ROMO are possible.

[m
m

]

[seconds]
0 1 2 3 4 5 6

−500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

z − Estimation

z − Simulation

Figure 6: The deviation to the relative target position.
z is in camera direction

5 Conclusions and Future Work

This paper presents a scheme for testing artificial intel-
ligence algorithms for autonomous systems according
to ’Software-in-the-loop’ and ’Hardware-in-the-loop’
principles. Existing multi-physics models are com-
bined with the actual artificial intelligence algorithm
that do not have to be adapted for the simulation. This
is achieved by extending the DLR Visualization Li-
brary by an interface to the sensor data management
tool SensorNet, which is utilized in real autonomous
systems in DLR’s Robotics and Mechatronics Center.
The capability of the concept is proven by a short ex-
ample, in which the translation and rotation to a lead-
ing vehicle are determined by a vision based car fol-
lowing algorithm.
In further developments more sensor types, which are
typically used in autonomous systems like a dGPS
aided Inertial Measurement Unit (IMU), will be mod-
eled. Camera models can be extended with more re-
alistic effects such as lens distortions. Moreover, we
plan to use virtual objects with more complex textures
to generate more realistic virtual pictures. In order to
validate the simulation results they have to be com-
pared to those using data taken from vehicle tests.

Session 3A: Mixed Simulation Techniques I

DOI Proceedings of the 9th International Modelica Conference 345
10.3384/ecp12076339 September 3-5, 2012, Munich, Germany

Acknowledgements We thank the following col-
leagues for supporting us with their expert knowl-
edge: Darius Burschka (image processing), Mar-
tin Otter (Modelica), Tobias Bellmann (DLR Visual-
ization Library), Heiko Hirschmüller (SGM), Klaus
Strobl (camera calibration), and the whole ROboMO-
bil Team.

References

[1] Jonathan Brembeck, Lok Man Ho, Alexan-
der Schaub, Clemens Satzger, and Gerhard
Hirzinger. Romo - the robotic electric vehicle.
In 22nd International Symposium on Dynamics
of Vehicle on Roads and Tracks. IAVSD, 2011.

[2] Stuart Russell and Peter Norvig. Artificial Intelli-
gence: A Modern Approach. Prentice Hall, third
edition, December 2009.

[3] B. Gerkey, R. Vaughan, and A. Howard. The
player/stage project: Tools for multi-robot and
distributed sensor systems. In 11th International
Conference on Advanced Robotics (ICAR 2003),
Coimbra, Portugal, June 2003.

[4] N. Koenig and A. Howard. Design and use
paradigms for gazebo, an open-source multi-
robot simulator. In Intelligent Robots and Sys-
tems, 2004. (IROS 2004). Proceedings. 2004
IEEE/RSJ International Conference on, vol-
ume 3, pages 2149 – 2154 vol.3, sept.-2 oct.
2004.

[5] Morgan Quigley, Ken Conley, Brian P. Gerkey,
Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y. Ng. Ros: an open-
source robot operating system. In ICRA Work-
shop on Open Source Software, 2009.

[6] J. Jackson. Microsoft robotics studio: A techni-
cal introduction. Robotics Automation Magazine,
IEEE, 14(4):82 –87, dec. 2007.

[7] Marc Freese, Surya P. N. Singh, Fumio Ozaki,
and Nobuto Matsuhira. Virtual robot experimen-
tation platform v-rep: A versatile 3d robot sim-
ulator. In Noriaki Ando, Stephen Balakirsky,
Thomas Hemker, Monica Reggiani, and Oskar
von Stryk, editors, SIMPAR, volume 6472 of
Lecture Notes in Computer Science, pages 51–
62. Springer, 2010.

[8] O. Michel. Webots: Professional mobile robot
simulation. Journal of Advanced Robotics Sys-
tems, 1(1):39–42, 2004.

[9] M. Montemerlo, S. Thrun, and et al. Junior: The
stanford entry in the urban challenge. Journal of
Field Robotics, 2008.

[10] http://bulletphysics.org - 15.05.2012.

[11] Russell Smith. Open dynamics engine, 2008.
http://www.ode.org/.

[12] Tobias Bellmann. Interactive simulations and
advanced visualization with modelica. In Pro-
ceedings 7th Modelica Conference, Como, Italy,
2009.

[13] Alexander Schaub, Jonathan Brembeck, Darius
Burschka, and Gerd Hirzinger. Robotic electric
vehicle with camera-based autonomy approach.
ATZelektronik, 2(2):10–16, April 2011.

[14] G. Hirzinger and B. Bauml. Agile robot devel-
opment (ard): A pragmatic approach to robotic
software. pages 3741 –3748, oct. 2006.

[15] T. Bodenmuller, W. Sepp, M. Suppa, and
G. Hirzinger. Tackling multi-sensory 3d data
acquisition and fusion. In Intelligent Robots
and Systems, 2007. IROS 2007. IEEE/RSJ Inter-
national Conference on, pages 2180 –2185, 29
2007-nov. 2 2007.

[16] Charles Poynton. Digital Video and HDTV Algo-
rithms and Interfaces. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1 edition,
2003.

[17] F. Chaumette and S. Hutchinson. Visual servo
control. i. basic approaches. Robotics Automa-
tion Magazine, IEEE, 13(4):82 –90, 2006.

[18] H. Hirschmuller. Stereo processing by
semiglobal matching and mutual informa-
tion. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 30(2):328 –341, 2008.

[19] Elmar Mair, Gregory D. Hager, Darius Burschka,
Michael Suppa, and Gerhard Hirzinger. Adap-
tive and generic corner detection based on the
accelerated segment test. In Proceedings of the
11th European conference on Computer vision:
Part II, ECCV’10, pages 183–196, Berlin, Hei-
delberg, 2010. Springer-Verlag.

Simulation of Artificial Intelligence Agents using Modelica and the DLR Visualization …

346 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076339

Session 3B: Embedded and Real-Time Systems

Functional Development with Modelica

Functional Development with Modelica: A Use-Case Analysis

Stefan-Alexander Schneider∗ Tobias Hofmann†

stefan-alexander.schneider@bmw.de hofmann.tobias@me.com

∗ BMW AG, 80788 München, Germany
† TU München, Germany

Abstract

This contribution deals about the development steps
of an embedded controller. The activities of the role
function developer are explained for the simple exam-
ple traffic light controller. The method of virtual inte-
gration is explained to establish short feedback loops.

Keywords: embedded systems; simulation; model-
ing; short feedback loops; co-simulation; virtual inte-
gration; Vee-Model; systems engineering

1 Introduction

The behavior of a dynamic system is in general too
complex to treat by theory or formulas. Several sim-
ulation methods have been established for analyzing
such systems. The virtual integration method is con-
ducted on a model to gain knowledge about the (in-
tended) real system behavior. This abstraction typ-
ically allows to focus on the main properties of the
studied multi-domain system and their effects. These
components require specific domain solvers for me-
chanical, electrical, etc. components. In this con-
text, the term co-simulation has been established. The
virtual integration is based on co-simulation and de-
scribed in [7, 10]. There is a rather huge literature
on the Vee-Model and systems engineering, see e.g.
[1, 6, 12, 9, 4]. For more general introduction see,
e.g., [5, 15, 16].

In the following, we demonstrate how to develop a
control algorithm for an embedded controller design-
ing the entire system - both the plant and the control
components - with the modeling language Modelica.
This approach allows us the modeling and simulation
of the entire system, and thus the validation of the de-
sign decisions in an early phase of the development.

2 Model Example

Traffic is in general a good example for dynamic sys-
tems. The planning of traffic flow includes among oth-
ers the avoiding of traffic jams and the optimization of
traffic flows. No wonder that traffic planing is a cur-
rent political issue as the article Guck mal, wer da fährt
in the Süddeutsche Zeitung of May 15th 2012 shows.
According to this article, the traffic of a city like Mu-
nich is controlled by more than 1.000 traffic lights. All
these traffic lights serve to control the traffic and ar-
range for all traffic participants in some sense optimal
traffic flow and an acceptable (system) behaviour.

Figure 1: The typical sequence of coloured lights, see
table 1.

Figure 1 explains the typical European sequence of
coloured lights, see, e.g., [14].

traffic light meaning
red light do not cross
red and yellow light prepare to cross
green light cross
yellow light if safe to do so, stop

Table 1: The typical sequence of coloured lights and
their meanings.

DOI Proceedings of the 9th International Modelica Conference 347
10.3384/ecp12076347 September 3-5, 2012, Munich, Germany

A signal timing plan is a graphical representation of
the traffic light phases for the correspondings traffic
lights, similar to a so-called GANTT chart, see also
Figure 2.

Figure 2: A typical signal timing plan is a graphical
representation of the traffic light phases similar to a
GANTT chart.

Traffic engineering programs like LISA+, see Fig-
ure 3, facilitate a planning processand are especially
developed for intersections with a large number of sig-
nal groups and traffic lights, see, e.g., see [13].

Figure 3: The GUI of the software package LISA+ for
the planning of a specific traffic scenario.

Although the analysis of such systems of traffic
lights contains a number of interessting (non-linear)
mathematical taks, we simplify the considered task to
a single two crossing road intersection. The main rea-
son for this is that we can better study the phases of
the development process for such a simple example.

In this report we therefore restrict to the following
model example: a simple intersection of two roads
with four traffic lights, see Figure 4. According to the
wind rose, the lanes are denoted by North, East, South,
and West.

Figure 4: A simple road junction serves as for this pa-
per sufficiently model example where the road crosses
a north-south direction with a road in east-west direc-
tion.

We describe and study in the following sections a
workflow with its development phases for an embed-
ded control system for the traffic lights, using among
other the environment design, modeling and simula-
tion language Modelica and its modeling and simula-
tion tool Dymola.

3 The Development Phases

The development phases of the Vee-model that are
considered in this paper are, see Figure 4, [17]: sys-
tem level requirements, system design, module design,
module implementation, module integration and test
and finally system integration and test on an embed-
ded controller.

Figure 5: The Vee-model and its development phases.

Functional Development with Modelica: A Use-Case Analysis

348 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076347

3.1 System Level Requirements

In this development phase we formulate the require-
ments to the system and with that to the controller to
be developed.

For this purpose, we define the waiting time Wi of
a single vehicle crossing as the time from arrival at
the intersection to the crossing of the intersection and
with that leaving the system. We define the total wait-
ing time by the overal sum W = ∑Wi and formulate
with that the first requirement to the intended control
algorithm:

∆W :=Wnew−Wold →min, (1)

where Wnew denotes the overall waiting time of all ve-
hicles after and Wold before the considered cycle of
green phases. Although Wnew and Wold are hard to
measure, the difference ∆W , however, is not: the dif-
ference is depending on the number of vehicles cross-
ing the intersection in the considered green phase cy-
cle. This first requirement has the consequence that
control algorithms with so-called vacant green phases
are rated worse.

Let us now assume a scenario with high traffic rate.
In this case, there exists a simple strategy to avoid va-
cant green phases by just not switching the priority
lane. A controller that serves only one direction has
no vacant green time and therefore fulfills the first re-
quirement.

We formulate therefore a second requirement to pre-
vent this undesirable behavior:

Both directions are to be served periodically. (2)

We denote the green times tNorthSouth and tEastWest for
the two directions, the minimum green time by and tmin

and the circulation time tClock by the sum of all traffic
lights phases. Therefore holds

0 < tmin ≤ tNorthSouth, tEastWest < tClock (3)

and with that 2 · tmin ≤ tClock.

3.2 Outlook: Additional Requirements from
Functional Safety

Finally, note that there are additional requirements e.g.
from functional safety:

1. emergency control mode: Traffic lights from the
major roads turn off and the traffic lights from the
side streets blink yellow. This indicates that the
proper operation of the traffic lights is not guar-
anteed and supports on the other hand the given
traffic signs.

2. secure on the electrical level: If a light source
is out of order, so none of the directions may be
given the green signal to avoid a so-called hostile
green and it should, if possible, the red signal be
given.

These two additionally requirements stemming from
the functional safety are not in the scope of this paper
and will therefore not be considered in the following.

3.3 System Design

The considerations so far motivate to model the entire
traffic system as a controlled system composed by two
components for

• the plant component consisting of four lanes and

• the controller component calculating the duration
of the green times tNothSouth and tEastWest by an ex-
plicit computation rule from given numbers of the
traffic members provides by the plant component.

Finally, we describe the interfaces. The interfaces
between the plant and the controller component are
given by six real values: four numbers of vehicles in
the waiting queues nNorth, nEast , nSouth, and nWest and
the two green phase values tNorthSouth and tEastWest .

Figure 6: The composition of the system in Modelica.
The symbol above right in the controller indicates the
atomic exectution behavior of the controller compo-
nent.

The definition of the components and its interfaces,
modeled in Modelica see Figure 6, is the first fun-
damental design decision, see the library SAFEDIS-
CRETECONTROL in [11].

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 349
10.3384/ecp12076347 September 3-5, 2012, Munich, Germany

3.4 Module Design and Implementation

3.4.1 Component Plant

The component plant simulates an intersection of two
roads, which runs in a north-south and an east-west
direction, see again Figure 4. The four waiting queues
are named by the facing directions North, East, South
and West. We suppose a simple growth model for the
population of the four lanes

ṅ =

{
c− cOut if corresponding lane has green
c else,

(4)
where n≥ 0 denotes nNorth,East,South and nWest and c≥
0 represent the uniform growth constant, and cOut the
additionally decay constant of the waiting queues in
the green phase of the corresponding lane representing
the number of vehicles passing the intersection.

The two opposite lanes are governed by two oppos-
ing traffic lights with the same signal sequence. Note
that we neglect in the following the modeling of the
yellow phase and it holds for the green time phases

tNorthSouth + tEastWest = tClock. (5)

3.4.2 Component Controller

The component controller realizes roughly speaking a
mapping from R4 to R2 fullfilling the requirements (1)
and (2) - consequently, there exists an infinite number
of implementations!

A very simple first strategy to fulfill the require-
ments is distribute the available time tClock equally to
both green phases

tNorthSouth = tEastWest = tClock/2, (6)

see also Figure 7 for the implementation in Modelica.
We initialize the component controller with red

lights for both directions.

3.5 Module Integration and Test

In this phase, we validate the module designs and their
implementations by so-called Model-in-the-loop sim-
ulations before we move on to the next development
phase. Therefore, we analyse given use cases and test
the controll algorithm by virtual integration.

We set for the module test phase the following gen-
eral parameters:

• the minimim green time tMin = 10[s],

• the circulation time tClock = 150[s], and

Figure 7: The implementation of the equations (6) for
the symmetric strategy in Modelica.

• the initial numbers of vehicles in the waiting
queues nNorth = nSouth = 100[1] and nEast =
nWest = 50[1].

3.5.1 First Use Case: Equally Busy Lanes

In this use case, we assume that both roads north-south
and east-west are equally frequented and chose the fol-
lowing use case specific parameters

• the growth constants cEastWest = cNorthSouth =
1
[1

s

]
and

• decay constant of the waiting queues cOut =
2.2
[1

s

]
.

Because it holds for the growth and decay constants

cEastWest + cNorthSouth ≤ cOut , (7)

there may pass more vehicles through the intersection
than new ones join in the waiting queues. We therefore
expect a good controller to reduce the waiting queues
over time.

Figure 8 shows the signal time plan corresponding
to Figure 2. The evolution of vehicle values nNorth =
nSouth and nEast = nWest in the waiting queues is given
in the Figure 9.

This Model-in-the-loop simulations confirms the
symmetric control strategy as expected. We therefore
study a further asymmetric use case to test our first im-
plementation.

Functional Development with Modelica: A Use-Case Analysis

350 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076347

Figure 8: The signal time plan of the first use case.

Figure 9: The evolution of vehicle values nNorth =
nSouth and nEast = nWest in the waiting queues for the
first use case.

3.5.2 Outlook: System Simulation

As an outlook, we mention here, that Modelica pro-
vides further tools for simulations like a full system
simulation. The toolbox Modelica3D allows to visual-
ize the full intersection. Figure 10 provides a picture
of a movie produced by Modelica3D. For further de-
tails see [3, 2].

3.5.3 Second Use Case: Main and Secondary
Road

We change the first use case only slightly and then sim-
ulate a scenario in which the north-south road is less
traveled than the east-west road and assume the fol-
lowing parameters

• the growth constants cEastWest = 2
[1

s

]
,

cNorthSouth = 0.2
[1

s

]
and

• decay constant of the waiting queues cOut =
2.2
[1

s

]
.

This time, as many vehicles arrive at the intersec-
tions as may pass through the intersection. We expect

Figure 10: This picture of a movie produced by Mod-
elica3D shows the behavior of the system example in-
tersection. The waiting queues are visualized by boxes
with hights depending on the length of the correspond-
ing waiting queue.

a good controller not to increase the number of vehi-
cles in the waitings queues.

The evolution of vehicle values nNorth = nSouth and
nEast = nWest in the waiting queues is again given in
the Figure 11.

Figure 11: The evolution of vehicle values nNorth =
nSouth and nEast = nWest in the waiting queues for the
second use case.

This time, we observe that the North-south road
drops to 0 and remains constant, where as the East-
west road linear increases. The constant green phase
ratio

tNorthSouth : tEastWest = 1 : 1 (8)

obviously does not reflect the asymmetric vehicle
growth ratio

cNorthSouth : cEastWest = 1 : 10 (9)

good enough. This undesirable behavior motivates an-
other requirement for the implementation of the con-
troller algorithm.

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 351
10.3384/ecp12076347 September 3-5, 2012, Munich, Germany

3.5.4 Additional Requirement on System Level

We introduce two key indicators:

• the ratio of the waiting queues defined by

rwq := (nNorth +nSouth)/(nEast +nWest) (10)

and

• the ratio of the green phases given by

rgh := tNorthSouth/tEastWest . (11)

We assume that the longer the green phases, the
more vehicles may pass the intersection. In the sense
of the customers of the intersection, we therefore ad-
ditionally require

rwq ≈ rgh. (12)

3.5.5 Module Design and Implementation for the
alternative Controller

In this section, we develop a second, alternative con-
troller, and solve therefore the system of equations
(5) and (12) to fullfill mathematical exact the require-
ments. We define the load distribution for the two
roads

λ :=
nEast +nWest

nNorth +nEast +nSouth +nWest
. (13)

The value λ = 0 = 0% reflects no traffic in east-west
direction and consequently minimum green time for
east-west and λ = 1 = 100% correspondingly for the
other direction. Then, keeping in mind the mimimum
green time requirement (3), this yields to

tEastWest = min(tClock− tMin,max(tMin,λ · tClock))

tNorthSouth = tClock− tEastWest ,
(14)

see also Figure 12 for the implementation in in Mod-
elica.

The so designed controller has the following desir-
able properties:

λ = 0 : tEastWest = tMin,

λ = 1 : tEastWest = tClock− tMin
(15)

with corresponding

tNorthSouth = tClock− tEastWest . (16)

Figure 12: The implementation of the alternative con-
trol algorithm given by (14) in Modelica.

Figure 13: The signal time plan the alternative control
algorithm given by (14) in Modelica.

3.5.6 Module Test and Integration of the alterna-
tive Controller

Figure 13 shows the results of the Model-in-the-loop
simulation of the second implementation of the con-
troller for the second use case.

Figures 14 and 15 present the evolution of the num-
ber of vehicles and the green phases.

The alternative controller responds to the asymmet-
ric load much better. After a transient phase the ratio
of the green phase 1 : 10 reflects the ratio of the loads
1 : 10 almost perfectly.

3.5.7 Regression of the First Use Case

Also the first use case can be controlled by the alter-
nate controller. Although it produces, in contrast to the
first controller, a small oscillation, but remain limited
to vehicle values.

A simple validation shows that the second controller
also produces the expected behaviour for the first use

Functional Development with Modelica: A Use-Case Analysis

352 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076347

Figure 14: The evolution of the numbers of vehicles
for the second use case main and secondary road with
the second implementation of the controller.

Figure 15: The evolution of the green phases for the
second use case main and secondary road with the
second implementation of the controller.

case, see Figure 16.

3.6 System Integration and Test

In the last phase of the system development, we in-
tegrate the validated control algorithm in an evalu-
ation board (MicroController with 80 MHz, 512KB
Flash, 32KB RAM, USB) and development environ-
ment MPLAB Version 8.84 from Microchip Technol-
ogy Inc., see Figure 17.

The presented approach differs from the method de-
scribed in [8], where the control system is executed
part on a PC, and part on a microcontroller board.

The relevant code fragment of the from Dymola
produced file dsmodel.c can easily be identified for
this specific controll development and integrated in the
environment of the microcontroller code. This trans-
formation can be performed automatically by a phyton
script.

The Processor-in-the-loop simulations reflect in de-

Figure 16: The evolution of the vehicle numbers for
the first use case with the second controller, compare
with Figure 9.

Figure 17: The PIC32 Starter KIT for the Processor-
in-the-loop simulations showing the green LED repre-
senting the green traffic light.

tail the observed Model-in-the-loop results.

4 Conclusion

The application of the virtual integration has many ad-
vantages because it allows the observation of the be-
havior of a fully integrated system in an early devel-
opment phase. Realistic tests in the early phase of
development by virtual integration enables compre-
hensive evaluation of the interaction of a) functions,
b) components, c) tools, and d) decision makers and
allows a seamless, continuous development process.
The method virtual integration allows therefore inte-
gration of new technologies and domains.

The following questions arises: How can we sys-
tematically identify other development-related interac-
tions? This remains for future work.

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 353
10.3384/ecp12076347 September 3-5, 2012, Munich, Germany

References

[1] Adolf-Peter Bröhl and Wolfgang Dröschel. Das
V- Modell. Der Standard in der Softwareentwick-
lung mit Praxisleitfaden. Oldenbourg R. Verlag,
September 1995. ISBN 978-3-348622-207-4.

[2] C. Höger et al. Homepage Modelica3D, 2012.
[Online; Status 24 May 2012].

[3] C. Höger et al. Modelica3D - Platform Inde-
pendent Simulation Visualization (submitted). In
Modelica Conferene 2012 & Conference Pro-
ceedings.

[4] R. Haberfellner, Olivier L. de Weck, E. Fricke,
and S. Vössner. Systems Engineering – Grund-
lagen und Anwendungen. Orell Füssli Verlag,
Zurich, 12th edition edition, January 2012. ISBN
978-3-85743-998-8.

[5] Thomas Huckle and Stefan-Alexander Schnei-
der. Numerische Methoden: Eine Einführung für
Informatiker, Naturwissenschaftler, Ingenieure
und Mathematiker. Springer, 2006.

[6] IABG. V-Modell, 2004. [Online; Stand 24. Mai
2012].

[7] Andreas Maier and Stefan-Alexander Schneider.
Analyse des Einflusses der Co-Simulation bei
der Modellintegration. Tagungsband ASIM 2011,
2011. ISBN 978-3-89967-733-1.

[8] Marco Bonvinia, Filippo Donidab, Alberto Leva.
Modelica as a design tool for hardware-in-the-
loop simulation. Technical report, Dipartimento
di Elettronica e Informazione, Politecnico di Mi-
lano, 2009.

[9] Richard Harwell. Systems Engineering, A Way
of Thinking, A Way of Doing Business, En-
abling Organized Transition from Need to Prod-
uct, 1997. [Online; August 1997].

[10] Stefan-Alexander Schneider, B. Schick, and
H. Palm. Virtualization, Integration and Simula-
tion in the Context of Vehicle Systems Engineer-
ing. In Embedded World 2012 Exhibition & Con-
ference Proceedings. Weka Fachmedien, 2012.

[11] Stefan-Alexander Schneider, B. Thiele, and
P. Mai. A Modelica Sub- and Superset for Safety-
Relevant Control Applications (accepted). In
Modelica Conferene 2012 & Conference Pro-
ceedings.

[12] Tim Weilkiens. Die rolle des systems-
engineerings.

[13] Wikipedia. LISA+ — Wikipedia, Die freie En-
zyklopädie, 2011. [Online; Stand 28. März
2012].

[14] Wikipedia. Signalzeitenplan — Wikipedia, Die
freie Enzyklopädie, 2011. [Online; Stand 28.
März 2012].

[15] Wikipedia. Systems Engineering — Wikipedia,
the free encyclopedia, 2012. [Online; Status 13
May 2012].

[16] Wikipedia. V-Modell — Wikipedia, Die freie
Enzyklopädie, 2012. [Online; Stand 29. März
2012].

[17] Wikipedia. V-Modell — Wikipedia, the free en-
cyclopedia, 2012. [Online; Status 18. Juni 2012].

Acknowledgments

The authers hereby thank C. Höger from TU Berlin
for the animation of the intersection in Figure 10 with
Modelica3D and last but not least B. Thiele from DLR
for the modeling of the controll algorithms, e.g., in
Figure 6 using the library SAFEDISCRETECONTROL,
see [11].

Functional Development with Modelica: A Use-Case Analysis

354 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076347

Translating Modelica to HDL: An Automated Design Flow for FPGA-based Real-Time Hardware-in-the-Loop Simulations

Translating Modelica to HDL: An Automated Design Flow for FPGA-

based Real-Time Hardware-in-the-Loop Simulations

 Christian Köllner Torsten Blochwitz Thomas Hodrius

 FZI Forschungszentrum

Informatik

ITI GmbH

SET GmbH

 Haid-und-Neu-Str. 10-14 Webergasse 1 August-Braun-Straße 1

 76131 Karlsruhe 01067 Dresden 88239 Wangen/Allgäu

 koellner@fzi.de blochwitz@itisim.com hodrius@smart-e-tech.de

Abstract

Advances in the development of electric vehicles

challenge existing test methodologies and tools. In

particular, hardware-in-the-loop test rigs to verify

electric motor controllers require real-time drivetrain

emulation with response times in the order of one

microsecond. Field-programmable gate arrays can

fulfill these requirements due to their high parallel-

ism and the possibility to realize efficient and pre-

dictable I/O interfaces. We present an integrated

methodology which translates Modelica models to

VHDL hardware designs. Our methodology com-

bines well-engineered algorithms from Modelica

compilation and high-level synthesis for hardware.

We demonstrate its capabilities using the example of

a DC motor which was synthesized and implemented

on a Xilinx Virtex-5 device.

Keywords: FPGA; High-level synthesis; VHDL;

Hardware-in-the-Loop; Real-time

1 Introduction

Recent movement towards electric vehicles im-

poses new challenges on the development of

drivetrains. Especially the verification of electric

motor controllers (EMCs) using the hardware-in-the-

loop (HiL) test methodology requires real-time simu-

lation of the functional environment with low laten-

cies. An EMC is an integrated device, consisting of

an electronic control unit (ECU) and a power stage.

The ECU implements current, acceleration and/or

speed control and safety functions whereas the pow-

er stage generates the motor currents. The test rig

wires the EMC to an emulator, as shown in Figure 1.

An electric motor emulator (EME) emulates an elec-

trical motor under real conditions, including position

feedback and other sensor signals. If needed, a power

stage recreates the original currents and voltages.

Figure 1: EMC test bed schematic

Due to the dynamic electric behavior of the mo-

tor, the model iteration rate has to be in the order of

one microsecond. Since such real-time requirements

are hard to meet using software solutions, HiL emu-

lators of electric machines typically involve a field-

programmable gate array (FPGA) which carries out

time-critical computations. FPGAs are highly paral-

lel reconfigurable hardware circuits which are well-

suited for high-performance real-time computations.

However, their programming model is fundamentally

different from general-purpose computing. This fact

makes current modeling environments lack an inte-

grated flow from model to hardware. Although Mod-

elica has proven to be an effective language for de-

scribing electric hybrid drivetrains [1], there is cur-

rently no tool support for compiling Modelica to

FPGAs.

Our contribution tries to close this gap. We pro-

pose an integrated methodology for compiling Mod-

elica models to an FPGA configuration. The imple-

mentation is realized and validated using Simula-

tionX. Our approach combines well-known method-

ologies from both differential-algebraic equation

(DAE) processing and high-level synthesis (HLS).

We employ inline integration to obtain a compact

calculation rule which can be efficiently mapped to

DOI Proceedings of the 9th International Modelica Conference 355
10.3384/ecp12076355 September 3-5, 2012, Munich, Germany

hardware. Moreover, we incorporate parametrizable

circuit templates (so-called IP cores) to solve com-

mon subproblems during the mapping process.

Our paper is organized as follows: Section 2 in-

vestigates related work from commercial and aca-

demic perspective. Section 3 gives a short explana-

tion of FPGA functionality and the programming

model. Based on the specifics of FPGA operation,

section 4 states the requirements to achieve an inte-

grated, automated design flow from model to hard-

ware. Section 5 explains these implications on model

entry. In section 6, we discuss the overall design

flow from Modelica to hardware. Section 7 presents

the characteristics of an exemplary direct current

(DC) motor model which was translated to hardware.

Finally, section 8 concludes the paper and gives an

outlook to future work.

2 State of the Art

Electric motor controllers used in automation and

automotive applications combine controller and

power stages in one device. Testing and verifying

EMCs in an HiL environment is challenging, since

the behavior of the electric motor must be rebuilt

true to original. Otherwise, the EMC would diagnose

a malfunction and enter failure mode. The interface

between the EMC and HiL system can be realized on

a mechanical, electric power, or signal level [2].

On the mechanical level, the original electric mo-

tor is connected to the EMC. Another motor is

flanged and applies the mechanical load, computed

online by a simulation model. Such dynamometer

test stands (as shown in Figure 2) are expensive to

build, hard to control, and not flexible in usage.

Figure 2: Dynamometer test stand

Interfacing on the signal level requires cutting the

connection between the controller and power stage.

This “cracked ECU” approach requires knowledge of

controller internals. The behavior of the electric mo-

tor and its load is computed by a fast microprocessor

or an FPGA device. The computed current-sensing

signals are fed back to the ECU along with other

simulated sensor signals (shown in Figure 3). This

approach excludes the power stage from test and ver-

ification.

Figure 3: Cracked ECU test bed

When interfacing at the electric power level, the

electric current is generated by special power elec-

tronics and fed back to the power stage of the unit

under test. This methodology is referred to as Power

Hardware-in-the-Loop (P-HiL). The SET EME real-

izes this methodology, reproducing proper power

loads [3] without rotating parts (see Figure 4). The

interface to the EMC is identical to the real motor. It

consists of the motor phases and position sensor sig-

nals (e.g. resolver), if needed. Its applications vary

from small servo controls with less than 100 W to

electric power trains with several 100 kW. A wide

range of motor types and rotor position interfaces is

supported.

Figure 4: Electric motor emulator test bed

To achieve realistic emulation behavior, high

switching frequencies of the EME power amplifiers

are needed. This is especially important when operat-

ing at high rotational speeds and to emulate dynamic

behavior, such as speed ramps. Hence, for these use

cases special power amplifiers with application-

dependent switching frequencies up to 800 kHz are

deployed. Controlling the power amplifier requires

input/computation/output latencies of 1.25 µs.

Both the cracked ECU approach and P-HiL typi-

cally rely on FPGA-based implementations of the

motor simulation. In absence of a suitable toolchain

these models are commonly coded by hand, using a

hardware description language (HDL). Examples

Translating Modelica to HDL: An Automated Design Flow for FPGA-based Real-Time Hardware-in-the-Loop …

356 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076355

include a commercial model of inverter and perma-

nent magnet synchronous machine (PMSM) [4], a

DC motor [5], a squirrel-cage induction machine [6]

and a generic implementation which covers an ex-

haustive set of AC motor types [7]. Yet, there is no

general agreement on the type of arithmetic: most

models incorporate fixed point arithmetic [5-7]

whereas one contribution relies on floating point [4].

The development of such models is generally error-

prone and time-consuming, especially if complex

models (e.g. a nonlinear model of synchronous mo-

tors) or detailed drivetrains, including clutches and

rigid end stops, must be realized.

In reference [8], HDL Coder from The Math-

works was used to implement a Simulink DC motor

model on an FPGA. This toolchain is restricted to

Simulink models without continuous states. User

interactions and reformulation of the model are nec-

essary to achieve a fast and synthesizable FPGA de-

sign. A similar approach is presented in [9]. The au-

thors create a Matlab/Simulink model of a permanent

magnet synchronous machine using the Xilinx Sys-

tem Generator (XSG) blockset. Again, the method-

ology requires the engineer to model at the hardware

level. Reference [10] presents an approach to gener-

ate fixed point code from Modelica. It is capable of

exporting Mitrion-C code for FPGA applications, but

no details are given on how the transformation to-

wards an FPGA design works, and no FPGA imple-

mentation is presented.

3 FPGA Fundamentals

3.1 Overview

An FPGA is an integrated digital circuit whose func-

tionality is programmable after manufacturing. To

achieve programmability, FPGAs generally provide

configurable combinatorial logic blocks and memory

elements. These can be wired in a large variety of

ways. By combining both primitives – logic and

memory – it is theoretically possible to recreate any

digital circuit. Recent FPGAs are computationally

equivalent to roughly 20 million logic gates. Most

devices provide additional built-in macro cells for

frequent tasks, such as hardware multipliers and stat-

ic RAM.

3.2 Programming FPGAs

In most cases, a hardware description language

(HDL), such as VHDL and Verilog is used to de-

scribe the intended digital circuit. Vendor-specific

toolchains transform the described design into a

netlist representation, map it to device primitives,

optimize the geometric placement of that mapping

and finally produce a programming file which con-

figures the FPGA.

HDLs also define control-flow statements, which

in fact turn them into general-purpose programming

languages. However, these constructs are primarily

intended for simulation/verification purposes and are

mostly not supported for circuit modeling. A HDL

description is said to be synthesizable, if it is possi-

ble to represent it by a functionally equivalent netlist.

Therefore, synthesizability is a mandatory prerequi-

site to FPGA configuration. Particularly, analog-

mixed signal extensions of VHDL (VHDL-AMS

[11]) are generally not synthesizable.

3.3 Example

The following example is kept in VHDL and il-

lustrates the impact of a specific notation on the syn-

thesized circuit. Assume that we want to transform

the following computation into a digital circuit:

If we encode all operands using a fixed point rep-

resentation, there is a straightforward VHDL transla-

tion of the given calculation rule:

r <= a * b + c * d;

This implementation implicitly prescribes a com-

binatorial, fully-spatial realization. Synthesis infers a

circuit which consists of two multipliers and one ad-

der. Although this is the fastest possible realization,

it may miss a design goal: Embedded in a synchro-

nous design, this circuit may drop the achievable

clock rate because of its combinatorial path. This can

be avoided by buffering multiplication results in in-

termediate registers. If we need to save FPGA re-

sources, a longer computation time might be ac-

ceptable. In this case, the calculation can be de-

scribed as finite state machine (FSM):

 Compute: process(Clk)
 begin

 if (rising_edge(Clk)) then

 case state is

 when Mul1 => tmp1 <= A * B;

 state <= Mul2;

 when Mul2 => tmp2 <= tmp1;

 tmp1 <= C * D;

 state <= Add;

 when Add => R <= tmp1 + tmp2;

 state <= Mul1;

 end case;

 end if;

 end process;

This implementation spreads the computation

across three clock cycles. Since at most one multipli-

cation happens per clock step, synthesis will share

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 357
10.3384/ecp12076355 September 3-5, 2012, Munich, Germany

resources: the novel circuit requires only one multi-

plier instead of two.

Changing the computation to floating point

arithmetic requires the designer to use either special

libraries or to interface the design with an IP core. IP

cores are pre-built circuit templates with well-

defined functionality which are either supplied by

the device manufacturer or third-party vendors. This

option usually provides better performance and de-

tailed hardware tuning parameters. IP cores are also

available for advanced mathematical operators, such

as division, square-root and trigonometry.

High-level synthesis (HLS) is a field of research

which addresses automated transformation of formal

behavioral descriptions (mostly C/C-like program-

ming languages) to hardware [12]. The transfor-

mation is constrained by requirements, such as re-

source consumption and time. Despite commercial

tools are available, their success is limited. This is

not only due to their high asset costs but also due to

the user’s uncertainty with respect to the quality of

results [13]. Their effectiveness varies strongly with

problem domain and coding style. Our contribution

exploits the ideas of high-level synthesis. By tailor-

ing its methodologies to the specific area of physics

simulation we get a domain-specific approach which

is able to meet our resource and timing requirements.

4 Requirements

The intended application imposes several implica-

tions on the chosen approach and equation pro-

cessing. The following subsections discuss them in

more detail.

4.1 Inline integration

Typical code generation from Modelica relies on a

software infrastructure which distinguishes solver

and model. The solver is in control of the overall

simulation and employs callback functions to trans-

fer control to the model-specific evaluation of deriv-

atives. A tight interaction with strong data dependen-

cies connects the solver and model components. This

interaction is entirely time-multiplexed, exposing

only little potential to parallelize [14]. Establishing a

spatial distinction between solver and model on the

FPGA would produce hardly any benefit. Thus, it is

preferable to synthesize a self-contained calculation

rule which encompasses the overall computation to

carry out one integration step. This technique is

called inline integration [15].

4.2 Real-time execution

During real-time computation, two conditions must

be fulfilled: First, the computation time to perform a

single integration step must be bounded and predict-

able. Second, the integration step size must have a

lower bound. Since data acquisition and output of an

HiL emulator usually happen at a fixed sample rate,

it is even desirable to employ a fixed-step integration

method.

Moreover, Modelica events must be used with

care. Due to the fixed step size, the precise time in-

stance of state events cannot be localized. Events are

shifted to the end of the current integration step. In

our case, this should not lead to problems because

the step size used on a FPGA device is small com-

pared to common processor-based HiL systems.

At event instances, a Modelica simulator carries

out event iteration. The model is recomputed at the

same time instance until discrete variables do not

change anymore. The number of necessary event

iteration steps cannot be predicted. Hence, the real-

time condition might be violated. For that reason the

model should be built in such a way that avoids

event iterations. The Modelica compiler should rec-

ognize if the model requires event iterations (e.g. due

to algebraic loops over discrete variables) and inform

the user.

Implicit integration methods as well as algebraic

constraints can necessitate the solution of non-linear

systems of equations during simulation. Since such

systems are usually solved by numerical methods, it

is not guaranteed that the solution algorithm con-

verges within a bounded number of iterations. There-

fore, non-linear systems of equations should be

avoided by the model. Ultimately, Modelica allows

for embedding arbitrarily complex algorithms into

any computation. It is the designer’s duty to ensure

that they have bounded execution times.

4.3 Choice of arithmetic

PC-based simulations usually rely on IEEE 754

floating point data types. Although this type of

arithmetic can be implemented on an FPGA, it has

weaker performance and higher resource consump-

tion compared to equally-sized fixed point data. The

situation changes if an adequate fixed point represen-

tation would require disproportionately large word

sizes. FPGAs support “uncommon” word lengths

(which are not powers of two). An appropriate syn-

thesis flow should exploit these facts and support

both – possibly mixed – floating point and fixed

point arithmetic operators.

Translating Modelica to HDL: An Automated Design Flow for FPGA-based Real-Time Hardware-in-the-Loop …

358 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076355

4.4 Sustaining domain-specific knowledge

A key challenge is to identify the level of abstraction

at which a preprocessed model should be handed

over to the hardware-centric synthesis flow. Physical

computations involve many subproblems which can

be directly mapped to IP cores. Examples are math-

ematical operators, such as sine/cosine, square-root

and the absolute value function. Calls to such func-

tions should be preserved in order to give the synthe-

sis flow a chance to adopt dedicated hardware com-

ponents. Another example is the solution of linear

equation systems, which is necessary to simulate

models with algebraic loops. In the past, numerous

high performance linear solvers for FPGAs were de-

veloped [16-19]. To enable their usage, model pre-

processing should keep linear systems instead of in-

serting a specific solver algorithm.

4.5 Minimizing computation effort

Compiler optimizations, such as common sub-

expression elimination and exploiting algebraic iden-

tities are particularly important when targeting

FPGAs. Device resources are limited, and each addi-

tional operation will affect either performance or

area. Conversely, the slimmer design will fit on the

smaller and cheaper device. Although it is possible

to generate FPGA solvers for linear or nonlinear

equation systems, avoiding such systems helps to

keep the design compact.

5 FPGA-Aware Modeling

As implied by the special capabilities and limitations

of FPGAs, the user should adhere to certain model-

ing guidelines when designing models for FPGA

execution. Violating them can cause the translation

to fail or lead to bloated hardware designs. We im-

plemented a Modelica library prototype which con-

tains frequently used elements for modeling electri-

cally driven drivetrains and takes these aspects into

account. Using this library and considering some

modeling guidelines will lead to synthesizable de-

signs faster than using the general purpose Modelica

Standard Library or the SimulationX libraries. Figure

5 shows the structure of the library.

Special considerations were necessary for the dry

friction model. Real-time motor emulation requires a

robust friction model that reproduces correct stiction

behavior. Usage of the friction element should nei-

ther result in a combined discrete continuous system

of equations nor cause event iteration. By combining

friction behavior with inertia, the resulting friction

torque and the new discrete state can be computed

explicitly. The solution of a system of equations and

event iteration become obsolete. This approach is

used by the library elements “Inertia with Friction”

and “Clutched Inertias.”

Further systems of equations can be avoided, if

some modeling guidelines are obeyed. For example,

an inertia element should be placed between ele-

ments which introduce a torque to the system (spring

dampers, motors, loads). Inertia elements should not

be strung together. These rules do not restrict the

model features which can be represented by the li-

brary. Only the way in which models are to be built

up is slightly constrained. If the rules are violated

and systems of equations persist, the Modelica com-

piler generates appropriate warnings.

6 Compilation and Synthesis

Figure 6 illustrates the overall design flow which is

implemented by our software prototype. The follow-

ing subsections explain the procedure step-by-step.

Figure 5: Screenshot of the library structure

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 359
10.3384/ecp12076355 September 3-5, 2012, Munich, Germany

6.1 Preparation of the model

First, the interface of the model is to be specified.

The user selects inputs, outputs and parameters

which shall be available on the FPGA. Inputs, out-

puts and parameters will become VHDL ports of the

generated hardware design unit.

6.2 Modelica compilation

Most stages of the compilation process are not

specific to FPGA code generation. Some steps after

flattening (step 2) of the Modelica model are specific

according to the requirements of Section 4. In order

to reduce the complexity of the resulting VHDL

code, loops of known and constant range are un-

rolled, and equations of higher dimension are ex-

panded. Furthermore, equations and variables which

do not influence the selected model outputs are re-

moved. Functions are inlined since function calls

would bloat the hardware by requiring an execution

stack.

Since state events cannot be precisely located an-

yway, all conditions are covered implicitly by the

noEvent(…) function. Algebraic loops containing

discrete variables would require event iteration. This

case is detected by the SimulationX Modelica com-

piler which displays an appropriate message. The

integration formulas for computing the values of

continuous states from their derivatives are intro-

duced in an early stage of the compilation process.

This enables symbolic simplifications on these parts

of the algorithm too. We use Euler’s forward integra-

tions method, which is a good compromise between

computational effort and stability.

The SimulationX compiler produces either C

code or a bytecode representation for simulation. We

extended its capabilities to generate an XML-based

assembler-like intermediate representation to be pro-

cessed by the FPGA-centric tooling. The instruction

set was chosen to match hardware capabilities. For

example, op-codes for common mathematical opera-

tors exist which allow fixed point and floating point

operands of arbitrary sizes. The resulting behavioral

description basically contains two procedures:

 Initialization part

 Iteration part

The initialization part is an algorithm which com-

putes initial variable values from all model parame-

ters. It may also perform some non-trivial computa-

tion, such as iteration to find consistent state values.

Since it is executed only once (at the beginning of

the simulation), it is not time critical. The iteration

part contains the actual computation which is per-

formed during simulation. It is a function of model

inputs and state, transforming those quantities into

output and new state. This algorithm gets iterated for

each time step and therefore must have a predictable

and bounded execution time.

6.3 Scheduling

When mapping an algorithm to hardware, three fun-

damental tasks need to be distinguished:

 Scheduling assigns execution time (i.e. clock

tick) to each instruction.

 Allocation determines which hardware func-

tional units (FUs) to instantiate and in which

quantities. For each instruction there must be

at least one FU which can execute it.

Figure 6: Overall model compilation and synthesis flow

Cycle-
accurate

specification

RTL
specification
w/o control

path

Complete
RTL

specification

Interme-
diate

represen-
tation

VHDL & IP core
generation

Synthe-
sizable

hardware
design

Synthesis Netlist Implemen-
tation

FPGA
Bitfile

FPGA vendor-specific toolchain

Simulation/
Verification

Model Flattening &
expansion

Unordered
differential
equations

Modelica
compilation

2

Synthesis
configuration

IP core
repository

Scheduling,
allocation,

binding

3

Interconnect
allocation

4
Control/data

path
construction

5

SimulationX processing

High-level synthesis

Interface
configuration

I/O
constrained

model

1

6

7

Translating Modelica to HDL: An Automated Design Flow for FPGA-based Real-Time Hardware-in-the-Loop …

360 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076355

 Binding assigns each instruction to a FU. It

must ensure that no two instructions are as-

signed to the same FU at the same time. It

should also account for interconnection costs

which are induced by its choice.

Superscalar processors perform scheduling and bind-

ing dynamically (allocation is determined by manu-

facturing). They analyze the incoming instruction

stream for data dependencies and schedule them au-

tomatically. A tremendous amount of logic is re-

quired to achieve such functionality. Recreating su-

perscalarity on an FPGA is not a viable option. In-

stead, a static schedule is pre-computed. Another

advantage is that execution time is completely pre-

dictable.

Our prototype employs the force-directed sched-

uling algorithm (FDS, [20]). FDS is a time-

constrained approach which exploits instruction-

level parallelism. Its input is a control-/data-flow

graph (CDFG) and a time constraint. Upon success,

it returns a schedule which heuristically minimizes

the amount of required FUs. Generous time con-

straints lead to fewer FUs and therefore reduce re-

source consumption. Figure 7 shows the scheduled

CDFG of a DC motor model. The model itself will

be introduced in Section 7. Each rectangle depicts a

variable/constant load/store instruction whereas each

circle depicts an arithmetic operation. In the given

example, multiplication was configured to last three

cycles, addition/subtraction two cycles.

6.4 Allocation and binding

Allocation and binding are downstream stages to

scheduling. The schedule determines the minimum

amount of FU instances of each kind which are re-

quired. It does not prescribe which instance will ac-

tually execute a specific instruction. Binding multi-

ple staggered instructions to the same FU is called

resource sharing. Obviously, sharing is desirable,

since it helps to reduce the area of the overall hard-

ware design. On the negative, it can lead to perfor-

mance degradation. Input multiplexers will be neces-

sary to select from different operands. They increase

the combinatorial delay and may affect the clock

rate. If the operand sources get placed at far-off chip

locations, routing delays will further drop the clock

rate.

We employ a heuristic to tackle the problem. Our

algorithm sequentially assigns each instruction to an

FU by either allocating a new FU instance or reusing

a previously allocated one. In case of reuse, assign-

ments that reuse existing interconnect are preferred.

If reusing any previously allocated FU would require

overly large multiplexers, a new FU is allocated in-

stead.

×

h

last_J_alp

last_J_om

+

last_der_i

×

J_om :=

last_i

+

-

V_i :=

J_om

abs

×

10-5 ×

V_i

kT

×

-

L-1

R

×

×

V_in

×

+

kEMF

×

×

-

-

J_J-1

×

×

-

last_J_alp :=

last_der_i :=

last_i :=

0

1

2

4

6

7

8

9

10

11

12

13

14

16

17

18

19

20

22

23

24

26

29 I :=

last_J_om :=
Om :=

a

a

a

b

c

c

d

e

f

g

h

h

i

k

l

m

n

o p

q

Figure 7: Scheduled and bound CDFG of a DC

motor with quadratic friction

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 361
10.3384/ecp12076355 September 3-5, 2012, Munich, Germany

The result of allocation/binding the DC motor CDFG

is shown in Figure 7: Characters inside diamonds

enumerate the FU instances which the operations

were mapped to. The operating point was set to spare

resource sharing in favor of performance. Moreover,

the outcome suggests that the binding procedure was

able to identify the most economic candidates for

resource sharing: The multiplications in control steps

1 and 7 are mapped to the same hardware multiplier.

This is reasonable, since both operations share the

common operand h.

The set of instantiable FUs is provided by an IP

core repository. It must hold an according FU type

for each kind of instruction. The repository is assem-

bled from hand-written cores as well as vendor-

specific IP cores. The latter are shipped with the

FPGA toolchain and provide off-the-shelf implemen-

tations of complex arithmetic units, such as floating

point operators, trigonometric operators and square-

root.

6.5 Interconnect allocation

Once the complete instruction stream is scheduled

and bound to appropriate FU instances, an intercon-

nect network is constructed. It is responsible for

routing operational results to their target FUs. The

schedule may also require the network to buffer in-

termediate results. This happens if a result is not pro-

cessed within the same clock step it was produced.

Thus, the interconnect network is composed of mul-

tiplexers and flip-flops.

We developed an incremental merging heuristic

which considers both register count and multiplexer

size. An initial solution is constructed by assigning

each instruction outcome to an individual storage

register. Afterwards, register pairs are iteratively se-

lected and merged whereby the merging decisions

try to balance the multiplexer sizes of the overall

interconnect structure.

6.6 Control path construction

The control path is a hardware unit which con-

ducts the temporal interaction of all data path com-

ponents. This includes asserting handshake signals

and setting an input selection for each multiplexer.

After the scheduling, allocation/binding and inter-

connect allocation steps have been completed, the

control path is completely specified in its behavior. It

just needs to be expressed by an explicit implementa-

tion. In the scope of this contribution, an FSM repre-

sentation was chosen. Each control step of the

schedule constitutes one state. A VHDL process

steps the state forward with each rising clock edge.

Another combinatorial process computes appropriate

settings for handshake signals and multiplexers,

based on the current state. FSM descriptions are rec-

ognized by FPGA synthesis tools. These try to infer

an optimal hardware representation for the given

FSM. To support optimal inference, we represent the

state variable using a VHDL enumeration data type.

This gives VHDL synthesis a chance to choose an

optimal state encoding [21].

6.7 Source code generation

The generated design involves VHDL source code,

but also parameterization scripts for vendor-specific

IP cores which were instantiated from the IP core

repository. Although our approach is conceptually

independent of device technology, the generated de-

sign is technology-dependent if it involves vendor-

specific IP cores. So far, Xilinx FPGAs are support-

ed.

7 Results

Figure 8: Sample model

We demonstrate the transformation process using the

model of a DC motor (Figure 8). The motor is con-

nected to an inertia and a load torque with quadratic

dependency on speed. This is the typical behavior of

a fan. The voltage at the voltage source (V.v) is

used as input, current (V.i) and motor speed

(J.om) are the outputs.

The generated VHDL code is synthesizable on an

FPGA. All Real variables of the Modelica model

are represented by fixed point numbers with 32 bits

precision at inputs and outputs. Intermediate results

are processed at higher precision. The proportioning

into integral and fractional part was done individual-

ly for each quantity, with respect to its range of val-

ues. Figure 9 compares the output values of the

VHDL code to the simulation results, using the Euler

forward method and a step size of 1 µs. The motor is

fed by a voltage jump of 12 V. The simulation re-

sults are reproduced with sufficient accuracy. Minor

deviations are caused by the fixed point representa-

tion of the variables in VHDL.

Translating Modelica to HDL: An Automated Design Flow for FPGA-based Real-Time Hardware-in-the-Loop …

362 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076355

Figure 9: Simulation results (red) and FPGA re-

sults (blue)

To achieve synchronized data transfer, the design

unit is equipped with additional handshake signals.

These signals control initialization and model

evaluation. Figure 10 shows the basic structure of the

resulting hardware design unit. Model initialization

and evaluation are separated into two individual

FSMs which share a register bank. Asserting the

Init signal causes the initialization procedure to

capture and preprocess all parameters. This includes

precomputing the reciprocals of moment of inertia

(J_J) and rotor coil inductivity (L). Since division is

a costly hardware operation, this step improves

runtime performance.

L

J_J

L-1

J_J-1

Init InitDone

h

R

kT

h

kT

R

V.v

V.i

J.omNextStep

NextStepDone

Figure 10: Architectural overview of the genera-

ted hardware design unit

Figure 11 shows the interplay of all handshake sig-

nals. Once the initialization is complete, model eval-

uation is controlled by the signals NextStep and

NextStepDone. As noted in Section 3, the latencies

of arithmetic operators are design parameters and

affect computation time, clock rate and chip area.

Although low latencies reduce the overall computa-

tion time, this usually comes at the cost of clock rate.

Figure 11: Initialization and runtime behavior of

the design unit

The goal was integrate the generated design into

SET’s EME hardware. Due to the hardware require-

ments, the design must achieve a clock rate of 100

MHz on a Virtex-5 LX110 device and complete any

model evaluation within 1 µs. Consequently, the

schedule of the overall computation (an example is

given in Figure 7) must not exceed 100 clock cycles.

Using three different configurations, we generated

corresponding design variants.

Table 1: Characteristics of the generated designs

Lmul Ladd Ltot Slice usage Fmax (MHz)

1 1 17 5% 89

3 2 30 6% 105

9 3 43 6% 102

Table 1 summarizes the characteristics of the

generated designs. The columns depict, from left to

right: 32×32 bit multiplication latency, 32 bit addi-

tion latency, schedule length of model evaluation,

slice usage and maximum achievable clock rate after

placing and routing the design on the target device.

Slice usage is an approximate measure of the chip

area which is consumed by the hardware design.

Although the first variant provides the fastest

computation time, it does not reach the target fre-

quency of 100 MHz. The remaining two alternatives

are both viable. However, the second option is supe-

rior compared to the third one. It provides an overall

input/output latency of 400 ns at 100 MHz, including

handshake-induced wait cycles. This is more than

sufficient to meet the requirement of 1 µs.

8 Conclusions and Outlook

The toolchain approach described in this document

will allow the efficient realization of flexible electric

motor emulators. The combined model of motor and

drivetrain is built using the FPGA-aware Modelica

library. The resulting model is automatically trans-

formed to an FPGA design. The FPGA controls the

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 363
10.3384/ecp12076355 September 3-5, 2012, Munich, Germany

EME hardware. Although the computation needed to

accomplish a DC motor simulation is manageable, its

hardware implementation introduces many new de-

grees of freedom: architecture, scheduling, resource

allocation and binding, parameterization of arithme-

tic data types and corresponding hardware operators.

Designing such hardware manually is a complex and

time-consuming task. If the first draft does not meet

the design goals, alternative implementations need to

be explored, multiplying the effort. This contribution

will allow an EME operator to model an application

using SimulationX and link it directly to the hard-

ware – even with moderate FPGA knowledge.

One of the next steps in our joint research project

is the semi-automatic determination of the optimum

fixed point representation for the model variables. A

compromise between accuracy and occupied FPGA

resources is to be found. It is also conceivable to re-

alize a hybrid approach which combines fixed and

floating point arithmetic in a single model, based on

cost/accuracy tradeoffs.

Another field is the convenient subdivision and

numerically robust reconnection of sub models. This

becomes eminent as soon as a complex model ex-

ceeds FPGA resources. In this case, slow sub models

could be computed on a microprocessor, and only

the fast parts run on the FPGA.

The presented work is not restricted to electric

motor emulation. It would be highly interesting to

evaluate it for implementing sophisticated control

algorithms on FPGA devices, based on Modelica

models.

9 Acknowledgment

The presented work was accomplished within the

project SimCelerate, which is funded by the Federal

German Ministry of Education and Research (grant

no. 01M3196C).

References

[1] Winkler D., Gühmann C. Hardware-in-the-Loop simu-

lation of a hybrid electric vehicle using Modeli-

ca/Dymola. Yokohama, Japan: The 22nd International

Battery, Hybrid and Fuel Cell Electric Vehicle Sympo-

sium & Exposition, Japan Automobile Research Insti-

tute, 2006

[2] Köhl, S., Himmler, A.: Anwendungen und Trends bei

der HIL-Simulation. Simulation und Test in der Funk-

tions- und Softwareentwicklung für die Automobil-

elektronik II, expert verlag, Berlin, 2008, pp. 203-217

[3] SET GmbH Echtzeit-Emulation beschleunigt die Ent-

wicklung, Funktions- und Leistungstests von E-Motor-

Steuergeräten, Makt&Technik Vol. 27, 2010-05

[4] Liebau H., Jakoby H., Crepin, J.: HiL-Simulation

elektrischer Fahrzeugantriebe. Automotive Engineering

Partners, Vol. 2011-05

[5] Zhou Y. J., Mei T. X., FPGA based real time simula-

tion of electrical machines, Proc. 16th IFAC World

Congress, 2005

[6] Matar M., Iravani R., Massively parallel implementa-

tion of AC machine models for FPGA-based real-time

simulation of electromagnetic transients, IEEE Trans-

actions on Power Delivery, Vol. 26, No. 2, pp. 830-840

2011

[7] Chen H., Sun S., Aliprantis D., Zambreno J., Dynamic

simulation of electric machines on FPGA boards, Elec-

tric Machines and Drives Conference, 2009

[8] Köllner C., Yao H., Müller-Glaser K. D.: Entwurfsme-

thodiken zur Echtzeitsimulation physikalisch motivier-

ter Modelle auf FPGAs: Eine Fallstudie. Methoden und

Beschreibungssprachen zur Modellierung und Verifika-

tion von Schaltungen und Systemen (MBMV), 2011.

[9] Dufour C., Belanger J., Lapointe V., and Abourida S.,

“Real-time simulation on FPGA of a permanent magnet

synchronous machine drive using a finite-element

based model,” Symposium on Power Electronics, Elec-

trical Drives, Automation and Motion (SPEEDAM),

2008

[10] Nordström U., López J. D., Elmqvist H., Automatic

Fixed-point Code Generation for Modelica using

Dymola, Proc. Intl. Modelica Conf., 2006

[11] VHDL Analog and Mixed-Signal Extensions, IEEE

Std. 1076.1-1999

[12] Coussy P., Morawiec A. High-Level Synthesis: from

Algorithm to Digital Circuit. Springer Netherlands,

2010.

[13] Grant M., Smith G. High-Level Synthesis: Past, Pre-

sent, and Future. Journal: IEEE Design and Test of

Computers. Vol. 26, pp. 18-25, 2009.

[14] Nyström K., Aronsson P., Fritzson P., Parallelization in

Modelica, Proc. 4th Intl. Modelica Conf., 2005

[15] Elmqvist H., Otter M. and Cellier F.E.: Inline Integra-

tion: A New Mixed Symbolic/Numeric Approach for

Solving DAE Systems. Proc. ESM'95, European Simu-

lation Multiconf., 1995.

[16] Johnson J., Chagnon T., Vachranukunkiet P., Nagvaja-

ra P., Nwankpa C., Sparse LU Decomposition using

FPGA, International Workshop on State-of-the-Art in

Scientific and Parallel Computing (PARA), 2008

[17] Daga V., Govindu G., Prasanna V., Gangadharpalli S.,

Sridhar V., Floating-point based block LU decomposi-

tion on FPGAs, Proc. Intl. Conf. on Engineering Re-

configurable Systems, 2004

[18] Gonzalez J., Núñez R. C. LAPACKrc: Fast linear alge-

bra kernels/solvers for FPGA accelerators. Journal of

Physics: Conference Series. 2009

[19] Fischer T., Entwurf eines FPGA-Cores zur Simulati-

onsbeschleunigung zeitkontinuierlicher Modelle im

HiL Kontext. GI Fachtagung Echtzeit 2011 -

Herausforderungen durch Echtzeitbetrieb, 2011

[20] Paulin P. G., Knight J. P. Force-directed scheduling in

automatic data path synthesis. Proc. 24th ACM/IEEE

Design Automation Conf. (DAC), 1987

[21] Xilinx, Inc. Synthesis and Simulation Design Guide.

UG626 (v13.4), 2012

Translating Modelica to HDL: An Automated Design Flow for FPGA-based Real-Time Hardware-in-the-Loop …

364 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076355

A Modelica Library for Real-Time Coordination Modeling

A Modelica Library for Real-Time Coordination Modeling

Uwe Pohlmann1, Stefan Dziwok1, Julian Suck1, Boris Wolf1, Chia Choon Loh2, and Matthias Tichy3

1Software Engineering Group, 2Control Engineering and Mechatronics Group,
Heinz Nixdorf Institute, University of Paderborn, Paderborn, Germany

[upohl | stefan.dziwok | jsuck | borisw | chia.choon.loh] @upb.de
3Department of Computer Science and Engineering, Chalmers | University of Gothenburg, Sweden

tichy@chalmers.se

Abstract

Increasingly, innovative functionality in embedded sys-
tems is realized by connecting previously autonomous
embedded systems. This requires real-time communi-
cation and coordination between these connected sys-
tems. Modelica and the StateGraph2 library provide
a good environment for modeling embedded systems
including controllers and physics. However, it lacks
appropriate support for modeling the communication
and coordination part.

In this paper, we present an extension to the State-
Graph2 library that enables modeling asynchronous
and synchronous communication and rich real-time
constraints. We illustrate our extension of the State-
Graph2 library by modeling and simulating two minia-
ture robots driving in a platoon.

Keywords: StateGraph2, Modelica Library, Coordi-
nation, Asynchronous Communication, Real-Time

1 Introduction

Embedded software is an important part of today’s life.
For example, there were about 30 embedded micropro-
cessors per person in developed countries in 2008 and
current cars include up to 70 electronic control units
with about 1GB of software [4].

One reason for the increasing trend of embedded
systems is the introduction of coordination between
previously autonomous systems. As a result complex
systems of systems arise to realize functionality which
cannot be achieved by each system alone [12]. Again,
the car industry is an example where vehicles com-
municate with other vehicles in order to extend the
car’s vision to areas obstructed by other vehicles [15].
This coordination requires an intensive communication
between the systems under real-time constraints.

The embedded software is subject to very high qual-

ity requirements as often embedded systems are safety-
critical systems where faults can result in severe conse-
quences, e.g., injuries or loss of peoples’ lives. Thus,
faults of the system have to be avoided as much as pos-
sible. Currently, the rate of defects from mechanical
parts decreases while the defect rate in electrical parts
including software increases [4].

Therefore, appropriate validation and verification ac-
tivities, e.g., simulation, have to be employed to detect
and remove all faults. Model-driven development ap-
proaches allow to perform these activities already on
the model level in early phases of development. Thus,
on the one hand, a verification approach can exploit the
abstraction provided by the model to improve the scal-
ability and, on the other hand, verification can already
be performed early in the process where no implemen-
tation yet exists.

Modelica is an object-oriented, declarative, multi-
domain modeling language for describing and simu-
lating models which represent physical behavior, the
exchange of energy, signals, or other continuous-time
interactions between system components as well as
reactive, discrete-time behavior. Modelica uses the
hybrid differential algebraic equation formalism as a
sound mathematical representation. Furthermore, ma-
ture compilation and simulation environments for Mod-
elica exist.

However, Modelica in version 3.2 and particularly
the StateGraph2 library lack appropriate support for the
sketched case of modeling the real-time coordination
between autonomous systems as this coordination is
often realized by communication using asynchronous
messages and complex state-based behavior [12].

In this paper, we present a Modelica library for mod-
eling communication under hard real-time constraints.
Our library extends the StateGraph2 library by provid-
ing support for (1) synchronous and asynchronous com-
munication and (2) rich modeling of real-time behavior.

DOI Proceedings of the 9th International Modelica Conference 365
10.3384/ecp12076365 September 3-5, 2012, Munich, Germany

These extensions are based on our previous work on
the MECHATRONICUML modeling language [2] and
ModelicaML [11].

In the next section, we present our running example.
We discuss the limits of the StateGraph2 library with
respect to this scenario in Section 3. Our extension to
the StateGraph2 library is described in Section 4. We
formally define our extension in Section 5. In Section 6,
we present the Modelica model of our scenario using
our library extensions. After a discussion of related
work in Section 7, we conclude and give an outlook on
future work in Section 8.

2 Running Example

This section presents our test platform for evaluating
real-time coordination scenarios. We present a concrete
real-time coordination scenario of a platoon drive as
the running example for the paper.

2.1 Intelligent Miniature Robot BeBot

The test platform is a wheeled mobile robot known as
BeBot [7]. It is a miniature mobile robot developed at
Heinz Nixdorf Institute and has been used in various
research projects, e.g., [8]. The BeBot is powered by
two DC-motors with integrated encoder.

To use this mobile robot in a simulation environment,
a model of the BeBot is developed in Dymola. Basi-
cally, the hardware model of the mobile robot can be
categorized into three main groups. The first group con-
sists of its casing and electrical circuit boards. All these
components are modeled as a rigid body in Dymola. In
addition, the shape model from the MultiBody library
is used to visualize these components in the animation.
The second group comprises the wheels of the robot.
Under the assumption of pure rolling, these wheels are
represented by a pair of wheels with a common axle
whereby each wheel is individually controlled. The
third group is made of two DC-motors. Each of these

Figure 1: Intelligent Miniature Robot BeBot

BodyFixedShape WheelSet

DCMotor_L DCMotor_R

F
ix

e
d

T
ra

n
s
la

ti
o

n

omegaL_des omegaR_des

PI PI

Figure 2: Model of BeBot Mobile Robot in Dymola

motors is represented using a model of a DC-motor.
In this model, friction is taken into consideration to
provide realistic behavior for the motor. As shown in
Figure 2, these components are connected accordingly
to create a simple model of the BeBot.

To control the movement of the mobile robot, the ve-
locities of the wheels have to be controlled. Therefore,
a speed controller is designed to control the rotation
velocity of each wheel. The controller is a PI-controller
with anti-wind-up function and it ensures that each
wheel rotates at a desired velocity.

2.2 BeBot Platoon Scenario

The scenario consists of two BeBots (see Figure 3).
They communicate wirelessly with each other and have
a distance sensor at their front. Both have the same
software specifications. The BeBots drive on a straight
way in the same direction. The front-driving BeBot
transports a heavy good to the furthermost place of
delivery. The rear-driving BeBot transports several
small goods and has to deliver them to several stations.
As the front-driving BeBot is heavier than the rear-
driving BeBot, its cruising speed is slower than the
cruising speed of the rear-driving BeBot. To optimize
the energy consumption, BeBots may form a platoon,
i.e., the rear-driving BeBot drives in the slipstream of
the front-driving BeBot.

During platooning, a collision could occur if the
front-driving BeBot must brake very hard (e.g., due
to an obstacle on the street) and the rear-driving Be-

Figure 3: Platoon Scenario with Two BeBots

A Modelica Library for Real-Time Coordination Modeling

366 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076365

Bot does not know beforehand that it must brake. To
avoid a collision, the front-driving BeBot commands
the rear-driving BeBot by sending an asynchronous
brake-message to perform a brake maneuver. The
brake-message is transmitted to the rear-driving BeBot
that is going to brake as soon as it gets this message.
This delivery time is safety-critical, because the front-
driving BeBot brakes after that time and braking must
not result in a collision. A precondition to coordinate
such braking behavior is that a BeBot must know if an-
other BeBot is driving behind. Therefore, besides the
braking message also messages for starting and ending
a platoon are required.

The behavior specification of this scenario can be
modeled with statecharts, e.g., to distinguish if a BeBot
drives in a platoon or not. By using Dymola, the State-
Graph2 library is the first choice. However, the next
section shows the limits of StateGraph2 for modeling
the behavior of this real-time coordination scenario.

3 Limits of StateGraph2

StateGraph2 [9] is a Modelica library for state-based
modeling. It provides the three main classes Step, Tran-
sition, and Parallel for modeling statecharts. The class
Step models discrete system states, the class Transition
models state changes, and the class Parallel models
hierarchical and parallel states.

Statecharts are used to describe the behavior of reac-
tive systems. The reactions of such systems are based
on their current internal state and the external input.
Formalisms for Mealy machines, Harel’s statecharts [5],
and most common automata-based formalisms support
events that can be used for a message-based commu-
nication. However, StateGraph2 does not have syn-
tactical constructs. Different steps or transitions can
only communicate via shared variables. In real systems,
this is not possible when the systems are distributed
and have no access to shared memory. The need of
shared memory makes it difficult to reuse components
as they depend on their environment and not only on
their interface description. Therefore, a message-based
mechanism is very important. This may be either an
asynchronous or a synchronous communication.

StateGraph2 has only a limited support to specify
timing behavior. Only the execution of transitions can
be delayed. The variable waitTime of a Transition spec-
ifies the time a transition waits before it fires when its
guard evaluates to true. If during the waiting period
the guard evaluates back to false, the transition does
not fire. Therefore, the construct delayedTransition of

StateGraph2 can be misinterpreted, because the seman-
tics includes more than a simple delay. In contrast to
StateGraph2, Timed automata [1] use clocks to store
time independently of a concrete state. Clocks can be
read and reset in any state and upon firing of a transition.
Therefore, this concept is more flexible for specifying
timing behavior. To conclude, the variable waitTime
alone is too limited to describe real-time behavior.

A modeling language for the software of mecha-
tronic systems that supports hierarchical statecharts as
well as synchronous and asynchronous communication,
and clocks is MECHATRONICUML [2]. The formal
behavior definition of this language is based on timed
automata [1]. Therefore, our extensions of the State-
Graph2 library are based on concepts of MECHATRON-
ICUML. The next section explains these extensions.

4 Real-Time Coordination Library

As stated above, adequate modeling constructs for syn-
chronous as well as asynchronous communication and
for real-time behavior are essential for modern em-
bedded systems. Here, we consider synchronous and
asynchronous communication to be a message-based
communication where the former means that the sender
always waits as long as the receiver is not able to con-
sume the message. The latter means that the sender
does not wait on a reaction of the receiver and proceeds
with its execution that, in particular, might include
sending further messages. For asynchronous commu-
nication, this implies that the receiver has to have a
message buffer which is sufficiently large to prevent
loss of messages.

This section introduces our extended version of the
StateGraph2 library, called real-time coordination li-
brary. In particular, Section 4.1 introduces synchro-
nization ports and synchronization connectors for syn-
chronous communication. Section 4.2 shows Messages
and Mailboxes for asynchronous communication. Fi-
nally, Section 4.3 describes Clocks, Invariants and
Clock Constraints for the modeling of real-time be-
havior according to time automata [1].

4.1 Synchronization Connectors and Ports

For the modeling of synchronous communication, we
extended transitions by synchronization ports (sync
ports). Sync ports sub-divide into sender sync ports
and receiver sync ports. A sender sync port of one tran-
sition is connected to a receiver sync port of another
transition by a synchronization connector. We repre-

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 367
10.3384/ecp12076365 September 3-5, 2012, Munich, Germany

sent a sender sync port as a non-filled orange circle, a
receiver sync port as a filled orange circle and a syn-
chronization connector as an orange line. In Figure 4,
a synchronization connector connects the sender sync
port of transition t1 with the receiver sync port t2.

t1 t2

FrontPlatoon

NoPlatoon

Front

Regular

BeBot_SW_Main

!front

Platoon

?front

Platoon

Figure 4: Synchronization Ports and Connectors

A transition that is connected via its sender or re-
ceiver sync ports to the receiver or sender sync ports
of other transitions is allowed to fire if it is able to
fire together with at least one of the connected transi-
tions. For the example in Figure 4, this means that t1 is
allowed to fire if t2 is able to fire and vice versa.

We now give a detailed explanation of how the fir-
ing of transitions with synchronization is implemented.
The implementation is presented with help of the de-
pendency graph in Figure 5.

First, the necessary conditions for firing each of the
transitions (without synchronization) have to be sat-
isfied, i.e., the preceding generalized step has to be
active, the condition of the transition must hold and the
optional condition port of the transition must be set. If
all of these conditions hold, the property preFire of each
of the transitions will evaluate to true.

Furthermore, if an after time is specified for the tran-
sition it must have expired. The after time construct is
new and replaces the delay (wait) time from the origi-
nal version of the StateGraph2 library. It differs from
the delay time in that at least the after time must have
expired to let the transition fire. In contrast, the seman-
tics of the delay time is that the delay time must have

receiving transition

receiver sync
port

preFire

fire_ready_r

fire_r

sending transition

se
nd

er
 s

yn
c

po
rt

fire_ready_s

fire_s

preFire

Figure 5: Dependency Graph of Conditions for Firing
of Transitions with Synchronization

expired after the transition is fireable in order to let the
transition fire. We introduced the after time semantics
because it might happen that for two transitions that
need to synchronize the time instants in which they are
allowed to fire might not match due to their delay time.

If preFire of the sending transition, i.e., the transition
whose receiver sync port is connected to the synchro-
nization connector, is true, the signal fire_ready_r of
the receiver sync port is set to true. If for the sending
transition, i.e., the transition whose sending sync port is
connected to the synchronization connector, holds that
preFire is true and it receives the signal fire_ready_r over
its sender sync port then the signal fire_ready_s of its
sender sync port is set to true. If the signal fire_ready_s
is true in the receiving transition the signal fire_r of
the receiver sync port is set to true. Finally, if fire_r
is recognized to be true in the sending transition the
signal fire_s of its sender sync port is set to true and
both transitions are ready to fire.

4.2 Messages and Mailboxes

For the modeling of asynchronous communication, we
introduce two new components named Message and
Mailbox. Each instance of the Message component has
two purposes. On the one hand, it defines a certain mes-
sage type by specifying an array of formal parameters
which might be of type Integer, Boolean or Real. As
an example one message type might be defined by the
array (Integer[2],Boolean[1],Real[1]). The parameter
array of a message type is also called its signature. On
the other hand, an instance of the Message component
is responsible for sending a message whenever a con-
nected transition fires. A transition is able to signal to a
Message component instance to send a message if the
firePort of the transition is connected to the condition-
Port of the Message component instance.

As a visualization example consider the message
type confirm in Figure 6. The purple connector connects
the firePort of the transition t1, displayed as a non-filled
purple triangle, to the conditionPort of confirm where
the conditionPort of confirm is represented by a purple
triangle. Additionally, confirm has exactly one Integer
parameter that is determined by the yellow connector
that originates at the port cruisingSpeed and connects to
the Integer valued input port of confirm represented by
a yellow filled circle.

For each message type exists exactly one instance
of the Mailbox component with the same signature.
The message type sends its messages to the Mailbox
instance. To specify which message type belongs to
which Mailbox instance the message_output_port of the

A Modelica Library for Real-Time Coordination Modeling

368 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076365

message type is connected to the mailbox_input_port of
the Mailbox instance.

A Mailbox instance defines a finite FIFO queue
where the size of the queue is settable at design time. In
order to let a transition receive a certain message from
such a queue its transition_input_port is connected to
the mailbox_output_port of the Mailbox instance. Then,
the transition is allowed to fire if the Mailbox instance
signals that at least one message is present. As an exam-
ple for the visual representation consider the Mailbox
instance confirmBox in Figure 6 that is connected to the
transition t2 by a connector.

If two extended StateGraph2 models are included in
different component instances they might still commu-
nicate asynchronously across the boundaries of these
component instances with the help of delegation ports.
Therefore, one component defines an output delega-
tion port and the other defines an input delegation port.
Both delegation ports are connected. Then, the com-
ponent instance containing the message type connects
the message type to the output delegation ports and the
component instance containing the Mailbox instance
connects the Mailbox instance to the input delegation
port. As an example consider Figure 6 which shows
two extended State Graph models in two separate com-
ponent instances communicating over delegation ports
that are displayed as envelopes with gray triangle.

Synchronous and asynchronous communication can
be combined at one transition. Besides the synchroniza-
tion conditions the Mailbox instance additionally has
to signal to the transition that at least one message is
available.

4.3 Clocks, Invariants and Clock Constraints

For the modeling of real-time behavior according to
timed automata, we extended the StateGraph2 library

 front:BeBot_SW

t1

 rear:BeBot_SW

t2

confirm ConfirmBox

FrontPlatoon

NoPlatoon PlatoonProposed

RearPlatoon

cruisingSpeed

BeBot_SW_Main BeBot_SW_Main

Figure 6: Message Types and Mailbox Instances

by three components named Clock, Invariant and Clock-
Constraint. Clocks are real-valued variables whose
values increase continuously and synchronously with
time. Clocks might be reset to zero upon activation of a
generalized step or firing of a transition. An invariant is
an inequation that specifies an upper bound on a clock,
e.g., c < 2 or c <= 2 where c is a clock. Invariants are
assigned to generalized steps and are used to specify
a time span in which this generalized step is allowed
to be active. A clock constraint might be any kind of
inequation specifying a bound on a certain clock, e.g.,
c > 2, c >= 5, c < 2, c <= 5 where c is a clock. Clock
constraints are assigned to transitions in order to restrict
the time span in which a transition is allowed to fire.

As an example consider Figure 7. The example con-
sists of a clock c, an invariant clockValue <= bound and
a clock constraint clockValue >= bound where bound is
a positive integral number given as a parameter. Clocks
are displayed as a rectangle containing a clock icon,
invariants are displayed as rectangles containing the
corresponding inequation and a transition icon. Clock
constraints are displayed as rectangle containing the
corresponding inequation and a step icon. The clock
which is used by an invariant or a clock constraint is
connected via its y port with the clockValue port of the
invariants and clock constraints.

When the generalized step PlatoonProposed is acti-
vated, the clock c is reset to zero, which is accomplished
by connecting the activePort (non-filled purple triangle)
of PlatoonProposed to the u port (non-filled purple cir-
cle) of the clock. The invariant is assigned to the step
PlatoonProposed by the connector originating at the ac-
tivePort of PlatoonProposal leading to the conditionPort
(filled purple circle) of the invariant. It means that Pla-
toonProposed is allowed to be active if c has a value
less or equal to bound. The transition t1 is assigned
the clock constraint by connecting the firePort of the
clock constraint with the conditionPort of t1. The clock

t1

Platoon

Proposed

clockValue <=

bound

NoPlatoon

clockValue <=

bound

Invariant

c

y

Figure 7: Clocks, Invariants and Clock Constraints

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 369
10.3384/ecp12076365 September 3-5, 2012, Munich, Germany

constraint means that t1 is allowed to fire if c has a
value greater or equal to time bound.

5 Formal Definition of the Library

This section covers the formal definition of an extended
StateGraph2 model. The Real-Time Coordination li-
brary extends the structure of the model given in [9]
by synchronization connectors, mailboxes, clocks, in-
variants and clock constraints whereas the former two
are required for synchronous and asynchronous com-
munication resp. and the latter three are used for the
specification of real-time behavior analogously to time
automata [1]. Due to the possibility of synchroniza-
tion of two transitions, we altered the delay time of a
transition to an after time, which has slightly different
semantics.

For the definition of the semantics we give an inter-
pretation algorithm that is analogous to the one given
in [9]. Additionally, consider the added elements, i.e.,
when a generalized step is active the corresponding in-
variant must not be violated. Further, when a transition
fires its clock constraint must be satisfied, it must be
able to synchronize, and to receive the required mes-
sages.

We present the structure in Section 5.1 and introduce
an interpretation algorithm that defines the semantics
in Section 5.2.

5.1 Structure

The extension is represented by the following tuple

Ext := (Sync,MBox,C, INV,CC)

where Sync denotes the set of synchronization connec-
tors required for synchronous communication. Let Msg
be the set of messages used for asynchronous commu-
nication. Then MBox : Msg→ N determines for each
message how often it is available in its corresponding
mailbox. The real-time extension is covered by the set
C of clocks, the set Inv of invariants and the set CC of
clock-constraints.

As said before, the set of messages results from all
possible combinations of message parameters. We ab-
stracted from message parameters here, simply saying
that there exists a set of distinct messages. Further-
more, in the implementation of our extension there
exists the MailBox component for the realization of
asynchronous communication. Since the number of
messages included in a certain mailbox suffices to be
able to determine whether a transition that requires
such a message is able to fire, we abstracted from the

mailboxes here in form of the MBox function. The
following definition consists of elements that where
already defined in [9]. For the sake of completeness,
we describe and list them.

With the help of our extension Ext, we define an
extended StateGraph2 model (ESGM) Γ as follows:

Γ := (Vc,G,T,GI,GE ,Ext)

where

• Vc is a set of Boolean expression as defined in [9].
• G is a set of generalized steps G = {g1,g2, . . .}

A generalized step gi is defined as a 7-Tuple

gi = (Γs, I,O,S,R, Invgi ,RESETgi)

where
− Γs is a possibly empty set of sub-graphs Γs =
{γ1,γ2, . . .}. A sub-graph γi ∈ Γs is again an
ESGM. Note that this recursive definition allows
an arbitrary deep nesting of ESGMs.

− I is a vector of in (entry) ports I = [i1, i2, . . .]. An
in port is a connection point incoming transitions
of gi are connected to.

− O is a vector of out (exit) ports O = [o1,o2, . . .].
An out port is a connection point outgoing transi-
tions of gi are connected to.

− S is a possibly empty vector of suspend ports
S = [s1,s2, . . .]. A suspend port is a connection
point outgoing transitions of gi are connected to.
The difference to out ports is that the active gener-
alized steps of sub-graphs of gi are stored for later
restore.

− R is a possibly empty vector of resume ports R =
[r1,r2, . . .]. A resume port is a connection point
ingoing transitions of gi are connected to. The
difference to in ports is that the active generalized
steps of sub-graphs of gi that were active when gi

was left by a suspend port are restored.
− Invgi ⊆ Inv is a set of invariants. An invariant

describes that a clock must never exceed a certain
bound when the generalized step is active. It is
denoted as an inequation of the form c≤ n, where
c ∈ C is a clock and n ∈ N is a natural number
(including zero).

− RESETgi ∈C is a set of clocks that are to be reset
to zero when the generalized step is activated.

A generalized step that has in and out ports but no
other ports and no sub-graphs, i.e., I 6= /0, O 6= /0 and
R = S = Γs = /0 is called step. A generalized step
that has resume ports, suspend ports or sub-graphs,
i.e., R 6= /0, S 6= /0 or Γs 6= /0 holds, is called parallel
step.

• T is a set of transitions T = {t1, t2, . . .}. A transition

A Modelica Library for Real-Time Coordination Modeling

370 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076365

ti ∈ T is defined by the 10-tuple

ti = (pIR
ti , pOS

ti ,Cti ,Ati ,CCti ,Rti ,S
R
ti ,S

S
ti ,M

R
ti ,M

S
ti)

where
− pIR

ti is a connected port of an in or resume vector
of a succeeding generalized step gi ∈ G.

− pOS
ti is a connected port of an out or suspend vector

of a preceding generalized step gi ∈ G.
− Cti ∈Vc is the fire condition associated with ti.
− Ati ∈ R is the after time associated with ti. Note,

that we consciously chose the name after time
instead of delay time as in the original definition
in [9] since the semantics of the after time will be
different from the one of the delay time.

− CCti ∈ CC are the clock constraints associated
with ti.

− Rti ∈C are the clocks to be reset when ti fires.
− MR

ti ⊆Msg is the message that must be received
when ti fires.

− MS
ti ⊆Msg is the message that is sent when ti fires.

− SR
ti ⊆ Sync is the synchronization connector that

has to be set by another transition when ti fires.
− SS

ti ⊆ Sync is the synchronization connector that is
set if ti is firable.

We further define that a transition might have at most
one message that is to be received and at most one
message that is to be sent, i.e., |MR

ti | ≤ 1 and MS
ti ≤ 1

resp., and at most one synchronization connector
over which a signal is sent or received, i.e., |SR

ti |+
|SS

ti | ≤ 1.
• GI ⊆ G contains the initial generalized step of Γ.
• GE ⊆ G contains the exit generalized step of Γ.

As a well-formedness constraint, we assume that
every ESGM has exactly one initial state and at most
one exit state, i.e., |GI| = 1 and |GE | ≤ 1. Further-
more, we assume that the uppermost ESGM Γ =
(Vc,G,T,GI,GE ,Ext), i.e., that ESGM that is not em-
bedded by any other ESGM, does not have an exit
generalized step, i.e., GE = /0.

5.2 Interpretation Algorithm

1. Activate the initial generalized step g ∈ GI . If g
has sub-graphs, then recursively activate the initial
generalized steps of all of its embedded sub-graphs.

2. Determine the set Tf ireable of all transitions ti that
satisfy:
− its condition Cti is true,
− the required after time Ati has passed,
− its in or resume port pIR

ti is set to true,
− if its preceding generalized step has sub-graphs,

the exit generalized steps of all of these sub-

graphs are recursively activated
− if MR

ti 6= /0 and m ∈ MR
ti is the message to be re-

ceived by ti, the Mailbox of m contains at least
one message, i.e., MBox(m)> 0.

− there exists no other transition t j ∈ Tf ireable that
has the same preceding generalized basic step
and has higher priority than ti where the priority
results from the index of the transition in the port
vector (see [9]).

3. For all ti ∈ Tf ireable do:
i. if SS

ti 6= /0 and s ∈ SS
ti is the synchronization con-

nector of ti for sending a signal, set s to true
4. Determine the set Tsyncable of all transitions ti ∈

Tf irable that satisfy:
− either SR

ti = /0 or
− if SR

ti 6= /0 and s ∈ SR
ti is the synchronization con-

nector of ti, ti is set to true
5. For all ti ∈ Tsyncable fire ti as follows:

i. Deactivate the preceding generalized step g of
ti. If gi includes sub-graphs deactivate these sub-
graphs recursively.

ii. Activate the succeding generalized step g′ of ti. If
g′ includes sub-graphs activate these sub-graphs
recursively as follows:
− if ti is connected to g′ by a resume port, the

generalized steps of g′ and of all sub-graphs of
g′ that where active the last time g′ was active
are recursively activated

− else, activate all initial generalized steps of g′

and its sub-graphs recursively.
iii. if MR

ti 6= /0 and m ∈ MS
ti is the message to be re-

ceived by ti, then take one message out of the the
Mailbox of m, i.e., MBox := (MBox\{(m,d)})∪
{(m,d−1)} where d ∈ N is the amount of mes-
sages in the mailbox before ti fires.

iv. if MS
ti 6= /0 and m ∈MS

ti is the message to be sent
by ti, then put one message into the Mailbox of m,
i.e., MBox := (MBox \ {(m,d)})∪ {(m,d + 1)}
where d ∈ N is the amount of messages in the
mailbox before ti fires.

6. Goto 2.

6 Case Study

This section shows how we modeled the platoon sce-
nario. First, we used the StateGraph2 library in com-
bination with our Real-Time Coordination library to
specify the discrete software. Then, we connected the
software model with the simulation model of the BeBot
hardware that we have presented in Section 2.1. This
section shows an excerpt of our model. The complete

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 371
10.3384/ecp12076365 September 3-5, 2012, Munich, Germany

model is delivered within our Real-Time Coordination
library.

Figure 8 shows the discrete behavior specifica-
tion that we modeled as class BeBot_SW in Dy-
mola. We used the Step components and the Parallel
component from the StateGraph2 library. From the
Real-Time Coordination library, we used the Transi-
tion components, the Message components, the Mail-
box components, and the DelegationPort components.
We omit guards, connection lines between synchroniza-
tions, and timing constraints.

InStart
Platoon

InEnd
Platoon

InConfirm

OutConfirm

OutDrive

OutStop

StartPlatBox

EndPlatBox

StopBox DriveBox

ConfirmBox

Start
Platoon

End
Platoon

Drive

Stop

Confirm

BeBot_SW_Main

No
Platoon

Rear

Platoon
Platoon

Proposed
Front Rear

Regular

Front
Platoon

cruisingSpeed

after(0.05)

InStop InDrive

?front
Platoon

?noFront
Platoon

?rear
Platoon

!noRear
Platoon

!front
Platoon

!rear
Platoon

?noRear
Platoon

!noFront
Platoon

:BeBot_SW bebotStopdistance

speed

OutEnd
Platoon

OutStart
Platoon

Figure 8: Platoon Scenario Behavior Modeled

The interface of the class BeBot_SW defines three in-
coming parameters: the distance to a BeBot, that drives
in front, the cruisingSpeed of the BeBot, and bebotStop
that defines if the BeBot has to stop. The outgoing
parameter is the speed of the BeBot. Furthermore, five
asynchronous messages are defined that can be sent
and received: StartPlatoon to propose to start a platoon,
Confirm to confirm the start proposal, EndPlatoon to
command the end of the platoon, Stop to command
a rear-driving BeBot to stop, and Drive to inform a
rear-driving BeBot that it no longer has to stop.

Within BeBot_SW, two parallel branches were de-
fined. The first branch handles the platoon activation
and deactivation and consists of the steps NoPlatoon,
PlatoonProposed, and FrontPlatoon. The second branch
handles the coordinated braking within a platoon and
consists of the steps Regular (a BeBot has no limita-
tions regarding braking), Front (a BeBot has first to
inform the rear-driving BeBot before braking), and
Rear (a BeBot must brake when the front-driving Be-
Bot commands it). The synchronization between the
two branches is realized by using synchronous commu-
nication, e.g., if step FrontPlatoon is activated, then step
Front will also be activated at the same time. Among
others, this class contains a timing constraint that the
state PlatoonProposed is no longer active than 50ms.

Figure 9 shows the two connected instances front and

rear of the class BeBot_SW. Furthermore, it shows two
instances of the BeBot hardware model (see Figure 2)
and how they are connected with the software models.
The instance distance of the class Distance calculates the
distance of the rear BeBot to the front BeBot. We do
not display the connections to the inputs cruisingSpeed
and stop.

InStop InDrive

rear:BeBot_SW

OutConfirm

OutDrive

OutStop

InStart
Platoon

InEnd
Platoon

InConfirm

InStop InDrive

front:BeBot_SW

OutEnd
Platoon

OutConfirm

OutDrive

OutStop

InStart
Platoon

InEnd
Platoon

InConfirm

cruisingSpeeddistance distance

speed speed

rearBot frontBot

d
is

ta
n

c
e

OutStart
Platoon

cruisingSpeed

OutEnd
Platoon

OutStart
Platoon

bebotStop bebotStop

Figure 9: Platoon Scenario Instance Model

Figures 10 and 11 show the results of a simulation
run of the model. Figure 10 shows the asynchronous
messages that were sent between the rear- and the front-
driving BeBot. Figure 11 shows the speed result of
both BeBots during a performed simulation. Right at
the start, the rear-driving BeBot speed was higher. As
the distance had reached a size where a platoon was
needed, the rear-driving BeBot sent the message Start-
Platoon. At time 8.6, the rear-driving BeBot received
the message Confirm(1) so it had adjusted its speed to
1. At time 25, the stop input of the rear-driving BeBot
raised to 1. Therefore, the rear-driving BeBot ended
the platoon by sending the message EndPlatoon and
stopped for 10s. Then the rear-driving BeBot started
again to close the gap by driving faster and to start a
new platoon.

front:BeBot_SWrear:BeBot_SW

Figure 10:
Sequence Diagram

Figure 11:
Simulation Plot

Figure 12 shows the 3D view of the simulation run.
The left shows the moment when the rear BeBot drives
faster than the front BeBot and the right shows when
both BeBots drive in the platoon with the same speed.

A Modelica Library for Real-Time Coordination Modeling

372 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076365

Figure 12: 3D View of Simulation

7 Related Work

This section presents some other approaches for model-
ing discrete state-based behavior for simulating hybrid
cyber-physical systems. We focus on the capabilities to
model and simulate real-time properties and constraints
of the behavior, synchronize parallel behavior, and to
communicate via asynchronous messages.

7.1 SimulationX

SimulationX supports an own representation of state
machines which follows the model of UML state ma-
chines but only implements a limited subset [3]. Sim-
ulationX state machines have no support for parallel
behavior and therefore no support of synchronizations.
The asynchronous signals have no support for an ar-
bitrary number of parameters and are lost when the
receiver is not enabled to consume them immediately.
They have no concept of a mailbox for storing messages.
SimulationX supports only limited timing support. Its
time events only react to an expression which is rela-
tive to the active state time of the transition which is
triggered by the after event. It is not possible to model
time invariants as first class entities. As SimulationX
supports Modelica, it is possible to port the concepts
that we present in this paper to SimulationX.

7.2 ModelicaML

ModelicaML is a UML Profile [13] which extends
UML Classes and Properties with Stereotypes for Mod-
elica. Therefore, it is possible to model with UML
Classes as in Modelica. Further, ModelicaML defines
a mapping of UML state machines and simple internal
events to plain Modelica algorithmic code [14]. For
more complex messages it is possible to use external
C-functions [11]. A code generation algorithm does
the mapping of UML state machines to Modelica code
automatically. In contrast to the State Graph2 exten-
sion presented in this paper it is hard to edit the state
machine behavior directly in Modelica because it is
encoded in a complex algorithm. Further, ModelicaML
has no support for synchronization of parallel behavior

from different regions as presented in Section 4.1. Mod-
elicaML supports only rudimentary timing behavior as
first class entity with its AFTER-macro [14]. This con-
struct is a transition guard relative to the active time of
a state. ModelicaML also does not support time invari-
ants of states. As ModelicaML supports Modelica, it
is possible to port the concepts that we present in this
paper to ModelicaML.

7.3 MATLAB/Simulink, Stateflow

MATLAB provides the custom modeling language
Stateflow for state based behavior. Stateflow has in-
terfaces to the Simulink environment. Stateflow has
some drawbacks for modeling communication proto-
cols with real-time requirements between distributed
systems. For clocks, helping elements from Simulink
to count time-ticks are needed. Stateflow also has no
concept of asynchronous, message-based communica-
tion with mailboxes for sent and received messages.
Stateflow events are not buffered by the receiver and
could be lost if the receiver is busy. It is possible to
encode asynchronous message-based communication.
Therefore, you need a complex combination of several
linked Simulink and Stateflow blocks, which is hard to
maintain manually [6, 10].

8 Conclusions and Future Work

Today, autonomous embedded systems are increasingly
connected to each other to realize new innovative func-
tionality, e.g., in the case of vehicle-to-vehicle commu-
nication to realize platooning.

We presented an extension of the StateGraph2 library
that enables modeling a real-time communication and
coordination between autonomous embedded systems
by providing library elements for asynchronous and
synchronous communication as well as real-time con-
straints. We modeled two miniature robots that drive in
a platoon with our library to simulate it.

We plan to make several additions to our library.
Asynchronous message exchange between autonomous
systems may suffer from message loss or message de-
lays. Therefore, we plan to enable modeling different
probabilistic quality of service characteristics, e.g., mes-
sage delays and message losses. The new Modelica ver-
sion 3.3 have built-in support of finite state machines,
which makes the StateGraph2 library obsolete. How-
ever, the new built-in finite state machines does not
support asynchronous message-based communication,
so we suggest to use our extensions for asynchronous

Session 3B: Embedded and Real-Time Systems

DOI Proceedings of the 9th International Modelica Conference 373
10.3384/ecp12076365 September 3-5, 2012, Munich, Germany

message-based communication. The integration is up
to further research.

With respect to tool chains, we want to implement
automatic transformations from MECHATRONICUML
to the presented extended StateGraph2 library. This
allows us to reap the benefits from formal verification
by model checking, which is possible for models of the
MECHATRONICUML [2], and integrated simulation
including feedback controllers and physics by using
Modelica. Finally, we will use our library in several
other case studies, including a de-centralized industrial
dough mixing system.

Acknowledgments
This work was developed in the project ’ENTIME: Entwurf-
stechnik Intelligente Mechatronik’ (Design Methods for In-
telligent Mechatronic Systems). The project ENTIME is
funded by the state of North Rhine-Westphalia (NRW), Ger-
many and the EUROPEAN UNION, European Regional
Development Fund, ’Investing in your future’. Chia Choon
Loh is supported by the International Graduate School Dy-
namic Intelligent Systems.

References
[1] R. Alur and D.L. Dill. A theory of timed automata.

Theoretical computer science, 126(2):183–235, 1994.

[2] S. Becker, C. Brenner, S. Dziwok, T. Gewer-
ing, C. Heinzemann, U. Pohlmann, C. Priesterjahn,
W. Schäfer, J. Suck, O. Sudmann, and M. Tichy. The
mechatronicuml method - process, syntax, and seman-
tics. Technical Report tr-ri-12-318, Software Engi-
neering Group, Heinz Nixdorf Institute, University of
Paderborn, 2012.

[3] U. Donath, J. Haufe, T. Blochwitz, and T. Neidhold. A
new approach for modeling and verification of discrete
control components within a Modelica environment. In
Proceedings of the 6th Modelica Conference, Bielefeld,
pages 269–276, 2008.

[4] C. Ebert and C. Jones. Embedded software: Facts, fig-
ures, and future. IEEE Computer, 42(4):42–52, 2009.

[5] D. Harel. Statecharts: A visual formalism for complex
systems. Science of computer programming, 8(3):231–
274, 1987.

[6] C. Heinzemann, U. Pohlmann, J. Rieke, W. Schäfer,
O. Sudmann, and M. Tichy. Generating simulink and
stateflow models from software specifications. In Pro-
ceedings of the International Design Conference, DE-
SIGN 2012, Dubrovnik, Croatia, May 2012.

[7] S. Herbrechtsmeier, U. Witkowski, and U. Rückert. Be-
bot: A modular mobile miniature robot platform sup-
porting hardware reconfiguration and multi-standard

communication. In Progress in Robotics, Communi-
cations in Computer and Information Science. Pro-
ceedings of the FIRA RoboWorld Congress 2009,
volume 44, pages 346–356, Incheon, Korea, 2009.
Springer.

[8] C. C. Loh and A. Trächtler. Laser-sintered platform
with optical sensor for a mobile robot used in coopera-
tive load transport. In Proceedings of the 37th Annual
Conference on IEEE Industrial Electronics Society,
pages 888–893, November 2011.

[9] M. Otter, M. Malmheden, H. Elmqvist, S.E. Mattsson,
C. Johnsson, D. Systèmes, and S.D. Lund. A new
formalism for modeling of reactive and hybrid systems.
In Proceedings of the 7th Modelica’2009 Conference,
Como, Italy, 2009.

[10] M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and R. Mang-
haram. From verification to implementation: A model
translation tool and a pacemaker case study. In Pro-
ceedings of the 18th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2012),
Beijing, China, April 2012.

[11] U. Pohlmann and M. Tichy. Modelica code generation
from ModelicaML state machines extended by asyn-
chronous communication. In Proceedings of the 4th
International Workshop on Equation-Based Object-
Oriented Modeling Languages and Tools, EOOLT
2011, Zurich, Switzerland, 2011.

[12] W. Schäfer and H. Wehrheim. The Challenges of
Building Advanced Mechatronic Systems. In Lionel C.
Briand and Alexander L. Wolf, editors, FOSE, pages
72–84, 2007.

[13] W. Schamai. Modelica modeling language (Modeli-
caML) : A UML profile for Modelica. Technical report,
Linköping University, Department of Computer and In-
formation Science, The Institute of Technology, 2009.

[14] W. Schamai, U. Pohlmann, P. Fritzson, C. J.J. Pare-
dis, P. Helle, and C. Strobel. Execution of uml state
machines using modelica. In Proceedings of EOOLT,
pages 1–10, 2010.

[15] C. Weiß. V2X communication in Europe - From re-
search projects towards standardization and field test-
ing of vehicle communication technology. Computer
Networks, 55(14):3103–3119, 2011.

A Modelica Library for Real-Time Coordination Modeling

374 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076365

Session 3C: Language and Compilation Concepts I

Implementation of a Graphical Modelica Editor with Preserved Source Code Formatting

Implementation of a Graphical Modelica Editor
with Preserved Source Code Formatting

Tobias A. Mattssona Jon Stena Tove Bergdahlc Jesper Mattssonc Johan Åkessonb,c

aDepartment of Computer Science, Lund University, Sweden
bDepartment of Automatic Control, Lund University, Sweden

cModelon AB, Sweden

Abstract

When an Integrated Development Environment (IDE)
is developed, the support for multiple views of the
same document is often essential. An example of this
is Modelica models, where it should be possible to
view and edit the same model in both its textual and
graphical representation.

One implementation of Modelica is the open source
platform JModelica.org. It contains the Eclipse-based
JModelica.org IDE, providing a text editor for Model-
ica code based on the Eclipse platform.

In this paper, we present an implementation of a
graphical editor for the JModelica.org IDE. Several
challenges arising when implementing a graphical ed-
itor for Modelica models are discussed. Amongst
others, the difficulties in rendering Modelica dia-
grams and how to interact with existing frameworks
in Eclipse are covered. Also, a method for preserving
the formatting of a modified source code file is pre-
sented, which is essential when the model is altered in
the graphical editor.

The presented implementation is compared to other
open source software (OSS) implementations of Mod-
elica editors.

Keywords: AST; JModelica.org; Eclipse; GEF;
Graphical Editing; Icon Rendering; Preserved File
Formatting; Pretty Printing

1 Introduction

Simulation and optimization of dynamic systems is be-
coming a standard tool in several industrial branches.
The trend is mainly driven by the demand for de-
creased product time to market and shortening the de-
velopment time, by substituting system prototyping
for simulation. Modelica is one of many domain spe-

cific languages developed with the goal to meet the
demand of such model-based design languages.

One implementation of the Modelica language is
the JModelica.org platform [1]. It contains a Mod-
elica compiler as well as an Integrated Development
Environment (IDE) for Modelica code. Currently, a
comprehensive text editor for editing Modelica source
code is available in the JModelica.org IDE [2], allow-
ing the developer to define new models based on equa-
tions and existing models. The JModelica.org IDE is
implemented using the Eclipse framework1 which is a
modular, extensible application framework for IDEs.

In this paper, we present an implementation of a
graphical editor for Modelica in the JModelica.org
platform which will complement the textual editor, al-
ready available in the JModelica.org IDE. The editor is
implemented as an Eclipse plugin using the Graphical
Editing Framework (GEF)2 which is a framework for
creating graphical editors, developed for the Eclipse
platform. The graphical editor communicates and
modifies Modelica models through an abstract syntax
tree (AST). It also features preserved file formatting
in the JModelica.org IDE. The work presented in this
paper is the result of two master’s theses [3, 4], con-
ducted at Modelon AB.

This paper is outlined as follows. In Section 2,
a brief background of the JModelica.org platform is
given and the compiler construction framework Jas-
tAdd [5] is introduced. The Eclipse project and the
Graphical Editing Framework (GEF) are also intro-
duced in this section. In Section 3, a comparison to
similar OSS tools is presented. The implementation
of the graphical editor is discussed in Section 4 and
Section 5 summarizes this paper.

1http://eclipse.org
2http://eclipse.org/gef

DOI Proceedings of the 9th International Modelica Conference 375
10.3384/ecp12076375 September 3-5, 2012, Munich, Germany

2 Background

2.1 JModelica.org

JModelica.org is an open source project for optimiza-
tion and simulation of complex dynamic systems. The
JModelica.org platform includes compilers for Mod-
elica and the Modelica language extension Optim-
ica [6], as well as an integration to the simulation pack-
age Assimulo [7]. An interface to the compilers and
simulation and optimization algorithms is available in
Python, which enables scripting of the typical model-
ing and optimization activities.

Also part of the JModelica.org platform is an IDE
for Modelica. The JModelica.org IDE is implemented
as a plugin in Eclipse using the JModelica.org compil-
ers and the JastAdd framework. The IDE provides tex-
tual editing support such as syntax highlighting, code
folding, code outline, brace matching and error check-
ing of models.

2.2 Eclipse

The Eclipse Foundation is an open source community
whose aim is to produce open development platforms
with comprehensive extension frameworks3. The IDE
is heavily modularized so that it is possible to add, re-
move and extend functionality with a small amount of
code and without altering any core source files. The
modularization also makes it possible to create dif-
ferent bundles, including different editors and views.
For instance, there is the Eclipse Software Develop-
ment Kit (SDK) that includes a comprehensive Java
Development Tool (JDT) for Java development and
also the C++ Development Tool that is an IDE for C
and C++. These are two different development envi-
ronments with different functionality, yet they still use
the same base IDE and base functionality.

2.3 GEF

The Graphical Editing Framework (GEF) is one of
the most popular frameworks for graphical editing in
Eclipse and it is also the one used for the editor in this
paper4. GEF is a rather complicated system with many
design patterns and classes. When developing graphi-
cal editors using GEF, the developer has to define two
types of classes, EditParts and EditPolicies.

EditParts is the most basic part of GEF. These
classes join the document model with the view. There

3http://eclipse.org
4http://eclipse.org/gef

Model EditParts Figures
Domain Specific GEF Domain Draw2D Domain

Figure 1: View of the document model, EditPart and
figure tree and their linkage.

is usually a one to one representation between doc-
ument model nodes and EditPart classes. The view is
represented by figures. Normally, figures also map one
to one with EditParts, see Figure 1.

EditPolicies handle the interaction with the user, the
Eclipse framework and the underlying model. For ex-
ample, the graphical editor specifies an EditPolicy that
determines what should happen when the user tries to
move a component. If the move is valid, it will cre-
ate a move command that alters the model component
definition.

An EditPolicy specification usually only handles a
single task or a group of related tasks. Using this pat-
tern means that the user interaction is separated from
the EditParts. Instead, the interaction is handled by
EditPolicies installed on EditParts. This enables dif-
ferent EditParts with similar behavior to use the same
EditPolicies, which reduces code complexity. It is also
convenient for the developer, since it allows for grad-
ually extending the functionality with new features.

2.4 JastAdd

JastAdd5 is an open source meta-compilation system
that is used for compiler generation and other pro-
grams that have the need to analyze code. It provides
means to define attribute grammars [8], and introduces
the possibility to use aspect-oriented programming
(AOP) when constructing a compiler. With aspects,
the source files describe a certain behavior or function-
ality, rather than objects in object-oriented program-
ming (OOP). In other words, the behavior for several
different objects may be defined in the same aspect.

JastAdd code is organized in abstract grammar files
and aspect files. These source files are collected and
the functionality from the aspects is woven into Java
files before they are finally compiled.

The JastAdd project provides a framework for sup-
porting IDEs based on Eclipse [2]. It consists of a
generic IDE plugin with supporting classes and default

5http://jastadd.org

Implementation of a Graphical Modelica Editor with Preserved Source Code Formatting

376 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076375

aspects for attributes. The attributes provide common
services such as code folding and code outline. The
main parts of the generic IDE plugin are the builder
and the registry. When the Eclipse framework needs a
build, it triggers the builder. The builder then delegates
the work to a compiler. When the compiler is done, it
provides an AST for files or projects. These ASTs are
cached in the registry.

2.5 Graphical Annotations

In this paper, Modelica annotations, or more specifi-
cally graphical annotations, will play an important part
since they are used for representing a model and its
components graphically. A graphical editor uses the
information in the graphical annotations when render-
ing icons and diagram. The editor also modifies anno-
tations when the user makes changes in the graphical
editor.

Listing 1: Code example of graphical annotations in
the three different locations permitted.
model LowPass

. . .
Analog . B a s i c . R e s i s t o r R1
a n n o t a t i o n (P l acemen t (t r a n s f o r m a t i o n (

e x t e n t ={{−25 , −25} ,{25 , 25}} ,
o r i g i n ={−25 , 50}

))) ;
. . .

equat ion
. . .
connect (R1 . n , p2)
a n n o t a t i o n (L ine (p o i n t s = . . .)) ;
. . .
a n n o t a t i o n (

I co n (
c o o r d i n a t e S y s t e m (e x t e n t = . . .) ,
g r a p h i c s = { . . . }

)
) ;

end LowPass ;

There are three locations where graphical annota-
tions may appear:

(a) Directly after a component definition. If specified,
it will define how that component should be ren-
dered, size and origin.

(b) Directly after a connect statement. If specified,
it will define how the connection should be ren-
dered, line points and its color.

(c) At the end of a model definition. If specified, it
will define how the icon and diagram of the model
should be drawn.

Examples of the three different locations are illustrated
in Listing 1.

3 Related Work

There are several approaches to formatting preserva-
tion and graphical Modelica editing. In this section, a
comparison will be given to some of the popular open
source alternatives.

3.1 Formatting Preservation

OpenModelica6 is another open source initiative based
on Modelica. The OpenModelica environment also
has procedures for preserving formatting. Peter Fritz-
son et al. describes these procedures as an initiative to
preserve comments and indentation when refactoring
Modelica code [9].

OpenModelica stores the text representation of the
code in a separate tree, which has the same structure
as the original AST. In this way, they are able to avoid
cluttering the AST with text positions. The text rep-
resentation is created piece-wise when needed. The
nodes in this separate tree stores the text positions and
have a one-to-one mapping with the nodes in the AST.

While the solution for preserving formatting pre-
sented in this paper also aims to do most of the work
when it is actually needed, it does more work in the
parsing process. The position of the nodes and the ac-
tual formatting text and type is extracted during pars-
ing. This data is then associated to the source AST.
This makes the AST slightly more memory consum-
ing at first, compared to the OpenModelica solution.

The most significant difference between the two so-
lutions is that in JModelica.org, the formatting always
resides in the source AST while OpenModelica stores
it in a separate tree. Although this makes the source
AST in JModelica.org more verbose, the advantage is
that modifying the source AST does not require any
synchronization with a second tree.

Maartje de Jonge and Eelco Visser have also pre-
sented an algorithm for preserving the original layout
of source code when modifying an AST [10]. Their al-
gorithm relies on text reconstruction and origin track-
ing. The algorithm stores a reference to the leftmost
and rightmost token in the stream for each node in the
AST, which in turn holds the corresponding start and
end offset. When the AST is to be modified, the nodes
and their positions in the new tree are traced back to

6http://openmodelica.org

Session 3C: Language and Compilation Concepts I

DOI Proceedings of the 9th International Modelica Conference 377
10.3384/ecp12076375 September 3-5, 2012, Munich, Germany

their origin. The text can then be reconstructed from
this origin.

The algorithm also comes with an intelligent heuris-
tic for associating comments with the correct node.
Cases such as block comments, comments before and
after a line of code, inside comma separated lists, code
removed by commenting and multi-line comments be-
side multiple statements are discussed. Suggestions
how to handle most of these cases are also described.

The solution presented in this paper is less involved
than the algorithm by de Jonge and Visser, but still
covers the realistic cases threated in this paper. All
comments in the source code that are located on the
right-hand side of a node, but before a line break or
the next node, are associated with that node. Any com-
ments that follow are considered to belong to the next
node, and so forth. It is important to remember that
comments are meant for people, not machines, to read
and interpret. Thus, there are no predefined rules for
how to relate comments to code and it is practically
impossible to perfect such an algorithm.

As the JModelica.org IDE is an Eclipse plugin it
is worth mentioning how the Eclipse Java Develop-
ment Tools (JDT) handles changing the AST. The
Eclipse JDT has an API for refactoring code using the
AST [11]. When AST nodes are added, removed or
replaced in JDT, these operations are translated into
text edits which can then be applied to the original
source. This is a very different approach than ours,
as this means that the original AST is never touched
by JDT. Instead the source text is edited and the AST
is then updated from that source. In JModelica.org,
such an approach would require a total recompilation
of the code with every AST modification as there is
currently no way to incrementally compile the source
code. This would thus not be an adequate solution, as
it would most likely make the editor very slow.

3.2 Graphical Modelica Editors

OMEdit is an editing front-end to the OpenModelica
compiler. It contains tools for model creation, diagram
editing, icon editing, simulation, plotting, documenta-
tion view and text editing mode. The editor was de-
veloped as part of a thesis by Asghar, Syed Adeel and
Tariq, Sonia in 2010 [12, 13].

OMEdit uses the CORBA interface to communicate
with OpenModelica. CORBA is supplied by Open-
Modelica and allows for interaction between an appli-
cation and its AST. OMEdit uses it to retrieve and store
information such as: model structure, annotation, doc-
umentation, simulation and graph plotting.

OMEdit is mainly developed in C++ and relies on
QT7 for graphical UI handling and rendering of graph-
ical primitives. QT is an cross platform framework that
allows the developer to rapidly develop Graphical User
Interface (GUI) based applications that work on mul-
tiple platforms. It also has support for multiple target
languages like C++ and JavaScript.

Compared to the graphical editor presented in this
paper, OMEdit is more comprehensive. It defines a
complete IDE with text editor, parameter view, simu-
lation view and graphical editor.

There are some significant differences between the
two graphical editors, besides the programming lan-
guage. OMEdit uses QT to generate a GUI, as op-
posed to GEF that is used for the graphical editor in
this paper. GEF and QT provide the same basic func-
tionality but for different programming languages and
platforms. However, QT has more extensive support
for the graphical features that are specified in Model-
ica than GEF. QT also takes care of all transformation
and rendering of graphical primitives.

Performance wise there are some small differences
between the two graphical editors. When adding and
removing components a noticeable lag is present in
OMEdit editor while it happens instantly in JMod-
elica.org editor. This is most likely a result of the
CORBA interface and the fact that OMEdit does not
operate directly on the AST.

OMEdit also lacks some basic features like an undo
and redo stack. This is likely due to that support for
this is missing in QT. This feature is something that
was supported by GEF and is one of the essential fea-
tures in the graphical editor described in this paper.

SimForge8 is another open source toolkit that is
abased on OpenModelica. It offers similar features as
the JModelica.org IDE and OMEdit. It has a text editor
as well as a graphical editor that allows for both dia-
gram and icon editing. Additionally it has a parameter
editor that allows for modification of component val-
ues. The SimForge project has been inactive for some
time and there is also a lack of information about the
implementation and the frameworks used. Therefore,
no thorough comparison is given in this paper.

7http://qt.nokia.com
8http://trac.ws.dei.polimi.it/simforge/

Implementation of a Graphical Modelica Editor with Preserved Source Code Formatting

378 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076375

4 Implementation

4.1 Compiler Architecture

The JModelica.org compiler is divided into two parts,
front-end and back-end. The front-end is responsible
for parsing, AST building, error checking and flatten-
ing of Modelica models. The front-end builds three
ASTs, the source AST, the instance AST and the flat
AST.

Source Tree Instance Tree Flat Tree

Instantiate FlattenCompile

Figure 2: The three ASTs and the different compila-
tion stages.

Source AST is the first AST that is built. It is almost
a direct translation of the Modelica model into a
tree. The source AST is necessary when calculat-
ing the instance tree.

Instance AST is instantiated from the source AST.
All component declarations has been resolved
and expanded with the contents of their classes.

Flat AST is the flattened version of the model. It is
reduced from the instance tree and consists of a
list of equations and variables.

A brief overview of the three ASTs can be seen in Fig-
ure 2.

4.2 Graphical Editor

Graphical
Editor

JastAdd IDE

JModelica.org
Compiler GEF

Eclipse

Figure 4: An overview of the interaction between the
graphical editor and the other components.

An overview of the design and the different com-
ponents that the graphical editor relies on is shown in
Figure 4. The graphical editor communicates with the
JModelica.org compiler to retrieve graphical annota-
tions as well as Modelica class structure. All editing is
saved back into the source and instance AST and the

icon structure. The icon structure is an abstraction of
the structure that is used when representing Modelica
annotations in the source AST. It is built to resemble
the structure of a graphical annotation as it is defined
in the Modelica specification. GEF is an obvious com-
ponent that the editor relies heavily on. GEF helps the
editor with synchronization between the EditParts and
icon structure in the compiler. It is also responsible for
interaction with the Eclipse framework and low level
rendering of graphics in the editor. The graphical edi-
tor also has some direct interaction with Eclipse, such
as the ability to open a component for modification
of parameters on sub components. The JastAdd IDE
framework is used as an interface to the JModelica.org
compiler when compiling classes.

4.2.1 EditParts

When constructing a GEF editor, it is important to
make a good design between EditParts and the under-
lying document model. Normally, there is one Edit-
Part class for each document model node. The graph-
ical editor presented in this paper is no exception and
uses one EditPart class for each icon structure node.
For example, the icon structure node Rectangle is rep-
resented by a RectangleEditPart. The RectangleEdit-
Part handles all the rendering and interaction with the
graphical user interface (GUI). By using EditPolicies,
it is possible to alter the behavior and control what
happens when the rectangle is moved or resized. Sim-
ilarly, there will be one EditPart class for each node
type in the icon structure, specifying the behavior of
that node.

4.2.2 Rendering

Once an EditPart has been produced from the icon
structure, it creates an appropriate figure and populates
it with the correct attributes from the icon structure.
For example, the rectangle mentioned in Section 4.2.1
will populate its figure with width, height and rotation.
It will also set line color, line pattern and fill color.

It can sometimes be troublesome to render Modelica
models in GEF. Modelica supports both rotation and
scaling of graphics whilst GEF does not support rota-
tion and has limited support for scaling. In the graphi-
cal editor this is solved by transforming the points that
the graphical object consists of. The transformation is
done using Euclidean transformations, that are built hi-
erarchically over the component structure of the Mod-
elica model.

Session 3C: Language and Compilation Concepts I

DOI Proceedings of the 9th International Modelica Conference 379
10.3384/ecp12076375 September 3-5, 2012, Munich, Germany

Figure 3: Screen shot of the graphical editor.

y

x

(a) Modelica

y

x

(b) SWT

Figure 5: Difference between Modelica and GEF coor-
dinate system with positive direction indicated by ar-
rows on the axis.

Finally, when rendering models it is important to
convert between the handedness of the coordinate sys-
tems used by Modelica and GEF respectively. Model-
ica uses a right-hand coordinate system, see Figure 5a
while GEF uses left-hand coordinate system, see Fig-
ure 5b. If no consideration is taken to handedness the
resulting image will be upside down. The solution is
simple, once all transformations are done the image is
flipped along the y-axis.

4.3 AST Communication

Changes made by the user in the graphical editor has to
be propagated back into the icon structure and under-
lying source AST. These propagations can be divided
into two categories, annotation editing and structural
editing.

4.3.1 Annotation Editing

Some graphical changes, such as moving or resizing
components, are localized and only affects annotations
in the code. Most of the operations performed while
graphically editing a model falls into this category.
Since this kind of change only affects the source AST,
it is simple to perform.

4.3.2 Structural Editing

Structural editing is a more complicated type of edit-
ing operation which is performed on the AST. It oc-
curs when a component or a connection is added to
or removed from the model. The main challenge is
that both the source and instance tree must be updated
consistently. In the current implementation, the com-
ponent or connection is first added to the source tree.
The instance tree then instantiates a new component or
connection from the source node, resulting in a con-
sistent result for the currently opened model, see Fig-
ure 6. Removing a component is performed in the re-
verse order as opposed to adding. First, the component
or connection is removed from the instance tree and
then in the source tree.

There are, however, side effects that are not handled.
If the edited model is used as a component in another
model and that other model is also open, the latest
changes will not appear until that model is reloaded.
A possible solution is to sense when a structural edit
has occurred and in that case reload the editor. An-
other solution is to propagate any changes in a model
to all instances of the same model.

Implementation of a Graphical Modelica Editor with Preserved Source Code Formatting

380 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076375

Source AST Instance AST

B B

AA

(a) Before

Source AST Instance AST

B

a

B

AA

(b) During

Source AST Instance AST

B

a

B

aAA

(c) After

Figure 6: The steps taken when adding a component.

4.4 Preserved Formatting

Consider the graphical editor as currently described
in this paper. When the editor changes the model,
it does so by modifying the source AST. Eventually
these changes need to be displayed in a source code
editor or saved to a file. The source AST would then
have to be printed back to text format. All informa-
tion that is significant to the compiler and the graph-
ical editor resides in the AST. It does not, however,
traditionally carry any knowledge about how the code
was originally formatted. Information that is valuable
for the developer, such as indentation and comments
would effectively be lost if the AST was simply pretty
printed. Somewhere along the way, the information
about the original formatting needs to be gathered and
stored in the AST so that the original source code can
be reprinted.

4.4.1 Scanner and Parser

The scanner is the part of the compiler that finds pat-
terns in the code and converts them to a series of to-
kens given to the parser. Those tokens are then con-

verted to a source AST by the parser using the gram-
mar of the language. The issue about preserving for-
matting, as described in the paragraph above, is solved
by letting the scanner add spaces, line breaks and com-
ments to a data structure. Most parentheses are im-
plicit by the Modelica language, but expressions need
special care regarding this. The developer might sur-
round expressions by parentheses to explicitly mark
precedence. This could, for the sake of readability,
be done even when it would already be implicit. The
parser collects these parentheses and stores them in re-
spective expression.

When the parsing is finished, a reference to the data
structure is added to the nodes in the AST. Later, when
the AST is about to be presented in text format, for ex-
ample, when it should be saved to a file, the informa-
tion in the data structure is propagated downwards in
the AST. At this stage each node gets the formatting
related to the node, as the data structure is emptied.
After this, the AST is finally printed in text format,
where every node has its formatting preserved.

4.4.2 Reading Formatting

As has been mentioned earlier, formatting such as in-
dentation and comments are put in a data structure by
the scanner. Some, but not all parentheses should also
be collected. The parser has, unlike the scanner, the
syntactic information to distinguish which parentheses
are significant. That is, which parentheses belong to
expressions and which do not. However, the parser has
no access to the formatting data structure, so it stores
the parentheses directly in the expressions.

When the data structure has been populated by the
scanner, it contains a list of scanned formatting items.
A formatting item is an object that contains some ba-
sic part of the formatting. It contains the actual string
data that should be output when the AST is printed. A
formatting item also has information about what type
it is, for example line break or comment. When a for-
matting item has been scanned it is called a scanned
formatting item. A scanned formatting item holds the
same information as a regular formatting item, but
with some information about its origin added. This
makes it possible to find its original line and column in
the source code. Table 1 shows some typical scanned
formatting items.

Before the formatting items in the data structure are
used by the AST, some of them are merged. The ones
that are adjacent to each other are merged into new,
larger formatting items of mixed type. As an example,
the two last items in Table 1 would be merged into a

Session 3C: Language and Compilation Concepts I

DOI Proceedings of the 9th International Modelica Conference 381
10.3384/ecp12076375 September 3-5, 2012, Munich, Germany

Table 1: The data in some scanned formatting items.

Scanned Formatting Item
Formatting Item

Start End Type Data
(1, 6) (1, 6) WHITE_SPACE ” ”

(1, 19) (1, 19) LINE_BREAK ”\n”
(2, 1) (2, 4) WHITE_SPACE ” ”
(2, 9) (2, 9) WHITE_SPACE ” ”

(2, 13) (2, 13) WHITE_SPACE ” ”
(2, 14) (2, 29) COMMENT ”// Text\n”

mixed formatting item. This way each AST node only
needs to be associated with one formatting item that
can be seen as a prefix, or left-hand side, and one as
suffix, right-hand side.

4.4.3 Storing Formatting in the AST

The formatting items are not added to the AST nodes
during parsing. Instead they are added during an ex-
tra pass when the method for formatted print is called.
This approach naturally comes with its advantages and
drawbacks.

Approach One of the main reasons for the chosen
approach, is to keep the parser as separated from the
implementation of this feature as possible. A parser
can be complicated enough to begin with. Further-
more, if it turns out that there are any special cases
that need to be taken care of, or if parts of the parser
need to be rewritten it could become cumbersome and
expensive to implement and maintain the code.

Initially, another reason for this approach was that
some AST nodes might be rewritten and removed
when the AST is being accessed. This means that they
are replaced with other nodes to make the AST more
suitable for semantic analysis [14]. Their formatting
would then effectively also disappear. However, this
issue is not completely solved by adding the format-
ting to the AST at a later stage. There are some AST
nodes in JModelica.org that are deleted during rewrites
that both can come from an explicit keyword or be im-
plied by the Modelica language specification. As an
example, members of a Modelica class can be spec-
ified to have public or protected visibility9, but their
default visibility type is public [15]. A public visibil-
ity clause is thus an AST node that can come both from
a keyword or the language specification. This clause
is removed during a rewrite, and its child nodes get

9Using the keywords public and protected respectively.

their visibility by assigning them visibility type child
nodes. The fact whether the keyword appeared in the
source code or not, and if so then where it appeared,
still needs to be stored.

The solution presented in this paper comes with a
drawback. It is more intense for the CPU to add the
formatting to the AST on-demand, rather than in the
parser. Firstly, the data structure needs some prepara-
tions. Secondly, all AST nodes need to be associated
with their corresponding formatting items. This means
that the line and column numbers for AST nodes and
formatting items need to be compared. It is worth
noting, though, that the result from this pass can be
cached. This means that consecutive prints of the AST
do not need this pass and no more clock cycles are
used for this.

Figure 7: The process for storing formatting in the
AST.

Implementation of a Graphical Modelica Editor with Preserved Source Code Formatting

382 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076375

Preparations Figure 7 shows the main steps of how
the formatting is added to the AST. The first step is to
prepare the formatting information from the parsing to
be propagated downwards in the tree. The parentheses
that were collected to the expressions during parsing
are added to the data structure. After that, the format-
ting items that are adjacent are merged as mentioned
in Section 4.4.2. To have a more logical division be-
tween the formatting items that should be considered
prefix or suffix to an AST node, this algorithm is not
greedy. This lack of greed means that merged format-
ting items that span over multiple lines are split into
two items on the first line break, instead of always be-
ing merged into one. An example of this can be seen
in Figure 8. After these preparations, the AST nodes
can use the data structure to get their formatting items.

Prefix formatting
Suffix formatting
Inside formatting

Legend:

Figure 8: A screenshot highlighting the different for-
matting items with boxes. Note that the comments
regarding r1 and r2 are not merged into one single
mixed item.

Propagation During the propagation, the nodes in
the source AST check so that they do not already have
a cached result. This happens if the AST already has
been reprinted earlier. If they do not have any cached
formatting, their formatting is calculated. This is done
by going through the data structure filled with format-
ting items and checking whether they are adjacent to
the current AST node, that is, whether their end line
and column match the AST node’s starting position
and vice versa. In this way, each AST node gets two
formatting items, one on its left-hand side (prefix) and
one on its right-hand side (suffix).

Special Cases If there for some reason are any for-
matting items left in the data structure when the prop-
agation is done, these still need to find their place in
the AST. This can happen, because the merging of ad-
jacent formatting items sometimes generates two for-
matting items instead of one as described earlier. If

the source code in a file ends with multiple line breaks,
only the first one would be added without an extra step.

There are also some AST nodes that contain format-
ting information inside of them. These nodes usually
contain whitespaces at places where they are atomic.
They are atomic in the sense that they have no child
nodes that can use the whitespace as prefix or suffix
formatting. These final formatting items left in the
data structure are also added.

Finally, a default formatting is set to AST nodes that
have been added through another way than during the
parsing of the code. Currently, this means AST nodes
that have been added by the graphical editor. When
this is done, the rest of the implementation is more or
less a traditional pretty printer, which of course also
prints the formatting information in the AST nodes.

5 Summary and Conclusions

In this paper, an approach for implementing a graph-
ical editor for Modelica built upon the Eclipse frame-
work using GEF, was presented. How GEF can be
used to make a clear, yet extensible design for the
graphical editor has been discussed. Some of the com-
mon pitfalls when integrating systems that describe the
same information in different ways, in this case inte-
grating a graphical editor into an existing source code
editor, were discussed.

This paper also describes a way to store formatting
from an original source in the AST. In the proposed
solution, the formatting information is added to the
source AST after parsing. Then in a later pass, the
information is associated with its corresponding node.
Finally, the modified AST can be reprinted with pre-
served formatting.

The graphical editor in JModelica.org supports ba-
sic model editing such as adding, removing and con-
necting components. Common graphical editing fea-
tures such as rotation of components and grid snap-
ping are also available. Future development include
a parameter dialog for modifying of parameters and
improved graphical editing support such as manhat-
tanized connections.

Session 3C: Language and Compilation Concepts I

DOI Proceedings of the 9th International Modelica Conference 383
10.3384/ecp12076375 September 3-5, 2012, Munich, Germany

References

[1] J. Åkesson, K-E. Årzén, M. Gäfvert, T. Bergdahl,
H. Tummescheit. Modeling and optimization
with Optimica and JModelica.org—languages
and tools for solving large-scale dynamic opti-
mization problem. Computers and Chemical En-
gineering, 34(11):1737–1749, November 2010.
Doi:10.1016/j.compchemeng.2009.11.011.

[2] J. Mattsson, The JModelica IDE: Developing an
IDE by Reusing a JastAdd Compiler, Master’s
thesis, Department of Computer Science, Lund
University, Sweden, 2009.

[3] J. Sten, Graphical Editing in JModelica.org,
Master’s thesis, Department of Computer Sci-
ence, Lund University, Sweden, 2012.

[4] T. Mattsson, AST-driven Editor, Master’s thesis,
Department of Computer Science, Lund Univer-
sity, Sweden, 2012.

[5] G. Hedin, E. Magnusson, JastAdd: an aspect-
oriented compiler construction system, Science
of Computer Programming 47 (1) (2003)
37–58. doi:http://dx.doi.org/10.1016/S0167-
6423(02)00109-0.

[6] J. Åkesson. Optimica—an extension of model-
ica supporting dynamic optimization. In In 6th
International Modelica Conference 2008. Mod-
elica Association, March 2008.

[7] C. Andersson. A new Python-based class for
simulation of complex hybrid DAEs and its in-
tegration in JModelica.org. Master’s thesis, De-
partment of Mathematics, Lund University, Swe-
den, 2010.

[8] G. Hedin, "An Introductory Tutorial on JastADD
Attribute Grammars," in Generative and Trans-
formational Techniques in Software Engineering
III, ser. Lecture Notes in Computer Science, vol.
6491. Springer-Verlag Berlin Heidelberg, 2011,
pp. 166–200.

[9] P. Fritzson, A. Pop, K. Norling, M. Blom,
Comment- and Indentation Preserving Refactor-
ing and Unparsing for Modelica. In 6th Interna-
tional Modelica Conference 2008, pp. 657–665.
Modelica Association, March 2008.

[10] M. de Jonge, E. Visser, An Algorithm for
Layout Preservation in Refactoring Transforma-
tions. Software Language Engineering, pp. 40–
59, Springer, 2012.

[11] Eclipse Documentation: ASTRewrite,
http://help.eclipse.org/indigo/topic/

org.eclipse.jdt.doc.isv/reference/

api/org/eclipse/jdt/core/dom/rewrite/

ASTRewrite.html, 2012.

[12] S. Asghar, S. Tariq, Design and Implementa-
tion of a User Friendly OpenModelica Graphi-
cal Connection Editor, Master’s thesis, Depart-
ment of Computer and Information Science,
Linköping University, Sweden, 2010.

[13] S. Asghar, S. Tariq, M. Torabzadeh-Tari, P.
Fritzson, A. Pop, M. Sjölund, P. Vasaiely, W.
Schamai, An Open Source Modelica Graphic Ed-
itor Integrated with Electronic Notebooks and In-
teractive Simulation. In 8th International Mod-
elica Conference 2011, pp. 739–747. Modelica
Association, March 2011.

[14] T. Ekman, G. Hedin: Rewritable Reference At-
tributed Grammars. ECOOP 2004. LNCS, vol.
3086, pp. 147–171. Springer, Heidelberg (2004).

[15] Modelica Association, Modelica - Lan-
guage Specification 3.2 rev 1, 2012.
http://modelica.org/documents/

ModelicaSpec32Revision1.pdf.

Implementation of a Graphical Modelica Editor with Preserved Source Code Formatting

384 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076375

Model-based Requirement Verification : A Case Study

Model-based Requirement Verification : A Case Study

Feng Liang1,2 Wladimir Schamai3 Olena Rogovchenko1

Sara Sadeghi2,4 Mattias Nyberg2 Peter Fritzson1

1 PELAB - Programming Environment Lab, Dept. Computer Science
Linköping University, SE-581 83 Linköping, Sweden

2Scania, Sweden
3EADS Innovation Works, Engineering
Architecture, 21129 Hamburg, Germany

4School of Information and Communication Technology, KTH Royal Institute of Technology

Abstract

This paper presents a complete case study that takes
a real Fuel Display System element used in Scania
Trucks and applies an unified process for modelling
system requirements together with the system itself
and verifying these requirements in a structured man-
ner. In order to achieve this process the system is mod-
eled in Modelica, and requirement verification sce-
narios are specified in ModelicaML and verified with
the vVDR (Virtual Verification of Designs against Re-
quirements) approach.

Keywords: system modeling; requirement verifica-
tion; ModelicaML

1 Introduction

As electronic systems become increasingly complex,
so do the requirements that they must fulfill, both in
terms of functionality and safety. Thus, maintaining
the conformity between the system requirements and
the system implementation manually becomes increas-
ingly difficult and unproductive. The goal of this pa-
per is to investigate on the basis of a real case study
the integration of modeling based techniques for re-
quirement expression with the actual implementation
and the formalization of the requirement verification
process.

The case study presented in this paper is a compo-
nent of a Scania System Model used in real trucks.
Scania is one of the leading manufacturers of heavy
trucks and buses, operating in over 100 counties with
over 35,000 employees and more than 110 years of
history.

The Modelica language was chosen to model the
system. Modelica is non-proprietary, object-oriented,

equation based language for modeling multi-domain
complex physical systems.

2 An Integrated Modeling Approach

2.1 Requirement Specification in the Indus-
trial Context

The presence of Electrical and Electronic(E/E) Sys-
tems in vehicles has been increasing rapidly since the
early 1970s, coming to cover a wide range of applica-
tions. Today’s vehicles use around 30 Electronic Con-
trol Units (ECUs) for small cars and 80 ECUs for high-
end luxury cars and this number keeps growing.

In order to simplify system representation, a con-
cept called SESAMM (Scania Electrical System Ar-
chitecture Made for Modularization and Maintenance)
for SCANIA Truck and Bus electrical systems was de-
veloped [6]. However, with this approach the require-
ments are still kept separate from the system design.

The traditional document-based approach means
that all the requirements and design information are
written in document form, using natural language
and graphics. Although it can be regularized, the
document-based approach has fundamental limita-
tions. Traceability and consistency are hard to ensure,
since the information is spread out over different doc-
uments. Maintenance and reuse are also an issue, and
since part of the documents is written in natural lan-
guage, so is accuracy.

The goal of this work therefore, is to integrate the
description of the system requirements into the system
modeling process, thus benefitting from all the advan-
tages of model-based ingeneering.

DOI Proceedings of the 9th International Modelica Conference 385
10.3384/ecp12076385 September 3-5, 2012, Munich, Germany

2.2 ModelicaML

ModelicaML [1] is an UML [2] profile and a language
extension for Modelica. The main purpose of Mod-
elicaML is to enable graphical system modeling using
the standardized UML notation together with the mod-
eling and simulation power of Modelica. ModelicaML
defines different views (e.g., composition, inheritance,
behavior) on system models. It is based on a subset of
UML and reuses some concepts from SysML. Mod-
elicaML is designed to generate Modelica code from
graphical models. Since the ModelicaML profile is an
extension of the UML meta-model it can be used as an
extension of both UML and SysML. A tool suite for
modeling with ModelicaML and generating Modelica
code can be downloaded from [3].

2.3 Virtual Verification of Designs against
Requirements(vVDR)

vVDR (Virtual Verification of Designs against Re-
quirements) is a method that enables model-based de-
sign verification against requirements. The first ver-
sion of the vVDR method and an example of its appli-
cation are illustrated in [8] using ModelicaML. Mod-
elicaML supports all Modelica constructs and, in addi-
tion, supports an adapted version of the UML state ma-
chine and activity diagrams for behavior modeling as
well as UML class composition diagrams for structure
modeling. This enables engineers to use the simula-
tion power of Modelica combined with a standardized
graphical notation for the creation of system models.
The main vVDR method steps are:

1. Formalize Requirements: This step explains
how to formalize requirements for design verifi-
cation and how to determine which requirements
can be verified using this method.

2. Select or Create Design Model to be verified
against Requirements: This step clarifies what
properties a system design model needs to have
in order to be suitable for this method.

3. Select or Create Verification Scenarios: This
step describes what the required properties of a
verification scenario are.

4. Create Verification Models: This step explains
what a verification model consists of and how it
can be created.

In order to enable guidance and automation, vVDR
introduces the concept of a requirement model, a

design alternative model and a verification scenario.
Each of these models is needed in order to create a ver-
ification model. In a scenario-based approach, a verifi-
cation model will comprise one design alternative that
is to be verified against a set of requirements by run-
ning one verification scenario as illustrated in Figure
1. Moreover, some additional models may be required.
For example, a dedicated calculation model might be
needed when the required data cannot be provided by
the design model if such calculation is not part of the
design.

!

Figure 1: Different models form a Verification Model

Moreover, vVDR anticipates different roles for dif-
ferent tasks, that are most likely to involve differ-
ent people. Each role requires specific skills and de-
fines the responsibility for different modeling artifacts.
For example, the formalization of requirements is per-
formed by a requirements analyst. This person is in
charge of requirements elicitation and negotiation. In
vVDR this person is also in charge of formalizing the
requirements for verification purpose because they are
the most familiar with the requirements and, by for-
malizing them, they will reduce the probability of mis-
interpretation. The formalization of designs (i.e. the
modeling of different design alternatives or versions)
is done by the system designer, and the formalization
of scenarios as well as the verification itself is done by
a tester.

In vVDR a notion of clients, mediators and
providers is introduced (see Figure 2). The concept
is called Value Bindings [7] and allows capturing of
relations that allow determining how different models
should be bound when they are combined into veri-
fication models. The basic idea for the definition of
bindings is the following:

• Each model that requires data from other models
should express this need by creating a new medi-
ator or by subscribing to an already existing one.

• Each mediator must have defined providers so
that the correct binding code for the clients can

Model-based Requirement Verification : A Case Study

386 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076385

be derived.

Figure 2: Clients, mediators and providers relations
example

The defined relations are used to compose verifica-
tion models automatically.

3 Methodology

The classification of requirements is important since it
affects the requirement selection and verification pro-
cess. However, there is no consensus in the field of
requirement classification. The common sense divides
the requirements into functional and non-functional,
based on whether they answer the question of “what
the system does” or that of “how the system behaves
with respect to some observable attributes like perfor-
mance, usability, maintainability, etc.”, respectively.
However, in the practice, it turns out that a more de-
tailed classification of non-functional requirements is
needed. Martin Glinz [5] proposed a taxonomy for
both functional and non-functional requirements.

Figure 3: Requirement classification

Figure 3 illustrates the taxonomy proposed by Mar-
tin Glinz. In this view, non-functional requirements
can be classified as performance requirements, specific
quality requirements and constraints. Following is a
definition for each category:
Function Requirement is a requirement that de-
scribes the system’s reaction to input stimuli.

Performance is a requirement to specify the timing,
velocity etc. inside a desired tolerance.
Specific Quality Requirement is a requirement that
specifies the quality the system should have like ef-
ficiency, security, reliability, usability, maintainability
etc.
Constraint is a requirement that constrains the solu-
tion space beyond what is necessary for meeting the
given function, performance and specific quality re-
quirements.

Not all the requirements are fit to be verified by the
simulation model. Some require additional judgment
from the stakeholder. For instance, the Specific Qual-
ity Requirement which specifies the quality of the sys-
tem like reliability, maintainability etc., needs to be
verified based on the experience of a stakeholder. In
contrast to that, the functional and performance re-
quirements which consist of mathematical expressions
or boundaries are more suitable to be selected for the
dynamic requirement verification process. This is the
type of requirement we will concentrate on in this
case-study.

3.1 Requirement Formalization

This is the first step of the vVDR method. The main
goal of this step is to translate textual requirement
statements into formal models that can be processed
by computers and determine whether a particular re-
quirement is suited to be verified with this method.

In vVDR, a requirement is formalized by first iden-
tifying the quantifiable properties mentioned in the re-
quirement statement and then establishing the relation-
ship between them in order to express when this re-
quirement is evaluated and violated.

3.2 Design Model

In this step, a design model that needs to be veri-
fied against requirements is created. Since the design
model will be bound with verification scenario and re-
quirement in next steps, it should be able to provide
corresponding input to requirement model. This is
effectively accomplished by inspecting the mediators
that indicate what data in required and of what type the
values should be. When building the design model, the
modeler associates the providers for each mediator.

In addition to the analysis of the mediators that need
providers from the design model at hand, the designer
should indicate what the potential stimuli (clients) of
this system design model are, that can be set by sce-
narios (i.e. providers from the scenario models). In

Session 3C: Language and Compilation Concepts I

DOI Proceedings of the 9th International Modelica Conference 387
10.3384/ecp12076385 September 3-5, 2012, Munich, Germany

order to do so, the designer subscribes the compo-
nents that are to be stimulated to existing mediators or
creates new mediators respectively. The correspond-
ing providers will be defined in verification scenarios
whose creation is explained in the next section. This
approach is detailed in [7].

3.3 Verification Scenario

Verification scenarios are models that capture a spe-
cific course of actions which stimulate the design
model in order to cause a particular reaction. Veri-
fication scenarios are created based on requirements
with the intention to verify design against require-
ments. One scenario can be used to verify multiple
requirements and one requirement is usually verified
using multiple scenarios to increase the confidence in
the verification results due to the independence of the
scenarios. After creating the verification scenario, it
is bound with the designed system and requirements
which need to be verified.

3.4 Verification Model Generation

After creating the design model, requirement model
and verification scenario, this step is for binding these
models in ModelicaML in order to generate executable
Modelica code. By using the defined clients, medi-
ators and providers, verification models can now be
created automatically by determining valid combina-
tions of scenarios and requirements for a selected sys-
tem design model.

3.5 Requirement Verification

To express requirement violation, the attribute “status”
of type Integer is used, which is created by default for
each requirement. The meaning of its value is the fol-
lowing:

• 0 means requirement is not evaluated

• 1 means requirement is evaluated and not violated

• 2 means requirement is evaluated and violated

Now, the verification model generated from Mod-
elicaML in the previous step can be simulated in the
Modelica simulation environment. And based on the
verification result, the tester will be able to analyse the
system design based on the verification result.

4 A Case Study: Fuel Level Display

The case study introduced in this chapter is a Fuel
Level Display System (Figure 4), used in Scania
Trucks for indicating the fuel level of the truck.

Figure 4: Dash board on Truck

The fuel level system, UF18, has two functionali-
ties:

• fuel level estimation, which is presented as a per-
centage of the tank that is full. The fuel level
should be displayed continuously and work for
different vehicle types (truck, bus) and engine
types (gas, diesel);

• fuel level warning, which is activated when the
fuel level drops below a predefined value, when
activated the low level fuel warning should alert
the driver by some visible symbol.

These functionalities are represented by two allocation
elements, AE201 and AE202 respectively.

4.1 System Architecture

The technical architecture of the Fuel Level Display
System is schematized in Figure 5. Three ECUs com-
municate with each other through CAN-Buses. EMS
(Engine Management System) sending the fuel con-
sumption by the engine to COO (Coordinator System)
which estimates the fuel level in the tank and evaluates
the low fuel level warning. After processing in COO,
a signal carries the estimated fuel level in the tank and
the low fuel level warning to ICL (Instrument Cluster
System). The gauge and bulb in ICL will indicate to
the driver how much fuel is left in the tank.

4.2 Requirement Selection and Classification

In Scania, the requirements for UF18, AE201 and
AE202 are described in different technical documents

Model-based Requirement Verification : A Case Study

388 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076385

Figure 5: The technical architecture of FLD is com-
posed of three ECUs : Coordinator ECU(COO), En-
gine Management System(EMS) and Instrument Clus-
ter System(ICL).

respectively. These documents are very extensive, so
a subset of elements has been selected for modeling in
this case study [4].

UFR18_1 The indicated fuel level shall not
deviate more than ± 5% from
the actual volume in the tank.

UFR18_4 The low fuel level warning shall
warn one time when the esti-
mated fuel level reaches below a
limit of the measurable volume
in the tank. The limit should
be 10% for tank sizes below and
equal to 900 Liters and 7% for
larger tanks.

Based on the requirement classification presented
in Section 1, UFR18_1 is a performance requirement
that specifies the tolerance of the indicated fuel level.
The other requirement UFR18_4 is a functional re-
quirement describes how the low fuel level warning
behaves with respect to the estimated fuel level.

4.3 Requirement formalization

The next step is to formalize the following requirement
statement “UFR18_1: The indicated fuel volume shall
not deviate more than ±5% from the actual volume in
the tank.” The quantifiable properties are the:

• Indicated fuel volume (of type Real)

• Actual volume in tank (of type Real)

• And the tolerance of ±% (constant of type Real
and the value 0.05)

Note, that there is no precondition that defines when
this requirement is valid, i.e., this requirement shall
not be violated at any time. A possible precondition
could be that this requirement is only valid as long as

the truck is on. In this case the additional quantifiable
property identified would be the fact that the truck is
on, i.e. “truck is on (of type Boolean)”.

Since this requirement should be checked at all
times we only need to express when it is violated or
not violated as follows:

status = if abs(indicatedFuelLevel
- actualVolumeInTank) >

actualVolumeInTank * tolerance
then 2 else 1

The code sets the attribute status to 2 (i.e. eval-
uated and violated) or 1 (evaluated and not violated)
depending on whether the absolute value of the differ-
ence between the indicated fuel level and actual fuel
level in tank is greater than the allowed tolerance or
not.

Consider another requirement statement:
“UFR18_4: The low fuel level warning shall
warn one time when the estimated fuel level reaches
below a limit of the measurable volume in the tank.
The limit should be 10% for tank sizes below and
equal to 900 liters and 7% for larger tanks.” The
quantifiable properties that are mentioned in this
statement are:

• Estimated fuel level (of type Real)

• Warning active (of type Boolean)

• Limit (constant of type Real)

• Size of the tank (constant of type Real)

Again, there is no precondition for this requirement
so it shall not be violated at any time. To express the
violation we could define the status to be:

status = if (estimatedFuelLevel
< sizeOfTank * limit)

and not warningActive
then 2 else 1

All identified properties are inputs that are to be set
to the corresponding data from other models, for ex-
ample the design model or models that capture the de-
sign parameters.

4.4 Design Model

In this section, a design model is written in Model-
ica. Figure 6 illustrates the breakdown of the fuel
level display system. It consists of four levels from

Session 3C: Language and Compilation Concepts I

DOI Proceedings of the 9th International Modelica Conference 389
10.3384/ecp12076385 September 3-5, 2012, Munich, Germany

Figure 6: Breakdown of System Design

SESAMM to hardware and software. In the software
domain, the application software is implemented in
C code generated from the Simulink model through
Real-time Workshop(RTW).

Figure 7: Second level of the system

Figure 7 shows the class diagram of the second
level, different ECUs connecting with each other
through different CAN-Buses. SESAMM uses dif-
ferent colors of CAN-Buses in order to distinguish
between the most safety crucial ECUs and the less
safety crucial ECUs. Furthermore, the port lo-
cated on the top-right of the model carries the
indicatedFuelLevel and warningActive calcu-
lated by the Simulink model.

Figure 8: Joint Simulation in Dymola and Simulink

The Design model and the Simulink model are sim-

ulated through a built-in Dymola-Simulink interface
as shown in Figure 8. The interface provides the
Simulink model with two inputs, fuel rate from the En-
gine Management System and the fuel level which is
measured by a sensor.

4.4.1 Verification Scenario

Figure 9: Verification Scenario

After having designed the system, the next step is
to create a verification scenario (Figure 9) in order to
verify whether the designed system fulfills the require-
ments. For the fuel level display system, the verifica-
tion scenario describes how the fuel level in the tank
decreases with respect to time. In addition, by inspect-
ing the mediators that represent the need for simulation
of the design models, the tester will define correspond-
ing providers that are associated with the mediators.

Figure 10: Simulation Result of Scenario Model

In this case study, a verification scenario describes
the fuel level in the tank decreasing from 20% to 0%
of the capacity of the tank. The verification scenario
provides two inputs to the design model, Fuel level and
Fuel Volume. Fuel level represents the fuel level mea-
sured by the sensor which consists of a noise signal
caused by the shaking of tank during driving. The fuel
volume represents the ideal fuel volume in the tank. In
Figure 10, the blue line represents the fuel level and the
red line represents fuel volume. By using this verifica-
tion scenario, UFR18_1 and UFR18_4 can be verified

Model-based Requirement Verification : A Case Study

390 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076385

at the same time.

4.5 Verification Model Generation

Figure 11: Verification Models Generation

In ModelicaML, the verification model can be gen-
erated by binding the design model, to the verifica-
tion scenario and the requirements. By using the de-
fined clients, mediators and provider verification mod-
els can now be created automatically by determining
valid combinations of scenarios and requirements for
a selected system design alternative model [7] as illus-
trated in Figure 11. The generated verification models
comprise the components that are bound correctly and
are ready to be simulated.

Figure 12: Verification Model in Modelica Simulation
Environment

Figure 12 shows the package when the importing
verification model to the Modelica simulation environ-
ment. The package ModelicaMLModel was created
in ModelicaML. It consists of a Verification Model, a
Scenario Model and a Requirement Model. The veri-
fication model binds other models together and simu-
lates the results.

4.6 Requirement Verification

The verification result of requirement UFR18_1 is
shown in Figure 13 and the verification result of re-
quirement UFR18_4 is illustrated in Figure 14. As
mentioned previously, there is no precondition for
these two requirements, so they should be evaluated
during the whole verification process.

Figure 13: Verification Result of UFR18_1

Figure 13 shows the verification result of the Total
Fuel Level element. The red line represents the ac-
tual volume in the tank and it decreases progressively
from 20% to 0%. The blue line shows the indicated
fuel level from the Instrument Cluster System. Finally,
the green line shows the requirement status. The sta-
tus starts at 1 which means the requirement is eval-
uated and not violated until around 20000 seconds.
From around 20000 seconds, the status changes to 2
which means that the requirement is evaluated and vi-
olated. So the corresponding requirement UFR18_1
is fulfilled in the first 20000 seconds, then it violated
until the end of the simulation.

Figure 14: Verification Result of UFR18_4

Figure 14 shows the verification results of the Low
Fuel Level Warning element. The blue line shows the
indicated fuel level from Instrument Cluster System
which decreases progressively from 20% to around
0%. The green line shows the threshold at which the
low fuel level warning must be enabled. The black

Session 3C: Language and Compilation Concepts I

DOI Proceedings of the 9th International Modelica Conference 391
10.3384/ecp12076385 September 3-5, 2012, Munich, Germany

status line illustrates that the requirementUFR18_2 is
violated during 10541 second to 10776 second.

Figure 15: Requirement Violation

Figure 15 is the monitor that shows whether the test
is passed or not. As we can see from picture, the is test
passed in the first 10541 seconds since both require-
ments are not violated. After 10541 seconds, require-
ment UFR18_4 is violated which means that the test
fails.

5 Conclusion and Future Work

This case study illustrates the approach to formalizing
requirements from document-based format through
the vVDR methodology, and generating verification
scenarios to test whether the system fulfills these re-
quirements.

The reasons for choosing vVDR approach are its re-
quirements formalization approach, its scalability and
the level of possible automation. The way require-
ments are formalized detects inconsistencies or in-
completeness of requirements, it allows expressing re-
quirements monitors using the same formalisms that
are used to formalize designs or scenarios, and it
allows determining which requirements can be ver-
ified using simulations. This is possible based on
the knowledge which design models are or will be
in place. The generation of verification models, pro-
vided by the vVDR approach and its implementation
in ModelicaML, automates the process of solving the
combinatorial task to select scenarios that are appro-
priate to stimulated a given design alternative model
and all requirements that can be verified by running
this scenario. For a small number of requirements,
scenarios and design alternatives this approach may be
overdone. However, assuming a large number of these
artifacts in a real-life project the provided automation
is expected to significantly improve the process effi-
ciency.

The goal is to further investigate and generalize the

modelling methodology in the industrial context, by
applying to to larger test cases and formalizing the
process. This work is part of a larger project on a in-
tegrated toolchain from documentation formalization
through to requirement verification and fault tolerance
analysis.

6 Acknowledgement

This work has been supported by Scania, by the EL-
LIIT project, the Swedish Strategic Research Foun-
dation in the EDOp and HIPo projects, and Vin-
nova in the RTSIM and ITEA2 OPENPROD projects.
The Open Source Modelica Consortium supports the
OpenModelica work.

References

[1] Modelica Association: Modelica: A Unified
Object- Oriented Language for Physical Systems
Modeling: Language Specification Version 3.2.
http://www.modelica.org.

[2] Object Management Group: OMG Uni-
fied Modeling Language TM (OMG UML).
http://www.uml.org/.

[3] OpenModelica Project: ModelicaML
- A UML Profile for Modelica.
http://www.openmodelica.org/modelicaml.

[4] C. Erlandsson. Revising the user function require-
ments document of fuel level display for compli-
ance with iso 26262 and literature. Master’s thesis,
2012.

[5] Martin Glinz. On non-functional requirements. In
Requirements Engineering Conference, pages 21–
26, 2007.

[6] L. Hans. The SESAMM concept. PD1422538,
2003.

[7] Wladimir Schamai, Peter Fritzson, Christiaan J. J.
Paredis, and Philipp Helle. Modelicaml value
bindings for automated model composition. In
Proc. of Symposium on Theory of Modeling and
Simulation (TMS/DEVS 2012), 2012.

[8] Wladimir Schamai, Philipp Helle, Peter Fritzson,
and Christiaan J. J. Paredis. Virtual verification
of system designs against system requirements. In
MoDELS Workshops, pages 75–89, 2010.

Model-based Requirement Verification : A Case Study

392 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076385

A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core Platforms

A Data-Parallel Algorithmic Modelica Extension for Efficient

 Execution on Multi-Core Platforms

Mahder Gebremedhin, Afshin Hemmati Moghadam, Peter Fritzson, Kristian Stavåker

Department of Computer and Information Science

Linköping University, SE-581 83 Linköping, Sweden

{mahder.gebremedin, peter.fritzson, Kristian.stavaker}@liu.se, afshe586@student.liu.se

Abstract

New multi-core CPU and GPU architectures promise

high computational power at a low cost if suitable

computational algorithms can be developed. However,

parallel programming for such architectures is usually

non-portable, low-level and error-prone. To make the

computational power of new multi-core architectures

more easily available to Modelica modelers, we have

developed the ParModelica algorithmic language ex-

tension to the high-level Modelica modeling language,

together with a prototype implementation in the

OpenModelica framework. This enables the Modelica

modeler to express parallel algorithms directly at the

Modelica language level. The generated code is porta-

ble between several multi-core architectures since it is

based on the OpenCL programming model. The im-

plementation has been evaluated on a benchmark suite

containing models with matrix multiplication, Eigen

value computation, and stationary heat conduction.

Good speedups were obtained for large problem sizes

on both multi-core CPUs and GPUs. To our

knowledge, this is the first high-performing portable

explicit parallel programming extension to Modelica.

Keywords: Parallel, Simulation, Benchmarking,

Modelica, Compiler, GPU, OpenCL, Multi-Core

1 Introduction

Models of large industrial systems are becoming in-

creasingly complex, causing long computation time for

simulation. This makes is attractive to investigate

methods to use modern multi-core architectures to

speedup computations.

Efficient parallel execution of Modelica models has

been a research goal of our group for a long time [4],

[5], [6], [7], involving improvements both in the com-

pilation process and in the run-time system for parallel

execution. Our previous work on compilation of data-

parallel models, [7] and [8], has primarily addressed

compilation of purely equation-based Modelica models

for simulation on NVIDIA Graphic Processing Units

(GPUs). Several parallel architectures have been target-

ed, such as standard Intel multi-core CPUs, IBM Cell

B.E, and NVIDIA GPUs. All the implementation work

has been done in the OpenModelica compiler frame-

work [2], which is an open-source implementation of a

Modelica compiler, simulator, and development envi-

ronment. Related research on parallel numeric solvers

can for example be found in [9].

The work presented in this paper presents an algo-

rithmic Modelica language extension called ParModeli-

ca for efficient portable explicit parallel Modelica pro-

gramming. Portability is achieved based on the

OpenCL [14] standard which is available on several

multi-core architectures. ParModelica is evaluated us-

ing a benchmark test suite called Modelica PARallel

benchmark suite (MPAR) which makes use of these

language extensions and includes models which repre-

sent heavy computations.

This paper is organized as follows. Section 2 gives a

general introduction to Modelica simulation on parallel

architectures. Section 3 gives an overview of GPUs,

CUDA and OpenCL, whereas the new parallel Modeli-

ca language extensions are presented in Section 4. Sec-

tion 5 briefly describes measurements using the parallel

benchmark test suite. Finally, Section 6 gives pro-

gramming guidelines to use ParModelica, and Section 7

presents conclusions and future work.

2 Parallel Simulation of Modelica

Models on Multi-Core Computers

The process of compiling and simulating Modelica

models to sequential code is described e.g. in [3] and

[12]. The handling of equations is rather complex and

involves symbolic index reduction, topological sorting

according to the causal dependencies between the equa-

tions, conversion into assignment statement form, etc.

Simulation corresponds to "solving" the compiled

DOI Proceedings of the 9th International Modelica Conference 393
10.3384/ecp12076393 September 3-5, 2012, Munich, Germany

equation system with respect to time using a numerical

integration method.

Compiling Modelica models for efficient parallel

simulation on multi-core architectures requires addi-

tional methods compared to the typical approaches de-

scribed in [3] and [12]. The parallel methods can be

roughly divided into the following three groups:

 Automatic parallelization of Modelica models. Sev-

eral approaches have been investigated: centralized

solver approach, distributed solver approach and

compilation of unexpanded array equations. With

the first approach the solver is run on one core and

in each time-step the computation of the equation

system is done in parallel over several cores [4]. In

the second approach the solver and the equation sys-

tem are distributed across several cores [5]. With

the third approach Modelica models with array

equations are compiled unexpanded and simulated

on multi-core architectures.

 Coarse-grained explicit parallelization using com-

ponents. Components of the model are simulated in

parallel partly de-coupled using time delays be-

tween the different components, see [11] for a

summary. A different solver, with different time

step, etc., can be used for each component. A relat-

ed approach has been used in the xMOD tool [26].

 Explicit parallel programming language constructs.

This approach is explored in the NestStepModelica

prototype [10] and in this paper with the ParModeli-

ca language extension. Parallel extensions have

been developed for other languages, e.g. parfor loop

and gpu arrays in Matlab, Visual C++ parallel_for,

Mathematica parallelDo, etc.

3 GPU Architectures, CUDA, and

OpenCL

Graphics Processing Units (GPUs) have recently be-

come increasingly programmable and applicable to

general purpose numeric computing. The theoretical

processing power of GPUs has in recent years far sur-

passed that of CPUs due to the highly parallel compu-

ting approach of GPUs.

However, to get good performance, GPU architec-

tures should be used for simulation of models of a regu-

lar structure with large numbers of similar data objects.

The computations related to each data object can then

be executed in parallel, one or more data objects on

each core, so-called data-parallel computing. It is also

very important to use the GPU memory hierarchy ef-

fectively in order to get good performance.

In Section 3.1 the NVIDIA GPU with its CUDA

programming model is presented as an influential ex-

ample of GPU architecture, followed by the portable

OpenCL parallel programming model in Section 3.2.

3.1 NVIDIA GPU CUDA – Compute Unified

Device Architecture

An important concept in NVIDIA CUDA (Computer

Unified Device Architecture) for GPU programming is

the distinction between host and device. The host is

what executes normal programs, and the device works

as a coprocessor to the host which runs CUDA threads

by instruction from the host. This typically means that a

CPU is the host and a GPU is the device, but it is also

possible to debug CUDA programs by using the CPU

as both host and device. The host and the device are

assumed to have their own separate address spaces, the

host memory and the device memory. The host can use

the CUDA runtime API to control the device, for ex-

ample to allocate memory on the device and to transfer

memory to and from the device.

Figure 1. Simplified schematic of NVIDIA GPU

architecture, consisting of a set of Streaming

Multiprocessors (SM), each containing a number of Scalar

Processors (SP) with fast private memory and on-ship

local shared memory. The GPU also has off-chip DRAM.

The building block of the NVIDIA CUDA hardware

architecture is the Streaming Multiprocessor (SM). In

the NVIDIA Fermi-Tesla M2050 GPU, each SM con-

tains 32 Scalar Processors (SPs). The entire GPU has

14 such SMs totaling to 448 SPs, as well as some off-

chip DRAM memory, see Figure 1. This gives a scala-

ble architecture where the performance of the GPU can

be varied by having more or fewer SMs.

To be able to take advantage of this architecture a

program meant to run on the GPU, known as a kernel,

needs to be massively multi-threaded. A kernel is just a

C-function meant to execute on the GPU. When a ker-

nel is executed on the GPU it is divided into thread

blocks, where each thread block contains an equal

number of threads. These thread blocks are automati-

cally distributed among the SMs, so a programmer

A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core …

394 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076393

need not consider the number of SMs a certain GPU

has. All threads execute one common instruction at a

time. If any threads take divergent execution paths,

then each of these paths will be executed separately,

and the threads will then converge again when all paths

have been executed. This means that some SPs will be

idle if the thread executions diverge. It is thus im-

portant that all threads agree on an execution path for

optimal performance.

This architecture is similar to the Single Instruction,

Multiple Data (SIMD) architecture that vector proces-

sors use, and that most modern general-purpose CPUs

have limited capabilities for too. NVIDIA call this ar-

chitecture Single Instruction, Multiple Thread (SIMT)

instead, the difference being that each thread can exe-

cute independently, although at the cost of reduced per-

formance. It is also possible to regard each SM as a

separate processor, which enables Multiple Instruc-

tions, Multiple Data (MIMD) parallelism. Using only

MIMD parallelism will not make it possible to take full

advantage of a GPU’s power, since each SM is a SIMD

processor. To summarize:

 Streaming Multiprocessors (SM) can work with dif-

ferent code, performing different operations with

entirely different data (MIMD execution, Multiple

Instruction Multiple Data).

 All Scalar processors (SP) in one streaming multi-

processor execute the same instruction at the same

time but work on different data (SIMT/SIMD exe-

cution, Single Instruction Multiple Data).

3.1.1 NVIDIA GPU Memory Hierarchy

As can be seen in Figure 1 there are several different

types of memory in the CUDA hardware architecture.

At the lowest level each SP has a set of registers, the

number depending on the GPU’s capabilities. These

registers are shared between all threads allocated to a

SM, so the number of thread blocks that a SM can have

active at the same time is limited by the register usage

of each thread. Accessing a register typically requires

no extra clock cycles per instruction, except for some

special cases where delays may occur.

Besides the registers there is also the shared (local)

memory, which is shared by all SPs in a SM. The

shared memory is implemented as fast on-chip

memory, and accessing the shared memory is generally

as fast as accessing a register. Since the shared memory

is accessible to all threads in a block it allows the

threads to cooperate efficiently by giving them fast ac-

cess to the same data.

Most of the GPU memory is off-chip Dynamic

Random Access Memory (DRAM). The amount of off-

chip memory on modern graphics cards range from

several hundred megabytes to few gigabytes. The

DRAM memory is much slower than the on-chip mem-

ories, and is also the only memory that is accessible to

the host CPU, e.g. through DMA transfers. To summa-

rize:

 Each scalar processor (SP) has a set of fast registers.

(private memory)

 Each streaming multiprocessor (SM) has a small lo-

cal shared memory (48KB on Tesla M2050) with

relatively fast access.

 Each GPU device has a slower off-chip DRAM

(2GB on Tesla M2050) which is accessible from all

streaming multiprocessors and externally e.g. from

the CPU with DMA transfers.

3.2 OpenCL – the Open Computing Language

OpenCL [14] is the first open, free parallel computing

standard for cross-platform parallel programming of

modern processors including GPUs. The OpenCL pro-

gramming language is based on C99 with some exten-

sions for parallel execution management. By using

OpenCL it is possible to write parallel algorithms that

can be easily ported between multiple devices with

minimal or no changes to the source code.

The OpenCL framework consists of the OpenCL

programming language, API, libraries, and a runtime

system to support software development. The frame-

work can be divided into a hierarchy of models: Plat-

form Model, Memory model, Execution model, and

Programming model.

Figure 2. OpenCL platform architecture.

The OpenCL platform architecture in Figure 2 is simi-

lar to the NVIDIA CUDA architecture in Figure 1:

 Compute device – Graphics Processing Unit (GPU)

 Compute unit – Streaming Multiprocessor (SM)

 Processing element – Scalar Processor (SP)

 Work-item – thread

 Work-group – thread block

The memory hierarchy (Figure 3) is also very similar:

 Global memory – GPU off-chip DRAM memory

Session 3C: Language and Compilation Concepts I

DOI Proceedings of the 9th International Modelica Conference 395
10.3384/ecp12076393 September 3-5, 2012, Munich, Germany

 Constant memory – read-only cache of off-chip

memory

 Local memory – on-chip shared memory that can be

accessed by threads in the same SM

 Private memory – on-chip registers in the same

Figure 3. Memory hierarchy in the OpenCL memory

model, closely related to typical GPU architectures such

as NVIDIA.

The memory regions can be accessed in the following

way:

Memory Regions Access to Memory

Constant Memory All work-items in all work-groups

Local Memory All work-items in a work-group

Private Memory Private to a work-item

Global Memory All work-items in all work-groups

3.2.1 OpenCL Execution Model

The execution of an OpenCL program consists of two

parts, the host program which executes on the host and

the parallel OpenCL program, i.e., a collection of ker-

nels (also called kernel functions), which execute on

the OpenCL device. The host program manages the

execution of the OpenCL program.

Kernels are executed simultaneously by all threads

specified for the kernel execution. The number and

mapping of threads to Computing Units of the OpenCL

device is handled by the host program.

Each thread executing an instance of a kernel is

called a work-item. Each thread or work item has

unique id to help identify it. Work items can have addi-

tional id fields depending on the arrangement specified

by the host program.

Work-items can be arranged into work-groups. Each

work-group has a unique ID. Work-items are assigned

a unique local ID within a work-group so that a single

work-item can be uniquely identified by its global ID

or by a combination of its local ID and work-group ID.

Figure 4. OpenCL execution model, work-groups

depicted as groups of squares corresponding to work-

items. Each work-group can be referred to by a unique ID,

and each work-item by a unique local ID.

The work-items in a given work-group execute concur-

rently on the processing elements of a single compute

unit as depicted in Figure 4.

Several programming models can be mapped onto

this execution model. OpenCL explicitly supports two

of these models: primarily the data parallel program-

ming model, but also the task parallel programming

model

4 ParModelica: Extending Modelica

for Explicit Algorithmic Parallel

Programming

As mentioned in the introduction, the focus of the cur-

rent work is an extension (ParModelica) of the algo-

rithmic subset of Modelica for efficient explicit parallel

programming on highly data-parallel SPMD (Single

Program Multiple Data) architectures. The current

ParModelica implementation generates OpenCL [14]

code for parallel algorithms. OpenCL was selected in-

stead of CUDA [15] because of its portability between

several multi-core platforms. Generating OpenCL code

ensures that simulations can be run with parallel sup-

port on OpenCL enabled Graphics and Central Proces-

sor Units (GPUs and CPUs). This includes many multi-

core CPUs from [19] and Advanced Micro Devices

(AMD) [18] as well as a range of GPUs from NVIDIA

[17] and AMD [18].

As mentioned earlier most previous work regarding

parallel execution support in the OpenModelica com-

piler has been focused on automatic parallelization

where the burden of finding and analyzing parallelism

has been put on the compiler. In this work, however,

we have decided to leave this responsibility to the end

user programmer. The compiler provides additional

high level language constructs needed for explicitly

stating parallelism in the algorithmic part of the model-

ing language. These, among others, include parallel

variables, parallel functions, kernel functions and paral-

A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core …

396 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076393

lel for loops indicated by the parfor keyword. There are

also some target language specific constructs and func-

tions (in this case related to OpenCL).

4.1 Parallel Variables

OpenCL code can be executed on a host CPU as well

as on GPUs whereas CUDA code executes only on

GPUs. Since the OpenCL and CUDA enabled GPUs

use their own local (different from CPU) memory for

execution, all necessary data should be copied to the

specific device's memory. Parallel variables are allocat-

ed on the specific device memory instead of the host

CPU. An example is shown below:

function parvar

protected

 Integer m = 1000; // Host Scalar

 Integer A[m,m]; // Host Matrix

 Integer B[m,m]; // Host Matrix

// global and local device memories

 parglobal Integer pm; // Global Scalar

 parglobal Integer pA[m,m];// Glob Matrix

 parglobal Integer pB[m,m];// Glob Matrix

 parlocal Integer pn; // Local Scalar

 parlocal Integer pS[m]; // Local Array

end parvar;

The first two matrices A and B are allocated in normal

host memory. The next two matrices pA and pB are

allocated on the global memory space of the OpenCL

device to be used for execution. These global variables

can be initialized from normal or host variables. The

last array pS is allocated in the local memory space of

each processor on the OpenCL device. These variables

are shared between threads in a single work-group and

cannot be initialized from hast variables.

Copying of data between the host memory and the

device memory used for parallel execution is as simple

as assigning the variables to each other. The compiler

and the runtime system handle the details of the opera-

tion. The assignments below are all valid in the func-

tion given above

 Normal assignment - A := B

 Copy from host memory to parallel execution de-

vice memory - pA := A

 Copy from parallel execution device memory to

host memory - B := pB

 Copy from device memory to other device memory

– pA := pB

Modelica parallel arrays are passed to functions on-

ly by reference. This is done to reduce the rather expen-

sive copy operations.

4.2 Parallel Functions

ParModelica parallel functions correspond to OpenCL

functions defined in kernel files or to CUDA device

functions. These are functions available for distributed

(parallel) independent execution in each thread execut-

ing on the parallel device. For example, if a parallel

array has been distributed with one element in each

thread, a parallel function may operate locally in paral-

lel on each element. However, unlike kernel functions,

parallel functions cannot be called from serial code in

normal Modelica functions on the host computer just as

parallel OpenCL functions are not allowed to be called

from serial C code on the host. Parallel functions have

the following constraints, primarily since they are as-

sumed to be called within a parallel context in work-

items:

 Parallel function bodies may not contain parfor-

loops. The reason is that the kernel containing the

parallel functions is already distributed on each

thread.

 Explicitly declared parallel variables are not al-

lowed since execution is already taking place on the

parallel device.

 All memory allocation will be on the parallel de-

vice's memory.

 Nested parallelism as in NestStepModelica [10] is

not supported by this implementation.

 Called functions must be parallel functions or sup-

ported built-in functions since execution is on the

parallel device.

 Parallel functions can only be called from the body

of a parfor-loop, from parallel functions, or from

kernel functions.

Parallel functions in ParModelica are defined in the

same way as normal Modelica functions, except that

they are preceded by the parallel keyword as in the

multiply function below:

parallel function multiply

 input parglobal Integer a;

 input parlocal Integer b;

 output parprivate Integer c; // same as

output Integer c;

algorithm

 c := a * b;

end multiply;

4.3 Kernel Functions

ParModelica kernel functions correspond to OpenCL

kernel functions [14] or CUDA global functions [16].

They are simply functions compiled to execute on an

OpenCL parallel device, typically a GPU. ParModelica

kernel functions are allowed to have several return- or

output variables unlike their OpenCL or CUDA coun-

terparts. They can also allocate memory in the global

address space. Kernel functions can be called from se-

rial host code, and are executed by each thread in the

Session 3C: Language and Compilation Concepts I

DOI Proceedings of the 9th International Modelica Conference 397
10.3384/ecp12076393 September 3-5, 2012, Munich, Germany

launch of the kernel. Kernels functions share the first

three constraints stated above for parallel functions.

However, unlike parallel functions, kernel functions

cannot be called from the body of a parfor-loop or from

other kernel functions.

Kernel functions in ParModelica are defined in the

same way as normal Modelica functions, except that

they are preceded by the kernel keyword. An example

usage of kernel functions is shown by the kernel func-

tion arrayElemtWiseMult. The thread id function

oclGetGlobalId() (see Section 4.5) returns the integer

id of a work-item in the first dimension of a work

group.

kernel function arrayElemWiseMultiply

 input Integer m;

 input Integer A[m];

 input Integer B[m];

 output Integer C[m];

protected

 Integer id;

algorithm

 id := oclGetGlobalId(1);

 // calling the parallel function

multiply is OK from kernel functions

 C[id] := multiply(A[id],B[id]); //

multiply can be replaced by A[id]*B[id]

end arrayElemWiseMultiply;

4.4 Parallel For Loop: parfor

The iterations of a ParModelica parfor-loop are execut-

ed without any specific order in parallel and inde-

pendently by multiple threads. The iterations of a par-

for-loop are equally distributed among available pro-

cessing units. If the range of the iteration is smaller

than or equal to the number of threads the parallel de-

vice supports, each iteration will be done by a separate

thread. If the number of iterations is larger than the

number of threads available, some threads might per-

form more than one iteration. In future enhancements

parfor will be given the extra feature of specifying the

desired number of threads explicitly instead of auto-

matically launching threads as described above. An

example of using the parfor-loop is shown below:

// Matrix multiplication using parfor loop

parfor i in 1:m loop

 for j in 1:pm loop

 ptemp := 0;

 for h in 1:pm loop // calling the

 // parallel function multiply is OK

 // from parfor-loops

 ptemp := multiply(pA[i,h], pB[h,j])

 + ptemp;

 end for;

 pC[i,j] := ptemp;

 end for;

end parfor;

ParModelica parallel for loops, compared to normal

Modelica for loops, have some additional constraints:

 All variable references in the loop body must be to

parallel variables.

 Iterations should not be dependent on other itera-

tions i.e. no loop-carried dependencies.

 All function calls in the body should be to parallel

functions or supported built-in functions only.

4.5 Executing User-written OpenCL Code

from ParModelica.

There are also some additional ParModelica features

available for directly compiling and executing user-

written OpenCL code:

 oclbuild(String) takes a name of an OpenCL source

file and builds it. It returns an OpenCL program

object which can be used later.

 oclkernel(oclprogram, String) takes a previously

built OpenCL program and create the kernel speci-

fied by the second argument. It returns an OpenCL

kernel object which can be used later.

 oclsetargs(oclkernel,...) takes a previously created

kernel object variable and a variable number of ar-

guments and sets each argument to its correspond-

ing one in the kernel definition.

 oclexecute(oclkernel) executes the specified kernel.

All of the above operations are synchronous in the

OpenCL jargon. They will return only when the speci-

fied operation is completed. Further functionality is

planned to be added to these functions to provide better

control over execution.

4.6 Synchronization and Thread Management

All OpenCL work-item functions [20] are available in

ParModelica. They perform the same operations and

have the “same” types and number of arguments. How-

ever, there are two main differences:

 Thread/work-item index ids start from 1 in Par-

Modelica, whereas the OpenCL C implementation

counts from 0.

 Array dimensions start from 1 in Modelica and

from 0 in OpenCL and C.

For example oclGetGlobalId(1) call in the above

arrayElemWiseMultiply will return the integer ID of

a work-item or thread in the first dimension of a work

group. The first thread gets an ID of 1. The OpenCL C

call for the same operation would be

ocl_get_global_id(0) with the first thread obtain-

ing an ID of 0.

A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core …

398 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076393

In addition to the above features, special built-in

functions for building user written OpenCL code di-

rectly from source code, creating a kernel, setting ar-

guments to kernel and execution of kernels are also

available. In addition parallel versions of some built-in

algorithm functions are also available.

5 Benchmarking and Evaluation

To be able to evaluate the relative performance and

behavior of the new language extensions described in

Section 4, performing systematic benchmarking on a

set of appropriate Modelica models is required. For this

purpose we have constructed a benchmark test suite

containing some models that represent heavy and high-

performance computation, relevant for simulation on

parallel architectures.

5.1 The MPAR Benchmark Suite

The MPAR benchmark test suite contains seven differ-

ent algorithms from well-known benchmark applica-

tions such as the LINear equations software PACKage

(LINPACK) [21], and Heat Conduction [23]. These

benchmarks have been collected and implemented as

algorithmic time-independent Modelica models.

The algorithms implemented in this suite involve ra-

ther large computations and impose well defined work-

loads on the OpenModelica compiler and the run-time

system. Moreover, they include different kinds of for-

loops and function calls which provide parallelism for

domain and task decomposition. For space reasons we

have provided results for only three models here.

Time measurements have been performed of both

sequential and parallel implementations of three mod-

els: Matrix Multiplication, Eigen value computation,

and Stationary Heat Conduction, on both CPU and

GPU architectures. For executing sequential codes gen-

erated by the standard sequential OpenModelica com-

piler we have used the Intel Xeon E5520 CPU [24]

which has 16 cores, each with 2.27 GHz clock frequen-

cy. For executing generated code by our new OpenCL

based parallel code generator, we have used the same

CPU as well as the NVIDIA Fermi-Tesla M2050 GPU

[25].

5.2 Measurements

In this section we present the result of measurements

for simulating three models from the implemented

benchmark suite. On each hardware configuration all

simulations are performed five times with start time

0.0, stop time of 0.2 seconds and 0.2 seconds time step,

measuring the average simulation time using the

clock_gettime() function from the C standard li-

brary. This function is called once when the simulation

loop starts and once when the simulation loop finishes.

The difference between the returned values gives the

simulation time.

All benchmarks have been simulated on both the In-

tel Xeon E5520 CPU (16 cores) and the NVIDIA Fer-

mi-Tesla M2050 GPU (448 cores).

5.3 Simulation Results

The Matrix Multiplication model (Appendix A) pro-

duces an M×K matrix C from multiplying an M×N ma-

trix A by an N×K matrix B. This model presents a very

large level of data-parallelism for which a considerable

speedup has been achieved as a result of parallel simu-

lation of this model on parallel platforms. The simula-

tion results are illustrated in Figure 5 and Figure 6. The

obtained speedup of matrix multiplication using kernel

functions is as follows compared to the sequential algo-

rithm on Intel Xeon E5520 CPU:

 Intel 16-core CPU – speedup 26

 NVIDIA 448-core GPU – speedup 115

Figure 5. Speedup for matrix multiplication, Intel 16-core

CPU and Nvidia 448 core GPU.

The measured matrix multiplication model simulation

times can be found in Figure 6.

Figure 6. Simulation time for matrix multiplication, Intel

1-core, 16-core CPU, NVidia 448 core GPU.

The second benchmark model performs Eigen-value

computation, with the following speedups:

 Intel 16-core CPU – speedup 3

4,36
13,41

24,76 26,34

0,61 4,61

35,95

114,67

64 128 256 512

Parameter M (Matrix sizes MxM)

Speedup

CPU E5520 GPU M2050

32 64 128 256 512

CPU E5520 (Serial) 0,093 0,741 5,875 58,426 465,234

CPU E5520 (Parallel) 0,137 0,17 0,438 2,36 17,66

GPU M2050 (Parallel) 1,215 1,217 1,274 1,625 4,057

0,0625
0,125

0,25
0,5

1
2
4
8

16
32
64

128
256
512

Si
m

u
la

ti
o

n
 T

im
e

(s
ec

o
n

d
)

Session 3C: Language and Compilation Concepts I

DOI Proceedings of the 9th International Modelica Conference 399
10.3384/ecp12076393 September 3-5, 2012, Munich, Germany

 NVIDIA 448-core GPU – speedup 48

Figure 7. Speedup for Eigen value computation as a

function of model array size, for Intel 16-core CPU and

NVIDIA 448 core GPU, compared to the sequential

algorithm on Intel Xeon E5520 CPU.

The measured simulation times for the Eigen-value

model are shown in Figure 8.

Figure 8. Simulation time for Eigen-value computation as

a function of model array size, for Intel 1-core CPU, 16-

core CPU, and NVIDIA 448 core GPU.

The third benchmark model computes stationary heat

conduction, with the following speedups:

 Intel 16-core CPU – speedup 7

 NVIDIA 448-core GPU – speedup 22

Figure 9. Speedup for the heat conduction model as a

function of model size parameter M, Intel 16-core CPU

and Nvidia 448 core GPU, compared to sequential

algorithm on Intel Xeon E5520 CPU.

The measured simulation times for the stationary heat

conduction model are shown in Figure 10.

Figure 10. Simulation time (seconds) for heat conduction

model as a function of model size parameter M, for 1-core

CPU, 16-core CPU, and 448 core GPU.

According to the results of our measurements illustrat-

ed in Figure 5, Figure 7, and Figure 9, absolute

speedups of 114, 48, and 22 respectively were achieved

when running generated ParModelica OpenCL code on

the Fermi-Tesla M2050 GPU compared to serial code

on the Intel Xeon E5520 CPU with the largest data siz-

es.

It should be noted that when the problem size is not

very large the sequential execution has better perfor-

mance than the parallel execution. This is not surpris-

ing since for executing even a simple code on OpenCL

devices it is required to create an OpenCL context with-

in those devices, allocate OpenCL memory objects,

transfer input data from host to those memory objects,

perform computations, and finally transfer back the

result to the host. Consequently, performing all these

operations normally takes more time compared to the

sequential execution when the problem size is small.

It can also be seen that, as the sizes of the models

increase, the simulations get better relative performance

on the GPU compared to multi-core CPU. Thus, to ful-

ly utilize the power of parallelism using GPUs it is re-

quired to have large regular data structures which can

be operated on simultaneously by being decomposed to

all blocks and threads available on GPU. Otherwise,

executing parallel codes on a multi-core CPU would be

a better choice than a GPU to achieve more efficiency

and speedup.

6 Guidelines for Using the New Par-

allel Language Constructs

The most important task in all approaches regarding

parallel code generation is to provide an appropriate

way for analyzing and finding parallelism in sequential

codes. In automatic parallelization approaches, the

whole burden of this task is on the compiler and tool

developer. However, in explicit parallelization ap-

proaches as in this paper, it is the responsibility of the

modeler to analyze the source code and define which

1,02 1,99 2,24 2,32 2,51 2,75 0,71 2,27
6,68

16,95

33,25

47,71

256 512 1024 2048 4096 8192

Array size

Speedup

CPU E5520 GPU M2050

128 256 512 1024 2048 4096 8192

CPU E5520 (Serial) 1,543 5,116 16,7 52,462 147,411 363,114 574,057

CPU E5520 (Parallel) 3,049 5,034 8,385 23,413 63,419 144,747 208,789

GPU M2050 (Parallel) 7,188 7,176 7,373 7,853 8,695 10,922 12,032

1

2

4

8

16

32

64

128

256

512

1024

Si
m

u
la

ti
o

n
 T

im
e

 (
se

co
n

d
)

2,04
4,21

5,85 6,23 6,41

0,22 0,87
3,32

10,1

22,46

128 256 512 1024 2048

Parameter M (Matrix size MxM)

Speedup

CPU E5520 GPU M2050

128 256 512
102

4
204

8

CPU E5520 (Serial) 1,958 7,903 32,104 122,754 487,342

CPU E5520 (Parallel) 0,959 1,875 5,488 19,711 76,077

GPU M2050 (Parallel) 8,704 9,048 9,67 12,153 21,694

0,5

1

2

4

8

16

32

64

128

256

512

Si
m

u
la

ti
o

n
 T

im
e

(s
e

co
n

d
)

A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core …

400 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076393

parts of the code are more appropriate to be explicitly

parallelized. This requires a good understanding of the

concepts of parallelism to avoid inefficient and incor-

rect generated code. In addition, it is necessary to know

the constraints and limitations involved with using ex-

plicit parallel language constructs to avoid compile

time errors. Therefore we give some advice on how to

use the ParModelica language extensions to parallelize

Modelica models efficiently:

 Try to declare parallel variables as well as copy as-

signments among normal and parallel variables as

less as possible since the costs of data transfers from

host to devices and vice versa are very expensive.

 In order to minimize the number of parallel varia-

bles as well as data transfers between host and de-

vices, it is better not to convert forloops with few it-

erations over simple operations to parallel for-loops

(parfor-loops).

 It is not always useful to have parallel variables and

parfor-loops in the body of a normal for-loop which

has many iterations. Especially in cases where there

are many copy assignments among normal and par-

allel variables.

 Although it is possible to declare parallel variables

and also parfor-loops in a function, there are no ad-

vantages when there are many calls to the function

(especially in the body of a big for-loop). This will

increase the number of memory allocations for par-

allel variables as well as the number of expensive

copies required to transfer data between host and

devices.

 Do not directly convert a for-loop to a parfor-loop

when the result of each iteration depends on other

iterations. In this case, although the compiler will

correctly generate parallel code for the loop, the re-

sult of the computation may be incorrect.

 Use a parfor-loop in situations where the loop has

many independent iterations and each iteration takes

a long time to be completed.

 Try to parallelize models using kernel functions as

much as possible rather than using parfor-loops.

This will enable you to explicitly specify the desired

number of threads and work-groups to get the best

performance.

 If the global work size (total number of threads to

be run in parallel) and the local work size (total

number of threads in each work-group) need to be

specified explicitly, then the following points

should be considered. First, the work-group size

(local size) should not be zero, and also it should

not exceed the maximum work-group size supported

by the parallel device. Second, the local size should

be less or equal than the global-size. Third, the

global size should be evenly divisible by the local

size.

 The current implementation of OpenCL does not

support recursive functions; therefore it is not pos-

sible to declare a recursive function as a parallel

function.

7 Conclusions

New multi-core CPU and GPU architectures promise

high computational power at a low cost if suitable

computational algorithms can be developed. The

OpenCL C-based parallel programming model provides

a way of writing portable parallel algorithms that per-

form well on a number of multi-core architectures.

However, the OpenCL programming model is rather

low-level and error-prone to use and intended for paral-

lel programming specialists.

This paper presents the ParModelica algorithmic

language extension to the high-level Modelica model-

ing language together with a prototype implementation

in the OpenModelica compiler. This makes it possible

for the Modelica modeler to directly write efficient par-

allel algorithms in Modelica which are automatically

compiled to efficient low-level OpenCL code. A

benchmark suite called MPAR has been developed to

evaluate the prototype. Good speedups have been ob-

tained for large problem sizes of matrix multiplication,

Eigen value computation, and stationary heat condition.

Future work includes integration of the ParModelica

explicit parallel programming approach with automatic

and semi-automatic approaches for compilation of

equation-based Modelica models to parallel code. Au-

totuning could be applied to further increase the per-

formance and automatically adapt it to varying problem

configurations. Some of the ParModelica code needed

to specify kernel functions could be automatically gen-

erated.

8 Acknowledgements

This work has been supported by Serc, by Elliit, by the

Swedish Strategic Research Foundation in the EDOp

and HIPo projects and by Vinnova in the RTSIM and

ITEA2 OPENPROD projects. The Open Source Mod-

elica Consortium supports the OpenModelica work.

Thanks to Per Östlund for contributions to Section 3.1.

References

[1] Modelica Association. The Modelica Language

Specification Version 3.2, March 24th 2010.

http://www.modelica.org. Modelica Association.

Session 3C: Language and Compilation Concepts I

DOI Proceedings of the 9th International Modelica Conference 401
10.3384/ecp12076393 September 3-5, 2012, Munich, Germany

Modelica Standard Library 3.1. Aug. 2009.

http://www.modelica.org./

[2] Open Source Modelica Consortium. OpenModel-

ica System Documentation Version 1.8.1, April

2012. http://www.openmodelica.org/

[3] Peter Fritzson. Principles of Object-Oriented

Modeling and Simulation with Modelica 2.1.

Wiley-IEEE Press, 2004.

[4] Peter Aronsson. Automatic Parallelization of

Equation-Based Simulation Programs, PhD the-

sis, Dissertation No. 1022, Linköping University,

2006.

[5] Håkan Lundvall. Automatic Parallelization using

Pipelining for Equation-Based Simulation Lan-

guages, Licentiate thesis No. 1381, Linköping

University, 2008.

[6] Håkan Lundvall, Kristian Stavåker, Peter

Fritzson, Christoph Kessler: Automatic Parallel-

ization of Simulation Code for Equation-based

Models with Software Pipelining and Measure-

ments on Three Platforms. MCC'08 Workshop,

Ronneby, Sweden, November 27-28, 2008.

[7] Per Östlund. Simulation of Modelica Models on

the CUDA Architecture. Master Thesis. LIU-

IDA/LITH-EX-A{09/062{SE. Linköping Univer-

sity, 2009.

[8] Kristian Stavåker, Peter Fritzson. Generation of

Simulation Code from Equation-Based Models

for Execution on CUDA-Enabled GPUs. MCC'10

Workshop, Gothenburg, Sweden, November 18-

19, 2010.

[9] Matthias Korch and Thomas Rauber. Scalable

parallel rk solvers for odes derived by the method

of lines. In Harald Kosch, Laszlo Böszörményi,

and Hermann Hellwagner, editors, Euro-Par, vol-

ume 2790 of Lecture Notes in Computer Science,

pages 830-839. Springer, 2003.

[10] Christoph Kessler and Peter Fritzson. NestStep-

Modelica – Mathematical Modeling and Bulk-

Synchronous Parallel Simulation. In Proc. of

PARA'06, Umeå, June 19-20, 2006. In Lecture

Notes of Computer Science (LNCS) Vol 4699, pp

1006-1015, Springer Verlag, 2006.

[11] Martin Sjölund, Robert Braun, Peter Fritzson and

Petter Krus. Towards Efficient Distributed Simu-

lation in Modelica using Transmission Line Mod-

eling. In Proceedings of the 3rd International

Workshop on Equation-Based Object-Oriented

Modeling Languages and Tools, (EOOLT'2010),

Published by Linköping University Electronic

Press, www.ep.liu.se, In conjunction with MOD-

ELS’2010, Oslo, Norway, Oct 3, 2010.

[12] Francois Cellier and Ernesto Kofman. Continuous

System Simulation. Springer, 2006.

[13] Khronos Group, Open Standards for Media Au-

thoring and Acceleration, OpenCL 1.1, accessed

Sept 15, 2011. http://www.khronos.org/opencl/

[14] The OpenCL Specication, Version: 1.1, Docu-

ment Revision: 44, accessed June 30 2011.

http://www.khronos.org/registry/cl/specs/opencl-

1.1.pdf

[15] NVIDIA CUDA, accessed September 15 2011.

http://www.nvidia.com/object/cuda home

new.html

[16] NVIDIA CUDA programming guide, accessed 30

June 2011. http://developer.download.nvidia.com/

compute/cuda/4 0 rc2/toolkit/docs/CUDA C Pro-

gramming Guide.pdf

[17] OpenCL Programming Guide for the CUDA Ar-

chitecture, Appendix A, accessed June 30 2011.

http://developer.download.nvidia.com/compute/D

evZone/docs/html/OpenCL/doc/OpenCL Pro-

gramming Guide.pdf

[18] AMD OpenCL, System Requirements & Driver

Compatibility, accessed June 30 2011.

http://developer.amd.com/sdks/AMDAPPSDK/pa

ges/DriverCompatibility.aspx

[19] INTEL OpenCL, Technical Requirements, ac-

cessed June 30 2011.

http://software.intel.com/enus/articles/opencl-

release-notes/

[20] OpenCL Work-Item Built-In Functions, accessed

June 30 2011.

http://www.khronos.org/registry/cl/sdk/1.0/docs/

man/xhtml/workItemFunctions.html

[21] Jack J. Dongarra, J. Bunch, Cleve Moler, and G.

W. Stewart. LINPACK User's Guide. SIAM,

Philadelphia, PA, 1979.

[22] Ian N. Sneddon. Fourier Transforms. Dover Pub-

lications, 2010. ISBN-13: 978-0486685229.

[23] John H. Lienhard IV and John H. Lienhard V. A

Heat Transfer Textbook. Phlogiston Press Cam-

bridge, Massachusetts, U.S.A, 4th edition, 2011.

[24] Intel Xeon E5520 CPU Specifications, accessed

October 28 2011.

http://ark.intel.com/products/40200/Intel-Xeon-

Processor-E5520-(8M-Cache-2 26-GHz-5 86-

GTs-Intel-QPI)

[25] NVIDIA Tesla M2050 GPU Specifications, ac-

cessed June 30 2011.

http://www.nvidia.com/docs/IO/43395/BD-

05238-001 v03.pdf

[26] Cyril Faure. Real-time simulation of physical

models toward hardware-in-the-loop validation.

PhD Thesis. University of Paris East, October

2011.

A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core …

402 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076393

Appendix A. Serial Matrix Multiply

model MatrixMultiplication

 parameter Integer m=256 ,n=256 ,k =256;

 Real result ;

algorithm

 result := mainF (m,n,k);

end MatrixMultiplication ;

function mainF

 input Integer m;

 input Integer n;

 input Integer k;

 output Real result ;

protected

 Real A[m,n];

 Real B[n,k];

 Real C[m,k];

algorithm

 // initialize matrix A, and B

 (A,B) := initialize (m,n,k);

 // multiply matrices A and B

 C := matrixMultiply (m,n,k,A,B);

 // only one item is returned to speed up

 // computation

 result := C[m,k];

end mainF;

function initialize

 input Integer m;

 input Integer n;

 input Integer k;

 output Real A[m,n];

 output Real B[n,k];

algorithm

 for i in 1:m loop

 for j in 1:n loop

 A[i,j] := j;

 end for;

 end for;

 for j in 1:n loop

 for h in 1:k loop

 B[j,h] := h;

 end for;

 end for;

end initialize ;

function matrixMultiply

 input Integer m;

 input Integer p;

 input Integer n;

 input Real A[m,p];

 input Real B[p,n];

 output Real C[m,n];

 Real localtmp ;

algorithm

 for i in 1:m loop

 for j in 1:n loop

 localtmp := 0;

 for k in 1:p loop

 localtmp := localtmp +(A[i,k]*

 B[k,j]);

 end for;

 C[i,j] := localtmp ;

 end for;

 end for;

end matrixMultiply;

Appendix B. Parallel Matrix-Matrix

Multiplication with parfor and Kernel

functions

model MatrixMultiplicationP

 parameter Integer m=32,n=32,k=32;

 Real result;

algorithm

 result := mainF(m,n,k);

end MatrixMultiplicationP ;

function mainF

 input Integer m;

 input Integer n;

 input Integer k;

 output Real result ;

protected

 Real C[m,k];

 parglobal Real pA[m,n];

 parglobal Real pB[n,k];

 parglobal Real pC[m,k];

 parglobal Integer pm;

 parglobal Integer pn;

 parglobal Integer pk;

 // the total number of global threads

 // executing in parallel in the kernel

 Integer globalSize [2] = {m,k};

 // the total number of local threads

 // in parallel in each workgroup

 Integer localSize [2] = {16 ,16};

algorithm

 // copy from host to device

 pm := m;

 pn := n;

 pk := k;

 (pA ,pB) := initialize(m,n,k,pn ,pk);

 // specify the number of threads and

 // workgroups

 // to be used for a kernel function

 // execution

 oclSetNumThreads(globalSize, localSize);

 pC := matrixMultiply(pn ,pA ,pB);

 // copy matrix from device to host

 // and resturn result

 C := pC;

 result := C[m,k];

 // set the number of threads to

 // the available number

 // supported by device

 oclSetNumThreads(0);

end mainF ;

function initialize

 input Integer m;

 input Integer n;

 input Integer k;

 input parglobal Integer pn;

 input parglobal Integer pk;

 output parglobal Real pA[m,n];

 output parglobal Real pB[n,k];

algorithm

Session 3C: Language and Compilation Concepts I

DOI Proceedings of the 9th International Modelica Conference 403
10.3384/ecp12076393 September 3-5, 2012, Munich, Germany

 parfor i in 1:m loop

 for j in 1: pn loop

 pA[i,j] := j;

 end for;

 end parfor;

 parfor j in 1:n loop

 for h in 1: pk loop

 pB[j,h] := h;

 end for;

 end parfor ;

end initialize ;

parkernel function matrixmultiply

 input parglobal Integer pn;

 input parglobal Real pA [: ,:];

 input parglobal Real pB [: ,:];

 output parglobal Real pC[size(pA,1),

size(pB,2)];

protected

 Real plocaltmp ;

 Integer i,j;

algorithm

 // Returns unique global thread Id value

 // for first and second dimension

 i := oclGetGlobalId (1);

 j := oclGetGlobalId (2);

 plocaltmp := 0;

 for h in 1: pn loop

 plocaltmp := plocaltmp + (pA[i,h] *

 pB[h,j]);

 end for;

 pC[i,j] := plocaltmp;

end matrixmultiply;

A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core …

404 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076393

Session 3D: Mechanic Systems II

Modelling and Simulation of the Coupled Rigid-flexible Multibody Systems in MWorks

 Modelling and Simulation of the Coupled Rigid-flexible Multibody

Systems in MWorks

Xie Gang
1
, Zhao Yan

1
, Zhou Fanli*

2
, Chen Liping

1

1
CAD Center, Huazhong University of Science and Technology, Wuhan, China, 430074

2
Suzhou Tongyuan Software & Control Tech. Co. Ltd, Suzhou, China, 215123

{xieg, zhaoy, zhoufl, chenlp}@tongyuan.cc

Abstract

Aiming to the design challenge of modern mecha-

tronic products, this paper presents a method to sim-

ulate the coupled rigid-flexible system in MWorks.

Firstly, the component mode synthesis (CMS) tech-

nique is introduced and the Craig-Bampton method

is adopted to build the flexible-body model. The

general flexible-body model named FlexibleBody is

developed based on the standard MultiBody library

in Modelica, which describes the small and linear

deformation behavior (relative to a local reference

frame) of a flexible-body that undergoes large and

non-linear global motion. In the model, the modal

neutral file (MNF) is introduced as a standard inter-

face to describe the constraint modes. Secondly, the

model is used to construct a library of boom system

of concrete pump truck and the simulations covering

the expanding and folding process are carried out

based on both the rigid multibody and the coupled

rigid-flexible system models. Finally, the influence

to dynamics performance of the boom system is ana-

lyzed and the conclusion is drawn. The method in

this paper provides an effective approach to build

unified model and simulate flexible-body in multi-

domain engineering systems.

Keywords: rigid-flexible system; concrete pump

truck; MWorks

1 Introduction

Much industrial equipment is mechatronic and con-

tains high-speed, lightweight, and high-precision

mechanical system. In these mechanical systems one

or more structural components often need to consider

the deformation effects for design analyses. The in-

tegrated design and simulation of the mechatronic

systems with flexible bodies make the multidiscipli-

nary challenge. When designing such a mechatronic

system, the performance requirements must be satis-

fied and the strength of the system must be guaran-

teed. Therefore, stress and deformation of machine

components have to be predicted in the design pro-

cess.

The increasing computational power of current com-

puter enables to model a multibody system as 3D

deformable body using the finite element method.

The flexible multibody dynamics is the subject con-

cerned with the modeling and analysis of constrained

deformable bodies that undergo large displacements

and rotations. DLR® FlexibleBodies Library
 [1, 2]

 pro-

vides the general flexible model so that users can

simulate the elastic deformation of flexible-body in a

modal synthesis way, in which the standard input

data (SID)
[3, 4]

 file should be offered by a third-party

software. In SID file, Guyan reduction and Ritz ap-

proximation are adopted. The Rayleigh–Ritz method

[4]
 chooses an approximate form for the eigenfunc-

tion with the lowest eigenvalue. In the Guyan reduc-

tion method
 [4]

, a set of user-defined master nodes are

retained and the remaining set of slave nodes are re-

moved by condensation. Only stiffness properties are

considered during the condensation, and inertia cou-

pling of master and slave nodes are ignored. Based

on an improved Craig-Bampton method
 [5-8]

,

MSC.ADAMS® adopts the modal neutral file
[9]

,

which can be exported by some finite element soft-

ware, to drive the animation of the flexible body.

The MNF is a binary file that contains the location of

nodes and node connectivity, nodal mass and inertia,

mode shapes, generalized mass and stiffness for

mode shapes. The mode shapes in modal neutral file,

which contain the interface constraint modes, are

revised effectively after modal truncation. So the

Craig-Bampton method is more accurate and has

been widely used in engineering
[10-14]

. But the soft-

ware, just like ADAMS, mainly focuses on modeling

and simulation of the pure mechanical system and

lacks support of multi-domain physical systems. In

order to model and simulate the mechatronic prod-

ucts composed of mechanical, electronic, hydraulic,

and control engineering systems, the co-simulation

DOI Proceedings of the 9th International Modelica Conference 405
10.3384/ecp12076405 September 3-5, 2012, Munich, Germany

should be performed with other software such as

Matlab/Simulink®, LMS.AMESim®, etc.

In this paper, the FlexibleBody model is developed

based on the component mode synthesis (CMS) and

the improved Craig-Bampton method
 [9, 11]

. An exter-

nal C function MNFParser is programmed to get the

mode shapes data in the model. The finite element

analysis (FEA) results can then be incorporated into

a part model by superimposing the flexible-body de-

flection on the motion of rigid-body. The postproces-

sor tool in MWorks
 [15]

 is also improved to support

the nephogram animation of the deformation. As an

example, a boom system library of the concrete

pump truck is developed. And the simulations cover-

ing the expanding and folding process are carried out

based on both the rigid multibody and the coupled

rigid-flexible system models. The simulation results

are compared and it shows the coupled rigid-flexible

system is more conformable with the actual boom

system.

2 The Flexible-Body Model

To build the model of flexible-body based on CMS,

the mode shapes data in MNF is provided by third-

party finite element analysis (FEM) software. So the

MNF file needs to be parsed. Then the equations of

coupled elastic deformation and rigid body are estab-

lished. To animate the deformation of flexible-body,

the postprocessor needs to have the ability to show

nephograms. The whole process in MWorks is

shown in Figure 1.

Multi-domain
Modeling

Computation

PostProcessor

M
w

o
rks

FlexibleBody

MnfParser

deformation nephograms

Parse MNF file

Calculate Invariants
and Damping

Coefficient

Parameters

Variables

Initial Equations

Equations
Mass, Inertia tenser,
Node coordinate, etc.

MNF file name

Import geometry file

Render nephograms

Color legend bar

 CAE software: Ansys,
Nastran, etc.

MNF file

Initial algorithm

Figure 1: Development process of flexible-body in

MWorks

2.1 Theoretical Background

In this paper, only small, linear body deformations

relative to a local reference frame are considered,

while that local reference frame indicates large, non-

linear global motion.

The discretization of a flexible component into a fi-

nite element model represents the infinite number of

degree of freedom (DOF) with a finite element. The

basic premise of modal superposition is that the de-

formation behavior of a component with a very large

number of nodal DOF can be captured with a much

smaller number of modal DOF. This reduction in

DOF is called modal truncation.

The linear deformations of the nodes of this finite

element mode, u , can be approximated as a linear

combination of a smaller number of translational

mode shapes matrix
[9]

,  1 2, , ,T T T TM  Φ .

 1 1

1

+ + + =
M

T T T TM M Ti i

i

q q q  


  u Φ q Φ q (1)

Where
TΦ and q are the truncated mode shapes ma-

trix and the truncated modal coordinates respectively.

M is the number of mode shape, and

 1 2, , ,
T

Mq q qq is the modal coordinates.

Similar to equation(1), as the body deforms, every

node rotates through small angles relative to its ref-

erence frame. These angles are obtained using a

modal superposition
 [9]

.

1

M

R R Ri i

i

q


   θ Φ q Φ q (2)

Where  1 2, ,R R R RM  Φ is the slice of rotational

mode shapes matrix.

In the studies referring to [3, 4], the eigenvectors of

an unconstrained system be used. Eigenvectors are

found to provide an inadequate basis in system level

modeling. To improve the accuracy of the system

model, the CMS
[3]

 techniques are adopted, the most

general methodology is Craig-Bampton method
 [5]

.

The Craig-Bampton method
 [5, 6]

 allows the user to

select a subset of DOF which are not to be subject to

modal superposition. These boundaries DOFs (or

attachment DOFs) are preserved exactly in the

Craig-Bampton modal basis. There is no loss in reso-

lution of these DOF when higher order modes are

truncated
 [7, 8]

.

The system DOF in Craig-Bampton method are par-

titioned into boundary DOF,
Bu , and interior DOF,

Iu . Two sets of mode shapes are defined, as follows
[9]

:

Constraint modes: These modes are static shapes

obtained by giving each boundary DOF a unit dis-

placement while holding all other boundary DOF

Modelling and Simulation of the Coupled Rigid-flexible Multibody Systems in MWorks

406 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076405

fixed. The basis of constraint modes completely

spans all possible motions of the boundary DOFs,

with a one-to-one correspondence between the modal

coordinates of the constraint modes and the dis-

placement in the corresponding boundary DOF,

C Bq u .

Fixed-boundary normal modes: These modes are

obtained by fixing the boundary DOF and computing

an eigensolution. There are as many fixed-boundary

normal modes as the user desires. These modes de-

fine the modal expansion of the interior DOF. The

quality of this modal expansion is proportional to the

number of modes retained by the user.

The relationship between the physical DOF and the

Craig-Bampton modes and their modal coordinates is

illustrated by the following equation.

CB

IC IN NI

    
     

     

I 0 qu
u

Φ Φ qu
 (3)

Where I , 0 are identity and zeros matrices, respec-

tively.
ICΦ is the physical displacements of the inte-

rior DOF in the constraint modes.
INΦ is the physi-

cal displacements of the interior DOF in the normal

modes.
Cq is the modal coordinates of the constraint

modes.
Nq is the modal coordinates of the fixed-

boundary normal modes.

The generalized stiffness and mass matrices corre-

sponding to the Craig-Bampton modal basis are ob-

tained via a modal transformation.

2.2 FlexibleBody Model

The governing differential equation of flexible-body

[9, 15]
, in terms of the generalized coordinates is:

1

2

T T

g

    
         

    

M ψ
Mξ Mξ ξ ξ Kξ f Dξ λ Q

ξ ξ
 (4)

Where,

,ξ,ξ ξ are the generalized coordinates of the flexible-

body and their time derivatives.

    , 1, ,

T T

i i M
x y z q  


 ξ x ψ q

M is the mass matrix.

K is the generalized stiffness matrix.

gf is the generalized gravitational force.

D is the modal damping matrix.

Ψ is the algebraic constraint equations.

λ is the Lagrange multipliers for the constraints.

Q is the generalized applied forces.

Figure 2: The position vector to a deformed point P

on a flexible body

The instantaneous location of a point that is attached

to a node, P , on a flexible body, B , is the sum of

three vectors, showing in Figure 2.

p p p  r x s u (5)

Where

x is the position vector from the origin of the ground

reference frame to the origin of the local body refer-

ence frame of the flexible body.

ps is the position vector of the undeformed position

of point P with respect to the local body reference

frame of body B .

pu is the translational deformation vector of point P ,

the position vector from the point’s undeformed po-

sition to its deformed position. It is also expressed in

the local body coordinate system. The deformation

vector is a modal superposition,
P TPu Φ q . Where

TPΦ is the slice from the modal matrix that corre-

sponds to the translational DOF of node P .

The general flexible-body model based on CMS is

developed according to the following processes.

(1) Defining the parameters: MNF file name, mass,

inertia, mode shape, set of selected mode, etc.

(2) Setting the variants and default values: modal

coordinates and first-order derivate, second-

order derivate, velocity, acceleration, etc.

(3) Configuring the initial algorithm: Call

MNFParser function (refer to 2.3 MNF File Par-

ser) to get the mass, inertia, mode shape, stiff-

ness matrix, invariants, damping coefficient, etc.

(4) Setting the initial equations: just like the equa-

tions in Body model in Multibody library.

(5) Describing the equations: Force and torque bal-

ance equation, and equation (4) are defined.

With modal coordinates, the deformation of the

flexible-body equation (1) , (2), (4) and (5).

This approach consists of the Body model in Multi-

Body library. The general FlexibleBody model is

shown in Figure 3.

Session 3D: Mechanic Systems II

DOI Proceedings of the 9th International Modelica Conference 407
10.3384/ecp12076405 September 3-5, 2012, Munich, Germany

Figure 3: Icon of the FlexibleBody model

The FlexibleBody model encapsulates the complexi-

ty of details into a black box that we can use modu-

larly without considering the detailed implementa-

tion at the top level.

2.3 MNF File Parser

The mode shapes data are needed to build the flexi-

ble-body model with modal synthesis method, and

the MNF is adopted to express these data, which is

generated by CAE software such as ANSYS®, NAS-

TRAN® etc.

Modal neutral file is a platform-independent binary

file. The information in a MNF includes geometry

(locations of nodes and node connectivity), nodal

mass and inertia, mode shapes, generalized mass and

stiffness for mode shapes, which is listed in Table 1.
Table 1: Information in MNF

Block information

Header
date, program name and version, title,

MNF version, units

Body properties
mass, moments of inertia, center of

mass

Interface points Reduced stiffness and mass matrices

Interface modes User requests the number of modes

Constraint modes Interface constraint modes

According to its data structure, an external C func-

tion “MNFParser” is programed to parse the MNF

file and to obtain the quality, inertia tensor, eigen-

values, modal shapes matrix, etc.

To reduce the simulation time, the nine inertia invar-

iants
 [9]

 are calculated beforehand from the N nodes

of the finite element model based on each node’s

mass, undeformed location coordinates in the com-

ponent modes.

And the default damping coefficients are calculated

according to the modal frequency.

 1% damping for all modes with frequency low-

er than 100.

 10% damping for modes with frequency in the

100-1000 range.

 100% critical damping for modes with frequen-

cy above 1000.

The MNFParser also provides nodes coordinates and

element faces of the FE model to the postprocessor

for rendering deformation nephograms.

3 Modeling and Simulation of the

Coupled Rigid-flexible Boom Sys-

tem

The concrete pump truck has become a kind of in-

dispensable machinery equipment in construction

industry. It pumps concrete continuously sent by

concrete mixer truck to the pouring site. The boom

system is generally composed of mechanical, hy-

draulic and control subsystems, and the multi-

domain modeling and simulation is necessary for the

design and validation of this system. The modeling

and simulation process of boom system in MWorks

is shown in Figure 4.

Concrete Pump
Truck Arm System

Modeling

Multi-domain Library
· Mechanical system
· Hydraulic system
· Control system

Compile & Simulate

· Set algorithm, simulation time,
tolearance

· Compile
· Simulate

PostProcessor
· View Animation
· View Plots

Compare
Simulation Result
and Experiment

· Input Experiment Data
· Superimpose test data on plots

Model Verification

Rigid-flexible
Coupling Dyanmics

Simulation

· Define Flexible Bodies
· Rigid-flexible Coupling Dynamics

Analysis

Design of
Experiment &
Optimization

· Design Sensitivity Studies
· Design of Experiments
· Optimization

MNF File of Arm

Figure 4: The modeling and simulation workflow of

booms system of concrete pump truck

3.1 Library of Boom System

The hierarchical multi-domain library of boom sys-

tem is developed based on the standard Modelica

library and the hydraulic library developed by Su-

zhou Tongyuan Software & Control Technology

Company. Its structure is shown in Figure 5.

Modelling and Simulation of the Coupled Rigid-flexible Multibody Systems in MWorks

408 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076405

Concrete
Pump Truck

Boom
System

Mechanics

Hydraulic

Control

Platform

Booms

Link Mechanism

Pipeline

Special Valves

High Volume
Pump

… ...

Figure 5: Structure of the booms library

The boom system library includes mechanics, hy-

draulic, and control subsystem library. The boom

system model can be conveniently constructed by

dragging and dropping based on the library.

3.2 Simulation of Rigid Boom System

The booms of concrete pump truck must expand and

fold regularly while working. The working loads

should be analyzed to ensure the safety. The control

system should also be designed to satisfy the casting

needs.

The hierarchical structure of the boom system model

is established based on the MultiBody library, shown

in Figure 6.

Mechanical system

Derricking cylinder

Hydraulic system

Control system

Chassis model

Figure 6: Hierarchical model of the booms system

Base on the system model, the various working con-

ditions can be simulated by modifying the parame-

ters of the control and hydraulic systems, and the

work loads of each boom, flow quantity and pressure,

impact loads in the hydraulic system and the reliabil-

ity of control system can also be analyzed. For ex-

ample, the expanding and folding process of the

boom_4 is simulated and the result is shown in Fig-

ure 7.

Session 3D: Mechanic Systems II

DOI Proceedings of the 9th International Modelica Conference 409
10.3384/ecp12076405 September 3-5, 2012, Munich, Germany

Boom_4Boom_4

Boom_5Boom_5

Trajectory of

CM in Boom_5

Trajectory of

CM in Boom_5

Cylinder_4Cylinder_4

Displacement of flange_b in Cylinder_4

Force of flange_b in Cylinder_4

Flow of port_B in Cylinder_4
Figure 7: The expanding and holding process of the boom_4

3.3 Simulation of the Coupled Rigid-flexible

Boom System

There will be a large elastic deformation on each

boom in the actual working process. This not only

has a great impact on the casting work, but also re-

duces the safety performance of the system. So it is

necessary to take the elastic deformation into consid-

eration for improving the accuracy of the system

model.

3.3.1 Modal Analysis of the Booms

The modal neutral files of booms are needed to per-

form the coupled rigid-flexible dynamic analysis. So

it’s necessary to take modal analysis for each boom.

We use the ANSYS software to compute the modals.

The analysis workflow is as follow:

(1) Inputting the material parameters: The elastic

modulus, Poisson's ratio, and density are set to

FE model. The material properties determine the

spring stiffness and damping.

(2) Meshing the model: The solid45 element is se-

lected to mesh the solid geometry. And the

mass21 element is selected to mesh the key

points set up on the central axis of the hinge

hole.

(3) Configuring the rigid region: The rigid regions

are established about the interface node and

nodes on the cylinder faces respectively.

(4) Generating the MNF: Run the ADAMS macros,

choose the interface nodes, specify the mode

order numbers to expand, then generate modal

neutral file of each boom.

The finite element models of booms are shown in

Figure 8.

(a) Boom_1

(b) Boom_2

(c) Boom_3

(d) Boom_4

(e) Boom_5

Figure 8: FE model of booms

We set twenty modes to extract for each boom. Then

we can get fifty modes in the MNF. The modes from

first to sixth are rigid modes, approximately to zero.

Because there are five fixed interface points in each

boom, and thirty constraint modes of six degrees of

freedom are extracted. We choose a sufficient num-

ber of modes to represent the boom so that the fre-

quency range is able to deactivate eigenmodes based

on the frequency or the energy criterion. Some natu-

ral frequencies of the booms are listed in Table 2.

Modelling and Simulation of the Coupled Rigid-flexible Multibody Systems in MWorks

410 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076405

Table 2: Natural frequency of booms

Nat.

Freq.
Boom_1 Boom_2 Boom_3 Boom_4 Boom4

1-6 0 0 0 0 0

7 25.8302 35.5842 33.0956 49.3527 8.7492

8 36.3539 48.4689 49.3527 22.1214 11.1239

9 52.8219 76.9397 49.3527 53.6334 23.7672

10 74.1143 89.2075 49.3527 60.5197 30.3335

11 75.6471 90.2372 49.3527 81.8889 47.3777

12 81.2592 94.7992 49.3527 85.3635 56.8012

… … … … … …

3.3.2 Replacement of the FlexibleBody Model

The rigid parts of booms shown in Figure 6 are re-

placed by FlexibleBody model with respective pa-

rameters, as shown in Figure 9. So the model of the

mechanical system is converted from the rigid multi-

body to the coupled rigid-flexible system.

Replaced by FlexibleBody model with respective parameters

Figure 9: The coupled rigid-flexible mechanical system

3.3.3 Simulation of Coupled Rigid-flexible

Boom System

The expanding and folding process of boom_5 is

simulated, as shown in Figure 10.

Flexible

Boom_4

Flexible

Boom_4

Flexible

Boom_5

Flexible

Boom_5

Trajectory of

CM in Boom_5

Trajectory of

CM in Boom_5

Cylinder_5Cylinder_5

Displacement of flange_b in Cylinder_5

Force of flange_b in Cylinder_5

Deformation of Boom_5

Figure 10: The process of expanding and folding boom_5

The modal coordinates of each boom are show in

Figure 11. The modal coordinates q[1] - q[6] are cor-

responding to 7
th
 - 12

th
 modes respectively. Obvious-

ly, the value of modal coordinate q[1] is the biggest

one in each boom. It indicates that the 7
th
 mode con-

tributes most energy to the flexible-body. And the

values of other modal coordinates are smaller and

smaller, indicating less energy contribution. The var-

iation tendency is complied with the modal superpo-

sition theorem

and energy criterion

[11]
.

(a) Boom 1

Session 3D: Mechanic Systems II

DOI Proceedings of the 9th International Modelica Conference 411
10.3384/ecp12076405 September 3-5, 2012, Munich, Germany

(b) Boom 2

(c) Boom 3

(d) Boom 4

(e) Boom 5

Figure 11: Modal coordinates of booms

With the powerful post-processor in MWorks, the

deformation color contour of boom_4 and boom_5

are shown in Figure 12.

(a) t= 10.44s

(b) t = 12.84s

(c) t = 100.20s

Figure 12: Nephograms of the deformation in booms

The obvious vibration can be found in simulation

result of the coupled rigid-flexible dynamics. And in

the actual working process, the vibration does exist

in the expanding or the holding process. The impact

on hydraulic and control system can be analyzed for

the elastic deformation of each boom. So compared

with a rigid model, the coupled rigid-flexible model

has higher accuracy, and is more close to the actual

system.

3.4 Simulation Comparation between Rigid

and Coupled Rigid-flexible Boom System

3.4.1 Comparation of Simulation Results

The Figure 13 shows the simulation results, in com-

parison coupled rigid-flexible multibody with rigid

multibody, of boom_3 ~ boom_5 expanding and

holding together.

Modelling and Simulation of the Coupled Rigid-flexible Multibody Systems in MWorks

412 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076405

Rigid boom system Coupled rigid-flexible boom system
Figure 13: Comparation of rigid system and coupled rigid-flexible system

Figure 14: Flow in hydraulic cylinder port_A of boom_4

Figure 15: Force in flang_b of boom_4

0 50 100 150 200 250
-2

0

2

4

6

8

10

12
x 10

-4

time (s)

fl
o

w
 (

m
3
/s

)

Rigid system

Rigid-flexible system

0 50 100 150 200 250
-10

-8

-6

-4

-2

0

2

4

6

8
x 10

5

time (s)

fo
rc

e
 (

N
)

Rigid system

Rigid-flexible system

Session 3D: Mechanic Systems II

DOI Proceedings of the 9th International Modelica Conference 413
10.3384/ecp12076405 September 3-5, 2012, Munich, Germany

Figure 14 shows the flow in hydraulic cylinder

port_A of boom_4. Figure 15 shows the force in

flange_b of boom_4. There are obvious differences

between rigid and the coupled rigid-flexible boom

system, especially at the reversing point: the former

changes gently, but the latter changes dramatically,

which are due to elastic deformation of flexible

booms.

Figure 16: Length of boom_4

Figure 17: Length of boom_5

Figure 16 and Figure 17 show the length of boom_4

and boom_5 respectively. The length of the rigid

boom is a constant value, while the length curve of

the flexible boom is shown a relatively evident fluc-

tuation, especially when the motion state changed,

deformation peak appears. The maximum force of

each hinge point is larger than the rigid body simula-

tion results, when boom system changes the motion

state.

3.4.2 Comparation of Calculation Efficiency

The finite element method is apt for discretizing the

arbitrary complicated geometry. But with gigantic

nodes in large scale and complex system, the compu-

tation is heavy. FEA is too inefficient for system lev-

el modeling and is incapable of analyzing large mo-

tion. Moreover, the coupled rigid-flexible system is a

strong nonlinear system, especially integrated with

hydraulic and control subsystem.

Although introducing great number of variables and

equations, component mode synthesis saves time and

processing resources by breaking up a single large

problem several reduced-order problems via sub-

structuring.

The calculation time for coupled rigid-flexible boom

system is more than double for rigid boom system in

the test cases. There are several influence factors for

calculation time.

(1) The number of nodes. Too many DOFs can

mean unacceptably long computation time.

(2) The number of modes. If a mode does not con-

tribute to the response of the flexible component

0 50 100 150 200 250
6.938

6.94

6.942

6.944

6.946

6.948

6.95

6.952

time (s)

le
n

g
th

 (
m

)

Rigid system

Rigid-flexible system

0 50 100 150 200 250
9.14

9.15

9.16

9.17

9.18

9.19

9.2

9.21

9.22

time (s)

le
n

g
th

 (
m

)

Rigid system

Rigid-flexible system

Modelling and Simulation of the Coupled Rigid-flexible Multibody Systems in MWorks

414 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076405

during a simulation, it could be disabled to save

computation time.

(3) The modal damping coefficients. The bigger

modal damping coefficient is helpful to control

the integration step by suppressing the resonance

response respect to the corresponding natural

frequency.

4 Conclusions

By introducing the CMS technique and the improved

Craig-Bampton method, the FlexibleBody model has

been constructed based on the standard MultiBody

library in this paper. The boom system of concrete

pump truck is modeled and simulated in MWorks,

which is composed of a coupled rigid-flexible mech-

anism, a hydraulic and a control subsystem. Numeri-

cal results are compared and discussed with respect

to efficiency and accuracy.

The FlexibleBody model can be easily incorporate

flexibility into system models. This optional add-on

module interface with several commercial finite ele-

ment applications to accurately define component

flexibility, and it has an easy-to-use interface that

allows engineers to quickly convert rigid parts to

flexible ones.

The simulation process is illustrated by boom system

of concrete pump truck applications. However, it can

be applied to design any mechanical system such as

classical or compliant mechanisms, deformable

structures and more general to solve most mechani-

cal dynamics problems.

ACKNOWLEDGEMENTS

The paper is supported by Major National Science &

Technology Specific Project (No. 2011ZX02403-

005), The National Basic Research Program of China

(973 Program) (No. 2011CB706502).

References

[1] Andreas Heckmann, Martin Otter, Stefan

Dietz, et al. The DLR FlexibleBodies library

to model large motions of beams and of flex-

ible bodies exported from finite element pro-

grams, The Modelica Association. Modelica

2006: 85-95.

[2] Andreas Heckmann, Stefan Hartweg and In-

go Kaiser. An Annular Plate Model in Arbi-

trary Lagrangian-Eulerian Description for the

DLR FlexibleBodies Library. Proceedings

8th Modelica Conference, Dresden, Germany,

March 20-22, 2011: 121- 132.

[3] O. Wallrapp: Standardization of Flexible

Body Modeling in Multibody System Codes,

Part 1: Definition of Standard Input Data,

Mechanics of Structures and Machines

22(3):283-304, 1994.

[4] P. Koutsovasilis, V. Quarz, M. Beitelschmidt.

Standard input data for FEM-MBS coupling:

importing alternative model reduction meth-

ods into SIMPACK. Mathematical and Com-

puter Modelling of Dynamical Systems, 2009,

15(1): 51-68.

[5] R. Craig, M. Bampton. Coupling of substruc-

tures for dynamic analysis. Amer. Inst. Aero.

Astro. J. 1968, 6(7): 1313-1319.

[6] S. Rubin. Improved component-mode repre-

sentation for structural dynamic analysis

Amer. Inst. Aero. Astro. J., 13 (8) (1975), pp.

995–1006.

[7] R. R. Craig. Coupling of substructures for

dynamic analyses: an overview, in: Struc-

tures, Structural Dynamics and Material Con-

ference, 41st AIAA/ASME/ASCE/AHS/ASC,

Atlanta, 2000, AIAA-2000-1573.

[8] D. J. Daniel, J. Rixen. A dual Craig-Bampton

method for dynamic substructuring. Journal

of Computational and Applied Mathematics,

2004, 168(1-2): 383-391.

[9] ADAMS. Theoretical Background. MSC.

Software Corporation, 2003: 1-30.

http://ti.mb.fh-

osna-

brueck.de/adamshelp/mergedProjects/flex/fle

x_gen/flextheory.pdf.

[10] Dimitri Metaxas, Eunyoung Koh. Flexible

multibody dynamics and adaptive finite ele-

ment techniques for model synthesis and es-

timation. Comput. Methods Appl. Mech. En-

grg. 1996, 136: 1 – 25.

[11] Takehiko Eguchi. Improvement of compo-

nent mode synthesis model for vibration

analysis of hard disk drives using attachment

modes. Microsyst technol, 2007, 13: 1085-

1092.

[12] Frédéric Bourquin. Analysis and comparison

of several component mode synthesis meth-

ods on one-dimensional domains. Numer.

Math. 1990, 58: 11 – 34.

[13] Polarit Apiwattanalunggarn, Steven W. Shaw,

Christophe Pierre. Component Mode Synthe-

Session 3D: Mechanic Systems II

DOI Proceedings of the 9th International Modelica Conference 415
10.3384/ecp12076405 September 3-5, 2012, Munich, Germany

sis Using Nonlinear Normal Modes. Nonlin-

ear Dynamics, 2005, 41: 17 – 46.

[14] Ulf Sellgren. Component Mode Synthesis –

A method for efficient dynamic simulation of

complex technical systems. Department of

Machine Design, the Royal Institute of

Technology, Sweden, 2003: 1-27.

[15] Zhou Fanli, Chen Liping, Wu Yizhong, et al.

MWorks: a Modern IDE for Modeling and

Simulation of Multi-domain Physical Sys-

tems Based on Modelica. The Modelica As-

sociation, Modelica 2006: 725-731.

Modelling and Simulation of the Coupled Rigid-flexible Multibody Systems in MWorks

416 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076405

A Modelica Library of Anisotropic Flexible Beam Structures for the Simulation of Composite Rotor Blades

A Modelica Library of Anisotropic Flexible Beam
Structures for the Simulation of Composite Rotor Blades

Christian Spieß Manfred Hajek
Technische Universität München, Institute for Helicopter Technology

Boltzmannstr. 15, 85748 Garching

Abstract

Beam theories are extensively used for simulation of
helicopter rotor blades. The predominant deployment
of composite materials in rotor blade development de-
mands for complex theories that are able to describe
the elastic behavior of anisotropic and nonhomoge-
neous materials. In this paper a Modelica library is
presented which is capable of simulating extensional,
torsional and flexural deformation and the couplings
between those degrees of freedom. The structural dy-
namic model is based on cross-sectional analysis.

Keywords: flexible structures; rotating beams; heli-
copter rotor design; cross-sectional analysis

1 Introduction

The non-linear static and dynamic analysis of bent
and twisted beams is of major importance for many
engineering disciplines. Especially for helicopter ro-
tor applications beam models are used to simulate its
dynamic behavior. Since helicopter rotor blades are
made of composite structures and materials that may
be anisotropic or nonhomogeneous the long and slen-
der beam structure is subject to non-classical effects
such as transverse shear deformation, geometric non-
linearities, cross-sectional warping, and elastic cou-
pling [4]. Thus classical beam theories limited to
isotropic materials and simple cross-sectional geome-
tries may not be applicable in rotorcraft analysis codes.
Some vibration phenomena in particular with signifi-
cant bending-torsion coupling require adequate mod-
eling. Therefore a sophisticated beam theory has been
implemented to Modelica which has extensively been
tested in practical applications such as the CAMRAD
II [7] rotorcraft analysis code and been proven to pro-
vide satisfactorily results [8]. One of the key features
of modern beam theories is the cross-sectional analy-
sis. It splits the problem into a two-dimensional analy-
sis of the cross-section and the one-dimensional beam

kinematics. The two-dimensional analysis provides
the structural and inertial parameters that can be set
at any number of points on the beam. Hence the in-
fluence of anisotropy and inhomogeneity can be taken
into account and these methods are not limited to spe-
cific materials. The one-dimensional analysis provides
the elastic equations of motion to calculate the kine-
matics of the beam. The main advantage of this ap-
proach as opposed to three-dimensional finite element
analysis is the significant reduction of computational
effort. It allows the calculation of elastic beam be-
havior in multi-body environments as well as real time
applications.

2 Modeling Capabilities

The flexible beam library is a Modelica package to
model elastic motion of beam-like structures repre-
sented by axial, bending, and torsion deflection of a
beam with arbitrary cross-sectional geometry. To at-
tach the beam model to the simulation environment the
standard Modelica frame connector from the Multi-
Body library is used. In addition to the connectors at
each end of the beam an arbitrary number of frames
on the beam axis may be defined to connect to other
system components such as joints, sensors, or force el-
ements. Figure 1 shows an exemplary setup with two
beam segments connected in series. The user has the
ability to define an arbitrary number of cross-sectional
properties along the beam axis including the stiffness
parameters and inertial properties. Those parameters
can be obtained by NABSA [5] or VABS [1], which
are both 2D cross-sectional analysis tools for general
nonhomogeneous and anisotropic beam sections in-
cluding warp and twist.
The library features two options to model the beam:

1. An Euler-Bernoulli beam theory for isotropic
beam materials with St. Venant torsion.

DOI Proceedings of the 9th International Modelica Conference 417
10.3384/ecp12076417 September 3-5, 2012, Munich, Germany

x

y

Figure 1: example beam setup

2. A beam theory for anisotropic or composite ma-
terials including transverse shear deformation.

The effects of cross-section warping and transverse
shear are included in the section structural properties.
Their effect on inertial forces and interface geome-
try is neglected, warp variables are expressed in terms
of strain measures. The undeflected beam axis is as-
sumed to be straight within the component. Thus a
beam geometry defined by initial curvature or kinks
must be split into several straight beam components.
Also the theory requires the integration of beam prop-
erties along the beam axis which is implemented as
Gaussian integration. Hence structural and inertial
properties must not vary rapidly along its length.

3 Beam Theory

The motion of the beam element is represented by the
rigid body motion of a reference frame at one end of
the beam and an elastic motion relative to this frame.
Due to this decomposition it is possible to superim-
pose an arbitrary large motion of the reference frame,
which will be treated in a correct manner, by a small
elastic motion approximated to the second order. The
representation of the elastic deformation is based on
references [7, 6]. The reference frame defines the co-
ordinate system B at the origin of the undeflected beam
axis. This axis extends on the positive x-axis of sys-
tem B from x = 0 to x = l. The elastic motion of a
point on the beam axis is described by four parame-
ters; namely the constant position x on the undeflected
axis plus the elastic elongation u as well as the bending
deflections v and w that cause a rotation of the cross-
section. Additionally the parameter θ is used to de-
scribe the rotation around the beam axis (see Fig. 2).
The tangent of the cross-section at this point is rotated
by the angles β and ζ around the y and z axes respec-

yE

xE

zE

x

y

z

u v
w
θ EB

I

~p~s

~r

Figure 2: motion of the beam

tively produced by bending deflection, which can be
obtained by sinβ = w′ and sinζ = v′ for second or-
der approximation1. That leads to the transformation
matrix CEB(x) between the origin of the beam and the
bent and twisted axes of the coordinate system E at
position x of the beam axis. Euler angles are used to
describe the rotation CEB = XθY−β Zζ , where X ,Y , and
Z are the rotation matrices around the indexed angles
respectively.

3.1 Cross-Section Motion

To describe the motion of an arbitrary point on the
cross section the previous definition needs to be ex-
tended by the effects of transverse shear and warping.
Thus the vector r from the origin of the beam relative
to a point on the cross-section is constructed by:

a) the constant axial position x and the elongation
u = ue +U , where ue is due to elastic elongation
and U is the elongation due to bending deflections

b) the transverse shear deformation rotating the
cross-section with ν around the z-axis and with
ω around the y-axis

c) the elastic transversal deformation v and w

d) the rotation θ = φ + θC/I +Θ around the x-axis,
where φ is the elastic torsion, θC and θI is the
pitch of the structural and inertial principal axes
respectively, and Θ is the rotation due to bending
deflections

e) the position of the point on the rotated cross-
section represented by the coordinates η and ζ

and the warping displacements W

1the notation (·)′ is used for the derivative with respect to x

A Modelica Library of Anisotropic Flexible Beam Structures for the Simulation of Composite …

418 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076417

0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

ξ

h

1st 2nd 3rd 4th

Figure 3: shape functions for ue and φ

So the vector r with respect to the coordinate system B
can be written as:

r =

x+u
v
w

+C

0
η

ζ

+C

W1
W2
W3

 (1)

with

C = (Z−νYω)CEB (2)

3.2 Discretization

The variables of elastic deformation ue,v,w, and φ de-
pend on position and time. To descretize these vari-
ables they are separated into space-dependent shape
functions h(x) and time-dependent amplitudes q(t).
Thus

ue = hT
u (x)qu(t) v = hT

v (x)qv(t)

w = hT
w(x)qw(t) φ = hT

φ (x)qφ (t)

Here h and q are vectors of length Nu,Nv,Nw and Nφ

where N denotes the degree of freedom for each elas-
tic variable. If N = 0 for all degrees of freedom, the
elastic beam degrades to a rigid body.
To keep the elastic motion separated from the rigid
body motion, appropriate shape functions have to be
chosen. Therefore the shape functions need to satisfy
the boundary conditions h(0) = 0 for elongation and
torsion as well as h(0) = h′(0) = 0 for bending. This
beam element employs algebraic polynomial shape
functions as used in CAMRAD II; they are depicted
in figure 3 for elongation and torsion as well as figure
4 for bending.

0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

ξ

h

1st 2nd 3rd

Figure 4: shape functions for v and w

3.3 Equations of Motion

The equations of motion are derived from Hamilton’s
Principle:

δ

∫
L dt = δ

∫
(T −U +W)dt = 0 (3)

where L is the Lagrangian, T the kinetic energy, U
the strain energy, and W the work of external loads.
Those terms will be explained in detail in the following
sections. The strain energy is given by the product of
stress σ with the strain ε integrated over the volume of
the beam:

δU =
∫

δε
T

σ dΩ (4)

Next, the work of the external loads can be ex-
pressed by integrating the body forces b, surface forces
tS and discrete forces F :

δW =
∫

δ pT bdΩ+
∫

δ pT tS dΓ+δ pT F (5)

where p is the position vector of a point on the beam
relative to the inertial system (cf. fig. 2). Here sur-
face forces tS will be discretized and can therefore be
treated as discrete forces F . The only body force for
the beam model is gravity, which will be treated as in-
ertial force using d’Alembert’s principle.

The kinetic energy can be obtained from the integral
over density ρ and the absolute beam velocity ṗ:

δT = δ

∫ 1
2

ρ ṗ2 dΩ (6)

Using partial integration in time with δ p = 0 at tinitial
and tfinal without loss of generality this can be ex-
pressed as (respecting gravitational forces g as inertial
force):

δT =
∫

δ pT (−p̈+g)ρ dΩ (7)

Session 3D: Mechanic Systems II

DOI Proceedings of the 9th International Modelica Conference 419
10.3384/ecp12076417 September 3-5, 2012, Munich, Germany

3.4 Kinetic Energy

Equation (7) can be split into two integrals using the
mass per length m:

−δT =
∫∫

δ pT (p̈−g)ρ dmdx (8)

with p = s+CIBr, where s is the vector from the in-
ertial system to the beam origin and r is the vector
described in equation (1). The corresponding virtual
displacement δ p can further be written as (with δψ as
the virtual rotation of the beam origin)2:

δ p =δ s−CIBr̃δψ
BI +CIB

δ r

=CIB [I −r̃ RT
u RT

v RT
w RT

φ

](
δ s∗ δψBI δqu δqv δqw δqφ

)T

=CIBRT
δq (9)

Here Ri represents the Jacobian of the placement r
with respect to the degrees of freedom u,v,w, and φ .
Inserting (9) in (8) the kinetic energy becomes

−δT = δqT
∫∫

RCIB(p̈−g)dmdx = δqT M (10)

where M is the resulting mass matrix. By differentiat-
ing p twice the vector p̈ becomes

p̈ =CIB
(

s̈+ ˜̇ωr+2ω̃ ṙ+ r̈+ω ṡ+ ω̃ω̃r
)

(11)

Neglecting warping and transverse shear effects on in-
ertia equation (1) can be written as:

r = xEB +CEB

0
η

ζ

= xEB +(Y−β Zζ)
T

 0
ηb
ζb

 (12)

Here ηb and ζb identify the cross-section point, rela-
tive to the section principle axes at θI that are bent but
not twisted. Thus the motion of a point on the cross-
section is evaluated by

r =

x+u
v
w

+

−Sζ

Cζ

0

ηb +

−SβCζ

−Sβ Sζ

Cβ

ζb (13)

Consistent with the second order approximation and(
η̇b

ζ̇b

)
= θ̇

(
−ζb
ηb

)
≈ φ̇

(
−ζb
ηb

)
(14)

this can be reduced to (15) and derived twice:

r =

x+u
v
w

+

−v′

1
0

ηb +

−w′

0
1

ζb (15)

Now equation (15) can be derived twice and thus in-
serted in equation (11).

2In this paper the notation (·̃) will be used to denote the cross-
product matrix

3.5 Strain Energy

The strain energy δU (cf. eq. (4)) is derived from the
Green-Lagrange strain tensor, which is obtained by the
basis vectors of the undistorted and distorted beam and
can be written as

fmn =
1
2
(Gmn−gmn) (16)

where gmn = gmgn and Gmn = GmGn are the metric
tensors in terms of the curvilinear coordinates ym =
(x,η ,ζ) of the undistorted and distorted beam, respec-
tively. The basis vectors are defined as gm = ∂ ri/∂ym

and Gm = ∂ r f /∂ym with

ri =

x
0
0

+X−θC

0
η

ζ

 (17)

and r f = r as defined in equation (1). The Green-
Lagrange tensor fmn in curvilinear coordinates needs
to be transformed into a stress tensor γkl in local rect-
angular coordinates in order to apply the constitutive
law. Thus the local Cartesian basis zk with the unit
vectors ek = (e1,g2,g3) is introduced. The transfor-
mation is then given by [10]:

fmn = γkl
∂ zk

∂ym

∂ zl

∂yn
(18)

with

∂ zk

∂ym
= ekgm =

 1 0 0
−θ ′Cζ 1 0
θ ′Cη 0 1

 (19)

The transformation results in the relations γ11 = f11 +
2θ ′C(ζ f12−η f13), γ12 = f12 and γ13 = f13. With the
assumption of small strain, γmn = εmn, where ε is lin-
ear in the strain measures. Then, after neglecting all
bending and warping terms of higher order as well as
warping in y- and z-direction the required strain ε is:

ε11 =
1
2
(G11−g11)+2θ

′
C(ζ ε12−η13)

≈ u′e−κzη +κyζ + 1/2φ ′2(η2 +ζ
2)

+2θ
′
C(ζ ε̄12−ηε̄13)+θ

′
Cφ
′(ζ λη −ηλζ)

(20)
2ε12 = G12−g12 ≈ 2ε̄12 +(λη −ζ)φ ′ (21)

2ε13 = G13−g13 ≈ 2ε̄13 +(λζ +η)φ ′ (22)

In this expression the warping function W1 = λφ ′ has
been used.

In order to relate the strain ε to the stress σ used
in equation (4) terms for section loads are needed.

A Modelica Library of Anisotropic Flexible Beam Structures for the Simulation of Composite …

420 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076417

Assuming small strain, the sections loads can be ex-
pressed as linear combinations of the force strain mea-
sure γ and the moment strain measure κ (see ref. [6]):

γ =CT

1+u′

v′

w′

−
1

0
0

=

 ε̄11
2ε̄12
2ε̄13

 (23)

κ = K− k (24)

with K̃ =CTC′, k̃ = XθC X ′−θC
, and k =

(
θ ′C 0 0

)T . It
can be shown that Kx = θ ′C + φ ′, so κx = φ and γx =
ε̄11 = u′e. Thus the second order approximation for γ

and κ is:

γ = Xθ

(
u′e −ν −ω

)T (25)

κ = Xθ

(
φ ′ −w′′−ω ′ v′′+ν ′

)T (26)

For brevity the detailed derivation of the strain mea-
sures is omitted here, the reader is advised to refer to
references [9] and [7]. The strain equations can now be
inserted into the strain energy terms from Hamilton’s
principle. The stress is determined from strain by the
constitutive law σi j = Ei jklεkl , while only stresses act-
ing perpendicular to the cross-section are taken into
account. Thus only σ11,σ12 and σ13 remain in the en-
ergy equations. Now equation (4) can be written in
terms of section loads (forces Fi and moments Mi):

δU =
∫∫

δε
T

σ dAdx (27)

=
∫ l

0

[
Fxδu′e +Fy2δ ε̄12 +Fz2δ ε̄13 (28)

+Mxδφ
′+Myδκy +Mzδκz

]
dx (29)

By integration of
∫

dAδεEε the section loads can be
obtained from stress and hence related to the strain
measures. In a next step the transverse shear forces are
eliminated from the equations, the shear strain how-
ever will still be considered in the material parameters.
That leads to the matrix of cross-sectional elastic con-
stants S:

Fx

Mx

My

Mz

=


Suu Suφ +

1
2 φ ′Suuk2

P Suw Suv

Sφu +φ ′Suuk2
P Sφφ Sφw Sφv

Swu Swφ Sww Swv

Svu Svφ Svw Svv




u′e
φ ′

κy

κz


(30)

These factors are required input data for the
anisotropic beam model and can be obtained from the
previously named beam analysis softwares in section
2. Here k2

P is the nonlinear coupling factor, which is
the square of polar radius of gyration about the beam
axis. For the isotropic model the matrix S reduces to:

EA θ ′CEAk2
T + 1

2 φ ′EAk2
P

θ ′CEAk2
T +φ ′EAk2

P GJ
EAzC 0
−EAyC 0

EAzC −EAyC

0 0
EIzz +EAz2

C −EAyCzC

−EAyCzC EIyy +EAy2
C

 (31)

Where yC and zC is the horizontal and vertical off-
set of the tension center and k2

T the extension torsion
coupling factor.

4 Examples

Calculations of the developed anisotropic flexible
beam library have been compared to experimental
measurements of the Princeton beam test as well as
CAMRAD II simulation results. The static and dy-
namic behavior of the beam element has been evalu-
ated for deflections, rotations and eigenfrequencies of
the beam.

4.1 Static Deflection - Princeton Beam Test

The Princeton beam test [2] is an experimental study
of the large static deformation of a cantilevered beam
under gravity tip load. It involved an 20x0.5x0.125
inch aluminum beam with a rectangular cross-section.
The beam root is rotated around its principle axes so
that the tip load is oriented at various angles. Static
bending deflections of the tip have been measured as
a function of tip load. The softer bending direction
is called flap, the stiffer direction chord. The beam
is fixed at the root in a way that at zero degrees rota-
tion angle gravitational force deflects the beam chord-
wise. To compare the experimental results with the
implemented beam model a different number of beam
segments has been used. The cross-sectional data has
been taken from reference [3]. Figure 5 shows the re-
sulting bending deflection in parts of the beam length
in flap direction. Figure 6 shows the corresponding
results in chord direction.

It can be seen that significant nonlinear effects oc-
cur with increasing tip loads. Using one or two beam

Session 3D: Mechanic Systems II

DOI Proceedings of the 9th International Modelica Conference 421
10.3384/ecp12076417 September 3-5, 2012, Munich, Germany

0 15 30 45 60 75 90
0

0.2

0.4

0.6

root pitch (deg)

fla
p

be
nd

in
g

de
fle

ct
io

n
w /

L

1lbs one segment
2lbs two segments
3lbs four segments
4lbs

Figure 5: Princeton beam test: Comparison of flap-
wise tip bending deflection of measured and calculated
(marks = experimental data)

0 15 30 45 60 75 90
0

1

2

3

4

5
·10−2

root pitch (deg)

ch
or

d
be

nd
in

g
de

fle
ct

io
n

v /
L

1lbs one segment
2lbs two segments
3lbs four segments
4lbs

Figure 6: Princeton beam test: Comparison of chord-
wise tip bending deflection of measured and calculated
(marks = experimental data)

0.2 0.4 0.6 0.8 1

−4

−2

0

·10−3

x

z

Modelica v = 0 CAMRAD v = 0
Modelica v = 10 CAMRAD v = 10
Modelica v = 50 CAMRAD v = 50
Modelica v = 100 CAMRAD v = 100

Figure 7: Vertical deflection of the Princeton beam at
different tip speeds v[m s−1]

segments the simulation is not capable of reproducing
the experimental results due to the second order ap-
proximation. Using four beam segments however the
large nonlinear deformation is captured by the rigid
body motion, which is exact. In that case the simula-
tion gives good results for flap and chord deflection.

4.2 Dynamic Behavior

To validate the dynamic behavior of the library a can-
tilever beam segment is rotated around its vertical axis
at root using different tip speeds v = Ωr, with Ω as
the rotational speed. The transversal deflections in
x,y,z-direction as well as the rotation angles θ ,−β ,ζ
around the x,y,z axis respectively are measured with
ten virtual sensors at equally spaced positions along
the principal axis. To test the isotropic behavior cross-
sectional data from the Princeton beam test have been
used. In order to analyze the anisotropic characteris-
tics of the beam these parameters are expanded with
structural and inertial coupling factors. This way more
than 35 test beams have been created to vary all possi-
ble input parameters and compared the virtual Model-
ica measurements to CAMRAD II simulation results.
Exemplary figure 7 depicts the vertical deflection of
the isotropic Princeton beam. It can be shown, that the
deviations between the two simulation softwares for
all isotropic and anisotropic test cases are smaller than
the predefined numerical tolerance of e = 10−5.

In rotorcraft analysis a widely used tool is a fan
plot. They show the relation between the rotary speed
and the eigenfrequency of a rotor. Again results are
compared to CAMRAD II. The eigenfrequencies of
the Modelica simulation are obtained using the "lin-

A Modelica Library of Anisotropic Flexible Beam Structures for the Simulation of Composite …

422 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076417

0 0.2 0.4 0.6 0.8 1 1.2

2

4

6

8

Ω

Ωref

ω
e

Ω
re

f

Modelica
CAMRAD II

Figure 8: Fan plot of the first five eigenfrequencies
for the Princeton beam. Abscissa: normalized eigen-
frequency ωe; Ordinate: normalized rotary speed Ω;
reference speed Ωref = 380 rad s−1

earizeModel" function and extracting the eigenvalues
with the Linear Systems Toolbox. Figure 8 shows the
variation of the first five eigenfrequencies at different
rotary speeds normalized with the reference speed of
Ωref = 380 rad s−1. For all frequencies it can be shown
that the results of both simulation software match per-
fectly.

4.3 Animation

The implemented anisotropic flexible beam library is
capable of visualizing the deformations of the beam.
For this purpose the Modelica surface visualizer from
the MultiBody library is employed. Thus all standard
features such as colors, transparency etc. are avail-
able. To make small deformations visible an amplifi-
cation factor has been implemented which exaggerates
all deformations and rotations of the beam segment in
the animation window. To save computational power
the resolution of the animation can be reduced or com-
pletely disabled. An example of the animation is pre-
sented in figure 9. Here four flexible beam elements
are used to simulate a helicopter rotor blade (shown
with exaggerated amplitudes), yet the consideration of
aerodynamic forces is ongoing work.

Figure 9: Animation of four elastic beam segments
used as helicopter rotor blades

5 Conclusions

This paper presents a structural dynamic library to
model anisotropic and nonhomogeneous elastic beams
in Modelica. It is capable of simulating nonlinear ex-
tensional, torsional and flexural deformation and the
couplings between those degrees of freedom. Using
cross-sectional modeling theory the user is able to pro-
vide different varying material parameters along the
beam principal axis. The results correlate with ex-
perimental beam measurements as well as other beam
simulations software. To model large nonlinear defor-
mation multiple beam segments can be connected in
series.

References

[1] CESNIK, C. E. S. and D. H. HODGES:
Variational-Asymptotical Analysis of Initially
Curved and Twisted Composite Beams. Applied
Mechanics Review, 46(11), 1993.

[2] DOWELL, E. H., J. TRAYBAR and D. H.
HODGES: An experimental study of the nonlin-
ear stiffness of a rotor blade undergoing flap, lag
and twist deformations. NASA, 1975.

[3] DOWELL, E. H., J. TRAYBAR and D. H.
HODGES: An experimental-theoretical correla-
tion study of non-linear bending and torsion de-
formations of a cantilever beam. Journal of
Sound and Vibration, 50(4):533–544, 1977.

[4] FRIEDMANN, P.P, B. GLAZ and R. PALACIOS:
A moderate deflection composite helicopter ro-
tor blade model with an improved cross-sectional

Session 3D: Mechanic Systems II

DOI Proceedings of the 9th International Modelica Conference 423
10.3384/ecp12076417 September 3-5, 2012, Munich, Germany

analysis. International Journal of Solids and
Structures, 46(10):2186–2200, 2008.

[5] GIAVOTTO, V. and M. BORRI: Anisotropic
Beam Theory and Applications. Computers and
Structures, 16(1-4), 1983.

[6] HODGES, D. H.: Nonlinear composite beam
theory. American Institute of Aeronautics and
Astronautics, 2006.

[7] JOHNSON, W.: CAMRAD II, Comprehensive
Analytical Model of Rotorcraft Aerodynamics
and Dynamics, 1992-1997.

[8] JOHNSON, W.: Rotorcraft dynamics models for
a comprehensive analysis. 1998.

[9] SPIESS, C.: Entwicklung eines anisotropen
Strukturdynamikmodells zur Simulation von
elastischen Rotorblättern. Diploma Thesis,
Technische Universität München, Garching,
2011.

[10] WASHIZU, K.: Variational methods in elastic-
ity and plasticity. Pergamon press Oxford, UK,
1975.

A Modelica Library of Anisotropic Flexible Beam Structures for the Simulation of Composite …

424 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076417

Modeling and Simulation of a Fault-Tolerant Electromechanical Actuation System for Helicopter Swashplates in Modelica

Modeling and Simulation of a Fault-Tolerant Electromechanical
Actuation System for Helicopter Swashplates in Modelica

Sebastian Seemann
EADS Innovation Works

TCC6 Energy and Propulsion
81663 Munich, Germany

sebastian.seemann@eads.net

Clemens Schlegel
Schlegel Simulation GmbH

Meichelbeckstr. 8b
85356 Freising, Germany

cs@schlegel-simulation.de

Abstract

Replacing hydraulic primary flight control actuators
by electromechanical actuators imposes the problem
of reduced reliability. This problem may be over-
come by using redundant actuators what in turn in-
creases the system complexity. The appropriate re-
dundancy level and component mapping must be
assessed. In specific failure cases the system must be
reconfigured in order to maintain the specified per-
formance level to meet aircraft safety regulations.
The assessment of the system’s reaction upon such
kind of scenarios is however a complicated task and
must be supported by modeling and simulation.
Therefore, modeling and simulation of such a fault-
tolerant electromechanical system in Modelica is
described in this paper. Sample simulation results are
presented and discussed.

Keywords: electromechanical actuator; redundancy;
faultl-tolerance; over-determined kinematics; heli-
copter; swashplate; flight controls;

1 Introduction

A general trend in aviation is to replace hydraulic
subsystems like primary flight control actuators by
electromechanical devices. However, substituting a
hydraulic actuator by an electromechanical actuator
(EMA) has the disadvantage of reduced component
reliability. This accompanies two major challenges.
First, in order to meet aircraft safety regulations
higher degrees of redundancy are needed for the uti-
lization of EMAs. Moreover, in the case a redundant
actuator jams mechanically, it must be disconnected
from the swashplate to maintain controllability of the

remaining actuators and the ability to position the
entire swashplate.
The system under investigation is therefore specified
to provide fail-operative behavior for major mechan-
ical failures and dual-fail-operative behavior for
combinations of any other failures. This requires cer-
tain degrees of redundancy of all system parts and
meaningful mapping of the components in order to
allow for failures while maintaining function and
performance. Furthermore, suitable means for failure
detection, failure isolation and system reconfigura-
tion are needed.

2 System architecture and compo-
nent failures

Figure 1: Swashplate actuation system

The concept investigated comprises four vertically
arranged and equidistantly spaced actuators for the
operation of a three degree of freedom helicopter
swashplate, each of them containing two motors (see
figure 1, blue cylinders). The system operates against
aerodynamic forces caused at the rotor blades and
exerted on the rotating upper ring of the swashplate
through pitch links. The stationary lower ring of the

DOI Proceedings of the 9th International Modelica Conference 425
10.3384/ecp12076425 September 3-5, 2012, Munich, Germany

swashplate is positioned by the four EMAs. All actu-
ators are simultaneously active to achieve a mini-
mum of nominal loading. The provided redundancy
allows for the malfunction of one actuator unit, the
three remaining EMAs safely continuing control of
the swashplate with reduced performance.

2.1 Swashplate actuator

Each swashplate actuator consists of two electric
motors in torque-summing configuration and a me-
chanical drive train. The latter comprises a two-stage
gearbox, ballscrew and nut assembly, and an output
piston to the swashplate attachment. The variety of
conceivable mechanical failure modes can be catego-
rized into two types of mechanical failures to be tak-
en into account, namely fracture and jamming of the
drive train.
For monitoring and control purposes each single ac-
tuator drive path is equipped with an absolute posi-
tion sensor and two cut force sensors. Moreover,
each of the two electric motors per actuator features
sensors for angular position, phase currents, and
temperature.

2.2 Disconnect device

Under all flight conditions, the swashplate must be
controllable in three degrees of freedom, i.e. collec-
tive, pitch, and roll (see e.g. [1]). As mentioned, the
risk of a mechanical jam must be considered which
can be caused, for instance, by wear or debris. To
avoid the swashplate getting stuck due to a single
jammed actuator, fail-safe degradation of the overall
actuation system is needed. For this reason, each ac-
tuator is fitted with a disconnect device, decoupling
the output shaft from the mechanical drive train [2].
After disconnection of one actuator the swashplate is
still safely controlled by the remaining three actua-
tors. However, the time needed for disconnection is
critical regarding stability and stress and therefore
imposes strict requirements on failure detection and
disconnect activation.

2.3 Electric motor

The most common design for electrically driven
flight surface actuators is a permanent magnet syn-
chronous motor (PMSM) fed by pulse-width modu-
lated (PWM) inverters. This is due to the superior
torque and power density of such devices.
The most common faults are device failure within
the inverter and open and/ or short circuit failures in
the motor windings. This failures typically lead to a
loss of motor output torque (open circuit failure or

inverter failure) or a drag torque induced by short-
circuit currents.

2.4 Power supply

The electric power sources driving the motors are
also critical components of the overall system. The
required power supply reliability is ensured by a
multi power bus configuration. The system has four
independent power supplies, each being connected to
one actuator control electronics (ACE) unit. The
failure cases considered include a loss of power sup-
ply output power, and out-of range output voltage.

2.5 Redundancy and component mapping

The maximum accepted probability of catastrophic
events of an aircraft system is 1x10-9h-1 [3]. To meet
this figure several subsystems must be redundant and
the connections of subsystems must be designed
such that a single failure results in minimum system
degradation.
Regarding the overall drive train a static redundancy
approach is followed, i.e. all actuators are simultane-
ously active. Each is driven by two fully independent
paths of torque generation, comprising electric mo-
tors, power supply busses, power electronics, and
control computers. In order to minimize system deg-
radation after a failure the two motors of a single
actuator are controlled by different ACE units.
Moreover, each actuator has a different combination
of motor control electronics assignment in order to
avoid the loss of two entire actuators after two ACE
failures.

Figure 2: System architecture

Figure 2 shows the applied component mapping. The
boxes on the left-hand side represent the topology of
the dual-lane computers, namely swashplate control
computer (SPCC) and actuator control electronics.
Since motor control responsibilities are split and
mapped to all four ACEs, they are operating in an
active/active configuration. The SPCC functions can
be assumed to be functionally integrated in a flight

Modeling and Simulation of a Fault-Tolerant Electromechanical Actuation System for Helicopter …

426 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076425

control computer (FCC) in a master/slave configura-
tion and therefore its topology will be adopted. Three
SPCCs are depicted being the minimum viable de-
gree of redundancy. An ACE additionally contains
power stages for motor operation and disconnect de-
vice activation, respectively (see triangles in figure
2). In addition to the two motors (circles), each main
rotor actuator (MRA) comprises a disconnect device
(DD) equipped with dual activation path, two cut
force sensors (CFS) and a single position sensor
(PS). As can be seen from the respective color cod-
ing, the disconnect device is controlled by two ACEs
different to those assigned to the two motors of an
actuator. This is to allow for disconnection even after
both motors were lost due to ACE malfunctions to
decouple dead rotary inertia.

3 Control and monitoring

In this paragraph the control and monitoring ap-
proach is briefly introduced. A more detailed de-
scription can be found in [4].

Figure 3: Control architecture

3.1 Control architecture

The presented actuator arrangement causes over-
determined kinematics, since four actuators are used
to control the three degrees of freedom of the heli-
copter swashplate (collective, pitch, and roll). A con-
trol approach is used which is based on transforming
the four actuator position signals into three position
parameters, derived from a method introduced by
[5]. Control is performed by means of a cascaded
PID architecture comprising current, speed and posi-
tion loop for each of the three directions (figure 3).
Eight motor position signals provide position feed-
back (two resolvers per actuator; the absolute posi-
tion sensor on actuator level is used for monitoring
only). By means of a regression plane the actual
swashplate position is determined and transformed
into respective actual collective, pitch, and roll val-
ues. The three force/torque set values are trans-
formed back into four actuator torque set values, i.e.
one per actuator. Hence, each two motors per actua-
tor receive a common torque command. By this set-

up force fighting between single actuators is exclud-
ed by design for nominal conditions. This approach
based on coordinate transformations is a simple and
powerful method, which is however threatened if
specific failures are not detected.

3.2 Monitoring architecture

In order to mitigate the effects of the component
failures described above, the system must be fitted
with appropriate monitoring. As a general philoso-
phy, simple mechanisms are desired. Therefore, most
of the monitoring algorithms rely on redundancy of
information and signal comparison. Complex health-
monitoring and the associated knowledge database
are avoided. In addition, the control functionality is
totally decoupled from fault-detection algorithms for
its continuous operation. In other words, control
loops are never influenced by ongoing fault detection
processes, unless an unambiguous decision was
made by the monitoring part.
There are three reconfigurations designed to be au-
tomatically executed by the system, namely isolation
of faulty position signals, disconnect device activa-
tion, and motor shutdown. For this purpose, the mon-
itoring subsystem supervises the sensor signals of all
actuators, compares redundant information and gen-
erates trusted signals fed to the controllers. Five
monitors are continuously assessing parallel tasks:

 Sensor monitor
 Actuator positioning monitor
 Swashplate positioning monitor
 Jam monitor
 Motor monitor

An additional decision layer evaluates the opinions
of the independent monitors and initiates the respec-
tive reconfiguration. In case a faulty position signal
is detected, the respective signal is permanently iso-
lated by excluding it from the regression plane com-
putation by means of a validity factor (see also [4]).
The disconnect device is activated via the respective
power stages (see figure 2) if a mechanical jam was
unambiguously detected. Motor failures are typically
detected internally by their dedicated control elec-
tronics.

4 Model implementation

4.1 General modeling approach

For model implementation the Modelica [6] based
simulation software Dymola [7] is used. The overall

Session 3D: Mechanic Systems II

DOI Proceedings of the 9th International Modelica Conference 427
10.3384/ecp12076425 September 3-5, 2012, Munich, Germany

system simulation model is shown in figure 4. With-
in the blue dotted frame the system components are
located (top down order): The lower swashplate (in-
cluding the inertias of the upper swashplate and the
rotor blades) and the respective actuator hinges at the
helicopter strucure, the array of actuators, and the
control and monitoring blocks. Control (green) and
monitoring (orange) loops are depicted. Inputs to the
system are aerodynamic forces, power supply and
position commands. On the bottom of figure 4 the
system parameters are illustrated, assigned to the five
categories mechanical drive train (MDT), power
stages and motors (PSM), position commands (POS),
external forces (FORCE), and failure injection
(FAIL).

Figure 4: Top layer of system simulation model

A major idea of the simulation model is to investi-
gate not only one specific system design, but to al-
low for comparison of the performance of several
concepts against each other. One important goal of
the model therefore is easy generation of models of
concept variants. Therefore, for instance the number

of actuators is a model parameter in order to allow
for variation of the actuator redundancy. The actua-
tors are grouped in an array of components with the
respective connectors. Figure 5 illustrates concepts
comprising three, four, and five actuators, respec-
tively.

Figure 5: Swashplate actuation design variants

Apart from the Modelica Standard Library no other
publically available model library has been used.
Class parameterization is applied for the handling of
different models of the same component (e.g. drive
train with and without friction) and of predefined
sets of parameters, e.g. aerodynamic loads, command
inputs, and failure cases. Via inheritance fully pa-
rameterized simulation experiments were stored, thus
facilitating the handling of the large number of simu-
lation test cases to be assessed. The Modelica feature
of arrays of components proved to be an essential
advantage for the implementation of redundant com-
ponents. In the following paragraphs the global mod-
el components are described.

4.2 Electromechanical actuator

As mentioned, an electromechanical actuator
consists of a mechanical drive train (including
disconnect device), two motors and a power inverter.
The disconnect device implementation is based on
constraint forces rather than friction: In connected
state, internal forces are computed which inhibit
relative movement of the disconnect device input
and output connections. After activation no more
force is transmitted, both parts move independently.
The EMA failure cases, namely drive train jamming
and drive train fracture, are modeled by activation of
a brake and deactivation of a clutch.
For assessment of the effects of mechanical losses in
the drive train two implementations have been
realized: Friction forces and torques may degrade the
overall system dynamics und must therefore be
contained in the simulation model. For investigation
of the effects of mechanical losses on power
consumption an efficiency model has been
implemented as an alternative, avoiding the
numerical issues and computational load of friction
models.

Modeling and Simulation of a Fault-Tolerant Electromechanical Actuation System for Helicopter …

428 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076425

4.3 Motor and inverter

The inverter and motor models are built according to
the functional modeling layer specifications [9]. This
allows for improvement of the overall system model
computational efficiency by exclusion of high fre-
quency switching behavior and reduction of the mo-
tor and associated controls model based on the prin-
ciples described in [8]. Motor controls are imple-
mented using standard space vector control struc-
tures with a decoupled control of the current flux-
and torque components.

4.4 Monitoring and control

The monitoring concept and the control algorithm
have been described above. Both are implemented in
single model components connected to the array of
actuator components. In contrast to the real system
implementation the simulation model does not con-
tain redundant computers. The effect of an ACE
computer failure can be emulated by switching off
the respective power supply. Swashplate control
computer (SPCC) topology and failure detection are
outside the scope of this paper. The monitoring algo-
rithms are implemented as a sampled block as it
would be implemented in flight hardware. Even
though an analogue implementation would be prefer-
able for simulation performance reasons, a sampled
implementation is required for future hardware-in-
the-loop simulations.

4.5 Aerodynamic forces

The aerodynamic forces acting on the swashplate
and its actuators are given as a sequence of signals
assigned to a matrix of flight conditions, e.g. stabiliz-
ing, high rate pull up, 30° turn with severe turbu-
lences, etc.

4.6 Power supply mapping

The power supplies are mapped to motors according
to the assignment illustrated in figure 2: Each power
unit supplies two motors containing to different ac-
tuators. Thus the failure of a single power unit does
not cause loss of a whole actuator. A dedicated map-
ping algorithm allows automated mapping of the pa-
rameterized power supplies and actuators. It is im-
plemented as variable loops of connect statements.

4.7 Failure injection

The simulation model covers a set of relevant failure
cases, as they were already introduced above. Table

1 shows a summary of the most relevant component
failures and indicated the manner of injection. Each
injection is parameterized via setting of a pair of
time/ value. Since not all combinations of failures
and fail sequences are relevant, predefined sets of
parameterizations have been defined as parameter
records. All of them are collected in a failure record
on the top model hierarchy, while class parameteri-
zation allows activation of specific fail cases.

Table 1: Component failures covered in the current
model

5 Simulation results

Validation of the system behavior requires a large
amount of simulation test cases to be performed.
Those are implemented by means of a dedicated test
case library which can be re-run on demand. This
allows for comparability, consistency and easy re-
production of the total set of test cases. This chapter
presents a short selection of simulation results of the
most relevant failure cases.

5.1 Motor failure

Figure 6a shows the response of the system to a col-
lective position demand signal injected at t=0.5s.
Both motors of actuator 1 need the same current (fig.
6b) and deliver the same torque (fig. 6c). At 0.6s a
winding short circuit failure of motor 1 occurs. Mo-
tor 2 now draws more current and delivers nearly
double torque, whereas faulty motor 1 shows short-
circuit current but only a small braking torque, while
the actuator speed is maintained. At t=1s the position
demand is satisfied, the motors continuously reduce
speed. Consequently, the speed dependant short-
circuit current of motor 2 almost disappears after

Session 3D: Mechanic Systems II

DOI Proceedings of the 9th International Modelica Conference 429
10.3384/ecp12076425 September 3-5, 2012, Munich, Germany

1.5s. Motor 2 keeps the actuator in steady state. For
this simulation the motor monitoring was deactivated
in order to check the actuator performance in the
case of a motor failure.

Figure 6: Actuator response on motor short circuit
failure

5.2 Power failure

Figure 7a shows the response of the system to a col-
lective position demand signal injected at 0.5s. All
power units deliver the nominal voltage of 270V, all
motors draw the same current. At t=0.6s a first pow-
er supply fails. Motor 2 of actuator 1 and motor 1 of
actuator 2 subsequently draw no more current (and
deliver no torque). Motor 1 of actuator 1 and motor 2
of actuator 2 compensate for this loss, i.e. draw the
double current while the actuator speed is main-
tained.
At t=1.1s a second power supply fails, thus only 4
out of 8 motors of the overall system remain active.
In figure 7c motor 1 of actuator 1 represents the 4
operative motors, the other three of which are not
displayed for transparency reasons. The demanded
position is maintained, but the system behaves more
sensitively. Damping of the current oscillations
caused by the second power unit failure requires al-
most one second. The system remains operational
with reduced performance.

Figure 7: System response on single and double
power failure

5.3 Mechanical jam

For the jamming scenario the following critical con-
dition is simulated: A sudden friction force causes
instantaneous jamming, i.e. unability of displace-
ment. This exposes the system to the most stringent
requirement regarding detection time. The discon-
nect device must be activated rapidly to maintain
control stability and limit mechanical stress.
Figure 8 shows the respective simulation results. The
swashplate performs a collective movement of
0.05m starting at t=0.5s with maximum speed
vmax=100mm/s. At t=0.7s a mechanical jam is inject-
ed at actuator 1 (fig. 8a, blue lines). Current com-
mands immediately change, expecting mainly actua-
tor 1 to compensate for the position control devia-
tion. This effect highlights the dependency of the
controller on sophisticated jam detection: Of all ac-
tuators the failed one is powered most, which in turn
weakens the remaining operative EMAs. The meas-
ured forces however illustrate that actuator 2 and 4
(pink line) sustain almost the full loads, while actua-
tors 1 and 3 do not contribute significantly.
The low measured force at actuator 1 however con-
tradicts to the high commanded current. This effect
is used for jam detection by means of an internal
torque residual. At t=0.9s the disconnect device, rep-
resented by an idealized mechanical clutch, is acti-

Modeling and Simulation of a Fault-Tolerant Electromechanical Actuation System for Helicopter …

430 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076425

vated. The converging position signals show that
horizontal swashplate attitude is recovered within
0.2s. Subsequently, for geometrical reasons, actua-
tors 2 and 4 are in charge of sustaining the
swashplate loads, while actuator 3 draws current just
for stabilization. The motors of the failed actuator
are shut down.

Figure 8: System response on mechanical jam

5.4 Position signal failure

Detection and isolation of a failed position sensor is
a very important task, since the measured positions
are the only signals directly influencing the control
loops. Via the regression plane, a non-detected posi-
tion sensor failure would lead to faulty feedback to
the position and speed loop.
Figure 9 depicts signals related to a position sensor
failure and its detection. Again, a collective
swashplate movement of 0.05m is commanded at
t=0.5s with full specified speed. Resolver 1 at actua-
tor 1 fails due to freeze at t=0.6s. This measured val-
ue is however be taken into account for the feedback
calculation of the swashplate position.
As can be seen from figure 9a, the false position val-
ue leads to an increasing diversion of the swashplate
from the horizontal plane. In the swashplate position-
ing monitor the distance of each measured position
to the overall reference plane is calculated based on
the Hesse normal form. Figure 9b shows that the
faulty sensor 1 deviates faster than the others. After
exceeding a predefined deviation threshold, this is

considered a sensor failure. To avoid that temporary
disturbances may lead to a false decision, several
confirmation cycles are performed (see figure 9c). At
t=0.8s the decision is confirmed and resolver 1.1 is
isolated. As an immediate effect, all remaining posi-
tion signals perfectly fit to the plane calculated with-
out the failed signal (see figure 9b). Horizontal atti-
tude of the swashplate is recovered and maintained
as shown in figure 9a.

Figure 9: System response on position sensor failure

6 Conclusion

The presented paper introduced a safety-critical ap-
plication of electromechanical actuators. The accom-
panied challenges of such system were described and
a summary of relevant failure cases was given.
Modelica is considered a suitable means for model-
ing of this kind of system including the specific
characteristics, such as redundancy, mapping, fault
injection, failure detection, and reconfiguration. Ex-
emplary simulation results depicted the system re-
sponse on specific relevant failure cases. It was
shown that performance and reconfiguration behav-
ior are as expected.

Session 3D: Mechanic Systems II

DOI Proceedings of the 9th International Modelica Conference 431
10.3384/ecp12076425 September 3-5, 2012, Munich, Germany

Acknowledgements

The described investigation is funded by the Europe-
an Union's Seventh Framework Programme
(FP7/2007-2013) for the Clean Sky Joint Technology
Initiative under grant CSJU-GAM-SGO-2008-001.
The contribution of the motor and inverter models by
the project partner University of Nottingham is high-
ly appreciated.

References

[1] W. Bittner. Flugmechanik der Hubschrau-
ber, Springer Verlag, 2005.

[2] A. Naubert. Pyrotechnic Jam-Relief Mech-
anism for Electromechanical Actuators in
Flight Control Applications, Proceedings of
the Actuator12 International Conference,
Bremen, Germany, 2012

[3] European Aviation Safety Agency. Certifica-
tion Specifications for Large Rotorcraft
(CS29), Köln, Germany, 2003

[4] S. Seemann, M. Christmann, P. Jänker. Con-
trol and Monitoring Concept for a Fault-
Tolerant Electromechanical Actuation Sys-
tem, Proceedings of the R3ASC International
Conference, Toulouse, France, 2012

[5] B. K. Walker, E. Gai. A New Approach to
Fault-Tolerant Helicopter Swashplate Con-
trol, AIAA Aircraft Design, Systems and
Technology Meeting, Forth Worth, USA,
1983

[6] www.modelica.org
[7] www.3ds.com/de/products/catia/portfolio/

dymola
[8] T. Wu, S. Bozhko, G. Asher, P. Wheeler.

Fast Reduced Functional Model of Electro-
mechanical Actuators for More-Electric Air-
craft Power System Study, SAE Technical
Paper 2008-01-2859, Nov.2008

[9] S. Bozhko, T. Wu, C.I. Hill, G. Asher. Ac-
celerated simulation of complex aircraft elec-
trical power system under normal and faulty
operational scenarios, in Proc. IEEE IECON
2010, Nov.2010, pp 333-338

Modeling and Simulation of a Fault-Tolerant Electromechanical Actuation System for Helicopter …

432 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076425

Session 4A: Language and Compilation Concepts II

Survey of appropriate matching algorithms for large scale systems of differential algebraic equations

Survey of appropriate matching algorithms for large scale
systems of differential algebraic equations

Jens Frenkel1 Günter Kunze1 Peter Fritzson2

1Dresden Technical University, Institute of Mobile Machinery and Processing Machines
2PELAB - Programming Environment Lab, Dept. Computer Science

Linköping University, SE-581 83 Linköping, Sweden
{jens.frenkel, guenter.kunze}@tu-dresden.de,

peter.fritzson@liu.se

Abstract

This paper presents a survey on matching algorithms
which are required to translate Modelica Models.
Several implementations of matching algorithms are
benchmarked on a set of physical models from me-
chanical systems in ODE and DAE representation.
The major part of algorithms is based on the Aug-
menting Paths Method and one algorithm is based on
the Push-Relabel Method. The algorithms are imple-
mented in the programming language C and Meta-
Modelica. In addition two cheap matching algorithms
are used to jump-start the advanced matching process.

Keywords: matching; index reduction; modelimark

1 Introduction

A major benefit of Equation based Object Oriented
modeling Languages (EOOL) like Modelica is the
possibility of acausal modeling. It increases the
reusability of models and simplifies the description
of physical systems. In order to simulate an acausal
model, all equations have to be transformed and sorted
yielding a causal model description. The process of
transforming equations into assignments is thus called
causalization. The main task of causalization is to
match each equation to a variable. It is one of the most
important challenges of any EOOL compiler.

Most models from EOOL give rise to very large and
sparse differential algebraic equation (DAE) systems
[19],[20],[25]. The challenge of the matching process
is therefore to transform the model into an ordinary
differential equation (ODE), so that it can be solved
through the application of standard numerical time in-
tegration algorithms.

Pantelides [21] provides an algorithm to get a

so called perfect matching, transforming the system
to block lower triangular form (BLT) providing all
necessary information to apply index reduction and
thereby transforming a DAE into an ODE. Driven
by the need of numerical stability several index re-
duction algorithms have been developed in the past
[16],[18],[19],[20],[25],[27].

There are other matching algorithms next to those
presented by Duff [4]. They can be divided into differ-
ent classes of worst case time complexities. The most
common complexities are shown in Figure 1 12.

Figure 1: Typical worst case complexities of matching
algorithms [9]

Since more powerful computers allow for larger
models with more equations, a future challenge will
be to optimize the scaling of EOOL compilers with re-
spect to model size. As shown in [11] the effort of
state of the art EOOL compilers is proportional to the

1n: Number of Equations
2τ: non zero entries in the Adjacency Matrix

DOI Proceedings of the 9th International Modelica Conference 433
10.3384/ecp12076433 September 3-5, 2012, Munich, Germany

second or even the third power of the number of equa-
tions, depending on the model structure. Thus it is
worth studying how the combination of matching and
Pantelides Algorithm can be further optimized.

The next section provides a brief introduction to
matching theory and index reduction. It is followed by
an overview on selected matching algorithms based on
augmenting paths and the push relabel technique. Sec-
tion 4 discusses the possibility to combine the match-
ing algorithms with index reduction by looking at
some examples. A comparison of runtimes of all these
algorithms is presented in section 5 followed by a dis-
cussion and concluding remarks in section 6.

2 Theory of Matching and Index Re-
duction

2.1 Matching Theory

The aim of this section is to give an introduc-
tion to the general definitions of matching algo-
rithms. For further information, the reader is referred
to [5],[6],[8],[9],[2],[10]. As mentioned above and
shown in detail by Elmqvist [10] matching algorithms
are provide the information how a system of equations
can be transformed symbolically into a system of as-
signments. The mathematical idea behind this, is to
transform the system into block lower triangular (BLT)
form and to solve it by a simple forward substitution
process [5]. As Duff proposed in [5] the transforma-
tion to BLT form is split into two stages:

• Match each equation to a variable and transform
the problem description into a directed graph

• Find a traversal of the directed graph which
means to sort the equations and identify algebraic
loops

For the second step Tarjan’s Algorithm [26] is very ef-
ficient and offers time linear complexity with respect
to the number of equations [6]. To understand the first
step one has to look at the Adjacency Matrix of a sys-
tem of equations. The rows of the Adjacency Matrix
correspond to the equations whereas the columns cor-
respond to the variables of the system. The Adjacency
Matrix has an entry (=1) at row i and column j, iff
equation i contains variable j. The number of en-
tries in the Adjacency Matrix is denoted with τ . For
a nonsingular system, the matching algorithm finds an
unsymmetric permutation which produces a zero-free
main diagonal. The set of all nonzero entries on the

main diagonal is called a transversal. A set containing
the maximum number of nonzero elements is called a
maximum transversal. A simple example is shown in
Figure 2.

a)
b+ c = 0

a = 10
a+ c = 2

b)

 0 1 1
1 0 0
1 0 1

c)

 1 0 0
1 1 0
0 1 1


Figure 2: Equation System (a) with Adjacency Matrix
(b) and permuted matrix in BLT form (c) from match-
ing highlighted in boldface.

The Adjacency Matrix can also be presented as a bi-
partite graph with one set of nodes representing equa-
tions (green) and another representing variables (yel-
low). The edges of the graph represent the nonzero
entries in the Adjacency Matrix. For the simple exam-
ple presented above in Figure 2 the bipartite graph is
shown in Figure 3.

Figure 3: Bipartite graph for the example from Figure
2

A set of matched equations and variables is called
matching or assignment block. If no additional
matches can be found, the matching is called maxi-
mum. In case of a square matrix the matching is com-
plete (perfect) if all equations are matched. In case of
a non-square matrix the matching is complete if either
all equations or all variables could be matched. A se-
quence of connected nodes is called path. If each of
the nodes on a path belong to the matching, then it is
called an alternating path relative to an assignment. If
the alternating path has an unmatched equation at one
end and an unmatched variable at the other end it is
called a augmenting path. In such a case the matching
could be increased by one if all assignments from the

Survey of appropriate matching algorithms for large scale systems of differential algebraic …

434 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076433

path are removed from the matching and all other as-
signments from the path are added. This procedure is
called reassignment or rematching [8].

Figure 4: Matched Bipartite graph for the ex-
ample from Figure 2 with alternating path M=
{(2,a),(3,c),(1,b)}

2.2 Index Reduction

In case of a DAE system with differential index vd > 1
[[27], Definition 2.1] no complete matching can be
found. If the system is not structurally singular an ap-
propriate symbolical index reduction algorithm must
be employed to reduce the differential index vd to at
least one.

As mentioned in [27] and [25] several symbolical
methods for index reduction are available. The graph-
theoretical algorithm from Pantelides with improve-
ments from Soares and Secchi [25] is most commonly
used.

Pantelides’ approach is to find a minimal struc-
turally singular (MSS) subsets of equations. The equa-
tions of the subset are differentiated and replaced by
their derivatives. The algebraic variables which get
derived with respect to time in the process are marked
as states and only their derivatives are considered for
the next matching cycle. With the criterion, that the
number of new equations generated through differen-
tiation must not exceed the number of variables in the
new subset, structural singular systems are detected
and the algorithm terminates with an error. Due to the
removed algebraic relations between the dynamic vari-
ables of the system and the algebraic variables marked
as states the calculated results will be unusable. Ap-
propriate algorithms to cover this issue are presented
by several authors [16],[18], [19],[20].

3 Matching Algorithms

Since Pantelides’ Algorithm does not rely on a par-
ticular matching algorithm, it is worth comparing dif-
ferent algorithms within that context. Guided by
[9],[14],[24] a set of promising matching algorithms
has been selected. While the majority of algorithms is
based on a search for augmenting paths, one algorithm
is employs a push-relabel strategy, designed for maxi-
mum flow problems [12],[14]. Since bipartite match-
ing is a special case of the maximum flow problem,
push-relabel might be well suited to solve the match-
ing problem [14].

3.1 Augmenting Paths Based Algorithms

3.1.1 DFS

The depth first search based matching algorithm (DFS)
applies a depth first search on each unmatched column
to find an augmenting path. To avoid double visits an
array of size m - the number of rows - is used. The
augmenting path can be retrieved from the stack of the
DFS. The stack is used to backtrack after visiting all
nodes and has the same size as the number of columns
n. To improve the performance, an additional array of
size n is used to keep the information of the last vis-
ited row for each column. In summary the algorithm
needs 2n+m additional space to the memory for stor-
ing the assignments. Please note, that only the Adja-
cency Matrix but not its transpose is required, since
the algorithm traverses only from columns to rows.

3.1.2 BFS

The breadth first search based matching algorithms
(BFS) use a breadth first search for each unmatched
column to find an augmenting path. The additional
space consumption of a good implementation is n+
2m. A queue of size n is needed to store the columns
to visit next as well as an array of size m to mark the
visited rows. The augmenting path is stored in an ad-
ditional array of size m, saving the parent column to
each row. Analogous to the DFS only the Adjacency
Matrix is need for BFSB.

3.1.3 MC21A

The MC21A algorithm is based on a DFS with an ad-
ditional look ahead mechanism. The look ahead mech-
anism first checks all rows of a column for an un-
matched variable before going deeper. Implementing

Session 4A: Language and Compilation Concepts II

DOI Proceedings of the 9th International Modelica Conference 435
10.3384/ecp12076433 September 3-5, 2012, Munich, Germany

the look ahead mechanism requires an additional ar-
ray of size n for the check. In total the implementation
needs 3n+m additional space.[4][7]

3.1.4 PF

The algorithm by Pothen and Fan (PF) is very much
alike MC21A. The difference lies in the usage of the
visited flag. A PF phases starts with a queue of size
n of all unmatched columns. On each column a DFS
with look ahead is applied. The flag visited is not re-
set after the search. The column is dequeued if it is
matched. The PF phases are applied until all columns
are removed from the queue. The additional space is
4n+m and again only the Adjacency Matrix is need
for PF.[23]

3.1.5 PF+

PF+ is a simple extension to PF by [9]. To decrease
the sensitiveness of the algorithm for row and column
permutations the traversal direction of the rows alter-
nates. The additional space consumption is 4n+m as
in PF.[9][14]

3.1.6 HK

The algorithm by Hopcroft and Karp (HK) is orga-
nized in phases comprising two parts. The fist part
is a BFS from all unmatched columns to assign level
numbers to the rows. The level numbers indicate the
shortest path length from a row to an unmatched col-
umn. In the second part the level numbers are used
to increase the assignments with a DFS. It is only al-
lowed to traverse columns with decreasing level num-
bers. The additional space consumption is 2n + 2m
(stack(m),queue(n),nextcol(m),levels(m)). Note, since
HK uses both BFS and DFS both the Adjacency Ma-
trix and its transposed are required.[13][3]

3.1.7 HKDW

HK modified by Duff and Wiberg (HKDW) adds a
third part to the HK phase. The third part is a DFS
in the full graph for each remaining unmatched row
to increase the matching. The flag visited is not reset
between two DFS in part three. The additional space
consumption with 2n+ 2m is similar to HK because
the additional DFS needs no further memory. [8]

3.1.8 ABMP

The algorithm by Alt et al. (ABMP) is organized
in two phases. The fist phase increases the match-
ing by a sophisticated search procedure combining
BFS and DFS. This phase is performed until the lower
bound on the shortest augmenting path length exceeds
a suitable value. Alt et al. suggest to use the bound
L =

√
τlogn/n.[9] The additional space consumption

is 2n+2m.[1]

3.2 Push Relabel Based Algorithms

Push Relabel Algorithms are developed to solve the
problem of maximum flow in networks. The idea be-
hind is not to find augmenting paths but to search and
augment together. Based on a set of rules specula-
tive augmentations are performed by unmatching and
matching.[14][24]

3.2.1 PR

A detailed description of the implemented push relabel
algorithm can be found in [14]. The algorithm uses the
same mechanism like PF+ to traverse the adjacency
list in alternating order called fairness. The push order
to select active columns for pushing is first-in-first-out
(FIFO). The additional space consumption is 2n+m
(row label(m),column label(m),queue(m)) and the Ad-
jacency Matrix as well as its transposed are need.

3.3 Heuristic Based Algorithms

Next to the systematic algorithms discussed above,
there are algorithms based on heuristics which are de-
signed to increase the performance of a matching pro-
cess. They are called cheap matching and their ben-
efits strongly depend on the structure of the problem.
Thus they are used as an initial guess or jump-start. In
[9] a comprehensive overview on cheap matching al-
gorithms is given. Based on the results from [9] two
heuristics are selected for testing. The frequently used
and the best one.

3.3.1 Cheap Matching

The cheap matching algorithm traverses all columns
and matches the first unmatched row in the adjacency
list of the column. The complexity of the algorithm is
O(n+ τ).

Survey of appropriate matching algorithms for large scale systems of differential algebraic …

436 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076433

3.3.2 KS Rand Cheap Matching

The cheap matching algorithm by Karp and Sipser in-
troduces a heuristic based on constructing a smaller
graph through two rules and a random matching. More
information can be found in [9].

3.4 Adaptability for Index Reduction

The matching algorithms discussed above can be clas-
sified based on their behaviour when encountering sin-
gular systems. While the simple matching algorithms
terminate as soon as a single node cannot be assigned,
the advanced algorithms terminate with a non empty
set of unassigned nodes. Some of them allow the set
to be collected in a post processing step.

• Simple Matching Algorithms

– DFSB
– BFSB
– MC21A

• Advanced Matching Algorithms

– PF
– PF+
– HK
– HKDW
– ABMP
– PR

In the original paper of Pantelides, the matching al-
gorithm MC21A by Duff was used. MC21A belongs
to the group of simple algorithms. Hence no changes
have to be made to the Pantelides Algorithms for sim-
ple matching algorithms.

In case of a simple matching algorithm the MSS
subset contains exactly one unmatched equation. The
other equations of the subset are found by a search in
the matched graph starting from the variables of the
unmatched equation. During the search, each variable
is visited only once. For all presented simple algo-
rithms the search to get the MSS subset is not an extra
step, it is found by storing the visited equations in each
phase of the algorithm.

In case of an advanced matching algorithm, a search
in the matched graph is necessary for each equation
to get the MSS subsets. Each subset has to fulfil the
criterion, that the number of new equations generated
by differentiation must not exceed the number of vari-
ables in the new subset. Hence, obtaining the MSS
subset is more costly compared to simple algorithms
as the search is an extra step.

4 Measurements on Examples

Since there is no comparison of matching algorithms
in the field of Modelica known to the author an ex-
tensive survey has been conducted. Therefore each
matching algorithm has been implemented into the
OpenModelica compiler (OMC) 3. In order to be com-
patible with both simple and advanced matching algo-
rithms the Pantelides index reduction had to be reim-
plemented modifying the interfaces and the compi-
lation process. Since there exists only little experi-
ence about the runtime efficiency and comparability of
MetaModelica [22], in which the OMC is written, an
external C implementation of freely available match-
ing algorithms [15] has been embedded as well.

The aim of this paper is to compare the computa-
tional effort of the matching algorithms with and with-
out index reduction using selected examples. In addi-
tion the influences of the programming language and
the usage of a cheap matching algorithm are investi-
gated.

All measurements were accomplished using a Win-
dows 7, 64 Bit System with Intel Core i7 860, 2.80
GHz and 8.0 GB RAM.

4.1 Examples

To do an extensive comparison of matching algorithms
scalable Modelica models are needed. Since the au-
thor is mainly concerned with multi body systems, the
following mechanical models will be used:

• chain structure Figure 5 (a)

• tree structure Figure 5 (b)

• grassland structure Figure 5 (c)

• kinematic loops 5 (d)

The models are based on the Model-
ica.Mechanics.Multibody library (MSL 3.1), the
Planar Mechanics Library from DLR4 and PyMbs
[17]. PyMbs5 is a Python based multi body tool to
generate the equations of motion from a description
similar to Modelica.Mechanics.Multibody. PyMbs
generates efficient flat Modelica code which places
very low demands on the EOOL compiler. Hence no
index reduction step is necessary and one obtaints a
benchmark for pure matching. The reason to use three

3www.openmodelica.org
4http://www.robotic.de/339
5http://sourceforge.net/projects/pymbs/

Session 4A: Language and Compilation Concepts II

DOI Proceedings of the 9th International Modelica Conference 437
10.3384/ecp12076433 September 3-5, 2012, Munich, Germany

(a) Rope (b) MultiRope (c) Wheel

(d) FourBarLinkage

Figure 5: Example Models

different descriptions is to study the influences of the
way a model is set up.

In addition to the four models, most examples from
the Modelica.Mechanics package are used for the
comparison with index reduction.

4.2 Results for Pure Matching

The results for pure matching on the rope model are
presented in Figure 6 and Figure 7. Most of the al-
gorithms show a linear relationship between effort and
model size. The represented model size is the num-
ber of equations the matching algorithm operates on.
Note, that this is the reduced size of the model. Be-
cause it was important for the benchmarks to be com-
parable with the usual modelling process all steps, for
example the detection of simple equations like a = b
and a = constant are performed before matching.

Figure 6: Results from Rope examples, MetaModelica
implementation

Figure 7: Results from Rope examples, C implemen-
tation

The PF+ algorithm is the fastest, while the simple
DFS algorithm needs the most time. The PR algorithm
is the second fastest, only beaten by PF+. While the
MetaModelica implementation suggests that the push
relabel algorithm seems to be very efficient, results
from the C implementation show a different picture
7. Here the PR scales non-linear and needs the most
time. Again, the DFS is slowest and the PF+ is the
fastest augmentation path based algorithm. Generally
speaking, the C implementation is around ten times
faster than the MetaModelica implementation, includ-
ing the time to pass the incidence Matrix (SetM) and
to return the assignments (GetAss) as shown in Fig-
ure 7. Copying the Incidence Matrix and returning the
Assignments takes twice the time needed to match the
system using the PF+ algorithm, rendering the overall
time similar to the fastest MetaModelica implemen-
tation. Figure 8 and Figure 9 show the results for
the MultiRope model. Again, PF+ is the fastest, DFS
needs most time and the C implementation is around
10 times faster.

Figure 10 show the results for the wheel example.
Here some algorithms scale non-linear in time and a
few scale linear. Still, PF+ is one of the fastest algo-
rithms and DFS needs the most time.

The results for the kinematic loop model are shown
in Figure 11. Here, the fastest algorithm is HK closely
followed by HKDW. Nonetheless, PF+ still belongs to
one of the fastest algorithms.

In summary the fastest overall algorithm in case of
pure matching is the PF+ algorithm. It scales linear in
time for all test cases and therefore seems well suited
for large scale systems.

Survey of appropriate matching algorithms for large scale systems of differential algebraic …

438 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076433

Figure 8: Results from MultiRope examples, Meta-
Modelica implementation

Figure 9: Results from MultiRope examples, C imple-
mentation

4.3 Results for Matching and Index Reduc-
tion

The result for the rope model is shown in Figure 12
and 13. Again PF+ is one of the fastest algorithm
and scales linear in time. Since all other models do
not show a mentionable difference their results are not
shown explicitly. Please note, that due to the lower
demands on the EOOL compiler, the OMC manages
to process models of up to 200 bodies when described
with PyMbs. The upper boundary for the MSL lies at
around 50 bodies.

In addition to the models presented above Figure
14 shows the results for the examples included in the
package Modelica.Mechanics. The results are pre-
sented with a logarithmic time axis. The grey curves

Figure 10: Results from Wheel examples, MetaMod-
elica implementation

Figure 11: Results from FourBarLinkage examples,
MetaModelica implementation

represent linear relationships between time and num-
ber of equations. The suffix Ext marks the C imple-
mentation. Because some models have roughly equal
numbers of equations, the graph looks quite scattered.
Again, PF+ is one of the fastest algorithm and scales
linear in time.

4.4 Results for Cheap Matching

The results from the usage of heuristic algorithms are
shown in Figure 15 and 16 for the cheap matching and
in Figure 17 and 15 for the KS cheap matching al-
gorithm. It can be seen that especially the BFS and
DFS MetaModelica implementations benefit from the
usage of a cheap matching algorithm. The time saved

Session 4A: Language and Compilation Concepts II

DOI Proceedings of the 9th International Modelica Conference 439
10.3384/ecp12076433 September 3-5, 2012, Munich, Germany

Figure 12: Results from Rope MSL examples, Meta-
Modelica implementation

Figure 13: Results from Rope PM examples, Meta-
Modelica implementation

for both algorithm is around 80%.

5 Conclusion

An extensive survey has been conducted by the author
to find the best suited matching algorithm for EOOL
compilers. Several real life models have been used for
testing. It was found that that the PF+ algorithm per-
formed best on almost all models.

Moreover, it has been found that the PF+ algorithm,
although it has a non-linear worst case time complex-
ity, scales linear for the models tested within this sur-
vey. This makes it ideally suited for the application in
large scale models. Unfortunately, further increase in
model size, to support that claim, was hindered due to

Figure 14: Results from Matching with Index Reduc-
tion for Modelica.Mechanics Example Models

Figure 15: Results from Rope MSL examples, Meta-
Modelica implementation

the memory consumption of the OpenModelica com-
piler. Future work will aim at increasing the manage-
able model size and rerun the benchmarks.

It could also be shown that MetaModelica seems not
to be well suited for such algorithms since the C im-
plementation is at least 10 times faster. Maybe some
further language and compiler features could decrease
the time difference to a natural C implementation. The
main difference of implementation is caused by the
storage of the Adjacency Matrix. The C implementa-
tion uses an array to store the values and an additional
array to store the column indices. In MetaModelica
the matrix is stored as an array of lists. To traverse
the lists in MetaModelica recursive function calls are
needed whereas the c implementation simply stores

Survey of appropriate matching algorithms for large scale systems of differential algebraic …

440 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076433

Figure 16: Results from Rope MSL examples, C im-
plementation

Figure 17: Results from Rope MSL examples, Meta-
Modelica implementation

the needed indices for the traversal in arrays.
Since the implementation is freely available in the

OpenModelica Compiler, the survey may be extend
with models from other physical domains.

References

[1] Alt, H.; Blum, N.; Mehlhorn, K.; Paul, M.: Com-
puting a maximum cardinality matching in a bi-
partite graph in time O(n1.5

√
m/log(n)), Infor-

mation Processing Letters, Volume 37, Issue 4,
28 February 1991, Pages 237-240

[2] Berge, C. The Theroy of Graphs. Methuen, Lon-
don, 1962

Figure 18: Results from Rope MSL examples, C im-
plementation

[3] Blum. N.: A simplified realization of the
Hopcroft-Karp approach to maximum matching
in general graphs. Technical report, Universität
Bonn, 1999.

[4] Duff, I. S. On algorithms for obtaining a max-
imum transversal. ACM Trun.s. Math. Softw.
7(1981), 315-330.

[5] Duff, I.S.; Erisman, A.M.; Reid, J.K.: Di-
rect methods for sparse matrices,1986,Clarendon
Press Oxford

[6] Duff, I. S.; Reid J. K.; Harwell, A.: An imple-
mentation of Tarjan’s algorithm for the block tri-
angularization of a matrix,in ACM Trans. Math.
Software Volume 4, pp. 137-147, 1978

[7] Duff, I. S.: Algorithm 575: Permutations for
a Zero-Free Diagonal [F1]. ACM Trans. Math.
Softw. 7, 3 September 1981, 387-390

[8] Duff, I. S.; Wiberg, T.: Remarks on implementa-
tion of O(n1/2τ) assignment algorithms ,in ACM
Trans. Math. Software Volume1 4, pp. 267-287,
1988

[9] Duff, I.S.; Kaya, K.; Uçar, B.: Design, imple-
mentation, and analysis of maximum transversal
algorithms,ACM Transactions on Mathematical
Software (TOMS),38,2,13,2011,ACM

[10] Elmqvist, H.: A Structured Model Language for
Large Continuous Systems, Ph.D. Dissertation,
Report CODEN: LUTFD2/(TFRT-1015), Dept.

Session 4A: Language and Compilation Concepts II

DOI Proceedings of the 9th International Modelica Conference 441
10.3384/ecp12076433 September 3-5, 2012, Munich, Germany

of Automatic Control, Lund Institute of Technol-
ogy, Lund, Sweden, 1978

[11] Frenkel, J.; Schubert, C.; Kunze, G.; Fritzson,
P.; Sjölund, M.; Pop, A.: Towards a Benchmark
Suite for Modelica Compilers: Large Models.
In: Proceedings of the 8th Modelica Conference
2011, Dresden, Germany, Modelica Association,
20-22 March 2011. https://www.modelica.
org/events/modelica2011/Proceedings/
pages/papers/07_1_ID_183_a_fv.pdf

[12] Goldberg, A. V.; Tarjan, R. E.: A new approach
to the maximum flow problem. Annual ACM
Symposium on Theory of Computing, Proceed-
ings of the eighteenth annual ACM symposium
on Theory of computing, 136-146

[13] Hopcroft, J. E.; Karp, R. M.: A n5/2 algorithm
for maximum matchings in bipartite graphs.
SIAM Journal of Computing, 2(4): 225-231,
1973

[14] Kaya, K.; Langguth, J.; Manne, F.; Uçar, B.:
Experiments on Push-Relabel-based Maximum
Cardinality Matching Algorithms for Bipartite
Graphs, CERFACS Tech. Report TR/PA/11/33,
May, 2011

[15] Kaya, K.: http://bmi.osu.edu/ kamer/research.html,
last visit 2012-02-05, Matchmaker v0.3

[16] Kunkel, P.; Mehrmann, V.: Index reduction for
differential-algebraic equations by minimal ex-
tension. Z. angew. Math. Mech., 84: pp. 579-597,
2004

[17] Kunze, G.; Frenkel, J.; Knoll, C.; Schubert C.;
Voigt, S.: PyMbs: Ein generisches Software
Werkzeug für die Simulation von Mehrkörper-
systemen, VDI Mechatronik Tagung, 2011.

[18] Mattsson, S.; Söderlind, G.: Index reduction
in differential-Algebraic equations using dummy
derivatives, SIAM J. Sci. Comput. 14, 677-692,
1993.

[19] Mattsson, S.E.; Olsson, H; Elmqviste, H. Dy-
namic Selection of States in Dymola. In: Pro-
ceedings of the Modelica Workshop 2000, Lund,
Sweden, Modelica Association, 23-24 Oct. 2000.

[20] Mattsson, S.E.; Söderlind, G.: A new technique
for solving high-index differential-algebraic

equations using dummy derivatives, Computer-
Aided Control System Design, 1992. (CACSD),
1992 IEEE Symposium on , pp.218-224, 17-19
Mar 1992

[21] Pantelides C. The Consistent Initialization of
Differential-Algebraic Systems.SIAM J. Sci. and
Stat. Comput. Volume 9, Issue 2, pp. 213-231,
March 1988.

[22] Pop, A.; Fritzson, P.: MetaModelica: A
Unified Equation-Based Semantical and Math-
ematical Modelling Language. In Proceedings
of Joint Modular Languages Conference 2006
(JMLC2006) LNCS Springer Verlag. Jesus Col-
lege, Oxford, England, Sept 13-15, 2006.

[23] Pothen, A; Fan; C.-J.: Computing the block tri-
angular form of a sparse matrix. ACM Trans.
Math. Softw. 16, 4 ,December 1990, 303-324

[24] Setubal, J.C.: Sequential and parallel experimen-
tal results with bipartite matching algorithms , in
Technical Report EC-96-09, Institute of Comput-
ing, University of Campinas, Brasil, 1996

[25] Soares, R. de P.; Secchi, A. R.: Direct Ini-
tialisation and Solution of High-Index DAESys-
tems. in Proceedings of the European Symbo-
sium on Computer Aided Process Engineering -
15, Barcelona, Spain, 2005

[26] R. Tarjan, Depth-first search and linear graph al-
gorithms, in Conf.Record 1971 IEEE 12th Annu.
Symp. Switch. Automata Theory, 1971,pp. 114-
121

[27] Unger, J.; Kröner, A.; Marquardt,W.: Struc-
tural analysis of differential-algebraic equation
systems-theory and applications, Computers &
Chemical Engineering, Volume 19, Issue 8, Au-
gust 1995, Pages 867-882

Survey of appropriate matching algorithms for large scale systems of differential algebraic …

442 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076433

Static and Dynamic Debugging of Modelica Models

Static and Dynamic Debugging of Modelica Models
Adrian Pop1, Martin Sjölund1, Adeel Asghar1, Peter Fritzson1, Francesco Casella2

1Programming Environments Laboratory
Department of Computer and Information Science

Linköping University, Linköping, Sweden
2Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy

{adrian.pop,martin.sjolund,adeel.asghar,peter.fritzson}@liu.se
casella@elet.polimi.it

Abstract
The high abstraction level of equation-based object-
oriented languages (EOO) such as Modelica has the
drawback that programming and modeling errors are
often hard to find. In this paper we present static and
dynamic debugging methods for Modelica models and
a debugger prototype that addresses several of those
problems. The goal is an integrated debugging frame-
work that combines classical debugging techniques
with special techniques for equation-based languages
partly based on graph visualization and interaction.

To our knowledge, this is the first Modelica debug-
ger that supports both transformational and algorithmic
code debugging.

Keywords: Modelica, Debugging, Modeling and

Simulation, Transformations, Equations, Algorithmic
Code, Eclipse

1 Introduction
Advanced development of today’s complex products
requires integrated environments and equation-based
object-oriented declarative (EOO) languages such as
Modelica [8][12] for modeling and simulation. The
increased ease of use, the high abstraction, and the ex-
pressivity of such languages are very attractive proper-
ties. However, these attractive properties come with the
drawback that programming and modeling errors are
often hard to find.

To address these issues we present static (compile-
time) and dynamic (run-time) debugging methods for
Modelica models and a debugger prototype that ad-
dresses several of those problems. The goal is an inte-
grated debugging framework that combines classical
debugging techniques with special techniques for equa-
tion-based languages partly based on graph visualiza-
tion and interaction.

The static transformational debugging functionality
addresses the problem that model compilers are opti-
mized so heavily that it is hard to tell the origin of an
equation during runtime. This work proposes and im-
plements a prototype of a method that is efficient with
less than one percent overhead, yet manages to keep
track of all the transformations/operations that the
compiler performs on the model.

Modelica models often contain functions and algo-
rithm sections with algorithmic code. The fraction of
algorithmic code is increasing since Modelica, in addi-
tion to equation-based modeling, is also used for em-
bedded system control code as well as symbolic model
transformations in applications using the MetaModelica
language extension.

Our earlier work in debuggers for the algorithmic
subset of Modelica used high-level code instrumenta-
tion techniques which are portable but turned out to
have too much overhead for large applications. The
new dynamic algorithmic code debugger is the first
Modelica debugger that can operate without high-level
code instrumentation. Instead, it communicates with a
low-level C-language symbolic debugger to directly
extract information from a running executable, set and
remove breakpoints, etc. This is made possible by the
new bootstrapped OpenModelica compiler which keeps
track of a detailed mapping from the high level
Modelica code down to the generated C code compiled
to machine code.

The dynamic algorithmic code debugger is opera-
tional, supports both standard Modelica data structures
and tree/list data structures, and operates efficiently on
large applications such as the OpenModelica compiler
with more than 100 000 lines of code.

The attractive properties of high-level object-
oriented equation-based languages come with the
drawback that programming and modeling errors are
often hard to find. For example, in order to simulate
models efficiently, Modelica simulation tools perform a
a large number of symbolic manipulation in order to

DOI Proceedings of the 9th International Modelica Conference 443
10.3384/ecp12076443 September 3-5, 2012, Munich, Germany

reduce the complexity of models and prepare them for
efficient simulation. By removing redundancy, the gen-
eration of simulation code and the simulation itself can
be sped up significantly. The cost of this performance
gain is error-messages that are not very user-friendly
due to symbolic manipulation, renaming and reordering
of variables and equations. For example, the following
error message says nothing about the variables in-
volved or its origin:
Error solving nonlinear system 2
time = 0.002
residual[0] = 0.288956, x[0] = 1.105149
residual[1] = 17.000400, x[1] = 1.248448

It is usually hard for a typical user of the Modelica tool
to determine what symbolic manipulations have been
performed and why. If the tool only emits a binary exe-
cutable this is almost impossible. Even if the tool emits
source code in some programming language (typically
C), it is still quite hard to know what kind of equation
system you have ended up with. This makes it difficult
to understand where the model can be changed in order
to improve the speed or stability of the simulation.
Some tools allow the user to export the description of
the translated system of equations [18], but this is not
enough. After symbolic manipulation, the resulting
equations no longer need to contain the same variables
or structure as the original equations.

This work proposes and develops a combination of
static and dynamic debugging techniques to address
these problems. The static (compile-time) transforma-
tional debugging efficiently traces the symbolic trans-
formations throughout the model compilation process
and provides explanations regarding to origin of prob-
lematic code. The dynamic (run-time) debugging al-
lows interactive inspection of large executable models,
stepping through algorithmic parts of the models, set-
ting breakpoints, inspecting and modifying data struc-
tures and the execution stack.

An integrated approach is proposed where the origin
mapping provided by the static transformational de-
bugging is used by the dynamic debugger to relate run-
time errors to the original model sources. To our
knowledge no other open-source or commercial
Modelica tool currently supports static transformational
debugging or algorithmic code debugging.

The paper is structured as follows: Section 2 the
background and related work, Section 3 analyzes
sources of errors and faults, Section 4 proposes an inte-
grated static and dynamic debugging approach, Section
5 presents the static transformational debugging meth-
od and implementation, whereas Section 6 presents the
algorithmic code debugging functionality. Conclusions
and future work are given in Section 7.

2 Background and Related Work

2.1 Debugging techniques for EOO Languages

In the context of debugging declarative equation-based
object-oriented (EOO) languages such as Modelica,
both the static (compile-time) and the dynamic (run-
time) aspects have to be addressed.

The static aspect of debugging EOO languages
deals with inconsistencies in the underlying system of
equations:

1. Errors related to the transformations of the models

to an optimized flattened system of equations suit-
able for numeric solution, e.g. symbolic solutions
leading to division by a constant zero stemming
from a singular system of equations, or (very rare-
ly) errors in the symbolic transformations them-
selves.

2. Overconstrained models (too many equations) or
underconstrained models (too few equations). The
number of variables needs to be equal to the equa-
tions is required for solution.

The dynamic (run-time) aspect of debugging EOO lan-
guages addresses run-time errors that may appear due
to faults in the model:

1. model configuration: when the parameters values
and start attributes for the model simulation are in-
correct.

2. model specification: when the equations and algo-
rithm sections that specify the model behavior are
incorrect.

3. algorithmic code: when the functions called from
equations return incorrect results.

Methods for both static and dynamic (run-time) debug-
ging of EOO languages such as Modelica have been
proposed earlier [6][7]. With the new Modelica 3.0
language specification, the static overconstrained/
underconstrained debugging of Modelica presents a
rather small benefit, since all models are required to be
balanced. All models from already checked libraries
will already be balanced; only newly written models
might be unbalanced, which is particularly useful if
new models contain a significant number of unknowns.

Regarding dynamic (run-time) debugging of models
[6] proposes a semi-automated declarative debugging
solution in which the user has to provide a correct di-
agnostic specification of the model which is used to
generate assertions at runtime. Moreover, starting from
an erroneous variable value the user explores the de-
pendent equations (a slice of the program) and acts like
an “oracle” to guide the debugger in finding the error.

Static and Dynamic Debugging of Modelica Models

444 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076443

3 Sources of Errors and Faults
There are a number of sources of errors and faults in a
simulation system. Some errors can be recovered auto-
matically by the system, whereas others should be re-
ported and allow the users to enter debugging mode.
An error can also be a wrong value pointed out manual-
ly by a user.

Every solver employed within a simulation system
at all levels should be equipped with an error reporting
mechanism, allowing error recovery by the master
solver, or error reporting to the end-user in case of irre-
coverable error:

• the ODE solvers
• the functions computing the derivatives and the al-

gebraic functions given the states, time, and inputs
• the functions computing the initial states and the

values of parameters
• the linear equation solvers
• the nonlinear equation solvers

If some equation can be solved symbolically, without
resorting to numerical solvers, then the symbolic solu-
tion code should be equipped with diagnostics to han-
dle errors as well.

In the next section we give causes of errors that can
appear during the model simulation.

3.1 Errors in the evaluation of expressions

During the evaluation of expressions, faults may occur
due to the following causes:

• Division by zero
• Evaluation of non-integer powers with negative ar-

gument
• Functions called outside their domain (e.g.: sqrt(-1),

log(-3), asin(2)). For non built-in functions, these
errors can be triggered by assertions within the algo-
rithm, or by calls to the pre-defined ModelicaError()
function in the body of external functions.

• Errors manifesting as computed wrong value of
some variable(s), where the error is manually point-
ed out by a user or automatically detected as being
outside min/max bounds.

3.2 Assertion violations in models

During initialization or simulation, assertions inside
models can be triggered when the condition being as-
serted becomes false.

3.3 Errors in the solution of implicit algebraic
equations

During initialization or simulation of DAE systems,
implicit equations (or systems of implicit equations,
corresponding to strong components in the BLT de-
composition) must be solved. In the case of linear sys-
tems, the solver might fail because there is some error
in evaluating the coefficients of the A matrix and of the
b vector of the linear equation Ax = b, or because said
problem is singular. In the case of nonlinear equations
f(x) = 0, the solver might fail for several reasons: the
evaluation of the residual f(x) or of its Jacobian gives
errors; the Jacobian becomes singular: the solver fails
to converge after a maximum number of iterations.

3.4 Errors in the integration of the ODEs

In OpenModelica, the DAEs are brought to index-1
ODE form by symbolic and numerical transformation,
and these equations are then solved by an ODE solver,
which iteratively computes the next state given the cur-
rent state. During the computation of the next state, e.g.
by using Euler, Runge-Kutta or a BDF algorithm, er-
rors such as those reported in section 3.1, 3.2, 3.3 might
occur. Furthermore, the solver might fail because of
singularity in the ODE, as in the case of finite escape
time solutions, or of discontinuities leading to chatter-
ing.

4 Integrated Debugging Approach
In this section we propose an integrated debugging
method combining information from a static analysis of
the model with dynamic debugging at run-time.

4.1 Integrated Static-Dynamic Debug Method

This method partly follows the approach proposed in
[6][7] and further elaborated in [3]. However, our ap-
proach does not require the user to write diagnostic
specifications of models. Also, the approach we present
here can also handle the debugging of algorithmic code
using classic debugging techniques.

An overview of this debugging strategy is presented
in Figure 1. In short, our run-time debugging method is
based on the integration of the following:

1. Dependency graph visualization and interaction.
2. Presentation of simulation results and modeling

code.
3. Mapping of errors to model code positions.
4. Execution-based debugging of algorithmic code.

A possible debugging session might be as follows.

Session 4A: Language and Compilation Concepts II

DOI Proceedings of the 9th International Modelica Conference 445
10.3384/ecp12076443 September 3-5, 2012, Munich, Germany

During the simulation phase, the user discovers an error
in the plotted results, or an irrecoverable error is trig-
gered by the run-time simulation code. In the former
case, the user marks either the entire plot of the variable
that presents the error or parts of it and starts the de-
bugging framework. The debugger presents an (IDG)
interactive dependency graph with respect to the varia-
ble with the wrong value or the expression where the
fault occurred. The dependency edges in IDG are com-
puted using the transformation tracing that is described
in Section 5. The nodes in the graph consist of all the
equations, functions, parameter value definitions, and
inputs that were used to calculate the wrong variable
value, starting from the known values of states, pa-
rameters and time.

The variable with the erroneous value (or which
cannot be computed at all) is displayed in a special
node which is the root of the graph. The IDG contains
two types of edges:

1. Calculation dependency edges: the directed edges
labeled by variables or parameters which are inputs

(used for calculations in this equation) or outputs
(calculated from this equation) from/to the equa-
tion displayed in the node.

2. Origin edges: the undirected edges that tie the
equation node to the actual model which this equa-
tion belongs to.

The user interacts with the dependency graph in several
ways:

• Displaying simulation results through selection of
the variables (or parameters) names (edge labels).
The plot of a variable is shown in a popup window.
In this way the user can quickly see if the plotted
variable has erroneous values.

• Displaying model code by following origin edges.
• Invoking the algorithmic code debugging subsystem

when the user suspects that the result of a variable
calculated in an equation which contains a function
call is wrong, but the equation seems to be correct.

Using these interactive dependency graph facilities the
user can follow the error from its manifestation to its
origin. Note that in most cases of irrecoverable errors

Interactive Dependency Graph
These equations contributed to the result

Code viewer
Show which model or function
the equation node belongs to

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

Follow if error
is in an equation

Simulation Results
These are the intermediate simulation
results that contributed to the result

Follow if error
is in a function

Algorithmic Code Debugging
Normal execution point debugging of

functions

Build graph

Error Discovered
What now?

Where is the equation or code that
generated this error?

Interactive Dependency Graph
These equations contributed to the result

Code viewer
Show which model or function
the equation node belongs to

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

Follow if error
is in an equation

Simulation Results
These are the intermediate simulation
results that contributed to the result

Follow if error
is in a function

Algorithmic Code Debugging
Normal execution point debugging of

functions

Build graph

Error Discovered
What now?

Where is the equation or code that
generated this error?

Figure 1. Integrated debugging approach overview.

Static and Dynamic Debugging of Modelica Models

446 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076443

arising when trying to compute a variable, the root
cause of the error does not lie in the equation itself be-
ing wrong, but rather in some of the values of previous-
ly computed variables appearing in it being wrong, e.g.,
because of erroneous initialization or parameterization.

The proposed debugging method can also start from
multiple variables with wrong values with the premise
that the error might be at the confluence of several de-
pendency graphs.

Note that the debugger can handle both data de-
pendency edges (e.g. which variables influence the cur-
rent variable of interest), and origin edges (edges point-
ing from the generated executable simulation code to
the original equations/parts of equations contributing to
this code). Both are computed by the transformational
debugger mentioned in Section 5.

5 Static Transformational Debugging
Transformational debugging is a static compile-time
technique since it does not need run-time execution of a
model. The method keeps track of symbolic transfor-
mations, can explain and display applied transfor-
mations, and compute dependence edges between the
original model and the generated executable code.

5.1 Common Operations on Continuous Equa-
tion Systems

In order to create a debugger adapted for debugging the
symbolic transformations performed on equation sys-
tems, its requirements should be stated. There are many
symbolic operations that may be performed on equation
systems. The following descriptions of operations also
include a rationale for each of them, since it is not al-
ways apparent why perform certain operations are per-
formed. There are of course many more operations that
can be performed than the ones listed below, which are
however deemed most important, and which the de-
bugger for models translated by the OpenModelica
Compiler [11] should be able to handle.

5.1.1 Variable aliasing

An optimization that is very common in Modelica
compilers is variable aliasing. This is due to the con-
nection semantics of the Modelica language. For exam-
ple, if a and b are connectors with the effort-variable v
and flow-variable i, a connection (2) will generate alias
equations (3) and (4).
connect(a, b) (2)
a.v = b.v (3)
a.i + b.i = 0 ⇒ b.i = -a.i (4)

In a result-file, this alias relation can be stored instead
of a duplicate trajectory, saving both space and compu-
tation time. In the equation system, b.v may be substi-
tuted by a.v and b.i by -a.v, which may lead to fur-
ther optimizations of the equations.

5.1.2 Known variables

Known variables are similar to alias variables in that
you may perform variable substitutions on the rest of
the equation system if you find such an occurrence. For
example, (5) and (6) can be combined into (7). In the
result-file, you no longer need to store a value for each
time step; once is enough for known variables (which
have values that can be computed statically at compile-
time), parameters and constants.
a = 4.0 (5)
b = 4.0 – a + c (6)
b = 4.0 – 4.0 + c (7)

5.1.3 Equation Solving

If the tool has determined that x needs to be solved for
in (8), we need to symbolically solve the equation, pro-
ducing a simple equation with x on one side as in (9).
Solving for x is not always straightforward, and it is not
always possible to invert user-defined functions such as
(10). Since x is present in the call arguments and the
function cannot be inverted or inlined, it is not possible
to solve the equation symbolically, so it is necessary to
resort to a numerical non-linear solver during runtime.
15.0 = 3.0*(x + y) (8)
x = 15.0/3.0 - y (9)
0 = f(3*x) (10)

5.1.4 Expression Simplification

Expression simplification is a symbolic operation that
does not change the meaning of the expression, while
making it faster to calculate. It is related to many dif-
ferent optimization techniques such as constant folding.
The order in which arguments are evaluated may be
changed (11). Constant subexpressions are evaluated
during compile-time (12). Non-constant subexpressions
may be rewritten (13) and functions may be evaluated
fewer times than in the original expression (14). It is
also possible to use special knowledge about an expres-
sion in order to make it run faster (15) and (16).

and(a,false,b) ⇒ false (11)
4.0 – 4.0 + c ⇒ c (12)
max(a,b,7.5,a,15.0) ⇒ max(a,b,15,0) (13)
f(x) + f(x) + f(x) ⇒ 3*f(x) (14)
if cond then a else a ⇒ a (15)
if cond then false else true ⇒ cond (16)

Session 4A: Language and Compilation Concepts II

DOI Proceedings of the 9th International Modelica Conference 447
10.3384/ecp12076443 September 3-5, 2012, Munich, Germany

5.1.5 Equation System Simplification

It is of course also possible to solve some equation sys-
tems statically. For example a linear system of equa-
tions with constant coefficients (17) can be solved us-
ing one step of symbolic Gaussian elimination (18),
generating two separate equations that can be solved
individually after causalization (19). A simple linear
equation system as (17) may also be solved numerically
using e.g. LAPACK [1] routines.
[1, 2; 2, 1] * [x; y] = [4; 5] (17)
[1, 2; 0,-3] * [x; y] = [4; -3] (18)
x = 2; y = 1; (19)

5.1.6 Differentiation

Symbolic differentiation [16] is used for many purpos-
es. It is used to expand known derivatives (20) or as
one operation in index reduction. Jacobian matrices
have many applications, e.g. to speed up simulation
runtime [14]. The matrix is often computed using au-
tomatic differentiation [14][16] which combines sym-
bolic differentiation with other techniques to achieve
fast computation.

der(t^2, t) = 2*t (20)

5.1.7 Index reduction

In order to solve DAE’s numerically, discretization
techniques and methods to numerically compute de-
rivatives are used (often referred to as solvers). Certain
DAE’s need to be differentiated symbolically to enable
a stable numeric solution. The differential index of a
general DAE system is the minimum number of times
that certain equations in the system need to be differen-
tiated to reduce the system to a set of ODEs, which can
then be solved by the usual ODE solvers, Chapter 18 in
[8]. While there are techniques to solve DAE’s of high-
er index than 1, most of them require index-1 DAE’s
(no second derivatives). This makes it more convenient
to reformulate the problem using index reduction algo-
rithms, Chapter 18 in [8]. One such technique uses
dummy derivatives [15]; this is the algorithm currently
used in the OpenModelica Compiler.

5.1.8 Function inlining

Writing functions to do common operations is a great
way to reduce the burden of maintaining code. When a
function call is inlined (21), it can be treated as a macro
expansion (22) and may increase the number of sym-
bolical manipulations that can be perform on an expres-
sion such as (23).
2*f(x, y)/pi (21)
2*pi*((sin(x+y)+cos(x+y-y)/pi (22)
2*(sin(x+y) + cos(x)) (23)

5.2 Debugging

The choice of techniques for implementation of a de-
bugger depends on where and for what it is intended to
be used. Translation and optimization of large applica-
tion models can be very time-consuming. Thus it would
be good if the approach has such a low overhead that it
can be enabled by default. It would also be good if er-
ror messages from the runtime could use the debug in-
formation from the translation and optimization stages
to give more understandable and informative messages
to the user.

A technique that is commonly used for debugging is
tracing. The simplest way of implementing tracing is to
print a message to the terminal or file in order to log the
operations that you perform. The problem here is that if
an operation is rolled back, the log-file will still contain
the operation that was rolled back. The data also need
to be post-processed if the operations should be
grouped by equation.

A more elegant technique is to treat operations as
metadata on equations, variables or equation systems.
Other metadata that should already be propagated from
source code to runtime include the name of the compo-
nent that an equation is part of, which line and column
that the equation originates from, and more. Whenever
an operation is performed, the operation kind and in-
put/output is stored inside the equation as a list of oper-
ations. If the structure used to store equations is persis-
tent this also works if the tool needs to roll back execu-
tion to an earlier state.

The cost of adding this meta data is a constant
runtime factor from storing a new head in the list. The
memory cost depends a lot on the compiler itself. If
garbage collection or reference counting is used, the
only cost is a small amount to describe the operation
(typically an integer and some pointers to the expres-
sions involved in the operation).

5.3 Bookkeeping of Operations

5.3.1 Variable Substitution

The elimination of variable aliasing and variables with
known values (constants) is considered as the same
operation that can be done in a single phase. It can be
performed as a fixed-point algorithm where substitu-
tions are collected which record if any change was
made (stop if no substitution is performed or no new
substitution can be collected). For each alias or known
variable, merge the operations stored in the simple
equation x = y before removing it from the equation
system. For each successful substitution, record it in the
list of operations for the equation.

Static and Dynamic Debugging of Modelica Models

448 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076443

The history of the variable a in the equation system
(24) could be represented as a more detailed version
(25) instead of the shorter (26) depending on the order
in which the substitutions were performed.
a = b; b = -c; c = 4.5 (24)
a = b ⇒ a = -c ⇒ a = -4:5 (25)
a = b ⇒ a = -4.5 (26)

In equation systems that originate from a Modelica
model it is preferable to see a substitution as a single
operation rather than a longer chain of operations
(chains of 50 cascading substitutions are not unheard of
and makes it hard to get an overview of the operations
performed on the equation, even though sometimes all
the steps are necessary to understand the reason for the
final substitution).

It is also possible to collect sets of aliases and select
a single variable (doing everything in one operation) in
order to make substitutions more efficient. However,
alias elimination may still cascade due to simplification
rules (27), which means that you need a work-around
for substitutions performed in a non-optimal order.

a = b - c + d ⇒ a = b - b + d
⇒ a = d (27)

Thus, we compare the previous operation with the new
one and if we detect a link in the chain, we store this
relation. When displaying the operations of an equation
system, it is then possible to expand and collapse the
chain depending on the user’s needs.

5.3.2 Equation Solving

Some equations are only valid for a certain range of
input. When solving an equation like (28), you assert
that the divisor is non-zero and eliminate it in order to
solve for x. We record a list of the assertions made (and
their sources for traceability). An assertion may be re-
moved if we later determine that it always holds or if it
overlaps with another assertion (29).

x/y = 1 ⇒ x = y (y != 0) (28)
y!=0, 4.0 < y < 8.0 ⇒ 4.0 < y < 8.0 (29)

5.3.3 Expression Simplification

Tracking changes to an expression is easy if you have a
working fixed-point algorithm for expression simplifi-
cation (record a simplification operation if the simplifi-
cation algorithm says that the expression changed).
However, if the simplification algorithm oscillates (as
in 30) it is hard to use it as a fixed-point algorithm.

2*x ⇒ x*2 ⇒ 2*x ⇒ ... (30)

The simple solution is to use an algorithm that is fixed
point, or conservative (reporting no change made when

performing changes that may cause oscillating behav-
ior). Finding where this behavior occurs is not hard for
a compiler developer (simply print an error message
after 10 iterations). If it is hard to detect if a change has
actually occurred (due to changing data representation
to use more advanced techniques), one may need to
compare the input and output expression in order to
determine if the operation should be recorded. While
comparing large expressions may be expensive, it is
often possible to let the simplification routine keep
track of any changes at a smaller cost.

5.3.4 Equation System Simplification

It is possible to store these operations as pointers to a
shared and more global operation or as many individual
copies of the same operation. It is preferable to store
this as a single global operation (see Figure 2) since the
only cost is only some indirection when reading the
data. It is also recommended to store reverse pointers
(or indices) from the global operation back to each in-
dividual operation as well, so that reverse lookup can
be performed at a low cost.

Figure 2. Sharing Results of Linear System Evaluation.

As the tool we are using performs only limited simpli-
fication of these strongly connected components, we
are currently limited to only recording evaluation of
constant linear systems. As more of these optimizations
are added to the compiler, they will also need to be
traced and support added for them in the debugger.

5.3.5 Differentiation

Whenever we perform symbolic differentiation in an
expression, e.g. to expand known derivatives (31), we
record this operation in the equation. OpenModelica
currently does not eliminate this state variable as in
(32), but if it did the operation would also be recorded.

der(x) = der(time) ⇒ der(x) = 1.0 (31)
der(x) = 1.0 ⇒
 x = time + (xstart-timestart) (32)

5.3.6 Index reduction

For the index reduction algorithm, any performed sub-
stitution is recorded, source information is added to the
newly introduced dummy derivative variable, and the

Session 4A: Language and Compilation Concepts II

DOI Proceedings of the 9th International Modelica Conference 449
10.3384/ecp12076443 September 3-5, 2012, Munich, Germany

operations are performed on the affected equations. As
an example for the dummy derivatives algorithm, this
includes differentiation of the Cartesian coordinates
(x; y) of a pendulum with length L (33) into (34) and
(35). After the index reduction is complete, further op-
timizations such as variable substitution (37), are per-
formed to reduce the complexity of the complete sys-
tem.
x^2 + y^2 = L^2 (33)
der(x^2 + y^2) ⇒ 2*(der(x)*x + der(y)*y)
 (34)
der(L^2) ⇒ 0 (35)
2*(der(x)*x + der(y)*y) ⇒ 2*(u*x + v*y)
 (36)

5.3.7 Function inlining

Since inlining functions may cause a new function call
to be added to the expression, functions are inlined un-
til a fixed point is reached (with a maximum depth to
avoid problems with recursive functions). Expressions
are also simplified in order to reduce the size of the
final expression. When inlining calls in an equation
have been completed, this is recorded as an inline oper-
ation with the expression before and after.

5.4 Presentation of Operations

Until now the focus has been on collecting operations
as data structured in the equation system. What is it
possible to do with this information? During the trans-
lation phase, it can be used directly to present infor-
mation to the user. Assuming that the data is well struc-
tured, it is possible to store it in a static database (e.g.
SQL) or simply as structured data (e.g. XML). That
way the data can be accessed by various applications
and presented in different ways according to the user
needs for all of them. The current OpenModelica proto-
type only outputs text at present; in the future this in-
formation will be presented in the origin edge intro-
duced in Section4.

The number of operations stored for each equation
varies widely. The reason is that when a known varia-
ble x is replaced with, e.g., the number 0.0, one may
start removing subexpressions. One then ends up with a
chain of operations that loops over variable substitu-
tions and expression simplification. The number of op-
erations performed may scale with the total number of
variables in the equation system if the the number of
iterations that the optimizer may take is not limited
[17]. This makes some synthetic models very hard to
debug. The example model in Listing 1 performs 1 + 2
+ … + N substitutions and simplifications in order to
deduce that a[1] = a[2] = … = a[n].

Listing 1. Alias Model with Poor Scaling
model AliasClass_N
 constant Integer N=60;
 Real a[N];
equation
 der(a[1]) = 1.0;
 a[2] = a[1];
 for i in 3:N loop
 a[i] = i*a[i-1]-sum(a[j]
 for j in 1:i-1);
 end for;
end AliasClass_N;

Using a real-world example, the Engine1a model from
the Modelica MultiBody library, [12], the majority of
equations have less than 10 operations (Figure 3),
which is a manageable number to go through if one
needs to debug a model and to find out which equations
are problematic.

Figure 3. The number of symbolic operations performed

on equations in the Engine1a model.

5.5 Runtime supported by static information

In order to produce better error messages during
runtime, it is beneficial to be able to trace the source of
the problem. The toy example in Listing 2 is used to
show the information that the augmented runtime can
display when an error occurs. The user should be pre-
sented with an error message from the solver (linear,
nonlinear, ODE or algebraic does not matter). Here, the
displayed error comes from the algebraic part of the
solver. It clearly shows that log(0.0) is not defined and
the source of the error in the concrete syntax (the
Modelica code that the user may influence) as well as
the name of the component (which may be used as a
link by a graphical editor to quickly switch view to the
diagram view of this component). The symbolic trans-
formations performed on the equation are also dis-
played, which can help debug the model better.

Static and Dynamic Debugging of Modelica Models

450 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076443

Listing 2. Runtime Error
Error: At t=0.5, block1.u = 0.0 is not in
the domain of log (>0)
Source equation: [Math.mo :2490:9-2490:33]
y = log(u)
Source component: block1 (MyModel
Modelica.Blocks.Math.Log)
Flattened equation: block1.y = log(
block1.u)
Manipulated equation: y = log(u)
<Operations>
variable substitution: log(block1.u) =
log(u)
<Depending on equations (from BLT)>
u <:link>

Currently we are working on extending the information
we collect during the static analysis to build the Interac-
tive Dependency Graph from Figure 1, Section 4.

6 Dynamic Debugging

6.1 Using the Algorithmic Code Debugger

The debugger part for algorithmic Modelica code is
implemented within the OpenModelica environment as
a debug plugin for the Modelica Development Tooling
(MDT) which is a Modelica programming perspective
for Eclipse. The Eclipse-based user interface of the new
efficient debugger is depicted in Figure 4.

Figure 4. The debug view of the new efficient algorithmic

code debugger within the MDT Eclipse plugin.

The algorithmic code debugger provides the following
general functionalities:

• Adding/Removing breakpoints.
• Step Over – moves to the next line, skipping the

function calls.
• Step In – steps into the called function.
• Step Return – completes the execution of the func-

tion and comes back to the point from where the
function is called.

• Suspend – interrupts the running program.
• Resume – continues the execution from the most re-

cent breakpoint.
• Terminate – stops the debugging session.

It is much faster and provides several stepping options
compared to the old dynamic debugger because the old
debugger was based on high-level source code instru-
mentation which made the code grow by a factor of the
number of variables. The debug view primarily consists
of two main views:

• Stack Frames View
• Variables View

The stack frame view, shown in Figure 5, shows a list
of frames that indicates how the flow had moved from
one function to another or from one file to another.
This allows backtracing of the code.

Figure 5. The stack frame view of the debugger.

Figure 6. The variable view of the new debugger.

It is possible to select the previous frame in the stack
and inspect the values of the variables in that frame.

Session 4A: Language and Compilation Concepts II

DOI Proceedings of the 9th International Modelica Conference 451
10.3384/ecp12076443 September 3-5, 2012, Munich, Germany

However, it is not allowed to select any of the previous
frames and start debugging from there.

Each frame is shown as <function_name at
file_name:line_number>.

The Variables view (Figure 6) shows the list of var-
iables at a certain point in the program. It contains four
columns:
• Name – the variable name.
• Declared Type – the Modelica type of the variable.
• Value – the variable value.
• Actual Type – the mapped C type.

By preserving the stack frames and the variables it is
possible to keep track of the variables values. If the
value of any variable is changed while stepping then
that variable will be highlighted yellow (the standard
Eclipse way of showing the change).

6.2 Dynamic Debugger Implementation

In order to keep track of Modelica source code posi-
tions, the Modelica source-code line numbers are in-
serted into the transformed C source-code. This infor-
mation is used by the Gnu Compiler GCC to create the
debugging symbols that can be read by the Gnu debug-
ger GDB [10].

Through the bootstrapped OpenModelica Compiler
[4] the line number information is propagated all the
way from the high level Modelica representation to the
low level intermediate representation and the generated
code.

This approach was developed for the symbolic
model transformation debugger described in [5] and is
also used in this debugger.

Figure 7. Dynamic debugger flow of control.

Consider the Modelica code shown in Figure 8:

Figure 8. Modelica Code.

The OpenModelica Compiler compiles this HelloWorld
function into the C source-code depicted in Figure 9.

Figure 9. Generated C source-code.

The generated code contains blocks which represent the
Modelica code lines. The blocks are mentioned as
comments in the following format /*#modelicaLine
[modelica_source_file:line_number_info]*/.

This information is now used to generate debug
symbols that are recognized by GDB. The generated C
source-code is used by a small Perl script to create an-
other version of the same source-code with different
line number blocks, see Figure 10.

Figure 10. Converted C source-code.

The converted C source-code contains a line number
mapping between the generated C source-code and the
actual Modelica source-code in the GDB specific for-
mat. Examine the lines starting with #line in Figure 10.

The executable is created from the converted C
source-code and is debugged from the Eclipse-based

Static and Dynamic Debugging of Modelica Models

452 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076443

Modelica debugger which converts Modelica-related
commands to low-level GDB commands at the C code
level.

The Eclipse interface allows adding/removing
breakpoints. The breakpoints are created by sending the
<-break-insert filename:linenumber> command to
GDB. At the moment only line number based break-
points are supported. Other alternatives to set the
breakpoints are; <-break-insert function>, <–break-
insert filename:function>.

These program execution commands are asynchro-
nous because they do not send back any acknowledge-
ment. However, GDB raises signals;
• as a response to those asynchronous commands.
• for notifying program state.

The debugger uses the following signals to perform
specific actions:
• breakpoint-hit – raised when a breakpoint is

reached.
• end-stepping-range – raised when a step into or step

over operations are finished.
• function-finished – raised when a step return opera-

tion is finished.

These signals are utilized by the debugger to extract the
line number information and highlight the line in the
source-code editor. They are also used as notifications
for the debugger to start the routines to fetch the new
values of the variables.

The suspend functionality which interrupts the run-
ning program is implemented in the following way. On
Windows GDB interrupts do not work. Therefore a
small program BreakProcess is written to allow inter-
rupts on Windows. The debugger calls BreakProcess
by passing it the process ID of the debugged program.
BreakProcess then sends the SIGTRAP signal to the
debugged program so that it will be interrupted. Inter-
rupts on Linux and MAC are working by default.

The algorithmic code debugger is operational and
works without performance degradation on large algo-
rithmic Modelica/MetaModelica applications such as
the OpenModelica compiler, with more than 100 000
lines of code.

The algorithmic code debugging framework graph-
ical user interface is developed in Eclipse as a plugin
that is integrated into the existing OpenModelica
Modelica Development Tooling (MDT). The tracking
of line number information and the runtime part of the
debugging framework is implemented as part of the
OpenModelica compiler and its simulation runtime.

The algorithmic code debugger currently supports
the standard Modelica data types including arrays and
records as well as all the additional MetaModelica data

types such as ragged arrays, lists, and tree data types. It
supports algorithmic code debugging of both simula-
tion code and MetaModelica code.

Furthermore, in order to make the debugging practi-
cal (as a function could be evaluated in a time step sev-
eral hundred times) the debugger supports conditional
breakpoints based on the time variable and/or hit count.

The algorithmic code debugger can be invoked from
the model evaluation browser and it breaks at the exe-
cution of the selected function to allow the user to de-
bug its execution.

7 Conclusions and Future Work
We have presented static and dynamic debugging
methods to bridge the gap between the high abstraction
level of equation-based object-oriented models com-
pared to generated executable code. Moreover, an
overview of typical sources of errors and possibilities
for automatic error handling in the solver hierarchy has
been presented.

Regarding static transformational debugging, a pro-
totype design and implementation for tracing symbolic
transformations and operations has been made in the
OpenModelica Compiler. It is very efficient with an
overhead of the order of 0.01%.

Regarding dynamic algorithmic code debugging,
this part of the debugger is in operation and is being
regularly used to debug very large applications such as
the OpenModelica compiler with more than 100 000
lines of code. The user experience is very positive. It
has been possible to quickly find bugs which previous-
ly were very difficult and time consuming to locate.
The debugger is very quick and efficient even on very
large applications, without noticeable delays compared
to normal execution.

A design for an integrated static-dynamic debugging
has been presented, where the dependency and origin
information computed by the transformational debug-
ger is used to map low-level executable code positions
back to the original equations. Realizing the integrated
design is work-in-progress and not yet completed.

To our knowledge, this is the first debugger for
Modelica that has both static transformational symbolic
debugging and dynamic algorithmic debugging.

8 Acknowledgements
This work has been supported by the Swedish Strategic
Research Foundation in the EDOp and HIPo projects
and Vinnova in the RTSIM and ITEA2 OPENPROD
projects. The Open Source Modelica Consortium sup-
ports the OpenModelica work.

Session 4A: Language and Compilation Concepts II

DOI Proceedings of the 9th International Modelica Conference 453
10.3384/ecp12076443 September 3-5, 2012, Munich, Germany

References
[1] Adrian Pop and Peter Fritzson (2005). A Portable

Debugger for Algorithmic Modelica Code. In Pro-
ceedings of the 4th International Modelica Confer-
ence, Hamburg, Germany.

[2] Adrian Pop, Peter Fritzson, Andreas Remar, Elmir
Jagudin, and David Akhvlediani (2006).
OpenModelica Development Environment with
Eclipse Integration for Browsing, Modeling, and De-
bugging. In Proc of the Modelica'2006, Vienna, Aus-
tria.

[3] Adrian Pop, David Akhvlediani, and Peter Fritzson
(2007). Towards Run-time Debugging of Equation-
based Object-oriented Languages. In Proceedings of
the 48th Scandinavian Conference on Simulation and
Modeling (SIMS’2007), see http://www.scan-
sims.org, http://www.ep.liu.se. Göteborg, Sweden.

[4] Martin Sjölund, Peter Fritzson, and Adrian Pop
(2011a). Bootstrapping a Modelica Compiler aiming
at Modelica 4. In Proceedings of the 8th Internation-
al Modelica Conference (Modelica'2011), Dresden,
Germany.

[5] Martin Sjölund and Peter Fritzson (2011b). Debug-
ging Symbolic Transformations in Equation Sys-
tems. In Proceedings of the 4th International Work-
shop on Equation-Based Object-Oriented Modeling
Languages and Tools, (EOOLT'2011), Zürich, Swit-
zerland.

[6] Peter Bunus and Peter Fritzson (2003). Semi-
Automatic Fault Localization and Behavior Verifica-
tion for Physical System Simulation Models. In Pro-
ceedings of the 18th IEEE International Conference
on Automated Software Engineering, Montreal,
Canada.

[7] Peter Bunus (2004). Debugging Techniques for
Equation-Based Languages. PhD Thesis. Depart-
ment of Computer and Information Science, Linkö-
ping University.

[8] Peter Fritzson (2004). Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, 940
pp., ISBN 0-471-471631, Wiley-IEEE Press.

[9] Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj
Nyström, Adrian Pop, Levon Saldamli, and David

Broman (2005). The OpenModelica Modeling, Sim-
ulation, and Software Development Environment. In
Simulation News Europe, 44/45.

[10] Richard Stallman, Roland Pesch, Stan Shebs, et al.
(2011). Debugging with GDB. Free Software Foun-
dation. [online] Available at: <
http://unix.lsa.umich.edu/HPC201/refs/gdb.pdf>
[Accessed 30 October 2011].

[11] Open Source Modelica Consortium. OpenModelica
System Documentation Version 1.8.1, April 2012.
http://www.openmodelica.org

[12] Modelica Association. The Modelica Language
Specification Version 3.2, March 24th 2010.
http://www.modelica.org. Modelica Association.
Modelica Standard Library 3.1. Aug. 2009.
http://www.modelica.org.

[13] Uri Ascher and Linda Petzold. Computer Methods
for Ordinary Differential Equations and Differential-
Algebraic Equations. Society for Industrial and Ap-
plied Mathematics, 1998.

[14] Willi Braun, Lennart Ochel, and Bernhard Bach-
mann. Symbolically derived Jacobians using auto-
matic differentiation - enhancement of the
OpenModelica compiler. In Modelica’2011.

[15] Sven Erik Mattsson and Gustaf Söderlind. Index
reduction in differential algebraic equations using
dummy derivatives. Siam Journal on Scientific
Computing, 14:677--692, May 1993.

[16] Conal Elliott. Beautiful differentiation. In Interna-
tional Conference on Functional Programming
(ICFP), 2009.

[17] Jens Frenkel, Christian Schubert, Günter Kunze,
Peter Fritzson, and Adrian Pop. Towards a bench-
mark suite for Modelica compilers: Large models. In
Modelica’ 2011.

[18] Roberto Parrotto, Johan Åkesson, and Francesco
Casella. An XML representation of DAE systems
obtained from continuous-time Modelica models. In
Proceedings of the 3rd International Workshop on
Equation-Based Object-Oriented Modeling Lan-
guages and Tools, pages 91--98. Linköping Universi-
ty Electronic Press, October 2010.

Static and Dynamic Debugging of Modelica Models

454 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076443

Session 4B: Control

A Modelica Sub- and Superset for Safety-Relevant Control Applications

A Modelica Sub- and Superset for Safety-Relevant Control
Applications

Bernhard Thiele∗ Stefan-Alexander Schneider† Pierre R. Mai‡

Bernhard.Thiele@dlr.de stefan-alexander.schneider@bmw.de pmai@pmsf.de

∗ German Aerospace Center (DLR), Institute for Robotics and Mechatronics, Germany
† BMW AG, 80788 München, Germany

‡ PMSF IT Consulting, Marzling, Germany

Abstract

Fueled by the continuous, rapid progress within micro-
electronics, ever more intelligent and intricate func-
tions are realized in mechatronic systems. To control
the complexity associated with such designs, model-
based control design methods are increasingly adapted
in industry. Despite Modelica’s obvious suitability to
efficiently create appropriate high fidelity system mod-
els, the utilization of Modelica for developing discrete
control functions is not yet wide spread. Adoption of
Modelica for this task offers the potential for a seam-
less development methodology from the logical virtual
model down to the technical system architecture, with
corresponding traceability and maintainability bene-
fits.

This contribution will specifically address this po-
tential and propose a Modelica sub- and superset ade-
quate for use within the development of safety-relevant
control applications.

Keywords: embedded systems; functional safety;
simulation; code generation; compiler; formal meth-
ods; validation; verification

1 Introduction

Model-based design has emerged as a standard devel-
opment approach for the design of embedded systems.
Its original promise to provide a more rapid and eco-
nomic development process is confirmed in industrial
practice [5].

More and more embedded software components
are specified in models representing the so-called
high-level application that is then automatically trans-
formed (usually via embedded C-code) into binary
code that is executable on the embedded target: Fig-

ure 1 shows a typical model-based development en-
vironment where the specification model is first de-
signed using a next generation high-level, domain-
oriented modeling tool. These specification models
are typically enriched with implementation details and
converted to so-called code generation models. A code
generator converts the code generation model into C-
code that a cross compiler translates to object code.
The different object codes, including legacy and ba-
sic software code are then finally linked to a binary to
be executed by an embedded target. This approach re-
duces the implementation effort and time, especially in
iterative development workflows. Model-based devel-
opment methods have a significant impact on the de-
velopment process and the development environment
with its tools.

With the increase of applications, and along with
that of software size and complexity, model-based ap-
proaches have found their way into safety-relevant ap-
plications, especially in the aerospace and automotive
domains. This evolution has thrust the safety impact
of model-based development, especially with regard
to high-level modeling and code generators, into the
spotlight.

As described above, for practical purposes the pro-
cess of the generation of the executable program from
the model is mainly based on two development tools:
the code generator and the cross compiler (including
the cross linker). From an abstract point of view, this
concatenation of these two compilers is again a (sys-
tem) compiler, and can be treated by the same theory
as a compiler that would translate directly from the
code generation model to the executable code, see Fig-
ure 2. In the following all such translation tools will
be denoted abstractly as development tools.

The generated C-code can be seen as intermediate
representation of the model, because it is both output

DOI Proceedings of the 9th International Modelica Conference 455
10.3384/ecp12076455 September 3-5, 2012, Munich, Germany

Code
Generation

Model

Specification
Model

Implementation/
Conversion

Basic
Input Model

Implemen-
tation

Code Generator:
C-Code

Generation

Funktions-
C-Code

Cross-Compiler:
Compilation

Object-Code

Binary

Function
C-Code

Object-Code

Legacy
C-CodeLegacy

C-Code

Basis-
Software
C-Code

Basic
Software
C-Code

Object-Code
Object-Code

Object-Code
Object-Code

Basic Software
Process

Legacy Software
Process

Cross-Linker:
Linking

Function Software Legacy SoftwareBasic Software

Figure 1: The generic build process for a model-based
development toolchain with an automatic code gener-
ator (from [14]). The shaded parts indicate the tools
and artifacts affected by what is later referred to as the
development tool (code generator and cross compiler).

of the code generator as well as input to the cross com-
piler for the target. This perspective of the develop-
ment tool is of central significance, because there is
no need to perform any qualification activities on such
internal representations as long as the C-code is only
used as input to the cross compiler and is not further
manipulated or used in any other activities that need
to rely on the readability of the C-code. As a conse-
quence no C-code reviews are needed in this case. This
approach opens up the possibility to perform reviews
on the model level. A main topic of this contribution
is addressing the conditions that need to be established
to allow such model level reviews.

Development tools may inject systematic faults into
the executable program. Increasing the functional
safety in this context means to minimize erroneous

Code Generation Model
(Using Proposed Modelica Sub-

and Superset)

Function
C-Code

Object-Code

Binary

Code Generator
- Lexical Analysis and Parsing
- Elaboration
- Equation Transformation

- Code Generation

Cross-Compiler

Cross-Linker

System
Compiler

Figure 2: The concatenation of a code generator and
a (cross) compiler can be treated as a (system) com-
piler that directly transforms from the code genera-
tion model to the executable (target) code. The Fig-
ure indicates that the system compiler is based on the
proposed Modelica sub- and superset. Note that this
system compilation process may be realized signif-
icantly different than a compilation process used in
order to create simulation executables of models (see
Section 4.2.5).

outputs of the development tools due to malfunctions
and/or reliably detecting those erroneous outputs when
they occur.

One method to gain confidence in a software devel-
opment tool, is the validation of the software tool by a
validation suite, which comprises a test suite specif-
ically designed to exercise the development tool in
ways that would provoke any systematic malfunctions.

In order to design a suitable modeling language,
powerful development tools as well as an efficient and
effective validation suite, it is important to understand
precisely the role of translators and what the valida-
tion suite is intended to demonstrate. We therefore in-
troduce some definitions in the context of a validation
suite in Section 5, together with a discussion of the
role of language structure and complexity.

For both the validation of the input language and

A Modelica Sub- and Superset for Safety-Relevant Control Applications

456 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076455

the transformation process, we have to cope with the
curse of complexity. It is therefore of crucial impor-
tance to keep the language of the code generator mod-
els as simple and well-defined as possible, especially
with regards to the number and complexity of basic
constructs in the language, while also minimizing the
number and complexity of performed transformation
rules in the code generation process. This is especially
true of transformation rules stemming from optimiza-
tion rules. On the other hand the language so defined
still has to be suitable for human consumption, so that
the complexities of the code generation process are not
just offloaded to the programmer.

Up to now the use of Modelica in embedded sys-
tems development is usually restricted as a modeling
language for the physical plant dynamics. This can be
attributed to:

1. A somewhat too limited expressiveness in mod-
eling discrete controller functions.

2. The lack of a flexible, seamless development ap-
proach from the controller model comprising the
logical functions to the technical system architec-
ture (i.e., code running on the target platform).

3. And last but not least because safety-relevant
software functions need means to achieve a high
assurance level, which is not supported with cur-
rent Modelica.

When discussing the use of Modelica in the con-
text of control application, often advanced control con-
cepts based on inverted plant dynamics are described
[18], [19], [3]. Some Modelica tools are capable of au-
tomatically synthesising such controllers and generate
code for them. This usually requires fairly sophisti-
cated symbolic manipulation capabilities by the tool.
For example, it may require to differentiate a subset of
the equations, select appropriate states and solve the
resulting system of differential and algebraic equations
numerically.

However, the intrinsic complexity in the resulting
control algorithms imposes an additional burden if the
topmost design goal is in providing high assurance
control systems. For the following discussion it is
therefore assumed that the design trade-off is biased to
prefer high assurance control over high performance
control systems.

The aim of the paper is to study impacts of a safety-
relevant development process (relying on validated
tools) to high-level, domain-oriented modeling lan-
guages. In particular it proposes a sub- and superset

of the modeling language Modelica suitable for such
safety-relevant software development activities. To il-
lustrate the development using the proposed language
elements a showcase library (referred to as SAFEDIS-
CRETECONTROL library) is presented and applied at
an exemplary use case.

2 Development Roles

Model-based development is an established method in
the development of safety-relevant products. As seen
above, especially the two transformations code gener-
ation and cross compilation play an important role. To
ensure that the benefits of this approach have full ef-
fect the working mode of the development tools needs
to be well understood.

The intended software development process, and
hence the development environment, has to provide a
balance between controlled process steps and flexibil-
ity of user access: On the one hand, the user may not
be restricted too much and must still have principal
control over all development activities – too many re-
strictions reduce the acceptance and thus also the pro-
ductivity and quality of the work. On the other hand,
too few restrictions lead to error-prone development
practices, and ultimately to preventable faults in the
software.

Various stake-holders participate in the develop-
ment in different roles with different requirements and
expectations. A suitable Modelica sub- and superset
will have to support at least the following roles in the
development process:

Role 1 - Developer of the Embedded Control Sys-
tem. This role requires a sufficiently expressive mod-
eling language with sound language elements with
clear semantics to design and test the intended func-
tionality.

Role 2 - Tool Developer. This role requires the pre-
cise definition of the input modeling language: There
should be no unclear corner cases in the semantics.
The language should be efficiently compilable to tar-
get code.

Role 3 - Reviewer for Functional Safety. This role
requires a clear and unambiguous description of the
functionality, including all semantically relevant mod-
eling details in compact form for efficient reviews. It
should be possible to determine coverage at the model
level, and allow for tracing of requirements to the rel-
evant model parts.

Role 4 - Tool Qualifier. This role requires a suffi-

Session 4B: Control

DOI Proceedings of the 9th International Modelica Conference 457
10.3384/ecp12076455 September 3-5, 2012, Munich, Germany

ciently small number of modeling elements with clear
semantics as well as clear, ideally highly localized
composition rules, in order to establish a validation
suite for the development tool. The boundaries of
the development tools, i.e., input and output nota-
tions, have to be clearly defined. Automated pro-
cesses should ideally be separately testable, to mini-
mize complexity. For more details again see Section 5.

These different roles have partly coincident — se-
mantic aspects — and partly contradictory — expres-
siveness of the language — requirements to the devel-
opment process and with that to the development tools
and their modeling languages.

3 Requirements for a Safety Ori-
ented Modelica Sub- and Superset

In this section we study the requirements of the above
introduced roles to modeling language, to the develop-
ment enviroment and their tools, and a validation suite
for safety-relevant developments.

We will see later in this contribution that these re-
quirements can be met only by specific restrictions and
extensions of the modeling domain language. This fi-
nally leads us to the introduction of a sub- and superset
of Modelica based on these requirements, that is sim-
ple in order to facilitate high assurance designs, yet
expressive enough to allow modeling of many control
strategies of practical relevance.

The textual representation of the Modelica language
defines the full semantics of a given model, therefore
we will begin with the requirements to the textual rep-
resentation.

3.1 Requirements to the Textual Representa-
tion

At a first glance, we argue that functional reviews
should be done at the textual Modelica language level,
since the language semantics are specified at the tex-
tual level and graphical representation may hide im-
portant details. However, of course the graphical level
provides an abstraction that eases comprehension of
the intended model semantics and is hence an ex-
tremely valuable supplementary to the textual review.
We therefore describe in the following section addi-
tional requirements to the graphical representation de-
signed to avoid any hidden important details in the
graphical representation. It is then left to the reviewer
and his preferences either to perform a textual or a
graphical review.

We start with a coincident requirement for the roles:

Requirement 1 - Formally Sound Language Set.
The language sub- and superset must be formally
sound, so that validation and verification methods
e.g. formal methods can be supported. Required by
Roles 1, 2, 3, and 4

Requirement 2 - Minimum Expressiveness of the
Language Set. The language sub- and superset must
have enough expressiveness to allow the clear and con-
cise specification of discrete open- and closed-loop
control algorithms and their related support logic. Re-
quired by Roles 1 and 2.

Requirement 3 - Target Data Types and Opera-
tions. The language should provide a mechanism that
allows to extend its data types and operations to sup-
port fundamental data types and operations available
on the embedded target platform. Required by Roles 1
and 2.

Requirement 4 - Target Code Generation. The lan-
guage should permit automatic generation of target
platform C-code1 that is: a) efficient, b) avoids un-
safe constructs2, c) is traceable3, and d) integrates
smoothly into embedded systems software architec-
tures. Required by Roles 1, 2, and 1.

Requirement 5 - No Continuous-Time Dependen-
cies. The language must not have dependencies to
continuous-time system solver functionalities running
in the background. Required mainly by Roles 1 and 2.

Requirement 6 - Compile Time Analysis. The lan-
guage should allow compile time analysis of important
properties in order to reject dubious programs (missing
initial values, type checking, clock analysis, detection
of cyclic definition that result in algebraic loops, etc.).
Required mainly by Roles 1 and 3.

Requirement 7 - Modular Code Generation. The
language must support modular code generation, i.e.,
within a model composed by connecting several
blocks it must be possible to generate a transition func-
tion for each block definition and by composing them
together produce the overall transition function. Re-
quired mainly by Roles 1 and 3.

1Automatic C-code generation is stipulated, since C-code is the
most popular language for targeting embedded systems and (cer-
tifiable) compilers are available. However direct-to-binary code
generators are not precluded by this, and similar though not iden-
tical concerns arise for those cases.

2For example by conforming to coding standards like
MISRA AC AGC [17].

3Given a fragment of the automatically generated C-code it
must be possible to trace it back to the model elements that caused
its generation.

A Modelica Sub- and Superset for Safety-Relevant Control Applications

458 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076455

Requirement 8 - Modular Initialization. As a con-
sequence of Requirement 7 also initialization of (state)
variables must be supported in a modular manner, i.e.,
initial values of (state) variables in modular blocks de-
duced during compile time analysis must not depend
on the environment enclosing the block. Furthermore,
if initial values can not be uniquely determined from
the given constraints and set start values code gen-
eration shall abort with an error message. Required
mainly by Roles 1, 3 and 4.

Requirement 9 - Tangible Fixation of Automati-
cally Deduced Properties. In order to ensure repro-
ducibility of code generation and reviewability4, it
must be possible to fixate all properties of a model
that influence code generation in a tangible, review-
able form. In particular it must be possible to fix-
ate initial values that are automatically deduced by a
tool, so that code generation will always use the fix-
ated values instead of recalculating those values on the
fly at the time of code generation. Required mainly by
Role 3 and 4.

Requirement 10 - Manual Block Scheduling. Man-
ual scheduling of block execution (as opposed to
scheduling based on automatic causality analysis)
must be possible on an optional basis. Required
mainly by Role 1.

The following requirement is mainly motivated by
the role of a tool qualifier and typically holds the most
potential for discussion with the other roles, especially
with the role developer:

Requirement 11 - Restricted Language Scope. To
ease tool validation the language should be as sim-
ple and clear as possible. This shall be achieved by
restricting the scope of the Modelica language to a
(preferably small) sub- and superset relevant for the
addressed problem domain, i.e, suitable for the imple-
mentation of the blocks in the SAFEDISCRETECON-
TROL library. Particularly, simplicity and clarity of the
language sub- and superset is to be preferred over fea-
ture richness. Required mainly by Role 4.

As already mentioned above, in the following sec-
tion we describe additional requirements to an optional
graphical representation in order to perform a fully
equivalent review on the graphical representation.

4Note that this requirement also enables separate validation of
code generator and property-deduction code, since the fully fix-
ated model provides the checkable interface between both pro-
cesses.

3.2 Additional Requirements to the Graphi-
cal Representation

In computer science, semantics of a textual or graph-
ical language refers to the meaning of programs writ-
ten in it. Although the semantics of Modelica are de-
scribed on a textual language level, Modelica provides
standardized annotations for the graphical representa-
tion of models [10].

The main idea is that a library developer uses the
textual Modelica language to code basic functionali-
ties in components that are annotated with a graphical
illustration, while an application/model developer (li-
brary user) works on a graphical level by just dragging,
dropping and connecting the library components in or-
der to compose the intended functionality.

How can we now avoid that not obvious or even hid-
den details in the graphical representation prevent the
reviewers from performing an efficient and effective
graphical review? In this section we therefore formu-
late additional requirements to the graphical represen-
tation that enable both developers (Role 1) and review-
ers (Role 3) to entirely work at a graphical level.

Within Section 4.4 a conceptual library design (de-
noted SAFEDISCRETECONTROL library) is briefly
presented that complies to the requirements stated in
this section. In combination with adherence to the
rules formulated in Section 4.3.2 the usage of such a
library could then enable both, developers and review-
ers, to entirely work at a graphical level.

We start with the graphical pendant to the textual
requirement 1:

Requirement 12 - Intuitive Block Semantics.
Blocks from SAFEDISCRETECONTROL and their
compositions should not exhibit any behaviour which
would be deemed surprising or non-obvious by a do-
main expert. Required by Roles 1, 2, 3, and 4.

The restriction on blocks reflects the textual require-
ment 11:

Requirement 13 - Restricted Set of Allowed Blocks.
A high-level application model is only allowed to be
composed from a set of thoroughly tested and val-
idated basic blocks defined in the SAFEDISCRETE-
CONTROL library. Required mainly by Roles 3 and
4.

Requirement 14 - Data Flow Semantic. Block dia-
grams with data flow semantic are used at the graphical
level. Required by Roles 1, 2, 3, and 4.

Requirement 15 - Graphical Level Code Reviews.
Code reviews of models should be feasible as far as
possible at the graphical level. Consequently, any se-

Session 4B: Control

DOI Proceedings of the 9th International Modelica Conference 459
10.3384/ecp12076455 September 3-5, 2012, Munich, Germany

mantics associated with the blocks from SAFEDIS-
CRETECONTROL and their compositions should be
completely evident by inspecting the graphical dia-
gram layer, i.e., apart from clearly marked exceptional
cases there should be no cases where the semantics
of a model is not entirely and uniquely understand-
able from inspection of the block diagram. Required
mainly by Role 3.

Requirement 16 - Block Testability. Any block
within SAFEDISCRETECONTROL must be designed,
so that extensive testing of the block is easily possi-
ble, i.e., simple, lean designs are preferred over so-
phisticated, complex designs. Note that this also im-
plies that when balancing modeling comfort of blocks
against simplicity, the bias is towards simplicity. Re-
quired mainly by Roles 3 and 4.

Requirement 17 - Composition Testability. Com-
positions of blocks from SAFEDISCRETECONTROL

must again result in a block that is suitable for exten-
sive testing, e.g., by restricting the number of inputs
and outputs that are allowed for a block. Required
mainly by Role 3 and 4.

Requirement 18 - Traceability. Compositions of
blocks from SAFEDISCRETECONTROL must result in
generated code that can be traced back to the blocks
in the model, in order to easily perform, e.g., code
coverage analysis on the target level but mirror back
the results onto the model level. Required mainly by
Role 3.

4 Proposal for a Safety Oriented
Modelica Sub- and Superset

The aim of this section is to introduce a sub- and su-
perset of Modelica that is simple in order to facilitate
high assurance designs, yet expressive enough to al-
low modeling of many control strategies of practical
relevance.

4.1 Terminology

The following list defines some key terms used subse-
quently.

Basic Blocks Blocks that have no inner instance of
other blocks are subsequently referred to as basic
blocks. These blocks may only contain parame-
ters, connectors and (textual) equations.

Composite Blocks Blocks that are (graphically) com-
posed from other blocks are subsequently re-

ferred to as composite blocks. These blocks may
only be composed from other blocks connected
by connect(..,..) equations. Therefore they
do not contain any other textual equations.

Clocks Clocks provide an activation signal or clock
signal used for synchronous scheduling of a set
of equations activated by that clock signal. They
recently entered the Modelica language standard.

Clock Blocks Special basic blocks containing clocks
that provide a clock signal are subsequently re-
ferred to as clock blocks.

Atomic Blocks Blocks which are executed as a single
unit (akin to a function call with input and output
arguments) are referred to as atomic blocks.

4.2 Superset: Language Extension Proposal

To meet the requirements defined in Section 3 it is not
sufficient to solely restrict the language elements to a
subset of the current Modelica 3.3 standard specifica-
tion. In addition it is necessary to extend the language
elements, effectively forming a superset of the current
language.

This section proposes several language extensions
by

1. Explaining the perceived limitation of Modelica
3.3 that needs to be addressed.

2. Proposing a language extension that overcomes
the limitation.

4.2.1 Data Types Extension

Modelica 3.3 [10, Section 12.9] specifies the following
data type mapping to C:

Modelica data type Default mapping to C

Real double
Integer int
Boolean int
String const char*
Enumeration int

Embedded processors often need finer control about
the used data type5. Again it is necessary to make a
trade-off between feature completeness and validation
costs. Validation effort will raise for every supported

5E.g., for increased memory efficiency or because the embed-
ded system simply doesn’t provide efficient support for that data
type, e.g., an embedded system with a FPU (Floating Point Unit)
that supports only single precision floating point arithmetic.

A Modelica Sub- and Superset for Safety-Relevant Control Applications

460 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076455

data type. In effect it needs to be checked whether
the savings gained by supporting a particular data type
(e.g., because a cheaper electronic control unit (ECU)
can be used) outweighs the additional costs in (tool)
validation.

The following section will propose a rather general
mechanism to extend the standard Modelica data types
with more low-level hardware encoding information.
Note that although the SAFEDISCRETECONTROL li-
brary presented in Section 4.4 only supports a subset
of the listed data types, the extension to additional data
types is straight forward. However, the associated ad-
ditional validation effort for any additional supported
data type is considerable.

4.2.2 Proposal for Data Type Extension

The relevant part of the Modelica specification defin-
ing the basic data types is [10, Section 4.8]. The nota-
tion in the specification is adapted to extend the defini-
tion of the Real, Integer and Boolean data types6.
The following predefined enumeration types are used
for the definition.

type PlatformType = enumeration(
UInt8 "8-bit unsigned integer",
SInt8 "8-bit signed integer",
UInt16 "16-bit unsigned integer",
SInt16 "16-bit signed integer",
UInt32 "32-bit unsigned integer",
SInt32 "32-bit signed integer"
);

type PlatformRealType = enumeration(
Float "IEEE 754 single precision

floating type",
Double "IEEE 754 double precision

floating type",
);

Using the definitions above the predefined types of
Modelica are extended with the additional attribute
platformType. The rationale for not supporting an
attribute is given in the corresponding footnote. Note
that the types are defined with Modelica syntax al-
though they are predefined, fundamental data types in
Modelica.

type Real
RealType value; /* Accessed

6In this work the dedicated support of fixed-point arithmetic is
not (yet) considered. Note that if fixed-point arithmetic is required
it is possible (though not convenient) to use the proposed Model-
ica language extensions to implement and validate custom basic
blocks that provide the required functionality.

without dot-notation */
parameter StringType quantity;6

parameter StringType unit;
parameter StringType displayUnit;6

parameter RealType min=-Inf, max=+Inf;
parameter RealType start = NaN;7

parameter BooleanType fixed;8

parameter RealType nominal;9

parameter StateSelect stateSelect;10

parameter PlatformRealType platformType
= PlatformRealType.Double;

end Real;

type Integer
IntegerType value; /* Accessed
without dot-notation */

parameter StringType quantity;6

parameter IntegerType min=-Inf, max=+Inf;
parameter IntegerType start = +Inf;7

parameter BooleanType fixed;8

parameter PlatformType platformType
= PlatformType.Sint32;

end Integer;

type Boolean
BooleanType value; /* Accessed
without dot-notation */

parameter StringType quantity;6

parameter BooleanType start = false;7

parameter BooleanType fixed;8

parameter PlatformType platformType
= PlatformType.Sint32;

end Boolean;

Note that the values of the variables may not be di-
rectly manipulated in memory and consequently there
are no access routines.

4.2.3 Activation of Discrete-time Equations in
Modelica

Before the recently released Modelica 3.3 language
standard the activation of discrete-time equations was
either due to time events or state events.

6Omitted for the sake of language simplification
(Requirement 11).

7If no start value is given, the start value is deduced (in com-
pliance with Requirement 8) during compile time analysis.

8The Attribute "fixed" cannot be applied on clocked discrete-
time variables. It is true for variables to which the previous()
operator is applied, otherwise false [10, Section 16.9].

9Nominal values are only useful in the context of numerical
solvers. They have no relevance in our targeted discrete applica-
tions.

10Only useful for solving (continuous) differential equation sys-
tems.

Session 4B: Control

DOI Proceedings of the 9th International Modelica Conference 461
10.3384/ecp12076455 September 3-5, 2012, Munich, Germany

Time events are scheduled by the solver along a
global simulation time line. Time is a (physical)
real number (as opposed to the principle of multi-
form time12 adapted by synchronous languages) that
steadily increases during execution (simulation) of a
Modelica model. The global simulation time can be
accessed anywhere in a Modelica model by the built-
in variable time13.

State events are detected by the solver if a variable
(controlled by the solver) experiences a zero-crossing.

The event handling approach of Modelica works
well for simulating a plethora of hybrid system mod-
els, but it has shortcomings if embedded systems code
shall be generated from a Modelica model. The pre-
requisite that an “omniscient” solver “running in the
background” detects and schedules events in order
to activate the evaluation of a set of equations im-
pedes straightforward integration into external envi-
ronments.

In order to allow smooth integration of code gener-
ated from Modelica into embedded systems software
projects, Modelica needs to allow external code to
simply cause the evaluation of a set of (discrete-time)
Modelica equations (without the internal participation
of a hybrid systems solver that tries to detect whether
the equations shall be evaluated or not). Nikoukhah
and Furic [11] provide a notable discussion about the
missing feature of external activation in context of us-
ing Modelica models within the Scicos14 modeling en-
vironment which similarly applies to using Modelica
models in embedded systems software projects.

To allow external activation of Modelica models
Nikoukhah and Furic propose in [11] to add an Event
type to the Modelica language and discuss the ele-
ments and semantics needed to integrate that new type
in a general and backwards compatible way15.

The latest Modelica 3.3 language standard added
synchronous language elements particularly targeted
at the implementation of control systems [10, Chapter
16, Synchronous Language Elements]. They add clock
activation as a third way of activating discrete-time

12The multi-form time principle states that any sequence of
events can be considered as a time scale for the reactive system
that perceives these events.

13Note that at the beginning of Section 4.2 it is stated that the
built-in variable time is not supported for the SAFEDISCRETE-
CONTROL library.

14Scicos is a graphical dynamical system modeler and sim-
ulator with support for continuous and discrete time models
(http://www.scicos.org/).

15An early draft version of this document actually proposed an
activation mechanism inspired by the proposal of Nikoukhah and
Furic.

equations that largely solves the hitherto criticised de-
ficiencies.

Another notable advantage of clock activation in
comparison to activation through the traditional state
and time events mechanism is the support of clock in-
ference. It is no longer necessary to explicitly prop-
agate an event to all (block) instances that contain
equations that should be activated by that event. The
property of a variable that is explicitly associated with
a clock is propagated to other variables that are related
with that variable through equation relations. The us-
age of variables associated with different clocks within
the same expression requires special clock conversion
operators, otherwise it is a model error. This increases
the modeling comfort and protects against modeling
errors related to unconscious combination of signals
sampled at different points in time.

The following section will use a subset of the
synchronous language elements as a base to realize
a mechanism that, sloppily speaking, allows to call
blocks as functions. On the one hand the proposal
will restrict the allowed set of synchronous language
elements to a subset (for language simplification rea-
sons), on the other hand it will introduce a slight ex-
tension in order to satisfy two use cases:

1. Allow smooth integration of generated code into
external environments, e.g., AUTOSAR author-
ing environments.

2. Allow manual scheduling of block execution as
depicted in Figure 3.

The requirement to allow manual scheduling of
block activation might appear strange, since a program
can figure out the “correct” activation sequence easily
from the data flow. However interaction with external
software components, as well as execution time and
real-time requirements, can place additional restric-
tions on the activation sequence that can not be deter-
mined by data flow only. Therefore, manual schedul-
ing can be necessary. Additionally, if discussing a
safety-relevant design with authorities it can often be
beneficial to document that a human being has thought
of the correct activation sequence rather than a ma-
chine.

4.2.4 Proposal for Atomic and Priority Based Ac-
tivation

Conceptually, the atomic block definition in Sec-
tion 4.1 yields the semantic depicted in Figure 4.

A Modelica Sub- and Superset for Safety-Relevant Control Applications

462 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076455

B2B1

B3

1
2
3

Manual
scheduling

External Activation

Figure 3: Manual scheduling of blocks.

Since an atomic block is executed as single unit it is
required that all equations within the block must be ac-
tivated from the same clock signal. However, it is pos-
sible that a block internally subsamples a clock signal
and provides it as an output. Note that due to clock in-
ference it is not necessary to provide an explicit clock
input to every atomic block within a diagram as long
as a unique clock can be inferred for it.

Atomic Blocks Currently there is no language sup-
port for treating a block as atomic according to our def-
inition. To mitigate that deficiency the prefix atomic
is proposed. The atomicity of a block is defined at the
instance declaration.

atomic BlockModule a;

Akin to the execution of algorithms in Modelica
models, an atomic block can be conceptually viewed
as an atomic vector-equation (potentially with internal
state) that maps its inputs to outputs, e.g.,

(out1,out2,...) = BlockModule(in1,in2,...);

Figure 5 further illustrates the difference between
conventional and atomic block semantics.

Clock Priorities To allow manual scheduling of
blocks it is proposed to extend the subSample(u,
factor) operator with an (optional) additional inte-
ger argument denoting the priority of a clock:

subSample(u, factor, priority)

BlockModuleInputs Outputs

Clock
Input

Clock
Outputs

Figure 4: Conceptual atomic MIMO-block with data
inputs and outputs, as well as one clock signal input
(for activating the block) and (potential) several sub-
sampled clock signal outputs.

u2

u1 y1

y2Feedthrough

y1=u1

y2=u2

Figure 5: Trivial feedthrough block. If declared
atomic, it is required that input signals u1 and u2 are
active at the same clock ticks allowing to conceptually
transform the block to a (periodically called) function
(y1,y2) = Feedthrough(u1,u2) (the block hier-
archy is maintained at execution level). If not declared
atomic, u1=y1 and u2=y2 are allowed to be active at
completely unrelated points in time (the block hierar-
chy is flattened, see Section 4.2.5)!

Values assigned to priority must be positive (in-
cluding zero), lower values indicate a higher priority.
If omitted, the argument defaults to "priority = 0".
The priorities are always relative to the source clock
signal.

An example implementation for the scheduler block
in Figure 3 is given below.

block Scheduler
input Clock clk;
output Clock clk1;
output Clock clk2;
output Clock clk3;
equation

clk1 = subSample(clk,1,1);
clk2 = subSample(clk,1,2);
clk3 = subSample(clk,1,3);

end Scheduler;

The semantics is that the equations activated by a

Session 4B: Control

DOI Proceedings of the 9th International Modelica Conference 463
10.3384/ecp12076455 September 3-5, 2012, Munich, Germany

higher priority clock must be executed first16. Note
that due to the relative nature of clock priorities stated
above, it is not possible that a clock has a higher ab-
solute priority than the input clock. Furthermore, in
order to uniquely associate every variable with one
clock a subSample(u)17 operator needs to be present
between the block connection shown in Figure 3.
That has not been depicted to keep the diagram well-
arranged.

Direct Block Activation The following language
extension proposal is not essential to meet the re-
quirements, however it supports more clearly arranged
models.

The current language standard does not allow to di-
rectly assign a clock to a block with the semantics that
all equations and variables in the scope of that block
are marked to be part of the same base-clock parti-
tion. Therefore, the designated way to execute clocked
equations within a controller block is by providing the
clocking information at the inputs of that block and
rely on clock inference. If the block needs several in-
puts that may result in a diagram like depicted in Fig-
ure 6.

Figure 6: The designated way to execute clocked equa-
tions within a controller block using Modelica 3.3 is by
providing the clocking information at the inputs of that
block (by using the sample(u, c) operator and pass-
ing in the clock by the second argument) and rely on
clock inference to forward the clocking information.

A tentative more explicit mechanism would be to in-
troduce a built-in attribute “clock” for block classes
that allows to assign a clock to a block. The semantics
would be, that any variable and equation enclosed by

16The execution order of equations which are activated by
clocks with equal priority is determined by the (standard) causality
analysis algorithms of the Modelica tool.

17If the arguments "factor" and "priority" are not provided
or zero, they are inferred.

the block would be associated with the assigned clock,
e.g.,
block Controller
input Real u;
output Real y;

equation
u = y;

end Controller;

model Environment
Clock clk = Clock(0.5);
Real s = sin(time);
// associate c.u and c.y with clk
Controller c(clock=clk);

equation
c.u = sample(s);

end Environment;

However, in order to keep extensions to the official
Modelica standard at a minimum this extension is not
part of the proposed Modelica superset.

Clock Blocks and Interaction with the Physical
Environment Clock blocks provide clock signals.
They are source blocks, since they need no input
to provide a clock signal as output. In order to
convert between continuous-time (physical environ-
ment) and clocked discrete-time signals the operators
sample(u) (continuous-time variable u converted to
discrete-time) and hold(u) (zero-order hold conver-
sion of discrete-time variable u to continuous-time) are
needed.

Note that according to Section 4.3, Rule 9 clock
blocks as well as the conversion operators may not
be part of the high-level application intended for code
generation. They are elements needed to simulate
the execution of the high-level applications within the
simulation tool (depicted in Figure 7). Or formulated
differently, they are idealized models of the environ-
ment that will execute the high-level application run-
ning on the ECU, e.g., a periodic scheduler of an op-
erating system that activates the high-level application
task.

Since clock blocks, sample(u) and hold(u) reside
outside the high-level application they are not part of
the Modelica sub- and superset proposed for code gen-
eration!

The Modelica Specification [10, Section 16.3] de-
fines several overloaded Clock(..) constructors. A
simple clock source block is modeled below.
block PeriodicClock
parameter Real sampleRate = 0.1;
output Clock y = Clock(sampleRate);
end PeriodicClock;

A Modelica Sub- and Superset for Safety-Relevant Control Applications

464 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076455

Control
Algorithm

Clock
Source

Reference

Plant

Environment
Model

High-Level
Application

Model

sample(..) hold(..)

Figure 7: Simulation of a high-level application model
using a clock block to model the execution of the ap-
plication by its environment, e.g., by an operating sys-
tem scheduler.

Calling a Block as a Function Combining the pro-
posed priority based clock activation with modular
code generation (Section 4.2.6) fulfils the requirement
to “call blocks as functions” (stated in Section 4.2.3).

To exemplify, assume B1, B2 and B3 from Fig-
ure 3 have the annotation Inline=false and the man-
ual scheduler is modeled by assigning appropriate pri-
orities to the clock signals. A tool could generate fol-
lowing (conceptual) C-code.

double EnclosingBlock_B2_y = 0;

void EnclosingBlock(double u,
double* y1, double* y2) {

double B1_y1, B1_y2;
double B2_y, B3_y;
B3(EnclosingBlock_B2_y , &B3_y);
B1(u, &B1_y1, &B1_y2);
B2(B1_y1, B3_y1,

&EnclosingBlock_B2_y);
*y1 = EnclosingBlock_B2_y;
*y2 = B1_y2;

}

4.2.5 Typical Modelica Code Generation

The typical Modelica code generation process differs
significantly from the automatic target code generation

intended for safety related applications. This section
will give a short overview over the typical code gen-
eration process in order to better appreciate and un-
derstand the proposal for simplified and modular code
generation presented in Section 4.2.6.

Compiling Modelica code usually involves substan-
tial code transformation. Figure 8 gives an overview
of the compilation and simulation process as described
by Broman [4, p. 29].

Modelica
Model

AST

Lexical Analysis
and Parsing

Hybrid DAE

Elaboration

Executable

Simulation
Result

Equation
Transformation &
Code generation

Simulation

Compile
Time

Run time

Compiler
front-end

Compiler
back-end

Figure 8: Outline of a typical compilation and simula-
tion process for a Modelica language tool [4, p. 29].

The different phases are:

Lexical Analysis and Parsing This is standard com-
piler technology.

Elaboration Involves type checking, collapsing the
instance hierarchy and generation of connection
equations from connect-equations. The result is a
hybrid DAE (consisting of variable declarations,
equations from equations sections, algorithm sec-
tions, and when-clauses for triggering discrete-
time behaviour).

Equation Transformation This step encompasses
transforming and manipulating the equation sys-

Session 4B: Control

DOI Proceedings of the 9th International Modelica Conference 465
10.3384/ecp12076455 September 3-5, 2012, Munich, Germany

tem into a representation that can be efficiently
solved by a numerical solver. Depending on the
intended solver the DAE is typically reduced to
an index one problem (in case of a DAE solver)
or to an ODE form (in case of numerical integra-
tion methods like Euler or Runge-Kutta).

Code generation For efficiency reasons tools typi-
cally allow (or require) translation of the residual
function (for an DAE) or the right-hand side of
an equation system (for an ODE) to C-code that
is compiled and linked together with a numerical
solver into an executable file.

Simulation Execution of the (compiled) model.
While execution the simulation results are typi-
cally written into a file for later analysis.

In the context of code generation for safety relevant
systems the typical processing of Modelica models has
two problems:

1. In the Elaboration phase the instance hierar-
chy of the hierarchically composed model is col-
lapsed and flattened into one (large) system of
equations , which is subsequently translated into
one (large) chunk of C-code inhibiting modular-
isation and traceability at the C-code level. That
conflicts with Requirements 7, 8 and 18.

2. In the Equation Transformation phase the
equations are extensively manipulated, optimized
and transformed on the global model level. The
algorithms used in this step are the core elements
that differentiate the tools (quality of implemen-
tation). Although the basic algorithms are docu-
mented in the literature, the optimized algorithms
and heuristics used in commercial implementa-
tions are a vendor secret. The lack of trans-
parency and simplicity exacerbates tool qualifi-
cation efforts.

Therefore, the compilation process for simulation
may be significant different to the target code compi-
lation process depicted in Figure 2. Not only because
different compilers are used, but also because the tar-
get code generator may (need to) be an entirely dis-
tinct piece of software that may share only minimal to
no amounts of code with the simulation code genera-
tor. In particular the target code generator depicted in
Figure 2 is only required to understand the sub- and
superset of the Modelica language intended for (dis-
crete) software application models.

4.2.6 Proposal for Simplified and Modular Code
Generation

In the context of safety related function development
it is proposed to

1. Use simplified and transparent equation transfor-
mation algorithms for block diagrams.

2. Support modular code generation for blocks.

Simplified Transformation Algorithms The com-
plexity in the compilation process of Modelica models
is mainly due to acausal18, physical modeling. Trans-
forming typical physical models in a form that can be
efficiently solved by a numerical solver requires ad-
vanced symbolic manipulation techniques.

However, the proposed Modelica subset allows for a
hugely simplified compilation. Recall, that compared
to full Modelica, the following restrictions apply to the
block diagram subset of Modelica proposed in this pa-
per:

• Modelica block diagrams allow only causal con-
nections between blocks.

• Only difference equations are permitted by the
proposed language subset (the der(..) operator
is not available in the proposed language subset).

Transforming these equations to (causal) serial code
is completely feasible by resorting to well known, pub-
lished algorithms19 without needing additional expert
knowledge to perform challenging tasks like index re-
duction (which is needed for almost all physical Mod-
elica models of practical relevancy). Therefore, to in-
crease the transparency of the transformation process
it is proposed to use plain and open transformation al-
gorithms suitable for the targeted Modelica subset.

Modular Code Generation Modular, or separate,
code generation for blocks improves traceability
within a code generation process, a key requirement
when developing safety related functions [2, 1, p. 75].

The aim of modular code generation is to produce a
transition function for each block definition and com-
pose them together to produce the main transition
function. However, flattening each block and manipu-
lating the corresponding equation system on the global

18The term acausal in Modelica is somehow similar to what is
referred in computer science as descriptive.

19For example by employing basic “Modelica” algorithms for
causalization of an equation system into a block lower triangular
form [12, 15, 6].

A Modelica Sub- and Superset for Safety-Relevant Control Applications

466 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076455

level usually allows to generate a better optimized,
more efficient code. Consequently, a trade-off between
efficiency and traceability is required [1, p. 75].

Instead of collapsing the instance hierarchy, as typ-
ically done within the Elaboration phase, it is pro-
posed to provide an option that preserves the modular-
ity of an instantiated block.

The Modelica specification already knows of anno-
tations that can influence code generation [10, Section
18.3]:

code_annotation:
annotation"(" codeGenerationFlag "="
{ false | true } ")"

codeGenerationFlag:
"Evaluate" | "HideResult" | "Inline" |
"LateInline" | "GenerateEvents"

Within the specification the effect of the flag
"Inline" is limited to function declarations. We pro-
pose to extend that scope in order to use the flag to
annotate block instances and block declarations that
have been declared “atomic”. An annotation at the
block instance takes precedence over an annotation at
the block declaration. If the flag is not explicitly set it
defaults to Inline=false.

Therefore, for the example from Figure 9 the decla-
ration to enforce separate code generation for the block
instance writes:

atomic BlockModule blockModule
annotation(Inline=false);

BlockModule

u y

A B

Figure 9: For every block it must be possible to option-
ally state whether the modularity of the block instance
used in a composition is to be preserved at source code
level.

For the BlockModule example from Figure 9 a C-
function with suitable input and output data structures
could be generated in way similar to

void BlockModule(inBlockModule_u *u,
outBlockModule_y *y);

The internal state variables of the block (if any) could
be either part of the output data structure, or alterna-
tively could be provided as a third argument to the
function.

A common alternative approach is to use global
variables with a suitable naming scheme to avoid

variable clashes for input, output, and state variables
which results in functions with a void signature, e.g.,

void BlockModule(void);

If a suitable communication mechanism exists the
code may also instead of directly accessing the vari-
ables use the communication interfaces provided by
the run-time environment, e.g.,

void BlockModule(void) {
inBlockModule_u u =

get_inBlockModule_u();
outBlockModule_y y;
/* .. */
set_outBlockModule_y(y);

}

Clarity may improve if for initialization or reset of
state variables an additional, dedicated function is gen-
erated.

Additional Remarks on Code Generation A de-
tailed discussion about automatic target code gener-
ation by Modelica tools is out of scope of this arti-
cle. With no doubt the user needs to have more influ-
ence on the code generation than the options given by
the proposal above. Customized control over some as-
pects of the code generation might be provided within
the model in form of Modelica annotations (standard-
ized or tool specific) or also at completely different
locations and in different forms.

4.3 Subset: Reducing Language Complexity

The practice of defining modeling or coding stan-
dards for safety-relevant software projects is well es-
tablished20. This section proposes several rules for the
development of safety-relevant control applications,
akin to a modeling standard, in order to reduce the
complexity of the language.

The rules restrict the allowed language elements,
and hence define a language subset.

4.3.1 Textual Language Rules

To meet the requirements defined in Section 3 it is not
sufficient to solely restrict the language elements to a
subset of the current Modelica 3.3 standard specifica-
tion. In addition it is necessary to extend the language

20An example is the functional safety standard IEC 61508-3,
in which the use of coding standards is highly recommended for
SIL 3 and above [9]. Several coding/modeling guides published
by The Motor Industry Software Reliability Association (MISRA)
provide standards specifically targeted (but not limited) at the au-
tomotive industry, the most famous one being MISRA C [16].

Session 4B: Control

DOI Proceedings of the 9th International Modelica Conference 467
10.3384/ecp12076455 September 3-5, 2012, Munich, Germany

elements, effectively forming a superset of the current
language.

A language extension capable of meeting the re-
quirements is proposed in Section 4.2. The following
rule definitions require that this extension is available.

Rule 1 - Clocked Variables Exclusivity. Occurring
variables and equations must be part of (discrete-time)
clocked partitions. Note that this restriction implies
that all allowed high-level applications have a purely
time-discrete nature.
Rationale: Clocked variables and equations were in-
troduced in Modelica 3.3 to provide improved support
for implementation of (discrete-time) control systems.
Trace: Requirement 4, 5.

Rule 2 - Reduced Set of Keywords. Table 1 repro-
duces the keywords from the Modelica specification
[10, Section 2.3.3]. Keywords that are not allowed
in the proposed Modelica subset are stroked through.
The semantics of the remaining elements are main-
tained appropriately21.
Rationale: Language simplification.
Trace: Requirement 11.

Rule 3 - Reduced and Restricted Set of Operators.
The available Modelica operators are slightly reduced
(no .* ./ .+ .-) and the arithmetic operators
are restricted to scalar types (see Table 2).
Rationale: Language simplification.
Trace: Requirement 11.

Rule 4 - Reduced Set of Built-in Functions and Op-
erators with Function Syntax. Table 3 specifies the
subset of supported built-in functions and operators
with function syntax defined in [10, Section 3.7 and
Chapter 10, 16 and 17].
Rationale: Language simplification.
Trace: Requirement 11.

Rule 5 - Supported Data Types. The scalar data
types Boolean, Real and Integer are fully sup-
ported and extended to support more fine grain con-
trol about the underlying hardware encoding in Sec-
tion 4.2.1. Enumeration is not supported, the sup-
port of String is limited to parameter values and con-
stants. Array support is limited. Most (overloaded)
operators and built-in functions related to arrays are
not supported (see Table 2 and 3).
Rationale: Language simplification, as well as in-
crease of language expressiveness to satisfy common

21Note that the reason for excluding a keyword is not because it
would be unsafe to allow it. The reasons for excluding keywords
is to reduce the complexity of the language as much as possible
down to a set of (indispensable) core elements.

data type requirements from the embedded systems
domain. Functionality provided by the array opera-
tors and built-in functions, e.g., scalar product, can be
programmed by using the scalar operators and loops.
Trace: Requirement 4, 11.

Rule 6 - No Support of Built-in Variable time. The
built-in variable time (see [10, Section 3.6.7]) is not
supported.
Rationale: Physical time is a quantity of continuous
system simulation and therefore not supported in the
time-discrete language subset. If an absolute wall-
clock time is needed in the application logic, it has to
be passed in from the external environment as a (Real)
input signal.
Trace: Requirement 5.

Table 1: Reduced set of allowed Modelica keywords.
algorithm discrete false loop record
and each final model pure
annotation else flow not redeclare
assert elseif for operator replaceable
block elsewhen function or return
break encapsulated if outer stream
class end import output then
connect enumeration impure package true
connector equation in parameter type
constant expandable initial partial when
constrainedby extends inner protected while
der external input public within

Table 2: Reduced set of allowed operators
Operator Group Operator Syntax

postfix array index opera-
tor:

[]

postfix access operator: .
postfix function call: funcName(..)
exponentiation: ˆ
multiplicativea: * / .* ./
additivea: + - +expr -expr .+ .-
relational: < <= > >= == <>
unary negation: not expr
logical and: and
logical or: or
array range: expr : expr

expr : expr : expr
conditional: if expr then expr else expr
named argument: ident = expr

a Note that contrary to [10, Section 3.4] the arithmetic
operators ˆ * / + - are limited to operate on
scalar types only and the elementwise operators .* ./
.+ .- are not available.

4.3.2 Additional Graphical Representation Rules

The following rules establish a modeling standard for
the graphical representation of Modelica models, tar-
geting the requirements formulated in Section 3.2, to

A Modelica Sub- and Superset for Safety-Relevant Control Applications

468 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076455

Table 3: Reduced set of built-in functions and built-in
operators with function syntax

Numeric Functions
and Conversion
Functions

abs(v) sign(v)
sqrt(v) Integer(e)
String(..)

Event Triggering
Mathematical
Functionsa

div(x,y) mod(x,y)
rem(x,y) ceil(x)
floor(x) integer(x)

Built-in Mathematical
Functions and
External Built-in
Functions

sin(x) cos(x)
tan(x) asin(x)
acos(x) atan(x)
atan2(x,y) sinh(x)
cosh(x) tanh(x)
exp(x) log(x)
log10(x)

Derivative and
Special Purpose
Operators with
Function Syntax

der(expr) delay(..)
cardinality(c) homotopy(..)
semiLinear(..) inStream(v)
actualStream(v) spatialDistribution(..)
getInstanceName()

Event-Related
Operators with
Function Syntax

initial() terminal()
noEvent(expr) smooth(p, expr)
sample(s,i) pre(y)
edge(b) change(v)
reinit(x, expr)

Synchronous
Language Elements

Clock() Clock(..)b

previous(u) sample(u, c)b

hold(u)b subSample(..)
superSample(..) shiftSample(..)
backSample(..) noClock(u)
interval(u)

State Machinesc
transition(..) initialState(state)
activeState(state) ticksInState()
timeInState()

Array Dimension and
Size Functions

ndims(A) size(A,i)
size(A)

Dimensionality
Conversion Functions

scalar(A) vector(A)
matrix(A)

Specialized Array
Constructor
Functions

identity(n) diagonal(v)
zeros(..) ones(..)
fill(..) linspace(x1,x2,n)

Reduction Functions
and Operators

min(..) max(..)
sum(..) product(..)

Matrix and Vector
Algebra Functions

transpose(A) outerProduct(v1,v2)
symmetric(A) cross(x,y)
skew(x)

Array Constructor
and Concatination

array(..) cat(..)

a No events are triggered from these functions for the
proposed language subset (see [10, Section 16.8.1]).

b Only the “Inferred Clock” operator variant Clock() is
supported. The other Clock(..) constructors as well as the
sample(u,c) and hold(u) operators are not part of the
language subset proposed for embedded target code
generation (see Section 4.2.4 “Clock Blocks and Interaction
with the Physical Environment”).

c Present proposal excludes state machines (see Rule 7).

enable development and reviews to be conducted en-
tirely on the graphical level.

Rule 7 - Block Diagrams Only. The present proposal
focuses on the support of block diagrams and excludes
state diagrams.
Rationale: This is to limit the required effort and asso-
ciated complexity. Introduction of expressive state dia-
grams that integrate naturally with block diagrams and
allow generation of efficient and safe code is a huge ef-
fort in its own.
Trace: Requirement 14.

Rule 8 - Causal Connectors Exclusivity. Only
causal Connectors are allowed.
Rationale: Corollary to Rule 7

Rule 9 - Atomic Blocks for High-level Application.
The use of atomic blocks is suggested for the top-
level hierarchies of a model that shall be automatically
translated into embedded C-code.
Rationale: Enables a clean and clear execution model,
as well as an obvious translation of a block to a func-
tion call (see Section 4.2.6).
Trace: Requirements 4, 7, 8, 12, 15, 16, 17, 18.

Rule 10 - Basic/Composite Block Exclusivity.
Blocks need to be either basic blocks or composite
blocks. Mixing of textual equations with (graphical)
block instances is not allowed.
Rationale: Mixing textual equations with graphical
block instances in one block can be very confusing
since a modeler may expect that the semantics of a
composite block can be entirely deduced from the
graphical level.
Trace: Requirement 15.

Rule 11 - Semantical Unambiguousness at Graphi-
cal Layer. The semantics of a composite block must
be completely understandable at the graphical layer.
Rationale: This is required since otherwise code re-
views can not be done at the graphical level.
Trace: Requirement 12, 15.

Rule 12 - Scalar Signal Extraction via “(De)mux”
Only. Direct scalar signal connections from and to
array connectors are not allowed. Intermediate
“(De)mux” blocks must be used when scalar signals
shall be connected with array connectors.
Rationale: Improves clarity and understandability of
models.
Trace: Requirement 12, 15.

Session 4B: Control

DOI Proceedings of the 9th International Modelica Conference 469
10.3384/ecp12076455 September 3-5, 2012, Munich, Germany

4.4 The SAFEDISCRETECONTROL Library

The conceptual SAFEDISCRETECONTROL library
provides a restricted set of modeling blocks compliant
with the requirements formulated in Section 3. Fig-
ure 10 gives an overview about the structure of the li-
brary.

Figure 10: Structure of the SAFEDISCRETECONTROL

library. Note that the Environment package contains
blocks for modeling the environment in which the
modeled high-level application is executed. However,
these blocks may not be part of a high-level applica-
tion (software) model.

As may be expected, the library has to duplicate
many blocks found in the Modelica.Blocks stan-
dard library. However, it also needs to provide a user
friendly access to the elements from the language su-
perset, e.g., extended data types. Figure 11 shows a
block for adding two integer signals that includes a
choices menu to further specify the integer platform
type to be used.

Figure 12 shows a traffic light controller modeled
with the SafeDiscreteControl library. The con-
troller is motivated by the example described in [13].

Figure 11: Integer addition block with extended data
type support.

The controller’s output are the interval lengths of the
green phases, respectively for the north-south and the
east-west direction. Note that an atom icon in the up-
per right corner provides the visual information that
the block has been declared atomic.

The inside of the controller composite block is de-
picted in Figure 13. Semantically relevant information
like data types or vector valued signals (e.g., between
the multiplex and summation blocks) are clearly visi-
ble.

Adherence to the modeling rules described in Sec-
tion 4.3.2 in combination with an adequate library al-
lows to comply with the graphical level requirements
formulated in Section 3.2. As a consequence, high-
level application development (Role 1), as well as the
model reviewing (Role 3), could be done entirely at
the graphical level for the presented example.

Please note the presented SAFEDIS-
CRETELIBRARY is a conceptual library that was
created to check whether it is feasible to model typical
discrete control algorithms and their related support
logic solely with the use of the proposed sub- and
superset of the Modelica language. It is therefore not
a library that is available or usable for production
purposes!

5 Validation Suites

In order to more clearly understand the role of vali-
dation suites in the qualification of development tools,
the following section will provide formal definitions
of relevant terms and a formalized description of the
interplay between development tools and validation
suites. Additionally this theoretical framework allows
us to specify the relationship between specification

A Modelica Sub- and Superset for Safety-Relevant Control Applications

470 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076455

Figure 12: Model of a dynamic traffic light controller
including the physical plant model of an intersection of
two roads. The controller adjusts its timing and phas-
ing to meet changing traffic conditions. Atomicity of
the controller composite block is denoted by the atom
symbol in the upper right corner. Data types are visible
at the input and output connectors.

models in Modelica and code generation models in the
proposed sub- and superset of Modelica.

5.1 Definitions

We define

• M as the set of all valid input models of the in-
tended development tool chain suitable for code
generation, i.e. in our case the set of models valid
in the proposed Modelica sub- and superset.

• M̃ ⊂ M as the set of models given by a defined
language subset for which the tool chain is to be
validated22,

• M̂ ⊂ M̃ as the set of all test models of a validation
suite,

• Sm as the set of all valid stimuli for a given model
m ∈M, and

• Ŝm ⊂ Sm the set of all test stimuli of a validation
suite for a given model m ∈ M̂,

22Trivially M̃ can be M, though in practice the language is usu-
ally further subset to work around known defects in the code gen-
erator, elide unused language constructs or avoid language con-
structs not suitable for the intended application domain.

Figure 13: Inside the traffic light controller composite
block. All semantically relevant information is visible
at the graphical level.

and further the evaluation function

evalmil : M×Sm→ Rm

of a model by a theoretical simulator (Model-in-the-
Loop), where Rm is the set of possible results of a given
model m ∈M.

We are interested in the proper functioning of a de-
velopment toolchain (DT) consisting of an automatic
code generator (ACG), compiler (C), assembler (A)
and linker (L) for a target (t), so that

DTt : M→ Bt = Lt ◦At ◦Ct ◦ACGt

is the translation function of a model m ∈ M into a
binary Bt executable on target t.

Due to possible differences in the representations
of stimuli and results between host and simulation
(Sm,Rm) vs. target and executable (S′m,R

′
m) we also

define mappings

g : Sm→ S′m

h : R′m→ Rm

converting between the different representations. Ide-
ally S′m = Sm and R′m = Rm and thus g = idSm and
h = idRm .23

Finally
evalbilt : Bt ×S′m→ R′m

is the evaluation function of the binaries b ∈ Bt on the
target t by the processor (Binary-in-the-Loop).

23The mappings g and h are typically defined as component-
wise mappings on the underlying algebraic data types.

Session 4B: Control

DOI Proceedings of the 9th International Modelica Conference 471
10.3384/ecp12076455 September 3-5, 2012, Munich, Germany

5.2 The Task of a Validation Suite

We require from a correct development toolchain that

∀m ∈ M̃ : ∀sm ∈ Sm :

d(evalmil(m,sm),h(evalbilt (DTt(m),g(sm)))) = 0

for a given metric d : Rm×Rm→ R.
Excluding the impact of d it is to be shown that the

diagram in Figure 14 commutes.

Sm
evalmil(m) //

g

��

Rm

S′m
evalbilt (bt) // R′m

h

OO

DTt

��

Figure 14: The diagrams shows the interaction of the
defined sets and mappings.

Since it is generally not feasible to demonstrate this,
the task of the validation suite is to gain confidence
in the validity of this assertion by demonstrating the
validitiy of the assertion only for the set of test models
and test stimuli, i.e.

∀m ∈ M̂ : ∀sm ∈ Ŝm :

d(evalmil(m,sm),h(evalbilt (DTt(m),g(sm)))) = 0

and ensuring through a suitable selection of the subsets
M̂ ⊂ M̃ and Ŝm ⊂ Sm, and additional measures of qual-
ity assurance, like e.g. fault-injection, that the gener-
alisation to m ∈ M̃ and sm ∈ Sm is defensible.

5.3 Structure of the Sets M and Bt

The preceding analysis makes no reference to the
structure of the sets of valid models M and the set of
executable binaries Bt . We will analyse these sets in
the following through the lens of the theory of alge-
braic specifications ([7, 8]).

In this context these sets are the sets of all terms with
variables corresponding to their underlying signatures
ΣM or ΣBt . The sets of stimuli Sm or S′m are then the sets
of all possible values of the variables for given terms
in M and Bt .

The evaluation functions evalmil or evalbilt are corre-
spondingly extended evaluation functions for a given
ΣM- or ΣBt -algebra, realized by the simulator or the
target processor t.

The function DTt is thus a transformation of terms
from M = TΣM into terms of Bt = TΣBt

. A closer exam-
ination of the resulting properties of the functions DTt ,
g, h, evalmil and evalbilt , especially with the means of
category theory of the categories defined by ΣM and
ΣBt and their corresponding algebras can be helpful:
The structure of the sets M = TΣM and Bt = TΣBt

has
particular influence on the selection of the test sets M̂
and Ŝm, since the structure of these sets also affects the
internal structure of the definition of the function DTt

to be tested.
In the test strategy of a validation suite, as described

in [14], this observation among other considerations
motivates the introduction of specific test areas dealing
with the structure of the programming language, e.g.
test areas 1 basic constructs of language, 2 combined
constructs of language, and 4 inner equivalence, as
well as the structure of the transformation process, e.g.
6 internal structure of the code generator.

Obviously the complexity of the structure, espe-
cially the number and kind of different language con-
structs as well as the number of different ways of com-
bining them and any non-local effects, will determine
to a large degree the size of the required test sets. Im-
portantly this relationship due to combinatorial size
explosion is at minimum quadratic or cubic, and pos-
sibly exponential in complexity. Therefore all effort
should be expended to keep the language subset and
the complexity of the language semantics as small and
simple as possible.

5.4 The Relation between Specification Mod-
els and Code Generation Models

We assume in the following that the specification
model of Figure 1 is a program in the language Mod-
elica and the code generation model is a program of
a possible subset of the proposed sub- and superset of
the language Modelica for safety-relevant control ap-
plications. Then if we define

• M as the set of all valid Modelica models

there exists a mapping r : M→M for every model m∈
M to a corresponding Modelica model m ∈M. Thus

M̃ = r(M̃)

is the subset of valid specification models correspond-
ing to the set of code generation models expressible in
the validated language subset.

Conversely, the left-unique, left- and right-total re-
lation

p⊆ M̃× M̃ = {(m,m) ∈ M̃× M̃ : r(m) = m}

A Modelica Sub- and Superset for Safety-Relevant Control Applications

472 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076455

represents the mapping between specification and
code generation models.

The reason for p not being right-unique or func-
tional is indicative of the freedom of choice of the
developer in their implementation, for example in the
choice of implementation data types, which are usu-
ally left open in the specification model.

If we restrict this freedom of choice by e.g. us-
ing a strict mapping of the data types24 and provid-
ing other default implementation choices, we obtain a
right-unique relation and with that a bijective mapping
function

p′ : M̃→ M̃

with

∀m∈ M̃ :∃m∈ M̃ : (m,m)∈ p∧ p′(m)=m∧m= r(p′(m)).

With corresponding definitions for the functions g :
Sm → Sm and h : Rm → Rm we expand the diagram
from Figure 14 for the evaluation function evalspec :
M×Sm→ Rm, see Figure 15.

Sm
evalspec(m) //

g

��

Rm

Sm
evalmil(m) //

g

��

Rm

h

OO

S′m
evalbilt (bt) // R′m

h

OO

p′

��

DTt

��

Figure 15: The diagram extends the diagram of Fig-
ure 14 with the interaction of the level of the specifi-
cation model.

This diagram should commute, too, if needed taking
into account a suitable (pseudo-)metric d : Rm×Rm→
R. For other models m′ ∈ M with (m,m′) ∈ p and
m′ 6= m the diagram in Figure 15 may commute with
suitable mappings g, h and a (pseudo-)metric for suit-
able stimuli.

Taken together these characteristics make it possi-
ble to produce a set of validated tools for both the code
generation from code generation models and the trans-
formation from specification to code generation mod-
els, so that the probability of fault injection along those
two (independent) transformations can be minimized.

24We map e.g. all double in the specification models to double
in the code generation model, etc.

6 Conclusion

The article presented a general set of requirements that
need to be imposed on a high-level, domain-oriented
modeling language and its development tools in order
to use it for the development of safety-relevant appli-
cations. Based on these requirements the suitability
of using Modelica within a safety related development
process was further analyzed and a sub- and superset
of the Modelica language was proposed that seems ca-
pable of satisfying the formulated requirements.

As a preferred method of choice to gain confidence
in software development tools the use of a validation
suite was proposed and a formal description of the role
of a validation suite within a tool qualification effort
was given. The precise understanding of the task and
effort needed to qualify a tool (based an the valida-
tion suite method) is necessary to appreciate the im-
portance of minimizing number and complexity of the
allowed language elements.

A prototypical development of a block diagram li-
brary (denoted SAFEDISCRETECONTROL) based on
established data flow semantics was started in order to
test the suitability of the proposed language set to sat-
isfactorily model typical control applications. The first
analysis is very encouraging. Currently, there are ap-
proximately 60 candidates of blocks and their param-
eters for the intended SAFEDISCRETECONTROL li-
brary. This is comparable to the number of blocks and
parameters of already successful validation projects
for comparable modeling languages and their develop-
ment tools, so that the implementation of a validation
suite for this language set seems eminently possible.

The next task will be to demonstrate the practical
suitability of the proposed sub- and superset (which
comprises less than half of the language elements
of the Modelica Standard 3.3) for real applications.
While it will likely become necessary to enhance or
modify the language set based on the practical lessons
learned, it will remain of crucial importance, to limit
the number of the blocks in the SAFEDISCRETECON-
TROL library as much as possible:

Experience with validation suites for other model-
ing languages has shown, that for a language with
around 90 basic building blocks, the test sets of the
test areas dealing mainly with language structure (i.e.
test areas 1 basic constructs of language, 2 combined
constructs of language, and 4 inner equivalence, see
again [14]) already comprise around 223 000 test out-
puts. Asuming only quadratic or cubic growth, an in-
crease of a mere 10 % in blocks and parameters will
result in an increase of approximately 20–30 % in val-

Session 4B: Control

DOI Proceedings of the 9th International Modelica Conference 473
10.3384/ecp12076455 September 3-5, 2012, Munich, Germany

idation effort. A strong release management process
on the SAFEDISCRETECONTROL library with an ideal
limit of about 50 basic building blocks therefore seems
advisable.

It should be noted that tool qualification is most ef-
fective when performed in an early phase of the de-
velopment process: Errors in development tools are
usually hard to detect and analyse in normal develop-
ment, and the effects of work-arounds and tool limita-
tions can have a huge impact on the efficiency of the
development process when introduced at a late stage
of development. Tool qualification should therefore be
concluded prior to the start of the development project.
Ideally, tool qualification efforts start even before the
language definition is finalized: When language con-
structs and definitions are viewed through the lens of
tool qualification, error-prone or hard to test constructs
and corner cases are highlighted, and improvements
can still be adopted. By the concurrent creation of a
test suite, interpretation of the language definition can
be clarified and harmonized between possible imple-
mentations. For this reason we would welcome further
work in this area even at this early stage of language
set definition.

The authors hope that, on the one hand this contri-
bution sheds some light on the requirements and in-
tricacies that need to be faced when considering the
usage of Modelica for safety related applications, and
on the other hand hope to stimulate further discussion
on the rationale and possible approaches to employing
Modelica in this field.

Acknowledgments

The first author would like to thank Dominik Sommer
for the valuable discussions about safety relevant soft-
ware development in aerospace applications.

References

[1] Albert Benveniste, Stephen A. Edwards, Nicolas
Halbwachs, Paul Le Guernic, and Robert de Si-
mone. The synchronous languages 12 years later.
In Proceedings of the IEEE, volume 91 (1), pages
64–83, 2003.

[2] Dariusz Biernacki, Jean-Louis Colaço, Gregoire
Hamon, and Marc Pouzet. Clock-directed mod-
ular code generation for synchronous data-flow
languages. SIGPLAN Not., 43(7):121–130, June
2008.

[3] Tilman Bünte, Akin Sahin, and Naim Bajcinca.
Inversion of Vehicle Steering Dynamics with
Modelica/Dymola. In Gerhard Schmitz, editor,
4th Int. Modelica Conference, March 2005.

[4] David Broman. Meta-Languages and Seman-
tics for Equation-Based Modeling and Simula-
tion. PhD thesis, Linköping University, PELAB
- Programming Environment Laboratory, The In-
stitute of Technology, 2010.

[5] Manfred Broy, Helmut Krcmar, Jens Zim-
mermann, and Sascha Kirstan. Einfluss des
Software-Designs auf die Wirtschaftlichkeit von
Software-Entwicklungen. ATZelektronik, 02:34–
37, April 2011.

[6] I. S. Duff and J. K. Reid. An implementation of
tarjan’s algorithm for the block triangularization
of a matrix. ACM Trans. Math. Softw., 4(2):137–
147, June 1978.

[7] Hartmut Ehrig and Bernd Mahr. Fundamentals
of Algebraic Specification 1: Equations and Ini-
tial Semantics. Monographs in Theoretical Com-
puter Science. An EATCS Series. Springer, 1985.

[8] Hartmut Ehrig and Bernd Mahr. Fundamentals
of Algebraic Specification 2: Module Specifi-
cations and Constraints. Monographs in The-
oretical Computer Science. An EATCS Series.
Springer, 1990.

[9] IEC 61508: Functional Safety of Electrical/Elec-
tronic/Programmable Electronic Safety-related
Systems, 1998.

[10] Modelica Association. Modelica—A Unified
Object-Oriented Language for Systems Model-
ing v3.3. Standard Specification, May 2012.
available at http://www.modelica.org/.

[11] Ramine Nikoukhah and Sébastien Furic. To-
wards a full integration of modelica models in
the scicos environment. In 7th Modelica Confer-
ence, Como, Italy, September 2009.

[12] Constantinos C. Pantelides. The consistent
initialization of differential-algebraic systems.
SIAM Journal on Scientific and Statistical Com-
puting, 9(2):213–231, 1988.

[13] Stefan-Alexander Schneider and Tobias Hof-
mann. Functional Development with Modelica:
A Use-Case Analysis. In 9th Int. Modelica Con-
ference, Munich, Germany, September 2012.

A Modelica Sub- and Superset for Safety-Relevant Control Applications

474 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076455

[14] Stefan-Alexander Schneider, Tomilav Lovric,
and Pierre Mai. The validation suite approach
to safety qualification of tools. SAE Technical
Paper 2009-01-0746, 2009.

[15] Robert Tarjan. Depth-first search and linear
graph algorithms. In Switching and Automata
Theory, 1971., 12th Annual Symposium on, pages
114 –121, oct. 1971.

[16] The Motor Industry Software Reliability Asso-
ciation. MISRA-C:2004 - Guidelines for the
use of the C language in critical systems, 2004.
http://www.misra.org.uk.

[17] The Motor Industry Software Reliability As-
sociation. MISRA AC AGC - Guidelines
for the application of MISRA-C:2004 in the
context of automatic code generation, 2007.
http://www.misra.org.uk.

[18] M. Thümmel, M. Kurze, M. Otter, and J. Bals.
Nonlinear inverse models for control. In 4th Int.
Modelica Conference, pages 267–279, 2005.

[19] Michael Thümmel, Martin Otter, and Johann
Bals. Vibration control of elastic joint robots
by inverse dynamics models. In H. Ulbrich and
W. Günthner, editors, IUTAM Symposium on Vi-
bration Control of Nonlinear Mechanisms and
Structures, pages 343–353, München, 2005.

Session 4B: Control

DOI Proceedings of the 9th International Modelica Conference 475
10.3384/ecp12076455 September 3-5, 2012, Munich, Germany

A Modelica Sub- and Superset for Safety-Relevant Control Applications

476 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076455

A Modelica Library for Industrial Control Systems

A Modelica Library for Industrial Control Systems

Marco Bonvini Alberto Leva
Politecnico di Milano, Dipartimento di Elettronica e Informazione

Via Ponzio 34/5, 20133, Milano, Italy

Abstract

Many studies for which simulation is necessary in-
clude the presence of control systems. While plenty
of Modelica libraries are nowadays available to accu-
rately represent the plant, the same is not so true as
for the control elements, since industrial ones are en-
dowed with a number of functionalities – and often
present system- or even vendor-specific peculiarities
– that are not represented by the typical blocks (e.g.,
based on transfer functions) offered by the existing li-
braries. This paper is an attempt to start filling the gap
and provide an efficient solution, structured and organ-
ised in such a way to be easily understood by control
specialists, and to ease information transfer between
simulation studies and implementation.

Keywords: industrial controllers, simulation

1 Introduction

In many simulation studies, control plays a relevant
role. Sometimes this is because the study is precisely
aimed at setting up the control system for the plant at
hand, but in many other situations, even if control syn-
thesis is not the main goal of the study, the behaviour
itself of the modelled object depends significantly on
the operation of some controls. As such, quite often
the representation of the control system deserves sub-
stantially the same accuracy as the representation of
the physical plant (in the broad sense of the term).

At present, numerous Modelica libraries are avail-
able to represent plants with a virtually arbitrarily ac-
curacy, but the same is not true – at least, to the best of
the authors’ knowledge – for controllers. To appreci-
ate that, the interested reader could for example throw
a glance at the PID block as provided by any control
environment, be it targeted to a PLC, a DCS, or what-
ever. Most likely, he/she will see something similar to
the two examples shown in figure 1.

Apparently, such blocks are more articulated than
for example the PID of the Modelica Standard Library

Figure 1: Two examples of PID blocks as sen in typical
industrial control tools.

(MSL)—as by the way real-life control systems do ex-
hibit a number of peculiarities that are not accounted
for in “textbook” representation, see e.g. [9]. The re-
marks just made are in no sense meant to be a criti-
cism, it is worth stating; nonetheless they evidence that
for the simple controller representations of the MSL
(or analogous ones) to be adequate, some conditions
are necessary. Summarising, and sticking to the PID
example,

• the specific form of the controller (let alone the
detailed operation of the control algorithm) must
not be relevant for the problem,

• and the operation of typical elements of industrial
controllers, such as tracking and locks, must not
be of concern either.

If this is the case, MSL-like representations are per-
fectly adequate. If on the contrary either this is not the
case in the simulation scenarii to be considered, or one
wants to describe the control system so as to be capa-
ble of simulating the controlled plant in its entire set
of operating modes, the same representations cannot
serve the desired purpose.

For the reasons above, and after several years during
which the authors and their group have been develop-
ing ad hoc solutions for individual cases, the decision

DOI Proceedings of the 9th International Modelica Conference 477
10.3384/ecp12076477 September 3-5, 2012, Munich, Germany

Figure 2: An overview of the library structure.

was recently taken to put all of that knowledge and
Modelica code together in a structured manner.

The result is the library described in this paper,
which is organised as follows. Section 2 presents and
motivates the most qualifying characteristics of the li-
brary. Section 3 presents the library structure giving
just a quick overview, as the library documentation
provides full detail on the matter. Section 4 reports
some simulation examples, these too available in the
library, to evidence and further motivate its distinc-
tive characters previously discussed. Finally, in sec-
tion 6 some conclusions are drawn, and future work is
sketched out.

2 Main characteristics of the library

To fulfil the requirements envisaged in section 1, it is
first necessary to include both modulating and logic
control elements.

For modulating elements, it is required to account
for the typical representations of the major control
blocks – see e.g. [8, 3] for how many forms a PID can
take – and the typical realisations of the main nonlin-
ear functionalities: for example, taking again the PID
as example, antiwindup can be realised internally or
by reading back the applied control from the actuator.
Also, logic functionalities need incorporating, such as
tracking and the possibility of preventing the control
signal from increasing or decreasing, which is of great
usefulness in cascade controls. Finally, different al-
gorithmic realisations (e.g., positional or incremental)
need considering, since in some cases they can affect

the behaviour of the element, especially if controller
parameters can be modified online as is the case for
gain-scheduling blocks.

For logic elements, the typical set available in
SCADA-like products needs representing, including
timers, counters, sequencers, and so forth.

Then, it would be advisable that the modelled con-
trol elements allow for variable-step simulation, to
avoid obliging the analyst to use the library only with
fixed-step solution, which could be unacceptably in-
efficient in more than one case. As such, the choice
was made to provide both a time-driven and an event-
driven version of the same element wherever this is
possible, and research is underway to extend this cov-
erage to the whole library.

Moreover, in a view to good acceptance and wide
utilisation, care was taken to give the library elements
a look and feel as similar as possible to what a user
of SCADA (or analogous) tools expects to see. This
was not pursued up to its extreme consequences, but is
definitely a peculiarity.

Finally, an initial set of autotuning controllers is in-
cluded, building on previous research see e.g. [1, 5, 7,
6]; this is meant both to ease control setup in simula-
tion, and to help the user familiarise with that technol-
ogy, and the underlying theory.

3 The library structure

The library is organised into subpackages; a list of the
major ones is given below.

A Modelica Library for Industrial Control Systems

478 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076477

• Logical, that contains all logical elements,
timers, counters, and so forth.

• MathOperations, including the necessary opera-
tors for real and integer numbers (which is some-
times very useful to correctly represent the oper-
ation of some industrial blocks).

• LinearSystems, where some blocks are con-
tained that can be used to easily close loops to test
controllers. Part of those blocks are also related to
well known controller benchmarks, see e.g. [2];
of course this subpackage is provided basically
for convenience and to obtain a self-contained li-
brary, but many alternatives can be used.

• Controllers, where both modulating and logic
control blocks are represented, in three basic (and
interchangeable) manners: (a) as continuous-
time equations, (b) as equations but evolving
by events, and (c) – when multiple assignments
could not be avoided, although research to solve
this is underway – as algorithms.

• Applications, that contains a quite large set of
examples to better understand and use the library.

Figure 2 shows an overview of the library struc-
ture. Readers that are familiar with control systems
and control theory will easily get familiar with the li-
brary and its structure (just by observing the library
components); non experienced user will find further
details into the included documentation.

3.1 Interfaces

Figure 3: Interface for a generic controller. The in-
put/output connector evidenced in yellow are always
present, the other ones can be conditionally selected.

Each model/block/controller contained into the In-
dustrial Control Library can be connected together

Table 1: This table contains the definition of the in-
terface of a generic controller with its conditional in-
put/output connectors.

Name Description Conditional?

SP Set Point NO
PV Process Variable NO
CS Control Signal NO
TR Track Reference YES
TS Track Signal YES

Bias Bias signal YES
ATreq Automatic Tuning request YES

with other models ones through its standard connec-
tors, defined in the Modelica Standard Library. In
each subpackage, an ad-hoc partial interface model
has been defined in order to improve the readability
of the code, and reduce as much as possible the num-
ber of code lines spent for non specific purposes. Fig-
ure 3 shows the interface of a generic controller. The
input/output connectors of such a block can be con-
ditionally selected through various boolean flags as
shown in table 1. With these conditional connectors
a controller can be used even if it does not use all its
features, without connecting dummy inputs to it and
thus increasing the clarity of the control scheme. The
interfaces and the variables of the models have been
named according to the standard terminology in the
field of control systems. The interested reader that is
not familiar with this topic can find more information
in [4].

4 Simulation examples

This section contains a small sample of the examples
contained in the library, to show the possible usage
of some models, and also evidence the usefulness of
adopting the proposed representation.

4.1 Zero crossing count

This examples uses some blocks of the Logical sub-
package, as shown in figure 5. More in detail, the sig-
nal represented by y(t) = sin(t) is compared with to
z(t) = 0. Each time the signal crosses the reference,
the boolean output of the comparison block rises. The
rising edges are counted by the digital counter, in the
period comprised between t = 2.2 and t = 10.2. Figure
5 reports the Set and Reset Count signals, while figure
6 shows the behaviour of the counter value.

Session 4B: Control

DOI Proceedings of the 9th International Modelica Conference 479
10.3384/ecp12076477 September 3-5, 2012, Munich, Germany

Figure 4: Scheme of the zero crossing count model.

Figure 5: Zero crossing signal, Set count signal and
Reset count signal.

4.2 PID with bias and tracking mode

In this example the second order process defined as

P(s) =
(1+15s)

(1+2s)(1+10s)
(1)

is controlled by a PID regulator, to track given step Set
Point signal, and reject a load disturbance acting on the
process input (as shown in figure 7). Two controllers
are compared, namely a PID and a PID with bias in-
put. Figure 8 reports the Set Point (blue line), the
Process Variable of the process without control (red),
controlled with the PID (green) and the PID with bias

Figure 6: Counter value.

Figure 7: Classic PID controller: without bias signal
(top) and with bias signal (bottom).

Figure 8: Set Point (blue), Process Variable without
control (red), with a PID controller (green) and with a
biased PID controller (magenta).

(magenta). The PID rejects the disturbance just via
the feedback path, that makes its action slower. On the
contrary, the PID with bias acts immediately, thanks to
its feed forward character.

Carrying on to representing the tracking mode op-
eration (see figure 9), an example is shown with the
process defined in (1), still controlled by a PID. Figure
10 shows the Set Point, the process variable and the
tracking switch signal, while figure 11 shows the con-
trol signal, the track reference and the integral action
of the controller. The Tracking mode starts at t = 40s,
before the controller has led the process variable to the
Set Point reference. When the Tracking mode starts,
the control signal becomes equal to the track reference
(as shown in figure 11). In this case the track signal
decreases and then increases, moving the process vari-
able in a neighbourhood of the set point. When the
tracking mode is enabled, the integrator does not inte-
grate the error signal, rather is managed in such a way
to be consistent with the track reference. Thus, the
transition from the tracking mode to the automatic one
is bumpless.

A Modelica Library for Industrial Control Systems

480 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076477

Figure 9: PID with Track Switch ans Track Reference
signals

Figure 10: Set Point (blue), Process Variable (red), and
Track Switch signal (green).

Figure 11: Control Signal (blue), Track Reference Sig-
nal (red) and Integral action (green).

Figure 12: Set Point (blue), Process Variable without
control (green), process Variable with PID (red) and
PV with TDO PID (magenta)

Figure 13: Control Signal (blue) and CS of TDO PID
(red)

4.3 Time Division Output controller

The process (1) is here controlled with a Time Divi-
sion Output PID. Such an actuation scheme is used to
have an on/off actuator behave like a modulating one,
and is quite typical when either the actuator cannot
be partialised, or doing so would unacceptably reduce
its efficiency. The controller, implemented in its digi-
tal algorithmic form, first computes the control signal,
and then converts it into the duty cycle of a rectangu-
lar wave of assigned period. Figure 12 contains the Set
Point reference (blue), the Process Variable of a pro-
cess without control (green), the Process Variable of a
digital PID (red) and the Process Variable of a TDO
PID (magenta). Since the TDO control signal changes
continuously, the relative process variable has a sort
of ripple, however the overall behaviour is essentially
the same as the digital PID without TDO. The control
signals computed by the two controllers are shown in
figure 15.

4.4 Cascade control with increment and
decrement locks

This examples compares two cascade control schemes,
one with and one without increment/decrement locks.
When two controllers are connected together in a cas-

Session 4B: Control

DOI Proceedings of the 9th International Modelica Conference 481
10.3384/ecp12076477 September 3-5, 2012, Munich, Germany

Figure 14: Cascade control schemes: a) without incre-
ment/decrement locks – b) with increment/decrement
locks.

Figure 15: Cascade control with and without incre-
ment/decrement locks – outer set point and process
variable, inner set point.

cade control scheme, the inner controller typically reg-
ulates the actuator, while the outer one provides the
Set Point reference for the inner one. Since the inner
controller acts on the plant, its Control Signal has to
be limited, and AntiWindup is in order, but in general
it is not possible for the outer controller, to know the
values for which the inner regulator saturates.

Such a problem can be avoided by using the PID in
its incremental form, using the Increment/Decrement
lock feature, and creating an external (logical) loop be-
tween the controllers, as shown in figure 14.

If the inner regulator saturates, its satHi signal be-
comes true. Connecting this signal to the forbidIncre-
ment input of the outer controller, avoiding a useless
and potentially dangerous increase of its Control Sig-
nal (that is the Set point of the inner controller that sat-
urated). With such a scheme, the mentioned inter-loop
windup-like effect can be avoided.

In figures 15 and 16, that show the results, the
green line is the CS of the outer controller with
Increment/Decrement lock, while the black one is
the output of the outer controller without Incre-
ment/Decrement lock. The black line shows a windup
like effect that turns in a slower reaction when the Set

Figure 16: Cascade control with and without incre-
ment/decrement locks – inner control.

Figure 17: Modelica diagram of a level control
scheme. The two subsystems (the control system and
the process to be controlled) are evidenced with differ-
ent background colors.

Point changes at time t = 30.

4.5 A level control case

In this example, models from the presented library are
used together with models from the MSL. The aim of
this example is to show the usefulness of the presented
models, and how they can be easily integrated and con-
nected with others. For this purpose, the chosen exam-
ple refers to the problem of controlling the water level
in a tank. The water level is the process variable, and
the system (see figure 17) is composed of a tank and
a pipe connected to a valve, that discharges water to
the atmospheric pressure. The valve actuator is simply
represented by a first order system with unity gain.

The control system is composed of a measurement
part and a control (stricto sensu) one. Concerning the
measurement part, the pressure sensor measures the
absolute pressure at the bottom of the tank. The mea-
sured pressure pm is subtracted from the atmospheric
pressure p0, and then divided by the gravity accelera-
tion g and the water density ρ , in order to obtain the
water level

l =
pm− p0

ρg
(2)

The PI controller, given the level measurement and

A Modelica Library for Industrial Control Systems

482 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076477

Figure 18: Set Point water level reference, Process
Variable and valve position command

Figure 19: Set Point water level reference, Process
Variable and valve position command (discrete time
controller, T s = 5 s)

the set point, computes its control action, i.e., the pre-
scribed valve position, limited between CS ∈ [0,1] in
order to avoid windup effects (thus CSmin = 0 and
CSmax = 1). The tank is 2m height, and the water
level at time t = 0 is L = 1 m. In the first phase the
controller is required to maintain the level at the initial
value (SP= 1 m), while at t = 1200 s the level set point
has a steep variation (SP = 0.5 m). The controller has
to act on the valve in order to decrease the water level
to the desired value. A disturbance, represented by a
water mass flow rate entering the tank, becomes dif-
ferent from zero at time t = 3600 s. Figure 18 shows
reference, water level and valve position command.

The simulation can be performed at an initial stage
assuming that the controller is a continuous time one
(T s = 0), and the math operations are in double pre-
cision (FixedPoint = false). In such a phase, it is thus
possible to concentrate on the controller design (not on
implementation-related facts).

As a further stage, one could introduce more details
in order to simulate a more realistic system. At first
it is possible to introduce the time discretisation, and
investigate the effects of the sampling time. Figure
19 shows the simulation results with a sampling time
T s = 5 s.

Figure 20: Set Point water level reference, Process
Variable and valve position command (discrete time
controller, T s = 5 s and Fixed Point math operations)

An additional level of detail can be the introduction
of fixed point math operations. In this example, a num-
ber of bit Nbit = 24 was chosen, which means that the
integer number that can be represented are comprises
between MIN =−8388609 and MAX = 8388608. At
a first stage, the measured pressure have to be sub-
tracted of the ambient one. In the worst case, the
higher pressure value that can be read as input from
the math operation block is 101325+1000 ·9.81 ·2 =
120945, that is more or less two orders of magnitude
less than the higher integer number MAX . This means
that input numbers can be multiplied by a scale factor
comprised between 10 and 50. In this case the scale
factor has been chosen as sFactor = 20. In a similar
way, the scale factor for the division can be chosen (In
this case, sFactor = 500). Note that a large number of
bits is required because the pressure variation is small
with respect to its absolute value. Using such a mod-
elling approach, it is possible to estimate the amount
of bits required, and to directly test the correctness of
the design strategy. Figure 20 shows that the numerical
errors due to a wrong design are visible on the Control
Signal.

5 Towards Modelica 3.3

The recent definition of the version 3.3 of the Mod-
elica language introduces new elements for describing
synchronous behaviours, and also new elements suited
to define synchronous state machines. This evolution
is primarily made to ease the activity of modelling re-
alistic control algorithms.

These evolutions will introduce some advantages in
the development of models that are pure discrete or
logical, since a standardised framework for develop-
ing such models will help in the design, creation and
maintenance of models in which many of these com-

Session 4B: Control

DOI Proceedings of the 9th International Modelica Conference 483
10.3384/ecp12076477 September 3-5, 2012, Munich, Germany

ponents are connected together. Considering elements
that can be either continuous time or discrete time, and
which events are not regular but can be dynamically
driven; however, it is not yet clear if this language evo-
lutions will fit also such model characteristics, that (as
shown) are of great importance for tailoring the simu-
lation burden to the needs of the addressed study.

The last interesting point that has not yet been con-
sidered, but in the authors’ opinion should be, is the
introduction of the Fixed Point arithmetic. The pre-
sented library takes into account this problem and it
is managed in a preliminary and simplified way, pro-
viding a solution just for simple cases. The introduc-
tion of a new type of variable with its specific oper-
ations will be an important step in the direction of a
really control (and control synthesis) oriented simula-
tion tool.

6 Conclusions and future work

A Modelica library for industrial controllers was pre-
sented, with several peculiar features, and some exam-
ples were shown to illustrate its potentialities.

In the authors’ opinion the library can significantly
help the analyst who has to address studies where a
precise control representation plays a relevant role—
more frequent a case than one may expect at a first
glance, by the way. The presented library in the first
place responds to such a demand, and in addition
tries to preserve the advantages of variable-step sim-
ulation when possible—a matter on which further re-
search is however underway. The library is by def-
inition extensible, so that one may even want to in-
clude the exact (i.e., code replica) representation of
some block of interest, employing those already re-
alised as a starting point. Implicitly, then, the library
has also a didactic value, since the user can see how
several concepts are actually put to work. Some ex-
amples were reported to show the library operation.
All of these – plus others omitted here for space rea-
sons – are available in the library itself (available at
http://home.dei.polimi.it/leva/download.html), for the
convenience of the interested reader.

Future activity (apart from the already mentioned
one related to simulation efficiency) will be directed at
expanding the library in all its sections, including the
autotuning one, and to extensively use it in simulation
studies. The community is encouraged to use, improve
– and correct if necessary – the library, and feedback
would be highly appreciated by the authors in order to
continuously improve the results.

References

[1] K.J. Åström and T. Hägglund. Industrial adap-
tive controllers based on frequency response tech-
niques. Automatica, 27(4):599–609, 1991.

[2] K.J. Åström and T. Hägglund. Benchmark sys-
tems for PID control. In IFAC Workshop on Digi-
tal Control – Past, present, and future of PID Con-
trol, Terrassa, Spain, 2000.

[3] K.J. Åström and T. Hägglund. Advanced PID con-
trol. Instrument Society of America, Research Tri-
angle Park, NY, 2006.

[4] W. Dunn and W.C. Dunn. Fundamentals of
industrial instrumentation and process control.
McGraw-Hill Professional, 2005.

[5] A. Leva. PID autotuning algorithm based on relay
feedback. IEE Proceedings-D, 140(5):328–338,
1993.

[6] A. Leva and M. Bonvini. Efficient hybrid simula-
tion of autotuning PI controllers. In Proc. 8th In-
ternational Modelica Conference, Dresden, Ger-
many, 2011.

[7] A. Leva, S. Negro, and A.V. Papadopou-
los. PI/PID autotuning with contextual model
parametrisation. Journal of Process Control,
20(4):452–463, 2010.

[8] A. O’Dwyer. Handbook of PI and PID controller
tuning rules. World Scientific Publishing, Singa-
pore, 2003.

[9] F.G. Shinskey. Process control: as tought versus
as practiced. Industrial & Engineering Chemistry
Research, 41(16):3745–3750, 2002.

A Modelica Library for Industrial Control Systems

484 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076477

Session 4C: Handling Simulation Output

Modelica3D - Platform Independent Simulation Visualization

Modelica3D -
Platform Independent Simulation Visualization

Christoph Höger1, Alexandra Mehlhase1, Christoph Nytsch-Geusen2, Karsten Isakovic3, and Rick
Kubiak3

1Technische Universität Berlin
2Universität der Künste Berlin

3Fraunhofer FIRST

Abstract

Modelica3D is a platform-independent, free Model-
ica library for 3D visualization. Its implementation
is based on a message-passing architecture. Through
its loosely-coupled architecture, Modelica3D can be
combined with different rendering-tools. It is also
highly extensible and scalable.

Keywords: 3D Graphics, Library, Platform Inde-
pendence, Free Software, Structural Dynamics, Loose
Coupling, Message Passing

1 Introduction

Simulation results in Modelica are usually visualized
using two-dimensional plots. System states are shown
as functions over time or each other. While this is of
course a very natural way to approach the presenta-
tion of simulation results, it is not sufficient in some
aspects:

In Modelica, simulation-models are composed of
reusable software fragments. Thus an interesting
quantity might not be present directly, but in form of a
relation between multiple system states (e.g. distances
between different objects). The solution is to either
change the model, post-process the simulation results,
or to switch to a more complex visualization method.

Additionally, a simulation might be used to drive
interactive real-time simulators (e.g. for training pur-
poses) or to present certain facts to a non-simulation
audience. In both cases the usage of 3D graphics
might lower the barrier significantly for team mem-
bers, which are not as familiar with the simulation as
the responsible engineer. Therefore it is important that
the visualization aspects can be controlled from within
the simulation environment. On the other hand visual-

ization experts (and expert-tools) are necessary to cre-
ate realistic and usable 3D-graphics. The Modelica3D
library aims to provide a solution for these require-
ments.

1.1 Contribution

In this paper we will demonstrate how a visualization
library (called Modelica3D) can be implemented by
using only standard Modelica features. The library it-
self is available under a free software license. We will
show how a tight coupling between the library and
the rendering-tool can be avoided. This loose cou-
pling allows the visualization of structural dynamic
systems. Additionally, we show how the underlying
message-exchange API makes the Modelica3D API
both flexible and extensible. Finally, an example is
given, demonstrating the scalability of Modelica3D to
industrial models.

Finally, the method proposed here is not limited to
3D-graphics. The same means could be used to control
e.g. sound output or any other simulation feedback. In
that way, Modelica3D demonstrates how simulations
can control effects beyond their simulation environ-
ment.

The rest of the paper is organized as follows: First,
we will discuss the state-of-the-art of 3D visualiza-
tion in the Modelica ecosystem. Then, a technical
overview over Modelica3D’s architecture is presented.
This includes a discussion of the overall design as
well as solutions to overcome some Modelica-specific
limitations. Second, we will show how Modelica3D
can be used to simulate an existing library (Model-
ica.MultiBody) to achieve tool-independent state-of-
the-art visualization. As a second use-case a recently
developed technique for finite-state structurally dy-
namic systems is extended with Modelica3D visual-

DOI Proceedings of the 9th International Modelica Conference 485
10.3384/ecp12076485 September 3-5, 2012, Munich, Germany

ization. Finally, we will evaluate the library by imple-
menting a large-scale industrial model visualization.

2 State of the art

During the last 10 years different approaches were
tested to integrate scene descriptions of 3D bodies in
the Modelica language or to support 3D visualizations
by the Modelica simulation tools.

The first fundamental analysis and conceptual work
in this field was done by Engelson [3]. Two alternative
ways were discussed for the integration of 3D object
information in Modelica: First, the definition of a ba-
sic set of “graphical” Modelica classes, which make a
representation of primitive 3D objects (e.g. triangle,
sphere) and position operations with this objects (e.g.
translation, rotation) in user defined physical models
possible. Second, the direct integration of the 3D ob-
ject information as “graphical annotations” into the
physical models self.

Another approach of a annotation concept for the
embedding of 3D geometries in Modelica was devel-
oped from [5], where specialized 3D annotations for
model classes and objects and a standardized descrip-
tion of 3D geometries and the related body topolo-
gies (in this case the X3D standard) were combined.
Within the tool specific approaches, individual ways
for the 3D information integration were done by the
software developers. The greatest disadvantage con-
sists in the incompatibility of the 3D models, caused
by the use of vendor specific 3D information.

The simulation tool SimulationX from ITI supports
both for his own Modelica libraries and also for user
written Modelica libraries the visualization and anima-
tion of 3D objects. With the help of an 3D editor tool,
the 3D information is stored in the physical Modelica
models and also in related non standardized annota-
tions. The 3D editor supports the definition of sim-
ple and complex bodies, which are constructed by the
combination of standard 3D primitives and also spe-
cialized objects such as gears and spiral springs.

The simulation tool Dymola from Dassault Sys-
temes supports for selected Modelica libraries the vi-
sualization and animation of 3D-objects, mainly for
the MultiBody-Library. For this, specialized visualiza-
tion classes for 3D primitives were introduced. Fur-
ther, complex 3D geometries, based on external def-
initions of 3D-shapes via dxf-files are utilized. The
MultiBody package of the Modelica Standard Library
uses data structures defined in Modelica.Services to
calculate a complete continuous time model of the 3D

visualization geometry. This approach does not allow
for effect-events (e.g. deformations, material changes).

The visualization framework SimVis for 3D mod-
elling and simulation with Modelica was developed by
the German DLR [2]. On the modelling side, a new
developed ExternalDevices-library represents the base
for the 3D visualization and interactivity. For the sim-
ulation experiments three different types of input de-
vices (keyboard, joystick, 3D space mouse) supports
the direct 3D interaction by the user. The technical
base on SimVis is OPENGL and OPENSceneGraph.
Different use cases were analysed within SimVis such
as flexible body simulation, energy flow simulation,
Head-Up-Display simulations, hybrid cars and robot
simulation.

3 Modelica3D

In this section we discuss the architecture of Model-
ica3D and the design decisions that lead it. As Mod-
elica3D is a purely non-physical library, there are no
modeling concerns (e.g. reusable and understandable
components) that need to be addressed. Instead, Mod-
elica3D focuses solely on effects outside of the simula-
tion. Thus, we could focus on general software design
principles and the goals motivated earlier.

3.1 Design Decisions

First of all, Modelica3D should be platform indepen-
dent: Only methods that are part of the Modelica Spec-
ification [1] should be used. This rules out the devel-
opment in form of an extension to an existing platform
and a solution based on vendor-specfic annotations.
Any tool that follows the specification should be able
to use Modelica3D directly. During the development
we used OpenModelica [4].

Model C-API

<<interface>>
Modelica3DBack-end

Figure 1: Modelica3D architecture

Instead, Modelica3D must be shippable as a library.

Modelica3D - Platform Independent Simulation Visualization

486 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076485

This library must contain a layer of Modelica-Code,
which allows access to the 3D API from any model.
On the other hand, extensions which cannot be ex-
pressed in Modelica need to be implemented in a lan-
guage that is supported through Modelica’s external
function interface. Since only C and Fortran are cur-
rently specified, C is a natural choice, being the “lin-
gua franca” of platform independent development.

The second important requirement was loose cou-
pling between front-end (the simulated model) and
back-end (the rendering-tool). While with the choice
of C as implementation language, several options for
accessing rendering-tools exist, directly linking the
back-end would cause several drawbacks:

• Only few back-ends can be used as a library.
Even if they do (e.g. OpenSceneGraph), the
viewer usually requires a lot of additional fea-
tures (user interface, inputs, file management).
Providing those features to a Modelica model in a
platform independent implementation would re-
quire lots of additional work for each back-end
and thus only allow very few implementations.

• A fixed C API would not only put an additional
burden on developers who want to extend the li-
brary. It would also of hinder the maintenance,
since every back-end would effectively require
it’s own C-library (including it’s own bugs). Ide-
ally the parts written in C should be as small as
possible instead, leaving the lion’s share of work
to Modelica and back-end experts.

• Linking works only locally. In times of dis-
tributed computing it seems unreasonable to de-
mand simulations running on the same physical
machine as visualization.

So instead of directly linking 3D API functions into
a Modelica model, we chose to use interprocess com-
munication (IPC). That way, front-end as well as back-
end can run as dedicated processes while sending re-
spectively receiving messages. Any back-end needs to
implement a common interface (which is simply the
set of messages accepted).

Because visualization should not influence the sim-
ulation results, the communication between front- and
back-end is unidirectional. In our design this allows a
further simplification of the message-exchange proto-
col: Since the front-end does not expect any messages
from the back-end, the communication can work syn-
chronously. This also fits into the event-driven model-
ing style of Modelica. Note, that by using time-events

Partially filledPartially filled

new Message

sendMessage
add Parameter

Figure 2: modbus message lifecycle

for the event handling, the effect on the simulation per-
formance can be minimized by the simulation tool, as
discussed e.g. in [8].

3.2 Implementation

With the design decisions settled, the first task was
to implement an extensible, synchronous, platform-
independent IPC layer in Modelica. Instead of rein-
venting the wheel, we chose to use an existing IPC
solution and wrap around it’s C-interface. Because of
it’s availability, maturity, and simple C-API, the choice
fell on dbus, the current de-facto standard for IPC on
Linux [7] 1.

The first part of Modelica3D is thus a thin Modelica
wrapper around dbus, called modbus. Modbus allows
creation and sending of arbitrary messages as External
Objects. Message objects can be allocated, equipped
with parameters and send over a connection.

Since modbus only uses very few of features of
dbus (only one-to-one communication, uniform, stati-
cally known messages etc.), this implementation could
be considered overhead and in a sense it certainly
is. On the other hand, the implementation itself be-
comes rather simple: Currently it consists of 96 lines
of Modelica- and 216 lines of C-Code. In case a faster
solution is needed, modbus should be trivial to port
to whatever IPC-mechanism seems appropriate. Addi-
tionally, this strategy makes it unnecessary to store and
continuously calculate the 3d geometry. Depending
on the scene, this might yield significant runtime and

1It has been ported to windows, too.

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 487
10.3384/ecp12076485 September 3-5, 2012, Munich, Germany

memory improvements over methods like the Multi-
Body visualization.

To further reduce the size of the interface (and make
it more convenient to implement), all methods pro-
vided by the Modelica3D API accept named param-
eters and allow to emit some of them (using defaults
instead). Internally modbus implements this by stor-
ing the parameters in a dbus map-object. This yields
some further overhead (dbus’ internal type-checking
becomes quite useless), but allows more selective up-
dates on graphical objects (e.g. it would be possible to
only change the Z-axis location of an object without
even knowing its X- and Y-axis locations).

Method name Description
loadSceneFromFile Loads a complete scene

from a file
createMaterial Create a material primitive
applyMaterial Use a material on an object
createBox Create a box primitive
createBoxAt Create a box primitive, with

a given orientation
createSphere Create a sphere primitive
createCylinder Create a cylinder primitive
createCylinderAt Create a cylinder primitive,

with a given orientation
createCone Create a cone primitive
createConeAt Create a cone primitive,

with a given orientation

Table 1: Modelica3D setup-methods

3.3 Alternatives

As already mentioned, the choice of dbus for message
exchange was mainly due to pragmatic reasons. Any
other platform-independent IPC solution might suffice
as well. Albeit, there is a fundamentally different de-
sign that needs some discussion. In certain settings,
every message exchange, no matter how lightweight,
may cause a too big delay:

Consider a real-time system running at 60 or more
fps and visualizing large sets of objects (e.g. a scene
in a game engine). Since synchronous message ex-
change requires at least 2 context switches, and a
context switch is rather costly [6], we can estimate
a theoretical upper limit of 105 simultaneously ani-
mated objects. Any practical limit will of course be
much smaller, since not only context switches are re-
quired. Basically, this means, that, independent of the

visualization or simulation complexity, a system com-
posed of some thousands of objects that shall be visu-
alized, cannot be rendered in real-time, when message-
passing is used.

So instead of sending lots of small messages about
the state of each object, front- and back-end could use
shared memory to exchange large chunks of data very
fast. Unfortunately, such a solution is hardly plat-
form independent and more complicated to implement
(since both sides would need to synchronize their ac-
cess on that data). But since it is obviously a useful
design alternative, further research seems to be appro-
priate.

3.4 Data structures and operations

Modelica3D comes only with a very small set of data
structures. Next to the already mentioned modbus ob-
jects, it provides a system state record, a controller
model and a definition of object-ids. The system state
basically only combines a modbus context object with
a connection and a counter for the current frame. The
controller in turn wraps the state and provides a sam-
pled boolean signal depending on a selected framerate.
It also modifies the state’s frame counter according to
the current time and can send a stop-message to the
back-end at the end of simulation time.

Method name Description
rotate Change an object’s orienta-

tion
moveTo Change an object’s location
moveZ Move along the Z-axis only
scale Change the size of an object
scaleZ Scale along the Z-axis only
setAmbientColor Sets the ambient color value

of a material
setDiffuseColor Sets the diffuse color value

of a material
setSpecularColor Sets the specular color value

of a material
setMatProperty Changes a given (named)

material property

Table 2: Modelica3D modification-methods

Id-objects are currently only heap-allocated strings.
But on demand, they might be easily exchanged with
a more complex internal implementation (e.g. if the
library would want to implement hashing or collect
statistics on the objects).

Modelica3D - Platform Independent Simulation Visualization

488 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076485

Most methods in the Modelica3D API fall into two
distinct groups: There are operations that describe the
setup of a scene (table 1) and operations that modify
a scene dynamically (table 2). The difference between
them is that the latter ones need a frame number, which
works as a logical clock that describes, when such a
modification takes effect, while the former ones are
always interpreted once at the beginning of the ani-
mation. The only exception from that pattern is the
stop-operation. Sending this message tells the client
to stop listening for further messages.

The set of currently implemented operations is
rather small. But due to the design of Modelica3D,
additional operations might be added by simply ex-
tending the package (and at least one backend). No
recompilation of the C-library is required.

Listing 1: moveTo-method in Modelica
function moveTo

input State state;
input Id id;
input Real p[3];
input Integer frame=state.frame;
output String r;

protected
Message msg = Message(TARGET ,
OBJECT , INTERFACE , "move_to");

algorithm
addString(msg , "reference",

getString(id));
addReal(msg , "x", p[1]);
addReal(msg , "y", p[2]);
addReal(msg , "z", p[3]);
addInteger(msg , "frame", frame);
r := sendMessage(state.conn , msg);

end moveTo;

Implementing an operation in Modelica is not dif-
ficult. Listing 1 shows the moveTo function is im-
plemented. It consists of allocating a message object
(from the dbus-connection constants for the target and
the dbus-interface and the method’s name), adding pa-
rameters to that message, and finally sending it. Fur-
ther operations should follow that pattern.

3.5 Back-ends

Currently, Modelica3D contains two back-end imple-
mentations. They demonstrate two distinct kinds of vi-
sualization tools. The first tool, blender [11], is a 3D-
modeling tool which can render high-quality movies.
Blender provides a python interpreter for scripting pur-
poses. Thus it was a natural choice to implement the
back-end parts in python.

Listing 2: moveTo-method in blender
@mod3D_api(reference = defined_object ,

frame = positive_int)
def move_to(self , reference ,

x=None , y=None , z=None ,
frame=1, immediate=False):

o = data.objects[reference]
context.scene.frame_set(frame=frame)
if immediate:

o.keyframe_insert('location ',
frame=frame - 1)

if (x != None):
o.location.x = x

if (y != None):
o.location.y = y

if (z != None):
o.location.z = z

o.keyframe_insert('location ',
frame=frame)

return reference

Listing 2 shows the implementation of the moveTo-
method in the blender back-end. The mod3D_api-
decorator is responsible for lifting a python function
into a dbus-method. That lifting is (due to the uniform
signature) the same for all back-end methods. Addi-
tionally certain runtime checks might be added (e.g.
checking if a given object-reference actually exists, a
number is positive etc.).

Since blender provides access to it’s internal
data representation (data.objects), the rest of the
method is straight-forward. It directly changes the ob-
ject’s coordinates (if provided by the client) and in-
serts an animation key-frame (allowing for interpo-
lated movement, if necessary).

The other back-end was implemented using Open-
SceneGraph [9], a free 3D-engine. Unlike blender, it
does not provide modeling facilities. Instead, its scope
is fast, real-time rendering. That way we demonstrate
how Modelica3D might also be used in interactive ap-
plications2.

4 Usage

In this section we show, how Modelica3D can be used
to visualize different kinds of simulations. First, we
will show how Modelica3D can handle state-of-the-art
visualizations on the basis of the MultiBody library.
Second we will describe the visualization of a simple,
structurally dynamic system.

2The graphical output, the input needs to be handled with some
other tool or library.

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 489
10.3384/ecp12076485 September 3-5, 2012, Munich, Germany

PartialShape Advanced.Shape

Body

Figure 3: MultiBody visualization-class structure

4.1 Visualizing MultiBody

As mentioned earlier a popular (if not the most pop-
ular) method of visualization comes with the Model-
ica Standard Library: All models from the MultiBody
library can be visualized according to their geometri-
cal structure. Since a 3D-mechanical library naturally
contains information about the location and relative ro-
tation of objects, visualization is straight-forward.

This makes the MultiBody library a good example
of how Modelica3D can be used in such existing com-
plex hierarchies. In this use-case, all visualization in-
formation culminates in one class, the PartialShape
(Figure 3). That class basically consists of the shape
parameters (length, material etc.) and a translation ma-
trix. This gives us an insertion point of where to insert
the Modelica3D functionality. In a first step, we in-
troduced a controller object into this class, to hold the
Modelica3D context information. Since this controller
needs to be unique among all shapes, it is naturally
marked as outer (Listing 3).

Listing 3: Additional fields of PartialShape
outer M3D.Controller m3d_control;
Id id;
Id mat;
String res;
discrete Real[3] pos;
modcount.Context initContext

= modcount.Context();

Additionally an object-id is added for both the
shape’s material and geometry. The variable pos holds
the current position (resolved from the translation ma-
trix), while res captures the result of each operation
(ensuring that they are evaluated at least once). Finally
a modcount-context object is used to ensure singleton
evaluation of message generation. With those fields
present, the animation dynamics can easily be imple-
mented by when-algorithms:

Listing 4: PartialShape algorithmic dynamics
when initial() and

modcount.get(initContext) <> 1 then
id := shapeDescrTo3D(m3d_control.state ,

shapeType , length , width , height ,
lengthDirection);

mat := M3D.createMaterial
(m3d_control.state);

M3D.setAmbientColor(m3d_control.state ,
mat , color[1] / 255, color[2] / 255,
color[3] / 255, 1.0 , 0);

M3D.setSpecularColor(m3d_control.state ,
mat ,
specularCoefficient * color[1] / 255,
specularCoefficient * color[2] / 255,
specularCoefficient * color[3] / 255,
1.0 , 0);

M3D.applyMaterial(m3d_control.state ,
id , mat);

modcount.set(initContext , 1);
end when;

when m3d_control.send and
modcount.get(initContext) == 1 then

pos := r + Frames.resolve1(R, r_shape);
res := M3D.rotate(m3d_control.state ,

id , R.T , m3d_control.state.frame);
res := M3D.moveTo(m3d_control.state ,

id , pos , m3d_control.state.frame);
end when;

Figure 4: MultiBody visualization with
Gtk+/OpenSceneGraph back-end

In this example we omitted some dynamics like
changing lengths or colors, since this is unused in
ourexample models (all shapes basically remain con-
stant during simulation). If necessary, those details can
be added here easily. Also messages are always sent,
even if there is no movement on every frame. A more
sophisticated implementation could detect a relevant

Modelica3D - Platform Independent Simulation Visualization

490 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076485

change in the model and decide whether or not to up-
date the visualization state.

With this small extension, we were able to simulate
and visualize the examples from the standard library
with the OpenModelica simulation tools (Figure 4).
Thus we successfully demonstrated that by only using
standardized techniques, we could visualize complex
models.

4.2 Variable-structure modeling

A variable-structure model is a model which can con-
sist of different systems of equations (with different
numbers of equations) and different variables depend-
ing on the simulation time. This is of interest, when a
model has different levels of detail. Another applica-
tion is to change the model’s behavior described by a
different set of equations.

Simulation engines like Dymola, SimulationX and
OpenModelica do not support such changes. To over-
come this drawback and still be able to use common
simulation engines for the simulation of a model, a
Python framework was introduced in [10]. This frame-
work allows the user to specify a variable-structure
model. The user can specify an arbitrary number of
models and switches between these models. The user
also has to specify how the new model should be ini-
tialized with the end values of the old mode.

For now the simulation engines Dymola, OpenMod-
elica and Simulink are integrated in the framework.
But the framework is implemented in such a way that
other environments can be added quite simply. After
specifying the model the Framework starts to simu-
late the first model in the chosen simulation environ-
ment. The model needs a stop condition which spec-
ifies when another model should be used and defines
the next model. The framework uses this information
to switch to the next model and initialize this model
with the correct values.

We demonstrate this approach with a simple bounc-
ing ball model. This model could of course be mod-
eled without the variable-structure approach, but it is
used for didactic purposes for the modes are easy to
understand and the results are good to visualize.

This model consists of two separate modes. The
first is the common falling mass model which is valid
as long as the ball does not touch the ground. As
soon as it touches the ground the ball is modeled as
a spring/damper system and therefore the elastic de-
formation of the model and the bouncing back off the
ground can be modeled easily. As soon as the ball
leaves the ground again the falling mass model is used

Free fallFree fall

Spring/DamperSpring/Damper

stoptime

stoptime

height < radius

spring length > radius

Figure 5: Statechart of the bouncing ball variable-
structure model

again. Figure 5 shows a statechart with the two modes
and the switching condition is presented.

Simulating this model with the framework and plot-
ting the center of the ball results in the plot shown in
figure 6. Here it can be seen, that the center point of the
ball reaches below the radius (1.0) of the ball. This ef-
fect is caused by the elasticity of the ball in the spring/-
damper mode.

Figure 6: Center point of the bouncing ball model

A simulation of a variable-structure model with the
Python framework starts simulations of the different
modes sequentially. To be able to visualize such sim-
ulation results using Modelica3D, the models describ-
ing the states of the system need to fulfill two require-
ments:

First, they need to work on a common scene. Set-
ting up such a scene is trivial: Either by directly load-
ing it into the rendering tool at start or by creating a

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 491
10.3384/ecp12076485 September 3-5, 2012, Munich, Germany

Figure 7: Ball in free-fall mode

dedicated initial state that handles all setup commands
from the Modelica3D API. Here the decision of us-
ing IPC instead of direct linking pays off: Since the
rendering tool runs only once, no special treatment for
structurally dynamic systems is necessary. Second, all
models need to know which parts of the scene they
modify. In our example, both models need to know
the name of the ball. This visualization interface can-
not be statically checked.

Listing 5: Free-fall visualization

algorithm
when initial() and

modcount.get(initContext) <> 1 then
ball := M3D.objectId("Ball");
modcount.set(initContext , 1);

end when;
when m3d_control.send and

modcount.get(initContext) == 1 then
M3D.moveZ(m3d_control.state ,
ball , h, m3d_control.state.frame);

end when;

In our example, we took a simple approach to mod-
eling: The scene consists only of a plane representing
the ground and a sphere for the ball. Camera and some
lighting is added by blender. In free-fall mode, the
only thing to change is the location of the sphere on
the Z-axis (Listing 5). On-ground, we model the com-
pression of the ball by scaling and moving the sphere
along the Z-axis.

Since the python framework controls the activation
and deactivation of the states (by extending the phys-
ical models with terminal-conditions etc.), this ap-
proach works seamlessly: Figure 7 shows the ball
falling towards the plane. The compression is captured
in figure 8. Naturally, the true visual effect of bounc-
ing can not be shown in single images, but only when
viewing the whole animation.

Figure 8: Ball compressed

5 Evaluation

We evaluated a development version of Modelica3D
(enhanced with the ability to group objects on the
back-end for simpler handling of complex scenes) in a
case study of a solar-thermal hydraulic system, which
is integrated in the structure of a building envelope.
For this objective, several sub-steps had to be realized.

5.1 Modelica3D extensions of the physical
models

First, the component models of the library Build-
ingSystems 3 were extended with the ability to have
a representation within a 3D scene and to show val-
ues such as temperatures, pressures or mass flow rates.
Figure 9 shows this extension procedure for the ex-
ample of a 1D-segmented thermal hydraulic model of
a tube. The new model class PipeStraightVis3D was
derived from the existing physical model class PipeS-
traight and from a general model class for 3D repre-
sentation ModelVis3D.

The model extension comprises the definition of
the shape of the 3D sub-primitives (here the cylinder
pieces of the segmented fluid volume), the combina-
tion of them in a common container, the definition of
the material (the appearance in the 3D scene) incl. the
link to the sub-primitives, the alignment and merging
of the sub-primitives to the common 3D representation
and the mapping of the physical values to a graphical
representation within the 3D model (in this case the
fluid temperature of each fluid segment).

On a next level, several 3D-extended tube models
and a 3D-extended pump model were combined to a
simple thermal hydraulic loop. Figure 10 shows the
2D diagram of the Modelica system model on the left
and the corresponding 3D animated scene on the right.

3http://www.modelica-buildingsystems.de

Modelica3D - Platform Independent Simulation Visualization

492 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076485

Figure 9: Extending a physical model for the use in
Modelica3D

5.2 Case study of a solar thermal system

As the first complex application of the 3D visualiza-
tion method, a solar thermal system for warm water
production was used (Figure 10 left). The components
of the solar thermal system are two evacuated tube col-
lectors with a total aperture area of 6.34 m2 and a hot
water storage with a volume of 400 liters. The roof
collector is aligned to the south and tilted with an an-
gle of 30°. An external plate heat exchanger transfers
the produced thermal energy from the solar loop to the
storage loop. With the help of a two-point-controller
the solar pump and the storage pump are switched on,

Figure 10: 2D and 3D representation of a thermal hy-
draulic loop

if the collector outlet temperature is 4K higher than
the temperature in the lower part of the storage. As
climate boundary conditions weather data from Ham-
burg (Germany) were used.

In the simulation scenario a load process for the
thermal water storage over a time period of 24 h dur-
ing a summer day were calculated. At the beginning of
the load process the fluid temperatures in the collector,
in the pipes and in the storage was set to 20 °C. Figure
10 (right) shows the described solar thermal system as
a graphical 2D diagram, based on the "3D-extended"-
components of the BuildingSystem-library.

Figure 11 illustrates the simulated transient load
process for the summer day, described by the most
important system variables such as the solar irradia-
tion on the collector, the mass flow rate of the storage
pump, the collector outlet temperature and the storage
temperature at the bottom.

Figure 11: Simulated load process of the solar thermal
system

For a clear representation within a 3D scene, the
model of the solar thermal system was embedded in
the 3D model of a building envelope. The 3D building
envelope was modeled as a pure geometrical represen-
tation without any physical behavior. In this manner,
realistic geometries and positions of different technical
components of the solar thermal system (tube lengths
and diameters, the required space of the storage and
the collectors etc.) can be visualized. Figure 12 shows
a snapshot of a the visualized transient load process
of the storage during the hours before noon during a
summer day in Hamburg. The different colors illus-
trate the temperatures of the fluid within the collec-
tor model, the tubes and the warm water storage from
cold (blue) to warm (green). Because the collectors
are serial connected and the cold fluid enters at first the
left collector, the temperature gradient within the seg-
mented collector model increases from left two right.

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 493
10.3384/ecp12076485 September 3-5, 2012, Munich, Germany

Figure 12: 3D-scene of the solar thermal system

5.3 Results

The result of the evalution can be summarized as fol-
lows:

• The developed method allows a performant rep-
resentation of 3D scenes with a large quantity of
animated graphical 3D elements.

• It is possible to represent complex 3D scenes with
the unchanged Modelica code in different 3D en-
vironments (eg. Blender and OpenSceneGraph)

• A 3D modeling editor for a time efficient and
correct configuration of complex 3D Modelica
scenes is absolutely necessary

6 Conclusion

Modelica can be extended too support 3D-
visualization of experiments. That extension can
completely be implemented in form of a library
by only using already standardized techniques. By
choosing a loosely coupled, distributed architecture,
the extension can support different back-ends and
itself be extended easily. Additionally, innovative
use-cases as variable-structure modeling are supported
by this approach.

6.1 Obtaining Modelica3D

A public version of Modelica3D can is pub-
lished under the terms of the GNU General
Public License. The project page can be found
at https://mlcontrol.uebb.tu-berlin.de/
redmine/projects/modelica3d-public.

References

[1] Modelica - a unified object-oriented language for
physical systems modeling, 2010.

[2] T. Bellmann. Interactive Simulations and Ad-
vanced Visualization with Modelica. In Pro-
ceedings of the 7th Modelica Conference, Como,
Italy, 2009.

[3] V. Engelson. 3D Graphics and Modelica-an in-
tegrated approach. Linköping Electronic Articles
in Computer and Information Science. Linköping
universitet, 2000.

[4] Peter Fritzson, Peter Aronsson, Håkan Lundvall,
Kaj Nyström, Adrian Pop, Levon Saldamli, and
David Broman. The openmodelica modeling,
simulation, and development environment. In
Proceedings of the 46th Conference on Simula-
tion and Modeling, pages 83–90, 2005.

[5] Thomas Hoeft and Christoph Nytsch-Geusen.
Design and validation of an annotation-concept
for the representation of 3d-geometries in model-
ica. In Proceedings of the 6th International Mod-
elica Conference, 2008.

[6] C. Li, C. Ding, and K. Shen. Quantifying The
Cost of Context Switch. In Proceedings of the
2007 workshop on Experimental computer sci-
ence, page 2. ACM, 2007.

[7] R. Love. Get on the D-BUS. Linux Journal,
2005(130):3, 2005.

[8] H. Lundvall, P. Fritzson, and B. Bachmann.
Event handling in the openmodelica compiler
and runtime system. Technical report, Technical
Report 2, Dept. Computer and Information Sci-
ence, Linköping Univ, 2008.

[9] Paul Martz. OpenSceneGraph Quick Start
Guide, 2007.

[10] A. Mehlhase. A Python Package for Simulating
Variable-Structure Models with Dymola. submit-
ted, feb 2012.

[11] Ton Roosendaal and Stefano Selleri. The Official
Blender 2.3 Guide: Free 3D Creation Suite for
Modeling, Animation, and Rendering. No Starch
Press, June 2004.

Modelica3D - Platform Independent Simulation Visualization

494 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076485

Proposal for a Standard Time Series File Format in HDF5 Proposal for a Standard Time Series File Format in HDF5

A. Pfeiffer1, I. Bausch-Gall2, M. Otter1
1DLR Institute of System Dynamics and Control, Oberpfaffenhofen, Germany

2BAUSCH-GALL GmbH, Munich, Germany
Andreas.Pfeiffer@dlr.de, Ingrid.Bausch-Gall@bausch-gall.de, Martin.Otter@dlr.de

Abstract
This paper describes a proposal for a standard to
store the results of dynamic systems simulations in
form of time series data persistently on file. The rea-
sons to develop such a standard are explained, as
well as the decision to use the HDF5 file format as a
basis. The meta-information to be stored on file is
mainly deduced from the Functional Mockup Inter-
face standard. Two variants are analyzed: Storing the
meta-data either with a set of tables or in a hierarchy.
Usability and performance measurements are utilized
for the selection.

Keywords: Simulation Results; File Format; Time
Series; Standard; HDF5; MTSF, FMI

1 Introduction
Many simulation programs store their simulation
results in an own specific file format. However,
modelers have to utilize simulation results from dif-
ferent tools in different ways, e.g. plotting in compa-
ny specific formats, comparing the data with results
from another simulation program or computing FFTs
(Fast Fourier Transforms). Since often one tool is not
suited for all these tasks, users or tool vendors have
to implement API functions to access the result data
from other programs. This is time consuming and
has to be adapted when the format changes. Every
program stores different information. Some store
only the results, other more information such as units
and names of signals. Many programs provide an
open export of ASCII or CSV files, which makes
data access easy. However, information supplied in
these formats is not complete, reading the files is
inefficient and storing and retrieving large amounts
of data is not practical.

These issues exist since decades for almost all simu-
lators in many physical domains. Many simulators
offer a more or less mighty environment for result
evaluation. But this is not their main development
goal. Scripting tools such as Matlab [M12], Scilab
[TSC12] or Python [P12a] are better suited to auto-
mate plotting of results with fine control of the lay-
out, to generate standardized result evaluation re-

ports, to perform signal processing (e.g. FFT), to
compare with measurements, to run Monte Carlo
simulations, or to perform optimizations over many
simulations etc. The basic problem is then how to
connect a simulation with a scripting environment.
With a standardized time series file format, the ap-
proach from Figure 1 simplifies the task a lot, since
simulation environments could generate files in this
format and scripting tools could read files in this
format directly.

Figure 1: Standard time series file format and its interac-
tion with tools.

In 2010, version 1.0 of the FMI (Functional Mockup
Interface) standard was developed for the low level
exchange of models and for co-simulation [MC10].
More than 30 tools support this standard already.
Further progress can be achieved if these programs
would support, at least optionally, the same result
file format. For example, this would make it practical
to automatically compare results of the same FMI
model in different environments, and therefore the
FMI import and export between tools could be tested
in a much better way.

A standardized file format for simulation results
would also be helpful for the Modelica community:
More and more different Modelica simulators come
to the market. Many components, models and librar-
ies are developed in Modelica. They might be used
in different simulators. It is necessary to compare
results computed by different simulators automati-
cally. In particular, the Modelica Association plans

DOI Proceedings of the 9th International Modelica Conference 495
10.3384/ecp12076495 September 3-5, 2012, Munich, Germany

to supply reference results for all simulation models
available in the Modelica Standard Library [MA10].
This is only practical, if the Modelica tool vendors
agree on a standardized result file format. Apart from
testing, it might be desirable to collect results e.g. of
all slaves in a co-simulation environment in one file.

1.1 Time Series Data

The basic purpose of the proposed file format is the
efficient and compact storage of time series data, as
shown in Table 1: The first column contains the val-
ues of the independent variable, usually time (but
might be also another quantity, e.g. frequency),
whose values must be monotonically increasing. A
discontinuity occurs, if a value appears several times
(here: at 0.4). Variable 𝑣 is an example of a variable
that depends on time t.

Table 1: Example for time series data.

Time 𝒕 Variable 𝒗 Variable 𝒘 …
0.0 2.8
0.2 3.2
0.4 5.1
0.4 7.2
0.5 6.9
0.6 5.5

If the variable is a continuous-time variable, then
𝑣 = 𝑣(𝑡) is a continuous function and there exist
also values of 𝑣 between the tabulated points. Such
intermediate points can be computed by interpolation
of the tabulated values. If the variable is a discrete-
time variable, then 𝑣 is computed by a sampled data
system at the values of the provided time instants. A
value between the time points is not defined for 𝑣. If
necessary, 𝑣(𝑡) with 𝑡𝑗 < 𝑡 < 𝑡𝑗+1 can be associated
with the previous value 𝑣(𝑡𝑗) (= hold-semantics).

1.2 Name of the Standard
Results from the numerical integration of time de-
pendent differential algebraic equations with discrete
variable changes are typical time series. Since the
standard shall be discussed, finalized and released by
the Modelica Association, it is proposed to call it
“Modelica Association Time Series File Format”,
shortly MTSF. This name is also used as the current
extension of the corresponding files (e.g. robot.mtsf).

2 Selection of Basic Data Format
As a first step we collected requirements for such a
file format and evaluated several existing formats
against these requirements [BP11].

2.1 Requirements for the Result Format
A format for a time series file should fulfill the fol-
lowing requirements:
• Small and huge amounts of data (more than 10

GBytes) must be written fast and efficiently.
• Extraction of data from small and huge files

must be fast.
• The format must be an internationally accepted

standard.
• The standard has to be open.
• The format has to be also accepted by simulator

developers outside of the Modelica community.
• It has to be future proof, which means stable

support by the developers of the standard is ex-
pected and it has to be supported by many tools.

• The format should handle at least all data types
of the FMI standard 1.0 [MC10] and the coming
FMI standard 2.0 [MC12].

• It should be possible to add more data, if desired
(e.g. diagrams of the model).

• APIs to standard programming languages like
C, C++ and Fortran should exist.

• It should be easily accessible from scripting
programs such as Matlab, Python, and others.

2.2 HDF5 Format
HDF, HDF4 and HDF5 (Hierarchical Data Format)
[THG12a] are a set of file formats and libraries de-
signed to store and organize large amounts of numer-
ical data, originally developed at the NCSA (Nation-
al Center for Supercomputing Applications at the
University of Illinois). In 2005, the Hierarchical Data
Format group was spinning off from NCSA as a non-
profit corporation to ensure continued development
of HDF technologies and the continued accessibility
of data currently stored in HDF [NCS+12]. The HDF
format, libraries and associated tools are available
under a liberal BSD-like license. HDF is supported
by many commercial and non-commercial software
platforms, including Java, Matlab, IDL and Python.

The freely available HDF distribution consists of an
API to access HDF files (implemented in C, with
layers for C++, Fortran and Java), command line
utilities, test suite sources, and the Java-based HDF
Viewer to directly inspect HDF files. The currently
existing two versions HDF4 and HDF5 differ signif-

Proposal for a Standard Time Series File Format in HDF5

496 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076495

icantly in design and API. The newer, more powerful
HDF5 format consists of a hierarchy of objects
where the leave objects are arrays. The dimensions
of an array need not be known in advance and may
be even constructed incrementally (as it naturally
occurs in simulations). Many native data types are
supported including all C data types. Furthermore,
data can be compressed and graphics as well as vid-
eos can be stored. On the HDF web page applica-
tions with terabyte file sizes are reported
(http://www.hdfgroup.org/why_hdf).

In [P10] a good overview of the features of HDF5 is
given. It is suggested to use HDF5 to store simula-
tion data. The reference highlights the following fea-
tures of HDF5: The tree structure for convenient
storage of data; HDF is a numerical aware middle-
ware; the files and APIs allow portability, maintain-
ability, compatibility of the user software; the open-
ness of the software and the trustworthiness of the
support.

2.3 Alternatives to HDF5
In order to handle efficiently large result data, only
binary formats seem to be suitable. In principal also
zipped xml-files might be applicable, but there seems
to be still quite a large overhead to store and retrieve
structured numerical data in such a format.

There exist also other open source binary file for-
mats, in particular:

• NETCDF1 from UCAR (University Corporation
for Atmospheric Research). The latest version of
NETCDF is a subset of HDF5 and the NETCDF
files are therefore compatible to HDF5 (see
“Format Descriptions” in
http://en.wikipedia.org/wiki/NetCDF).

• CDF2 from NASA. The CDF format is not com-
patible to HDF5. CDF seems to be also widely
used and is, e.g. supported in Matlab and Python.
CDF supports a set of arrays, but it does not sup-
port an object hierarchy. In this respect the
HDF5 format is more powerful.

Another alternative could be to not base the design
on a general purpose file format, but on a special
binary format dedicated solely to time series data:

• Such a format could be newly designed and im-
plemented. However, it would be a large effort
to develop, implement and support an API that

1 http://www.unidata.ucar.edu/software/netcdf
2 http://cdf.gsfc.nasa.gov

writes time series data in a subset of a HDF5-like
data structure. Therefore we decided to not fol-
low this approach.

• Another option would be to use one of the for-
mats of ASAM (Association for Standardisation
of Automation and Measuring Systems) [A12].
ASAM was founded in 1998 as an initiative of
German car manufacturers with the goal of offer-
ing a platform for the development of universal
standards such as MCD-2 MC, MDF, HIL
V1.0.1 and ODS. A standard like ASAM MDF
(Measurement Data Format) can be compared to
the MTSF approach. It is designed to store and
retrieve data from measurements. This standard
is widely used in automotive industry. HDF5 and
ASAM standards are, e.g., compared in [PA11].
There exists no open source API from ASAM to
read and write data. The standard texts are avail-
able for ASAM members (with expensive mem-
bership fees for industrial partners) or can be
bought for a pricey fee. For these reasons,
ASAM standards seem to be not suited as gen-
eral exchange format for time series result data
between many tools.

Since all requirements of section 2.1 are fulfilled by
the HDF5 format and there seems to be no equally
suitable competitor, we decided to base the MTSF
format on HDF5. Once the base file format is decid-
ed, the important question is what data to store? Our
main target is to store simulation result data from
tools that support the FMI standard [MC10, MC12].
Therefore, the time series data and associated meta-
information to be stored is based on this standard.

3 Structure of the File Format
The basic structure of an MTSF file is shown by
means of an example using screen shots from
HDFView [THG12b]. The example file is based on
the numerical integration of a Functional Mockup
Unit (FMU) [MC10] by the open source simulator
PySimulator [PHH+12]. The FMU was generated by
Dymola [DS12] from the model Modeli-
ca.Mechanics.Multibody.Examples.Systems.Rob

otR3.fullRobot of the Modelica Standard Library
[MA10]. The complete hierarchy of the result file is
shown in Figure 2.

On the top level, the file shows two groups named
ModelDescription and Results. ModelDescription
contains the meta-information of the variables. The
time series data of these variables is stored under
Results. In order to read the result data of one or
more variables, parts of the ModelDescription in-

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 497
10.3384/ecp12076495 September 3-5, 2012, Munich, Germany

formation has to be inquired in order to determine
the location where the result data is stored.

Figure 2: HDF5 hierarchy of the example result file.

The root directory has an attribute mtsfVersion that
contains a string value for the version of the underly-
ing MTSF format, see Figure 3. All groups and da-
tasets from Figure 2 are described in the next subsec-
tions.

Figure 3: HDF5 attribute on root level of the result file.

3.1 Model Description
The HDF5 group ModelDescription contains a set of
attributes (see Figure 4) which give (optional) infor-
mation about the source of the model used for the
experiment. The information is based on the coming
FMI 2.0 definition [MC12].

Figure 4: HDF5 attributes of group ModelDescription in the
example result file.

Variables
The HDF5 dataset ModelDescription/Variables (see
Figure 6) defines the variables whose data is stored
in the file. The HDF5 type definitions of the dataset
Variables are displayed in Figure 5:
• name contains the names of the respective varia-

bles.
• simpleTypeRow defines the data type and the

unit of the variable by providing the row index
of the related simple type in dataset ModelDe-
scription/SimpleTypes (see below). For example
simpleTypeRow = 33 means that the type is de-
fined in row 33 of SimpleTypes which means
Modelica.SIunits.Angle (see Figure 8).

• causality and variability are HDF5 enumerations
and provide information about the nature of the
variable.

• description is a short description string of the
variable.

• objectId and column provide the information
where the data is stored for this variable (more
details are given in section 3.2).

• negated is introduced to enable negated alias
variables. It can only have the values 0 for false
or 1 for true. The value 1 indicates that the val-
ues for this variable (stored in the data matrices
under Results) have to be negated.

Figure 5: HDF5 variable types for the columns of the da-
taset ModelDescription/Variables in the example result file.

Instead of objectId and column it would also be pos-
sible to use an HDF5 region reference. This is a
HDF5 link to the region of a data matrix, in our cas-
es, e.g. a column of one of the matrices under Re-
sults/Continuous. A typical region reference looks
like 0:3396963{ (0,685)-(599,685) } in HDFView
where 3396963 is the HDF5 object id of the matrix.
The region is selected by row 0 up to row 599 of
column 685. The drawback of the region reference is
that it is not supported to link to a whole column of a
matrix. The row indices of the region have to be
specified, too. Because the number of result points is
generally not known before a simulation, the row
indices of the region reference have to be updated at
the end of the simulation process, which is quite an
overhead if many variables are present.

Proposal for a Standard Time Series File Format in HDF5

498 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076495

Simple Types

Figure 7: HDF5 variable types for the columns of the da-
taset ModelDescription/SimpleTypes in the example result
file.

The dataset SimpleTypes (see Figure 8) contains a
definition of the simple data types used in the varia-
ble description. The HDF5 data type definition of the
columns is depicted in Figure 7. The simple data
type can optionally have values for the string fields
name and quantity. dataType is an HDF5 enumera-
tion that specifies the basic data type (for example
Real has the value 1). The default value for unitOrE-
numerationRow is −1 (means no row) and for rela-
tiveQuantity it is 0. The relativeQuantity can only
have values of 0 or 1 that represent false or true (this
is only relevant if unit conversion takes place) If
dataType is equal to 5 (= Enumeration) the value of
unitOrEnumerationRow corresponds to a row in the
dataset ModelDescription/Enumerations, otherwise
to a row in the dataset ModelDescription/Units.

Units
Each simple data type can have a unit and several
display units. Display units for one simple data type
can be defined by using a row block in the dataset
Units, see Figure 9 and Figure 10. A unit can have
three different modes: base unit, display unit or de-
fault display unit. The value of unitOrEnumera-
tionRow has to correspond to a row in Units with
mode = 0 (BaseUnit), if there is a unit definition. If
some display units apply for this base unit, they have
to be listed in the rows below the base unit. Each
mode of the display units can be 1 (DisplayUnit) or 2
(DefaultDisplayUnit). Only one display unit may
have mode = 2. If no display unit has mode = 2, the
base unit is used as default display unit. The base
unit can only have mode = 0. If there is no unit (and
no enumeration) for a simple data type, then the val-
ue for its unitOrEnumerationRow is equal to −1 (de-
fault value).

For example, the simple data type Time (see row 56
in Figure 8) is a Real data type with a unit that is de-
fined in column 33 of the dataset Units. Here the
base unit is s and the display units are defined by
rows 34 up to 37 in the dataset Units (Figure 9). So,
the display units are: ms, min, h and d with corre-

Figure 6: Dataset Variables in group ModelDescription of the example result file.

Figure 8: HDF5 dataset ModelDescription/SimpleTypes in the example result file.

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 499
10.3384/ecp12076495 September 3-5, 2012, Munich, Germany

sponding values for factor and offset in the style of
FMI 2.0 [MC12]. The default display unit is s. This
allows, e.g. a plotting program to display the results
in different units by using the conversion factors
stored in the Units group.

Figure 9: HDF5 dataset ModelDescription/Units in the ex-
ample result file.

Figure 10: HDF5 variable types for the columns of the da-
taset ModelDescription/Units in the example result file.

Enumerations
The dataset ModelDescription/Enumerations (see
and Figure 12) lists all enumerations that are defined
in the model variables, i.e. variables of type Integer
that can have only a small number of Integer values
and a string is associated with every value. A plot
program may then use the enumeration name instead
of an integer to mark the value in an axis. The value
of unitOrEnumerationRow corresponds to a row in
the dataset ModelDescription/Enumerations, if the
data type of a simple type is equal to 5 (= Enumera-
tion). Enumerations do not have units, so there is no
conflict with unit definitions.

Figure 11: HDF5 variable types for the columns of the da-
taset ModelDescription/Enumerations in the example re-
sult file.

The row of Enumerations that corresponds to uni-
tOrEnumerationRow has to have firstEntry = 1. The
firstEntry column marks a new row block of enu-
merations. Each enumeration has a name and an in-
teger value and may have a separate description

string for example, the simple type StateSelect is an
enumeration type with unitOrEnumerationRow = 7,
it means in row 7 of Enumerations the defining
enumeration block starts from “never” (1) up to “al-
ways” (5). Values for enumeration types are stored
as integer.

Figure 12: HDF5 dataset ModelDescription/Enumerations
in the example result file.

3.2 Time Series Results
The numeric data associated with the defined varia-
bles is stored under Results. The HDF5 attributes of
Results in Figure 13 include the most important pa-
rameters for the simulation experiment. ResultType
defines the kind of the experiment, here: Simulation.
The other attributes depend on the value of Re-
sultType. For example, a result type Measurement
has other attributes than a result type Simulation, but
the attributes are standardized. The values of the at-
tributes are optional with empty strings as default.
Standardized attributes are necessary to exchange the
attributes between different tools.

Figure 13: HDF5 attributes of group Results in the exam-
ple result file.

The experiment may provide several time series un-
der Results. Example names for the time series are
Continuous for continuous-time variables, Discrete
for discrete-time variables which change their values
only at events, and Fixed for variables that do not
depend on an independent variable (constants and

Proposal for a Standard Time Series File Format in HDF5

500 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076495

parameters). Additional groups might correspond to
different clocks (e.g. a group for a periodic sample
rate of 2 ms and a group for a periodic sample rate of
7 ms).

The group names of the time series can be freely
chosen. Every time series (corresponding to a sepa-
rate HDF5 group) may be associated with an inde-
pendent variable. Therefore, each time series group
has the attributes independentVariableRow and in-
terpolationMethod. For example the attribute defini-
tions of groups Continuous and Discrete are shown
in Figure 14.

Figure 14: HDF5 attributes of the groups Re-
sults/Continuous and Results/Discrete in the example re-
sult file.

The value of independentVariableRow is the row
index in the dataset ModelDescription/Variables and
defines the variable that is used as independent vari-
able for the relevant data. In our example the inde-
pendent variable of Continuous is variable Time that
has a row index of 0. The independent variable of
Discrete is variable DiscreteTime that has a row in-
dex of 1. For group Fixed the index independentVar-
iableRow is equal to −1 in order to indicate that the
variables are constant and do not depend on an inde-
pendent variable.

The value of interpolationMethod is linear, constant
or clocked and indicates how the numeric data values
corresponding to the time series have to be interpret-
ed. Linear means that piecewise linear interpolation
is suggested between the given points. Constant
means that the value of a variable for a point of time
is held constant until the next point of time. Clocked
means that no interpolation should be applied and
only the values at the stored time points should be

shown in a plot. Typically, linear is applied for con-
tinuous-time variables, constant for discrete-time
variables that have an explicit value between event
points, and clocked for sampled variables.

All time series data under a group like Continuous
are stored in matrices. The column of such a matrix
corresponds to one or more model variables and the
row corresponds to the values of the independent
variable. All elements of a matrix have the same
HDF5 data type and the name of this data type is
used as name of the matrix. In Figure 2, there are
three matrices under Discrete of the types
H5T_NATIVE_DOUBLE, H5T_NATIVE_INT32, and
H5T_NATIVE_INT8. These are HDF5 data types and
mean the matrices have a 64 bit floating type, a 32
bit integer type and an 8 bit integer type, respective-
ly. In the latter matrix, the data of Boolean variables
is stored as value 0 or 1. A basic Boolean type is not
available in HDF5.

Figure 16: Parts of the dataset Results/Discrete/
H5T_NATIVE_INT32 from the example result file.

Parts of the matrix Results/Discrete/H5T_NATIVE-
_INT32 are shown in Figure 16. Each column of the
matrix contains the numeric data of one or more dis-
crete integer variables. The time values for the data
are stored in a column of the matrix Re-
sults/Discrete/H5T_NATIVE_DOUBLE (see Figure
15). The column index is given in column of Mod-
elDescription/Variables for the independent variable
DiscreteTime. In the example file the column index

Figure 15: Parts of the dataset Results/Discrete/H5T_NATIVE_DOUBLE from the example result file.

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 501
10.3384/ecp12076495 September 3-5, 2012, Munich, Germany

is 0. So the first column of Discrete/H5T_NATIVE-
_DOUBLE represents the time for all discrete varia-
bles. All matrices of a time series group have the
same number of rows: They are based on the same
independent variable values.

4 Performance Tests with Python,
Dymola and Matlab

We used Python 2.7 [Py12] to implement a test envi-
ronment for writing and reading MTSF files. The
Python(x,y) distribution (version 2.7.2.1) [P12b] in-
cludes the HDF5 interface h5py (version 2.0.1)
[H12], which provides high level interface functions
in Python for HDF5 files. In a second step, reading
MTSF files by Matlab [M12] is tested.

4.1 Hierarchical Variables Concept
In the initial design phase of the MTSF format a dif-
ferent (alternative) format has been investigated than
presented in Section 3. In this section we shortly ex-
plain this alternative format (called hierarchical var-
iables concept), because it seems to be straightfor-
ward to save hierarchically structured variables in a
HDF5 group hierarchy. However, the performance
measurements in Section 4.2 and 4.4 indicate that the
table-based approach of section 3 is better.

Figure 17: Parts of the HDF5 hierarchy using the hierar-
chical variables concept for the example result file.

The one to one mapping of hierarchical variable
names to HDF5 groups and datasets is the main dif-
ference to the MTSF format presented in Section 3.
For example, for the variable axis1.accSensor.w
the dataset ModelVariables/axis1/accSensor/w in
Figure 17 contains all the necessary information
about the variable. The ModelDescription group (see
Section 3.1) with its compound datasets is not pre-
sent in this concept.

For first testing purposes the deepest dataset for each
variable is only a 1x1 dataset containing an HDF5
object reference to one of the matrices under e.g.
Results/Continuous. The numeric data for the varia-
ble is stored in one of the columns of the referenced
matrix. The column index is stored as attribute to the
reference dataset. It would also be possible to use an
HDF5 region reference instead of the object refer-
ence and the column index. The resulting files sizes
would only differ slightly.

Additional information (data type, unit, etc.) of each
variable can be stored as further attributes. Some
attribute examples are listed in Figure 18. To get the
whole information included in the MTSF format of
Section 3, much more attributes (or dimensions of
the dataset) would be necessary. We have not
worked it out so far.

Figure 18: Some HDF5 attributes of each hierarchical vari-
able dataset.

The advantage of the hierarchical variables concept
is the hierarchical mapping of the model variable
names and the HDF5 groups / datasets in the Model-
Variables tree. Therefore, HDFView shows automat-
ically a tree of the model variables when browsing
through the groups. The main disadvantage of the
hierarchical concept is the possibly large number of
HDF5 objects building the ModelVariables tree. In-
tuitively, this is similar to a file system: Reading or
writing 10 files (corresponds to the MTSF format of
Section 3) is more efficient than reading or writing
10000 files (corresponds to the hierarchical variables
concept) in which the same data is stored.

In the next subsection we compare the files that re-
sult from the two different concepts: hierarchical
storage of variable information vs. the final MTSF

Proposal for a Standard Time Series File Format in HDF5

502 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076495

format of Section 3 with few HDF5 compound da-
tasets in ModelDescription.

4.2 File Sizes

In MTSF files the HDF5 compression of objects with
the gzip algorithm can be used which is very effec-
tive for the meta-information, whereas compression
with gzip in the hierarchical variable concept is tech-
nically not possible. The reason is that the meta-
information of one variable of the hierarchical con-
cept is stored in an HDF5 group, and HDF5 does not
support compression of such an object.

The binary result file of the Modelica modeling and
simulation environment Dymola [DS12] is used as a
reference to compare the file sizes generated in
HDF5. This proprietary storage format of Dymola is
very compact. Dymola stores variables with different
names and same data (so called alias variables) just
once. Dymola also stores negated alias variables, i.e.
the numeric data of two variables a = −b only once.
If b is stored, for variable a only the information is
stored that it has the values of –b. This aliasing
method is also used in the MTSF and in the hierar-
chical format.

As the performance measurements below indicate,
storing many (more than 1000) objects in HDF5 with
standard options is very storage consuming. The
storage requirements can be considerably reduced by
using the following two options [THG11]:
• For the storage strategy of objects the option

Compact (in Python: h5py.h5d.COMPACT)
should be used, instead of Contiguous or
Chunked. This option leads to storing the raw
data of small datasets in the header of the da-
taset.

• In HDF5 1.8.0 an optional mechanism is intro-
duced to store groups much more efficiently by
using a fractal heap and indexed with an im-
proved B-tree. In order to activate this feature,
the version number in which the HDF5 file is
generated needs to be specified by the option
H5F_LIBVER_LATEST. In Python, the file has
to be opened by h5py.File(..., libver=

”latest”).

The full robot model (see section 3) is used as test
case. This model has about 7000 variables, where
2500 are parameters and constants, 800 variables are
time varying and the other variables are alias or ne-
gated alias variables. For the performance test 500
fixed grid result points and 2∙50 varying grid result

points due to 50 state events are taken into account.
Discrete variables are only stored at event points, but
continuous variables are stored at grid and event
points, here at 600 points. This gives the sizes of the
files in Table 2.

Table 2: File sizes of the RobotR3 example for 500 grid
points and different formats. The first column of Relative
Size is normalized to the result of the Dymola format. The
second column is normalized to the results of the MTSF
format.

Format Raw MB
Relative

Size
Hierarchical variables
format with standard
options

HDF5 27.6 5.11 7.46

Hierarchical variables
format with options
compact and latest

HDF5 7.4 1.37 2.00

Dymola format MAT 5.4 1.00 1.46

MTSF format HDF5 3.7 0.69 1.00

The MTSF format results in a file size that is just
half of the file size of the HDF5 hierarchical varia-
bles format, so it is clearly superior. Furthermore, the
MTSF format gives about 30% smaller file size with
respect to the Dymola file, although more meta in-
formation is stored than in the Dymola file.

Table 3: File sizes for 5000 grid points and different for-
mats. The first column of Relative Size is normalized to the
result of the Dymola format. The second column is normal-
ized to the results of the MTSF format.

Format Raw MB
Relative

Size
Hierarchical variables
format with standard
options

HDF5 54.1 1.56 1.79

Hierarchical variables
format with options
compact and latest

HDF5 33.8 0.98 1.12

Dymola format MAT 34.6 1.00 1.15

MTSF format HDF5 30.2 0.87 1.00

For result files with increasing number of result
points, the relative differences between the different

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 503
10.3384/ecp12076495 September 3-5, 2012, Munich, Germany

approaches is decreasing, which can be seen in Table
3 for 5000 fixed grid result points and 2∙50 varying
grid result points at events. The reason of a decreas-
ing difference are the file size dominating data ma-
trices that are identical at least in the HDF5 files.

4.3 Writing and Reading of Large Files

The previous tests evaluated writing of HDF5 files.
If the HDF5 file becomes very large, it can no longer
be read in one piece. Reading files which are larger
than the main memory is slow, as virtual memory
paging has to be used. The question arises how this
is handled. In Dymola, and many other simulation
programs, reading a result file requires to read it
completely in to memory and then the file sizes that
can be handled are restricted by the respective main
memory. Here the power of the HDF5 format is ap-
plied. It is possible to read just a specified column of
a matrix, without reading the whole matrix. Internal-
ly, the HDF5 matrix is split into chunks (= smaller
matrices) and only the relevant chunks are read
[THG11].

Performance of writing and reading some parts of a
huge matrix depends on amongst others the sizes of
the chunks. Because it is not fixed what parts of re-
sult matrices are read after writing, the chunking de-
tails are not specified for an MTSF file.

Table 4: File sizes and performances of writing and read-
ing MTSF files.

Rows MB GB

6∙103 766 35.5 0.03 0.5 0.15 0.02

6∙104 766 352 0.34 5.9 0.23 0.06

6∙105 766 3517 3.4 62.2 0.84 0.2

6∙106 766 35160 34 1109 4.9 1.2

3.6∙107 766 210410 205 11400 25.5 1.9

In Table 4 experiments with the full robot model on
a solid state disk (on a system with an Intel Xeon
X5550 @ 2.67 GHz processor) are documented. The
number of time points has been increased to get large
HDF5 files. Performance of reading two columns
(time and one model variable) of the matrix Re-

sults/Continuous/H5T_NATIVE_DOUBLE into Py-
thon is documented in column Reading 1. Perfor-
mance of reading the last row of the matrix (final
value of all variables) is shown in column Reading 2.
We did not investigate how different chunk sizes
influence the result. It is clear that a fine tuning can
improve the numbers in Table 4.

This test proves to be able to write data to and read it
from result files beyond 200 GB in acceptable time.
Further tests should verify the handling of huge files.
Using HDFView, the structure of large files can be
inspected without problems. Only for the 205 GB
file, HDFView is slowing down.

4.4 Reading by Matlab

Matlab [M12] is one of the most commonly used
scripting tools in engineering applications. Therefore
it has to be simple and fast to read data from MTSF
files in Matlab. The test concentrates on reading the
names of all variables of a result file. Using this list
of variables a variable tree browser could be generat-
ed. We investigate reading two files of the full robot
model. One file is according to the proposed MTSF
format (see Section 3), the other file follows the hi-
erarchical variables concept (see Section 4.1).

Table 5: Time for reading all variable names in different
formats. For the hierarchical variables concept we distin-
guish between a format that includes HDF5 enumerations
in attributes of HDF5 datasets and replacing them by sim-
ple integer values.

Matlab function

Hierarchical
Variables
Concept MTSF

Enum. Integer

h5info Error 75 s 0.1 s

hdf5info (outdated) 13 s 5.5 s 0.1 s

Matlab 2011b offers the high level functions h5info
for reading the structure of an HDF5 file and h5read
for reading one dataset. To get the names of all vari-
ables for the hierarchical variables concept one has
to read the tree structure of the HDF5 group Model-
Variables. We use h5info for it. Apparently, Matlab
is not able to read enumeration attributes in HDF5
datasets. Therefore, we generated a new result file
and replaced enumerations by simple integer values.
The elapsed time for reading the different files are
listed in Table 5. Using the outdated Matlab function

C

ol
um

ns

W
ri

tin
g

[s
]

R
ea

di
ng

 1
 [s

]

R
ea

di
ng

 2
 [s

]

Proposal for a Standard Time Series File Format in HDF5

504 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076495

hdf5info we were able to reduce the elapsed time
for the hierarchical variables concept.

The MTSF file contains only a few HDF5 groups
and datasets, whereas the file of the hierarchical var-
iables concept includes many (small) groups and ob-
jects. So it seems evident that reading the result file
structure is faster for the MTSF file. To get all varia-
ble names from a MTSF file one has to read the da-
taset ModelDescription/Variables. Using the Matlab
command h5read('fullRobot.mtsf', '/Model-

Description/Variables') the information is avail-
able. The execution time for this command is 0.02 s.
In summary, reading the variable names from the
MTSF file is much faster than for the hierarchical
variables concept. These preliminary tests with
Matlab also clearly indicate that the proposed file
format is better suited than the hierarchical variables
concept. Furthermore, the Matlab h5read m-file does
not support region references. Besides the other
drawbacks discussed in Section 3.1, it is therefore
advisable to not use region references in HDF5 files,
if the files should be read by Matlab.

5 Conclusions
A standard for time series result files typically gen-
erated by dynamic model simulations is proposed.
The standard is based on the HDF5 file format be-
cause HDF5 offers many features to flexibly and
efficiently store data. In test cases huge files larger
than 200 GB are successfully written and read. We
hope to come into discussion with all persons who
are interested in a standard result file format. The
goal is to define an internationally well accepted
standard that is supported by many tool vendors.

6 Acknowledgements
We acknowledge the coding and testing work of J.
M. Solis Lopez’ (formerly Bausch-Gall GmbH). M.
Friedrich (Simpack AG) gave very useful infor-
mation to reduce the file size of HDF5 files generat-
ed when using the hierarchical variables concept. We
acknowledge his support. Also, we are grateful for
the constructive comments of the reviewers.

References
[A12] Association for Standardisation of Automa-

tion and Measuring Systems. www.asam.net.
[BP11] Bausch-Gall I. and Pfeiffer A.: Standard effi-

cient Storage of Simulation Results.
ASIM2011, 21. Symposium Simulationstech-
nik, 7. - 9. Sept. 2011, Winterthur, Switzer-
land, 2011.

[DS12] Dassault Systèmes AB: Dymola.
www.dymola.com.

[H12] H5py. http://pypi.python.org/pypi/h5py.
[M12] MathWorks: Matlab.

www.mathworks.com/products/matlab.
[MA10] Modelica Association: Modelica Standard

Library 3.2, Oct. 2010.
www.modelica.org/libraries/Modelica.

[MC10] MODELISAR consortium: Functional Mock-
up Interface for Model Exchange, Version
1.0, 2010. www.functional-mockup-
interface.org.

[MC12] MODELISAR consortium: Functional Mock-
up Interface for Model Exchange and Co-
Simulation, Version 2.0 Beta 3, 2012.
www.functional-mockup-interface.org.

[NCS+12] http://access.ncsa.illinois.edu/Releases/-
05Releases/07.12.05_NCSA%27s_HDF.html

[PHH+12] Pfeiffer A., Hellerer M., Hartweg S., Otter M.
and Reiner M.: PySimulator – A Simulation
and Analysis Environment in Python with
Plugin Infrastructure. Accepted for publica-
tion in the Proceedings of 9th International
Modelica Conference, Munich, Germany,
Sept. 2012.

[PA11] Phillips A. W. and Allemang R. J.: Require-
ments for a Long-term Viable, Archive Data
Format. Structural Dynamics, Conference
Proceedings of the Society for Experimental
Mechanics Series, Volume 12, pp. 1475-
1479, Springer, New York, 2011.

[P10] Poinot, M.: Five Good Reasons to Use the
Hierarchical Data Format. Computing in
Science & Engineering, Vol. 12, Issue 5, pp.
84-90, 2010.

[P12a] Python. www.python.org.
[P12b] Python(x,y). www.pythonxy.com.
[THG11] The HDF Group: HDF5 User’s Guide, HDF5

Release 1.8.8, Nov. 2011.
[THG12a] The HDF Group, www.hdfgroup.org.
[THG12b] The HDF Group: HDFView.

www.hdfgroup.org/hdf-java-html/hdfview.
[TSC12] The Scilab Consortium: Scilab.

www.scilab.org.

Session 4C: Handling Simulation Output

DOI Proceedings of the 9th International Modelica Conference 505
10.3384/ecp12076495 September 3-5, 2012, Munich, Germany

Proposal for a Standard Time Series File Format in HDF5

506 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076495

Session 4D: Electromagnetic Systems II

Towards a Memristor Model Library in Modelica

Towards a Memristor Model Library in Modelica
Kristin Majetta1 Christoph Clauss1 Torsten Schmidt2

1 Fraunhofer Institute for Integrated Circuits IIS, Design Automation Division EAS Dresden
Zeunerstrasse 38, D-01069 Dreden, GERMANY

2 Technische Universität Dresden, Faculty of Electrical and Computer Engineering
Helmholtzstrasse 18, D-01062 Dresden, GERMANY

{kristin.majetta, christoph.clauss}@eas.iis.fraunhofer.de Torsten.Schmidt1@tu-dresden.de

Abstract

The Modelica realization of two memristor modeling
approaches is presented which is compatible to the
Modelica Electrical Analog Library. Circuit exam-
ples of some basic cases of application are simulated.
Comparisons with published simulation results show
the correctness of the numerical realizations. The
models are the base of a Memristor Model Library.
Keywords: Memristor, window function, modeling,
pinched hysteresis, resistive switches, numerical
simulation of electronic devices

1 Introduction

The memristor is a special kind of resistor with
memory. Therefore, the term “memristor” is com-
posed by parts of both words “memory” and “resis-
tor”. The theoretical concept of a memristor was
published first in 1971 by Leon O. Chua [3]. After
Strukow et alt. [5] observed that certain nanoscale
devices with thin semiconductor layers can be de-
scribed as memristors, an intensive investigation
started on both how a memristor works and how it
can be utilized in electronic circuits. Since then, the
memristor has a wide attention in the research com-
munity of electrical engineers, physicists, and biolo-
gists. Recent investigations are mainly focused on
resistive random access memories. The advantage of
memristors (or more general of memristive devices)
is to store information without any power soure to be
needed. This could open a new paradigm in power
saving computation as well as low power storage.
Other fields of research are neuromorphic systems,
memristor circuits theory, and applied analog
memristor circuits. It can be expected that further
interesting fields of both research and application
will be opened up in future.

Simulation has been applied since the very beginning
of integrated circuit development, so it does for
memristor circuits. Therefore, memristor modeling
became necessary, and simulation models were pub-
lished which can be used in different simulation
tools. E.g. MATLAB models use a state equation
based approach, but models for SPICE need a com-
bination of built-in SPICE models which realize the
memristor behavior.

This paper deals with the adaption of published
memristor models to Modelica. It is the first step
towards the general aim to create a library for
memristors, and memristive systems (memcapaci-
tors, meminductors, memristive systems with more
than one state [6]). The library will allow to investi-
gate memristor applications on the one hand on cir-
cuit level, and on the other hand in the context of
arbitrary Modelica applications. In section 2 two dif-
ferent models are presented. Simulation results using
Dymola are shown in section 3.

2 Model Approaches

Once memristor measurement data were available
several model approaches were elaborated, and
adapted to the data. Two very basic models are pre-
sented in this section.

2.1 A Basic Model Approach on Varying Re-
sistance

Basing on the physical device structure the authors
of [1], [2], [5] introduce a memristor model as a re-
sistor with varying resistance MEMR

)()()(tixRtv MEM= (1)

which depends on x linearly and changes between

ONR and OFFR :

DOI Proceedings of the 9th International Modelica Conference 507
10.3384/ecp12076507 September 3-5, 2012, Munich, Germany

)1()(xRxRxR OFFONMEM −+= (2)

The structure of such a device is depicted in figure 1
and consists of a partly doped 𝑇𝑖𝑂2-layer which is
together with the undoped part sandwiched between
two Pt-electrodes. With w being the length of the
doped region (Figure 1), and D the total length of
doped and undoped region, the state x is defined as

Dwx /= (3)

The doped region is highly conducting (ONR)
whereas the undoped region is less conducting
(OFFR). Taking into account the length of both re-
gions equation (2) represents a series connection of
the actual resistances of both the doped and undoped
region.

Figure 1 Physical Memristor Schematic

The state equation (4) describes the speed of the
boundary movement, which depends on the current

)(ti , the resistance ONR of the doped region, the

dopant mobility vµ and a window function)(xf :

)()(2 xfti
D
R

dt
dx ONvµ= (4)

The so-called window function establishes a nonlin-
ear drift behavior of the device and hence provides a
second order approximation to the real device. Ac-
cording [3] one possible window function is

p
Jog xxf 2)12(1)(−−= (5)

whereas the authors of [1] propose an improved win-
dow function Biof which overcomes sticking of x at
0 or 1 whenever x reaches one of these values. The
proposed window function depends on both x and
the sign of the current)(ti :

p

Bio tistpxxf 2))(((1)(−−−= (6)





=
0
1

))((tistp
0)(
0)(

<
≥

ti
ti

 (7)

The equations (1) to (7) are the base for writing a
simulation model. One possibility is constructing a
SPICE subcircuit out of SPICE basic components
(macromodeling) according to [1]. This subcircuit
could be copied to Modelica using the Modeli-
ca.Electrical.Spice3 package. A more convenient
way is using the declarative behavioral modeling
capability of Modelica. This leads straight forward to
the following model, called Memristor_Biolek2009:

model Memristor_Biolek2009
import ME = Modelica.Electrical;
import SI = Modelica.SIunits;
extends
 ME.Analog.Interfaces.OnePort;
parameter SI.Resistance RINIT, RON,
 ROFF;
parameter SI.Length D;
parameter Real muev;
parameter Integer P;
SI.Resistance
 RMEM(start=RINIT,fixed=true);

SI.Length w;

Real x, k, f;
equation
RMEM = RON*x +ROFF*(1-x);

x = w/D;

v = RMEM*i;
der(x) = k*i*fBio;
k = (muev*RON)/(D^2);

//fJog = 1-(2*x-1)^(2*P);

fBio = 1 - (x - stp(-i))^(2*P);
end Memristor_Biolek2009

The special sign function is

function stp
input Modelica.SIunits.Current i;
output Real value;
algorithm
 value:=if (i<0) then 0 else 1;
end stp;

Towards a Memristor Model Library in Modelica

508 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076507

An icon, default values for parameters as well as as-
sertions complete the model.

2.2 An Improved Approach

The authors of [6] propose an improved approach
with more parameters than the model already pre-
sented which can be better adapted to given memris-
tor characteristics, e.g. measured data.

Like the Memristor_Biolek2009 model this mod-
el has a state variable)(tx for calculating the con-
ductivity according to





=
))(sinh(
))(sinh(

)(
2

1

tbvxa
tbvxa

ti
0)(
0)(

<
≥

tv
tv

 (8)

with 1a , 2a , and b being adjustable parameters. The
state equation for x is:

)())((xftvg
dt
dx

= (9)

Whereas)(tg is a threshold function which ensures
a state changes only if thresholds are exceeded:









−−
−

= −

0
)(

)(
))(()(

)(

n

p

vtv
n

vtv
p

eeA
eeA

tvg
 else

vtv
vtv

n

p

−<
>

)(
)(

 (10)

The window function)(xf expresses the effect that
it is harder to change the state near the boundaries,
taking into account the polarity. Parameters are in-
troduced to be able to fit to measured values.









= −+

−

0
),(
),(

)()1(

)(

nn
xx

pp
xx

xxwe
xxwe

xf nn

pp

α

α

 else
xx

xx

n

p

−<
>
1 (11)

1
1

),(+
−

−
=

p

p
pp x

xx
xxw

 (12)

n
nn x

xxxw
−

=
1

),(

 (13)

The equations (8) to (13) can be formulated in Mod-
elica as they are. This leads to the second memristor
model, called Memristor_Yakopcic2011:

model Memristor_Yakopcic2011
import ME = Modelica.Electrical;
import SI = Modelica.SIunits;
extends
ME.Analog.Interfaces.OnePort;
parameter Real Ap, An;
parameter SI.Voltage Vp, Vn;
parameter Real xp, xn, ap, an;
parameter SI.Current a1, a2;
parameter Real xinit;
parameter SI.InversePotential b;
Real gV, fx, wp, wn;
Real x(start=xinit, fixed=true);
equation
i = if(v>=0)then a1*x*sinh(b*v)
 else a2*x*sinh(b*v);
gV = if(v>Vp)then Ap*(exp(v)-
 exp(Vp))
 elseif (v<-Vn) then
 -An*(exp(-v)-exp(Vn))
 else 0;
fx = if(v>0 and x>= xp) then
 exp(-ap*(x - xp))*wp
 elseif (v>0 and x<xp) then 1
 elseif (v<0 and x<=1-xn) then
 exp(an*(x+xn-1))*wn
 else 1;
wp = (xp - x)/(1 - xp) + 1;

wn = x/(1 - xn);

der(x) = gV*fx;
end Memristor_Yakopcic2011

3 Test And Application Examples

3.1 Memristor Characteristic Using One Input
Voltage Pulse

The first example shows the Memristor_Biolek2009
characteristic using a simple voltage pulse.

Figure 2 Memristor test circuit

RINIT RON ROFF D muev p
11000 100 16000 1e-8 1e-14 10

Session 4D: Electromagnetic Systems II

DOI Proceedings of the 9th International Modelica Conference 509
10.3384/ecp12076507 September 3-5, 2012, Munich, Germany

If the above mentioned parameters are used, the
voltage pulse of Figure 3 causes the current-voltage
hysteresis of Figure 4. The reason for the hysteresis
is increasing of the doped region length as long as a
positive current is flowing which increases the over-
all resistance. Figure 5 shows the change of the
state x which influences the resistance. This illus-
trates that the state is the “memory” of the memris-
tor. The initial state is caused by the initial value
RINIT. No special hysteresis model is used, only
changing the state causes the hysteresis.

Figure 3 Single voltage pulse

Figure 4 Current-Voltage Hysteresis

Figure 5 State change due to the voltage pulse

3.2 Memristor Characteristic Using Sinusoidal
Input Voltage

To compare the Memristor_Biolek2009 characteris-
tic with the results published in [1] a circuit like in
Figure 2 is simulated using a sinusoidal voltage input
(1.2 V amplitude, 1 Hz). The memristor parameters
are the same as in the example 3.1. Figure 6 shows
both the input voltage, and the resulting current.

Figure 6 Input voltage and current (raised by 100), with
RINIT=11000 Ohm

This result differs slightly from the result published
in [1] depicted in Figure 7 due to initial transient ef-
fects. In the steady state which can be reached by
changing the initial resistance to RINIT=11500 or by
simulating over a long time period the published re-
sults are reached (Figure 8, Figure 9). The reason for
these differences in initialization can depend on dif-
ferent numerical algorithms, and on different error
bounds. This has to be investigated in future.

Figure 7 Reference result according to Figure 6, published in
[1] (input voltage and current)

Figure 8 Input voltage and current (raised by 100), with
RINIT=11500 Ohm

Figure 9 Current-voltage characteristics (current raised by
100), with RINIT=11500 Ohm

Towards a Memristor Model Library in Modelica

510 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076507

Due to the Memristor_Biolek2009 model, formula
(7), the window function)(xf is discontinuous. Ac-
cording to (4) jumping of)(xf influences the de-
rivative of x but not x itself. Therefore, such dis-
continuities did not yet lead to simulation difficulties
in the investigated examples.

3.3 Memristor Characteristic Using Multiple
Input Voltage Pulses

The simple circuit according to Figure 2 is used to
check the characteristic of the Memris-
tor_Jakopcic2011 model. The results are compared
with Fig. 4 in [5]. The memristor model parameters
are:

ap an Ap An Vp Vn
1 4 0.1 10 0.9 0.2
xp xn a1 a2 b xinit

0.15 0.25 0.076 0.06 3 0.001

The following simulation results (Figure 10, Figure
11) achieved with Dymola are the same as in the ref-
erence simulation. The memory effect can be seen.
According to this first check the model seems to be
correct.

Figure 10 Current-voltage characteristic (current raised by
50), Jakopcic2011 model

Figure 11 Current-voltage hysteresis, Jakopcic model

3.4 Graetz Rectifier Circuit

Figure 12 shows a Graetz rectifier circuit which uses
memristors instead of diodes. It is easily combined
using the presented memristor_Yakopcic2011 model
as well as MSL components. The memristor parame-
ters are the same as in the previous section.

Figure 12 Graetz circuit using memristors

Both the rectified and the original voltage can be
seen in Figure 13. Deeper investigation shows that
the amplitude of the rectified voltage depends on the
amplitude of the input voltage as well as on the fre-
quency. Higher frequency causes smaller rectified
voltage amplitudes. If the input voltage is too high
the simulation fails. The reasons of that seems to be
extremely increasing of exponential functions.
Therefore, the model must be improved in future to
become more stable.

Figure 13 Input voltage, and rectified voltage

Session 4D: Electromagnetic Systems II

DOI Proceedings of the 9th International Modelica Conference 511
10.3384/ecp12076507 September 3-5, 2012, Munich, Germany

4 Conclusions

Two memristor models developed from given
memristor model equations are presented. Simple
tests show the correctness of the models compared
with published simulation results. In some cases
small differences occur that have to be investigated
in future. Tests with different simulation tools are
still necessary, which cover extreme application sce-
narios.

The Modelica approach of memristor modeling is
promising. The memristor models can easily be
combined to existing models of the Modelica Stand-
ard Library. It is planned to develop a package with
numerical stable, and well tested models of memris-
tors, and of other memristive systems like mem-
capacitors, meminductors, or systems with more than
one states. This will allow to study memristors and
memristor application circuits in a convenient way.

References

[1] Biolek, Z.; Biolek, D.; Biolkova, V.: Spice
Model of Memristor With Nonlinear Dopant
Drift. Radioengineering, vol. 18, no. 2, pp.
210-214, 2009.

[2] Biolkova, V.; Kolka, V.; Biolek, Z.; Biolek,
D.: Memristor modeling based on its consti-
tutive relation. Proc. of the European Confer-
ence of Circuits Technology and Devices
(ECCTD). pp. 261-261, 2010.

[3] Chua, L. O.: Memristor – the missing circuit
element. IEEE Trans. Circuit Theory vol. 18,
no. 5, pp. 507-519, 1971.

[4] Joglekar, Y.; Wolf, S.: The elusive memris-
tor: properties of basic electrical circuits.
Eur. J. Phy., vol. 30, pp. 661-675, 2009.

[5] Strukow, D.; Snider, D.; Stewart, D.; Wil-
liams, R.: The missing memristor found. Na-
ture, vol. 453, pp. 80-83, Mai 2008.

[6] Ventra, M. D.; Pershin. Y. V.; Chua, L. O.:
Circuit elements with memory: memristors,
memcapacitors and meminductors. Proceed-
ings of the IEEE 97, 1717 (2009), über
arXiv:0901.3682v1 [cond-mat.mes-hall]

[7] Yakopcic, C.; Taha, T. M.; Subramanyam,
G.; Pino, R. E.; Rogers, S.: A Memristor De-
vice Model. IEEE ELECTRON DEVICE
LETTERS, vol. 32, pp 1436-38, Oct. 2011.

Towards a Memristor Model Library in Modelica

512 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076507

Fault Detection of Power Electronic Circuit using Wavelet Analysis in Modelica

Fault Detection of Power Electronic Circuit

using Wavelet Analysis in Modelica

Jianbo Gao*, Yang Ji**, Johann Bals**, Ralph Kennel*

*Technische Universität München

Arcisstr. 21, 80333 Munich, Germany

michael.gao@tum.de, ralph.kennel@tum.de

** German Aerospace Center

Muenchner Str. 20, 82234 Wessling, Germany

yang.ji@dlr.de, johann.bals@dlr.de

Abstract

In more electric aircrafts (MEA) the electric pow-

er network is important for the reliability. To prevent

severe faults it is the key issue to identify the faults

in the early stage before a complete failure happens.

In this paper an early stage fault detection method

using wavelet multi-resolution analysis (MRA) for a

regulated buck DC-DC converter is studied. Specifi-

cally, the electrolyte input capacitor is diagnosed.

The study was carried out using simulation with

Modelica / Dymola. The fault features that were ex-

tracted from different levels of wavelet decomposi-

tion provided clear information for both fast and

slow occurring faults. This method showed signifi-

cant advantages compared with filter techniques. It is

concluded that wavelet transform is a suitable tool

for early stage fault detection of the power electron-

ics in MEA. In addition, the simulation language

Modelica provides a convenient possibility for the

quick design of fault detection strategy.

Keywords: power electronics; DC-DC converter;

fault detection; wavelet; Modelica; Dymola

1 Introduction

1.1 Motivation

The concept of More Electric Aircraft (MEA) is

attracting increasing interest in the aircraft industry

not only because of its potential in energy optimiza-

tion, but also due to its significant advantages con-

cerning weight, maintenance requirements, liability

and passenger comfort [1]. For this, the electrical

power distribution network is playing a more im-

portant role and facing increasing challenges in the

prognosis and accurate localization of faulty units in

an even more complex power network. In order to

obtain maximum flight reliability and minimum

maintenance efforts, advanced failure analysis tech-

nologies shall be applied to ensure correct and quick

fault detection and isolation. It is well known that an

output voltage regulated DC/DC power converter

supplying constant power loads could de-stabilize

the network stability due to the degraded perfor-

mance of its input filter. The sensitivity study of in-

put filter parameters concerning the network stability

addressed in [2] reveals that the observation of de-

graded degree of the capacitor in the input filter can

significantly increase the network reliability.

1.2 State of the art

Reviewing the considerable development of fault

diagnosis techniques and many successful applica-

tions attached to them in the last time [3] [4] [5],

power systems keep a challenge for fault detection.

For overcoming this challenge intelligent methods

like artificial neural networks have shown their pos-

sibilities in this field [6]. Besides, the analytical

model based technology is also obtaining more atten-

tion [7] [8] [9].

Signal-based methods, e.g. Fourier transform and

wavelet transform, also provide other possibilities to

perform the fault detection and isolation. With the

rash development of the new mathematical tool,

wavelet transform [10], a great amount of studies

have been done in different fields for fault detection.

Some attempts have also been made in power elec-

tronics for fault detection [11] [12]. The implementa-

tion of wavelet transform for the post processing of

Modelica simulation data has been seen, for exam-

ple, in a study of vehicle steering, where wavelet

transform was carried out in the software Matlab for

calculating power spectra [13].

DOI Proceedings of the 9th International Modelica Conference 513
10.3384/ecp12076513 September 3-5, 2012, Munich, Germany

1.3 Main contributions

Modelica was developed as a free, object-oriented

and equation-based modeling language. It has signif-

icant benefits such as easy reusability of models and

multi-domain modeling capability. In combination

with the simulation environment Dymola, a conven-

ient platform is provided to the complete model-

based design and the integration of MEA systems

[14]. In contrast to the excellent performance in

modeling and simulation, Modelica only supports

limited signal analysis features [15], which are actu-

ally crucial for the fault analysis and virtual testing

activities in the verification and validation phase of

the system development.

This work focuses on the fast design of a fault de-

tection strategy of on board power supply units in

MEA with wavelet transform using Modelica simu-

lation. To realize this, a wavelet library for Modelica

is being developed. Multi-Resolution Analysis

(MRA) of wavelet technology is applied to detect the

failure of electrolyte capacitors in a very early stage.

In addition, the design process using Modelica

simulation shows high flexibility and efficiency. It is

possible to identify the most important failure fea-

tures and helps to design a effective fault detection

strategy within only a short time.

2 Wavelet transform

2.1 Definition

Wavelet transform could be considered as a fur-

ther development of Fourier transform, or more pre-

cisely, of short time Fourier transform (STFT) [16].

Using STFT, people try to localize the signal chang-

ing with time by selecting suitable time window.

This transformation, however, is limited in time-

frequency resolution capability due to the uncertainty

principle. Wavelet transform overcomes this prob-

lem. This transform is defined as [10]:

. (1)

It is described as the wavelet transform of the

square-integrable function, f, using wavelet function,

ψ, at dilation (or scale), a, and position (or transla-

tion), b. The bar above function, ψ, stands for conju-

gation. For the given a and b, the transform result is

a single real number, a wavelet coefficient.

Obviously wavelet transform is the integral of the

multiplication of the signal, f, with a wavelet func-

tion, ψ. It has the same form as the STFT. However,

not like STFT, where only sine and cosine functions

are used for the transformation, wavelet transform

uses different wavelet functions, which can be se-

lected according to the specific problems from a

principally unlimited set. Nevertheless, the wavelet

function must fulfill some conditions; namely, it

must be an orthonormal function. The precise math-

ematical description of orthonormality is easily

found in almost every book about wavelet transform,

e.g. [10], and is not repeated here.

Parameter, a, defines the width and height of the

wavelet function, ψ. A smaller scale, a, makes ψ nar-

rower; thus the wavelet represents fast changes and

the transform focuses on the high frequency compo-

nents of the signal. Parameter, b, shifts the wavelet

function along the time axis, so that the transform

represents different locations of the signal. Using

different values of scale, a, and position, b, it is able

to observe the signal at different position and in dif-

ferent frequency range with only one transformation.

Thanks to these special properties, wavelet transform

is especially suitable for analyzing changing pro-

cesses.

Two forms of wavelet transform are available.

They are continuous wavelet transform (CWT) and

discrete wavelet transform (DWT). In CWT both

scale and position parameters are continuous real

values. CWT expresses the signal changes in contin-

uous details. It is more suitable for visual examina-

tion. In this work only DWT is used, which will be

described in more detail in the next section.

2.2 Discrete wavelet transform

In DWT only discrete values of the scale and lo-

cation parameters are used. The values are selected

in a discrete form, namely

 , (2)

where and . The transform re-

sults, i.e. the wavelet coefficients, are therefore also

discrete.

In the numeric calculation of DWT, an extra scal-

ing function, in addition to the wavelet function, is

used to carry out a complete and efficient DWT. The

scaling function represents the low frequency com-

ponents of the signal. It is orthogonal to its own dis-

crete translations and to all wavelet functions. The

wavelet and the scaling functions with the discrete

scaling and translation parameters build a complete

orthogonal basis of the Hilbert space. The DWT is

thus another representation of the time signal.

As an example, Figure 1 shows the form of the

third order Daubechies scaling and wavelet functions

and their Fourier transforms [17].

Fault Detection of Power Electronic Circuit using Wavelet Analysis in Modelica

514 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076513

Figure 1: The third order Daubechies scaling and wavelet func-

tions (a) and their Fourier transforms (b)

From the Fourier transforms it can be seen that

the scaling function covers lower frequency range

while the wavelet function stretches in a higher fre-

quency range. From this point of view, DWT is actu-

ally the division of the time signal into different fre-

quency bands. Thus, it is straightforward to under-

stand that the calculation of DWT is realized using

filter banks. In inverse DWT the calculation is simi-

lar. This process is illustrated in Figure 2.

 Figure 2: DWT and inverse DWT calculation using filter banks

DWT transforms the original sequence in two

new series:

(1) the approximation coefficients, cA(k), represent-

ing the low frequency components, obtained us-

ing the low pass filter for decomposition, hd0,

and

(2) the detail coefficients, cD(k), representing the

high frequency components, obtained using the

high pass filter for decomposition, hd1.

The symbol ↓2 means down sampling. The opera-

tion is to delete one from every two adjacent coeffi-

cients, in order to remove the redundant information.

The inverse DWT carries out the reversed operation.

The operator, ↑2, expands a coefficient series by in-

serting a zero between every two adjacent elements.

After that the two series pass through the filter bank,

and added together to get the original signal.

2.3 Multi-resolution analysis

Considering the DWT process shown in Figure 2,

sequence, cA(k), which represents the low frequency

components can be further divided into a lower fre-

quency part and a higher frequency part inside the

frequency range of cA(k). This process is repeated

and a series of coefficient sequences representing

different frequency ranges is obtained, as shown in

Figure 3:

Figure 3: Multi-resolution analysis using DWT

This is the wavelet multi-resolution analysis

(MRA). The output of this operation, cD1, cD2, …,

cDn and cAn, are different levels of DWT coeffi-

cients, representing the signal components from

higher to lower frequencies. Here the original signal

is treated as the lowest level of approximation coef-

ficients. This analysis provides a convenient tool to

observe different frequency components of the signal

depending on time.

2.4 Wavelet analysis for fault detection

Wavelet transform is a powerful tool in signal

processing for the detection of changing events. This

feature is suitable for fault detection since a fault in a

system can be treated as a deviation compared to the

normal state.

When a fault occurs, specific changes will appear

in the sensor signal. Usually, it is known that the

fault signal is located in a certain frequency range,

but the exact frequency is often unknown or not con-

stant. This problem can be handled with wavelet

MRA. For that, the signal containing fault infor-

mation is firstly decomposed in several levels. And

in one or more levels, where the fault signal frequen-

cy is located, faults features will be observed.

3 Wavelet fault detection in a MEA

power network system

Based on the properties of wavelet transform in

signal processing, this new mathematic tool is used

for fault detection in a MEA power network system

in this study. Specifically, the MRA is used here to

detect the capacitance drop of the input capacitor in a

DC-DC buck converter for the early stage failure.

3.1 The problem

The buck converter is described with the diagram

shown in Figure 4.

0 1 2 3 4 f

0

1

0 1 2 3 4 t

-1

0

1

2

Wavelet function

Scaling

function

(a) (b)

Wavelet function

Scaling function

hd0 ↓2

hd1 ↓2

f(k)

cA(k)

cD(k)

cA(k)

cD(k)

↑2

↑2

hr0

hr1

f(k)

DWT Inverse DWT

+

hd0 ↓2

hd1 ↓2

f(k)

cA1(k)

cD1(k)

hd0 ↓2

hd1 ↓2

cA2(k)

cD2(k)

hd0 ↓2

hd1 ↓2

cA3(k)

cD3(k)

. . .

Session 4D: Electromagnetic Systems II

DOI Proceedings of the 9th International Modelica Conference 515
10.3384/ecp12076513 September 3-5, 2012, Munich, Germany

Figure 4: Diagram of the Buck converter under study

The converter operates in constant load power

mode by keeping a constant output voltage, which is

adjusted through the duty cycle of the pulse width

modulation (PWM) switching signal, which operates

with a constant frequency. Based on the converter

property the system is sensible to the value changes

of the components on the input side, where the input

capacitor, Cin, is especially critical because it is usu-

ally an electrolyte type, which has significantly low-

er feasibility and shorter lift time compared with oth-

er components. Base on this reason, the early fault

detection is focused on Cin.

Four parameters of the circuit can be convenient-

ly measured by voltage and current sensors. They

are, referring to Figure 4, Uout, Iout, Iin and Uin,

ordered from higher to lower ease of availability.

Since the load is pure resistive constant load, the

output current signal will contain the same infor-

mation as the output voltage. And Uout will be used

any way for the controller as feedback, the equip-

ment of a sensor for output current is therefore not

necessary, at the least for fault detection.

Since a stable output voltage is the control objec-

tive of the circuit, the influence of Cin would be

compensated by the controller very quickly. As a

consequence only very few fault information would

be propagated to the output side. The fault detection

using Uout is therefore not feasible.

The input voltage is not a good signal for fault

detection, too, since it actually measures the input

power supply voltage, which is normally a voltage

source with very low impedance and thus hardly be

influenced by Cin.

The input current is the last possibility; and it is

actually also a suitable signal for fault detection. The

reason is, for example, if its capacitance drops, it

means the energy capacity of the input circuit is re-

duced. In order to keep a constant energy flow to the

load, which is regulated by the controller, Cin would

have to be charged and discharged more deeply. This

will be reflected in the input current with larger fluc-

tuation. This estimation will be showed later in the

result section.

If an electrolyte capacitor approaches it life end,

its capacity would reduce slowly within a certain

time. However, sharp reduction or changing of ca-

pacitance might also occur. For fault detection, espe-

cially for early stage fault diagnosis, both stepping

type and slow changing of capacitor fault should be

considered.

3.2 Extraction of fault information

The first step is the extraction of the fault infor-

mation from the sensor signals. Supposing the meas-

ured signal is

 , (3)

where x(k) is the signal in normal operation state,

and g(k) the additional signal in fault condition.

Using wavelet technology, the sensor signal f(k)

is decomposed with MRA using wavelet function, ψ,

to obtain wavelet coefficients in n levels:

 ,

 ,

(4)

where Di{.} represents the detail coefficients, and

Ai{.} stands for approximation coefficients. The term

Di{.} with smaller index, i, represents higher fre-

quency components, namely faster changing signals.

The signal, x, in the normal operation condition is

composed of the average value of the battery current,

which changes very slow, and the ripples caused by

the PWM controlling, which have a constant fre-

quency defined by the controller. The slower com-

ponents are transformed to the approximation coeffi-

cients, An{x}; and the components with PWM fre-

quency, which are higher frequency components, is

transformed to the very low level of Di{x}.

On the other hand, the fault signal, i.e. the infor-

mation of the reduction of Cin, is reflected by the

fluctuation of the input current. As it is known that

the fluctuation frequency is actually the PWM fre-

quency, most of the fault information is contained in

the PWM components, which means the lower levels

of detail coefficients, Di{g}. Depending on the fault

occurrence rate, complex fluctuation could take

place. This information will be carried by the PWM

frequency, too, but its own frequency components

are visible in other levels of Di{g}.

In any circumstance few information will be pre-

sent in very low frequency range, i.e. in An{g}.

Therefore, we can extract the fault information from

the input current signal simply by isolating some

levels of detail coefficients, Di{f}. Of course, the

PWM information will also be involved. It has to be

removed before the faults can be identified. Since

this frequency is known and it always has a very

high value, these components can be easily sup-

pressed with low pass filter or band stop filter.

Controller

Lin

Cin
Cout

Lout

D

Transistor

R
lo

a
d

Uout

IoutIin

Uin

Uout FeedbackPWM Switching

Fault Detection of Power Electronic Circuit using Wavelet Analysis in Modelica

516 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076513

3.3 Fault identification

After all irrelevant information is excluded the fi-

nal fault information is represented with a single val-

ue, changing according to the failure rate. The fault

can be simply identified by comparing it with a

known threshold.

4 Design of a fault detection strategy

using Modelica

Because of the aforementioned superior proper-

ties, Modelica simulation and wavelet transform

were selected for the quick design of a fault detec-

tion strategy for the power system in MEA. Since

wavelet transform is not available in the standard

Modelica libraries, a solution have to be found. A

seemingly direct solution would be the use of a se-

cond software tool, which provides wavelet analysis

capacity, such as Matlab from MathWorks. Some

practical reasons were faced, however. Firstly, the

use of such commercial software requires expensive

licenses. Secondly, a single program both for simula-

tion and data analysis is very desirable during the

work in order to have an integrated working process

and to avoid interfacing between two programs. It is

therefore more favourable to have the wavelet analy-

sis inside Modelica. In addition, this brings further

advantages in that the library can be a common tool

of Modelica, so that higher work efficiency will be

achieved in a long term.

4.1 Model of the power supply

The buck converter shown in Figure 4 is realized

with a Dymola model in Figure 5.

Figure 5: The Dymola model of the Buck converter for MEA

The voltage controller is a proportional-integral

regulator. The output voltage is set as 4.3 V. The

PWM frequency is defined with the trapezoidal

source as 50 kHz. The component fault is simulated

by reducing the value of the input capacitor, Cin,

with a ramp source. By setting the ramp, different

changing rate of the component value can be simu-

lated. The input current is measured by a current sen-

sor, which is explicitly put in the model only for

clarity, since the current values could actually be

read out directly from the corresponding compo-

nents, e.g. Rin or Lin. Other parameters are listed in

Table 1

Table 1: Parameters of the buck converter

Parameter Description Value

E Voltage source 54 V

Uref Reference output voltage 4.3 V

Lout Output inductance 29 μH

Cout Output capacitance 40 μF

Rload Load resistance 1.568 Ω

Lin Input filter inductance 10 μH

Cin Input filter capacitance 10 μF

Rin Input resistance 0.025 Ω

Kp Propotional controller gain 0.06

Ki Integral controller gain 4.9

4.2 Wavelet transform in Modelica

The structure of the wavelet toolbox developed

for Modelica is shown in Figure 6. At the moment of

this report the wavelet library is under development

within the frame of Clean-Sky project organized by

European Union. It is expected to be a general

Modelica library with wavelet transform and some

related functionality for different signal processing

purposes. This library is used for post processing of

the simulation result data and cannot be embedded

into simulation models. So far the core library func-

tions have been realized and wavelet DWT and

MRA can be implemented for the reported work.

Figure 6: Structure of the intended Modelica wavelet library (the

functions with dark background will be designed depending on

the work process)

ground

R
=

0
.0

2
5

R
in

L=10e-6

Lin

U
0

+
-

E

k=54

T

D

trapezoid

period=2e-5

onOffController

refe…

u

Ki

I

k=4.9

k=0.06

Kp

add

+1

+1

add

+

+1

+1

-

fb

Uref

k=4.3

L=29e-6

Lout

C
=

4
0

e
-6

C
o

u
t

R
=

1
.5

6
8

R
lo

a
d

V

U
o

u
t

A

Iin

C
in

ramp

duration=0.1

Transformations
User‘s Guide

1-D Continuous Wavelets
(Functions, Blocks, …)

1-D Discrete Wavelets
(Functions, Blocks, …)

Examples
(MSA, de-noising, …)

2-D Discrete Wavelets
(Functions, Blocks, …)

Wavelet Packets
(1-D, 2-D; Functions, Blocks, …)

Basics

General Functions
Wavelet Families
(Functions)

Applications

Multi-Resolution Analysis
(Functions, Blocks, GUI, …)

Display Wavelets

Interfaces

Session 4D: Electromagnetic Systems II

DOI Proceedings of the 9th International Modelica Conference 517
10.3384/ecp12076513 September 3-5, 2012, Munich, Germany

4.3 Process for simulation and fault detection

As mentioned in the problem description (section

3.1) the input current signal is used for fault detec-

tion. At first the model will be simulated with differ-

ent reduction rates of the Cin capacitance. The re-

duction rates were selected between 1 and 100 ms

with a capacitance drop from 10 to 8 μF, correspond-

ing to 20% capacitance loss. With this fault level the

system can still operate normally. However, a 20%

reduction indicates a high possibility of a complete

failure of the capacitor in the near future. The reduc-

tion is applied at 0.1 s after the startup of the simula-

tion so that the system can achieve a stable state be-

fore the faults could occur.

After simulation, the data segment containing the

fault event will be read out from the simulation result

data file. It is converted to equidistant time series

with a sampling rate of 200 kHz. Equidistant sam-

pling is the requirement of wavelet transform and

most other signal processing methods. The fault de-

tection process is illustrated in Figure 7.

Figure 7: Process for simulation and fault detection using wave-

let transform

To simulate the real world, a white noise signal

with normal distribution is added on the input current

signal. After that, MRA is applied on the data. The

wavelet function used here was the third order

Daubechies function shown in Figure 1. The detail

coefficients in the DWT result are extracted and their

absolute values are calculated since only the magni-

tude of the DWT coefficients contains fault infor-

mation. To remove the high frequency PWM com-

ponent, second order Butterworth low pass filter is

used. The filter cut off frequency is set as 0.5 kHz,

much lower than that of the PWM frequency, in or-

der to suppress a large part of the noise signal, too.

After this step, different fault features can be visually

identified and suitable fault detection methods can be

established.

4.4 Results

The tests with different parameters were carried

out. Figure 8 and Figure 9 give two examples with

slow and fast changing faults, respectively. Since all

fault features mainly present in the first three levels

of the wavelet decomposition, only these coefficients

are shown in the figures.

It was noticed that the fault features differed sig-

nificantly between fast and slow changing rates. For

the changing rates faster than 5 ms, a pulse feature

appeared in almost every level of the wavelet detail

coefficients. This is well seen in Figure 8, where

20% capacitance drop took place within 1 ms. In the

first MRA level the feature magnitude changed from

55 to 70 mA with the fault. In the other two higher

levels the fault event was extra present with pulses.

The magnitude of the pulses increased with the

changing rate. The pulses appeared in other higher

decomposition level, too. However, in level three it

was significantly higher than those in other levels.

For the fault with 1 ms dropping time, as shown in

Figure 8, the pulse peak reached almost 100 mA in

level 3. The simulation showed that for the dropping

time up to 5 ms, the peak height reduced linearly to

about 20 mA.

For the changing rates slower than 5 ms, the fault

features were only significant in the lowest level of

the wavelet MRA coefficients. Figure 9 shows an

example, where the 20% capacitance drop took 100

ms time. Now only the first wavelet decomposition

level contained a fault feature: the feature magnitude

changed from about 55 to 70 mA linearly with the

reduction of the capacitance. This was the same as

the level 1 feature in fast changing faults. For even

lower changing rates this linear relationship was al-

ways present. Not like in the case of fast changing

fault, no significant features were observed in other

decomposition levels.

Based on the simulation study, the following fault

detection strategy can be defined for early stage fault

detection of the input capacitor, Cin:

(1) In wavelet decomposition level one, if the fea-

ture magnitude exceeds 70 mA, a capacitance

reduction of 20% of Cin is detected.

(2) In wavelet decomposition level three, if the

pulse value exceeds 20 mA, the event implies a

fast drop of the Cin capacitance. The pulse peak

value could be used to estimate the capacitance

changing rate.

Sensor data
White noise+

D1 D2

…

Dn

An (Ignored)

Fault features

…

…

Simulation

Wavelet MRA

Absolute value

Low pass filter

Fault Detection of Power Electronic Circuit using Wavelet Analysis in Modelica

518 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076513

Figure 8: Signals in the detection of a capacitance drop fault

within 1 ms using wavelet transform. (a) Cin capacitance (μF);

(b) input current signal, Iin (mA); (c-e) detail wavelet coeffi-

cients in MRA from Level 3 to level 1 (mA); (f-h) fault features

contained in detail wavelet coefficients of level 3 to level 1

(mA).

Figure 9: Signals in the detection of a capacitance drop fault

within 100 ms using wavelet transform. (a) Cin capacitance (μF);

(b) input current signal, Iin (mA); (c-e) detail wavelet coeffi-

cients in MRA from Level 3 to level 1 (mA); (f-h) fault features

contained in detail wavelet coefficients of level 3 to level 1

(mA).

0.08 0.12 0.16 0.20 0.24

0

5

10

15

0.08 0.12 0.16 0.20 0.24

0

200

400

0.08 0.12 0.16 0.20 0.24

0

5

10

15

0.08 0.12 0.16 0.20 0.24

0

200

400

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

0

50

100

0.08 0.12 0.16 0.20 0.24

0

50

100

0.08 0.12 0.16 0.20 0.24

0

50

100

0.08 0.12 0.16 0.20 0.24

0

50

100

0.08 0.12 0.16 0.20 0.24

0

50

100

0.08 0.12 0.16 0.20 0.24

0

50

100

0.08 0.12 0.16 0.20 0.24

0

50

100

0.08 0.12 0.16 0.20 0.24

0

50

100

0.08 0.12 0.16 0.20 0.24

0

50

100

0.08 0.12 0.16 0.20 0.24

0

5

10

15

0.08 0.12 0.16 0.20 0.24

0

200

400

0.08 0.12 0.16 0.20 0.24

0

5

10

15

0.08 0.12 0.16 0.20 0.24

0

200

400

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

-200

0

200

0.08 0.12 0.16 0.20 0.24

0

50

100

0.08 0.12 0.16 0.20 0.24

0

50

100

0.08 0.12 0.16 0.20 0.24

0

50

100

0.08 0.12 0.16 0.20 0.24

0

50

100

0.08 0.12 0.16 0.20 0.24

0

50

100

0.08 0.12 0.16 0.20 0.24

0

50

100

0.08 0.12 0.16 0.20 0.24

0

50

100

0.08 0.12 0.16 0.20 0.24

0

50

100

0.08 0.12 0.16 0.20 0.24

0

50

100

(g)

(c)

(d)

(e)

(f)

(h)

(b)

(a)

(c)

(b)

(d)

(e)

(f)

(g)

(h)

(a)

Session 4D: Electromagnetic Systems II

DOI Proceedings of the 9th International Modelica Conference 519
10.3384/ecp12076513 September 3-5, 2012, Munich, Germany

4.5 Comparison with filter technique

The wavelet fault detection method was com-

pared with the traditional filter technique, which was

processed according to the procedure as shown in

Figure 10.

Figure 10: Process for simulation and fault detection using filter

technique

The process is similar to that using wavelet trans-

form. The differences are:

(1) Instead of wavelet decomposition for removing

the low frequency normal operation signal, a se-

cond order Butterworth high pass filter was

used. Its cut off frequency was optimized at fc =

10 kHz to keep as much as possible fault infor-

mation in high frequency range.

(2) The output of the high pass filter is a single one

dimensional time vector, not as in the wavelet

decomposition, where multiple vectors are ob-

tained.

The fault features obtained using both methods

for different fault occurrence rates are compared in

Figure 11. It shows significant advantages of the

wavelet method over the traditional filter method.

For the fast changing faults, the faults were ex-

pressed with both linear change of the feature magni-

tude and much sharper pulses in the wavelet method.

In Figure 11a the pulse peak in the wavelet method

reached about 80 mA from the base line, while the

filter method only showed a peak value of about 10

mA.

For the slow changing faults, shown in Figure 11a

and b, although no significant peaks were observed

in the higher decomposition levels using wavelet

transform, the features in the first level were still

clearer than that obtained with the filter method. In

the wavelet method, the features showed a difference

from 55 to 72.5 mA with a relative change of about

32%, while the filter method gave a difference from

34 to 42.5 mA with a difference of only about 25%.

Figure 11: Comparison of the fault features between wavelet

method and filter method for (a) 1 ms, (b) 10 ms and (c) 100 ms

fault occurrence rate (black solid line --- level 1 wavelet; blue

dashed line --- level 3 wavelet; red solid line --- filter method)

5 Conclusion and discussion

This work described a method for early fault de-

tection of important electric components in power

supply systems for more electric aircraft (MEA) us-

ing wavelet transform. The special properties of

wavelet transform suit this method well for changing

signal analysis. The simulation study using Modelica

under the environment Dymola illustrated its superi-

or feasibility for the detection of fast changing faults,

which was significantly better than the traditional

filter technique. For the slow changing faults, the

wavelet method also gave a significant feature and

provided clearer information than the filter tech-

nique. Based on these advantages, the wavelet fault

detection method is expected to achieve satisfied

detection of early faults.

In this study, a specific wavelet library for

Modelica is being developed, which possesses the

basic functionality of wavelet analysis, including

wavelet transform and inverse transform, wavelet

decomposition and reconstruction for multi-

resolution analysis, and other related functions. The

work proved the feasibility of the implementation of

wavelet analysis in Modelica.

More work is being done in this topic, including

further development of the Modelica wavelet library

and experimental study of the fault detection with a

Sensor data
White noise+

An

Fault features

Simulation

High pass filter(fc=10 kHz)

Absolute value

Low pass filter(fc=0.5 kHz)

filtermethod

waveletmethod,level1

waveletmethod,level3

(a)

filtermethod

waveletmethod,level1

waveletmethod,level3

(b)

filtermethod

waveletmethod,level1

waveletmethod,level3

(c)

Fault Detection of Power Electronic Circuit using Wavelet Analysis in Modelica

520 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076513

real buck inverter. For a real system, detailed optimi-

zation of the fault detection strategy has to be carried

out, such as trying other wavelet functions, observ-

ing more changing rates, studying the detection with

expanded fault ranges, and considering the faults in

more electrical parts.

Acknowledgement

The authors thank the support from the Clean-Sky

Joint Undertaking through the Grant Agreement No.

296369 (Project MoMoLib) within the Seventh

Framework Programme of the European Union.

References

[1] C. Schallert, A. Pfeiffer and J. Bals. Genera-

tor power optimisation for a more-electric

aircraft by use of a virtual iron bird, 25
th

Internaltional Congress of the Aeronautical

Sciences, 2006.

[2] M.R. Kuhn, Y. Ji, D. Schröder, Stability

studies of critical DC power system

comonent for More Electric Aircraft using μ

sensitivity. Proc. of the 15
th
 Mediterranean

Conference on Contro & Automation, 2007.

[3] J. Gertler. Fault Detection and Diagnosis in

Engineering Systems. Marcel Dekker, 1998.

[4] J. Chen and P.Patton. Robust Model-based

Fault Diagnosis for Dynamic Systems.

Kluwer Academic Publishers, 1999.

[5] S. X. Ding. Model-based Fault Diagnosis

Techniques: Design Schemes, Algorithms

and Tools. Springer Berlin, 2008.

[6] K. Swarup and H. Chandrasekharaiah. Fault

detection and diagnosis of power systems us-

ing artificial neural networks. 1st internation-

al forum on application of neural networks to

power system, 1991.

[7] M. Aldeen and F. Crusca. Observer-based

fault detection and identification scheme for

power systems: Generation, Transmission

and Distribution. lEE Proceedings, vol. 153,

pp.71-79, 2006.

[8] Y. Ji and J. Bals. Multi-Model Based Fault

Detection for the Power System of More

Electric Aircraft. Proceedings of the 7th

Asian Control Conference, Hong Kong, Chi-

na, Aug. 27-29, 2009.

[9] Y. Ji, J. Bals, Application of model detection

techniques to health monitoring for the elec-

trical network of More Electric Aircraft, In-

ternational Conference on Electrical Engi-

neering and applications, 2009.

[10] S. Mallat (2009): A wavelet tour of signal

processing - the sparse way. Amsterdam:

Elsevier.

[11] H. T. Zhang, Q. An, et al. Fault Detection

Wavelet Fractal Method of Circuit of Three-

Phase Bridge Rectifier. International Confer-

ence on Intelligent System Design and Engi-

neering Application (ISDEA), 2010, S. 725–

729.

[12] V. Prasannamoorthy, N. Devarajan, et al.

Wavelet and Fuzzy Classifier Based Fault

Detection Methodology for Power Electronic

Circuits. International Conference on Process

Automation, Control and Computing

(PACC), 2011, S. 1–6.

[13] T. Buente, A. Sahin, and N. Bajcinca, Naim.

Inversion of Vehicle Steering Dynamics with

Modelica/Dymola. Proceedings of the 4th In-

ternational Modelica Conference 2005, S.

319–328.

[14] J. Bals, Y. Ji, M. R. Kuhn, C. Schallert,

Model based design and integration of More

Electric Aircraft systems using Modelica.

Moet forum at European power electronics

conference and exhibition, 2009.

[15] Y. Ji, J. Bals, A Modelica signal analysis tool

towards design of More Electric Aircraft,

ICIAE, 2010.

[16] E. Jacobsen and R. Lyons. The sliding DFT.

Signal Processing Magazine, vol. 20, issue 2,

pp. 74–80, March 2003.

[17] I. Daubechies. Ten Lectures on Wavelets.

SIAM 1992.

Session 4D: Electromagnetic Systems II

DOI Proceedings of the 9th International Modelica Conference 521
10.3384/ecp12076513 September 3-5, 2012, Munich, Germany

Fault Detection of Power Electronic Circuit using Wavelet Analysis in Modelica

522 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076513

Session 5A: Simulation Tools

PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure

PySimulator – A Simulation and Analysis Environment in Python
with Plugin Infrastructure

A. Pfeiffer, M. Hellerer, S. Hartweg, M. Otter, M. Reiner
DLR Institute of System Dynamics and Control, Oberpfaffenhofen, Germany

{Andreas.Pfeiffer, Matthias.Hellerer, Stefan.Hartweg, Martin.Otter, Matthias.Reiner}@dlr.de

Abstract

A new simulation and analysis environment in Py-
thon is introduced. The environment provides a
graphical user interface for simulating different
model types (currently Functional Mockup Units and
Modelica Models), plotting result variables and ap-
plying simulation result analysis tools like Fast Fou-
rier Transform. Additionally advanced tools for line-
ar system analysis are provided that can be applied to
the automatically linearized models. The modular
concept of the software enables easy development of
further plugins for both simulation and analysis.
Keywords: PySimulator; Python; Simulator; FMI;
FMU; Modelica; Plugin; Simulation; Analysis; Lin-
ear System Analysis

1 Introduction

In this article the open source environment PySimu-
lator1 is introduced and its design is discussed. The
central idea is to provide a generic framework
• to perform simulations with different simulation

engines in a convenient way,
• organize the persistent storage of results,
• provide plotting and other post-processing fea-

ture such as signal processing or linear system
analysis, and

• export simulation and analysis results to other
environments.

1.1 Design

From an end-user’s point of view, PySimulator con-
sists of a convenient graphical user interface so that
all these operations can be defined mostly with the
mouse. This is similar to many other, usually com-
mercial, simulation environments.

1 PySimulator builds on other Python packages with dif-
ferent license conditions. The most restrictive used is
LGPL. Non-GUI functions are under the BSD license.

However, the major innovation is that PySimulator is
constructed as a plugin system: Nearly all operations
are defined as plugins with defined interfaces. Sever-
al useful plugins are already provided, but anyone
can extend this environment by his/her own plugins
and there is no formal difference to plugins already
provided by the authors of the paper.

Introducing a new plugin means to copy a template
and adapt it by writing Python code. Hereby it is
possible to build upon the results of other plugins
and provide own results to other plugins. All plugin
functionality available via the graphical user inter-
face shall also be easily accessible in Python scripts.
This will allow a modeler to define and automatical-
ly execute Python scripts.

1.2 Related Work

There are several existing Python packages that aim
to simulate dynamic systems of standardized physi-
cal models like Modelica or FMI [MC10]:
• The software package BuildingsPy [LBN+12]

provides functions in Python to start simulations
of Modelica models in Dymola [DS12]. Fur-
thermore the result file can be read to process the
signals.

• The OMPython package [GFR+12] interfaces
the OpenModelica environment with Python.
Hence, many functionalities of OpenModelica
can be controlled by Python scripts.

• The packages PyFMI and Assimulo [AAF+12]
provide Python interfaces for calling functions of
a general Functional Mock-Up Unit. Moreover,
sophisticated numerical integration algorithms
are interfaced or implemented in Assimulo. The
user mainly interacts with the packages by Py-
thon scripts. A graphical user interface for plot-
ting simulation results is currently available.

These packages concentrate the functionalities on a
specific type of model and simulation engine and do
not provide a wide range of post-processing features.

DOI Proceedings of the 9th International Modelica Conference 523
10.3384/ecp12076523 September 3-5, 2012, Munich, Germany

Also, the license conditions are partially restrictive
since, e.g., GPL is used. In the Python package index
(http://pypi.python.org) about 130 Python simulation
packages are listed. Most of these packages are dedi-
cated to the simulation of specific models (like neu-
ron networks, biological systems, discrete event sys-
tems) or are low level generic packages that require
to define a model as Python code (like Assimulo,
pyDDE, ScipySim).

2 Architecture and GUI

The environment PySimulator is implemented in
Python and depends on several Python packages.
The Graphical User Interface (GUI) is built by Py-
Side [P12], a Qt-Interface to Python. Plotting fea-
tures are realized by integrating Chaco [E12] into the
Qt [NC12] framework.

The main GUI of PySimulator (see Figure 1) has a
menu bar on the top, the Variable Browser, a plot-
ting area and an Information output window. The

menu bar shown in Figure 2 provides functionalities
for opening models, opening and conversion of result
files, running the simulation and starting analysis
tools. In the Variable Browser all models and simu-
lation results are managed to get access to the varia-
bles, their attributes and their numeric data. Struc-
tured plots show the numeric data in the plotting ar-
ea.

Figure 2: Menu bar of PySimulator GUI.

The environment is intended to provide features for
two kinds of users. In a first step the user interactive-
ly works with the graphical user interface by loading
models, simulating them, plotting variables, applying

Figure 1: Main Graphical User Interface of PySimulator.

PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure

524 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076523

analysis tools and inspecting the results. An ad-
vanced user can profit from Python’s scripting fea-
tures because it is possible to load, simulate and ana-
lyze models by API function calls in custom scripts.

The implemented software is structured as shown in
Figure 3. Some main modules are hosted in the top
level directory PySimulator. Under Plugins all code
and data of plugins is organized. Plugin interfaces
for model simulators and simulation analysis tools
are provided. This plugin concept leads to very mod-
ular software that can be easily extended by further
plugins. In the following subsections the main GUI
elements and the modular plugin structure are pre-
sented.

Figure 3: Main directory structure of PySimulator.

2.1 Model and Result Management

A central element of the PySimulator GUI is the
Variable Browser, see Figure 1. It can show several
variable trees of different models. Such a variable
tree is either generated by opening a simulation re-
sult file, or by opening a model. To open a model the
Simulator plugin has firstly to be selected in the
menu Open Model (see in Figure 2; for more details
see Section 3). Secondly the model file itself is to be
specified. Each top level item in the Variable Brows-

er has an ID number followed by a colon and the
name of the model. The ID number also marks vari-
ables uniquely in plot windows.

By selecting Open Result File the user can load a
result file of different formats into the Variable
Browser. In such a case there is no model to be simu-
lated and the item is displayed in grey color like
items number 3 and 6 in Figure 5. Currently two re-
sult formats are supported: the proposed standard
time series file format MTSF [PBO12] in HDF5, and
the binary format generated by Dymola’s [DS12]
simulation executable in Matlab 4 format [M12].

Figure 5: Top level items in the Variable Browser. Black
color: Model and result file; grey color: only result file.

For each top level item an information text window
(tool tip) is displayed when the user holds the mouse
pointer some moment over the name of the item. The
text informs about properties of the model. Its struc-
ture depends on the model type. An example for an
FMU [MC10] is displayed in Figure 4.

After opening a model the variable tree is construct-
ed according to the names of all model variables.
New tree branches are introduced by variable names
containing dots ‘.’ representing a hierarchy or
squared brackets ‘[‘, ‘]’ representing arrays. The unit

Figure 4: Variable Browser with information text (on the right) for the FMU model.

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 525
10.3384/ecp12076523 September 3-5, 2012, Munich, Germany

of the variable is shown if there is any. The values of
independent parameters or the initial values of state
variables may be edited in the Variable Browser e.g.
for 1:clutch.cgeo or 1:clutch.fn_max. Further-
more, variables to be plotted can be defined before
the numerical integration starts. The attributes of
each variable depending on the model or result file
type can be displayed by opening the leaf in the vari-
able tree, e.g. for the variable 1:clutch.a_rel in
Figure 4.

During the numerical integration of a model a result
file is generated that is associated with the model. A
context menu Results for the top level items in the
Variable Browser informs about the associated result
file, see Figure 6. By selecting the context menu
Model one can close a model and the associated re-
sult file. Also, the user can duplicate a loaded model.
Each duplicate has its own top level item in the Vari-
able Browser like any other model. It is based on the
same model file (e.g. Friction.fmu or Friction.mo),
but has a separate result file, separate settings for the
numerical integration and separate values for param-
eters or initial values set before the numerical inte-
gration. For example, the top level item 5 in Figure 5
is a duplicate of model 2 (Rectifier model).

This approach has the advantage that comparing a
reference simulation with a tuning simulation of the
same original model is very easily possible. The user
just duplicates the reference version of the model and
experiments on the duplicate. The effects can be di-
rectly inspected in plots for the reference and the

tuned version of the model.

Figure 6: Standard context menus for a top level item in
the Variable Browser.

2.2 Plotting Features

Simulation data and analysis results must be pro-
cessed to make them comprehensible for humans. In
PySimulator, the data is visualized using graphical
plots. For this purpose PySimulator provides a plot-
ting framework, based on the 2D plotting library
Chaco [C12]. Chaco was chosen because it is com-
patible with the Qt/PySide UI-framework, it is li-
censed under the new BSD license, and it is a native
Python library. The last feature not only facilitates
the integration but also allows making full use of its
object oriented structure at all levels of the inher-
itance tree for manipulation and extendibility to fit
our needs. The primary advantage of Chaco and
what sets it apart from other plotting solutions for
Python lies in its focus on interactivity.

Plots are shown in a designated area within the main
window as shown in the upper right part of Figure 1.
Within this area plots can be arranged on a higher
level within tabs. The tabs are then subdivided into a

Figure 7: A plot widget displaying three variables, with a selected time interval and open context menu.

PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure

526 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076523

grid in which the plots are arranged. To achieve all
this, a base class called PlotWidget was implemented
that acts as an adapter between Chaco and our appli-
cation or respectively Qt/PySide. All plots are sup-
posed to be implemented as extensions of this base
class.

Based on the Chaco framework and PlotWidget a
default plot widget (DefaultPlotWidget) for display-
ing a variable value over time was implemented
while paying special attention to the fact that future
plugin developers can both easily use the existing
material and still have access to Chaco’s full versatil-
ity. Marking a variable in the Variable Browser plots
the variable value over the time of the simulation in
the currently active plot, unmarking it removes the
plot line. An example of three variables of a simulat-
ed model plotted in a default plot widget can be seen
in Figure 7. The following features are based on de-
fault Chaco elements and can easily be used individ-
ually on any plot, specifically plots by plugins, either
out-of-the-box as described here or derived from
them to fit special needs:
• Panning: Left clicking and dragging within the

plot pans the view.
• Zooming: Turning the mouse wheel while hov-

ering over the plot zooms in and out. Hovering
over an axis only zooms along the respective
axis. Zooming and panning works very fast, and
is even reasonably fast with millions of points in
the plot window.

• Selecting: Left clicking and dragging on the X-
axis selects a time period. Double clicking the
axis opens a menu for textual input of selection
limits.

• Context menu: Right clicking on the plot opens
a context menu. In the DefaultPlotWidget it
shows callbacks for plugins.

• Marker: While hovering over one plot, the plot's
time stamp under the mouse is displayed as a
vertical line in this and all related plots.

Additionally, plots can be saved as images, either as
bitmaps in PNG format or as vector graphics in SVG
or PDF format.

2.3 Plugin Structure

Currently, infrastructure for two kinds of plugins is
available in PySimulator: Simulator and Analysis
plugins. The plugin interfaces are designed to easily
integrate own simulator and analysis code.

Simulator plugins are intended to provide the infra-
structure to simulate a certain kind of model and
write/read the result file of the simulation. In princi-
ple all types of simulation engines can be included,
provided time series are produced as results and var-
iables and parameters are identified with a hierar-
chical naming structure. Currently, plugins are avail-
able for FMUs [FC10], for Dymola [DS12], and for
OpenModelica [GFR+12].

The name of each Simulator plugin appears in the
main menu bar (Figure 2) under Open Model. To
include a Simulator plugin only the plugin code has
to be inserted in a new directory of
Plugins/Simulator, e.g. FMUSimulator in Figure 8.

Figure 8: Directory and main Python class structure for
plugins in PySimulator.

The main Python code of a Simulator plugin has to
be inside a class Model that is derived from the class
Plugins.Simulator.SimulatorBase.Model. Im-
portant variables, classes and function of the main
class Model are:
• modelType: String, e.g. ‘FMU1.0’, ‘Dymola’.
• integrationSettings: Class including start,

stop time, algorithm name, etc.
• integrationStatistics: Class including

number of events, grid points, elapsed real
time, etc.

• integrationResults: Class including result
file access.

• setVariableTree(): Function to generate da-
ta for a variable tree.

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 527
10.3384/ecp12076523 September 3-5, 2012, Munich, Germany

• getAvailableIntegrationAlgorithms():
Function to get a list of available integration
algorithms.

• simulate(): Function to start the numerical
integration of the model.

• initialize(t): Function to initialize the
model.

• getDerivatives(t,x): Function to evaluate
the right hand side of the system.

• getEventIndicators(t,x): Function to
evaluate the event indicators (= switching
functions to detect events) of the system.

• getStates(): Function to get the values of all
continuous model states.

• getStateNames(): Function to get a list of all
names of the continuous model states.

• getValue(name): Function to retrieve the val-
ue of a certain variable.

For example, the file FMUSimulator.py has a Python
class Model that provides model typical methods and
data as listed for an FMU.

Analysis plugins provide functionality for analyzing
the model or result data in the post-processing stage
of a simulation. They contain functions which work
on variables, models and plots after a model is load-
ed or a simulation is finished. In order to integrate
the Analysis plugins, they are automatically loaded
by PySimulator from the Analysis folder. An initiali-
zation function is called for every plugin to enable
the initial setup, like declaration of variables or own
classes. The Analysis plugin is further able to regis-
ter callback functions in the main program which
allows access to the plugin’s functions. The call of a
plugin’s function from the GUI takes place by either
pull-down menus, a custom button bar or a context
menu appearing when the user clicks on an appropri-
ate GUI element like the model’s name.

For processing the data, the plugins can implement
own algorithms or use shared functionality stored in
the Algorithms folder. It is furthermore possible for
such a plugin to initialize a model or to start a simu-
lation, as this might be necessary for some function-
ality like linearization of the model. In this case, the
features of the Simulator plugins are utilized. The
feedback of the Analysis plugin can be sent to the
textual Information output window, a plot window or
stored in every other way Python allows, e.g. in a file
on disk.

It follows a simple example for an Analysis plugin to
find the maximum value of a time trajectory and plot
a label at the maximum point:

def findMax(widget):
 for plot in widget.plots:
 data = plot.data
 maxVal = data[0]
 for time, value in data:
 if value > maxVal[1]:
 maxVal = (time, value)
 maxLabel = DataLabel(
 component=plot,
 data_point=maxVal,
 label_format=str('(%(x)f, %(y)f)'))
 plot.overlays.append(maxLabel)

def getPlotCallbacks():
 return [["Find Maximum", findMax]]

3 Simulator Plugins

Figure 9: Integrator control GUI in PySimulator.

One of the main features of PySimulator is running
and controlling the numerical integration of different
types of models (= simulation). Those models re-
quire different simulation engines interfaced by the

PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure

528 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076523

Simulator plugins in PySimulator. All the Simulator
plugins are controlled by the same Integrator Control
GUI, see Figure 9. Some menu entries depend on
properties of the Simulator plugin.

Start and stop time for the integration may be edited
and one of the integration algorithms available for
the Simulator plugin can be selected. Depending on
the property of the algorithm the user can edit the
error tolerance or the fixed step size. The simulation
results are mainly discretized, time depending trajec-
tories. The discretization points (= grid points, dense
output points) of the time can be given either by the
number of equidistant grid points or by the width of
an equidistant time grid. A third option is to use the
steps of the integration algorithm for the grid points.
The name of the result file can also be specified. If
Plot online is selected in the GUI, the plots of the
simulation results are updated during the integration
process. This may increase the elapsed real time for
the integration, but gives information about the re-
sults at once. This feature is especially intended for
model simulations that take some time.

The simulation is run in a separate thread, so Varia-
ble Browser and Plot area are still available for user
interactions. During the numerical integration several
statistical parameters inform about the progress: cur-
rent simulation time, number of time and state
events, number of computed result points, the size of
the result file and the elapsed real time so far. In
some cases it is very helpful to see that for example
lots of events are generated and therefore the integra-
tion is getting stuck, or the result settings lead to a
huge result file and therefore the simulation is slow-
ing down.

3.1 FMU Simulator

The FMU simulator provides an interface to models
exported as a Functional Mockup Unit for Model
Exchange (FMU, see [MC10]). This interface is sup-
ported by more than 30 simulation environments
(www.functional-mockup-interface.org/tools.html).
An FMU is basically composed of two components:
Firstly, a description file in XML-format holds all
information about the variables of the model and
other model information. Secondly, binaries for one
or several target machines are contained, such as
Windows dynamic link libraries (.dll) or Linux
shared object libraries (.so). They contain the code
for evaluating the model’s equations.

This way, the FMU interface allows the evaluation
of the right hand side 𝑓 of the governing equations of
a model, as well as its outputs 𝑦 and its event indica-
tor signals 𝑧. They depend in generally on the mod-
el’s states 𝑥, its parameters 𝑝, inputs 𝑢 and the time
𝑡. Additionally, time events can be triggered by the
FMU. The event indicator signals are used to detect
state events, which may occur in many physical
models. With this information, it is possible for a
numerical integration solver to perform the time in-
tegration of the model to obtain a solution, see Fig-
ure 10.

The single steps performed by PySimulator are the
following. First, the XML description file of the se-
lected model is parsed. The information from this
file is visualized in the Variable Browser of the main
GUI. The Variable Browser can thus also be used
independently as an FMU description viewer.

Next, the Functional Mockup Interface (FMI) func-
tions in the shared library are interfaced to make
them available in PySimulator. This way, it is possi-
ble for the integrator to call the model functions.
While these parts are sufficient for some basic opera-
tions like initialization, the time integration itself
utilizes the Sundials Solver Suite [HBG05]. Sundials
provides solvers for explicit and implicit dynamical
systems: CVODE and IDA. CVODE numerically
integrates ordinary differential equations by linear
multistep methods. Depending on the solution
CVODE switches between solvers for stiff and non-
stiff problems. IDA uses BDF (Backwards Differen-
tiation Formulas) to solve systems of differential-
algebraic equations. Sundials supports root finding
during the numerical integration. In summary, the
Sundials solvers are prepared to be applied to FMUs.
The Sundials integrator suite is implemented in C
and is accessed from PySimulator via the python-
sundials [T12] interface.

Figure 10: Interface from the FMU model to the SUNDI-
ALS solver.

𝒙̇ = 𝒇(𝒙,𝒑,𝒖, 𝑡)
𝒚 = 𝒈(𝒙,𝒑,𝒖, 𝑡)
𝒛 = 𝒉(𝒙,𝒑,𝒖, 𝑡)

FMU

t, u 𝒙̇,𝒚, 𝒛 x

SUNDIALS Solver

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 529
10.3384/ecp12076523 September 3-5, 2012, Munich, Germany

The FMU Simulator can be interfaced both by code
from e.g. an Analysis plugin as well as by the GUI
elements described in Section 3. In both cases the
important simulation parameters can be adjusted by
the user to the specific problem. After simulation, the
results are stored in the MTSF file format, the pro-
posed standard time series file format [PBO12] that
is based on HDF5 [THG12]. This format offers a way
to read and write variable information and numeric
data in a convenient and standardized way. The for-
mat is especially designed to support both small and
very large files. In [PBO12] MTSF files up to 200
GBytes have been generated and variables have been
read from the file. Most simulation programs do not
support generating and plotting result files of such a
size.

For example, a result file for the full robot model
from the Modelica Standard Library (FMU generated
by Dymola) is generated with 30 Mio. result points.
The result file has a size of 171 GΒytes. When plot-
ting signals from this file, the loaded signal is
downsampled to 5 Mio. points to get acceptable plot-
ting performance.

3.2 Dymola Simulator

The second Simulator plugin is based on the simula-
tion executable (dymosim[.exe]) generated by the
commercial Modelica environment Dymola [DS12]
from Dassault Systèmes. PySimulator supports se-
lecting a Modelica model by asking for the package
file and the model name. Then, the Modelica model
is automatically compiled by Dymola in the back-
ground if there is a version of Dymola installed. The
executable includes object code for both the model
equations and the numerical integration algorithms.

Figure 11: Variable tree in PySimulator based on Dymola’s
simulation executable.

The list of all variables and the values for editable
parameters and initial values are generated when

loading the model, see Figure 11 for an example. If
the user wants to start the numerical integration the
function model.simulate of the Dymola Simulator
plugin generates a new initialization file from the
integration settings in the Integrator Control GUI and
the changed parameters and initial values. After the-
se preparations the simulation executable is started.
During the numerical integration process the current
simulation time is read and displayed in the Integra-
tor Control GUI to be up to date about the simulation
progress.

The result file in Matlab’s 4 binary MAT-format can
be read by PySimulator. The corresponding result
object in PySimulator enables to get access to the
numeric data, the description string and the unit by a
Modelica variable name. A conversion of Dymola’s
result file (MAT) to the proposed Standard Time
Series File Format (MTSF) is supported by a sepa-
rate menu entry shown in Figure 2.

3.3 OpenModelica Simulator

A third Simulator plugin for PySimulator is shipped
with the open source OpenModelica environment.
Details about this plugin are given in [GFR+12].

4 Analysis Plugins

The result of a simulation mainly consists of time
series data that can be plotted. Signal processing
plugins can access the plot data, can extract more
information and can visualize it. Several simple
functionalities are already provided to compute min-
imum, maximum, and other signal properties in a
selectable time window. Furthermore, an involved
functionality is available to perform Fast Fourier
Transformations.

The nonlinear model of a Simulator plugin can be
linearized around the initialization point or another
time point of the simulation (provided the Simulator
plugin supports the required interface for linear
models). Afterwards, linear system analysis plugins
can operate on such a linear system. Already availa-
ble plugins compute and plot eigenvalues, provide
eigenmode analysis, and perform frequency and step
responses.

4.1 Signal Processing Plugin

The Signal Processing plugin provides operations on
result signals displayed in a plot window. When right
clicking on a plot window, together with an optional

PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure

530 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076523

selection of a time range, a window (see Figure 7)
pops up to select the desired signal processing opera-
tion on the selected time range.

Figure 12: Example for marking of a minimum.

An example of how the result of an operation is
shown in a plot is given in Figure 12, where the min-
imum of a signal is determined in the range 𝑡 ∈
[1.0, 2.7].

The operations to be carried out have the following
mathematical definition:

Name Operation on 𝒚(𝒕)
with

tmin ≤ t ≤ tmax, T = tmax − tmin
Minimum 𝑦𝑚𝑖𝑛 = min𝑦(𝑡)

Maximum y𝑚𝑎𝑥 = max𝑦(𝑡)

Arithmetic
Mean

𝑦𝐷𝐶 =
1
𝑇
∙ � 𝑦(𝑡)

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

∙ 𝑑𝑡

Rectified
Mean

𝑦𝑅𝑀 =
1
𝑇
∙ � |𝑦(𝑡)|

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

∙ 𝑑𝑡

Root
Mean
Square

𝑦𝑅𝑀𝑆 = �
1
𝑇
∙ � 𝑦(𝑡)2

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

∙ 𝑑𝑡

FFT

 𝑓𝑠 =
𝑛 − 1
𝑇

,

 𝑓 = �0,
𝑓𝑠
𝑛

,
2𝑓𝑠
𝑛

,⋯ ,
𝑓𝑠
2�

,

∆𝑦𝑟 = 𝑦(𝑡𝑟) − 𝑦𝐷𝐶 ,

𝑦𝐹𝐹𝑇,𝑘(𝑓𝑘) = 1
𝑛𝑓

� ∆𝑦𝑟

𝑛𝑓−1

𝑟=0

𝑒
−𝑖2𝜋𝑘 𝑟𝑛𝑓

The integrals in the operations are computed by us-
ing the trapezoidal integration rule on the selected
signal y (basically, the result points of y are linearly
interpolated and then exactly integrated).

The Fast Fourier Transform (FFT, [RKH10]) is used
to analyze which frequencies with which amplitudes

are contained in a periodic result signal. For this, a
complex vector yFFT is computed as function of a real
frequency vector f. Since an FFT requires equidistant
time points, the (potentially) non-equidistant result
points of a signal, y = y(t), are linearly interpolated
and mapped to an equidistant grid of the desired
number of points n. The frequency vector f consists
of nf = div(n,2) + 1 points. For even n, the last point
of vector f is fs/2, otherwise it is fs/2∙(n-1)/n (with fs =
(n-1)/T and T as the selected time range). The variant
of FFT is used, that subtracts the arithmetic mean of
y from the signal y itself and normalizes the FFT re-
sult with nf (in order that amplitudes of yFFT corre-
spond to the amplitudes in the underlying result sig-
nal).

The core FFT calculation is performed with Python
function numpy.fft.rfft which in turn is an inter-
face to the Fortran package fftpack [Swa82]. This
package computes the FFT of an equidistant vector y
of any length n in O(n2) and if n is expressed as a
multiple of 2, 3, 4, or 5, that is 𝑛 = 2𝑖3𝑗4𝑘5𝑙 in
O(n∙log(n)) operations. Note, the non-prime factor 4
gives a speed-up with respect to purely 2 factors
[Tem83].

A natural question is what number n to select. There
are two requirements: (1) all frequencies up to a de-
sired frequency should be included, and (2) the dis-
tance between two frequency points should be small
enough. With (1) the number of points n can be
computed as (T is the time range on which the FFT is
applied):

𝑓𝑚𝑎𝑥 =
𝑓𝑠
2

=
𝑛 − 1

2𝑇
 → 𝑛 ≈ 2𝑇𝑓𝑚𝑎𝑥.

The distance d between two frequency points of vec-
tor f for an even number of n is computed as (for an
odd n the result is the same, but with a slightly dif-
ferent derivation):

𝑑 =
𝑓𝑚𝑎𝑥

𝑛𝑓 − 1
=

𝑓𝑠 2⁄
𝑛𝑓 − 1

=
𝑛 − 1

2𝑇
𝑛
2 + 1 − 1

=
1
𝑇
𝑛 − 1
𝑛

≈
1
𝑇

.

This means that the frequency resolution depends
only on the examined time interval T and can there-
fore only be enlarged by enlarging this interval (and
it is not related to the number of points used in the
FFT calculation). For example, if the base frequency
is f0 and the examined time interval T is over k peri-
ods of this base frequency, then the distance d is:

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 531
10.3384/ecp12076523 September 3-5, 2012, Munich, Germany

𝑑 =
1

𝑘 𝑓0⁄ =
𝑓0
𝑘

.

In other words, in order to get at least a resolution of
10 % of the base frequency, the examined time inter-
val should have at least a range of 10 base periods.

As a simple example consider the following addition
of two sines with different amplitudes (𝐴1 = 1,𝐴2 =
0.2) and frequencies (𝑓1 = 5,𝑓2 = 20):

𝑦(𝑡) = 𝐴1 sin(2𝜋𝑓1𝑡) + 𝐴2 sin(2𝜋𝑓2𝑡).

If 10 periods of 𝑓1 are analyzed, the FFT-plot up to
2𝑓2 (𝑛 ≈ 2 ∙ 10

5
∙ 40 + 1 → 𝑛 = 160) results in Fig-

ure 13.

Figure 13: FFT of example with n = 160.

As can be seen the 5 and 20 Hz frequencies are cor-
rectly identified with small errors in the amplitudes.
(the width of the plot bars are selected as 2 5 ∙ 𝑑⁄).
Extending the frequency range to 10𝑓2 does not
change the resolution (𝑑 = 5 10⁄ = 0.5 𝐻𝑧), but re-
duces the amplitude errors as seen in Figure 14.

Figure 14: FFT of example with n = 800.

4.2 Linear System Analysis Plugin

For many control applications it is necessary to have
a linear approximation of a nonlinear system. In ad-
dition a linear representation of a nonlinear system

can be helpful to analyze specific properties of the
system, for example local stability.

The Linear System Analysis plugin allows to auto-
matically linearize a model that is loaded into Py-
Simulator. If the plugin is loaded, its functionality
can be accessed by right-clicking a loaded model in
the GUI of PySimulator. If a loaded model is linear-
ized using the GUI the parameter set 𝑝 ∈ ℝ𝑛𝑝, as
defined in the Variable Browser is used for the line-
arization around the operating point. If it is called
from a Python-script, a set (Python dictionary) of
parameters and values can be used. A model (nonlin-
ear dynamic system) can be represented as a set of
equations:

𝑥̇ = 𝑓(𝑥,𝑝,𝑢, 𝑡), 𝑥(𝑡0) = 𝑥0,
𝑦 = 𝑔(𝑥, 𝑝,𝑢, 𝑡).

For the plugin it is necessary that a set of inputs
𝑢 ∈ ℝ𝑛𝑢 and outputs 𝑦 ∈ ℝ𝑛𝑦 are defined in the
model, where 𝑛𝑢 ∈ ℕ is the number of inputs and
𝑛𝑦 ∈ ℕ is the number of outputs of the system.

The linearization procedure uses a numerical central
difference quotient for the calculation of the Jacobi-
ans. For a function 𝑞(𝑣) depending on a scalar 𝑣 we
use the approximation:

𝑞𝑣(𝑣) ≈
𝑞(𝑣 + 𝛿) − 𝑞(𝑣 − 𝛿)

2𝛿

with a step size 𝛿 = √𝜀3 max(|𝑣|, 1) and the ma-
chine precision 𝜀. The step size is computed to find a
compromise between a minimum discretization error
and a minimum numerical error.

The central difference quotient is successively ap-
plied to every component of 𝑥 and 𝑢 at a steady state
point 𝑤𝑠𝑠 ≔ (𝑥𝑠𝑠,𝑝,𝑢𝑠𝑠, 𝑡0). The linear approxima-
tion of the nonlinear system is a linear time invariant
(LTI) system that is represented by the matrices
𝐴 ∈ ℝ𝑛𝑥×𝑛𝑥, 𝐵 ∈ ℝ𝑛𝑥×𝑛𝑢, 𝐶 ∈ ℝ𝑛𝑦×𝑛𝑥 and 𝐷 ∈
ℝ𝑛𝑦×𝑛𝑢:

𝐴 = 𝑓𝑥(𝑤𝑠𝑠), 𝐵 = 𝑓𝑢(𝑤𝑠𝑠),
𝐶 = 𝑔𝑥(𝑤𝑠𝑠), 𝐷 = 𝑔𝑢(𝑤𝑠𝑠).

The default case is 𝑥𝑠𝑠 ∶= 𝑥0 ∈ ℝ𝑛𝑥 and 𝑢𝑠𝑠 = 0. If
no user defined steady state point is given, 𝑥𝑠𝑠 is cal-
culated by calling the simulator’s initialization func-
tion. It is also possible to linearize around an arbi-
trary user-defined steady state 𝑥𝑠𝑠.

PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure

532 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076523

The linear system is generated as an instance of a
Python class inside the Linear System Analysis
plugin, and can be accessed by other plugins inside
PySimulator for further analysis. The class provides
functions to return the matrices A, B, C, D, names
and sizes of the input, output and state vectors. In
addition it allows writing the matrices along with the
state, input and output names to a file in Matlab’s
MAT-format, see Figure 15, so that they can be di-
rectly used for controller synthesis inside Matlab
[M12].

Figure 16: Frequency responses of a 2x2 system.

Furthermore, the plugin provides various analysis
operations on the linear input/output system. Most
important, the frequency responses from the inputs to

the outputs are computed and plotted. An example of
the frequency responses of a system with 2 inputs
and 2 outputs is shown in Figure 16.

4.3 Eigenvalue Analysis Plugin

For the analysis of many systems, the eigenvalues
and eigenmodes are of special interest. They support
the understanding of the system by providing damp-
ing and frequency information when eigenmodes or
states are excited.

The Eigenvalue Analysis plugin needs the function-
ality to linearize a system as a starting point for fur-
ther analysis. For this, the Linear System Analysis
plugin from Section 4.2 is utilized. Βased on this,
functions for the visualization of both eigenvalues
and eigenmodes can be called, see Figure 17.

Figure 17: Menu of the Eigenvalue Analysis plugin.

The eigenvalues are plotted in the complex domain
as can be seen in Figure 18. This provides infor-
mation about the stability in the point of linearization
as well as about the dynamics of the corresponding
eigenmodes. When clicking with the left mouse but-
ton on an eigenvalue, additional information to this

Figure 15: Linear System Analysis plugin inside PySimulator.

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 533
10.3384/ecp12076523 September 3-5, 2012, Munich, Germany

eigenvalue is displayed such as frequency, damping
and controllability.

Figure 18: Plot of eigenvalues and frequency response
with additional information.

The eigenmodes themselves can be visualized if the
model has been exported with an own visualization
routine. This is e.g. the case, if a Modelica model is
exported with the DLR Visualization library [Bel09].
The eigenmodes are a linear combination of the
model’s states. Therefore, they can be visualized if
the states have some form of visualization. The se-
lected eigenmodes, see Figure 19, are excited by a
periodic sine, making it possible to see their impact
on the system, not only in a figure, but in a dynamic
way.

Figure 19: GUI and animation of the 8th eigenmode, show-
ing a clear coupling of the flexible states.

The shown example is a mechanical model of a mul-
ti-robot cell of the DLR Center of Lightweight Pro-
duction Technology. The visualized Eigenmode 8
shows a clear coupling of the left and middle beam
due to the portal shown in the upper left part of the

figure. The GUI in Figure 20 shows some dynamic
properties which can also be seen in the eigenvalue
plot in Figure 18. As an additional possibility, the
user can furthermore visualize the states of the sys-
tem.

Figure 20: GUI to control the visualization of eigenmodes
and states.

The combination of the two abilities Plot Eigenval-
ues and Animate Eigenvectors/States enables the en-
gineer to understand and visualize the dynamics of
the system. This might help to adapt parameters of
the system to e.g. stabilize it or reduce the impact of
a periodic disturbance.

5 Algorithms

The algorithms used in the plugins are mostly based
on the standard Python packages numpy and scipy.
However, several new algorithms had to be imple-
mented that seemed to be not yet available in other
Python packages. These algorithms are provided un-
der directory Plugins/Algorithms. All functions in
this directory can be used also in any other context,
since there is no relationship to PySimulator (just
that plugins from PySimulator are calling these func-
tions). Especially, in this directory functions are pro-
vided for the Signal Processing and the Linear Sys-
tem Analysis plugins.

For example, class LTI in file Algorithms/Control/
lti.py provides various functions for multi-input-
multi-output Linear Time Invariant systems. In the
current version, two representations of continuous
linear systems are supported:

PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure

534 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076523

• LTI – State Space (derived by linearization
from the nonlinear model, see Section 4.2):

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡).

• LTI – Zeros and Poles:

𝑦(𝑠) = �
𝑔11 … 𝑔1𝑚
⋮ ⋱ ⋮
𝑔𝑛1 … 𝑔𝑛𝑚

� ∙ 𝑢(𝑠),

𝑔𝑖𝑗(𝑠) = 𝑘𝑖𝑗 ∙
∏ �𝑠 − 𝑧𝑖𝑗,𝑙�𝑙

∏ �𝑠 − 𝑝𝑖𝑗,𝑙�𝑙

 = 𝑘𝑖𝑗 ∙
∏ �𝑠 + 𝑛1,𝑖𝑗,𝑙�𝑙

∏ �𝑠 + 𝑑1,𝑖𝑗,𝑙�𝑙

 ∙
∏ �𝑠2 + 𝑛2,𝑖𝑗,𝑙𝑠 + 𝑛3,𝑖𝑗,𝑙�𝑙

∏ �𝑠2 + 𝑑2,𝑖𝑗,𝑙𝑠 + 𝑑3,𝑖𝑗,𝑙�𝑙

An LTI object is initialized by either defining a state
space representation with a tuple of matrices (A, B,
C, D), or by defining a zeros and poles representa-
tion by a matrix of tuples (k, z, p). Such a tuple is
defined with a gain 𝑘 ∈ ℝ, and z and p vectors of
real or conjugate complex zeros and poles. Internally
in the class, a second representation is computed and
stored consisting of first and second order transfer
functions described by coefficients 𝑛𝑞,𝑖𝑗,𝑙 , 𝑑𝑞,𝑖𝑗,𝑙 ∈
ℝ with 𝑞 = 1, 2, 3. Depending on the selected opera-
tion, one of the two representation forms is used to
perform the calculation. For example, evaluating a
zeros and poles object on a given s-value is per-
formed with the second representation form, since
then a real-valued s will result in a real-valued result.
Otherwise, due to numerical errors, the result might
be complex-valued.

Besides pure data, also meta-information can be as-
sociated to an LTI object, consisting of signal names,
units and description texts. When generating an LTI
object from the Linear System Analysis plugin, this
meta information is automatically generated from the
corresponding information stored in the underlying
model. When plotting or printing an LTI object, the
meta-information is utilized to improve the represen-
tation for the user.

Currently, only a few operations on LTI objects are
provided. Most importantly, a frequency response
object can be computed. If the LTI object is in a state
space representation, it is internally first transformed
to a zeros and poles object and this object is then
evaluated on the desired 𝑠 = 𝑗𝜔 values. By default,

these values are selected on a logarithmic scale and
the smallest and largest frequency values are de-
duced from the poles and zeros. The transformation
to zeros and poles form is performed in a numerical-
ly reliable way by computing the eigenvalues of A
and the generalized eigenvalues of (A, B, C, D) for
selected columns of B and selected rows of C and D.

6 Conclusions

PySimulator is provided as an open source environ-
ment to conveniently perform simulations with dif-
ferent simulation engines and to analyze the results
with a wide range of Analysis plugins. The environ-
ment has been designed to cope with large problems.
For example, result files with sizes larger than 100
GByte can be handled, as well as several million
points in one plot window. We hope that many other
people will contribute with Simulator and Analysis
plugins. We plan to include plugins from other de-
velopers in future PySimulator distributions, provid-
ed the plugin adds useful functionality, and the most
restrictive license used in the plugin is LGPL. The
copyright remains with the developers.

7 Acknowledgement

Important inputs for the design of the Simulator
plugin interfaces have been given by Anand Kalaiar-
asi Ganeson and Peter Fritzson (PELAB) during the
fruitful cooperation to integrate the OpenModelica
Simulator plugin into PySimulator.

References

[AAF+12] Andersson C., Andreasson, J., Führer C. and
Åkesson J.: A Workbench for Multibody
Systems ODE and DAE Solvers. In Proc. of
2nd Joint International Conference on
Multibody System Dynamics, Stuttgart,
Germany, 2012.

[Bel09] Bellmann T.: Interactive Simulations and
advanced Visualization with Modelica. Pro-
ceedings of 7th International Modelica Con-
ference, Como, Italy, Sep. 20-22, 2009.

[DS12] Dassault Systèmes AB: Dymola,
www.dymola.com.

[E12] Enthough, Inc.: Chaco.
code.enthought.com/chaco.

[GFR+12] Ganeson A. K., Fritzson P., Rogovchenko
O., Asghar A., Sjölund M. and Pfeiffer A.:
An OpenModelica Python Interface and its

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 535
10.3384/ecp12076523 September 3-5, 2012, Munich, Germany

use in PySimulator. Accepted for publica-
tion in the Proceedings of 9th International
Modelica Conference, Munich, Germany,
Sept. 2012.

[HBG05] Hindmarsh A. C., Brown P. N., Grant K. E.,
Lee S. L., Serban R., Shumaker D. E. and
Woodward C. S.: SUNDIALS: Suite of Non-
linear and Differential/Algebraic Equation
Solvers. ACM Transactions on Mathemati-
cal Software, 31(3), pp. 363-396, 2005.

[LBN+12] Lawrence Berkeley National Laboratory:
BuildingsPy. simulationrese-
arch.lbl.gov/modelica.

[M12] MathWorks: Matlab.
www.mathworks.com/products/matlab.

[MC10] MODELISAR consortium: Functional
Mock-up Interface for Model Exchange,
Version 1.0, 2010. www.functional-
mockup-interface.org.

[NC12] Nokia Corporation: Qt. www.qt.nokia.com.
[P12] PySide. www.pyside.org.
[PBO12] Pfeiffer A., Bausch-Gall I. and Otter M.:

Proposal for a Standard Time Series File
Format in HDF5. Accepted for publication
in the Proceedings of 9th International
Modelica Conference, Munich, Germany,
Sept. 2012.

[RKH10] Rao K. R., Kim D. N. and Hwang J.-J.: Fast
Fourier Transform: Algorithms And Appli-
cations. Springer, Dordrecht, Heidelberg,
London, 2010.

[Swa82] Swarztrauber P.N.: Vectorizing the FFTs.
In: Parallel Computations, Ed. G. Rodrigue,
Academic Press, 1982, pp. 51-83.
www.netlib.org/fftpack

[T12] Tenfjord R.: Python-sundials.
www.code.google.com/p/python-sundials.

[Tem83] Temperton C.: Self-Sorting Mixed-Radix
Fast Fourier Transforms. Journal of Com-
putational Physics, 52, pp. 1-23, 1983.
www.sciencedirect.com/science/article/pii/0
02199918390013X.

[THG12] The HDF Group. www.hdfgroup.org.

PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure

536 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076523

An OpenModelica Python Interface and its use in PySimulator

An OpenModelica Python Interface and its use in PySimulator

Anand Kalaiarasi Ganeson
1
, Peter Fritzson

1
, Olena Rogovchenko

1
, Adeel Asghar

1
, Martin Sjölund

1

Andreas Pfeiffer
2

1
PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, SE-581 83 Linköping, Sweden
2
Institute of System Dynamics and Control, German Aerospace Center DLR, Oberpfaffenhofen

1
ganan642@student.liu.se, {peter.fritzson, olena.rogovchenko, adeel.asghar, martin.sjolund}@liu.se

2
Andreas.Pfeiffer@dlr.de

Abstract

How can Python users be empowered with the robust

simulation, compilation and scripting abilities of a non-

proprietary object-oriented, equation based modeling

language such as Modelica? The immediate objective

of this work is to develop an application programming

interface for the OpenModelica modeling and simula-

tion environment that would bridge the gap between the

two agile programming languages Python and Modeli-

ca.

The Python interface to OpenModelica – OMPy-

thon, is both a tool and a functional library that allows

Python users to realize the full capabilities of

OpenModelica's scripting and simulation environment

requiring minimal setup actions. OMPython is designed

to combine both the simulation and model building

processes. Thus domain experts (people writing the

models) and computational engineers (people writing

the solver code) can work on one unified tool that is

industrially viable for optimization of Modelica mod-

els, while offering a flexible platform for algorithm

development and research.

Keywords: Python, OpenModelica, OMPython, Python,

simulation, modeling, Modelica, Python simulator.

1 Introduction

Necessity is the mother of all inventions. Often in sci-

ence and engineering, the insufficiency of available

tools for researchers and developers creates difficulties

in exploring and investigating a certain subject. This

creates incentives to develop new infrastructures and

tools to fill the void. The goal behind the creation of the

Python interface to OpenModelica is to create a free,

open source, highly portable, Python based interactive

session handler for Modelica scripting and modeling,

thus catering to the needs of the Python user communi-

ty.

OMPython – the Python interface to OpenModelica

is developed in Python using tool communication based

on OmniORB and OmniORBpy - high performance

CORBA ORBs for Python. It provides seamless sup-

port to the Modelica Standard Library and the Modelica

Language Specification [3] supported by OpenModeli-

ca [2].

OMPython provides user-friendly features such as:

 Interactive session handling, parsing, interpretation

of commands and Modelica expressions for evalua-

tion, simulation, plotting, etc.

 Creating models, using pre-defined models, making

component interfaces and annotations.

 Interface to all OpenModelica API calls.

 Optimized result parser that gives access to every

element of the OpenModelica Compiler's (OMC)

output.

 Helper functions to allow manipulation of nested

dictionary data types.

 Easy access to the Modelica Standard library and

calling of OpenModelica commands.

 Provides an extensible, deployable and distributable

unit for developers.

Since OMPython is designed to function like a library,

it can be used from within any Python application that

requires the OpenModelica services. OMPython uses

the CORBA implementation of OmniORB and Om-

niORBpy to communicate with the OpenModelica

compiler.

2 Using OMPython

This section describes how to use OMPython and also

demonstrates its use in creating a simple Modelica

model callable from the Python interpreter. It also pre-

sents the two modes of operation specifically designed

for testing OpenModelica commands and using the

OMPython API as a Python library [1].

DOI Proceedings of the 9th International Modelica Conference 537
10.3384/ecp12076537 September 3-5, 2012, Munich, Germany

2.1 Installing OMPython

The two requirements for the operation of the API are

installations of OpenModelica 1.8.1 and Python 2.6.

Since OMPython is supplied together with the

OpenModelica installer, the standard source distribu-

tion of the API can be used to install it to the third party

libraries of the installed Python version. Building and

installing the module, for example in the Windows sys-

tems, is as simple as running one line of command

from the terminal.

python setup.py install

Now OMPython can be imported into any Python ap-

plication.

2.2 Executing OMPython

The API can be used in two modes, Test and Library,

each designed for a specific purpose.

2.2.1 Test

Like any new tool, it is important to give its users the

freedom to easily explore its capabilities, try its features

and possibly suggest new improvements.

For this purpose, the API can be executed in the test

mode by executing the run() method of the OMPython

module. This mode allows users to interactively send

OpenModelica commands to OMC via the CORBA

interface. The Python types of the OpenModelica out-

put are returned to the user. To illustrate this, in Figure

1 a few operations are presented from the Python ter-

minal.

Figure 1. OMPython executing OpenModelica commands

in the Test mode.

Creating new models in the text based Python terminal

is rather straightforward using OMPython. Figure 2

illustrates this and shows how a model can be saved

with a simple command.

Figure 2. Creating and saving a simple HelloWorld model

file using OMPython.

2.2.2 Library

Once modelers are familiar with the interface they

know what type of responses can be expected and can

use the module as a library to programmatically design,

simulate, plot, and do more with the models.

This can be done by executing the execute()

method of the OMPython module. The execute method

forms the essence of the OMPython API. It encapsu-

lates the OMC operations, CORBA functionalities,

parses the results to native Python data types and ex-

poses the API as a simple string processing method.

Each instance of the execute method returns a result

that the modeler can make use of. Additionally, com-

plicated data structures such as deeply nested dictionar-

ies are constructed, strictly typed, and are made availa-

ble to the user using this method.

The Code Listing 1 shown below provides a simple

Python script that uses OMPython as a library to per-

form a few tasks like loading Modelica libraries to

simulating pre-defined Modelica models. Figure 3 de-

picts the output of the program generated by OMPy-

thon on a standard Python terminal.

Code Listing 1

import OMPython

OMPython.execute("loadFile(\"c:/OpenModeli

ca1.8.1/testmodels/BouncingBall.mo\")")

result=OMPython.execute("simulate(Bouncing

Ball, stopTime=2, method=\'Euler\')")

print result

OMPython.execute("quit()")

An OpenModelica Python Interface and its use in PySimulator

538 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076537

Figure 3. OMPython executing the Python script shown

above.

3 Deploying OMPython in

PySimulator

PySimulator is a Python-based Simulation and Analysis

tool that is developed by the German Aerospace Center

(DLR) in Germany. The tool uses plugins for simula-

tors based on Dymola [10], FMUs [11], and OpenMod-

elica [2]. It also provides analysis tools for some appli-

cations particularly in physics and engineering.

This section shows the integration of the new

OpenModelica simulator plugin for PySimulator using

OMPython.

3.1 The OpenModelica Plugin

The plugin for the OpenModelica simulator integrates

easily and well into the PySimulator package by using

the OMPython library. PySimulator's template for the

plugins provides convenient methods to implement

simulation routines, parameter settings, retrieve and use

simulation variables and more. Figure 4 shows a part of

the development package of PySimulator that includes

the OpenModelica plugin.

Figure 4. OpenModelica plugin using OMPython within

PySimulator.

The OpenModelica plugin defines and uses some fea-

tures of PySimulator for performing simulations, read-

ing result files, and displaying variables etc. The

plugins use PySimulator's plugin templates; this allows

other simulation packages to be integrated easily.

The deployment of the OpenModelica plugin within

the PySimulator project allows the project to benefit

from the full scripting capabilities of the latest

OpenModelica API.

3.2 Loading a Modelica Model

The integration of the OMPython module within the

OpenModelica plugin for PySimulator makes it possi-

ble for the modeler to quickly load Modelica files such

as models (.mo) or load a simulated model's executable

file.

The user can open these files from the menu bar by

selecting File > Open Model > OpenModelica.

In this introductory example we will use a pre-

defined model named Influenza to demonstrate the

use of OMPython in PySimulator. Figure 5 depicts the

graphical user interface of PySimulator when opening a

model file. Once the model file is selected, the model is

loaded into the variables browser and is ready to be

configured for simulations.

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 539
10.3384/ecp12076537 September 3-5, 2012, Munich, Germany

Figure 5. Loading Modelica models or model executables

in PySimulator

3.3 Using the OpenModelica plugin

The loaded Modelica model can be simulated from Py-

Simulator using the default simulation options or by

setting the simulation options before simulating from

the Integrator Control dialog box. The OpenModelica

plugin defines the simulation routine for the Modelica

models by using the execute method of the OMPython

API.

Figure 6 shows how the simulation options can be

set using PySimulator's Integrator control feature.

Figure 6. Preparing the simulation settings using the

Integrator Control.

3.4 Simulating the model

The initial simulation parameters and settings are pro-

vided as inputs to the OMC via the front-end of Py-

Simulator. The Run button of the Integrator control

triggers the simulate command of the OMC with the

supplied simulation options. The simulate command

has the following parameters,

 Simulation Interval

o Start Time

o Stop Time

 Algorithm

 Error Tolerance

 Step size

The user has the option to choose from a range of Nu-

merical integration algorithms from the Algorithm se-

lection box. The Integrator control dialog box also fil-

ters some parameters that are not available for some

integration solvers by disabling the field; avoiding error

and providing more accuracy in the results.

The Variables browser builds a tree structure of the

instance variables and highlights time-continuous vari-

ables in blue. The user can select these variables and

plot them in the Plot window by checking the check

box near the highlighted variables.

Figure 7 illustrates the Variables browser that al-

lows users to access the variables after the Influenza

model has been simulated with some simulation pa-

rameters set.

Figure 7. Variables browser of the simulated model.

3.5 Plotting variables from the simulated models

The Plot window of the PySimulator GUI provides ad-

ditional user interface controls for comparing different

An OpenModelica Python Interface and its use in PySimulator

540 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076537

plots side-by-side, adding and removing plots and also

to save the plots.

Figure 8 shows the plotted variables in the plot win-

dow and the list of simulation variables in the Variables

browser along with the variables selected for plotting.

Figure 8. Plotted variables using PySimulator.

3.6 Using Simulated results

It is desirable to avoid simulating the model again eve-

ry time the user needs the simulation results. It is in-

stead preferable to use an existing simulation result file

for the calculations, this saves resources and time. Py-

Simulator supports opening the OpenModelica simula-

tion result files (.mat) and the model's executable file to

build the variable tree in the variables browser. The

user can then adjust some parameters from the variable

tree or the Integrator control to achieve the desired re-

sults.

4 The OMPython API

The Python interface to OpenModelica addresses its

functional requirements through the implementation of

two interrelated modules, OMPython and OMParser

[1]. This section introduces the two modules and

demonstrates their functionalities with some examples.

The following Figure 9 illustrates the functions of

the OMPython API with its components.

Figure 9. Functions of the OMPython API

4. 1 OMPython module

The OMPython module is the main interfacing

module of the OMPython API which is responsible

for providing the API as a tool and a Python library.

The following are its components:

4.1.1 Interactive Session handler

Each instance of the module creates an interactive

session between the user and the OMC. The session

handler uses the CORBA Interoperable Object Ref-

erence (IOR) file to maintain the user's session activ-

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 541
10.3384/ecp12076537 September 3-5, 2012, Munich, Germany

ities and log files for standard output and errors. The

session is closed down when the user issues the

quit() command to the OMC. This also removes

the temporary IOR file from the user's machine. The

log files facilitate the user with some straight for-

ward debugging and trace-backing purposes.

4.1.2 CORBA Communication

OMPython uses the Client-Server architecture of the

CORBA mechanism to interact with the OMC. OM-

Python implements the client side of the architec-

ture.

4.1.3 Modes of Operation

The module defines two modes of operation, each

designed for specific purposes.

 Test

 Library

The Test mode allows users to test OMPython while

the Library mode gives the user the ability to use the

results of OMPython.

4.1.4 Using the interface definition

The vital link between the client and the server pro-

cesses in this distributed implementation is the Inter-

face Definition Language (IDL) file. OMC defines

the omc_communication.idl file that it uses to

implement the Remote Procedure Calls (RPCs),

OMPython mirrors this IDL file to establish the RPC

from the client machine.

4.1.5 Get/Set helper functions

Due to the nature of the complicated string outputs

generated by the OMC such as Component Annota-

tions, the parser module of the OMPython module

generates nested dictionaries. Deeply nested diction-

aries in Python require cumbersome operations to

retrieve and set values inside dictionaries at various

levels. To simplify the multiple steps necessary to

perform a get or set operation within a dictionary,

OMPython defines the dot-notation get/set methods.

Figure 10 shows how the user can get and set the

values of any nested dictionary data type.

Figure 10. Get/Set helper function

4.1.6 Universal Typecaster

Since the variables in Python are dynamically typed,

the interpretation of the data types needs to be strict-

ly controlled during runtime. For this purpose, the

OMPython module defines a universal typecasting

function that typecasts the data to the correct types

before building the results.

4.1.7 Imports OMParser

Although the OMC outputs the results to the OMPy-

thon module via its CORBA interface, the results are

still in the String-to-String CORBA output format

which cannot be used intelligibly. So the OMPython

module uses its own built-in parser module the OM-

Parser to generate appropriate data structures for the

OMC retrieved results.

4.2 OMParser module

Since the results of the OMC are retrieved in a

String format over CORBA, some data treatment

must be done to ensure that the results are usable

correctly in Python.

The OMParser module is designed to do the fol-

lowing,

 Analyze the result string for categorical data.

 Group each category under a category name

 Typecast the data within these categories

 Build suitable data structure to hold these data so

that the results are easily accessible.

4.2.1 Understanding the Parsed output

Each command in OpenModelica produces a result

that can be categorized according to the statistics of

the pattern of data presented in the text. Grammar

based parsers were found to be tedious to use be-

An OpenModelica Python Interface and its use in PySimulator

542 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076537

cause of the complexity of the patterns of data. This

is also the case because the OpenModelica imple-

mentation has two types of APIs. One is typed,

which could use grammar and the other is untyped,

which cannot.

OMParser follows a few simple rules to parse the

OMC output:

 Result strings that do not contain a pair of curly

braces "{}" are simply typecasted to their respec-

tive types.
For example:

>>getVectorizationLimit()

20

>>getNthInheritedClass(Modelica.Electr

ical.Analog.Basic.Resistor,1)

Modelica.Electrical.Analog.Interfaces.

OnePort

 Result strings that include one or more pairs of

curly braces "{}" are categorized for making dic-

tionary types.

For example:
>>getClassNames()

{'SET1':{'Set1': ['ModelicaServices',

'Modelica']}}

 Data contained within double quotes " " are for-

matted to string types; removing the escape se-

quences in-order to keep the semantics.

For example:
>>getModelicaPath()

"C:/OpenModelica1.8.0/lib/omlibrary"

4.2.2 The Dictionary data type in Python

Dictionaries are useful as they allow to group data

with different data types under one root dictionary

name. Dictionaries in Python are indexed by keys

unlike sequences, which are indexed by a range of

numbers.

It is best to think of dictionaries as an unordered

set of key:value pairs, with the requirement that the

keys are always unique. The common operation on

dictionaries is to store a value associate with a key

and retrieve the value using the key. This provides

us the flexibility of creating keys at runtime and ac-

cessing these values using their keys later. All data

within the dictionary are stored in a named diction-

ary. An empty dictionary is represented by a pair of

braces {}.

In the result returned by the OMC, the compli-

cated result strings are usually the ones found within

the curly braces. In order to make a meaningful cat-

egorization of the data within these brackets and to

avoid the potential complexities linked to creating

dynamic variables, we introduce the following nota-

tions that are used within the dictionaries to catego-

rize the OMC results,

 SET

 Set

 Subset

 Element

 Results

 Values

In this section, to explain these categories, we use

the parsed output of OMPython obtained using the

Test mode.

4.2.3 SET

A SET (note the capital letters) is used to group data

that belong to the first set of balanced curly brackets.

According to the needed semantics of the results, a

SET can contain Sets, Subsets, Elements, Values and

Results.

A SET can also be empty, denoted by {}. The

SETs are named with an increasing index starting

from 1 (one). This feature was planned to eliminate

the need for dynamic variable creation and having

duplicate Keys. The SET belongs within the diction-

ary called "result".

For example:

>>strtok("abcbdef","b")

{'SET1': {'Values': ['"a","c","def"']}}

The command strtok tokenizes the string

"abcbdef" at every occurrence of b and produces a

SET with values "a", "c", "def". Each value of

the SET is then usable in Python.

4.2.4 Set

A set is used to group all data within a SET that is

enclosed within a pair of balanced {}s. A Set can

contain only Values and Elements. A set can also be

empty, it can be depicted as {{}}, the outer brackets

compose the SET, the inner brackets are the Set

within the SET.

4.2.5 Subset

A Subset is a two-level deep set that is found within

a SET. A subset can contain multiple Sets within its

enclosure.

For example:

{SET1 {Subset1{Set1},{Set2},{Set3}}}

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 543
10.3384/ecp12076537 September 3-5, 2012, Munich, Germany

4.2.6 Element

Elements are the data which are grouped within a

pair of Parentheses (). As observed from the OMC

result strings, elements have an element name that

describes the data within them, so elements can be

grouped by their names.

In some cases such as when using the untyped

OpenModelica API calls, element structures do not

have a name, in these cases the data contained with-

in the parenthesis is parsed into outputs generated by

the typed API calls, such as set, values, etc. Also, in

some cases many elements have the same names, so

they are indexed by increasing numbers starting

from 1 (one). Elements have the special property of

having one or more Sets and Subsets within them.

However, they are still enclosed within the SET.

For example:

>>getClassAttributes(test.mymodel)

{'SET1': {'Elements': {'rec1':

{'Properties': {'Results': {'comment':

None, 'restriction': 'MODEL',

'startLine': 1, 'partial': False,

'name': '"mymodel"', 'encapsulated':

False, 'startColumn': 14, 'readonly':

'"writable"', 'endColumn': 69,

'file': '"<interactive>"', 'endLine': 1,

'final': False}}}}}}

In this example,the result contains a SET with an

Element named rec1 which has Properties which

are Results (see section 4.2.7) of the element.

4.2.7 Results

Data that is related by the assignment operator "=",

within the SETs are denoted as Results. These as-

signments cannot be assigned to their actual values

unless they are related by a Name = Value relation-

ship. So, they form the sub-dictionary called Results

within the Element (for example). These values can

then be related and stored using the key:value pair

relationship.

For example:

>>getClassAttributes(test.mymodel)

{'SET1':{'Elements':{'rec1':

{'Properties': {'Results':{'comment':

None, 'restriction': 'MODEL',

'startLine': 1, 'partial': False,

'name': '"mymodel"', 'encapsulated':

False, 'startColumn':14, 'readonly':

'"writable"', 'endColumn': 69, 'file':

'"<interactive>"', 'endLine': 1,

'final': False}}}}}}

4.2.8 Values

Data within any or all of SETs, Sets, Elements and

Subsets that are not assignments and separated by

commas are grouped together into a list called "Val-

ues". The Values list may also contain empty dic-

tionaries, due to Python's representation of a null

string "" as {} - an empty dictionary. Although a

null string is still a null value, sometimes it is possi-

ble to observe data grouped into Values to look like

Sets within the Values list.

For example:

>>getNthConnection(Modelica.Electrical.A

nalog.Examples.ChuaCircuit,2)

{'SET1': {'Set1': ['G.n', 'Nr.p', {}]}}

4.2.9 The Simulation results

The simulate() command produces output that has

no SET or Set data in it. Instead, for the sake of sim-

plicity, the result contains two dictionaries namely,

SimulationResults and SimulationOptions.

For example:

>>simulate(BouncingBall)

{'SimulationOptions': {'options': "''",

'storeInTemp': False, 'cflags': "''",

'simflags': "''", 'variableFilter':

"'.*'", 'noClean': False,

'outputFormat': "'mat'", 'method':

"'dassl'",'measureTime':False,

'stopTime':1.0, 'startTime': 0.0,

'numberOfIntervals': 500, 'tolerance':

1e-

06,'fileNamePrefix':"'BouncingBall'"},'S

imulationResults':{'timeCompile':4.75231

650258347,'timeBackend':0.01602630977192

6,

'messages':None,'timeFrontend':1.4200466

8806536,'timeSimulation':0.1197039958177

84,'timeTemplates':0.0230460728977474,'t

imeSimCode':0.0139967955849597,'timeTota

l':6.3452533928534,'resultFile':'"C:/Use

rs/ganan642/BouncingBall_res.mat"'}}

4.2.10 The Record types

Some commands produce result strings with Record

constructs, these data are categorized for making

dictionaries too. To keep the uniformity and simplic-

ity, the data of Record types are grouped into the

dictionary RecordResults.

For example:

>>checkSettings()

{'RecordResults': {'RTLIBS': '" -static-

libgcc -luuid -lole32 -lws2_32"', 'OMC_F

An OpenModelica Python Interface and its use in PySimulator

544 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076537

OUND': True, 'MODELICAUSERCFLAGS': None,

'C_COMPILER_RESPONDING': False, 'OPENMO

DELICAHOME': '"C:/OpenModelica1.8.1/"',

'CREATE_FILE_WORKS': False, 'SYSTEM_INFO

':None, 'CONFIGURE_CMDLINE': '"Manually

created Makefiles for OMDev',

'RecordName':

'OpenModelica.Scripting.CheckSettingsRes

ult','OMC_PATH':'"C:/OpenModelica1.8.1//

bin/omc.exe"','WORKING_DIRECTORY':'"C:/U

sers/ganan642"', 'REMOVE_FILE_WORKS':

True, 'OS':

'"Windows_NT"','OPENMODELICALIBRARY':'"C

:/OpenModelica1.8.1/lib/omlibrary"','C_C

OMPILER': '"gcc"'}}

5 OMPython Implementation

The implementation of the OMPython API relies on

the Client–Server architecture of CORBA to com-

municate to the OMC [2]. OMPython acts as the

client that requests the services of OMC and OMC

behaves like the server and replies to the Python

module using the OmniORB and OmniORBpy –

Object Request Brokers (ORBs) of CORBA as the

communication platform.

This section briefly describes how the API uses

CORBA and its other features to achieve its re-

quirements.

5.1 The OMC CORBA interface

The OpenModelica Complier – OMC can be in-

voked using two methods:

 Executed at the operating system level, like a

program.

 Invoked as a server from a client application us-

ing a CORBA client-server interface.

OMPython uses the second method to start OMC

since this allows the API to interactively query the

compiler/interpreter for its services.

5.2 OMC Client Server architecture

Figure 11 gives an overview of the OpenModelica

client server architecture. OMPython plays the role

of the client in this architecture. It sends queries and

receives replies from the OMC via the CORBA in-

terface. The messages and expressions from the

CORBA interface are processed in two groups. The

first group consists of the commands which are

evaluated by the Ceval module and the second

group contains the expressions that are handled by

the Interactive module.

Figure 11. Client-Server of OpenModelica with some

interactive tool interfaces

Messages in the CORBA interface are classified into

two groups. The first group consists of the user

commands or expressions; these are evaluated by the

Ceval module. The second group contains the decla-

ration of variables, classes, assignments, etc. The

client-server API calls are processed by the Inter-

active module.

5.3 Using OMC through CORBA

The OMC process can be invoked from CORBA by

executing the OMC executable file using special

parameters passed to it. The default location of the

OMC executable file is in the $OPENMODELICA-

HOME/bin directory. OMPython invokes OMC with

some special flags +d=interactiveCorba

+c=random_string which instructs OMC to start

and enable the interactive CORBA communication

and also use a timestamp to name the CORBA In-

teroperable Object Reference (IOR) file that will be

created. The timestamp is needed to differentiate the

different instances of OMC that have been started by

different client processes simultaneously.

The default location where the IOR file is created

is in the temp directory. Normally, when OMC is

started with the +d=interactiveCorba flag, it will

create a file named openmodelica.objid. On

Windows (for example), if the +c flag was given,

the file name is suffixed with the random string to

avoid name conflicts between the simultaneously

running OMC server processes. This file contains

the CORBA IOR.

5.4 Using the CORBA IOR file

The IOR file contains the CORBA object reference

in string format. The CORBA object is created by

reading the strings written inside the IOR file.

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 545
10.3384/ecp12076537 September 3-5, 2012, Munich, Germany

6 Measurements

In this section, we present some performance meas-

urements for the OMPython API.

The measurements shown are based on the re-

sponse time of the Python interpreter/compiler that

performs the various functions of establishing the

CORBA communication, sending commands to the

OMC, receiving CORBA outputs, parsing the

CORBA outputs and finally displaying the results to

the user.

Figure 12 illustrates a simple script that simulates

a Modelica model and plots a variable using the Plot

generated by OpenModelica. It also shows the re-

ceived response times of each command that was

executed to perform the simulation. Table 1 and Ta-

ble 2 show the time statistics collected from five

unique runs of two simple scripts using the OMPy-

thon API. The time is measured in Seconds. Figure

13 and Figure 14 illustrate the overhead between the

average output and the unparsed output's response

times.

These measurements aim to give an idea about the

overhead of the OMPython API in addition to the

CORBA overhead that is needed for OMC commu-

nication.

Figure 12. Measuring response times of simulations

for the BouncingBall model.

Command Average re-
sponse time

(s)

Average un-
parsed re-

sponse time
(s)

load-

File("c:/Ope

nModeli-

ca1.8.1/mode

ls/BouncingB

all.mo")

0.09223065 0.0421344389

simu-

late(Bouncin

gBall)

2.60921512 1.8922307169

plot(h) 0.03251472 0.0183359414

Table 1. Response time comparisons for loading,

simulating and plotting variables using OMPython.

Figure 13. Measuring response time for Simulations in

OMPython

Command Average re-
sponse time

(s)

Average un-
parsed re-

sponse time (s)

getVersion() 0.0680588293 0.0590995445

loadMod-

el(Modelica)
5.971103887 4.4708573210

getElemen-

tsInfo(Modeli

ca.Electrical

.Analog.Basic

.Resistor)

0.0264064349 0.0190346404

getClass-

Names()
0.3907942649 0.2707218157

getTempDirec-

toryPath()
0.0244359882 0.0193691690

getSettings() 0.0327650196 0.0234227783

Table 2. Measuring response times of some

OpenModelica commands in OMPython

An OpenModelica Python Interface and its use in PySimulator

546 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076537

Figure 14. Measuring response times of some

OpenModelica commands in OMPython

7 Related Work

Some Simulation packages are available for Python

but these packages do not implement an equation-

based solving system. Also, they do not provide a

Modelica based modeling and simulation environ-

ment, but rather present their custom model types.

 PySCeS – The Python Simulator for Cellular

Systems. It uses the model description language

to define its models. Supports solvers like LSO-

DA, sections for non-linear root finding algo-

rithms, Metabolic control analysis, Mat-

plotlib/Gnuplot plotting interfaces, etc. It is re-

leased under a new BSD style license and is open

source software [4].

 SimPy – Simulation in Python, is an object-

oriented, process-based discrete-event simulation

language for Python. It is released under the

GNU Lesser GPL (LGPL) license version 2.1. It

features data collection capabilities, GUI and

plotting packages. It provides the modeler with

the active and passive components of a simula-

tion model and monitor variables for gathering

statistics [5]

 JModelica.org [12], MWORKS [13], and Amesim

[14] are other Modelica tools providing a Python

scripting API.

8 Conclusion

OMPython is a versatile Python library for

OpenModelica that can be used by engineers, scien-

tists, researchers and interested architects to explore

and develop Modelica based modeling and simula-

tion efforts. It is free, open source and is distributed

with the OpenModelica installation which gives the

user the potential to use the full collection of Model-

ica libraries that can assist in performing complex

simulations and analyses.

The OMPython API places minimal require-

ments on the user while offering an industry viable

standard modeling and simulation environment.
We suggest some future work that can be done to

enrich the usage of the OMPython API. The API can

be expanded to provide access to the GUI based fea-

tures of other OpenModelica tools such as OMEdit.

User interfaces can be easily built on top of OMPy-

thon to implement additional graphic features. Fur-

ther interesting efforts can be made if the OpenMod-

elica API can be designed to expose its commands

as interface definitions in the

omc_communication.idl file.

9 Acknowledgments

This work has been supported by Serc, by the Swe-

dish Strategic Research Foundation in the EDOp and

HIPo projects and Vinnova in the RTSIM and

ITEA2 OPENPROD projects. The Open Source

Modelica Consortium supports the OpenModelica

work.

References

[1] Anand Kalaiarasi Ganeson. Design and Im-

plementation of a User Friendly OpenModeli-

ca – Python interface, Master thesis LIU-

IDA/LITH-EX-A12/037SE, Linköping Uni-

versity, Sweden, 2012

[2] Open Source Modelica Consortium.

OpenModelica System Documentation Version

1.8.1, April 2012.

http://www.openmodelica.org

[3] Modelica Association. The Modelica Lan-

guage Specification Version 3.2, March 24th

2010. http://www.modelica.org. Modelica As-

sociation. Modelica Standard Library 3.1.

Aug. 2009. http://www.modelica.org.

[4] PySCeS.http://pysces.sourceforge.net/index.ht

ml

[5] SimPy. http://simpy.sourceforge.net/

[6] Mark Lutz. Programming Python. ISBN

9781449302856, O'Reilly, 2011.

[7] omniORB 4.1.6 and omniORBpy 3.6. The

omni-ORB version 4.1 User's guide, the om-

niORBpy version 3 User's guide.

[8] http://omniorb.sourceforge.net/

[9] Andreas Pfeiffer, M. Hellerer, S. Hartweg,

Martin Otter, and M. Reiner. PySimulator – A

Simulation and Analysis Environment in Py-

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 547
10.3384/ecp12076537 September 3-5, 2012, Munich, Germany

thon with Plugin Infrastructure. Submitted to

the 9th International Modelica Conference,

Munich, Germany, September. 2012.

[10] Dassault Systèmes AB:

la, www.dymola.com.

[11] MODELISAR consortium: Functional Mock-

up Interface for Model Exchange, Version 1.0,

2010. www.functional-mockup-interface.org

[12] JModelica.org. http://JModelica.org. Accessed

May 20, 2012.

[13] MWORKS. http://en.tongyuan.cc/. Accessed

May 20, 2012.

[14] LMS Inc. Amesim tool suite.

http://www.lmsintl.com/imagine-amesim-

suite. Accessed May 20, 2012.

An OpenModelica Python Interface and its use in PySimulator

548 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076537

WebMWorks: A General Web-Based Modeling and Simulation Envi-ronment for Modelica

WebMWorks: A General Web-Based Modeling and Simulation Envi-

ronment for Modelica

Liu Qi Xiong Tifan Liu Qinghua Chen Liping

CAD Center, Huazhong University of Science and Technology, Wuhan, China, 430074

luffy.lq@gmail.com xiongtf@hust.edu.cn liuqh@mail.hust.edu.cn chenlp@hustcad.com

Abstract

To meet the requirement of collaboration in the

system-level modeling of multi-domain physical sys-

tems, a general web-based modeling and simulation

environment, WebMWorks, is designed and imple-

mented. It supports multi-user, multi-task and model

sharing. Based on MWorks platform, the environ-

ment adopts SOA-based architecture and effectively

solves the problems of sharing of simulation re-

sources and reuse of the models. By application of

RIA technologies, an interactive modeling and simu-

lation environment based on the browser is con-

structed. This paper introduces the main characteris-

tics and architecture of WebMWorks, and presents

the operational effect of the system.

Keywords: visual modeling; web-based simulation;

WebMWorks;

1 Introduction

Modelica is a non-proprietary, object-oriented,

equation based language, and it has been widely ap-

plied because it is conveniently to express the model

of complex physical system. Now, Modelica has

become one kind of unified modeling standard for

multi-domain physical systems. The system-level

modeling of multi-domain physical systems using

Modelica is difficult to be accomplished by an indi-

vidual or individual enterprise because of its com-

plexity and multidiscipline. So it is necessary to

study the collaborative modeling using Modelica.

The web-based simulation is the integration of the

web and simulation technology [1]. Compared to

traditional simulation systems, the web-based simu-

lation has many advantages [2], such as, wide usabil-

ity, cross-platform capability, maintainability, up-

gradeability, and the sharing of the models.

With the openness, domain-independent and the

unified expression of models, Modelica supports the

reuse of simulation model based on the model

framework at multiple levels. So we can study the

web-based simulation for Modelica and realize the

sharing of models and collaborative design in the

complex system modeling, which has great practical

significance.

At present, the related research is mainly around

the virtual experiment and programming languages

teaching. In reference [4] a web simulation environ-

ment UN-VirtualLab is presented, on which the vir-

tual experiment can be defined by the administrator

and the users can modify the experiment parameters

to view the results in browser. In reference [5] a web

version of the DrModelica is shown. In reference [6]

a web-based teaching environment called OMWeb is

presented. Student can send their exercises to com-

pile and calculate on the server that contains many

OMC (OpenModelica Compiler) wrappers and

teachers can view the results. In reference [7] a web-

based visual modeling environment was developed

for electrical engineering experiment. Users can

complete the experiment through connecting the cus-

tom experimental components, and the results of the

experiment can be obtained after the simulation.

However, all the studies presented are based on the

specific purpose and lacks some features that are

actually needed in industry and research, such as a

general web-based visual graphical editor. To over-

come these limitations, this paper describes a general

web-based modeling and simulation environment:

WebMWorks, on which users can easily perform

system design, simulation and analysis in the brows-

er. The WebMWorks is based on MWorks [10] and

establishes the foundation to form the unified inte-

grated platform for collaborative design and simula-

tion.

2 MWorks Platform

MWorks is a general modeling and simulation

platform for complex engineering systems, which

provides the compiling and solving engines for

WebMWorks.

DOI Proceedings of the 9th International Modelica Conference 549
10.3384/ecp12076549 September 3-5, 2012, Munich, Germany

The framework of MWorks platform is shown in

Fig.1.

Studio

Translator

Optimizer

MWSolver

Postprocessor

Visual and text
modeling

Symbol reduction
and optimization

Lexical, syntacical
and semantic

analyses

Collention of
algorithms and

solving strategies

Plot or animation

MWCompiler

Modeling Module

Modelica model

Flat equation set

Optimized
solving sequence

Interfaces
&

Tools

Figure 1: The framework and main process of

MWorks

The platform is mainly composed of Modeling

Module, MWCompiler, MWSolver and Postprocessor.

A set of interfaces from MWorks are provided and

can be called by external applications. In the

WebMWorks, the MWCompiler and the MWSolver

are called to perform the compilation, symbolic re-

duction and numeric-computation and results can be

obtained for the simulation of the Modelica models.

3 Scheme selection

As a prototype platform for collaborative design

and simulation based on Modelica, WebMWorks

should have the following features:

1) Support visual modeling based on web

browser.

2) Support visualization of simulation results

based on web browser.

3) Support multi-user and multi-task.

4) Support collaborative modeling based on

model sharing

In order to realize feature 3) and 4), naturally,

Modelica simulator should be located on the server

side. Remote compilation and simulation of Modeli-

ca models also has been studied and achieved by

many researchers [5-9].

Feature 1) is a foundation of the platform. In or-

der to achieve this target, we have two choices: one

is downloading Modelica model libraries to the

client and analyze the libraries. The users can com-

plete the system modeling with the information of

each model which was obtained by reading its model

text. Then the system model will be sent to the server

and simulated. The other is putting the analysis pro-

gram for Modelica models on the server side. The

client gets the graphical information of each model

from the server to realize the visual modeling. Then

scenes of the system model are sent to the server.

These scenes data will be resolved to model text, and

finally simulated by calling the compiler.

The first scheme will consume much time when

the libraries have a large volume. In this way, it is

unable to achieve the advantages of the web system

that users can use at anytime, anywhere. And it is

also not conductive to protect the intellectual proper-

ty, when the system contains some private model

libraries. The second scheme needs to maintain a

free communication between the client and the serv-

er in the process of modeling. In spite of this, in or-

der to explore the full benefits of web-based simula-

tion, the second scheme should be chosen.

4 System Design

4.1 System Architecture

To build a modeling and simulation architecture

that have indifferent interfaces, is reusable and loose-

ly-coupled, WebMWorks adopts the idea of Serivce

Oriented Architecture (SOA) which is implemented

by using WCF technology. WCF is a unified pro-

gramming model provided by Microsoft for building

service-oriented applications. With WCF, the core

functions of the system is wrapped as a service, and

called by the internal or external program. The sys-

tem based on a layered architecture is shown in Fig.2.

 Presentation tier

The presentation tier is a web portal which

contains a Silverlight plug-in. It can be used to

provide visual modeling and the visualization

of the simulation results. Silverlight is a RIA

(Rich Internet Application) technology re-

leased by Microsoft, with the capabilities of

cross-browser and cross-platform.

 Service tier

This tier consists of three independent

servers, including the web server, the model-

ing server and the simulation server. By using

WCF technology to package the functions of

the program on the server, the presentation

tier can get the variety of services from the

service tier.

Web server is used to host the client portal,

containing the web pages and silverlight plug-

WebMWorks: A General Web-Based Modeling and Simulation Environment for Modelica

550 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076549

in package. It handles various requests from

the client, and provides the services of user

management and model management.

WCF

Modeling Server

Shared Library

Individual Library

File Server

Simulation Server

Presentation
Tier

Web Server

User
Management

Model
Management

Permission
Management

Textual
Modeling

graphical
Modeling

Graph-
Text

Tranform
Compilation Calcuation

Compiler Node

Compile
Processor

Compiler Node

Compile
Processor

...

Compiler Cluster

Solver Node

Solve
Processor

Solver Cluster

Solver Node

Solve
Processor

...

Modelica Standard
Library

Database

Silverlight Plug-in

Browser

Silverlight Plug-in

Browser

Silverlight Plug-in

Browser

...

Service
Tier

Computation
Tier

Data Storage
Tier

Figure 2: System architecture of WebMWorks

Modeling server receives requests from the

user while modeling, including textual model-

ing request and graphical modeling request. It

provides the services of textual modeling,

graphical modeling and graph-text transforma-

tion.

Simulation server receives requests of

compilation and solution from the client. It

provides the compilation service and computa-

tion service for the presentation tier. There are

two message queues in this server, the compi-

lation queue and the solution queue. These

queues are realized using Microsoft Message

Queuing which has many advantages: stability,

priority of the message, security and so on.

When a compilation or solution request is re-

ceived, simulation server will put it into the

corresponding queue. Then the server makes a

balanced distribution of the requests to the

nodes of compiler cluster or solver cluster.

 Computation tier

The tier consists of two computing cluster:

Compiler cluster and Solver cluster.

Each node in Compiler cluster performs

the same function, and there is one or more

process programs called CompileProcessor for

processing compilation tasks in it. The number

of processors is determined by the service ap-

plication on the simulation server. The

workflow in the node is shown in Fig.3.

MWCompiler.exe

MWSolver.exe
Model.c

Variable.xml

output

MO
Library

File Server

Compiler Node

CompileProcessor

Database
write

Compilation Data

input

Compilation
Queue

Simulation Server

Polling

Model.mo

Input

Figure 3: Workflow of each Compiler Node

When a compilation command is executed

at the client-side, a request contains compila-

tion data in XML format will be sent into the

compilation queue on the simulation server.

Compilation data contains several properties of

the model to be compiled, including owner, ID,

path and so on. CompileProcessor is a wrapper

for MWCompiler which is the compiler of

MWorks. It is constantly polling the compila-

tion queue to get the compilation data. Then it

calls the MWCompiler to load the MSL, the

Shared library and the active user’s library

from the file server. The compiler takes the mo

text of one model as input, and outputs the cor-

responding solver (MWsolver.exe), C code,

and a XML file for the description of variables.

Also, the compilation information will be

stored to the database.

Similar to the Compiler cluster, Solver

cluster is composed of several solver nodes

which distribute the solution request. Each

node can start one or more SolveProcessor to

process the solution tasks. The workflow is

shown in Fig.4.

SolveProcessor

MWSolver.exe
Model.c

Variable.xml

download

File Server

Solver Node

Simulation Data

input

Solution
Queue

Result.msf
Output.log

output

Polling

Database
write

Simulation Server

Figure 4: Workflow of each Solver Node

When a simulation command is executed at

the client-side, a request contains simulation da-

ta in XML format will be sent into the solution

queue on the simulation server. Simulation data

contains three parts of information: the first is

the model information, including owner, ID,

path and so on; the second is the setting infor-

mation of simulation, including start/stop time,

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 551
10.3384/ecp12076549 September 3-5, 2012, Munich, Germany

step length, algorithm; the third is the simula-

tion parameters which refer to the modified pa-

rameters by users in the post-processing rather

than the initial parameters. SolveProcessor will

be constantly polling the solution queue to get

the simulation data and then the MWSolver will

be downloaded from the file server. MWSolver

takes simulation data as input, and outputs the

result file and the log file of the solution.

 Data storage tier

This tier consists of the database server and

file server. Database server manages the infor-

mation of the users and the metadata of Modeli-

ca models. The metadata contains the relation-

ship between models and the properties of the

Modelica models, such as type, name, path, de-

scription and owner. File server is used to store

mo files of the models following the storage

rules of Modelica models. It also stores SVG

files, result files of the simulation, and kinds of

intermediate files.

4.2 System Workflow

Fig.5 shows the typical procedure, from lo-

gining the system, to creating a new system

model, and finally upto gaining the simulation

results.

1) System initialization. When the model-

ing sever is up, the modeling applica-

tion loads Modelica Standard Library

(MSL) and Shared library from the file

server, and provides all needed services

in the process of modeling.

2) User environment initialization. After

successful login, the user will be as-

signed the appropriate permissions. Si-

multaneously the modeling application

loads individual library of the user from

the file server to the memory in.

3) System graphical modeling. In the

modeling page, the user can create a

system model in interactive environ-

ment, as in the traditional Modelica

IDE, such as Dymona, MWorks or

OMEdit. The information which re-

quired in the modeling like the icons,

parameters, properties of the compo-

nents are achieved through calling the

services provided by the service tier.

4) Model compilation. First, the client

submits the scene presentation of one

system model in XML format to the

modeling application and calls the

graph-text transformation service pro-

vided by the application. The scene will

be resolved to mo text in the modeling

server and the mo text will be saved to

the file server. Second, the client calls

the compilation services to send the

compilation request into the compila-

tion queue. Finally, the CompilerPro-

cessor gets the compilation data from

the queue, compiles the mo file of the

system model and generates the corres-

ponding solver.

5) Model solution. The request of the si-

mulation from the client will be put into

the solution queue. Then the SolvePro-

cessor in one solver node gets the simu-

lation data from the queue and calls the

MWSolver of the model to generate the

result data of simulation.

6) Post-proessing. In the post-processing

page, the user can monitor the process

of simulation. When the solution is

completed, the result data can be

packed into XML and sent to the client

and displayed on the page.

Silverlight Plug-in

Text Modeling Visual Modeling Compiling

WCF

WCF Proxy

Modeling Server

Compiler
Queue

Solver
Queue

Compiler Node

Compiler
Processor

Simulation Server

Solver Node

Solver
Processor

Modeling Application

Simulation

Result Data

Shared Library

Individual Library

File Server

Modelica Standard
Library

Figure 5: System workflow of modeling and si-

mulation

WebMWorks: A General Web-Based Modeling and Simulation Environment for Modelica

552 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076549

5 System Implementation

5.1 Client: Modeling Page

The client is developed in a MVVM [12] archi-

tecture using the Silverlight technology. The vector

graphics and asynchronous communication of Silver-

light make it easy to create interactive graphical ap-

plication in the browser. While a large number of

graphical operations are transferred from the server

to the client, the burden of the server is lightened,

which allows the server with same hardware to han-

dle more requests.

In the modeling page, a visual modeling envi-

ronment, which is similar with MWork Studio, has

been realized. It supports users to create, modify,

delete, query and download models. Each model has

three views: text view, icon view and diagram view.

The screenshot of the modeling page is shown in

Fig.6.

Figure 6: Modeling Environment in Browser

The library viewer contains three root nodes:

“Modelica”, “Public” and “CurrentUserName”. The

“Modelica” node represents a specific version of

MSL. The user can decide which version of MSL to

load in the login page. The “Public” node represents

the models that the users shared. And the “CurrentU-

serName” Node is on behalf of the models owned by

the user who has logged in. The models under the

“Public” and “CurrentUserName” node are consis-

tent with the version of the MSL. For example, when

the user selects the version 2.2.2 of MSL, they have

only loaded the models based on the Modelica Stan-

dard Library 2.2.2. The tree of the library viewer

adopts the lazy loading mode, that is, only when the

user expands one node, the next level nodes of the

node are loaded.

The edit area acts as visual modeling, text model-

ing or icon-editing area. The icon view provides ba-

sic graphics drawing, and the user can edit the icon

of the model in this view. In the Diagram view, the

model can be dragged and dropped from the library

viewer to this view, and then the model will be in-

stantiated to a component. The users can complete

the system modeling by connecting components.

5.2 Client: Post-processing Page

In the Post-processing page, the visualization of

simulation results, which is similar with the MWorks

Simulator, has been realized. It offers simulation

management, setting up and viewing the results of

several simulation cases at the same time. The

screenshot of the Post-processing page is shown in

Fig.7：

Figure 7: Post-Processing Environment in Browser

The simulation manager can monitor and control

which state the model is in the compiling and simu-

lation queue. The possible states are: queuing,

processing, finishing and failure. Also, the simula-

tion log can be shown in the window.

The variable nodes in variable viewer also

adopt the lazy loading mode. When the variable

nodes are chosen, the set of dots will be downloaded

and shown in the plot Area on the right.

5.3 Modeling Application

In the graphical modeling client, the graph

which is shown in icon/diagram view defined by

Modelica annotations. To get Modelica annotation,

the client of WebMWorks used .NET platform to re-

implement some functions of modeling module of

MWorks, call the interface of compiling through

p/invoke, and at last realize loading Modelica model

library. The package of the function which the client

modeling need is achieved by WCF, and can be

shown to provide visual modeling service.

Plot Area
Variable

Viewer

Simulation

Manager

Library

Viewer

Edit

Area

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 553
10.3384/ecp12076549 September 3-5, 2012, Munich, Germany

The modeling application can provide the WCF

interface which can get SVG of icon view of model

(scalable vector graphics, which is based on XML).

For example, GetIconSVG (Modelica.Electrica-

l.Analog.Basic.Resistor) can get the SVG of icon

view of the Resistor Model.

Figure 8: Icon SVG of the Resistor model

The client can call the interface of sever through

the proxy of WCF to get the SVG which then will be

displayed in the icon view of Resistor model.

5.4 Multi-task implementation

Compilation and calculation of the model based

on Modelica are always time-consuming. In the case

of multi-user, when a model is compiled by compiler,

others cannot be compiled along. (MWCompiler

does not yet support compiling more than one model

at the same time).

So, the compilation and calculation of WebM-

Works process in queue is formed to solve concur-

rent calculation and compilation of multi-tasking and

multi-user. In this method, user can submit multi-

simulation task in the client, and quit the system after

submitting tasks, which explore the full benefits of

the web systems

6 Conclusions and future work

This article presents a general web-based model-

ing and simulation environment: WebMWorks. The

design and implementation of the environment are

described. Through transplanting the stand-alone

tools of modeling and simulation for Modelica into

the Web, the usage scenarios are greatly expanded:

For the enterprise and research organizations, the

co-design and co-simulation could be achieved,

based on the tools of modeling and simulation on

web and through combining with model sharing and

workflow management.

For individuals, the characteristics of the Web

system, such as cross-platform capability, wide ac-

cessibility, would improve the efficiency of model-

ing and simulation. Model sharing and reuse, multi-

tasking also helps to improve the speed of the model-

ing and simulation.

But, the prototype of WebMWorks lacks of sev-

eral functions compared with MWorks. In the future,

it should be improved gradually in the following

areas.

 Enforce the capability of data transport, espe-

cially compression and decompression of the

transporting data;

 Add the function of highlighting and

code folding for textual modeling;

 Improve safety of the model store;

 Add the function of 3D visualization in post-

processing.

References

[1] Tummescheit H. Design and Implementation

of Object-Oriented Model Libraries using

Modelica. Lund, Sweden: PhD thesis, De-

partment of Automatic control, Lund Insti-

tute of Technology, 2002.

[2] James Byrne, Cathal Heavey, P.J. Byrne. A

review of Web-based simulation and sup-

porting tools. Simulation Modelling Practice

and Theory 18 (2010) 253–276.

[3] Zhou Fan-li, Guo Jun-feng, Zhao Jian-jun,

Chen Li-ping. Reusability of Modleica Simu-

lation Model. System Simulation Technology

& Application (Vol 11).

[4] Oscar Duarte. UN-VirtualLab : A web simu-

lation environment of OpenModelica models

for educational purposes. Proceedings 8th

Modelica Conference, Dresden, Germany,

March 20-22, 2011

[5] Eva-lena Lengquist S , Susanna Monemar ,

Peter Fritzson , Peter Bunus DrModelica – A

WebBased Teaching Environment for Mod-

elica In Proceedings of the 44th Scandina-

vian Conference on Simulation and Model-

ing (SIMS’2003)

[6] Mohsen Torabzadeh-Tari, Zoheb Mu-

hammed Hossain, Peter Fritzson, Thomas

Richter. OMWeb – Virtual Web-based Re-

mote Laboratory for Modelica in Engineering

Courses. Proceedings 8th Modelica Confe-

WebMWorks: A General Web-Based Modeling and Simulation Environment for Modelica

554 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076549

rence, Dresden, Germany, March 20-22,

2011.

[7] Zhengyin Shi, Shenglin Zhao, Shan-an Zhu.

An Internet-based Electrical Engineering

Virtual Lab: Using Modelica for Unified

Modeling. Communication Software and

Networks (ICCSN), 2011 IEEE 3rd Interna-

tional Conference on 27-29 May 2011.

[8] Sven Meyer zu Eissen, Benno Stein Rea-

lization of Web-based simulation services

Computers in Industry 57 (2006) 261–

271

[9] Björn Johansson. COMPUTATIONAL ME-

THODS APPLIED TO MODELICA SIMU-

LATION MODELS IN A WEB BASED

FRAMEWORK. Proceedings of

IDETC/CIE ,September 24-28, 2005, Long

Beach, California USA

[10] F.-L. Zhou, L.-P. Chen, Y.-Z. Wu, J.-W.

Ding, J.-J. Zhao, Y.-Q. Zhang. MWorks: a

Modern IDE for Modeling and Simulation of

Multi-domain Physical Systems Based on

Modelica. Modelica 2006, Vienna Austria,

September 2006

[11] Sven Meyer zu Eissen, Benno Stein. WEB-

BASED SIMULATION:APPLICATION

SCENARIOS AND REALIZATION AL-

TERNATIVES. Proceedings of the TMCE

2004, April 13–17, 2004

[12] http://en.wikipedia.org/wiki/Model_View_Vi

ewModel.

Session 5A: Simulation Tools

DOI Proceedings of the 9th International Modelica Conference 555
10.3384/ecp12076549 September 3-5, 2012, Munich, Germany

WebMWorks: A General Web-Based Modeling and Simulation Environment for Modelica

556 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076549

Session 5B: Mixed Simulation Techniques II

Using BCVTB for Co-Simulation between Dymola and MATLAB for Multi-Domain Investigations of Production Plants

Using BCVTB for Co-Simulation between Dymola and MATLAB
for Multi-Domain Investigations of Production Plants

Irene Hafner1, Matthias Rössler2, Bernhard Heinzl2, Andreas Körner1,
Felix Breitenecker1, Michael Landsiedl3, Wolfgang Kastner2

1) Vienna University of Technology, Institute of Analysis and Scientific Computing
Wiedner Hauptstr. 8-10, 1040 Wien

2) Vienna University of Technology, Institute of Computer Aided Automation
Treitlstr. 3, 1040 Wien

3) dwh Simulation Services
Neustiftgasse 57-59, 1070 Wien

Abstract

This paper discusses the cooperative simulation
of models implemented in Modelica, Simscape,
Simulink and MATLAB for the aim of energy opti-
mization in cutting factories. To simulate the thermal
processes in production halls, the machines and the
room itself have to be modelled in varying detail. To
achieve a quite accurate comprehensive model, the in-
dividual machines and the room are modelled in differ-
ent software and then simulated with the co-simulation
tool BCVTB, which stands for Building Controls Vir-
tual Test Bed. The communication between the indi-
vidual models requires a lot of preparative work and as
can be seen at the end of the paper, it works fine for a
fixed communication time step but is not possible with
a continuous synchronization for all given software.
Still, the possibilities of co-simulation with BCVTB
can be found sufficient for the needs of thermal pro-
cesses which react very slowly and not in time steps of
hugely differing dimensions respectively, but require a
period of time which can easily be approximated small
enough for a certain scenario.

Keywords: co-simulation; BCVTB; energy opti-
mization; Dymola/Modelica

1 Motivation

Nowadays it has become more and more important to
be able to simulate models with partial models of dif-
ferent complexity and differing requirements regard-
ing solver algorithms, step sizes and other model-
specific properties. To meet these requirements,

models of such complexity are approached via co-
simulation. Co-simulation stands for “Cooperative
Simulation”. One can tell from the name that the aim
is to simulate separate models and let them commu-
nicate and synchronize to certain points in time given
by an overall simulation which lets all partial models
cooperate.
The aspects discussed in this paper are part of the
INFO (Interdisziplinäre Forschung zur Energieopti-
mierung in Fertigungsbetrieben) project which is pro-
moted by the Austrian Research Promotion Agency
(FFG). Its aim is to optimize the energy consumption
in cutting factories. Therefore it’s necessary to simu-
late the thermal processes in production halls. Since
all different machines in one production hall require
individual modelling approaches, certain solvers and
even different software, this problem is approached
with co-simulation.
Via the Ptolemy-based co-simulation tool BCVTB
(Building Controls Virtual Test Bed), a room model
implemented in Modelica, machines implemented in
Modelica, Simscape and Simulink as well as a MAT-
LAB data model of the measured heat emission of a
machine are co-simulated. Figure 1 gives an overview
of the desired communication between the individual
simulators.

2 Building Controls Virtual Test Bed

The Building Controls Virtual Test Bed was designed
at the University of Berkely to allow the communica-
tion of the simulators Ptolemy, EnergyPlus, Dymola,
Matlab, Simulink, Radiance and BACnet. BCVTB

DOI Proceedings of the 9th International Modelica Conference 557
10.3384/ecp12076557 September 3-5, 2012, Munich, Germany

Figure 1: Overview of the Intended Communication
between the Individual Simulators

resembles the Ptolemy interface but offers additional
blocks (actors, as they’re referred to in Ptolemy) and
on the other hand lacks Ptolemy elements which are
not necessary for the use of co-simulation, which
BCVTB has been developed for. Though some of
the Simulators would be able to interact without the
BCVTB interface (like Dymola and Simulink), the use
of different step sizes or even solver algorithms is only
possible with co-simulation.
To control the synchronization of the individual simu-
lators, BCVTB provides certain so-called directors.
The Continuous Time Director (CT) allows the user to
choose a variable step solver (explicit RK23 or RK45)
for the total simulation as well as setting solver options
like the maximum step size or the error tolerance (see
Fig. 2).

Figure 2: Continuous Time Director

If it’s sufficient for a model to synchronize all partial
models at predefined fixed time steps, the Synchronous
Data Flow (SDF) director can be used. All properties
of the SDF Director can be seen in Fig. 3:

From the BCVTB interface, the different simulators
have to be accessed with Simulator actors. These
actors establish the communication among the indi-
vidual Simulators via BSD sockets, which also have
been developed at the University of Berkeley and are
used for inter-process communication (see [3] for

Figure 3: Synchronous Data Flow Director

further information).
All values needed by a simulator have to be connected
to the input port, which allows multiple inputs; all
values which the simulator returns to BCVTB at
each synchronization time step can be accessed from
the output port of the simulator actor. The options
of the simulator actor (see Fig. 4 for a simulator
actor accessing MATLAB) define the simulator to
be called as well as options for the simulator, the
execution file, the path where it can be found and
a parameter socketTimeout. This parameter defines
how many milliseconds BCVTB has to wait for the
simulator to respond before canceling the simulation
and returning an error. If a BCVTB model fails due to
this socket time out-error, there is either an error in the
partial model or it simply takes longer than the given
socketTimeout to load and thus is not able to respond
early enough. Hence it is important to choose an
adequate amount of time for complex partial models.

Figure 4: Simulator Actor Accessing MATLAB

2.1 Communication between Dymola and
BCVTB

To enable the communication of BCVTB with Dy-
mola, the developers of BCVTB have implemented
the Modelica Buildings Library which provides a
BCVTB block (see Fig.5).

Using BCVTB for Co-Simulation between Dymola and MATLAB for Multi-Domain Investigations …

558 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076557

Figure 5: BCVTB Modelica Block enabling the
Communication between Dymola and BCVTB

Inputs to the block are all values to be trans-
ferred from Dymola to BCVTB, outputs are all val-
ues needed from the BCVTB. In the block properties
the time steps at which Dymola has to synchronize
with BCVTB can be defined by setting the parame-
ter timeStep to the desired value.
nDblWri defines the number of values Dymola re-
turns to BCVTB and nDblRea stands for the num-
ber of values Dymola will receive from BCVTB at
each synchronization time step. All data received from
BCVTB is kept constant between the synchroniza-
tions.
The parameter uStart stands for the value which is re-
turned to BCVTB at the very first synchronization.

2.2 Communication between MATLAB and
BCVTB

In MATLAB, the first step necessary to enable the
communication with BCVTB is to create a socket
connection via

sockfd = establishClientSocket('socket.cfg');

Further the following values have to be exchanged
with BCVTB at every desired time step by calling

[retVal, flaRea, simTimRea, dblValRea] = ...

exchangeDoublesWithSocket(sockfd, flaWri, ...

length(u), simTimWri, dblValWri);

retVal, flaRea, simTimRea and dblValRea repre-
sent the values obtained from BCVTB which can
now be used in the MATLAB function. MATLAB
has to submit sockfd, flaWri, length(u), simTimWri

and dblValWri to BCVTB. Before completely exiting
Matlab, the socket is closed with

closeIPC(sockfd);

2.3 Communication between Simulink and
BCVTB

For the communication with Simulink, BCVTB also
offers a preimplemented block. Inputs are again
all values from Simulink to be sent to BCVTB and
outputs are the values Simulink needs from BCVTB.
The underlying subsystems can be seen in Fig. 6.

Figure 6: BCVTB Simulink Block enabling the
Communication between Simulink and BCVTB

In contrary to the BCVTB block for Dymola, the
time step for synchronization cannot simply be de-
fined by a block parameter. For all preimplemented
examples BCVTB offers, the time step of the Simulink
solver is chosen fixed and equal to the BCVTB time
step so there’s no problem since the synchronization
automatically takes place at the correct time.
To be able to benefit of one of the main advantages of
co-simulation - the usage of different solvers and dif-
ferent step times - additional programming work has
to be done. To fulfill this purpose, the BCVTB block
is put in an If Action Subsystem which is activated only
if the time step of the BCVTB director is crossed. In
case of a SDF director, which means a constant time
step, the maximum time step for the solver in Simulink
is set to this constant and the time in Simulink modulo
the BCVTB time step is compared in every Simulink
time step. If the Simulink time crosses the BCVTB
time step, the modulo value changes and after zero-
crossing detection to evaluate the return value at the

Session 5B: Mixed Simulation Techniques II

DOI Proceedings of the 9th International Modelica Conference 559
10.3384/ecp12076557 September 3-5, 2012, Munich, Germany

desired time within a certain tolerance, the If Action
Subsystem is activated and the exchange takes place
(see also section 3.3 and Fig. 11). If a CT director is
used in BCVTB, the time step varies and can’t be fore-
seen, so the time in BCVTB is compared to the time in
Simulink and at every time step iterated this way the
subsystem is activated by sending a discrete impulse
at these points in time.

3 Model Description

The model described in this paper uses Dy-
mola/Modelica, MATLAB, Simscape and Simulink
apart from the main model in BCVTB. It’s purpose is
to demonstrate the thermal processes in a production
hall. The hall itself is modelled in Modelica. The
different machines are implemented in Modelica,
Simscape and as simple data model in MATLAB.
To obtain a bearable room temperature for human
workers which possibly enter the hall, a controller
is implemented in Simulink. The waste heat of the
machines and the cooling heat from the controller are
transferred to the room model at each synchronization
time step via the BCVTB interface. The BCVTB
model can be seen in Fig. 7:

Figure 7: Model for Synchronization in BCVTB

The model is supervised by a SDF Director which
demands so-called firing of the individual simulators
every 60 seconds. The stop time can be defined by the
parameter finalTime in seconds. Since the machines
don’t need any values from BCVTB apart from the
time, they receive the current simulation time only.
The simulator actors Simscape, Dymola and Matlab,
which enable the communication with the respective
machine models, return the heat outputs which are
then sent to the room model called by the Dymola-

room simulator actor. The output of the Dymolaroom
simulator is a temperature measured in one of the com-
partments of the room (see section 3.1) which is then
sent to the controller represented by the Simulink sim-
ulator actor. The output of the controller is again sent
to the room model and treated as a heat source. To
obtain a better documentation of the simulation pro-
cess, the model also communicates with a MATLAB
function which stores the elapsed cpu time to an excel-
file and additionally sends it to BCVTB for immediate
visualization. The cpu time taken by the communica-
tion and execution of the m-file realizing the cpu docu-
mentation can be regarded negligible in comparison to
those of the other partial models, which are way more
complex and therefore expensive.

3.1 Room Model in Dymola/Modelica

The model of the production hall is realized as a com-
partment model. Each thermal compartment basically
represents a cuboid with a certain heat capacity and
conduction at the surfaces. The graphical model and
all parameters of a thermal compartment can be seen
in Fig. 8.

Figure 8: Model for a Thermal Room Compartment
Implemented in Modelica - Parameters and Graph

The model of the production hall consists of six
thermal compartments at 5× 5× 3 m3 each (see Fig.
9).

The heat emitted by the machines and the regulation
heat flow from the controller can be accessed at the
output port of the BCVTB block and are transferred
as prescribed heat flow to the compartments where the
machines are found in the production hall. The tem-
perature measured in one of the compartments is re-
turned to the BCVTB model and further to the con-
troller.

Using BCVTB for Co-Simulation between Dymola and MATLAB for Multi-Domain Investigations …

560 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076557

Figure 9: Model Graph for a Machine Hall
Implemented in Modelica

3.2 Machine in Dymola/Modelica

Since the main focus lies on coupling the individual
models, the machines involved are held rather simple.
The machine implemented in Modelica consists basi-
cally of a DC motor. Since version 3.2 of the Modelica
standard library, the heat dissipated in an electrical cir-
cuit can be used in a thermal system by activating an
optional heat port at certain components. The electri-
cal energy lost at the resistor of the model is converted
into thermal energy, which is measured as heat flow
from the resistor heat port to the room represented by
a heat capacitor.

Figure 10: Model Graph of a DC Motor Implemented
in Modelica

To simulate different loads by machines which don’t
run 24 hours a day, the voltage applied to the voltage
source is chosen as pulsating with 320V at working
hours and 0V at night.

3.3 Machine in Simscape

The machine in Simscape is represented by a motor
similar to the one implemented in Modelica. To use
the waste heat emitted at the resistor, the rated power
is manually calculated from the voltage drop and sent
to a thermal system as heat flow. Again, the working
hours of the machine are set via the voltage source.

Figure 11: Model of a DC Motor Implemented in
Simscape

3.4 Controller in Simulink

The temperature control is realized rather simply. The
model gets the temperature measured in one of the
Thermal Compartments of the Dymola room model
and compares it to the desired room temperature. If the
room is more than one Kelvin too warm (cold resp.),
the control returns minus (plus resp.) 100W heat flow
to two room compartments.

3.5 Data Model in MATLAB

The data model in MATLAB is rather simple. The
heat emission of a machine over one day is read out
of an excel-file and returned to the BCVTB model and
further the Dymola room model at each time step.

4 Simulation Results

The model is simulated for one day to show the be-
haviour of the model for this time span. At 8 a.m.

Session 5B: Mixed Simulation Techniques II

DOI Proceedings of the 9th International Modelica Conference 561
10.3384/ecp12076557 September 3-5, 2012, Munich, Germany

all machines start working and the room temperature
(measured in one compartment for the cooling system)
which can be seen in Fig. 12 begins to rise. As soon
as the room temperature reaches 294.15 K, the control
starts cooling.

Figure 12: Progress of the Temperature in One
Compartment

The temperature graph of all compartments is
shown in Fig. 13. The temperature measured in the
compartment shown above corresponds to the green
one in Fig. 13. One can easily see that the com-
partments containing machines (blue, red and pink) re-
spond much more quickly than the others.

Figure 13: Progress of the Room Temperature in All
Compartments

The heat emitted by the individual machines is
demonstrated in Fig. 14. Turning down the ma-
chines implemented in Simscape and Dymola causes
a step response similar to the one caused by switch-
ing them on. The measured heat emission transferred
to BCVTB with MATLAB shows a rather permanent
emission during working hours.

A very important result of the simulation is the doc-
umentation of the individual step sizes. Figure 15
shows the solver time steps between two synchroniza-
tion references of the simulation. For the simulation
of the machine and the room model in Dymola, the
Dassl solver is used. The machine model in Simscape
is simulated with ode15s, a variable step solver for stiff
systems. Since the control in Simulink only deals with

Figure 14: Heat Emitted to the Room by the
Machines (Simulated in Matlab, Simscape and
Dymola) over One Day

discrete states, variable step discrete is chosen for the
simulation. The fixed time step for synchronization in
the BCVTB model is set to 60 seconds.

Figure 15: Plot of the Different Solver Time Steps
between Two Synchronization References

One of the most important advantages of co-
simulation becomes very obvious in this plot: The
time steps in the machines, which also differ clearly
from each other, are significantly smaller than the time
steps of the room in Dymola. This makes perfect sense
due to the fact that for the machines systems of equa-
tions out of electrical and mechanical circuits have
to be solved. Since electrical and mechanical com-
ponents interact much faster than thermal ones, the
underlying systems require accordingly smaller time
steps. Fig. 16 shows the different solver steps made in
a very small interval around a synchronization refer-
ence. This clearly points out the redundant steps made
by the Simscape solver to iterate the accurate time to
communicate with BCVTB.

Using BCVTB for Co-Simulation between Dymola and MATLAB for Multi-Domain Investigations …

562 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076557

Figure 16: Plot of the Different Time Steps at a
Synchronization Reference

Finally, the progression of the room temperature
during the simulation of the same model over three
days is shown in Fig. 17. Of course the very sim-
ple way of cooling can’t prevent the temperature from
boundless rising in compartments with machines.

Figure 17: Progress of the Room Temperature in All
Compartments over Three Days

5 Conclusion

At the first impression, BCVTB seems like a quite
advanced tool to enable cooperative simulation in a
rather easy way. It’s true that after successfully in-
stalling compatible releases of every software required
and modifying the given synchronization tools to even
allow differing solver time steps, coupling of several
partial models in a BCVTB model can be realized
without huge modifications.
On the other hand it’s not possible to let models com-
municate with BCVTB at variable time steps with the
given BCVTB blocks. In Simulink the communication
at time steps which aren’t known before can be real-
ized by activating a subsystem containing the BCVTB
block. To also achieve this in Dymola, most parts of
the given BCVTB block would have to be rewritten.
What’s more is that between two synchronization time
steps all values from BCVTB are extrapolated uni-
formly so depending on the actual graph and the syn-
chronization step size, the single errors could sum up
to an amount which causes the model to fail any vali-
dation. For the described use in thermal systems which

react very slowly, co-simulation with BCVTB might
be considered sufficiently accurate, but to achieve a
valid co-simulation which requires precise or at least
reliable approximations with arbitrarily small errors,
other possibilities of co-simulation will have to be con-
sidered.

6 Outlook

In the course of this project, the limits of co-simulation
with BCVTB will be further explored considering the
complexity of individual models as well as the amount
of partial models involved. Additionally, a room
model in the building energy simulation program En-
ergyPlus will be implemented and further compared to
the room model in Dymola to depict the advantages
of the different software regarding co-simulation with
BCVTB as well as the behaviour as thermal model for
a production hall.

Acknowledgement

This work was partially supported by the Klima- und Energiefonds

of the Austrian Federal Government within the Neue Energien

2020 program (FFG Project No. 825384).

References

[1] Wetter M. Building Controls Virtual Test Bed
User Manual Version 1.1.0. Berkeley, California:
Building Technologies Department, Environ-
mental Energy Technologies Division, Lawrence
Berkeley National Laboratory, 2012. Available
from:
http://simulationresearch.lbl.gov/bcvtb

[2] Heinzl B., Rössler M. et al.. Studies on Multi-
Domain Modelling and Thermal Coupling of a
Machine Tool. Winterthur, Switzerland: ASIM
21. Symposium Simulationstechnik, 2011 ISBN:
978-3-905745-44-3

[3] Stevens W.R., Fenner B., Rudoff A.M.. Unix
Network Programming: The Sockets Network-
ing API, Vol 1. Addison-Wesley Professional,
2004 ISBN: 9780131411555

[4] Modelica Buildings Library V1.1. Available
From:
http://simulationresearch.lbl.gov/modelica

Session 5B: Mixed Simulation Techniques II

DOI Proceedings of the 9th International Modelica Conference 563
10.3384/ecp12076557 September 3-5, 2012, Munich, Germany

Using BCVTB for Co-Simulation between Dymola and MATLAB for Multi-Domain Investigations …

564 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076557

FEM models in System Simulations using Model Order Reduction and Functional Mockup Interface

FEM models in System Simulations using Model Order
Reduction and Functional Mockup Interface

Andreas Gödecke∗, Monika Mühlbauer†, Jörg Nieveler, Iason Vittorias‡, Thomas Vontz
Siemens AG, Corporate Technology

Otto-Hahn-Ring 6
81739 Munich, Germany

Abstract

The integration of a three-dimensional FEM model
(ANSYS) in a dynamic, component-based system sim-
ulation tool (CoSMOS) is described. In order to avoid
high simulation times of a direct co-simulation while
maintaining the relevant details of the FEM submodel
at the same time, model order reduction is applied to
the FEM model. The reduced submodel is encapsu-
lated in an FMU and finally imported in a system sim-
ulation. An example use case is presented to demon-
strate the workflow.

Keywords: FMI, model exchange, model order re-
duction, CoSMOS, system simulations

1 Introduction

The need to desribe complex dynamic systems, which
involve several physical disciplines of potentially dif-
ferent timescales and levels of detail, increases contin-
uously - e.g. almost any mechatronic design or power
generation process falls into this category. Due to
the interdependence of subsystems, a sequential de-
velopment process is very time and cost consuming
and requires many iterations. To make it more effi-
cient, system simulations are used but their realiza-
tion is hindered by a large variety of tools and mod-
els applied for and best suited to the different subsys-
tems. An expensive, specific coupling for every pair
of tools can be avoided by a standardized interface,
like the Functional Mockup Interface [1], [5]. It has
been introduced at the Siemens AG to combine sev-
eral component-based system submodels, see [10].
In this contribution, we show a workflow that uses FMI
for model exchange (version 1.0) to transport relevant

∗andreas.goedecke@siemens.com
†monika.muehlbauer@siemens.com
‡iason.vittorias@siemens.com

information from very detailed, three-dimensional
FEM models. These are often performed in the de-
tailed design phase of subsystems but bear a level
of detail too high for system simulations, which is
connected to long simulation times and large data
amounts. To overcome these issues, we apply model
order reduction to an FEM model, encapsulate it in
an FMU and import this in a system simulation, see
Fig. 1 for illustration. The latter is done exemplarily in
a Siemens-internal, flexible simulation platform called
CoSMOS.

In Section 2, we present the workflow in detail,
starting from an FEM simulation in ANSYS, describ-
ing step-by-step the model order reduction and FMI
encapsulation and leading to the CoSMOS simulation.
Section 3 gives an example of the approach and Sec-
tion 4 concludes the paper.

Figure 1: Overview of the workflow proposed.

2 Workflow

2.1 FEM simulation and Model Order Re-
duction

Model Order Reduction (MOR) techniques can dras-
tically reduce the order and / or dimension of a large
dynamical system without considerably sacrificing ac-
curacy. The goal of MOR is to find a projection matrix
V so that the state-space x ∈ ℜn of a full FEM model
is projected onto a state-space xr ∈ ℜr, where the di-
mension r is much smaller, i.e. r << n, with

x = V ·xr + ε . (1)

DOI Proceedings of the 9th International Modelica Conference 565
10.3384/ecp12076565 September 3-5, 2012, Munich, Germany

Figure 2: The discretized system, consisting of thou-
sands of ODEs, is projected onto a lower dimension
space.

The error difference ε in (1) should be minimal ac-
cording to a norm specified.

Given the full system matrices from ANSYS and the
required new lower dimension, the software MOR for
ANSYS [9] generates the reduced order system matri-
ces. Fig. 2 illustrates this workflow. It uses a Krylov-
subspace method to find the projection matrix, refer
to [8, 6] for more details. For a documentation on how
to export the system matrices from ANSYS and how
to apply MOR for ANSYS, see [2].
The reduced order matrices can then be imported in
Matlab (or other preferred software) where the system
can be transformed from the implicit form of Fig. 2
to an explicit one by multiplying with the matrix E−1

r ,
given that Er is not singular. The final reduced system
then has the following form

ẋr = Arxr +Bru
y = Crxr . (2)

It is important to note here that the matrices of the
state-space (2) are independent of the input u. This
means that the reduced system, once created, can be
used for many different inputs in transient or harmonic
simulations without requiring any repetition of this
process.
The method of order reduction applies to various
model domains including electrical, thermal, or even
fluid flow domain. Although it can in principle be used
for second order systems as well, e.g. most mechan-
ical systems, we focus on first order systems in this
first approach, which are additionally linear. Note,
that extensions for nonlinear systems exist by either
using linerization techniques (or even splitting linear
and nonlinear parts), or direct application of nonlinear
methodology for model order reduction, e.g. proper
orthogonal decomposition [7]. The main disadvantage

of the latter, compared to the linear systems case, is
that a full simulation of the system is always required,
affecting thereby the required development time. To
the best of our knowledge, nonlinear equations are not
supported by the software MOR for ANSYS and are
not discussed in this paper.

2.2 Exporting a MOR model as FMU

The Functional Mockup Interface (FMI) [1] defines an
open interface between numerical simulation tools. A
zip-file, called Functional Mockup Unit (FMU) is dis-
tributed. It encapsulates a model description and static
information in an xml-file as well as the model access
in an exchangeable, simulator-independent binary file
or source code in C. The present workflow uses FMI
for model exchange (version 1.0) [4], which exports
the differential equations of the model, relying on the
importing simulator to perform the integration.

The FMU Software Development Kit (SDK) by
QTronic GmbH was utilized to provide the core FMU
functionality. Only a thin wrapper was implemented
using Matlab, which performed the task of import-
ing the MOR for ANSYS [9] matrices and converting
them into explicit form (2), as discussed in the previ-
ous section. Moreover, the wrapper finally creates the
C and XML files containing the model equations in the
format required by the FMU SDK.

2.3 Import of an FMU in a system simulation
tool

CoSMOS (Complex Systems Modeling, Optimization
& Simulation) is an in-house simulation platform for
dynamic system simulations that has been developed
at Corporate Technology, Siemens AG, since 2000,
cf. [11]. It is written in C# and C++ and is based on
a client-server concept to allow easy tool coupling
by using an open and modular architecture. Matlab,
Ansys, WinCC, Excel and several optimizers have
been considered so far among others.
One default client, called the simulation client,
comprises component libraries for one-dimensional
simulations in various domains as well as a selection
of solvers for systems of differential algebraic equa-
tions. Continuous process variables, discrete signals
and events can be handled. Results are written to .dcc
or SQLite files and can be inspected by a graphical
user interface. Dynamic simulations of fresh water
and sewage flows, of conveying systems and power
plant processes, of electric and traffic networks have

FEM models in System Simulations using Model Order Reduction and Functional Mockup Interface

566 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076565

been performed.

Figure 3: Generic FMU component with parameter di-
alog upon loading.

Figure 4: Specified FMU component with known pa-
rameters and ports.

Recently, the import of FMUs for model exchange
has been implemented. Fig. 3 and Fig. 4 give an
overview of the workflow with respect to the graphical
user interface. A gray box component that represents a
generic FMU is dragged and dropped from the library.
After the user has specified the FMU file in the param-
eter dialog, the box component derives its inputs, out-
puts and parameters from the FMU xml file containing
the model description [4]. This dynamic creation of a
component distinguishes an FMU from all other com-
ponents and its implementation means a considerable
effort with respect to the graphical representation.
The states of the FMU are added to the degrees of free-
dom of the overall system, they are updated using the
dll-functions provided in the FMU. As FMI version
1.0 does not include Jacobian information yet, the lat-
ter is obtained numerically.

3 Example use case: Temperature
control of a C-arm device

3.1 Description

In the following, we illustrate our proposed workflow
on a thermal model of a C-arm device which is con-
sidered in a simple control environment.
The C-arm device consists of two main thermal com-
ponents: An X-ray source, which represents a heat
source, and a closed water circuit with the water flow-
ing from the X-ray source to a water tank and forth and
back in two channels of the C-arm itself, see Fig. 5. By
convection, the heat is transfered to the ambient air.
The detailed thermal model of the C-arm device is to
be considered in a system simulation which is used to
test a very simple two-level control model. The latter
observes the material temperature at three positions,
where temperature sensors are to be positioned in the
real device. If required, an additional fan can be turned
on which leads to a decrease of the ambient temperture
around the C-arm.
The example is kept very simple for demonstration
purposes.

3.2 FEM Model

The CAD model of the C-arm is imported in ANSYS
(DesignModeler), see Fig. 5. The heat source and the
tank body are thermally coupled to the C-arm at two
areas, the water inlet and outlet. The power profile of

Figure 5: The design of the C-arm device. The two
faces of the water tank are hidden to enable the visibil-
ity inside it. The red circles indicate the points where
the material temperature is observed.

the X-ray source is the input to our model and deter-

Session 5B: Mixed Simulation Techniques II

DOI Proceedings of the 9th International Modelica Conference 567
10.3384/ecp12076565 September 3-5, 2012, Munich, Germany

mines the amount of heat generated in the heat source.
The heat is transfered by conduction through the alu-
minum wall to the rest of the heat source body and
then mainly by convection to the water circuit which
has a fixed flow rate of 0.3 kg/s. The colder walls
in water tank and C-arm take the heat from the water
and discharge it finally to the ambient air by a second
convection-dominated process. The convection coef-
ficients are parameters defined as 14 W

m2
◦C for the C-

arm and 0.001 W
m2
◦C for the water tank. Heat can hence

mainly be disposed of in the C-arm itself.
The given geometry and physics data are imported

in ANSYS Multiphysics. Accordingly, the load (heat
generation) and constraint data (convection coeffi-
cients, flow properties) are provided either by using the
graphical user interface or by the scripting language
APDL. To properly represent the heat transfer caused
by the water flow in the ANSYS Multiphysics model,
FLUID116 and SURF152 elements are used [3].

The full system matrices are extracted using avail-
able ANSYS functionality.

3.3 Validation of the reduced model

Model order reduction is applied to the full system ma-
trices using MOR for ANSYS reducing therby the or-
der of the model from n= 59990 to r = 30, i.e. r << n.
For validation a comparison of the results was done be-
tween a simulation of the order reduced model in Mat-
lab (set up directly and not integrated via an FMU)
and an FEM simulation in ANSYS, which is consid-
ered to be our baseline. Matlab was chosen, because
it was also used to transform the reduced model from
implicit to explicit form and to finally build the FMU
wrapper.

Three different material temperatures at potential
sensor positions of the real device are selected for ob-
servation and are indicated by the red circles in Fig. 5:
One is located on the heat source, one on the C-arm
and one at the inlet of the water tank. The selection of
the output nodes affects the structure of the Cr matrix
in (2), and naturally, it adjusts the dimensionality of
the output vector y to 3 in this case.

Fig. 6 illustrates the comparison between the FEM
simulation and the direct simulation of the reduced
model. A huge saving in simulation time is achieved:
While the FEM simulation required approximately
6 hours, the reduced system could be simulated in
less than a minute. In terms of accuracy, the root
mean square error (RMSE) remained very low for all
three temperatures with values of 0.19◦C , 0.19◦C and
0.20◦C , respectively. The exchange of the FEM model

Figure 6: A comparison of a FEM transient simula-
tion in ANSYS with the transient simulation of the re-
duced order system in Matlab. The power profile is
given. Small errors are observed, whereas the reduc-
tion in simulation time is drastic, from 6 hours to less
than a minute.

with the reduced model is hence justified in a system
simulation which considers these three temperatures.

3.4 FMU and overall system behavior

As described in section 2.2, the reduced, thermal
model is translated to an FMU which is imported in
CoSMOS. The FMU has three inputs: u1 represents
the power input to the X-ray source, u2 and u3 the
ambient temperatures around the C-arm and the unit
of water tank and heat source respectively. The three
outputs of the FMU describe the material tempera-
tures at the three intended sensor positions, already
discussed in the previous section: y1 is located at the
X-ray source, y2 at the C-arm and y3 at the inlet of the
water tank.
A very simple two-level controler on the temperature
of the heat source is built using the CoSMOS simula-
tion client and its control library, cf. Fig. 7. Its func-
tion is tested in the following for a power input of
u1 = 600 W to the X-ray source. If the temperature
measured at the heat source (output y1 of the FMU)
exceeds 50◦C , an additional fan is switched on to full
power and reduces the ambient temperature around the
C-arm to 0◦C (input u2 of the FMU). It is assumed that
the ambient temperature around the unit of water tank
and heat source is not affected (input u3). If the ma-
terial temperature at the heat source falls below 40◦C ,
the fan is turned off.

FEM models in System Simulations using Model Order Reduction and Functional Mockup Interface

568 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076565

A modified CHORAL solver (default in CoSMOS)
is used to simulate the process where the FMU con-
tributes 90 states. Fig. 8 reveals the behavior of the
outputs of the FMU upon simulation. It can be clearly
seen that the fan is regularly switched on and off as
expected. If the controls are disabled, the temperature
at the heat source exceeds 70◦C .

Figure 7: System model in CoSMOS. The thermal
model is hidden in the FMU. The controls are built
with the CoSMOS control library.

Figure 8: Behavior of the FMU outputs from bottom to
top: Temperature at inlet of water tank, at C-arm and
at heat source w/ controls and w/ disabled controls

4 Conclusion

In this contribution, we presented and validated a
workflow to integrate highly accurate FEM simula-
tions in dynamic system simulations while avoiding
long simulation times common to FEM simulations.
Model order reduction techniques enabled the creation
of state-space representations of the FEM model, and
the Functional Mockup Interface was used to transfer
the reduced model to the system simulation that was
performed with the Siemens internal tool CoSMOS.
As an example, the integration of a detailed thermal

model of a C-arm device has been considered in a sys-
tem simulation which tested a simple control model.
The workflow presented applies to any scenario where
the accuracy of a lumped model is insufficient for a
system simulation, or where overall simulation time
is too limited for a direct co-simulation between FEM
and system model.
Future work will account for a comparison between
various model order reduction algorithms as well as a
consideration of stability criteria. The workflow pre-
sented up to the FMU generation will be automized
further and the limits of the overall workflow in terms
of model complexity and size will be explored.

Acknowledgements

The authors thank Stefan Boschert for providing data
to the use case of the C-arm medical device.

References

[1] http://www.functional-mockup-interface.org.

[2] http://modelreduction.com/mor4ansys/

#Documentat.

[3] http://www.cadfem.de/fileadmin/

cfappdb/files/Consulting_Flyer_

CADFEM_Thermalanalyse_IGBT_Module.pdf.

[4] http://www.modelisar.com/

specifications/FMI_for_ModelExchange_

v1.0.pdf.

[5] T. Blochwitz and M. Otter. The functional
mockup interface for tool independent exchange
of simulation models. In Proceedings of 8th
Modelica Conference, Dresden, Germany, 2011.

[6] R. W. Freund. Krylov-subspace methods for re-
duced order modeling in circuit simulation. Jour-
nal of Computational and Applied Mathematics,
123:395–421, 2000.

[7] P. Holmes and G. Lumley, J. L. andBerkooz. Tur-
bulence, coherent structures, dynamical systems,
and symmetry. Cambridge monographs on me-
chanics, Cambridge, New York: Cambridge Uni-
versity Press,, 1996.

[8] E. B. Rudnyi and J. G. Korvink. Review: Auto-
matic model reduction for transient simulation of
mems-based devices. Sensors Update, 11(1):3–
33, 2002.

Session 5B: Mixed Simulation Techniques II

DOI Proceedings of the 9th International Modelica Conference 569
10.3384/ecp12076565 September 3-5, 2012, Munich, Germany

[9] E. B. Rudnyi and J. G. Korvink. Model order
reduction for large scale engineering models de-
veloped in ansys. In Lecture Notes in Computer
Science v.3732, pages 349–356. Springer, 2006.

[10] Y. Sun, S. Vogel, and H. Steuer. Combining
advantages of specialized simulation tools and
modelica models using functional mockup inter-
face (fmi). In Proceedings of 8th Modelica Con-
ference, Dresden, Germany, 2011.

[11] K. Wöllhaf and R. Rosen. A component-oriented
simulation approach for industrial plant models:
The plantsim simulation tool. Siemens AG, Cor-
porate Technology, Internal Report, 2001.

FEM models in System Simulations using Model Order Reduction and Functional Mockup Interface

570 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076565

Using Modelica models for Driver-in-the-loop simulators

Using Modelica models for Driver-in-the-loop simulators

Mike Dempsey Garron Fish Alessandro Picarelli
Claytex Services Limited

Edmund House, Rugby Road, Leamington Spa, UK
mike.dempsey@claytex.com garron.fish@claytex.com alessandro.picarelli@claytex.com

Abstract

Driver-in-the-loop simulators are increasingly used
in Motorsport and Automotive companies to enable
engineers and drivers to experience a new vehicle
design in a realistic environment before it is built.
The use of simulators enables drivers to test a new
vehicle and/or control system without having to
build a prototype and to carry out those tests in com-
plete safety and in repeatable conditions.

Using Modelica as the development language for
the vehicle model within these systems enables rapid
model development and the fast evaluation of vehi-
cle concepts. This enables more vehicle concepts to
be tested before committing to a prototype build.
The use of physical models also ensures that geome-
try changes and other physical modifications to the
concept can be evaluated on the simulator at an early
stage.
Keywords: driving simulator, vehicle dynamics, real-
time simulation

1 Introduction

Driver-in-the-loop simulators come in a wide range
of different formats ranging from the basic work-
station simulator through to the high end simulators
with multiple projectors and a motion platform with
up to 6 degrees of freedom. The aim is to provide a
driver with a realistic environment and accurate ve-
hicle response to enable them and the engineers they
are working with to evaluate the behaviour and per-
formance of the vehicle design.

Driving simulators are used for a variety of rea-
sons in automotive and motorsport companies. These
include driver training, vehicle attribute perception,
new designs and the evaluation of new technologies
that may affect the concentration/driving pleasure of
the driver. Recently there has been an increasing
interest in using simulators earlier in the design pro-
cess to assess the behaviour of new vehicle designs
and technologies and to understand how well these
systems work together in a vehicle. To meet this re-

quirement it is necessary to improve the model de-
velopment process so that new vehicle concepts can
be quickly modelled using physical models. Dymola
and Modelica are ideal for this application and have
been used in this way by a number of Automotive
and Motorsport users.

2 The Vehicle Model

2.1 Overview

The vehicle model used in a driving simulator has to
represent the complete vehicle, accurately predict its
behaviour and run in real-time. There is often also a
desire to be able to use the same vehicle model in
other parts of the engineering process outside of the
simulator. Using Modelica to define the vehicle
model and Dymola to compile this enables us to
meet these requirements as this paper explains.

The vehicle model itself needs to be able to accu-
rately predict the transient performance of the real
car. To achieve this it needs to include models of the
tyres, suspension, powertrain including both the
physical and control aspects of these systems.

A number of commercial libraries have been used
in the development of vehicle models for use in driv-
ing simulators. These are the Engines and VDLMo-
torsports Libraries and the following sections de-
scribe the use of these libraries to develop a model of
a 1.8 litre, 4 cylinder turbo-charged gasoline direct
injection engine fitted with a manual gearbox and
double wishbone suspension.

This paper will detail 3 of the key aspects to the
vehicle model that have been developed to meet the-
se needs: the chassis model; the engine model; and
the tyre-road contact model.

2.2 Chassis model

The VDLMotorsports Library [14] is an extension to
the Vehicle Dynamics Library [15] developed by
Modelon. This library was originally developed for
modelling open-wheel race cars where the double

DOI Proceedings of the 9th International Modelica Conference 571
10.3384/ecp12076571 September 3-5, 2012, Munich, Germany

wishbone suspension setup is commonly used to-
gether with either pushrod or pullrod actuation of the
inboard springs and dampers. The main objective of
the library was to provide suspension models for this
application that could run in real-time without addi-
tional detailed work from the end-users. As part of
the intended use of these models was for driving
simulators and other trackside tools it was necessary
to make sure that the geometry of the compiled mod-
els, including all of the physical adjustments normal-
ly possible with these suspensions, could be applied
through parameter changes without requiring the
model to be recompiled. An annotated view of a
pushrod suspension showing all the physical adjust-
ments required within the suspension is shown in
Figure 1. The shims identified can be defined as a
thickness and make a change to the suspension ge-
ometry.

 To achieve this we developed new implementa-
tions of the double wishbone suspension models that
shared no common components, but a common ar-
chitecture with those in the Vehicle Dynamics Li-
brary. The major problem to be overcome in defining
these suspension models was the non-linear systems
of equations that are normally formed when the sus-
pension is created using the Modelica MultiBody
library and individual joints (revolute, universal and
spherical).

New combinations of aggregated joints [1] were
developed to provide an analytic solution to the sus-
pension degrees of freedom which has enabled this
mechanism to be implemented without any of the
usual non-linear systems of equations. These new
joint combinations have been used to define the out-
board suspension mechanism as shown in Figure 2
(the animation of this mechanism is shown in Figure
1). The pushrod is defined with an aggregated joint
of the form Revolute-Prismatic-Spherical-Prismatic-
Universal and is based on the JointUSR in the Mod-
elica Standard Library. The upper wishbone and
steering link are a more complex joint structure
shown in Figure 3.

In both Figure 2 and Figure 3 the cyan bars on
various components represent prismatic adjustments
that can be applied to the mechanism to adjust the
overall suspension geometry.

In the original baseline model that was created
using the Modelica MultiBody library each instance
of the suspension model contained 2 non-linear sys-
tems of equations of sizes 73 and 57, before symbol-
ic manipulation. In the new suspension models both
these non-linear systems of equations are eliminated.

The VDLMotorsports Library also supports the
double wishbone suspension setup more commonly
found in road cars. These models make use of the

toRocker

r=r0R2L3_sc?
a b

ab

ib iaim

S

S

a b

0 DOF

fr
om

W
is

hb
on

?

r=
r0

R
1L

1_
sc

?
a

b

ro
ck

er
F

ra
m

e

Pushrod or
pullrod

Upper wishbone
and steering link

Figure 1: Annotated view of a pushrod suspension high-
lighting the physcial adjustments in the suspension

to
U

pp
er

?

r=
r0

C
L3

a
b a b

upperF?
n=r0CL?

a
b

ia

up
rig

ht

ia
rR

od
_i

a

a b
relativ?

r0
L3

L4
U

 -
 r

0C
L?

po
si

tio
n_

b

a
b

st
ee

rin
?

n=
r0

L3
?

a b

ia

trackrod

ia rRod_ia

up
rig

ht
L?

r=
r0

L5
U

?
a

b

a
b

re
la

tiv
?

r0L5U - r0L1L2U?
position_b1

adjust?

shim=-?
ab

adjust?

shim=?
a b

uprightL?

r=r0L5U?
a b

adjust?

shim=?
a b

S

S adjust?

shim=-?
ab

up
rig

ht
L?

r=
r0

L3
L?

a
b

vehicleFrame

steeringFrame

uprightFrame

lo
w

er
A

rm

up
pe

rW
is

hb
?

Figure 2: Double wishbone suspension with push-
rod/pullrod

Figure 3: Detailed view of the aggregated joint mecha-
nism defining the upper wishbone and steering link de-
grees of freedom

Using Modelica models for Driver-in-the-loop simulators

572 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076571

same efficient implementation of the suspension but
now connect the spring and damper units to the low-
er wishbone (as shown in Figure 4) or other suspen-
sions links as required.

For this example the vehicle model has been cre-
ated using the double wishbone suspension with out-
board springs and dampers connected to the lower
wishbone. This suspension model fits within the
Vehicle Dynamics Library suspension architecture
and enables the standard steering and anti-roll bar
models to be used when applicable. The suspension
models are fully adjustable which would enable ge-
ometry changes as well as spring and damper rate
changes to be assessed when using this model on the
simulator.

2.3 Tyre and road contact

The tyre models typically used in driving simulators
are based on the Pacejka tyre slip model and as such
are essentially single point of contact handling mod-
els. The vertical dynamics models are usually im-
plemented as some form of nonlinear spring to more
accurately capture the vertical dynamics of the tyre
and its input to the suspension. Whilst these single
point of contact tyre models give a good prediction
of vehicle handling on smooth surfaces they are not
really adequate for use on rough surfaces such as
those used in driving simulators.

In many cases the simulator road data is based on
high-fidelity LiDAR scans of a real road or track
surface that captures all the bumps and surface de-
tails. This level of detail in the track surface is not

compatible with a single point of contact tyre model
because it leads to a lot of noise feeding into the sus-
pension and steering.

In order to make good use of the detailed road
surface data a filtering method is introduced into the
contact point calculation so that the rough surface is
reduced to a single effective contact point. One such
method looks at a number of potential contact points
underneath the tyre and calculates a resultant contact
point and surface normal at which all of the tyre
forces are applied.

The screenshot in Figure 5 is taken from a single
tyre test rig that is using 5 potential contact points
(shown in red) and filtering these to determine one
effective contact point (shown in yellow). The filter-
ing is achieved by considering the amount of tyre
compression at each potential contact point and then
adjusting the position and surface normal of the re-
sultant contact point accordingly. When used with
triangular meshed road data some further filtering is
then required to avoid sudden jumps in the surface
normal as the edges of the different triangles are
crossed.

The introduction of these filtering methods in the
tyre model is done by replacing the standard Vehicle
Dynamics Library contact block with a customized
contact model. The development of these filtering
methods has driven several enhancements in the Ve-
hicle Dynamics Library ground models which have
been implemented by Modelon. These new options
now enable the standard implicit contact model,
which generates nonlinear systems of equations, to
be replaced with an explicit contact model which
does not include nonlinear systems of equations.

S

S

Figure 4: Double wishbone suspension with outboard
springs and dampers

Figure 5: Visualisation of contact point filtering with the
potential contact points in red and the resultant contact
point in yellow

Session 5B: Mixed Simulation Techniques II

DOI Proceedings of the 9th International Modelica Conference 573
10.3384/ecp12076571 September 3-5, 2012, Munich, Germany

2.4 Engine model

The engine model used in the test vehicle was de-
veloped using the Engines Library [2]. The Engines
Library comes in two versions with different capabil-
ities: Mean Value Engine Models (MVEM) which
means cycle averaged torque and emissions; and
Crank Angle Resolved Engine Models (CAREM)
which means crank angle resolution of torque, heat
release and emissions. Both versions model the in-
take and exhaust manifold fluid dynamics and heat
transfer with varying levels of detail. The heat trans-
fer models can range from models with no thermal
resistance to ones which take into account the flow
regime within the particular component [5]. The flu-
id flow models can range from simple volume mod-
els to ones which include the fluid momentum dy-
namics to analyse fluid pressure pulsations propagat-
ing throughout the system and study their effects on
the system performance.

For the purposes of CPU time reduction, a surro-
gate mode is available for both MVEM and CAREM
[2],[3] models. The surrogate mode allows the en-
gine model to be reduced in complexity whilst main-
taining a high level of accuracy when compared to
the non-surrogate mode. Figure 6 shows the com-
parison of a MVEM model running in both modes
and shows that there is little deviation between the
results.

Figure 6: Plot of plenum pressure for a naturally aspirated
I4 SI engine with surrogate mode enabled (blue) and disa-
bled (red). In this case the two lines lie almost exactly on
top of one another.

All the fluid components in the Engines library
are based on the Modelica Fluid library [4] which
ensures compatibility with the latter and all derived
libraries. The medium model is based on the Model-
ica Media library but it has been necessary to pro-
vide some additional customisations to achieve the
level of performance required in this library. The
medium model tracks 7 species throughout the air

path of the engine so that fuel mass and the emis-
sions composition can be traced through the engine.

The engine used in this example is a mean value
4 cylinder 1.8l turbocharged spark-ignited gasoline
engine with direct injection and producing a peak
power of 160kw and peak torque of 225Nm. The
transients of the turbocharger, fluids and heat trans-
fer in the air-path and torque output are captured in
the results as well as the multi-body behaviour of the
system. This model is shown in Figure 7.

Figure 7: I4 Turbo Mean Value Engine Model diagram
layer showing the engine sub-systems. Note that fluid and
mechanical connector arrays are used between the compo-
nents to simplify the diagram layer complexity

In the above model the intake manifold comprises
an air flow mass sensor, a turbocharger compressor
including ducting, an air to air intercooler, a throttle
body, a plenum volume and cylinder head port vol-
umes. The exhaust manifold comprises of the cylin-
der head ports and primary exhaust system coupled
to the turbocharger turbine. Emissions after-
treatment systems have been omitted from this en-
gine model as they were not required for the purpos-
es of this experiment; however, their associated pres-
sure drops have been taken into account within the
exhaust system. Both intake and exhaust volume
models include heat transfer effects from the fluid to
the pipe walls.

The Engines library contains two main types of
turbocharger turbines and compressors models
[6][7][8][10]. There are purely map based models
where the mass flow rate and efficiency are functions
of the speed and pressure ratio. These models rely
on having very good map data available throughout
the operating range of the turbine and compressor.
The second type of model are based on ellipse curves
(e.g. Stodola’s law for turbines). In these models
ellipse curves are fitted to the available map data to

Using Modelica models for Driver-in-the-loop simulators

574 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076571

describe the mass flow rate through the component.
The advantage of these ellipse models is that the
characteristics are guaranteed to be smooth.

The engine model described in this paper utilises
a turbocharger turbine model based on Stodola’s law
which calculates the mass-flow rate as a function of
the pressure ratio and essentially follows the ellipse
law:

where K is a constant that scales the turbine charac-
teristics.

The turbocharger compressor uses a similar el-
lipse law that relates the mass flow rate and pressure
ratio through the ellipse equation:

The coefficients a, b and z are defined in tables that
are dependent on rotational speed.

The complete turbocharger model is shown in
Figure 8. The compressor side (left hand side of the
figure) includes intake and outlet ducting with asso-
ciated replaceable heat transfer models and a pneu-
matically controlled recirculating pressure relief
valve. The turbine side (right hand side) includes
outlet ducting and an electronically controlled
wastegate to limit the turbine performance. The shaft
including the impellers is modelled as a 1D rotation-
al system with bearing friction model.

The ellipse based compressor and turbine im-
prove the model robustness and can rely on less fine-
ly resolved compressor and turbine maps than the
purely table based variants to achieve similar func-
tionality. Compressor surge is taken care of by sup-
plying a surge line to the model. Special considera-
tions for impeller torque are implemented for opera-
tion beyond the compressor surge line.

The basic turbocharger model shown in Figure 8
has been used for both low pressure and high pres-
sure turbocharging applications

2.5 Results

The whole vehicle model including the powertrain
was compiled in Dymola using a fixed step solver
with inline integration. The inline integration method
chosen was a mixed implicit/explicit Euler with step
size of 1.25ms. The mixed method was chosen as it
gave the best results in terms of expected system be-
haviour, model robustness and simulation perfor-
mance. The step size was determined by considering
the requirements of the model, the pc processor
speed and the frequency that the rest of the simulator
system needs to operate at.

In this experiment, the model is compiled with a
driver and simulated in Dymola to verify the behav-
iour. The driver model is open loop for both longi-
tudinal and lateral control and the test consists of an
acceleration from rest, shifting through the gears to
test the extreme situation for both chassis, wheels
and powertrain:

Test sequence:
1. t=0, vehicle standing at rest with engine idling
2. t=2, launch starts, i.e. clutch engagement starts
3. The vehicle accelerates at full throttle through

the gears up to a speed of 250km/h

The results of this acceleration test are shown in

Figure 9. The main user input required to get such
complex models to function in real time is good ini-
tialisation. This is assuming that all the work at the
component level has already been done to eliminate
numerical jacobians and minimise the number of
non-linear systems of equations.

The critical areas in these vehicle models are the
tyres, suspension and engine initial conditions.
Within the VDLMotorsports Library a number of
experiments and functions exist that enable the start
conditions for the tyres and suspensions so be deter-
mined and automatically extracted for use in other
simulations. For the engine model, the initial pres-
sures and temperatures within the intake and exhaust
system were determined by running the engine at a

Figure 8: Turbocharger diagram layer showing the layout
of the system

Session 5B: Mixed Simulation Techniques II

DOI Proceedings of the 9th International Modelica Conference 575
10.3384/ecp12076571 September 3-5, 2012, Munich, Germany

constant speed and load operating point that is then
used as the start point for the real-time model. The
final temperatures and pressures from this steady
state experiment are used to define the initial condi-
tions in the real-time experiment.

The results in Figure 9 show the vehicle longitu-
dinal dynamics and the dynamics of the engine com-
ponents when running the model in real time. We
have focused on the intake pressure and the turbo-
charger and wastegate [9] performance with the lat-
ter used to limit the intake manifold pressure. With
such models running in real time, swapping turbo-
charger models or tweaking the turbocharger charac-
teristics, enable the user to test different boosting
configurations for driveability and performance
within a vehicle simulator.

Such models as the one used in this paper provide
invaluable and easily accessible detailed information
for the engineers in the development phase of the
vehicle when there is need to test a variety of options
in a short space of time. The transient detail exhibit-
ed in the results for the torque generation are of suf-

ficient detail to provide the effects necessary for the
evaluation of different engine and powertrain solu-
tions in vehicle simulators.

3 Integrating the physics model and
simulator system

3.1 System Overview

A typical driving simulator will consist of several
computers each with responsibility for a different
aspect of the system. Figure 10 shows the basic ar-
chitecture of a typical system.

The motion platform usually has a dedicated
computer to decide how it should move and receives
inputs from the physics model such as vehicle orien-
tation and accelerations.

There is usually a PC (or real-time computer) that
is dedicated to the physics model. The physics mod-
el receives inputs from both the motion platform via
the motion controller and the vision system. The
data coming from the motion platform are the driver
inputs such as steering, pedal positions, gear, etc.
The data coming from the vision system usually in-
cludes the environmental conditions and road surface
information.

It is also possible to incorporate the real control
systems with the physics model. The exact approach
varies depending on the objective of the simulator
and the hardware available. In some instances a
model of the control system is compiled to run on a

Figure 9: System simulation engine behaviour during the
full throttle acceleration test. From top to bottom: Vehicle
speed (km/h), turbocharger shaft speed (rpm), absolute
plenum pressure (Pa), crank speed (rpm), wastegate (blue)
and dump valve (red) opening

Figure 10: Basic configuration of a typical driving simu-
lator including a motion platform

Using Modelica models for Driver-in-the-loop simulators

576 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076571

real-time computer alongside the physics models and
in other cases a Hardware-in-the-loop approach is
adopted with the real controller connected in to the
system.

The vision system itself can consist of multiple
computers depending on the actual system configura-
tion. Typically there will be one master computer
and then a number of slave machines with at least
one computer per projector used.

For a desktop simulator the motion platform and
controller is replaced with a steering wheel and ped-
als that could be as basic as a gaming system or a
more specialised system such as steering wheels with
high accuracy motors for steering torque assessment.

3.2 Test System Specification

For the example in this paper we have integrated the
model described in section 2 within a desktop driv-
ing simulator system. We are using rFactor Pro [13]
for the vision system and the physics model is run-
ning in the McLaren Electronics vTag 310 tool [11].
A Logitech G27 [12] steering wheel and pedals is
used for the driving controls together with a single
monitor. This configuration makes the driving simu-
lator compact enough to use in the office environ-
ment whilst providing a useful tool for evaluating
baseline capability of a vehicle or detailed assess-
ment of a control system.

By running the model in the vTag environment
we are able to make use of the telemetry system built
in to this tool. This means that we can expose the
model variables to the telemetry stream and view
them in real-time using Atlas [16] (also from McLar-
en Electronics). This enables logging of the model
behaviour for offline analysis.

The use of the vTag environment also enables the
control system model to be run alongside the physics
model. In Formula 1, for example, it is mandated by
the governing body that the complete vehicle control
system be developed using the McLaren Electronics
tool chain which means it can easily be compiled and
run in the vTag environment.

rFactor Pro has an extensive library of scenarios
that can be used to test the vehicle. These include
LiDAR based race tracks for most of the Formula 1
circuits, North American Indy & NASCAR circuits
as well as La Sarthe, Nordschleife and a virtual prov-
ing ground with lane-changes, split Mu and low-Mu
surfaces, a handling circuit with inclines and pro-
grammable surfaces. The environmental conditions
(temperature, pressure, humidity and weather) can all
be controlled within rFactor Pro. The virtual proving
ground includes a wide range of different roads and
track surface sections.

3.3 Model build process

To compile the model for use in the vTag environ-
ment we first have to define all of the input and out-
put signals at the top level of the model. We then
utilize the Source Code Export feature of Dymola to
compile the model using inline integration and ex-
port the model as c-code.

When Dymola exports the model in this way the
code exposes a number of methods that enable the
model equations to be coupled to a solver. As inline
integration is used with the models the solver doesn’t
have to integrate any states but it does still have to
handle events. The implementation of this solver has
been optimized to run the model as efficiently as
possible.

The interface between the physics model and the
rest of the system is defined in additional c-files that
are compiled with the solver and model equations to
create the executable model. This interface contains
a number of functions that are called by the system
to handle the initialization of the model and the cal-
culation of each time step. As the vision system will
typically run at a lower frequency than the model the
interface supports running multiple model steps each
time the vision system asks for a step to be run.

For instance, this means the vision system can run
at 500Hz but the model could run at 1000Hz or high-
er as appropriate. In this test system, the vision sys-
tem is running at 400Hz and the model is running at
800Hz.

4 Conclusions

Using Modelica to define the vehicle model and
Dymola to compile and export the model as c-code
suitable for real-time simulation means that the phys-
ics model in a driving simulator can be very easily
updated to test new concepts as well as explore setup
variations of an existing design. The speed with
which design ideas can be implemented in Dymola
and compiled ready for the simulator means that it is
possible for real drivers to start evaluating these ide-
as at a very early stage in the development process.

References

[1] Otter M., Elmqvist H., and Mattsson S.E.:
The New Modelica MultiBody Library.
Modelica 2003 Conference, Linkping, Swe-
den, pp. 311-330, Nov. 3-4, 2003.

Session 5B: Mixed Simulation Techniques II

DOI Proceedings of the 9th International Modelica Conference 577
10.3384/ecp12076571 September 3-5, 2012, Munich, Germany

[2] Dempsey M. Picarelli A. Investigating the
MultiBody Dynamics of the Complete
Powertrain System. Como, Italy: Proceedings
7th Modelica Conference, 2009.

[3] John J. Batteh Charles E. Newman. “De-
tailed Simulation of Turbocharged Engines
with Modelica” Modelica Conference, 2008

[4] Casella. F. et al. “The Modelica Fluid and
Media library for modeling of incompressi-
ble and compressible thermo-fluid pipe net-
works” Modelica Conference, 2006

[5] Christopher Depcik and Dennis Assanis “A
Universal Heat Transfer Correlation for In-
take and Exhaust Flows in an Spark-Ignition
Internal Combustion Engine” SAE 2002-01-
0372

[6] Stodola, A. (1945). Steam and Gas Turbines.
McGraw-Hill, New York. Reprinted by Peter
Smith.

[7] Eriksson, L. et al “Modeling of a turbo-
charged SI engine” Annual reviews in con-
trol 2002.

[8] Heywood, B. Internal Combustion Engine
Fundamentals McGraw-Hill

[9] Robert Bosch Gmbh Gasoline Engine Man-
agement Bentley Publishers 2006.

[10] Stone, R. Introduction to internal Combus-
tion Engines SAE International 1999.

[11] http://www.mclarenelectronics.com/Products
/Product/vTAG

[12] http://www.logitech.com/en-
gb/gaming/wheels/5184

[13] http://www.rfactor-pro.com/
[14] http://www.claytex.com/products/claytex-

libraries/#vdlmotorsports-library
[15] http://www.modelon.com/products/modelica-

libraries/vehicle-dynamics-library/
[16] http://www.mclarenelectronics.com/Products

/Product/ATLAS

Using Modelica models for Driver-in-the-loop simulators

578 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076571

Session 5C: Automotive Systems

Development of New Concept Vehicles Using Modelica and Expectation to Modelica from Automotive Industries

Development of New Concept Vehicles Using Modelica
and Expectation to Modelica fromAutomotive Industries

Yutaka Hirano
Toyota Motor Corporation, Future Project Division
1200 Mishuku, Susono, Shizuoka, 410-1193 JAPAN

yutaka@hirano.tec.toyota.co.jp

Abstract

Recently development of new-concept small vehicles
for future mobility societies becomes very active. In
this paper, development of simulation models of those
new vehicles by Modelica is described. It became
clear that such small vehicles tend to have reduced
stability and handling ability than conventional vehi-
cles. To cope with this problem, a benchmark study of
designing vehicle control logic for an IWM (In-
Wheel-Motor) vehicle was settled by Japanese society
of automotive industries and academia. A brief de-
scription about this benchmark study is also given. At
the end, requests to Modelica community from Japa-
nese automotive industries are described.
Keywords: Future mobility vehicles; Stability and
Handling Performance; Benchmark study

1 Introduction

To cope with future mobility society, development of
many new concept vehicles is becoming increasingly
active in recent years [1]. Those vehicles have charac-
teristics of smaller size, lighter weight, less number of
passengers than the conventional vehicles. Also those
vehicles tend to be equipped with lower RRC (Rolling
Resistance Coefficients) tires and new driving sys-
tems mainly using electric motors to achieve less
emission and less energy consumption. Some of those
future vehicles are equipped with IWM (In-Wheel-
Motor) systems to achieve flexible layout of power-
train and also advanced vehicle motion control [2].
Because such new-concept vehicles have different
mechanical structure and control structure from those
of conventional cars, it was necessary to make new
models to estimate their motions by simulation. In this

paper, development of the simulation models of those
new vehicles by Modelica is described. Those models
were developed based on Vehicle Dynamics Library
(VDL) of Dymola.
By the simulation, it became clear that such new small
vehicles tend to have reduced stability and handling
ability than conventional vehicles. To cope with this
problem, a benchmark study of improving stability
and handling ability of such new vehicles was settled
by Japanese joint committee of automotive industries
and academia. As a member of the committee, the
author will introduce the benchmark study in this pa-
per.
At the end of this paper, some requests from Japanese
automotive industries to Modelica community are de-
scribed. Those requests came from actual problem
which was encountered by the users during the model-
ing and simulation works for new mobility vehicles.

2 Modeling and simulation of future
vehicles

2.1 Target vehicles

Figure 1: Toyota’s scenario about future eco-cars

DOI Proceedings of the 9th International Modelica Conference 579
10.3384/ecp12076579 September 3-5, 2012, Munich, Germany

Figure 1 shows Toyota’s broad scenario about future
eco-vehicles. As shown in the Figure, electric vehicles
are thought suitable as future mobility for short dis-
tance. Those vehicles often have different structure
from conventional cars. Thus it is necessary to make
new models for new kinematics and control to simu-
late the motion of those new vehicles. In this paper,
simulation models of a personal mobility ‘i-Real’ and
a ‘short commuter’ by Modelica are described.

2.2 Simulation of a personal mobility ‘i-Real’

Figure 2 shows a photograph of Toyota’s proto-type
personal mobility called ‘i-Real’. It has two front
wheels and one rear wheel. Steering system is
equipped with the rear wheel. The rear wheel is con-
nected by a swing arm with the body and it is possible
to change the length of wheel-base by controlling the
angle of the swing arm actively. There are electric in-
wheel-motors for each front wheel and rotation speed
of each wheel can be controlled independently. Also
there is a link to control the height of each front
wheels independently. Thus, it is possible to control
roll angle of the vehicle body against the ground ac-
tively.

Figure 2: Personal mobility ‘i-Real’

Figure 3: Dymola model of ‘i-Real’

Figure 3 shows Dymola model of the mechanical
structure of ‘i-Real’. Each mechanical part is con-
structed by using Multi-Body-Systems (MBS) library
and connected with the models of tires and environ-
ment of Vehicle Dynamics Library (VDL).
Figure 4 shows an animation result comparing a case
when active control of wheel-base and roll angle was
applied and a case when no control was applied while
cornering. Figure 5 shows time plots of vehicle speed,
lateral acceleration and yaw rate in this case. It was
successful to simulate the effect of active roll-angle
control and wheelbase control. Basic design of the
vehicle motion controller was made upon this simula-
tion model.

Without ControlWith Control Without ControlWith Control

Figure 4: Simulation result animation of ‘i-Real’

Development of New Concept Vehicles Using Modelica and Expectation to Modelica from Automotive …

580 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076579

Without Control

Without Control

Without Control

With Control

With Control

With Control

Time [sec]

V
eh
ic
le
sp
ee
d
[m
/s]

La
te
ra
lG
[m
/s
2]

Y
aw
ra
te
[ra
d/
s]

Time [sec]

Time [sec]

Without Control

Without Control

Without Control

With Control

With Control

With Control

Time [sec]

V
eh
ic
le
sp
ee
d
[m
/s]

La
te
ra
lG
[m
/s
2]

Y
aw
ra
te
[ra
d/
s]

Time [sec]

Time [sec]

Figure 5: Time plots of ‘i-Real’ simulation

2.3 Simulation of a ‘short commuter’ vehicle

2.3.1 Background and purpose
Recently many small vehicles for short running dis-
tance mainly for the usage in a city area are proposed.
Though, as shown in Figure6, lighter vehicle weight
and smaller vehicle size tend to result in decreased
resistance against external disturbances such as side-
wind. Also tires having low RRC tend to have re-
duced side stiffness as compared to normal tires. Thus
it is expected that handling performance of such small
and light vehicles equipped with low RRC tires tend
to be affected more than conventional vehicles.
To confirm this expectation, simulation of side wind
test for both a conventional vehicle and a short com-
muter vehicle was executed. As an example of the
short commuter vehicle, a small vehicle in which two
passengers ride in series on the center of the vehicle
was assumed. The specifications of both the short

commuter vehicle and a conventional vehicle are
shown in Table 1.

Low energy
consumption

Low RRC
tire

Small and
light vehicle

Decrease of tire
side stiffness

Increase of tire
vertical stiffness

Shorter vehicle
wheel base and
tread

Lighter vehicle
weight

Worse performance
- Side wind
- Acceleration /
deceleration while
cornering
- Emergency
avoidance

Worse ride comfort

Low carbon society

Low energy
consumption

Low RRC
tire

Small and
light vehicle

Decrease of tire
side stiffness

Increase of tire
vertical stiffness

Shorter vehicle
wheel base and
tread

Lighter vehicle
weight

Worse performance
- Side wind
- Acceleration /
deceleration while
cornering
- Emergency
avoidance

Worse ride comfort

Low carbon society

Figure 6: Problems for small commuter vehicles

Table 1: Specifications of vehicles
Short commuter
vehicle

Conventional
vehicle

Weight 510 kg 1300 kg
Wheel Base 2000 mm 2600 mm
Width 1190 mm 1760 mm
Height 1460 mm 1515 mm

Vehicles run across a zone of side wind of 20m/s
while running at 60km/h. Figure 7 shows the result of
an animation for the open-loop side wind test, i.e.
there is no control about steering. It is evident that the
short commuter vehicle is affected a lot than the con-
ventional vehicle by the side wind.

Figure 7: Result animation of side-wind test

Upon above backgrounds, it is planned to study
about designing a control system for a future small
IWM vehicle. The system enables control of individ-
ual steering angle and camber angle of each wheel as
well as driving / braking torque of each wheel. The
purpose of the study is to design a controller of an
IWM vehicle to realize same level of handling and
stability performance as conventional vehicles satisfy-

Session 5C: Automotive Systems

DOI Proceedings of the 9th International Modelica Conference 581
10.3384/ecp12076579 September 3-5, 2012, Munich, Germany

ing minimum energy consumption of IWMs simulta-
neously. This problem is announced to the wide area
of academia as one of the benchmark studies from the
automotive industries by joint committee of JSAE
(Society of Automotive Engineers of Japan) and SICE
(Society of Instrument and Control Engineers) about
‘vehicle modeling and control research’ in Japan.
Anyone who wishes to join this benchmark study can
freely obtain the model library from the web site be-
low. The evaluation functions of the benchmark re-
sults will also be provided from the web site.
(http://cig.ees.kyushu-
u.ac.jp/benchmark_JSAE_SICE/)

2.3.2 Structure of the simulation model
Figure 8 shows a whole structure of the simulation
model based on VDL of Dymola. The model consists
of a vehicle model and a driver model. The vehicle
model includes 3D multi-body dynamics model of
body and suspension. It is possible to control steering
angle and camber angle of each wheel independently.
The control of steering angle and camber angle of
each wheel is realized by changing independently the
length of two parallel lower arms of a double wish-
bone suspension which has an upper A-arm [3] as
shown in Figure 8. Also a simple electric model of
battery and IWM is included to calculate energy con-
sumption of IWMs. There is a simple battery model
which considers inner resistance and constant voltage
generation. Electricity is provided to each DC motor
and the motor converts electric current to driving /
braking torque of each wheel by the following equa-
tion.

)41(iiK imi (1)

where i: Motor torque, Km: Constant, ii: Motor cur-
rent .
Power consumption of each motor is calculated by a
multiplication of battery voltage and current flowing
into the each motor.
There also is a model of driver’s behavior which cal-
culates commands for steering angle, acceleration
pedal, braking pedal and so on. The driver model con-
sists of function blocks of perception, planning and
tracking respectively. The perception block calculates
current vehicle status (position, speed, angle, etc.).
The planning block settles target points on the path to
be followed on the road from the information of the

perception block. The tracking block calculates
driver’s maneuver commands for steering, accelera-
tion pedal, brake pedal and so on. These commands
are transferred to the vehicle model to calculate the
vehicle motion.
Finally all the models necessary for the simulation
were integrated in one model library. Also test cases
of desired tasks mentioned below were included in the
library.

2.3.3 Description of desired tasks
The limitation of actuators of each wheel is shown in
Table 2. There is no limitation for driving and braking
torques of each IWM, but the requirement of mini-
mizing energy consumption of IWMs is applied. The
energy to control steering angle and camber angle of
each wheel is not considered.

Table 2: limits of actuators for each wheel
Actuator Limit
Steering angle 30 degrees (Front tires)

5 degrees (Rear tires)
Camber angle 10 degrees (All tires)

Four test scenarios were used for the benchmark study
as below.
1) Acceleration while cornering on low friction road:
Accelerate the vehicle from initial speed 0[km/h] to
70[km/h] in 5 seconds on a slippery (coefficient of
friction (mu) = 0.6) curve of R=50[m] as shown in
Figure 9.
2) Deceleration while cornering on a sprit friction
road:
Decelerate the vehicle from initial speed 70[km/h] to
0[km/h] in 5 seconds on a slippery split mu (mu =
{0.9, 0.4}) curve of R=50[m] as shown in Figure 10.
3) Double lane change:
Perform ISO double lane change task at the speed of
70[km/h].
4) Crossing side wind:
Run straight while crossing strong side wind at the
speed of 70[km/h].

Development of New Concept Vehicles Using Modelica and Expectation to Modelica from Automotive …

582 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076579

CloseLoopDriver

Vehicle

Ground

Atmosphere

World

Default Controller

VehicleStates

OutputStation

Brake Chassis PowerTrain

Dashboard

Brake Chassis PowerTrain

Dashboard

Suspension Suspension

Wheel2

Wheel1

Wheel4

Wheel3

Body

Motion

Front Rear
Suspension Suspension

Wheel2

Wheel1

Wheel4

Wheel3

Body

Motion

Front Rear

TrackingPlanningPercept
Steering

Gear Acceleration Brake Clutch

TrackingPlanningPercept
Steering

Gear Acceleration Brake Clutch

Battery

Contro ller

GearBox

Motor
Battery

Contro ller

GearBox

Motor
Battery

Contro ller

GearBox

Motor

Figure 8: Diagram of main layers of the simulation model

Session 5C: Automotive Systems

DOI Proceedings of the 9th International Modelica Conference 583
10.3384/ecp12076579 September 3-5, 2012, Munich, Germany

T = 0[sec]: V = 0[km/h]

T = 5[sec]: V = 70[km/h]

R=50[m]

Acceleration

Constant
velocity μ=0.6

T = 0[sec]: V = 0[km/h]

T = 5[sec]: V = 70[km/h]

R=50[m]

Acceleration

Constant
velocity μ=0.6

Figure 9: Test condition for ‘acceleration while cor-
nering’ task

T = 0[sec]: V = 70[km/h]

T = 5[sec]: V = 0[km/h]

R=50[m] Deceleration

μ=0.9

μ=0.4

T = 0[sec]: V = 70[km/h]

T = 5[sec]: V = 0[km/h]

R=50[m] Deceleration

μ=0.9

μ=0.4

Figure 10: Test condition for ‘deceleration while cor-
nering’ task

2.3.4 Vehicle model
As shown in Figure 8, the vehicle model consists of
sub-models of brake, chassis and power train. Inside

the chassis model, multi-body dynamics of suspen-
sion links and joints are considered. Figure 11 shows
Dymola model of the new suspension with two lower
arms for which their length are actively controlled to
control the camber angle and steering angle of the
wheel independently. Also body motion is considered
by multi-body dynamics model which has inputs from
each suspension linkage. Because of this, the effects
to body motion by suspension geometries such as
anti-dive geometry, anti-squat geometry and so on
can be considered. About tire model, ‘magic formula
model’ (Pacejka’02) [4] is used.

Figure 11: Dymola model of the new suspension

2.3.5 Driver model
Desired path and desired position of the vehicle on
the path (target points) are settled on the road respec-
tively according to the desired road shape and the
vehicle speed profile for each task. ‘Planning’ block
of the driver model shown in Figure 8 arranges target
points along the desired path considering a preview
distance of the driver model. ‘Tracking’ block calcu-
lates commands for steering angle, acceleration pedal
angle and braking force respectively using the infor-
mation from ‘Planning’ block and ‘Perception’ block.
Each command is calculated as follows.
Steering angle command: str_cmd

offsetstrgainstr
yrV
xrVcmdstr __*
_
tan 1 (2)

where

Development of New Concept Vehicles Using Modelica and Expectation to Modelica from Automotive …

584 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076579

rV_x: longitudinal distance along path between
target point and current vehicle position,

rV_y: lateral distance along path between target
point and current vehicle position,

str_gain: steering gain,
str_offset: offset value (optional).

Acceleration pedal command: acc_cmd
DKcmdacc acc_ (3)

and
Braking force command: brk_cmd

DKcmdbrk brk_ (4)
where
Kacc: Proportional gain for acceleration command,
Kbrk: Proportional gain for braking command,

and

)___(

)___(

)___(

vehvxPvV
sT
K

vehvxPvV
NsT

KNs
vehvxPvVKD

i

d

(5)

Here,
K: Proportional feedback gain
Td: Inverse of differential feedback gain
Ti: Inverse of integral feedback gain
N: Constant
s: Laplace operator
vV_P_x: Reference velocity along path
v_veh: Vehicle velocity along path

2.3.6 Controller model
To provide a template of controller model, an exam-
ple model of the controller (default controller) is also
provided in the model library. It is required for re-
searchers of this benchmark study to propose revi-
sions to the default controller (and also driver model
if necessary) to realize the following demands.
1) Let vehicle yaw rate, side slip angle and lateral

acceleration follow the desired values (ideal mo-
tion of conventional vehicle) and / or make a de-
viation from desired path to minimum under limi-
tation of control amounts of steering angle and
camber angle of each wheel.

2) Minimize energy consumption of IWMs.
The desired yaw rate, the desired slip angle and the
desired lateral acceleration are calculated as bellows.
Desired slip angle:

0ref (6)
Desired yaw rate:

input
s

s
ref sT

K
1

(7)

Desired lateral acceleration:

refrefy VG _ (8)
Here, Ks and Ts are settled from the desirable motion
of the conventional vehicle as follows.

rfrffrr

rfrf
s ccaaaMVca

Vccaa
K

)(
)(

2
(9)

frf

f
s caa

VMa
T

)(
(10)

Here, following parameters are selected as a nominal
value of the conventional vehicle for
af : Longitudinal distance between front wheel and
CG (Centre of gravity)
ar : Longitudinal distance between rear wheel and
CG
cf : Cornering stiffness of front two tyres
cr : Cornering stiffness of rear two tyres
M: Mass of vehicle
V: Vehicle speed.

As a tentative example, the default controller calcu-
lates commands for the actuators as bellows.
Front steering angle:

si Gcmdstr /_ (i=1, 2) (11)

(Gs: Virtual steering gear ratio)
Rear steering angle:

0i (i=3, 4) (12)

Camber angle of all wheels:
0i (i=1~4) (13)

Driving / braking torque:

dtVVKVVK

cmdbrkcmdaccK

refirefp

torquei

)()(

)_or_(
(i=1~4)

(14)
where
Ktorque: Constant
Kp: Proportional feedback gain
Ki: Integral feedback gain
Vref: Desired vehicle speed

Session 5C: Automotive Systems

DOI Proceedings of the 9th International Modelica Conference 585
10.3384/ecp12076579 September 3-5, 2012, Munich, Germany

2.3.7 Tentative results of an example
As a tentative example, a result of applying the de-
fault controller in the case of ‘deceleration while cor-
nering’ task is shown below. Figure 12 shows a time
plot of vehicle speed. Only by above default controls
it was not possible to trace the desired trajectory as
shown in Figure 13. Figure 14 shows a time plot of
side slip angle of both the cars in this case. Author
now encourages many academic people to join this
benchmark study.

Time [sec]

Ve
hi
cl
e
sp
ee
d
[m
/s
] Conventional Vehicle

New Mobility

Time [sec]

Ve
hi
cl
e
sp
ee
d
[m
/s
] Conventional Vehicle

New Mobility

Figure 12: Vehicle speed of conventional vehicle and
new mobility for deceleration while cornering’ task

Conventional Vehicle

New Mobility

Conventional Vehicle

New Mobility

Figure 13: Trajectories of conventional vehicle and
new mobility for ‘deceleration while cornering’ task

Time [sec]

S
id
e
S
lip
An
gl
e
[d
eg
]

Conventional Vehicle

New Mobility

Time [sec]

S
id
e
S
lip
An
gl
e
[d
eg
]

Conventional Vehicle

New Mobility

Figure 14: Vehicle slip angle of conventional vehicle
and new mobility for ‘deceleration while cornering’
task

f1

f2

f4

f1 = f2
f2 = f3
f3 = f4
f4 = f1

f3

f1

f2

f4

f1 = f2
f2 = f3
f3 = f4
f4 = f1

f3
Figure 15: Limitation of calculating rigid mechanical
loop of rigid elements by Modelica

3 Requests to Modelica from Japa-
nese automotive industries

In the way of developing Dymola models for automo-
tive applications, there occurred many requests to
Modelca community from automotive industries. Ta-
ble 3 summarizes the requests, though there are some
ambiguous points and further discussion seems nec-
essary. It is highly appreciated that Modelica Asso-
ciation will consider those requests in future devel-
opment of Modelica specification, Modelica tools
and also in future activity about Modelica. For this
purpose, there is a high expectation to the activity of
MIAB (Modelica Industrial Advisory Board).
As for the request number 21, the author will give an
additional explanation. This request relates to a de-
mand to convert CAD model to Modelica model di-

Development of New Concept Vehicles Using Modelica and Expectation to Modelica from Automotive …

586 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076579

rectly. There often are cases of making a rigid struc-
ture by combining rigid elements when making me-
chanical structure models by CAD. However, by cur-
rent limitation of Modelica, it is impossible to calcu-
late such models because the force and torque acting
on the every edge of the rigid elements are over con-
strained as shown in Figure 15. It is highly desired
that such limitation will be removed in the future.

4 Conclusions

For some future mobility vehicles, Modelica models
were developed for many virtual tests by the simula-
tion. It was proved that such simulations were useful
to estimate the motion of new mechanisms and also
the effect of controls before making actual vehicles.
To cope with the one of the potential problem of the
future small-size vehicles, a benchmark study was
proposed by Japanese committee of automotive in-
dustries and academia. It is highly welcome that
many control researchers will join and challenge to
the benchmark study. An organized session of this
benchmark study will be held in coming IFAC-AAC
(Advances in Automotive Control) 2013 symposium
which will be held in September of 2013 in Japan.

Acknowledgement

Development of the model library for the benchmark
study was done by close cooperation with Modelon
AB.

References

[1] Gombert B., “eCorner – the electric propul-
sion system of the future”, Proceeding of
Chassis Tech Plus 2011, pp. 803-813, 2011.

[2] Katsuyama E., “Decoupled 3-D moment con-
trol by an In-Wheel Motor vehicle” Proceed-
ing of Chassis Tech Plus 2011, pp. 133-150,
2010.

[3] Andreasson J. : On Generic Road Vehicle
Motion Modeling and Control, Doctoral the-
sis KTH (Royal Institute of Technology, Swe-
den) , Aeronautical and Vehicle Engineering,
Trita-AVE, ISSN 1651-7660; 2006:85 ,2006.

[4] Pacejka H.B., Tyre and Vehicle Dynamics,
2002, Butterworth-Heinemann, ISBN 0 7506
5121-5

[5] Ito H., Ohata A., Butts K. : Equation-Based
Model Data Structure for High Level Physical
Modeling, Model Simplification and Mode-
lica-Export, 4th International Workshop on
Equation-Based Object-Oriented Modeling
Languages and Tools. September, 2011, ETH
Z¨urich, Switzerland

Session 5C: Automotive Systems

DOI Proceedings of the 9th International Modelica Conference 587
10.3384/ecp12076579 September 3-5, 2012, Munich, Germany

Table 3: Requests from Japanese automotive industries to Modelica
Issue No. Requests

Readability of model 1

Improve readability of a model by avoiding difference between text-based
description and GUI (connection editor) based description. (It's possible to
write a model such that the parts are not connected in GUI but connected in
text layer.) For example, making a guideline about the way of description
for the definition of connection.

Code generation 2 Support C code generation for best-fit to compiler's optimization.

3 Improve readability of generated C codes so that the modification by handcoding will be easier.

4

Support C code generation for paraller processing. For example, specifying
the importance of calculation causality between different physical domain
and if the importance is small, then enable code generation so that the
different domain can be calculated

Units 5 Support the unit of [rpm].

6 Categorize and claasify physical domain of SI units more clearly. (Thereare too many SI unit domains to search easily now.)

Libraries 7
Increase library blocks to connect different domains. For example,
between translational domain and rotational domain

8 Increase Modelica standard libraries

9 Develop libraries for interaction of heat flow and mechanical systems(combustion engine, friction, damper, etc.)

10 Develop libraries for interaction between mechanical vibration and soundfield analysis.
11 Develop libraries to simplify 3D flow anaysis simulation to 1D flow
12 To make commercial library independent for different modelica-based

Error handling 13 Improve the traceability of the reason of a error.

Usability 14 Make arbitrary one model class replacable by simple GUI.

15 Make it possible to specify physical variables to be shown in the simulationresults (hopefully by simple GUI).
16 Support revision management function for model classes and package files.

17 Enable error handling and variables monitoring for protected models. (Forexample, models from suppliers.)

18 Enhance FMI compatiblity to other tools (Ex. GT-SUITES, CarMaker,CarSim, Star-CD, etc.)

Modeling methodology 19 Support of a new modeling methodorogy based on conservation laws ofphysical systems. (As HLMD from Toyota [5].)

20

Model reduction:
1) Simplify precise equation-bassed physical models by numerical
sensitivity analysis (ex. Sparce handling).
2) Identify parameters for non-linear dynamic parametric models from
experimental data.

21 Let the calculation for kinematic loops of rigid bodies possible.

Development of New Concept Vehicles Using Modelica and Expectation to Modelica from Automotive …

588 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076579

A Modular Technique for Automotive System Simulation

A Modular Technique for Automotive System Simulation
Felix Günther, Georg Mallebrein, Heinz Ulbrich*

Robert Bosch GmbH, Stuttgart, Germany
*Technische Universität München, Institute of Applied Mechanics

{felix.guenther, georg.mallebrein}@de.bosch.com, *ulbrich@amm.mw.tum.de

Abstract

Increasingly challenging requirements such as
environmental and safety legislation as well as in-
creasing development costs are leading to a need for
more overall system understanding in the automotive
sector. Modelica, as a suitable way for multi-physics
modeling, is therefore applied by Bosch, e.g. to in-
vestigate energy flows amongst domains.
We present a modular approach consisting of two
parts to handle complexity and increase the perfor-
mance: a modular library for the different domains
and a co-simulation framework. To begin with,
coupling aspects such as causality and communica-
tion are discussed in this context and their implemen-
tation is shown. A further focus is the variable macro
step size that we developed within the framework for
the automotive drive cycle simulation. The results of
the modular approach are described and analyzed
regarding error and performance aspects. Finally,
challenges of the work are mentioned and an out-
look, including FMI [2], [10], is given.
Keywords: co-simulation; automotive system simula-
tion; multi-domain

1 Introduction

Scarcity of resources, legislation and customer de-
mands continue to be the main driver for automotive
manufacturers. New technologies such as hybridiza-
tion or full electrification but also systems and com-
ponents to increase the efficiency of the conventional
powertrain help to reduce CO2-emissions. Especially
a supplier such as Bosch, providing a broad range of
components as well as system solutions, requires a
profound overall system understanding in all devel-
opment stages. This is achieved by simulation, ap-
plying acceptably complex but comprehensive ve-
hicle models. In contrast to signal-oriented or do-
main specific tools, Modelica proved to be a suitable
way for physical, multi-domain and object-oriented
modelling and is therefore applied, currently using

DYMOLA2012 [5] as simulation environment. Be-
sides the physical domains, the vehicle controllers
complete the models and hence a forward oriented,
robust drive cycle system simulation is done. The
resulting energy flows amongst the domains during a
drive cycle give potential assessments of a certain
system or component. This is compared to vehicle
measurements (as e.g. in [16]).

A drawback of including all vehicle domains in
one model is that the generated hybrid DAE system
causes a high computational effort. Putting together
the powertrain model with a detailed thermal and
exhaust system model leads to simulation times sev-
eral times slower than real-time on a Windows PC
system.

To avoid this effect of complexity, the vehicle
model is partitioned into subsystem models which
are simulated in parallel using their locally adapted
solvers. In a first approach, three subsystems were
coupled, performing a co-simulation via TISC [17], at
the expense of a precision loss but resulting in speed-
up by factor of 5 on a single core PC. Additionally,
using simulator coupling, the possibility to introduce
existing MATLAB/SIMULINK or AMESIM models is
given.

To reduce the numerical error introduced by par-
titioning and coupling, further development on cou-
pling aspects was done. This was realized by apply-
ing MDPCosim [11] as master-slave co-simulation
environment and expanding it with approximation
methods and a variable macro step size control. In
comparison to the approach with error estimation by
repeating steps [4], a different approach with heuris-
tic methods is being developed and in use for the
presented drive cycle simulations.

2 Modular Simulation of Automotive
Models

In order to optimize the energy consumption of a
vehicle, simulation of the overall system is needed.
This includes, besides the model of the powertrain
with driver, engine, transmission, brakes and driving

DOI Proceedings of the 9th International Modelica Conference 589
10.3384/ecp12076589 September 3-5, 2012, Munich, Germany

resistances, all energy-relevant subsystems, namely
the exhaust system, cooling and oil circuit as well as
the electric power net and the system control. Accor-
dingly, the models contain the mechanic, hydraulic,
thermal, electric and boolean logic domain.

A modular realization was consequently chosen.
On the one hand modularity is used to derive defined
interfaces between the subsystems. This is obligatory
for a collaboration of several developers or even sev-
eral tools. On the other hand, a partition into mod-
ules for a possible co-simulation is prepared.

2.1 Motivation for modular simulation

One reason for modular simulation is to assemble
models, developed in different tools. [7] shows dif-
ferent approaches, thus model coupling could be e.g.
realized via FMI for model exchange [2]. Another
reason is to partition the system to benefit of multi-
rate time integration [1], [14], using different solvers
for different dynamic behavior of subsystems. This
can be used to meet real-time requirements for HiL
simulation in the automotive domain, such as
achieved in [9]. For HiL simulation fixed-step solv-
ers are being used though, in contrast to the pre-
sented overall system simulation with variable DAE
solvers.
In order to measure the computation time (tCPU)
overhead by assembling i subsystem models to the
overall vehicle, a factor θA (1) is introduced.

∑
=

i
i model partialCPU

model overallCPU
A t

t

,

,θ (1)

During development of the subsystem models, e.g.
the thermal system including the fluid circuits, the
behavior of the vehicle is introduced by measured
timetables and a standalone simulation is possible.
Adding the thermal system model to the residual
model of the vehicle containing already the other
domains (i = 2), a θA of 12.1 was observed (for a
more complex thermal model 19.2). Adding as an
example a detailed model of the battery (i = 3) will
again increase this factor. Therefore, instead of simu-
lating the model with one solver, the modular ap-
proach is chosen, which additionally provides effi-
ciency by simulating in parallel. Here, θA can be seen
as an upper limit for the speed-up achievable by mul-
ti-rate advantages. For stability and accuracy reasons
a partition leading to preferably weak coupling is
useful, also giving the possibility to apply larger ma-
cro steps H. One possible partition method is de-
scribed in [14]. Another method is the TLM (Trans-
mission Line Modelling) approach, as presented in
the Modelica context in [13]. TLM creates a modular

simulation by adding a solver to each component.
Though, the advantage of symbolic manipulation of
the equations for multiple components within one
technical subsystem would disappear. Hence, in our
work the nearby application along technical domain
boundaries is chosen.

2.2 Coupling aspects

For a co-simulation of the modular vehicle model the
implementation of different coupling aspects is ne-
cessary. In the following, those aspects are catego-
rized and their application is described:

• Synchronization: different communication
strategies between the solvers are possible.
Figure 1 shows in its upper part a sequential
asynchronous solution, e.g. described in [15]
with advantages in accuracy and no necessi-
ty to define macro step sizes. The lower part
presents the parallel synchronous solution,
which is more efficient and therefore used
here. The MDPCosim master controls the
slaves including the models, who can run in
parallel

• Causality: the advantage of Modelica with
physical modeling and equation preprocess-
ing disappears at the coupling interfaces,
where causal, directed signals have to be
used. MDPCosim covers the possibility for
connecting slaves with coupling laws in the
master [12] (flow-flow-coupling) and e.g. a
reaction torque is retrieved in the master. For
the applied step sizes and partitions in the
vehicle simulation the more conducive tech-
nique of potential-flow-coupling is adopted.
Details of the causal interface are com-
mented in section 3.

• Approximation: the discretization intro-
duced at the interface is adding an additional
error to the simulation that can be reduced
by approximation methods. Depending on
the chosen synchronization scheme, different
methods are possible: extrapolation, interpo-
lation or even iterative such as described in
[3]. It can be implemented in the master
(constant), the slave (time varying) or both.
On the present, parallel case, extrapolation
including smoothing is chosen, see section 3.

• Macro step size: using synchronous coupl-
ing, a suitable macro step size has to be cho-
sen. An efficiency gain for the overall simu-
lation with acceptable co-simulation error
needs to be combined. Therefore, investiga-
tion for fixed, predefined (timetable) and in
conclusion variable macro step sizes was

A Modular Technique for Automotive System Simulation

590 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076589

done. As a result, a heuristic method was de-
veloped, which is described in detail in sec-
tion 4.

• Event handling: occurring events in the
subsystems will cause severe errors if the
coupling values are affected, e.g. in a start-
stop-strategy. This must be avoided thus no
discontinuous signals are chosen in the
present interfaces. Still, detecting and treat-
ing events during co-simulation is important
for future work and one viable solution
could be using FMI for co-simulation [10].

Figure 1: Two synchronization schemes (slaves 1, 2)

2.3 Evaluation of modular simulation

Illustrating the implementation of some coupling
aspects and signal routing, figure 2 shows the im-
plemented structure for the slaves in Modelica.

Slave

Approx. Com.Modell

ODE / DAE /

hybrid DAE

Causal

Interface

ũu y ȳ

ControlbusControlbus

Approx.Info

Solver
Figure 2: Structure of a slave model with signals

The input signals u are extrapolated in the approxi-
mation section to ũ. As wrapper to convert ũ and the
output signals y to the physical proper model the
causal interface for different domains is modelled.
The continuous y then are communicated to the mas-
ter as discrete signals ȳ. Additional, modular specific
information is written to the control bus as explained
later.

In order to evaluate the accuracy of the modular ap-
proach, a discretization error τC̄UM is defined by (2).

t
dt

CUM
∫ −

=
yy

τ (2)

Notable at the physical interfaces this error is fed
back and influences the behavior of y, compared to
the same states y* in a monolithic simulation (one
solver). The correlation in the master between slave
inputs u and outputs y is given as incidence matrix I:

Iyu =: (3)
In order to take into account the accuracy augmenta-
tion by approximation, as well as the cumulated
feedback influences, the co-simulation error

t

dt)
*
CUM

∫ −
=

*(Iyu
τ

~
~ (4)

is introduced. In (3) and (5) t represents the simu-
lated time.
Both accuracy and efficiency of the modular ap-
proach with co-simulation have to be regarded. Be-
sides cumulating events and F-evaluations the speed-
up factor SCS (5) is important, having the reduction of
simulation time of the overall vehicle model as moti-
vation.

CoSimCPU

monolithCPU
CS t

t
S

,

.,= (5)

The accuracy and efficiency of co-simulation was
observed during the development of the library and
the framework described below.

3 Implementation

As mentioned in the introduction, the modular auto-
motive system simulation relies on two parts, the
modular library and the co-simulation framework.

3.1 Modular library

The development of the library was based on using
the Powertrain Library [6]. In addition, detailed
models of the oil circuit, cooling circuit, HVAC, the
exhaust system and the power net were developed. In
order to enable configuring multiple classes of ve-
hicles in different model granularity and combine
them with existing in-house data libraries, the mod-
ular library was developed.

Session 5C: Automotive Systems

DOI Proceedings of the 9th International Modelica Conference 591
10.3384/ecp12076589 September 3-5, 2012, Munich, Germany

Figure 3: Example: overall vehicle model / data and model structure in the library

It contains a ‘_MODEL_LIB’ part for the model de-
velopment and, mirroring the same structure, a sepa-
rate ‘_DATA_LIB’ part, where vehicles and subsys-
tems are configured, parameterized and set up for
different (drive cycle) simulation experiments. Fig-
ure 3 shows a top-level model of a commercial ve-
hicle. On the right part, the library structure with
model and data part is shown. The different subsys-
tems, e.g. for combustion engines (‘Ced’) or thermal
systems (‘Ths’), can be changed by redeclaring the
class with other data lib models. In the same way, a
subsystem can be set up to be co-simulated, as
shown in the left part of figure 3: The Ths-model is
replaced by an interface (‘Ths CoSim’) directing to
the thermal system co-simulation slave, which can be
found as standalone model in the library structure
and will be run in parallel.

Modularity is also represented in the subsystem
models. Figure 4 depicts the thermal system. It con-
tains replaceable models for the energy balance,
combustion engine heat, cooling circuit, oil circuit
and HVAC.

Figure 4: The thermal system model

In order to allow maximum modularity accompanied
by physical coupling between the subsystems, causal
interface models are introduced for different domains
enabling signal exchange with a ‘causalSubBus’. In
such manner e.g. the oil pump is coupled to the po-
wertrain part. The related flange interface in figure 5
shows the crank part.

Figure 5: Causal interface for flanges

Depending on the macro step sizes, a flow-flow or a
potential-flow-coupling can be chosen. Similar inter-
faces are used for the thermal part. For communica-
tion with MDPCosim and signal approximation, a
configurable interface model is in the library, figure
6.

y u

Com

InfoBus

u u~

Apx

InfoBus

slaveOut

slaveIn

Figure 6: Co-simulation interface model

Different slave approximation methods, partly in
combination with master approximation of flow va-
riables, have been tested on a two-mass-oscillator
model as well as in the vehicle context. Following,
different methods, such as Taylor, Lagrange and
Hermite polynomials and a transition method,
smoothing signal jumps, are implemented for the
library and applied in the ‘Apx’ block. All methods
can handle a variable macro step size. Additionally,

A Modular Technique for Automotive System Simulation

592 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076589

an ‘infoBus’ is introduced containing information
about the signals approximation.

3.2 MDPCosim framework

The latter information can be fed via a control bus
and used for master algorithms. This architecture is
described in figure 7. It shows the configuration of
the MDPCosim framework [12] and its adaption as
vehicle co-simulation environment in C++. The ab-
ovementioned overall vehicle model is represented
as slave 1 … N. An overhead process actuates the
master and slave processes. These run in parallel,
while the co-simulation is controlled by the master.
This includes synchronization, connecting the signals
(feedthrough or coupling law with approximation
[12]) and the macro step size algorithm.

Co-Simulation Environment

Master Slave 1

Slave N

Synchronization

Connection- /

Approximation-

algorithm

physical direct

Macrostepsize-

Algorithm

u1

y1

Controlbus

Controlbus

Slave 2

u2

y2

Controlbus

Controlbus

Figure 7: Architecture of the adapted environment
MDPCosim

As inter process communication, shared memory is
used; TCP/IP is planned for future work. Besides the
coupling signals (u, y) the control bus connects mas-
ter and slaves. It contains: derivatives of y, step size
H, Tnext, τC̄UM and information about approximation,
local step sizes h and events. This information is
handled within the master algorithms.

The inner layout of the slaves is shown in figure 2
and figure 6 respectively.

3.3 Batch co-simulation

As a tool for the development of modular methods,
MDPCosim was expanded with a superimposed al-
gorithm that allows automated batch runs. This is
used to sweep parameters of the master as well as the

slave models. Hence, fitting of model parameters is
possible or a variety of co-simulations needed for
requirements engineering of a certain component in
the overall system context can be run.

Figure 8 demonstrates the data and process flow
of a batch run. It is configured, using a file that con-
tains the following information: number of runs,
type, identifier of a parameter (file), (min and max)
values. The different types are ‘variants’, ‘parame-
ter’, and ‘autoParaVari’. The type ‘variants’ is fol-
lowed by a file identifier defining numbered versions
of a model or master parameter file or different mod-
el files. The other types allow naming a parameter to
be varied, giving all values or giving a minimal and
maximal value.

START

END

BatchRun ?
single

Co-Sim
no

yes

READ settings

(batchType, numRuns,...)

yes

Type ?

READ

para ident

READ

para values

READ

para ident

READ

min max

autoParaVariparameter

READ

file ident

READ

para file

variants

INIT master / slave para file

SET para vector

i:=1

INIT Slave ctrl comnds i

INIT batch log file

SET para value / SET para file

single

Co-Sim

i=numRuns ?

WRITE batch log file

i:= i+1

SET Slave ctrl comnds i

WRITE

result i

WRITE

log files i

Figure 8: Flow chart of the batch architecture

The result files and a batch log file can be imported
in MATLAB to be commonly evaluated for the as-
pects described in section 2.3. By means of this
evaluation the development of approximation and
macro step size algorithms is done.

Session 5C: Automotive Systems

DOI Proceedings of the 9th International Modelica Conference 593
10.3384/ecp12076589 September 3-5, 2012, Munich, Germany

4 Macro Step Size Control for Drive
Cycle Simulation

The objective of modular automotive simulation is to
increase simulation speed, while keeping the co-
simulation error acceptable. In contrast to the se-
quential asynchronous approach, see 2.2, for the pa-
rallel synchronous technique, defining the macro
step size H is necessary. Setting H = hi (with hi: local
step size of slave i) is not conducive, if we consider
the effort for each macro step with an event in all
slaves, waiting for synchronization and the master
algorithm for coupling. Thus relatively large H are
pursued. To reduce the following discretization error,
the extrapolation methods are adopted and an algo-
rithm for variable H is developed.

State of the art of simulation tools and the
abovementioned context (section 2 and 3) lead to the
following boundary conditions for the macro step
size control: large subsystem models are solved with
a commercial simulation tool and are therefore seen
as black boxes for the master; overall, the coupling is
kept weak (slow changing temperatures in the ther-
mal model / small pump inertia compared to the
powertrain inertia.); the drive cycles (e.g. [8] or [18])
span more than 1000 s and macro steps in the range
of 0.1 s and 10 s are chosen; the drive cycles provide
an approximate predictive behaviour of the overall
vehicle. Embedded methods or the Richardson
method such as presented in [4] are neither condu-
cive (for efficiency reasons) in the present use-case
nor possible (yet), since a macro step cannot be re-
peated. Thus, the methods, described in this paper
are heuristic and strictly monotone procedures based
on indicators.

The chosen approaches go without the need to re-
peat steps and partly establish the general correla-
tion:

,...),...,_),(~,,,,(puτhyy eventttHH = (6)

With p as parameters to be defined by the user and
ũ(t) derived by the knowledge about the used ap-
proximation method for each signal. Based on (6)
different approaches can be combined:

• H is determined basing on additional user
input parameters p or simply the common
RTOL/ATOL user limits.

• H is determined by one leading slave output
y, by multiple or all outputs of all slaves y.

• H is determined with local slave information
about derivatives y , error τ , local step
size(s) h, approximation and events. This in-
formation is provided via the control bus
(Figure 2, 7).

• H is determined with or without quasi-error
estimation based on τ and ũ.

In figure 9 the master algorithm with the step size
control (‘H algorithm’) is explained. If the parameter
for H is set to <0, a table file with H = f(t) is used
and if H is set to 0 the H controlling algorithm is in-
itiated. After initializing the slaves and the master
including the H algorithm initialization, the co-
simulation cycle starts. Within each cycle, after ex-
ecuting each macro step, the H algorithm is called
and can set a new value for H.

START

END

READ master

parameters

H=0 ?
Co-Sim

H=const.
H>0

READ

H-table
H<0

Co-Sim

H=f(t)

H=0

READ var. H

parameters

INIT y, ControlBus (Slaves)

INIT H algorithm

INIT t, H

INIT u, ControlBus

 (Master connection)

tEND?

yes

EXECUTE Step (t,H) (Slaves)

t:=t+H

GET y, ControlBus (Slaves)

H:=f(H algorithm)

SET u, ControlBus

 (Master connection)

no

Figure 9: Flow chart of the master algorithm

In figure 10 an example of a master parameter file is
shown. Starting with the entry for the co-simulation
end time, the second line defines H. If it is 0, the al-
gorithm continues reading the parameter file with a
line for the chosen H algorithm type and a line for
start value for H (optional), followed by type specific
parameters (see next section).

A Modular Technique for Automotive System Simulation

594 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076589

Figure 10: Example: Master parameter file for vari-
able macro step size

Currently, the development of the more sophisticated
H algorithms is still ongoing. However, first algo-
rithms are implemented and in use. A state-lead al-
gorithm is described in 4.1.

4.1 Implementation

In a drive cycle, the desired vehicle speed v and the
gear is given as v = f(t) and gear = f(t). Additionally,
the resulting kinematic states in the powertrain do-
minate the overall vehicle model behavior. Accor-
dingly, the macro step sizes are based on gradients of
the vehicle speed (v) or the engine speed (engω) as
leading states and indicator for most changing rates
of the model states. Thus the macro step size H is set
inversely proportional to the last gradient value.

As shown the example in figure 10, line 5, the us-
er has to provide parameters for the index number of
the slave i and the belonging index number j of the
leading state. This has to be completed with the last
line of parameters with values for Hmin, Hmax, method
tuning parameters and minimum and maximum gra-
dient values. To reduce the user input, a method
without the latter entries was developed. The correla-
tion follows with

)()],1min(1[minmaxmin
0 HHyHH p

dl −−+=  (7)

with a dimensionless dly :

avg

ji
dl yp

y
y






1

,= (8)

depending on a weighted mean value over the cur-
rent simulation time. The algorithm can be optimized
with the remaining parameters: Hmin, Hmax, p0, p1. For
this purpose, batch runs for each parameter are done
with representing use case models and evaluated us-
ing MATLAB. One of the results is shown in fig-
ure 11, where a variation of Hmin from 0.05 s to 0.5 s,
holding all other master parameters constant, is pre-
sented. It covers the evaluation for number of steps,
speed-up Scs (5) and the error *

CUMτ~ (4). In that man-
ner, the parameters were optimized for a certain
drive cycle.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

500

1000

1500

2000

2500

3000

hMin

[-
]

BatchRun

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8

9

10

[m
/s

]
 [
s
/s

]

sum H [-]

Tau__cum__apx_ [m/s]

Speed-up [s/s]

Figure 11: Evaluated batch run varying Hmin

The macro step sizes during a drive cycle
(NEDC) in figure 12 are in the range of 0.4 s and 2 s
and result in an average step size of 0.92 s.

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

simulated time [s]

[s
]

Macro step size; number of steps:1278

H [s] Min:+4.000e-001 Max:+2.000e+000 Av.:+9.225e-001

Figure 12: macro step sizes in a drive cycle

To evaluate the algorithm, this is compared to a fixed
H co-simulation with this average value. The com-
parison is shown in table 1.

Table 1: macro step size control method evaluation

 variable H fixed H (0.92 s)
Scs [s/s] 4.516 4.502

CUMτ [m/s] 0.036 0.060

With a comparable speed-up factor the cumulated
discretization error could be significantly reduced.
With adapted parameters, the method was also suc-
cessfully applied for the two-mass-oscillator test
case. However, the user needs knowledge about the
model and the coupling method. Therefore ongoing
investigation is done on methods with less user in-
puts on the one hand and embedding more local in-
formation as well as a control strategy for approxi-
mations on the other hand.

Session 5C: Automotive Systems

DOI Proceedings of the 9th International Modelica Conference 595
10.3384/ecp12076589 September 3-5, 2012, Munich, Germany

5 Use-Cases and Results

All models presented in this paper are simulated us-
ing DYMOLA [5] and co-simulation is done by coupl-
ing several DYMOLA processes. The vehicle hybrid
DAE models require the use of the ‘dassl’ solver and
the same integration settings are used for all experi-
ments. The modular simulation was investigated on
test use-cases, a two mass oscillator (TMO) and sim-
ple thermal modal as well as in the overall automo-
tive context. For completeness, some results of the
approximation tests with the TMO are given in the
following.

5.1 Two-mass-oscillator test case

To develop the causal flange interface, an undamped
rotating TMO is modeled with high frequency of the
left and low frequency in the right mass and simu-
lated, using MDPCosim. Thus the direction and the
combination of approximations can be distinguished.
Table 2 shows some results. The co-simulation error
after 20 s with H = 5 ms is compared for potential-
flow-coupling (angle Lϕ to the right side) and flow-
flow-coupling with different approximation methods.
It could be reduced by more than two orders.

Table 2: TMO: improvement with approximation
 [rad]τ~*

CUM, Lϕ

potential-flow-coupling:
no approx. (0. order extrapolation) 4.43e-1

potential-flow-coupling:
phi_left: first order transition
tau_right: 4-point-lagrange

2.90e-3

flow-flow-coupling:
master: 2nd order method

slaves: first order transition
1.38e-3

5.2 NEDC: vehicle with detailed thermal sys-
tem

Following the conditions for overall vehicle simula-
tion with larger step sizes, in the current state of the
modular library only potential-flow-coupling and
signals without direct physical reaction are used,
such as the fuel mass flow. For temperature signals a
4-point-lagrange polynomial and for (rotational)
speed signals a first order taylor or the transition me-
thod is configured.

Here, as an example a conventional passenger car
model is coupled with a detailed thermal system
model, similar to the one in figure 4, but with only a
two-thermal-mass motor block model and simplified
models of the cooling system and HVAC. The re-
sults are evaluated by referencing the same overall
vehicle model, simulated without co-simulation with

only one solver. For the NEDC (simulated time
1180 s), the computing time was 1400 s. With ap-
proximations and the variable macro step size (see
4.1; H: Ø 0.92 s) the co-simulation computing time
was 310 s (speed-up: 4.5 and real-time capable). It
lead to an acceptable error e.g. of the fuel consump-
tion value of << 1%. Compared to θA = 12.1 (see 2.1)
there is more speed-up capability. This can be
reached using larger Ø H, however finally leading to
inacceptable accuracy. For more complex models of
the thermal, exhaust system or the powernet, more
speed-up is reached.

Figure 13 shows three different simulations for
the same acceleration sequence in this cycle. The
simulation results for the engine speed of the refer-
ence, a co-simulation with correlating fixed H and
the co-simulation with variable H and 0. order extra-
polation are compared.

800 825

1000

2000

3000

[1
/m

in
]

simulated time [s]

engine speed [1/min] reference

engine speed [1/min] co-sim fixed H

engine speed [1/min] co-sim variable H

Figure 13: engine speed in an acceleration sequence

The same three simulation results as in the upper
figure are taken in figure 14. To compare the beha-
vior of an approximation method in combination
with variable macro steps additionally, the warming-
up curves of the average oil temperature are taken.

Figure 14: warming-up at cycle start / negative ap-
proximation effect.

A Modular Technique for Automotive System Simulation

596 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076589

The approximated curve is mostly more congruent to
the reference. However, in the first part, the prob-
lems of applying higher order extrapolation together
with to large step sizes is obvious.

This is one of the challenges in using a parallel
and strictly monotone modular technique. Therefore,
as mentioned in 4.1, the control bus has to be
adopted for a quasi approximation order control to-
gether with further improved step size control me-
thods.

6 Conclusions and Outlook

In this paper we presented a Modelica based modular
approach for overall vehicle system simulation. The
advantages of using co-simulation in this context are
deduced and achieved computational speed-up re-
sults are shown. The modular approach consists of
two parts: a modular multi-domain vehicle library
and the adapted co-simulation framework MDPCo-
sim [11]. The modular library allows configuring
complete vehicles by assembling the needed subsys-
tem models, which is also possible as co-simulation
slave to be simulated in parallel. Additionally, it pro-
vides interface models that can be easily configured
by the user to set up a co-simulation run. The im-
plementation of different categorized coupling as-
pects is shown. In particular, a heuristic method for
macro step size control that is used for the overall
vehicle simulation is explained. As advantage its
parameters were chosen according to the a priori
known drive cycle. Though, there are many chal-
lenges, which have to be regarded to make modular
simulation more applicable.

Thus, there is remaining work to be done. A pref-
erable way is the adoption of FMI [10], once a reli-
able implementation also for the mentioned large
multi-domain models is available (not the case at the
beginning of the present work). The FMI standard
provides a suitable set-up for the algorithms de-
scribed above. Consequently an even more common
use of the modular library approach will be feasible,
also including more different tools.

Acknowledgements

We are grateful for the collaboration with TU
München providing access to MDPCosim; Marcus
Schulz, Cooperative State University Stuttgart, for
fruitful discussions and TLK Thermo GmbH for
kindly providing TISC [17]

References

[1] Arnold, M. Multi-Rate Time Integration for
Large Scale Multibody System Models.
IUTAM Symposium on Multiscale Problems
in Multibody System Contacts, Stuttgart,
Germany, 2006.

[2] Blochwitz, T. et. al. The Functional Mockup
Interface for Tool independent Exchange of
Simulation Models. Proc. 8th International
Modelica Conference. The Modelica Associ-
ation. Dresden, Germany, 2011.

[3] Busch, M., Schweizer, B. Numerical Stabil-
ity and Accuracy of Different Co-Simulation
Techniques: Analytical Investigations Based
on a 2-DOF Test-Model. The 1st Joint Inter-
national Conference on Multibody System
Dynamics, Lappeenranta, Finland, 2010.

[4] Clauß, C., Arnold, M., Schierz, T., Bastian, J.
Master zur Simulatorkopplung via FMI.
ASIM-Konferenz STS/GMMS 2012, ISBN
978-3-901608-39-1, Wolfenbüttel, Germany,
2012.

[5] Dassault Systèmes, Dymola 2012, 2011 URL
http://www.3ds.com/products/catia/portfolio/
dymola

[6] DLR Institute of Robotics and Mechatronics,
The Powertrain Library (Version 2.1.0), 2011
URL
http://www.dlr.de/rm/en/desktopdefault.aspx/
tabid-5312/8907_read-16072/

[7] Dronka, S. Die Simulation gekoppelter
Mehrkörper- und Hydraulikmodelle mit Er-
weiterung für Echtzeitsimulation. Dresden,
Germany, PhD thesis, Technische Universität
Dresden, 2004

[8] European Commission. NEDC. Consolidated
Directive 70/220/EEC, 2006.

[9] Faure, C. et al. Methods for real-time simula-
tion of Cyber-Physical Systems: application
to automotive domain. Proc. 1st IEEE Work-
shop on Design, Modeling and Evaluation of
Cyber Physical Systems, Istanbul, Turkey,
2011.

[10] FMI Specification 2.0 Beta 3, available for
free from URL http://www.functional-
mockup-interface.org/ (2.0 beta)

[11] Friedrich, M. Parallel Co-Simulation for Me-
chatronic Systems. München, Germany: PhD
thesis, Technische Universität München, In-
stitute of Applied Mechanics, 2011.

Session 5C: Automotive Systems

DOI Proceedings of the 9th International Modelica Conference 597
10.3384/ecp12076589 September 3-5, 2012, Munich, Germany

[12] Friedrich, M., Schneider, M., Ulbrich, H. A
Parallel Co-Simulation for Mechatronic Sys-
tems. The 1st Joint International Conference
on Multibody System Dynamics, Lappee-
nranta, Finland, 2010.

[13] Johansson, B., Krus, P. Modelica in a Distri-
buted Environment Using Transmission Line
Modelling. Proc. Modelica Workshop 2000,
Lund, Sweden, 2000.

[14] Kanth, D. Zur steifigkeits- und kopplungsba-
sierten Partitionierung mechatronischer Sys-
teme. Stuttgart, Germany, PhD thesis,
Univerity of Stuttgart, 2010

[15] Petridis, K., Klein, A., Beitelschmidt, M.
Asynchronous method for the coupled simu-
lation of mechatronic systems. Proceedings
in Applied Mathematics and Mechanics,
Bremen, Germany, 2008.

[16] Rumbolz, P., Baumann, G., Reuss, H-C.
Messung der fahrzeuginternen Leistungs-
fluesse im Realverkehr. ATZ 05 2011, Ger-
many, 2011

[17] TLK-Thermo GmbH, TISC, 2012, URL
http://www.tlk-thermo.com.

[18] UNECE, WLTC v4, 2012, URL
http://www.unece.org/.

A Modular Technique for Automotive System Simulation

598 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076589

Modeling Vehicle Drivability with Modelica and the Vehicle Dynamics Library

Modeling Vehicle Drivability with Modelica and
the Vehicle Dynamics Library

John Griffin1 John Batteh2 Johan Andreasson1
1 Modelon AB 2 Modelon, Inc.

 Ideon Science Park Ann Arbor, MI
 Lund Sweden United States

john.griffin@modelon.com john.batteh@modelon.com johan.andreasson@modelon.com

Abstract

This paper highlights the use of multi-domain physi-
cal models for simulation of vehicle drivability ap-
plications. The models are implemented using the
Vehicle Dynamics Library and Engine Dynamics
Library from Modelon. The application examples
include vehicle launch, vehicle start-stop, and trans-
mission shift events. The examples are structured to
illustrate how increasingly sophisticated models pro-
vide additional model fidelity or increase the driva-
bility phenomena observed.

Keywords: vehicle dynamics; drivability; vehicle
modeling; powertrain; engine; transmission; launch;
NVH

1 Introduction

To meet increasingly stringent fuel economy and
emissions standards, automotive original equipment
manufacturers (OEMs) and suppliers have sought
novel technologies to meet customer demand con-
strained by the regulatory environment. As system
complexity increases, the need for increasingly so-
phisticated analytic tools to perform concept evalua-
tion, capture multi-domain system interactions, and
develop and validate control strategies grows. Mod-
elica has been used extensively in the automotive
community for modeling and simulation of vehicle
dynamics and handling [1], transient engine model-
ing and performance [2] [3], vehicle thermal man-
agement [4], air conditioning systems [5], and vehi-
cle fuel economy and emissions [6].

While customers demand continued refinement in
vehicle performance attributes, they also demand no
compromises in vehicle comfort and vehicle driva-
bility. Furthermore, many system design or control
actions improve one attribute potentially at the ex-
pense of another or several others, typically drivabil-
ity or comfort. Automotive manufacturers are acute-

ly aware of the market requirements to achieve best
in class levels of vehicle performance and drivabil-
ity. For example, customers may report drivability
related issues such as shift busyness resulting from
an increased number of vehicle shifts to optimize
fuel economy for transmissions with more gears.
Shift performance and feel are also common custom-
er complaints. With increasing use of start-stop
technology (see Figure 1), customers experience
many more starting events, and their expectations
regarding these events differ in driving mode as
compared with a single start in park in a garage or
parking lot. Vehicle launch with both conventional
and especially with start-stop technology can be es-
pecially problematic from both a performance and
drivability standpoint. With multiple power paths in
both conventional and hybrid vehicles, interactions
between subsystems can lead to vehicle vibrations
typically felt at the seat track by the customer. With
the accelerated adoption of dual clutch transmis-
sions, driveline vibrations induced by clutch dynam-
ics are becoming a drivability concern. Variations in
clutch friction material, alignment, etc. can affect
both nominal performance and drivability, and data
to characterize the key components is often not
available or considered proprietary by the suppliers.

This paper describes several different vehicle
drivability applications. These models are imple-
mented using components from the Modelon Vehicle
Dynamics Library (VDL) [1] and Engine Dynamics
Library (EDL) [8]. These examples highlight the
multi-domain approach needed to simulate vehicle
drivability issues. The examples are also structured
to illustrate how increasingly sophisticated models
provide additional model fidelity or increase the
physical phenomena observed. The sample applica-
tions in this paper include vehicle launch, vehicle
start-stop, and transmission shift events. The applica-
tions also include different modeling approaches for
the engine with both a conventional automatic and
dual clutch transmission.

DOI Proceedings of the 9th International Modelica Conference 599
10.3384/ecp12076599 September 3-5, 2012, Munich, Germany

Figure 1. Projections of micro-hybrid vehicles in

North America and Europe (reprinted in [7])

2 Vehicle Modeling

This section outlines the key multi-domain compo-
nent and subsystem models that support the subse-
quent vehicle drivability applications. The main
model components are detailed as are the different
modeling approaches that can be used to support ve-
hicle drivability applications.

2.1 Vehicle Model Architecture

The ability to create configurable model architec-
tures in Modelica is one of the key enablers for ar-
chitecture-driven development in model-based sys-
tems engineering [6]. With core language support
for model management and configuration and formal
interface definitions, Modelica provides an excellent
foundation for distributed, collaborative systems
modeling.
 The Vehicle Dynamics Library takes an architec-
ture-driven approach to model development and con-
figuration. One of the fundamental guiding princi-
ples of VDL is the ability to mix behavioral and
physical models to conveniently change between
different configurations and also between different
levels of detail. From a powertrain perspective, the
use of the Rotational3D library [9] is key as it pro-
vides a fully-defined representation in 3D that can
easily be reduced to a 1D representation or vice ver-
sa. Within the same architecture, the VDL can sup-
port 1D modeling typically used for conceptual rep-
resentations early in the product development pro-
cess to represent the main degrees of freedom to gain
early understanding and understand system-level
interactions. Furthermore, full 3D representations
can be supported which require more extensive pa-
rameterization but with a level of detail that provides
virtual testing capabilities.

 VDL makes use of these Rotational3D connectors
to represent the interface cuts between the different
components in the powertrain, from the engine to the
wheels. Therefore, the architecture has inherent sup-
port for plug-and-play compatible exchange between
1D and 3D components. For example, it is straight-
forward to combine a 1D driveline in a 3D chassis or
a detailed engine model on a lumped chassis.
 The component-based interfaces also make it
straightforward to switch context, as illustrated for
the engine and transmission in Figure 2. In the top
model, the engine and transmission are used in a full
vehicle template, connected via the driveline to the
wheels and the chassis. The other model contains
only the engine and the transmission connected to a
load, which then can be very simplified, e.g. just a
1D mass, or also a full chassis with driveline.

Figure 2. Architectures illustrating the same engine

and transmission models in different contexts as shown
by the models in a full vehicle representation (top) and
together with a load representing the vehicle (bottom)

2.2 Engine

Modelica has been used extensively for simulating
detailed engine transient response including combus-
tion [2] [3]. Proper representation of the engine dy-
namic response is critical for vehicle drivability ef-
forts. Both the mean and fluctuating component of
the engine torque production can induce undesirable
vehicle driveline response. The various delays in the
engine due to controls scheduling constraints, actua-
tor response, air path dynamics, and fueling dynam-
ics can also be important. Engine inertial response
(piston mass, crank/slider inertia, crankshaft inertia)
can also be an important consideration in dynamic

Modeling Vehicle Drivability with Modelica and the Vehicle Dynamics Library

600 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076599

simulation, especially for cranking, launch, and start-
stop events.

Typical engine modeling approaches for drivabil-
ity applications include the following:
• Mean value modeling based on maps and actua-

tor inputs
• Mean value modeling including air path (intake

and exhaust) dynamics
• Mean value modeling with superimposed torque

fluctuations at the crankshaft
• High frequency modeling with multiple cylin-

ders based on input cylinder pressure
• High frequency engine modeling with multiple

cylinders and physics-based combustion model-
ing

These approaches cover a range of predictive capa-
bility, computational effort, and input/calibration
data requirements. Furthermore, the level of exper-
tise required to implement and validate the various
models varies greatly.
 The engine components in the Vehicle Dynamics
Library support multiple approaches for modeling
the engine and crankshaft. These approaches range
from a pure map-based mean value approach to a
high frequency approach based on cylinder pres-
sures. Figure 3 shows an I4 engine with a cylinder-
based pressure calculation and a distributed model of
the engine bottom. An analytic representation can be
used for the pressure calculation to allow faster
simulation with a standard table for torque as a func-
tion of throttle and engine speed required for pa-
rameterization. This model calculates a pressure
trace profile using spark timing with adjustable
shape parameters and induces the appropriate
amount of crankshaft torque fluctuation. A sample
cylinder force and engine animation for the I4 engine
is shown in Figure 4. A full tabular representation
for the cylinder pressure as a function of crankangle,
throttle, engine control settings, and engine speed
can also be used.
 To support additional modeling options for the
engine, engine models from the Engine Dynamics
Library [8] can be integrated into the VDL vehicle
architecture. The Engine Dynamics Library current-
ly provides mean value engine modeling capability
including the air path dynamic effects, exhaust mod-
eling, and thermal effects. The focus of the library is
real-time like simulation of gas exchange and mean
value torque production to support engine optimiza-
tion and evaluation of engine control strategies. A
turbocharged, spark-ignited engine model using EDL
is detailed in Section 3 and integrated within the
VDL architecture for use in a start-stop application.

Figure 3. I4 engine with cylinder pressure calculation
and dynamic bottom (top) and detail for engine block
showing piston and crankshaft models (bottom)

Figure 4. Cylinder force (top) and engine animation

(bottom) for I4 engine

Session 5C: Automotive Systems

DOI Proceedings of the 9th International Modelica Conference 601
10.3384/ecp12076599 September 3-5, 2012, Munich, Germany

2.3 Transmission and Driveline

Several transmission implementations are available
in the Vehicle Dynamics Library, including repre-
sentations of automatic, manual, and CVT transmis-
sions. Within the architecture of Vehicle Dynamics
Library, it is certainly possible to implement custom
transmission models including both 1D and 3D ef-
fects, backlash, friction, etc.
 Dual clutch transmissions (DCT) are becoming
increasingly popular due to the projected fuel econ-
omy benefits resulting from the removal of the
torque converter, dry clutch technology, etc. How-
ever, many of these changes also can pose new per-
formance (no torque multiplication from torque con-
verter), drivability (no damping from torque convert-
er due to fluid coupling), and control (managing
clutch to clutch transitions for gear changes) chal-
lenges. Thus, dual clutch transmissions are often
mated with a dual mass flywheel to provide the re-
quired damping but with increased inertia.
 To illustrate some of these challenges in the fol-
lowing drivability applications, the simple dual
clutch gearbox model shown in Figure 5 was imple-
mented and integrated into a transmission model.
Since this model is primarily for demonstration pur-
poses, the control interfaces are simplified. This
model implementation should also be considered as
functional as no detailed parameterization data
(clutch, gearing, etc.) was available to support a
more detailed model implementation for the purpos-
es of this paper. For a full treatment of a dual clutch
transmission and associated control, the interested
reader is referred to [10].

Figure 5. Dual clutch transmission gearbox

 The Vehicle Dynamics Library provides both
components and assembled subsystems to model
various driveline implementations (front, rear, all-
wheel drive). Components are available for gears,
gear pairs, clutches, shafts, differentials, etc. The
shaft models are implemented such that geometric
effects such as joint effects and bend angles can be
modeled if needed. Pure 1D rotational components
can be used as well with the 1D/3D structure provid-
ed by the library architecture. Figure 6 shows a rear
wheel drive driveline model with a transmission
shaft, rear differential, and geometric half shafts; this
model is used in the vehicle model examples shown
in Section 3.

Figure 6. Rear wheel drive driveline

2.4 Chassis

The Vehicle Dynamics Library includes a wide
range of suspension models with fidelity levels that
span from planar models to fully geometric, elasto-
kinematic models. Lower fidelity suspension models
are more desirable in drivability simulations for
many reasons. First, the engineers performing driv-
ability simulations are mainly interested in straight-
line behavior and longitudinal dynamics. For these
types of simulations, unlike in handling simulations,
it is not important to accurately represent how the
wheel moves with respect to the chassis for a given
wheel travel and load condition. A key benefit of
using lower fidelity suspension models is that infor-
mation required to represent them is significantly
lower than a more complex physical model.

Historically, lower fidelity models have included
the following representations:

• Planar suspension
• Equivalent roll stiffness
• Lumped mass
• Swing arm

Each of these suspension models are available to be
used within VDL. The lower fidelity suspension
models have the same interface as the more complex
physical suspension models. This modular approach

Modeling Vehicle Drivability with Modelica and the Vehicle Dynamics Library

602 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076599

ensures that either representation can used in the
chassis at any time.
 The range of chassis implementations are de-
scribed in more detail below and shown in Figure 7
via animations from VDL. The example applications
in Section 3 include simulations within this range of
chassis models.

Pitch model: The suspension is modeled as a rigid
axle that can only translate vertically with respect to
the chassis body. Ride stiffness is modeled using
vertical springs and dampers. This model allows the
chassis to heave and pitch.
Equivalent roll stiffness model: The suspension is
modeled as a rigid axle that rotates about a single
axis. Roll stiffness is modeled using a torsional
spring and damper. This model allows the chassis
to roll.
Lumped mass model: The suspension is modeled to
allow each wheel to translate vertically with respect
to the chassis body. Ride and roll stiffness is mod-
eled using vertical springs and dampers. This model
allows the chassis to heave, pitch and roll.
Swing Arm model: The suspension is modeled to al-
low each wheel to swing on a control arm about a
single axis. Ride and roll stiffness is modeled using
vertical springs and dampers. This model allows the
chassis to heave, pitch and roll.
Tabular model: The suspension is modeled using
tables that define the kinematic and compliant model
of the wheel with respect to the chassis body. The
model allows the chassis to heave, pitch and roll.

 In order to use these models to represent a chassis
for drivability work, it is only necessary to provide
the chassis mass, track width, wheelbase and approx-
imate spring rates. Since many engineers who work
on powertrain response and drivability applications
do not have ready access to the geometry required
for more detailed chassis models, a small set of pa-
rameterization data can result in significant reduc-
tions in model development time.
 While lower fidelity dynamic models typically are
sufficient for vehicle drivability work, there are some
applications which might require more detailed chas-
sis representations. For example, some launch ma-
neuvers might require more detailed models to ob-
serve anti-squat or differential/axle windup effects.
With the architecture and associated components
from the Vehicle Dynamics Library, the various
chassis representations are plug-in compatible such
that full multibody representation can be seamlessly
integrated.

(a) Pitch model

(b) Lumped mass model

(c) Swing arm model

(d) Tabular model

(e) Multibody (elasto-kinematic) model

Figure 7. Range of chassis implementations from VDL

Session 5C: Automotive Systems

DOI Proceedings of the 9th International Modelica Conference 603
10.3384/ecp12076599 September 3-5, 2012, Munich, Germany

2.5 Powertrain Mounts

Powertrain mounts are another critical element for
modeling of vehicle drivability events. The move-
ment of the powertrain on the mounts affects the
torque transfer in the driveline as well as providing a
transfer path for vibrations to the vehicle seat track.
Mount design affects vehicle performance and com-
fort and requires a simulation environment capable
of transient simulations over critical maneuvers of
interest (idle, launch, tip in- tip out, etc.).
 The VDL architecture includes a configurable
component for modeling the powertrain mounts.
The inherent 3D support makes addition of reaction
forces and torques straightforward to capture the true
dynamics of the system. The component can be con-
figured for the number of mounts, mount locations,
and also the characteristics of the mount behavior.
For example, Figure 8 shows bushing compression
(gray areas) due to rotation of the differential hous-
ing when the torque is transmitted from the longitu-
dinal to lateral direction. These effects require a 3D
representation of the driveline and differential which
are readily implemented using components from the
Vehicle Dynamics Library.

Figure 8. Differential housing wind-up

3 Application Examples

Using the component models outlined in the previ-
ous section, this section provides several example
models illustrating the impact of modeling approach-
es on vehicle drivability response.

3.1 Vehicle Launch

Figure 9 shows a model configured for wide open
throttle (WOT) vehicle launch from idle with an au-
tomatic transmission. This implementation includes
a simple mapped engine. Figure 10 shows some
sample results from the launch and subsequent shift
events with the tabular chassis model. Note the ac-
celeration disturbances around each shift event. The-

se sorts of disturbances can be mitigated by appro-
priate torque control and shift coordination between
the engine and transmission. The development and
optimization of such coordinated control is readily
achieved using model-based systems engineering
approaches with VDL.

Figure 9. Vehicle launch model with automatic trans-

mission

Figure 10. Vehicle launch from idle and shift results

with automatic transmission

Figure 11 shows comparisons between the chassis

pitch and roll angle for the various chassis model
implementations. For the chassis pitch angle, the
pitch, lumped mass, and swing arm models provide
similar results as do the tabular and multibody mod-

Modeling Vehicle Drivability with Modelica and the Vehicle Dynamics Library

604 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076599

els. For the chassis roll angle, the pitch model shows
essentially no roll while the results from the lumped
mass and swing arm models are grouped together as
are the results from the tabular and multibody mod-
els.

(a) Chassis pitch angle

(b) Chassis roll angle

Figure 11. Chassis pitch (a) and roll angle (b) for the
various chassis model implementations

 Figure 12 shows a model configured for wide
open throttle vehicle launch with a dual clutch
transmission. Note that the only changes from Fig-
ure 9 are the transmission swap and associated
transmission control specification (open loop in this
example). Figure 13 shows some sample results
from the initial launch and first 1-2 shift event. Note
the driveline disturbances shown during the shift due
to a poorly executed clutch to clutch transition. With
a dual clutch transmission, the key to shift feel and
performance is managing this transition thus high-
lighting the importance of clutch modeling (frictional
characteristics, actuation, dynamic response, etc.)
and controls for this type of transmission. Given the
complex dynamic response, a model-based systems
engineering approach is required for multi-attribute
balancing of performance and drivability.

Figure 12. Vehicle launch model with dual clutch

transmission

Figure 13. Initial launch and 1-2 shift results for dual

clutch transmission

 The vehicle launch models illustrate the power of
a modeling architecture and supporting component
models such that the focus of the model can easily be
shifted from full vehicle to powertrain with different
levels of complexity for the chassis and driveline.
This approach allows model detail to be implement-
ed in the areas where it is critical for observing the
dynamic phenomena of interest while allowing mod-
el simplifications in other areas. This approach ena-
bles a balance between model complexity, computa-

Session 5C: Automotive Systems

DOI Proceedings of the 9th International Modelica Conference 605
10.3384/ecp12076599 September 3-5, 2012, Munich, Germany

tional effort, and also parameterization effort given
that more detailed models typically require more de-
tailed data for parameterization.

3.2 Start-Stop

Start-stop technology on mild/micro-hybrid vehicles
offers compelling fuel economy benefits with elimi-
nation of idle fuel consumption. While the fuel
economy benefits are clear, the drivability impact
can be significant if the restarts are not managed
well. Customers experience many more starting
events, and their expectations regarding these events
differ when driving as compared with a single start
in park in a garage or parking lot. The engine must
be quickly cranked from rest and able to meet driver
demand for the subsequent launch event. The engine
cranking, fueling, airflow, and transmission engage-
ment events must be managed to provide quick re-
start performance while minimizing driver disturb-
ances felt at the seat track.
 As with all drivability applications, the appropri-
ate choice of model for the engine, transmission,
driveline, and chassis depends on the overall goal of
the simulation and frequency range of interest. Po-
tential applications include the following:

• Starter motor, battery, and electrical system
sizing

• Model-based controls development
• Design of driveline isolation components

(damper, dual mass flywheel, etc.)
• Powertrain mount design
• Launch performance and sensitivity to phys-

ical and controls parameters
• Driveline response over the range of engine

speeds and torques seen during crank, initial
combustion, and run-up phases

For start-stop applications, one of the key modeling
choices involves the engine dynamic response and
resulting torque signature. While mean value model-
ing approaches may be sufficient for some applica-
tions, others may require that the torque pulses at the
crankshaft are represented as they may be key for the
drivability phenomena of interest. The start-stop
examples that follow cover a range of engine model-
ing approaches from the Vehicle Dynamics and En-
gine Dynamics Libraries.
 As described in Section 2.2, VDL includes engine
models capable of producing fluctuating torque at
the crankshaft. Using the model shown in Figure 3
with a separate cylinder head and distributed engine
bottom, a map-based mean torque can be analytically
transformed into a pressure calculation including the
influence of control parameters on the pressure
shape. This representation, while approximate when

compared to a detailed engine cycle simulation, does
not require detailed engine characterization for mod-
el development (i.e. intake and exhaust system flow
characteristics, valve profiles and discharge coeffi-
cients, combustion characteristics, etc.) and can pro-
vide the appropriate amount of crankshaft torque
fluctuation in a computationally efficient manner. It
should be noted that appropriate care must be taken
when calculating the mean torque to account for the
various delays in the engine response which are not
physically modeled (i.e. throttle and airflow re-
sponse, fueling response, manifold filling and empty-
ing, etc.).
 Within the architecture provided by VDL, a plug-
compatible I4 engine model with fluctuating torque
is chosen for the replaceable engine subsystem
shown in Figure 9. Results from start-stop simula-
tions with this engine with an automatic transmission
are shown in Figure 14. These results show the im-
pact of the starter on initial launch behavior. When
the starter disengages early, the engine speed drops
after the initial crank until the runup phase begins
due to the initial firing events. With normal starter
disengagement, the engine speed smoothly increases
during crank followed by the initial combustion
events. If the starter torque is also increased, the
expected increase in engine speed is observed. Note
the similar trends in the vehicle speed response.

Figure 14. Start-stop response with automatic trans-

mission [engine speed (top) and vehicle speed (bottom)]

Modeling Vehicle Drivability with Modelica and the Vehicle Dynamics Library

606 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076599

To support additional modeling options for the
engine, engine models from the Engine Dynamics
Library [8] can be integrated into the VDL vehicle
architecture. The Engine Dynamics Library current-
ly provides mean value engine modeling capability
including the air path dynamic effects, exhaust mod-
eling, and thermal effects. With the physical model-
ing approach in the EDL, the engine model responds
naturally to changes in actuation and control com-
mands based on the individual component character-
istics. Appropriate delays in engine response are
also simulated via the physical characteristics of the
components. The component-based approach in
EDL also allows advanced concept evaluation, com-
ponent sizing and optimization studies, and model-
based controls development.

Figure 15 shows a turbocharged, spark-ignited
engine model using EDL. The model includes
lumped representations of the intake air path (light
blue connections), exhaust air path with EGR loop
(orange connections), simplified cooling path (blue
connections), key heat transfer effects in the charge
air cooler, cylinder, and exhaust manifold, and a tur-
bocharger with wastegate. The model is roughly
parameterized for a 2L engine. For the purposes of
this paper, a battery and electric motor are added to
the turbo system to provide “eboost” capability.
This engine model is then integrated into the VDL
architecture with the dual clutch transmission shown
in Figure 12.
 Figure 16 shows results from the start-stop launch
with the EDL engine model, dual clutch transmis-
sion, and tabular chassis model. The results are for
an aggressive launch with varying levels of eboost
motor assist applied in the first second of the launch
event. The simulations show the initial cranking
event, engine run-up due to combustion, and 1-2
shift with the dual clutch transmission which occurs
around 1.5s. With increasing motor assist, the turbo
speed increases much more rapidly than would be
possible with the compressor driven by the turbine
alone, especially since the early combustion events
do not provide significant exhaust enthalpy to drive
the turbine (i.e. lower mass flow rates and lower ex-
haust temperatures). The increased turbo speed re-
sults in additional boost and thus additional engine
torque as shown in Figure 17 and higher engine
speeds. With a dual clutch transmission, the cou-
pling between engine and transmission can be man-
aged to optimize the overall launch event by control-
ling the timing of wheel torque subject to drivability
constraints.

While the EDL currently provides a mean value
modeling approach for the engine, it is also possible
to generate a fluctuating torque using the same mod-

els shown in Figure 3 by replacing the tabular torque
map from VDL with the dynamic EDL model. With
this approach, the engine model remains physics-
based but can also provide fluctuating crankshaft
torque for drivability applications without significant
additional computational expense.

Figure 15. Turbocharged, spark-ignited engine model

using the Engine Dynamics Library

Figure 16. Start-stop response with Engine Dynamics

Library engine model and dual clutch transmission

Session 5C: Automotive Systems

DOI Proceedings of the 9th International Modelica Conference 607
10.3384/ecp12076599 September 3-5, 2012, Munich, Germany

Figure 17. Engine torque for start-stop launch

4 Conclusions

Several application examples focused on vehicle
drivability have been detailed. These application
examples include vehicle launch, start-stop, and
transmission shift performance. These examples
highlight the use of sophisticated model libraries
with different levels of fidelity for key components
such as the chassis along with different modeling
approaches for the engine and both automatic and
dual clutch transmissions. The model libraries illus-
trate the multi-domain approach required to simulate
vehicle drivability. Using the flexible model archi-
tecture from the Vehicle Dynamics Library, the vari-
ous examples are seamlessly configured using plug-
compatible variants. The examples are structured to
illustrate how increasingly sophisticated models pro-
vide additional model fidelity or increase the driva-
bility phenomena observed. An engine model creat-
ed using the Engine Dynamics Library is coupled
with the models and architecture from the Vehicle
Dynamics Library to illustrate a range of engine
modeling approaches to support vehicle drivability
applications.

References

[1] Andreasson, J., “The Vehicle Dynamics Li-
brary: New Concepts and New Fields of Ap-
plication”, Proceedings of 8th International
Modelica Conference, 2011.

[2] Newman, C., Batteh, J., and Tiller, M.,
"Spark-Ignited-Engine Cycle Simulation in
Modelica", Proceedings of 2nd International
Modelica Conference, pp. 133-142, 2002.

[3] Batteh, J. and Newman, C., “Detailed Simu-
lation of Turbocharged Engines in Modeli-
ca”, Proceedings of 6th International Modeli-
ca Conference, pp. 69-75, 2008.

[4] Wang, et al., “Integrated Thermal Manage-
ment Simulations: Evaluating the Effect of
Underhood Recirculating Airflows on AC-
System Performance, Proceedings of 7th In-
ternational Modelica Conference, pp. 413-
422, 2009.

[5] Eborn, et al., “AirConditioning - a Modelica
Library for Dynamic Simulation of AC Sys-
tems, Proceedings of 4th International Mod-
elica Conference, pp. 185-192, 2005.

[6] Batteh, J. and Tiller, M., “Implementation of
an Extended Vehicle Model Architecture in
Modelica for Hybrid Vehicle Modeling: De-
velopment and Applications”, Proceedings of
7th International Modelica Conference, pp.
823-832, 2009.

[7] Niedermeyer, E., “The Shocking Truth
About Start-Stop Systems”,
http://www.thetruthaboutcars.com/2011/06/t
he-shocking-truth-about-start-stop-systems/,
June 29, 2011.

[8] Andersson, D., and Dahl, J., 2012, “Gas Ex-
change and Exhaust Condition Modeling of a
Diesel Engine using the Engine Dynamics
Library”, Proceedings of 9th International
Modelica Conference, 2012.

[9] Andreasson, J. and Gäfvert, M., “Rotation-
al3D-Efficient modelling of 3D effects in ro-
tational mechanics”, Proceedings of 6th In-
ternational Modelica Conference, pp. 515-
520, 2008.

[10] Isernhagen, H. and Guhmann, C., “Modelling
of a Double Clutch Transmission with an
Appropriate Controller for the Simulation of
Shifting Processes”, Proceedings of 6th Inter-
national Modelica Conference, pp. 333-339,
2008.

Modeling Vehicle Drivability with Modelica and the Vehicle Dynamics Library

608 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076599

Session 5D: Power Plants

Status of ClaRaCCS: Modelling and Simulation of Coal-Fired Power Plants with CO2 Capture

Status of ClaRaCCS: Modelling and Simulation
of Coal-Fired Power Plants with CO2 Capture

Johannes Brunnemann ∗1, Friedrich Gottelt1, Kai Wellner2, Ala Renz1, André Thüring4, Volker
Roeder3, Christoph Hasenbein3, Christian Schulze4, Gerhard Schmitz2 and Jörg Eiden1

1XRG Simulation GmbH, Harburger Schlossstraße 6-12, 21079 Hamburg, Germany
2University Hamburg-Harburg, Inst. of Thermo-Fluid Dynamics, Denickestr. 17, 21073 Hamburg, Germany

3University Hamburg-Harburg, Inst. of Energy Systems, Denickestr. 15, 21073 Hamburg, Germany
4TLK-Thermo GmbH, Hans-Sommer-Str. 5, 38106 Braunschweig, Germany

Abstract

Within the DYNCAP project, the Modelica library
ClaRaCCS is being developed. This library will pro-
vide a framework to model both steam power plants
and carbon capture units in an integrated manner. The
current status of the library is presented. The structure
of the library and the general model design is outlined.
Its user-friendly handling as well as its high flexibility
in the modelling of individual complex scenarios are
demonstrated by the concrete modelling of a furnace.
The scenario of a closed steam cycle coupled to a car-
bon capture cycle based on an amine gas treatment is
described and simulation results are briefly discussed.

Keywords: power plant; Clausius-Rankine cycle;
CO2 capture; CCS; amine gas treatment; transient
simulation; library

1 Introduction

The ongoing climate change is a serious ecological
and economical challenge in the next decades. The
Intergovernmental Panel on Climate Change (IPCC)
recommends a reduction of CO2 emissions to below
80% until 2050 compared to 1990 [1]. Although the
proportion of renewable energies is growing signifi-
cantly, fossil fuels such as coal will remain central to
the world’s energy supply during the next decades.

It is therefore necessary to evaluate power plant
technologies appropriate for a significant reduction of
CO2 emissions in the short term. One already avail-
able technological solution is the capture of CO2 from
flue gases of fossil-fuelled power plants and its stor-
age (CCS). This technology has to be embedded into

∗brunnemann@xrg-simulation.de

a future energy mix with a large percentage of renew-
able and fluctuating energies, such as wind and solar
power. Hence, the need for a flexible operation of con-
ventional fossil-fuelled power plants under rapid, large
and frequent load changes arises.

The evaluation of such variable operation scenarios
requires a thorough investigation of future power plant
dynamics. This shall result in recommendations for
the design and operation of power plants, that meet
certain objectives regarding efficiency, technical lim-
itations and ecological standards. A valuable tool to
tackle this challenging task is computer simulation.

As a part of COORETEC [2], an initiative of the
German Federal Ministry of Economics and Technol-
ogy, the project DYNCAP [3] aims at studying the dy-
namic behaviour of steam-power processes with CO2
capture in order to provide balancing energy. The
project started in March 2011 and will be finished in
September 2014. One major outcome of the project
is the Modelica library ClaRaCCS (Clausius-Rankine
with CO2 Capture and Storage). The goal of the li-
brary is to provide models for the analysis of complex
power plants with CO2 capture in both static and dy-
namic operation mode. After completion of the DYN-
CAP project, the library will be freely available under
the Modelica license. The current development is per-
formed using Dymola [4], however the final version of
the library is intended to work with SimulationX [5] as
well.

This paper gives an introduction to ClaRaCCS and
presents the current status of development. The pa-
per is organised as follows: Section 2 summarises the
technical fundamentals for conventional steam power
plants as well as carbon capture processes modelled in
the library. In Section 3 general properties of the li-

DOI Proceedings of the 9th International Modelica Conference 609
10.3384/ecp12076609 September 3-5, 2012, Munich, Germany

brary are introduced: Starting from the general library
structure the guiding principles, that underlie the mod-
els in ClaRaCCS, are explained. The treatment of me-
dia data as well as validation of models will also be
outlined. The described properties will then be illus-
trated by a concrete modelling example in section 4,
where the model of a furnace is described. Section 5
demonstrates the current status of ClaRaCCS by giv-
ing an example of use: the model of a coal-fired power
plant with attached carbon capture unit is presented.
The results of a simulation scenario are shown, where
throttling of the carbon capture unit is used in order to
meet the demand for a short term increase of the gene-
rator power output of the plant. Finally, section 6 gives
a summary and outlines future steps of development.

2 Technical Background

The processes covered in ClaRaCCS are conventional
hard-coal-fired power plants and their derivatives for
CO2 capture, the Post-Combustion Capture process
(PCC) and the Oxyfuel process (further information
in [6]). Lignite-fired power plants and gas-fired com-
bined cycle power plants are not part of the project
DYNCAP, but may be included in the future.

Because the model implementation of the Oxyfuel
process is still work in progress the respective section
will only give a short overview. The section of the
PCC process will introduce a little more of this tech-
nology because it is part of the simulation example
given in section 5.

2.1 Conventional Hard-Coal-Fired Power
Plants

State-of-the-art conventional hard-coal-fired power
plants burn pulverised coal in the steam generator with
air. The heat is transferred to a steam cycle that con-
verts it to electric energy. The general simplified pro-
cess scheme of the power plant is shown in figure 1.
Mills pulverise and dry the raw hard-coal. The raw
flue gas contains, additionally to nitrogen, CO2, oxy-
gen and water, also certain amounts of nitrogen ox-
ides, fly ash (dust) and sulphur oxides. Therefore the
flue gas treatment comprises a denitrification system,
an electrostatic precipitator and a wet desulphurisation
unit.

The steam cycle comprises a super-heater and a re-
heater. Power plants currently under construction have
a live steam (high pressure) pressure of about 285 bar
and a live steam temperature of about 600 ◦C. The

Figure 1: Simplified process scheme of a conventional
power plant.

re-heated steam is in the range of 60 bar and 620 ◦C.
Feed water is pre-heated with steam in the low pres-
sure range and the high pressure range. Up to nine
feed water pre-heaters are implemented, each with a
steam tapping from the turbines or crossover sections.
The turbines are all coupled with the same shaft and
running at constant speed in normal operation as they
are directly coupled with the electric net by the gener-
ator.

The overall efficiency of such a power plant is ap-
prox. 46 %.

2.2 Post-Combustion Capture Process

In a PCC CO2 is separated from the flue gas of a con-
ventional coal-fired steam power plant by a chemical
absorption-desorption process. The reduction of the
CO2 emissions is accompanied by a significant loss in
the electrical power output and a related net efficiency
penalty of 8-12 %-pts. As reference the solvent Mo-
noethanolamine (MEA) is used with a solvent mass
fraction of 30 % MEA and a targeted CO2 capture rate
of 90 %.

Figure 2 shows the schematic PCC process. The
flue gas of the boiler passes through the flue gas treat-
ment, where it is cleaned, and then enters the absorber
column at the bottom, in which the CO2 is absorbed
by a counter current solution flow. The treated gas
is released to the atmosphere, while the rich (CO2-
loaded) solution leaves the absorber at the bottom.
Downstream the absorber, the rich solution is pumped
through the rich-lean heat exchanger, heated up and
enters the desorber column at the top. In the desorber
the absorbed CO2 is stripped from the rich solution.
The required heat duty is provided by a reboiler in
which steam from the power plant is condensed. From

Status of ClaRaCCS: Modelling and Simulation of Coal-Fired Power Plants with CO2 Capture

610 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076609

the bottom of the desorber, the lean solution is pumped
to the entrance of the absorber, passing the rich-lean
heat exchanger where it is cooled and pre-heats the
rich solution. The captured CO2, nearly pure, is com-
pressed and pumped to the storage. A detailed expla-
nation of the process can be found in [7]. An overview
of this process is given in [8].

flue gas
from FGT

to
atmosphere

to CO2-
storage

steam/
condensate

from/to
power
plant

rich-lean
HX

desorberabsorber

blower

solution
pump

(CO2-rich)

reboiler

intercooled
compression

to water
conditioning

or FGT

solution
pump

(CO2-lean)

washing
section

overhead
condenser

solution
cooler to make-

up water
system

make-up
water

flue gas
cooler

Figure 2: Flow sheet of the PCC process, cf. [7].

The main task of the PCC is the reduction of the
CO2-emissions by a certain value. The CO2 capture
rate depends on the circulated solution flow rate and
the working capacity of the solution. Here the work-
ing capacity is defined as the difference between CO2
loadings behind the absorber and behind the desorber.
The solution rate can be influenced by the pump up-
stream the absorber. The lean loading depends on the
reboiler heat duty and thus is directly affected by the
steam mass flow which is condensed in the reboiler.
The liquid level of the absorber sump is controlled by
a pump that conveys the solution to the desorber.

2.3 Oxyfuel Process

Conventional coal-fired power plants and power plants
with PCC burn the coal with air. On the contrary, in the
Oxyfuel process the coal is burnt in an atmosphere of
oxygen from an air separation unit mixed with recircu-
lated flue gas. As the nitrogen of the air is avoided in
the combustion process, the flue gas contains mainly
CO2 (70 vol.-%), water and small amounts of oxygen,
nitrogen and argon. The flue gas fraction that is not re-
circulated is treated to remove the impurities in order
to receive a CO2 stream with a purity higher than 96 %.
The overall power plant net efficiency is decreased by
approx. 8-10%-points when the Oxyfuel process is ap-
plied. This includes the cryogenic air separation unit
and the compression of the captured CO2 to a pressure

of 110 bar. A detailed overview of the Oxyfuel process
can be found in [9].

3 The ClaRaCCS Library

3.1 Library Structure

Creating a library covering a very broad range of
physics that is at the same time well-arranged and user-
friendly, demands an elaborate library structure. Fig-
ure 3 shows the top level content of the ClaRaCCS
library. Beside the usual packages like UsersGuide,
Examples and Media the library is structured into the
main existing functional groups of the physical pro-
cesses under consideration. Components is the pack-
age with the most basic models describing e.g. turbo
machines, furnace, heat exchangers or thermal separa-
tion. In SubSystems these components are used to cre-
ate more complex models e.g. a boiler or an air separa-
tion unit. The package SubProcesses then in turn con-
tains models which are built from SubSystems models
like whole CO2 capture cycles. PowerPlants consists
of models representing whole power plants and is the
package with the most complex models.

Figure 3: Top level content of the ClaRaCCS library
and the central component package.

3.2 Model Design Principles

When setting up the model of a complex physical sys-
tem such as a power plant, the first question to be an-
swered is what physical fidelity is needed to cope with

Session 5D: Power Plants

DOI Proceedings of the 9th International Modelica Conference 611
10.3384/ecp12076609 September 3-5, 2012, Munich, Germany

the given simulation task. The answer to this question
refers to the level of detail necessary for each compo-
nent and sub-process. The next step is to define the
general physical effects to be considered for solving
the given task. Finally, the level of physical insight
into the considered physical aspects must be chosen.

In what follows it will be explained how these three
stages guide the model design of the ClaRaCCS library.
For illustration the concept will be applied to the well-
known example of a fluid flow in a pipe.

3.2.1 Level of Detail

In [10] a classification of component models into dif-
ferent levels of detail was developed. It is mainly
based on two criteria:

• Purpose of model. In which simulation context
will the model be used? What questions and
physical effects shall be analysed with the model?

• Applicability of model. What are the main as-
sumptions the model is based on? Are there some
structural limitations?

The model design of ClaRaCCS has been inspired by
these ideas. Moreover it aims to provide a well bal-
anced combination of readability1, modelling flexibil-
ity and avoidance of code duplication. Consequently,
each component in the ClaRaCCS library is repre-
sented by a family of freely exchangeable models. Ev-
ery component family is grouped into four levels of
detail:

L1. Models are based on characteristic lines and / or
transfer functions. This results in an idealised
model, which shows physical behaviour. The
model definition may be derived either from ana-
lytic solutions to the underlying physics or from
phenomenological considerations. Applicability
is limited to the validity of the simplification pro-
cess. Non-physical behaviour may occur other-
wise.
Example: transmission line model for fluid flow
in a pipe.

L2. Models are based on balance equations. These
equations are spatially averaged over the compo-
nent. The models show a correct physical be-
haviour unless the assumptions for the averaging
process are violated.

1This results in a flat model hierarchy and restricts the use of
inheritance.

Example: single control volume for fluid flow in
a pipe.

L3. Models are by construction subdivided into a
fixed number of spatial zones. The spatial locali-
sation of these zones is not necessarily fixed and
can vary dynamically. For each zone a set of bal-
ance equations is used and the model properties
(e.g. media data) are averaged zone-wise. The
models show a correct physical behaviour unless
the assumptions for the zonal subdivision and the
averaging process over zones are violated.
Example: moving boundary approach for fluid
flow in a pipe.

L4. Models can be subdivided into an arbitrary num-
ber of spatial zones (control volumes) by the
user. They thus provide a true spatial resolution.
For each zone a set of balance equations is used
which is averaged over that zone. The model
shows a correct physical behaviour unless the as-
sumptions for the choice of grid and the averag-
ing process over the control volumes are violated.
Example: finite volume approach with spatial
discretisation in flow direction for fluid flow in
a pipe.

3.2.2 Physical Effects to be Considered

Once the decision for a specific detail group of mod-
els is made, the set of required physical effects to be
covered by a model may still differ according to the
simulation goal. For instance, in a pipe model it might
be necessary to resolve the spatial flow properties but
unnecessary to analyse sound waves in detail. This is
reflected in the complexity of the basic physical equa-
tions underlying the model.

Notice that, although the ClaRaCCS library is de-
signed for dynamic simulations, it is still possible
to include models, where parts of the basic physical
equations correspond to the stationary behaviour of a
component. Such models are often favourable with
respect to computation time and stability. Their use
is appropriate whenever certain aspects of the compo-
nent dynamics can be neglected compared to the sys-
tem dynamics under consideration. In the pipe exam-
ple above this would be manifested by the fact that
if only fluid flow properties (temperature profile, flow
velocities, etc.) are of interest, sound wave propaga-
tion can be neglected, as long as the flow velocity is
much less than the speed of sound. Consequently a
stationary momentum balance for the fluid would be
sufficient in this case.

Status of ClaRaCCS: Modelling and Simulation of Coal-Fired Power Plants with CO2 Capture

612 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076609

In order to cope with these different needs, the
ClaRaCCS library provides component models at the
same level of detail but covering different physical ef-
fects. They are distinguished by different self explain-
ing names.

3.2.3 Level of Insight

By now, the fundamental equations of a model are de-
fined by setting its level of detail and the physical ef-
fects of consideration. However, these equations de-
clare which physical effects are considered, but not
how they are considered. For instance, the pressure
loss in a pipe may be modelled using constant nom-
inal values or via correlations taking the flow regime
and the fluid states into account. These physical ef-
fects are therefore modelled in replaceable models that
complete the fundamental equations using predefined
interfaces, e.g. the friction term in the momentum bal-
ance. By separating the governing model definition
from the underlying sub-models, the flexibility of the
model is enhanced without loosing readability.

3.3 Media Data

The property data for all models will be provided by
medium classes which then in turn call external C-
functions. However, up to now only the models of
the conventional part of the plant obtain their property
data from external functions. The observed advantage
of this procedure is the possible access to other com-
mercial external fluid property libraries and a large
increase in simulation speed of the models. The im-
plementation of external property data for the multi-
component media used in the PCC is still work in
progress. The current state of this issue and the experi-
ences with external, table-based media data for single-
component media are very encouraging concerning
simulation speed and simulation stability.

For the sake of initialisation and numerical stability
the choice of different state variables may be of high
importance. Depending on the selection of the respec-
tive state variables an index reduction can be neces-
sary. Also phase and reaction equilibria can lead to
high index systems which have to be reduced sym-
bolically. In both cases it is likely that derivatives of
property data are required to perform index reduction.
Providing these derivatives still is a challenge to be
overcome during this project.

3.4 Model Validation

Models in the ClaRaCCS library will be validated
against established process modelling and power plant
software (Aspen Plus and Ebsilon [11, 12]) as well as
dynamic measurement data.

Figure 4: Validation example. Modelica absorber vs.
[11]. Lean and rich solution. Here α denotes the
amount of substance CO2 per amount of substance sol-
vent (MEA). L denotes the mass flow rate of the sol-
vent and G is the flue gas mass flow rate.

For the water steam cycle this measurement data are
provided by the coal fired power plant [13] at Rostock,
Germany, with a net power output of 500 MW. For
the PCC process the data are provided by a pilot plant
[14] at Heilbronn, Germany, which has the capacity to
clean approximately 1150 Nm3/h of flue gas.

4 Modelling of Furnace

The purpose of this section is the illustration of the
general modelling strategy as introduced in section 3.
As an example the furnace model package that pro-
vides models for burner, flame rooms and hoppers with
different levels of detail is considered. Here, predomi-
nantly the structure of the package is described without
covering the physics inside in more detail.

4.1 Connectors

Although parts of ClaRaCCS and Modelica.Fluid
cover similar fields of application own connectors for
liquids, fluids and gas mixtures are necessary due to
the usage of external media as motivated in 3.3. How-
ever, models of the Modelica standard library and
ClaRaCCS may be connected using simple adapters
included in the library. In addition, connectors for

Session 5D: Power Plants

DOI Proceedings of the 9th International Modelica Conference 613
10.3384/ecp12076609 September 3-5, 2012, Munich, Germany

aerosols (unburned coal dust, fly ash) are defined sim-
ilar to the approach of of Gall et al. [15]. These con-
nectors instantiate the connectors for the flue gas, the
coal and the slag. In contrast to Gall’s approach, the
fly ash is treated as substance of the flue gas so that
there is no need for a fourth connector. The Modelica
code of e.g. the CoalSlagFlueGas_inlet connector
reads

connector CoalSlagFlueGas_inlet
"Port describing Coal,Slag and FlueGas flow"
import ClaRaCCS;
// Media properties of coal and slag
parameter Media.Coal.PartialCoal coalType;
parameter Media.Coal.PartialSlag slagType;

BaseClasses.Interfaces.FlueGas_a flueGas;
BaseClasses.Interfaces.Coal_inlet

coal(coalType = coalType);
BaseClasses.Interfaces.Slag_outlet

slag(slagType = slagType);
end CoalSlagFlueGas_inlet;

Likewise, a connector for the coal dust and the pri-
mary air is available. In addition, components for
splitting and joining are provided so that other com-
ponents in the flue gas path having solely flue gas con-
nectors (as e.g. a deNOx plant) can be connected to a
combustion chamber model.

4.2 Components in the Furnace Package

4.2.1 A Simplified Combustion Chamber Model

Figure 5 shows the tree of the furnace model
package. At the top level it provides the model
SimpleCombustionChamber which represents a
simplified model of detail level 2 (refer to figure 6).

Figure 6: Diagram
view of the simplified
combustion chamber
model.

It provides physical connec-
tors for the coal dust and
primary air, for the slag
and flue gas outlet. Based
on a stationary stoichiomet-
ric combustion calculation,
the flue gas composition,
the heat Qcombustion ob-
tained from combustion and
the stoichiometric air ratio
λ = ṁair/ṁair,st are calcu-
lated. The model consists of
stationary balance equations for the energy, the mass
flow, the flue gas components and its composition (i.e.
mass balance equations for each single substance con-
sidered in the used flue gas mixture). The user can

Figure 5: The tree of the furnace model package.

set values for the flue gas outlet temperature, the slag
fraction, slag temperature, and the concentration of
toxic substances (CO, NOx and SOx) in the flue gas.
Whereas the flue gas and the slag are accessible via
physical connectors, Qcombustion and λ are provided by
real outputs. These important process variables can
then be used as inputs to other models, such as a con-
troller for the air ratio. The model has been compared
to Ebsilon [12] and has shown good consistency of the
results.

4.2.2 Components for a Detailed Combustion
Chamber Model

Besides the model SimpleCombustionChamber, the
furnace package is intended to provide all required
components from that a complete –more detailed–
combustion chamber model can be built. These com-
ponents are currently models of detail level 2, i.e. they
represent single control volumes for the considered
combustion process. Since a complete combustion
chamber model will be built from several level of de-
tail 2 models, it yields a spatial discretisation and will
thus be a model of detail 3 or 4.

Figure 7 shows the diagram of a burner
model which extends the three base
models– namely CombustionChamberBase,

Status of ClaRaCCS: Modelling and Simulation of Coal-Fired Power Plants with CO2 Capture

614 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076609

Figure 7: Diagram view of a burner model.

CombustionChamberFurnaceBase and
CombustionChamberBase_additional_HPs that
are provided by the BaseClasses package (see
figure 5).

The partial model CombustionChamberBase pro-
vides the definition of the used Media, the instance of
the corresponding medium objects and physical con-
nectors. A replaceable model Geometry allows for an
adaptation of the combustion chamber’s dimensions to
the user’s needs. Also basic parameters that are com-
mon in all furnace components are defined in this base
class whereby the duplication of code is avoided en-
suring low maintenance effort.

Regarding the physical effects to be considered,
besides the connectors for the gas and solid flow,
this base model has three connectors for heat flows.
They are required to model the heat transfer from
the hot flue gas to the combustion chamber wall
and the heat transfer between neighboured flame
rooms/burners. The heat flows to the top and to the
wall are calculated based on the replaceable models
HeatTransfer_Top and HeatTransfer_Wall (re-
fer to figure 5). Please note that the heat flow at the
bottom connector is calculated from the heat transfer
model HeatTransfer_Top in the respective adjacent
burner/flame room. In view of a numerical optimisa-
tion, the control volume temperature can be decoupled
from that of neighboured ones by using differential
states for the temperature at a heat port. Such a state
with a certain time constant is provided with the re-
placeable model RadiationTimeConstant (see fig-
ure 5) and is placed in the burner model shown in
figure 7 at the top heat connector. Whereas the
CombustionChamberBase represents a basic con-
trol volume just describing the flow of the gas
and solid phase and the heat transfer, the sec-

ond partial model CombustionChamberFurnaceBase
accounts for the furnace process. It is ex-
tended by replaceable models for the burning time
and the particle migration time. The third base
model CombustionChamberBase_additional_HPs
provides two additional heat ports. In this way also
the heat flow from the flue gas to e.g. the carrier tubes
and the tube bundles of the convective heat exchang-
ers in a boiler model can be modelled. Again, for each
heat port replaceable models for the heat transfer cor-
relation are provided.

Figure 8: Diagram view of an exemplary combustion
chamber model built by the furnace package compo-
nents described above.

Figure 8 shows the diagram of an exemplary com-
bustion chamber model. In a boiler model the fixed
temperature boundaries on the right would be replaced
by according water steam tube models.

5 Example of Use

The current capabilities of the ClaRaCCS library can
be illustrated by a model of an anthracite-fired steam
power plant with a coupled post combustion capture
unit. For the sake of simplicity and due to current
library limitations the complex topology of current
Rankine cycles is reduced to the main features.

Session 5D: Power Plants

DOI Proceedings of the 9th International Modelica Conference 615
10.3384/ecp12076609 September 3-5, 2012, Munich, Germany

Figure 9: Diagram view of coupled steam plant with carbon capture unit.

5.1 Example Description

The model’s definition is based on a PCC-retrofit of
the existing power plant [13] of Rostock, Germany, see
table 1 for its general operation parameters.

Table 1: General overview of power plant of Rostock,
Germany

Net output 509 MW
Net efficiency 43.2 %
Live steam pressure 262 bar
Live steam temperature 545 ◦C
Live steam mass flow 417 kg/s
Re-heat temperature 562 ◦C
Re-heat pressure 54 bar

In particular, the model features a set of roller bowl
mills, as reported in [16], a reduced combustion cham-
ber and boiler, a turbo-generator with tappings for one
high pressure pre-heater, one low pressure pre-heater,
the feedwater tank and the reboiler of the PCC. At
the low pressure side a condenser, a condensate pump,
the pre-heaters, the feedwater tank and the feedwater
pump complete the cycle, see figure 9.

The coupling of furnace outlet and PCC inlet at the
flue gas path is currently cut because of missing com-
ponents for the flue gas cleaning.

The PCC features first-principle models for the ab-
sorber and desorber columns and simplified models
for pumps and the inner heat exchanger, see [17] for
a more detailed description on column modelling.

In order to get a pure feed-forward response of the
model, only subordinate controllers are implemented
in a simple way. Pumps are used to keep the filling
levels of the storage devices within reasonable bounds.
The generator power output is controlled by the re-
boiler valve, which sets the amount of steam that is
used to supply heat for the reboiler. Additionally the
carbon capture rate is controlled by the lean solvent
pump downstream the desorber. Future investigations
will have to consider an integrated unit control concept
for both the steam cycle and the PCC unit, see [18] for
a first approach.

Although the degree of simplification is too high
to allow quantitative statements on the transient be-
haviour, the model is capable to capture the main dy-
namics in a qualitative manner and shows that the dif-

Status of ClaRaCCS: Modelling and Simulation of Coal-Fired Power Plants with CO2 Capture

616 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076609

ferent aspects of the library work together as desired.

5.2 Simulation Results

The extensive steam tapping for the heating of the re-
boiler introduces the option to provide primary con-
trol power by throttling the reboiler valve. Doing so,
the low pressure turbine mass flow rate is increased
in short term resulting in a significant power step-up.
However, a temporary drop of the carbon capture rate
has to to be accepted. In figure 10 the power output
and the reboiler steam mass flow are displayed indi-
cating that almost full throttling of the valve can lead
to a power step of 5 %-pts within 30 s. After holding
the primary control power for 5 min, the control band
is set free within 10 min.

0 5 10 15 20 25
0.8

0.85

0.9

0.95

1

G
en

er
at

or
 P

ow
er

 in
 p

.u

Time in min

Generator Output and Reboiler Mass Flow

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
eb

oi
le

r
M

as
s

F
lo

w
 in

 p
.u

.

Figure 10: Power output applying reboiler feed reduc-
tion.

0 5 10 15 20 25
0.9

0.95

1

1.05

1.1

T
em

pe
ra

tu
re

 in
 p

.u

Time in min

Reboiler Temperature and Lean Volume Flow

0 5 10 15 20 25
0.8

0.9

1

1.1

V
ol

um
e

F
lo

w
 R

at
e

in
 p

.u
.

Figure 11: Amine gas treatment characteristic values.

The reboiler temperature in figure 11 shows a mod-
erate drop with a minimum at 10 min of simulation
time. Due to the throttling of the valve and the subse-
quent temperature drop in the reboiler, the lean loading
of the solution in the reboiler increases (because less

CO2 is stripped from the solution). This means that a
higher flow rate of solution is needed to maintain the
targeted capture rate. Hence, the lean pump volume
flow increases in order to compensate the higher load-
ing, until the pump reaches its maximum capacity.

0 5 10 15 20 25
0.4

0.6

0.8

1

Carbon Capture Rate

Time in min

C
O

2 C
ap

tu
re

 R
at

e
in

 p
.u

.

Figure 12: Carbon capture rate during reboiler hold-
up.

As expected, the additional power output comes
at the cost of a strongly reduced carbon capture rate
showing its minimum of 55 % at approx. 11 min sim-
ulation time, see figure 12.

Although the simulation scenario might be strongly
simplified and the applied control strategy technically
not yet mature, it becomes obvious that the application
of highly integrated sub-processes like the amine gas-
treatment brings up new options for the plant’s tran-
sient operation mode and economical shifting (trade-
off between revenues from primary control power sup-
ply and costs due to CO2 certificates) on the one hand.
On the other hand new challenges for the power plant’s
control system must be tackled.

6 Summary and Outlook

In this paper the status of development of the
ClaRaCCS library is presented, which is a central part
of the DYNCAP project. In its final stage the library
will allow detailed dynamic simulations of power
plants coupled to a CO2 capturing process.

It was demonstrated how the flexible library struc-
ture supports the user in order to build up complex
power plant models individually tailored to specific
simulation goals.

Although in an early state of development, the given
simulation example proves that the library is already
capable of simulating simplified dynamic operation
scenarios for coal fired power plants coupled to a post-
combustion CO2 capture process.

Session 5D: Power Plants

DOI Proceedings of the 9th International Modelica Conference 617
10.3384/ecp12076609 September 3-5, 2012, Munich, Germany

Having almost completed the development of fun-
damental components for the water steam cycle and
the post combustion process, the development will
now proceed to the design of subsystems and com-
plete power plant models including a CO2 capturing
unit. These models will be validated against measure-
ment data from an existing hard coal power plant and
a demonstration post combustion unit.

However, it should be noted that the design of
ClaRaCCS allows the easy adaptation of component
models in order to feature CCS-retrofits to existing
power plants as well as to perform concept studies for
planned ones. In this context the development of an
integrated control concept is a major challenge. First
steps into this direction have already been published
in [18]. Moreover the automation of the initialisation
process for complex simulations will be a major future
direction of work.

Concerning the models for the CO2 capture, the use
of external media data shall be supported in the future.
In this context it may be necessary to adapt the models
in order to maintain performance.

7 Acknowledgements

On behalf of the authors we would
like to thank all members of the
ClaRaCCS team. This research
project is supported by the Federal
Ministry of Economics and Tech-
nology (project number 03ET2009). For valuable data
input and discussions the staff of KNG, EnBW, Vatten-
fall and E.ON are gratefully acknowledged. We thank
the anonymous reviewers for their valuable comments.

References
[1] B. Metz, O.R. Davidson, P.R. Bosch, and R. Dave.

Climate Change 2007: Mitigation. Contribution of
Working Group III to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change.
IPPC, Cambridge, United Kingdom and New York,
NY, USA., 2007.

[2] COORETEC.
http://www.cooretec.de/index.php?index=
21 (retrieved 09th May, 2012).

[3] Dyncap Project, 2011-2014.
http://www.kraftwerkforschung.info/en/
mehr-flexibilitaet-fuer-emissionsarme-
kohlekraftwerke (retrieved 10th May, 2012).

[4] Dymola. Dassault Systèmes, 2012.

[5] SimulationX R©. ITI Gesellschaft für Ingenieurtechnis-
che Informationsverarbeitung mbH, 2012.

[6] A. Kather, S. Rafailidis, C. Hermsdorf, M. Kloster-
mann, A. Maschmann, K. Mieske, J. Oexmann,
I. Pfaff, K. Rohloff, and J. Wilken. Research & de-
velopment needs for clean coal deployment. Num-
ber CCC/130 in ISBN 978-92-9029-449-3. IEA Clean
Coal Centre, January 2008.

[7] J. Oexmann. Post-Combustion CO2 Capture: Ener-
getic Evaluation of Chemical Absorption Processes in
Coal-Fired Steam Power Plants. PhD thesis, Univer-
sity Hamburg-Harburg, Institute of Energy Systems,
Hamburg, January 2011. ISBN 978-3-86955-633-8.

[8] G. T. Rochelle. Amine Scrubbing for CO2 Capture.
Science, 325:1652–1654, 2009.

[9] A. Kather and G. Scheffknecht. The oxycoal process
with cryogenic oxygen supply. Naturwissenschaften,
96(9):993 – 1010, 2009.

[10] M. Bonvini and A. Leva. Scalable-detail modular
models for simulation studies on energy efficiency. In
Proceedings 8th Modelica Conference, Dresden, Ger-
many, March 20-22, 2011, 2011.

[11] AspenPlus R©. Aspen Technology, Inc., 2011.

[12] EBSILON R©Professional. Evonik Energy Services
GmbH, 2011.

[13] KNG Power Plant Rostock.
http://www.kraftwerk-rostock.de
(retrieved 09th May, 2012).

[14] EnBW Energy. 2010 Innovation Report, 2010.

[15] L. Gall, K. Link, and H. Steuer. Modeling of gas-
particle-flow and heat radiation in steam power plants.
Modelica Conference, Dresden, Germany, March 20-
22, 2011.

[16] P. Niemczyk, P. Andersen, J.D. Bendtsen, T.S. Ped-
ersen, and A.P. Ravn. Derivation and validation of a
coal mill model for control. In IFAC Symposium on
Power Plants and Power Systems Control 2009, Tam-
pere, July 2009.

[17] K. Dietl, A. Joos, and G. Schmitz. Dynamic analysis
of the absorption/desorption loop of a carbon capture
plant using an object-oriented approach. Chemical
Engineering and Processing: Process Intensification,
52:132 – 139, 2011.

[18] F. Gottelt, K. Wellner, V. Roeder, J. Brunnemann,
G. Schmitz, and A. Kather. A Unified Control Scheme
for Coal-Fired Power Plants with Integrated Post
Combustion CO2 Capture. In 8th IFAC Conference
on Power Plant & Power System Control, Toulouse,
2012. accepted for publication.

Status of ClaRaCCS: Modelling and Simulation of Coal-Fired Power Plants with CO2 Capture

618 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076609

Start-up Optimization of a Combined Cycle Power Plant

Start-up Optimization of a Combined Cycle Power Plant

A. Linda, E. Sällberga,
S. Velutb, S. Gallardo Yancesc , J. Åkessona b, K. Linkc

aLund University, Department of Automatic Control, Lund, Sweden
bModelon AB, Lund, Sweden

cSiemens AG, Energy Sector, Erlangen, Germany

Abstract

In the electricity market of today, with increasing de-
mand for electricity production on short notice, the
combined cycle power plant stands high regarding fast
start-ups and efficiency. In this paper, it has been
shown how the dynamic start-up procedure of a com-
bined cycle power plant can be optimized using di-
rect collocation methods, proposing a way to mini-
mize the start-up time while maximizing the power
production during start-up. Physical models derived
from first principles have been developed in Model-
ica specifically for optimization purposes, in that the
models contain no discontinuities. Also, the models
used for optimization are simpler than typical high-
fidelity simulation models. Two different models used
for optimization in four different start-up scenarios are
presented in the paper. A critically limiting factor dur-
ing start-up is the stress of important components, e.g.,
the evaporator. In order to take this aspect into ac-
count, constraints on the stress levels of such compo-
nents have been introduced in the optimization formu-
lation. In particular, it is shown how a pressure depen-
dent stress constraint, similar to what is used in actual
operation, can be applied in optimization. Also, differ-
ent assumptions about which control variables to opti-
mize are explored. Results are encouraging and show
that energy production during start-up can be signifi-
cantly increased by increasing the number of control
inputs available to the optimizer, while maintaining
desirable lifetime of critical components by introduc-
ing constrains on acceptable stress levels.

Keywords: Combined Cycle Power Plants, Start-up,
Dynamic optimization, Optimica, Control, Modelica,
Modeling

1 Introduction

In a time when the production from renewable energy
sources is steadily growing the demand for comple-
mentary electricity production on short notice is high.
Large fluctuations during the day require power gener-
ators to react quickly to maintain the balance between
demand and production. Deregulation of the electric
power market also allows private investors to install
power plants and supply power to the grid, which has
increased the competition on the electricity market.
The requirements between demand and supply have to
be maintained while offering electricity at the lowest
cost.

When considering fast start-ups and efficiency, the
combined cycle power plant stands high in comparison
with other electricity production methods. In this pa-
per, the start-up procedure of a combined cycle power
plant is studied. The aim is to minimize the start-up
time while keeping the lifetime consumption of crucial
power plant components under control and maximiz-
ing the amount of power output produced.

Several previous studies that deal with optimization
of the start-up of combined cycle power plants have
been made. In Casella and Pretolani, [1], optimiza-
tion with a trial-and-error method is presented where
the results are obtained by simulating Modelica power
plant models. The study has been carried out to de-
velop simplified models that can be used to automati-
cally compute the optimal transients with an optimiza-
tion software and the models were based on the Mod-
elica ThermoPower library, see Casella and Leva, [2].
A model-based approach for optimizing the gas tur-
bine load trajectory has been studied in Casella et al.,
[3]. A simplified model is developed based on inter-
polated locally identified linear models and the pro-
cedure aims at deriving the gas turbine load profile
described by a parameterized function. A minimum-
time problem is solved to determine the parameters

DOI Proceedings of the 9th International Modelica Conference 619
10.3384/ecp12076619 September 3-5, 2012, Munich, Germany

of the parameterized function. In [4] a combined cy-
cle power plant is modeled and optimized, where the
thermo-mechanical stress in the steam turbine rotor
is considered as the most limiting factor during the
start-up. Shirakawa et al. proposed an optimal design
method combining dynamic simulation and nonlinear
programming in [5].

The aim of the current paper is to make the start-
up procedure of a combined cycle power plant more
efficient, with respect to the start-up time and power
production, while limiting the thermal stress in the
heat recovery steam generator. The plant models are
described in the object-oriented modeling language
Modelica. All models are developed by Siemens AG,
Energy Sector, in cooperation with Modelon AB, and
are based on elementary models from first principle
equations of mass and energy. The physical mod-
els have been developed using the commercial Mod-
elica simulation environment, Dymola [6] and they
have been adapted to suit optimization purposes. The
tool used for optimization is the Modelica based open
source platform JModelica.org.

The paper is structured as follows: Section 2 gives
some background information about combined cycle
power plants, dynamic optimization, JModelica.org
and Optimica, while Section 3 describes the power
plant model. Section 4 presents the optimal start-up
problem formulation and the numerical results are dis-
cussed. Section 5 summarizes the results of this paper
and gives proposals for future work.

2 Background

2.1 Combined Cycle Power Plants

The basic principle of a combined cycle power plant
(CCPP) is to combine two thermal cycles in one power
plant, where the topping cycle is a cycle operating at a
higher temperature and the bottoming cycle is a cycle
operating at a lower temperature level. The waste heat
that the topping cycle produces is used in the process
of the bottoming cycle and the efficiency is higher for
the combined cycle than that of one cycle alone. In the
commercial power generation of today the combined
cycle power plants consist of a gas topping cycle and
a steam/water bottoming cycle [7].

The plant is constructed mainly with three parts, the
gas turbine (GT), the heat recovery steam generator
(HRSG) and the steam turbine (ST).

In the GT, ambient air is drawn into the tur-
bine, compressed and used to burn some combustion

medium. Hot gas is produced and expands in the tur-
bine where it is used to drive both the compressor and
the generator.

The key component of a CCPP is the HRSG which
couples the two cycles so that the heat from the GT ex-
haust gas is used to produce hot steam which drives the
ST. The HRSG consists mainly of three components;
the economizer, the evaporator and the superheater.
The water is preheated in the economizer, evaporated
to wet steam in the evaporator and the steam is dried
in the superheater. When the steam is of high enough
quality it is expanded in the ST where it generates
power.

The net efficiency can reach more than 60% in to-
day’s CCPPs. About 60-70 % of the total power output
is produced in the GT [7].

The start-up of a CCPP is normally scheduled as
follows:

1 The GT is first accelerated to full speed no load
and it is synchronized to the grid.

2 The load of the GT is increased and the boiler
starts producing steam. The generated steam is
not led to the ST but bypassed to a condenser.

3 When the steam quality is high enough, the by-
pass valve is slowly closed and the steam can
drive the ST.

Reducing the start-up time of the CCPP is typically
achieved by maximizing the loading rates of both tur-
bines while maintaining the lifetime consumption of
critically stressed components under control. One of
the critical components is the drum in the evaporator.
During the second phase of the start-up, the walls of
this component are subject to high thermal stress due
to temperature gradient transients. The ST is also sub-
ject to large stress constraints, but this occurs in the
last phase of the start-up. The paper focuses on the
optimization of the second phase, that is the loading of
the GT.

2.2 The Dynamic Optimization Problem

The start-up optimization of the CCPP has been for-
mulated as a dynamic optimization problem. The opti-
mization consists typically in finding time trajectories
of the control variables, u(t), that minimize an objec-
tive function ϕ expressed in terms of process variables
y. The optimization problem can generally be stated
as:

min
u(t)

ϕ(z(t),y(t),u(t), t f) (1)

Start-up Optimization of a Combined Cycle Power Plant

620 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076619

subject to

dz(t)
dt

= F(z(t),y(t),u(t), t) (2)

0 = G(z(t),y(t),u(t), t) (3)

z(0) = z0 (4)

with the bounds

zL ≤ z(t)≤ zU (5)

yL ≤ y(t)≤ yU (6)

uL ≤ u(t)≤ uU (7)

tL
f ≤ t f ≤ tU

f (8)

where

ϕ is a scalar objective function,

F are the right hand sides of differential equation

constraints,

G are algebraic equation constraints, assumed to

be index one,

z are differential state profile vectors,

z0 are the initial values of z,

y are algebraic state profile vectors,

u are control profile vectors,

t f is the final time.[8]

The objective function ϕ , that is to be minimized, can
have multiple forms; one is given by the Lagrange
form:

ϕ =
∫ t f

t0
L(z(t),y(t),u(t), t)dt. (9)

2.3 JModelica.org

In this project, the tool used for optimization is the
open source platform JModelica.org [9].
JModelica.org is an extensible Modelica-based open
source platform for optimization, simulation and anal-
ysis of complex dynamic systems. The main objective
of the project is to create an industrially viable open
source platform for optimization of Modelica models,
while offering a flexible platform serving as a virtual
lab for algorithm development and research. [9]

JModelica.org offers different types of model ob-
jects that can be used for simulation and optimization.
For simulation purposes, a Functional Mock-up Unit
(FMU) that follows the FMI (Functional Mock-up In-
terface) standard, is used. It is created by compiling
a Modelica model in JModelica.org or in any other
tool which supports the FMU export. The FMU file

is thereafter loaded as an FMUModel Python object
in JModelica.org and can be simulated using the As-
simulo package. For a more detailed description of im-
port and export of FMUs in python, see [10]. For opti-
mization purposes a JMUModel object is instead cre-
ated. A JMU is a compressed file following a JModel-
ica.org specific standard that is close to the FMI stan-
dard. After compilation, the JMU file is loaded into
JModelica.org and the JMUModel is created and can
be optimized using state of the art numerical methods.
See Åkesson et al. [11] for a thorough description of
the JModelica.org platform.

2.3.1 Collocation Method

The JModelica.org platform uses a direct collocation
method based on Lagrange polynomials on finite el-
ements with Radau points [12]. The Differential Al-
gebraic Equations (DAE) are transformed to a non-
linear program (NLP) by approximating control and
state profiles by piecewise polynomial. The NLP prob-
lem is solved by the solver IPOPT [8].

2.3.2 IPOPT

The open-source software IPOPT (Interior Point OP-
Timizer) is a package for large-scale nonlinear opti-
mization. The optimization problem is transferred to
an interior point problem formulation where a loga-
rithmic barrier term replaces the inequality constraints
[13].

2.4 Optimica

Optimica is an extension of the Modelica language
that enables high-level formulation of optimization
problems based on Modelica models. The extension
mainly consists of an additional class, optimization,
which includes the attribute objective that specifies
the objective function of the optimization problem.
Another supplement is the constraint section, which
can handle different kinds of linear and non-linear
equality- and inequality constraints. [14]

3 Models

3.1 Plant Model

In this paper, three models of a CCPP with differ-
ent complexities have been considered referred to as
CCPP1, CCPP2 and CCPP3, see Figures 1, 2 and 3,
respectively.

Session 5D: Power Plants

DOI Proceedings of the 9th International Modelica Conference 621
10.3384/ecp12076619 September 3-5, 2012, Munich, Germany

All models are developed in Modelica, [15], using
the commercial modeling and simulation environment
Dymola [6] and are based on elementary models from
first principle equations of mass and energy. Disconti-
nuities have been smoothed and all equations are twice
continuously differentiable. Components are modeled
separately according to the object-oriented principle
and joined by additional connection equations to form
the complete system model. Some of the components
in the Dymola models are not connected by visible
connector lines but only by Modelica equations. This
is the case for the output of the integrator at the valve
opening, which is connected to the real expression at
the valve just above it and also the two outputs of the
GT which are connected to the two real expressions to
the right of the GT.

The water side is modeled by dynamic balance
equations whereas the gas side is static. The simpli-
fied HRSG model, see Figures 1, 2 and 3, consist of an
HP pressure stage boiler and is represented by lumped
volume models of a superheater and an evaporator.
To attain better accuracy with respect to thermal dis-
cretization, the superheater is described by five partial
components with different tube geometries. An ideal
level control is assumed in the evaporator model and
it computes the water/steam flow through the HRSG.
The evaporator drum is modeled as a volume, where
the wall, which is subject to high stress during tran-
sients, is spatially discretized. The GT model com-
putes temperature and mass flow of the gas entering
the HRSG at every load. The bypass valve controls
the pressure in the water circuit and can be actuated by
a pressure controller to limit large pressure transients.
A constant pressure has been chosen as boundary con-
dition for the bypass valve, corresponding to the pres-
sure in the condenser. The models CCPP1 and CCPP2
differ in that a pressure controller acting on the bypass
valve is introduced in CCPP1, whereas in CCPP2, the
bypass valve is used as a manipulated control variables
available for optimization.

The model CCPP3, see Figure 3 is more detailed
than models CCPP1 and CCPP2 in that it is modeled
with an additional IP reheater apart from an HP super-
heater and an HP evaporator. The reheater is described
by three partial components and the superheater has
four partial components with different tube geome-
tries which are operating at different pressures like in
CCPP1 and CCPP2 as in the simplified model. An ad-
ditional component that has been added to CCPP3 is
the header of the part of the superheater operating at
highest temperature, see component Header in Figure

3. The header is in this model considered as a com-
ponent subject to high stress during start-up transients
together with the evaporator drum.

Figure 1: Modelica object diagram of model CCPP1,
including a pressure controller. The main compo-
nents are marked and the degree of freedom PL (Power
Load) is circled.

3.2 Water and Steam Properties

Pressure and specific enthalpy have been chosen as
states in the balance equations on the water side. Cor-
relations to compute temperature as well as density
and its derivatives with respect to pressure and en-
thalpy need therefore to be derived. Polynomial ap-
proximations expressed as Taylor expansions from the
phase boundaries have been chosen, see [16] for a
similar method. This leads to optimization friendly
and accurate medium properties and also a continuous
transition of temperature and density across the phase
boundaries.

4 GT Load Profile Optimization

4.1 Problem Formulation

The aim of the optimization is to minimize the start-
up time of the CCPP while keeping the lifetime con-
sumption of critically stressed components under con-
trol and maximizing the amount of power output pro-
duced. Four different optimization problems are con-
sidered, namely, i) a 1DOF problem based on the
model CCPP1 is considered, ii) a 2DOF problem

Start-up Optimization of a Combined Cycle Power Plant

622 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076619

Figure 2: Modelica object diagram of model CCPP2.
The main components are marked and the degrees of
freedom PL (Power Load) and VO (Valve Opening)
are circled.

based on CCPP2, iii) a 2DOF problem with constant
thermal stress bounds based on CCPP3 and finally iv) a
2DOF problem with pressure dependent thermal stress
bounds based on CCPP3.

4.1.1 Optimization Phase

The optimization starts after the synchronization of
the GT to the grid. The time between stand-still and
full-speed-no-load is not subject to optimization but
is simulated to compute the initial point of the opti-
mization. In the present study, a hot start is assumed,
which means that the start-up is initiated after a stand-
still time of at most 7 hours. The start-up is considered
to be complete when the GT has reached its full load,
i.e. its maximum power output.

4.1.2 Degrees of Freedom

Two control variables have been considered in the pa-
per: the load u of the GT and the opening v of the
bypass valve. The degrees of freedom in the optimiza-
tion are defined as the time-derivative of the control
variables, i.e. du/dt (marked as PL for Power Load in
Figures 1, 2 and 3) and dv/dt (marked as VO for Valve
Opening in Figures 2 and 3), and are parameterized by
piecewise constant signals.

In a first optimization problem, the GT load u is cho-
sen to be the only control variable. The bypass valve
is in that case manipulated by a PI controller to con-

Figure 3: Modelica object diagram of model CCPP3,
including a header and an IP reheater. The main com-
ponents are marked and the degrees of freedom PL
(Power Load) and VO (Valve Opening) are circled.

trol the pressure at the superheater outlet, Figures 1.
In a second optimization problem, the pressure con-
troller, seen in Figure 1, is removed and both degrees
of freedom are used for optimization. In these cases,
the physical models of the power plant are identical,
apart from the pressure controller. For the two opti-
mization problems based on CCPP3, both degrees of
freedom are used.

4.1.3 Cost Function

The objective function is written in the Lagrange form
as in Equation (9). The optimization problem has been
formulated using a quadratic cost function where the
integrand L penalizes the deviation of the load u from
its reference value ure f as well as the derivatives of the
inputs:

L = α(u−ure f)
2 +β

du
dt

2
+ γ

dv
dt

2
. (10)

The reference value for u(t) is normalized to 1, which
corresponds to 100% of its full load. This formulation
maximizes the produced power output during start-up
and should also result in a short start-up time.

4.1.4 Constraints

The limiting factor during the start-up procedure is the
thermal stress due to temperature gradient transients
in the wall of the drum of the evaporator and super-
heater header. The simplified optimization constraint

Session 5D: Power Plants

DOI Proceedings of the 9th International Modelica Conference 623
10.3384/ecp12076619 September 3-5, 2012, Munich, Germany

considered for CCPP1 and CCPP2 is the temperature
gradient in the wall of the boiler:

|Tmiddle layer wallDrum−Tevap| ≤ |dTmaxDrum|= 0.5.
(11)

In the first optimization problem based on CCPP3, an
additional constraint for the temperature gradient in
the header is added:

|Tmiddle layer wallHeader−TSH | ≤ |dTmaxHeader|= 0.5.
(12)

In the second optimization problem based on CCPP3,
the constant bounds on the drum and header tempera-
ture gradients are replaced by pressure dependent con-
straints

|Tmiddle layer wallDrum−Tevap| ≤ fd(p) (13)

|Tmiddle layer wallHeader−TSH | ≤ fh(p). (14)

When the bypass valve opening is used for op-
timization, an additional constraint on the opening
derivative is introduced:

|dv
dt
|< |dv

dt
|max. (15)

4.1.5 Initialization

To initialize the first optimization problem, a simula-
tion of the model is first realized in JModelica.org, us-
ing a simple (zero-load) input trajectory. This results
in feasible trajectories for the optimization that do not
violate the defined constraints. The simulation result
is then used as an initial guess trajectory for the first
optimization. To improve the result accuracy the opti-
mization is done iteratively, starting with a simple dis-
cretization with few elements. The result of the pre-
vious optimization is then used as a new initial guess
trajectory and the discretization is refined by increas-
ing the number of elements and/or by changing the end
time of the optimization.

4.1.6 Optimization Settings

The number of elements, ne, in the optimization inter-
val has been varied between 10 and 45 and the num-
ber of collocation points in every element was fixed to
ncp = 3. The overall relative tolerance for the interior
point solver was chosen to be 10−4.

4.2 1 DOF Optimization of CCPP1

The pressure in the HRSG is controlled using the
opening v of the bypass valve in a built in control-
loop, leaving u as the sole degree of freedom (1

DOF) for optimization. The continuous-time opti-
mization model contains 28 continuous time states and
456 scalar equations. The power output has been al-
lowed to either both increase and decrease during start-
up (non-monotonic power output) or to only increase
(monotonically increasing power output). Both cases
have been optimally controlled to full load and the op-
timization results are shown in Figures 4 and 5. The
solid line trajectory represents the solution for the non-
monotonic power output and the dashed trajectory rep-
resents the monotonically increasing power output.

Figure 4: Optimal start-up trajectories for 1 DOF:
dashed (monotonically increasing power output) and
solid (non-monotonic power output) curves. Sim-
ulated initial guess trajectories are shown by dash-
dotted curves. From the top: the derivative of the GT
load, the GT load, the GT outlet temperature, the GT
mass flow and the temperature gradient in the wall of
the drum. All results and times have been normalized.

The optimal and normalized time for the GT to
reach 95% of full load is approximately the same in
both cases: 0.724 and 0.723 for the monotonic and
non-monotonic load profile, respectively. From Fig-
ure 4, it can be seen that the temperature gradient
constraint becomes rapidly active in spite of the low
GT load. This is due to that the pressure controller
keeps the bypass valve closed which results in a low
mass flow through the valve and a high pressure in the

Start-up Optimization of a Combined Cycle Power Plant

624 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076619

Figure 5: Optimal start-up trajectories for 1 DOF:
dashed (monotonically increasing power output) and
solid (non-monotonic power output) curves. Sim-
ulated initial guess trajectories are shown by dash-
dotted curves. From the top: the pressure in the super-
heater on the steam/water side and the pressure con-
trol loop set-point, the bypass valve opening in the
pressure controller, the outlet temperature and the out-
let mass flow from the superheater on the steam/water
side. All results and times have been normalized.

HRSG, giving large temperature gradients in the wall
of the drum. There is also hot steam in the HRSG due
to transients from phase 1 and from the fact that the
start-up is considered as a hot start. At about t = 0.37,
the GT load is rapidly increased from about 10% to
80%, at an optimal rate that steadily maintains the gra-
dient constraint active. At about t = 0.44, the non-
monotonic load profile reaches a maximum of 90%
before decreasing to 80% at t = 0.51. This behavior is
related to the optimization formulation that penalizes
deviations from the reference load of 100% and may
therefore lead to overshoots before the gradient con-
straint becomes too constraining. The overshoot that
is allowed at low input penalty coefficient β is not ob-
served in the case of a monotonically increasing load.
The dip in the temperature gradient observed at about
t = 0.48 is due to the limited degree of freedom and its
amplitude decreases with an increasing discretization

level. In the case of a monotonically increasing load,
the gradient dip cannot be avoided and is rather inde-
pendent on the discretization level. After scaling the
value of the objective function is 1 for the monotoni-
cally increasing power output case and 0.95 in the non
monotonic case.

4.3 2 DOF Optimization of CCPP2

The CCPP2 model contains 28 continuous time states
and 389 scalar equations. When optimizing the 2 DOF
case the input signal representing the power output
was defined as non monotonic. The second input, the
opening of the bypass valve, could vary from closed to
fully open with a derivative in the interval [−0.5,0.5].
The model has been successfully optimized to full
load, see results in Figure 6 where the solid trajectory
represents the solution of the optimization problem.

Figure 6: Optimal start-up trajectories for 2 DOF:
solid (non-monotonic power output) curve. Simulated
initial guess trajectories are shown by dash-dotted
curves. From top: the bypass valve opening, the
power output, the pressure in the superheater on the
steam/water side and the temperature gradient in the
wall of the drum. All results and times have been nor-
malized.

The optimal time for the GT to reach 95% of full
load is approximately t = 0.75 when the model with 2
DOF is optimized, see Figure 6. The temperature gra-
dient constraint is active from t = 0.06 and the GT load

Session 5D: Power Plants

DOI Proceedings of the 9th International Modelica Conference 625
10.3384/ecp12076619 September 3-5, 2012, Munich, Germany

can not increase as rapidly as initiated after t = 0.04.
At about t = 0.12 the GT load increases steadily at al-
most constant rate to not violate the temperature gra-
dient constraint until it reaches its maximum value at
t = 0.84. The dip in the temperature gradient that was
observed in the 1 DOF case is not observed. The gra-
dient constraint is not completely active around t = 0.1
which most likely is due to the discretization. The by-
pass valve is opened at t = 0 and is fully opened at
t = 0.12, inducing that the power load can be increased
more rapidly for t < 0.5, comparing to the 1 DOF case.
After scaling the value of the objective function is 0.19
in the 2 DOF non monotonic case, and this value also
includes a contribution from the dv/dt term in the cost
function.

The total power produced during the start-up pro-
cedure corresponds to the area under the graph of the
power output. Even though the GT reaches full load
later than in the 1 DOF case, the 2 DOF model pro-
duces more GT power during the start-up than the
1 DOF model. The objective function value corre-
sponding to the deviation of the power output from
full load is thus about 1/5 of the 1 DOF model solu-
tion. This result shows the benefit of using an extra
degree of freedom.

4.4 2 DOF Optimization of CCPP3

The model CCPP3 contains 39 continuous time states
and 576 scalar equations. Two different optimization
problems based on CCPP3 are considered in this sec-
tion.

4.4.1 Constant Temperature Gradient Bounds

An optimization problem based on CCPP3 with con-
stant bounds on temperature gradients has been suc-
cessfully solved, where full load is reached, see the
results in Figures 7 and 8, dashed curves.

The degrees of freedom were du/dt and dv/dt. The
GT load input u was non-monotonic and the bypass
valve was controlled in the optimization so that the
opening of the bypass valve could vary from closed to
fully open with a derivative in the interval [−0.5,0.5].
The optimal time for the GT to reach 95% of full load
was approximately t = 0.45, see Figure 7.

The GT load can not increase as rapidly as initi-
ated after t = 0.04 since at the end time of the second
block (0.04 < t ≤ 0.08, since the degree of freedom
du/dt is piecewise constant) the header constraint is
active. The header temperature gradient constraint is
active from t = 0.08 until t = 0.3. The drum tempera-

Figure 7: Optimal start-up trajectories of CCPP3.
Dashed curves show results for constant temperature
gradient bounds and solid curves show results for pres-
sure dependent constraints. Simulated initial guess tra-
jectories are shown in dash-dotted curves. From the
top: bypass valve opening, GT power output, pressure
in the superheater on the steam/water side, tempera-
ture gradient in the wall of the header and temperature
gradient in the wall of the drum. All results and times
have been normalized.

ture gradient constraint is active at different times from
t = 0.16 and it is the only active temperature gradi-
ent constraint when t > 0.3. Around t = 0.6 the drum
temperature gradient constraint is active for the longest
time sequence.

From t = 0.12 the GT load increases with a rate that
varies to not violate the header drum constraint. Af-
ter t = 0.2 the GT load increases with a steady almost
constant rate until it reaches about 80% of full load
at t = 0.34. The drum temperature gradient constraint
is not active during this time period. From t = 0.34
the GT load increases at a low rate to not violate the
drum temperature gradient constraint until it reaches
its maximum value of 1 at t = 0.88. The bypass valve
is opened at t = 0 and is fully opened at t = 0.48. The
valve though closes at t = 0.08 giving a rise in the
HRSG pressure and the drum temperature gradient.

After scaling the value of the objective function is
0.34, and this value also includes a contribution from
the dv/dt term in the cost function.

Start-up Optimization of a Combined Cycle Power Plant

626 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076619

Figure 8: Optimal start-up trajectories of CCPP3.
Dashed curves show results for constant temperature
gradient bounds and solid curves show results for pres-
sure dependent constraints. The dash-dotted curve
shows the pressure dependent stress constraint. From
the top: temperature gradient in the wall of the header
as a function of pressure and the temperature gradient
in the wall of the drum as a function of pressure. All
results and times have been normalized.

4.4.2 Pressure Dependent Temperature Gradient
Constraint

In Figures 7 and 8, the results for the case when ap-
plying pressure dependent temperature gradient con-
straints to CCPP3 are shown in solid curves.

The GT load input u was non-monotonic and the
bypass valve was controlled in the optimization so
that the opening of the bypass valve could vary from
closed to fully open with a derivative in the interval
[−0.5,0.5]. The degrees of freedom were du/dt and
dv/dt.

The optimal time for the GT to reach 95% of full
load was approximately t = 0.56. As in the case of
constant stress bounds, the GT load can not increase
as rapidly as initially after t = 0.04, since at the end
time of the second block (0.04 < t ≤ 0.08, since the
degree of freedom du/dt is piecewise constant) the
header constraint is active, see Figures 7 and 8.

The header temperature gradient constraint is active
from pressures p=0.19 to p=0.25 corresponding to the
time period t = 0.07 and until t = 0.24. The drum tem-
perature gradient constraint is active from pressures
p= 0.2 to p= 0.55 corresponding to the times t = 0.09
to t = 0.7. The GT load is thus more constrained at

lower pressures than in the previous case, see Figure
8.

The pressure dependent stress constraints allow the
drum temperature gradient to attain larger values when
t > 0.7 (the pressure in the HRSG is larger than 0.55)
compared to the constant constraint used in the previ-
ous case. The stress in the header is, however, more
constrained in second case, which yields a lower rate
of increase of the GT load as compared to the previ-
ous case. From t = 0.08 the GT load increases with a
rate that does not violate the header drum constraints.
The bypass valve is opened at t = 0 and is fully opened
at t = 0.65. The pressure is kept at low values when
the temperature gradient constraints are active and the
pressure can increase at a higher rate when t > 0.5.

After scaling the value of the objective function is
0.47 and this value also includes a contribution from
the dv/dt term in the cost function.

4.5 Discussion

When starting up a power plant, the most desirable
goal does not necessarily have to be to reach full load
as fast as possible. To achieve as much power output
as possible during the start-up procedure could be just
as important. The results show how a larger amount of
produced power during start-up can be achieved when
adding the opening of the bypass valve as degree of
freedom.

When using the pressure controller in the 1 DOF
model, it has been shown to function in a far from op-
timal way since the pressure is controlled so that the
load cannot increase during the first 0.35 s. The set
point of the controller could be modified so that the by-
pass valve can be opened earlier in the start-up, lower-
ing the pressure in the HRSG and giving the load more
operational space where it does not violate the gradi-
ent constraint. When the bypass valve opening is used
as a degree of freedom in the 2 DOF case the valve is
opened earlier, lowering the pressure in the HRSG and
allowing the load to be increased earlier. The results
from the 2 DOF case produces the most power during
the start-up and the benefits from using two degrees of
freedom instead of one is clear.

The 2 DOF model produces more steam in an ear-
lier phase of the start-up due to the faster ramp up of
the GT load. It is though not taken into account in
this paper to determine if the produced steam is of suf-
ficient quality to start the third phase of the start-up
procedure; the loading of the ST. A more complete
picture of the efficiency of the start-up could be at-
tained by modifying the objective function and adding

Session 5D: Power Plants

DOI Proceedings of the 9th International Modelica Conference 627
10.3384/ecp12076619 September 3-5, 2012, Munich, Germany

more complex and thorough descriptions of possible
objectives, so that the efficiency is maximized and the
economical costs during the whole start-up transient is
minimized. Thus the economical aspects of not only
the load produced could be taken into account.

The rate of increase of the GT power load has been
unlimited in all optimizations done in this paper. This
and the fact that the GT power load is allowed to de-
crease gives a peak in the GT power load in the begin-
ning of the start-up phase for all non-monotonic GT
load cases. From an optimization point of view this is
a satisfying result, since it is clear that the optimizer
is trying to make the load reach its reference value as
fast as possible. The GT load must though decrease
to not violate the temperature gradient constraints. In
actual power plants, such a fast increase in load could
damage the GT or even not be physically applicable.
By penalizing the use of the du/dt input such peaks
could be avoided in the optimization.

When comparing the two optimization problems
based on CCPP3, presented in Sections 4.4.1 and
4.4.1 respectively, it is clear that the time to reach full
load is more or less the same even though in the sec-
ond case there are stricter temperature gradient con-
straints at lower pressures comparing to the first case.
The optimizer compensates this by using the full po-
tential of the drum gradient constraint for t > 0.7. The
rate of increase of the GT load is slightly larger for sec-
ond case when t > 0.7 and it can be observed that the
pressure increases at a higher rate than in first case.
Even though the time to reach full load is approxi-
mately the same the profile resulting in the second case
keeps the lifetime consumptions of the stressed com-
ponents at a level used in actual power plant controls.
The header constraint is active earlier in the start-up
phase comparing to the drum constraint. This is due
to that the hot exhaust gas from the GT enters the
header first when the gas is of the highest temperature.
The exhaust gas reaches the drum with a time delay
and the exhaust gas is of lower temperature than when
reaching the header. The drum consists of water in its
fluid state and the gradient is therefore coupled to the
pressure in the component. Steam is though decou-
pled from pressure and the header temperature gradi-
ent is more dependent on the GT exhaust gas temper-
ature than the pressure. The basic stress model used
in the second case uses constraints that are typically
used in power plant control. Since the stress levels ob-
tained with constant temperature gradient bounds vio-
late these constraints, the result from the second case
is the most preferable choice.

For additional background, results and discussions
from this project, see [17].

5 Summary and Conclusions

In this paper it has been shown how a start-up pro-
cedure of a combined cycle power plant can be opti-
mized with respect to the start-up time and the power
production during start-up, using JModelica.org. The
thermal stress in the heat recovery steam generator has
been considered as the most limiting constraint when
starting up the GT to full load, i.e. its maximum power
output.

Three different optimization models have been con-
sidered; one where the load u of the gas turbine is the
sole degree of freedom and two where both the load u
and the opening v of the bypass valve are degrees of
freedom. Also, two different levels of model fidelities
have been considered. Based on these, four optimiza-
tion problems have been successfully solved where
the power output has been controlled to the reference
value of 100% and it has been observed that by adding
the opening of the bypass valve as degree of freedom
a larger amount of power during start-up is produced.
In addition, it has been shown how pressure depen-
dent stress constrains contributes to increased lifetime
of critical components, which maintaining fast start-
ups.

The models have been adapted to suit optimization
purposes concerning the start-up of the GT and thus
the ST has not been modeled. The next step towards
achieving more realistic results could be to close the
steam cycle and to include more detailed components
in the model. More constraints could as well be used
and additional degrees of freedom could be added. It
has not been taken into consideration when it is most
optimal to start the ST and if the optimization of the
GT loading should take this factor into account. One
improvement could thus be to find when, during the
start-up procedure, the ST should be started and to de-
termine when and how much of the steam should pass
the bypass valve. Another improvement could be to
include economical aspects and to minimize the fuel
spent during start-up while maximizing the produced
power load. The work presented in this paper is one
step towards an optimal power plant control and could
be used with an on-line strategy such as model predic-
tive control.

Start-up Optimization of a Combined Cycle Power Plant

628 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076619

Acknowledgments

The German Ministry BMBF has partially
funded this work (BMBF Förderkennzeichen:
01IS09029C) within the ITEA2 project OPENPROD
(http://www.openprod.org). Modelon’s contribution
to this work was partially funded by Vinnova within
the ITEA2 project OPENPROD (dnr: 2010-00068).
Johan Åkesson acknowledges financial support from
Lund Center for Control of Complex systems, funded
by the Swedish research council.

References

[1] Casella, F. and Pretolani, F. Fast Start-up of
a Combined-Cycle Power Plant: A Simulation
Study with Modelica. In: Modelica Conference,
pp. 3-10, Vienna, Austria, 2006.

[2] Casella, F., and Leva, A. Modelica open li-
brary for power plant simulation: design and
experimental validation. In: Proceedings of 3rd
International Modelica Conference, pp. 41-50.
Linkoping, Sweden, 2003.

[3] Casella, F., Farina, M., Righetti, F., Scattolini,
R., Faille, D., Davelaar, F., Tica, A., Gueguen, H.
and Dumur, D. An optimization procedure of the
start-up of combined cycle power plants. In: 18th
IFAC World Congress, pp. 7043-7048. Milano,
Italy, 2011.

[4] Casella, F., Donida, F. and Åkesson, J. Object-
oriented modeling and optimal control: a case
study in power plant start-up. In: 18th IFAC
World Congress, pp. 9549-9554. Milano, Italy,
2011.

[5] Shirakawa, M., Nakamoto, M. and Hosaka, S.
Dynamic simulation and optimization of start-
up processes in combined cycle power plants. In:
JSME International Journal, vol. 48 (1), pp. 122-
128, 2005.

[6] Dassault Systemes. Dymola,
http://www.3ds.com/
products/catia/portfolio/dymola, 2012, viewed
2012-06-12.

[7] Kehlhofer, R., Warner, J., Nielsen, H., Bach-
mann, R. Combined-Cycle Gas and Steam Tur-
bine Power Plants, second edition, PennWell
Publishing Company, 1999.

[8] Biegler, L., Cervantes, A., Wachter, A. Advances
in simultaneous strategies for dynamic optimiza-
tion, Chemical Engineering Science 57, pp. 575-
593, 2002.

[9] Modelon AB. JModelica Home Page.
http://www.jmodelica.org, 2009, viewed
2012-06-12.

[10] Andersson, C., Åkesson, J., Führer, C., Gäfvert,
M. Import and Export of Functional Mock-up
Units in JModelica.org. In: 8th International
Modelica Conference 2011. Modelica Associa-
tion, 2011.

[11] Åkesson, J., Årzen, K.E., Gafvert, M., Bergdahl,
T., and Tummescheit, H. Modeling and op-
timization with Optimica and JModelica.org -
languages and tools for solving large-scale dy-
namic optimization problems. In: Computers and
Chemical Engineering, vol. 34 (11), pp. 1737-
1749, 2010.

[12] Biegler, L. Nonlinear Programming: Concepts,
Algorithms, and Applications to Chemical Pro-
cesses, SIAM, 2010.

[13] Biegler, L., Wächter, A. On the Implementation
of a Primal-Dual Interior Point Filter Line Search
Algorithm for Large-Scale Nonlinear Program-
ming, Mathematical Programming 106(1), pp.
25-57, 2006.

[14] Åkesson J. Languages and Tools for Optimiza-
tion of Large-Scale Systems, PhD Thesis ISRN
LUTFD2/TFRT–1081–SE, Regler, 2007.

[15] Modelica Association. The Modelica Associa-
tion, https://www.modelica.org, 2012, viewed
2012-06-12.

[16] Bauer, O. Modelling of Two-Phase Flows with
Modelica, Master’s Thesis, Lund University, De-
partment of Automatic Control, 1999.

[17] Lind, A., Sällberg, E. Optimization of the Start-
up Procedure of a Combined Cycle Power Plant,
Master’s Thesis, Lund University, Department of
Automatic Control, 2012.

Session 5D: Power Plants

DOI Proceedings of the 9th International Modelica Conference 629
10.3384/ecp12076619 September 3-5, 2012, Munich, Germany

Start-up Optimization of a Combined Cycle Power Plant

630 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076619

Modeling and Simulation of a Vertical Wind Power Plant in Dymola/Modelica

Modeling and Simulation of a Vertical Wind Power Plant in
Dymola/Modelica

Joel Petersson∗ Pär Isaksson∗

Joel.pettersson@gmail.com Par.Isaksson.lth@gmail.com

Hubertus Tummescheit† Johan Ylikiiskilä†

hubertus.tummescheit@modelon.com johan.ylikiiskila@modelon.com
∗ Lund University † Modelon AB

Sölvegatan 18 Ideon Science Park
SE-22100, Lund, Sweden SE-22370, Lund, Sweden

www.lth.se www.modelon.com

Abstract

A small wind power plant connected to the grid has
been modeled in Modelica/Dymola and controlled us-
ing external controllers written in C++. The small
wind power plant consists of three wind power units,
with a nominal power of 3kW, and one grid connection
interconnected with an internal DC-grid. All the con-
trols needed for controlling and optimizing the opera-
tion of the individual parts in the plant were developed
and implemented. Apart from this a managing control
for the entire plant were developed and implemented.

The control was implemented using an external
static library interconnected with Dymola. the Exter-
nal Object approach for implementing objects in Mod-
elica was also tested. The optimization algorithms de-
veloped for the wind turbine was done in a way so
that no measurements of the wind speed are needed.
The controls were developed so that they can achieve
a number of different tasks such as Reactive Power
Compensation and Island Control.

Models were implemented in Modelica using Dy-
mola as tool. In order to model the power electron-
ics involved in the system the Electric Power library
(EPL) has been utilized. Models for the wind turbine
were developed and tested.

The models were in the end tested and evaluated by
running a number of different simulations. The Differ-
ent test cases consists of optimizing the power output,
controlling the power output to a desired level and is-
land operation, that is to power up a small grid on its
own.
Keywords: wind power, power electronics, control, op-
timization, vertical wind power, Electrical Power li-
brary

Nomenclature

P Power, if electrical active Power.
Cp Efficiency coefficient of the wind turbine.
Tω Mechanical torque.
β Pitch angle of the rotor blades.
λ Tip speed ration of the rotor blades.
λi Factor used for calculating Cp.
ωT Rotational speed of the turbine.
ρ Air density.
c1−6 System dependent constant used to calculate

Cp.
A Area swept by the rotor.
R Radius of the wind turbine.
v Wind speed.
vbase Wind model base component.
vgust Wind model gust component.
vnoise Wind model noise component.
Lsd/q Inductance in d/q-axes.
T re f Torque reference.
ψm Permanent flux.
ire f
sd/q Direct/Quadrature current reference.

isd/q Direct/Quadrature current.
T Electrical torque.
pp Number of pole pairs in the generator.

1 Introduction

Wind power is at the moment in a globally expansive
phase with different kinds of technical solutions and
suppliers. In most solutions power electronics is incor-
porated to smaller or larger extent. Most wind power
plants currently operate with a horizontal axis turbine,
however vertical axes turbines is an interesting future

DOI Proceedings of the 9th International Modelica Conference 631
10.3384/ecp12076631 September 3-5, 2012, Munich, Germany

Figure 1: Schematic picture of how the wind power
system is set up.

alternative. Vertical plants have been erected and are
now being tested in Sweden.

The advantages of using a vertical axes turbine are a
simple and robust construction with a minimal amount
of moving parts, which allows for a cost efficient wind
power plant with an aspect both to investment, opera-
tion and maintenance. Other pros are independence of
wind direction, less sensitivity to turbulence, simple
blade profiles and lower noise levels.

The objective of this project was to model and con-
trol a small wind power plant consisting of one or sev-
eral wind power units and one grid connection inter-
connected with an internal DC-grid. The configuration
of investigated can be seen in figure 1. This article will
mainly focus on the case with one single wind power
unit connected to the grid through back to back full in-
verters1. The models and controls developed will be
tested by running different test cases. They will also
be evaluated according grid codes, see [1] & [2].

2 Modeling

The system to be modeled consists, as depicted in fig-
ure 2, of a wind turbine connected through a break to

1Back to back full inverters consists of two inverters coupled
by a DC-grid, i.e. the DC-connection of the generator inverter is
coupled to the DC-connection of the grid inverter.

a generator. The power voltage output from the gener-
ator is rectified by an inverter connected to a DC-grid
which is then connected via another inverter to a three-
phase grid. The reason to why an internal DC-grid is
utilized is mainly to decouple the rotational speed of
the wind power units from the grid frequency, the DC-
grid also acts as both filter and buffer.

2.1 Wind Turbine

Wind turbine power generations depend on the inter-
actions between the wind and the rotor. The power
extracted from the wind by the rotor can be described
as the kinetic energy of the wind times an efficiency
coefficient. The efficiency coefficient is varying with
the pitch angle of the blades and tip speed ratio. The
tip speed ratio is the wind speed relative the speed of
the tip of the turbine’s blades. The mechanical power
P in a vertical wind power unit can be described by
equation 1. The efficiency coefficient, Cp, can be de-
scribed according to equation 2, as proposed in [3] and
[4].

P =
1
2
·ρ ·A · v3 ·Cp (1)

Cp(λ ,β) = c1 · (
c2

λi
− c3 ·β − c4) · e

−c5
λi + c6 ·λ (2)

1
λi

=
1

λ +0.08 ·β
− 0.035

β 3 +1
(3)

λ =
ωT ·R

v
(4)

The area swept by a vertical wind power turbine is
simply expressed as the rotor diameter times the ro-
tor length. The efficiency coefficient, Cp, can be cal-
culated according to equation 2 to 4. A typical Cp-
curve for different pitch angles2 can be seen in figure
3. The mechanical torque Tω can be obtained by divid-
ing the power absorbed, P, with the rotational speed of
the turbine, ωT . A component modeling the effect of
tower shadow was also implemented according to [5].
The tower shadowing effect occurs when a rotor blade
passes behind the tower, this since it is then shadowed
from the wind by the tower. This was modeled by sub-
tracting a torque component each time a rotor blade
passes behind the tower.

Tω =
P

ωT
(5)

2The pitch angle is the angle at which the rotor’s blade surface
contacts the wind.

Modeling and Simulation of a Vertical Wind Power Plant in Dymola/Modelica

632 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076631

Figure 2: Overview of control structure and configuration of the wind power plant.

Figure 3: Typical characteristic of a Cp-curve at differ-
ent pitch-angles, β

Apart from modeling the wind turbine as an energy
producing unit modeling of the actual mechanical and
electrical properties also needs to be done in order to
get a good overall model. The wind turbine was mod-
eled to be directly coupled to a shaft and via a brake
to the permanent magnet generator. The shaft was
modeled as inertia, containing both the rotor’s iner-
tia and the actual shaft’s inertia, coupled via a model
of coulomb friction in bearings, in order to simulate
losses in the shaft, to the brake. For modeling of the
inertia, bearing friction and brake components from
Modelica’s standard library was used.

2.2 Wind Model

The produced power of a wind turbine is tightly linked
to the current wind speed. The wind changes both dur-
ing the day and the seasons. In order capture these
changes and to simulate the real wind conditions, a
wind model consisting of three components is used in
this project. The three components are:

• A base component, vbase

• A gust component, vgust

• A noise component, vnoise

The three components are summarized to v = vbase
+ vgust + vnoise. The base component is always present,
it may be constant, a ramp signal or have any other
form. The gust component appears randomly during
time and the noise component is modeled as white
noise.

2.3 Power Electronics

The system is designed using back to back full in-
verters. This means that the modeling of the power
electronics becomes essential for the complete model.
This since the power electronics is used for controlling
both the individual wind power units and grid connec-
tion. The Electric Power Library was chosen to be the
main tool used for modeling the power electronics and
generators since it is well suited for the task.

Session 5D: Power Plants

DOI Proceedings of the 9th International Modelica Conference 633
10.3384/ecp12076631 September 3-5, 2012, Munich, Germany

2.3.1 The Electric Power Library

The Electric Power library is a Modelica library used
for modeling of power electronics and can be used in
both steady state and transient mode for the simula-
tions and initializations. The Electric Power library
provides components for modeling AC three phase
system, AC one phase systems and DC system. The
AC three phase systems can be represented in the abc-
, dqo- and dq-frame. Especially modeling in the dqo-
/dq- reference frame provides relatively quick simu-
lations, compared to simulations in the abc-reference
frame. This since a symmetrical three phase volt-
age or current is represented by constants in the dq0-
reference frame. The Electric Power library was origi-
nally written by H.J. Wiesmann and is currently owned
and sold by Modelon AB.

The Electric Power Library supports modeling in
the dq0-reference frame. The dq0-reference frame
not only simplifies analysis of the system but also in-
creases the simulation speed.

The main components used from the Electric
Power library were models for the inverters, a model
for a Permanent Magnetized Synchronous Machine,
PMSM, DC-link model and models for transmission
lines. The rotor connection of the PMSM model is
compatible with the Modelica standard library.

3 Control Design

In order to control the wind power plant different con-
trols are needed. The controls are developed to achieve
a number of different operation modes that are needed
in order to achieve the grid codes. The overall control
structure developed can be seen in figure 2. A short
description of the different controllers follows below,
for more detailed descriptions see [6].

3.1 Wind Power Unit Control

The control needed to control the wind power unit has
been divided into three controllers the Turbine Con-
trol, the Power Controller and the Speed Controller.

3.1.1 Turbine Control

The Turbine Control’s task is to manage the wind
power unit, which is to decide when the unit should
start and stop as well as to give instructions as to which
mode the unit currently should be working in. The
Turbine Control should communicate with both the

Plant Control and the Power Controller. The commu-
nication should be kept to a minimum and no actual
control should be done by the Turbine Control and
Plant Control. The controller’s main task is to make
decisions about when the unit could be in operation
and provide information about the unit’s current ca-
pacity to the Plant Control. In order to do this the Tur-
bine Control needs information about the current wind
speed as well as orders from the Plant Control. Apart
from this the control also needs information about how
fast the rotor is spinning. This to avoid using the brake
at high speeds and instead do a soft deceleration using
the generator.

3.1.2 Power Controller

In order to control the power output from the wind
power unit the Power Controller was developed. By
controlling the power output from the wind power unit
a number of different control modes can be achieved.
The Power Controller is designed in two different sec-
tions.

The first part’s task is to set an appropriate power
reference for the second part. This power reference
mainly depends on what control mode that is desired.
For example when ordered to control the DC-voltage
level the Power Controller receives a power offset.
The power offset received is the current power input
needed from the wind power unit in order for the to-
tal power input to be equal to the power output, thus
keeping the DC-voltage level inert. The Power Con-
troller then calculates the power reference as a devia-
tion from the power offset in order to control the DC-
voltage level.

The second part’s task is to control the power out-
put from the wind power unit to the reference value.
This is done by adjusting the rotational speed of the
turbine. As long as the wind speed is high enough for
achieving the desired power the task is quite trivial and
easily achieved by a PI-controller. However when the
wind speed is too low and the desired power cannot be
reached the controller should do as good as possible.
In this case the controller should maximize the power
output from the plant. The algorithm used to optimize
the rotational speed was based on the sensorless max-
imum power point racking algorithm proposed in [7].

A flow chart over the general operation of the Power
Controller can be seen in figure 4. The general idea
with the control is to determine whether the current
operation point is to the left or right of the optimal
point, and depending on this take different actions.

The control algorithm starts by setting initial con-

Modeling and Simulation of a Vertical Wind Power Plant in Dymola/Modelica

634 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076631

Figure 4: Flow chart for the power control algorithm

dition and reads new measurements. It then tries to
decide whether the current operation point is to the
left or right of the optimal by comparing the change
in power output and the change in rotational speed.
If the current operating point is considered to be on
the left side of the optimal point the control output
is calculated by a PI-controller with a simple anti-
windup. If it is considered to be on the right side of
the optimal point the control output is calculated as
ωout(t) = ωout(t − 1)− |c · ∆P| where c is a control
constant and ∆P is the change in power. Also the inte-
gral for the PI-controller is updated in order to achieve
a bumpless transfer between the two controls. That
is when a control switch is made the output from the
“new” control is equal to that of the “old”.

3.1.3 Speed Controller

The speed controller consists of a series of cascaded
PI- and PIE-controllers. The PIE-controller is a PI-
control which is compensated by feed-forwarding the
back electromagnetic force from the generator. The
control parameters are calculated based on the genera-
tor parameters. The outer controller is a PI-controller
controlling the rotational speed of the turbine by gen-
erating a torque reference. The requested torque can
be achieved in many different ways, according to equa-
tion 6, where T , pp, ψm, Lsd and Lsq are generator pa-
rameters and isd and isq are currents in the respective
axes. In this project a method was chosen were the
direct current, isd , is set to zero, which generates the
current references in equation 7.

T
pp

= ψmisq +(Lsd−Lsq)isd isq (6)

Figure 5: Schematic picture of the control structure
used for controlling the grid connection.

⇒


ire f
sd = 0

ire f
sq = T re f

ψm·pp

(7)

The two inner PIE-controllers control the currents
of the PMSM which are designed according to [8].

3.2 Grid Connection Control

The control needed for the grid connection has been
divided into two controllers the Voltage Control and
the Current Control.

3.2.1 Voltage Control

The Voltage Control’s task is to control the active and
reactive power flow at the point of connection. This
can be done in different ways depending on which con-
trol goal is desired. For example Swedish wind power
plants are supposed to deliver zero reactive power.
However in a small system the reactive power flow can
be controlled so that the output voltage level to the grid
is kept constant, independent of the active power out-
put. Another possible control mode is Island operation
in which the plant powers up the grid and controls the
grid’s voltage and frequency.

3.2.2 Current Control

The current controllers are implemented as two paral-
lel PI-controllers controlling the direct and quadrature
currents. The current references are received from the
voltage control. The currents are controlled by out-
putting a reference voltage to the transistor control,
modulator. The modulator uses the requested voltages

Session 5D: Power Plants

DOI Proceedings of the 9th International Modelica Conference 635
10.3384/ecp12076631 September 3-5, 2012, Munich, Germany

in order to control the transistor by generating by gen-
erating switch signals for each of the individual invert-
ers.

3.3 Wind Power Plant Control

The Plant Control’s task is to manage the wind power
plant. Most of its operation consists of setting the
control modes of the grid connection and wind power
units to achieve a specific control goal. The control
could be done very simplistic, very advanced or any-
way in between. The implementation done here was
kept quite simplistic with some intelligence, for exam-
ple loss compensation and ability to choose the num-
ber of plants that should be in operation and is covered
in [6].

4 Implementation

4.1 Wind Power Unit

Most of the implementation was done using Model-
ica’s standard library and Modelon’s Electric Power li-
brary, however some models for the wind turbine was
developed as well as a wind model.

An overview of the Modelica model over a wind
power unit can be seen in figure 6, to the right is the
top view, with inverter and controllers, and to the left
is the contents of the actual unit, with generator, shaft
and turbine model. The unit model consists of a model
of the turbine connected to a shaft, modeled as an in-
ertia and a bearing friction. The shaft is connected via
a brake to the permanent magnet synchronous gener-
ator, PMSG, the electrical output from the PMSG is
connected to an inverter which performs an AC to DC
conversion. Additionally a wind model was developed
in order to model the wind in a realistic way. The in-
verter is controlled by the control-blocks on top of it,
and by performing the AC/DC conversion the inverter
controls the generator. As can be seen most models in-
corporated in the wind power unit model are from ei-
ther Modelica’s standard library or Modelon’s Electric
Power library. The models implemented in this project
are the turbine model, wind model, the controllers and
an interface between the control and the inverter. The
model of the turbine was implemented using equations
1 to 5.

4.2 Grid Connection

The grid connection is modeled using components
from the Electric Power library. The grid model con-

Figure 7: Screenshot of a strong grid model imple-
mented in Dymola.

sist of a transmission line to the point of connection.
After the point of connection follows a transformer
and another, longer, transmission line. The model
shown in figure 7 is depicting a model of a strong
grid. In order to model a strong grid an optimal volt-
age source is connected to the long transmission line.
The switch implemented before the first transmission
line is necessary since the average inverter model used
is based on a voltage source which means that when in
passive mode it acts as a ground connection.

4.3 Control

There are two possibilities when trying to implement
C/C++ objects into Dymola/Modelica. The first is us-
ing an External Static Library and the second is us-
ing the External Object function in Modelica. Both
methods have their pros and cons. The External Static
Library is disconnected from the modeling tool to a
greater extent while the External Object is more inter-
connected with Modelica. In the end the decision was
made to mainly use the External Static Library for im-
plementation of the control structure. This was due to
two different reasons.

1. The goal was to be able to run the exact same
code both in simulations and on the actual plant
and for this reason it was desirable to separate the
control code and the models as much as possible.

2. The External Object currently only supports code
in FORTRAN 77 and C [9], while the static ex-
ternal library supports both C and C++.

However the External Object was also investigated and
tested. The control blocks implemented in Dymola can
be seen in figure 6 and 8 while a detailed description
is covered in [6].

4.4 Wind Power Plant

Two different Modelica models were developed, how-
ever the only difference between the two is the num-

Modeling and Simulation of a Vertical Wind Power Plant in Dymola/Modelica

636 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076631

Figure 6: Screenshot of the wind power unit model in Dymola.

Figure 8: Screenshot of a wind power plant model us-
ing one wind power unit in Dymola.

ber of wind power units that is connected to the DC-
grid. The models were constructed by connecting one
or more wind power unit models to a model of a DC-
link, the DC-link was then connected to the grid con-
nection model. In reality the wind acting on the differ-
ent wind power units is not identical. The wind model
was moved to the wind power unit model to reflect this
fact.

5 Results

5.1 Optimizing Operation Point

This test is designed for evaluating performance of the
optimizing algorithms of the Power Controller. The
task in this case is to maximize the power output from
the unit when the wind speed is not high enough to
achieve the requested power output. The unit starts at
standstill.

The results from the simulation are shown in fig-
ure 9. As can be seen the wind speed starts at 8 m/s
and after 200s it increases to 11 m/s over 100s. When
observing the power output from the unit it can be no-
ticed that the output is almost zero until the rotational
speed reference has been reached, this since the gener-
ator is not applying any negative torque. After this the
power output is approximately 1 kW, and when ob-
serving the Cp-value in figure 9 it can be seen that it
is very close to its maximum, which for this test was
∼ 0.26. When the wind speed is increased the Power
Controller reacts and adjusts the rotational speed of
the rotor, and after some time the Cp-value has been
returned to its maximum. It takes some time for the
algorithm to recover after the increase in wind speed,
however the value is maintained in the proximity of
the maximum during this time. The wind gusts are
reflected both in the output power and the Cp-value.
The main reason to why the effect is so visible in the
output power is that the wind power unit which was
simulated is quite small, a bigger rotor, with higher in-

Session 5D: Power Plants

DOI Proceedings of the 9th International Modelica Conference 637
10.3384/ecp12076631 September 3-5, 2012, Munich, Germany

Figure 9: Simulation results, plotted from top to bot-
tom are: 1. The rotational speed of the turbine and its
reference 2. the power output from the unit and the
calculated maximum output power 3. the Cp-value 4.
the wind speed

ertia, would do a better job of filtering these “bumps”.
The effect of the gusts on the Cp-value is quite large,
however the goal of the optimizing algorithm should
not be to maximize the output power over these gusts,
but instead to maximize the power output during a long
period of time. Otherwise the control would be forced
to be very aggressive and “nervous” which is not de-
sirable.

5.2 Active and Reactive Power Output Dur-
ing Operation

This case has been designed in order to test as many
features of the Power Controller as possible. To do this
the wind speed varies from 0 - 23 m/s during the sim-
ulation. This should cause the power controller to shut
down the wind power unit both for too high and too
low wind speeds. It should also optimize the power
output when the wind speed is too low for nominal
power and control the power output when the wind
speed is sufficient. More importantly it should also
confirm that the transition between the different con-
trol modes work well. The limits for low and high
wind speed were chosen to 6 respectively 20 m/s.

The simulation has been divided into 7 different
zones, depicted in figure 10 and 11.

1. The wind speed starts at 0 m/s and increases to
5 m/s. During this period the rotor’s rotational
speed and the power reference are both zero,
since the wind speed is too low for operation of
the plant.

2. In this zone the wind speed is increased from 5
m/s to 10 m/s which is enough to allow operation
of the unit. The power reference is raised to its
nominal value, 3000 W, and the rotor starts to ro-
tate. Since the wind speed is not high enough for
nominal power the Power Controller tries to op-
timize the unit’s power output, as can be seen in
the graph of the Cp-value in the third subplot of
figure 10.

3. In this zone the wind increases further and is now
high enough to allow operation at nominal effect.

4. In this zone the wind speed increases to 23 m/s,
which is more than the maximum allowed for op-
eration. Hence the power reference value is de-
creased to zero and the generator decelerates the
rotor speed. When the rotational speed is low
enough the brake is applied and the rotor stops.

5. The wind speed is now reduced to 18 m/s, which
is lower than the maximum allowed wind speed
for operation, and the power reference is in-
creased to its nominal value and the rotor starts to
rotate again. Since the wind speed is high enough
for nominal power the Power Controller controls
the power to this value.

6. The wind speed is now reduced to 11 m/s which
is too low for nominal power and the Power Con-
troller tries to optimize the unit’s output power,
which can be seen on the Cp-value in the third
subplot of figure 10.

7. In this zone the wind speed is decreased to 3 m/s
which is well below the minimum allowed wind
speed. This causes the Turbine Control to give
orders to shut down the wind power unit. The
power reference is set to zero and the generator
decelerates the rotor. When the rotor’s rotational
speed is low enough the brake is applied.

As can be seen in zone 1, 4 and 7 the Turbine Con-
trol successfully makes the decision to turn off the unit
when the wind is either too high or too low for op-
eration. The transition between the different control
modes, which can be seen going from zone 2 to 3 and 5
to 6 3, is working correctly. In the transition from zone
2 and 3 a small power overshoot is present before the
Power Controller manages to counteract the increased
wind speed. In zone 2 and 6 it can be seen that the

3in zone 2 to 3 the transition between optimization and nominal
power can be observed, and in zone 5 to 6 the transition between
nominal power and optimization can be observed.

Modeling and Simulation of a Vertical Wind Power Plant in Dymola/Modelica

638 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076631

Figure 10: Simulation results, plotted for top to bot-
tom are: 1. the rotational speed of the turbine and its
reference 2. the power output from the unit and its
reference 3. the Cp-value 4. the wind speed

Power Controller successfully finds the optimal opera-
tion point. In zone 3 and 5 it can be seen that the Power
Controller successfully controls the output power to its
nominal value, 3kW. When observing the Cp-value in
zone 7 a large spike can be observed. The reason for
this is that when the rotor decelerates it passes through
its optimal rotational speed.

In figure 11 the results from the grid side control of
the plant are presented. As expected the direct voltage
is high above the nominal voltage of 230V during the
time the reactive power compensation is inactive, and
the reactive power output during the same time period
is zero, according to Swedish grid codes [2]. The reac-
tive power compensation is turned on after 350s, when
the plant is at standstill. When the operation resumes
it can be noticed that the direct voltage is controlled to
its nominal value, 230V. Because of the reactive power
flow the active power delivered to the point of connec-
tion is slightly lower than without reactive compensa-
tion.

5.3 Island Operation

This test case was designed to test how the plant man-
ages to run in Island mode, that is to on its own power
up and control the voltage and frequency of the AC-
grid. This is done by ordering the grid connection
to control the AC-voltage and frequency and the wind
power unit to control the DC-voltage level.

The results from the simulation are presented in fig-
ure 12. As can be seen the power controller success-
fully controls the DC-level to 900V with some devia-
tions. At the start the Plant Control orders the wind

Figure 11: Simulation results, plotted from top to bot-
tom are: 1. the DC-voltage level and its reference 2.
the power flow into the DC-grid and active power flow
out from the DC-grid 3. the reactive power flow out
from the DC-grid 4. the direct voltage

power unit to output 1000W to power up the DC-
link capacitor. When the DC-level reaches 850V the
grid controller starts powering up the grid. When the
power flow from the DC-grid has started the Plant
Control waits until accurate power readings have been
achieved and then orders the wind power unit to con-
trol the DC-voltage level. The Power Controller man-
ages to relatively fast control the DC-voltage to 900V.
After 250s the load is increased which causes the DC-
voltage to start decreasing. When the DC-voltage
drops the power reference is changed in order to re-
store the DC-voltage. As depicted in figure 12 the grid
controller does not have any trouble to power up the
grid, and the drop in the DC-level is not so big that it
has any effect on the inverter output. The effect of the
load’s oscillation is visible in the DC-voltage which
also is experiencing a small oscillation. However this
oscillation can be neglected since it has no major effect
on the system. The DC-control has no apparent prob-
lems controlling the DC-level when a varying load is
connected.

6 Conclusion

This work has shown that Modelica and Dymola are
powerful tools for modeling a wind power plant in-
cluding power electronics. It has also been shown that
it can be used to test and evaluate control algorithms
before the plant is built.

All the models and control algorithms were tested
using different simulations. The different simulations

Session 5D: Power Plants

DOI Proceedings of the 9th International Modelica Conference 639
10.3384/ecp12076631 September 3-5, 2012, Munich, Germany

Figure 12: Simulation results, plotted from top to bot-
tom are: 1. the power output from the wind power unit
and its reference 2. the DC-voltage level and its refer-
ence 3. the power in and out from the DC-grid 4. the
wind speed

tests the performance of the control algorithms during
different conditions. Apart from the controls discussed
some algorithms with the sole purpose of optimizing
the control algorithms were also tested [6]. Unfortu-
nately it was not possible to verify the models against
real measurement data. The models are however con-
sidered to be good enough to test the control strate-
gies. The general properties of the system are con-
sidered to be correct since the power extraction from
wind power turbines is quite well documented [3][4],
as well is most power electronics and generators.

During the project the performance of the control
system was tested and evaluated compared to grid
codes of Denmark and Sweden. Some paragraphs
were not taken into account when designing the con-
trol. These grid codes would require some additional
control modes, but no obvious problem in implement-
ing that into the system was found. The details of these
tests, as well as more simulation cases can be found in
[6]. The performance of the control algorithms was in
general good and achieved virtually all the grid codes
tested.

References

[1] Energinet.dk, “Technical regulation 3.2.5 for
wind power plants with a power output greater
than 11 kw.” Available at http://www.
energinet.dk/SiteCollectionDocuments/

Engelske20dokumenter/El/Grid20Code203.

2.

420Power20Unit20above201120kW20and20up20to201,

520MW.pdf 2011-10-24.

[2] Svenska-Kraftnät, “Technical regulation 3.2.5 for
wind power plants with a power output greater
than 11 kw.” Available at
http://www.svk.se/Global/07_Tekniska_

krav/Pdf/Foreskrifter/SvKFS2005_2.pdf

2011-10-24.

[3] I. Catana, C.-A. Safta, and V. Panduru, “Power
optimization control system of wind turbines by
changing the pitch angle,” U.P.B. Sci. Bull.,
Series D, Vol. 72, Iss. 1, pp. 142–146, 2010.

[4] A. Pintea, D.Popescu, and I. Pisica, “Robust
model based control method for wind energy
production,” MCPL’2010: 5th Conference on
Management and Control of Production,
Coimbra : Portugal (2010), 2010.

[5] W. Hu, Y. Wang, X. Song, and Z. Wang,
“Development of vertical-axis wind turbine with
asynchronus generator interconnected to the
electric network,” Electrical Machines and
Systems, 2008. ICEMS 2008. International
Conference on, pp. 2289–2293, 2008.

[6] J. Petersson and P. Isaksson, “Modeling and
simulation of a vertical wind power plant in
dymola/modelica.” Master’s thesis, Department
of Industrial Electrical Engineering and
Automation, Lund University, 2011, http://
www.iea.lth.se/publications/MS-Theses/

Full%20document/5290_full_document.pdf.

[7] J. Thongham, P. Bouchard, H. Ezzaidi, and
M. Ouhrouche, “Wind speed sensorless
maximum power point tracking control of
variable speed wind energy conversion systems,”
Electric Machines and Drives Conference, 2009.
IEMDC ’09. IEEE International, pp. 1832–1837,
2009.

[8] M. Alaküla and P. Karlsson, Power Electronics,
Devices, Converters, Control and Applications.
Department of Industrial Electrical Enginering
and Automation, Lund Institute of Technology,
2010.

[9] Modelica-Association, “Modelica R©- a unified
object-oriented language for physical systems
modeling.” Available at
https://www.modelica.org/documents/

ModelicaSpec32.pdf 2011-08-23.

Modeling and Simulation of a Vertical Wind Power Plant in Dymola/Modelica

640 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076631

Session 6A: Optimization

First and second order parameter sensitivities of a metabolically and isotopically non-stationary biochemical network model

First- and Second-Order Parameter Sensitivities of a
Metabolically and Isotopically Non-Stationary Biochemical

Network Model∗

Ralf Hannemann-Tamás1,5 Jana Tillack2,3 Moritz Schmitz1

Michael Förster4 Jutta Wyes1 Katharina Nöh2,3 Eric von Lieres2,3

Uwe Naumann4 Wolfgang Wiechert2,3 Wolfgang Marquardt1
1AVT, RWTH Aachen, Germany 2IBG-1, Forschungszentrum Jülich, Germany

3JARA - High-Performance Computing 4STCE, RWTH Aachen, Germany
5MTA SZTAKI, Budapest, Hungary

Abstract

The Jülich-Aachen Dynamic optimization Environ-
ment (JADE) is employed for computing first- and
second-order parameter sensitivities of a metaboli-
cally and isotopically non-stationary biochemical net-
work model. Based on a Modelica representation of
the model, code generation, algorithmic differentiation
and first- and second-order adjoint sensitivity analy-
sis are employed for computing the gradient and the
Hessian of a parameter estimation objective function.
In particular, we use composite adjoints, an exten-
sion of the classical adjoint sensitivity analysis, and a
numerical integrator based a modification of second-
order discrete adjoints of the extrapolated linearly-
implicit Euler method. Therewith, the 116× 116-
Hessian of the objective function with respect to 116
model parameters can be computed at the cost equiv-
alent to only 18 objective function evaluations, while
computing the same Hessian with the cheapest finite-
difference formula would require 6845 evaluations of
the objective function.

Keywords: biochemical network model; parameter
sensitivities; automatic differentiation

1 Introduction

Kinetic-based modeling is the method of choice
for unraveling complex interactions in living micro-
organisms [8]. Only this approach allows to analyze
the response of organisms to extracellular stimuli, such

∗This work was carried out during the tenure of an ERCIM
“Alain Bensoussan” fellowship program. This program is sup-
ported by the Marie Curie co-funding of regional, national and
international programs (COFUND) of the European Commission.

as changes in the substrate concentration. Moreover,
industrial processes are typically run in cultivation
modes, in which the intracellular metabolism cannot
be assumed to be in a stationary state. Metabolically
non-stationary network models include rate laws for
the enzyme catalyzed reactions, and the correspond-
ing model equations depend on several kinetic param-
eters. The rate laws also include regulatory effects, i.e.
activation and inhibition by other metabolites, which
increases the overall complexity of the network. Ki-
netic models are normally calibrated using measured
intracellular metabolite concentrations. However, the
ratio between the number of unknown parameters and
the quantity of available measurement data is often in-
sufficient. Consequently, the kinetic parameters are
poorly determined or even non-identifiable on the ba-
sis of such data.

This limitation can be overcome by combining clas-
sical kinetic modeling with an isotope-labeling ap-
proach ([11], [3]). In this approach, experiments are
performed with a specifically 13C-labeled substrate
instead of the slightly lighter, naturally 12C-labeled
substrate. 12C as well as 13C-atoms are distributed
through the reaction network and form specific la-
beling signatures in the involved metabolites. These
signatures, so called isotopologues, consist of differ-
ently many heavier (labeled) and lighter (naturally la-
beled) carbon atoms, and can be quantified using the
LC-MS measurement technique [12]. Hence, the use
of labeled substrates increases the amount of data for
each metabolite proportional to its number of carbon
atoms. However, the model dimensions are strongly
increased. The extended model requires increased
computational resources not only for solving the for-
ward problem, but also for determining gradient and

DOI Proceedings of the 9th International Modelica Conference 641
10.3384/ecp12076641 September 3-5, 2012, Munich, Germany

Hessian information for efficiently solving the invers
parameter estimation problem.

2 Biochemical Network Model

The combined metabolically and isotopically non-
stationary modeling approach is illustrated with an ex-
ample network of Escherichia coli [2]. The biochem-
ical network covers glycolysis and the pentose phos-
phate pathway. The model involves 28 metabolites
(thereof 8 co-metabolites) and 28 reactions (thereof 8
effluxes), as illustrated in Figure 1.

The equations for the kinetic rates, r, the values
of the stoichiometric constants, pstoich, and of the ki-
netic parameters, pkin, and the initial metabolite con-
centrations, c0, are taken from the same publication
[2]. The model is extended from the metabolically
non-stationary case to the metabolically and isotopi-
cally non-stationary case by transforming the differen-
tial equations, that describe the change of metabolite
concentrations, c, over time (Equation 1), into sets of
differential equations for the so-called cumomers, m
(Equation 2).

dc
dt = f (c,r, pstoich)

r = g(c, pkin)
c(0) = c0

(1)

A cumomer can be interpreted as a molecule frag-
ment that is fully labeled to a specified degree ([13],
[14]). The cumomer, e.g., m#x1x of a metabo-
lite, m, with three carbon atoms includes the four
differently labeled species m#x1x = ∑i, j∈{0,1}m#i1 j,
namely m#010, m#110, m#011 and m#111, where the
digits 0 and 1 denote the isotopes 12C and 13C, re-
spectively. The concentration of a cumomer fraction
is defined as the sum of the concentrations of all cor-
responding species. In particular, the concentration of
the cumomer m#xxx is the absolute metabolite concen-
tration, c. A metabolite with n carbon atoms has 2n cu-
momers in total. The formulation of cumomer balance
equations requires structural information on: (1) the
underlying metabolic network model, i.e. all partici-
pating enzymatic reaction steps, (2) the carbon atom
transitions for each of these steps (see Figure 2 for an
example), and (3) the kinetic mechanisms [11].

dm
dt = f (m,r, pstoich)

m(0) = m0
(2)

The cumomer balances in Equation 2 are combined
with the original kinetic equations from Equation 1.

The vector c, containing all metabolite concentrations,
is a subset of the vector m, containing all cumomer
fractions m#i jk with i, j,k ∈ {1,x} of all metabolites.
The initial values of the algebraic variables, r, are de-
termined such as to fulfill the algebraic equation, g.

Realistic models, e.g., of the central carbon meta-
bolism, have around 30-40 metabolites, 50-60 reac-
tions and 30-40 regulatory relations leading to model
dimensions of 1,000 to 10,000 equations. Moreover,
Equation 2 is typically stiff, dense and highly non-
linear.

Figure 2: Carbon atom transition of a reaction
that converts D-fructose-1,6-bisphosphate (FBP)
into glyceraldehyde-3-phosphate (GAP) and
dihydroxyacetone-phosphate (DHAP). The lines
describe transitions of individual carbon atoms from
the substrate to the product.

The final E. coli network model contains 682 dif-
ferential equations that are linear combinations of the
non-linear rate equations (see Equation 2). The rates
do generally not only depend on the concentrations of
the related substrate and product molecules, but can
also depend on the concentrations of other molecules
that act as activators and inhibitors of the catalyzed re-
action. Equations 3 and 4 show typical examples in
which the kinetic parameters are highlighted in bold-
face. Sensitivities of the model solution with respect to
these parameters are often required for parameter esti-
mation and in the context of metabolic control analy-
sis.

Equation 3 describes the enzyme D-glucose-6-
phosphate aldose-ketose-isomerase (pgi) and is for-
mally a reversible Michaelis-Menten kinetic with one
generic inhibitor. Parameters are the maximal reaction
rate rmax, an equilibrium constant keq, two inhibition
constants ki, and two affinity constants km. Equation 4
describes the enzyme phosphoglycerate kinase (pgk)
and is formally a two-substrate reversible Michaelis-
Menten kinetic. Parameters are, in addition to the
first kinetic equation, the coupling constants of the co-
metabolites ATP and ADP.

First- and second-order parameter sensitivities of a metabolically and isotopically non-stationary …

642 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076641

Figure 1: Biochemical network of E. coli including the glycolysis (orange) and the pentose phosphate pathway
(red). The metabolites (rectangles) are converted by reactions (rhombi). Additional lines show regulatory
interactions: activation (green lines), inhibition (red lines) and co-metabolite coupling (dashed lines, yellow
metabolites).

3 JADE

The biochemical network model from the previous
section has been implemented in Modelica and tested
with Dymola. However, Dymola does not provide ca-
pabilities for higher-order sensitivity analysis, which
are essential for many engineering tasks such as
parameter estimation, optimal experimental design,
optimal control and dynamic real-time optimization
(DRTO). This gap will be closed by the Jülich Aachen
Dynamic Optimization Environment (JADE), a new re-
search program that sustains ongoing collaborations
between Aachener Verfahrenstechnik – Process Sys-
tems Engineering (AVT.PT), the Jülich Biotechnology
Institute (IBG-1), and Software Tools for Computa-

tional Engineering (STCE). AVT.PT and STCE are
both chairs at RWTH Aachen University and IBG-1
belongs to the Forschungszentrum Jülich. The JADE
concept includes a software infrastructure for sensitiv-
ity analysis of differential-algebraic equation systems.

This publication addresses a prototypical task
within the JADE framework, the determination of pa-
rameter sensitivities of a residual function for estimat-
ing unknown model parameters. The biochemical net-
work example is taken as an example, but the pre-
sented software infrastructure works for a wider class
of Modelica models, without discontinuous elements,
i.e. without “if”- and “when”-assignments. A soft-
ware infrastructure is presented, that provides an easy-
to-use integrated solution for determining the required

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 643
10.3384/ecp12076641 September 3-5, 2012, Munich, Germany

rpgi =
rmax

pgi

(
cG6P−

cF6P
keq,pgi

)
kmG6P,pgi

1+ cF6P

kmF6P,pgi

(
1+

cm6PG
kiF6P,m6PG,pgi

)+ cm6PG
kiG6P,m6PG,pgi

+cG6P

(3)

rpgk =
rmax

pgk

(
cADP·cPGP−

cAT P·cm3PG
keq,pgk

)
(

kmADP,pgk

(
1+ cAT P

kmATP,pgk

)
+cADP

)(
kmPGP,pgk·

(
1+ cm3PG

kmm3PG,pgk

)
+cPGP

) (4)

first- and second-order derivatives.

Workflow

The workflow for computing sensitivity information
can be divided in three layers (see Figure 3 for a
schematic sketch):

1. A so-called equation set object (ESO), an in-
stance of a C++ class which provides data and
methods related to the model.

2. A Meta ESO object, an instance of a C++ class
which assembles one ESO or, in the case of
multistage models, several ESOs and information
about the parametrization of the model (we refer
to [9, 10] for details on multistage problems).

3. Drivers for the NIXE integrator [5], a numerical
solver for (adjoint) sensitivity analysis of DAEs,
based on the information assembled in the Meta
ESO, to carry out sensitivity analysis tasks.

Figure 3: Layers of the software infrastructure.

Currently, flat Modelica models are translated into a
subset of the C language, referred to as C-, by means
of the Mof2C- application. In flat or flattend Model-
ica models, all object-oriented features are removed by
the expansion of all sub-models and their connections.
In particular, a flat Modelica model contains no sub-
model, it has a “flat hierarchy”. A residual function of
the DAE is created to be differentiated by means of al-
gorithmic differentiation in form of the derivative code
compiler (dcc) [7], an AD tool relying on semantic
source code transformation. On Windows platforms,

the source code, generated by Mof2C- and dcc is com-
piled into a dynamic link library. Figure 4 shows a
typical workflow within the JADE framework.

Figure 4: JADE workflow for sensitivity analysis.

4 Results

We present first- and second-order adjoint sensitivity
computations for the biochemical network model from
section 2. The model is formulated in Modelica with-
out using discontinuous elements. It belongs to the
class of smooth semi-explicit index-1 differential al-
gebraic equations of the type of Equations 5 to 7.

ẋ(t, p) = f (x(t, p),y(t, p), p), t ∈ [t0, t f], (5)

0 = g(x(t, p),y(t, p), p), t ∈ [t0, t f], (6)

x(t0, p) = x0, (7)

Here, x(t, p)∈Rnx and y(t, p)∈Rny denote the vectors
of differential and algebraic state variables, p ∈Rnp is
the parameter vector, f and g denote the differential
and algebraic equations, respectively, x0 ∈ Rnx is the
vector of initial values and t0 and t f are the initial and
final times, respectively.

The model comprises 1488 state variables, thereof
683 differential and 805 algebraic, as well as 337 pa-
rameters, thereof 116 relevant for a typical parameter

First- and second-order parameter sensitivities of a metabolically and isotopically non-stationary …

644 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076641

estimation. The model is sparse in that the Jacobians
of f and g with respect to x, y and p have in the sum
only 9121 nonzero entries. The initial time is set to
t0 =−20 in order to simulate the system in a stationary
state before a concentration pulse is applied at t = 0,
and the final time is t f = 40.

For the purpose of parameter estimation we
need to compute a least-squares residual, as well
as it’s gradient and Hessian. Let yout(t, p) =
(yi1 ,(t, p), . . . ,yiny,out

(t, p)) ∈ Rny,out , i j ∈ {1, . . . ,ny},
j = 1, . . . ,ny,out , denote the vector of measured vari-
ables, which is in the present example a subset of the
algebraic variables. For the residual we consider a fi-
nite time series t1 < t2 < · · · < tN and a matrix of cor-
responding measurements Ỹ = (ỹi j) ∈ RN×ny,out . With
scalar weights σi j, i= 1, . . . ,N, j = 1, . . . ,ny,out , the pa-
rameter estimation objective function has the follow-
ing form:

Φ(p) = φ(yout(t1, p),yout(t2, p), . . . ,yout(tN , p))

:=
N

∑
i=1

ny,out

∑
j=1

σi j (yout, j(ti, p)− ỹi j)
2. (8)

We assume measurements to be available for
ny,out = 103 output variables every 0.5 seconds, start-
ing from t1 = 0 to tN = t81 = 40. As real measure-
ments are currently not available, synthetic data Ỹ =
(ỹi j) ∈ R81×103 were generated by adding normally
distributed noise with a standard deviation of 10% to
the nominal values. The weights are chosen as:

σi j =
1

0.01+ ỹi j
2 , i = 1, . . . ,81, j = 1, . . . ,103,

The summand 0.01 in the denominator is introduced
for avoiding division by zero in the case ỹi j = 0 and to
reduce the impact of small-valued measurements.

Let pest ∈ Rnp,est denote the vector of parameters
to be estimated: pest, j = pi j , i j ∈ {1, . . . ,np}, j =
1, . . . ,np,est , np,est = 116. Our software infrastructure
is benchmarked for the following tasks:

1. Simulate the original model

2. Compute value of the objective function Φ.

3. Compute the gradient ∂Φ/∂ pest by means of
first-order adjoint sensitivity analysis.

4. Compute the gradient ∂Φ/∂ pest by means of
first-order forward sensitivity analysis.

5. Compute the Hessian ∂ 2Φ/∂ pest
2 by means of

second-order adjoint sensitivity analysis.

Code Generation and Compilation

All computations are performed on a Notebook with
a 2.53 MHz Intel Core2 SP9600 processor, equipped
with 4 GB RAM and running Linux Mint 12.

As illustrated in Figure 4, the first task of the JADE
architecture is to generate C-code from a flat Model-
ica model. This done by the Mof2C- compiler, which
generates a C-function of the model residual and re-
lated utility functions, e.g., for providing access to the
variable names. This part of the code generation takes
roughly 4 seconds. Then, the derivative code com-
piler dcc, an algorithmic differentiation (AD) tool, is
applied for generating derivatives of the model resid-
ual. This part takes approximately 5 minutes, thereof 4
minutes for the generation of the second-order adjoints
of the model residuals.

The generated code, including the derivative codes,
is then compiled either in a dynamic link library (DLL)
on Windows platforms or a shared object on Linux or
UNIX platforms. Here, the compilation times strongly
depend on the compiler flags, especially on the opti-
mization flags. The sequential compilation times with
the g++-4.6.1 compiler of the GNU Compiler Col-
lection (gcc) are 2 minutes (thereof 1 minute for the
second-order adjoints) for non-optimized code, and for
optimized code (-O3-flag) 53 minutes (thereof 37 min-
utes for the second-order adjoints).

Simulation and Sensitivity Analysis

We apply the JADE infrastructure for simulating and
evaluating the objective function, as well as it’s gra-
dient and Hessian with either optimized or non-
optimized compiled code. The numerical kernel re-
lies on the NIXE integrator. NIXE implements the
extrapolated linearly-implicit Euler method, and pro-
vides facilities for higher-order forward or adjoint sen-
sitivity analysis. In detail, NIXE implements a mod-
ified discrete adjoint method for the adjoint sensitiv-
ity analysis [5]. Further, since the objective func-
tion φ in Equation 8 depends on different points in
time, we use the technique of composite adjoints
[4], instead of the classical adjoint sensitivity analy-
sis (which only submits one final time) [1]. When-
ever the gradient or Hessian of a DAE-embedded func-
tional of the type φ(x(t1, p), . . . ,x(tN , p)) with respect
to sufficient many parameters has to be computed
(cf. Equation 8), from the view of computational effi-
ciency, composite adjoints are the method of choice.
Roughly spoken, composite adjoints compute a lin-
ear combination of the N classical adjoints associated

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 645
10.3384/ecp12076641 September 3-5, 2012, Munich, Germany

with φ(x(t1, p), . . . ,x(tN , p)) corresponding to the final
times t1, . . . , tN . The computational cost of composite
adjoints is equivalent to the cost of only one classical
adjoint computation with a final condition at tN . For
details we refer to [4].

Table 1 shows the performance of different com-
putations. For comparison, we have also executed a
simulation with Dymola 7.1 in combination with MS
Visual Studio 2008 on the same notebook but running
Windows 7 (see last row of Table 1).

Table 1: Computational performance
JADE results, AbsTol=RelTol=10−5

1488 state variables, 116 parameters
Run time

Task Optimized Non-opt.
Simulation 1.7 s 2.3 s
Objective 10.5 s 14.5 s
Gradient (adjoint) 14.5 s 19.9 s
Gradient (forward) 46.8 s 63.5 s
Hessian (2nd adjoints) 180.0 s 465.0 s
Dymola Simulation 1.6 s (DASSL, Tol=10−5)

The simulation time of JADE is competitive with
Dymola, for both the optimized and the non-optimized
compiled codes. However, Dymola does neither sup-
port first-order nor second-order sensitivity analysis.
We observe that the evaluation the objective func-
tion takes much longer than the simulation. This is
due to the NIXE integrator stopping at the measure-
ment times and resetting the adaptive step size control.
Computing the 116 components of the gradient with
adjoint sensitivity analysis takes only about 1.5 times
the time of one single function evaluation for both the
optimized and the non-optimized codes. Forward sen-
sitivity analysis is 3 times slower (optimized and non-
optimized). Computing the 116× 116-Hessian ma-
trix takes 180 seconds with the optimized compiled
code and 465 seconds with the non-optimized com-
piled code.

Comparison with Finite Differences

If we compare the computational times of the JADE
sensitivity analysis with the costs of finite differences,
we clearly see the superiority of the tailored numerical
methods of JADE. Table 2 shows compute time ratios
of the different sensitivity tasks as compared to a sin-
gle objective function evaluation.

The cheapest finite differences formulas would re-
quire 117 = 1+116 function evaluations for the gradi-
ent and 6845 = 1+116+1162/2 function evaluations

for the Hessian. The excellent numerical performance
of the JADE prototype is mainly achieved by combin-
ing the AD tool dcc [7] with composite adjoints [4]
that are computed with the specifically tailored numer-
ical integrator NIXE [5], which strongly exploits the
structure of the underlying (adjoint) sensitivity equa-
tions.

Conclusions

We have introduced the JADE platform for first- and
second-order sensitivity analysis of DAE models. The
platform combines code generation, algorithmic dif-
ferentiation and a customized numerical integrator for
forward and adjoint sensitivity analysis. The pre-
sented results in particular for computing the Hessian
of the studied parameter estimation objective function
are more than competitive. The complete 116× 116
Hessian of the objective function is computed at the
cost of 18 single function evaluations, yielding accu-
rate second-order derivatives. In comparison, com-
puting the same Hessian with the cheapest and least
accurate finite difference formula would require 6845
function evaluations. This makes the JADE platform
particularly attractive for large-scale applications with
nonlinear numerical optimization solvers that require
second-order derivatives.

Outlook

Up to now, the numerical methods of JADE are re-
stricted to smooth Modelica models without discon-
tinuities. However, many systems, e.g., from engi-
neering or biotechnology, need to be modeled with
non-smooth differential-algebraic equations. In addi-
tion, the modeling process can yield under-determined
differential-algebraic systems (more variables than
equations). In this case, some of the model variables
must be determined by external criteria, for example
by means of an optimization criterion. The resulting
models do not belong to the well-known class of hy-

Table 2: JADE (optimized) versus finite differences
Cost factor = run_time(Task)

run_time(Ob jective)

Task
JADE

Finite differences
forward adjoint

Objective 1 - 1
Gradient 4.5 1.4 117
Hessian - 17.2 6845

First- and second-order parameter sensitivities of a metabolically and isotopically non-stationary …

646 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076641

brid DAE systems, but a novel class of non-smooth
DAEO systems can be defined, where the “O” denotes
optimization. The concept of the JADE prototype, i.e.
combining a high-level model language like Modelica
with algorithmic differentiation and tailored numeri-
cal solution methods, will be extended to the classes
of non-smooth DAE and DAEO systems.

References

[1] Cao, Y, Li S, Petzold L, Serban R. Adjoint sen-
sitivity analysis for differential-algebraic equa-
tions: The adjoint DAE system and its numerical
solution. SIAM Journal On Scientific Comput-
ing 24(3):1076–1089, 2003.

[2] Chassagnole C, Noisommit-Rizzi N, Schmid J
W, Mauch K, Reuss M. Dynamic modeling of the
central carbon metabolism of escherichia coli.
Biotechnol Bioeng, 79(1):53–73, 2002.

[3] de Graaf A A, Maathuis A, de Waard P, Deutz N
E P, Dijkema C, de Vos W M, Venema K. Profil-
ing human gut bacterial metabolism and its kinet-
ics using [u-13c]glucose and nmr. NMR Biomed,
23(1):2–12, 2010.

[4] Hannemann R, and Marquardt W. Continuous
and discrete composite adjoints for the Hessian
of the Lagrangian in shooting algorithms for dy-
namic optimization. SIAM Journal On Scientific
Computing, 31(6): 4675–4695, 2010.

[5] Hannemann R, Marquardt W, Gendler B, Nau-
mann U. Discrete first- and second-order adjoints
and automatic differentiation for the sensitivity
analysis of dynamic models. Procedia Computer
Science, 1(1):297–305, 2010.

[6] Modelica Association. Modelica R© - A Uni-
fied Object-Oriented Language for Physical Sys-
tems Modeling. Language Specification. Version
3.2. Linköping, Sweden: Modelica Association,
2010.

[7] Naumann, U. The Art of Differentiating Com-
puter Programs - An Introduction to Algorithmic
Differentiation, Volume 24 of Software, environ-
ments, tools. SIAM, 2012.

[8] Steuer R. Exploring the dynamics of large-scale
biochemical networks: A computational per-
spective. The Open Bioinformatics Journal, 5:4–
15, 2011.

[9] Vassiliadis V, Sargent R, Pantelides C. Solution
of a class of multistage dynamic optimization
problems. 1. Problems without path constraints.
Ind Eng Chem Res, 33(9):2111–2122, 1994.

[10] Vassiliadis V, Sargent R, Pantelides C. Solu-
tion of a class of multistage dynamic optimiza-
tion problems. 2. Problems with path constraints.
Ind Eng Chem Res, 33(9):2123–2133, 1994.

[11] Wahl S A, Noeh K, Wiechert W. 13C labeling
exper- iments at metabolic nonstationary condi-
tions: an exploratory study. BMC Bioinformat-
ics, 9:152, 2008.

[12] Wiechert W. 13C metabolic flux analysis. Metab
Eng, 3(3):195–206, 2001.

[13] Wiechert W, Moellney M, Isermann N, Wurzel
M, de Graaf A A. Bidirectional reaction steps
in metabolic networks: III. explicit solution
and analysis of isotopomer labeling systems.
Biotechnol Bioeng, 66(2):69–85, 1999.

[14] Wiechert W, Wurzel M. Metabolic isotopomer
labeling systems. Part I: global dynamic behav-
ior. Math Biosci, 169(2):173–205, 2001.

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 647
10.3384/ecp12076641 September 3-5, 2012, Munich, Germany

First- and second-order parameter sensitivities of a metabolically and isotopically non-stationary …

648 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076641

Collocation Methods for Optimization in a Modelica Environment

Collocation Methods for Optimization in a Modelica Environment

Fredrik Magnussona Johan Åkessona,b

aDepartment of Automatic Control, Lund University, Sweden
bModelon AB, Lund, Sweden

Abstract

The solution of generic dynamic optimization prob-
lems described by Modelica, and its extension Opti-
mica, code using direct collocation methods is dis-
cussed. We start by providing a description of dynamic
optimization problems in general and how to solve
them by means of direct collocation. Next, an existing
implementation of a collocation algorithm in JModel-
ica.org, using CasADi and IPOPT, is presented. The
extensions made to this implementation are reported.

The new implementation is compared to an old C-
based collocation algorithm in JModelica.org in two
benchmarks. The presented benchmarks are based on
a continuously stirred tank reactor and a combined cy-
cle power plant. The new algorithm and its surround-
ing framework is more flexible and shown to be several
times more efficient than its predecessor.

Keywords: dynamic optimization; JModelica.org;
collocation; nonlinear programming; CasADi

1 Introduction

Optimization of large-scale dynamic systems is be-
coming a standard industrial technology. Applications
include minimization of material and energy consump-
tion during set-point transitions in power plants and
chemical processes, minimizing lap times for vehicle
systems and trajectory optimization in robotics.

There are different kinds of dynamic optimization
problems and in this paper we consider two categories.
The first is optimal control, where the aim is to find
control variable trajectories (and possibly parameters)
that minimize, for example, the amount of resources
spent to perform a specified action. The second cat-
egory is parameter estimation, where the problem is
to find the values of unknown model parameters that

This work was supported by the Swedish Research Council
through the LCCC Linnaeus Center. We would also like to thank
Francesco Casella for letting us use the combined cycle power
plant model.

allow the model to behave according to some given
measurement data.

Solving dynamic optimization problems is useful in
many different fields and applications. Parameter es-
timation is used to improve physical models in gen-
eral. Optimal control has many applications, in both
on-line and off-line settings. On-line optimal control
is usually done in the form of model predictive control.
Off-line applications include finding optimal trajecto-
ries for the transition between two stationary operat-
ing conditions in a system, which can be used either
as a reference during manual control or as a target for
automatic control if combined with feedback. Another
example is the identification of system bottlenecks, for
example by analyzing adjoint variables.

There are many approaches to solving dynamic
optimization problems. Until the 1970s, problems
were typically solved using dynamic programming or
Pontryagin’s maximum principle. These approaches
are ill-suited for large-scale problems and have trou-
ble handling inequality constraints. Modern tech-
niques often involve finding an approximate solution
to the infinite-dimensional optimization problem by
transcribing it into a finite-dimensional nonlinear pro-
gram (NLP). These are called direct methods. The
main difference among direct approaches is how to
handle the constraints describing the system dynam-
ics. In this paper, direct collocation is used. Another
common approach is direct multiple shooting. See [1]
and [2] for overviews on different direct methods.

JModelica.org [3] is a tool targeting large-scale dy-
namic optimization. The system dynamics are de-
scribed using Modelica, and the optimization formu-
lation is done with the use of the Modelica extension
Optimica [4]. In this paper, we implement an opti-
mization algorithm in JModelica.org for solution of
dynamic optimization problems described by Model-
ica and Optimica code. This work is a continuation
of the work begun in [5], where CasADi and JMod-
elica.org were integrated and a prototypical colloca-
tion method was implemented based on this integra-

DOI Proceedings of the 9th International Modelica Conference 649
10.3384/ecp12076649 September 3-5, 2012, Munich, Germany

tion. This prototype has since been refined and ex-
tended to support additional problem formulations and
solution techniques. Additional benchmarks have also
been performed, as reported in [6].

The outline of the paper is as follows. In Section
2, a general class of dynamic optimization problems is
presented. In Section 3, we discuss how to solve this
class of problems using direct collocation. In Section
4, the prominent tools used to implement the described
collocation method in a Modelica environment are pre-
sented. In Section 5, we present the extensions made
to the implementation from previous work. In Section
6, the implemented algorithm is compared to a similar
existing algorithm. The two algorithms are applied to
a continuously stirred tank reactor and to a combined
cycle power plant. Finally, in Section 7, the paper is
summarized and some future work is discussed. The
work presented in this paper is a result of [6], where
additional details are available.

Throughout the paper, the following notation is
used. The integer interval from a ∈ Z to b ∈ Z is de-
noted by [a..b]. All kinds of products between scalars,
vectors and matrices are denoted by the binary oper-
ator ·. The space of functions continuous of order
k from Rm into Rn is denoted by Ck(Rm,Rn), where
k = −1 means that the functions may be discontin-
uous. No distinction between tuples and vectors is
made.

2 Dynamic optimization

We consider systems whose dynamics are described
by a single and fully implicit differential algebraic
equation (DAE) system of index one (or zero). That
is, an equation system of the form

F(t, ẋ(t),x(t),u(t),w(t), p) = 0,

where t ∈ R is the sole independent variable: time,
x ∈ C0(R,Rnx) is the state, u ∈ C−1(R,Rnu) is the
vector-valued control variable, w ∈C−1(R,Rnw) is the
vector-valued algebraic variable and p ∈ Rnp is the
vector of parameters to be optimized, that is, the free
parameters. Initial conditions are also given on a fully
implicit form, i.e.,

F0(ẋ(t0),x(t0),u(t0),w(t0), p) = 0,

where t0 is the start time. For ease of notation, we com-
pose the time-dependent variables into a single vari-
able z, that is,

z := (ẋ,x,u,w).

The system dynamics are thus fully described by

F(t,z(t), p) = 0, ∀t ∈ [t0, t f],
F0(z(t0), p) = 0,

where t f is the final time and

F ∈C2(R×Rnz×Rnp ,Rnx+nw),

F0 ∈C2 (Rnz×Rnp ,Rnx) ,
nz := 2 ·nx +nu +nw.

These continuity requirements, and some of the con-
tinuity requirements stated later in this section, are
needed to establish the second-order optimality con-
ditions and also to find a solution to the first-order op-
timality condition using some variation of Newton’s
method.

The general problem studied in this paper is to

minimize f (t0, t f ,z, p), (1a)

with respect to t0, t f ,z, p,

subject to F(t,z(t), p) = 0, (1b)

F0(z(t0), p) = 0, (1c)

zL ≤ z(t)≤ zU , (1d)

pL ≤ p≤ pU , (1e)

ge(t0, t f , t,z(t), p) = 0, (1f)

gi(t0, t f , t,z(t), p)≤ 0, (1g)

Ge(t0, t f ,Ze, p) = 0, (1h)

Gi(t0, t f ,Zi, p)≤ 0, (1i)

∀t ∈ [t0, t f].

The objective (1a) can take on many forms. For op-
timal control problems, it is typically a Bolza func-
tional, that is, a function on the form

f (t0, t f ,z, p) =φ(t0,z(t0), t f ,z(t f), p)+∫ t f

t0
L(t,z(t), p)dt,

(2)

where

φ ∈C2(R×Rnz×R×Rnz×Rnp ,R)

is called the Mayer term and

L ∈C2(R×Rnz×Rnp ,R)

is called the Lagrange integrand.
For parameter estimation, the objective function is

typically formulated using a weighted least squares
sum, penalizing the deviation of the measured vari-
ables from the discrete measurement data. However,

Collocation Methods for Optimization in a Modelica Environment

650 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076649

in this paper we choose a slightly different approach.
We first interpolate the discrete measurement data to
form ym ∈C0(R,Rny), where ny is the number of mea-
sured variables. This function gives the approximated
trajectories for the vector-valued measured variable
y ∈C−1(R,Rny). Any of the states, algebraic variables
and control variables can be measured variables. The
objective is then chosen as a continuous weighted least
squares function, given by

f (z, p) =
∫ t f

t0
(y(t)− ym(t)) ·Q · (y(t)− ym(t))dt, (3)

where Q ∈ Rny×ny is the weighting matrix. The reason
for this approach is discussed in Section 3.

The constraints (1b) and (1c) enforce the system dy-
namics and initial conditions. The constraints (1d)
and (1e) are variable bounds, which are enforced
during the entire time horizon [t0, t f], where zL ∈
(R∪{−∞})nz and pL ∈ (R∪{−∞})np are the lower
bounds and zU ∈ (R∪{∞})nz and pU ∈ (R∪{∞})np

are the upper bounds. The constraints (1f) and (1g)
are called path constraints. These can for example be
used to describe that a vehicle must follow a certain
path. Finally, the constraints (1h) and (1i) are called
point constraints. These are similar to the path con-
straints, with the difference being that they are only
enforced at specific time points, rather than during the
entire time horizon. The vectors Ze and Zi contain the
variable values at all the time points used in the point
constraints, i.e.

Ze = (z(T1),z(T2), . . . ,z(Tm)),

where Ti is the time point at which point constraint i is
enforced and m is the number of constraint points. A
typical example of a point constraint is terminal con-
straints, where variable values are specified at the end
of the time horizon. The path constraint functions ge

and gi as well as the point constraint functions Ge and
Gi must be twice continuously differentiable.

The general problem formulation (1) covers a large
class of problems. The constraints (1d) to (1i) are op-
tional, whereas the constructs in (1a) to (1c) are re-
quired to get a well-posed problem. The start and final
time can be either fixed or free. For example, letting
the final time be free and choosing the cost function as
f (t0, t f ,z, p) = t f allows for the formulation of mini-
mum time problems, where the goal is to minimize the
time required to perform some action, often specified
in the form of terminal constraints.

A possible generalization of (1) is the division of
the time horizon into multiple phases, where at the

phase boundaries the DAE system is allowed to change
and/or the states may be discontinuous. Another pos-
sible generalization is enforcing continuity for con-
trol and algebraic variables and then including their
respective derivatives in the constraints and cost func-
tion. These generalizations are however outside the
scope of this paper.

3 Collocation methods

3.1 Collocation polynomials

We will now describe how to solve the dynamic opti-
mization problem (1) by means of direct collocation,
using an approach similar to the ones described in [1]
and [7]. The time horizon is discretized into ne ele-
ments, and within element i the time-dependent vari-
able z is approximated using a vector-valued polyno-
mial zi = (ẋi,xi,ui,wi), called a collocation polyno-
mial. In element i, the time is normalized according
to

t̃i(τ) = ti−1 +hi ·(t f −t0) ·τ, τ ∈ [0,1], ∀i∈ [1..ne],
(4)

where ti is the time at the end of element i, which is
called the mesh point of element i, and hi is the length
of element i. The element lengths have been normal-
ized so that the sum of all lengths equals 1. This nor-
malization facilitates the optimization of t f and t0 by
keeping element lengths constant.

The collocation polynomials are formed by choos-
ing a number nc of collocation points (which is as-
sumed to be the same for each element). Let τi,k de-
note collocation point k in element i, and let zi,k =
(ẋi,k,xi,k,ui,k,wi,k) denote the value of z(τi,k). The col-
location polynomials are then formed using Lagrange
interpolation polynomials, using the collocation points
as interpolation points. Since the states need to be con-
tinuous even at the element boundaries, we introduce
an additional interpolation point at the start of each el-
ement for the state collocation polynomials, denoted
by τi,0 := 0. We thus get the collocation polynomials

xi(τ) =
nc

∑
k=0

xi,k · ˜̀k(τ), (5)

ui(τ) =
nc

∑
k=1

ui,k · `k(τ),

wi(τ) =
nc

∑
k=1

wi,k · `k(τ),

where ˜̀k and `k are the Lagrange basis polynomials,
respectively with and without the additional interpola-

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 651
10.3384/ecp12076649 September 3-5, 2012, Munich, Germany

tion point τi,0. The basis polynomials are given by

˜̀k(τ) = ∏
l∈[0..nc]\{k}

τ− τl

τk− τl
, ∀k ∈ [0..nc],

`k(τ) = ∏
l∈[1..nc]\{k}

τ− τl

τk− τl
, ∀k ∈ [1..nc].

Note that the basis polynomials are the same for all
elements, due to the normalized time.

In order to obtain the polynomial approximation of
the state derivative ẋ in element i, the collocation poly-
nomial xi is differentiated with respect to time. Using
(4), (5) and the chain rule, we obtain

ẋi(τ) =
dxi

dt̃i
(τ) =

dτ

dt̃i
· dxi

dτ
(τ)

=
1

hi · (t f − t0)
·

nc

∑
k=0

xi,k ·
d ˜̀k
dτ

(τ). (6)

There are different schemes for choosing the col-
location points τi,k, with different numerical proper-
ties, in particular regarding stability and order of con-
vergence. The most common ones are called Gauss,
Radau and Lobatto collocation. In this paper we use
Radau collocation, which always places a collocation
point at the end of each element, and the rest are cho-
sen in a manner that maximizes accuracy.

Collocation methods are not only used for optimiza-
tion purposes, but are also widely used for numerical
solution of both ODE and DAE systems, i.e. simula-
tion. The concepts are the same in both simulation and
optimization, and there is a theoretical basis shared by
collocation methods in the two areas. See [8] for more
on simulation using collocation methods, which are a
special case of implicit Runge-Kutta methods.

3.2 Transcription of the dynamic optimiza-
tion problem

In this section, the infinite-dimensional dynamic op-
timization problem (1) is transcribed into a finite-
dimensional NLP, using the collocation polynomials
constructed in the previous section. The main idea is
that the infinite-dimensional time-dependent variable z
is approximated using polynomials, which can be rep-
resented using a finite number of values: the colloca-
tion point values. This finite-dimensional approxima-
tion of the solution z is more suitable when employing
numerical optimization methods.

As decision variables in the NLP we choose all the
collocation point values zi,k, the state values at the start
of each element xi,0 and the free parameters p. We also

choose the initial condition values as NLP variables,
which we denote by z1,0. Finally, we choose t0 and t f

as optimization variables if they are free. We thus let

Z = (z1,0,z1,1,z1,2, . . . ,z1,nc ,

x2,0,z2,1,z2,2, . . . ,z2,nc ,

x3,0,z3,1,z3,2, . . . ,z3,nc ,

...,

xne,0,zne,1,zne,2, . . . ,zne,nc , p, t0, t f).

be the vector containing all the NLP variables. There
are other possibilities in the choice of NLP decision
variables, and the choice depends on the collocation
scheme. With Radau collocation and the above choice,
the transcription of (1) results in the following NLP:

min. f̃ (Z), (7a)

w.r.t. Z ∈ RnZ ,

s.t. F(ti,k,zi,k, p) = 0, (7b)

F0(z1,0, p) = 0, (7c)

u1,0−
nc

∑
k=1

u1,k · `k(0) = 0, (7d)

zL ≤ zi,k ≤ zU , (7e)

pL ≤ p≤ pU , (7f)

ge(ti,k,zi,k, p) = 0, (7g)

gi(ti,k,zi,k, p)≤ 0, (7h)

Ge(Ze) = 0, (7i)

Gi(Zi)≤ 0, (7j)

∀(i,k) ∈ {(1,0)}∪ ([1..ne]× [1..nc]),

ẋ j,l =
1

h j · (t f − t0)
·

nc

∑
m=0

x j,m ·
d ˜̀m
dτ

(τl),

∀(j, l) ∈ [1..ne]× [1..nc], (7k)

xn,nc = xn+1,0, ∀n ∈ [1..ne−1], (7l)

where

nZ = (1+ne ·nc) ·nz +(ne−1) ·nx +np +2

is the number of scalar NLP variables and

ti,k := t̃i(τk)

denotes collocation point k in element i. The objective
(1a) is transcribed into (7a). In the case of optimal
control, the Mayer term of the Bolza functional (2) is
straightforward to transcribe as

φ(t0,z(t0), t f ,z(t f), p) = φ(t0,z1,0, t f ,zne,nc , p).

Collocation Methods for Optimization in a Modelica Environment

652 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076649

To transcribe the Lagrange term, we start by using (4)
to define the Lagrange integrand in element i as

Li(τ,zi(τ), p) := L(t̃i(τ),z(t̃i(τ)) , p) .

The Lagrange term is then approximated as follows.∫ t f

t0
L(t,z(t), p)dt

=
ne

∑
i=1

(
hi · (t f − t0) ·

∫ 1

0
Li(τ,zi(τ), p)dτ

)
≈

ne

∑
i=1

(
hi · (t f − t0) ·

nc

∑
k=1

ωk ·Li (τk,zi,k, p)

)
,

where the quadrature weights ωk are given by

ωk =
∫ 1

0
`k(τ)dτ.

These quadrature weights provides the best approxi-
mation for these interpolation points, as shown in [1].
The optimal control objective is thus transcribed as

f (z, p)≈φ(t f ,zne,nc , p)+
ne

∑
i=1

(
hi · (t f − t0) ·

nc

∑
k=1

ωk ·Li (τk,zi,k, p)

)
=: f̃ (Z).

For the parameter estimation problem, the continuous
weighted least squares integral (3) is approximated us-
ing the same Gaussian quadrature, resulting in

f (z, p) =
∫ t f

t0
(y(t)− ym(t)) ·Q · (y(t)− ym(t))dt

≈
ne

∑
i=1

(
hi · (t f − t0) ·

nc

∑
k=1

ωk · (yi,k− ym(ti,k)) ·Q·

(yi,k− ym(ti,k))

)
=: f̃ (Z),

where yi denotes the collocation polynomials for the
measured variables, and yi,k denotes the corresponding
collocation point values.

The system dynamics constraint (1b) is only en-
forced at the collocation points and the start time in
the NLP, rather than during the entire time horizon.
The initial conditions (1c) are straightforward to tran-
scribe into (7c), since all the initial values have been
chosen as NLP variables. The consistency of the user-
provided initial conditions is ensured by enforcing all
the dynamic constraints at the start time.

The initial values for the states and algebraic vari-
ables are determined by the dynamic and initial con-
straints. The initial value for the control variable is

however not governed by the dynamic or initial equa-
tions, but is instead given by the collocation polyno-
mial u1. To obtain the value for u1,0, we thus need to
add the extrapolation constraint (7d).

The bounds and path constraints (1d) to (1g) are
straightforward to transcribe into (7e) to (7h), by only
enforcing them at the collocation points. How to tran-
scribe the point constraints (1h) and (1i) is less obvi-
ous. The approach we have chosen is to assume that
each constraint point coincides with a collocation or
mesh point. It is then just a matter of identifying the
NLP variables that correspond to the constraint point
values Ze and Zi in order to transcribe the point con-
straints into (7i) and (7j). The other possibility is to
evaluate the collocation polynomials at the constraint
points. These constraints are however more computa-
tionally expensive to evaluate. But adding elements in
order to line up the mesh with the constraint points is
prone to be even more expensive. However, as long
as the number of constraint points are few in number,
which often is the case, this is not a critical issue.

A similar situation occurs during parameter estima-
tion if a discrete least squares sum is used as the ob-
jective. The measured variable values are then needed
at each of the measurement time points, and these are
typically not few in number. The question of whether
to line up the mesh (or even collocation) points with
the measurement time points, or to simply evaluate the
collocation polynomials, is then a critical choice. In
this paper however, we avoid this issue by instead us-
ing the continuous least squares objective (3). This
allows us to evaluate the objective using quadrature,
for which we only need the variable values at the col-
location points, which are readily available.

In order to determine the state derivative values at
the collocation points, we enforce equation (6) at all
the collocation points, giving us the collocation equa-
tions (7k). These are not enforced at the start time,
where the state derivative values instead are deter-
mined by the DAE system and initial conditions.

Finally, we add the continuity constraints (7l), to get
continuity for the state. An NLP has the general form

minimize f (x)
with respect to x ∈ Rnx ,

subject to xL ≤ x≤ xU ,

g(x) = 0,

h(x)≤ 0,

which the transcription (7) is a special case of. By
solving the NLP (7), we may obtain an approximate
solution to the dynamic optimization problem (1).

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 653
10.3384/ecp12076649 September 3-5, 2012, Munich, Germany

4 Tools

4.1 CasADi

Obtaining the first and second-order derivatives of the
NLP cost and constraints functions with respect to the
NLP variables allows for efficient solution of an NLP.
To this end, CasADi [9] (Computer algebra system
with Automatic Differentaion) is used. CasADi is a
low-level tool for efficiently computing derivatives us-
ing automatic differentiation (AD) and is tailored for
dynamic optimization. Once a symbolic representa-
tion of an NLP has been created using CasADi, the
needed derivatives are efficiently and conveniently ob-
tained and sparsity patterns are preserved.

To solve the NLP (7), we use IPOPT [10]. IPOPT
uses a sparse primal-dual interior point method to find
local optima to large-scale NLPs. CasADi comes with
an interface to IPOPT, which is used in the implemen-
tation.

4.2 JModelica.org

4.2.1 The JModelica.org platform

JModelica.org [3] is an open-source platform for simu-
lation and optimization of Modelica models. Whereas
standard Modelica tools, such as Dymola1 and Open-
Modelica2, mostly focus on the simulation of physi-
cal systems, JModelica.org also targets large-scale dy-
namic optimization. A common problem is that a large
amount of research goes into developing algorithms
without accompanying means of describing complex
physical systems, making these algorithms difficult to
use in practical applications. One goal of JModel-
ica.org is to open up the Modelica language and the
vast amount of existing Modelica models to algorithms
developed in academia.

The Modelica language is largely designed with
simulation-based analysis in mind. To accommodate
the need for conveniently formulating dynamic op-
timization problems based on models described by
Modelica code, the Modelica extension Optimica [4]
has been developed and integrated into JModelica.org.
Optimica enables the extension of a Modelica model to
include the constructs used to formulate a dynamic op-
timization problem, such as (1), where the pure Mod-
elica code describes the dynamic constraints (1b) and
(1c).

1http://www.3ds.com/products/catia/portfolio/

dymola
2http://www.openmodelica.org/

The main components of JModelica.org are the
Modelica and Optimica compilers, which are imple-
mented in Java, and the three modeling interfaces
Functional Mock-up Interface (FMI)3, JModelica.org
Model Interface (JMI) and a new symbolic XML-
based format based on the FMI XML format, which
includes equations in symbolic form. The user inter-
acts with the various components of JModelica.org via
the scripting language Python.

While FMI is a standard defining a tool-independent
format for representation of hybrid dynamic models
on ordinary differential equation (ODE) form, JMI is
a runtime library designed solely for JModelica.org,
and has long been the main interface for dynamic opti-
mization in JModelica.org. The main optimization al-
gorithm in JMI is collocation-based and implemented
in C. It relies on CppAD4 to compute and evaluate
derivatives. However, in this paper the new XML-
based format is instead used for the new collocation
algorithm. This format is an extension of the XML
format used in FMI and is described in [11]. The for-
mat uses a DAE representation of the model instead of
an ODE representation. It is designed to use a model
representation that is as general as possible, allowing
for the formulation of a wide variety of problems based
on Modelica code, in particular dynamic optimization
problems described by Optimica code. CasADi sup-
ports import of models described by this XML for-
mat, allowing for smooth interaction between JMod-
elica.org and CasADi.

4.2.2 The collocation algorithm toolchain

Figure 1 depicts an overview of the entire workflow
for the implemented collocation algorithm.

User

Modelica

Optimica

JModelica.org

 Compiler
XML

Python

CasADi CollocationIPOPT

Solution

Figure 1: Overview of algorithm workflow

3http://www.functional-mockup-interface.org/
4http://www.coin-or.org/CppAD/

Collocation Methods for Optimization in a Modelica Environment

654 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076649

The user starts by defining the system model in
Modelica and the dynamic optimization problem in
Optimica. The user interaction is carried out in
Python. The Optimica file is, via Python, sent to
JModelica.org’s compiler. The compiler generates an
XML file from the Optimica file, which has a flat,
rather than hierarchical, representation of the dynamic
optimization problem similar to that of (1).

The XML file is parsed by CasADi and JModel-
ica.org and the extracted information is used to tran-
scribe the problem into an NLP by the collocation al-
gorithm inside JModelica.org. This NLP problem is
then solved by IPOPT. The solution is written to a re-
sult file in a format compliant with Dymola. The so-
lution is also represented by a Python object which is
returned to the user. This allows the user to freely ana-
lyze the data in Python, e.g. plotting it either manually
or using JModelica.org’s plotting GUI.

5 Implementation extensions

The work presented in this paper is a continuation of
the work begun in [5], where a prototypical colloca-
tion algorithm was implemented in JModelica.org us-
ing CasADi in Python. In this section we describe the
prominent extensions made to this implementation.

The algorithm supports problems with free start and
final time. Since these are typically combined with ter-
minal constraints, support for general point constraints
has also been added.

Whereas the old implementation only supported
Radau collocation with three collocation points per el-
ement, the new implementation supports an arbitrary
number of collocation points (up to about 80 points,
at which point the method for computing the colloca-
tion points runs into numerical problems). The new
implementation also supports Gauss collocation as an
alternative to Radau collocation.

CasADi has two separate approaches to performing
automatic differentiation. The first approach is called
SX and is a conventional AD approach, where the
computation graph is only allowed to contain scalar,
built-in unary and binary operations. The second ap-
proach is called MX and allows for more general oper-
ations in the computation graph, such as matrix opera-
tions (preserving sparsity), branches and user-defined
functions. The novel MX graphs are less computation-
ally efficient than SX graphs, but support a wider range
of operations. This allows the resulting MX graphs to
be smaller than SX graphs, thus consuming less mem-
ory, which may be critical. The collocation algorithm

has been extended to enable the user to choose be-
tween SX and MX graphs. See [9] for more details
regarding SX and MX graphs.

The collocation algorithm only deals with systems
which are continuous in time. However, control sig-
nals are often inherently discrete in time, which can
not be disregarded in for example model predictive
control. In order to support discrete control signals, the
possibility of adding blocking factors has been added.
Blocking factors change the representation of control
signals from piecewise polynomial to piecewise con-
stant. Control signals can be forced to remain constant
over single or multiple elements.

Finally, options have been added to allow the elimi-
nation of certain NLP variables. The state derivative
variables ẋi,k can be eliminated by inlining the col-
location constraint (7k), and the state continuity vari-
ables xi,0 can be eliminated by inlining the continuity
constraint (7l). This allows for the trade-off between
problem size and problem sparsity. Eliminating state
derivatives also has the benefit of no longer needing to
scale these variables, which often is difficult.

6 Benchmarks

6.1 Benchmark setting

In this section, we will compare the newly extended
collocation algorithm based on CasADi and its Python
interface with the old collocation algorithm imple-
mented in C. Both of these algorithms are imple-
mented in JModelica.org. We use Radau collocation
with the same, low number of collocation points per
element. The benchmarks are based on a continuously
stirred tank reactor and a combined cycle power plant.

The two algorithms are based on the same theory
and the constructed NLP problems are nearly identi-
cal, so the solutions can be expected to also be nearly
identical. There are however a few differences. The
most prevalent is that the new algorithm constructs
AD graphs for the entire NLP. The computation of the
Hessian of the Lagrangian function is thus easy and
efficient. Obtaining this information for the old algo-
rithm using CppAD, although possible, would require
a tremendous effort to implement, which has not been
done. Thus IPOPT employs a quasi-Newton method
for the old algorithm, in which the Hessian instead is
approximated. The computation of the Hessian and
AD graphs for the entire NLP is expensive. These
computations can however be performed off-line, and
in turn make the on-line computations more effective.

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 655
10.3384/ecp12076649 September 3-5, 2012, Munich, Germany

In this benchmark, SX graphs are used for the new al-
gorithm, since the generality offered by MX graphs are
unnecessary for the presented benchmarks.

All the benchmarks are run on a Fedora 16 com-
puter with an Intel® Core™ i7-2600 Quad processor
@ 3.4 GHz. Revisions [3352] and [2594] of JModel-
ica.org and of CasADi respectively are used, together
with version 3.10.2 of IPOPT with the MA27 linear
solver. For each benchmark, we provide the following
run-time statistics:

• Off-line: The CPU time [s] spent doing off-line
computations, which includes compilation of the
Modelica and Optimica code, construction of AD
graphs and computation of derivatives of NLP
functions.

• On-line: The CPU time [s] spent doing on-line
comptuations, which essentially is the time spent
in IPOPT. This part consists of two parts, where
the first one is the time spent internally in IPOPT,
and the second part is the time spent evaluat-
ing NLP functions, which is done by CppAD or
CasADi. The time spent by CasADi evaluating
NLP functions is nearly negligible, whereas Cp-
pAD spends a significant amount of time evaluat-
ing functions on-line for the old algorithm.

• Total: The total CPU time [s] from the start of
the compilation until the optimization result is re-
turned.

• Iterations: The number of iterations required by
IPOPT to solve the problem.

Minor variations in the collocation scheme or prob-
lem formulation can have a tremendous impact on the
required number of iterations, for example if the solver
has to enter a restoration phase, which in turn affect
the overall solution time. But on average, the required
number of iterations for the two algorithms should be
similar for a specific problem. The only significant
reason to expect a different number of iterations is
due to that the new algorithm computes second-order
derivatives analytically, whereas the old algorithm ap-
proximates them numerically. The number of itera-
tions for the new algorithm can thus be expected to be
lower on average.

6.2 Continuously stirred tank reactor

The continuously stirred tank reactor (CSTR) model
used for this benchmark was developed in [12]. The

system contains a highly nonlinear exothermic re-
action and has two states: reactant concentration c
[mol/m3] and reactor temperature T [K]. The rate F0
[m3/s], concentration c0 [mol/m3] and temperature T0
[K] of the reactant inflow are assumed to be constant.
The reactor has a liquid cooling system, whose tem-
perature Tc [K] is the sole control variable.

A formulation analogous to (1) of the considered
problem is to

min. φ(t f), (8a)

w.r.t. c,T,Tc,φ ,

s.t. ċ(t) = F0 ·
c0− c(t)

V
− k0 · e−

Ea
T (t) · c(t), (8b)

Ṫ (t) = F0 ·
T0−T (t)

V
−

H
ρ ·Cp

· k0 · e−
Ea

T (t) · c(t)+

2 ·U
r ·ρ ·CP

· (Tc(t)−T (t)), (8c)

φ̇(t) =
∣∣∣∣(c(t),T (t),Tc(t))−

(
cref,T ref,T ref

c
)∣∣∣∣2

2
(8d)

(c(t0),T (t0),Tc(t0),φ(t0)) = (c0,T0,Tc0,0),
(8e)

(T (t),Tc(t))≤ (350,370), (8f)

∀t ∈ [t0, t f].

The objective (8a) is to move the system from the sta-
tionary operation point given by the initial condition
(8e), where

(c0,T0,Tc0)≈ (956.3,250.1,370.0),

to the stationary operation point, given by(
cref,T ref,T ref

c
)
≈ (338.8,280.1,280.0).

The variable φ is introduced as a state and measures
how the cost increases over time, and is governed by
the dynamic equation (8d). This allows us to formulate
the objective on Mayer form, instead of Lagrange.

The dynamics of the system are modelled by equa-
tions (8b) and (8c), where V,k0,EA,H,ρ,Cp,U and r
are physical parameters and constants. In order to
avoid too high temperatures, we impose the variable
bounds (8f). With t f = 200 s, ne = 70 and nc = 5, we
get the following result.

Table 1: Run-time statistics for the CSTR benchmark

Off-line On-line Total Iterations

New alg. 1.0 0.3 1.3 50
Old alg. 2.0 0.9 2.9 62

Collocation Methods for Optimization in a Modelica Environment

656 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076649

400
500
600
700
800
900

c
[m

ol
/m

3
]

New algorithm

Old algorithm

260
280
300
320
340

T
[K

]

0 50 100 150 200
t [s]

200

250

300

350

T
c

[K
]

Figure 2: Comparison of the old and new algorithm on
optimal control of a CSTR

We see that for this benchmark, the new algorithm
is about twice as fast both off-line and on-line. They
also produce the same solution (up to IPOPT toler-
ances). This problem is very small-scale, and in the
next benchmark we will see that a larger problem will
allow the new algorithm to truly outperform the old
one

6.3 Combined cycle power plant

The combined cycle power plant (CCPP) model used
for this benchmark is described in [13]. The model has
9 states, 128 algebraic variables and 1 control variable.
The task is to minimize the time required to perform
a warm start-up of the power plant. This problem has
become highly industrially relevant during the last few
years, due to an increasing need to improve power gen-
eration flexibility. The startup process is considered
finished when the normalized load input signal u [1]
to the steam turbine, starting at 15 %, has reached 100
% and the evaporator pressure p [Pa], which is a state
with an initial value of approximately 3.47 MPa, has
reached approximately 8.35 MPa.

In order to reduce the wear and tear on the steam
turbine, which is one of the most expensive parts of
the power plant, the thermal stress in the turbine σ

[Pa], which is an algebraic variable, may not exceed
260 MPa. This is the main limiting factor in the startup
process. Another imposed constraint is that the deriva-
tive of the load input signal u may not be negative and
may not exceed 0.1/60 s−1. Since these bounds are
on the derivative of the control variable, which is not
supported by neither the old nor the new algorithm, we

introduce the control variable u̇ and add the equation

du
dt

= u̇,

to the DAE system. This converts the previous control
variable u into a state, giving us a total of 10 states,
and the sole control variable is now instead u̇, which
we can impose the mentioned bounds on.

We formulate a Lagrange cost function which pe-
nalizes the weighted deviation of the load input signal
and the evaporator pressure from their respectively de-
sired values, given by

f (z) =
∫ t f

t0

(
10−12 ·

(
p(t)−8.35 ·106)2

+

0.5 · (u(t)−1)2
)

dt.

With t0 = 0 s, t f = 4000 s, ne = 40 and nc = 4, the
following optimization result is obtained.

Table 2: Run-time statistics for the CCPP benchmark

Off-line On-line Total Iterations

New alg. 4.9 3.0 7.9 79
Old alg. 13.2 23.9 37.2 75

4
5
6
7
8

p
[M

P
a]

New algorithm

Old algorithm

0
50

100
150
200
250

σ
[M

P
a]

0 1000 2000 3000 4000
t [s]

0.2
0.4
0.6
0.8
1.0

u
[1

]

Figure 3: Comparison of the old and new algorithm
for optimal start-up of a CCPP

In this case we clearly see the benefits of con-
structing AD graphs for the entire NLP problem us-
ing CasADi for large-scale problems, which is what
allows for the exceptionally quick NLP on-line solu-
tion. Once again the algorithms find the same solution.

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 657
10.3384/ecp12076649 September 3-5, 2012, Munich, Germany

7 Conclusions

We have presented and implemented an optimization
algorithm based on existing theory for direct collo-
cation. The algorithm has been compared to an old
and similar algorithm in JModelica.org. The solutions
found by the two algorithms have shown to be as iden-
tical as can be expected, that is, up to IPOPT toler-
ances.

The overall performance of the new algorithm com-
pared to the old algorithm, in terms of speed, is clearly
superior, especially for large-scale problems. In terms
of being fully-featured, there are still a few important
features missing for the new algorithm. CasADi com-
bined with Python is however very flexible, so adding
new features is often straightforward, which is not the
case for the old algorithm implemented in C.

Future work includes adding additional discretiza-
tion schemes, adding support for multi-phase prob-
lems and allowing element lengths to be free in order
to maximize accuracy. A related topic is the further
development of Optimica, to support additional prob-
lem formulations.

References

[1] L. T. Biegler, Nonlinear Programming: Con-
cepts, Algorithms, and Applications to Chemical
Processes. MOS-SIAM Series on Optimization,
Mathematical Optimization Society and the So-
ciety for Industrial and Applied Mathematics,
2010.

[2] T. Binder, L. Blank, H. Bock, R. Bulirsch,
W. Dahmen, M. Diehl, T. Kronseder, W. Mar-
quardt, J. Schlöder, and O. Stryk, “Introduc-
tion to model based optimization of chemical
processes on moving horizons,” in Online Op-
timization of Large Scale Systems: State of the
Art (M. Grötschel, S. Krumke, and J. Rambau,
eds.), pp. 295–340, Springer, 2001.

[3] J. Åkesson, K.-E. Årzén, M. Gäfvert,
T. Bergdahl, and H. Tummescheit, “Mod-
eling and optimization with Optimica and
JModelica.org—languages and tools for solv-
ing large-scale dynamic optimization problem,”
Computers and Chemical Engineering, vol. 34,
pp. 1737–1749, Nov. 2010.

[4] J. Åkesson, “Optimica—an extension of Mod-
elica supporting dynamic optimization,” in In

6th International Modelica Conference 2008,
Modelica Association, Mar. 2008.

[5] J. Andersson, J. Åkesson, F. Casella, and
M. Diehl, “Integration of CasADi and JMod-
elica.org,” in 8th International Modelica Con-
ference, Mar. 2011.

[6] F. Magnusson, “Collocation methods in JModel-
ica.org,” Master’s Thesis ISRN LUTFD2/TFRT-
-5892--SE, Feb. 2012.

[7] J. T. Betts, Practical Methods for Optimal Con-
trol and Estimation using Nonlinear Program-
ming. SIAM’s Advances in Design and Control,
Society for Industrial and Applied Mathematics,
2nd ed., 2010.

[8] E. Hairer and G. Wanner, Solving Ordinary
Differential Equations II: Stiff and differential-
algebraic problems. Springer series in compu-
tational mathematics, Springer-Verlag, 2nd ed.,
1996.

[9] J. Andersson, J. Åkesson, and M. Diehl,
“CasADi – A symbolic package for automatic
differentiation and optimal control,” in Re-
cent Advances in Algorithmic Differentiation
(S. Forth, P. Hovland, E. Phipps, J. Utke, and
A. Walther, eds.), Lecture Notes in Compu-
tational Science and Engineering, (Berlin),
Springer, 2012.

[10] A. Wächter and L. T. Biegler, “On the imple-
mentation of a primal-dual interior point filter
line search algorithm for large-scale nonlinear
programming,” Mathematical Programming,
vol. 106, no. 1, pp. 25–57, 2006.

[11] R. Parrotto, J. Åkesson, and F. Casella, “An
XML representation of DAE systems obtained
from continuous-time Modelica models,” in
3rd International Workshop on Equation-Based
Object-Oriented Modeling Languages and
Tools, (Oslo, Norway), pp. 91–98, Oct. 3 2010.

[12] G. A. Hicks and W. H. Ray, “Approximation
methods for optimal control synthesis,” The
Canadian Journal of Chemical Engineering,
vol. 49, no. 4, pp. 522–528, 1971.

[13] F. Casella, F. Donida, and J. Åkesson, “Object-
oriented modeling and optimal control: A case
study in power plant start-up,” in 18th IFAC
World Congress, (Milano, Italy), Aug. 2011.

Collocation Methods for Optimization in a Modelica Environment

658 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076649

Parallel Multiple-Shooting and Collocation Optimization with OpenModelica

Parallel Multiple-Shooting and Collocation Optimization

with OpenModelica

Bernhard Bachmann
1
, Lennart Ochel

1
, Vitalij Ruge

1
,

Mahder Gebremedhin
2
, Peter Fritzson

2
,

Vaheed Nezhadali
3
, Lars Eriksson

3
, Martin Sivertsson

3

1
Dept. Mathematics and Engineering, University of Applied Sciences, D-33609 Bielefeld, Germany

2
PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, SE-581 83 Linköping, Sweden
3
Vehicular Systems, Dept. Electrical Engineering

Linköping University, SE-581 83 Linköping, Sweden

{bernhard.bachmann,lennart.ochel,vitalij.ruge}@fh-bielefeld.de,

{peter.fritzson,mahder.gebremedhin,vaheed.nezhadali,lars.eriksson,marsi}@liu.se

Abstract

Nonlinear model predictive control (NMPC) has be-

come increasingly important for today’s control engi-

neers during the last decade. In order to apply NMPC a

nonlinear optimal control problem (NOCP) must be

solved which in general needs high computational ef-

fort.

State-of-the-art solution algorithms are based on

multiple shooting or collocation algorithms, which are

required to solve the underlying dynamic model formu-

lation. This paper describes a general discretization

scheme applied to the dynamic model description

which can be further concretized to reproduce the mul-

tiple shooting or collocation approach. Furthermore,

this approach can be refined to represent a total colloca-

tion method in order to solve the underlying NOCP

much more efficiently. Further speedup of optimization

has been achieved by parallelizing the calculation of

model specific parts (e.g. constraints, Jacobians, etc.)

and is presented in the coming sections.

The corresponding discretized optimization problem

has been solved by the interior optimizer Ipopt. The

proposed parallelized algorithms have been tested on

different applications. As industrial relevant application

an optimal control of a Diesel-Electric power train has

been investigated. The modeling and problem descrip-

tion has been done in Optimica and Modelica. The

simulation has been performed using OpenModelica.

Speedup curves for parallel execution are presented.

Keywords: Modelica, Optimica, optimization, mul-

tiple shooting, collocation, parallel, simulation

1 Introduction

This paper presents efficient parallel implementations

and measurement results of solution methods for non-

linear optimal control problems (NOCP) relevant for

nonlinear model predictive control (NMPC) applica-

tions.

NMPC as well as NOCP have become increasingly

important for industrial applications during the last

decade [3], [4]. State-of-the-art solution algorithms [4]

are based on multiple shooting or collocation algo-

rithms, which are needed to solve the underlying dy-

namic model formulation. This paper concentrates on

parallelizing these time-consuming algorithms, which

finally lead to a very fast solution of the underlying

NOCP. Moreover, a general discretization scheme ap-

plied to the dynamic model description is introduced,

which can be further concretized to reproduce the

common multiple shooting or collocation approach [7]

and can also be refined to represent total collocation

methods [4] in order to solve the underlying NOCP

much more efficiently. The modeling and problem de-

scription is done in Modelica [2] extended with optimi-

zation goal functions and constraints specified as in

Optimica [15]. The simulation is performed using

OpenModelica [1]. Speedup curves for parallel execu-

tion are presented for application examples.

Section 2 describes the underlying mathematical

problem formulation including the objective function

and constraints to the state and control variables. The

general discretization scheme applied is discussed in

Section 3. This approach can be further refined to rep-

resent multiple shooting or collocation algorithms for

the solution process, which is described in Section 4.

DOI Proceedings of the 9th International Modelica Conference 659
10.3384/ecp12076659 September 3-5, 2012, Munich, Germany

In section 5 the general discretization scheme is fur-

ther developed towards total collocation methods.

Industrial relevant Modelica applications are pre-

sented in Section 6. Parallel execution of the constraint

equations of the NOCP is performed in Section 7. The

results show reasonable speedups of the optimization

time when it comes to time consuming calculation of

the model equations. The necessary implementations

are partly realized in the OpenModelica Compiler,

which is described in Section 8. The paper concludes

with a summary of the achieved results.

2 The Nonlinear Optimal Control

Problem (NOCP)

The numerical solution of NOCP is performed by solv-

ing the following problem formulation [7][8]:

 ()

 (() ())

 (())

 ∫ (() ())

(2.1)

subject to

 () (2.2)

 ̇() (() ()) (2.3)

 (() ()) (2.4)

 (()) (2.5)

where () () are the state and

control variables, respectively. The receding time hori-

zon is given by the interval []. The constraints

(2.2), (2.3), (2.4) and (2.5) describe the initial condi-

tions, the nonlinear dynamic model description based

on differential algebraic equations (DAEs, Modelica),

the path constraints ((() ())) and the

terminal constraints.

Support for time-optimal control and corresponding

terminal constraints is work-in-progress and are not yet

provided by the current implementation.

2.1 Boundary Value Problems

The objective function (2.1), that needs to be mini-

mized, includes conditions at the boundary time point

 stated by the function (()) as well as condi-

tions taking into account the whole time horizon stated

by ∫ (() ())

 .

Figure 1. Different trajectories achieved by varying control
variables. Only one trajectory fulfills the terminal constraint (red

dot).

The function (()) describes conditions that

should be fulfilled at the final time point similar to the

terminal constraint (2.5). Since (()) is part of the

objective function (() ()) the applied optimiza-

tion methods may not find a solution that fulfills the

corresponding terminal constraints, but should be very

close to it. The trajectories are influenced by changing

the control variables. Different trajectories using differ-

ent control variables are visualized in Figure 1.

On the other hand, different trajectories could fulfill

the same terminal constraints. Taking into account the

whole time horizon by minimizing the second part

∫ (() ())

 of the objective function will

lead to the selection of the optimal trajectory. This be-

havior is visualized in Figure 2.

Figure 2. Different trajectories that fulfill the terminal constraint.

3 General Discretization Scheme

In order to apply a general discretization scheme the

NOCP formulation is rewritten to a general form which

later can be used to derive the different possible numer-

ical algorithms e.g. multiple shooting, multiple or total

collocation algorithm, etc. [6]. Equations (2.2) and

(2.3) can be rewritten as follows:

 () ∫ (() ())

 (3.1)

Parallel Multiple-Shooting and Collocation Optimization with OpenModelica

660 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076659

When discretizing the time horizon [] into a finite

number of intervals [] [] (e.g. equidis-

tant partitioning:

) integral in (3.1) can be reformulated to

∫ (() ())

 ∑∫ (() ())

(3.2)

Each integral

∫ (() ())

 (3.3)

on a subinterval can now be treated independently, if

additional constraints are added to the NOCP formula-

tion to force the calculation of an overall continuous

solution. Therefore, locally the problem reduces to a

boundary value problem [5] stated by

 () ∫ (() ())

 (3.4)

where () () for [] , .

It yields () and continuity is forced by addi-

tional constraints () added to the NOCP

formulation, which finally leads locally to a boundary

value problem. Each sub-problem (3.4) can be solved

independently and in parallel, if multiple shoot-

ing/collocation is applied. By varying the control varia-

ble () in each sub-interval the solution of (3.4) can

be influenced in order to fulfill the overall continuity

constraints. In the current approach it is assumed that

 () is constant for each subinterval []

4 Multiple Shooting or Collocation

Different numerical methods are available to solve

equation (3.4). The first approach presented within this

paper is the reformulation of (3.4) to an ordinary differ-

ential equation

 ̇ () (()) (4.1)

with the initial condition () .
In order to solve equation (4.1) an appropriate (e.g.

explicit/implicit) integration algorithm can be applied

that is already available in OpenModelica. A schematic

view of the algorithmic dependencies is presented in

Figure 3.

Alternatively, equation (3.4) or (4.1) can locally be

solved using collocation methods, which also can be

interpreted as numerical treatment of integration. De-

tailed descriptions of the multiple shooting algorithm

using local collocation can be found in [7]. The solu-

tion process for equation (3.4) in each subinterval can

be performed in parallel. The necessary calculation

time depends certainly on the chosen integration meth-

od. In case of an explicit integration algorithm, e.g.

Runge-Kutta based, more intermediate integration steps

might be necessary for certain accuracy than using an

implicit integration method, e.g. local collocation

methods. On the other hand, explicit integration meth-

ods just perform at each intermediate step an evaluation

of the model equations, whereas implicit methods in

general need to solve a system of non-linear equations,

which might also be time consuming. Nevertheless,

when the underlying system of ordinary differential

equations is stiff, implicit methods need to be applied.

Figure 3. Schematic view of the algorithmic dependencies.

Although, equation (3.4) can be solved in parallel a lot

of time is used for finding exact solutions to a locally

defined problem, which might not be relevant for the

over-all problem stated by the (NOCP) formulation

(2.1)-(2.5). Therefore, the solution process for the

NOCP still needs a lot of computation time. The next

section describes methods to overcome this deficiency

by adding the locally derived residual equations (based

on locally applied collocation methods) to the over-all

NOCP formulation.

5 Total Collocation

Applying collocation methods for solving equation

(3.4) locally leads in general to a system of non-linear

equations for each sub-interval. The solution process of

these equations might be time consuming and with re-

spect to the NOCP not efficient. If the corresponding

non-linear equations are added to the NOCP formula-

tion and corresponding optimization algorithms have

access to the intermediate points used by the local col-

location method a more efficient solution process can

be formulated [4]. This section presents two different

collocation methods.

NOCP

Discretizati
on Scheme

Multiple
shooting

Numerical
Treatment

of
Integration

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 661
10.3384/ecp12076659 September 3-5, 2012, Munich, Germany

Based on the common Lagrangian polynomial

 () for interpolation purposes, following abbrevia-

tions are introduced for and :

 () ∏

() ∑

 ∏

∫ ∫ ()

where are the supporting points within the

reference interval []. Further abbreviations are de-

fined by (),

and ().

Figure 4. Schematic view of the algorithmic dependencies.

The first variant is dealing with the approximation of

the states which leads to the following formulas:

 ∑

 ∑

(5.1)

In case of this approach reduces to the implicit

Euler formula with approximation order 1.

The second variant is dealing with the approximation

of the derivatives of the states and leads to the for-

mulas:

 ∑∫

 ∑

(5.2)

In case of this approach reduces to an implicit

Runge-Kutta formula (trapezoidal rule) with approxi-

mation order 2.

The discretized NOCP using total collocation and

corresponding Gaussian quadrature formula for the

integral part of the goal function is finally described by:

 ()

 (() ()) ()

 ∑∑ ()

(5.3)

subject to

 ()

 ()

 ()

 ()

 (5.4)

for , . For variant 1 the support-

ing points , and weights are given

based on Radau formulas.

 () are the additional resid-

ual equations from (5.1). For variant 1 the supporting

points , and weights are given

based on Lobatto formulas. ()

 are the additional residual equations from (5.2).

6 Modelica Applications

To investigate the performance of the proposed optimi-

zation algorithm, industrial relevant optimal control

problems are solved and corresponding results are pre-

sented in this section.

6.1 Batch Reactor

We begin by considering a simple model from the

chemical reactor described in [7] to maximize the yield

of () by manipulation the reaction temperature (),
with the following problem formulation:

 ()

 (() ()) () (6.1)

subject to

 ̇ () (()
 ()

) ()

 ̇ () () ()

(6.2)

(

 ()

 ()

 ()

 ()

 ()

 ())

 (6.3)

 () (

) (6.4)

where () (() ())

 and [].

NOCP

Discretization
Scheme

Total
Collocation

Parallel Multiple-Shooting and Collocation Optimization with OpenModelica

662 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076659

Figure 5. Trajectories of state and control variables

6.2 Optimal control of Diesel-Electric power-

train

The Diesel-electric model based on [10] is presented in

Appendix A. This concept is modeled according to a

nonlinear mean value engine model (MVEM) contain-

ing four states and three control inputs while the gener-

ator model is simplified by considering constant effi-

ciency and maximum power over the entire speed

range.

In a Diesel-electric powertrain the operating point

of the Diesel engine can be freely chosen which would

potentially decrease fuel consumption. Moreover, the

electric machine has better torque characteristics. These

are the main reasons making the Diesel-electric power-

train concept interesting for further studies.

To investigate the fuel optimal transients of the

powertrain from idling condition to a certain power

level while the accelerator pedal position is interpreted

as a power level request, the following optimal control

problem is solved:

states (

) , controls (

)

 ∫ ̇

subject to

 ̇

()

 ̇

()

 ̇

()

 ̇

()

() ()

()

() () ()

() ()

()

()

and boundary conditions are:

at (

)

at (

 ̇
 ̇
 ̇
 ̇

) , (

)

and .

The constraints are originated from components’ limi-

tations and the functions are described in the appen-

dix [10].

Figure 6. Trajectories of control variables

In this work, we try to find the fuel optimal control

and state trajectories in a certain time interval [].
For simplicity, only diesel operating condition is as-

sumed which means ().

Figure 7. Trajectories of state variables

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 663
10.3384/ecp12076659 September 3-5, 2012, Munich, Germany

The dynamic system is solved after it is discretized

into subintervals. Figure 6 and Figure 7 show the ob-

tained control and state trajectories. As it is expected,

the fuel optimal results happen when engine is acceler-

ated only near the end of the time interval ()
to meet the end constraints while minimizing the fuel

consumption.

In section 7 it is shown how the parallel execution

increases the performance of the optimization process.

7 Parallel Execution and Perfor-

mance Measurements

We have performed measurements for the different

algorithms (multiple shooting/collocation and total col-

location with variant 1 and 2) applied to the above de-

scribed applications. The C/C++ source code has been

compiled by gcc version 4.6.3 (GCC) with OpenMP

support. The measurements are done on an Intel Core

i7 CPU 870 with 8 cores @ 2.93 GH (4 real cores and 4

virtual cores).

The corresponding optimization problem is solved

by the interior point optimizer Ipopt [16]. Figure 8

shows the different functions and derivative infor-

mation that need to be provided to Ipopt for the solu-

tion process. In the current implementation the Hessian

matrix of the corresponding Lagrangian formulation is

calculated numerically by Ipopt. The other information

(see Figure 8) is provided numerically by external rou-

tines. When calculating the Jacobian and Hessian ma-

trices the treatment of the sparsity patterns, is important

for the performance of the multiple shooting and total

collocation methods [9]. This has been realized for the

Jacobian matrix calculation.

Figure 8. Schematic view of the required components of Ipopt

The multiple shooting algorithm uses an explicit

Runge-Kutta formula of order 3 as well as 3 steps with-

in each interval. The multiple collocation method uses

3 intermediate interval points based on Radau formulas.

The total collocation uses variant dependent intermedi-

ate interval points as described in section 5. The tests

have been performed using 128 intervals when dealing

with sparse matrix representation. The user defined

functions (see blue boxes of Figure 8) have been paral-

lelized.

7.1 Batch Reactor

The speedups obtained and the computation times for

the batch reactor are shown in Table 1 and Figure 9.

 multiple shooting multiple collocation

threads Ipopt jac_g Ipopt jac_g

1 1,5742s 28,93ms 18,47s 343,3ms

2 1,0164s 16,77ms 10,25s 188,3ms

4 0,6691s 9,37ms 5,825s 104,7ms

8 0,6539s 8,52ms 5,055s 89,57ms
Table 1. Computation times for the Jacobian of the constraints and
the over-all optimization using multiple shooting/collocation method

for the batch reactor

Figure 9. Speedups and computation times of the whole

optimization process

Table 1 shows that multiple collocation is much more

expensive than the multiple shooting. Reason for this is

the computational time needed to solve non-linear sys-

tems coming from the implicit discretization. There-

fore, by parallelizing the user defined functions a better

speedup (Figure 9) for the whole optimization can be

performed for the multiple shooting method, whereas

the speedup for the user defined function (e.g. Figure

10) is comparable.

Figure 10. Speedups and computation times for the Jacobian of the
constraints

Ipopt

constraints

Jacobian

object
function

gradient

Hessian of the
Lagrangian

Parallel Multiple-Shooting and Collocation Optimization with OpenModelica

664 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076659

7.2 Diesel Model

The solution process for the diesel model using multi-

ple shooting and multiple collocation is quite time con-

suming (see Table 2 and Table 3). Especially, the mul-

tiple collocation algorithm was only performed with 32

intervals in order to reduce execution time to an ac-

ceptable level. Although, parallelization of the user

defined function leads to a great speed up, the overall

performance of the multiple shooting or collocation

method is still poor. The total collocation variants are

superior with respect to the over-all performance as can

be seen in Table 3.

 multiple shooting multiple collocation

threads Ipopt jac_g Ipopt jac_g

1 1518,4s 1,8196s 368,07s 2,6007s

2 917,17s 0,9671s 196,04s 1,3832s

4 608,29s 0,5286s 108,33s 0,7625s

8 508,71s 0,3861s 87,027s 0,6110s
Table 2. Computation times for the Jacobian of the constraints and

the over-all optimization using multiple shooting/collocation method

for the diesel model

 total collocation 1 total collocation 2

threads Ipopt jac_g Ipopt jac_g

1 15,40s 8,215ms 14,07s 9,947ms

2 11,49s 4,356ms 10,10s 5,281ms

4 10,19s 2,553ms 8,342s 2,987ms

8 9,452s 1,713ms 7,897s 1,965ms
Table 3. Computation times for the Jacobian of the constraints and
the over-all optimization using total collocation method for the

diesel model

The speed-up regarding the user-defined function is

comparable to the multiple shooting or collocation

methods (see Figure 12). The speed-up of the whole

optimization process is not optimal due to the serial

computation and dense treatment of the Hessian matrix

calculated internally by Ipopt (see Figure 11).

Figure 11. Speedups and computation times of the whole
optimization process

Figure 12. Speedups and computation times for the Jacobian of the

constraints

8 Integration with OpenModelica

Support for specifying optimization goal functions and

constraints together with Modelica models has now

been implemented in OpenModelica. Such integrated

models can now be exported via XML to tools such as

CasADi [12] which can act as a frontend to ACADO

[13].

In the current OpenModelica prototype all aspects

of the tool chain are not yet completely implemented.

For example, we are currently using numerically de-

rived Gradients, Jacobians and Hessians since the au-

tomatic differentiation machinery in OpenModelica has

not yet been extended to operate on the optimization

problem goal function.

However, the prototype is complete enough to do

the measurements of the included model applications

on a parallel platform to obtain the speedup curves for

parallel execution on 1-8 cores.

The OpenModelica compiler has been extended to

export Modelica Models to XML based on an extended

version of the FMI XML schema from [14]. The XML

export, in addition to the standard Modelica syntax,

supports the Optimica extensions from Jmodelica [15].

Theses extensions allow users to formulate dynamic

optimization problems to be solved by a numerical al-

gorithm. The extensions include several constructs in-

cluding a new specialized class optimization, a con-

straint section, etc. See the batch reactor example be-

low as well as the Optimica manual for complete in-

formation.

optimization BatchReactor

 (objective = -x2(finalTime),

 startTime = 0, finalTime =1)

 Real x1(start=1,fixed=true,min=0,max=1);

 Real x2(start=0,fixed=true,min=0,max=1);

 input Real u(free=true, min=0, max=5);

equation

 der(x1) = -(u+u^2/2)*x1;

 der(x2) = u*x1;

end BatchReactor;

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 665
10.3384/ecp12076659 September 3-5, 2012, Munich, Germany

The XML generated for flattened Optimica Models can

be imported into other non-Modelica Optimization

tools like ACADO.

Currently the OpenModelica compiler does not yet

use the optimization problem formulation internally as

input to automatic differentiation. The Modelica plus

Optimica model description is flattened, some common

compilation phases are applied e.g. syntax, semantics

and type checking, simplification, constant evaluation

etc. and then the complete flat model is exported to

XML.

9 Conclusions

In this paper parallelized implementations of several

different algorithms for solving NOCP have been pre-

sented. The well-known multiple shooting or colloca-

tion as well as total collocation methods are derived

using a general discretization scheme. Total collocation

methods have proofed at least in the current implemen-

tation and for the tested applications to be superior to

the other algorithms.

The corresponding discretized optimization problem

has been solved by the interior optimizer Ipopt. Further

speedup of the optimization process for all described

algorithms have been achieved by parallelizing the cal-

culation of model specific parts (e.g. constraints, Jaco-

bians, etc.). So far the evaluation of derivatives have

been done numerically. This will be further improved

using the already available symbolic differentiation

capabilities of OpenModelica [11]. Finally, this work

will be continued by applying the proposed algorithms

on more industrial relevant applications together with a

thorough testing on advanced parallel hardware archi-

tectures.

10 Acknowledgements

This work has been partially supported by Serc, by SSF

in the EDOp project and by Vinnova as well as the

German Ministry BMBF (BMBF Förderkennzeichen:

01IS09029C) in the ITEA2 OPENPROD project. The

Open Source Modelica Consortium supports the

OpenModelica work.

References

[1] Open Source Modelica Consortium. OpenModel-

ica System Documentation Version 1.8.1, April

2012. http://www.openmodelica.org

[2] Modelica Association. The Modelica Language

Specification Version 3.2, March 24th 2010.

http://www.modelica.org. Modelica Association.

Modelica Standard Library 3.1. Aug. 2009.

http://www.modelica.org.

[3] Jasem Tamimi, Pu Li. A combined approach to

nonlinear model predictive control of fast sys-

tems. Journal of Process Control, 20, pp 1092–

1102, 2010.

[4] Biegler, Lorenz T. 2010. Nonlinear Program-

ming: Concepts, Algorithms, and Applications to

Chemical Processes. s.l. : Society for Industrial

Mathematics, 2010.

[5] Munz, Claus-Dieter and Westermann, Thomas.

2009. Numerische Behandlung gewöhlicher und

partieller Differenzialgleichungen. Berlin Heide-

berg : Springer Verlag, 2009

[6] Heuser, Harro. 2006. Gewöhnliche Differential-

gleichungen. Wiesbaden : Teubner Verlag, 2006.

[7] Tamimi, Jasem. 2011. Development of Efficient

Algorithms for Model Predictive Control of Fast

Systems. Düsseldorf: VDI Verlag, 2011.

[8] Friesz, Terry L. 2007. Dynamic Optimization and

Differential Games. US: Springer US, 2007.

[9] Folkmar, Bornemann und Deuflhard, Peter. 2008.

Numerische Mathematik: Numerische Mathema-

tik 2: Gewöhnliche Differentialgleichungen: Bd

II: [Band] 2. s.l. : Gruyter, 2008.

[10] Martin Sivertsson and Lars Eriksson Optimal

power response of a diesel-electric powertrain.

Submitted to ECOSM’12, Paris, France, 2012.

[11] Braun, Willi, Ochel Lennart and Bachmann

Bernhard. Symbolically Derived Jacobians Using

Automatic Differentiation - Enhancement of the

OpenModelica Compiler, Modelica Conference

2011

[12] Joel Andersson; Johan Åkesson; Moritz Diehl,

CasADi - A symbolic package for automatic dif-

ferentiation and optimal control, Proc. 6th Inter-

national Conference on Automatic Differentia-

tion, 2012.

[13] Houska, B., Ferreau, H.J., and Diehl, M. (2011).

ACADO toolkit - an open source framework for

automatic control and dynamic optimization. Op-

timal Control Applications & Methods, 32(3),

298-312.

[14] Functional Mock-up Interface:

http://www.functional-mockup-

interface.org/index.html

[15] Johan Åkesson. Optimica—An Extension of

Modelica Supporting Dynamic Optimization. In

6
th

 International Modelica Conference 2008.

Modelica. Association, March 2008

[16] Interior Point OPTimizer (Ipopt)

https://projects.coin-or.org/Ipopt

Parallel Multiple-Shooting and Collocation Optimization with OpenModelica

666 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076659

11 Appendix A

Figure 13. Diesel Engine Model

Powertrain model

 ̇

Intake System

 Compressor

 (

)

 , ̇ ̇ √ (

) ,

 ̇
 ̇

√
,

 ̇ (

)

 Intake manifold

 ̇

(̇ ̇),

Cylinder

 Gas Flow

 ̇

, , ̇

 ,

 ̇

 ̇

()

 Torque

 ,

(),

, (

)

 ((

)

 (

)

)

 Temperature

,

 ̇

 ̇ ̇
,

(

)

()

(

)
((

)

())

Exhaust System

 Exhaust Manifold:

 ̇

(̇ ̇ ̇ ̇),

 Turbine

,

 (√ (

)

), (

) √

((

)

 (
)

),

 ̇

√
 , ̇ (

) , , ̇

 Wastegate

,

 ((

)

), √

((

)

 (
)

), ̇

√

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 667
10.3384/ecp12076659 September 3-5, 2012, Munich, Germany

Model Constants

Symbol Description Value Unit

 Ambient pressure 1.011e5 Pa

 Ambient temperature 298.46 K

 Specific heat capacity of air, constant pressure 1011 J/(kg.K)

 Specific heat capacity of air, constant volume 724 J/(kg.K)

 Specific heat capacity ratio of air 1.3964 -

 Gas constant, air 287 J/(kg.K)

 Specific heat capacity of exhaust gas, constant pressure 1332 J/(kg.K)

 Specific heat capacity ratio of exhaust gas 1.2734 -

 Gas constant, exhaust gas 286 J/(kg.K)

 Specific heat capacity ratio of cylinder gas 1.35004 -

 Intake manifold temperature 300,6186 K

 Pressure in exhaust system 1.011e5 Pa

() Stoichiometric oxygen-fuel ratio 14.54 -

 Diesel heating value 42.9e6 J/kg

Model Parameters

Symbol Description Value Unit

 Number of cylinders 6 -

 Engine displacement 0.0127

 Compression ratio 17.3 -

 Inertia of the engine-generator 3.5

 Volume of intake system 0.0218

 Compressor radius 0.04 M

 Max. compressor head parameter 1.5927 -

 ̇ Max. corrected compressor mass flow 1.2734 -

 Compressor efficiency 286 J/(kg.K)

 Volumetric efficiency 1.35004 -

 Combustion chamber efficiency 0.6774 -

 Friction efficiency 1.011e5 Pa

 Friction efficiency 14.54 -

 Friction efficiency 42.9e6 J/kg

 Non-ideal Seliger cycle compensation 1.054 -

 Ratio of fuel burnt during constant volume 0.4046 -

 Volume of exhaust manifold 0.0199

 Turbocharger inertia 1.9662 e-4

 Turbocharger friction 2.4358 e-5

 Effective turbine area 9.8938 e-4

 Turbine efficiency 0.7278 -

 Wastegate parameter 0.6679 -

 Wastegate parameter 5.3039 -

 Effective wastegate area 8.8357 e-4

Parallel Multiple-Shooting and Collocation Optimization with OpenModelica

668 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076659

Optimization Library for Interactive Multi-Criteria Optimization Tasks Optimization Library for
Interactive Multi-Criteria Optimization Tasks

A. Pfeiffer
Institute of System Dynamics and Control, German Aerospace Center DLR, Oberpfaffenhofen

Andreas.Pfeiffer@dlr.de

Abstract

The commercial library Optimization 2.1 for interac-
tive multi-criteria optimization tasks has been re-
leased along with Dymola 2013. The library offers
several numerical optimization algorithms for solv-
ing different kinds of optimization tasks. User de-
fined Modelica functions or models provide the basis
for an interactive optimization process where the
user keeps overview of complex multi-criteria opti-
mization tasks that can take discrete parameters, sev-
eral model operating points or trajectories into ac-
count. Computational performance of optimization
runs can be significantly increased by parallel nu-
merical integrations of the Modelica model on multi-
core machines.
Keywords: Modelica; Optimization; Multi-Criteria;
Trajectory Optimization; Parallel Simulation

1 Introduction

In principle, numerical optimization algorithms may
be very powerful tools in engineering design pro-
cesses like modeling, model validation or controller
design. However, the fact that numerical algorithms
are available does not necessarily encourage engi-
neers to apply them. A user-friendly, easy handling
of a well integrated optimization tool is necessary to
make the advantages of automatic optimization
available for non-experts. The presented Optimiza-
tion library realizes this requirement in the Modelica
world when working with Dymola [DS12b] or CAT-
IA [DS12a].

1.1 Related Work

OMOptim [TNT+11] is an initiative to provide an
open source optimization platform within OpenMod-
elica. The emphasis of this platform is on using ge-
netic algorithms, whereas interfacing gradient based
optimization methods is planned for the future. The
application is currently tailored to optimize model
parameters of Modelica models. The library present-
ed in the paper at hand provides a variety of different

optimization tasks solved by several sophisticated
local and global optimization algorithms.

In JModelica.org the Modelica extension Optimica is
supported to solve dynamic optimization [AAG+10].
The approach in Optimica is different to the present-
ed one, because Optimica defines additional Modeli-
ca language elements to describe Optimization prob-
lems directly in Modelica. Consequently, special
compilers are needed to generate code for the opti-
mization runs. JModelica.org supports collocation
methods for dynamic optimizations. In the presented
approach, (standard) Modelica models are compiled
by Dymola. The well-proven numerical integration
algorithms provided by Dymola are used in the op-
timization loop. Tailored graphical user interfaces
support the user in several optimization tasks.

The library Design.Optimization [EOM+05] is the
forerunner of the presented library. For the new ver-
sion the library has been completely reimplemented
with many new features. The new concept of differ-
ent optimization tasks is enhanced by specialized
graphical user interfaces (GUIs). The primary con-
cept and the code of numerical algorithms for solv-
ing multi-criteria optimization problems are based on
[JBL+02].

1.2 Optimization Problem Formulation

The multi-criteria optimization problems considered
in the Optimization library can be formulated as fol-
lows:

min
𝑝∈𝐵

𝑓�diag(𝑟1)−1𝑐1(𝑝)�

such that 𝑐2(𝑝) ≤ 𝑟2, 𝑐3(𝑝) = 𝑟3

with 𝑐 = �
 𝑐1
 𝑐2
 𝑐3

� , 𝑟 = �
𝑟1
𝑟2
𝑟3

 � and

𝑓 = �

 max … maximum of criteria values, or

 ‖∙‖2
2 … sum of squared criteria values, or

‖∙‖1 … sum of absolute criteria values.

DOI Proceedings of the 9th International Modelica Conference 669
10.3384/ecp12076669 September 3-5, 2012, Munich, Germany

Free parameters 𝑝 (e.g. some Modelica parameters in
models) to be varied during the optimization process
are called tuner parameters or tuners. The first part
of the criteria vector 𝑐 represents the objectives of
the optimization (e.g. the overshoot of a variable in a
model). The goal is to minimize all these objectives.
The criteria components that define inequality or
equality constraints are optional. They enable formu-
lation of conditions on some criteria components if
needed. The demand values 𝑟 serve as reciprocal
scaling factors of the criteria. They enable a different
weighting of the individual criteria to be minimized.
The tuner box 𝐵 defines minimum and maximum
values for each tuner parameter, thus limiting the
range in which the tuner parameters can be varied.

For multi-criteria optimization problems a whole set
of optimal solutions generally exists: the Pareto op-
timal solutions [E05]. For these solutions it is not
possible to decrease one of the components of the
objectives vector 𝑐1 without increasing another one.
It means the different criteria conflict each other.
Finding all Pareto optimal solutions requires very
high computational effort. In many cases it is suffi-
cient to transform a multi-criteria problem to an op-
timization problem with a scalar objective func-
tion 𝑓. This approach is applied to the Optimization
library with the maximum of the objectives, the sum
of the squares of the objectives or the sum of the ab-
solute values of the objectives.

1.3 Discrete Tuner Parameters

Discrete tuners are tuners that only have a finite
number of values to be set. Examples for such tuners
are configuration parameters that represent different
topologies, e.g. switching modes in networks.

Three possibilities are available to define discrete
tuners in the Optimization library. At the level of
each tuner parameter, one can define the number of
equidistant discrete values within the interval [min,
max]. Only these points can be selected by the opti-
mization algorithm to set the tuner value.

Figure 1: Discrete values for tuner parameters in the opti-
mization setup GUI.

For example, setting equidistant = 6 for min = −10,
max = 0 enables the values −10, −8, −6, −4, −2, 0 for

the tuner Ki in Figure 1. The second possibility to
define discrete tuners is to give a Modelica vector of
values that can be set to the tuner parameter, e.g. dis-
creteValues = {−7.8, −2.5, −9.3} for tuner parameter
Kf.

At the level of all tuner parameters a list of values of
discrete tuner parameter sets can be defined in a ma-
trix. Each column corresponds to a tuner parameter,
see Figure 2. It is possible to simply import the ma-
trix from and export it to file. This feature allows to
automatically evaluate a long list of tuner values
generated by a separate tool.

Figure 2: Discrete tuner matrix in the optimization setup
GUI.

1.4 Optimization and Evaluation Algorithms

The following numerical optimization algorithms are
available in the Optimization library: Sequential
Quadratic Programming (SQP), Quasi Newton
(BFGS) method, Pattern Search, Simplex Method
and Genetic Algorithm. SQP and BFGS algorithms
rely on derivatives of the criteria with respect to the
tuner parameters and have good convergence proper-
ties for smooth optimization problems. Pattern
Search and Simplex Method are more robust against
nonsmoothness but generally need more criteria
evaluations to converge. Genetic Algorithm is the
only approach to find a global solution whereas the
others are local convergent methods. Further details
to the implemented optimization algorithms can be
found in [J11].

All the optimization algorithms have in common that
they work more or less sequentially. Most values for
tuners depend on criteria values of previous evalua-
tions. So, there are limited possibilities to parallelize
the (time consuming) evaluations of criteria. In con-
trast to these algorithms, pure evaluation methods
independently set tuner values at the beginning of the
process. Of course, constraints fulfillment is there-
fore not guaranteed.

Two evaluation methods are implemented in the Op-
timization library: Random Search and Systematic
Tuner Variation. Random Search takes uniformly
distributed random values between minimum and

Optimization Library for Interactive Multi-Criteria Optimization Tasks

670 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076669

maximum of each tuner parameter. Systematic Tuner
Variation is based on discrete tuners. If the discrete
tuner matrix is activated, the corresponding tuner
values are used row by row of the matrix. If the dis-
crete tuner matrix is not used, all combinations of
equidistant or given discrete tuner values are the ba-
sis for the criteria evaluations. For the example in
Figure 1 there are 3 ∙ 6 ∙ 1 = 18 different sets of dis-
crete tuner values.

Table 1: Overview of the optimization and evaluation algo-
rithms with their capability to support continuous and / or
discrete tuners.

Algorithm Continuous Discrete Mixed
SQP 
BFGS 
Pattern Search 
Simplex Meth. 
Genetic Alg.   
Random Search   
Systematic Var. 

Most of the interfaced algorithms are designed to
handle continuous tuner parameters. It means that the
tuner values can be arbitrarily varied inside a given

interval. Table 1 gives an overview which algorithm
also supports discrete tuners or problems with both
continuous and discrete tuner parameters.

1.5 Optimization Process

For each of the GUI supported optimization tasks the
process to configure the task, to start the optimiza-
tion and to handle the results is nearly the same and
is discussed in the following by means of Figure 3.

By starting the corresponding setup GUI for an op-
timization task, the user gets a hierarchical list of
settings to be configured. For each task one has to
specify tuners and criteria depending on the type of
the task. For optimization tasks requiring a model,
additional settings for the model simulation have to
be provided. All the information given in the setup
GUI can be saved to a Modelica file. The file con-
tains a call starting the corresponding setup GUI
filled with the saved entries. Of course, the textual
file can be edited before starting the setup GUI. So,
loading an optimization setup is simply running the
Modelica function generated when saving the setup.

After the optimization setup is configured, the opti-
mization run is started. During the run the current

Updated
Tuner values

Load Setup

Save Setup

Optimization Run
Logging

Setup GUI

How to
proceed

with
results?

Figure 3: Optimization process for GUI supported Optimization tasks.

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 671
10.3384/ecp12076669 September 3-5, 2012, Munich, Germany

solutions may be logged to an HTML-file, also inter-
actively displayed in Dymola’s Command window.
The logging has two intentions. Firstly, the history of
a complete optimization run can be reconstructed.
Secondly, optimization runs may last hours or days.
It is very important in these cases to have a feedback,
what the optimization algorithm is currently doing,
to quickly react on non-intended intermediate opti-
mization results. The HTML-logging lists the current
tuner and criteria values and visualizes them in dif-
ferent colors in comparison to values at the begin-
ning of the optimization.

Beside the HTML-logging there is a logging of pure
numeric data to be processed after the optimization
run if it is necessary. After the optimization run is
finished, the user is asked how he wants to proceed.
There is the possibility to reset the tuner parameters
by values generated by the optimization process. For
example, one can select the tuner values of the best
evaluation (= solution) of the optimization run. The-
se settings can be used to proceed the optimization
process with different settings, e.g. using another
optimization algorithm. In any case, after an optimi-
zation run the setup GUI is displayed (with possibly
changed tuner values) and can be configured as de-
scribed above.

2 Function based Optimization

Two optimization tasks based on user-defined Mod-
elica functions are described. Whereas Function Op-
timization is an interactive task, Realtime Optimiza-
tion is designed to be called in model equations dur-
ing the numerical integration.

2.1 Function Optimization

The task Function Optimization is designed for the
most general case of an optimization problem in
Modelica. The user has to provide a Modelica func-
tion that evaluates the criteria (and constraints) func-
tions. Optionally, a user-defined function for the
evaluation of the Jacobian matrix can be incorpo-
rated. The task can be used for simple academic op-
timization problems resulting in a criteria function of
a few lines of code, or for every complex optimiza-
tion problem including simulations and linearizations
of several models. The user has to program and con-
trol the simulations and linearizations by available
functions in Modelica and Dymola.

The main part of a function optimization problem is
to program the criteria function in Modelica. The

criteria function returns a criteria vector depending
on the tuner values. The criteria can either be parts of
the optimization's objective function or be one of the
constraints of the optimization problem. A criteria
function has to have defined interface variables from
the partial function PartialCriteriaVariables:

partial function PartialCriteriaVariables
 input Real tuners[:];
 output Real criteria[:];
end PartialCriteriaVariables;

A typical criteria function looks like the following
prototype. One can add own input variables to the
criteria function. The values for these inputs have to
be declared in the name of the criteria function in the
setup, e.g. ”myCriteriaFunc(myVar=<value>)”.

function myCriteriaFunction
 extends PartialCriteriaVariables;
 input <AnyType> myVar;
algorithm
 criteria := ...(tuners, myVar);
end myCriteriaFunction;

Gradient based optimization algorithms (SQP,
BFGS) need the Jacobian matrix of the criteria with
respect to tuner parameters. The user can select be-
tween symmetric finite differences and forward dif-
ference quotients. There is also the possibility to
program the Jacobian matrix by oneself, e.g. if one
knows the analytical Jacobian matrix. The interface
variables are defined in the following partial func-
tion:

partial function PartialJacobianVariables
 input Real tuners[:];
 input PartialCriteriaVariables CritFunc;
 output Real Jacobian[:,size(tuners,1)];
end PartialJacobianVariables;

To a Jacobian function one can also add own input
variables, see the following prototype of a typical
Jacobian function:

function myJacobianFunction
 extends PartialJacobianVariables;
 input <AnyType> myVar;
algorithm
 Jacobian := ...(tuners, myVar);
end myJacobianFunction;

2.2 Realtime Optimization

Realtime Optimization is in some way different to
the other optimization tasks. Realtime Optimization
provides the framework for an optimization function
to be called during the numerical integration of a

Optimization Library for Interactive Multi-Criteria Optimization Tasks

672 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076669

model. A possible application of this optimization
task is a discrete controller that solves an optimiza-
tion problem to predict new controller values every
sample time. The optimization problem itself is very
similar to that of Function Optimization. User de-
fined functions for criteria evaluation and optional
functions for the Jacobian matrix provide the basis
for the optimization task. Because Realtime Optimi-
zation is active during a simulation many times,
there is no GUI support for it. A Modelica model
calling the optimization function typically has the
following structure:

model myModel
 Real resultTuners[...];
 Real resultCriteria[...];
 KernelProblem problem(...);
 ...
equation
 ...
 when sample(0, 0.1) then
 (resultTuners,resultCriteria) =
 run(problem, CriteriaFunc =
 function myCriteriaFunction);
 end when;
 ...
end myModel;

At each sample point the optimization run is started
by the function run. The optimization problem is
described by the record problem that includes the
tuner and criteria definitions as well as the optimiza-
tion options. The approach is currently used in model
predictive control for an electric vehicle [K10].

3 Model based Optimization

This section deals with optimization tasks based on
the numerical integration of a Modelica model. The
computation of the optimization criteria is part of the
numerical integration. Because model simulation is
the main application of dealing with Modelica mod-
els, the following optimization tasks and their fea-
tures may be considered as the core of the Optimiza-
tion Library.

3.1 Criteria Library

To support all model based optimization tasks the
sub-library Optimization.Criteria is part of the
whole package. The library (see Figure 4) provides
models that compute typical criteria from time de-
pendent model variables. The collection of criteria
models helps the user to prepare his system model
for conducting an optimization on it. For Real sig-
nals the following models are included: minimum,

maximum, mean value, moving average and integral
norm. In Figure 5, some examples are illustrated.
Computing deviations between two signals may be
handled by the corresponding criteria models. In the
field of controller design typical design criteria are
overshoot, rise time and settling time. Each of them
is represented by a corresponding criteria model.
Some of the criteria models require the input signals
to be differentiated.

Figure 4: Criteria library.

Figure 5: Typical signals of criteria models.

In some cases only parts of the whole time interval
shall be used to compute a certain criterion, or some
time areas shall be weighted more than others. For
such needs several weighting models are provided:
Step, Ramp, Triangle, etc.

3.2 Model Optimization

The task Model Optimization is designed to optimize
parameters of a Modelica model. The user can select
from a list of model parameters to define tuners, see
Figure 6. Also it is possible to get a list of all time
depending model variables to be selected for criteria

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 673
10.3384/ecp12076669 September 3-5, 2012, Munich, Germany

variables. The value of the criterion is defined by the
final value of the criterion variable at the end of the
integration interval.

Figure 6: GUI for selecting model parameters as tuners.

The simulation of the model to be optimized has to
be specified by usual simulation preferences like
start and stop time or the numerical integration algo-
rithm. Additionally, different modes to accelerate the
numerical integration of the model equations are im-
plemented, see Section 3.5.

A typical application of Model Optimization is the
identification of model parameters by comparing
simulation results and corresponding measurements
from a test bench. A further application is well
known in the field of controller synthesis. To im-
prove the controller performance automatic optimi-
zation is applied to the system model.

3.3 Multi Case Model Optimization

Multi Case Model Optimization is an extension of
the task Model Optimization and has its origin in the
field of model based controller design. Most control-
lers do not only have to guarantee performance and
stability of a system in one, but in several operating
points. The optimization of the controller parameters
includes the simulation of a system model in differ-
ent operating points that are characterized by differ-
ent values of special model parameters, the case pa-
rameters. These model parameters are disjoint with
the tuner parameters and are not varied by the opti-
mization algorithm. The different model simulations
that are defined by the case parameters are called
cases. In Figure 7 main parts of the corresponding
task setup GUI are shown.

Each case should have a name to distinguish it from
the other cases. In Figure 7 there are three cases:
nominal, worstOvershoot and worstSettlingTime.
The case parameters (e.g. Ma, Md, …, Zd) can be
selected from a list of all independent model parame-
ters. For each case every case parameter gets a value,
see the matrix in Figure 7. The model is simulated
with these case parameter values for each case. The
criteria of the optimization task are similarly speci-
fied as for the task Model Optimization.

Figure 7: Optimization setup GUI for Multi Case Model
Optimization.

In summary, every case contributes to the overall
criteria vector of the optimization problem, see Fig-
ure 8 for an example. Depending on the objective
function type all these criteria values are combined
to the objective function value. In the example the
value is the maximum of all criteria values: riseTime
for the case worstSettlingTime.

Figure 8: Logging of multi case criteria.

3.4 Trajectory Optimization

Problems of Optimal Control arise in different fields
of applications. The goal is to minimize an objective
functional with respect to one or more time depend-
ent control trajectories. Various constraints are typi-
cal for optimal control problems. Dynamic model
equations appear in most of the problems in technical

Optimization Library for Interactive Multi-Criteria Optimization Tasks

674 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076669

applications. Consequently, an optimization task
Trajectory Optimization is provided in the library.

There are many techniques [B01] to numerically
solve an infinite dimensional optimal control prob-
lem. In the Optimization library the solution proce-
dure is according to the task Model Optimization. It
means that tuners are varied by the optimization al-
gorithm and for each computation of the criteria a
model simulation is performed. This Single Shooting
Technique is based on a finite dimensional optimiza-
tion problem approximating the original problem.

The control trajectories are approximated by B-
splines of degree 𝑘. The number of samples 𝑁 and
the interpolation degree 𝑘 define the construction of
a B-spline as control trajectory [DH02]. The B-spline
has 𝑁 equidistant knots on the time interval the
spline is defined (normally this is the integration in-
terval of the model). Further there are 𝑁 + 𝑘 − 1 de
Boor control points that parameterize the spline. A
spline 𝑠(𝑡) is a piecewise polynomial function be-
tween the knots. The individual polynomials have at
most the degree 𝑘. The polynomials are appended
such that the complete spline is 𝑘 − 1 times continu-
ously differentiable on the whole interval it is de-
fined. Because a B-spline is contained in the convex
hull of its de Boor points 𝑁, the box constraints
𝑢Min ≤ 𝑁 ≤ 𝑢Max (for lower and upper bounds 𝑢Min,
𝑢Max) are valid for the whole spline function:
𝑢Min ≤ 𝑠(𝑡) ≤ 𝑢Max. Therefore, the control points 𝑁
are selected as tuners to be varied by the optimiza-
tion algorithm.

Figure 9: Polygon of B-spline control points and corre-
sponding B-spline trajectory.

In Figure 9 the polygon of 13 control points and the
corresponding B-spline of degree 3 (𝑁 = 11, 𝑘 = 3)
are shown. The control points correspond to the 13
time values 0.0, 0.033, 0.1, 0.2, …, 0.8, 0.9, 0.967,

1.0. Additional to the given time grid 0.0, 0.1, …, 1.0
there are two values at the boundaries: 0.033 and
0.967. They represent the free boundary conditions
of the B-spline.

The optimization setup for Trajectory Optimization
includes the selection of model inputs that represent
the control trajectories. For these trajectories the
number of sample points 𝑁 and the interpolation de-
gree 𝑘 has to be specified by the user. Any starting
trajectory may be provided in a separate file. An ex-
ample using the Trajectory Optimization task is giv-
en in Section 4.

3.5 Parallel Numerical Integration

Because the numerical integration of model equa-
tions normally is the most time intensive part of any
model based optimization tasks, several techniques
are applied to reduce the computation time of the
numerical integration inside the optimization loop.
The default case is a sequential execution of the nu-
merical integration runs by calling Dymola’s simula-
tion executable for each new set of model parame-
ters. We call it single simulation technique.

An optimized version of sequential integration runs
is provided by Dymola. The executable is started
only one time and independent model parameter val-
ues are sequentially read from file and processed by
the numerical integration. Especially for many simu-
lation runs with very short elapsed real times for one
model simulation, this multi simulation approach
accelerates the numerical integration in summary,
because process overhead is avoided.

Independent simulation runs of a model may be exe-
cuted in parallel. Especially for multi-core machines
this may reduce the computation time of the whole
optimization run. In the Optimization library the
simulation runs are parallelized in different threads
by calling several copied simulation executables in
an OpenMP program. OpenMP is a software inter-
face for shared-memory parallel programming on
different platforms. It is supported by many comput-
er hardware and software vendors [CJP08]. For par-
allel simulations the user can specify the number of
threads up to the double of the number of available
cores. Table 2 shows execution sequences for differ-
ent simulation modes in principle.

To measure the acceleration in computation time, a
test is performed for different simulation modes. The
model Electrical.Analog.Examples.Rectifier

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 675
10.3384/ecp12076669 September 3-5, 2012, Munich, Germany

from the Modelica Standard Library 3.2 is simulated
1000 times with identical parameter values. To in-
crease the elapsed real time of one numerical integra-
tion run, the stop time of the integration is increased.
The test is executed on a PC with an Intel Xeon
X5550 quad-core processor (2.67 GHz) with activat-
ed hyper-threading.

Table 2: Execution sequence for single, multi and parallel
(with 3 threads) simulations.

Single Multi Parallel 3

 Thread 1 Thread 2 Thread 3

In Figure 10 the results of the test are illustrated. De-
pending on the execution time for one model simula-
tion, the speed factor with respect to the single simu-
lation technique is plotted for multi and parallel sim-
ulations. Parallel simulations are performed with 2, 4
and 8 threads. For very fast model simulations the
multi simulation approach is clearly superior. Com-
pared to single simulation the multi simulation is up
to 4 times faster although no parallelization tech-
nique is applied. The parallel execution of 1000
model simulations results in maximum speed factors
of 1.9, 3 and 4 for 2, 4 and 8 threads. These maxi-
mum factors are reached if the execution time for
one model simulation is greater than 1 second. Be-
low this bound the speed factor is decreasing due to
the process overhead. For machines with many cores
the limiting influence for parallelization is probably
memory access.

An important assumption for the performance test is
the independency of all evaluated model parameter
values. The Optimization library supports two algo-
rithms that fulfill this assumption: Random Search
and Systematic Tuner Variation (see Section 1.4).
For these algorithms the tuner values of all evalua-
tions may be determined before running any simula-
tion, therefore full parallel evaluations are possible.
So, speed factors as shown in Figure 10 can be
reached.

Accelerating the computation time in nonlinear op-
timization by parallel evaluations of the criteria has

been investigated since several years, e.g. see
[LAS97]. The optimization algorithms of the Opti-
mization library partially support parallel criteria
evaluations. During an optimization run there are
both evaluations of the criteria that can be parallel-
ized and such ones that cannot be parallelized. The
evaluation of numerical Jacobian matrices typically
needs the most computation time for optimization
runs with SQP and BFGS methods. Consequently,
the Optimization library supports computing numeri-
cal Jacobian matrices by parallel model simulations.
It also supports parallel criteria evaluations of multi
case optimization tasks (see Section 3.3). The simu-
lation runs of a model with different case parameter
values are independent and therefore can be comput-
ed in parallel. It is planned to support parallel model
simulations for independent criteria evaluations of
the genetic algorithm.

Figure 10: Speed factors for different simulation modes.

Depending on the used optimization algorithm, the
Modelica model and the number of tuners, the speed
factor for a complete optimization run differs. On the
test machine a factor of 3 in computation time has
been observed for optimization examples using a
model that needs more than 1 second of elapsed real
time per simulation, see Section 4.3 for an example.

4 Application Example

In [EOM+05] the full robot model of the Modelica
standard library is used to demonstrate a multi case
optimization for controller design. Of course, the
current version of the Optimization library can still
handle this kind of optimization task (see Section
3.3). In the following a trajectory optimization setup
for the robot model is presented to find reference
trajectories for the robot’s movements from one
point to another point in space.

0.1 1 10
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
pe

ed
 fa

ct
or

 w
.r.

t.
S

in
gl

e

Elapsed real time for one model simulation in s

Multi Parallel 2 Parallel 4 Parallel 8Ex
ec

ut
io

n
se

qu
en

ce

Sim. 2

Sim. 1

Sim. 3

Sim. 1
Sim. 2
Sim. 3 Sim. 1 Sim. 3 Sim. 5

Sim. 5

Sim. 4 Sim. 4
Sim. 5

Sim. 2 Sim. 4

Optimization Library for Interactive Multi-Criteria Optimization Tasks

676 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076669

4.1 Robot Model

The robot model (see Figure 11) mainly consists of a
3-D mechanical structure model and 6 axis models
including electrical motors, controllers and mechani-
cal components of the axes (gear and friction). The
reference trajectories for the angles and velocities of
the axes are provided by a separate path planning
model. The path planning is based on an algorithm
that finds trajectories for the fastest movement for a
given start position 𝛼 to a given end position 𝛽 under
kinematical constraints. The constraints are defined
by the maximum velocity and the maximum acceler-
ation of the axis movements.

Figure 11: Animation of robot model from Modelica Stand-
ard Library.

The drawback of the path planning model is that the
available maximum torque of the electrical motors is
not considered. We may include them in the path
planning by solving a trajectory optimization prob-
lem with the inverse dynamics model [R11] using
the Optimization library. For these purposes we have
to adapt the robot model. The motor, controller and
friction model of the axes are removed. The rotation-
al power train of each axes is driven by a signal
based torque source. The non-causal approach of
Modelica automatically leads to the inverse dynam-
ics model when giving input signals for the robot
positions [TOB01].

4.2 Trajectory Optimization Problem

The goal of the trajectory optimization problem is to
find movements for the axes’ angles 𝑞(𝑡). The
movement from the start angles 𝛼 to the end angles
𝛽 should be as fast as possible under the constraints
that the maximum velocity and the maximum motor
torques are bounded by given values. Additionally,
the angular accelerations shall be zero at the start and

the end position to avoid oscillations for the con-
trolled robot using the computed paths as reference
motion.

The mathematical formulation is as follows:

min
𝑡𝐸𝑛𝑑, 𝑢(𝑡)

𝑡𝐸𝑛𝑑 w. r. t.

𝑞(0) = 𝛼, 𝑞(𝑡𝐸𝑛𝑑) = 𝛽, 𝑞̈ = 𝑢,
𝑞̇(0) = 𝑞̇(𝑡𝐸𝑛𝑑) = 𝑞̈(0) = 𝑞̈(𝑡𝐸𝑛𝑑) = 0,

 |𝑞̇(𝑡)| ≤ 𝑣𝑀𝑎𝑥, |𝜏(𝑡)| ≤ 𝑇𝑀𝑎𝑥 for 𝑡 ∈ [0, 𝑡𝐸𝑛𝑑].

In our investigations we only consider the main axes
1, 2 and 3. Axes 4, 5 and 6 are fixed and do not
move. Reasonable values for the maximum angular
velocities 𝑣𝑀𝑎𝑥 and the maximum torques 𝑇𝑀𝑎𝑥 can
be found in [OT88]. We use 𝑣𝑀𝑎𝑥 = (3, 1.5, 5) 𝑟𝑟𝑟/
𝑠 and 𝑇𝑀𝑎𝑥 = (950, 1950, 540) 𝑁𝑁 for axis 1, 2
and 3. The adapted robot model is prepared in such a
way that 𝑞(0) = 𝛼, 𝑞̇(0) = 0 is inherently fulfilled.
The trajectory 𝑞(𝑡) is implicitely defined by B-
Splines for the controls 𝑢(𝑡) ∶= 𝑞̈(𝑡). The trajecto-
ries for 𝑞̇(𝑡) and 𝑞(𝑡) are automatically computed in
the robot model by the numerical integration algo-
rithm during the simulation of the model.

Figure 12: Criteria of robot path planning in Optimization
setup GUI.

The trajectory optimization setup (see Figure 12)
consists of three input controls 𝑞̈(𝑡) and the free pa-
rameter 𝑡𝐸𝑛𝑑. The criterion to be minimized is the
end time 𝑡𝐸𝑛𝑑, whereas 6 (= 2 ∙ 3 axes) inequality
constraints are defined for 𝑞̇𝑀𝑎𝑥 and 𝜏𝑀𝑎𝑥. The robot

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 677
10.3384/ecp12076669 September 3-5, 2012, Munich, Germany

Time 𝑡 in 𝑠
 Figure 13: Result trajectories with different number 𝑁 of

sample points for the B-splines.

𝑞 2
(𝑡

) i
n
𝑟𝑟
𝑟/
𝑠2

𝑞 2

(𝑡
) i

n
𝑟𝑟
𝑟/
𝑠

 𝑞
2(
𝑡)

 in
 𝑟
𝑟𝑟

model includes criteria models (see Section 3.1) to
compute the absolute maxima 𝑞̇𝑀𝑎𝑥 of 𝑞̇(𝑡) and
𝜏𝑀𝑎𝑥 of 𝜏(𝑡). There remain 12 equality constraints
for 𝑞(𝑡𝐸𝑛𝑑), 𝑞̇(𝑡𝐸𝑛𝑑), 𝑞̈(0) and 𝑞̈(𝑡𝐸𝑛𝑑).

The advanced feature to handle a free end time 𝑡𝐸𝑛𝑑
for the trajectory optimization is implemented and
will be available in the next release of the Optimiza-
tion library.

4.3 Trajectory Optimization Results

We set the start trajectories for 𝑞̈(𝑡) equal to 0 and
choose 𝑡𝐸𝑛𝑑 = 5 at the beginning of the optimiza-
tion. These start conditions lead to violated optimiza-
tion constraints for 𝑞(𝑡𝐸𝑛𝑑). The SQP algorithm suc-
ceeds in finding input functions 𝑞̈(𝑡), such that all
constraints are fulfilled. Important for SQP is a high
accuracy of the criteria, therefore we set the error
tolerance of the integration to 10−12. The error toler-
ance for the solution of SQP is set to 10−6.

Depending on the number 𝑁 of sample points for the
B-splines, different solution are found, see columns
1 and 2 in Table 3. The degree 𝑘 of the polynomials
is always set to 𝑘 = 3. We tested the developed par-
allelization techniques (see Section 3.5) for this
benchmark problem. In Table 3 the computation
times for the single simulation approach are docu-
mented. Further, the speed factors using parallel
simulations with 2, 4 and 8 threads are given. Since
the computation of the numerical Jacobian matrix
dominates the overall computation time, speed fac-
tors of pure independent simulations (compare Fig-
ure 10) can be reached for 2 and 4 parallel threads.
The optimization with 8 threads is faster than using 4
threads, but the difference is smaller than in Figure
10.

Table 3: Results of the trajectory optimization with different
number 𝑁 of sample points for the B-splines.

N 𝑡𝐸𝑛𝑑
Single Parallel speed factors

Elapsed time 2 threads 4 threads 8 threads

5 1.60 s 30 min 1.85 2.95 3.15
8 1.48 s 150 min 1.96 3.11 3.38
10 1.42 s 251 min 1.95 3.12 3.34
20 1.40 s 908 min 2.00 3.33 3.58
30 1.40 s 1228 min 2.02 3.37 3.68

Figure 13 illustrates the solutions 𝑞2(𝑡), 𝑞̇2(𝑡) and
𝑞̈2(𝑡) for 𝑁 = 5, 8, 10 and 20. It is obvious, that the

velocity constraint 𝑞̇2 ≤ 𝑣2 = 1.5 𝑟𝑟𝑟/𝑠 is an active
constraint. In Figure 14 it can also be seen, that the
motor torque is inside the demanded ranges. The tra-
jectory for the torque of axis 3 hits the border lines
several times.

Time 𝑡 in 𝑠

Figure 14: Motor torque for different axes. The optimiza-
tion solution is computed with 𝑁 = 20 sample points.

M
ot

or
 to

rq
ue

 𝜏
(𝑡

) i
n
𝑁
𝑁

Optimization Library for Interactive Multi-Criteria Optimization Tasks

678 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076669

5 Conclusions

A library for solving interactive optimization tasks is
presented. Both function and different model based
optimization tasks are available to support the engi-
neer in improving his system design by sophisticated
numerical optimization algorithms. Additionally,
optimization runs may be accelerated by automated
parallel model simulations on multi-core machines.
Version 2.1 of the Optimization library is available
along with the release of Dymola 2013.

6 Acknowledgement

The support of H.-D. Joos, M. Otter, M. Reiner and
K. Schnepper (all members of DLR Institute of Sys-
tem Dynamics and Control) in developing the Opti-
mization library and the application example is
gratefully appreciated. Improvements of Dymola by
Dassault Systèmes AB to support the Optimization
library are acknowledged. Partial financial support of
DLR by BMBF (BMBF Förderkennzeichen:
01IS07022F) for this work within the ITEA2 project
EUROSYSLIB [E12] is highly appreciated. Also, the
constructive comments of the anonymous paper re-
viewers are appreciated.

References

[AAG+10] Åkesson J., Årzén K.-E., Gäfvert M., Berg-
dahl T. and Tummescheit H.: Modeling and
Optimization with Optimica and JModeli-
ca.org – Languages and Tools for Solving
Large-Scale Dynamic Optimization Problems.
Computers and Chemical Engineering, Vol.
34, Issue 11, pp. 1737-1749, 2010.

[B01] Betts J. T.: Practical Methods for Optimal
Control Using Nonlinear Programming. SI-
AM Press, Philadelphia, Pennsylvania, USA,
2001.

[CJP08] Chapman B., Jost G. and van der Pas R.: Us-
ing OpenMP, Portable Shared Memory Par-
allel Programming. The MIT Press, Cam-
bridge, Massachusetts, London, England,
2008.

[DH02] Deuflhard P. and Hohmann A.: Numerische
Mathematik I. Eine algorithmisch orientierte
Einführung. 3. Auflage, de Gruyter, Berlin,
Germany, 2002.

[DS12a] Dassault Systèmes AB: CATIA.
www.3ds.com/products/catia.

[DS12b] Dassault Systèmes AB: Dymola.
www.dymola.com.

[E05] Ehrgott M.: Multicriteria Optimization. Se-
cond Edition, Springer, Berlin, Heidelberg,
Germany, 2005.

[E12] EUROSYSLIB, ITEA2 06020,
www.eurosyslib.com.

[EOM+05] Elmqvist H., Olsson H., Mattsson S. E.,
Brück D., Schweiger C., Joos D. and Otter
M.: Optimization for Design and Parameter
Estimation. Proc. of 4th International Modeli-
ca Conference, pp. 255-266, Hamburg, Ger-
many, 2005.

[J11] Joos H.-D.: MOPS - Multi-Objective Parame-
ter Synthesis, User’s Guide V6.2. Institute of
Robotics and Mechatronics, DLR Ober-
pfaffenhofen, Germany, 2011.

[JBL+02] Joos H.-D., Bals J., Looye G., Schnepper K.
and Varga A.: A Multi-Objective Optimisation
based Software Environment for Control Sys-
tem Design. Proc. IEEE International Confer-
ence on Control Applications, pp. 7-14, Glas-
gow, Scotland, Sept. 18-20, 2002.

[K10] Köppern J.: Integrierte Fahrzeugregelung
durch einen hybriden Ansatz aus inversem
Modell und modellprädiktiver Optimierung.
GMA-Fachausschuss 1.40 "Theoretische Ver-
fahren der Regelungstechnik", Salzburg, Aus-
tria, 2010.

[LAS97] Lewis A, Abramson D. and Simpson R., Par-
allel non-linear optimization: Towards the
design of a decision support system for air
quality management. Proc. of IEEE Super-
computing 97, San Jose, USA, 1997.

[OT88] Otter M. and Türk S.: The DFVLR Models 1
and 2 of the Manutec r3 Robot. DFVLR-
Mitteilung 88-13, Institut für Dynamik der
Flugsysteme, DLR Oberpfaffenhofen, Ger-
many, 1988.

[R11] Reiner M.: Modellierung und Steuerung von
strukturelastischen Robotern. Ph.D. thesis,
University of Technology, Munich, 2011.

[TOB01] Thümmel M., Otter M. and Bals J.: Control of
Robots with Elastic Joints based on Automat-
ic Generation of Inverse Dynamics Models.
Proc. of IROS, pp. 925-930, Maui, Hawaii,
USA, 2001.

[TNT+11] Thieriot H., Nemer M., Torabzadeh-Tari M.,
Fritzson P., Singh R. and Kocherry J. J.: To-
wards Design Optimization with OpenModel-
ica Emphasizing Parameter Optimization
with Genetic Algorithms. Proc. of 8th Interna-
tional Modelica Conference, pp. 756-762,
Dresden, Germany, 2011.

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 679
10.3384/ecp12076669 September 3-5, 2012, Munich, Germany

Optimization Library for Interactive Multi-Criteria Optimization Tasks

680 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076669

Session 6B: Mechanic Systems III

A Planar Mechanical Library for Teaching Modelica

A Planar Mechanical Library for Teaching Modelica
Dirk Zimmer

Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Münchner Strasse 20, 82234 Weßling, Germany

dirk.zimmer@dlr.de

Abstract

Teaching Modelica to students of a university re-
quires suitable example models. This paper describes
a planar mechanical library that is primarily con-
ceived for didactical purposes. It is simple, built out
of a few components only, but it enables the model-
ing of interesting and complex systems. The library
is freely available and supported by various Modeli-
ca environments.
Keywords:Education;Planar Mechanics;

1 Introduction

1.1 Motivation

This paper presents a planar mechanical library that
has been primarily designed for didactical purposes.
The idea of such a library is that it is simple and easy
to understand. In this way, the students can focus on
learning the principles of equation-based modeling
and they can avoid the lot of peculiar particularities
that have meanwhile become part of the language.

We have used this library in the Modelica course
at the technical university in Munich [8]. The course
is enlisted in the computer science department. The
students of this class mostly study computer science,
applied mathematics or physics. Computer science
students in Munich do not have any physics course
in their basic curriculum. Hence, explaining the
modeling of physical systems requires explaining the
physics as well, in this particular case: the funda-
mental laws of motion.

In planar mechanical systems, we describe the
physics of a multi body system in a two‐dimensional
plane. Each body position can be described by the
coordinates x and y and its orientation by the angle φ
(see Figure 1). Each body has a mass and its inertia
can be described by a single scalar.

Planar models of mechanical systems are useful
for a number of applications. Very popular is their
use for contact problems that are a lot simpler in 2D

than in 3D. The modeling of gear wheel interaction
is one such example [5]. For this paper their use in
teaching is of course the main issue.

x

y

φ

Figure 1: Representation of an object in planar space

1.2 Suitability of planar mechanics

Planar mechanical systems are ideally suited for
teaching equation-based modeling, because their
components are easy to model and to understand but
the resulting systems are often complex in behavior
and demanding in their computational aspects. Or to
put it in short terms: you can do a lot of cool stuff by
simple means.

From the modeling side, planar mechanics offers
the following advantages:
• Planar mechanical systems are tangible and vis-

ual systems. All students have played with me-
chanical systems before in their life and every-
one has an intuitive (and sometimes wrong) un-
derstanding about their motion. This motion can
be visualized in an animation, which is more ap-
pealing to students than studying plots.

• The physical laws of planar mechanical systems
are basically taught already in high-school.
D’Alemberst Principle and Newton’s Law look
familiar to the students. The equations of motion
themselves are relatively easy.

DOI Proceedings of the 9th International Modelica Conference 681
10.3384/ecp12076681 September 3-5, 2012, Munich, Germany

• Planar mechanical systems can be steered either
by human interaction or by a control law. Again
these tasks are very tangible and concrete: eve-
ryone has steered a bicycle and everyone has
tried to balance a pen in his life.

The resulting system can then be used to demonstrate
and study the advantages and difficulties of equa-
tion-based modeling.

• First of all, mechanical systems require true non-

causal equation-based modeling. Modeling
methods that are based on the computational
flow such as Simulink are of very limited use in
this domain. A kinematic loop can be used as an
illustration.

• Also kinematic loops require the solution of non-
linear equation systems. The corresponding ex-
amples can be used to explain techniques for in-
tialization and state selection.

In contrast to planar mechanical systems, 1D and 3D
mechanical system are not so well suited for teach-
ing.

1D mechanical systems are too simple. Of course,
We teach both rotational and translational mechanic
prior to planar system, but many interesting configu-
rations such as kinematic loops do not naturally exist
in 1D. Hence, the topic does not bear long and quick-
ly gets boring unless you enter the specifics of drive-
train modeling which is misplaced in a general Mod-
elica course.

3D mechanical systems on the other side are way
too complex. A short look on the components of the
standard MultiBody Library [2,7] makes this clear.
In 3D, the description of a body orientation can be
performed in many different and potentially redun-
dant ways. This redundancy then leads to further dif-
ficulties so that kinematic loops require special
treatment. In planar mechanics, the orientation is
uniquely described by a single angle and kinematic
loops do not require special modeling tools.

2 State of the Art in planar mechani-
cal modeling

The library presented in this paper is not the first
planar mechanical library that has been developed in
Modelica.

Indeed, we have developed one of the first vari-
ants as part of the MultiBondLib [7]. It is freely
available and it is also well suited for teaching but
only in a course where bondgraphic modeling is part

of the program. In contrast, the new library is direct-
ly based on equations and does not require the
knowledge of bondgraphs. Furthermore, because of
the use of bondgraphs in the MultiBondLib the con-
nectors contained redundant information and kine-
matic loops required special handling.

A second planar library has been developed by
Höbinger and Otter [4]. In addition to the basic me-
chanical components (joints and body parts), the li-
brary contained models for the contact of curved sur-
faces. Although, it was envisioned that this library
becomes part of the Modelica Standard Library
(MSL), this has not yet taken place.

Furthermore new planar mechanical elements
have developed by van der Linden [5] for the model-
ing of gearwheels. This developments use the same
interfaces and components as the planar mechanical
library presented here.

2.1 Contributions of this Paper

Since already a significant amount of effort has been
spent on the development of Modelica code for pla-
nar mechanics, it is important to clarify the contribu-
tion of this paper. Essentially there are three major
objectives for this work:

• Presentation of a didactical library: This is the

major part of this paper (section 3 to 5). I will
present the interfaces and the structure of the li-
brary and show how simple the individual com-
ponents can be modeled.

• Cross-Platform Library for different compil-

ers: The ability to compose complex systems out
of simple components using only a smaller sub-
set of the language is not only interesting for
students but also for compiler developers. The
library turns out to be very well suited for testing
the abilities of various Modelica environments.
Also for teaching purposes, it is good if the ma-
terial is not bounded to a certain software tool
but of general applicability. More on this topic in
section 6

• Establishment of a standard interface for pla-

nar mechanics: The planar mechanical library
for didactical purposes is not supposed to be-
come part of the MSL. Libraries that are part of
the MSL must be optimized with respect to usa-
bility. This in part conflicts with desired level of
simplicity for teaching. However, there is no rea-
son why a potential library for planar mechanics
in the MSL and the didactical library should use
different interfaces.

A Planar Mechanical Library for Teaching Modelica

682 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076681

3 Structure of the library

The interface of a planar mechanical component rep-
resents a flange point. This point is determined by a
fixed position the plane (x,y) and a fixed orientation
angle (phi). Forces in x and y direction (fx, fy) as
well as a torque (t) may act on the flange point. The
corresponding Modelica connector is hence designed
as follows:

Listing 1: Connector code

connector Frame
"General Connector for planar mechanical components"

SI.Position x "x-position";
SI.Position y "y-position";
SI.Angle phi "angle (counter-clockwise)";
flow SI.Force fx "force in x-direction";
flow SI.Force fy "force in y-direction";
flow SI.Torque t "torque (clockwise)";

end Frame;

For simplicity, the potential use of vectors in the
connector has been omitted. For beginners it is a lit-
tle easier, to work with x,y, and phi than with a vec-
tor r[2] and phi. The same holds for the forces.
Given this connector, a variety of planar mechanical
components can be implemented. Figure 2 provides
an overview of the library content.

The standard components are parts and joints.
These elements were designed in strong resemblance
to their counterparts in the Modelica MultiBody li-
brary. In addition to the standard components, the
library contains sub-packages for vehicle wheels and
gearwheels.

The wheel models can be used to move with a
wheel on the x,y-plane. There are ideal wheel models
and simple slip based models inspired by previous
works [6].

Future versions of this library may also contain
the gear wheel models out of the work of van der
Linden [5]. They can for instance be used to assem-
ble a planetary gear box.

All elements in this library contain a suitable vis-
ual representation for the animation. For simplicity
though, the animation is not as configurable as in the
MultiBody library. Another difference to the Multi-
Body library is that there is no World model availa-
ble in this library. Again the sheer simplicity is pre-
ferred over a more elaborate solution.

The library features a large set of examples that
demonstrate the variety of systems that can be as-

sembled from these components: pendulum, crane
crab, kinematic loops, or even two-track car vehicle
models are included. Also examples of controlled
systems and model inversion are contained in this
library.

The library itself is available at [8] or at the Mod-
elica Website. This is made publicly available and
represents the standard version. The examples in this
version are all suitable for testing purposes. Further-
more this library is self-contained only requiring a
few elements of the standard library but not requiring
any other library.

The planar mechanical library that is being used
in the lecture course is slightly different. First of all
it is developed in several steps as the course pro-
ceeds. In its latter stages, it also contains elements
from DLR libraries. The lecture course contains also
slides explaining the components of this library at
great level of detail.

Figure 2: Structure of the planar mechanical library

Session 6B: Mechanic Systems III

DOI Proceedings of the 9th International Modelica Conference 683
10.3384/ecp12076681 September 3-5, 2012, Munich, Germany

4 Teaching Modelica

4.1 Context

When the library is used for teaching, it is not pre-
sented as a whole but gradually developed together
with the students. The goal is that the students learn
all relevant processes of modeling in Modelica: from
punching in equations, plugging together compo-
nents to designing a whole library.

In the course “Virtual Physics”, the library is be-
ing used from lesson 5 on. In the first 4 lessons, the
students learn the basics of equation-based modeling
and the Modelica language. After going through ex-
amples of 1D mechanical systems, we start by the
most basic mechanic components.

4.2 Component Modeling

The most important component is of course the body
component:

Listing 2: Body component

model Body "Body component with mass and inertia"

 Interfaces.Frame_a frame_a;

 parameter SI.Mass m "mass of the body";
 parameter SI.Inertia I "Inertia of the Body";
 parameter SI.Acceleration gx =0
 "gravity acceleration (in x) acting on the mass";
 parameter SI.Acceleration gy=-9.81
 "gravity acceleration(in y) acting on the mass";

 SI.Velocity vx "velocity in x";
 SI.Velocity vy "velocity in y";
 SI.AngularVelocity w "angular velocity";
 SI.Acceleration ax "acceleration in x";
 SI.Acceleration ax "acceleration in y";
 SI.AngularAcceleration z "angular acceleration";

equation

//The velocity is a time-derivative of the position
vx = der(frame_a.x);
vy = der(frame_a.y);
w = der(frame_a.phi);

//The acceleration is a time-derivative of the velocity
ax = der(vx);
ay = der(vy);
z = der(w);

//Newton's law
fx + m*gx = m*ax;
fy + m*gy = m*ay;
frame_a.t = I*z;

end Body;

Even with plenty of comments the code remains
compact and is very easy to understand. For the first
version, everything that may distract the student has
been removed. Gravity acceleration is a simple pa-
rameter and does not be read out of a strange “world
model”. There is no animation and there are no op-
tions for initialization or state-selection that pollute
the code. Just the bare physical equations form the
model.

In this version, also no vector notation is used.
For students of a technical university it seems to
cause no problems in understanding the model code.
Teaching experience from universities of applied
sciences indicates that vector notation is better intro-
duced later on. Vector notation is used in a subse-
quent version, where also the code of the animation
is added. The students know at this stage that this
code is non-essential.

For joint elements, a neutral element is a good
starting point. This element implements the lever
principle but exhibits no forces on its connectors.

Listing 3: Neutral component

model Neutral

//This component has two frames…
 Interfaces.Frame_a frame_a;
 Interfaces.Frame_a frame_b;

equation

//…but exhibits no effect.
 frame_a.fx = 0;
 frame_a.fy = 0;
 frame_a.t = 0;

//This is the balance of force and torque
 including the lever principle

 frame_a.fx + frame_b.fx = 0;
 frame_a.fy + frame_b.fy = 0;
 frame_a.t
 + frame_b.t
 + (frame_b.x - frame_a.x)*frame_b.fy
 - (frame_b.y – frame_a.y)*frame_b.fx
 = 0;

end Neutral

Any joint can now be implemented by replacing the
assignment of zero force with the corresponding po-
sitional constraints. Furthermore, the lever principle
can often be simplified. Let us for instance look at
the revolute joint. Here, two positional constraints
are enforced: the position must be equal in direction
of x and y. Since there is no distance between the
two frames, the lever principle degenerates to a bal-
ance of torque.

A Planar Mechanical Library for Teaching Modelica

684 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076681

Listing 4: Revolute joint, first version

model Revolute
 Interfaces.Frame_a frame_a;
 Interfaces.Frame_a frame_b;

equation

//frame_a.fx = 0 gets replaced by
 frame_a.x = frame_b.x;

//frame_a.fy = 0 gets replaced by
 frame_a.y = frame_b.y;

 frame_a.t = 0;

//since there is no difference in position
 the lever principle can be simplified

 frame_a.fx + frame_b.fx = 0;
 frame_a.fy + frame_b.fy = 0;
 frame_a.t + frame_b.t = 0;

end Revolute;

In a second version, two differential equations and
one algebraic equation are added since the joint is
well suited to describe the motion of the system.

Listing 5: Revolute joint, second version

model Revolute
 Interfaces.Frame_a frame_a;
 Interfaces.Frame_a frame_b;

//These 3 variables help to describe the motion of a system
 SI.Angle phi
 SI.AngularVelocity w;
 SI.AngularAcceleration z;

equation

//For 3 more variables we need 3 more equations:
 frame_a.phi + phi = frame_b.phi;
 w = der(phi);
 z = der(w);

//Known material…
 frame_a.x = frame_b.x;
 frame_a.y = frame_b.y;
 frame_a.t = 0;

 frame_a.fx + frame_b.fx = 0;
 frame_a.fy + frame_b.fy = 0;
 frame_a.t + frame_b.t = 0;

end Revolute;

In this way, also a fixed translation element can be
explained. The prismatic joint can then be presented
as a translational element of variable length.

4.3 Valuable Examples for Teaching

Having available only five component models for

• body with mass and inertia,
• revolute joint,
• prismatic joint,
• fixed translation,
• and global fixation

enables us to compose already a lot of interesting
models.

Figure 3: Chaotic trajectory of a double pendulum

The famous double pendulum can be used to demon-
strate chaotic system behavior. Figure 3 shows the
erratic trajectory of the peak of the pendulum. Simu-
lating with different values for precision yields each
time a completely new trajectory and no conver-
gence can be reached. The students learn the im-
portant lesson that a simple non-linearity can lead to
totally unpredictable and chaotic systems.

bodyDrive

revolute?
fixedTra?

fixed

prismatic f ixed1

revolute?
pistonR

od

bodyPis?

re
vo

lu
te

?

Figure 4: Model diagram of a simple piston engine
Figure 4 displays the model diagram of a piston en-
gine. It represents a kinematic loop: although there
are four joint elements, the complete system has just
one degree of freedom. This example is used to ex-

Session 6B: Mechanic Systems III

DOI Proceedings of the 9th International Modelica Conference 685
10.3384/ecp12076681 September 3-5, 2012, Munich, Germany

plain the mechanism of initialization and state selec-
tion to the students. The joint elements are then fur-
ther enhanced by an initialization section and attrib-
utes for state selection. Furthermore, the students
learn about the Pantelides algorithm for reducing the
differential index of a system.

body
fixedTra?

f ixed

body1actuate?

angleSensoractuate?

f

force

PID

PID

Ti=1E9

Figure 5: Model diagram of an inverted pendulum con-
trolled by a PID element

The inverted pendulum is a famous example in con-
trol theory. It is easy to model by using the planar
mechanical components. A simple PID controller
can be added to show how a controller can be de-
signed in Modelica. Furthermore it is possible to in-
vert the model by stipulating the trajectory and com-
puting the forces. In this way, the students can learn
how flexible a Modelica model can be used: not only
for simulation but also for control design and model
inversion.

5 Tire and vehicle models

Whereas the standard components already enable the
creation of many interesting examples, planar me-
chanical systems can also be used to model vehicles
driving on the plane. To this end three separate
wheel models are provided:

• An ideal rolling wheel
• A dry-friction based wheel
• A slip-based wheel

Listing 6 presents the code for the ideal rolling
wheel. Although being already significantly more
complex, this component is not beyond what a good
student can learn to understand if he is supported by
sufficient explanations and further material.

Listing 6: Ideal wheel

model IdealWheelJoint

 Interfaces.Frame_a frame_a;
 Rotational.Interfaces.Flange_a flange_a;

 parameter SI.Length radius
 "radius of the wheel";
 parameter SI.Length r[2]
 "driving direction of the wheel at angle phi = 0";
 final parameter SI.Length l = sqrt(r*r);
 final parameter Real e[2] = r/l
 "normalized driving direction";

Real e0[2]"normalized direction w.r.t inertial system";
Real R[2,2] "Rotation Matrix";

SI.AngularVelocity w_roll "roll velocity ";
SI.Velocity v[2] "transl. velocity";
SI.Velocity v_long "velocity in longit. direction";
SI.Acceleration a "accel. of driving velocity";
SI.Force f_long "longitudinal force";

equation

//Resolve the normalized driving direction in the
 inertial coordinate system
R={{cos(frame_a.phi),-sin(frame_a.phi)},
 {sin(frame_a.phi),cos(frame_a.phi)}};
e0 = R*e;

//Project the longitudinal velocity in the planar space
 (this implyies that the lateral velocity is zero)
v = der({frame_a.x,frame_a.y});
v = v_long*e0;

//Implement the law of ideal rolling
w_roll = der(flange_a.phi);
v_long = radius*w_roll;
a = der(v_long);

//Project the force on the longitudinal direction
{frame_a.fx, frame_a.fy}*e0 = f_long;

//model the drive torque
-f_long*radius = flange_a.tau;

//There is no bore torque
frame_a.t = 0;

end IdealWheelJoint;

A Planar Mechanical Library for Teaching Modelica

686 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076681

The code for the other two wheel models is only a
little more complex. The students have to learn about
friction characteristics and regularization techniques.
Given these wheel models, a simple one-track car
model can be composed in five minutes:

bodyFront

idealWh?

ch
as

si
s

bodyRear

idealWh?

re
vo

lu
te

engineTorque

2

tra
il

Figure 6: Model diagram of a simple one track vehicle
Such a model is sufficient to study the influence of
the trail or the basic difference between front-wheel
drive and rear-wheel drive.

The highlight of the course is a two-track car
model with slip-based wheels. It is enhanced by a
simple 3D chassis that computes the load balance on
the four wheels. The car model can be simulated in
real-time. It is also visualized in real time by the use
of the SimVis Library [1] (see Figure 7) and can be
controlled online by the keyboard using components
from the Modelica Device Drivers library [3]. As a
result, the students can drive their own car model in
3D just as in a computer game. Such an example at-
tracts many students to the course and helps to keep
up their motivation during the course.

6 Cross-platform compatibility

Since the library uses only a subset of the Modelica
language that consists entirely out of well-
established language constructs, it can be supported
by a large set of different Modelica compilers al-

ready now. 15 examples have been selected for test-
ing the results of various Modelica simulation envi-
ronments. The current test results are summarized in
figure 8. It shows the test results for all 17 examples
and for for different compilers.

First of all, Dymola[9] offers full support of the
library. It is also the environment that has been used
for the development of the library and that I use for
teaching.

JModelica[11] is also able to parse and process
the entire library. It does not offer dynamic state-
selection as in Dymola but this feature is not so es-
sential for a didactical library.

OpenModelica[10] can also parse the entire li-
brary. The correct translation and simulation is pos-
sible for large set of examples but not for all of them.
In some more complex examples, the back-end of
the compiler still has some problems with the non-
holonomic constraints equations that originate from
ideal rolling parts.

Also SimulationX[12] offers almost full support
of the library. Some examples require a non-standard
solver but these are this was the only small problem
that occurred. For one example of a kinematic loop,
SimulationX started with the wrong initial position
but this might be due to modeling ambiguity.

In all cases the compiler developers are working
on the occurring problems and there is a fair chance
that a complete support of the library can be realized
soon.

Test of MapleSim[13] have not yet been complet-
ed. First results indicate that MapleSim parses the
code correctly and that the simulator is capable of
simulating the test cases. The current problems con-
cern the usability of the models but these problems
should be solved for the new version of MapleSim.

Tests within Wolfram SystemModeler [14] have
not yet been done.

Figure 7: 3D-Realtime visualization of the two track ve-
hicle

Session 6B: Mechanic Systems III

DOI Proceedings of the 9th International Modelica Conference 687
10.3384/ecp12076681 September 3-5, 2012, Munich, Germany

Figure 8: This table displays the current support of the library among different Modelica environments

7 Conclusions

Ultimately, the goal is to have a didactical library
available that can be used to teach Modelica in dif-
ferent modeling and simulation environments.

I personally hope that this library helps other lec-
turers to create their Modelica courses. It can be used
for free under the Modelica 2 license. Suggestion (or
even better: contributions) that help to improve the
quality of the library are always highly welcome.

Acknowledgements

I would like to acknowledge the effort of Thomas
Schmitt and Markus Andres who gathered further
teaching experience using planar mechanical models
at the University of Applied Sciences Vorarlberg.

I would like to thank Franciscus van der Linden
for his contribution to the standardization of the in-
terface and the gear wheel models in the library.

Many thanks to Francesco Casella for having the
idea to use this library as test-case for different com-
pilers. Johan Åkesson, Jens Frenkel and Adrian Pop
helped in testing the library on OpenModelica and
JModelica.

Thanks for Ingrid Bausch-Gall and Jakob Tobolar
for the help with SimulationX and thanks to Matthias
Reiner for a first investigation in MapleSim.

References

[1] Bellmann, Tobias (2009) Interactive Simula-
tions and advanced Visualization with Mod-
elica. Proc. of the 7th International Modelica
Conference, 20.-22. Sept. 2009 , Como, Italy

[2] Cellier, F.E. and D. Zimmer (2006), Wrap-
ping Multi-bond Graphs: A Structured Ap-
proach to Modeling Complex Multi-body
Dynamics, keynote presentation, 20th Euro-
pean Conference on Modeling and Simula-
tion, Bonn, Germany, May 29-31, 2006

[3] Elmquist, H., et. al. (2009) Modelica for em-
bedded systems. Proc. of the 7th Internation-
al Modelica Conference, 20.-22. Sept. 2009 ,
Como, Italy

[4] Höbinger, M. and M. Otter (2008), Planar-
MultiBody - A Modelica Library for Planar
Multi-Body Systems. Proc. 6th International
Modelica Conference, Bielefeld, Germany

[5] van der Linden, F. (2012), Modelling of Elas-
tic Gearboxes Using a Generalized Gear
Contact Model. In review for the Proc. of the
9th Modelica Conference, Munich, Germany

[6] Zimmer, D. and M. Otter (2010), Real-Time
Models for Wheels and Tires in an Object-
Oriented Modelling Framework. Journal of
Vehicle System Dynamics. Volume 48, Issue
2, pp. 189-216 .

Name Dymola Open Modelica JModelica SimulationX

1 FreeBody OK OK OK OK
2 Pendulum OK OK OK OK
3 DoublePendulum OK OK OK OK
4 CounterSpin OK OK OK OK
5 CraneCrab OK OK OK OK
6 CraneCrabControlled OK OK OK OK
7 InvertedCraneCrab OK OK OK OK
8 WheelBasedCraneCrab OK OK OK OK
9 PistonEngine OK OK OK OK

10 KinematicLoop OK F? OK F?
11 TestIdealWheel OK F OK OK
12 TestDryFrictionWheel OK OK OK OK
13 TestSlipBasedWheel OK OK OK OK
14 SingleTrack OK F OK OK
15 TwoTrack OK OK OK OK

Categories OK Runs succesfully

F Fails

A Planar Mechanical Library for Teaching Modelica

688 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076681

[7] Zimmer, D. and F.E. Cellier (2007), The
Modelica Multi-bond Graph Library, Simu-
lation News Europe, Volume 17, No. 3/4, pp.
5-13.

[8] Zimmer D. Virtual Physics. Lecture Notes
available at: www.robotic.dlr.de/dirk.zimmer

Tool References

[9] Dymola:
www.3ds.com/products/catia/portfolio/

[10] OpenModelica:
www.openmodelica.org

[11] JModelica:
www.jmodelica.org

[12] SimulationX:
www.itisim.com

[13] MapleSim:
www.maplesoft.com/products/maplesim

[14] Wolfram SystemModeler:
http://www.wolfram.com/system-modeler/

Session 6B: Mechanic Systems III

DOI Proceedings of the 9th International Modelica Conference 689
10.3384/ecp12076681 September 3-5, 2012, Munich, Germany

A Planar Mechanical Library for Teaching Modelica

690 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076681

DyMoRail: A Modelica Library for modelling railway buffers

DyMoRail: A Modelica Library for modelling railway buffers

Elisabeth Dumont Werner Maurer
Zentrum für angewandte Mathematik und Physik, Zürcher Hochschule für Angewandte Wissenschaften

Technikumstrasse 9, Winterthur, 8401 Switzerland

Abstract

This article gives an overview of the DyMoRail li-
brary.The aim of this Modelica library is the simula-
tion of longitudinal dynamics of entire railway trains.
The DyMoRail library allows an efficient simulation
of complete train compositions in various configu-
rations. The library contains different car models,
buffers, couplers equipped with both friction and elas-
tomer springs, as well as the center-buffers for multi-
ple units. DyMoRail allows to simulate the entire mo-
tion cycle that the buffer undergoes during a collision.
The robust programming of the basic models allows
simulations for arbitrary combination of buffers, cou-
plers and destruction tubes. Different modelling tech-
niques (SIMULINK, STELLA) have been explored.
Since the modular structure of Modelica allows fast
and simple setup of models including different types
of rolling stock and different types of couplers and
buffers, it was decided to build this library in Mod-
elica. This simulation environment was successfully
used by Schwab Verkehrstechnik AG during the devel-
opment of their state-of the-art center coupler product
family. Within DyMoRail2 we intend to implement
further features and improve the modularity and flexi-
bility of the library.

Keywords: library, mechanics, railway

1 Introduction

Buffers and couplers are an essential part of the rail-
way wagon. They have to be optimized for new wagon
types to work for different train compositions. They
have to absorb minor impacts, take up slack between
locomotive and wagons and bear the load of preced-
ing wagons when pushing. Years ago it was good
enough for couplers and buffers to fulfil UIC (Inter-
national Union of Railways) standards. But nowadays
manufacturers only survive in this competitive market
if they are able to offer optimized solutions regarding
force, energy absorption, and driving comfort. Mod-

elling plays an important role in this optimization pro-
cess. One of the main requirements to this rail model
are that it should allow easy substitution of compo-
nents and handling of different combinations of sub-
system parts.

Schwab Verkehrstechnik AG and ZHAW carried out
a project funded by CTI (Swiss Federal Commission
for Technology and Innovation) to develop a simu-
lation tool which allows to model longitudinal dy-
namics of entire railway trains. During the following
years a Modelica library has been developed which is
called DyMoRail. The DyMoRail library allows an
efficient simulation of complete train compositions in
various configurations. The library contains a num-
ber of different car models, buffers, couplers equipped
both with friction and elastomer springs, as well as the
center-buffers for multiple units (such as Seetalbahn,
Thurbo, Flirt). DyMoRail allows to simulate the en-
tire motion cycle during a collision (retraction of the
buffer, force increase with stroke of the buffer, exten-
sion of the buffer, and finally the separation of the wag-
ons).

The robust programming of the basic models allows
for arbitrary combination of buffers, train draw rod and
destruction tubes. In a first attempt, simulations were
performed with SIMLULINK. But it turned out that in
SIMULINK a completely new model had to be pro-
grammed from scratch for each combination. There-
fore Schwab Verkehrstechnik and ZHAW decided to
build a new library based on Modelica. The mod-
ular structure of Modelica allows fast modifications
of the model by simple replacement of entire subsys-
tems. In this paper we will present the structure of
the existing library, show some examples and propose
some improvements that will lead to a new version
DyMoRail2, which will be constructed in collabora-
tion with Schwab Verkehrstechnik AG and is funded
by CTI.

DOI Proceedings of the 9th International Modelica Conference 691
10.3384/ecp12076691 September 3-5, 2012, Munich, Germany

Figure 1: DyMoRail library structure

2 Library Structure

The DyMoRail library structure is shown in Figure 1.
The fundamental packages and models are explained
in the following paragraph. The library consists of
seven sublibraries: connectors, basic elements, hy-
draulics, buffer hydraulics, buffers, couplers and cars.

2.1 Connectors

The sublibrary connectors contains the mechanical
and hydraulic connections as well as the connections
between the hydraulic buffers and the respective buffer
hydraulics.

2.2 Basic Elements

This sublibrary contains different models of springs
and buffers, as well as friction between car and rail-
way track. The submodels ”buffer bush” and ”cou-
pler bush” simulate the fundamental behaviour of the
buffers and couplers. Four different operation modes
of the buffer bush are distinguished: free, pretension,
deformation and arrested. In free mode, the buffer
plates do not touch and the force is zero. In the
pretension mode the force increases. In the defor-
mation mode the buffer spring and buffer hydraulics
are loaded. In the arrested mode the force increases
steeply. The additional state forward, backward and
halt describe the actual condition of the bush. In addi-
tion friction is also modelled in the bush.

2.3 Hydraulics

In addition to the basic elements for viscous flow, this
sublibrary contains hydraulic accumulator and check
valves and multiplier valves for various buffers and
couplers. Each multiplier valve has three signal inputs:

The first signal yields the state of the buffer. The valve
opens only if the buffer state is on deformation and is
not retracted. The second input provides the opening
of the aperture so that oil can flow into the hydraulic
buffer. The third input provides the deformation of the
buffer bush.

2.4 Buffer an Couplers

These sublibraries contain products of the company
Schwab Verkehrstechnik AG, such as buffers, cou-
plers, coupling rods and railway compositions. Elas-
tomer springs are commonly used, because they are
cost saving and robust. They show a non linear char-
acteristic and have high inner friction. The friction de-
pends on the buffer force and has both a linear and a
non-linear part.

The library contains a basic model for both the hy-
draulic buffer and coupler. The hydraulics, which have
to be reconfigured for each train, are filed in the buffer
hydraulics sublibrary.

2.5 Cars

This sublibrary (also shown in Figure 1) contains ele-
ments, which allow the modelling of cars as rigid or
flexible bodies, as well as car bodies and locomotives.
Two additional models allow to model freight trains
with an arbitrary number of wagons. These trains
are equipped with either standard buffers or hydraulic
buffers. The library contains further models which de-
scribe multiple units of Stadler Rail AG (such as GTW,
FLIRT, KISS).

3 Examples

Two different examples are presented in the following
paragraph.

3.1 1 g-Buffer

The acceleration of lightly loaded freight cars during
a shunting impact can reach levels as high as 40 m/s2

(4 g). Such hard collisions mean a high risk of damage
to the freight. Since for transportation by trucks much
lower accelerations of the order of 0.8 g occur, this is
a severe disadvantage of the rail transport compared
with road transport. The 1 g-buffer was developed in
order to protect damageable freight during shunting
impacts. This buffer should keep the maximum ac-
celeration of the wagons below 10 m/s2 at an impact
velocity of 7.2 km/h. The buffer shows the same static

DyMoRail: A Modelica Library for modelling railway buffers

692 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076691

behaviour as a conventional UIC–526 buffer, i.e. the
force increases up to a value of 900 kN at a stroke of
150 mm. Under static load, the buffer can only retract
by half of its length up to a maximum force of 150 kN.
Due to an elaborate valve control the 1 g-buffer is dy-
namically more flexible than statically. At first this
buffer has been modelled with SIMULINK. However,
modelling with DyMoRail allows a larger variety of
different scenarios. Besides the DyMoRail model is
much more precise and detailed.

In Figure 2 a model for a collision between two
wagons is depicted. A freight car of 80 t, respectively
30 t, collides with a car at rest. The moving car is
equipped with a 1 g-buffer and the car at rest with stan-
dard UIC-buffers. Figure 3 and 4 show the simulation
results. The force-stroke-behaviour of the 1 g-buffer is
drawn during shunting impacts. For both cases, the ac-
celeration of the cars does not exceed 10 m/s2 (1 g). 1 g
buffers are used nowadays mostly for freight cars that
transport road semi-trailers. According to the simu-
lated data the 1 g buffer complies with DB Cargo stan-
dards.

The model has been validated with measurements
performed on the 1 g buffer[1].

Figure 2: Model for a collision between two wagons.
A freight car of 90 t, or 30 t respectively, collides with
a car at rest. The moving car is equipped with a 1 g-
buffer (yellow) and the car at rest with standard UIC-
buffers (grey).

3.2 S-Bahn

For Zurich S-Bahn trains of the third generation, mul-
tiple units consisting of 6 double decker coaches are
used. A single assembly has a mass of 312 t, a total
length of 150 m and can take up to 1694 passengers. It
is obvious that, during shunting, the rolling stock must
not be damaged at all. This means that the central cou-
pler must not be damaged during a collision of such a

Figure 3: Force-stroke diagramm of the 1 g buffer dur-
ing a collision of a 90 t wagon equipped with a 1 g
buffer at a velocity of 7.2 km/h with a 80 t wagon at
rest equipped with standard UIC-buffers.

Figure 4: Force-stroke diagramm of the 1 g buffer dur-
ing a collision of a 30 t wagon equipped with a 1 g
buffer at a velocity of 7.2 km/h with a 80 t wagon at
rest equipped with standard UIC-buffers.

multiple unit at a speed of up to 5 km/h with another
one.

Furthermore it has to be proven that the coupler is
pulled down correctly during a major impact with an-
other S-Bahn up to a speed of 36 km/h and that the side
buffer are capable of absorbing the remaining energy.
The same proof has to be provided for a collision at
36 km/h against a freight car of mass 80 t. First the
central coupler retracts and after that breaks away so
that the laterally mounted auxiliary buffers take up the
remaining energy. The entire process including pres-
sure build-up, opening of the hydraulic predetermined
breaking point, retraction of the damper, compression
of the spring elements and deformation of the crash
elements can be simulated in a single run.

The damper of the central coupler is a multifunc-

Session 6B: Mechanic Systems III

DOI Proceedings of the 9th International Modelica Conference 693
10.3384/ecp12076691 September 3-5, 2012, Munich, Germany

tional device (Figure 6). It contains a gas spring and
a multiplier valve. They ensure that the coupler trans-
mits the momentum and secondly absorbs enough en-
ergy to prevent the wagons from oscillating during the
journey. During coupling at a speed of 5 km/h the
damper has to absorb the total energy over a length of
140 mm without the force increasing above 1200 kN.
If the the force increases above 1500 kN, a hydraulic
breaking point will be activated so that the coupler is
retracted faster. In addition, the coupler comes with a
return stroke damping, which prevents breakaway dur-
ing run-up.

Every one of these scenarios has been simulated
with a dynamical model for both multiple units.
Thereby the flexibility of the car body, its connection
to the bogie and the behaviour of the short couplers
between cars have to be modelled with sufficient pre-
cision

Figure 5: Force-stroke diagram for an entire S-Bahn
multiple unit consisting of 6 double decker coaches
with a total mass of 312 t and a total length of 150 m

4 Future Work

A follow up project (called DyMorail2) has been
funded by CTI and will be carried out in collabora-
tion with Schwab Verkehrstechnik AG. We intend to
implement the following improvements to the first Dy-
MoRail library:

1. Each buffer and coupler should be modelled in
different levels of detail and complexity, in order
to gain flexibility for simulating entire composi-
tions consisting of several cars on the one hand
and single wagons on the other.

2. The valve control has to be redesigned. At
present the valve is modelled such that it opens

Figure 6: Construction drawing of the damper show-
ing its working principle. It shows the damper bush in
brass colour. On the rear is the air spring filled with
nitrogen. The front part contains oil and both cham-
bers are separated by a movable piston (”separation
plunger” in red). In green is shown the overload pres-
sure valve.

at a certain pressure and closes again at a lower
one. This model is very simple and robust and
can be used for a broad spectrum of applica-
tions. However, for modelling of long trains
equipped with hydraulic buffers in combination
with spring buffers these valves produce a lot of
events, which increases the simulation complex-
ity.

3. We also plan to implement crash scenarios ac-
cording to new European norm DIN EN 15227.
It contains requirements to the construction of
rolling stock in order to minimize the conse-
quence of collisions. It applies to the car body
as well as to coupler and buffer.

5 Conclusion

With DyMoRail1 a powerful library has been imple-
mented which allows to simulate longitudinal dynam-
ics of entire railway trains. With this library an ef-
ficient simulation of complete train compositions in
various combinations is possible. Modelica/Dymola
has the following advantages over other tools such as
SIMULINK or STELLA:

• Every model can be reused immediately

• Cars, buffers, crash elements and couplers can be
arbitrarily combined

• Little effort is needed to establish, test and recon-
figure new models

• Documentation and filing of simulation experi-
ments is straight forward

DyMoRail: A Modelica Library for modelling railway buffers

694 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076691

• Even non-experts can carry out simulations with
DyMoRail

This simulation environment was successfully used
by Schwab Verkehrstechnik AG during the develop-
ment of their state-of the-art center coupler product
family. Within DyMoRail2 we intend to implement
further features and improve the modularity and flexi-
bility of the library.

References

[1] Maurer W. Puffer nach Mass. Eisenbahn Revue
3, 2003, p.118-119.

[2] Maurer W. Simulationsgestütze Entwicklung von
Puffern und Dämpfern für Eisenbahnzüge. Pro-
ceedings of the 18th Symposium on Simula-
tiontechnique ASIM 2005, Erlangen, Germany,
ASIM September 12-15 2005.

Session 6B: Mechanic Systems III

DOI Proceedings of the 9th International Modelica Conference 695
10.3384/ecp12076691 September 3-5, 2012, Munich, Germany

DyMoRail: A Modelica Library for modelling railway buffers

696 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076691

Natural frequency analysis of Modelica powertrain models

Natural frequency analysis of Modelica powertrain models

Garron Fish Mike Dempsey Juan Gabriel Delgado Neil Roberts
Claytex Services Ltd

Leamington Spa, United Kingdom
garron.fish, mike.dempsey, juan.delgado, neil.roberts @claytex.com

Abstract

The natural frequency analysis of complex
powertrain models created in Modelica presents a
number of problems. This paper presents the basic
principles and some of the problems associated with
carrying out this kind of analysis. As a result of this
work, a new feature in the Powertrain Dynamics
Library has been developed to automate these
methods and provide the end-user with a simple set
of functions to perform natural frequency analysis.
Simple examples are used to illustrate the problems
and solutions and a complex powertrain model is
then analysed using the library.

Keywords: modal analysis; natural frequency;
linearization; powertrain; NVH

1 Introduction

Modal analysis is the study of the dynamic response
of a system at its resonance frequencies. Modal
analysis is used in many fields for example in
structural engineering to design buildings resistant to
earthquakes [1] and in vehicle powertrain design to
avoid poor NVH characteristics [2].

For a vehicle, modal analysis is carried out on all
parts of the car to determine their natural
frequencies. Care is taken to make sure that the
natural frequencies of the parts in the car are all at
distinct, separate frequencies. If the natural
frequencies are not suitably separated this can lead to
resonance across multiple parts of the car and a poor
NVH characteristic.

A new feature has been introduced in the
PTDynamics library [3] [4] to perform the natural
frequency analysis of powertrain models created
using this library. This paper highlights some of the
problems involved with this type of analysis based
on Modelica models and discusses some of the
techniques developed to solve these.

To determine the natural frequencies of a model
and the corresponding modal response we start by

linearising the model at the required operating point.
Linearisation of a model using Dymola returns the
state-space representation of the model and from this
the natural frequencies can be calculated. The
natural frequencies are found when all damping in a
model is removed.

2 Modal frequency analysis and
Modelica models

2.1 Basic Principles

This section looks at the basic modal analysis
principles applied to a spring mass network. The
example of a spring mass network has been chosen
so that the natural frequency of a model can be
described. An unforced spring mass network can be
represented by the following ordinary linear
differential equation:

 ��� + ��� + �� = 0	

It is common to calculate the natural frequency of
the above equation with the damping term set to zero
so the equation becomes:

 ��� 	+ �� = 0 (1)

The natural frequency of the spring mass system can
now be calculated from the roots of the above
equation. The roots are the eigenvalues and
eigenvectors of the equation.

To perform modal analysis on complex models
we linearise these first which generates the state
space representation of the model. The state space
representation of a model is given by:	

 �� = �� +
�		� = �� + ��

(2)

where:
A, B, C and D are matrices
u is the vector of inputs

DOI Proceedings of the 9th International Modelica Conference 697
10.3384/ecp12076697 September 3-5, 2012, Munich, Germany

y is the vector of outputs
x is the vector of states

To rearrange our simple spring-mass system in to
state space form is done by transforming equation (1)
in to the following form:

 �� = −�����	

In this simple example, there are no inputs so the u
term is dropped and there are no outputs so the
equation for y is not required. The model is then
reduced to:

 �� = 	��	 (3)
where � = ���� �
and � = � 0 1−���� 0�

2.2 Eigenvalues and eigenvectors

For a given matrix A the eigenvalues and
eigenvectors are calculated such that:
 �� = ��
where: � is the eigenvector associated with the eigenvalue � is an eigenvalue

The eigenvalue solutions, are the roots of:
 ��� − ��� = �

All the eigenvalues are included in vector � that is
referred to as the eigenvalues of A. The eigenvectors
are combined row wise into matrix v. The
eigenvectors and eigenvalues of this equation are
calculated so that the natural frequency can be
calculated as follows in section 2.3.

2.3 Frequency and damping

The natural frequency is calculated from the
eigenvalues as [5]:

 � = |�|2!

where:
|| is the complex norm � is frequency in Hertz

The complex norm is the sum of the squares of the
real and imaginary parts all square rooted. There is
also a damping term that is associated with each
eigenvalue. In the case where the damping has been
set to zero, this term will be zero and will not
influence the natural frequencies of the model. The
damping term can be calculated with the following
equation [6]:

" = 	# 0, |�| = 0Re(�)|�| , |�| ≠ 0*	

where: Re() is the real part of a complex number

The frequency that a model with damping oscillates
at without being driven by an outside force is
referred to as the damped frequency and using
eigenvalue analysis this is calculated as :

 +, = +-.1 − "/

2.4 Issues for complex Modelica models

The current analysis described above can be easily
performed on a spring mass network but it is not as
easy to implement this on a complex Modelica
model. A number of issues arise when trying to
apply this process using a Modelica tool such as
Dymola.

 A complex model will contain a large number of
state variables and we would normally expect to find
many states that do not have any effect on the natural
frequency response of the physical states of the
model. For example, states within a driver model or
control system that do not directly influence the
physical response of the system. These states should
be removed from the analysis to reduce the time
taken to do the analysis.

Some Modelica tools are able to compile models
using dynamic state selection. Currently models that
use dynamic states cannot be analysed and a fixed
set of states needs to be applied to the model. This
has to be done by the user before starting the
frequency analysis.

In the simple spring mass network presented so
far we have not considered the possibility of the
relative state of the spring being selected as a state
rather than the position of the mass. Modelica tools
are able to select a set of states from a model and in
many cases they will select relative states rather than
absolute states. Whilst the natural frequencies of the

Natural frequency analysis of Modelica powertrain models

698 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076697

Figure 1: Process to convert relative states to
positional states

system are unaffected by the choice of state variable
it is preferable in this type of analysis to use the
absolute states of the system. Using the absolute
states makes the interpretation of the modal response
easier as the points of interest become physical
points such as the driveshaft ends or pinion gear
rather than relative states such as the driveshaft twist
or relative angle between pinion and crown wheels.

Further problems are observed when component
models that utilize the standard Modelica friction
model are included for analysis. The behaviour of
the slip/stick friction models is not linearized in the
expected manner and modifications to the analysis
have to be made around these components.

To calculate the natural frequencies the damping
terms have to be removed from the model but
without the damping often models will not simulate.
This causes a problem for the initialisation of models
and when the model needs to be analysed under
different operating conditions, for example, in
different gears or under different loading conditions
where springs are compressed to different parts of
their non-linear force curve.

3 Implementation in the Powertrain
Dynamics Library

The Powetrain Dynamics (PTDynamics) library is
used to create complex MultiBody models of
powertrains in a user friendly and efficient manner.
A new feature has been introduced to determine the
natural frequencies of these powertrain models. A
number of issues are present that make performing
the natural frequency analysis difficult when
working with Modelica models (refer to Section 2.1).
This section describes some of the methods
implemented in to the linearization functions
available in the PTDynamics library that are used to
overcome these issues.

3.1 Relative states

The natural frequencies of the model are typically
calculated for positional states (i.e. position or
angular position). However when a model is created
using Modelica, the modelling tool can choose to
select relative states (such as spring extension) rather
than positional states (such as the position of ends of
the spring). When this is detected in a model the
relative states are converted in to positional states
before linearizing the model.

The first step in the analysis process is to
determine the states used in the model which is done
by translating the model and analysing the list of

selected states. If relative states are detected then the
model has to be modified by adding outputs that
measure the positions either side of the component
with the relative states, see Figure 1. The model can
then be linearized and the resulting A matrix
manipulated to transform the relative state in to a
positional state. Within the PTDynamics library a
precise naming convention is used to enable the
automatic detection of relative and absolute states
from the variable names.

By only making the transformation from relative
to positional state in the linearized model we do not
affect how the original model simulates. This means
that we can still use the original model to get the
system to the desired operating point and then
linearize it. If we forced the user to only use

Session 6B: Mechanic Systems III

DOI Proceedings of the 9th International Modelica Conference 699
10.3384/ecp12076697 September 3-5, 2012, Munich, Germany

positional states in the model we may introduce
slight differences in to the model due to the different
equation solutions required and we could impact the
simulation time.

When the modified model, with the added
outputs, is linearized, the resulting state space
representation includes these outputs in the C matrix.
This matrix relates the position outputs to the states
in the model. Each relative state will generate two
outputs but only one of these outputs will be related
to the relative state by the C matrix. This state is
used to replace the relative state.

Using the spring mass model as an example we
can see how this manipulation of the A matrix
should be performed. Linearizing the modified
model gives the following:
 0 = �0 �1

1 0 �

1 � �0 0
0 1�

23435	64752 � 87422. :, 2;<=6>. 2_<5@A
BC3;C3	64752 � 	 8;B2=3=B61, ;B2=3=B62A

From the C matrix it is seen that position2 is related
to spring.s_rel as:

 DEFGHGEIJ � ��2, : ��

where:
� are the states of the model

A transformation matrix is now created that
transforms � to a set of states that does not contain
relative states. In this example the transformation
matrix would be:

L � M 1 0
��2,1� ��2,2�N

 �OPQ � R� (4)

Replacing � in (3) with �OPQ from (4) gives:

 �� ST� � L�L�U�ST�

A drawback of this method is that it can select a state
that is only associated with a position and not
directly with an actual mass or inertia state. Figure 2
illustrates a case where this behaviour is present.
The user currently has to review the selections made

during the analysis process to ensure that these
situations are avoided.

Figure 2: The initial states of the model include
spring2.s_rel, this state is replaced with spring2.flange_a.s
that is a state without a mass

3.2 Friction components

A number of component models such as clutches and
brakes use the Modelica Standard Library coulomb
friction model [7] that handles the stuck and sliding
modes in a clean way using state events. When this
is linearized using the built-in Dymola function the
model is sometimes linearized as if in the slipping
mode regardless of the actual state of the component.
A method has been developed to adjust the model
and resulting state space model to correctly account
for the friction state.

Figure 3 shows an overview of the automatic
process that is used to overcome this using the
PTDynamics library. First the model is translated
and the names of the selected states are analysed to
determine if there are any states that relate to friction
and to determine what state the friction model is in at
the instant that the model is being linearized at.

If the friction model is in the stuck mode then it is
necessary to join the positional states in the A matrix
that are either side of the frictional component. To
be able to join states in the A matrix it is necessary to
calculate the mass/inertia of the states being joined
together. This is done by adding torque inputs to the
corresponding positional states either side of the
friction component.

 In the example shown in Figure 3, we would
detect the friction states within the clutch and then
modify the model. In addition to adding a torque
input either side of the friction model we also need to
add position outputs either side of the friction model
so that we can join the states in the locked mode.

Natural frequency analysis of Modelica powertrain models

700 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076697

After the modified model is linearized the B matrix
is used to determine the mass of the states. This
information together with the state space C matrix
can then be used to update the A matrix by joining
the states on either side of the friction component.

The mass of the states is determined as follows,
the basic equation describing a spring mass system
that contains a force is:

 VW � X� + Y� + Z
where:

V is mass

� is position

� is velocity

W is acceleration

X is stiffness

Y is damping vector

Z is the applied force

In the example shown in Figure 3, the positional
states that the clutch is connected to are independent

which means the following equation can be used to
describe both states that need to be joined together
and rearranged as:

 2� � 7��[2 +7��\2� + 7��]

The state space representation of this equation is:

 �2�2�� � � 0 17��[7��\� �22�� + � 07���] (5)

From (2) and (5), we can determine that the state

space B matrix is equal to � 07���, so the mass/inertia

for the states to be joined can be calculated. Using
the example shown in Figure 3, we get the following
values when linearising the modified model.

0 = ^ 0 1−1 0 0 00 00 00 0 0 10 0_

` = ^010
0000 0.5_

1 = �1 0 0 00 0 1 0�
 23435	64752 = 8=1. ;ℎ=, =1.+, =2. ;ℎ=, =2. +A =6;C3	64752 = 	 834C1, 34C2A BC3;C3	64752 = 	 8;B2=3=B61, ;B2=3=B62A

Using the B matrix we can determine the inertia of
the two bodies either side of the clutch.

 7� = �cd,ef� 7/ = �cg,df/

To modify the A matrix we use the B matrix to
determine the rows in the A matrix that should be
combined. The C matrix is then used to determine
the columns that need to be combined. After
combining the rows and columns we can remove the
redundant rows and columns from the A matrix.

In this example we find that the 2nd and 4th rows
need to be combined as well as the 1st and 3rd
columns which results in:

0 = ^ 0 + 0 1
h(−1 + 0) ∗ 7� + 0 ∗ 7/7� +7/ j h(0 + 0) ∗ 7� + 0 ∗ 7/7� +7/ j_

0 = � 0 10.333 0�
 Figure 3: Process to handle friction components

Session 6B: Mechanic Systems III

DOI Proceedings of the 9th International Modelica Conference 701
10.3384/ecp12076697 September 3-5, 2012, Munich, Germany

To include damping effects when joining states using
this method the columns corresponding to the rows
determined from the B matrix need to be added
together as well.

There is a known limitation of the joining method
demonstrated here and used in the PTDynamics
library in that the states being joined together must
be independent states. This means that the positional
state must not be dependent on other positional
states. An example of a component that has
dependent states is a planetary gear where the
rotational states of the three shafts are dependent on
each other. To overcome this limitation a flexible
shaft has to be connected between a clutch and a
planetary gear in a gearbox to be able to join the
states on either side of the clutch using this method.

4 Applications

4.1 Simple example

This simple example contains three inertias with the
first two separated by a clutch and the second and
third inertia separated by a spring as shown in Figure
4. A ramp input is used to actuate the clutch and
goes from 0 at 0s to 1 at 1s. The response for the
clutch state and the speeds of the inertias either side
are shown in Figure 5.

If the model is linearized at t=0s, i.e. when the
clutch is open we find the natural frequency is at
5.29Hz. If the model is linearized at t=2s, when the
clutch is locked, the natural frequency occurs at
2.20Hz.

The change in frequency occurs because the total
effective inertia on the left hand side of the spring
has changed. Without using the method to join the
states either side of the clutch the built in functions
report no change in the natural frequency despite the
change in configuration of the model.

Figure 4. Simple model that contains a clutch and a
spring

Figure 5. Plots of locked and angular velocity of inertia
and inertia1 in the Simple model in Figure 4.

4.2 Full vehicle example

A model of a front engine, rear-wheel drive vehicle
with a manual transmission was constructed using
the PTDynamics library it fully test the new
functions and methods. The model is shown in
Figure 6. The engine model is a simple mapped
engine model but the transmission and driveline are
more detailed. Figure 7 shows the gearset model
from within the transmission. The gearset and
driveline models include torsional compliance in a
number of the shafts but are rigidly mounted within
the chassis. Overall this model has a good torsional
representation of the powertrain system and would
be suitable for studying driveability events such as
tip-in and tip-out.

Figure 6. PTDynamics vehicle example that is linearized

chassis

ori?

road atmosphere
w orld

x

y

transmi?engine

mou?

gear

k=1

clutchC
l?

duration=2

throttle

k=1

throttleAngle_1 clutchPedalPosition gear

co
nt

ro
lB

us

engineC? driverBus

Natural frequency analysis of Modelica powertrain models

702 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076697

Figure 7. Gearset used in vehicle example.

The chassis model doesn’t include suspension but
the tyres do include a slip model based on the well-
known Pacejka tyre model. This required the
development of a method that relates the wheel
rotation to the chassis movement. This was
necessary because the slip models are based on
velocity relationships but for this type of analysis we
need the relationships to be based on position. The
method developed assumes that the ratio between the
wheel rotation and the chassis motion is a fixed ratio
at the instance that linearization occurs. The details
of this method are not described in this paper.

The model was linearized and the following
natural frequencies are found (in Hz): 5.1, 35, 124,
266 and 343. The 5.1Hz response is the shuffle
frequency of the vehicle and the modal response is
shown in Figure 8. The x-axis of the modal response
plots is an integer that corresponds to the states listed
in Table 1. The magnitudes are normalised with
respect to the variable with the largest displacement.

The modal response shows that at this frequency
there is very little motion of the chassis but the
whole powertrain is moving out of phase with the
chassis and at relatively large displacements.

 No. State

1 transmission.clutch.drivenPlate.flange_a.flange.phi

2 transmission.gearset.uniformShaft10.body_a.phi

3 transmission.gearset.uniformShaft.body_a.phi

4 driveline.rearDifferential.pinion.phi

5 driveline.rearDifferential.differentialAssembly.outputGear_2.phi

6 chassis.motion.prismatic_x.s

Table 1. States of simple vehicle. Each number
corresponds to a state. The number in the legends in
Figure 8 corresponds to the number in this table.

It is also possible to generate Bode diagrams for
different inputs and outputs of the vehicle model.
The example shown in Figure 8 is the bode diagram
generated when engine torque is an input to the
system and the differential pinion gear rotation angle
is the output. The Bode plotting function in

Modelica_LinearSystems2 is used to generate the
actual plot.

Figure 8. Modal response of the vehicle model at 5.1Hz.
The magnitude and phase of the different states are
plotted. Each state is assigned to a position along the x
axis as determined by the legend. The numbers in the
legends correspond to the states in Table .

Figure 9. Bode diagram with Engine torque as the input
and differential pinion position as the output.

5 Conclusion

A new method for determining the natural
frequencies and modal responses of complex
Modelica models has been developed and introduced
as a new feature in the Powertrain Dynamics library.
This feature includes automated methods to handle
the problems with relative states and friction
components as described in this paper in addition to
other methods to handle further problem areas such
as tyre slip models. The feature will be further
improved to provide animation of the modal
response of the powertrain to aid the understanding
of the natural frequencies of the powertrain system.

Session 6B: Mechanic Systems III

DOI Proceedings of the 9th International Modelica Conference 703
10.3384/ecp12076697 September 3-5, 2012, Munich, Germany

References

[1] M. Paz, “International handbook of earthquake
engineering,” in International handbook of
earthquake engineering, London, Chapman &
Hall, 1994, p. 283.

[2] H. Gagnon and G. Gagnon, “Identifictation of
powertrain noise sources using sound intensity
and modal analysis techniques,” Proceeding of
SPIE, the International Society for Optical
Engineering, vol. 3089, no. 2, pp. 2016-2020,
1997.

[3] N. Roberts and M. Dempsey, “Predicting the
launch feel of automatic and dual clutch
transmissions,” in Proceedings 9th Modelica
Conference 2012, Munich, 2012.

[4] M. Dempsey and A. Picarelli, “Investigating the
MultiBody dynamics of the complete powertrain
system,” in Proceedings 7th Modelica
Conference, Como, 2009.

[5] MSC Software, “MD Nastran 2010, Dynamic
Analysis User's Gude,” 2010, p. 47.

[6] A. Mohamed, “Modelling, simulation and
identification,” Rijeka, Sciyo, 2010, p. 68.

[7] M. Otter, H. Elmqvist and S. E. Mattsson,
“Hybrid Modeling in Modelica based on
Synchronous Data Flow Principle,” in
CACSD'99, Hawaii, 1999.

Natural frequency analysis of Modelica powertrain models

704 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076697

Achieving O(n) Complexity for Models from Modelica.Mechanics.Multibody

Achieving O(n) Complexity for Models from
Modelica.Mechanics.MultiBody

Christian Schuberta Jens Frenkela Günter Kunzea Michael Beitelschmidtb
a Professur für Baumaschinen- und Fördertechnik

b Professur für Dynamik und Mechanismentechnik
Technische Universität Dresden

01069 Dresden, Germany
{christian.schubert, jens.frenkel, guenter.kunze

michael.beitelschmidt}@tu-dresden.de

Abstract

This paper presents a graph theoretical interpretation
of the well-known O(n) algorithm for Multibody sys-
tems. It enables Modelica compilers to solve for the
unknown accelerations of a Multibody model without
the need of inverting a dense mass matrix which would
require O(n3) operations.

Keywords: MultiBody, Relaxation, Gaussian Elimi-
nation, OpenModelica

1 Introduction

Simulation has become an indispensable tool in early
development stages. Increasing computational power
leads to a demand for more detailed models. Espe-
cially in the design of Mobile Machinery, Multibody
systems are of major importance.

Currently, most Modelica compilers apply Tearing
[1] to models from Modelica.Mechanics.MultiBody
yielding a dense linear system of size proportional to
n - the number of bodies. In order to solve for the
unknown joint accelerations the system has to be in-
verted which requires O(n3) operations. Hence this
approach is only recommendable for small to medium
sized problems.

Efficient algorithms with O(n) complexity are well
known from literature [2], [4]. Unfortunately their ap-
plication for Modelica.Mechanics.MultiBody proves
to be difficult since these algorithms rely on special
knowledge about the multibody systems which is not
available in a general equation based framework like
Modelica.

It has already been pointed out in the literature [5]
that a technique called Relaxation is able to yield such

an O(n) formalism for multibody systems. However,
adaptions to the model libraries as well as a specific
model structure were required.

This paper presents a novel algorithm for general
purpose Modelica compilers. It is based on a graph
theoretical generalization of the well known O(n) al-
gorithm for multibody systems adapted to models
from Modelica.Mechanics.MultiBody.

2 Multibody systems

2.1 Kinematic Graph

Every multibody system can be represented by a kine-
matic graph whose nodes represent both bodies and in-
ertial frames and whose edges correspond to joints. If
the kinematic graph contains closed loops, appropriate
joints, so called cut-joints, are temporarily removed so
that the resulting graph only consists of trees. In a tree,
every node (body) has a unique parent, which is the
next node on the path to the root (inertial frame). All
bodies are numbered, such that every child body has
a higher number than its parent. Each joint is num-
bered according to the child body it is connected to,
thus forming pairs of bodies and joints. All remaining
cut-joints are numbered consecutively. An example is
given in Figure 1.

2.2 Equations of Motion

The equation of motion of a single body i can be writ-
ten as

Miai = pi + fi− ∑
k∈µ(i)

RT
k,ifk (1)

pi = fi,ext −hi (2)

DOI Proceedings of the 9th International Modelica Conference 705
10.3384/ecp12076705 September 3-5, 2012, Munich, Germany

1

2

3

4

5 (cut-joint)

1 3

2 4

root

Figure 1: Kinematic Graph of Example System

where Mi ∈ R6×6 represents the mass matrix, ai ∈ R6

both translational and rotational acceleration of a fixed
point on body i and hi ∈ R6 all gyroscopic terms. pi

is used as an abbrevation for hi and all external forces
and torques fi,ext . fi, fk ∈R6 represent the joint reaction
forces of the joint belonging to the body i as well as all
the set of all its children µ (i). Rk,i transforms the force
and torque from i to k whereas its transpose performs
the opposite transformation.

It is assumed that every joint i has a set of joint-
coordinates qi as well as joint velocities si which fully
determine its kinematic state. Thus, the acceleration
of body i is given by

ai = Ri,hah +Jiṡi + ci (3)

where h is the index of the parent body of i. Ji de-
scribes the degrees of freedom of joint i and ci collects
all remaining terms which are neither linear in ah nor
ṡi.

From d’Alamberts Principle it can be found that

JT
i fi = τi (4)

whith τi being the motor force driving the joint.
Since equations (1)-(4) are linear with respect to the

accelerations and forces, one can merge the equations
for every element of the multibody system into one
single linear system of equations.

One of the most efficient O(n) algorithms (see [3])
to solve this linear system of equations is defined
through repeated application of

ṡi = ρ
−1
i

(
τi−JT

i MA
i
(
aλ (i)+ ci

)
−JT

i pA
i
)

(5)

ai = aλ (i)+Jiṡi + ci (6)

requiring the calculation of the following variables for
each body starting at the highest index

MA
i = Mi + ∑

k∈µ(i)
Ma

k (7)

ρi = JT
i MA

i Ji (8)

Ma
i = MA

i −MA
i Jiρ

−1
i JT

i MA
i (9)

pA
i = pi + ∑

k∈µ(i)
pa

k (10)

pa
i = pA

i +MA
i ci +MA

i Jiρ
−1
i

(
τi−JT

i pA
i
)

(11)

It can be shown that this exact algorithm can be
derived from a (sparse) Gaussian Elimination of the
linear system of equations provided all equations and
variables are ordered correctly.

In a general equation based framework, information
such as the ordering of bodies is not readily avail-
able. Thus the algorithm cannot be applied directly.
However, [5] has shown that the application of a tech-
nique called Relaxation, which is a type of Gaussian
Elimination, may also lead to an O(n) algorithm. The
suitable ordering of the equations and variables was
achieved by inserting a special relax operator into the
model equations.

This paper follows another path in which the O(n)
algorithm is derived using graph theoretical tech-
niques. To do so a graph representing the equations of
motion is built from the multibody system. The key to
an efficient O(n) algorithm lies in the ordering of the
graph. This is a problem for a Modelica compiler since
the information about the structure is lost in the com-
pilation process but is needed to achieve the efficiency
of algorithms such as [3]. By trying to generalize the
idea behind the algorithm from [3], a good ordering
for general modelica models can be found which con-
sequently leads to an efficient O(n) algorithm. This
approach is described in the following section.

3 Graphtheoretical Interpretation

3.1 Graph of a system of equations

Given a set of equations, an undirected bipartite graph
can be defined which contains two sets of nodes repre-
senting equations and variables respectively. There is
an edge between a variable and an equation if and only
if that equation depends on that variable. The graph of
the equation system belonging to the example system
has been sketched in Figure 2. Every square node rep-
resents an equation whereas every circle represents a
variable. Nodes representing eq. (1) have been named
Ii, eq. (3) is called Ai and (4) is labelled Di. In addi-
tion to the definition above, the edges carry the partial
derivative of the equation with respect to the variable.

It can be seen that the graph exhibits two legs.
The first leg contains all kinematic quantities (Ai, ai)

Achieving O(n) Complexity for Models from Modelica.Mechanics.Multibody

706 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076705

𝐬 1 𝐀1

𝐚1 𝐈1

𝐟1 𝐃1

𝐬 2 𝐀2

𝐚2 𝐈2

𝐟2 𝐃2

𝐬 3 𝐀3

𝐚3 𝐈3

𝐟3 𝐃3

𝐬 4 𝐀4

𝐚4 𝐈4

𝐟4 𝐃4

𝐟5 𝐃5

𝐬 5 𝐀5

𝐈 𝐈

𝐉1

𝐉2

𝐉5

𝐉3

𝐉4

𝐉1
T

𝐉2
T

𝐉3
T

𝐉4
T

𝐉5
T

𝐈 𝐈

𝐈 𝐈

𝐈 𝐈

𝐑4,3 𝐑4,3
T 𝐑2,1 𝐑2,1

T

𝐑5,2 𝐑5,2
T 𝐑5,4 𝐑5,4

T

𝐌1

𝐌2

𝐌3

𝐌4

Figure 2: Equation Graph of Example System

whereas the second leg comprises all kinetic quantities
(Ii, fi). The two legs are interconnected through steps
given by the inertial equations Ii (eq. 1). Equations Di

(eq. 4) and variables ṡi appear as handles to the legs,
thus forming a ladder like structure. All nodes with
the same index represent a body along with its joint
and shall be denoted as body structure. A body struc-
ture is called terminal if the body it represents does not
have any children.

3.2 Gaussian Elimination

Gaussian Elimination can be applied to a linear system
of equations Ax = b. Therefore one has to reproduce
A from the equation graph of the multibody system.
This requires the numbering of all equation and vari-
able nodes, i.e. allocating them to rows and columns
of A. The algorithm then iterates over all elements on
the main diagonal of A, which are called pivots. Mul-
tiples of the current row are added to all rows below
such that all elements below the pivot are eliminated.
Thus A is reduced to Â which has a (block) upper tri-
angular form.

Given the numbered graph, Gaussian Elimination
can be applied directly:

1. Begin at i = 1

2. Check that there is an (invertible) edge between
equation node i and variable node i (equivalent to
pivot element)

3. Create Edges between all pairs of equations
and variables connected to equation and variable
nodes i

4. Remove equation and variable nodes i along with
all adjacent edges from the graph

5. Continue at 2 with i := i+ 1 until all nodes are
removed

Figure 3 shows this process for a body structure (see
section 3.1) as found in Figure 2.

33

2

12

1

3

a) Step 1

5 4

33

2

2 3

b) Step 2

5 4

33 3

c) Step 3

5 4

d) Step 4

5 4

Figure 3: Steps of Gaussian Elimination

3.3 O(n) algorithm

The numbering shown in Figure 3 leads to the efficient
O(n) algorithm from [3].

Removing the closed loop (A5, D5, f5, ṡ5) from the
graph given in Figure 2 yields two terminal body struc-
tures. These can be eliminated as shown in Figure
3 revealing new terminal body structures. This pro-
cess can be repeated until all body structures are elim-
inated.

Looking at the numbering employed in Figure 3 one
may note that

Session 6B: Mechanic Systems III

DOI Proceedings of the 9th International Modelica Conference 707
10.3384/ecp12076705 September 3-5, 2012, Munich, Germany

1. Resulting pivots are chosen to be identity matri-
ces if possible

2. Each body structure is treated seperately, begin-
ning at the terminal ones

3. All nodes between the handles of the body struc-
ture are being numbered consecutively beginning
at the equation handle

4. Equation and variable handle are given the same
number although there is initially no connection
between them (zero pivot)

5. Entries in the lower triangular part of Aonly occur
due to the Di nodes as well as the Ii nodes of non
terminal body structures.

Please note that the handles nodes correspond to a suit-
able choice of tearing variables and residual equations,
as described in [1].

One may expect that the application of these rules
to the equation graph found in models from Mod-
elica.Mechanics.MultiBody may yield a numbering
which leads to an efficient O(n) algorithm for multi-
body systems for a general purpose Modelica com-
piler.

4 Application to Model-
ica.Mechanics.MultiBody

4.1 Equation Graph

Due to the object oriented nature of Model-
ica.Mechanics.MultiBody the equations are the same
as in 2.2 but are not written in such a compact form.
Equation (1) is found in the Body model. Equations
(3) and (4) are found in the different joint models. The
transformation matrices Ri,k (see Eq. (1)) are defined
through the FixedTranslation and FixedRotation mod-
els. The linear system of equations under considera-
tion is found as a strong connected component through
Tarjan’s algorithm [8] after index reduction has been
applied [7]. Moreover, most Modelica compilers ap-
ply symbolic simplifications to the equations of mo-
tion. Figure 4 shows the graph of the sample system
with which a Modelica compiler has to deal with.

Application of the O(n) algorithm requires three
steps:

1. Recover the graph structure

2. Find a suitable ordering

Figure 4: Equation Graph of Example System mod-
elled with Modelica.Mechanics.MultiBody

3. Apply Gaussian Elimination

Every step will be discussed in the following.

4.2 Tree Structured Systems

4.2.1 Recovering the graph structure

The first rule (see section 3.3) says, that if possible the
pivots shall be chosen to be identity matrices. There-
fore pairs of equations and variables have to be found
whose partial derivative is an identity matrix. This
process shall be called Natural Matching. In a first
step, every vectorial equation is tested if it can be
solved for its unmatched vectorial variables with only
using addition and subtraction. If that is the case, this
equation and variable are matched. Afterwards, all re-
maining equations and variables are expanded to their
scalar representation. All remaining scalar equations
are tested if they can be solved for their unmatched
vectorial variables with only using addition and sub-
traction. If that is the case, this equation and variable
are also matched. Then a classic matching algorithm
[6] is applied, leaving a set of variables and equations
unmatched. These are the candidates for the tearing
variables and residual equations. This procedure has
already been suggested in [9].

Since all equations in the Model-
ica.Mechanics.MultiBody library have been written
down in a manner which is most suitable for com-
putation, it happened in all our tests that the set of
candidates may be used without further modification
as tearing variables and residual equations. The tests
also showed, that mostly joint accelerations were used
as tearing variables and, depending on symbolical
simplifications, the Di equations or close neighbours
were used as residual equations.

Achieving O(n) Complexity for Models from Modelica.Mechanics.Multibody

708 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076705

The result of the matching algorithm is visualized
in the graph by assigning directions to all edges. An
edge from an equation to a variable means that this
equation is used The result of the matching algorithm
is visualized in the graph by assigning directions to all
edges. An edge from an equation to a variable means
that this equation is used to calculate that variable. An
edge from a variable to an equation means that this
variable is needed in the calculation of that variable.
All tearing varibales are assumed to be known whereas
all residual equations do not have any variables that
they are solved for. The result for the example system
including the kinematic loop is shown in Figure 4.

Next, the order between the tearing variables has to
be found. Therefore the algorithm starts at a tearing
variable and follows the edges in opposite direction,
thus running down the kinematic leg. When another
tearing variable is found, it must be the predecessor
and the traversal is stopped. Thus, the predecessor
to every tearing variable can be found defining an or-
der between them which corresponds to the kinematic
graph of the mechanical system. Please note, that this
only works for tree structured systems. Otherwise a
body, and therefore a tearing variable, may have more
than one predecessor.

In a next step, the residual equation to each tearing
variable has to be found. Again, a breadth-first graph
traversal is started from every tearing variable follow-
ing each edge. The first residual equation, that is found
is assigned to the tearing variable.

4.2.2 Finding a suitable ordering

From the kinematic graph, obtained in the previous
step, the terminal pairs of tearing variables and resid-
ual equations are known. Starting at a terminal resid-
ual equation all paths to its tearing variable can be
found by following the in opposite direction. Valid
paths may also include eliminated nodes. Once all
paths have been found, decreasing numbers are as-
signed to the nodes using a breadth-first-search start-
ing at the tearing variable. Afterwards the nodes of
the residual equation and the tearing variable are num-
bered. Then all numbered nodes are eliminated from
the graph as well as the tearing variable from the kine-
matic graph. This process is repeated for the next ter-
minal tearing variable until all tearing variables are
eliminated. In a last step all remaining nodes are num-
bered. Thus, a number has been assigned to every node
allowing to apply Gaussian Elimination.

4.2.3 Applying Gaussian Elimination

Given the numbering of all nodes, the matrix A can be
constructed. Next Symbolic Gaussian Elimination is
applied to the matrix G=

[
A b

]
yielding an upper-

triangular G′, see section 3.2. The equations of the
strong connected component are then replaced by x =
G′−1b.

When performing Gaussian Elimination temporary
variables should be introduced after every elimination
step. Otherwise the symbolic expressions in the entries
of G′ may grow very fast.

4.3 Closed Loop Systems

Adapting the algorithm to cope with closed kinematic
loops is part of the ongoing work. This section shall
outline the problem and possible solutions.

Natural Matching still works reasonably well,
choosing joint accelerations and the constraint forces
of the loop as tearing variables. The search for the
predecessors of the tearing variables, however, breaks
down. Firstly because the tearing variables of the kine-
matic loop may have more than one predecessor and
secondly because they are located in the kinetic leg.

The ordering between the tearing variables then has
to be modeified such that, the tearing variables of the
loop closure joint are treated after all other tearing
variables belonging to the same kinematic loop.

So far, the search for the predecessors has been ex-
tended so that it finds every tearing variable which is
a parent in the kinematic graph. It leads to a dramatic
increase in effort for both the search as well as the as-
sembly of the kinematic graph. Tests have shown that
the whole algorithm suceeds for some models, includ-
ing the sample model, but it fails for others. Failing
is mainly caused because the search for predecessors
sometimes returns unexpected results.

5 Numerical Tests

The described algorithm has been implemented into
the OpenModelica Compiler. It has been tested on
multibody systems with tree structure only.

The following models have been used for testing:

1. Planar Pendulum - A sequence of n submodels
consisting of a revolute joint, a body and a fixed-
Translation

2. Split Pendulum - Same as Planar Pendulum but
with a short extra branch of constant length

Session 6B: Mechanic Systems III

DOI Proceedings of the 9th International Modelica Conference 709
10.3384/ecp12076705 September 3-5, 2012, Munich, Germany

3. Alternating Pendulum - Same as Planar Pendu-
lum, but with alternating axes of rotation

4. Multi Pendulum - Each body is followed by two
more pendulum bodies with a limited recursion
depth (see Figure 5

Figure 5: Multi Pendulum

Figures 6, 7, 8 and 9 show the required operation
counts needed to calculate the whole model (including
the accelerations) for the four test cases. As can be
seen each curve exhibits a linear dependence on the
number of bodies and therefore the number of degrees
of freedom.

For comparison, the results when using tearing [1]
which is (O(n3)) have also been included. One may
see that for planar systems the O(n) algorithm pro-
duces much lower operation counts as the number of
bodies grow. In the 3D case, however, the tearing
algorithm outperforms the proposed O(n) algorithm.
Investigations have shown that this is partly due to
the limited symbolic simplification capabilities of the
OpenModelica Compiler.

6 Discussion

6.1 Applicability

The algorithm has been tested on several different
multibody models. It relies on the structural properties
of the linear system as discussed in the earlier sections.
Due to the fact that Tarjan’s Algorithm [6] decomposes
the system into seperate strong connected components,
the use of force elements does not influence the algo-
rithm as long as their value does not depend on accel-
erations or forces in the system. Hence, Accounting

0 10 20 30 40
0

1

2

3

4

5
x 10

4

Nr of Bodies

F
lo

at
in

g
P

oi
nt

 O
pe

ra
tio

ns

Pendulum

O(n)
Tearing

Figure 6: Results - Pendulum

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Nr of Bodies

F
lo

at
in

g
P

oi
nt

 O
pe

ra
tio

ns

SplitPendulum

O(n)
Tearing

Figure 7: Results - Split Pendulum

for dry friction (tangential force depending on the nor-
mal force) for example, might cause the algorithm to
fail.

Structural singularities are found during compile
time, since during symbolic Gaussian Elimination
each pivot is checked if it is non-zero. Problems like
numerical cancellation or division by zero are not de-
tected by the compiler and have to be reported as errors
at runtime.

Due to the problems which may be encountered on
some models, the algorithm should not be enabled by
default. Instead it provides an interesting alternative
for users who try to tune their models for faster execu-
tion times, as it would be the case in real time applica-
tions, for example.

Achieving O(n) Complexity for Models from Modelica.Mechanics.Multibody

710 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076705

0 10 20 30 40
0

2

4

6

8

10
x 10

4

Nr of Bodies

F
lo

at
in

g
P

oi
nt

 O
pe

ra
tio

ns

AlternatingPendulum

O(n)
Tearing

Figure 8: Results - Alternating Pendulum (3D)

0 5 10 15
0

2000

4000

6000

8000

10000

Nr of Bodies

F
lo

at
in

g
P

oi
nt

 O
pe

ra
tio

ns

MultiRope

O(n)
Tearing

Figure 9: Results - Multi Pendulum

6.2 O(n) or Tearing?

If Gaussian Elimination fails during compile time,
the current implementation switches back to Tearing.
However, the question arises which strong connected
components should the proposed O(n) algorithm be
applied to. The current (presumably non-efficient) im-
plementation is controlled by a compiler flag. If it is
set, the O(n) algorithm is applied to every strong con-
nected component. Should it fail, Tearing is applied
istead. A possible improvement could be, to control
that either by an annotation or by comparing the oper-
ation count.

6.3 Efficiency

The investigations suggest that this algorithm indeed
achieves O(n) performance and the results show that
it is often more efficient than Tearing. However, there
is still much potential for optimization. The most
promising optimization would be to exploit symme-
try. This could be achieved by looking for common
sub expressions.

The current version of the Model-
ica.Mechanics.MultiBody library however, is not
suited for exploiting symmetry since all transla-
tional variables are written with respect to the world
frame. Thus, for equation (1) and (3) the relationship
Ri, j = RT

j,i does not hold. Preliminary tests have
shown a 20% decrease in operation count, without the
usage of a common sub expression search, when the
symmetry is established by writing all translational
variables with respect to the local frame_a.

7 Outlook

Next steps include adaptions to make the algorithm
work reliably on models with kinematic loops. It is
also worth extending the module which performs sym-
bolic simplification by analyzing the assignments be-
fore code generation. This may also be combined with
trying to exploit symmetry in order to lower the num-
ber of operations.

Lastly, it would be interesting to see if that algo-
rithm may also be applied successfully to models from
other domains, like electrical networks or chemical
processes.

8 Conclusion

In this paper a special O(n) algorithm for calculating
the joint accelerations of a multibody system has been
adapted. With the novel graph theoretic interpretation,
general purpose Modelica compilers are able to solve
models from Modelica.Mechanics.MultiBody with a
computational effort proportional to number of bodies
n compared to the usual O(n3) algorithms based on
the mass matrix. A working implementation for the
OpenModelica Compiler has shown a linear relation-
ship between the operation count and degrees of free-
dom. When comparing the results to the tearing algo-
rithm, it became apparent that it outperforms the pro-
posed algorithm for non-planar models. This is partly
due to the limited symbolic simplification carried out
by the OpenModelica Compiler.

Session 6B: Mechanic Systems III

DOI Proceedings of the 9th International Modelica Conference 711
10.3384/ecp12076705 September 3-5, 2012, Munich, Germany

References

[1] H. Elmqvist, and M. Otter: Methods for Tearing
Systems of Equations in Object Oriented Model-
ing, Proc. ESM’94, European Simulation Multi-
conference, Barcelona, Spain, June 13, 1994, pp.
326-332.

[2] R. Featherstone: The calculation of robot dy-
namics using articulated-body inertias. Interna-
tional Journal of Robotics Research 2, May 1983,
pp. 13-30

[3] R. Featherstone: Rigid Body Dynamics Algo-
rithms. Springer, New York, 2008

[4] H. Brandl, R. Johanni and M. Otter: A very ef-
ficient algorithm for the simulation of robots and
similar multibody systems without inversion of
the mass matrix, In Kopacek, P., Troth, I. and
Desoyer, K. (Eds.), Theory of Robots, Oxford,
Pergamon Press, 1988, pp. 95- 100

[5] M. Otter, H. Elmqvist, and F.E. Cellier: Relax-
ing: A symbolic sparse matrix method exploiting
the model structure in generating efficient sim-
ulation code, Proc. Symp. Modelling, Analysis,
and Simulation, CESA’96, IMACS MultiConfer-
ence on Computational Engineering in Systems
Applications, Lille, France, vol.1, 1995, pp. 1-12

[6] I.S. Duff, A.M. Ersiman, and J.K. Reid: Direct
Methods for Sparse Matrices, Oxford University
Press, 1986

[7] S.E. Mattsson and G. Söderlind: Index Reduc-
tion in Differential Algebraic Equations Using
Dummy Derivatives, SIAM Journal on Scientific
Computing, Vol. 14, No. 3, pp. 677-692, 1993

[8] R. Tarjan: Depth-first search and linear graph al-
gorithms, 12th Annual Symposium on Switching
and Automata Theory, 13-15 Oct., 1971, pp. 114
- 121

[9] E. Carpanzano: Order Reduction of General
Nonlinear DAE Systems by Automatic Tearing,
Mathematical and Computer Modelling of Dy-
namical Systems, Vol. 6, Iss. 2, 2000

Achieving O(n) Complexity for Models from Modelica.Mechanics.Multibody

712 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076705

Session 6C: Climate Systems II

Modeling the discontinuous individual channel injection into fin-and-tube evaporators for residential air-conditioning

Modeling the discontinuous individual channel injection into

fin-and-tube evaporators for residential air-conditioning

Martin Ryhl Kærn†,‡ Brian Elmegaard†

†Technical University of Denmark, Department of Mechanical Engineering

Nils Koppels Allé Bygn. 403, DK-2800 Lyngby, Denmark, e-mail: pmak�mek.dtu.dk
‡Former address: Danfoss A/S, Refrigeration and Air-Conditioning

Nordborgvej 81, DK-6430 Nordborg, Denmark

Abstract

In this paper a working principle based upon the novel

expansion and distributor device EcoFlowTM is ana-

lyzed. The device enables compensation of flow mald-

istribution by control of individual channel superheat.

The working principle is discontinuous liquid injection

(pulsating flow) into each individual channels during a

specified cycle time. Moreover, the influence of the in-

jection cycle time is investigated together with an op-

tional secondary flow into the other channels with re-

gards to cooling capacity, overall UA-value and COP.

The results showed spurious fluctuations in pressure

when simulating the pulsating flow, thus the dynamic

behavior in the mixture two-phase flow model is in-

sufficient to model the discontinuous liquid injection

principle. Despite, the fluctuations and imperfections

of the model we found that the cycle time should be

kept as low as possible and that the optional secondary

flow increases performance. Moreover, the paper re-

ports on the applicability of Modelica developed mod-

els to analyze and optimize the working principle and

design of expansion devices such that Modelica may

be used in future development of novel discontinuous

expansion devices.

Keywords: refrigeration; air-conditioning; evap-

orator; two-phase flow; liquid injection; pulsation;

transient; dynamic; modeling; simulation; Modelica.

Nomenclature

Roman

A cross-sectional area (m2)

cp specific heat capacity (J kg−1K−1)

C capacitance flow (W K−1)

COP coefficient of performance (-)

D inner tube outer diameter (m)

d inner tube inner diameter (m)

Fw wall friction force (N m−3)

Fo orifice flow ratio parameter (-)

g gravitational acceleration (m s−2)

Ḣ enthalpy flow (W)

h specific mixed-cup enthalpy (J kg−1)

h̄ specific in situ mixture enthalpy (J kg−1)

htc heat transfer coefficient (W m−2K−1)

İ momentum flow (N)

K orifice flow coefficient

k thermal conductivity (W m−1K−1)

M mass (kg)

ṁ mass flow rate (kg s−1)

NTU number of transfer units (-)

OD opening degree (%)

P channel perimeter (m)

p pressure (Pa)

Q̇ heat flow rate (W)

q′′w wall heat flux (W m−2)

R thermal resistance (K W−1)

S slip ratio (-)

T temperature (K)

t time (s)

U velocity (m s−1)

UA overall UA-value (W K−1)

x vapor quality (-)

z axial channel length (m)

Greek

α void fraction (-)

ε effectiveness (-)

Θ distribution vector (-)

ρ density (kg m−3)

ρ̄ mixture density (kg m−3)

DOI Proceedings of the 9th International Modelica Conference 713
10.3384/ecp12076713 September 3-5, 2012, Munich, Germany

ρ ′ momentum density (kg m−3)

θ angle to horizontal plane (deg.)

Subscripts

ax axial

c condensation

cyc cycle

e evaporation

exp experiment

f saturated liquid

g saturated gas

H homogeneous

damp dampening

inj injection

rad radial

ss steady state

tot total

w wall

1 Introduction

Flow maldistribution in fin-and-tube evaporators has

been shown by many investigators to reduce the per-

formance of air-conditioning systems in terms of cool-

ing capacity and COP. Furthermore, compensation of

flow maldistribution by control of individual channel

superheat has been shown to recover the penalties of

flow maldistribution significantly [1, 2, 3]. Perfect

control of individual channel superheats means that a

thermostatic or electronic expansion valve is located

on each evaporator channel and thus controls each su-

perheat to be the same. It is not beneficial for eco-

nomic reasons to install an expansion valve for each

channel. Therefore, the discontinuous liquid injec-

tion principle is studied in this paper as a promis-

ing method for compensation by control of individual

channel superheat. On the other hand, the tube cir-

cuitry of fin-and-tube evaporators may be optimized

to compensate flow maldistribution by design [4] such

that equal channel superheats occur, however, it does

not ensure equal channel superheats at part-load or off-

design conditions.

The focus of the current study is to gain more under-

standing and insight in the discontinuous liquid injec-

tion into each evaporator channels and its implications

for evaporator design and system performance in terms

of overall UA-value, cooling capacity and COP. We

will investigate implications for two standard tube cir-

cuitries namely the face split and the interlaced evap-

orator, see figure 1. Especially, we strive to optimize

the discontinuous liquid injection principle by study-

ing the effects of different specifications (cycle time

and optional secondary flow) and provide guidelines

for optimal energy efficiency. For simplicity we do

not consider actual flow maldistribution when evalu-

ating the effect of cycle time and optional secondary

flow. The injection principle is essentially two-phase

flow pulsations and the study may show the potential

of increasing capacity and COP by employing pulsa-

tions to the flow.

The modeling of the liquid injection dynamics

showed spurious fluctuations in pressure, which have

not been observed as high in any similar experiments

carried out at Danfoss. The current analysis should

therefore be seen as a first study of the injection dy-

namics with the current model approach and limita-

tions. When simulating the injection dynamics, we

must keep in mind that the correlations for heat trans-

fer, friction and void may become invalid at large tran-

sients in mass flow, since they are developed from

steady state experiments. Furthermore, the discontin-

uous refrigerant injection is essentially pulsating two-

phase flow, and the significance of the liquid/vapor in-

terfacial dynamics may become important such as in-

terfacial friction and drag and/or thermodynamic non-

equilibrium effects. These phenomenons are not in-

cluded in the typical mixture two-phase flow model

used in many Modelica libraries, and also used in the

current study (developed in Kærn [3]).

1.1 Liquid injection principle

The liquid injection principle is based on the recently

developed Danfoss product (EcoFlowTM [5]). Actu-

ally, the EcoFlow valve does not measure the individ-

ual channel superheats but only the overall superheat.

Furthermore, it does not provide continuous refriger-

ant flow in each channel, but rather discontinuous in-

dividual channel injection (modulation of each chan-

nel flow) with optional secondary flow to the other

channels. The optimal distribution of mass flow rate

(at flow maldistribution) is then found from a distribu-

tion analysis performed at specific time intervals dur-

ing operation, see Mader and Thybo [6]. The distribu-

tion analysis is essentially carried out by control algo-

rithms, where the importance of each individual chan-

nel on the overall superheat is measured in order to

find the optimal distribution. The individual channel

superheats become the same at the optimal mass flow

distribution.

The individual injection is performed by a stepper

motor (48 steps per revolution), which rotates the dis-

tributor disc, see figure 2a. The EcoFlow valve comes

Modeling the discontinuous individual channel injection into fin-and-tube evaporators …

714 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076713

a b

Airflow Airflow

Figure 1: Tube circuitries of the interlaced evaporator (a) and the face split evaporator (b).

in two different designs, i.e. a multi-orifice (MO) de-

sign (main orifice + secondary orifices) and a single-

orifice (SO) design (main orifice only), see figure 2b

and 2c. The orifice size of the SO design is larger,

since more refrigerant needs to pass through the main

orifice. The SO design enables the possibility of in-

dividual channel defrost during cooling operation (no

defrost periods) for the face split evaporator only, see

figure 1b. As we shall see later, the results show that

the performance in steady state without considering

frost build-up becomes a bit smaller when using the

SO concept. Furthermore, all orifices of both designs

are closed in between each channel injection.

1.2 Objectives and content

The first objective is to evaluate the effect of the cycle

time for the MO and SO design concepts, i.e. the time

it takes for one revolution. The second objective is to

evaluate the size of the secondary orifices in the MO

design compared to the main orifice. The questions

that are sought to be answered are:

• What is the minimum cycle time for discontinu-

ous liquid injection? Too large cycle times will

cause too much dry-out of the channels.

• Does capacity decrease or increase by the discon-

tinuous liquid injection (pulsating flow)?

• How much refrigerant should pass through the

main and secondary orifices in the MO design?

Note that the results is focused on the steady state

performance in terms of overall UA-value, cooling ca-

pacity and COP, where the dynamics of the refrigerant

injection is modeled.

The paper starts by a brief description of the liq-

uid injection modeling and use of experimental results

for evaluating orifice flow coefficients for the actual

MO and SO designs. Then the pressure fluctuations

caused by the liquid injection modeling is considered

and compared to experiments using an earlier MO de-

sign and performed on the interlaced tube circuitry. Fi-

nally, the effect of the cycle time and flow ratio be-

tween main and secondary orifices of the MO concept

are investigated.

2 Modeling approach

This section describes the model that was imple-

mented in the Modelica language of the discontinu-

ous liquid injection principle. Furthermore, the system

model is described with focus on the evaporator.

2.1 Injection modeling

This section describes the experimental data reduction

that was performed of actual EcoFlow capacity tests,

in order to obtain the orifice flow coefficients for both

MO and SO designs (see figure 2). The goal of the

data reduction is to compute the mass flow through the

main orifice and secondary orifices at different pres-

sure levels and opening degrees (when the expansion

valve is open only). The capacity tests provide con-

tinuous capacity (evaporation of refrigerant) or mass

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 715
10.3384/ecp12076713 September 3-5, 2012, Munich, Germany

a b

c

Figure 2: EcoFlow distribution method and refrigerant

flow through discs (a), single-orifice (SO) discs (b) and

multi-orifice (MO) discs (c).

flow rate through the valve, but we are only interested

in the mass flow through the valve when it is open.

When knowing the orifice flow coefficient K, the mass

flow through the valve may be computed by the single

phase orifice equation as

ṁopen = KA

√

2ρ f (pin − pout) (1)

where A is the flow area of the orifice, ρ f is the sat-

urated liquid density, pin and pout are the pressure at

inlet and outlet of the valve. The use of equation 1

is the standard method of developing empirical equa-

tions to predict mass flow rate through orifices [7] even

in refrigerant expansion devices [8, 9].

Two-phase flow effects such as partial vaporization

(flashing) are included in the flow coefficient. Further-

more, the capacity tests of the orifice discs were only

carried out at standard conditions. It means that K will

not be dependent on the pressure levels, and is thus as-

sumed to be constant at different pressure levels. The

standard conditions for these capacity tests are: Evap-

oration at 5◦C, condensation at 32◦C, 4 K subcooling

and no superheat. The relation between the experi-

mental mass flow rate and valve capacity is thus

Q̇exp = ṁexp[hg(pout)−h(pin,Tin)] (2)

The stepper motor has 48 steps per revolution equal-

ing 7.5 degree rotation per step. The step time is 10

ms per step, i.e. a minimum of 480 ms per revolution

(minimum cycle time). Due to the opening and clos-

ing of the valve, the liquid refrigerant before the valve

will create a fluid hammer (also called a hydraulic

shock). The moving liquid is suddenly forced to stop,

and the pressure builds up before the valve and a pres-

sure wave will propagate upstream. In order to elimi-

nate the peak forces acting on the valve, the speed of

the stepper motor is dampened as the valve opens and

closes.

To find the actual mass flow through the valve when

open we need to know the opening time of the valve

(injection time). The actual injection time is a func-

tion of cycle time, opening degree, damping time and

step time of the stepper motor. A detailed description

is given in Kærn [3], however, it is simply a matter of

tracking the time when open and closed. When the in-

jection time is known the mass flow through the valve

when open may be computed by mass continuity as

ṁopen = ṁexp

tcyc

tinj

(3)

and used in equation 1 to compute the flow coefficient

K for the total flow through main and secondary ori-

fices. The flow coefficient is thus for actual design and

number of discharge channels (EcoFlow is made with

up to 8 discharge channels), and is a function of open-

ing degree, cycle time, step time and damping time.

In this paper we only consider four channel evapora-

tors, i.e. two coils with two channels each. Therefore,

the flow coefficients were only computed on the four

channel orifice discs with MO and SO designs. The

standard EcoFlow time settings are a step time of 10

ms and a damping time of 120 ms for both opening

and closing. Using the capacity tests, we computed

the flow coefficients for the total flow as function of

opening degree for cycle times 6, 10 and 20 seconds

for both MO and SO designs. For the SO design the

total flow comes through the main orifice, however,

for the MO design we need additional information on

how much flow that goes into the main and secondary

orifices, respectively.

Fortunately, a capacity test was also performed at

steady state conditions, i.e. no rotation of the distrib-

utor disc and fully open continuous flow. The test

was done at all orifices open, but also at main orifice

closed, which gives us the flow ratio parameter be-

Modeling the discontinuous individual channel injection into fin-and-tube evaporators …

716 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076713

tween the main orifice flow and total flow in steady

state as

Fo =
ṁmain,ss

ṁtot,ss

= 0.492 (4)

The ratio is assumed to be independent of the cy-

cle time and damping time, and thus directly used to

distribute the total mass flow to the main and the sec-

ondary orifices when the valve is open. The total mass

flow when the valve is open and the corresponding

steady state mass flow are shown on figure 3a. Fig-

ure 3b shows the corresponding flow coefficients.

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

OD [%]

M
a

s
s
 f

lo
w

 [
k
g

 s
−

1
]

Cyc6 O120 C120

Cyc10 O120 C120

Cyc20 O120 C120

steady state

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

OD [%]

F
lo

w
 c

o
e

ff
ic

ie
n

t
[−

]

Cyc6 O120 C120

Cyc10 O120 C120

Cyc20 O120 C120

a

b

Figure 3: Total mass flow rate when valve is open (a)

and flow coefficients (b) as function of opening degree

(MO design); Cyc=cycle time [s], O=opening damp-

ing time [ms], C=closing damping time [ms].

We assume that the accelerational effects of the fluid

at opening and closing may cause the differences in the

flow coefficients and mass flows, which tends to differ

more at low opening degree, where the accelerational

effects should play a larger role compared to the actual

mass transferred through the valve. As expected, the

mass flow curves are below the steady state mass flow

and becomes closer at high opening degree, where the

opening and closing have smaller influence. Unfortu-

nately, there were no measurements between 10% and

60% opening degree.

The expansion process may experience choking of

the flow, i.e. the mass flow may not increase by de-

creasing the downstream pressure and is only a func-

tion of upstream conditions. Using the above mod-

eling approach does not include the choking phe-

nomenon and the mass flow is essentially a function

of pressure difference and flow coefficient. It is thus

assumed that choking of the flow is not existing.

2.1.1 Implementation

The implementation of the liquid injection model

in Modelica is done by using the CombiTable1D
model from the Standard Modelica Library, i.e. one-

dimensional linear table interpolation of the flow coef-

ficients. The mass flow rates through the main orifice

and secondary orifices (MO) are then computed using

equation 1 and 4. Now it is just a matter of comput-

ing the individual channel opening and closing time

during each cycle. A distribution vector is defined as

N

∑
i=1

Θi = 1 (5)

which determines the time period associated with each

channel ttube,i as

ttube,i = tcycΘi (6)

where i denotes the channel number and N the total

number of channels. The injection time for each chan-

nel is computed by

tinj,i =

(

ttube,i −
Nsteptstep

N
−

Ndamptdamp

N

)

OD

100

+
Ndamptdamp

N
(7)

The first term in the parenthesis is the controllable

time per channel (minimum cycle time subtracted)

times opening degree. The second term counts for the

additional mass flow that would occur even though the

opening degree is zero. The dampening time occurs

from approximately 70% to 100% opening area of the

orifice (as the disc turn). For simplicity, the additional

mass flow is assumed to be the mass flow when fully

open times the damping time.

The opening of each channel is assumed to occur

at ttube,i/2− tinj,i/2. The closing is then at ttube,i/2+
tinj,i/2. The changes in mass flow rate are made

smooth by use of the first order continuous functions

as described in [3, 10] for numerical reasons. The tran-

sition time was chosen to be 0.1 seconds.

Figure 4 shows some examples of the MO liquid

injection model at a cycle time of 10 seconds. It il-

lustrates the working principle of the liquid injection

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 717
10.3384/ecp12076713 September 3-5, 2012, Munich, Germany

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

Time [sec]

M
a

s
s
 f

lo
w

 r
a

te
 [

k
g

/s
] Channel 1 Channel 2 Channel 3 Channel 4

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

Time [sec]

M
a

s
s
 f

lo
w

 r
a

te
 [

k
g

/s
] Channel 1 Channel 2 Channel 3 Channel 4

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

Time [sec]

M
a

s
s
 f

lo
w

 r
a

te
 [

k
g

/s
] Channel 1 Channel 2 Channel 3 Channel 4

a

b

c

Figure 4: Mass flow distributions for liquid in-

jection model with MO design at cycletime =
10 s; Θ = [0.25,0.25,0.25,0.25],OD = 50% (a);

Θ = [0.4,0.25,0.1,0.25],OD = 50% (b); Θ =
[0.4,0.25,0.1,0.25],OD = 100% (c); pe = 9.3 bar and

pc = 19.8 bar (standard condition).

model as the opening degree and the distribution vec-

tor are changed. Throughout this paper we do not

consider compensation of flow maldistribution, thus

the liquid injection model runs in even flow mode

(figure 4a) and the distribution vector becomes Θ =
[0.25,0.25,0.25,0.25]. In compensating flow mode the

values in the distribution vector need be controlled in

the numerical model according to the individual chan-

nel superheat.

2.2 Model setup

The numerical model is described in Kærn et al. [11]

for a co-axial evaporator and has been updated as de-

scribed in Kærn [3] to model the full system (con-

denser and compressor also) and the tube circuitries

of the interlaced and face split evaporators, see fig-

ure 1. The model is implemented in the Modelica

language and Dymola 7.4 [12] is used as simulator.

The Modelica language facilitates object-oriented pro-

gramming, which is important for model reuse and ex-

tension. Dymola has been well tested within the field

of air-conditioning and refrigeration [13, 10]. Ther-

mophysical properties for R410A are obtained from

the Refeqns package [14]. In order to model the re-

frigerant distribution and circuitry in the evaporator

a dynamic distributed one-dimensional mixture finite

volume model was chosen. For the condenser, the sim-

pler moving boundary model of Zhang and Zhang [15]

was chosen, which averages the vapor, two-phase and

liquid regions. The models of the expansion and com-

pressor are quasi-static. Momentum transfer and fric-

tional pressure drop are only addressed in the evapora-

tor tubes, U-bends and feeder tubes, in order to predict

the mass flow distribution in the evaporator. Further-

more, the void fraction model by Zivi (1964) is used

to model the refrigerant charge of both condenser and

evaporator.

Since the evaporator pressure showed spurious fluc-

tuations when simulating the injection principle, we

included the refrigerant flow equations and implemen-

tation for the evaporator model in the appendix such

that these may be studied by the reader. Furthermore,

we did not use the Modelica stream prefix. Since the

compressor runs at constant speed, we did not observe

flow reversal during the flow pulsations.

2.2.1 Geometry and correlations

Table 1 shows the main geometry of the test case evap-

orator and condenser. The tube inner walls are smooth.

Furthermore, the feeder tubes to the evaporator have

an internal diameter of 3 mm and a length of 300 mm.

The manifold inner and outer diameter is 16 mm and

19 mm, respectively, and its length is 5 m from the

evaporator to the compressor. Note that the coil geom-

etry is the same for both the interlaced and face split

evaporator, however, the tube connections or circuit-

ing are different as shown on figure 1. Furthermore,

the simulation of the injection is very CPU demand-

ing and for this reason we chose to use only one cell

per tube for the evaporator. In terms of convergence

in total cooling capacity of the evaporator, this choice

is within 2% of the total cooling capacity at 5 cells

per tube [3]. In the condenser, refrigerant enters four

channels and is mixed before entering a fifth channel.

Since the circuitry is not addressed in the condenser, it

is assumed to be four straight tubes.

Modeling the discontinuous individual channel injection into fin-and-tube evaporators …

718 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076713

Table 1: Main geometry of evaporator and condenser

Evaporator Condenser

Number of coils 2 1

Number of channels in each coil 2 5

Number of tubes in each channel 18 6

Tube length [mm] 444.5 2100

Inner tube diameter [mm] 7.6 7.6

Outer tube diameter [mm] 9.6 9.6

Transverse tube pitch [mm] 25.4 25

Longitudinal tube pitch [mm] 21.25

Fins Louvred Louvred

Fin pitch [mm] 1.81 1.15

Total outside area [m2] 17.3 52.2

Number of cells per tube 1

Table 2: Overview of used correlationsp

Air-side

Heat transfer Wang et al. (1999)

Fin efficiency Schmidt approximation (1949)

Single-phase

Heat transfer Gnielinski (1976)

Friction Blasius (1913)

Bend friction Ito (1960)

Two-phase

Heat transfer (evaporator) Shah (1982)

Heat transfer (condenser) Shah (1979)

Void fraction Zivi (1964)

Friction Müller-Steinhagen and Heck

(1986)

Bend friction Geary (1975)

Full references are given in Kærn [3].

Each discrete cell of the evaporator is calculated

as a separate heat exchanger with uniform transport

properties. Mass, momentum and energy conservation

equations are applied to the refrigerant in each cell,

where thermodynamic equilibrium is assumed. Fur-

thermore, changes in kinetic and potential energies are

neglected. It is assumed that the tube walls have rota-

tional symmetry (no azimuthal heat conduction) and

negligible axial heat conduction. Mass and energy

conservation equations are applied to the air, which

is assumed to be dry. Similar assumptions are used

in the condenser model of the refrigerant and airflow,

however the heat resistance and the dynamics in the

condenser wall are neglected. The used correlations

for both the evaporator and the condenser are given in

table 2. Furthermore, effectiveness-NTU relations are

employed.

The expansion process is modeled as an isenthalpic

process and the opening degree from equation 7 es-

sentially controls the superheat out of the evaporator.

The manifold is modeled by mixing of the refrigerant

streams, i.e. mass and energy conservation equations

are applied. The dynamics of the manifold wall is in-

cluded and heat transfer is modeled using a constant

heat transfer coefficient of 700 Wm−2K−1. The geo-

metric volume flow of the compressor is 6.239 m3h−1,

and polynomials from the rating of the compressor are

used to compute the isentropic and volumetric efficien-

cies.

2.2.2 Boundary conditions

The liquid injection model controls the overall super-

heat to 5 K by the opening degree using a PI-controller.

During start-up of the simulation, the charge of the

system is determined so that the subcooling becomes 2

K. The indoor and outdoor air temperatures are 26.7◦C

and 35◦C, respectively. The mean frontal air veloci-

ties are 1.16 and 0.68 ms−1 to the evaporator and con-

denser, respectively.

3 Experimental comparison

In this section we compare the injection modeling with

experiments carried out at Danfoss Nordborg. The dy-

namic behavior observed in the simulations showed

fluctuations in important variables such as superheat

and evaporating pressure. In Kærn [3] a sensitivity

analysis of the fluctuations were performed in order to

better understand the causes of the fluctuations, how-

ever, sensible variables such as void fraction and mani-

fold+suction volume did not eliminate the fluctuations

satisfactorily.

The fluctuations in the model have a time period

corresponding to the cycle time of the liquid injec-

tion model divided by the number of channels in the

evaporator (for even flow mode, see figure 4a). These

fluctuations have not been observed as high in any ex-

periments carried out at Danfoss, where the sampling

frequency has been high enough to capture these fluc-

tuations. The sampling frequency is often chosen to

be 1 s−1 for refrigerant temperature and pressure mea-

surements at Danfoss, which is too low for capturing

the injection dynamics seen in the numerical model.

3.1 The experiments

The EcoFlow experiments were performed on a bit dif-

ferent system and conditions than described in previ-

ous section. The system comprised a 10.5 kW inter-

laced evaporator, a hermetic scroll compressor, micro-

channel condenser and an early MO disc version. The

early design of the MO disc is estimated to have a flow

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 719
10.3384/ecp12076713 September 3-5, 2012, Munich, Germany

Table 3: Reduced experimental boundary conditions

Superheat 5 K

Pressure out of condenser 31.9 bar

Liquid temperature out of condenser 45.6 ◦C

Volume flow out of evaporator 7.17 m3h−1

Indoor air temperature 24.3◦C

Indoor frontal air velocity 2.98 m s−1

ratio parameter Fo (equation 4) of 0.8, which reflects

the earlier version cross-sectional areas of the main

and secondary orifices. Furthermore, the flow coef-

ficients, the step time and damping time are assumed

to be the same as the final MO disc design. The cycle

time was six seconds in the experiments and the flow

distribution mode was even flow, see figure 4a.

These experiments are the most recent experiments

carried out at Danfoss in Nordborg on a fin-and-

tube four channel evaporator using the EcoFlow valve.

Later experiments including compensation were per-

formed with the final EcoFlow version, however, on

larger capacity units with six or eight channels each,

which complicates the simulations drastically. For

these reasons, the earlier EcoFlow MO experiments

were chosen for the comparison. More information

about the experimental data is given in Kærn [3]. The

experimental data is reduced in order to be used as in-

put to the evaporator model only, thus we only simu-

late the 10.5 kW evaporator and manifold+suction vol-

ume in this comparison. Table 3 lists the model inputs.

Figure 5a and 5b show the experimental superheat

and pressure fluctuations during three cycles. The cor-

responding model results are shown in figure 5c and

5d. Note that the thick curve around 5 K is overall

superheat. Furthermore, the experiments show a bit

higher individual superheats. This is because that they

were measured on the tube wall surface with insula-

tion around the tube, and may have heat entering from

the surroundings.

When comparing to the experimental data, it is seen

that the pressure fluctuations are smaller (approxi-

mately one third in amplitude of the numerical results).

It is difficult to make this conclusion based on these

experimental results, since the sample time was only

1 s−1 for the pressure. However, the experiments car-

ried out at Danfoss with higher frequency did not show

as high fluctuations as the numerical model does here.

The reason for these high fluctuations in the numer-

ical model have not been obtained so far. However,

we believe that the interfacial dynamics of the two-

phase flow and the presence of thermodynamic non-

equilibrium may be responsible for the dampening of

the pressure fluctuations in the experiments. These

are inherently exclusive in the mixture two-phase flow

model. In addition, the refrigerant heat transfer, pres-

sure drop and void correlations are developed from

steady state experiments and employed at large tran-

sients, however, no dynamic two-phase flow correla-

tions (pulsating flow) were found in the literature.

If we compare the individual superheat measure-

ments and the prediction by the numerical model, then

the accordance is much more acceptable. Both the

measurements and the model predictions show the ef-

fect of the liquid injection into each channel, since

they fluctuate similarly at a time period correspond-

ing to the cycle time. Furthermore, the superheat de-

creases as the refrigerant enters through the main ori-

fice into each channel as indicated on figure 5e. The

corresponding mass inside each channel is shown on

figure 5f, which increases when the refrigerant enters

through the main orifice and otherwise decreases.

What is probably most important is the individual

channel overall UA-value in figure 5g, which shows a

decrease just before new refrigerant is fed to the cor-

responding channel. There may be an optimization

potential here if the cycle time is chosen such that

the UA-value decrease is avoided. Figure 5h shows

the corresponding individual channel pressure drop by

friction and acceleration due to density and mass flux

differences. When considering the individual channel

pressure drop due to friction and acceleration, one may

expect that this is the cause of the pressure fluctua-

tions, however, the sensitivity analysis from [3] proves

otherwise. It is interesting to note that the accelera-

tional pressure drop is positive as the refrigerant is fed

to each channel. This is because the refrigerant mass

flow is higher at the inlet compared to the outlet of the

channel, i.e. the difference in momentum flow between

inlet and outlet is positive.

4 Simulation results

Despite the presence of the pressure fluctuations, the

numerical model is used to perform simulations of the

significance of the cycle time for both the multi-orifice

(MO) and single-orifice (SO) designs. Furthermore,

the flow ratio parameter Fo (equation 4) for the MO

design will be investigated, i.e. the flow distribution

between the main and secondary orifices of the MO

design.

Modeling the discontinuous individual channel injection into fin-and-tube evaporators …

720 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076713

200 205 210 215 220
0

2

4

6

8

10

12

S
u

p
e

rh
e

a
t

[K
]

Time [s]
200 205 210 215 220
9

9.2

9.4

9.6

9.8

10

P
re

s
s
u

re
 [

b
a

r]

Time [s]

a b

Channel 1

Channel 2

Channel 3

Channel 4

Overall

200 205 210 215 220
0

2

4

6

8

10

12

S
u

p
e

rh
e

a
t

[K
]

Time [s]

c

200 205 210 215 220
9.6

9.8

10

10.2

10.4

10.6

P
re

s
s
u

re
 [

b
a

r]

Time [s]

d

200 205 210 215 220
0

0.02

0.04

0.06

0.08

0.1

M
a

s
s
 f

lo
w

 r
a

te
 [

k
g

 s
−

1
]

Time [s]

e

200 205 210 215 220
0

20

40

60

80

100

C
h

a
n

n
e

l
m

a
s
s
 [

g
]

Time [s]

f

200 205 210 215 220
0

0.1

0.2

0.3

0.4

C
h

a
n

n
e

l
U

A
 [

k
W

 K
−

1
]

Time [s]

g

200 205 210 215 220

−1.5

−1

−0.5

0

P
re

s
s
u

re
 d

ro
p

 [
b

a
r]

200 205 210 215 220

−0.1

0

0.1
Acceleration

Friction

Time [s]

h

Figure 5: Zoomed-in experimental superheats and suction pressure (a,b); Model comparison (c,d) and other

model results (e-h) at uniform airflow: Inlet individual channel mass flow rate (e), individual channel mass (f),

individual channel overall UA-value (g) and individual channel accelerational and frictional pressure drop (h).

4.1 Cycle time

Figure 6 (a,b,c) shows the UA-value, cooling capacity

and COP using MO and SO designs as function of the

cycle time. Note that the orifice flow coefficients for

the 3 second cycle time simulations were assumed to

be the same as for the 6 second cycle time case.

The results show that the MO design performs bet-

ter than the SO design. Furthermore, the cycle time

should be kept as low as possible. If flow pulsations

increase heat transfer we would have expected an op-

timum cycle time, but it seems to be outside the cycle

times considered or not shown using the current mix-

ture model and limitations (see discussion). The sim-

ulation using the SO design at a cycle time of 20 sec-

onds failed and was not obtainable. It also seems that

this case decreases the performance drastically. The

question regarding which cycle time is the maximum

limit is difficult to answer based on the present results.

For these four channel evaporators it seems that the

maximum cycle time is 10 and 6 seconds for the MO

and SO design, respectively. Otherwise, the channels

dry-out too much when the valve is closed.

The face split circuitry shows the best performance

in contrast to the interlaced circuitry at uniform flow

conditions for each distribution method. This is be-

cause the superheated regions of the face split evapora-

tor is in the first tube row and is thus minimized. This

also means that the face split evaporator performs bet-

ter than the interlaced if flow maldistribution is com-

pensated as also shown by Kærn [3].

4.2 MO flow ratio

Figure 6 (d,e,f) shows the UA-value, cooling capacity

and COP as function of the flow ratio parameter Fo,

and at a cycle time of 6 seconds. It shows that the

maximum performance is when Fo equals 0.25, which

means that the main and secondary orifices have the

same dimension, thus no possibility to distribute mass

individually. Essentially, all the curves on figure 4a co-

incides, i.e. the flow is distributed evenly to all orifices

at each injection.

It shows that for uniform flow conditions, the op-

timal refrigerant mass flow distribution is uniform.

However, the decrease in performance as Fo increases

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 721
10.3384/ecp12076713 September 3-5, 2012, Munich, Germany

0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

CycleTime [s]

U
A

−
v
a

lu
e

 [
k
W

 K
−

1
]

a

0 5 10 15 20
7.8

8

8.2

8.4

8.6

8.8

9

CycleTime [s]

C
o

o
lin

g
 c

a
p

a
c
it
y
 [

k
W

]

b

0 5 10 15 20
3.2

3.3

3.4

3.5

3.6

CycleTime [s]

C
O

P
 [

−
]

c

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

F
o
 [−]

U
A

−
v
a

lu
e

 [
k
W

 K
−

1
]

Interlaced disc. liq. inj. MO

Face split disc. liq. inj. MO

Interlaced disc. liq. inj. SO

Face split disc. liq. inj. SO

d

0 0.2 0.4 0.6 0.8 1
7.8

8

8.2

8.4

8.6

8.8

9

F
o
 [−]

C
o

o
lin

g
 c

a
p

a
c
it
y
 [

k
W

]

e

0 0.2 0.4 0.6 0.8 1
3.2

3.3

3.4

3.5

3.6

F
o
 [−]

C
O

P
 [

−
]

f

Figure 6: UA-value, cooling capacity and COP vs. the cycle time (a,b,c) at Fo = 0.492 for the MO design;

UA-value, cooling capacity and COP vs. the flow ratio parameter (d,e,f) at cycle time tcyc = 6 seconds.

is small and the maximum limit seems to be around

0.6. Otherwise the secondary channels will also dry-

out too much. Furthermore, the Fo = 95% results of

the MO design seems to be close to the SO design re-

sults presented here at Fo = 100%.

5 Discussion

It is difficult to claim whether the two-phase flow pul-

sations increase or decrease the heat transfer mecha-

nism. Firstly, the two-phase flow regimes are broken

up by the flow pulsations and giving rise to new dis-

continuous flow patterns, which are not properly re-

flected in the steady state correlations for refrigerant

heat transfer, pressure drop and void fraction. No two-

phase flow correlations were found in the literature by

the authors that were developed for discontinuous liq-

uid injection or pulsating flow. Secondly, the mixture

two-phase flow model (also used in many Modelica li-

braries) showed spurious pressure fluctuations, which

have not been observed as high in any experiments car-

ried out at Danfoss. The amplitude of the fluctuations

are approximately 3 times higher in the model com-

pared to similar experiments. Thus the readers need

to be cautioned that the results and conclusions from

the liquid injection modeling are obtained despite the

presence of these fluctuations. It is believed that the

absence of the two-phase interfacial dynamics in the

mixture two-phase flow model is the main cause of the

high pressure fluctuations.

It needs to be stressed that it is not the finite volume

model approach itself that leads to these fluctuations,

but rather the governing phasic equations when added

and becoming mixture equations. The model could

be a separated flow model that includes the governing

phasic equations and possibly the finite volume model

could be used to discretize the phasic equations again.

It is difficult to claim what may minimize the pressure

fluctuations. The only separated flow model known

to the authors that is implemented in Modelica is the

work of Bauer [16], who implemented both phasic mo-

mentum equations. It resulted in another state variable

(the velocity difference between the phases), which es-

sentially is related to the void fraction. It would be

interesting to look deeper into such model approaches

when considering these fluctuations. Similarly, more

dedicated experimental evidence of these fluctuations

would be interesting to have.

6 Conclusion

We conclude that the typical mixture two-phase flow

model that is used in many Modelica libraries is in-

sufficient to model the discontinuous liquid injection

principle (pulsating flow) into each evaporator chan-

nel. This is because the simulations showed spurious

fluctuations in evaporating pressure and superheats,

which have not been observed as high in any experi-

ments carried out at Danfoss. Furthermore, it should

be stressed that the correlations for heat transfer, pres-

sure drop and void fraction employed in mixture two-

phase flow models do not reflect the dynamic behavior

Modeling the discontinuous individual channel injection into fin-and-tube evaporators …

722 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076713

of the pulsating flow, since they are based upon steady

state experiments. To draw detailed conclusions, fur-

ther studies on the discontinuous liquid injection prin-

ciple should be conducted in order to fully understand

and model the phenomenon.

Despite the fluctuations, two orifice designs of the

discontinuous liquid injection principle were investi-

gated in uniform flow conditions, i.e. the multi-orifice

(MO) design and the single-orifice (SO) design. The

multi-orifice design allows for a secondary flow into

the remaining channels at each channel injection.

The simulations of the discontinuous liquid injec-

tion principle showed that the MO design gave better

performance compared to the SO design, without con-

sidering the possible individual channel defrost possi-

bility of the SO design for the face split circuitry. In

addition, the main flow and the individual secondary

flows in the MO design should be kept as even as pos-

sible while having the required mass flow distribution

control band. Based upon the four channel evapo-

rator that were analyzed, it is recommended that the

cycle time should be kept below 10 and 6 seconds

for the MO and SO designs, respectively. Further-

more, the flow ratio parameter should be around 0.6,

or adapted to specific tube circuitry according to the

required mass flow distribution control band.

A Refrigerant flow equations and im-

plementation (evaporator model)

This appendix describes the refrigerant flow equations

and implementation for the evaporator model only. It

is done in order to fully state the equations that lead to

the spurious fluctuations in evaporating pressure when

simulating the liquid injection principle.

A.1 Mixture two-phase flow

The model of the one-dimensional two-phase flow is

the simplest form, i.e. the mixture model as derived

by performing a differential analysis on each phase

and adding the phasic equations [17]. The result is

the mixture mass conservation, the mixture momen-

tum conservation and the mixture energy conservation

equations given by

A
∂ ρ̄

∂ t
+

∂ ṁ

∂ z
= 0 (8)

∂ ṁ

∂ t
+

∂

∂ z

(

ṁ2

ρ ′A

)

=−A
∂ p

∂ z
−FwA− ρ̄gAsinθ (9)

A
∂

∂ t

(

ρ̄ h̄− p
)

+
∂

∂ z
(ṁh) = Pq′′w (10)

where it has been assumed that thermodynamic equi-

librium exists and that the changes in kinetic and po-

tential energy are negligible. The mixture density, spe-

cific in situ enthalpy, specific mixed-cup enthalpy and

momentum density are given by

ρ̄ = ρgα +ρ f (1−α) (11)

h̄ = [ρ f h f (1−α)+ρghgα]/ρ̄ (12)

h = (1− x)h f + xhg (13)

ρ ′ =

(

(1− x)2

ρ f (1−α)
+

x2

ρgα

)

−1

(14)

where the void fraction is defined as α = Ag/A, and

the vapor quality is defined as x = ṁg/ṁ.

Using the definition of the slip ratio, the void frac-

tion and the vapor quality, the fundamental void-

quality relation can be derived as

S =
Ug

U f

=

ṁg

ρgαA

ṁ f

ρ f (1−α)A

=
x

1− x

ρ f

ρg

1−α

α

(15)

and rewritten in terms of the void fraction as

α =

[

1+
ρg

ρ f

1− x

x
S

]

−1

(16)

If homogeneous flow is assumed, then S = 1 and the

homogeneous void fraction, αH , may be calculated

by equation 16. Furthermore, for homogeneous flow it

can be shown that h̄ = h and ρ ′ = ρ̄ = ρH by using the

homogeneous void fraction, where the homogeneous

mixture density, ρH , becomes

ρH =

(

x

ρg

+
1− x

ρ f

)

−1

(17)

The state variables are chosen to be h̄ and p. The

derivative of the mixture density with respect to time

is computed by use of the chain rule

∂ ρ̄

∂ t
=

∂ ρ̄

∂ p

∣

∣

∣

∣

h̄

∂ p

∂ t
+

∂ ρ̄

∂ h̄

∣

∣

∣

∣

p

∂ h̄

∂ t
(18)

where the partial derivatives of mixture density with

respect to pressure and in situ enthalpy are calculated

by numerical finite difference as

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 723
10.3384/ecp12076713 September 3-5, 2012, Munich, Germany

∂ ρ̄

∂ p

∣

∣

∣

∣

h̄

=
ρ̄(p+∆p, h̄)− ρ̄(p, h̄)

∆p
(19)

∂ ρ̄

∂ h̄

∣

∣

∣

∣

p

=
ρ̄(p, h̄+∆h̄)− ρ̄(p, h̄)

∆h̄
(20)

Equations 8, 9 and 10 are discretized according to

the Finite Volume Method (FVM), where the number

of control volumes must be high enough to resolve the

spatial distribution of properties.

The staggered grid structure is adopted as described

by Patankar [18]. It means that the mass and energy

conservation will be solved on the control volume grid,

and the momentum equation will be solved on a stag-

gered grid as depicted on figure 7, where ψ denotes

a thermodynamic quantity and ψ̂ its approximation.

Similar discretization methodology was used in Bauer

[16].

Inlet

ψ1 · · · ψi · · · ψn

Outlet

ṁ1 · · · ṁi ṁi+1 · · · ṁn+1

ψ̂i ψ̂i+1

Figure 7: Staggered grid structure; thick = control vol-

ume grid, dashed = staggered grid

The mass and energy conservation equations be-

come

A∆z
dρ̄i

dt
= ṁi − ṁi+1 (21)

A∆z
d

dt

(

ρ̄ih̄i − pi

)

= Ḣi − Ḣi+1+ Q̇i (22)

where the enthalpy flow Ḣi = ṁiĥi and heat flow Q̇i =
P∆zq′′w,i = P∆zhtc,i(Tw,i−Ti) have been used, and New-

ton’s law of cooling is applied with the well known

heat transfer coefficient htc.

For convection dominated flows the upwind differ-

ence scheme is recommended to approximate thermo-

dynamic quantities onto the staggered grid, because

central difference scheme may lead to non-physical so-

lutions. The 1st order upwind scheme is obtained by

taking the control volume face value (staggered grid

center) to be equal to the nearest upstream control vol-

ume center, thus

ψ̂i ≈ δiψi +(1−δi)ψi−1 i = 1..n+1 (23)

where δi is the indicator function denoting the direc-

tion of the mass flow

δi =

{

0 ṁ ≥ 0

1 ṁ < 0
(24)

The momentum equation becomes

∆z
dṁi

dt
= ∆İi −A(pi − pi−1)−Fw,iA∆z

−
ˆ̄ρigA∆zsinθ (25)

where the momentum flow İi = ṁ2
i /(ρ̂

′

i A) has been

used and the difference in momentum flow, ∆İi, is ap-

proximated according to the 2nd order central differ-

ence scheme as

∆İi ≈

(

İi−1 − İi

)

+
(

İi − İi+1

)

2
=

dİi−1 +dİi

2
(26)

where dİ is the momentum flow difference between

the staggered grid cells. The use of the central dif-

ference scheme serves to avoid discontinuities in the

momentum equation.

Boundary models are used to compute the boundary

conditions Ḣ, İ, dİ, ψ̂ . The change of momentum flow

dİ at the inlet or outlet is simply set to zero, whereas

the other variables are computed from the thermody-

namic state and the mass flow rate.

Correlations for the frictional force, Fw, the heat

transfer coefficient, htc, and the void fraction, α , must

be supplied to close the system of equations.

A.2 Tube wall

The tube wall is discretized according to the Resis-

tance Capacitance Method [19]. The method essen-

tially uses the thermal resistances to describe the heat

flows across the tube wall boundaries. The tube wall is

assumed to have rotational symmetry, i.e. T = T (r,z),
and thus the energy equation for each discrete cell be-

comes

Mcp

dT

dt
= Q̇W + Q̇E + Q̇S + Q̇N (27)

where Q̇S = −P∆zq′′w from equation 10. The entering

and leaving heat flows are depicted on figure 8.

By definition, the heat flows are computed as Q̇ =
∆T/R, where the thermal resistances in the radial and

axial directions to the midpoint of the wall cell are

Rax = 0.5
∆z

kA
(28)

Rrad = 0.5
ln

D/2

d/2

2πk∆z
(29)

Modeling the discontinuous individual channel injection into fin-and-tube evaporators …

724 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076713

Q̇N

Q̇W Q̇E

φ

Section B−B

B

B

r

Q̇S

Figure 8: Heat flows to and from the tube wall

The boundary condition at the inlet and outlet of the

pipe wall is simply no heat flow in the axial direction.

Since we only use one cell per tube in this study the

axial heat conduction is essentially neglected.

A.3 Airflow

The airflow is assumed to be incompressible and can

not accumulate mass or energy. With these assump-

tions, the mass and energy conservation equation for

each air cell become

ṁin − ṁout = 0 (30)

(ṁcpT)
in
− (ṁcpT)

out
+ Q̇N = 0 (31)

The effectiveness-NTU method is applied to de-

scribe the variation in air temperature, i.e. the single

stream heat exchanger configuration where the surface

temperature of each cell is uniform. It describes the

actual heat flow by the effectiveness, ε , of the highest

possible heat transfer, i.e.

Q̇N = εCmin(−∆Tmax) (32)

where Cmin is the minimum capacitance flow and

∆Tmax is the maximum temperature difference. Cor-

relations for the heat transfer coefficient and the fin

efficiency must be applied to compute the Number of

Transfer Units and thus the effectiveness.

A.4 Smooth functions

A first order continuous function is applied at the

phase transitions (0 ≤ x < 0.05 and 0.95 < x ≤ 1). The

function ensures a smooth transition from two-phase

to single phase in heat transfer and frictional pressure

drop correlations. If the transitions are discontinuous,

the equation solver might be slow or even fail to con-

verge. The first order continuous function is described

in Richter [10]. The used correlations are shown in

table 2.

A.5 Heat exchanger architecture

Components of the refrigerant (both control volume

grid cell and staggered grid cell), the wall and the air

have been made in Dymola, and essentially arrays of

these components are put together to form the evapo-

rator in cross flow operation, as shown on figure 9.

Refrigerant Refrigerant

Air

Air

RefCell

WallCell

AirCell

· · ·

· · ·

· · ·

RefCell

WallCell

AirCell

1 · · · n

Figure 9: Heat exchanger architecture; cross flow.

Following this implementation, we did not use al-

ready made components from the Modelica standard

library. We chose this to learn every step of the imple-

mentation in Modelica and to be able to quickly apply

changes to the model formulation and correlations if

necessary. Furthermore, we did not use the Modelica

stream prefix. Since the compressor runs at constant

speed, we did not observe flow reversal during the flow

pulsations.

The circuitry modeling is a bit more complex than

shown on figure 9, however, its construction is simply

a matter of running through many for loops to connect

the airflow paths and the refrigerant bends (assumed

adiabatic) with correct radius. Note that the refrigerant

flow is discretized fully from inlet to outlet through the

bends such that the bends also contains a volume grid

cell and a staggered grid cell. More information on the

circuitry implementation is given in Kærn [3].

References

[1] W. V. Payne, P. A. Domanski, Potential

benefits of smart refrigerant distributors, Fi-

nal report No. ARTI-21CR/610-20050-01, Air-

Conditioning and Refrigeration Technology In-

stitute, Arlington, VA, USA (2003).

[2] J.-H. Kim, J. E. Braun, E. A. Groll, Evaluation

of a hybrid method for refrigerant flow balancing

in multi-circuit evaporators, International Jour-

nal of Refrigeration 32 (2009) 1283 – 1292.

[3] M. R. Kærn, Analysis of flow maldistribution

in fin-and-tube evaporators for residential air-

conditioning systems, Ph.D. thesis, Technical

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 725
10.3384/ecp12076713 September 3-5, 2012, Munich, Germany

University of Denmark, Department of Mechan-

ical Engineering, Kgs. Lyngby, Denmark (2011).

[4] P. A. Domanski, D. Yashar, Application of an

evolution program for refrigerant circuitry opti-

mization, in: ACRECONF "Challenges To Sus-

tainability", New Delhi, India, 2007.

[5] T. Funder-Kristensen, H. Nicolaisen, J. Holst,

M. H. Rasmussen, J. H. Nissen, Refrigeration

system, US Patent, Pub. No.: US 2009/0217687

A1 (2009).

[6] G. Mader, C. Thybo, An electronic expansion

valve with automatic refrigerant distribution con-

trol, in: Deutsche Kälte-Klima-Tagung, Magde-

burg, Germany, 2010.

[7] R. W. Fox, A. T. McDonald, P. J. Pritchard, In-

troduction to fluid mechanics, Wiley, New York,

2004.

[8] C. Park, H. Cho, Y. Lee, Y. Kim, Mass flow

characteristics and empirical modeling of R22

and R410A flowing through electronic expan-

sion valves, International Journal of Refrigera-

tion 30 (8) (2007) 1401–1407.

[9] L. Chen, J. Liu, J. Chen, Z. Chen, A new model

of mass flow characteristics in electronic expan-

sion valves considering metastability, Interna-

tional Journal of Thermal Sciences 48 (6) (2009)

1235 – 1242.

[10] C. C. Richter, Proposal of new object-oriented

equation-based model libraries for thermody-

namic systems, Ph.D. thesis, Technische Uni-

versität Carolo-Wilhelmina zu Braunschweig,

Fakultät für Maschinenbau (2008).

[11] M. R. Kærn, B. Elmegaard, L. F. S. Larsen, Ex-

perimental comparison of the dynamic evapora-

tor response using homogeneous and slip flow

modelling, in: 8th International Modelica Con-

ference, Dresden, Germany, 2011.

[12] Dynasim AB, Research Park Ideon SE-223 70,

Lund, Sweden, Dynamic Modeling Laboratory,

Dymola User’s Manual, version 7.4 (2010).

[13] J. Eborn, H. Tummescheit, K. Prölss, Aircondi-

tioning - a modelica library for dynamic simula-

tion of ac systems, in: 4th International Modelica

Conference, Hamburg, Germany, 2005, pp. 185 –

192.

[14] M. J. Skovrup, Thermodynamic and thermophys-

ical properties of refrigerants, Department of En-

ergy Engineering, Technical University of Den-

mark, Nils Koppels Allé, Building 402, DK-2800

Lyngby, Denmark (2009).

[15] W.-J. Zhang, C.-L. Zhang, A generalized

moving-boundary model for transient simulation

of dry-expansion evaporators under larger distur-

bances, International Journal of Refrigeration 29

(2006) 1119 – 1127.

[16] O. Bauer, Modelling of two-phase flows with

modelica, Master’s thesis, Lund University, De-

partment of Automatic Control (1999).

[17] S. M. Ghiaasiaan, Two-phase flow: Boiling

and Condensation in Conventional and Minia-

ture Systems, 1st Edition, Cambridge University

Press, 2008.

[18] S. V. Patankar, Numerical heat transfer and fluid

flow, Taylor & Francis, 1980.

[19] A. F. Mills, Heat Transfer, 2nd Edition, Prentice

Hall, 1999.

Modeling the discontinuous individual channel injection into fin-and-tube evaporators …

726 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076713

Validation and Application of the Room Model of the Modelica Buildings Library

Validation and Application of the Room Model of the Modelica

Buildings Library

Thierry Stephane Nouidui, Kaustubh Phalak, Wangda Zuo, Michael Wetter

Simulation Research Group, Building Technology and Urban Systems Department

Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory

One Cyclotron Road, 94720, Berkeley, CA

TSNouidui@lbl.gov

Abstract

The Modelica Buildings library contains a package

with a model for a thermal zone that computes heat

transfer through the building envelope and within a

room. It considers various heat transfer phenomena

of a room, including conduction, convection, short-

wave and long-wave radiation. The first part of this

paper describes the physical phenomena considered

in the room model. The second part validates the

room model by using a standard test suite provided

by the American Society of Heating, Refrigerating

and Air-Conditioning Engineers (ASHRAE). The

third part focuses on an application where the room

model is used for simulation-based controls of a

window shading device to reduce building energy

consumption.

Keywords: Buildings library; ANSI/ASHRAE Stand-

ard 140; Simulation-Based Controls

1 Introduction

To support the design and operation of low energy

buildings, the Lawrence Berkeley National Laborato-

ry (LBNL) has been developing a free and open

source Modelica Buildings library for building ener-

gy and control systems [1]. Version 1.1 Build1 of the

library contains about 200 component models for

building energy and control systems. These compo-

nent models can be used for (1) rapid prototyping of

innovative building systems, (2) design of building

energy systems, (3) performance analysis of existing

building systems, (4) development, specification and

optimization of building control sequences, and (5)

model-based operation for controls, fault detection

and diagnostics.

Recently, we implemented window and room models

into the Buildings library to extend its capability to

whole building energy simulation [2]. However, the

models were not systematically validated against

reference data in [2]. In [3], we presented the valida-

tion of the window model which is an important part

of the room model. This paper is to validate the room

model and to show an application where the model is

used as part of a controls framework of a window

shading device of a building. After the introduction,

we will briefly describe the physics and implementa-

tion of the room model. Then we will validate the

room model using a subset of ANSI/ASHRAE

Standard 140 [4], which is a standard test suite for

evaluating building energy simulation tools. After

validating the room model, we will describe an ap-

plication where the room model is part of a simula-

tion-based controls framework used to control a

window shading device of a test cell for reducing

building energy consumption.

2 Room model

The room model of the Buildings library simulates

heat transport processes within rooms and through

the building envelope. This model can be used for

the modeling of rooms with unlimited number of

opaque and transparent surfaces or entire buildings.

The room model takes into account the following

physical processes:

(1) Transient or steady-state heat conduction through

opaque surfaces, such as walls.

(2) Heat transfer through glazing systems including

solar radiation, infrared radiation from ambient envi-

ronment, heat conduction and heat convection.

(3) Convective heat transfer between the room (in-

side) air and room-facing surfaces using either a con-

stant heat transfer coefficient or a temperature-

dependent heat transfer coefficient.

(4) Convective heat transfer between the outside air

and outside-facing surfaces using either a constant

heat transfer coefficient or a variable heat transfer

coefficient as a function of wind-speed, wind-

direction and temperature.

(5) Solar and infrared heat transfer between the room

enclosing surfaces.

DOI Proceedings of the 9th International Modelica Conference 727
10.3384/ecp12076727 September 3-5, 2012, Munich, Germany

(6) Temperature, pressure and species balance equa-

tions inside the room volume.

Note that the current room model assumes that the

air in the room is well-mixed so that a single volume

is used to represent the room air. More details of the

room model are available in [2].

3 Validation of the room model

This section focuses on validation of the room model

using different cases of ANSI/ASHRAE Standard

140 [4]. The Standard 140 is widely used in the

building simulation community for testing the accu-

racy of building simulation models. Due to the com-

plexity and high cost, it is difficult to precisely

measure the energy performance of a building for a

year. As an alternative approach, Standard 140 doc-

uments the simulated annual energy performance of

a thermal zone using different building energy simu-

lation tools. The simulation results of the tools are

not the same since they use different assumptions,

physical models and implementations. However, the

variation of the simulation results is usually in a rea-

sonable range. In this paper, we present validation

cases of a low and high mass building using cases

600, 610, 620, 630, 600FF, 900, and 900FF.

Model configuration

For the validation, the following model configura-

tions have been used:

 Room-side convective heat transfer coefficients

are a function of the difference between air and

surface temperature.

 Outside convective heat transfer coefficients are

a function of the difference between air and sur-

face temperature, and a function of wind speed.

 The long-wave radiative heat transfer has not

been linearized.

 The medium model Build-

ings.Media.GasesConstantDensity.SimpleAir has

been used.

For more details, all cases are available in the Build-

ings library version 1.2

3.1 Case 600: Low mass building without shad-

ing (South facing windows)

Case 600 is a low mass rectangular zone (6m × 8m ×

2.7m) without interior partition and with two win-

dows (3m × 2m each) on the south wall (Figure 1).

Construction material properties and other details are

provided in [4]. For the validation, we simulated the

zone for a year with weather data provided in [4].

Figure 1 Case 600: Low mass rectangular zone

Figure 2 compares the annual heating and cooling

loads calculated by the room model of the Buildings

library with results of other energy simulation tools

provided in [4]. The results of the room model, la-

beled as Buildings Lib., are comparable with other

energy simulation tools. The heating (5.44 MWh)

and cooling (6.97 MWh) loads are within the range

specified in [4] .

Figure 2 Case 600: Comparison of annual heating and cool-

ing loads

We also compared the predicted peak heating load

(Table 1) and peak cooling load (Table 2) and their

time of occurrence. Again, the results of the Build-

ings library are in close agreement with simulation

results of other tools. The difference observed in date

of peak cooling load can be caused by different

modeling assumptions in the simulation tools. The

peak heating (4.23 kW) and cooling (6.82 kW) loads

predicted by the Buildings library are within the min-

imum and maximum range specified in [4].

0

1

2

3

4

5

6

7

8

A
n

n
u

a
l

L
o

a
d

s
[M

W
h

]

Heating Cooling

Validation and Application of the Room Model of the Modelica Buildings Library

728 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076727

Table 1 Case 600: Annual hourly integrated peak heating

loads

Code Name kW Date Hour

ESP 3.437 4-Jan 5

BLAST 3.940 4-Jan 5

DOE2 4.045 4-Jan 5

SRES/SUN 4.258 4-Jan 2

TRNSYS 3.931 4-Jan 6

TASE 4.354 4-Jan 2

Buildings Lib. 4.229 4-Jan 5

Table 2 Case 600: Annual hourly integrated peak cooling

loads

Code Name kW Date Hour

ESP 6.194 17-Oct 13

BLAST 5.965 16-Oct 14

DOE2 6.656 16-Oct 13

SRES/SUN 6.827 16-Oct 14

TRNSYS 6.486 16-Oct 14

TASE 6.812 17-Oct 14

Buildings Lib. 6.821 17-Oct 13

Figure 3 shows hourly load profiles on the day of

peak heating load (Jan 4th). In the load profiles, heat-

ing and cooling loads are represented with positive

and negative values respectively. The Buildings li-

brary predicted that there was cooling load from

about 11 a.m. to 5 p.m. and heating load for the rest

of the day. This profile is similar to the profiles pre-

dicted by other simulation tools.

Figure 3 Case 600: Comparison of hourly heating and cool-

ing load profiles for Jan 4
th

3.2 Case 610: Low mass building with shading

(overhang)

The case 610 is an extension of Case 600 in which a

horizontal overhang is added to provide shading for

the south facing windows. The overhang is 1m deep,

located at 0.5m above the windows and extends from

east to west facing walls as shown in Figure 4. This

case tests the ability of a simulation tool to treat

shading of a south exposed window.

Figure 4 Case 610: Low mass building with overhang on

south facing windows

Figure 5 compares the annual heating and cooling

loads calculated by the Buildings Library with other

simulation tools. The heating (5.47 MWh) and cool-

ing (5.39 MWh) loads predicted by the Buildings

library are within minimum and maximum range

specified in [4]. As expected, adding shading device

reduced the total cooling load. Compared to Case

600, the reduction in cooling load varied from 19%

to 36% for different energy simulation tools. The

Buildings library predicted a reduction of 23%. With

less solar gain, all the programs also predicted in-

creased (0.5% to 2%) heating load. The Buildings

library predicted a minor increase of 0.6%.

Figure 5 Case 610: Comparison of annual heating and cool-

ing loads

Table 3 and Table 4 compare the predicted peak

heating and cooling load and time of occurrence dur-

ing the year. All simulation tools predicted almost

similar time for the occurrence of the peak heating

load. For peak cooling loads, two simulation tools

predicted significantly different dates than the rest of

the simulation tools. The room model predicted the

same date as the majority of the tools. The Buildings

-4

-3

-2

-1

0

1

2

3

4

5

0 6 12 18 24

H
ou

rl
y

lo
ad

s
(k

W
h

)

Hour

ESP BLAST DOE2.1D

SRES/SUN TRNSYS TASE

Buildings Lib.

0

1

2

3

4

5

6

A
n

n
u

a
l

L
o

a
d

s
[M

W
h

]

Heating Cooling

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 729
10.3384/ecp12076727 September 3-5, 2012, Munich, Germany

library calculated a peak heating load of 4.23 kW

which is within the range of reference data. However,

it slightly over-predicted the peak cooling load (6.38

kW) which is about 0.15% higher than the maximum

value (6.37 kW) of the reference data.

Table 3 Case 610: Annual hourly integrated peak heating

loads

Code Name kW Date Hour

ESP 3.437 4-Jan 5

BLAST 3.941 4-Jan 5

DOE2 4.034 4-Jan 5

SRES/SUN 4.258 4-Jan 2

TRNSYS 3.922 4-Jan 6

TASE 4.354 4-Jan 2

Buildings Lib. 4.228 4-Jan 5

Table 4 Case 610: Annual hourly integrated peak cooling

loads

Code Name kW Date Hour

ESP 5.669 25-Nov 13

BLAST 5.824 25-Nov 14

DOE2 6.064 13-Jan 14

SRES/SUN 6.371 25-Nov 14

TRNSYS 5.675 25-Nov 14

TASE 6.146 17-Oct 14

Buildings Lib. 6.380 25-Nov 13

3.3 Case 620: Low mass building without shad-

ing (East-West facing windows)

The case 620 is same as Case 600 except that win-

dows are oriented towards east and west as shown in

Figure 6.

Figure 6 Case 620: East and West facing windows

Figure 7 compares annual heating and cooling loads

computed by Buildings Library with other simulation

tools. The results of room model (heating load: 5.61

MWh and cooling load: 4.31 MWh) are comparable

with other simulation tools and are within the range

specified in [4]. In contrast to Case 600 here heating

load is higher than cooling as the room receives solar

radiation during morning and evening when intensity

of solar irradiation on the window surface is low, and

during midday when the azimuth angle with respect

to the window surface is high and the normal com-

ponent of irradiation is low. Also both windows are

never simultaneously exposed to the sun.

Figure 7 Case 620: Comparison of annual heating and cool-

ing loads

Peak heating and cooling load with their time of oc-

currence is compared in Table 5 and Table 6. The

results are comparable and are within range specified

in [4]. Compared to Case 600 and Case 610 there is

no significant change in peak heating load but peak

cooling has reduced. This reduction is due to low

solar heat gain as discussed earlier.

Table 5 Case 620: Annual hourly integrated peak heating

loads

Code Name kW Date Hour

ESP 3.591 4-Jan 6

BLAST 3.941 4-Jan 5

DOE2 4.046 4-Jan 5

SRES/SUN 4.277 4-Jan 2

TRNSYS 3.922 4-Jan 6

TASE 4.379 4-Jan 2

Buildings Lib. 4.230 4-Jan 5

Table 6 Case 620: Annual hourly integrated peak cooling

loads

Code Name kW Date Hour

ESP 3.634 26-Jul 16

BLAST 4.075 26-Jul 17

DOE2 4.430 26-Jul 17

SRES/SUN 4.593 26-Jul 17

TRNSYS 4.275 26-Jul 17

TASE 5.096 26-Jul 16

Buildings Lib. 4.295 26-Jul 16

3.4 Case 630: Low mass building with shading

(overhang and window side fins)

Case 630 is an extension of case 620 in which an

overhang and side fins are added on both east and

west facing windows. The overhang is 1m deep, 3m

wide and located 0.5m above the windows. The side

Validation and Application of the Room Model of the Modelica Buildings Library

730 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076727

fins are 1m deep, along the vertical edges of the

windows and extend from roof to ground level. This

case tests the ability of the simulation tool to treat

shading of east and west exposed windows with side

fins and overhang combined.

As the east and west side windows are covered with

overhang and side fins, the room receives little direct

solar heat gain. This results in higher heating loads

and lower cooling load. Results obtained from the

Buildings library (heating load: 5.88 MWh, cooling

load: 3.35 MWh) are comparable and within range of

results from other simulation tools (Figure 8).

Figure 8 Case 630: Comparison of annual heating and cool-

ing loads

Even though there is not much change in peak heat-

ing load compared to earlier cases, the peak cooling

load has dropped significantly. In this case, both

peak heating-cooling load and time of occurrence

calculated by the Buildings library are within range

and comparable with results from other tools as

shown in Table 7 and Table 8.

Table 7 Case 630: Annual hourly integrated peak heating

loads

Code Name kW Date Hour

ESP 3.592 4-Jan 7

BLAST 3.941 4-Jan 5

DOE2 4.025 4-Jan 5

SRES/SUN 4.280 4-Jan 2

TRNSYS 3.922 4-Jan 6

TASE N.A. N.A. N.A.

Buildings Lib. 4.230 4-Jan 5

Table 8 Case 630: Annual hourly integrated peak cooling

loads

Code Name kW Date Hour

ESP 3.072 26-Jul 16

BLAST 3.704 26-Jul 17

DOE2 3.588 26-Jul 17

SRES/SUN 4.116 26-Jul 17

TRNSYS 3.608 26-Jul 17

TASE N.A. N.A. N.A.

Buildings Lib. 3.866 26-Jul 17

Low mass basic sensitivity tests

Sensitivity of each program for addition of overhang,

side fins and change in window orientation is tested

in [4] using differences in the results. The variation

in annual and peak heating-cooling loads can be ob-

served in Table 9 and Table 10 for Case 600 and

Case 610. Results for Buildings library are within the

range specified in [4].

Table 9 Difference in Case 600 and 610 results: Annual loads

Code Name Heating [MWh] Cooling [MWh]

ESP 0.059 -2.222

BLAST 0.033 -1.582

DOE2 0.077 -2.227

SRES/SUN 0.054 -1.830

TRNSYS 0.098 -1.891

TASE 0.021 -1.272

Buildings Lib. 0.029 -1.581

Table 10 Difference in Case 600 and 610 results: Peak loads

Code Name Heating [kW] Cooling [kW]

ESP 0.000 -0.525

BLAST 0.001 -0.141

DOE2 -0.011 -0.592

SRES/SUN 0.000 -0.456

TRNSYS -0.008 -0.811

TASE 0.000 -0.666

Buildings Lib. -0.001 -0.441

Differences in results of case 620 and 600 represent

effect of change in window orientation. The differ-

ences in results of the Buildings library (Table 11

and Table 12) for these cases are within the range

specified in [4]. This indicates that the room model

correctly models modification in window orientation.

Table 11 Difference in Case 600 and 620: Annual loads

Code Name Heating [MWh] Cooling [MWh]

ESP 0.317 -2.72

BLAST 0.276 -2.341

DOE2 0.235 -2.745

SRES/SUN 0.328 -2.645

TRNSYS 0.201 -2.591

TASE 0.366 -2.427

Buildings Lib. 0.169 -2.661

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 731
10.3384/ecp12076727 September 3-5, 2012, Munich, Germany

Table 12 Difference in Case 600 and 620 results: Peak loads

Code Name Heating [kW] Cooling [kW]

ESP 0.154 -2.560

BLAST 0.001 -1.890

DOE2 0.001 -2.226

SRES/SUN 0.019 -2.234

TRNSYS -0.008 -2.211

TASE 0.025 -1.716

Buildings Lib. 0.001 -2.526

As described earlier, in Case 630 overhang and side

fins are added to the east and west facing windows of

Case 620. The differences in results of these cases

verify the effect of these shading devices. Table 13

and Table 14 compare the results of the Buildings

library with other simulation tools.

Table 13 Difference in Case 620 and 630: Annual loads

Code Name Heating [MWh] Cooling [MWh]

ESP 0.437 -1.288

BLAST 0.310 -0.984

DOE2 0.525 -1.845

SRES/SUN 0.329 -1.140

TRNSYS 0.551 -1.485

TASE N.A N.A

Buildings Lib. 0.266 -0.956

Table 14 Difference in Case 620 and 630 results: Peak loads

Code Name Heating [kW] Cooling [kW]

ESP 0.001 -0.562

BLAST 0.000 -0.371

DOE2 -0.021 -0.842

SRES/SUN 0.003 -0.477

TRNSYS 0.000 -0.667

TASE N.A. N.A.

Buildings Lib. 0.000 -0.429

3.5 Case 600FF: Low mass building without

temperature control

Case 600FF is based on case 600 except that there is

no mechanical heating or cooling system. The room

temperature is floating with the weather conditions.

The Buildings library computed the highest room

temperature (65.9°C) at 3 p.m. on October 17 and

the lowest room temperature (-19.8°C) at 8 a.m. on

January 4. These results are consistent with the ones

computed by other simulation tools in Standard 140.

3.6 Case 900: High mass building with temper-

ature control

Case 900 is a high mass building which uses the

same building model as was used for Case 600 ex-

cept that the wall and floor construction were

changed to use heavier materials. This case is used to

test the ability of a simulation tool to treat thermal

mass. As shown in Figure 9, the Buildings library

predicted annual cooling and heating loads are in the

range of Standard 140. The Buildings library also

predicted the occurring hour for peak heating load

(3.267 KW) at 7 a.m. on January 4 and peak cooling

load (3.369 KW) at 2 a.m. on October 17. These val-

ues are also in the range of Standard 140.

Figure 9 Case 900: Comparison of annual heating and cool-

ing loads

3.7 Case 900FF: High mass building without

temperature control

Case 900FF is the same as case 900 with the only

difference that there is no mechanical heating or

cooling system. The room temperature is floating.

The Buildings library computed the highest room

temperature (42.6°C) at 3 p.m. on September 2 and

the lowest room temperature (-5.7°C) at 8 a.m. on

January 4. These results are consistent with the ones

predicted by other simulation tools in Standard 140.

4 Application

This section describes an application where the vali-

dated room model of the Buildings library was used

in a simulation-based controls framework to control

a window shading device of one test cell of the Ad-

vanced Windows Test Facility at LBNL (Figure 10).

The windows facility is a test facility with three

identical test cells which serve for testing and eval-

uation of controls strategies and façade systems. The

dry bulb temperature in the corridor of the facility

(Figure 11) is controlled to a constant value and the

walls of the test cells are well insulated. This is to

insure that all test cells experience the same load

profiles. Each of the test cells has a floor area of

about 14 m2, a room volume of about 47m3 and a

south facing window. The ovals in Figure 10 indicate

the test cells that were used in this study. The win-

Validation and Application of the Room Model of the Modelica Buildings Library

732 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076727

dow shading device of the left test cell is controlled

with the controls framework. The right test cell has a

static interior blind and is used as our reference cell.

The room air temperature of the test cells is con-

trolled to a fixed temperature. There are several sen-

sors in the test cells which measure room air temper-

atures, exterior glass surface temperatures at the up-

per and lower window surfaces, plug loads, lighting

loads, fan loads as well as transmitted solar irradia-

tion at the upper and lower window surface. There

are also several sensors located outdoors to measure

external environmental conditions, such as solar ir-

radiances, outdoor temperature, and wind speed (see

Figure 12).

Figure 10 The Advanced Windows Test Facility at the Law-

rence Berkeley National Laboratory

Figure 11 Schematic view of the Advanced Windows Test

Facility at the Lawrence Berkeley National Laboratory

In this application, the room model of the Buildings

library is used to model the test cell with the window

and an exterior venetian blind. The window system

installed in the test cell is a double pane window.

The exterior venetian blind can be remotely con-

trolled to be fully retracted or fully closed. It is also

possible to control the slat angle positions of the

blind.

In the following sections, we will describe the con-

trols framework applied to control the blind of the

window system. The objective of the framework is to

control the blind to reduce heating and cooling loads

of the test cell. The indoor dry-bulb temperature was

controlled to a constant value of 24 C. To reduce the

heating and cooling loads, an optimal blind position

is calculated at discrete time steps using Modelica

models of the Buildings library and a control algo-

rithm. This position is then converted into a control

signal which is sent to real hardware to move the

blind in the desired position.

Figure 12 Instrumentation used at the test facility

(Pyranometer (top left), pyrgeometer (top right), tempera-

ture sensors (bottom left), pyranometer (bottom right))

4.1 Overview of the Controls Framework

Figure 13 shows the schematic of the framework for

one simulation time step. It involves the co-

simulation between different simulation tools and the

communication between hardware and software. The

entire process is controlled by the Building Controls

Virtual Test Bed (BCVTB) [5]. The BCVTB is an

open source software environment developed by

LBNL and based on the Ptolemy II software from

UC Berkeley [6]. It allows expert users to couple

different simulation programs for co-simulation, and

to couple simulation programs with actual hardware

[7].

In the controls framework, the BCVTB is the master

that orchestrates the simulations and data exchange

among simulators and hardware. It sets the start time,

the stop time as well as the sampling time when

blind position should be updated. It uses the

SystemCommand actor [5] to call scripts which start

different simulation programs. In our implementa-

tion, the simulation runs in real-time with a time step

size of 5 minutes.

The simulation workflow can be divided into 8

steps. At the beginning of the simulation, the

BCVTB gets the start and end time of the simulation,

the test cell number, and the time step that are pre-

defined by the users.

 In step (1) of every time step, it uses a Python [8]

script to send requests through the internet to get the

current clock-time, weather data, as well as plug, fan

and lighting loads which are measured in the test

cell.

In step (2), it writes a weather file and a load file.

The weather file contains measured weather data

including diffuse solar irradiation on the horizontal

surface, direct solar irradiation, the atmospheric in-

frared solar irradiation, outdoor dry-bulb tempera-

RoomC RoomB RoomA

Corridor

South

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 733
10.3384/ecp12076727 September 3-5, 2012, Munich, Germany

ture, and wind speed. The load file contains the sum

of plug, fan and lighting loads.

In step (3), the BCVTB starts a Perl [9] script

which invokes Radiance [10] to calculate the incom-

ing solar irradiations and the solar radiation absorbed

by different room surfaces for multiple blind posi-

tions. Radiance is a ray-tracing based daylighting

simulation program. It is selected because it can

compute light transmittance of complex fenestration

systems with light-redirecting shades. Since the

Buildings library does not support the modeling of

venetian blinds, we use the capability of Radiance to

compute the light redirection of the blinds, and to

compute the solar irradiation distribution in the room.

This was achieved by calculating incident and ab-

sorbed solar irradiation in Radiance for distinct blind

positions and overwriting the solar irradiation distri-

bution calculations done in the room model. In our

configuration, we considered 11 positions. Because

the simulations were fast compared to the sampling

time, and only 11 control options need to be consid-

ered, we did an exhaustive search to determine the

optimal control signal. The first position is with the

blind fully retracted. The second to the 11th position

are with the blind set at angles with degree of 40, 35,

30, 25, 20, 15, 10, 5, 0, and -5, respectively, where

the last position is with the blind fully closed. The

calculated irradiation data includes incident solar

radiation on interior wall surfaces of the test cell and

solar irradiation absorbed in glass layers and the

shading layer of the window system. At the end of

the calculation, the results are written to the files

which will be used for step (4).

 In step (4), the BCVTB starts a script, which

simulates multiple instances of the Modelica room

model using Dymola [11]. Each model represents the

room with the blind set to a specific position. The

model is parameterized using a weather file, load file

as well as incoming and absorbed solar irradiation

pre-calculated by Radiance. Figure 14 shows a

screenshot of the Modelica implementation of the

test cell. This model consists of 7 parts: part 1 de-

fines the heat sources which are read from the load

file, part 2 is the PI controller for heating, part 3 is

the PI controller for cooling, part 4 models the build-

ing envelope, part 5 represents the material proper-

ties of the building envelope, part 6 provides the

weather data, and part 7 computes the infiltration in

the test cell.

In step (5), the BCVTB calls a Python script to

collect the Modelica simulation results for different

blind positions and determines the optimal position

which will lead to the least heating and cooling load.

This position is then written in a file named

“chosenposition.txt”.

In step (6), the BCVTB calls a script which saves

the state variables of the room model with the opti-

mal blind position. These state variables will be used

as initial conditions in the next time step. The capa-

bility of Modelica to easily reinitialize state varia-

bles, the transparency of making changes to models

and the separation between process model, control

implementation and numerical methods are im-

portant reasons why Modelica being well suited suit-

able for simulation-based controls operations.

In step (7), the BCVTB calls a script which reads

the optimal blind position from the

“chosenposition.txt” file, converts it into a controls

signal, and sends it through the internet to the actua-

tor to set the position of the blind.

Finally, in step (8), the BCVTB calls a script

which requests the hardware to report the actuation

position set. This is written it in a log file. The

BCVTB then pauses until the next time step is

reached and restarts the process.

Figure 13 Simulation-based controls framework used to control one of the test cells of the test facility

Validation and Application of the Room Model of the Modelica Buildings Library

734 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076727

Figure 14 Modelica implementation of the test cell

4.2 Simulation results

In our preliminary work, we measured the heating

and cooling loads of two test cells for a period of 9

days (from 04/13/2012 to 04/22/2012). One test cell

used an interior static venetian blind set at 30 degree

blocking angle (RoomA). This represents one com-

mon configuration for blinds which is generally set

by users. The other test cell (RoomC) has an exterior

blind controlled using the simulation-based controls

framework.

As shown in Figure 16 the heating and cooling

load of the test cell with controlled exterior venetian

blind is much less than that with the interior static

blind. The measurements show in the peak up to two

and half times lower cooling load in the room with

the controlled exterior venetian blind. Consequently,

one can save cooling energy by using the controlled

exterior venetian blind.

Considering the test was only about one week and

there were days with missing data, further investiga-

tions are needed to evaluate the performance of the

algorithm over a longer period of time. Both exterior

blind and controls can contribute to the energy sav-

ing in current study. To quantify the energy saving

due to the controls, we will need to use exterior ve-

netian blinds for both test cells. Nevertheless, the

preliminary results show that our controls framework

is functioning and the Modelica room model can

meet the requirements of the application.

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 735
10.3384/ecp12076727 September 3-5, 2012, Munich, Germany

Figure 15 Measured outdoor dry bulb temperature

Figure 16 Comparisons between heating and cooling loads

derived from measurements obtained in RoomA (static

blind) and RoomC (controlled blind)

5 Conclusions

The validation results show that the room model of

the Modelica Buildings library generates similar re-

sults for low and high mass buildings with and with-

out shade compared to other energy simulation tools

listed in ANSI/ASHRAE Standard 140. The applica-

tion shows how the room model of the Modelica

Buildings library can be used as part of a simulation-

based controls framework of shading. This demon-

strates that the room model of the Modelica Build-

ings library can be used not only for whole building

simulations, but also as part of a framework for sim-

ulation-based controls operations.

Acknowledgments

This work was supported by the Assistant Secretary

for Energy Efficiency and Renewable Energy,

Building Technologies Program of the U.S.

Department of Energy under Contract No. DE-

AC02-05CH11231 and by the California Energy

Commission, Public Interest Energy Research Pro-

gram, Buildings End Use Energy Efficiency Pro-

gram, award number 500-10-052. We would like to

thank Andrew McNeil for his support in developing

and integrating scripts for radiance calculations.

We would like to thank Eleanor Lee for allowing us

access to the Advanced Windows Test Facility.

References

[1] M. Wetter, W. Zuo and T. S. Nouidui, “Recent

developments of the Modelica buildings library

for building energy and control systems,” in

Proceedings of the 8th International Modelica

Conference. Dresden, Germany, March 2011,

2011.

[2] M. Wetter, W. Zuo and T. S. Nouidui,

"Modeling of Heat Transfer in Rooms in the

Modelica "Buildings" Library," in Proceedings

of Building Simulation 2011, Sydney, 2011.

[3] T. S. Nouidui, M. Wetter and W. Zuo,

“Validation of the window model of the

Modelica Buildings library,” in Proceedings of

SimBuild2012, Madison, 2012.

[4] ANSI/ASHRAE, Standard Method of Test for

the Evaluation of Building Energy Analysis

Computer Programs (ANSI/ASHRAE Standard

140-2007), Atlanta: American Society of

Heating, Refrigerating and Air-Conditioning

Engineers, 2007.

[5] M. Wetter, "Co-simulation of building energy

and control systems with the Building Controls

Virtual Test Bed," Journal of Building

Performance Simulation, vol. 3, no. 4, 2011.

[6] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer,

Y. Zhao and E. A. L. X. L. Haiyang Zhengher,

"Ptolemy II – Heterogeneous Concurrent

Modeling and Design in Java," Berkeley, 2007.

[7] T. S. Nouidui, M. Wetter, Z. L. Li, X. Pang, P.

Bhattacharya and P. Haves, “BACnet and

Analog/Digital Interfaces of the Building

Controls Virtual Test Bed,” in Proceedings of

the 12th IBPSA Conference, p. 294--301.

Sydney, Australia, November 2011, 2011.

[8] PYTHON. [Online]. Available:

http://www.python.org/.

[9] PERL. [Online]. Available:

http://www.perl.org/.

[10] RADIANCE. [Online]. Available:

http://radsite.lbl.gov/radiance/index.html.

[11] Dymola. [Online]. Available:

http://www.3ds.com.

0

5

10

15

20

25

30

4/13/2012 4/15/2012 4/17/2012 4/19/2012 4/21/2012 4/23/2012

O
u

td
o

o
r

d
ry

 b
u

lb
 t

e
m

p
 [

C
]

time[day]

-1500

-1200

-900

-600

-300

0

300

600

900

4/13/2012 4/15/2012 4/17/2012 4/19/2012 4/21/2012 4/23/2012

Zo
n

e
 t

h
e

rm
al

 lo
ad

 [
W

]

time [day]

RoomA RoomC

Validation and Application of the Room Model of the Modelica Buildings Library

736 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076727

The Indoor Climate Library and its Application to Heat and Moisture Transfer in a Vehicle Cabin

The Indoor Climate Library and its Application to Heat and Moisture
Transfer in a Vehicle Cabin

Victor Norrefeldt1, Daniel Andersson2, Arnav Pathak1, Hubertus Tummescheit2
1: Fraunhofer-Institute for Building Physics

Fraunhoferstr. 10, D-83626 Valley, Germany
2: Modelon AB

Ideon Science Park, Beta 6 building, Scheelevägen 17, S-22370 Lund, Sweden
victor.norrefeldt@ibp.fraunhofer.de, daniel.andersson@modelon.com,
arnav.pathak@ibp.fraunhofer.de, hubertus.tummescheit@modelon.com

Abstract

This paper presents the newly developed Indoor
Climate Library. The library facilitates simulation of
the coupled heat and moisture transfer through enve-
lopes and the interaction of envelopes with the inte-
rior air. The computation of coupled heat and mois-
ture transfer becomes more and more important for
the development of electric vehicles. Due to the lack
of waste heat from the combustion engine the heat-
ing of a vehicle cabin during winter time becomes a
challenge. One way to reduce heat losses through the
envelope is to add insulation. However, insulation
bears the risk of water accumulation and its perfor-
mance usually decreases with increased water con-
tent. The Indoor Climate Library helps the user to
detect such problems early in the product develop-
ment process and to find remedies.

Keywords: Heat and moisture transfer; Indoor air,
Modelica Library

1 Introduction

To compute heat and moisture flow through building
wall constructions, Nouidui [1] has built the Building
Physics Library as research code . The authors have
now rearranged and updated this code with the focus
on user friendliness and increased applicability.
Templates have been added allowing the quick setup
of a model. Furthermore, the package structure has
been rearranged to allow the user to easily navigate
the library.

In Modelica different libraries are provided for the
computation of building related problems. The

Buildings Library [2-5] contains thermal models for
walls, windows, shading systems, HVAC compo-
nents, controls, etc. Even components from the Mod-
elica Standard library allow quick setup of thermal
models of wall constructions. However, these librar-
ies are limited to the thermal aspect of energy flows
but neglect the moisture flow through constructions.
Raised moisture levels adversely affect material
properties. Risk of mold growth increases resulting
in a harmful indoor environment [6]. Thermal con-
ductivity of insulation materials usually increases
with moisture content resulting in a degradation of
insulating properties. Furthermore, the moisture
transfer itself leads to a considerable enthalpy flow
when evaporation or condensation occur, affecting
wall temperatures considerably. The goal of the In-
door Climate Library is to provide a tool that pre-
dicts heat and moisture flows. Based on outside
weather conditions the temperature and humidity
profile in the enclosure layers and of the inner air are
computed. The classical application field of the li-
brary is for buildings. However, recent developments
of energy efficient heating systems for electrical ve-
hicles show the need of using more insulation mate-
rials. Therefore, the library focuses on applications
in the automotive and aviation sector as well.

2 Use of the Indoor Climate Library

The following section describes how to use the In-
door Climate Library.

DOI Proceedings of the 9th International Modelica Conference 737
10.3384/ecp12076737 September 3-5, 2012, Munich, Germany

Nomenclature w Water content [kg/m³]

A Area [m²] wf Free water saturation [kg/m³]

Aw Absorption coefficient [kg/(m²·h0.5)] wmax Maximum water content [kg/m³]

c
cw

Specific heat capacity of dry material [J/kg·K]
Specific heat capacity of water [J/kg·K]

 βc Convective mass transfer coefficient
[kg/(m²·Pa)]

d Thickness [m] δ Water vapor permeability [m²·s]

Dw Liquid transport coefficient [m²/s] ε Emissivity [-]

Dwr Liquid transport coefficient at redistribution [m²/s] λ Thermal conductivity [W/m·K]

Dws Liquid transport coefficient at suction [m²/s] µ Water vapor diffusion number [-]

f Form factor [-] ρ Density [kg/m³]

H Enthalpy [J/kg] σ Planck constant 5.67·10-8 [W/(m²·K4)]

hc Convective heat transfer coefficient [W/m²·K]

mሶ Mass flow rate [kg/(m²·s)] Subscripts

pwater Water vapour pressure [Pa] i, j numeration indexes

ሶݍ Heat flow rate [W/m²] l liquid

T Temperature [K] v vapor

2.1 Before modeling

Before modeling the user needs to answer the fol-
lowing questions:

 How many domains are needed
 How many walls are needed
 What materials are used
 How many windows are needed
 What window types are used
 To which domains do these walls and win-

dows connect
 How many outside surfaces are needed
 How are the surfaces oriented
 Time and place
 Which weather data to use

When having found an answer to these questions, the
user can build the whole model from predefined pa-
rameterized templates: The wall and window tem-
plates allow quick creation of models of different
enclosures. The domain model contains a model of
the air in a room that is connected to the walls and
windows. Outside surfaces are the interface between
wall templates and the environment. The environ-
ment provides the boundary conditions of the simu-
lation.

2.2 Wall Template

The wall template consists of ten material layers.
The default model for a material layer is the “None”-

model. This is a passive model that can be ex-
changed by the needed material layer models. To
configure the wall model, the user selects the needed
material from a drop-down list.
Figure 1 shows the parameter dialog of a material
layer. The number of nodes, the layer thickness, the
discretization scheme and initial conditions must be
set. The default discretization scheme uses small
nodes near material layer boundaries and larger
nodes in the middle. By changing the status of a ra-
dio button the user can choose to define a custom
discretization. Another radio button allows the user
selecting to enter the initial water content or the ini-
tial relative humidity of the material. Furthermore,
the initial temperature can be set.

Figure 1: Parameterization of the material layer model

The Indoor Climate Library and its Application to Heat and Moisture Transfer in a Vehicle …

738 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076737

2.3 Window Template

The type of window is selected from a drop-down
list. Models for one, two and three-pane windows are
available. Heat transfer through conduction, convec-
tion, long-wave radiation, transmission and absorp-
tion of solar radiation are taken into account when
computing pane temperatures. The transmitted solar
radiation is propagated to the adjacent domain.

2.4 Domain template

A rectangular room is a simple example for a do-
main. It consists of an air volume and of and six in-
side surfaces. The surface is considered as the infini-
tesimally narrow layer between the air volume and
the wall. The wall side of the surface transports heat
and moisture by conduction. The air side of the sur-
face exchanges heat and moisture convectively with
the adjacent air volume. A radiation node estimates
the radiation between surfaces. View factors in the
radiation node are computed from the connected sur-
face’s relative absorption weighted areas. For build-
ing applications this approach is sufficiently accurate
[4]. If the user possesses more advanced view fac-
tors, a more detailed radiation model taking the real
view factors into account, can be used. Windows are
treated like any other wall in the domain model ex-
cept that a further connection to a radiative source
node is needed for transmitted solar radiation.
Figure 2 shows the parameterization of a domain
model. The user gives the number of surfaces, their
area, convective heat and moisture transfer coeffi-
cients or correlations and long-wave emissivities. If
radiative or convective heat sources are contained in
the domain their number must be given and corre-
sponding models connected with the domain. For the
air volume, the volume and initial pressure, tempera-
ture and relative humidity must be entered.

Figure 2: Parameterization of the domain model

2.5 Outside Surfaces

The geometric parameters of an outside surface are
area, slope and azimuth angle (Figure 3). The surface
model has an outer instance of the environment
model.
As for the inside surface, heat and moisture is trans-
ported by conduction on the wall side and by con-
vection on the air side. Radiation and radiation pa-
rameters are split into long-wave and short-wave
radiation. Long wave radiation is exchanged with
surrounding earth and with the sky. Short wave radi-
ation is provided by the sun. A distinction is made
between direct and diffuse solar radiation. A geomet-
rical model computes the impact angle of the sun to
determine the direct solar radiation. This angle de-
pends on the slope and azimuth of the surface, loca-
tion and time. Diffuse radiation is independent of the
surface orientation, e.g. light also enters through a
north facing window during daytime.

Figure 3: Parameterization of the outer surface model

2.6 Environment model

The environment model is used at the top-level of
simulation models as an inner component. Infor-
mation comes from weather files of test reference
year data and is used in all models referring to out-
side weather conditions. The outputs from the com-
ponent are the air temperature, humidity and pres-
sure, wind speed and direction, intensity of direct
and diffuse solar radiation, intensity of terrestrial and
sky radiation and cloudiness.
The user selects a weather data file and the location
of the building or cabin. This location is important
for the geometrical sun model. Depending on the
time format of the weather data file, a correction of
the local standard time longitude needs to be entered.
For GMT this correction is zero, for CET
-15°. To assess the reflection of solar and sky radia-
tion by the soil, the corresponding parameters need
to be entered. Meaningful standard values are set as
default. The user needs to provide the start time and
date of the simulation and the start time and date of
weather data. This is necessary to align the weather
data, the sun position and the simulation time in the
integrator.

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 739
10.3384/ecp12076737 September 3-5, 2012, Munich, Germany

Figure 4: Parameterization of the environment model

3 Technical background of the In-
door Climate Library

In this section, the principles of hygrothermal simu-
lation are described.

3.1 Water storage function

The water storage function describes the relation be-
tween water content and relative humidity of a mate-
rial. This function is usually non-linear and often
increases more steeply at higher relative humidity. It
needs to be determined experimentally. At 100%
relative humidity free water saturation wf is reached.
An example of water storage functions is shown in
Figure 5.
The porosity of a material indicates the maximal wa-
ter content wmax. When all pores are filled with liquid
water the material cannot be further penetrated by
water. This maximal water content is above the free
water saturation provided by the moisture storage
function. In the range between the free water satura-
tion and maximal water content the relative humidity
remains equal to one, and is therefore independent of
the water content. Up to the free water saturation, the
material can be in an equilibrium state. Above no
boundary condition exist that could maintain the
reached water content [8].

Figure 5: Examples of water storage functions [7]

3.2 Heat flow

The heat flow through a material node is obtained
from the difference of the temperature T between
nodes i and i+1, the conductivity λi and the length di
of node i:

ሶ௜ݍ ൌ ௜ߣ ∙
௜ܶ െ ௜ܶାଵ

݀௜
 (1)

For some materials thermal conductivity is constant,
e.g. concrete: λ=0.24 W/(m·K). Other materials like
mineral wool show an increase of thermal conductiv-
ity at higher water contents (Figure 6). The Indoor
Climate Library uses a replaceable thermal conduc-
tivity model to match the type of material.

Figure 6: Example for increase of thermal conductivity with
water content [7]

3.3 Water vapor diffusion

The driving potential for water vapor diffusion is the
difference of the water vapor pressure pwater between
nodes i and i+1.

ሶ݉ ௩,௜ ൌ ௜ߜ ⋅
௪௔௧௘௥,௜݌ െ ௪௔௧௘௥,௜ାଵ݌

݀௜
 (2)

The Indoor Climate Library and its Application to Heat and Moisture Transfer in a Vehicle …

740 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076737

The permeability δi of a material to water vapor is
obtained from a function depending on the material
node’s temperature Ti and the water vapor diffusion
number µi (equation (3)). This number is a property
of the material; for stagnating air it is by definition
one. Depending on the type of material it can be con-
stant (e.g. porous concrete 600/2: µ=6.7) or vary
with relative humidity (Figure 7).

௜ߜ ൌ
2 ∙ 10ି଻ ∙ ௜ܶ

଴,଼ଵ

101300	 ∙ ௜ߤ
 (3)

Figure 7: Example of relative humidity dependent water
vapor diffusion coefficient [7]

3.4 Liquid water transport

Some materials are able to transport liquid water by
capillary suction. Liquid transport is driven by the
difference of water content wi between material node
i and i+1.

ሶ݉ ௟,௜ ൌ ௪,௜ܦ
௜ݓ െ ௜ାଵݓ

݀௜
 (4)

The liquid transport coefficient Dw depends on
whether the material surface is wet due to rain or
whether it is dry. On a wet surface suction occurs, if
the surface is dry redistribution occurs. The redistri-
bution factor Dwr can be estimated by a factor of 10
smaller than the suction factor Dws [9].

Often, the water absorption coefficient Aw is given.
For example, porous concrete has a Aw coefficient of
5.4 kg/(m²·h0.5). Künzel [8] suggests equation (5) to
compute the liquid transport coefficient at suction
from Aw, the free water saturation and the actual wa-
ter content:

௪௦,௜ܦ ൌ 3.8 ∙ ቆ
௪ܣ
௙ݓ
ቇ
ଶ

⋅ 1000
൬
௪೔
௪೑

ିଵ൰
 (5)

3.5 Heat and Moisture Balance for a material
layer node

The sum of entering and leaving heat and water
flows yields the variation of temperature and water
content of a material. It is admitted that water vapor
enters node i with temperature Ti-1 and condenses at
temperature Ti. Similarly it evaporates and leaves at
temperature Ti. Liquid water is admitted to enter with
temperature Ti-1 and to leave at temperature Ti. To
describe this process the evaporation and liquid en-
thalpies Hv and Hl are introduced to the heat balance
equation. The thermal inertia is the sum of the dry
thermal inertia ρ·c (density, specific heat capacity)
and the thermal inertia of water contained in the
node wi·cw (cw: specific heat capacity of water).

݀௜ ⋅ ൣሺߩ ⋅ ܿ ൅ ௜ݓ ⋅ ܿ௪ሻ ⋅ ሶܶ௜ ൅ ௟,௜ܪ ∙ ሶݓ ௜൧ ൌ
ሶ௜ିଵݍ െ ሶ௜ݍ
൅ ሶ݉ ௩,௜ିଵ ⋅ ൫ܪ௩,௜ିଵ െ 	௟,௜൯ܪ
െ ሶ݉ ௩,௜ ⋅ ൫ܪ௩,௜ െ ௟,௜൯ܪ
൅ ሶ݉ ௟,௜ିଵ ⋅ ൫ܪ௟,௜ିଵ െ ௟,௜൯ܪ

(6)

The variation of the water content wi in node i is ob-
tained from the sum of entering and leaving mass
flows.

݀௜ ⋅ ሶݓ ௜ ൌ
ሶ݉ ௩,௜ିଵ െ ሶ݉ ௩,௜ ൅ ሶ݉ ௟,௜ିଵ െ ሶ݉ ௟,௜

(7)

3.6 Surfaces

A surface exchanges heat and moisture between air
and the adjacent material layer. The heat exchange
takes into account convection due to the temperature
difference between wall and air (hc: convective heat
transfer coefficient) and the enthalpy flow of the ex-
changed water vapor (equation (8)).
The moisture flow is determined by the convective
moisture transfer coefficient βc and the water vapor
pressure difference (equation (9))

ሶ௖௩ݍ ൌ ݄௖ ∙ ሺ ௔ܶ௜௥ െ ௪ܶ௔௟௟ሻ
൅ ሶ݉ ௩ ∙ ൫ܪ௩,௔௜௥ െ ௩,௪௔௟௟൯ܪ

(8)

ሶ݉ ௩ ൌ ௖ߚ ⋅ ൫݌௪௔௧௘௥,௔௜௥ െ ௪௔௧௘௥,௪௔௟௟൯ (9)݌

Inner surfaces exchange heat by radiation. An ap-
proximated form factor of a surface is obtained by
equation (10), where ε is the long-wave emissivity of
the surface and A its area. The radiation between sur-
faces is estimated in a radiation node model that dis-
tributes radiation between surfaces. Radiative

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 741
10.3384/ecp12076737 September 3-5, 2012, Munich, Germany

sources are distributed on all surfaces contained in
the domain (equation (11))

௜݂ ൌ
߳௜ ∙ ௜ܣ

∑ ௝߳ ∙ ௝ௗ௢௠௔௜௡ܣ
 (10)

ሶ௥௔ௗ,௟௪,௜ݍ ൌ ߪ ∙ ௜ߝ ∙ ෍ ௝݂ ∙ ൫ ௜ܶ
ସ െ ௝ܶ

ସ൯
௝∈ௗ௢௠௔௜௡

	

൅ ෍ ௜݂ ∙ ሶ௥௔ௗ,௦௢௨௥௖௘ݍ
௦௢௨௥௖௘௦

(11)

For outer surfaces, the long wave terrestrial radia-
tion, the long wave atmospheric radiation and the
short wave solar radiation are taken into account.

4 Application example

An insulated car cabin (Figure 8) is considered as
application example. Four passengers are supposed
to travel one hour in the morning and one hour in the
evening from Monday to Friday in the region of
Holzkirchen, Germany, during January 2011. During
weekend the car is not used. Passengers emit heat
and moisture according to sedentary work.

Figure 8: Vehicle geometry

Cabin enclosures are assumed to consist of three lay-
ers: 1 mm aluminium, 10 mm mineral wool and
1.2 mm cloth (50% wool, 50% viscose). Fenestration
is assumed to be a one-pane window with a transmit-
tance of 0.84 for solar radiation. The vehicle is ori-
ented southwards. Leakages are supposed to lead to
one air change per hour (ACH) in the cabin. A venti-
lation system is running during occupation of the
vehicle. This system is assumed to deliver 50 ACH.
The supply temperature is controlled to result in a
cabin air temperature of 22 °C. Outdoor conditions

are taken from the weather station of Fraunhofer IBP
in Holzkirchen, Germany.

Simulation results show a considerable accumulation
of water in the insulation (Figure 9). Besides the in-
creased risk of mold growth this leads to increased
heat conductivity degrading the performance of the
insulation (Figure 10).

Figure 9: Accumulation of water in the vehicle insulation
(10mm)

Figure 10: Thermal conductivity of the vehicle insulation
(10mm)

To improve the situation the thickness of the insula-
tion can be increased. This leads to higher surface
temperature on the cabin side of the insulation result-
ing in a lower gradient of water vapor pressure thus
leading to a lower moisture flow into the insulation.
Figure 11 and Figure 12 show moisture content and
thermal conductivity when increasing the thickness
of mineral wool to 30 mm. The gain of this measure
is twofold. A thicker insulation presents a higher re-
sistance to heat. Furthermore, the conductivity of the
thicker insulation is lower as less water accumulates.

The Indoor Climate Library and its Application to Heat and Moisture Transfer in a Vehicle …

742 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076737

Figure 11 Accumulation of water in the vehicle insulation
(30mm)

Figure 12: Thermal conductivity of the vehicle insulation
(30mm)

5 Ongoing developments

The next step in the development of the Indoor Cli-
mate Library is to implement more functionalities
than currently available. More detailed radiation
models allowing the use of user-defined form factors
and templates of predefined form factors for simple
generic geometries will be introduced. A database of
convective heat and moisture transfer coefficient
correlations will be inserted. Interfaces will allow the
use of the Air Conditioning Library [10] to model
the air supply from HVAC systems. Templates for
generic building and vehicle setups will be added.
Further application examples will give an overview
of the possibilities of the Indoor Climate Library.

6 Conclusion

The Indoor Climate Library allows computing heat
and moisture transfer in constructions. A vehicle ap-

plication example shows that the applied usage pro-
file the selected wall layer construction leads to ac-
cumulation of moisture in the insulation. The Indoor
Climate Library allows quick estimation of remedies
to this problem. Increasing the thickness of the insu-
lation reduced water accumulation noticeably.

7 References

[1] Nouidui, T.: Entwicklung einer objektorientier-
ten Modellbibliothek zur Ermittlung und Opti-
mierung des hygrothermischen und hygieni-
schen Komforts in Räumen, Thesis, Universität
Stuttgart, 2008

[2] LBNL Website, consulted 07. March 2012,
http://simulationresearch.lbl.gov/modelica

[3] Wetter, M.: Modelica library for building heat-
ing, ventilation and air-conditioning systems,
7th International Modelica Conference, Como,
Italy, 20.-22. September 2009

[4] Wetter, M., Zuo, W., Nouidui, T.: Modeling of
heat transfer in rooms in the Modelica "Build-
ings" Library, Building Simulation, Sydney,
Australia, 14.-16. November 2011

[5] Wetter, M., Zuo, W., Nouidui, T.: Recent de-
velopments in the Modelica "Buildings" Library
for Building Energy and Control Systems, 8th
International Modelica Conference, Dresden,
Germany, 20.-22. March 2011

[6] Sedlbauer, K.: Vorhersage von Schimmelpilz-
bildung auf und in Bauteilen, Thesis, Universi-
tät Stuttgart, 2001

[7] Fraunhofer IRB: MASEA - Denkmalpflege,
consulted on 07. May 2012,
http://www.irb.fraunhofer.de/denkmalpflege/an
gebote_partner/masea/

[8] Künzel, H.: Verfahren zur ein- und zweidimen-
sionalen Berechnung des gekoppelten Wärme-
und Feuchtetransports in Bauteilen mit einfa-
chen Kennwerten, Thesis, Universität Stuttgart,
1994

[9] Fraunhofer IBP Wufi Website, consulted 07.
March 2012, www.wufi.de

[10] Modelon AB: Flyer of Dymola Air Condition-
ing Library, 2012,
http://www.modelon.com/fileadmin/user_uploa
d/Products/Modelon/ACL/Modelon_ACL_flyer
.pdf

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 743
10.3384/ecp12076737 September 3-5, 2012, Munich, Germany

The Indoor Climate Library and its Application to Heat and Moisture Transfer in a Vehicle …

744 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076737

Dynamic Modelling of a Condenser/Water Heater with the ThermoSysPro Library

Dynamic modelling of a Condenser/Water Heater with the Thermo-
SysPro Library

Baligh El Hefni Daniel Bouskela
EDF R&D

6 quai Watier, 78401 Chatou Cedex, France
baligh.el-hefni@edf.fr daniel.bouskela@edf.fr

Guillaume Gentilini
EDF SEPTEN

12-14 avenue Dutrievoz, 69628 Villeurbanne Cedex, France
guillaume.gentilini@edf.fr

Abstract

A new dynamic model of a water heater has been
developed. The component model is meant to be
used for power plant modeling and simulation with
the ThermoSysPro library developed by EDF and
released under open source license.
The model and the test conditions are fully de-
scribed: modeling hypothesis, governing equations,
parameter values and test transients.
To validate the model, three difficult transients were
simulated: the islanding (sudden plant disconnection
from the grid), flow reversal and zero-flow condi-
tions inside the water heater.
Regarding the islanding scenario, the simulation re-
sults are very close to the experimental values meas-
ured on site. This transient demonstrates the physical
validity of the model at it is fast and challenges the
model equations in all operating conditions of the
exchanger.

Keywords: Modelica; thermal-hydraulics ; heat ex-
changer ; water heater ; dynamic modeling; inverse
problems

1. Introduction

In the framework of the EUROSYSLIB project, a
new library called ThermoSysPro has been devel-
oped.
The main objective of ThermoSysPro is to provide a
generic library for the modeling and simulation of
power plants and other kinds of energy systems. The
meaning of the word ‘generic’ is here to be taken as

the possibility to use the same library components to
model different kinds of energy systems for different
types of studies (sizing, control system verification,
etc.).
The library is now routinely used for different pur-
poses, see for instance [1 to 6]. An introduction to
the library can be found in [5].
New developments are ongoing or planned to extend
the scope of the library for uncertainties and state
estimation.
The objective of this paper is to show how the library
can be extended to include a new component to
model a shell-and-tube heat exchanger, by using al-
ready existing components of ThermoSysPro.

2. Model of the condenser/water
heater

2.1. General presentation of the water heater

The water heater is a two-phase shell-and-tube heat
exchanger (see Figure 1). The feedwater flows inside
the tube bundle, while the steam and condensate
flows outside these tubes (inside the cavity). In the
water heater, there are three distinct areas: (1) the
desuperheating zone, (2) the condensation zone, both
located in the upper part of the component, and (3)
the subcooled zone, located in the lower part of the
component. In some water heaters, the condensate of
the water heater located upstream from the current
water heater is re-injected into the current water
heater. During re-injection, part of the condensate
may vaporize due to the pressure drop (this
phenomenon is known as flash). The level of the

DOI Proceedings of the 9th International Modelica Conference 745
10.3384/ecp12076745 September 3-5, 2012, Munich, Germany

condensate in the cavity is adjusted with a valve
located at outlet of the water heater.

Figure 1: Shell-and-tube heat exchanger

2.2. Description of the water heater model

The DynamicWaterHeating model represents the
dynamics of the thermo-hydraulic phenomena of the
hot fluid inside the cavity and of the cooling fluid
which flows through the tube bundle. In particular,
the model features the thermal exchanges between
the fluid in the cavity and the cooling fluid flowing
through the tube bundle.
The water heater is considered as a vertical or hori-
zontal cylindrical cavity (as schematized in Fig-
ure 2), containing a U-bent tube bundle with the fe-
edwater inlet and outlet located on the same side.
The cavity is subdivided into the following zones:

A) The desuperheating zone, where the super-
heated steam, flowing into the heater, exchanges heat
with the liquid flowing through the tube bundle, until
it becomes saturated steam and enters the condensa-
tion zone. This zone is modelled by ‘Pipe 4’ in Fig-
ure 2.

B) The condensation zone, where the saturated
steam condenses as a consequence of the thermal
exchange with the tube bundle, turning into liquid
water that enters the subcooled zone. This zone is
modelled by ‘Pipe 2’ and ‘Pipe 3’ in Figure 2.

C) The subcooled zone, where the liquid inside the
cavity continues to exchange heat with the liquid
flowing through the tube bundle. This zone is mod-
elled by ‘Pipe 1’ in Figure 2.

Four configurations of the model are possible (see
Figure 2):
1. horizontal water heater, with desuperheating

zone, condensation zone and subcooled zone,
2. horizontal water heater, with condensation zone

only,

3. vertical water heater, with desuperheating zone,
condensation zone and subcooled zone,

4. separate vertical water heater with desuperheat-
ing zone, condensation zone and subcooled zone.

Pipe 4
Desuperheater

Pipe 2
Condensation zone

Pipe 3
Condensation zone

Pipe 1 Subcooled
zone

Figure 2a: Horizontal water heater (1)

Pipe 4
Desuperheater

Pipe 3
Condensation zone

Figure 2b: Horizontal water heater (2)

Pipe 4
Desuperheater

Pipe 2
Condensation zone

Pipe 3
Condensation zone

Pipe 1 Subcooled
zone

Figure 2c: Vertical water heater (3)

Dynamic modelling of a Condenser/Water Heater with the ThermoSysPro Library

746 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076745

Pipe 4
Desuperheater

Pipe 2
Condensation zone

Pipe 3
Condensation zone

Pipe 1 Subcooled
zone

Figure 2d: Vertical separate water heater (4)

2.3. Components of the water heater model

The DynamicWaterHeating can simulate all hori-
zontal configurations as shown in Figure 2a and 2b.

The model is divided into sub-models of four differ-
ent types which are connected together to make the
full model (see Figure 3):
• 3 DynamicTwoPhaseFlowPipe models,
• 3 HeatExchangerWall models,
• 1 TwoPhaseCavity model,
• 3 Volume models.

By reassembling the sub-models, any other configu-
ration of the water heater can be modelled.

Figure 3: Model of the water heater “Dy-

namicWaterHeating ”

The description of each sub-model is given in
the following section. Each sub-model in the
model can be recognized by looking at its icon
(see Figures 4, 5, 6 and 7).

3. Physics of the condenser/water
heater

3.1. DynamicTwoPhaseFlowPipe model

Figure 4: Two-flow pipe model icon

The model of the fluid flow in a cylindrical conduit
is based on the dynamic mass, energy, and momen-
tum balance equations, which are originally given as
1-D partial differential equations. The original dis-
tributed-parameter model is first discretised by using
the finite-volume method. The model is formulated
in order to correctly handle possible flow reversal
conditions.

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 747
10.3384/ecp12076745 September 3-5, 2012, Munich, Germany

Assumptions

• Homogeneous fluid in each mesh cell (same veloc-

ity for the liquid and steam phases);
• 1-D modelling (using the finite-volume method);
• The accumulation is considered in each mesh cell;
• The inertia of the fluid is taken into account;
• The phenomenon of longitudinal heat conduction

in the metal wall and in the fluid is neglected;
• The thermo-physical properties are calculated on

the basis of the average pressure and enthalpy in
each mesh cell.

Mass balance equation

The mass balance equation in each cell is given by:

1::1 +− −=∆⋅⋅ iiii
i mmx

dt
dA &&
ρ

Taking the pressure and the specific enthalpy as state
variables yields:

1::1 +− −=∆⋅











⋅








∂
∂

+⋅







∂
∂

⋅ iiii
i

Pi

ii

hi

i mmx
dt
dh

hdt
dP

P
A &&

ρρ

Energy balance equation

The energy balance equation in each cell is given by:

iiiiiiiii
ii Whmhmx

dt
udA ∆+⋅−⋅=∆⋅

⋅
⋅ ++−− 1:1::1:1

)(
&&

ρ

with the specific internal energy given by:

i

i
ii

Phu
ρ

−=

Taking the pressure and the specific enthalpy as state
variables yields:

...1..

1:1::1:1 iiiiiiiii

i
i

i

i
i

i

i

i
i

Whmhm

x
dt
dh

h
h

dt
dP

P
hA

∆+⋅−⋅

=∆⋅















+

∂
∂

+







−

∂
∂

++−− &&

ρρρ

1: +iih is the specific enthalpy of the mass flow

1: +iim& crossing the boundary between the cells i and
1+i . 1: +iih is related to the state variables ih and

1+ih by:

11:)(ˆ)(ˆ ++ ⋅−+⋅= ieieii hPshPsh
where eP is the Peclet number and

21

1)(x

e
xs

−
+

=) (see e.g. [8]).

When neglecting diffusion, the Peclet number is in-
finite, and

11:1:1:)()(++++ ⋅−+⋅= iiiiiiii hmshmsh &&
where s is the step function:





<
>

=
00
01

)(
xif
xif

xs

This simplification is known as the upwind scheme.

Momentum balance equation

The momentum balance equation in each cell is
given by:

() () ()g
ii

f
ii

a
iiii

ii

PPPPP

x
dt

mdA

1:1:1:1

1:/1

++++

+

∆−∆−∆−−

=∆⋅⋅
&

with respectively the acceleration, friction and grav-
ity pressure losses given by:

() 







−⋅⋅⋅=∆

+
+++

ii
iiii

a
ii mm

A
P

ρρ
111

1
1:1:21: &&

() 1:1:21: 2
. +++ ⋅⋅

⋅⋅⋅
∆⋅Λ

=∆ iiii
i

hif
ii mm

AD
x

P &&
ρ

ζ

() ()iiii
g

ii zzgP −⋅⋅=∆ +++ 11:1: ρ

By default, the flow is considered turbulent
(Reynolds number Re > 2300).

The Colebrook correlation is used to compute iΛ .

Convective heat transfer within the U-tubes

The heat exchanged between the fluid and the wall
is:

())()()()(22 iTiTSihiW wc −⋅∆⋅=∆

Convection heat transfer coefficient

The convection heat transfer coefficient ch between
the fluid and the wall is computed using the Dittus-
Boelter correlation.

Dynamic modelling of a Condenser/Water Heater with the ThermoSysPro Library

748 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076745

3.2. HeatExchangerWall model

Figure 5: Wall model icon

The wall model describes the conductive heat
flow through the wall of the tube bundle. The
flow is positive when entering the tubes (going
from side 2 to side 1 of the wall).

()
()DDe

iTiTntubesixiW ww

/)(ln
)()()(2)(1

1 +
−⋅⋅∆⋅⋅⋅

=∆
λπ

()
())/()2(ln

)()()(2)(2
2 DeDe

iTiTntubesixiW ww

++⋅
−⋅⋅∆⋅⋅⋅

=∆
λπ

)()(12 iWiW
dt

dTcM w
pww ∆−∆=⋅⋅∆

3.3. TwoPhaseCavity model

Figure 6: Two-phase cavity model icon

The cavity is modelled as a non-adiabatic two-phase
volume, with vertical or horizontal cylindrical ge-
ometry. The physical model is based on a non-
equilibrium, two-phase formulation of the fluid bal-
ance equations with a control volume approach. The
two phases are supposed to be isobaric and will be
referred to as liquid zone and steam zone, respec-
tively.
The model features the condensation flow of the
steam phase into the liquid phase, and reciprocally,
the vaporization flow of the liquid phase into the
steam phase.
The reasons for not assuming thermal equilibrium
between the two phases are:

• The vapour may enter the cavity superheated (the
vapour temperature is then higher than the satura-
tion temperature).

• The liquid may be subcooled by the incoming
drain and the wetted tube bundle (the liquid tem-
perature is then lower than the saturation tempera-
ture).

Assumptions

• Accumulation of mass and energy is considered.

Heat exchange between the liquid and steam
phases is considered.

• Heat exchange between the liquid or steam phases
and the wall is considered.

• Heat exchange between the water heater and the
external medium (ambient) is considered.

• Pressure losses are not taken into account in the
cavity.

• The liquid and steam phases are not necessarily in
thermal equilibrium.

• The liquid and steam phases are assumed to be
permanently in pressure equilibrium.

State variables

The state variables of the system are:
• the mean pressure in the cavity,
• the specific enthalpy of the liquid phase,
• the specific enthalpy of the steam phase,
• the temperature of the wall,
• the volume of the liquid phase.

The volume of the steam phase is bound to the vol-
ume of the liquid phase by the following equation:

VVV vl =+

Mass balance equation in each phase

evapcond
e

mv
oll mmmxm

dt
Vd

drainl
&&&& −+⋅−+−=

⋅)1()(ρ

condevap
e

mv
e
v

vv mmmxm
dt

Vd
drain

&&&& −+⋅+=
⋅)(ρ

where e
vm& is the mass flow of incoming vapor,

e
drainm& is the mass flow of the incoming

condensate of the water heater located upstream,
o
lm& is the mass flow of outgoing condensate,

condm& is the condensation flow inside the cavity,
and evapm& is the evaporation flow inside the ca-
vity.

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 749
10.3384/ecp12076745 September 3-5, 2012, Munich, Germany

Condensation and evaporation mass flow rate inside
the cavity





⇒≥
−⋅⋅⋅⇒<

=
0

)(

vov

vvovvcondvov
cond Xx

xXVCXx
m

ρ
&





⇒≥
−⋅⋅⋅⇒>

=
0

)(

vol

lolllevaplol
evap Xx

XxVCXx
m

ρ
&

condC and evapC being coefficients with inverse time

dimensionality []t
1 , voX and loX denoting con-

stants.

Energy balance equation in each phase

The general form of the energy balance equation is
given by:

∑∑∑ ++⋅=
⋅⋅ Whmhm

dt
uVd

o
oo

e
ee .)(

&&
ρ

Taking the pressure and the specific enthalpy as state
variables yields:

tlwvl

l

e
ldrain

e
drainmv

l
l

sat
vevap

l
l

sat
lcond

l
l

o
l

o
l

l
l

Pl

l

lh

l

l
l

WWW

PhhmxPhhm

PhhmPhhm

dt
dh

h
P

dt
dP

P
PV

1

l,)()1()(

)()(

1

−−+









−−⋅⋅−+








−−⋅−









−−⋅+








−−⋅−

=











⋅










+








∂
∂

⋅+⋅







−








∂
∂

⋅⋅

ρρ

ρρ

ρρ
ρ

ρ
ρ

&&

&&

ttvwvl

l
v

e
vdrain

e
drainmv

v
v

sat
vevap

l
v

sat
lcond

v
v

e
v

e
v

v
v

Pv

v

vh

v

v
v

WWWW

PhhmxPhhm

PhhmPhhm

dt
dh

h
P

dt
dP

P
PV

32

,)()(

)()(

1

−−−−









−−⋅⋅+








−−⋅+









−−⋅−








−−⋅

=











⋅










+








∂
∂

⋅+⋅







−








∂
∂

⋅⋅

ρρ

ρρ

ρρ
ρ

ρ
ρ

&&

&&

Energy accumulation at the wall

wavwlw
w

pww WWW
dt

dTcM −+=⋅⋅

Heat exchange between the liquid and steam phases

)(lvvlvlvl TTAKW −⋅⋅=

Heat exchange between the liquid or steam phases
and the wall

)(wllwlwlw TTAKW −⋅⋅=
)(wvvwvwvw TTAKW −⋅⋅=

Heat exchange between the water heater and the ex-
ternal medium

)(avvavawa TTAKW −⋅⋅=
In this equation, the vapor temperature is considered
instead of the wall temperature to account for both
the thermal resistance of the metallic wall and the
thermal insulator of the cavity, in addition to the
usual convective resistance. Consequently, vaK is
the global heat exchange coefficient between the va-
por and the ambient. The liquid is neglected in this
equation because the volume of liquid is small w.r.t.
the volume of vapor.

Heat exchange between the liquid and the tube bun-
dle ‘Pipe 1’

))(()()(1111 iTTSihiW wlextconv −⋅∆⋅=∆

∑∆=)(11 iWW t

Heat exchange between the steam and the tube bun-
dle ‘Pipe 2’

))(()()(2222 iTTSihiW wvextcond −⋅∆⋅=∆

∑∆=)(22 iWW t

Heat exchange between the steam and the tube bun-
dle ‘Pipe 3’

))(()()(3333 iTTSihiW wvextcond −⋅∆⋅=∆

∑∆=)(33 iWW t

Heat exchange between the steam and the tube bun-
dle ‘Pipe 4’

)(4
sat
v

e
v

e
vt hhmW −⋅= &

Heat transfer convection coefficients

The heat transfer convection coefficient convh be-
tween the water and the outside wall of the tube bun-
dle is computed using the Kern correlation [7] .

The Nusselt correlation is used to calculate the heat
transfer coefficients condh between the steam and the
outside wall of the tube bundle, in the condensation
zone.

Dynamic modelling of a Condenser/Water Heater with the ThermoSysPro Library

750 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076745

3.4. Mixture homogeneous Volume model

Figure 7: Mixing volume model icon

This sub-model describes the mixing of one-
phase flow fluid.

Mass balance equation

∑∑ +=
⋅

o
o

e
e mm

dt
Vd

&&
)(ρ

Energy balance equation

∑∑∑ ++⋅=
⋅⋅ Whmhm

dt
uVd

o
oo

e
ee .)(

&&
ρ

4. Validation of the condenser/water
heater

4.1. Modelica model of the condenser/water
heater

To simulate the complex dynamic physical behav-
iour in normal and accidental conditions of the con-
denser/water heater model, a test model called
“TestDynamicWaterHeating” has been developed by
assembling the necessary components from the
ThermoSysPro library (cf. Figure 8). The test model
includes the level control system.

Figure 8: Model of the water heater “TestDy-

namicWaterHeating ”

4.2. Data implemented in the model

All geometrical data were provided to the model
(tubes and exchangers lengths, diameters, volumes,
corrective terms for the heat exchange coefficients,
corrective terms for the pressure losses, etc.). The
plant characteristics are given in Figure 11 (cf. Ap-
pendix).

4.3. Calibration of the model

The calibration phase consists in setting (blocking)
the maximum number of thermodynamic variables to
known measurement values (enthalpy, pressure)
taken from on-site sensors for 100% load. This
method ensures that all needed performance parame-
ters, size characteristics and output data can be com-
puted.

The main computed performance parameters are:
• the correction coefficient of the heat transfer coef-

ficient inside the condensation zone,
• the correction coefficient of the pressure loss coef-

ficients inside the tube bundle (pipes),
• the pressure loss coefficients of the pipeline be-

tween the steam turbine and the water heater,
• the maximum Cv values of the extraction valve

and the valves positions.

4.4. Simulation scenario: islanding

In order to challenge the dynamic simulation capa-
bilities of the model, a high amplitude transient,
called islanding, that occurs when the plant is sud-
denly disconnected from the normal energy dis-

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 751
10.3384/ecp12076745 September 3-5, 2012, Munich, Germany

charge network, is simulated. This transient is used
to check and validate the physics taken into account
in the model and the numerical robustness of the
model as it runs the water heater model into very
different operating regimes. This allows to test the
validity and applicability range of the model equa-
tions, and the numerical robustness of the Modelica
implementation when using Dymola.

4.5. Boundary conditions of the model

The boundary conditions of the model (scenario pro-
files) are presented in Figure 9.

Evolution de la pression au soutirage = f (t)

2,50

5,00

7,50
10,00

12,50

15,00

17,50
20,00

22,50

25,00

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Temps (s)

Pr
es

si
on

 (b
ar

)

Figure 9a: Outlet pressure of the steam turbine

Evolution de la pression en entrée réchauffeur = f (t)

68,00
69,00
70,00
71,00
72,00
73,00
74,00
75,00
76,00
77,00
78,00

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Temps (s)

Pr
es

si
on

 (b
ar

)

Figure 9b: Inlet pressure of the feed water

Evolution de la température d'entrée eau alimentaire = f (t)

125,00

135,00

145,00

155,00

165,00

175,00

185,00

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Temps (s)

Pr
es

si
on

 (b
ar

)

Figure 9c: Inlet temperature of the feed water

Evolution du débit d'eau en entrée réchauffeur = f (t)

50,00
100,00
150,00
200,00
250,00
300,00
350,00
400,00
450,00
500,00
550,00
600,00
650,00
700,00
750,00

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Temps (s)

Pr
es

si
on

 (b
ar

)

Figure 9d: Inlet flow of the feed water

4.6. Results of dynamic simulations

In order to cover the whole transient, the simulation
time has been set at 2500 seconds.

Simulation runs were done using Dymola 6.1. The
simulation of the scenarios were mostly successful,
with only one iteration variable to be fed manually.

The following phenomena are simulated:
• flow reversal,
• local boiling or condensation,
• swell and shrink effect in cavity,
• cavity levels and cavity pressure control.

The model is able to compute precisely:
• the mass flow rate of the steam (at the inlet),
• the mass flow rate of the condensate (drain),
• the distribution of water and steam mass flow rate

inside the tubes,
• the thermal power of the water heater and tubes,
• the pressure temperature and specific enthalpy dis-

tribution across the network,
• the cavity levels and and cavity pressure.

The results of the simulation runs are given in Fig-
ure 10. Figures 10a and 10b show that the results
obtained with Dymola are very close to the measured
values on site. The outflow drain (condensate) in
Figure 10d depends on the way the level is con-
trolled inside the heater.

So, the physical validity of the component model is
demonstrated, because we believe that this type of
fast transient is likely to extensively validate the
physics inside the model as it challenges the water
heater in very different operating regimes of the
rated operation.

Dynamic modelling of a Condenser/Water Heater with the ThermoSysPro Library

752 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076745

Comparison of the measured feed water temperature and
calculated with Dymola = f (t)

130
140
150
160
170
180
190
200
210
220
230

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

Experimental values

Dymola
Calculated

Figure 10a: Evolution of the feed water outlet tem-

perature

Comparison of the measured condensate (drain water)

temperature and calculated with Dymola = f (t)

130

140

150

160

170

180

190

200

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Temps (s)

Te
m

pe
ra

tu
re

 (°
C

)

Experimental values

Dymola
Calculated

Figure 10b: Evolution of the condensate (water drain)

outlet temperature

Comparison of the measured feed water pressure and

calculated with Dymola = f (t)

67
68
69
70
71
72
73
74
75
76

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Time (s)

Pr
es

su
re

 (b
ar

)

Experimental values

Dymola
Calculated

Figure 10c: Evolution of the feed water outlet pressure

Comparison of the measured condensate (water drain) mass
flow rates and calculated with Dymola = f (t)

0

10

20

30

40

50

60

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Time (s)

M
as

s
flo

w
 ra

te
s

 (k
g/

s)

Experimental values

Dymola

Calculated

Figure 10d: Evolution of the condensate (water drain)

outlet mass flow rate

4.7. Validation of the water heater model under
flow reversal and zero-flow conditions

The ThermoSysPro library handles flow reversals.

The boundary conditions for the flow reversal sce-
nario are:
• outlet pressure of the steam turbine = 22.733e5

Pa,
• outlet enthalpy of the steam turbine = 2650.6e3

J/kg,
• inlet pressure of feed water = 71.29e5 Pa,
• inlet temperature of the feed water = 454.46 °C,
• inlet mass flow rate of the feed water (t = 0) =

624.97 kg/s,
• inlet mass flow rate of the feed water (t > 2000s) =

-200 kg/s,
• outlet enthalpy of the feed water inlet (Q < 0) =

940.e3 J/kg.

Figures 12 and 13 in the Appendix show the results
for the scenario of flow reversal in the water heater
and the results for the zero-flow scenario.

The possibility of flow reversal and zero-flow in the
tube bundle of the component has been experimen-
tally verified. But there are no data available for
comparison with the simulation results.

5. Conclusion

A new open source Modelica library called ‘Ther-
moSysPro’ has been developed within the frame-
work of the ITEA 2 EUROSYSLIB project. This
library has been mainly designed for the static and
dynamic modeling of power plants, but can also be
used for other energy systems such as industrial
processes, buildings, etc. It is intended to be easily
understood and extendable by the models developer.

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 753
10.3384/ecp12076745 September 3-5, 2012, Munich, Germany

A new dynamic model of a water heater has been
developed using existing elements of ThermoSysPro.

To validate the model, three difficult transients were
simulated: the islanding (sudden plant disconnection
from the grid), flow reversal and zero-flow inside the
water heater.

Regarding the islanding scenario, the simulation re-
sults obtained with Dymola are very close to the ex-
perimental values measured on site. This transient
demonstrates the physical validity of the model at it
is fast and challenges the model equations in all op-
erating conditions of the exchanger.

The possibility of flow reversal and zero-flow occur-
ring inside the tube bundle of the module has been
experimentally verified and simulated, but no ex-
perimental data is available for comparison with the
simulation results.

Nomenclature

Symbols
m& Mass flow
ρ Fluid density
h Fluid specific enthalpy
u Fluid specific internal energy
P Fluid pressure
T Fluid temperature

pc Fluid specific heat capacity

V Volume
t Time
W Power

vx Vapor mass fraction in vapor phase

lx Vapor mass fraction in liquid phase

mvx Vapor mass fraction in input drain

Λ Friction coefficient
ζ Friction corrective coefficient

x∆ Tube segment length
S∆ Heat surface exchange of tube segment

D Tube diameter
A Tube cross section or heat exchange

surface
e Wall thickness
λ Conduction coefficient
K Heat exchange coefficient
M Mass

ch Convective coefficient

1convh Convective coefficient of heat transfer
between the condensate and the tube
bundle in Pipe 1.

2condh Convective coefficient of heat transfer
by condensation between the vapor and
the tube bundle in Pipe 2.

3condh Convective coefficient of heat transfer
by condensation between the vapor and
the tube bundle in Pipe 3.

ntubes Number of tubes in the bundle

Indices

iX or)(iX Quantity in volume i

1: +iiX Flow between volume i and i+1

eX or eX Quantity at inlet

oX or oX Quantity at outlet

lX Quantity relative to liquid

vX Quantity relative to vapor

wX Quantity relative to wall

extX Quantity relative to external side of
wall

aX Quantity relative to ambient
satX Quantity relative to saturated phase

condX Quantity relative to condensation

evapX Quantity relative to evaporation

drainX Quantity relative to drain (conden-
sate)

1X Quantity relative to Pipe 1

2X Quantity relative to Pipe 2

3X Quantity relative to Pipe 3

4X Quantity relative to Pipe 4

References

[1] Bouskela D., Chip V., El Hefni B.,
Favennec J.M., Midou M. and Ninet J.
‘New method to assess tube support
plate clogging phenomena in steam gen-
erators of nuclear power plants’,
Mathematical and Computer Modelling
of Dynamical Systems, 16: 3, 257-267,
2010.

[2] El Hefni B., Bouskela D., ‘Modelling of
a water/steam cycle of the combined cy-
cle power plant “Rio Bravo 2” with
Modelica’, Modelica 2006 conference
proceedings.

Dynamic modelling of a Condenser/Water Heater with the ThermoSysPro Library

754 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076745

[3] David F., Souyri A., Marchais G.,
‘Modelling Steam Generators for So-
dium Fast Reactors with Modelica’,
Modelica 2009 conference proceedings

[4] El Hefni B., Péchiné B., ‘Model driven
optimization of biomass CHP plant de-
sign’, Mathmod conference 2009, Vi-
enna, Austria.

[5] El Hefni B., Bouskela D., ‘Dynamic
modelling of a combined cycle power
plant with ThermoSysPro’, Modelica
2011 conference proceedings

[6] Souyri A., Bouskela D., ‘Pressurized
Water Reactor Modelling with Mode-
lica’, Modelica 2006 conference pro-
ceedings.

[7] Collier J.G., and Thome J.R., ‘Convec-
tive Boiling and Condensation’, Mc
Graw-Hill Book Company (UK) limited,
1972 Clarendon Press, Oxford, 1996.

[8] Patankar S.V., ‘Numerical Heat Transfer
and Fluid Flow’, Hemisphere Publishing
Corporation, Taylor & Francis, 1980.

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 755
10.3384/ecp12076745 September 3-5, 2012, Munich, Germany

Appendix

Figure 11: Data of the model

Dynamic modelling of a Condenser/Water Heater with the ThermoSysPro Library

756 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076745

1

2

3

4

5

6

Figure 12: Results for the flow reversal scenario

Session 6C: Climate Systems II

DOI Proceedings of the 9th International Modelica Conference 757
10.3384/ecp12076745 September 3-5, 2012, Munich, Germany

1

2

3

4

5

6

Figure 13: Results for the zero-flow scenario

With:
1 - Evolution of the inlet mass flow rate of the feed water,
2 - Inlet mass flow rate of the steam (corresponding to the steam turbine outlet),
3 - Outlet mass flow rate of the water (output drain),
4 - Outlet temperature of the feed water (pipes),
5 - Inlet temperature of the feed water (pipes),
6 - Outlet temperature of the water (output drain).

Dynamic modelling of a Condenser/Water Heater with the ThermoSysPro Library

758 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076745

Session 6D: FMI Standard II

FMI implementation in LMS Virtual.Lab Motion and application to a vehicle dynamics case

FMI implementation in LMS Virtual.Lab Motion

and application to a vehicle dynamics case

Hunor Erdélyi, William Prescott, Stijn Donders, Jan Anthonis

LMS international

Interleuvenlaan 68 - 3001 Leuven - Belgium

hunor.erdelyi@lmsintl.com

Abstract

The aim of this paper is to present the implementa-

tion of the Modelisar Functional Mock-up Interface

(FMI) in LMS Virtual.Lab Motion. This functionali-

ty enables co-simulation between multi-disciplinary

subsystem models for a range of industrial applica-

tions. The validity of the methodology and industrial

applicability of the implementation is demonstrated

on an application case taken from automotive indus-

try, with an Opposite Wheel Travel scenario using a

half vehicle model in LMS Virtual.Lab Motion and

an Air-spring FMU based on Modelica code.

Keywords: Functional Mock-up Interface (FMI);

Modelica; Co-simulation; LMS Virtual.Lab Motion

1 Introduction

In complex systems such as in automotive and aero-

space many different types of subsystems (e.g. me-

chanical, hydraulic or electric subsystems) interact

with each other [1]. The simulation of such complex

multidisciplinary systems is a new challenge in mod-

ern computer aided engineering.

A widely used technique to link together different

multidisciplinary subsystems in a common simula-

tion framework is what scientific literature refers to

as Co-Simulation. In co-simulation, the overall sys-

tem is split into different subsystems, which are

treated by different optimized simulation tools, cou-

pled by input and output variables, thus creating a

coupling loop [2, 3].

The “Functional Mock-up Interface” (FMI) [4],

developed within the framework of the ITEA2 Mod-

elisar project [5], provides a standardized way for

linking together different subsystems modeled in

different simulation software. An instance of a model

compiled for being linked with a 3
rd

 party simulation

environment is called a “Functional Mock-up Unit”

(FMU).

Typically an FMU consists of the following main

elements compressed into a single archive:

a) C-header files to interact with the equations

of a model or to perform co-simulations with other

simulators (model interface) and

b) XML schema files to inquire information

about model and interface variables (model descrip-

tion file)

c) executable files

Two distinct standards have been defined within

the framework of FMI: FMI for Model Exchange

and FMI for Co-Simulation. The FMI for Model

Exchange was developed to allow a modeling tool to

generate C code or binary files from a model that can

be integrated into another simulation environment

[4]. The FMI for Co-Simulation defines an interface

standard for the communication between a master

and the individual simulation tools called slaves in a

co-simulation environment. The data exchange is

restricted to discrete communication points in time

and the subsystems are solved independently be-

tween these communication points [4, 6].

FMI compatibility was implemented in LMS Vir-

tual.Lab Motion [7], a multi-purpose simulation

software, specially designed to simulate realistic mo-

tion and loads of mechanical system. LMS Virtu-

al.Lab Motion can be used as a simulation platform

into which one or several FMUs can be linked in

order to perform simulations for analyzing complex

multidisciplinary systems.

2 FMI Interface in LMS Virtual.Lab

Motion

A schematic representation of linking an FMU in-

to a simulation with LMS Virtual.Lab Motion is pre-

sented in Figure 1. To be able to establish the link

between LMS Virtual.Lab Motion and an FMU, in-

puts and outputs have to be defined, which will rep-

resent the coupling data for the co-simulation.

DOI Proceedings of the 9th International Modelica Conference 759
10.3384/ecp12076759 September 3-5, 2012, Munich, Germany

The coupling data is exchanged at the level of

Control Nodes. A Control Input represents the sig-

nal which is transmitted from the mechanical model

in LMS Virtual.Lab Motion to the FMU. Typically,

Control Inputs are displacement, velocity or acceler-

ation data. A Control Output is a signal received

from an FMU that is applied to the mechanical mod-

el in LMS Virtual.Lab Motion (e.g. force or torque).

Control Nodes are the nodes or connection points to

which the above mentioned Control Inputs and Out-

puts are applied.

Figure 1: Schematic representation of the FMI inter-

face in LMS Virtual.Lab Motion

For the two distinct standards, FMI for Model

Exchange and FMI for Co-Simulation, the different

approaches are described as follows.

In case of linking to an FMU for Model Exchange

the state equations of both the FMU and LMS Virtu-

al.Lab Motion are solved by the Motion solver.

The LMS Virtual.Lab Motion Solver uses a set of

Differential-Algebraic equations (DAE) of motion in

Netwon-Euler format [7].

 ̇
 () (1)

 () (2)

Here, q is the vector of generalized position coor-

dinates, v denotes the vector of generalized coordi-

nate velocities, M is the mass matrix, Qa is the vector

of applied forces, Φ(q) denotes the vector joint con-

straint equations and λ stands for the vector of La-

Grange multipliers. A maximal set of coordinates are

considered first and then the extra degrees of free-

dom are removed by applying a set of joint con-

straint equations.

When linking an FMU for Model Exchange to

LMS Virtual.Lab Motion a set of control forces is

applied on the mechanism bodies representing the

contribution of the FMU. In turn sensors feed posi-

tion, velocity and acceleration data back to the FMU.

Usually, the FMU forces are the product of state

equations. This means that the Motion solver must

integrate a set of differential equations from the

FMU.

Representing the FMU state equations by g and

the state variable by χ, the coupled equations of mo-

tion become:

 ̇
 () (3)

 () (4)

 (̇) (5)

In case of linking to an FMU for Co-Simulation,

each simulation package runs its own solver, which

is in turn synchronized with the other solver. Each

solver is running and communicating with the other

solver at discrete intervals in time. The same equa-

tions (3-5) are solved in the co-simulation mode as in

the case of model exchange, but separately. In this

situation the LMS Virtual.Lab Motion solver is the

master. The Motion solver solves its own set of state

equations from the current time (t
i
) to the time at the

next communication interval (t
i+1

). Equation (5) now

becomes equation (6) where the FMU variable inputs

(q, v) are still at the last sample time.

 (̇) (6)

Once the LMS Virtual.Lab Motion solver has fin-

ished integrating to the next communication interval

the FMU solver is called and told to integrate to the

current time. The FMU solver now uses the LMS

Virtual.Lab Motion inputs at the last communication

interval to move forward to the next communication

interval.

 ̇
 (

) (7)

 () (8)

For both cases described above, a fixed commu-

nication interval has been used.

In the following paragraphs, the implementation

of the FMI standard into LMS Virtual.Lab Motion

will be demonstrated with a simple air-spring FMU.

3 Application case description and

results

For demonstrating the implementation of the FMI

interface and industrial applicability, an application

case is presented from automotive industry, with an

Opposite Wheel Travel scenario using a half vehicle

model in LMS Virtual.Lab Motion and an Air-spring

FMU based on Modelica code.

3.1 Development of a Modelica FMU of an air-

spring

An air-spring can be approximated as a volume of

air, enclosed either in a cylinder fitted with a piston

or in a flexible bellows, as shown in Figure 2. The

air is compressed to a predetermined pressure under

the static load of the vehicle. Subsequent motion of

the piston either increases or decreases the pressure

and consequently increases or decreases the force

acting on the piston.

For simplicity, the air-spring is modeled with an

isothermal process, considering a closed system and

FMI implementation in LMS Virtual.Lab Motion and application to a vehicle dynamics case

760 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076759

ideal gas. The chamber of the gas is considered as

rigid, thus neglecting the elasticity of the bellow.

The diameter of the piston is variable as high-

lighted in Figure 2.

Figure 2: Schematic representation of an air-spring

(p is the pressure and V is the volume of the gas, D

represents the piston diameter and F the piston force,

x is the piston displacement)

For an ideal gas at constant temperature, the

Boyle-Mariotte law is valid (9):

 (9)

Where, p denotes the pressure of the system, V

denotes the volume of the gas, n is the number of

moles of gas present, R is the ideal gas constant and

T denotes the temperature of the system.

Considering the air-spring modeled as an iso-

thermal process, the pressure p of the system will be

variable as a function of the volume V. Furthermore,

the volume V depends on the displacement and di-

ameter of the piston of the air-spring.

The diameter of the piston is defined as a function

of its displacement x (10):

 (
 ()

) (10)

For the present case the piston diameter varies

following the curve shown in Figure 3. Parameters k1

and k2 are used for tuning the shape of the curve.

Figure 3: Piston diameter as a function of piston dis-

placement

The volume of the system is defined as a function

of the initial volume V0, the piston area A, and dis-

placement x (11):

 (11)

Where the piston area A is defined as follows

(12):

 (

)

 (12)

The pressure acting on the piston can be defined

based on the ideal gas law (13):

 (13)

Where n is the number of moles of gas present in

the chamber of the air-spring and can be determined

as follows (14):

 (14)

In the above equation (14) p0 denotes the initial

pressure of the air-spring system. For a displacement

of 0.05 m the pressure evolution of the air-spring is

presented in Figure 4 below.

Figure 4: Pressure of the system as a function of pis-

ton displacement

The force acting on the piston is defined as a

function of the piston area and the pressure in the air-

spring system (15):

 (15)

Considering a displacement of 0.05 m, the evolu-

tion of the force acting on the piston is presented in

Figure 5.

Figure 5: Piston force as a function of piston dis-

placement

Session 6D: FMI Standard II

DOI Proceedings of the 9th International Modelica Conference 761
10.3384/ecp12076759 September 3-5, 2012, Munich, Germany

Based on the thermodynamic relations described

above, the air-spring system was translated into

Modelica code.

The pre-defined parameters of the Modelica code

of the air-spring are the following:

R = 8.3144621[J/mol K] ideal gas constant

V0 = 0.0008[m
3
] initial chamber volume

T = 293.15[K] gas temperature

p0 = 303975[Pa] initial gas pressure

D0 = 0.08[m] initial piston diameter

k1 = 200 parameter 1

k2 = 5 parameter 2

The input to the Modelica air-spring model is the

displacement of the piston x and the output of the

model is the force F acting on the piston.

An FMU for Model Exchange of the Modelica

air-spring was generated with the specified IN and

OUT ports, using OpenModelica 1.8.0 based on the

FMI standard V1.0. This FMU was linked into a dy-

namic simulation with LMS Virtual.Lab Motion.

3.2 LMS Virtual.Lab Motion vehicle dynamics

simulation with a Modelica air-spring FMU

In LMS Virtual.Lab Motion a front suspension of a

vehicle was modeled (as shown in Figure 6). An Op-

posite Wheel travel scenario was implemented,

which is one of the typical scenarios considered in

vehicle suspension design for analyzing relevant

suspension parameters and forces in the connecting

elements.

Figure 6: Vehicle front suspension in LMS Virtu-

al.Lab Motion (air-spring FMU inputs are highlight-

ed in green and outputs in red)

In an opposite wheel-travel analysis the left and

right wheels are moved vertically on an equal but

opposite path to simulate body roll. The left and right

wheels move 180° out of phase with respect to each

other along a specified bounce and rebound travel.

For the present case, the wheel travel distance of

0.05m was considered with a cycle time of 1 s.

Two instances of the Modelica Air-spring FMU

for Model Exchange were linked into the LMS Vir-

tual.Lab Motion suspension model for the left and

right side. The air-spring FMUs were linked to the

upper and lower part of the damper units on the left

and right side of the suspension.

Corresponding to the Modelica air-spring model

the input to the air-spring FMU was the relative dis-

placement of the lower damper part with respect to

the upper part. In Figure 6, highlighted with green,

xFL and xFR represent the relative displacement of

the Front Left and Front Right dampers respectively.

Figure 7: Air-spring FMU input signals (xFL in red

and xFR in blue)

The evolutions of the FMU input signals for the left

and right air-springs are presented in Figure 7.

The output of the FMU air-spring was the force

on the piston of the air-spring, applied between the

upper and lower damper part. Highlighted in red in

Figure 6, for the left and right air-springs are the

FMU output forces denoted with FFL and FFR re-

spectively.

FMI implementation in LMS Virtual.Lab Motion and application to a vehicle dynamics case

762 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076759

Figure 8: Air-spring FMU output signals (FFL in red

and FFR in blue)

Figure 8 presents the evolutions of the FMU output

signals. The nonlinear behavior of the air-spring

forces is clearly visible.

3.3 Validation of the presented air-spring FMU

with LMS Imagine.Lab AMESim

To validate the FMI implementation in LMS Virtu-

al.Lab Motion, the results obtained with the FMU for

Model Exchange have been compared to the results

obtained with LMS Imagine.Lab AMESim.

LMS Imagine.Lab AMESim is a 1D simulation

suite to model and analyze multi-domain, intelligent

systems and predict their multi-disciplinary perfor-

mance [8].

For the purpose of validation, the air-spring mod-

el has been replicated in LMS Imagine.Lab AMESim

using the same equations (10–15). The AMESim

model of the air-spring has been coupled with the

LMS Virtual.Lab Motion model using a Model ex-

change approach, but instead of using the FMI

standard, an internally developed interface was

adopted.

Consequently, the set of control forces from the

LMS Imagine.Lab AMESim air-spring have been

applied on the LMS Virtual.Lab Motion mechanism,

which have been solved together by the Virtual.Lab

Motion solver. To be able to correctly compare re-

sults, the same communication time interval of

0.001s has been used for both cases.

Figure 9 presents the comparison of the different

air-spring forces obtained with the FMU for Model

Exchange with the LMS Imagine.Lab AMESim

model. In this figure the front left air-spring force

(FFL) is presented in red and the front right air-

spring force (FFR) in blue. The FMU forces are de-

picted with continuous lines while the LMS Imag-

ine.Lab AMESim forces are presented with dashed

lines.

Figure 9: Comparison of Air-spring forces: FFL in

red and FFR in blue; FMU signal in continuous line,

AMESim signal in dashed line

As it can be noticed in Figure 9 the FMU forces

and the AMESim forces follow very closely each

other. In the central region of the figure, a close-up is

presented at t=0.73 s.

The difference between the signals is 0.429 N,

which expressed in percentage, is approximately

0.016% and as such can be considered negligible.

4 Conclusions

The Modelisar FMI standard provides a vendor-

neutral interface that allows the exchange of simula-

tion models between different tools and platforms

and enables their use in multidisciplinary simula-

tions.

This paper presents the implementation of the

Modelisar Functional Mock-up Interface (FMI) in

LMS Virtual.Lab Motion. This functionality is

demonstrated with an Opposite Wheel Travel scenar-

io using a half vehicle model in LMS Virtual.Lab

Motion and an Air-spring FMU for Model Exchange

compiled from Modelica code.

Linking together different FMUs and an LMS

Virtual.Lab Motion model in a co-simulation envi-

ronment brings several benefits. However, both Co-

simulation and Model Exchange type of simulation

have their benefits and drawbacks.

In a Model Exchange type of simulation, in addi-

tion to the set of multibody equations of motion, a

set of control forces from the FMU are applied on

the mechanism, which are solved together by the

Virtual.Lab Motion solver. Usually, the FMU forces

Session 6D: FMI Standard II

DOI Proceedings of the 9th International Modelica Conference 763
10.3384/ecp12076759 September 3-5, 2012, Munich, Germany

are the product of state equations. In a Model Ex-

change type of simulation the main benefits are:

good numerical stability and use of the full capability

of the solver (variable step sizes, iterative meth-

ods…). The drawback is that this approach may be

inefficient and time consuming if large differences in

stiffness exist between the subsystems and the sys-

tems are loosely coupled.

In case of Co-simulation, the coupling data is ex-

changed between the Virtual.Lab Motion solver and

the FMU at each communication interval, conse-

quently, the co-simulation approach is less stable. In

the case of Co-simulation, the main benefits are:

problem-specific solvers can be used for integrating

different subsystems and hence it may be more time

efficient for loosely coupled systems (solvers may

use different integration step sizes). On the down-

side, this approach is less stable as the Model Ex-

change type. The main reason for this instability is

the approximation of the coupling variables between

two consecutive communication time steps. Howev-

er, by choosing the communication step size careful-

ly a stable simulation can be achieved.

As a result it is suggested to use the model ex-

change approach for tightly coupled systems, while

the co-simulation approach may be more efficient in

loosely coupled problems.

Acknowledgements

We gratefully acknowledge IWT Vlaanderen and

ITEA2 for their support of the R&D projects IWT-

080067 (ITEA2-07006) “MODELISAR” (From Sys-

tem Modeling to S/W running on the Vehicle), and

we furthermore acknowledge IWT Vlaanderen for

supporting the R&D project IWT-090408 "CHAS-

ING". In addition, we gratefully acknowledge the

European Commission for their support of the Marie

Curie IAPP project 285808 “INTERACTIVE” (In-

novative Concept Modelling Techniques for Multi-

Attribute Optimization of Active Vehicles,

http://www.fp7interactive.eu/).

References

[1] Anthonis J., Gubitosa M., Donders S., Gallo

M., Mas P., Van der Auweraer H. Multi-

Disciplinary Optimization of an Active Sus-

pension System in the Vehicle Concept De-

sign Stage, 14th Belgian-French-German

Conference on Optimization, Leuven, Bel-

gium, September, 2009.

[2] Busch M. and Schweizer B. Numerical Sta-

bility and Accuracy of Different Co-

Simulation Techniques: Analytical Investiga-

tions Based on a 2-DOF Test Model, 1
st
 Joint

International Conference on Multibody Sys-

tem Dynamics, Lappeenranta, Finland, May

25–27, 2010.

[3] Schierz, T., Arnold, M. MODELISAR: Inno-

vative numerische Methoden bei der Kop-

plung von multidisziplinären Simula-

tionsprogrammen, in A. Brenke (ed.): Ta-

gungsband ASIM-Konferenz STS/GMMS

2011, Krefeld, 24.02.-25.02.11, Shaker Aa-

chen, 2011.

[4] Functional Mock-up Interface:

http://www.functional-mockup-interface.org/

[5] IWT Vlaanderen, IWT-080067 (ITEA

07006) “MODELISAR” (From System

Modeling to S/W running on the Vehicle),

http://www.modelisar.com

[6] Bastian J., Clauß C., Wolf S., Schneider P.

Master for Co-Simulation Using FMI, Pro-

ceedings 8th Modelica Conference, Dresden,

Germany, March 20-22, 2011.

[7] LMS International, LMS Virtual.Lab Rev.

11, http://www.lmsintl.com/virtuallab, May

2011.

[8] LMS International, LMS Imagine.Lab

AMESim Rev. 11

http://www.lmsintl.com/LMS-Imagine-Lab-

AMESim, May 2011.

FMI implementation in LMS Virtual.Lab Motion and application to a vehicle dynamics case

764 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076759

Generating Functional Mockup Units from Software Specifications

Generating Functional Mockup Units from Software
Specifications

Uwe Pohlmann, Hendrik Reddehase, Jens Röckemann,
Wilhelm Schäfer Robert Wagner

Software Engineering Group, Solunar GmbH,
Heinz Nixdorf Institute, Gütersloh, Germany

University of Paderborn, Germany [reddehase|roeckemann]@solunar.de

[upohl|wilhelm]@upb.de wagner@solunar.de

Abstract

This paper presents an approach to use the Func-
tional Mockup Interface (FMI) for integration of
classical controller specifications and statechart-
based specifications of real-time critical message
exchange protocols. The Functional Mockup Unit
(FMU) is automatically generated from the speci-
fication. Using the generated FMU we are able to
exploit simulation facilities as provided by Model-
ica/Dymola.

Keywords: Systems Engineering, Software En-
gineering, MechatronicUML, FMI, FMU, Model-
ica

1 Introduction

In today’s globalized world market forces demand
products to provide for more and more unique fea-
tures. In so-called mechatronic or embedded sys-
tems these features are often realized (mainly) by
software. For example, many new features which
were recently introduced in the automotive indus-
try are largely software driven.

In addition, very advanced new features will de-
pend on extensive communication between cur-
rently still independently operating individual
components. For example, intelligent lighting sys-
tems in cars will combine information about the
environment obtained from their own sensors with
those collected by other cars to save energy but
also to avoid glaring other drivers. Similar ex-
amples exist for transportation systems in general
but also for household appliances or in the pro-
duction industry [25]. Here, possible significant
energy savings are one main motivation to intro-
duce so-called smart grids.

The resulting high amount of software enabling

communication between a large number of compo-
nents combined with the software controlling in-
dividual components makes those systems more
complex than today. This requires significant
changes in the way software is developed today.
This is especially true as the software controlling
individual components is usually dealing with con-
tinuous variable values and developed by control
engineers whereas software controlling communi-
cation is handling discrete input and output sig-
nals often using asynchronous communication and
is developed by software engineers. In addition,
electrical and mechanical engineers bring in exper-
tise about the underlying hardware system con-
straints which have to be considered when devel-
oping the software.

As these systems are usually deployed in safety-
critical environments, high quality of the software
is an absolute must [21]. However, in the past, an
overall validation of systems under construction
was not possible until implementations had been
finished, i.e., after all hardware and software parts
had been built and integrated into the final prod-
uct. The above mentioned different disciplines use
their own models and formalisms to describe the
corresponding parts of the system under develop-
ment, e.g. feedback controllers are described using
differential equations and communication proto-
cols are described using statecharts. This devel-
opment process hinders early (formal) verification
and simulation of system models to detect errors in
the design phase as early as possible and to avoid
costly error removal in later development stages.

In this paper we focus on supporting simu-
lation based on model-driven development espe-
cially considering cross-discipline development be-
tween control and software engineering. In con-
trast to other approaches like [22, 8, 26], we use

DOI Proceedings of the 9th International Modelica Conference 765
10.3384/ecp12076765 September 3-5, 2012, Munich, Germany

a discrete system model which enables the de-
tailed specification of timing issues when speci-
fying communication protocols, because message
transfer specified by those protocols is real-time
critical. Proper functioning of the system does
not only depend on the correct order of messages
sent and received but also on their timely delivery.

This paper presents how we employed the Func-
tional Mockup Interface (FMI) and the Functional
Mockup Units (FMU) in order to integrate dis-
crete model-based real time protocol specification
with controller design and appropriated simula-
tion facilities using Modelica/Dymola.

The approach has been developed as part
of the ENTIME project (ENTIME is the Ger-
man acronym for ’Design Methods for Intelligent
Mechatronics’). The project aims at the devel-
opment of a seamless methodology reaching from
conceptual design to concrete implementation of
mechatronic systems. It is carried out in close co-
operation with nine industrial partners. To sup-
port simulation of the physical models and cor-
responding feedback loops together with specifi-
cations of real-time protocols, the main challenge
was to provide the needed tool support, because
the project collaborators use different modeling
and simulation tools in their industrial practice.

The paper is organized as follows. In the next
section we illustrate the use of MechatronicUML,
a domain specific modeling language enabling pro-
tocol specifications including sophisticated real-
time constraints. The example which we use in
the paper, is a miniature robot called BeBot which
is a small mechatronic systems with a focus on
ad-hoc communication. In Section 3, we give a
brief and informal introduction to the concepts of
the FMI standard, sketch our implementation of
MechatronicUML according to the FMI standard
for model exchange by means of the example, and
present our tool support. Section 4 discusses re-
lated work in more detail. The paper closes with
a conclusion and an outlook on future work.

2 Specification of Protocols

The specification language which we use is called
MechatronicUML [3]. It has been developed by
a large joint project between engineers and peo-
ple from computer science. The project is the
collaborative research center self-optimizing sys-
tems in mechanical engineering which is funded

by the German national science foundation since
2002 (http://www.sfb614.de/en/).

2.1 Running Example

The example is the scenario of a so-called obsta-
cle avoidance maneuver which is performed by a
BeBot. BeBot [11] is a sophisticated intelligent
miniature robot, developed by the Heinz-Nixdorf
Institute. Figure 1 shows a picture of a BeBot. In
our scenario, the BeBot uses three sensors which
detect obstacles in front, left and right of its cur-
rent position. Further, the BeBot has a gyroscope
which measures its current angle position with re-
spect to the outside world. Three components of
the BeBot are active when it performs obstacle
avoidance. These components are (1) an explo-
ration component which starts or stops the explo-
ration of the environment, (2) a navigation com-
ponent which steers the BeBot around an obstacle
based on the given sensor inputs and (3) an obsta-
cle detection component which receives the input
from the three sensors and transforms them into
corresponding messages which are received by the
navigation component.

Figure 1: BeBot Robot [11]

As a consequence, the decision if and how an
obstacle avoidance maneuver has to be performed
depends on (extensive) asynchronous communica-
tion between these three components. For exam-
ple, the navigator which knows the actual angle to
the outside world, informs the obstacle detection
component which sensor values are relevant. The
obstacle detection component must not send mes-
sages when a turn is performed, because sensor
values are not correct when the BeBot spins.

Figure 2 illustrates how a BeBot will find its
way out of the shown maze.

Generating Functional Mockup Units from Software Specifications

766 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076765

+/- 180° =
West

0° =
East

-90° = South

90° = North

BeBot

Figure 2: BeBot Obstacle Avoidance Maneuver

2.2 Structure Model

In MechatronicUML the system model is struc-
tured hierarchically and consists of either atomic
components or of structured components. Atomic
components implement their behavior directly
and structured components are a composition of
other components. The component model of
MechatronicUML differs from other component-
based approaches, like [27], as MechatronicUML
employs active components, i.e. the behaviour
of each component is specified by a real-time
statechart (see below) and executed by a single
thread [3].

Each component has interaction points, called
ports for accessing their functionality. Discrete
ports, shown as rectangles, are used for sending
and receiving asynchronous messages. Each mes-
sage is typed over a message type. Further, dis-
crete message ports have the causality in , out

, or in/out . Discrete in-ports can only re-
ceive messages, discrete out-ports can only send
messages and in-out-ports can receive and send
messages. A continuous port, shown as a trian-
gle is either a continuous in-port , or a continu-
ous out-port . It sends or receives signal values
which are typed as Boolean, Int, or Real.

Figure 3 shows the internal structure of the Be-

Bot SW component. It consists of three atomic
components. The component Exploration is respon-
sible for starting and stopping the exploration sce-
nario. It is connected via its port sender to the
component Navigation. The Navigation component
is responsible for actuating the BeBot. It can set
the linear speed and the angular speed of the BeBot.
The Navigation component is connected to the Ob-

stacleDetection component via its discrete port mas-

ter. The ObstacleDetection component transfers the
continuous signal values of the sensors front, left,
and right to asynchronous messages. These mes-
sages inform the Navigation component if it has to
perform an obstacle avoidance maneuver.

 Obstacle

 Detection

BeBot_SW

Navigation

masterslave

linear_speed

angular_speedExploration

receiver

Expsender

actual_angularfront

left

right

Figure 3: Component Type of the BeBot Software

2.3 Real-Time Properties

Real-Time properties are specified by clocks. In
MechatronicUML a clock is a first-class real-
valued entity and is used to synchronously mea-
sure the duration of time during execution. It can
be reset to zero, which is marked by the keyword
reset, with any state- or transition-action. At the
beginning of the simulation clocks start with a
zero-value. In contrast to delayed transitions of
State Graph2 [22], or the after, before-construct
of Stateflow [23], or the relative time event after
of UML, a clock is not automatically reset when
the system state changes. At any point in time, a
clock can be read. The value of the clock repre-
sents the continuous-time since the last reset [2].
This semantics simplifies the specification of more
complex real-time behavior and constraints. It is
possible to compare clock values with time con-
stants. We use clocks to specify transition guards,
transition deadlines and time invariants of states.

2.4 Discrete Behavior Model

MechatronicUML uses Real-Time Statecharts to
specify protocols of message exchange between dif-
ferent components, i.e. the order of message invo-
cation and its corresponding time constraints. Be-
sides elements from UML state machine formalism
Real-Time Statecharts use syntactic elements like
clocks and corresponding clock constraints as ex-
tended transition guards as defined by timed au-
tomata. In MechatronicUML each discrete port
has its own statechart. The behavior of a com-
ponent is given by the parallel composition of all
statecharts of all its ports. In addition, it is possi-
ble to add synchronization channels like in timed
automata to synchronize the behavior of the dif-
ferent port statecharts.
Time-invariants from timed automata con-

strain when and how long a statechart is allowed
to stay in a particular state. We define the max-
imum time for evaluating and executing a transi-
tions by a deadline. We use clocks as guards of

Session 6D: FMI Standard II

DOI Proceedings of the 9th International Modelica Conference 767
10.3384/ecp12076765 September 3-5, 2012, Munich, Germany

transitions, deadlines of transitions, and time in-
variants of states. The operational semantics of
Real-Time Statecharts is formally defined by [12]
and is based on timed automata.

It enables the application of formal verification
techniques like real-time model checking [14] with
tools like UPPAAL [4]. For instance we specify
in our example in Figure 4 the safety property
that each turn maneuver may not last longer than
5 seconds. Therefore we use the time invariant
c0 < 5.

Figure 4 shows the Real-Time Statechart of the
Navigation component. It consists of the paral-
lel composition of the port statecharts receiverExp

and master. The statechart in region receiverExp

describes how the received messages from com-
ponent Exploration are processed. At the begin-
ning the statechart is in its initial state Stop and
the parallel statechart master is in the state Halt.
When the upper statechart gets the asynchronous
message start the outgoing transition fires, if the
synchronization channel go is available. The syn-
chronization channel go is available if the sender
transition, marked by the “!”, and the receiving
transition, marked by the “?” can fire. If both
transition can fire both transitions fire together in
an atomic way. This means either both fire or none
of them. Because there are no more conditions on
the transitions they fire and the statechart gets in
the states Start and Go.

When the statechart master enters the state Go

the output signal linear speed of the BeBot is set to
the value 0.1 and the angular speed is set to 0. In
the state Go the BeBot drives forward until the Ob-

stacleDetection sends the message obstacleFront. In
this case the BeBot turns right to a southward
direction and drives forward until the left sensor
signals that there is no more obstacle at the left
side. If there is no more obstacle, the BeBot turns
back in an eastward direction and drives forward
until the next obstacle occurs in front of it. If
there is an obstacle at the left side until the BeBot
reaches the corridor boarder, the BeBot performs
a U-turn and drives forward until the right sensor
signals that there is no more obstacle at the right
side. These steps are carried out in a loop until
the Exploration component sends the stop message.

Navigator

receiverExp

Stop

var: Integer linear_speed, angular_speed, ref_angular,

Real actual_angular; cl: c0;

Start

start go! /
1

stop() halt! /
1

master

Halt

Go

go? /
1

halt? /

4

ObstacleFront

obstacleFront /

1

TurnMinus90

1
[ref_angular == 0] /

TurnFinished

Minus90

c0 < 5

[actual_angular ==

 ref_angular] /

 turnFinished
1

1
 / detectLeft

NoObstacleRight /

stopDetectRight
2

Turn90
1

2

[ref_angular == -90] /

stopDetectLeft {ref_angular := 90}

TurnFinished

90

c0 < 5

[actual_angular ==

ref_angular] /

 turnFinished

1
 / detectRight

Turn0

1

3

NoObstacleLeft /

stopDetectLeft

[actual_angular ==

 ref_angular] /

 turnFinished

entry / {linear_speed := 0.1,

angular_speed := 0}

exit / {linear_speed := 0}

entry /

{linear_speed := 0}

{reset: c0}

2

1

c0 < 5

entry /

{angular_speed := 1,

ref_angular := 0}

{reset: c0}

entry /

{angular_speed := 1}

entry /

{angular_speed := 1,

ref_angular := -90}

[ref_angular == 90] /

stopDetectRight

3

Figure 4: Real-Time Statechart the Navigator

2.5 Asynchronous Communication

The shown Real-Time Statechart formally defines
the protocol definition of the message exchange
and the corresponding timing constraints. Mes-
sages are sent when a transition fires. Messages
which should be sent are shown behind the slash
(/) and messages which should be consumed are
shown before the slash. The connector may have
a delay or a message could be lost. For the sake
of simplicity of the figure above and due to lack of
space, we omit the specification of the connector
here. The receiver port of a message stores a re-
ceived message in a mailbox. This is implemented
as a queue and has a fixed size which is defined
by the modeler during design time. Each mes-
sage type has its own mailbox. Thus, the receiver
can test directly if a needed message is available
without searching the whole queue. Each message
type could have an arbitrary number of parame-
ters, which are packaged in the message when a
transition fires. The receiver transition can read
and process the parameters when it fires and con-
sumes the message. Messages remain in the mail-
box until a transition consumes and destroys it.

2.6 Further Features of
MechatronicUML

As explained, MechatronicUML [3] mainly focuses
on the discrete parts of systems. The language

Generating Functional Mockup Units from Software Specifications

768 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076765

especially addresses the specification of complex
communication protocols with hard real-time re-
quirements [9].

The structure of a mechatronic system is defined
by a component-based development approach. It
is possible to distinguish between discrete software
components and continuous software components
like controllers. MechatronicUML has clear inter-
faces between discrete system parts and continu-
ous system parts.

The behavior of continuous components includ-
ing their communication protocols is specified by
an extension of our Real-Time Statecharts in the
sense of hybrid automata. However, in contrast to
hybrid automaton approaches [1, 19] we abstract
from detailed definitions of controllers.

This abstraction together with some constraints
on the parallel composition of port statecharts en-
ables formal verification of the behavioral spec-
ification using model checking. We employ the
model checker UPPAAL to verify safety proper-
ties like deadlock freeness, state reachability or
end-to-end response time. MechatronicUML mod-
els can be verified automatically. We also prove
by model checking that a mailbox will not over-
flow (see above). However, formal verification is
beyond the scope of this paper and we refer to
[15, 13] for further details.

3 Generating FMUs from
Software Specification

This section shows how to generate an FMU.

3.1 FMI/FMU Fundamentals

Using different tools when designing the models
leads to compatibility problems when you want to
simulate all models in combination. To address
this problem, the ITEA2 project MODELISAR
has defined the FMI as an open standard for model
exchange and co-simulation between multiple soft-
ware systems. The FMI is used to create an in-
stance of a model which can be loaded into any
simulator providing an import function for FMI
[7]. The FMI for Co-Simulation allows to couple
several simulation tools [6].

A software instance compatible to the FMI is
called an FMU. An FMU is basically a zip-archive
with a “*.fmu” file extension. The information re-
quired for the simulation environment is collected

in an XML-file called modelDescription.xml. In
addition, this file also includes a list of all variables
available for data exchange between the simulator
and the FMU. Furthermore, the standard defines
functions that are used for the interaction between
a model and the simulator. To provide an FMU,
the FMU provider has to implement these func-
tions using the C language.

3.2 Generating C-Code from
MechatronicUML

This section sketches the C-code generation tech-
niques for MechatronicUML models. The gener-
ated code may be used for a concrete microcon-
troller target platform or – as this paper shows –
for an FMU implementation.

3.2.1 Generating C-code from the
Structure Model

For each atomic component of the
MechatronicUML model, we generate a header
file and a corresponding implementation file. A
component is mapped to a structure containing
pointers to nested sub-components, variables,
and clocks required for the associated statechart.
In addition, corresponding code for the ports is
generated. The discrete port implementation is
used for inter-component communication. For
this purpose, a discrete port implements an array
of message queues. A queue stores messages
of one specific type. For parametrized message
types additional structures are generated in
order to encapsulate the parameter values. For
continuous in-ports we generated a variable with
the causality input and for continuous out-ports
we generate a variable with the causality out-
put. The continuous port type is mapped to a
corresponding FMI data type, e.g. Boolean to
fmiBoolean. Via the input and output variables
the FMU can be connected to other FMUs or
Modelica/ Simulink components.

Our code is intended to run also on small 8-bit
processors with only a few kilobytes of memory.
This is too little to support both a real-time op-
erating system and the control software. Hence,
the control software is executed standalone on the
processor and to support multiple communicating
components on one processor, the components are
processed in a cycle using a simple task loop imple-
mentation. Note that for future work we will intro-

Session 6D: FMI Standard II

DOI Proceedings of the 9th International Modelica Conference 769
10.3384/ecp12076765 September 3-5, 2012, Munich, Germany

duce a real-time operating system with more so-
phisticated task management and scheduling fea-
tures for larger systems with 16- and 32-bit pro-
cessors.

Listing 1 shows the execution sequence of our
example. The information about a component
is passed as an argument, allowing for multiple
components of the same type to exist in one en-
vironment. In every processing cycle, a compo-
nent statechart may exchange messages with other
components by sending and receiving them. After
every component has been processed, a synchro-
nization step is performed where raised events are
delivered to the target components.

. . .
// execute component behav ior
exe c nav i ga t i on (comp navigation) ;
e x e c exp l o r a t i on (comp explorat ion) ;
e x e c ob s t a c l e d e t e c t i o n (

comp obs tac l e de t e c t i on) ;
// execute message exchange
sync (connec to r s ende r r e c e i v e rExp) ;
sync (connec to r mas t e r s l ave) ;
. . .

Listing 1: BeBot Execution Sequence

3.2.2 Generating C-Code from the
Discrete Behavior Model

There are several implementation techniques for
statecharts, but in most cases all the techniques
are variants and combinations of (1) the state ta-
ble, (2) the object-oriented state design pattern,
and (3) the simple switch-case statement imple-
mentations. (1) The state table implementation
maps directly to a state table representation in
the code. As it is not hierarchical, it needs ex-
tensions for nested states and parallel regions and
requires a large state table representation with a
complicated initialization. Hence, the code is less
readable. (2) The state design pattern simplifies
the implementation of statecharts. However, it
has also to be extended for hierarchical statechart
implementations. In addition, the implementation
is straightforward in C++, but it is rather com-
plex in C, because of the needed mapping for in-
heritance and polymorphism. Therefore, we de-
cided to generate nested switch-case statements
(3). The implementation technique of switch-case
statements is quite simple, it can be easily coded
in C, and it has a small memory footprint since
only one state variable is necessary to store the
current state of a state machine. Furthermore,

nested switch-case statements allow us to imple-
ment hierarchical statecharts in a quite intuitive
and readable way, which ensures traceability be-
tween the model and the generated code.

Listing 2 shows a code excerpt from the gen-
erated program for the BeBot example shown in
Figure 4. It gives an impression of the generated
C-code for a transition from state ObstacleFront to
state TurnMinus90.

void execute master (comp navigation ∗ comp) {
. . .
switch (reg master) {

. . .
case STATE NAVIGATOROBSTACLEFRONT:
i f (r e f a n gu l a r == 90) { . . .
} else i f (r e f a n gu l a r == −90) { . . .
} else i f (r e f a n gu l a r == 0) {

// s t a t e change
reg master = STATE NAVIGATOR TURNMINUS90;
// entry ac t i ons
angu lar speed = 1 ;
r e f a n gu l a r = −90;

}
. . .

Listing 2: Excerpt from navigation.c

For each region of a statechart, we declare an
Integer variable to keep the current state of this
region. Within each case-statement, a sequence of
mutually exclusive if-statements is used to deter-
mine whether one of the state’s outgoing transi-
tions can fire. In order to enable a transition, the
existence of events and Boolean expressions gen-
erated from conditional guards, clock guards, and
synchronization channels have to be evaluated. As
transitions have priorities in MechatronicUML to
prevent non-deterministic behavior, the generator
sorts the transitions according to their priorities
before generating the appropriate code. If a tran-
sition is enabled, it fires, i.e. the new state is set
and the appropriate exit and entry actions are ex-
ecuted. A state may also contain do-actions and
inner regions which are executed if no transition
is enabled. For this case, a final else-block is cre-
ated. Note, the presented program is executed
once in each cycle. In order to use the generated
C-code for an FMU implementation, we have to
implement the required interfaces from the FMI
standard.

3.3 FMI/FMU Wrap Up

We employ the FMU SDK from QTronic [16]. Fig-
ure 5 shows the relations and dependencies be-
tween the FMI standard, the QTronic FMU SDK,
and our statechart implementation.

Generating Functional Mockup Units from Software Specifications

770 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076765

Figure 5: Implementation Dependencies

The basic implementation of the FMI is
provided by the FMU SDK. To implement
MechatronicUML, our code generator creates a
header file and an implementation file for each
component taking the FMU SDK into account.

The FMU SDK implements the FMI standard
by delegating some of the tasks to supplemen-
tary functions that have to be implemented by
the user. In our case, these implementations are
also generated automatically by our code genera-
tor. The most important function is eventUpdate,
as it is used to execute the statecharts. Since
the eventUpdate-function is called by the FMI-
function fmiEventUpdate whenever an event oc-
curs during a simulation, we are able to react on
changes in the simulation model. We use Time
Events from the FMI to control the execution of
a statechart at a regular interval and map each
clock to an fmiReal variable. Since the current
simulation time is passed to the FMU as a pa-
rameter, the current simulation time is assigned
to the clock variable to reset a clock. Evaluat-
ing is done by calculating the elapsed time since
the last reset. The difference between the current
simulation time and the affected clock variable is
used to evaluate clock constraints, deadlines and
invariants upon appropriate actions are taken.

In the FMI standard, direct access to the data
stored within the model is not possible, even if the
source code is provided. Instead, a reference num-
ber is associated with each variable in the descrip-
tion file. Therefore, the FMU SDK stores variables
of the model in four arrays of the types fmiReal,
fmiInteger, fmiBoolean, and fmiString and refer-
ences them by using indices. This is an efficient
implementation of the FMI standard, but it is not
useful for target-specific code that does not serve
as an FMU implementation. Further, it is not easy
to read and to understand the code. Therefore,
we generate placeholders for the variables of our
model. For the FMU implementation we generate
preprocessor macros, which map the placeholders
to FMU SDK compliant array access statements.

Figure 6: EmbeddedModeller

In case of other targets, e.g. microcontrollers, we
generate preprocessor macros mapping the place-
holder to more suitable structures and variables.

3.4 Tool Support

We provide our tool support in form of an Eclipse
modeling tool suite which is called Embedded-
Modeller. The EmbeddedModeller provides
several diagram editors and supports software
specifications based on MechatronicUML as ex-
plained in the previous sections. Figure 6 shows
the editors for Real-Time Statecharts and struc-
tured component diagrams.

For generating C-code and the corresponding
FMU description file, we used a template-based
code generator framework. To create the FMU
with all resources, the batch script provided with
the FMU SDK is executed. Firstly, the batch file
creates a temporary directory with the desired di-
rectory structure for the FMU under construction.
Secondly, it compiles the sources and copies all
needed files to the corresponding folders. Lastly,
the batch packages the processed directory and
saves it within the *.fmu file.

To simulate the designed BeBot software, we
generated the FMU for our software specification
BeBot SW and created the Modelica model of the
mechanical and control engineering parts of the
BeBot within Dymola. The FMU was imported
and connected to the hardware model of the Be-
Bot. Since the continuous ports of the Mechatron-
icUML serve as an interface to continuous com-
ponents in general, we are able to connect our
FMU, i.e. our discrete software component, to the
provided BeBot feedback controllers. We simu-

Session 6D: FMI Standard II

DOI Proceedings of the 9th International Modelica Conference 771
10.3384/ecp12076765 September 3-5, 2012, Munich, Germany

lated the integrated model in Dymola successfully.
Note, our approach is not limited to Modelica /
Dymola as the FMI standard is tool-independent.
Therefore, it is possible to simulate software speci-
fications with any other simulation tool which sup-
ports the FMI model exchange standard.

4 Related Work

This section presents related work. We focus on
approaches which can be used to simulate hy-
brid systems and where the discrete behavior is
state-based. Further, we currently use the FMI
for model exchange and not for co-simulation.
Therefore, we do not discuss other approaches
for co-simulation or distributed simulation like
CODIS [5], TISC [20] or FMI co-simulation [6].

4.1 Statecharts in Modelica

Currently, state-based behavior can be modeled
in Modelica with the library State Graph2 or al-
gorithmic code is generated from SimulationX or
ModelicaML.

State Graph2 is a Modelica library [22] which
provides classes for states (Step), hierarchical
and parallel behavior (Parallel), and transitions
(Transition). With these elements it is possi-
ble to model complex behavior like Harel’s wrist
watch example. In contrast to MechatronicUML,
StateGraph2 has no concepts for clocks, clock con-
straints, time invariants, and deadlines to spec-
ify and constrain timing behavior. A modeler
could manually implement such behavior in Mod-
elica. Further, State Graph2 has no concept for
asynchronous message-based communication. We
are currently working on such a library extension.
However, as State Graph2 is modeled with equa-
tions and these equations are sorted before the
model is simulated, the modeler can hardly influ-
ence the resulting C-code generated by Dymola.
So, it is difficult to compare this code with real
target source code. The FMI C-code is the same
as the target source code except for the interface
definition .

SimulationX has its own state-based language
which follows the ideas of UML state machines
and supports a subset [8]. In contrast to Real-
Time Statecharts, SimulationX does not support
parallel behavior, timing behavior, and coordina-
tion of distributed components by asynchronous

communication. Timing behavior is supported
in a limited way, as transition firing could be
constrained to a time interval from the moment
when the source state of the transition is en-
tered. In MechatronicUML we use, like timed au-
tomata, clocks, clock constraints, time invariants,
and deadlines to specify and constrain the timing
behavior of our models. Messages are only avail-
able within a statechart in SimulationX. They do
not support an arbitrary number of parameters,
and messages are lost when a transition cannot re-
act on the event immediately. Therefore, it is diffi-
cult to specify coordination of distributed compo-
nents. SimulationX generates Modelica algorithm
code from its state machines.

ModelicaML is a UML Profile [26] which en-
ables to use UML Classes and Properties to spec-
ify Modelica models. State-based behavior is mod-
eled by UML state machines. The code gener-
ation mechanism supports nearly all UML state
machine constructs [24]. The Modelica code is
generated like SimulationX to the Modelica algo-
rithm section. As UML has no concept for clocks,
clock constraints, time invariants, and deadlines,
ModelicaML does not support them either. Asyn-
chronous messages between components can be
simulated via an external C-function [24]. As
ModelicaML has all freedoms of Modelica, it is not
possible to verify the resulting models efficiently.

4.2 MATLAB Simulink/Stateflow

MATLAB has an own state-based modeling lan-
guage called Stateflow, which can be combined
with its simulation platform Simulink. Stateflow
supports many features from UML state machines
and can be combined with the whole capabilities
of the MATLAB platform via its action language.
It is only possible to define formal semantics for
restricted Stateflow models [17]. Stateflow does
not provide first class modeling entities for speci-
fying timing behavior, except simple after and be-
fore statements. Stateflow does not provide a con-
cept of buffering messages. It is possible to model
such elements with a combination of Simulink and
Stateflow blocks, but this is complex, error prone,
and hard to maintain manually [18]. It is possible
to load FMU using the separate FMI toolbox of
Modelon [10].

Generating Functional Mockup Units from Software Specifications

772 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076765

5 Conclusion and Outlook

This paper shows how it is possible to generate
FMUs from a formal software specification lan-
guage for cyber-physical system. As a result it
is possible to perform software-in-the-loop tests
by numerical simulation of hybrid systems. We
describe the following problem that arises when
providing a methodology and tool support reach-
ing from conceptual design to concrete implemen-
tation of cyber-physical systems: The approach
should support the overall system simulation for
different industrial partners in a heterogeneous de-
sign tool environment. The partners provide simu-
lation models for mechanical and control engineer-
ing parts of the system, but software simulation
models are missing. The transformation of soft-
ware specification to FMUs solves this problem.

As the main contribution, we describe how a
software specification in MechatronicUML can be
automatically translated to FMUs maintain the
original MechatronicUML semantics and, thus,
the verification results. In particular, we map
the component-based structure, the asynchronous
communication in form of Real-Time Statechart,
and real-time properties in MechatronicUML to
C-code, which is wrapped by the FMI. We
implemented the generation of FMUs from a
given MechatronicUML model using a model-
driven transformation approach. This combines
the modeling and formal verification strengths of
MechatronicUML with the advanced simulation
capabilities of simulation tools like Dymola or
Simulink. As a result of numerical errors we can-
not guarantee that in different FMI import tools
the different simulation runs have the same behav-
ior. Therefore, the formal verification is important
because it proofs every possible simulation run and
guarantees that all paths are conform to the spec-
ification. It is up to further research to proof that
our generation is correct and keeps the verified
properties.

The shown transformation approach should be
interesting for anyone who wants to test for-
mal software specification by simulation against
a model of the physical system. A transformation
against the FMIs could be performed for other for-
mal software specification languages like Petri nets
for flow analysis or stochastic software models for
testing performance or failure rates. Hereby, it
would be possible to combine the strength of for-
mal analysis and numeric simulation.

For future work, we plan to develop a concept
to allow for communicating via messages between
several FMUs. Further, we want to generate code
against different hardware platforms to analyze
the timing behavior. We want to integrate the be-
havior of an underlying middleware or real-time
operating system into the simulation. We may
use co-simulation for this purpose. The simula-
tion of complex cyber-physical systems requires
much computing time. We want to compare the
performance of native Modelica simulations with
integrated FMU simulations and try to enhance
the performance of hybrid simulations. Currently,
it is not easy to interpret the simulation results.
Here a bisimulation concept would help. To show
the result, a simulation run could be visualized in
the statechart or the message exchange could be
visualized by sequence diagrams.

Acknowledgments
This work was developed in the project ’ENTIME: En-
twurfstechnik Intelligente Mechatronik’ (Design Meth-
ods for Intelligent Mechatronic Systems). The project
ENTIME is funded by the state of North Rhine-
Westphalia (NRW), Germany and the EUROPEAN
UNION, European Regional Development Fund, ’In-
vesting in your future’.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T.A.
Henzinger, P.H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis
of hybrid systems. Theoretical computer science,
138(1):3–34, 1995.

[2] R. Alur and D. L. Dill. A theory of timed au-
tomata. Theoretical Computer Science, 126:183–
235, 1994.

[3] S. Becker, C. Brenner, S. Dziwok, T. Gewering,
C. Heinzemann, U. Pohlmann, C. Priesterjahn,
W. Schäfer, J. Suck, O. Sudmann, and M. Tichy.
The mechatronicuml method - process, syntax,
and semantics. Technical Report tr-ri-12-318,
Software Engineering Group, Heinz Nixdorf Insti-
tute University of Paderborn, 2012.

[4] G. Behrmann, A. David, and K. Larsen. A tutorial
on uppaal. Formal methods for the design of real-
time systems, pages 33–35, 2004.

[5] F. Bouchhima, G. Nicolescu, E. M. Aboulhamid,
and M. Abid. Generic discrete-continuous sim-
ulation model for accurate validation in hetero-
geneous systems design. Microelectron. J., 38(6-
7):805–815, June 2007.

Session 6D: FMI Standard II

DOI Proceedings of the 9th International Modelica Conference 773
10.3384/ecp12076765 September 3-5, 2012, Munich, Germany

[6] MODELISAR Consortium. Functional mock-
up interface for co-simulation. version 1.0, 2010.
www.functional-mockup-interface.org.

[7] MODELISAR Consortium. Functional mock-up
interface for model exchange. version 1.0, 2010.
www.functional-mockup-interface.org.

[8] U. Donath, J. Haufe, T. Blochwitz, and T. Nei-
dhold. A new approach for modeling and veri-
fication of discrete control components within a
Modelica environment. In Proceedings of the 6th
Modelica Conference (Modelica 2008), Bielefeld,
pages 269–276, 2008.

[9] S. Dziwok, C. Heinzemann, and M. Tichy. Real-
time coordination patterns for advanced mecha-
tronic systems. In Proceedings of the 14th Interna-
tional Conference on Coordination Languages and
Models (COORDINATION 2012), pages 166–180,
June 2012.

[10] S. Gaaloul, B. Delinchant, F. Wurtz1, and
F. Verdière. Software components for dynamic
building simulation. In Proceedings of Building
Simulation 2011: 12th Conference of Interna-
tional Building Performance Simulation Associa-
tion, Sydney, Australia, pages 2278–2284, Novem-
ber 2011.

[11] J. Gausemeier, T. Schierbaum, R. Dumitrescu,
S. Herbrechtsmeier, and A. Jungmann. Miniature
robot bebot: Mechatronic test platform for self-x
properties. In Proceedings of the 9th IEEE In-
ternational Conference on Industrial Informatics
(INDIN 2011), pages 451–456, July 2011.

[12] H. Giese and S. Burmester. Real-time state-
chart semantics. Technical Report tr-ri-03-239,
Lehrstuhl für Softwaretechnik, University Pader-
born, Paderborn, Germany, June 2003.

[13] H. Giese, S. Burmester, W. Schäfer, and
O. Oberschelp. Modular design and verification
of component-based mechatronic systems with
online-reconfiguration. In Proceedings of 12th
ACM SIGSOFT FSE, pages 179–188, 2004.

[14] H. Giese, M. Tichy, S. Burmester, W. Schäfer,
and S. Flake. Towards the compositional verifi-
cation of real-time uml designs. In Proc. of the
9th European software engineering conference held
jointly with 11th ACM SIGSOFT international
symposium on Foundations of software engineer-
ing (ESEC/FSE-11), 2003.

[15] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and
S. Flake. Towards the compositional verification
of real-time uml designs. In Proceedings of 9th
ESEC and 11th ACM SIGSOFT FSE, pages 38–
47. ACM Press, 2003.

[16] QTronic GmbH. FMU SDK 1.0.2, 2011.
www.qtronic.de/de/fmusdk.html.

[17] G. Hamon and J. Rushby. An operational se-
mantics for Stateflow. International Journal on
Software Tools for Technology Transfer (STTT),
9(5):447–456, 2007.

[18] C. Heinzemann, U. Pohlmann, J. Rieke,
W. Schäfer, O. Sudmann, and M. Tichy.
Generating simulink and stateflow models from
software specifications. In Proceedings of the
International Design Conference (DESIGN 2012)
Dubrovnik, Croatia, May 2012.

[19] T.A. Henzinger. The theory of hybrid automata.
In Logic in Computer Science, 1996. LICS’96.
Proceedings., Eleventh Annual IEEE Symposium
on, pages 278–292. IEEE, 1996.

[20] R. Kossel, W. Tegethoff, M. Bodmann, and
N. Lemke. Simulation of complex systems using
modelica and tool coupling. In Proceedings of the
5th International Modelica Conference (Modelica
2006), pages 485–490, 2006.

[21] P. Marwedel. Embedded and cyber-physical sys-
tems in a nutshell. DAC. COM Knowledge Center
Article, 2010.

[22] M. Otter, M. Malmheden, H. Elmqvist, S.E.
Mattsson, C. Johnsson, D. Systèmes, and S.D.
Lund. A new formalism for modeling of reac-
tive and hybrid systems. In Proceedings of the
7th Modelica Conference (Modelica 2009), Como,
Italy, pages 364–377, 2009.

[23] M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and
R. Mangharam. From verification to implemen-
tation: A model translation tool and a pacemaker
case study. In Proceedings of the 18th IEEE Real-
Time and Embedded Technology and Applications
Symposium (RTAS 2012), Beijing, China, April
2012.

[24] U. Pohlmann and M. Tichy. Modelica code gen-
eration from modelicaml state machines extended
by asynchronous communication. In Proceedings
of the 4th International Workshop on Equation-
Based Object-Oriented Modeling Languages and
Tools, EOOLT 2011, Zurich, Switzerland, 2011.

[25] W. Schäfer and H. Wehrheim. Model-driven de-
velopment with mechatronic uml. Graph transfor-
mations and model-driven engineering, pages 533–
554, 2010.

[26] W. Schamai. Modelica modeling language (mod-
elicaml) : A uml profile for modelica. Techni-
cal report, Linköping University, Department of
Computer and Information Science, The Institute
of Technology, 2009.

[27] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley,
1998.

Generating Functional Mockup Units from Software Specifications

774 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076765

Functional Mock-up Interface in Mechatronic Gearshift Simulation for Commercial Vehicles

Functional Mock-up Interface in Mechatronic Gearshift Simulation

for Commercial Vehicles

Andreas Abel
2
 Torsten Blochwitz

2
 Alexander Eichberger

3

Peter Hamann
1
 Udo Rein

1

1
Daimler AG, HPC B209, 70546 Stuttgart, Germany

2
ITI GmbH, Webergasse 1, 01067 Dresden, Germany

3
SIMPACK AG, Friedrichshafener Str. 1, 82205 Gilching, Germany

Abel@itisim.com, Blochwitz@itisim.com, Alex.Eichberger@SIMPACK.de,

Peter.Hamann@daimler.com, Udo.Rein@daimler.com

Abstract

Mechatronic shifting simulation of automated trans-

missions in commercial vehicles is used for optimi-

zation and development in today’s truck engineering

departments at Daimler. Within the ITEA2 project

Modelisar in cooperation with ITI GmbH and SIM-

PACK AG this application served as a usecase for

proof of concept of the newly developed Functional

Mock-Up interfaces (FMI). Utilizing these standard-

ized interfaces models from different tools are cou-

pled to build up the overall system for the mecha-

tronic shifting simulation. The coupling via FMI for

Model Exchange was achieved for control modules

from MATLAB/Simulink into the SimulationX

powertrain model and secondly from the 1D-

multiphysics powertrain in SimulationX into multi-

body vehicle in SIMPACK. Furthermore FMI for

Co-Simulation was investigated in a pure Simula-

tionX framework for the powertrain model. Very

promising results can be observed as for modeling as

for simulation processes. The FMI technology has

clearly shown its capability to be applied in the pro-

ductive simulation process.

Keywords: FMI, Modelisar, multibody system, auto-

mated shifting, mechatronics, co-simulation, model

exchange

1 Introduction

The ITEA2 project Modelisar was a European re-

search initiative from 2008 till 2011 focusing on the

overall development process “from System Model-

ing to S/W running on the Vehicle”. The major out-

come is the standardization proposal Functional

Mock-Up Interface (FMI) to facilitate tool and

model coupling on implementation and numerical

level, e.g. see [4], [5]. Within the project several use-

cases served as proof of concept by utilizing tools

providing the new interfaces.

One usecase was the “Mechatronic shifting simu-

lation of commercial vehicles” provided by Daimler

AG, ITI GmbH and SIMPACK AG. This work-

package uses a Functional Mock-Up (FMU) of an

automated gear shift system within the truck power-

train focusing on the transmission and demonstrating

several benefits of the Modelisar environment. The

SiL simulation is used for optimizing gear shift times

and shifting comfort in heavy-duty trucks. Major

challenges are the number of sub-models from dif-

ferent simulation tools and the necessary standardi-

zation of modeling, coupling, and solving.

Coupled Simulation of Overall System

engine drivetraingearbox

C-code

controller sensors,

actuators

vehicle

Fig 1.1 - FMU Mechatronic Shifting Simulation

DOI Proceedings of the 9th International Modelica Conference 775
10.3384/ecp12076775 September 3-5, 2012, Munich, Germany

2 Mechatronic shifting simulation

2.1 The Modelisar usecase

The demonstration target for the Modelisar usecase

has been a fully shiftable powertrain of heavy-duty

trucks, which models the physics and control struc-

ture of the overall vehicle in such a degree of detail,

that all phases of a gear shift can be reflected in

terms of interactions between the driveline and vehi-

cle dynamics, and the different control units partici-

pating in the shift. The models are capable to treat

the large-scale low-frequency effects such as drive-

line jerking, as well as high-frequency phenomena,

such as dynamics of actuation systems and gearbox

components, engine combustion, or the impact of

CAN bus delays on the overall system behavior.

The model allows the accurate prediction of the

performance of the different driveline control units

in interaction with the truck, the vehicle responses,

and the perception of the driveline operation by the

driver in terms of driving and shifting comfort.

This type of modeling requires the integration of

a heterogeneous collection of models created for

various simulation environments:

- 1D torsional vibration models of engine, gear-

box – modeled in SimulationX
®1

,

- Actuation systems on clutch and gearbox –

modeled in SimulationX,

- Detailed multibody (mbs) vehicle – modeled in

SIMPACK
®2

1
 SimulationX is a registered trademark of ITI GmbH

2
 SIMPACK is a registered trademark of SIMPACK AG

- Controller model from external supplier – com-

piled C code generated from MATLAB/

Simulink

- DAIMLER in-house controller code – C code

and MATLAB/Simulink models,

- Re-engineered controller functionality where no

appropriate source was available – modeled in

Modelica
®3

 within SimulationX.

Thus, this application has been a perfect target

within the MODELISAR project to verify technolo-

gies developed in the project framework, for the FMI

as well as for FMI-based co-simulation technologies.

The main objectives of the usecase were de-

creased simulation time, improved processes and

overall decreased development times utilizing the

FMI coupling techniques. Therefore the Simulation-

in-the-Loop (SiL) implementations are based on the

FMI-enhanced new versions of SimulationX, SIM-

PACK and MATLAB/Simulink representing control

functionalities and powertrain models.

2.2 Simulation environment at project start

The usecase started with a simulation framework as

shown in Figure 2.2, see [1], [2]. It included already

all necessary models for the mechatronic shifting

simulation. The coupling was based on proprietary

non-standard interfaces from SimulationX and SIM-

PACK.

3
 Modelica is a registered trademark of the Modelica As-

sociation

Vehicle, Cabin

SIMPACK SimulationX

Simulink C codeEngine Transmission

Transmission
Control

Torque &

Engine Control

G
U

I

G
U

I

Solver

Fig 2.1 – FMI for Model Exchange Usecase Prototype

Functional Mock-up Interface in Mechatronic Gearshift Simulation for Commercial Vehicles

776 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076775

The control unit was integrated into the Simula-

tionX powertrain model utilizing Modelica external

functions on one hand via MATLAB
®
/Simulink

®

and a Real-Time Workshop
®4

 (RTW) SimulationX

target or the other hand via wrapped exported C-

Code. The resulting time excitations stimulated the

vehicle model in SIMPACK as an offline coupling.

Although this simulation environment already de-

livered detailed and qualitatively good results many

reasons for improvement were observed: The offline

coupling omits any feedback of powertrain and vehi-

cle. The model exchange was as well for the soft-

ware modules as for the powertrain module mainly

handwritten and error prone, inefficient and costly to

maintain.

3 FMI for Model Exchange

Within this use case the FMI for Model Exchange

has been the main instrument to achieve the desired

tool interoperation and model transfers. Using the

FMI for Model Exchange controllers have been con-

nected to a SimulationX driveline model, which in

turn has been integrated into SIMPACK using the

very same technology, see [3].

3.1 Control unit integration

Control software development for engine, clutch and

gearbox control for Daimler commercial vehicles is

done mainly inhouse. Software development

stretches over a wide and dynamic range of MAT-

LAB/Simulink and TargetLink
®5

 versions but also

includes plain C code. Thus achieving a software-in-

the-loop (SiL) integration of these control unit mod-

4
 MATLAB, Simulink and Real-Time Workshop are reg-

istered trademarks of The MathWorks, Inc.
5
 TargetLink is a trademark of dSPACE GmbH

ules provides a certain challenge but has also a high

potential to be facilitated with a standardized inter-

face such as FMI. Within the usecase FMI applica-

bility has been examined in two variants:

Variant 1 applies to controllers implemented in

MATLAB/Simulink and utilizes a RTW toolbox

provided by Dassault Systèmes AB through another

Modelisar work package in order to export the Simu-

link model as FMU. Such FMU can be integrated

easily into SimulationX. So this variant was the pri-

mary path in the usecase to verify the FMI interface.

Variant 2 implemented an FMI wrapper for plain

controller C code. This was tested only prototypi-

cally within Modelisar using small test models. The

approach has been demonstrated to be applicable but

the absence of an automated FMI wrapper generation

(e.g. through scripting) and the necessary degree of

manual preparation of the FMU so far does not allow

a productive use in the overall simulation process.

FMI
model

exchange

Model

*.mdl

RTW

FMI-Target

Quellcode

*.c

*.h

RTW

FMI-Target

Quellcode

*.c

*.h

Quellcode

*.c

*.h

FMI

*.mdl

Model

*.ism

*.mo

Fig 3.1 – Process chain for transferring MATLAB/

Simulink controller models into SimulationX

The migration to FMI based SiL controller mod-

els has been achieved within the productive simula-

tion process by gradually replacing the tool-specific

solutions based on a dedicated SimulationX target

for the Real-Time Workshop (RTW).

torque

engine-gearbox-mount

torque

propshaft

3D vehicle model (SIMPACK)1D powertrain model (SimulationX)

Fig 2.2 – Simulation environment at project start

Session 6D: FMI Standard II

DOI Proceedings of the 9th International Modelica Conference 777
10.3384/ecp12076775 September 3-5, 2012, Munich, Germany

Applying the standardized FMI technology now

allows a higher degree of automation in the model

exchange process and significantly broadens the

range of potential target environments for the mecha-

tronic gearshift simulation. The application of FMI

also did not affect results and simulation perform-

ance.

3.2 FMU import without feedback

In a first stage prototype, the powertrain FMU in-

cluding the control unit of section 3.1 was imported

by FMI in the SIMPACK vehicle model. Rather than

using offline pre-calculated inputs to the mbs-model

as shown in section 2.2, online generated inputs

where used in the simulation (see Figure 3.2).

Cutting point of the SIMPACK powertrain model

is between the first cardan shaft and the differential

on the rear axle. All rotational parts in front of the

cardan joint are modeled as 1-D model within Simu-

lationX and imported via FMI in SIMPACK. All

rotational parts behind the cardan joint and the com-

plex vehicle 3D-structure are modeled in SIMPACK.

No input from SIMPACK is passed into the FMU

during simulation (without feedback).

FMU output, being applied to SIMPACK as ki-

netic excitations:

- torque on the gearbox output,

- torque on the rear differential input.

The results of the FMU integration without feed-

back show a perfect match with the results of the

approach of section 2.2. The SIMPACK solver step

size of the SIMPACK vehicle model without FMU

was approximately 1e-3s. By integrating the FMU in

the SIMPACK model, the overall simulation time

increased due to the limiting step size of 20e-6s in-

duced by the FMU. The integration time can poten-

tially be reduced by a co-simulation between these

two models, see section 4. Another approach is a

performance optimization of the powertrain model in

SimulationX. First model analyses show a high po-

tential to at least gain an acceleration of factor 10.

3.3 FMU import with feedback – full FMI for

Model Exchange solution

In the final stage prototype, the dynamic feedback

between powertrain FMU and vehicle model was

taken into account (see Figure 3.3)

Cutting point of the SIMPACK powertrain model

is behind the gearbox output flange. All rotational

parts in front of this flange are modeled as 1D model

Fig 3.2 – FMI without feedback

3D vehicle model (SIMPACK)

engine-gearbox-mount

gearbox out

wheel hub

Vehicle and powertrain model (SIMPACK)

1D powertrain model (SimulationX)

exported as FMU for Model Exchange

Fig 3.3 – FMI with feedback

Functional Mock-up Interface in Mechatronic Gearshift Simulation for Commercial Vehicles

778 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076775

within SimulationX and imported via FMI in SIM-

PACK. All rotational parts behind this flange and the

complex vehicle 3D-structure are modeled in SIM-

PACK.

The FMU uses the following values as input

(with feedback), being kinematic measurements of

SIMPACK:

- relative angle of the engine block wrt. vehicle

frame,

- relative rot. velocity of the engine block wrt.

vehicle frame,

- relative angle of the front propeller shaft flange

wrt. engine block,

- relative rot. velocity of the front propeller shaft

flange wrt. engine block,

- angle of the rear wheels.

FMU output, being applied to SIMPACK as kinetic

excitations:

- torque on the gearbox output,

- torque on the front propeller shaft flange.

The feedback introduces a new level of accuracy

for simulation of shifting comfort and increases

simulation quality at Daimler.

The simulation performance shows the same

characteristics as described in chapter 3.2. The step

size is dominated completely by the high dynamic

powertrain model and no additional difficulties due

to the feedback are introduced. The future work will

focus on FMI for Co-Simulation on one hand and

performance increase in the powertrain model on the

other hand.

4 FMI for Co-Simulation

Sharing models between different simulation tools

using the FMI for Model Exchange potentially pro-

vides pitfalls if the tools are using different solver

technologies or if models run on significantly differ-

ent time scales. The latter is also the case in the

model coupling between SimulationX and SIM-

PACK.

The FMI for Co-Simulation is a potential solution

since it allows bundling a model with a dedicated

solver, which can run independently of the solver in

the target system. On the other hand a co-simulation

between models of physically coupled sub-systems

may be difficult due to the inherently introduced

communication time delays in the coupling.

During the usecase project the FMI for Co-

Simulation in SIMPACK still has been under devel-

opment. For this reason an alternative test scenario

has been implemented, where the FMI of the drive-

line which is intended for SIMPACK integration has

been re-imported into SimulationX and has been

coupled with a model of the downstream driveline

(from the differential onwards), see [3]. In terms of

present natural frequencies and discontinuities this

reflects a similar scenario as in SIMPACK, where

the vehicle part of the model could be solved with

significantly bigger time steps.

The maximum achievable stepsize in the commu-

nication and the impact of different interpolation

methods between communication steps have been

assessed. This test case showed a clear need to bal-

ance the communication stepsize in order to achieve

stable and valid simulation results. Although the

communication for a physical link still needs very

small step sizes, the communication stepsizes are

about 10 times larger than the required stepsizes us-

ing an FMI for Model Exchange. This allows expect-

ing an equivalent 10-fold performance increase.

5 Conclusions and Outlook

The usecase Mechatronic Shifting Simulation was

completed successfully by implementing an FMI-

based simulation framework already improving the

development at Daimler and furthermore showing

high potential for a wider future use. The new inter-

face standardization proposals FMI for Model Ex-

Fig 4.1 – FMI for Co-Simulation with Vehicle Model in SimulationX

Session 6D: FMI Standard II

DOI Proceedings of the 9th International Modelica Conference 779
10.3384/ecp12076775 September 3-5, 2012, Munich, Germany

change and FMI for Co-Simulation were imple-

mented in different prototypes arising in the field of

drivetrain dynamics and especially mechatronic

shifting simulation for commercial vehicles.

To model and simulate the mechatronic power-

train SimulationX is used. Since version 3.4 Simula-

tionX implements FMI for Model Exchange as im-

port and export, as well as FMI for Co-Simulation as

Slave and Master. All four variants have been tested

successfully in different prototypes.

The vehicle and cabin is modeled as 3D multi-

body system in SIMPACK. The version SIMPACK

9.0 implements FMI for Model Exchange as import.

This interface has been tested successfully for differ-

ent prototypical implementations.

Furthermore the control unit software had to be

imported from MATLAB/Simulink. This could be

achieved successfully via FMI for Model Exchange

with the RTW toolbox as well developed within

Modelisar.

From a technical point of view the following re-

sult could be achieved:

- Prototypical FMI based simulation of mecha-

tronic shifting system with bi-directional cou-

pling of vehicle and powertrain model,

- FMI based model exchange of MAT-

LAB/Simulink control modules into powertrain

model in SimulationX,

- FMI based model exchange of SimulationX

powertrain model into SIMPACK vehicle model,

but simulation performance needs further im-

provement due to problem specific multi-scale

behavior,

- Alternative bi-directional coupling via FMI for

Co-Simulation started.

FMI makes coupling of models easier to imple-

ment. The numerics of the coupling regarding per-

formance, model harmonization, etc. must be ana-

lyzed as before. The potential of FMI for Co-

Simulation could be shown. As soon as implementa-

tions are available it will be investigated for the cou-

pling of vehicle and powertrain model for the mecha-

tronic shifting simulation.

In the result of the Modelisar project the further

development and improvement of the FMI standard

has become a core task within the Modelica commu-

nity. Due to the high industrial acceptance and feasi-

bility proven by projects such as the presented use

case, tool vendors eagerly follow these developments

within their tools.

SIMPACK Version 9 officially supports Model

Import based on FMI Standard 1.0. Co-Simulation

based on FMI Standard 1.0 is currently under devel-

opment and will be available fall 2012.

ITI has been driving FMI developments from the

very beginning and fully supports all FMI variants in

SimulationX since 2010.

As soon as FMI Standard 2.0 has been officially

released, SIMPACK and ITI are going to upgrade

the FMI interfaces in their tools to this version.

To summarize it can be said that with the new

coupling interfaces enormous benefits for industrial

applications can be generated: They reduce signifi-

cantly the implementation complexity and costs for

tool and model coupling. They optimize the SiL

processes regarding time, cost, robustness and qual-

ity. They simplify internal and external model ex-

change and model reuse.

References

[1] A. Abel (ITI GmbH), P. Hamann, U. Rein

(Daimler AG) Modelisar: sWP303 Mecha-

tronic shifting simulation, Milestone report:

Documentation of specification and simula-

tion environment, ITEA2 Modelisar internal

paper, 2009

[2] A. Abel (ITI GmbH), P. Hamann, U. Rein

(Daimler AG) Modelisar: sWP303 Mecha-

tronic shifting simulation, Milestone report:

Results prototype 1, ITEA2 Modelisar inter-

nal paper, 2010

[3] A. Abel, T. Blochwitz (ITI GmbH), M. Frie-

drich, J. Zeman (SIMPACK AG), P. Ha-

mann, U. Rein (Daimler AG) Modelisar:

sWP303 Mechatronic shifting simulation,

Milestone report: Results for FMI prototype,

ITEA2 Modelisar internal paper, 2011

[4] T. Blochwitz, T. Neidhold (ITI GmbH), M.

Otter (DLR), M. Arnold (University of

Halle), C. Bausch, M. Monteiro (Atego Sys-

tems GmbH), C. Claus, S. Wolf (Fraunhofer

IIS, EAS), H. Elmqvist, H. Olsson (Dassault

Systemes), A. Junghanns, J. Mauss (QTronic

GmbH), D. Neumerkel (Daimler AG), J.

Peetz (Fraunhofer SCAI): The Functional

Mock-Up Interface, Modelica Confererence

2011, Dresden

[5] FMI-Homepage including FMI specifications

www.fmi-standard.org

Functional Mock-up Interface in Mechatronic Gearshift Simulation for Commercial Vehicles

780 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076775

Using Functional Mock-up Units for Nonlinear Model Predictive Control

Using Functional Mock-up Units for
Nonlinear Model Predictive Control

Manuel Gräber1 Christian Kirches2 Dirk Scharff3 Wilhelm Tegethoff1,3

1Technische Universität Braunschweig, Braunschweig, Germany
2Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Germany

3TLK-Thermo GmbH, Braunschweig, Germany

Abstract

A software framework for prototyping of Nonlinear
Model Predictive Control (NMPC) loops is presented
that is based on the standardized model exchange for-
mat FMI (Functional Mock-up Interface). Arising op-
timal control problems are solved by an efficient im-
plementation of the direct multiple shooting method,
which is especially suitable for nonlinear and stiff
system models. Using co-simulation, an optimizer,
plant, and estimator can be coupled to a closed NMPC
loop. Several stages of a typical control design process
are supported, ranging from virtual simulation experi-
ments to real plants with prototype NMPC controllers.
Energy efficient control of vapor compression cycles
is presented as example application of the proposed
methods.

Keywords: Functional Mock-up Interface; Nonlin-
ear Model Predictive Control; Vapor Compression Cy-
cles

1 Introduction

Nonlinear Model Predictive Control (NMPC) pro-
vides promising possibilities to improve control accu-
racy, stability, as well as energy and economical effi-
ciency of technical systems. The key idea is to utilize
rigorous mathematical models of the controlled plant
for online computations of appropriate control actions,
based on the repeated solution of a dynamic optimiza-
tion problem. Model-plant mismatch and disturbances
are incorporated by updating the mathematical model
according to estimates obtained from most recent mea-
surement data. From the point of view of the numer-
ical algorithms employed, these methods are well de-
veloped and ready to use. Their application to com-
plex systems however by now is the subject of a few

selected research projects only. The most prevalent
reason for this may well be the considerably large ef-
fort required to develop fast implementations of large-
scale accurate nonlinear models. The development
of object-oriented and equation-based modeling lan-
guages such as Modelica aims at helping to consider-
ably reduce this effort: systems can be conveniently
modeled by composition from smaller, reusable sub-
components. Moreover, there no longer is the need
to manually transform equations into a signal-oriented
form.

In the last few years, Modelica has matured to a
modeling language that is widely used for systems
simulation in both academics and industry. More re-
cently, research initiatives have come up that helped
to extend the scope of Modelica beyond pure systems
simulation. For example, [7] gives an overview over
current research activities in the area, and shows possi-
ble further directions especially from a control design
perspective.

Probably the first work reported in literature about
dynamic optimization with Modelica models can be
found in [12]. Therein the MATLAB S-Function for-
mat is used to interface Modelica models with an op-
timization solver. Dynamic optimization with mod-
els generated by the C-code export functionality of
the Modelica tool Dymola is described in [16] and
[25]. Both approaches suffer from the fact that the
used model exchange formats are proprietary. In [26]
the development of optimization based controllers in
Modelica is addressed. But the authors remain unclear
about the technical details how a Modelica model can
be reused as internal model of the control algorithms.

A more integrated approach is described in [1].
Based on Optimica, a language extension of Mod-
elica that serves to formulate optimization problems,
an open source Modelica simulation and optimization
tool has been developed that goes by the name JMod-

DOI Proceedings of the 9th International Modelica Conference 781
10.3384/ecp12076781 September 3-5, 2012, Munich, Germany

elica.org, see [2]. Therein, dynamic system models
are formulated in the Modelica language and are sym-
bolically transformed into a representation suitable for
evaluation by numerical solvers. As is the case for
most Modelica tools, not all parts of the Modelica
language and the Modelica Standard Library are sup-
ported yet. Optimal control problems can be solved
in JModelica.org by means of a direct collocation
method.

As part of the ITEA-2 research project Modelisar,
the standardized model exchange format FMI (Func-
tional Mock-up Interface) [22, 3], has been developed.
During the last two years, FMI gained a lot of attention
and is now supported by over 20 simulation tools. A
detailed list can be found on http://fmi-standard.
org. The main purpose of FMI is to exchange models
between different simulation tools. FMI is used to de-
sign nonlinear Kalman Filters for state and parameter
estimation in [6]. To the best of our knowledge, there
are no reports of FMI having been applied to optimiza-
tion of dynamic systems, though.

1.1 Contribution

This article addresses the above described situation
by presenting a software framework for fast and re-
liable prototyping of NMPC loops using the FMI stan-
dard [22]. The key idea is to use existing special-
ized software for each task and exchanging models be-
tween these tools, relying on FMI for the purpose. Us-
ing established modeling and simulation tools such as
Dymola, one can conveniently set up large-scale and
complex system models. Exported as FMI models,
called FMUs (Functional Mock-up Units), we import
these into the direct optimal control code MUSCOD-II

[4, 9, 21]. MUSCOD-II is a software package for effi-
cient numerical solution of optimal control problems.
The implemented direct multiple shooting method is
favorable especially for large-scale, highly non-linear,
and stiff systems.

Using the co-simulation platform TISC [20], we
also present a software solution for coupling optimiza-
tion algorithms with simulation tools to conveniently
test designed NMPC loops. Using existing interfaces
to measurement and automation software NMPC con-
trollers can also be connected to real plants.

With NMPC of a vapor compression cycle, we
present a challenging but promising application and
demonstrate the capability of our method.

1.2 Structure of the Paper

The paper starts with a description of the theoretical
background of our methods. In Section 2 the under-
lying model class is defined. Based on this dynamic
system model, a class of continuous Optimal Control
Problems (OCPs) is formulated. The direct multiple
shooting method is presented in Section 3 as an ef-
ficient numerical approach for the discretization and
solution of OCPs. The control loop is closed in Sec-
tion 4 by taking into account state estimates or mea-
surements and repeatedly solving the OCP. In order to
derive an efficient control algorithm, special attention
is paid to reinitialization of subsequent optimization
iterations and the separation of each iteration into dif-
ferent phases. Technical details of our methods are
presented in Sections 5 and 6. We discuss optimiza-
tion results for an example application in Section 7,
using the presented toolchain and algorithms.

2 Problem Class

Starting point is an index-1 system of semi-explicit
differential algebraic equations (DAE) describing the
dynamic behavior of a controlled plant:

dx
dt
(t) = f

(
x(t),z(t),u(t), p

)
, t ∈T , (1a)

0 = g
(
x(t),z(t),u(t), p

)
(1b)

with independent variable time t on the horizon T :=
[0, tf], differential state variables x(·) ∈ Rnx , algebraic
state variables z(·) ∈ Rnz , control functions u(·) ∈ Rnu

and time-invariant model parameters p ∈ Rnp . Later
on, we will show how to use the FMI [22] to conve-
niently exchange models of type (1) between different
modeling software tools.

We may then formulate an OCP based on plant
model (1) to find locally optimal control trajectories on
the time horizon T for a given initial process state x0.
To this end, we need to express the performance mea-
sure as an OCP objective function, i.e., a combination
of a Lagrange-type term L,

∫ tf

0
L(x(t),z(t),u(t), p)dt, (2)

and a Mayer-type term E that is defined at the end of
time horizon only,

E(x(tf),z(tf), p). (3)

Using Functional Mock-up Units for Nonlinear Model Predictive Control

782 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076781

With the resulting objective function

Φ(x(·),u(·),z(·), p) :=
∫ tf

0
L(x(t),z(t),u(t), p)dt (4)

+E(x(tf),z(tf), p),

an OCP can be formulated as follows:

min
x(·),z(·),

u(·),p

Φ(x(·),z(·),u(·), p) (5a)

s.t.
dx
dt
(t) = f (x(t),z(t),u(t), p), t ∈T , (5b)

0 = g(x(t),z(t),u(t), p), t ∈T , (5c)

0≤ c(x(t),z(t),u(t), p), t ∈T , (5d)

0 5 ri(x(ti),z(ti), p), {ti}i ⊂T , (5e)

0 = x(0)− x0. (5f)

We strive to identify trajectories for the controls u(·)
and the differential and algebraic states (x(·),z(·))
that minimize the cost function Φ, and are a so-
lution to the initial value problem defined by (5b)
and (5f). Additionally, mixed state-control inequal-
ity constraints (5d) and point constraints on a grid
{ti}i ⊂T (5e) must be satisfied.

3 Direct Multiple Shooting

The OCP presented in Section 2 is an infinite-
dimensional optimization problem. The purpose of the
Direct Multiple Shooting method [4, 21] is to trans-
form this problem into a finite dimensional nonlinear
program (NLP) by discretization of the control func-
tions and path constraints and by parameterization of
the state trajectories. To this end, we introduce a shoot-
ing grid {τi}0≤i≤N ,

0 = τ0 < τ1 < .. . < τN = tf. (6)

on the horizon T . Control trajectories are discretized
on the shooting grid, e.g. as piecewise constant func-
tions

u(t) := ui, t ∈ [τi,τi+1)⊂T , 0≤ i≤ N−1. (7)

The control space is hence reduced to functions de-
pending on finitely many parameters ui only.

Multiple shooting state variables si are introduced
on the time grid to parameterize the differential state
trajectories. The node values serve as initial values for
an IVP solver computing the state trajectories indepen-
dently on the shooting intervals 0≤ i < N,

dxi

dt
(t) = f (xi(t),zi(t),ui, p), t ∈ [τi,τi+1] (8a)

0 = g
(
xi(t),zi(t),ui, p

)
, (8b)

xi(τi) = si. (8c)

Obviously we obtain from the above IVPs N trajecto-
ries, which in general will not combine to a single con-
tinuous trajectory. Continuity across shooting inter-
vals needs to be ensured by additional matching con-
ditions entering the NLP as equality constraints,

si+1 = xi(τi+1; τi,si,zi,ui, p), 0≤ i≤ N−1. (9)

Here we denote by xi(τi+1; ti,si,zi,ui, p) the solution of
the IVP on shooting interval i, evaluated in τi+1, and
depending on the initial time ti, initial states (si,zi),
and on control and model parameters ui and p. Path
constraints c(·) are discretized on the shooting grid for
simplicity of exposition. Likewise, the point constraint
grid is assumed to coincide with the shooting grid.

From this discretization and parameterization, we
obtain a highly structured NLP of the form

min
ξ

N

∑
i=0

li
(
τi,si,zi,ui, p

)
(10a)

s.t. si+1 = xi(τi+1; τi,si,zi,ui, p) 0≤ i < N, (10b)

0 = g
(
τi,si,zi,ui, p

)
, 0≤ i≤ N, (10c)

0≤ c
(
τi,si,zi,ui, p

)
0≤ i≤ N, (10d)

0 5 ri
(
τi,si,zi,ui, p

)
0≤ i≤ N, (10e)

0 = s0− x0, (10f)

where all unknowns of the problem are grouped in a
single vector ξ :=

(
s0,z0, . . . ,sN ,zn,u0, . . . ,uN−1

)
. For

the ease of notation, we write uN := uN−1 in (10).
We solve this large-scale but structured NLP by

a tailored sequential quadratic programming (SQP)
method. This includes an extensive exploitation of the
arising structures, in particular using block-wise high-
rank updates of the Hessian approximation, a partial
null-space reduction to eliminate the algebraic states
[21], and condensing techniques for a reduction of the
size of this QP to the dimension of the initial values s0
and controls (u0, . . . ,uN−1) only [4, 21].

Note that the evaluation of the matching condition
constraint (10b) requires the solution of an initial value
problem with initial values (si,zi) and controls ui on
the time horizon [τi,τi+1]. For more details on the nu-
merical algorithms and techniques employed we re-
fer the reader to e.g. the textbook [24] for nonlinear
programming in general, and to [4, 21] for details on
nonlinear programming techniques for Direct Multi-
ple Shooting. An efficient implementation is available
with the software package MUSCOD-II [9, 21] that has
been used for all computations. MUSCOD-II for off-
line optimal control is publicly available [19] on the
NEOS Server for Optimization [15].

Session 6D: FMI Standard II

DOI Proceedings of the 9th International Modelica Conference 783
10.3384/ecp12076781 September 3-5, 2012, Munich, Germany

4 Nonlinear Model Predictive Con-
trol Scheme

We now address the issue of solving OCP (10) in an
on-line NMPC setting. Key to an efficient numerical
algorithm for NMPC is to reuse in every iteration in-
formation available from the last problem’s solution to
initialize the new problem. This is due to the fact that
subsequent problems differ only in the real-world pro-
cess state x0 (5f). Moreover, the faster the control feed-
back can be computed and applied to the real-world
process, the more similar the subsequent problems will
be. If model predictions are sufficiently close to real
process behavior, it is reasonable to expect that the in-
formation contained in the previous problem’s solution
already is a very good initial guess close to the desired
solution of the new subproblem.

4.1 Initial Value Embedding

In [8, 9] and subsequent works it has been proposed
to initialize the current problem with the full solution
of the previous optimization run, in particular control
variables ui and state variables (si,zi). We refer to [10]
for a detailed survey on the topic of initial value em-
bedding. It is a prominent feature of the Direct Multi-
ple Shooting approach that very good state initializers
are available not only for x(0) but also for the shooting
grid nodes x(τi), 1≤ i≤ N.

In using the proposed initialization, the value of s0
will in general not be the value of the current state
x0. By explicitly including the linear initial value con-
straint (10f) we can however guarantee that s0 attains
the value of x0 already after the first full Newton–type
step computed by the SQP method.

4.2 A Real–Time Iteration in Three Phases

This idea motivates the idea of real–time iterations
that perform only one SQP iteration per NMPC sam-
ple [9]. In this iteration, we can evaluate all derivatives
and all function values without requiring knowledge of
the current state x0, the only exception being the lin-
ear initial value constraint. Consequently, we can pre-
solve a major part of the direct multiple shooting SQP
step as follows:

Preparation All functions and derivatives that do not
require knowledge of x0 are evaluated. This
includes ODE solution, sensitivity computation,
sparsity analysis, structure exploitation, and ma-
trix factorizations. Note that the preparation

phase of the new problem always takes place one
sampling period ahead.

Feedback As soon as x0 is available, the SQP step
is readily computed from the prepared data, but
only as far as required to give a feedback con-
trol to the process. Hence, the feedback delay
reduces to the computation time of the SQP step
after preparation that essentially involves the so-
lution of only a single QP.

Transition The SQP step computation is completed
after the feedback control has been given to the
process.

5 Software Framework

In this section we present our software framework
for a convenient setup of simulated and real-world
NMPC loops. The basic idea is to use different spe-
cialized software for each task and to couple it to a
co-simulation master. Using FMI ensures integrity
of the underlying plant model that is used in several
places, and avoids error-prone and time-consuming
model transformations.

5.1 General Structure

A closed NMPC loop consists of three major parts as
sketched in Figure 1:

Plant The controlled system. This could be a real-
world plant or, in an earlier design stage, a virtual
plant based on a simulation model.

Estimator The current value of all state values and
parameters of the system model is estimated from
available measurement data y(t). The estimator
could be realized as a nonlinear Kalman filter or
a moving horizon estimator (MHE). If a virtual
plant is used wherein all state variables and pa-
rameters are accessible, it is also possible to use
an ideal estimator with (x(t), p) = y(t).

Optimizer The heart of an NMPC loop is an opti-
mization algorithm that determines the best pos-
sible control action for the current system state.
This is realized as described in Sections 3 and 4.

Using Functional Mock-up Units for Nonlinear Model Predictive Control

784 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076781

Figure 1: Signal flow diagram of closed NMPC loop.

5.2 Data Exchange

We use the co-simulation platform TISC [20] to set-up
a powerful NMPC prototyping environment, keeping
the basic structure of Figure 1 in mind. TISC acts as
master and manages data exchange between different
clients. There already exist interfaces between TISC
and a variety of simulation, visualization and measure-
ment tools, e.g. Dymola, LabView, and Simulink. The
user has to define types and names of variables to be
sent and received for each client. Data routing between
clients is automatically managed by matching variable
types and names. For our NMPC environment we use
a fixed naming and typing convention. Variable names
and the direction of information flow are defined ac-
cording to Figure 1. The TISC type of time is Dou-
ble, whereas all other variables are of TISC type Dou-
bleArray.

Using this definition it is readily possible to ex-
change components of an NMPC loop. For example,
one could replace a virtual plant that is simulated in
Dymola with a real plant interfaced through LabView
with just a few mouse clicks.

6 FMI for Optimization

In this section we show some implementation de-
tails to shed light on how an FMU can be used
in MUSCOD-II to formulate and solve OCPs of
type (10). We also describe new requirements and de-
mands the FMI standard faces when we desire to use in
a consistent derivative-based optimization setting such
as direct optimal control, and give recommendations
on future enhancements of FMI.

6.1 Interface between MUSCOD and FMI

In order to set up and solve a OPC in MUSCOD-II the
user has to provide a C++ file that defines the model
equations, including differential equations, objectives,
and constraints. This source code is compiled into

a shared library and dynamically loaded by the main
program MUSCOD-II during runtime.

Instead of modeling in C++, we link a compiled
FMU to a generic MUSCOD-II model that calls the ap-
propriate FMI functions. This paradigm has also been
followed by [19] to interface MUSCOD-II with AMPL
[11]. As defined in FMI, some function calls have to be
carried out once during startup in order to instantiate
and initialize an FMU. This is organized by defining
a class, writing the required function calls in its con-
structor, and instantiating it as a global object. Now,
the constructor is called when the resulting dynamic
library is loaded into MUSCOD-II. The corresponding
code is shown in Listing 1. The pointer to the instanti-
ated FMU is defined globally, because we need to call
FMU functions in several places.
#define NXD 19

#define NU 2

#define NP 0

fmiComponent fmu;

const fmiValueReference uRef[NU] =

{352321536 , 352321537};

class InstantiateFMU {

public:

InstantiateFMU ();

~InstantiateFMU ();

};

InstantiateFMU :: InstantiateFMU ()

{

// Instantiate fmu

fmu = fmiInstantiateModel (instanceName ,

GUID , callbacks , fmiFalse);

// Set Time

status = fmiSetTime(fmu , 0.0);

// Set Controls

const fmiReal uIni[NU] = {2.5, 41.6667};

status = fmiSetReal (fmu , uRef , NU, uIni);

// Set Parameters

const fmiReal pInit[NP] = {};

fmiSetReal(fmu , pRef , NP, p);

// Initialize

fmiEventInfo eventInfo;

status = fmiInitialize(fmu , fmiFalse , 0.0,

&eventInfo);

}

InstantiateFMU instantiateFMU;

Listing 1: Instantiation and initialization of a FMU in
a MUSCOD model source file.

First of all we have to provide the differential right-
hand side function of the ODE, as shown in Listing 2.
This function is called by a MUSCOD-II integrator and
is expected to return the right-hand as a function of
time, states, controls, and parameters. The objective
function is formulated in a similar way. As an exam-
ple, the source code of a Lagrange term is shown in
Listing 3.

Session 6D: FMI Standard II

DOI Proceedings of the 9th International Modelica Conference 785
10.3384/ecp12076781 September 3-5, 2012, Munich, Germany

void ffcn (

double *t, double *xd, double *xa,

double *u, double *p, double *rhs ,

double *rwh , long *iwh , long *info

) {

// Set Time

fmiSetTime (fmu , *t);

// Set Controls

fmiSetReal (fmu , uRef , NU , u);

// Set Parameters

fmiSetReal (fmu , pRef , NP , p);

// Set States

fmiSetContinuousStates (fmu , xd, NXD);

// Get Derivatives

fmiGetDerivatives (fmu , rhs , NXD);

}

Listing 2: Right-hand side function.

void lfcn (

double *t, double *xd, double *xa,

double *u, double *p, double *lval ,

double *rwh , long *iwh , long *info

) {

// Set Time

fmiSetTime (fmu , *t);

// Set Inputs

fmiSetReal (fmu , uRef , NU , u);

// Set States

fmiSetContinuousStates (fmu , xd, NXD);

// Get Outputs

const fmiValueReference yRef [2] =

{905970080 , 905971331};

double y[2];

fmiGetReal (fmu , yRef , 2, y);

*lval = (y[1] -283.15) * (y[1] -283.15)

+ 0.01 * y[0] / 1000.0;

}

Listing 3: Lagrange term of objective.

A large part of this source code can be generated
automatically from the model description xml file of
an FMU, but some lines, e.g. objective formulation,
currently still need to be coded by hand.

6.2 Directions for Future FMI Developments

In this section we give an outlook on future develop-
ments in using FMI for direct dynamic optimization.
Ideally, we are interested in realizing FMI access to
the full class of DAE-constrained switched systems,

dx
dt
(t) = fσ (t,x(t),z(t),u(t), p), t ∈T , (11a)

0 = gσ (t,x(t),z(t),u(t), p), (11b)

σi(t) =
{

+1 s(t,x(t),z(t),u(t), p)> 0,
−1 s(t,x(t),z(t),u(t), p)< 0.

, (11c)

i = 1, . . . ,nσ .

Additional transversality conditions must be satisfied
to guarantee that points s(t,x(t),z(t),u(t), p) = 0 are

isolated and a clear transition between the two alter-
nate right-hand sides occurs in the neighborhood of
such points, see e.g. [5].

The principle of internal numerical differentiation
(IND) requires a caller-control approach to be used
for consistent derivative-based optimization. In such
an approach, FMI is responsible for evaluation of the
functions f and g, if given a caller-supplied switch sig-
nature σ , factorization of dg

dz , iteration count for solv-
ing the DAE constraint 0 = g(·), etc. The caller is then
able to keep these potentially nondifferentiable parts
of the evaluation of system (11) fixed for the purpose
of computing consistent derivatives and sensitivities of
IVP solutions, e.g., as described in [5, 18, 23] for the
case of implicit switches.

6.3 FMI Requirements for Consistent
Derivatives

The current implementation of the FMI standard has
proven sufficient to enable our tools to work with FMI
when the problem class is limited to continuous ODEs.
DAEs are currently handled internally, and are ex-
posed as ODEs in a reduced space to the caller. This
involves iterative solution of the nonlinear DAE con-
straint that is carried out internally by the FMI. Im-
plicitly discontinuous ODEs, so-called switched or hy-
brid systems, are supported in an accessible way by
the FMI standard. State discontinuities however are
handled internally again. This effectively limits our
approach to FMI for optimization to ODEs with con-
tinuous solutions.

To extend the FMI standard to complement state-of-
the-art optimization software, the paradigm of external
control over adaptive components needs to be adhered
to. This currently is partially the case for switched sys-
tems, but needs to be extended to, e.g., state disconti-
nuities, direct linear algebra involving pivoting deci-
sions, and to the use of iterative solvers.

Whenever it is desirable to call such procedures in-
side an FMI model, all information about control about
adaptive components, including pivoting sequences,
iteration counts, matrix factors, outcome of condi-
tional evaluations, or choice between alternate func-
tions during implicit switching, should be conveyed
to the FMI by the caller. This would grant the caller
control over potential sources of non-differentiability
inside the FMI. We propose that the caller sould main-
tain an FMI state object that documents the state and
outcome of all non-differentiable actions, and would
pass this FMI state object to the FMI, to be used for
subsequent function evaluation. The caller would fur-

Using Functional Mock-up Units for Nonlinear Model Predictive Control

786 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076781

ther modify this FMI state object whenever appropri-
ate, e.g. exchange functions during implicit switching,
but only after the arising non-differentiability or dis-
continuity has been taken care of on the optimizer’s
side. Indeed, the FMI 2.0 standard makes consider-
able progress into this direction.

7 Example Application: Vapor Com-
pression Cycle

To illustrate the applicability of the NMPC tools and
algorithms described in the previous sections, we
present simulation results for a challenging NMPC ap-
plication. We desire to control a vapor compression
cycle with two goals in mind: good disturbance rejec-
tion and maximum energy efficiency.

7.1 System Description

The system under consideration is sketched in Fig-
ure 2. Main components are two plate heat-
exchangers, a variable-speed scroll compressor, an
electronic expansion valve and a suction line accumu-
lator. Working fluids are internally refrigerant R134a
and on both secondary sides water-glycol mixtures.
This system also exists in reality and is designed as test
stand for automotive air-conditioning compressors.

Figure 2: Vapor compression cycle including inputs
and controlled outputs of the system.

7.2 System Model and Optimal Control
Problem

The system model is derived from first principles only.
The condenser is modeled as moving boundary model,
details can be found in [14]. Accumulator and evapo-
rator are modeled as lumped volumes.

Refrigerant fluid properties are incorporated using
bicubic spline interpolation. This approach leads to

improved computational speed and smoothness com-
pared to the commonly used iterative solution of fun-
damental equations. Further information can be found
in [13].

The resulting system model is an explicit ODE sys-
tem with 17 differential states. There are 2 controls:
a voltage signal vexv to the step motor controller ac-
tuating the expansion valve and the rotational speed
set-point of the compressor ncomp.

The main control goal is to keep the evaporator out-
let water temperature T out

evp at a fixed set point Tset. We
formulate the squared deviation as first Langrange-
type objective term:

∫ tf

0
(T out

evp (t)−Tset)
2 dt. (12)

We also want to maximize energy efficiency, in other
words, minimize the electrical power Pcomp needed by
the compressor, leading to the second Langrange-type
objective term:

∫ tf

0
Pcomp(t)dt. (13)

We also desire to realize a smooth control profile by
penalizing excessive control action, adding

∫ tf

0
(ncomp− ñ)2 dt, (14)
∫ tf

0
(vexv− ṽ)2 dt (15)

to our objective. Where ñ and ṽ are two additional
state variables the original ODE system is augmented
by. The corresponding additional equations are

dñ
dt

= ncomp− ñ, (16)

dṽ
dt

= vexv− ṽ. (17)

Weighting factors wi are introduced and all terms are
combined to the objective

Φ :=
∫ tf

0

[
(T out

evp (t)−Tset)
2 +w0Pcomp(t) (18)

+w1(ncomp− ñ)2 +w2(vexv− ṽ)2] dt

We finally obtain a OCP of type

min
x(·),u(·)

Φ(x(·),u(·)) (19a)

s.t.
dx
dt
(t) = f (x(t),u(t)) t ∈T , (19b)

0≤ c(x(t),u(t)) t ∈T , (19c)

0 = x(0)− x0, (19d)

Session 6D: FMI Standard II

DOI Proceedings of the 9th International Modelica Conference 787
10.3384/ecp12076781 September 3-5, 2012, Munich, Germany

with 19 differential states x and 2 controls u. In ad-
dition to the plant model ODE (19b), fixed upper and
lower bounds for all states and controls (19c) as well
as initial values for all states (19d) are considered.

7.3 Simulation Results – NMPC

Using the methods and software tools described in pre-
vious sections we can set up a closed loop NMPC
simulation. The vapor compression system Modelica
model is developed, and exported as an FMU using
Dymola. As described in section 6.1, the exported
FMU is used in MUSCOD-II to formulate and solve the
arising optimal control problems of type (19).

Investigation of a range of choices for the NMPC
controller’s parameters, comprising time horizon,
number of multiple shooting intervals, and sampling
rate, leads to the final choice of 500 s time horizon di-
vided into 10 multiple shooting intervals and a 2 s sam-
pling interval of the closed loop controller. Control
trajectories are discretized on the same grid by piece-
wise constant functions. This setup shows good closed
loop performance in terms of stability and disturbance
rejection.

The choosen prediction horizon of 500 s appears to
be very large at first sight, but shorter prediction hori-
zons have been found to lead to stability issues. This
behavior is mathematically explained by large time
constants of the system. A physical explanation can
be given by a closer look at the suction line accumu-
lator. In this component, liquid refrigerant is stored in
order to compensate for changes of the optimal active
refrigerant charge at different working points; see [17]
for a detailed discussion. The second task of a suction
line accumulator is to separate vapor from liquid and
feed the compressor with pure vapor. In steady-state
conditions for the whole cycle, the accumulator energy
balance forces inlet and outlet refrigerant states to an
equilibrium. The accumulator can therefore be seen to
act as a passive control unit that drives two points of
the cycle (accumulator inlet and outlet) to the dew line.
This passive control action takes place comparatively
slowly, resulting in large time constants of the system
model.

A virtual NMPC experiment is set up by simulating
the controlled plant in Dymola and coupling it with
MUSCOD-II via TISC. The real-time iteration scheme
presented in Section 4.2 is applied with a fixed sam-
pling rate of 2 s, assuming zero feedback delay.

Additional assumptions are no model-plant mis-
match, availability of the full process state vector, and
uncontrolled input measurements without disturbance.

0 200 400 600 800 1000
t (s)

30

40

50

60

70

n c
om

p
(s−

1)

NMPC
PI

(a) Control input 1: compressor speed.

0 200 400 600 800 1000
t (s)

1.5

1.7

1.9

2.1

2.3

2.5

v e
xv

(V
)

NMPC
PI

(b) Control input 2: expansion valve voltage signal.

0 200 400 600 800 1000
t (s)

7

8

9

10

11

T
(◦

C
)

in
out (NMPC)
out (PI)

(c) Chilled water temperatures at evaporator inlet and outlet.

0 200 400 600 800 1000
t (s)

0.6

0.8

1.0

1.2

1.4

P c
om

p
(k

W
)

NMPC
PI

(d) Compressor’s electrical power consumption.

0 200 400 600 800 1000
t (s)

2

3

4

5

∆T
su

b
(K

)

NMPC
PI

(e) Refrigerant subcooling at condenser outlet.

Figure 3: Simulation results: NMPC versus PI control
of a vapor compression cycle.

Although these assumptions can hardly be satisfied
when NMPC is applied to a real plant, this kind of
ideal experiment still helps to gain insight into the the-
oretical performance of an optimally designed NMPC
controller. Using our software framework, closed loop
performance of extended problems can be studied very
conveniently.

Using Functional Mock-up Units for Nonlinear Model Predictive Control

788 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076781

7.4 Simulation Results – Comparison to PI
Control

For comparison, we applied a conventional control
concept with two continuous PI controllers to the
plant. Our primary goal – keeping chilled water out-
let temperature at a constant set-point of 8 ◦C – is
achieved by adjusting compressor speed. Contrary to
NMPC, we can’t take our second goal – maximizing
energy efficiency – directly into account. It known,
however, that for vapor compression cycles of our
type, a certain value of refrigerant subcooling at the
condenser outlet is optimal [17]. Hence, we may use
the second control input – expansion valve opening –
to keep subcooling close to a fixed set-point of 3 K.

In our example experiment we start with near
steady-state conditions. At t = 200 s the chilled wa-
ter inlet temperature rises from 10 to 10.5 ◦C. With
chilled water outlet at 8 ◦C, this results in a cooling
load increase of 25%. Figure 3 shows the correspond-
ing response of PI and NMPC closed loops.

In the first 200 seconds there is only little control
action. Both control goals, chilled water outlet tem-
perature (Figure 3(c)) and compressor’s power con-
sumption (Figure 3(d)), are almost identical for both
control concepts. This is because the chosen subcool-
ing setpoint for the PI controller is set to 3 K, which is
close to the efficiency optimal working point for these
boundary conditions. At t = 200 s, when the chilled
water inlet temperature rises, things change notice-
ably. First of all, there is an immediately deviation
of the chilled water outlet temperature from its set-
point. Both controllers react by increasing the com-
pressor speed (Figure 3(a)) and drive the temperature
back to their setpoints (Figure 3(c)). Looking at Fig-
ure 3(b), we see that both controllers react to the dis-
turbance by opening the expansion valve. The NMPC
controller however does so much more aggressively,
leading to the desired result that water outlet temper-
ature stays at its setpoint for the remaining simulation
time. The PI controlled temperature shows a second
deviation starting at t = 300 s. Because the maximum
compressor speed of 60 s−1 has already been reached,
the temperature deviation lasts until t = 800 s.

One could argue that the situation could be im-
proved by tuning the expansion valve PI controller to
speed up its reaction. Although we don’t claim to
have chosen the best possible PI parameters, simula-
tion studies show that the expansion valve PI controller
must be comparatively slow in order to ensure stabil-
ity of the closed loop. This may be due to the large
time constants mentioned above. A second reason may

be the inverse response behavior of the plant model
for expansion valve opening as input and subcooling
as output. Besides good disturbance rejection, a sec-
ond benefit of our NMPC controller becomes clear by
looking at the compressor power consumption in Fig-
ure 3(d). At t = 1000 s the system slowly approaches
a new steady state working point with about 4% in-
creased power consumption of the PI controlled com-
pared to the NMPC controlled cycle. Therefore, one
can see that a fixed subcooling setpoint is not optimal
for all boundary conditions. Figure 3(e) shows that for
the new working point, optimal subcooling tracked by
the NMPC controller lies somewhere around 4 K. If
we continued simulation, the PI controller would steer
the cycle back to non-optimal subcooling of 3 K.

8 Conclusion

Although tailored to forward simulation, the FMI for-
mat can be used for interfacing Modelica models with
state-of-the-art dynamic optimization software. But
with the current design of FMI this approach is lim-
ited to continuous ODE. To extend the scope of FMI
for optimization to hybrid DAE there must be major
changes. Instead of solving implicit algebraic equa-
tions with embedded solvers internally, the residuum
functions should be exposed. The proposed software
framework has proven its applicability for setting up
NMPC loops in an early design stage. The application
vapor compression cycle demonstrates the benefits of
NMPC. In the presented scenario, NMPC shows a sig-
nificantly better performance compared to a conven-
tional PI control concept in terms of energy efficiency
and disturbance rejection. Moreover, NMPC is able to
identify and track new optimal working points under
changed external conditions.

References
[1] Johan Åkesson. Languages and Tools for Optimization of

Large-Scale Systems. Phd thesis, Lund University, 2007.

[2] Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove
Bergdahl, and Hubertus Tummescheit. Modeling and opti-
mization with Optimica and JModelica.org–Languages and
tools for solving large-scale dynamic optimization prob-
lems. Computers & Chemical Engineering, 34(11):1737–
1749, November 2010.

[3] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß,
H. Elmqvist, A. Junghanns, J. Mauss, M. Monteiro, T. Nei-
dhold, D. Neumerkel, H. Olsson, J.-V. Peetz, and S. Wolf.
The Functional Mockup Interface for Tool independent Ex-
change of Simulation Models. In 8th International Modelica
Conference, Dresden, 2011.

Session 6D: FMI Standard II

DOI Proceedings of the 9th International Modelica Conference 789
10.3384/ecp12076781 September 3-5, 2012, Munich, Germany

[4] H. G. Bock and K. J. Plitt. A Multiple Shooting algorithm for
direct solution of optimal control problems. In Proceedings
9th IFAC World Congress Budapest, pages 243–247. Perga-
mon Press, 1984.

[5] H.G. Bock. Numerical treatment of inverse problems in
chemical reaction kinetics. In K.H. Ebert, P. Deuflhard, and
W. Jäger, editors, Modelling of Chemical Reaction Systems,
volume 18 of Springer Series in Chemical Physics, pages
102–125. Springer, Heidelberg, 1981.

[6] Jonathan Brembeck, Martin Otter, and Dirk Zimmer. Non-
linear Observers based on the Functional Mockup Interface
with Applications to Electric Vehicles. In 8th International
Modelica Conference, Dresden, 2011.

[7] Francesco Casella, Filippo Donida, and Marco Lovera. Be-
yond Simulation: Computer-Aided Control System De-
sign using Equation-based Object-oriented Modelling for the
Next Decade. Simulation News Europe, 19(1):29–41, 2009.

[8] M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy,
and F. Allgöwer. Real-time optimization and Nonlin-
ear Model Predictive Control of Processes governed by
differential-algebraic equations. Journal of Process Control,
12(4):577–585, 2002.

[9] Moritz Diehl. Real-Time Optimization for Large Scale Non-
linear Processes. Phd thesis, Universität Heidelberg, 2001.

[10] Moritz Diehl, Hans Joachim Ferreau, and Niels Haverbeke.
Efficient Numerical Methods for Nonlinear MPC and Mov-
ing Horizon Estimation. In Lalo Magni, Davide Martino
Raimondo, and Frank Allgöwer, editors, Nonlinear Model
Predictive Control, Lecture Notes in Control and Informa-
tion Sciences, pages 391–417. Springer, Berlin, Heidelberg,
New York, 2009.

[11] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL:
A Modelling Language for Mathematical Programming.
Books/Cole—Thomson Learning, 2nd edition, 2003.

[12] Rüdiger Franke. Formulation of dynamic optimization prob-
lems using Modelica and their efficient solution. In 2nd In-
ternational Modelica Conference, pages 315–323, Oberpfaf-
fenhofen, 2002.

[13] Manuel Gräber, Christian Kirches, Johannes P. Schlöder, and
Wilhelm Tegethoff. Nonlinear Model Predictive Control of
a Vapor Compression Cycle based on First Principle Mod-
els. In MATHMOD, 7th Vienna International Conference on
Mathematical Modelling, 2012.

[14] Manuel Gräber, Nils Christian Strupp, and Wilhelm Tegeth-
off. Moving boundary heat exchanger model and validation
procedure. In EUROSIM Congress on Modelling and Simu-
lation, Prague, 2010.

[15] William Gropp and Jorge J. Moré. Optimization environ-
ments and the NEOS Server. In M. D. Buhmann and A. Iser-
les, editors, Approximation Theory and Optimization, pages
167–182. Cambridge University Press, 1997.

[16] L. Imsland, P. Kittilsen, and T. S. Schei. Model-based opti-
mizing control and estimation using Modelica models. Mod-
eling, Identification and Control, 31(3):107–121, 2010.

[17] Jørgen Bauck Jensen and Sigurd Skogestad. Optimal opera-
tion of simple refrigeration cycles Part I: Degrees of freedom
and optimality of sub-cooling. Computers & Chemical En-
gineering, 31(5-6):712–721, May 2007.

[18] C. Kirches. A numerical method for nonlinear robust opti-
mal control with implicit discontinuities and an application
to powertrain oscillations. Diploma thesis, Ruprecht–Karls–
Universität Heidelberg, October 2006.

[19] Christian Kirches and Sven Leyffer. TACO – A Toolkit for
AMPL Control Optimization. Preprint ANL/MCS-P1948-
0911, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, October 2011.

[20] Roland Kossel, Martin Löffler, Nils Christian Strupp, and
Wilhelm Tegethoff. Distributed energy system simulation of
a vehicle. In Vehicle Thermal Management Systems Con-
ference. Institution of Mechanical Engineers, SAE Interna-
tional, 2011.

[21] D B Leineweber, I Bauer, A A S Schäfer, H G Bock, and J P
Schlöder. An Efficient Multiple Shooting Based Reduced
SQP Strategy for Large-Scale Dynamic Process Optimiza-
tion (Parts I and II). Computers and Chemical Engineering,
27:157–174, 2003.

[22] MODELISAR. Function Mock-up Interface for Model Ex-
change, 2010. Specification, Version 1.0.

[23] K.D. Mombaur. Stability Optimization of Open-loop Con-
trolled Walking Robots. Phd thesis, Universität Heidelberg,
2001.

[24] Jorge Nocedal and Stephen J. Wright. Numerical Optimiza-
tion. Springer, Berlin, Heidelberg, New York, 2nd edition,
2006.

[25] Andreas Pfeiffer. Numerische Sensitivitätsanalyse unstetiger
multidisziplinärer Modelle mit Anwendungen in der gra-
dientenbasierten Optimierung. Phd thesis, Martin-Luther-
Universität Halle-Wittenberg, 2008.

[26] E. D. Tate, Michael Sasena, Jesse Gohl, and Michael Tiller.
Model Embedded Control: A Method to Rapidly Synthesize
Controllers in a Modeling Environment. In 6th International
Modelica Conference, pages 493–502, Bielefeld, 2008.

Using Functional Mock-up Units for Nonlinear Model Predictive Control

790 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076781

Poster Session

Modeling a Low-temperature Compressed Air Energy Storage with Modelica

Modeling a Low-temperature Compressed Air Energy Storage with
Modelica

Marcus Budt1, Daniel Wolf1, Roland Span2
1Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT

Osterfelder Straße 3, 46047 Oberhausen, Germany
marcus.budt@umsicht.fraunhofer.de, daniel.wolf@umsicht.fraunhofer.de

2Ruhr-University Bochum, Faculty for Mechanical Engineering
Universitätsstraße 150, 44780 Bochum, Germany

roland.span@thermo.rub.de

Abstract

The paper deals with the simulation of an innovative
adiabatic compressed air energy storage plant. These
plants are able to store electrical energy by com-
pressing and expanding ambient air. In contrast to
other approaches the plant layout examined in this
paper works with much lower storage temperatures
of just 100-200 °C. Aim of the modeling effort is to
dynamically simulate the plant and to analyze the
thermodynamics of the system. Here, off-design be-
havior regarding turbomachinery output tempera-
tures, pressure losses and heat flows are of particular
interest.

Keywords: compressed air; energy storage; thermal
storage; low-temperature; CAES; modeling; Mode-
lica

1 Introduction

The increasing share of renewable power generation,
particularly of fluctuating wind and solar generation,
leads to a time-based shift between supply and de-
mand. A result of this development is the increasing
demand for energy storage. Beside short time storage
technologies like batteries or flywheels, a significant
demand for bulk storage like pumped hydro energy
storages (PHES) arises. For Europe the future PHES
potential is rather limited due to siting restrictions
including proper topological conditions. One alterna-
tive is compressed air energy storage (CAES), which
provides energy capacities and power ranges compa-
rable to those of PHES. This renders CAES a prom-
ising option for bulk electricity storage in the near
term future.

2 Compressed Air Energy Storage

The idea of using compressed air to store energy is
rather old. Beside pressurized air driven vehicles for
special applications, there are two so called diabatic
CAES plants, which are already in operation. The
first CAES in Huntorf (Germany) works since 1978.
The second one, located in McIntosh (USA), is in
service since 1991. The concept of CAES is to ab-
sorb electricity by compressing ambient air by an
electrically driven compressor in times of surplus
electricity in the grid. The compressed air can be
stored in a pressurized containment of any kind. The
mentioned CAES plants use solution mined under-
ground salt caverns as compressed air storage (CAS).
Because of the surrounding salt these caverns are
technically tight without additional sealing. During
discharge the compressed air is released from the
CAS and heated up to drive an expansion turbine.
The expansion turbine is connected to a generator
supplying electric power to the grid.

Figure 1: Block diagram of the first compressed air
energy storage plant located in Huntorf, Germany [1]

As shown on the left hand side of Figure 1 the whole
amount of heat generated during compression is
cooled to the ambient in today’s diabatic CAES.
Therefore, two main intercoolers are installed in the
Huntorf plant, the first one between the low and high

DOI Proceedings of the 9th International Modelica Conference 791
10.3384/ecp12076791 September 3-5, 2012, Munich, Germany

pressure compressor units and the second one be-
tween high pressure compressor unit and CAS. The
second intercooler ensures that the air enters the
CAS at a maximum temperature of 35 °C, because
higher temperatures would destabilize it. In expan-
sion mode these plants use a gas fired combustion
chamber to pre-heat the compressed air before the
expansion in order to protect the turbine and to in-
crease the power output. In the Huntorf plant this
pre-heating again is located at two points of the
process. First, the air is pre-heated before entering
the pressure expander and then again between the
two expander units. Therefore, both diabatic CAES
plants are, in the proper meaning of the word, no
pure energy storages. They are rather a type of hy-
brid gas plants.

2.1 Current adiabatic design approaches

Nowadays CAES approaches aim on cycle operation
without the need of fossil fuels to heat up the com-
pressed air during expansion. Therefore, a thermal
energy storage (TES) is applied. It captures the heat
of compression during the charging process and al-
lows for using it to heat up the air in the discharging
process. Figure 2 shows the block diagram of an
adiabatic compressed air energy storage (A-CAES).

Figure 2: Concept of an adiabatic compressed air
energy storage

Figure 3: Low-temperature adiabatic compressed air
energy storage concept

Advantages of the concept are the high cycle effi-
ciency of up to 70 % and the high energy density of
the TES [2]. The main challenges are the demand for
a compressor redesign to face temperatures of up to
650 °C and the development of a large packed bed
TES, which can withstand high temperatures and
pressures of around 70 bar simultaneously.

2.2 Low-temperature concept

To avoid the previously mentioned challenges
Fraunhofer UMSICHT investigates the possibility to
design A-CAES plants for lower TES temperatures.
Interesting results for a two-stage A-CAES at 350 °C
[1] and the fact that the cycle efficiency of A-CAES
is not governed by the Carnot efficiency led to the
current 100-200 °C LTA-CAES concept [3].
Figure 3 shows the plant layout of a LTA-CAES.
Due to the use of an eight stage radial inflow com-
pressor it is possible to cool the compressed air after
each stage. This leads to a reduction of compression
work and a limitation of the TES temperature to
100-200 °C. The chosen temperature depends on the
economic optimum between increasing revenue
through better cycle efficiencies on the one hand and
increasing investment costs for the TES due to high-
er temperatures on the other hand. In the addressed
temperature range a pumpable TES medium like
pressurized water or thermal oil can be used. Inde-
pendent of the TES temperature there is always a
part of compression heat, which cannot be reused
during the discharging process. In the shown
stand-alone plant version (Fig. 3) this heat is cooled
to ambient air temperature by additional intercoolers.
The stored heat is used to pre-heat the compressed
air before entering each expander stage. This results
in cycle efficiencies of up to 67 %.

Modeling a Low-temperature Compressed Air Energy Storage with Modelica

792 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076791

3 Current plant model

In the ongoing development process the model de-
scribed below enables the examination of the ther-
modynamic behavior of the plant especially in off-
design operation. The current plant model is based
on Modelica 3.2 standard libraries, especially on the
Modelica.Fluid library by Casella et al. [4], and im-
plemented in Dymola 2012 FD01 [5]. The com-
pressed air is currently assumed as an ideal gas mix-
ture of dry air, taken from the Modelica.Media pack-
age ‘DryAirNasa’.

Table 1: Symbol table

symbol meaning unit

p pressure Pa
h enthalpy J/kg
T temperature K
X mass fraction -

Q& heat flow W

m& mass flow kg/s
y specific useful flow work J/kg
κ isentropic exponent -
R gas constant J/kg K
∏ compression/expansion ratio -
η efficiency -
P power W

3.1 Standard library components

As intended by using Modelica to simulate the
LTA-CAES, many standard library components
could be used in the model. Among sensors, PID-
controllers, valves and Fluid.Sources, the whole tur-
bomachinery piping is implemented by Mode-
lica.Fluid pipe models. The CAS is assumed as a
solution mined underground salt cavern and is based
on the ‘ClosedVolume’ Modelica.Fluid model.

3.2 Heat exchanger modeling

In a first step the used heat exchanger models are
simplified to heat sinks and sources without any
mass or energy storage capacities. The current ap-
proach also assumes an ideally regulated water mass
flow through the heat exchanger components.

The pressure loss of the heat exchanger is a fixed
value given by the user. The output pressure is calcu-

lated according to Equation 1 if the current mass
flow exceeds a given minimum. Otherwise the pres-
sure loss is set to zero. The resulting step is
smoothed by a first order transfer function.

 Eq.1

Another fixed input value is the outlet temperature
(Tout), which is assigned to the air leaving the heat
exchangers in times of required heat transfer. There-
fore, the enthalpy at the outlet is calculated using this
given temperature (Eq. 2).

 Eq.2

The required heat flow to reach this temperature is
calculated by the energy balance equation (Eq. 3)
and given to the user as an output value.

 Eq.3

3.3 Turbomachinery modeling

The main components of the LTA-CAES plant are
the compressor and expander turbomachineries. Par-
ticular attention was paid to these components during
model development. The LTA-CAES concept in-
cludes an eight stage compressor and a four stage
expander, both integrally geared. In the model each
of the turbomachinery stages is characterized by two
characteristic diagrams, one with regard to the pres-
sure ratio and the other with regard to the polytropic
stage efficiency. In the LTA-CAES concept devel-
oped so far, both compressor and turbine are sup-
posed to run on fixed speeds.

Figure 4: First stage compression ratio diagram

In the LTA-CAES concept the control of the opera-
tional point is carried out by variable guide vanes.

Marcus Budt, Daniel Wolf and Roland Span

DOI Proceedings of the 9th International Modelica Conference 793
10.3384/ecp12076791 September 3-5, 2012, Munich, Germany

Their impact on turbomachinery operation is deter-
mined by the current angle of the guide vanes. Figure
4 shows the pressure ratio for the first compressor
stage as a function of air mass flow and guide vane
angle.

Figure 5: First stage polytropic efficiency diagram

The polytropic efficiency of the same compressor
stage is a function of air mass flow and pressure ratio
as depicted in Figure 5.
All these diagrams are based on predicted values for
operating and off-design points. The parameters of
the second (efficiency) and third (compres-
sion/expansion ratio) order surface functions are fit-
ted by the open source software GnuPlot in order to
reproduce the available off-design point behavior.

Figure 6: Compressor stage model with inputs from
characteristic diagrams

Figure 7: Entire turbine train with control system

As shown in Figure 6 the characteristic diagrams are
implemented as a ‘CombiTable2d’ in Modelica.
With the current mass flow delivered by a sensor and
the guide vane angle given by the control instance as
inputs, these tables deliver their values as inputs for
the Modelica.Fluid based compressor stage model.
The model uses these values to calculate the change
in enthalpy. Therefore, the isentropic exponent κ is
calculated at suction conditions by the used Mode-
lica.Media model. Together with the stage inlet tem-
perature (Tin) and the compression ratio input value
(∏in), Equation 4 is used to calculate the specific is-
entropic useful flow work (ys) assuming ideal gas
behavior.

Eq.4

Equation 5 shows the conversion of the polytropic
efficiency input value (ηpol, in) to isentropic efficiency
(ηs).

Eq.5

The division by the isentropic efficiency (ηs) results
in the effective change in enthalpy (∆h) (Eq. 6).

Eq.6

The output pressure is calculated by Equation 7.

 Eq.7

Modeling a Low-temperature Compressed Air Energy Storage with Modelica

794 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076791

With the given pressure and enthalpy at the output
port of the compressor stage model, Modelica.Media
is able to calculate values like the output tempera-
ture.
To match the energy balance (Eq. 8) there is an addi-
tional model output value called internal consumed
power (Pi).

 Eq.8

Since there is no change in air mass flow within the
stage, the mass balance shown in Equation 9 is valid.

 Eq.9

In the turbine model both characteristic diagrams are
generated as functions of mass flow and guide vane
angle from literature data (Fig. 7) [6, 7]. Apart from
that, the same kind of input values and a correspond-
ing set of equations are used. It is therefore not de-
scribed in detail in this paper.

Simulations of multi-stage turbomachineries are very
complex since a pressure or temperature change in
one stage has a direct influence on the following
ones. This especially applies for off-design condi-
tions and for interim cooling or heating processes.
The fundamental advantage of modeling each com-
pressor or turbine stage as an independent model is
the ability to calculate their interactions without
complex methods like the principle of superposition
for the compressor or the law of cone for the turbine.

3.4 Control system

Since the plant model is not intended to simulate
start-up and shut-down phase in detail, the modeling
of the surge control valve was omitted. The start-up
and shut-down of the plant is therefore simplified.
Once started, the consumed or produced power is
adjusted by a PID-controller system. The values the
control system should maintain are given to the
model by a Modelica ‘timeTable’ connected to an
external file. Programming both stage types in the
shown pressure driven way leads to a turbomachin-
ery system with a self-regulating mass flow rate. The
control system is able to change the guide vane angle
and therefore the operating point of the plant. As
proven by comparison, the model behavior and the
guide vane angle control simulate the real perform-
ance with sufficient accuracy.

4 First results

The presented simulation results refer to a model
parameterization of a plant with an eight stage
53 MW compressor unit and a four stage expander
unit with an output power of 30 MW. The TES tem-
perature is limited to 150 °C and the cavern pressure
varies in the range between 100 and 152 bar assum-
ing a cavern depth of 1500 m. The chosen high pres-
sure leads to a high energy density in the cavern. The
required geometrical volume of the cavern is
30,000 m³. With this cavern the LTA-CAES plant is
able to operate six full load hours of charging as well
as discharging.

4.1 Plant operation

Like normal power plants, usual diabatic CAES
plants preferably work only in their full load operat-
ing point, where optimal efficiency can be reached.
Therefore, the first simulation results show the plant
behavior at design point, which reflects a full cycle
of charging and discharging the cavern at maximum
power.

Figure 8: Cavern pressure during full cycle process

Figure 8 shows the cavern pressure increasing from
100 to 152 bar and then decreasing to 100 bar again
during a full charge and discharge period of 6 hours
(21,600 s) each.

Figure 9: Timetable signal and corresponding com-
pressor power consumption and turbine power output

Marcus Budt, Daniel Wolf and Roland Span

DOI Proceedings of the 9th International Modelica Conference 795
10.3384/ecp12076791 September 3-5, 2012, Munich, Germany

During the charging process (400-22,000 s) the re-
quested power consumption is set to 53 MW. While
discharging the LTA-CAES the requested power
output is set to the maximum output power of
30 MW. This call starts at 23,400 s and continues to
45,000 s. As shown in Figure 9 the timetable pro-
vides the corresponding values to the model and the
compressor and turbine power follows this demand.

Figure 10: Guide vane angle adjustment

Figure 10 shows the guide vane angle in the same
time period, regulated by the control system to match
the timetable power signal. It can be seen, that the
compressor guide vanes are continuously closing to
hold the power consumption of 53 MW during the
charging process. In contrast the turbine guide vanes
are opened up more and more during the discharge
process in order to provide a constant power output
of 30 MW. The corresponding change in air mass
flow due to the guide vane adjustment is shown in
Figure 11.

Figure 11: Mass flow through compressor and tur-
bine train

4.2 Compressor train

One aspect of the previously mentioned complex
interactions between each of the compressor stages
can be observed in Figure 12. It can be seen that the
increasing cavern pressure is not reached by a
slightly increasing compression ratio in each stage.
Rather there is a strong increase of the compression

ratio in the higher stages and nearly no change in the
first three stages.

Figure 12: Compressor stages compression ratios

As a result of this compressor behavior the power
consumed by the stages does not behave similar
(Fig. 13). Especially, the first and the last compres-
sor stage show an opposed development. While all
the other stages consume a constant power, due to
the reduction of mass flow (Fig. 11) by guide vane
adjustment, the last stage consumes more and more
power. In this compressor stage the strong increase
in compression ratio overcompensates the reduced
mass flow. In contrast the power of the first stage
decreases.

Figure 13: Compressor stages power consumptions

According to the different change of compression
ratio and power consumption in all of the stages, the
efficiency course also varies between each of them.
Depending on that the temperature of the air entering
the heat exchangers varies during the charging proc-
ess. Figure 14 shows the heat flow rates each of the
heat exchangers has to provide. The previously de-
scribed behavior of the stages can be seen here again
clearly. The wide range of heat flow rates arises from
the different tasks of the heat exchangers. The heat
exchangers two, four, six and eight are designed to
deliver a preferably constant heat flow to the TES.
The others just cool the process air down to a defined
temperature to ensure the maximum TES tempera-
ture of 150 °C in this plant layout. Therefore, their

Modeling a Low-temperature Compressed Air Energy Storage with Modelica

796 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076791

heat flows vary according to the compression ratio of
the previous compressor stage.

Figure 14: Heat flow rates of the heat exchangers
during the compression process

4.3 Turbine train

By opening the turbine guide vanes (Fig. 10) the
control system increases the air mass flow (Fig. 11)
to compensate the decrease in turbine output power
due to the decrease in cavern pressure. Despite the
considerable decrease of turbine inlet pressure of
52 bar during discharging, the turbine mass flow in-
creases only by 5.4 kg/s, enough to allow for a con-
stant power output. The corresponding dynamic be-
havior of each of the four expander stages is shown
in the Figures 15 and 16.

Figure 15: Expander stages expansion ratios

Corresponding to the decreasing cavern pressure de-
picted in Figure 8, the expansion ratio of each stage
decreases as well. It can be seen, that each stage has
an individual course (Fig. 15). These pressure driven
expansion ratios, together with the adjustable guide
vane angle, define the mass flow through the ex-
pander stages as depicted in Figure 11.

Depending on the self-adjusting mass flow and the
guide vane angle given by the control system, each
stage has an individual efficiency course during dis-
charging.

Figure 16: Turbine stages isentropic efficiencies

Figure 16 shows the efficiencies of the four expander
stages during the discharging process. The values
seem to be constant. In fact there is a minimal rise at
the beginning of the discharging process followed by
a slightly decrease towards the end. The maximum
value can be found at the point the guide vane angle
(Fig. 10) crosses the zero degree position, because at
this condition the expander stages reach their optimal
operating point. The nearly constant efficiency over
the whole discharging process demonstrates the gen-
eral advantage of turbomachinery control by guide
vane adjustment.
As a result of the changing expansion ratios and effi-
ciencies the output temperatures of the expander
stages vary, too. Because of the small change in effi-
ciencies, the expansion ratios are the main influential
variables. Together with the air mass flow these tem-
peratures govern the heat exchanger requirements.
Figure 17 shows air temperatures at the inlet of each
heat exchanger. Since the assumed slow discharge of
the cavern has a negligible effect on the cavern tem-
perature, the air temperature at the first heat ex-
changer inlet is constantly set to 50 °C. The inlet
temperatures for the other heat exchangers are equal
to the previous turbine stages output temperatures.
As to be expected, increasing temperatures depend-
ing on the decreasing expansion ratios of the turbine
stages can be observed.

Figure 17: Temperature of the heat exchanger in-
flowing air

Marcus Budt, Daniel Wolf and Roland Span

DOI Proceedings of the 9th International Modelica Conference 797
10.3384/ecp12076791 September 3-5, 2012, Munich, Germany

Figure 18: Heat flow rates into the heat exchangers
needed to heat up the airflow to 150 °C

The heat flow rates of the heat exchangers to heat up
the air to 150 °C show an interesting behavior
(Fig. 18). The heat flow rate required by the first heat
exchanger is increasing due to the rising mass flow.
In contrast the accordingly expected heat flow in-
crease at the other stages is compensated by the
higher input temperatures and the consequently
smaller temperature difference between inlet and
outlet air stream.

4.4 Model performance

The shown results were generated using Dymola
2012 FD01 on a 3 GHz dual-core system with 4 GB
of RAM. The model was initialized with initial guess
values from stationary calculations. Apart from some
difficulties at points of sudden step responses, which
could be solved by smoothing these, the model
works very fine. The model performs robust and
quick, mainly due to neglecting mass and energy
storage in compressor and expander stages as well as
in the heat exchangers implemented so far. The
simulation of the whole 50,000 s charging and dis-
charging cycle (Dassl 0.0001; 500 output intervals)
requires 9 s. Leveling up the number of output inter-
vals to 5,000 increases the simulation time to 13.7 s.

5 Conclusions and work in progress

The basic results of the model show the potential of
using dynamic simulation to investigate the thermo-
dynamic behavior of an A-CAES. Especially, the
complex interactions between turbomachinery
stages, heat exchangers and pressure losses can be
analyzed in detail. Furthermore, the model allows the
analysis of off-design behavior, which is getting
more and more important in today’s electricity mar-
kets. The influence of off-design operation on the
overall cycle efficiency can be evaluated as well.

Besides the presented results work further pro-
gresses. The presented model will be extended by:

- the implementation of detailed heat ex-
changer models

- the implementation of external media librar-
ies for humid air to investigate the influence
of condensing water in the process

- the implementation of alternative turbo-
machinery concepts

In the absence of experimental data the compressor
model so far had to be validated by data from steady-
state calculations in different working points. Here,
the model results match the steady-state ones very
well. A detailed off-design validation by experimen-
tal data for the turbomachinery is aimed at for the
future.

The final goal of the research work will be an itera-
tive process by using both, the presented dynamic
simulation model and the economic optimization
model GOMES® [8]. This way an optimization of
technical and economical aspects for a given busi-
ness case will be possible.

6 Acknowledgements

The authors thank the German Federal Ministry for
the Environment, Nature Conservation and Nuclear
Safety for funding the project »Adiabates Nie-
dertemperaturdruckluftspeicherkraftwerk zur Unter-
stützung der Netzintegration von Windenergie«
(FKZ 0325211).

References

[1] Wolf D.: Methods for Design and Applica-
tion of Adiabatic Compressed Air Energy
Storage Based on Dynamic Modeling. Bo-
chum, Germany: PhD thesis, Ruhr-
Universität Bochum, 2010, UMSICHT-
Schriftenreihe 65, urn:nbn:de:0011-n-
1546519, 2011.

[2] Marquardt R., Hoffmann S., Pazzi S.,
Klafki M., Zunft S.: AA-CAES – Opportu-
nities and challenges of advanced adiabatic
compressed air energy storage technology
as a balancing tool in interconnected grids.
In: 40. Kraftwerkstechnisches Kolloquium
2008, Vol. 2, Technische Universität Dres-
den (Ed.), 2008.

Modeling a Low-temperature Compressed Air Energy Storage with Modelica

798 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076791

[3] Budt M., Wolf D., Prümper H.-J.: A
Low-temperature approach to Adiabatic
Compressed Air Energy Storage. Proceed-
ings of 12th International Conference on
Energy Storage - INNOSTOCK, Lleida,
Spain, 2012.

[4] Casella F., Otter M., Proelss K., Richter
Ch., Tummescheit H.: The Modelica Fluid
and Media library for modeling of incom-
pressible and compressible thermo-fluid
pipe networks. Proceedings of 5th Interna-
tional Modelica Conference, Vienna, Aus-
tria, 2006.

[5] Dassault Systèmes, Dymola 2012 FD01.
[6] Moustapha H., Zelesky M.F., Baines N.C.,

Japikse D.: Axial and Radial Turbines.
Concepts NREC (Ed.), 2003.

[7] Bloch H., Soares C.: Turboexpanders and
process application. Butterworth-
Heinemann (Ed.), 2001.

[8] Wolf D., Kanngießer A., Budt M., Dötsch
Ch.: Adiabatic Compressed Air Energy
Storage co-located with wind energy –
multifunctional storage commitment opti-
mization for the German market using
GOMES. In: Energy Systems, Vol. 3, Issue
2, 2012.

Marcus Budt, Daniel Wolf and Roland Span

DOI Proceedings of the 9th International Modelica Conference 799
10.3384/ecp12076791 September 3-5, 2012, Munich, Germany

Modeling a Low-temperature Compressed Air Energy Storage with Modelica

800 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076791

Natural Unit Representation in Modelica

Natural Unit Representation in Modelica

Kevin L. Davies Christiann J.J. Paredis
Georgia Institute of Technology

Atlanta, Georgia USA

Abstract

A method is presented by which alternative systems
of physical units may be represented and utilized in
Modelica. The method may be useful in simulating
models of physical systems where the base units of the
International System of Units (Système international
d’unités, SI)—the standard unit system in Modelica—
are poorly scaled. It also provides a convenient means
to express the values of physical quantities in fields of
science and engineering where data is typically rep-
resented in other systems of units or where the rank
of the system of units is less than that of SI (i.e.,
natural units). By explicitly expressing the value of
a physical quantity as the product of a number and
a unit (where the unit is an algebraic variable), the
method uses variables that are unit-neutral. Unfortu-
nately, workarounds are necessary in order to imple-
ment the method in the current version of the Model-
ica language. Nonetheless, it may be useful in special
applications, and the related discussion may provide
valuable insight. In particular, it is shown that there
is an apparent conflict in the interpretation of “num-
ber” and “value” between Modelica and the Interna-
tional Bureau of Weights and Measures (Bureau Inter-
national des Poids et Mesures, BIPM).
Keywords: natural units; physical quantities; Model-
ica; SI

1 Introduction

In the mathematical representation of physical sys-
tems, the values of quantities are interrelated through
equations that express the behavior of the system over
time and space. As stated by the BIPM [5, p. 103]:

“The value of a quantity is generally ex-
pressed as the product of a number and a
unit. The unit is simply a particular exam-
ple of the quantity concerned which is used
as a reference, and the number is the ratio of
the value of the quantity to the unit.”

In general, a unit may be the product of powers of
other units, whether they are base units or units de-
rived from the base units in the same manner.

In the Modelica language, physical quantities are
typically expressed as instances of the Real type [12,
p. 46]. The value attribute of the instance is the num-
ber associated with the value of the quantity (not the
value of the quantity, as will be seen). The unit at-
tribute is a string that describes the unit by which the
value of the quantity is divided to arrive at the num-
ber.i The displayUnit attribute (also a string) de-
scribes the unit by which the value should be divided
to arrive at the number as it is entered by or pre-
sented to the user. Based on the information provided
by the unit and displayUnit attributes, simulation
tools may perform unit checking and conversion. The
Real type contains other attributes as well, including
quantity, which is another string [8, p. 375].

The SIunits subpackage of the Modelica Standard
Library contains types that inherent from the Real

type. The type definitions appropriately modify the
unit, displayUnit, and quantity attributes (among
others) to represent various physical quantities. The
unit and displayUnit attributes are based on the
SI. The quantity string is generally used to describe
the name of the physical quantity. For example, the
Velocity type has a unit of "m/s" and a quantity

of "Velocity".
If an instance of the Velocity type has a value of

one (v = 1), then it is meant that “the value of velocity
is equal to one meter per second.” Again, the value

attribute represents the number, or the value divided
by the unit, not the value itself. This apparent con-
flict could be solved in one of several ways. First, the
unit could be strictly set equal to be one (1), regardless
of what the unit is. This is the essence of the current
implementation in Modelica. It is also the interpreta-
tion we use when we are working a problem by hand

iHereafter, the value of the quantity is referred to as simply
the value, but it should not be confused with the value attribute
(which, in the current version of the Modelica language, is the
number).

DOI Proceedings of the 9th International Modelica Conference 801
10.3384/ecp12076801 September 3-5, 2012, Munich, Germany

and drop the units because we are exclusively using a
particular system of units. However, in this case, the
statement that “the value of a quantity is generally ex-
pressed as the product of a number and a unit” [5] loses
its meaning; it may as well be “the value of a quan-
tity is generally expressed as the number.” Second,
the value attribute could be renamed as the number

attribute. Since the name of a variable is an implicit
reference to this attribute (whatever it is called), the
variable would then represent the number. The third
method of resolution is to let the units (the meter and
the second in this case) be mathematical entities and
let v′ = 1 ·m/s. Here, the variable v′ directly repre-
sents the value. Its value attribute is the value in the
context of the statement by the BIPM.

2 Method

The approach is to follow the third method to resolve
the apparent misnomer of the value attribute—to fac-
tor the units out of the unit attribute and into the
value attribute. This offers the advantage that unit
conversion is handled naturally. The essence of unit
conversion is that the phrase “x (value) in u (unit)” is
interpreted mathematically as “x divided by u.” Con-
tinuing with the previous example, v′ is divided by
m/s in order to display v′ in meters per second (as
a number). The result is simply one (1). If the unit
foot is established through the appropriate relation
(ft ≈ 0.3048 ·m) and v′ is divided by ft/s, the result
is v′ in feet per second (∼ 3.2894).

As another example, systems involving angle are
sometimes evaluated by working with variables in cy-
cles and other times with variables in radians. If the
variable is the value, then “variable in unit” means
“value divided by unit.” If we work with the value
directly, then there is no need to specify which unit we
are working “in.” The unit is included; it has not been
factored out by division. As long as the dimensionality
is correct, the math is equivalent due to the relation-
ships among units (or combinations of units). In this
case, the relevant unit relation is 1 · cycle = 2π · rad.ii

This example extends directly to frequency (angle per
time). Often, different symbols are used for frequency
in Hz (ν) and frequency in rad/s (ω). If the units are
included in the variable f , then f = ν ·Hz = ω · rad/s.

In this method, each unit must be represented by an

iiFurthermore, a cycle is typically equated to the number one
(1). For instance, in SI, a frequency of one hertz (1 ·Hz) is equated
to one per second (1/s) [5] even though to be precise it is one cycle
per second (1 · cycle/s).

algebraic variable (albeit constant). For each unit in-
troduced, it is necessary to add an equation that allows
the unit’s value to be determined. If a unit is consid-
ered to be a derived unit, then the equation simply re-
lates the unit to other units (e.g., 1 · cycle = 2π · rad).
However, there are several units (in SI, 7) that may not
be simply defined via other units. These base units
must be related to something outside of the algebraic
system of equations representing the immediate phys-
ical system. This something is the “particular example
of the quantity concerned which is used as a reference”
quoted previously [5]. The designation of “base” or
“derived” is somewhat arbitrary [8, p. 375], but regard-
less, there are a number of units that must be defined
by example. Considering only the immediate physical
system, these units are linearly independent.

If only the SI will be used, then it is easiest to strictly
set each of the base units of SI equal to one (1)—
the meter (m), kilogram (kg), second (s), ampere (A),
kelvin (K), mole (mol), and candela (cd). This is im-
plicitly the case in Modelica.SIunits, but again, it
hardly captures the idea that a value is the product of a
number and a unit.

There are systems where typical values are many
orders of magnitude larger or smaller than the re-
lated product of powers of base SI units (e.g., the do-
mains of astrophysics and atomic physics). In mod-
eling and simulating those systems, it may be advan-
tageous to choose appropriately small or large values
(respectively) for the corresponding base units such
that the product of the number (large or small in mag-
nitude) and the unit (small or large, respectively) is
well-scaled. Products of this type are often involved in
initial conditions or parameter expressions, which are
not time-varying. Therefore, the number and the unit
can be multiplied before the dynamic simulation. Dur-
ing the simulation, only the value is important. After
the simulation, the trajectory of the value may be di-
vided by the unit for display. This scaling is usually
unnecessary due to the wide range and appropriate dis-
tribution of the real numbers that are representable in
floating point space. The Modelica language specifi-
cation recommends that floating point numbers be rep-
resented in at least IEEE double precision, which cov-
ers magnitudes from∼2.225×10−308 to∼1.798×10308

[12, p. 13]. However, in some cases it may be prefer-
able to carefully scale the units and use single pre-
cision instead for the sake of computational perfor-
mance. There are fields of research where, even today,
simulations are sometimes performed in single preci-
sion [10] and where scaling is a concern [14, p. 29].

Natural Unit Representation in Modelica

802 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076801

Since there are many systems of units besides the
SI, it is best if the method is neutral with regards
to not only the values of the base units, but also the
choice of the base units and even the number of base
units. As mentioned previously, the choice of base
units is somewhat arbitrary, and different systems of
units are based on different choices. Some systems
of units have fewer base units (lower rank) than SI,
since additional constraints are added that exchange
base units for derived units. For example, the Planck,
Stoney, Hartree, and Ryberg systems of units define
the Boltzmann constant to be equal to one (k = 1)
[15]. The unit K is “eliminated” [9, p. 386] or, more
precisely, considered a derived unit instead of a base
unit. In the SI, the Boltzmann constant would be de-
rived from the base units kilogram, meter, and sec-
ond (K≈ 1.381×10−23 ·kg ·m2/s2). In such a system,
terms that would otherwise be written as kT may be
replaced by simply T ; temperature (T) is considered
to be energy per particle or degree of freedom. In this
case, it is not possible to arbitrarily choose a value for
K.

A unit is considered to be a “natural” unit if it de-
pends only on values of universal physical constants
[15]. If a system of units is purely natural, then all
its base “units” are base “constants.” The “particular
example of the quantity concerned which is used as
a reference” [5] is an experiment that yields precise
and repeatable results in determining a constant rather
than a prototype which is carefully controlled and dis-
tributed via replicas. For instance, a natural unit for
electrical resistance is the von Klitzing constant, and
it can be chosen as a base constant. Often, the base
constants are defined to be equal to one. However, just
as it is not necessary to set base units to one, it is not
necessary to set base constants to one. The values can
be chosen to best scale the numerics of the system.

It is judicious to check that the terms of each equa-
tion have the same dimension. Fortunately, methods
for unit checking have already been established and
implemented in Dymola [11]. In the present context,
those methods can, in theory, be applied to the di-
mension instead (i.e., “dimension checking” instead of
“unit checking”). Again, in the present method, the
unit is included in the value attribute. The question
of which unit the variable is “in” is not applicable, but
it is still possible and appropriate to check the dimen-
sions.

The dimension of a value may be expressed in the
same manner as the unit is in the current version of
the Modelica language [12, Ch. 18]. For SI, it would

be appropriate to use these base dimensions instead of
the corresponding base units: length (L), mass (M),
time (T), electric current (I), thermodynamic temper-
ature (Theta), amount of substance (N), and luminous
intensity (J) [5, p. 105]. In the example that follows,
the Rydberg constant, Faraday constant, and the spe-
cific mass of electrons are all set equal to one. There-
fore, the rank is reduced from seven to four.

3 Implementation

The method is implemented in version 3.2 of the Mod-
elica language [12] and version 7.4 of Dymola [7].
However, the implementation includes several less-
than-ideal workarounds; a full and consistent imple-
mentation would require changes to the language and
the modeling environment (see Sec. 4).

First, it is necessary to define the units and con-
stants as variables. These variables must be declared
in an accessible package so that they can be used in
equations within the declaration, initial, and dynamic
sections of the model and its subclasses. An excerpt
from this Units package is shown in Listing 1. The
top section of the code establishes mathematical con-
stants (in this case, only π). The next section es-
tablishes the base constants and units, which are ad-
justable. The third section establishes the constants
and units which may be derived from the base units
and constants using accepted empirical relations. The
rest of the code (not listed) establishes the SI prefixes
and the remaining derived units and constants. The
SI prefixes are included in their unabbreviated form in
order to avoid name conflicts (e.g., constant Real

kilo(unit="1")=1E3). In a model, a kilometer is in-
cluded as kilo*m, unless km is defined as a stand-alone
unit. All of the primary units of SI are included (Ta-
bles 1 and 3 of [5]) except for ◦C, since it involves an
offset. Other convenient units are included for the sys-
tem at hand (e.g., atm). For convenience, the Units

package is given the abbreviated label U by an import

statement at the top level of the entire library or con-
taining package.

Each unit or constant is a constant Real. The
unit attribute is given a string that describes the di-
mension. The abbreviations l, N, T, and I are used
for length, number, time, and luminous intensity, re-
spectively.iii The dimensions are combined as strings

iiiLowercase “ell” is used so that Dymola 7.4 recognizes it as
a unit—the liter. Dymola also recognizes N as newton and T as
tesla. This is not the meaning here, but there is no problem since
it happens that these three units are orthogonal. As long as lu-

Kevin L. Davies and Christiann J. J. Paredis

DOI Proceedings of the 9th International Modelica Conference 803
10.3384/ecp12076801 September 3-5, 2012, Munich, Germany

according to the rules established for unit strings in the
Modelica language [12, p. 210].

The units, constants, and prefixes must be identi-
cally defined in Dymola’s workspace so that they can
be used to convert values to numbers for display. The
definitions from the Units package are copied to a
Modelica script. All the specifications of constant
Real and of the unit attribute are removed. It is im-
portant that the base units or constants are declared at
the beginning of the script and all derived units are
arranged in an order that allows the script to succeed
on the first pass. The script is run when Dymola is
launched. Assert statements are added at the end of
the script to perform basic checks on the relationships
among the values.

Now, types must be defined for the required quanti-
ties. Each quantity inherits from the Real type. The
unit attribute is given a string that describes the di-
mension (as in the Units package). The quantity

attribute is not used, since the type is the quantity. The
displayUnit attribute is given a string that describes
the desired unit to be used for display (according to
the format specified in Ch. 18 of [12]). By default, it
is the simplest expression of the unit in SI. For conve-
nience, the package containing the quantities is given
the global, abbreviated label Q.

Another Modelica script is written to define
the unit conversions for display using Dymola’s
defineUnitConversion command. As mentioned
previously, a value is divided by a unit to arrive at a
number for display. This script is executed after the
script that defines the units, constants, and prefixes
(automatically—upon starting Dymola) so that all of
those variables are available. For example, the en-
try for velocity is defineUnitConversion("l/T",

"m/s", s/m).
A top-level “environment” model is included which

stores copies of the base units or constants. With that
information, it is possible to re-derive all of the other
units and constants. This is important in order to prop-
erly interpret simulation results even after the base
units or constants are re-adjusted.

Where the der operator is used, it is explicitly di-
vided by the unit second (e.g., der(x)/U.s). This is
necessary because the global variable time is time in
seconds.

Listing 1: Selected constants from the Units package

// ---

minous intensity is not represented in the model (I, which is not
recognized), unit checking may be used as dimension checking.

// Base physical constants and units

replaceable constant Bases.Default base

constrainedby Bases.Basis

"Scaleable base constants and units";

// Note: The base constants and units may be

// replaced to suit the scale of the physical

// system.

final constant Q.Angle rad=base.rad "radian";

final constant Q.Wavenumber R_inf=base.R_inf

"Rydberg constant (R_∞)";

final constant Q.Velocity c=base.c

"speed of light in vacuum (c)";

final constant Q.MagneticFluxReciprocal k_J=

base.k_J

"Josephson constant (k_J)";

final constant Q.Resistance R_K=base.R_K

"von Klitzing constant (R_K)";

final constant Q.RadiantIntensity 'cd'=base.'cd' "

candela";

final constant Q.Number k_F=base.k_F

"Faraday constant (k_F)";

final constant Q.Number R=base.R "gas constant";

// ---

// Empirical constants and units

// Note: The values are currently based on the

// those from NIST (2010). The measured (rather

// than conventional) values are used.

constant Q.Length m=10973731.568539*rad/R_inf "

meter";

// SI unit of length

// This is the "Rydberg constant" relation (NIST,

// 2010). The unit radian is included to be

// explicit, although it is currently one by

// definition (BIPM, 2006).

// (http://en.wikipedia.org/wiki/Rydberg_constant)

.

constant Q.Time s=299792458*m/c "second";

// SI unit of time or duration

// This is the "speed of light in vacuum" relation

// (NIST, 2010).

constant Q.MagneticFlux Wb=483597.870E9/k_J "weber

";

// SI unit of magnetic flux

// This is the "Josephson constant" relation

// (NIST, 2010).

constant Q.Conductance S=25812.8074434/R_K "siemen

";

// SI unit of electrical conductance

// This is the "von Klitzing constant" relation

// (NIST, 2010). The unit radian is included on

// the denominator for dimensional consistency,

// but it is one by the current defition (BIPM,

// 2006).

constant Q.ParticleNumber mol=96485.3365*Wb*S/k_F

"mole";

// SI unit of amount of substance

// This is the "Faraday constant" relation (NIST,

// 2010). The factor Wb*S is the coulomb, which

// is defined below.

Natural Unit Representation in Modelica

804 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076801

constant Q.Potential K=8.3144621*(Wb*rad)^2*S/(s*

mol*R) "kelvin";

// This is the "molar gas constant" relation

// (NIST, 2010). The factor (Wb*rad)^2*S/s is the

// joule, which is defined below.

Listing 2: Selected records from the Units.Bases package

record Basis "Base constants and units"

final constant Q.Angle rad=1 "radian";

// SI unit of rotation or planar angle

constant Q.Wavenumber R_inf=1

"Rydberg constant (R_∞)";

// The SI unit length (meter) is inversely

// proportional to this value, which should be

// increased for larger characteristic lengths.

constant Q.Velocity c=1 "speed of light in

vacuum (c)";

// The SI unit time (second) is inversely

// proportional to this value (and R_inf), which

// should be increased for larger characteristic

// times.

constant Q.MagneticFluxReciprocal k_J=1

"Josephson constant (k_J)";

// The SI unit of magnetic flux (weber) is

// inversely proportional to this value, which

// should be increased for larger magnetic flux

// numbers. Also, the SI unit of charge

// (coulomb) is inversely proportional to this

// value.

constant Q.Resistance R_K=1

"von Klitzing constant (R_K)";

// The SI unit of electrical conductance

// (siemen) is inversely proportional to this

// value, which should be increased for larger

// characteristic conductances. Also, the SI

// unit of charge (coulomb) is inversely

// proportional to this value.

constant Q.RadiantIntensity 'cd'=1 "candela";

// SI unit of luminous intensity

constant Q.Number k_F=1 "Faraday constant (k_F)"

;

// The unit of substance (mole) is inversely

// proportional to this value, which should be

// increased for larger particle numbers. If

// k_F is set to 1, then charge is considered

// to be an amount of substance.

constant Q.Number R=1 "gas constant";

// The unit of temperature (kelvin) is inversely

// proportional to this value, which should be

// increased for larger temperature numbers. If

// R is set to 1, then temperature is

// considered to be a potential.

end Basis;

record Am

"Base constants and units for SI with k_F and R

normalized instead of A and m"

extends Basis(

final R_inf=sqrt(8.3144621)*10973731.568539,

final c=299792458/sqrt(8.3144621),

final R_K=(96485.3365^2*25812.8074434)/8

.3144621,

final k_J=483597.870E9*sqrt(S*s)/m,

final candela=1,

final k_F=1,

final R=1);

// Note: The values of the un-normalized SI

// base units are:

// A ~= 0.0000103643

// m ~= 0.346803

end Am;

4 Discussion and Conclusion

The implementation has been utilized to help model
and simulate a proton exchange membrane fuel cell
(PEMFC) in Dymola 7.4 [6]. It has been convenient
in specifying the values of parameters and constants
in this domain, where the product and research liter-
ature quotes values according to many different con-
ventions. There are also cases where simulations have
failed until the base constants were adjusted to prop-
erly scale critical values. In these cases, adjusting the
nominal attributes of the variables did not seem to be
sufficient, although it is difficult to prove.

The implementation raises the following concerns,
which must be addressed in order to fully and consis-
tently employ the method.

1. The unit attribute of a Real type should be re-
named as dimension to indicate that it represents
the physical dimension of the quantity rather than
a particular unit.

2. In the new context, the Real type may be a mis-
nomer. It may be best renamed as Quantity, but
this may have implications on the name for the
Complex record described in the Modelica lan-
guage specification [12].

3. The quantity attribute of the Real type (possi-
bly renamed as Quantity) may be superfluous.
However, its removal may imply that the same
attribute of the Boolean, Integer, and String

types should be removed as well.

4. It would be helpful to establish a standard method
to store and access the values of the base units
and constants along with the results of a simu-
lation. Ideally, the conversions created by the
defineUnitConversion command (in Dymola)
would be dynamically linked to the values of

Kevin L. Davies and Christiann J. J. Paredis

DOI Proceedings of the 9th International Modelica Conference 805
10.3384/ecp12076801 September 3-5, 2012, Munich, Germany

the base units or constants, regardless of whether
they are within an active model or from previous
results.

5. The global variable time should be expressed
as a quantity in the same manner as other
variables—as the product of a number and a unit.
Currently, time is time in unit seconds and the
second has a value of 1. The time variable should
be adjusted such that time/U.s is time in unit
seconds and the second is not constrained to the
value of 1. If the der operator is based on this
unit-neutral time quantity, then it would be un-
necesary to divide its output by the unit second
(as in Sec. 3).

All of these items would affect both the Modelica
language and the Modelica Standard Library. There-
fore, it would be a rather significant undertaking to im-
plement the method as a standard. However, not all of
the items are necessary and the method can already be
implemented to a limited extent (with work-arounds)
in Modelica 3.2 and Dymola 7.4.

If a generalized method of units were to be intro-
duced to Modelica, concepts from SysML may be per-
tinent and useful. Subsections C.4 and C.5 of ver-
sion 1.2 of the SysML specification describe model
libraries for “Quantity Kinds and Units” and “Quan-
tities, Units, Dimensions, and Values” [1].

The proposed approach is not intended to supersede
the previous work in unit checking in Modelica by
Broman et al. ([4, 3]). Instead, it uses the methods
of unit checking for dimension checking.

Acknowledgments

The authors wish to acknowledge support from the
Presidential Fellowship of the Georgia Institute of
Technology and the Robert G. Shackelford Fellowship
of the Georgia Tech Research Institute.

References

[1] OMG Systems Modeling Language (OMG
SysML®), Jun. 2010. Ver. 1.2.

[2] E. Allen, D. Chase, V. Luchangco, J.-W.
Maessen, and G. L. S. Jr. Object-oriented units
of measurement. In OOPSLA04, Vancouver,
BC, Canada, Oct. 2004. ACM 1-58113-712-
5/03/0010.

[3] P. Aronsson and D. Broman. Extendable phys-
ical unit checking with understandable error re-
porting. In Proc. 7th Int. Modelica Conf., Como,
Italy, Sep. 2009. Modelica Association.

[4] D. Broman, P. Aronsson, and P. Fritzson. De-
sign considerations for dimensional inference
and unit consistency checking in Modelica. In
Proc. 6th Int. Modelica Conf., Bielefeld, Ger-
many, Mar. 2008. Modelica Association.

[5] Bureau International des Poids et Mesures. The
International System of Units (SI). http:

//www.bipm.org/en/si/si_brochure/, Mar.
2006.

[6] K. L. Davies, C. J. Paredis, and C. L. Haynes.
Library for first-principle models of proton ex-
change membrane fuel cells in Modelica. In
Proc. 9th Int. Modelica Conf., Munich, Germany,
Sep. 2012 (accepted). Modelica Assoc.

[7] Dynasim AB. Dymola: Dynamic Modeling Lab-
oratory, Mar. 2010. Ver. 7.4.

[8] P. Fritzson. Principles of Object-Oriented Mod-
eling and Simulation with Modelica 2.1. IEEE
Press, Piscataway, NJ, 2004.

[9] W. Greiner, L. Neise, and H. Stöcker. Thermody-
namics and statistical mechanics. Classical the-
oretical physics. Springer-Verlag, 1995.

[10] B. Hess, C. Kutzner, D. van der Spoel, and
E. Lindahl. Gromacs 4: Algorithms for highly
efficient, load-balanced, and scalable molecular
simulation. J. Chem. Theory Comput., 4(3):435–
447, 2008.

[11] S. E. Mattsson and H. Elmqvist. Unit check-
ing and quantity conservation. In Proc. 6th Int.
Modelica Conf., University of Applied Sciences,
Bielefeld, Germany, Mar. 2008. Modelica Assoc.

[12] Modelica Assoc. Modelica: A unified
object-oriented language for physical sys-
tems modeling: Language specification.
https://www.modelica.org/documents/

ModelicaSpec32.pdf, Mar. 2010. Ver. 3.2.

[13] National Institute of Science and Technol-
ogy. Fundamental physical constants—complete
listing. http://physics.nist.gov/cuu/

Constants/Table/allascii.txt, 2010. Ac-
cessed Jun. 2012.

Natural Unit Representation in Modelica

806 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076801

[14] D. C. Rapaport. The Art of Molecular Dynam-
ics Simulation. Cambridge University Press, 2nd
edition, Apr. 2004.

[15] Wikipedia. Natural units. http://en.

wikipedia.org/wiki/Natural_units. Ac-
cessed Mar. 2012.

Kevin L. Davies and Christiann J. J. Paredis

DOI Proceedings of the 9th International Modelica Conference 807
10.3384/ecp12076801 September 3-5, 2012, Munich, Germany

Natural Unit Representation in Modelica

808 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076801

Modelica Code Generation with Polymorphic Arrays and Records Used in Wind Turbine Modeling

Modelica Code Generation with Polymorphic Arrays and
Records Used in Wind Turbine Modeling

Roland Samlaus1 Peter Fritzson2 Adam Zuga1 Michael Strobel1 Claudio Hillmann1

Fraunhofer Institute for Wind Energy and Energy System Technology IWES1

Linköpings universitet, Dept. of Computer and Information Science2

Abstract

At Fraunhofer Institute for Wind Energy and Energy
System Technology IWES a simulation software for
offshore wind farms is being developed, concentrat-
ing on the ability to define physical models at differ-
ent levels of detail. Therefore parameterizable mod-
els representing parts of wind turbines are defined that
can be transformed for various purposes like simula-
tion with Finite Element Method (FEM) tools or Mod-
elica solvers.

This paper describes the concepts of purely para-
metric physical models and code generation. It is elu-
cidated how models of different complexity can be
transformed into each other by model driven develop-
ment techniques. Thereby the focus is set on the gen-
eration of Modelica code and it is explained how the
use of Modelica libraries simplifies the generation of
simulatable code.

During the development of generators for Model-
ica, issues arose regarding type compatibility of arrays
with different sizes when using polymorphism. These
issues are explained by an example and possible en-
hancements for the Modelica language are suggested.

Keywords: model transformation; polymorphism;
code generation; wind turbine modeling

1 Introduction

At Fraunhofer Institute for Wind Energy and Energy
System Technology IWES a simulation software for
offshore wind farms is being developed under the
project name OneWind. The goal is to provide a tool
that allows wind turbine designers and manufacturers
to rapidly develop models of wind turbines in different
levels of detail. It shall also be possible to use differ-
ent types of models and to transform them into each
other in order to check the models against the users ex-
pectations with the best suitable simulation technique.
Furthermore, simulations of different load cases ac-

cording to the respective wind turbine standards and
guidelines [5, 3] will be possible. A key purpose of
the OneWind project is to implement the load calcula-
tion as a coupled aero-servo-hydro-elastic simulation
in Modelica, to get a better estimation of the turbine
performance, to analyze the system response and to
optimize the component and control system design.

Nowadays many tools are involved in the process of
wind turbine design like GH Bladed1 for load calcu-
lations or Focus2 for rotorblade designs, just to name
two of them. Additionally Computational Fluid Dy-
namics (CFD) tools give a more precise view on aero-
dynamical influences from 3-D flow effects on rotat-
ing blades. All of these tools define their own data and
model representations and hence provide only limited
interoperability. The OneWind project aims to provide
consistency in the highly iterative design process be-
tween different models for various purposes at design
time. Therefore it facilitates the usability of the tools
in one integrated development process by introducing
a purely parametric data layer called Engineer Design
Data (EDD) [17]. Hence data from external tools must
be imported into the parametric representation and re-
verse transformations to the tools data model must be
performed in order to generate compatible data as in-
put for simulations with the external tools. Figure 1
displays the concept of the EDD with transformations
and code generation.

Due to the different domains that the simulation en-
vironments are aiming at, there can not be just one
model in the parametric level that represents all kinds
of physical properties of a wind turbine component.
As an example, structural models of rotorblades must
be fairly simple with only few degrees of freedom (e.g.
a modal description) in order to be able to execute
load calculation for thousands of loadcases in a rea-
sonable time. In contrast, the detailed design of the

1http://www.gl-garradhassan.com/en/GHBladed.php
2http://www.wmc.eu/focus6.php

DOI Proceedings of the 9th International Modelica Conference 809
10.3384/ecp12076809 September 3-5, 2012, Munich, Germany

Transformer 1

NASTRAN FE Shell Modell ANSYS FE Shell Model

Generator 1

Modelica Beam Model

Generator 2 Generator 3

Hierarchy of
increasing
complexity

Figure 1: Example of a Transformation Between Two Types of Models and Code Generation for Simulation

composite structure of a rotorblade needs a model with
fine grained information about the layer structure to be
used for Finite Element Method (FEM) simulations.
During the design process changes in the fine-grained
models need to be transferred in each iteration step
to the simpler models of the load calculation. These
transformations from fine to coarse-grained models
can often be done automatically. The opposite trans-
formation direction is called design transformation
and needs additional user inputs and engineering know
how in order to be performed. However, the details
of these transformations and their underlying theo-
ries are out of scope of this paper. More of interest
is the transformation from the EDD representation of
wind turbine models to computable Modelica models,
as one feature of the OneWind development environ-
ment. In the domain of wind turbine modeling with
Modelica we can use the EDD to reduce the complex-
ity of model parameterization for the user. Instead of
editing the potentially complex source code directly,
the user only sees the model parameters that are cru-
cial for the model’s behaviour. Thus, the user does not
need to understand the syntax of Modelica. Instead of
transforming the complete model to a Modelica repre-
sentation, only the user-defined parameters are trans-
formed to Modelica records, that belong to compo-
nents of the OneWind Modelica library [18]. The li-
brary consists of major components in different com-
plexity levels needed for load calculations of typical
offshore wind turbines. Components for the structure
and aerodynamics of rotor blades are provided as well
as a hub, nacelle with drivetrain and generator, tower,
substructure and operating control procedures. Addi-
tionally, the library includes models for the simulation
of external conditions, (wind, soil and waves) and their
influence on the wind turbine’s structure. The library

is constructed in a way, that the assembly of model
classes with related parameter classes can be manipu-
lated by redeclaration statements and inheritance from
the base library classes. An example is shown in sec-
tion 4. This has the benefit that developers of Modelica
models can re-use the components of the library, indi-
vidually change parameters of the model classes and
easily enhance it. Furthermore a wind turbine model
with a desired complexity level can be constructed us-
ing a custom combination of library models.

The remainder of this paper is structured as fol-
lows: In section 2, the concept of the EDD is intro-
duced concentrating on a simple wind turbine model.
In section 3 the transformation from the EDD to the
Modelica representation is explained. Section 4 eluci-
dates the problems that we encountered by transform-
ing user defined parameters to a Modelica array repre-
sentation. In section 5, we finally come to a conclu-
sion and suggest how polymorphism of the Modelica
language could be enhanced by introducing polymor-
phism in arrays.

2 Engineer Design Data

The concept of a purely parametric data layer is used
in all products of the OneWind project. It represents
the idea to ensure the consistency of models in differ-
ent levels of detail for all purposes needed during the
design process of a wind turbine. In this layer the user
can manipulate models which are imported or newly
created in a unified way, regardless of the software
used for further processing or simulation. The mod-
els can then be transformed to a computable form and
simulated by external tools. When the simulation re-
sults are obtained, the user can analyze and assess the
results and start with a new design iteration in order to

Modelica Code Generation with Polymorphic Arrays and Records Used in Wind Turbine Modeling

810 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076809

enhance the physical models. This section introduces
how EDD models with different representation types
can be defined.

2.1 Abstract Syntax Definition

A meta-model hierarchy called Meta-Object Facility
(MOF) [15] for the definition of models is defined by
the Object Management Group (OMG) (see Figure 2).
The hierarchy is specified as follows: The M0 level de-
scribes objects of the real world, as an example it could
be an instance of a model of a wind turbine with spe-
cific parameters. The model layer (M1) defines, how
a real life object can be represented, e.g. by defin-
ing a wind turbine model with Modelica. The model
consists of components like rotorblades, a tower and a
hub that are represented as class or model definitions.
In the meta level (M2) the objects that can be used
for the development of M1 models are described. For
Modelica this implies, that the different language con-
structs like classes, models, equations, . . . are defined.
Finally the meta-meta level (M3) describes, how the
M2 models are defined. We selected Eclipse [2] as the
base environment for our products since the Integrated
Development Environment (IDE) is open source and
can be customized easily by plug-ins that are imple-
mented by software developers. Since the underlying
framework is Eclipse, we picked the Eclipse Model-
ing Framework (EMF) [1] as the meta meta-model for
our Modelica language definition as well as the para-
metric data layer. Using EMF as the M3 layer imple-
mentation, language constructs like Modelica classes
and equations are defined by EClasses, type references
from a component to model declarations can be de-
fined with EReferences and so on. EMF implements
a basic version of the MOF, called EMOF. Hence the
parametric layer used in OneWind is build by various
meta-model definitions defined with EMF. EDD mod-
els specified in the meta-models implement a common
interface. One strength of the meta-model approach
is that one can define automatic transformations be-
tween two models of the same level, if one can define
relations between features on the meta level. EMF
is widely used in the Eclipse community and hence
many tools exist that simplify the definition and use of
the models. The Framework allows generic processing
of model instances making it possible to create func-
tionality for a wide spectrum of diverse models. As
an example we implemented a generic editor enabling
the user to edit arbitrary models that are based on an
EMF meta-model. Generic SWT-composites for ba-
sic data types like double, int and String are avail-

M0
objects of real world

M1
model of real world objects

(EMF model instances)

M2
model of M1 objects

(Meta-model defined with EMF)

M3
model of M2 objects
(Meta-model of EMF)

+ +=

Model = ? + ?? +

Figure 2: Hierarchy of Meta-models Defined by the
OMG

able. Special composites can be easily registered as
an OSGi [13] service in order to provide a convenient
way to edit custom data types.

2.2 Concrete Syntax Definition

The abstract syntax of a Domain-Specific Language
(DSL)is described by its meta-model, i.e., it defines
how the language is logically structured. A stored
model definition in the Modelica language for exam-
ple is defined as the root element of a document, which
can be a source file containing the model starting with
an optional within statement that defines in which
package the model is contained. Inside the stored def-
inition, packages, classes, sub-classes etc. are defined
according to the rules of the abstract syntax.

The Modelica specification [14] defines an accom-
panying concrete syntax grammar for textual represen-
tation of the language. Parsers use the grammar def-
inition to recognize the elements of the language and
to build a tree based representation of Modelica mod-
els. In our project the textual DSL Modelica is defined
with Xtext [12], allowing us to describe textual rep-
resentations and to automatically generate EMF-based
meta models. Through the grammar definition textual
editors that developers can use to define models using
the language are automatically generated. The editors
recognize syntax errors and the IDE can check addi-
tional Well-Formedness Rules (WFR) on the user de-
fined models [16] in order to assist the developer in
creating correct code.

A textual representation of DSLs is one way of
model representation. A graphical notation may also
be defined consisting of icons for structural features.
A popular example is the graphical notation language
Unified Modeling Language (UML) [6]. It defines
icons like rectangular boxes for classes or lines be-

Roland Samlaus, Peter Fritzson, Adam Zuga, Michael Strobel and Claudio Hillmann

DOI Proceedings of the 9th International Modelica Conference 811
10.3384/ecp12076809 September 3-5, 2012, Munich, Germany

tween classes representing associations. When using
EMF for the definition of meta-models, it is not neces-
sary to define a graphical representation. The frame-
work provides generic tree-based editors for editing
model instances. The standard serialization is based
on the XMI file format. However, tools like the Graph-
ical Modeling Framework (GMF) [8] allow the defi-
nition of graphical notations similar to the previously
mentioned UML for custom meta-models defined with
EMF. Hence we have three types of representations for
DSLs:

1. Abstract syntax without graphical notation

2. Abstract syntax with textual concrete syntax

3. Abstract syntax with icon based concrete syntax

As we have seen, there are multiple ways of repre-
senting EMF based meta-models. Hence it is possi-
ble to use the appropriate way of representation for
each kind of data. The data can still be processed
in a similar way since the underlying data model is
the same. In the OneWind project we use the first
form of DSLs without graphical notation for the pa-
rameterizable components of our wind turbine, i.e., for
EDD models. Besides the tree based editor that is pro-
vided by EMF we implemented a more convenient and
extensible editor based on SWT composites as men-
tioned above. The textual DSLs currently supported
are Modelica, the data format ANSYS Parametric De-
sign Language (APDL) 3 and a definition language for
airfoils. Xtext grammars were defined for these for-
mats resulting in generated editors, parsers and seri-
alizers (also known as unparsers). Since Xtext uses
AntLR for the parser generation, support for some for-
mats like NASTRAN 4 bulk data format are hard to
implement.

Pure data formats are often structured by terminal
symbols like white spaces or line breaks that compli-
cate or even make it impossible to define a LL(k)-
grammar [11]. Hence, a custom parser and serializ-
er/unparser could be implemented in the future that
would create an EMF compatible Abstract Syntax Tree
(AST) from the text files and write the tree represen-
tation back to a file. Currently we have no icon based
DSL, which is best viewed using an icon-based ed-
itor. However, we implemented a connection editor
allowing us to connect wind turbine components rep-
resented in the purely parametric representation like it
is also done in many tools for Modelica models [4, 7].

3http://www.apdl.de/
4http://www.mscsoftware.com/products/cae-tools/msc-
nastran.aspx

In the next section the transformation between dif-
ferent kinds of models is discussed focusing on the
generation of Modelica code from wind turbine mod-
els.

3 Model Transformation

Since model driven software development is increas-
ingly accepted and used by software engineers, trans-
formations of the developed models are becoming im-
portant. Various techniques for the transformations
have been developed, of which some are described in
this section. The transformations to Modelica models
which are used in our project are presented in the sub-
sequent section.

3.1 About Model Transformations

Model transformations can be done in different ways.
The most appropriate one is the direct transformation
between models based on rules defined for elements
of two meta-models. These rules can automatically be
applied to convert one model to another. If the trans-
formation rules are bijective, i.e., in both directions,
automatic synchronization between two models can be
realized. This kind of transformation is called a Triple
Graph Grammar (TGG) [10].

TGGs can only be defined for a small set of mod-
els. The first requirement is, that the two models to
be transformed into each other must be semantically
similar. For example, models of towers can not be
transformed to rotor blade models. Secondly the in-
formation content must be comparable. Modal blade
models may not be translated into more detailed mod-
els that can be used for FEM simulations. The infor-
mation needed for the physical properties in a FEM
model cannot be automatically derived from the kind
of parameters available in a modal blade model. This
observation does not only hold in the context of TGGs.
Generally speaking, a transformation from one model
to another can only be done if the “structural informa-
tion” content of the initial model is greater or equal to
the “structural information” of the target model.

In general models of physical components at differ-
ent levels of detail for the use with different theories do
not meet the above mentioned requirement for TGGs
of being bijective. Often physical theories are needed
to transform detailed models into coarser models and
the opposite design transformation is always based on
assumptions and engineering know how, which is to
be obtained from the user in terms of parameters of

Modelica Code Generation with Polymorphic Arrays and Records Used in Wind Turbine Modeling

812 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076809

Figure 3: EDD-model of a Rotor, Rotor Blade, Blade
Element and Airfoil

the transformation. Transformation mechanisms are
needed to implement the complex algorithms in or-
der to perform the transformations. Nevertheless the
transformation of a detailed model into a coarse model
is highly automatable and can be reused when param-
eters change in the detailed model during the design
process. For the transformation of EMF based models
several tools are available, like QVT or ATL5. These
languages provide functional language style syntax for
the definition of automatic model transformation rules.
In the future these languages might be used in the
OneWind project where applicable. However, at the
moment only Java-based transformation modules are
being developed.

3.2 Transforming EDD to Modelica Code

As a result of defining the Modelica language as a
Xtext grammar, serialization/unparsing of Modelica
code from an AST representation to textual Modelica
source code is automatically available. Transforming
EMF based wind turbine models to Modelica AST rep-
resentation may be possible by using transformation
languages as mentioned above. However, since the ab-
stract syntax of Modelica is rather complex, our initial

5http://www.eclipse.org/m2m/

approach is to write such transformers in Java.
The generated Modelica source files are used along

with the OneWind library (see Figure 4) mentioned
in section 1 for the highly coupled aero-servo-hydro-
elastic simulation of wind turbines. The EDD model
for a rotor (see Figure 3) is explained and serves as
an example of the generation of Modelica code. A ro-
tor consists of a hub and multiple rotor blades. Usu-
ally three rotor blades are used in modern horizontal
axis wind turbines. The rotor blades consist of blade
elements that define structural properties like masses,
stiffnesses or lengths. Additionally each blade element
defines an airfoil that describes the aerodynamic prop-
erties of that part of the blade. The user can edit the
properties mentioned above, in order to design a ro-
tor. The generator then generates Modelica records
containing the user defined parameters. A Modelica
rotor stub that is defined in the OneWind library is pa-
rameterized by the generated data. Finally the model
consisting of the library components and the generated
part can be simulated using Modelica simulation en-
vironments. The parameters which are customizable
by the user are separated in Modelica records. Hence
for each model that is being transformed, e.g. a blade,
a data record is created that contains the parameters.
In the blade example the data record contains single
parameters for unary properties and arrays for multi-
ple properties like blade elements. The array size is
equal to the number of elements in the list. Moreover,
the user can choose between different kinds of compo-
nents to change the structural properties of the model.
One can, for example, decide whether a rigid, modal

h=80
t=2

l=62
p=5

r=2
t=2

StiffTower

RBBEM

StiffHub

OneWinda
Library

Generated
Parameters

Generateda
Redeclared

Model

Figure 4: The OneWind Library and Generated Mod-
elica Code

Roland Samlaus, Peter Fritzson, Adam Zuga, Michael Strobel and Claudio Hillmann

DOI Proceedings of the 9th International Modelica Conference 813
10.3384/ecp12076809 September 3-5, 2012, Munich, Germany

or FEM blade model shall be used for the simulation.
When the user selects a blade model that differs from
the default one used in the library, the blade model is
changed by the generation of a redeclaration. Thereby
it is possible to customize the wind turbine model.
The approach described above allows us to provide
the wind turbine designer with an abstract view of the
main properties of a wind turbine model. Variants of
wind turbine models can be created quickly and com-
pared to each other.

In the next section some problems that occurred dur-
ing the implementation of the transformation modules
including the use of polymorphic data types are de-
scribed.

4 Polymorphism in Modelica

The transformation strategy described in the previous
section provides a generic way of converting models
from a purely parametric representation to simulatable
Modelica models. For this approach to work the
two types of models must be structurally equivalent.
Hence the library must be designed in a way that
provides suitable class stubs for the generation of
Modelica code and the parametric model must meet
the structure of the components defined by the library.
During the development, we recognized that the
conditions can be met with reasonable effort. Never-
theless problems arise in cases where lists of items of
complex types are transformed to Modelica code. One
example is rotor blades containing blade elements that
have a length and an airfoil property. In the example,
the NREL 5 MW reference baseline wind turbine
model [9] is used. Listing 1 displays the resulting data
record of the transformation. A load element contains
a parameter profile that holds a list of aerodynamic

Listing 1: Generated Blade Data Record
record BladeData

//array length 3

Profile_Cylinder1 cylinder1;

//array length 142

Profile_DU21 du21;

//array length 127

Profile_NACA64 naca64;

parameter Integer nBladeElements = 3;

replaceable parameter Profile

profile[5] =

{cylinder1 ,du40 ,du35 ,du25 ,naca64};

end BladeData;

profiles (Listing 2) of type Profile. The class
Profile displayed in Listing 3 is a kind of template
record. It contains arrays of profile specific data:
the angle of attack alpha[deg], lift coefficient
ca(alpha)[-], drag coefficient cw(alpha)[-]

and pitching moment coefficient cm(alpha)[-].
The array size is variable as the number of
properties varies between different profile types.

Listing 2: Load Element Containing the Airfoil De-
scriptions
model LoadElement

parameter Profile profile;

end LoadElement;

Concrete profile records like Profile_NACA64 (see
Listing 4) define the profile specific value quantity
and assign the concrete values to the array. This
structure provides a similar behaviour as generic
array lists in Java whereby the generic type in this
case is defined by the Modelica record Profile.

Listing 3: Generic Type Profile
record Profile

import Modelica.SIunits.Conversions.

NonSIunits.Angle_deg;

parameter Angle_deg alpha[:];

parameter Real caOfAlpha[:];

parameter Real cwOfAlpha[:];

parameter Real cmOfAlpha[:];

end Profile;

For simplification reasons the listing shows only
a reduced set of aerodynamical coefficients of the
NACA64 airfoil. Typically, it consist of many support
positions for the complete range (-180 to +180 deg)
of the attack angle alpha with variable equidistant
steps. For frequently used regions of attack angles
usually small step sizes are used. Thereby a better
linearisation between these points and approximation
of the measured coefficients during a simulation
can be achieved for the used airfoil. The profile
data can be used in a unified way as defined by
the Profile record and therefore the class using
the profile data does not need to know the concrete
profile type. Finally a blade model is generated that
assigns the aerodynamic profiles to the load element
of the blade (Listing 5). A problem that occurs using
polymorphic arrays as explained above is that the
created list of instances of class Profile consists
of types with different array size, e.g. the size of all

Modelica Code Generation with Polymorphic Arrays and Records Used in Wind Turbine Modeling

814 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076809

arrays from profile[1] = 3 and from profile[2] = 142.
Unifying the records leads to ragged arrays that are
not defined by the Modelica specification. Hence
the behaviour during simulation is unpredictable or
the simulation tool does not even compile the code.

Listing 4: Concrete Profile Record Profile_NACA64
//For clarity reduced profile set

//of NACA64 (15 instead of 127 values)

record Profile_NACA64

extends Profile

(

alpha = {-180.00 ,-90.00 ,-30.00 ,

-10.00 ,-5.00 ,-3.00 ,-1.00 ,

0,1.00 ,3.00 ,5.00 ,10.00 ,

30.00 ,90.00 ,180 .00},

caOfAlpha = {0,-0.067 ,-0.829 ,

-0.711 ,-0.151 ,0.088 ,

0.328 ,0.442 ,0.556 ,

0.784 ,1.011 ,1.382 ,

0.926 ,0.053 ,0},

cwOfAlpha = {0.0198 ,1.3587 ,0.4295 ,

0.0111 ,0.0079 ,0.0064 ,

0.0052 ,0.0052 ,0.0052 ,

0.0053 ,0.0058 ,0.015 ,

0.4294 ,1.4565 ,0.0198},

cmOfAlpha = {0.00 ,0.3636 ,0.1563 ,

-0.0734 ,-0.0841 ,-0.0912 ,

-0.0971 ,-0.1014 ,-0.1076 ,

-0.1157 ,-0.124 ,-0.1149 ,

-0.1668 ,-0.3858 ,0.00};

);

end Profile_NACA64;

Listing 6 shows a workaround for this issue. Instead of
creating objects from a list of types with variable array
size, the Profile class for each load element object is
directly declared with a modification statement of the
desired profile class. The profile data of each blade
element object is filled by array concatenation which
corresponds to a normal parameter modification state-
ment. This circumvents getting objects with variable
sized array types. In this case a list of instances of
the class LoadElement is defined, where each load
element object has a different airfoil type and the size
is specified by the respective modification. Thus the
array sizes are known at this point as the profile data
is not assigned in a generic way and the compiler does
not fail to unify the record types.

The drawback of this approach is that the code
generation is not realized as described in section 3.2
and therefore it may not be obvious where the gen-
erated data comes from. Additionally it prevents one
from creating an automatic transformation mechanism
as custom adaptions to the code generators must
be implemented. The advantage of an automatic

transformation algorithm is that it reduces the im-
plementation effort, creates code that is easier to test
and it enhances the readability of the generated code.

Listing 5: Generated Blade Model
model NREL5MBlade

BladeData bladeData;

LoadElement loadElement

[bladeData.nBladeElements](

profile = bladeData.profile

);

end NREL5MBlade;

The model from Listing 6 can now replace the default
blade model from the OneWind library by using
Modelica replaceable object types. This also
holds true for the class LoadElement. The physical
algorithms (e.g. calculating loads for the balde
from wind inflow) are reused, only the calculation
parameters are modified. This approach is used for all
main components of the library (rotor, nacelle, tower,
substructure, operating control, environment etc.) in
order to create a custom model of a wind turbine.

Listing 6: Redeclaration of Blade Element Data
model NREL5MBlade

extends RigidBlade(

redeclare LoadElement loadElement(

// old:

// profile = bladeData.profile

// new:

profile = {

bladeData.cylinder1 ,

bladeData.cylinder1 ,

bladeData.cylinder2 ,

bladeData.du40 ,

bladeData.du35 ,

// ...

bladeData.naca64 ,

bladeData.naca64}

)

);

end NREL5MBlade;

The OneWind library contains a default wind turbine
model HorizontalAxis.OffshoreWindTurbine.
All main components in this model are
replaceable objects and can thereby be re-
declared by parameterised classes of the con-
crete NREL5M model. Listing 7 shows the
main class of the generated concrete wind tur-
bine model of the NREL5M reference baseline
offshore wind turbine, which inherits from the
default model. It can be simulated with a Mod-

Roland Samlaus, Peter Fritzson, Adam Zuga, Michael Strobel and Claudio Hillmann

DOI Proceedings of the 9th International Modelica Conference 815
10.3384/ecp12076809 September 3-5, 2012, Munich, Germany

elica compiler in combination with the generated
model classes and the OneWind library components.

Listing 7: Main wind turbine class with redeclared
components
model NREL5MOffshore

extends

HorizontalAxis.OffshoreWindTurbine

(

redeclare NREL5MOperatingControl

operatingControl ,

redeclare NREL5MRotor rotor ,

redeclare NREL5MNacelle nacelle ,

redeclare NREL5MTower tower ,

redeclare NREL5MSubstructure

substructure ,

redeclare NREL5MSoil soil ,

redeclare NREL5MWind wind ,

redeclare NREL5MWater water

);

end NREL5MOffshore;

5 Conclusion and Outlook

Based on the experience gained during the develop-
ment of our simulation environment, we can see that it
is possible to create a common data basis for different
tools dealing with the design and simulation of wind
turbines. Transformations between different kinds of
models enable the re-use for different purposes.

As described for the generation of Modelica mod-
els, the use of the EDD approach allows one to pa-
rameterize models and to create simulatable represen-
tations like Modelica source code. Furthermore, mod-
els can be structurally customized to create several ver-
sions of physical models in the end. In the future, au-
tomatic transformation with languages as described in
section 3 may be introduced for the transformation be-
tween EDD models as well as between EDD and sim-
ulator specific models.

For the Modelica code generation it is desirable to
use transformation languages, since changes in the
Modelica language specification are easier reflected by
adapting a few transformation rules than by modifying
Java classes.

Increased polymorphism, as discussed in section 4,
would enhance the generation as the generated code
would be easier to understand and the generation could
be encapsulated for each component. This simplifies
the code generation and reduces the dependencies be-
tween components and their contained declarations.

In order to enable the use of more polymorphism,
the Modelica language specification would have to be

enhanced, in this case allow polymorphic ragged ar-
rays. As most of the Modelica simulators compile
Modelica to plain C code, the polymorphism would
have to be adapted as C does not support polymor-
phism. However, this could enhance the parameteri-
zation of Modelica code as the implementation would
be independent from the concrete components that are
used.

To enhance the transformation process we will in-
vestigate the use of transformation languages as the
next step. This will provide a more generic way of
code generation and enhance the maintainability since
changes in the meta-model of Modelica can be applied
easier.

Furthermore, investigation is needed whether trans-
formation rules can be derived that allow transforma-
tion of arbitrary types of models. Hence, it would not
be necessary to create transformation rules for each
particular EDD model, but universally applicable rules
would further simplify the transformations. To realize
this goal more generic data structures as described in
section 4 would be desirable.

Acknowledgment

This work is financially supported by the Federal Min-
istry for the Environment, Nature Conservation and
Nuclear Safety based on a decision of the Parliament
of the Federal Republic of Germany.

References

[1] Frank Budinsky, Stephen A. Brodsky, and
Ed Merks. Eclipse Modeling Framework. Pear-
son Education, 2003.

[2] Eric Clayberg and Dan Rubel. Eclipse Plug-ins.
Addison Wesley Professional, 3rd. edition, 2009.

[3] International Electrotechnical Commission.
Wind turbines - part 3: Design requirements for
offshore wind turbines, 2009.

[4] Dynasim AB. Dymola User Manual: Version 6.
Dassault Systemes, Lund (Sweden), 2009.

[5] Germanischer Lloyd Wind Energie. Guideline
for the certification of offshore wind turbines,
2005.

[6] Martin Fowler. UML Distilled: A Brief Guide
to the Standard Object Modeling Language.

Modelica Code Generation with Polymorphic Arrays and Records Used in Wind Turbine Modeling

816 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076809

Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 3 edition, 2003.

[7] Peter Fritzson, Adrian Pop, Martin Sjölund,
Per Östlund, and et. al. Openmodelica useres
guide: Version 2012-01-30 for openmodelica
1.8.1. Linköping (Sweden), January 2012.

[8] Richard C. Gronback. Eclipse Modeling Project:
A Domain-Specific Language (DSL) Toolkit.
Addison-Wesley, 2009.

[9] J Jonkman, S Butterfield, W Musial, and G Scott.
Definition of a 5-mw reference wind turbine
for offshore system development. Contract,
324(February):75, 2009.

[10] Alexander Königs. Model transformation with
triple graph grammars. In Model Transforma-
tions in Practice, Satellite Workshop of Models
2005, Montego, 2005.

[11] Donald E. Knuth. Top-down syntax analysis.
Acta Informatica, 1:79–110, 1971.

[12] Jan Köhnlein and Sven Efftinge. Xtext 2.1 docu-
mentation, October 31, 2011.

[13] Jeff McAffer, Paul VanderLei, and Simon
Archer. OSGi and Equinox: Creating Highly
Modular Java Systems. Addison-Wesley Profes-
sional, 1st edition, 2010.

[14] Modelica Association. The Modelica Language
Specification version 3.2, 2010.

[15] OMG. Meta Object Facility (MOF) Core Speci-
fication Version 2.0, 2006.

[16] Roland Samlaus, Claudio Hillmann, Birgit De-
muth, and Martin Krebs. Towards a model driven
modelica ide. In 8th International Modelica
Conference, 2011.

[17] M. Strach, F. Vorpahl, C. Hillmann, M. Stro-
bel, and M. Brommundt. Modeling offshore
wind turbine substructures using engineer design
data — a newly developed approach. In Pro-
ceedings of the Twenty-second (2012) Interna-
tional Offshore and Polar Engineering Confer-
ence, Rhodes, June 2012. International Society
of Offshore and Polar Engineers (ISOPE). Ac-
cepted.

[18] M. Strobel, R. Vorpahl, C. Hillmann, X. Gu,
A. Zuga, and U Wihlfahrt. The onwind mod-
elica library for offshore wind turbines - imple-
mentation and first results. In Proceedings of the
Modelica Conference, 2011.

Roland Samlaus, Peter Fritzson, Adam Zuga, Michael Strobel and Claudio Hillmann

DOI Proceedings of the 9th International Modelica Conference 817
10.3384/ecp12076809 September 3-5, 2012, Munich, Germany

Modelica Code Generation with Polymorphic Arrays and Records Used in Wind Turbine Modeling

818 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076809

Derivative-free Parameter Optimization of Functional Mock-up Units

Derivative-free Parameter Optimization
of Functional Mock-up Units

Sofia Geddaa,c Christian Anderssona,c Johan Åkessonb,c Stefan Diehla

aCentre for Mathematical Sciences, Lund University, Sweden
bDepartment of Automatic Control, Lund University, Sweden

cModelon AB, Sweden

Abstract

Representing a physical system with a mathematical
model requires knowledge not only about the physical
laws governing the dynamics but also about the param-
eter values of the system. The parameters can some-
times be measured or calculated, but some of them are
often difficult or impossible to obtain directly. Never
the less, finding accurate parameter values is crucial
for the accuracy of the mathematical model.

Estimating the parameters using optimization algo-
rithms which attempt to minimize the error between
the response from the mathematical model and the real
physical system is a common approach for improving
the accuracy of the model.

Optimization algorithms usually require informa-
tion about the derivatives which may not always be
easily available or which may be difficult to com-
pute due to, e.g., hybrid dynamics. In such cases,
derivative-free optimization algorithms offer an alter-
native for design and parameter optimization.

In this paper, we present an implementation of
derivative-free optimization algorithms for parameter
estimation in the JModelica.org platform. The imple-
mentation allows the underlying dynamic system to
be represented as a Functional Mock-up Unit (FMU),
and thus enables parameter optimization of models ex-
ported from modeling tools compliant with the Func-
tional Mock-up Interface (FMI).

Keywords: Derivative-free optimization; Parameter
Estimation; JModelica.org; FMI; Assimulo

1 Introduction

Increasingly, industry rely on mathematical modeling
for evaluating and designing new machines and de-
vices. As the models grow increasingly complex, the

need for estimating parameters which are unknown or
uncertain is put into focus. Estimating unknown pa-
rameters in the mathematical model using optimiza-
tion algorithms is a commonly used approach to in-
crease the accuracy of models. In this paper, we focus
on parameter estimation problems where the objective
is to minimize the error between the simulated profiles
of the mathematical model and measurements from the
corresponding physical system. The objective func-
tion considered

f (x) =
M

∑
i=0

(ysim(ti,x)− ymeas(ti))2 (1)

where ysim is the model output trajectory and ymeas are
the measurements. The parameters to be estimated are
x ∈ Rn, where n is the number of parameters. M is
the number of measurements at the time points ti. The
optimization problem is then formulated as

min
x∈Rn

f (x). (2)

subject to the system dynamics, in the FMI case given
by a hybrid Ordinary Differential Equation (ODE).
Additionally, the parameters may be subject to bounds,
l ≤ x≤ u.

This optimization problem may be solved by tran-
scribing the problem into a non-linear programming
problem using either shooting methods [6] or collo-
cation methods [6]. These methods, however, both
use derivative information, which may be difficult or
expensive to compute, e.g., in the case of hybrid sys-
tems. The idea is then to use algorithms which do not
depend on derivative information, such as the Nelder-
Mead simplex method [7]. In a derivative-free method,
instead of using information from the derivatives to
improve the solution, the objective is evaluated at a
chosen set of points which are then used to improve

DOI Proceedings of the 9th International Modelica Conference 819
10.3384/ecp12076819 September 3-5, 2012, Munich, Germany

the solution. How the points are chosen and which
strategy is used to improve the solution depends on the
method. Typically, computation times are longer than
for derivative-based methods, but on the other hand,
derivative-free methods offer a feasible and robust op-
tion when other algorithms fail.

In this paper, we evaluate three derivative-free op-
timization algorithms for parameter estimation avail-
able in the JModelica.org platform: the Nelder-Mead
simplex method, the differential evolution method and
a genetic algorithm. Based on this evaluation, the
Nelder-Mead algorithm seems most appropriate to
solve the class of parameter optimization problems
considered.

The main contribution of the paper is an implemen-
tation of the Nelder-Mead simplex algorithm. The al-
gorithm supports parameter bounds and parallel eval-
uation of function evaluations where FMU models are
loaded and simulated.

We also briefly present the underlying packages
FMI Library (FMIL), PyFMI1 and ASSIMULO2.
These packages are part of JModelica.org, but also
available stand-alone, and are used for simulating the
model response. In Figure 1, an overview of the
interaction between the packages in JModelica.org
when solving a derivative-free optimization problem
is shown.

Functional Mock-up Unit

PyFMI ASSIMULO

JModelica.org

DFO

FMIL

Parameter
guess

Model
response

Figure 1: Overview of the interaction between the
packages in JModelica.org when solving a derivative-
free optimization problem.

The paper is outlined as follows. In Section 2, the
Functional Mock-up Interface is presented together
with an overview of optimization tools. In Section 3,
an introduction to the JModelica.org platform is given
together with the simulation package ASSIMULO as
well as the Python package PyFMI for interaction with
FMUs. Next, derivative-free optimization algorithms
are introduced, followed by a description of the imple-
mentation in JModelica.org. In Section 6, the imple-

1http://www.pyfmi.org
2http://www.assimulo.org

mentation is applied to two different problems where
the second is a large industrial example where a model
of an engine is calibrated. Finally, Section 7 concludes
the paper with a summary and conclusions.

2 Background

2.1 The Functional Mock-up Interface

The Functional Mock-up Interface [1] defines an open
standard for model exchange. The intention is to allow
exchange of models between different modeling and
simulation tools. The standard describes models as hy-
brid ODEs with state, step and time events. A model
that implements the FMI standard is called a Func-
tional Mock-up Unit and is distributed as a compressed
directory containing a shared object file or source code
containing the model equations, and a set of functions
for data access, and an XML file, which describes the
model parameters and variables. The standard has re-
ceived a significant amount of attention among ven-
dors since the release in 2010 and currently there are
34 environments that support or plan to support the
standard.

2.2 Optimization tools

There exist many tools for optimization of complex
systems, both in the public domain and commercially
available. Broadly, there are three different categories
of optimization tools, although the scope is sometimes
overlapping. In Model integration tools the problem
of interfacing several design tools into a a single com-
putation environment, where analysis, simulation and
optimization can be performed is addressed. Examples
include ModelCenter [23], OptiY [22], modeFRON-
TIER [12], and iSIGHT [10]. Such environments are
capable of integrating several simulation and design
tools into one computational chain, where the results
are optimized. The integrated tools may be hetero-
geneous in the sense that they model different phys-
ical domains by means of different algorithms. Due
to this heterogeneity amongst supported tools, opti-
mization algorithm that does not exploit derivatives
or model structure such as sparsity is commonly em-
ployed. Model integration tools typically also have
strong support for model approximation and visualiza-
tion.

Many modeling and simulation tools has optimiza-
tion add-ons, e.g., Dymola [9], gPROMS [24], Jaco-
bian [19], and OMOptim [18]. The level of support
for optimization in this category differs between the

Derivative-free Parameter Optimization of Functional Mock-up Units

820 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076819

tools. Dymola, for example, offers add-ons for param-
eter identification and design optimization [11, 20].
gPROMS on the other hand, offers support for so-
lution of optimal control problems and has the ad-
ditional benefit in comparison with Modelica tools
to provide support for partial differential equations
(PDEs). Tools in this category usually support a set of
derivative-based and derivative-free optimization algo-
rithms. Optimization problems are typically formu-
lated by means of graphical user interfaces.

In the third category there are numerical packages
for dynamic optimization, often developed as part of
research programs. Examples are ACADO [21], Mus-
cod II [28], and DynoPC [17]. Such packages are typ-
ically focused on efficient implementation of an op-
timization algorithm for a particular class of dynamic
systems. Also, detailed information about the model to
optimize is generally required in order for such algo-
rithms to work, including accurate derivatives and in
some cases also sparsity patterns. While these pack-
ages offer state of the art algorithms, they typically
come with simple or no user interface. Their usage
is therefore limited due to the effort required to code
the model and optimization descriptions. A notable
example is CasADi [4], which provides an efficient
AD kernel, interfaces to numerical optimization algo-
rithms and a comprehensible Python interface for cus-
tom development of dynamic optimization algorithms.
CasADi also support import of Modelica models in
XML format, see [5].

The approach presented in this paper falls into
the category of additions to modeling and simulation
tools. Specifically, models exported from FMI compli-
ant tools can be optimized. The presented algorithm
uses Python scripting as a means to formulate opti-
mization problems, and in this respect it differs from,
e.g., the approach taken in Dymola.

3 JModelica.org

JModelica.org3 [26] is a platform for modeling, sim-
ulation and optimization of complex physical sys-
tems primarily based on the Modelica4 modeling lan-
guage. JModelica.org is a community-based open-
source project started at Lund University with the fol-
lowing aim:

“To offer a community-based, free,
open-source, accessible, user and applica-

3http://www.jmodelica.org
4http://www.modelica.org

tion oriented Modelica environment for op-
timization and simulation of complex dy-
namic systems, built on well-recognized
technology and supporting major plat-
forms.”

JModelica.org provides compilers for the Modelica
language and the extension Optimica [25]. For sim-
ulations, the Python package ASSIMULO is used for
both simulating ODEs and DAEs. Dynamic optimiza-
tion is available using direct local collocation algo-
rithms based on the DAE formulation of the model.
The user interaction with JModelica.org is based on
the programming language Python.

Included in JModelica.org are packages that can
also be used stand-alone. In the following subsections,
the packages FMI Library, PyFMI and ASSIMULO are
presented.

3.1 FMI Library

FMI Library (FMIL) is a C package designed for
working with FMUs and serving as support for ap-
plications interfacing the FMI. The package con-
tains convenient methods for decompressing of FMUs,
parsing XML information and connecting the binary5.
The library supports FMI 1.0 for model exchange and
for co-simulations and is intended for custom integra-
tion of FMI technology in applications. FMIL is also
used as a basis of the Python package PyFMI.

3.2 PyFMI

PyFMI [2] is a package for interacting with FMUs us-
ing Python, based on the FMI Library. It provides
convenient high-level functions for interacting with an
FMU, retrieving values and accessing variable infor-
mation from the XML information. Additionally, a
low-level mapping of the functions specified in the in-
terface can also be accessed. A model can be loaded
and made available from Python using the following
Python code:

#Import the model class

from pyfmi import FMUModel

#Load the model into Python

model = FMUModel("bouncingBall.fmu")

PyFMI also provides a connection to the simulation
package ASSIMULO and thus enables access to state-
of-the-art solvers such as CVode and IDA from the
Sundials suite, capable of simulating hybrid systems.

5http://www.jmodelica.org/FMILibrary

Sofia Gedda, Christian Andersson, Johan Åkesson and Stefan Diehl

DOI Proceedings of the 9th International Modelica Conference 821
10.3384/ecp12076819 September 3-5, 2012, Munich, Germany

A simulation is performed by using the simulate

method.

#Simulate the model using Assimulo

res = model.simulate(final_time=10)

3.3 ASSIMULO

ASSIMULO [3] is a Python package for solving first
or second order explicit ordinary differential equa-
tions (ODEs) or implicit ordinary differential equa-
tions (DAEs).

ASSIMULO combines a variety of different solvers
written in FORTRAN, C and Python via a com-
mon high-level interface. The state-of-the-art solvers
CVode and IDA from the SUNDIALS suite [15] as
well as RADAU5 [14] are amongst the available
solvers.

ASSIMULO is divided into two parts, namely prob-
lem definitions and solvers. A problem definition may
in addition to the right-hand side of the differential
equation also contain for instance the Jacobian as well
as event functions in order to support simulation of
hybrid systems. The idea is to separate information re-
lated to a problem from the solver. For instance, which
states are algebraic is information that is related to the
problem and not the solver. In Figure 2, an overview
is given showing the available problem definitions and
solvers in ASSIMULO. Also shown is the connection
between the different problem formulations.

Problems

Solvers

Implicit
ODE

Explicit
ODE

IDA CVODE

GLIMDA

ODASSL

DOPRI5

RODAS LSODAR

RADAU5

RADAU5

Explicit ODE
(2nd order)

Implicit ODE
Overdetermined

Newmark

HHT-alpha
methods

A
S
S
IM

U
L
O

Figure 2: Connection between the different problem
formulations and the different solvers available in AS-
SIMULO.

4 Derivative-free Optimization

In applications where derivatives are difficult or com-
putationally expensive to obtain, there is a need for
derivative-free optimization methods. Examples in-
clude very large models which also contains hybrid
elements.

δ Operation type

−1
2 inside contraction

1
2 outside contraction
1 reflection
2 expansion

Table 1: Different δ -values with corresponding opera-
tion types.

We shall now introduce three different derivative-
free optimization algorithms which have been imple-
mented or interfaced in the JModelica.org platform
[13]: the Nelder-Mead simplex method, the differen-
tial evolution method and a genetic algorithm.

4.1 The Nelder-Mead simplex method

The Nelder-Mead simplex method has obtained its
name from the fact that each iteration is based on
a simplex. A simplex in Rn is a set of n + 1 ver-
tices x1, . . . ,xn+1 ∈Rn such that the vectors xi−x1, i =
2, . . . ,n+1 are linearly independent, i.e. it is a gener-
alization of a triangle to arbitrary dimension.

In each iteration of the Nelder-Mead algorithm, the
objective is to replace the vertex with the highest cost
in the n-dimensional simplex with a better point. The
vertices are ordered by increasing value of f such that
f (x1) ≤ . . . ≤ f (xn+1). The new point is searched for
along the line through the vertex with the highest cost,
xn+1, and the centroid,

xc =
1
n

n

∑
i=1

xi, (3)

of the remaining vertices x1, . . . ,xn. This line has the
equation

x = xc +δ (xc− xn+1), δ ∈ R. (4)

The parameter δ defines the type of the operation
performed on the simplex. There are four different op-
eration types that are performed by the algorithm: re-
flection, expansion, inside contraction or outside con-
traction, resulting in the reflection point, xr, the expan-
sion point, xe, the inside contraction point, xic, or the
outside contraction point, xoc respectively. Table 4.1
displays the δ -values corresponding to these four op-
erations. If none of these operations results in a better
point than xn+1, the simplex is shrunk toward the ver-
tex with the lowest cost, x1. That is, the n points with
the highest costs are replaced by new points obtained

Derivative-free Parameter Optimization of Functional Mock-up Units

822 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076819

from

x = x1 +
1
2
(xi− x1), i = 2, . . . ,n+1. (5)

This procedure is repeated until some termination cri-
terion is fulfilled. There are usually three different ter-
mination criteria, one of which has to be fulfilled in
order for the algorithm to terminate:

• Convergence criterion for x – the simplex is suf-
ficiently small according to a user-provided toler-
ance.

• Convergence criterion for f – the function values
at the simplex vertices are sufficiently close ac-
cording to a user-provided tolerance.

• Termination criterion without convergence – the
maximum number of iterations or function eval-
uations has been reached.

In Figure 3, two iterations of the algorithm are
shown, illustrating how the simplex changes form and
position.

6 4 2 0 2 4 6
6

4

2

0

2

4

6
Simplex search

Figure 3: Two simplex iterations where the solid tri-
angle is the initial simplex which transforms into the
dashed triangle (δ = 2) and then the dash-dot triangle
(δ =−1

2).

4.2 Evolutionary algorithms

The differential evolution method and genetic algo-
rithms belong to the class of evolutionary algorithms,
which consists of stochastic optimization algorithms
inspired by the principles of biological evolution the-
ory. In such algorithms, each candidate solution, x̄ ∈
Rn, represents an individual and the objective function,
f (x), or fitness function, represents the environment

within which the individuals live. The value f (x̄) de-
termines how fit the individual x̄ is to survive in the
environment; a lower value means a better fit. At each
iteration, or generation, a new population of possi-
ble solutions is produced through mutation, crossover
and selection. Mutation is a mechanism for maintain-
ing genetic diversity by modifying an existing solution
while crossover means combining two existing solu-
tions into a new one.

4.2.1 The differential evolution method

The differential evolution method [27] works accord-
ing to the following steps.

Initialization: An initial population of N individu-
als, or vectors, is generated randomly inside the feasi-
ble region.

Mutation: At each iteration, the population con-
sists of N vectors, xi ∈ Rn, i = 1, . . . ,N. For each vec-
tor xi, the target vector, a mutant vector, vi ∈ Rn, is
produced by adding the weighted difference between
two vectors in the current population to a third one ac-
cording to the following formula:

vi = xr1 +F (xr2− xr3) ,

where r1,r2,r3 ∈ {1,2, . . . ,N} are random indices, dis-
tinct from each other and from i, and F ∈ [0,2] is a
constant.

Crossover: The mutant vector, vi, is then recom-
bined with its corresponding target vector, xi, through
a mixing of their elements, generating a trial vector,
ui ∈ Rn. The trial vector receives elements of the mu-
tant vector with probability P ∈ [0,1] and elements of
the target vector with probability 1−P.

Selection: The trial vector, ui, is compared with the
target vector, xi, and the one giving the lowest value of
the fitness function, f , is selected for the next genera-
tion.

The phases mutation, crossover and selection con-
tinue until a termination criterion is fulfilled.

4.2.2 Genetic algorithms

In genetic algorithms [16] the individuals are encoded
as bit strings. There are various genetic algorithms
which differ from one another but the following is a
general description.

Initialization: An initial population of size N is
generated randomly inside the feasible region.

Selection: In each generation, a selection probabil-
ity, p(xi), is defined for each individual, xi ∈ Rn. The
selection probability depends on the fitness function

Sofia Gedda, Christian Andersson, Johan Åkesson and Stefan Diehl

DOI Proceedings of the 9th International Modelica Conference 823
10.3384/ecp12076819 September 3-5, 2012, Munich, Germany

value for the individual, f (xi), a smaller value gives
a larger probability. Two individuals are then selected
randomly according to their selection probabilities.

Crossover: Crossover is performed on the two
selected individuals with a certain probability, the
crossover rate. A common choice for this probability
is around 0.7. There are different crossover techniques
but a common approach is to randomly choose a posi-
tion in the bit strings and swap all bits between the two
strings after that position.

Mutation: Mutation is performed by flipping bits
(from 0 to 1 or vice versa) at random positions in the
bit strings. The probability of flipping a bit, the mu-
tation rate, should be much lower than the crossover
rate.

Selection, crossover and mutation is repeated until
a termination criterion is reached.

5 Implementation

The algorithms evaluated in Section 4, have been made
available in JModelica.org. The Nelder-Mead simplex
algorithm has been implemented and is now provided
as part of JModelica.org, while the differential evolu-
tion algorithm and a genetic algorithm has been in-
terfaced through the OpenOpt package 6. The algo-
rithms are available through the Python function fmin

in JModelica.org.
The method fmin requires as input the objective

function together with the initial conditions as well
as options for specifying the intended optimization al-
gorithm and tolerances. In Section 6.1, it is shown
how the objective function can be defined when the
dynamic model is contained in an FMU.

In the Nelder-Mead algorithm, support for parallel
evaluation of the objective function, f (x), has been
implemented. In each iteration of the algorithm, the
evaluations of the n+ 1 vertices are distributed over
a user-supplied number of processes, as well as the
evaluations of the reflection, expansion and contrac-
tion points.

For further implementation details, see [13].

6 Examples

In [13], the different derivative-free algorithms was
tested and the result indicated that the Nelder-Mead
algorithm is the preferred algorithm for the tested pa-
rameter estimation problems. The evaluation was done

6http://openopt.org/

based based on execution time and convergence to the
optimal solution.

6.1 Furuta pendulum

The Furuta pendulum is a system consisting of a hori-
zontal arm driven by a motor which is connected to a
vertical pendulum, see Figure 4. The system has two
degrees of freedom, namely the angle of the arm, φ ,
and the angle of the pendulum, θ . Additionally, there
is friction in both the arm joint and the pendulum joint.
Due to the discontinuities introduced by the friction,
the system is not well suited for derivative-based opti-
mization algorithms.

Figure 4: The Furuta pendulum.

The Furuta pendulum is modeled by a Modelica
model, see Figure 5. The problem at hand is to cal-
ibrate the unknown friction coefficients of the arm and
pendulum, respectively, against the given measure-
ments using the Nelder-Mead simplex algorithm. The
objective is thus

f (x) =
M

∑
i=1

(φ sim(ti,x)−φ
meas(ti))2+

M

∑
i=1

(θ sim(ti,x)−θ
meas(ti))2

(6)

where x is a vector containing the friction coefficients
for the arm and the pendulum respectively.

The measurements were generated by simulation
of the Modelica model for the Furuta pendulum and
white measurement noise was added to the outputs.
The measurements were given for a period of 40 sec-
onds and were contained in a data file. The data was
loaded into Python by the following code:

Derivative-free Parameter Optimization of Functional Mock-up Units

824 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076819

Figure 5: A Modelica model for the Furuta pendulum.

from scipy.io import loadmat

import numpy as N

Load measurement data from file

data = loadmat('FurutaData ')

Extract data series

t_meas = data['time'][:,0]

phi_meas = data['phi'][:,0]

theta_meas = data['theta'][:,0]

y_meas = N.vstack ((phi_meas ,theta_meas))

The objective function is defined as a Python function
where the FMU, generated by Dymola, for the Furuta
pendulum is loaded and simulated for given parameter
values.

from pyfmi import FMUModel

from pyjmi.optimization import dfo

Define the objective function

def furuta_dfo_cost(x):

#Scale down

armFriction = x[0]/1e3

pendFriction = x[1]/1e3

Load the FMU Model

model = FMUModel('Furuta.fmu')

Set new parameter values

model.set('armFriction ',

armFriction)

model.set('pendulumFriction ',

pendFriction)

Simulate the model response

res = model.simulate(final_time=40)

Load simulation result

phi_sim = res['armJoint.phi']

theta_sim = res['pendulumJoint.phi']

t_sim = res['time']

Evaluate the objective function

y_sim = N.vstack ((phi_sim ,theta_sim))

obj = dfo.quad_err(t_meas ,y_meas ,

t_sim ,y_sim)

return obj

Finally, the objective is provided to the optimization
function fmin together with the initial guess and the
parameter bounds. The initial guess, i.e., the nomi-
nal values, were obtained through manual testing. The
object returned by fmin contains the optimized param-
eters together with statistics, such as the number of it-
erations performed:

Specify initial conditions (scaled)

x0 = N.array([0.012 ,0.002])*1e3

Lower and Upper bounds

lb = N.zeros(2)

ub = x0 + 10

Solve using the Nelder -Mead algorithm

res = dfo.fmin(furuta_dfo_cost ,

xstart=x0,lb=lb ,ub=ub ,

x_tol=1e-3,f_tol=1e-2)

Optimal point rescaled

[armFriction_opt ,pendFriction_opt] =

res[0]/1e3

The optimized parameter values were found to be
0.010 for the arm friction coefficient and 0.0010 for
the pendulum friction coefficient. The result is visual-
ized in Figure 6, where it can be seen that the model
response is significantly more accurate using the opti-
mized parameters as compared to the response given
from the nominal parameters. In Figure 7, the error
is shown between the measurements and the simulated
response using both the nominal parameters and the
optimized parameters.

6.2 Diesel Engine

In this example, parameters in a model of an exhaust
gas pipe in a diesel engine is calibrated against mea-
surements. The model was developed in Dymola using
the Engine Dynamics Library and models a 13 liters
Volvo truck engine [8]. The energy of the exhaust gas
after the combustion is converted to torque, before re-
leasing the gas to the purification process. In Figure
8, an overview of the model is shown. The energy is
converted into torque by two turbines, shown as two
trapezoids, where the first drives a compressor at the

Sofia Gedda, Christian Andersson, Johan Åkesson and Stefan Diehl

DOI Proceedings of the 9th International Modelica Conference 825
10.3384/ecp12076819 September 3-5, 2012, Munich, Germany

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6
theta [rad]

Measurements

Simulation nominal parameters

Simulation optimal parameters

0 5 10 15 20 25 30 35 40
t [s]

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.1

phi [rad]

Measurements

Simulation nominal parameters

Simulation optimal parameters

Figure 6: Simulation profiles corresponding to the
optimized parameters (dashed-dotted), profiles result-
ing from simulation with nominal parameter values
)dashed) and measurements (solid).

air intake of the engine and the second is connected
to the drive shaft. Additionally, there are two gas vol-
umes which are connected to two thermal conductors
that transport heat to the surrounding air. The endpoint
circles represent the boundary conditions for the gas.

The uncertain parameters are the thermal capacities
in the walls of the gas volumes together with the ther-
mal conductance from gas to wall in the volumes.

The inputs of the model are the gas temperature and
pressure entering the system, angular velocity of the
turbines and the gas pressure exiting the system. The
output is the gas temperature exiting the system.

Measurements are provided for the inputs and the
output sampled every second over a thirty minute pe-
riod. In Figure 9, the result is shown when simulating
the model using nominal parameter values.

The problem is to minimize the error between the
simulated gas temperature that exits the system and the
measured temperature,

min
x∈Rn

M

∑
i=1

(T sim(ti,x)−T meas(ti))2 (7)

subject to x≥ 0 (8)

where M is the number of measurement points and n
the number of parameters.

Instead of optimizing the four uncertain parameters
simultaneously, the problem is divided into two prob-
lems. The first problem is to determine the thermal
capacity and the thermal conductance in the right vol-
ume. The second is to determine the thermal capacity

0 5 10 15 20 25 30 35 40
10-6

10-5

10-4

10-3

10-2

10-1

100

101

e
rr

o
r

[r
a
d
]

theta

Measurements - Nominal

Measurements - Optimal

0 5 10 15 20 25 30 35 40
t [s]

10-5

10-4

10-3

10-2

10-1

100

e
rr

o
r

[r
a
d
]

phi

Measurements - Nominal

Measurements - Optimal

Figure 7: Error between the measurements and
the simulated profiles using the nominal parame-
ters (dashed) and the optimized parameters (dashed-
dotted).

Figure 8: Overview of the model of the diesel engine.

and the thermal conductance in the left volume, using
the results from the first problem. This procedure is
used since the parameters of the first and second vol-
ume are correlated. Optimizing all parameters simul-
taneously then results in over-parameterization.

For each optimization problem, the first third of the
measurement data sequences are used for calibration
and the remaining part is used for validation.

The model was exported from Dymola as an FMU
and thereby made available to the DFO algorithms
in JModelica.org. The two problems are then solved
using the Nelder-Mead simplex algorithm. Figure 9
shows the resulting simulation response for the opti-
mized parameters. In Figure 10, the corresponding er-
ror profiles are shown for the calibration and validation
data sets respectively. As can be seen, the optimized
parameters significantly increase the accuracy of the
model. The (scaled) RMS error was decreased from
1.0 to 0.18 for the calibration data set and from 1.0 to

Derivative-free Parameter Optimization of Functional Mock-up Units

826 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076819

0.36 for the validation data set.

0.0 0.2 0.4 0.6 0.8 1.0
time

0.75

0.80

0.85

0.90

0.95

1.00

Exhaust gas temperature (scaled)

Measurements

Simulation with nominal parameters

Simulation with estimated parameters

Figure 9: Simulation result with the optimized param-
eters together with result using the nominal parameter
values and measurements.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
10-7

10-6

10-5

10-4

10-3

10-2

10-1

C
a
lib

ra
ti

o
n
 d

a
ta

Exhaust gas temperature error (scaled)

Measurements - Nominal
Measurements - Optimal

0.4 0.5 0.6 0.7 0.8 0.9 1.0
time

10-7

10-6

10-5

10-4

10-3

10-2

10-1

V
a
lid

a
ti

o
n
 d

a
ta

Measurements - Nominal
Measurements - Optimal

Figure 10: Error profiles for the calibration data set
(top) and the validation data set (bottom).

7 Summary

An implementation of derivative-free optimization al-
gorithms in JModelica.org has been presented. The
implementation has been successfully applied to two
dynamic models where the dynamics are contained in
a Functional Mock-up Unit. In one of the examples,
a Volvo truck engine was calibrated against measure-
ment data, demonstrating the industrial applicability
of the approach.

The Python-based user interface enables flexible
implementation of complex cost functions involving,

e.g., simulation of FMUs and comparison with mea-
surement data or algorithmic evaluation of complex
discontinuous costs.

8 Acknowledgments

The authors gratefully acknowledges financial sup-
port from Vinnova under the contract (Project number
P35278-5) and from the Lund Center for Control of
Complex Systems, LCCC, funded by the Swedish Re-
search Council.

References

[1] Functional Mock-up Interface for Model Ex-
change. Interface specification, MODELISAR,
January 2010.

[2] C. Andersson, J. Åkesson, C. Führer, and
M. Gäfvert. Import and export of Functional
Mock-up Units in JModelica.org. In In 8th In-
ternational Modelica Conference 2011. Model-
ica Association, 2011.

[3] C. Andersson, J. Andreasson, C. Führer, and
J. Åkesson. A workbench for multibody systems
ODE and DAE solvers. In The Second Joint In-
ternational Conference on Multibody System Dy-
namics, 2012.

[4] J. Andersson, J. Åkesson, and M. Diehl.
CasADi—A symbolic package for automatic dif-
ferentiation and optimal control. In S. Forth,
P. Hovland, E. Phipps, J. Utke, and A. Walther,
editors, Proc. 6th International Conference
on Automatic Differentiation, Lecture Notes
in Computational Science and Engineering.
Springer, 2012.

[5] Joel Andersson, Johan Åkesson, Francesco
Casella, and Moritz Diehl. Integration of casadi
and jmodelica.org. In 8th International Modelica
Conference, March 2011.

[6] T. Binder, L. Blank, H.G. Bock, R. Bulirsch,
W. Dahmen, M. Diehl, T. Kronseder, W Mar-
quardt, J.P. Schlöder, and O. v. Stryk. Online Op-
timization of Large Scale Systems, chapter Intro-
duction to model based optimization of chemical
processes on moving horizons, pages 295–339.
Springer-Verlag, Berlin Heidelberg, 2001.

Sofia Gedda, Christian Andersson, Johan Åkesson and Stefan Diehl

DOI Proceedings of the 9th International Modelica Conference 827
10.3384/ecp12076819 September 3-5, 2012, Munich, Germany

[7] A.R. Conn, K. Scheinberg, and L.N. Vicente.
Introduction to Derivative-Free Optimization.
Mps-siam Series on Optimization. Society for In-
dustrial and Applied Mathematics/Mathematical
Programming Society, 2009.

[8] J. Dahl and D. Andersson. Gas exchange and ex-
haust condition modeling of a diesel engine using
the Engine Dynamics Library. In In 9th Interna-
tional Modelica Conference 2012. Modelica As-
sociation, 2012.

[9] Dassault Systèmes. Dymola Home Page, 2012.
http://www.3ds.com/products/catia/

portfolio/dymola.

[10] Dassault Systèmes. iSIGHT Home
Page, 2012. http://www.3ds.

com/products/simulia/portfolio/

isight-simulia-execution-engine/

overview/.

[11] H. Elmqvist, H. Olsson, S.E. Mattsson, D. Brück,
C. Schweiger, D. Joos, and M. Otter. Optimiza-
tion for design and parameter estimation. In
In 4th International Modelica Conference 2005.
Modelica Association, 2005.

[12] ESTECO. modeFRONTIER Home Page, 2012.
http://www.esteco.com/.

[13] Sofia Gedda. Calibration of Modelica models us-
ing derivative-free optimization. Master’s thesis,
Lund University, August 2011.

[14] E. Hairer and G. Wanner. Solving Ordinary
Differential Equations: Stiff and differential-
algebraic problems. Springer series in compu-
tational mathematics. Springer-Verlag, 1993.

[15] Alan C. Hindmarsh, Peter N. Brown, Keith E.
Grant, Steven L. Lee, Radu Serban, Dan E. Shu-
maker, and Carol S. Woodward. Sundials: Suite
of nonlinear and differential/algebraic equation
solvers. ACM Trans. Math. Softw., 31(3):363–
396, September 2005.

[16] John H. Holland. Adaptation in natural and ar-
tificial systems. MIT Press, Cambridge, MA,
USA, 1992.

[17] Y.D. Lang and L.T. Biegler. A software en-
vironment for simultaneous dynamic optimiza-
tion. Computers and Chemical Engineering,
31(8):931–942, 2007.

[18] Linköping University. OMOptim Home Page,
2012. https://openmodelica.org/index.

php/developer/tools/176.

[19] Numerica Technology. Jacobian, 2012. http:

//www.numericatech.com/jacobian.htm.

[20] H. Olsson, J. Eborn, S.E. Mattsson, and
H. Elmqvist. Calibration of static models using
Dymola. In In 5th International Modelica Con-
ference 2006. Modelica Association, 2006.

[21] OPTEC K.U. Leuven. ACADO Home Page,
2012. http://www.acadotoolkit.org/.

[22] OptiY. OptiY Home Page, 2012. http://www.
optiy.de/.

[23] Phoenix Integration. ModelCenter Home
Page, 2012. http://www.phoenix-int.com/

software/phx_modelcenter.php.

[24] Process Systems Enterprise. gPROMS Home
Page, 2012. http://www.psenterprise.com/
gproms/index.html.

[25] Johan Åkesson. Optimica—an extension of mod-
elica supporting dynamic optimization. In In 6th
International Modelica Conference 2008. Mod-
elica Association, March 2008.

[26] Johan Åkesson, Karl-Erik Årzén, Mag-
nus Gäfvert, Tove Bergdahl, and Hubertus
Tummescheit. Modeling and optimization
with Optimica and JModelica.org—languages
and tools for solving large-scale dynamic op-
timization problem. Computers and Chemical
Engineering, 34(11):1737–1749, November
2010.

[27] Rainer Storn and Kenneth Price. Differential
evolution - a simple and efficient heuristic for
global optimization over continuous spaces. J. of
Global Optimization, 11(4):341–359, December
1997.

[28] University of Heidelberg. MUSCOD-II
Home Page, 2009. http://www.iwr.

uni-heidelberg.de/~agbock/RESEARCH/

muscod.php.

Derivative-free Parameter Optimization of Functional Mock-up Units

828 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076819

Stochastic Simulation and Inference using Modelica

Stochastic Simulation and Inference using Modelica

Gregory Provan Alberto Venturini
Department of Computer Science,

University College Cork, Cork, Ireland
g.provan, a.venturini@cs.ucc.ie

Abstract

The physical modelling and simulation of systems
with inherent uncertainty still poses significant issues
when using Modelica and its tools. At present, both
language and tools are fundamentally deterministic
and offer limited support for handling uncertainty; this
limits the scope of using Modelica in certain domains,
e.g. feedback control systems. We propose a frame-
work for incorporating uncertainty in Modelica sim-
ulation and analysis tasks. We do this by coupling
a Modelica model with exogenous stochastic models.
Finally, we apply this approach to the domain of build-
ing modelling.

Keywords: simulation; stochastic modeling; energy
systems modeling

1 Introduction

Physical-model simulation using Modelica has tradi-
tionally been viewed as a deterministic problem, de-
spite major sources of uncertainty. This uncertainty
arises due to issues such as:

initial conditions incomplete input observations,
measurement error, shortcomings in the data
assimilation cycle, etc.

model accuracy and fidelity incomplete knowledge
of physical processes (e.g., inaccurate parameter-
izations of sub grid-scale processes). incomplete
and inaccurate numerical schemes,

At present, Modelica tools (e.g., Dymola) enable
variability of initial conditions by different instantia-
tions of model parameters Θ or by assigning values
to internal model variables. However, this assignment
can be done only once for each simulation. For simu-
lations in which stochastic variables exist or there are
external processes providing data (e.g., sensor/actuator
data) to the model on a regular basis, the simulation
must be re-started for each new input. This limits the

scope of using Modelica for use with certain feedback
control systems (e.g., Model-Predictive control) or in
embedded systems.

Consider the case in which Modelica currently deals
with stochastic inputs, e.g., if we were to specify a
probability distribution (pdf) over Θ. In this case,
Monte Carlo (MC) sampling can be used to define a
set of initial conditions for simulation. The drawback
to this approach is that, for a complex pdf, a large num-
ber of samples (and hence simulations) will be needed
in order to achieve a stochastically-sound set of simu-
lations.

Throughout this article we will use the domain of
energy modeling to explain our concepts. In particular,
we will focus on the modeling of buildings, for which
there exist several Modelica libraries, e.g., [13], for
generating models for large, complex systems.

Our objective is to define a stochastic state evolu-
tion approach that is computationally efficient and can
make use of existing Modelica deterministic simula-
tors. We propose a framework for incorporating un-
certainty in simulation and analysis tasks which use
Modelica models. Our contributions are as follows:

• We propose a framework for ensemble-based
stochastic optimisation, using Modelica as a de-
terministic modeling language and simulation
methodology.

• We apply this approach to the domain of renew-
able energy in terms of underfloor heating opti-
misation.

Our approach shows how one can extend the ex-
isting Modelica language and toolset for such tasks.
However, it also highlights deficiencies in Modelica
for stochastic representation, as well as deficiencies in
the Modelica tools to incorporate stochastic inference
within a simulation, as well as the inability to accept
exogenous inputs during a simulation.

DOI Proceedings of the 9th International Modelica Conference 829
10.3384/ecp12076829 September 3-5, 2012, Munich, Germany

2 Related Work

This work aims to extend both Modelica and Building
Performance Simulation (BPS) with stochastic meth-
ods, and we discuss prior work in both areas.

Little work has focused on stochastic methods in
Modelica. Most recently, Bouskela et al. [1] have
described (a) methods for stochastic analysis and (b)
proposals for identifying stochastic Modelica vari-
ables and performing appropriate inference. [11] dis-
cusses how a Modelica model can be used as a simula-
tion model within computational design, such that the
probability of a feasible design is explictly computed.

In the area of BPS, Jacob et al. [9] integrate
Monte Carlo sampling within embedded optimization
for BPS. In particular, they use conditional probability
density functions for energy consumption and demand
to quantify the difference between a base case (of en-
ergy usage) with scenarios in the presence of uncer-
tainty.

[8] shows how uncertainty analysis can improve
BPS through a case study of an office building with
respect to various building performance parameters,
demonstrating the implications of uncertainty in re-
sults concerning energy consumption (annual heating
and cooling) and thermal comfort (weighted over- and
underheating hours).

One in-depth analysis of the impact of uncertainty in
BPS, covering notions of internal and external prob-
abilistic approaches to quantifying the overall effect
of parameter uncertainty in building simulations, has
been performed [12]. He quantifies the effects of un-
certainty in building simulation by considering the in-
ternal temperature, annual energy consumption and
peak loads. [3] study the potential impact of cli-
mate change on current building designs by examin-
ing future climates. They employ two methods, math-
ematical transformations of observed weather (mor-
phing), and synthetic weather generator, to generate
future weather files (on an hourly time scale) which
are representative of possible future climates. [10]
study how exogenous stochastic processes (e.g., me-
teorological events) influence building thermal pro-
cesses, and how endogenous (building-internal) pro-
cess knowledge (e.g., occupancy patterns) can lead to
improved building operation.

3 Simulation Framework

We consider an optimisation framework in which our
task is to optimise an objective function J subject to

a set of constraints over the model, χ(Φ). For exam-
ple, we may want to define an optimal controller for
controlling the heating system in a building.

We assume that the model ΦP that we are simulat-
ing requires a set of inputs generated by an exogenous
stochastic process ΦO. For example, in building en-
ergy simulation, a model ΦP consists of the building
itself, e.g., the building envelope with internal zones,
climate control equipment such as HVAC and sen-
sors/actuators, etc.

We partition the variables in a Modelica model ΦP

as V = V P∪V O, where V P denotes the endogenous
variables and V O denotes the exogenous variables.
Endogenous variables V P do not depend (at least, not
directly) on any exogenous stochastic process: at each
simulation step, they are deterministically calculated
by the Modelica solver. By contrast, exogenous vari-
ables V O depend directly on exogenous inputs, which
change over time due to the exogenous stochastic pro-
cess ΦO. Therefore, the values of V O must be updated
every time the stochastic process ΦO produces new in-
puts.

For example, the exogenous variables might be
weather variables that provide a set of input condi-
tions for weather for a Modelica simulation of ΦP. In
fact, the existing building library [13] has inputs for
up to 30 weather variables, such as temperature, wind-
speed, etc.

Figure 4 shows an example of a discrete-time sim-
ulation process with exogenous model inputs V O

t at
each time step t. The exogenous model ΦO performs
inference independent of the Modelica simulation, and
provides an input for variables V O

t at each time step.
The Modelica simulation uses these inputs to conduct
its simulation. A key insight into this process is that
the Modelica model ΦP must provide inputs of its en-
dogenous variables V P

t to the simulation at time t +1,
since the model would otherwise take (incorrect) de-
fault values for V P

t+1.

α α α
























Figure 1: Simple schematic of simulation process with
exogenous model inputs

We formalise this process as follows. We define our
simulation system as consisting of two models: (a) an

Stochastic Simulation and Inference using Modelica

830 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076829

exogenous (possibly stochastic) model ΦO with vari-
ables α , of which a subset V O are output variables; (b)
a deterministic (endogenous) model ΦP with variable
set V partitioned into input variables V O and internal
variables VP, and parameters Θ (which are constants
over a simulation).

3.1 Stochastic Model Analysis

We further assume an exogenous model E defined by
Θ = ψ(α) that generates the parameter assignment θ̂ .
If E is stochastic, then we have Pr(Θ) = Pr(α), which
defines the joint distribution over α .

We assume a two-step process for model analysis.
First, we perform exogenous analysis, which takes the
joint set of stochastic inputs α , and through Monte-
Carlo (MC) sampling, generates an ensemble of pre-
dictions for the parameter set α . Second, we run a
simulation for each element of the ensemble, generat-
ing an ensemble S of simulation outputs. Finally, we
perform some analysis of the ensemble S to compute
our objective.

3.2 Stochastic Simulation Process

[5] define a good probabilistic simulation/forecast as
the process of maximizing the accuracy of the predic-
tive distributions subject to calibration, where accu-
racy refers to the spread of the predictive distributions,
and is a property of the forecasts only. Calibration
is the statistical compatibility between the predictive
simulation output (or distributions for stochastic mod-
els) and the observations. This is a joint property of
the forecasts and the observations. We can jointly as-
sess calibration and accuracy by using proper scoring
rules, such as the logarithmic score or the continuous
ranked probability score [6].

For example, a proper scoring rule is a function
s(ζ ,x) that assigns a numerical score to each pair
(ζ ,x), where ζ is the predictive distribution and x is
the verifying observation.

3.3 Simulation Analysis

Given a set of n possible input streams to ΦP, we run n
simulations. The key is to now use these n simulations
to solve our tasks in order to optimise J .

Consider the case where we aim to compute an op-
timal control that optimises J . Given the n simula-
tions, we want to compute a robust control u∗.

Robust control methods are designed to function
properly (e.g., maintain stability) under the condition

that uncertain parameters or disturbances are within
some (typically compact) set. For example, this may
include the assumption of bounded modelling errors.
In contrast with adaptive control (which can adapt
to changes in environmental conditions or measure-
ments), robust control methods are static.

In our case, we assume that the MC sampling pro-
vides a statistically sound set of simulation conditions.
Given that, we can either optimise the worst-case out-
come, or optimise within the bounds to the input en-
semble.

4 Application Domain: Energy Mod-
eling

4.1 Building Simulation

For the analysis and prediction of the dynamic be-
havior of building performance indicators such as en-
ergy consumption and thermal comfort, building per-
formance simulation (BPS) is a key enabling technol-
ogy. Previous work has shown that the use of BPS
is mostly limited to building design and for checking
code compliance for the detailed design [8].

BPS makes a number of assumptions that violate re-
alistic building characteristics. For example, almost
all BPS model variables are assumed to be determinis-
tic, even though they are uncertain, due to uncertainty
in material characteristics and to external and inter-
nal condition changes over time. For example, a BPS
model contains a range of internal parameters that are
only known imprecisely, e.g., wall/ floor/ ceiling heat-
transfer parameters. In addition, this type of model
behaves differently based on the building occupancy
and usage, both of which change over time.

4.2 Incorporating Weather Forecasts

Today, the preferred method of probabilistic weather
prediction is based on ensembles of Numerical
Weather Prediction (NWP) forecasts. In this case,
each ensemble member is a single-valued, determin-
istic forecast from an NWP model, i.e., a simulation
of an NWP model. The forecasts differ from each
other with respect to the two major sources of uncer-
tainty: (1) initial conditions and/or (2) model formula-
tion. Figure 2 shows an example of an ensemble of 11
pressure predictions over time.

The ensemble of forecasts must be post-processed
in order to provide an interpretable, single forecast. In
other words, statistical post-processing aims to gener-

Gregory Provan and Alberto Venturini

DOI Proceedings of the 9th International Modelica Conference 831
10.3384/ecp12076829 September 3-5, 2012, Munich, Germany

99400

99500

99600

99700

99800

99900

100000

100100

100200

100300

0 10 20 30 40 50 60 70 80

Pressure

Pressure

Pressure

Pressure

Pressure

Pressure

Pressure

Pressure

Pressure

Pressure

Pressure

Pr
es

su
re

 (P
a)

Simulation time

Figure 2: Weather ensemble of 11 pressure predictions
over time

ate a calibrated, sharp predictive distribution from the
output of NWP ensembles. Two general approaches
to the statistical post-processing of forecast ensembles
have emerged, namely

• Bayesian model averaging (BMA) [7], where
each ensemble member is associated with a ker-
nel function, with a weight that reflects the mem-
ber’s relative accuracy.

• ensemble model output statistics (EMOS) [4]
or nonhomogeneous Gaussian regression (NGR),
which fits a single, parametric predictive PDF us-
ing summary statistics from the ensemble.

Consider an ensemble forecast, λ1, · · · ,λm, for sur-
face temperature, T , at a given time and location.
BMA employs Gaussian kernels with a linearly bias-
corrected mean: the BMA predictive PDF is the Gaus-
sian mixture with mean N and variance σ2.

p(T |λ1, · · · ,λm) =
m

∑
i=1

wiN (ai +biλi,σ
2),

with the BMA weights w1, · · · ,wm, bias parameters
a1, · · · ,am and b1, · · · ,bm, and a common spread pa-
rameter σ2.

The major drawback to this current ensemble ap-
proach to physical simulation is that it only apples to
single variables, at single locations and single look-
ahead times. A key objective in this area is to compute
physically consistent probabilistic forecasts of spatio-
temporal simulation trajectories.

4.3 Example: Underfloor Heating Example

Consider the case where we can to compute a control
setting for the underfloor heating in a zone Z, where

we have uncertainty over the weather forecast and the
occupancy for the following day.

We apply our approach to the optimisation of under-
floor heating control. Our task is to compute the time
interval I during which we “charge" (or heat up) the
underfloor slab during the night, such that we jointly
maximise user comfort (Uc) and minimise energy us-
age (Ue) over the following day. Figure 3 depicts a
simple example of an underfloor heating system for a
house.

We can formulate this task by defining J as the
weighted sum of user comfort and energy usage, with
corresponding weights wc and we:

J = wcUc + weUe (1)

subject to

Uc ≥ U∗c , UE ≥ 0 (2)

χ(Φ) are satisfied (3)

Figure 3: Simple schematic of underfloor heating sys-
tem for a house

4.4 Underfloor Heating with Stochastic Fore-
casting

This section describes our underfloor heating model
that incorporates stochastic forecasts for weather and
occupancy. Figure 4 depicts the variation in tempera-

Figure 4: Simulation process for under-floor heating
system. The red area shows the hours during which
the heating is on. The gray area shows the difference
between setpoint and room temperature during office
hours.

ture over a day, given that the underfloor heating sys-
tem is switched on for the period 3-8 am. In this exam-
ple the temperature set-point for the day is 18◦ Celsius,

Stochastic Simulation and Inference using Modelica

832 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076829

and our objective is to maintain this temperature as
closely as possible, in order to optimise the occupants’
comfort. The gray area between the actual temperature
during the day and the set-point is used to compute a
discomfort index, i.e., it is the area denoting the failure
to maintain the set-point.

We employ three different models for this applica-
tion:

• a stochastic model for weather variable predic-
tion;
• a stochastic model for occupancy prediction;
• a Modelica model for simulating the occupied

zone in a building with underfloor heating, given
as inputs the weather forecasts and the predicted
occupancy.

Weather
Ensemble

Occupancy
Ensemble

Monte-Carlo
Sampling

VO(1)

VO(2)

VO(n)

Modelica
Simulation

S1

S2

Sn

Ensemble
Analysis

.

.

.

.

.

.

.

.

Exogenous Analysis Endogenous Analysis

u*

Figure 5: Computational architecture for analysis of
underfloor heating system.

Figure 5 depicts our computational architecture,
showing the two phases of exogenous computation,
where we generate ensembles for weather and occu-
pancy forecasts, and endogenous computation, where
we create an ensemble of simulations based on the in-
put ensembles, and then compute the control output
u∗ that optimises our objective function J , given the
simulation ensembles.

5 Implementation

We have partially implemented the computational ar-
chitecture described in the previous section. In this
section we provide implementation details on our en-
ergy simulation model and its inputs, as well as how
we intend to use the model for computing an optimal
control action u∗.

5.1 Room model

We model a room of one of the buildings on our uni-
versity campus. This room is an open-space office
with a maximum capacity of 12 occupants. The room
is equipped with typical office furniture (desks, com-
puters, printers, etc.). The only heating system is

under-floor heating. Additionally, the room has 8 win-
dows and 2 doors. The room is also equipped with
sensors that monitor temperature, presence, and lumi-
nance.

We model this room by using the Buildings library,
developed by Wetter et al. [13]. Figure 6 contains a
graphical representation of our model. The main com-
ponents are:

1. a room component, which extends Build-
ings.Rooms.MixedAir;

2. an external weather file;

3. heat gains based on occupancy and equipment in
the room;

4. an under-floor heating component.

Figure 6: Room model with under-floor heating

5.2 Weather forecast ensembles

Weather is one of the main inputs to our model.
Weather data can be either from the past (historical
weather records) or in the future (weather forecasts).
Since our objective is to implement a control frame-
work, we are interested in weather forecasts. In this
section we discuss how we obtain and process weather
forecasts.

As mentioned previously, probabilistic weather
forecasts are based on ensembles. These ensembles
are generated routinely by various data centers around
the world. In particular, we use weather forecasts
generated by the Global Ensemble Forecast System
(GEFS) model [2], which is developed and run by
the National Oceanic and Atmospheric Administration
(NOAA) in the United States.

Gregory Provan and Alberto Venturini

DOI Proceedings of the 9th International Modelica Conference 833
10.3384/ecp12076829 September 3-5, 2012, Munich, Germany

As the name suggests, the GEFS is a global model,
i.e. it produces forecasts for the whole planet. These
forecasts are available for download free-of-charge
from the NOAA file servers. The GEFS model pro-
duces forecasts up to 16 days in advance; however,
since the accuracy tends to degrade quickly, we con-
sider only the first 7 days of prediction. For these first
7 days, the model provides a spatial resolution of 1
degree latitude by 1 degree longitude, and a temporal
resolution of 6 hours. The GEFS produces 20 ensem-
ble members. Each member contains the trajectories
of various weather variables, e.g. temperature, humid-
ity, pressure, etc.

Our goal is to use these ensemble forecasts to gen-
erate probabilistic weather inputs for our model. In or-
der to accomplish this, after downloading the forecast
files, we need to carry out a series of steps:

1. forecasts must be spatially interpolated to the
point of interest;

2. forecasts must be temporally interpolated;

3. the weather variables that are relevant to our
model must be extracted from the forecasts; addi-
tionally, some weather variables required by the
model are not directly included in the forecasts
(e.g. direct and diffuse solar radiation), and there-
fore must be calculated from the information that
is available;

4. the extracted and calculated variables must be
statistically post-processed, in order to provide
probability distributions;

5. the probability distributions calculated above
must be sampled (e.g. by using Monte Carlo
methods) to provide weather scenarios;

6. finally, for each sampled scenario, a weather file
in the format required by the model must be pro-
duced.

We have developed software that performs the
above steps, with the exception of the statistical post-
processing. At the moment of this writing, instead of
generating probability distributions and then sampling
from those, we simply create 20 different weather files
for each of the 20 ensemble forecasts generated by the
GEFS; then, we provide these weather files as inputs
to our model. Figure 7 depicts the steps we have im-
plemented to provide weather input to our model.

Global Ensemble
Forecast System

Spatial /
temporal

interpolation

Conversion to
Modelica

format
Modelica model

FTP download Weather
variable

extraction /
calculation

Figure 7: Steps to provide weather input to the room
model

5.3 Sensitivity Analysis

The Modelica Buildings library accepts weather files
specified as tables of n rows and 30 columns. Each
row contains weather conditions for a specific time
step, and each column contains the values of a weather
variable, specified as real numbers. However, each
weather variable has a different impact on the model
output (i.e., the room temperature): some variables af-
fect the room temperature more strongly than others;
some variables do not affect the room temperature at
all. Hence, it is important to precisely assess the im-
pact of each weather variable on the model output, so
that only relevant variables need to be extracted from
the forecasts.

In this context, we have performed sensitivity anal-
ysis on our model in the following way. First, we ran a
baseline simulation with a weather file containing his-
torical data. Then, we altered each weather variable
in the file by increasing and decreasing its values by
10%, 20% and 30%. Each variable was altered inde-
pendently of the others; i.e., when we altered one vari-
able, all other variables retained their original values.

For each weather variable, we generated 6 simu-
lations corresponding to the variations in the range
of {−30%,−20%,−10%,10%,20%,30%}. We mea-
sured the error between the baseline and each varia-
tion; the error was calculated as the integral of the dif-
ference of room temperature. The error provides an
indication of how much a variable affects the simula-
tion output, with higher error corresponding to higher
sensibility.

The results indicate that the model is most sensitive
to the following weather variables:

1. dry bulb temperature;

2. direct, diffuse and global solar radiation;

3. opaque sky cover;

4. wind speed and direction;

5. dew point.

Therefore, only these variables are extracted from the
GEFS weather forecasts and provided to the model.

Stochastic Simulation and Inference using Modelica

834 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076829

5.4 Simulation process

We use the model to address the task of optimal under-
floor heating control. Since under-floor heating is
a slow-response system, it is normally turned on at
night: it is at this time that the concrete slabs are
“charged” with heat, which will then be released in the
room over the following day. In this context, the out-
put of the control task is u∗, i.e. the amount of hours
during which the under-floor heating will be turned on.

In order to calculate u∗ we simulate 9 different sce-
narios Su, where we vary the amount of under-floor
heating hours u from 0 to 8. For each Su, we calcu-
late Ju = wcUc +weUe. Finally, we calculate u∗ =
uarg max{Ju}. The value u∗ is then given as input to
a Building Management System (BMS) which opens
the under-floor heating valves for the required amount
of time.

This process is repeated every day, for instance at
10 pm. In other words, every 24 hours we run a new
series of simulations and we calculate a new control
action u∗ based on weather (and, potentially, occu-
pancy) forecasts for the day after. However, each time
we run a new series of simulations, we cannot reset the
model variables to pre-defined initial values. In fact, as
stated in section 3, the endogenous variables must be
initialized with the values of the previous simulation,
whereas the exogenous variables must be initialized
according to the external stochastic processes. Using
Dymola, this means that the dsin.txt file (which pro-
vides initial values to variables) must contain the final
values of the simulation which generated u∗ 24 hours
before. This process is depicted in figure 8.

Modelica
simulations
(Dymola)

Weather
forecast

ensemble

Simulation post-
processing u*

dsfinal.txt

dsin.txt

Ensemble of room
temperature
trajectories

Figure 8: Steps to compute u∗ every 24 hours. The
post-processing step contains the logic to calculate u∗.
The file dsfinal.txt contains the final values of the pre-
vious simulation which generated u∗.

5.5 Preliminary control results

In order to test our control approach, we first applied
it to historical weather data. Our goal here is to com-
pare our control strategy with a 5-hour fixed-schedule
strategy, in terms of user comfort and energy usage.
We use the simulation process described in the previ-

ous section; the only change is that we use historical
weather data instead of forecasts.

We use a set-point of 23 degrees Celsius for week
days, and 16 degrees Celsius for weekends. The fixed
schedule strategy operates the under-floor heating for 5
hours every night, between 3 am and 8 am. Moreover,
it does not differentiate between weekdays and week-
ends1. Our control strategy, instead, tries to minimize
the error between set-point and room temperature, and
thus will tend to turn off the under-floor heating during
weekends, when the set-point is lower.

Figure 9 shows the average room temperature ob-
tained with our control strategy (blue trajectory) and
the fixed schedule strategy (red trajectory). Although
there is some amount of error for both strategies, it is
clear that, on average, our control strategy performs
better, i.e. it is closer to the desired set-point. Possi-
ble ways to further improve our control strategy might
consist in (1) leaving the set-point unchanged over
weekends (thus avoiding the cooling down of build-
ing materials, at the expense of higher energy usage),
and (2) extending the possible number of under-floor
heating hours to 9 or 10 (at the moment we keep the
maximum number of hours to 8).

Figure 9: Comparison of average temperature ob-
tained with our control strategy (blue) and a 5-hour
fixed schedule strategy (red). The red line represents
the desired set-point. The horizontal axis represents
days and the vertical axis represents degrees Kelvin.

Figure 10 compares the energy usage of the two
strategies. It is apparent that, over the whole year, our
control strategy requires significantly less energy than
the fixed schedule strategy. This is mainly due to (1)
savings during weekends, and (2) savings during the
summer season, when the under-floor heating is not
needed. It is worth mentioning that, within the model,
the energy usage is calculted as the amount of energy
(in Joule) that is required to heat up the water which
will flow into the under-floor heating pipes.

1It is worth noting that this control strategy was actually im-
plemented on the building on our university campus.

Gregory Provan and Alberto Venturini

DOI Proceedings of the 9th International Modelica Conference 835
10.3384/ecp12076829 September 3-5, 2012, Munich, Germany

Figure 10: Comparison of energy consumed by our
control strategy (blue) and a 5-hour fixed schedule
strategy (red). The horizontal axis represents days and
the vertical axis represents energy in Joule.

5.6 Adding stochastic inputs to the control
framework

The preliminary implementation discussed in the pre-
vious section did not include stochastic inputs. In fact,
both weather and occupancy are assumed to be deter-
ministic processes over a day. In this section, we dis-
cuss how we intend to extend this control framework
in order to include stochastic inputs.

As explained in section 3.1, given an exogenous
model ΦO with variables α , we first compute the joint
probability distribution Pr(α), and then we generate
an ensemble of predictions for α through Monte Carlo
sampling; the predictions will then used as exogenous
inputs to the Modelica model ΦP.

In our application domain, the exogenous model ΦO

is a combination of stochastic weather and occupancy.
Therefore, each prediction p for ΦO will contain the
trajectories of weather variables, plus the number of
occupants in the room at each time t. In order to
use predictions p as exogenous inputs to our control
framework, we use algorithm 1. This algorithm com-
putes u∗ by searching through a search space com-
posed of 9× n simulations, where n is the number of
predictions for α generated through Monte Carlo sam-
pling.

It is significant to note that the simulated room tem-
perature can change significantly on the basis of dif-
ferent predictions for α . Figure 11 shows an ensemble
of 5 room temperature trajectories, obtained with 5 dif-
ferent members of a weather forecast ensemble. Given
this significant variability, we believe that using a com-
bination of stochastic weather and occupancy predic-
tion could yield better results than using deterministic
forecasts.

Algorithm 1 Algorithm to compute a control action
based on an ensemble of exogenous predictions.

for u between 0 and 8 do

for each prediction p do

calculate errorp
u

calculate energyp
u

Jp
u ← wcerrorp

u +weenergyp
u

end for
Ju← ∑

n
p=1 Jp

u

end for
return u∗ for which Ju is minimized

Figure 11: Ensemble of 5 room temperature trajecto-
ries, generated with 5 members of a weather forecast
ensemble. The horizontal axis contains hours and the
vertial axis contains degrees Kelvin.

6 Discussion

We have described an approach to extend Modelica
simulation with multiple ensembles generated by ex-
ogenous stochastic simulations. This approach cou-
ples a discrete-time stochastic simulation with a Mod-
elica simulation, in which the stochastic simulation
generates an input to the Modelica model for each
time step. Further, the system state from the Modelica
model for time t must be used to initialise the model
at time t + 1. This methodology can enable Modelica
to be used for optimisation, and for embedded control
and optimisation applications.

Although this approach works well for slower sys-
tems, for fast systems (where each time step is small)
the computational overhead of initialising a Modelica
simulation for each time step hinders real-time and
embedded applications. This exposes the limitation
of Modelica in two ways: (1) the lack of an in-built
stochastic modeling capability; and (2) the inability to
accept inputs (e.g., from sensors and actuators) during
a simulation. We argue that, in order to gain accep-
tance for real-world applications, Modelica must ex-

Stochastic Simulation and Inference using Modelica

836 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076829

tend its langauge and computational tools to incorpo-
rate methods for dealing with these two deficiencies.
Bouskela et al. [1] propose a language extension to
partially deal with the first deficiency, but further work
is necessary.

References

[1] Daniel Bouskela, Audrey Jardin, Zakia
Benjelloun-Touimi, Peter Aronsson, and
Peter Fritzson. Modelling of uncertainties with
Modelica. In Proceedings of the 8th Interna-
tional Modelica Conference, Dresden, Germany,
2011. Linköping University Electronic Press.

[2] R. Buizza, P. L. Houtekamer, Gerald Pellerin,
Zoltan Toth, Yuejian Zhu, and Mozheng Wei. A
comparison of the ecmwf, msc, and ncep global
ensemble prediction systems. Monthly Weather
Review, Vol. 133, No. 5, 2005.

[3] M. Eames, T. Kershaw, and D. Coley. A com-
parison of future weather created from morphed
observed weather and created by a weather gen-
erator. Building and Environment, 2012.

[4] H.R. Glahn and D.A. Lowry. The use of model
output statistics (mos) in objective weather
forecasting. Journal of Applied Meteorology,
11(8):1203–1211, 1972.

[5] T. Gneiting, F. Balabdaoui, and A.E. Raftery.
Probabilistic forecasts, calibration and sharp-
ness. Journal of the Royal Statistical Society: Se-
ries B (Statistical Methodology), 69(2):243–268,
2007.

[6] T. Gneiting and A.E. Raftery. Strictly proper
scoring rules, prediction, and estimation. Jour-
nal of the American Statistical Association,
102(477):359–378, 2007.

[7] J.A. Hoeting, D. Madigan, A.E. Raftery, and C.T.
Volinsky. Bayesian model averaging: a tutorial.
Statistical science, pages 382–401, 1999.

[8] C.J. Hopfe and J.L.M. Hensen. Uncertainty anal-
ysis in building performance simulation for de-
sign support. Energy and Buildings, 2011.

[9] D. Jacob, S. Burhenne, A.R. Florita, and G.P.
Henze. Optimizing building energy simulation
models in the face of uncertainty, 2010.

[10] Y. Jiang and T. Hong. Stochastic analysis of
building thermal processes. Building and Envi-
ronment, 28(4):509–518, 1993.

[11] B. Johansson and P. Krus. Probabilistic analysis
and design optimization of modelica models. In
Paper presented at the 4th International Model-
ica Conference, 2005.

[12] I.A. Macdonald. Quantifying the effects of un-
certainty in building simulation. PhD thesis, De-
partment of Mechanical Engineering, University
of Strathclyde, 2002.

[13] M. Wetter. A modelica-based model library for
building energy and control systems. In Proc. of
the 11th IBPSA Conference, 2009.

Gregory Provan and Alberto Venturini

DOI Proceedings of the 9th International Modelica Conference 837
10.3384/ecp12076829 September 3-5, 2012, Munich, Germany

Stochastic Simulation and Inference using Modelica

838 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076829

A Toolchain for Real-Time Simulation using the OpenModelica Compiler

A Toolchain for Real-Time Simulation using the OpenModelica
Compiler

Niklas Worschech Lars Mikelsons
Bosch Rexroth

Rexrothstraße 3, 97816 Lohr am Main

Abstract

Nowadays, simulation is the key technology to shorten
development times, while increasing the functionality
of products. In this context simulation is always used
in order to verify characteristics of the product under
consideration. In the past simulation was mostly done
offline, i.e. not synchronized to real-time. Due to the
increased computing power, the relevance of real-time
simulation has increased in the last years. Therefore,
several simulation environments offer a toolchain for
real-time simulation, e.g. the Real-Time Workshop in-
tegrated in Simulink. In this paper such a toolchain
(although not yet fully automated) for the OpenMod-
elica Compiler (OMC) is presented using a hydro-
mechanical system as an example. Thereby, this pa-
per describes a modular C++ Simulation-Runtime for
the OMC including a numerical integration method
suitable for real-time simulation as well as modeling
details of the example system using Modelica.Key-
words: real-time; simulation; runtime; OpenModelica

1 Introduction

Simulation is always based on models. These models
can be mind-models, scaled physical models or mathe-
matical models. No matter what kind of model is used,
the purpose of simulation is mostly the validation of
characteristics of physical systems. Nowadays, even
detailed mathematical models can be simulated in rel-
atively short time. Hence, computer-simulation is an
important tool in the mechatronic development cycle
and helps to reduce costs by shorten the development
process. The mechatronic-development cycle involv-
ing the validation process is visualized in the V-Model
in figure 1.
Clearly, the level of detail of the employed model
plays a very important role. To obtain a model with
a higher level of detail, more modeling effort has to be
invested and one has to expect longer simulation times.

Figure 1: V-Model of the mechatronic development
cycle

A proper model is as simple as possible, but still com-
plex enough to reproduce the physical effects under
consideration [9]. However, there exist tasks that can
not be fulfilled satisfactorily with the help of non-real-
time simulations regardless of which level of detail is
used. These are among others:

• Setting up Simulators (e.g. driving simulator),

• Controller testing,

• Physical Component testing.

Real-time simulation refers to a mathematical model
of a physical system including a numerical integra-
tion method that can execute at the same rate as ac-
tual "wall clock" time. Hence, using real-time sim-
ulation, the real system can be replaced by a virtual
system which makes real-time simulation suitable for
the applications mentioned above. Due to this pos-
sibility and the increased available computing power,
real-time simulation became very popular in the recent
years.
Consequently, many commercial simulation tools of-
fer a complete toolchain for real-time simulation. Such

DOI Proceedings of the 9th International Modelica Conference 839
10.3384/ecp12076839 September 3-5, 2012, Munich, Germany

a toolchain consists of a modeling environment, a
simulation-runtime and a compiler which can compile
the model for a real-time-target. Simulink together
with the Real-time Workshop form the toolchain of-
fered by The MathWorks. Some other tools do not
offer an own compiler, but an export to Simulink, so
that the real-time Workshop can be used. There are
also tools which offer an integrated solution. However,
currently the OMC lacks such an automated toolchain
at all. In this paper a C++ Simulation-Runtime is
presented which forms the basis for a toolchain for
real-time simulation. This modular C++ Simulation-
Runtime contains a numerical integration method suit-
able for real-time simulations of hydraulic systems and
can also be used for co-simulation.
This contribution is structured as follows. In section 2
the C++ Simulation-Runtime and its structure is pre-
sented. After that the toolchain for real-time simula-
tion is explained using an application example in sec-
tion 3. Here, the C++ Simulation-Runtime is compiled
together with the application example for the real-time
operating system Scale-RT [2] and executed on a real-
time-target after that. The paper closes with a conclu-
sion and an outlook.

2 A C++ Simulation-Runtime for
OpenModelica

In order to set up an automated toolchain for real-time
simulation, a new C++ Simulation-Runtime was de-
signed. The design-guidelines were chosen to obtain a
simulation-runtime that is easy to

• maintain,

• extend,

• configure.

Therefore, it is much easier to add new numerical inte-
gration methods, extend its functionality with new al-
gorithms (e.g. for initialization) or just to fix bugs. In
order to obtain a simulation-runtime that realizes these
design-guidelines, the solver-component which imple-
ments the numerical integration method is separated
from the system-component which represents the sys-
tem of differential-algebraic equations (DAE). Note,
that this design is completely contrary to the idea of
inline-integration which was invented in order to in-
crease the computational efficiency [8]. In the next
section a general overview is given. After that the
Event-Handling strategy is explained. In section 2.4

the chosen numerical integration method for real-time
simulation is described.

2.1 Components Overview and General In-
terface Description

SolverSystem

SimManager

Settings
«component»

«component»

«component» «component»
IContinuous

IEvent

ISystemProperties

ISystemIntialization

ISolverSettings

IHistory ISolver IGlobalSettings

Figure 2: Components of the C++ Simulation-
Runtime

In figure 2 the component diagram of the
C++ Simulation-Runtime is pictured. The solver-
component consists of a set of integration methods,
e.g. CVode from the Sundials library [12]. The
SimManager-component controls the simulation. Be-
sides standard-tasks like starting and stopping of the
simulation, the SimManager is able to synchronize dif-
ferent systems and solvers and hence allows for co-
simulation. The settings-component is used to con-
figure the simulation, e.g. set solver-tolerances. The
system-component represents the DAE and therefore
includes the Modelica-System class. This class is gen-
erated by a new code-generation module inside the
OpenModelica compiler [10]. As mentioned above
the solver-component is separated from the system-
component and thus interfaces are used (see figure 3).

«interface»«interface»«interface»«interface»

IContinuous ISystemProperties ISystemInitialization

EventHandling Modelica System

SystemDefaultImplementation

is generated by the
OpenModelica Compiler

IEvent

11

Figure 3: Modelica-System class

The C++ Simulation-Runtime is able to handle sys-
tems with a lot of different properties as shown in fig-
ure 4. Some of the properties (likeisAlgebraic) are
standard properties and used to automatically select
a suitable numerical solution method for the corre-
sponding system. Other properties are not yet reported
by the OMC to the C++ Simulation-Runtime. A flag to
use a symbolic jacobian for the numerical integration
is part of current work. The generation of the symbolic

A Toolchain for Real-Time Simulation using the OpenModelica Compiler

840 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076839

jacobian is described in [5]. The interfaceISystemI-replacements

«interface»
ISystemProperties

+ hasConstantMass() : Boolean

+ hasStateDependentMass() : Boolean

+ isAlgebraic() : Boolean

+ isAutonomous() : Boolean

+ isExplicit() : Boolean

+ isODE() : Boolean

+ isTimeInvariant() : Boolean

+ provideSymbolicJacobian() : Boolean

Figure 4: ISystemProperies Interface

nitialization is used to initialize the Modelica-System
at the beginning of the simulation. Since the efficient
initialization of models is part of current work [6],
the currently implemented algorithms are rather basic.
However, due to the design of the C++ Simulation-
Runtime, new initialization-algorithms can be easily
added. The communication between solver and sys-

«interface»

IContinuous

+ getDimRHS(index : const INDEX =ALL_VARS) : Integer

+ getDimVars(index : const INDEX=ALL_VARS) : Integer

+ giveRHS(f : Double[*]{ordered}, index : INDEX=ALL_VARS)

+ giveVars(z : Double[*]{ordered}, index : INDEX=ALL_VARS)

+ setTime(time : Double)

+ setVars(z : Double[*]{ordered}, index : INDEX=ALL_VARS)

+ update()

Figure 5: IContinous Interface

tem is defined by the interfaceIContinuous(see fig-
ure 5). The methodgiveVarsreturns the state-vector
z. The state-vector is sorted according to the variable-
index (see table 2.1) and hence it is possible to access
a corresponding part of the state-vector by passing the
variable-index. This sorting allows for efficient gen-
eration of the jacobian [11]. The remaining methods

Variable Index Description
VAR_INDEX0 States of systems of 1st order
VAR_INDEX1 1st order States of systems of 2nd order,

e.g. positions
VAR_INDEX2 2nd order States of systems of 2nd order,

e.g. velocities
DIFF_INDEX3 Constraints on position level only
DIFF_INDEX2 Constraints on velocity level only
DIFF_INDEX1 Constraints on acceleration level only
ALL_RESIDUALS All constraints
ALL_STATES
ALL_VARS

Table 1: The Variable Index

are basic methods needed for the numerical integra-

tion process.
In case that the OMC returns algebraic equation

«interface»

«interface»

IAlgLoopSolver

IAlgLoopNewton

Modelica System

AlgLoop System
is generated by the
OpenModelica Compiler

1

1

1

*

Figure 6: Solving Non Linear and Linear Systems

systems (as shown in figure 6), an instance of the
AlgLoop-System class is created for each equation
system. Once again, the Algloop-System class pro-
vides a method which allows to choose an adequate
numerical solution method.
The simulation results are currently stored in a tabu-
lator separated text-file. The Modelica-System class
uses an instance of typeIHistory to store the simula-
tion results. Moreover, the storing instance uses a pol-
icy class for the implementation of the storing behav-
ior [3]. This allows an extension of the output mecha-
nism of simulation results, e.g storing the results in a
buffer for further processing. In the future simulation
results will be stored in the new Modelica result-file-
format.

2.2 Integration Loop

setTime setVars

ẋ(t) = f(t,x(t),p,u(t),λ (t))
0

︸︷︷︸

żi

= g(x(t), t)
︸ ︷︷ ︸

f(ti ,zi ,p,ui)

Solver System

update

giveRHS(̇zi = f(ti ,zi ,p,ui))

writeOutput

ti

ti+1
zi+1

zi =

[

xi

λ i

]

zi+1 = zi +hi · żi

yi+1 = h(ti+1,zi+1,p,ui)

Figure 7: Integration loop in the C++ Simulation-
Runtime

A scheme of the integration loop for a semi-explicit
DAE

ẋ(t) = f(t,x(t),p,u(t),λ(t)), (1a)

0= g(x(t), t), (1b)

Niklas Worschech and Lars Mikelsons

DOI Proceedings of the 9th International Modelica Conference 841
10.3384/ecp12076839 September 3-5, 2012, Munich, Germany

can be seen in figure 7. Here,x denotes the states,λ
is the vector of algebraic variables,p are the param-
eters andu(t) are the system inputs. The time-step
starts by setting the previously calculated state-vector
and the current time. The right-hand-side of equation
1a is evaluated by callingupdate. Note that algebraic
loops are solved within this call. After thatgiveRHS
gives the right-hand-side to the numerical integration
method which performs the integration step (e.g. using
Forward-Euler).

2.3 Event-Iteration

«interface»

IEvent

+ checkConditions(index : Integer, all : Boolean=False)

+ checkForDiscreteEvents()

+ getDimZeroFunc() : Integer

+ getTimeEvents(events : TEVENT_TYPE[*]{ordered})

+ giveConditions(conditions : Boolean[*])

+ giveZeroFunc(f : Double[*])

+ handleSystemEvents(events : Boolean[*]{ordered})

+ saveConditions()

+ setConditions(conditions : Boolean[*]{ordered})

+ saveVars()

Figure 8: IEvent Interface

To handle discontinuities the Modelica-System im-
plements theIEvent interface (figure 8). For each
continuous event from the Modelica model, a zero-
crossing- function and a corresponding condition vari-
able is created. Thereby, the zero-crossing-functions
are interpreted as transitions in a state-graph. To be
more precise, the zero-crossing-functions are always
negative as long as no event occurs. A positive zero-
crossing-function indicates an event and in the con-
sequence the event is handled (and the event-iteration
is started) such that the corresponding zero-crossing-
function is negative again. Note, that this is funda-
mental difference to the treatment of events in the cur-
rent C Simulation-Runtime and allows the use of the
built-in zero-detection algorithms of the Sundials li-
brary. These algorithms are very efficient since all
ODE/DAE solvers of the Sundials library are multi-
step methods and hence the solution polynomial is at
hand with no additional effort.
When a zero is found an event-iteration is started as
pictured in figure 9. The input of the event-iteration

is an event-vectore indicating which zero-crossing-
function (i.e. transition) is active. The relevant relation
expressions are evaluated and stored in a condition-
vector usingcheckConditions. This condition-vector is
used in theupdatemethod to evaluate the right-hand-
side of equation 1a. The methodsaveVarsis called to
save the predecessor values of all variables.

zerostate= EQUAL_ZERO

zerostate=ZERO_CROSSING

Zero search method Continue integration

check conditions of active events ine

update()

checkForDiscreteEvents()

checkConditions(0,true)

ni ++

condition or discrete var changed
andni < max

saveConditions()

saveVars()

Event iteration inside system

Figure 9: Event Iteration within an integration step

2.4 Real-time Simulation

Real-time Simulation refers to a mathematical model
of a physical system including a numerical integra-
tion method that can execute at the same rate as actual
"wall clock" time. Hence, two requirements have to be
met:

• The simulation has to be faster than the "wall
clock" time.

• A predictable worst-case runtime is required.

The first requirement is a requirement on the compu-
tational complexity and hence a requirement for the
model as well as for the numerical integration method.
An approach for the generation of models suitable for
real-time simulation can be found in [13]. The choice
of the numerical integration method is even more re-
stricted by the second requirement which is mostly
harder to meet than the first one. A predictable worst

A Toolchain for Real-Time Simulation using the OpenModelica Compiler

842 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076839

case runtime can only be obtained with non-iterative
algorithms. To be more precise implicit numerical in-
tegration methods can not be used (without modifica-
tion) inside a real-time process. Note that this require-
ment is rather problematic in the context of stiff ODEs
and DAEs. Furthermore, step-size control produces a
non-predictable runtime and can thus also not be used.
The same holds for many algorithms for the detection
of zero-crossings.
Since explicit numerical integration methods are not
suited for many practical problems and implicit meth-
ods are not allowed inside a real-time process, linear-
implicit integration methods with fixed step size are
very common for real-time simulation [4]. Using a
linear-implicit integration method, not a non-linear,
but a linear system of equations has to be solved. This
operation can be performed with an upper bound for
the computational effort and hence linear-implicit in-
tegration methods can be used in real-time processes.
Linear-implicit methods can for example be obtained
by linearizing the numerical integration method. In
that case linear-implicit methods inherit the stability
properties of the corresponding implicit method due
to the linearity of Dahlquist’s test equation [11].
The most popular linear-implicit integration scheme is
the linear-implicit Euler-method due to its simplicity
and stability properties, i.e. it is A- and L-stable like
the Backward-Euler [7]. These properties make it bet-
ter suited for practical (i.e. stiff) problems than ex-
plicit methods. Unfortunately, it is of the same order as
Backward-Euler which might be problematic in com-
bination with a fixed-step size for low tolerances. An
alternative is the linear-implicit trapezoidal-rule. This
method has the same complexity as Backward Euler
but is of order two. However, the linear-implicit trape-
zoidal rule is not L-stable due to the stability properties
of the trapezoidal-rule and should thus not be used for
stiff problems.
The C++ Simulation-Runtime offers an A- and L-
stable linear-implicit integration method of order three
which will be called LI3 in the following. This method
was designed for the solution of discretized un-
steady incompressible Navier-Stokes equations orig-
inally and has not been used for real-time simulation
yet (to the author’s knowledge) [14]. For an ODE as

in equation 1a the method can be written as

k1 = xn+
2h
3

L · f(xn, tn), (2)

k2 = L(xn−
h
2

J ·k1+
h
3

f(xn, tn)+
h
3

f(k1, tn+
2h
3
)),

(3)

k̄ =
9
4

k1−
3
4

k2−
1
2

xn, (4)

k3 = L(xn−
h
2

J · k̄ +
h
4

f(xn, tn)+
3h
4

f(k1, tn+
2h
3
)),

(5)

xn+1 = L(xn−
h
2

J · k̄+
h
4

f(xn, tn)+
3h
4

f(k2, tn+
2h
3
)),

(6)

where

L = (E−

h
2

J)−1. (7)

HereJ denotes the jacobian off (or at least an approx-
imation) andh is the step-size. Thus, one time-step
requires three evaluations of the right-hand side of the
ODE. Moreover, four linear systems of equations of
the same dimension asx have to be solved. Thus, the
structure of LI3 is similar to the structure of a linear-
implicit method obtained from a diagonally-implicit
Runge-Kutta method. Note that the solution of these
four systems is computationally cheaper than solving
a system of dimension 4· dim(x) which would result
from a linear-implicit method obtained from a implicit
Runge-Kutta method. The proof for the stability prop-
erties as well as for the order can be found in [14].
Clearly, a time-step with LI3 is computationally more
expensive than a time-step with the linear-implicit
Euler-method. However, LI3 allows to use larger step-
sizes due to the higher order. This is expressed in
the engineers rule of thumb that a method of orderp
should be used for a tolerance of 10−p.
Consequently, stability properties, order and computa-
tional complexity make LI3 suitable for real-time sim-
ulation of stiff problems and hence hydro-mechanic
systems.
Since no iterative algorithm for the detection of zero-
crossings can be used, the zero-crossing is assumed to
be in the middle of the last solution interval. Note that
this leads to an increase in the worst-case runtime of a
factor of three.

3 Application Example

In the last section a C++ Simulation-Runtime for the
OMC was presented. This simulation-runtime forms

Niklas Worschech and Lars Mikelsons

DOI Proceedings of the 9th International Modelica Conference 843
10.3384/ecp12076839 September 3-5, 2012, Munich, Germany

Figure 10: Pieter Schelte (picture taken from [1])

the basis for an automated toolchain for real-time sim-
ulation. The workflow of this toolchain is explained in
this section using a hydro-mechanical heavy-duty sys-
tem as an example. In the next subsection the set-up of
the real-time simulation is explained. After that some
modeling details and simulation results are given.

3.1 Real-Time Simulation Set-Up

The toolchain consists of the OMC as a Model-
ica Compiler, the C++ Simulation-Runtime, a cross-
compiler for ScaleRT and the real-time operating sys-
tem itself. The hardware setup to execute the real-time
simulation of the Modelica model using SCALE-RT
requires a host and a target PC. The host PC is stan-
dard Windows PC while the target PC uses ScaleRT
(Linux with Xenomai real-time extension).
The output of the OMC is coupled to the ScaleRT in-
terface and cross-compiled for ScaleRT. The automa-
tion of this step is part of future work. After that the
code can be transfered to the target and started via the
ScaleRT software in a graphical-user-interface.
Note that in contrast to the OMC neither ScaleRT nor
the coupling of the C++ Simulation-Runtime to the
real-time interface is Open Source.

3.2 Modeling of the Example System

The application example is a part of a hydro-
mechanical heavy-duty system, which is designed to
operate on a ship for the installation and removal of
oil-platforms. The ship is currently under construc-
tion and is pictured in figure 10. The complete hydro-
mechanical system consists of eight beams, each with
a clamp (or gripper) at the end. During operation the
beams move towards the legs of a platform and grip

Figure 11: Object diagram of the Y-drive

them. After that the platform can be lifted and re-
moved (details can be found at [1]). Each beam can
be divided into a Y- and a Z-drive. In this paper only
the Y-drive is modelled and simulated. The Y-drive is
used to compensate sea motion, driving the beam to-
wards the leg and applying a constant force towards
the leg in case of a contact (in order to avoid hammer-
ing). It consists of

• a hydraulic cylinder,

• a 3-way hydraulic valve,

• an electrical drive,

• the beam,

• gears,

• and a force controller.

The electrical drive moves the beam towards the leg
using position control, while the cylinder applies a
constant force towards the leg during contact using
force control.
The Y-drive was modeled in Modelica, where custom
models were set up for all Rexroth specific compo-
nents of the system. Thereby, an incompressible fluid
is used. The object diagram is shown in figure 11.
Here the hydraulic unit consists of a tank, a pressure
source and a three way valve. In order to deal with the
large forces inside the system a special kind of cylin-
der is used and modelled. The flat model consists of
360 equations, while the translated model has 25 state
variables and two algebraic loops. The algebraic loops
exhibit real as well as discrete variables.

A Toolchain for Real-Time Simulation using the OpenModelica Compiler

844 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076839

Time [s]

P
os

iti
on

[m
]

Real-Time
Offline

0

0 20 40 60 80 100 120

−1

−0.5

Figure 12: Position of the clamp

Time [s]

Ve
lo

ci
ty

[m
/s

] Real-Time
Offline

0

0 20 40 60 80 100 120

−0.05

0.05

0.1

Figure 13: Velocity of the clamp

3.3 Simulation Results

Real-time simulation requires a predictable worst case
runtime. Therefore, the number of Newton-iterations
in the algebraic loop solver had to be limited. Unfor-
tunately, by doing so it is not guaranteed that a ad-
equate solution is found. Nevertheless, for the used
scenario (parameters and inputs) and step size (1ms)
a maximum of 4 iterations was required. Hence, the
maximum number of iterations was set to 6. The LI3
method described in the previous section was used as
numerical integration method. In figure 12 the posi-
tion of the clamp is shown. The blue line represents
the solution computed on the real-time target, while
the red line shows the solution computed offline using
the C++ Simulation-Runtime and CVode as numerical
integration method. It can be seen that the two lines
are nearly overlaying. The same holds for the velocity
of the clamp shown in figure 13.

4 Conclusion and Outlook

In this contribution the basis for a toolchain for real-
time simulation using the OMC is presented. There-
fore in section 2 a new C++ Simulation-Runtime was
shown that is easy to extend and maintain. Moreover,
this Simulation-Runtime includes numerical integra-
tion methods, that are suitable for real-time simulation.
Due to its flexibility new solvers and algorithms (e.g.
multi-rate integration, mixed-mode integration) can be

integrated in the future.
In section 3 the C++ Simulation-Runtime was cou-
pled to the interface of the real-time operating system
ScaleRT. That coupling enabled the execution of the
C++ Simulation-Runtime together with simulation-
code generated by the OMC on a real-time target. The
toolchain was demonstrated using a hydro-mechanical
heavy duty example system.
In the future this toolchain will be automated, in or-
der to be in the position to generate code for real-time
simulation just by a few mouse-clicks. Moreover, cou-
pling of external hardware (e.g. a electronic control
unit) is part of future work. This will allow for virtual
commissioning using a low-cost toolchain.

5 Acknowledgements

This work is funded by Bosch Rexroth AG and Ger-
man Federal Ministry of Education and Research
(BMBF) in the ITEA2 OPENPROD project.

References

[1] http://www.allseas.com/uk/19/equipment/pieter-
schelte.html. website. Accessed: 11/07/2012.

[2] www.scale-rt.com. website. Accessed:
11/07/2012.

[3] A. Alexandrescu. Modern C++ design:
generic programming and design patterns ap-
plied. Addison-Wesley Professional, 2001.

[4] M. Arnold, B. Burgermeister, and A. Eich-
berger. Linearly implicit time integration meth-
ods in real-time applications: Daes and stiff
odes. Multibody System Dynamics, 17(2):99–
117, 2007.

[5] W. Braun and B. Bachmann. Symbolically de-
rived jacobians using automatic differentiation-
enhancement of the openmodelica compiler.
Modelica Conference, Dresden, 2011.

[6] F. Casella. Open problems and research trends
in oo modelling. Technical report, Politecnico
di Milano, Dipartimento di Elettonica e Infor-
mazione.

[7] F.E. Cellier and E. Kofman.Continuous system
simulation. Springer Verlag, 2006.

Niklas Worschech and Lars Mikelsons

DOI Proceedings of the 9th International Modelica Conference 845
10.3384/ecp12076839 September 3-5, 2012, Munich, Germany

[8] H. Elmqvist, M. Otter, and F.E. Cellier. Inline
integration: A new mixed symbolic/numeric ap-
proach for solving differential-algebraic equation
systems. 1995.

[9] T. Ersal, H.K. Fathy, D.G. Rideout, L.S. Louca,
and J.L. Stein. A review of proper modeling tech-
niques. Journal of Dynamic Systems, Measure-
ment, and Control, 130:061008, 2008.

[10] P. Fritzson, P. Aronsson, A. Pop, H. Lund-
vall, K. Nystrom, L. Saldamli, D. Broman, and
A. Sandholm. Openmodelica-a free open-source
environment for system modeling, simulation,
and teaching. InComputer Aided Control System
Design, 2006 IEEE International Conference on
Control Applications, 2006 IEEE International
Symposium on Intelligent Control, 2006 IEEE,
pages 1588–1595. IEEE, 2006.

[11] E. Hairer, S.P. Nørsett, and G. Wanner.Solv-
ing Ordinary Differential Equations: Stiff and
differential-algebraic problems. Springer Series
in Computational Mathematics. Springer-Verlag,
1993.

[12] A.C. Hindmarsh and P.N. Brown. Sundials: Suite
of nonlinear and differential/algebraic equation
solvers. ACM Transactions on Mathematical
Software (TOMS), 31(3):363–396, 2005.

[13] L. Mikelsons and T. Brandt. Towards a generic
vehicle model. Journal of Computational and
Nonlinear Dynamics, 7:021013, 2012.

[14] N. Nikitin. Third-order-accurate semi-implicit
runge-kutta scheme for incompressible navier-
stokes equations.International journal for nu-
merical methods in fluids, 51(2):221–233, 2006.

A Toolchain for Real-Time Simulation using the OpenModelica Compiler

846 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076839

Time varying mass and inertia in paper winding multibody simulation

Time varying mass and inertia in

paper winding multibody simulation

Edo Drenth

Modelon AB

Ideon Science Park, Lund, Sweden

edo.drenth@modelon.com

Abstract
This paper will discuss Modelica’s

unprecedented flexibility for multi-body

simulations. Classical multi-body simulation

has as a prerequisite constant mass and inertia

for deriving the equations of motion for rigid

bodies. However, there are industry

applications, like the control development of

paper winding, that require time dependency of

mass and inertia. In these applications mass

and inertia cannot be assumed constant and

will thus constitute part of the differential

equations system by means of introducing

mass and inertia as states.

Introducing mass and inertia as states, rather

than parameters, requires reformulation of the

Newton/Euler formulation of the body model

component in the Modelica mechanics multi-

body library [3].

A successful new body model formulation has

been created and is applied in an industrial

example system model.

Keywords: dynamic mass, dynamic inertia, multi-

body, mechanics, paper winding, vibration, FMI

Introduction
In the paper industry winding machines are

used to reduce the inconveniently large paper

roll into smaller paper rolls of just a few tons.

The dynamic properties of these machines are

heavily influenced by the change in mass and

inertia of the paper rolls while winding and

unwinding [1, 2]. The time varying resonance

frequencies of the system will put limits on the

machines throughput.

The paper industry has an interest to

investigate the dynamic machine properties by

simulation as the references are proof of. This

publication will deal with one of the key

aspects of a simulation package to handle; the

mass and inertia time (revolution) dependency.

Many specialised multi-body packages are

built upon constant mass and inertia’s to solve

the equations of motion. To coop the problem

of varying mass, the system is analysed at

different points of operation rather than

simulating a full run.

Mastering this topic of dynamic mass and

inertia properties may not only allow for

system controllers’ validation in the time

domain with Dymola’s
1
 real time capabilities,

but also support algorithm development with

FMI [6] technology exporting models to

control development environments.

This publication shows Modelica’s capabilities

in to this specific topic of paper winding.

Modelica Body

Mass rate signals

In order to create sound models, which can be

diagnosed upon dimension consistency, mass

rate signals are defined. These read,

type MassRate =

 Real (final quantity="MassRate", final unit= ”kg/s");

1
 Dymola is a registered trademark of Dassault Systèmes

DOI Proceedings of the 9th International Modelica Conference 847
10.3384/ecp12076847 September 3-5, 2012, Munich, Germany

type MomentOfInertiaRate =

 Real (final quantity="MomentOfInertiaRate", final unit= "

kg.m2/s");

Newton/Euler equations

The Modelica Standard Library defines bodies

with the help of Newton/Euler equations

around the centre of mass of the modelled

body. These equations have to be elaborated to

count for the mass and inertia rates. From

Newton’s second law we have

In the above equation Fnet is the net external

force applied to the system, since Newton’s

second law is only valid for constant mass

particles [3]. Reference [4] exemplifies how a

net force can be derived, hence

The net force on the left hand side of the above

equation includes a so called “thrust” force

from the mass flow,

 . In our application a

difficulty arises to determine the web mass,

mw, which is accelerated. At constant web

velocity, u, this term vanishes.

Figure 1 Sketch of model

With help of the right hand side of the force

equation, the Modelica code for a body in 3D

will be modified and yields,

frame_a.f = m*(Frames.resolve2(frame_a.R, a_0 - g_0) +

 cross(z_a, r_CM) +

 cross(w_a, cross(w_a, r_CM))) +

 mdot*(v_0 + cross(w_a, r_CM));

frame_a.t = Idot*w_a + I*z_a +

 cross(w_a, I*w_a) +

 cross(r_CM, frame_a.f);

In the above set of equations mdot will defined

as mass rate and Idot as a 3x3 inertia tensor

with pivots of moment of inertia rate signals.

The above mentioned “thrust” force from

reference [4] will have to be applied externally

to frame_a as forces and moments.

Figure 2 Free spinning results with constant impulse

momentum

Body properties

A special variable mass and inertia model has

been designed that can resemble the effects of

increasing radius of the paper winding roll.

The radius (rate) of this body defines both

mass (rate) and moment of inertia (rate) too.

The inertia tensor however, and especially the

rate, is application dependent and a generic

solution difficult. Hence, the paper deals with

paper winding only. All properties are

dynamically sound for a multi-body analysis.

1E0 1E1 1E2 1E3 1E4 1E5

0.01

1

100

Time [s]

Spinning Velocity

1E0 1E1 1E2 1E3 1E4 1E5

1E-2

1E0

1E2

1E4

Time [s]

Spinning Inertia

Time varying mass and inertia in paper winding multibody simulation

848 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076847

E.g. a free winding roll with initial velocity

will reduce angular velocity over time due to

increased spinning moment of inertia (see

Figure 2) at constant momentum (net external

force equals zero).

Difficulties arose by straight forward

modelling of variable mass and inertias. The

symbolic manipulation of the equations

showed imbalance on the number of equations

and unknowns. These are overcome with

simple and physical sound, mathematical re-

formulation of the existing body model in the

Modelica Standard Library.

This dynamic mass and inertia body model is

accessible from a library and has become a

building block for usage in other models for

mechanical simulation.

Model Assumptions
The model envisioned shall deal with the

simulation problem of variable mass and

inertia solely. One drum, with the drive input,

and one paper roll (blue coloured in the

animation series below) are modelled. The

interaction between the drum and paper roll is

based upon a simple impact force function for

the support forces and a simple load dependent

slip force with relaxation for the horizontal

forces (see Figure 3). These horizontal forces

will apply a drive torque on the paper roll and

a torque load on the driving drum.

Figure 3 Load dependent slip force with relaxation

No special emphasis is made on material

properties of paper with respect to friction and

material damping, nor the web tension’s

influence on the dynamic performance. The

models are purely made to show Modelica’s

capabilities of the specific problem of variable

mass and inertia.

The paper roll can move freely in the vertical

direction and around its spin axis only, for

reasons of simplicity and the limited scope of

this report the other four degrees of freedom

are kinematic constraint.

Figure 4 Speed and Torque profile of Drum and

Paper Roll

Load case
The drum is driven with a speed profile as

indicated in Figure 4. The speed profile

equates to certain constant web acceleration

until a predefined velocity is reached. This

velocity is kept constant throughout the

remaining simulation. For the sake of

comparison the direction of operation is taken

positive, whereas in the real application the

drum and paper roll rotate in opposite

directions.

The centre of mass of the paper roll has a small

offset from the centre line in order to introduce

vibrations in the two drum system. These

induced vibrations are solely for the sake of

exemplifying the time varying oscillations.

integrator

I

k=1

product

tanh

t?

k=slipStiffnes?

slipStiffness

k=1/lRelaxation

relaxation

product1

add3_1

+1

-1

-1

+

abs1

abs

vDrum

vPaper

torque

fNormal

Edo Drenth

DOI Proceedings of the 9th International Modelica Conference 849
10.3384/ecp12076847 September 3-5, 2012, Munich, Germany

Figure 5 Speed and Torque profile of Drum and

Paper Roll

Discussion of Results

Speed and Load

The drum is driven with a speed profile as

indicated in Figure 4, the paper roll angular

velocity is determined through acceleration of

the same by means of a frictional force at the

interfacing surface of roller and drum. Because

the radius of the paper roll starts at the core

radius, which is much smaller than the drum’s

radius, and increases over time the angular

velocity increases steeper than the drum’s

angular velocity. At approximately 260 s (with

the used data) both radii are equal and hence

the angular velocity is equal too.

The speed profile of the drum will require a

driving torque as indicated in Figure 4 above.

The initial large value is due to the acceleration

of the heavy drum. Once the desired velocity

of the web is reached the torque level is

determined by the increase of the paper roll

spinning inertia. This paper roll inertia

increment becomes a torque load (red in Figure

4) upon the system. Surprisingly the actual

load is negative, because the incoming paper

from the web results in a system accelerating

torque from the linear momentum (web tension

omitted), because its forces are applied

tangential at the paper roll surface. To keep a

constant web velocity the driving drum torque

is negative.

Figure 6 Roller vertical velocity and radius over time

Figure 5 depicts results when the web linear

momentum is omitted. The increasing inertia

yields an increasing torque.

The offset on the centre of gravity results in a

forced vibration of the paper roll in the vertical

direction (Figure 6) and around its spin axis

(Figure 7). The paper roll is constraint in the

remaining directions, but could technically

have compliant bearings. This is outside the

scope of this paper.

The radius of the paper roll increases over time

and the increasing radius will also create

vertical motion of the centre of gravity. The

mean value of the vertical velocity is positive

indicating the centre of gravity rises.

Radius and velocity

The radius rate of change decreases over time,

because the web velocity is constant and the

actual radius increases. The paper roll’s

tangential velocity is constant, hence the

angular velocity must decrease and thus the

radius rate.

Time varying mass and inertia in paper winding multibody simulation

850 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076847

Figure 7 Roller angular velocity and acceleration

Impact Force

The paper roll is supported with help of an

impact force between the drum and the paper

roll. Due to the fact the mass increases over

time the impact force will increase too (see

Figure 8). A close up is made to show the lift

of at around 90 s of simulation time.

Do mind that the impact function, with viscous

damping only, may not at all be representative

for paper properties. Modelica is however,

very well suited to accommodate any impact

model and thus able to model material

damping, but again outside the scope of this

paper.

Bending and torsion

The discussed and simulated model has neither

bending compliance nor torsional compliance.

These affects are omitted in this paper, but will

have an impact on the dynamic behaviour of

the real system. One could however, make a

roller and a drum component that can be

compliant connected to another roller and

drum component easily in Modelica. This way

a discretized lumped mass and inertia roller

and drum system is created to reflect the

bending and torsional vibrations of the system.

Figure 8 Impact force between drum and paper roll

Animation

Dymola has capabilities of dynamic graphical

presentation of the variable mass and inertia

body. Below an animation sequence with a

sample every 100 s is presented of the

simulation run discussed in this paper.

Figure 9 Animation, t=0 s

Edo Drenth

DOI Proceedings of the 9th International Modelica Conference 851
10.3384/ecp12076847 September 3-5, 2012, Munich, Germany

Figure 10 Animation, t=100 s

The animation clearly depicts the increase in

radius and the centre of gravity rising over

time.

Figure 11 Animation, t=200 s

Figure 12 Animation, t=300 s

Figure 13 Animation, t=400 s

Figure 14 Animation, t=500 s

Figure 15 Animation, t=600 s

Time varying mass and inertia in paper winding multibody simulation

852 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076847

Figure 16 Animation, t=700 s

Functional Mock-up Interface
The newly developed dynamic mass and

inertia models can also be used for controller

development in specialised environments like

Simulink
2
. The FMI Toolbox from Modelon is

used to import the Functional Mock-up Unit

exported from Dymola. The result is depicted

in Figure 17.

Figure 17 Simulink model with FMI block of the

Drum-Paper Roll mechanism

This model exchange allows the control

engineer to have an excellent non-linear plant

model to develop his algorithms against.

Dymola’s real time capabilities allow the user

to export the models to a HIL system and

verify the actual electronic controller.

Conclusions
This report shows that Modelica is capable of

modelling variable mass and inertias of

winding machinery. A special body element is

created in the Modelica language which

becomes a reusable body object. This body can

be used to model a lumped system of a roller to

accommodate bending and torsional modes

(future work).

The created dynamic mass and inertia model is

a prerequisite allowing for virtual controller

software development, verification and

validation at a systems level for a complete

winding cycle.

2
 Simulink is a registered trademark of The Mathworks

References
1. Virtanen T, Fault Diagnostics and

Vibration Control of Paper Winders,

Ph D dissertation Helsinki University

of Technology, Espoo, Finland, 2006

2. Zwart, J., Tarnowski, W., Winder

Vibration Related to Set Throw-outs,

PAPTAC 89
th
 Annual Meeting,

Montreal, Canada, 2003

3. Kleppner, D, Kolenkow, R., An

Introduction to Mechanics, McGraw-

Hill, pp. 133–134, 1973

4. Chandler, D., Newton’s Second Law

for Systems with Variable Mass,The

Physics Teacher, Vol. 38, 2000

5. Modelica Standard Library, Version

3.2

6. Blochwitz, T., Otter, M., Arnold, M.,

Bausch, C., Clauß, C., Elmqvist, H.,

Junghanns, A., Mauss, J., Monteiro

M., Neidhold, T., Neumerkel, D.,

Olsson, H., Peetz, J.-V., Wolf, S., The

Functional Mockup Interface for Tool

independent Exchange of Simulation

Models, 8
th
 Modelica Conference,

Dresden, Germany, 2011

7. FMI Toolbox User's Guide 1.3.1,

Modelon AB, Lund, Sweden, 2012

(c) 2012 Modelon AB

w2v

wDrumvWeb

SaturationRamp

Radius

PID Omegas

DrumPaperRoll

System

Compute

PaperRollRadius

wPaper

wDrum

rPaper

Edo Drenth

DOI Proceedings of the 9th International Modelica Conference 853
10.3384/ecp12076847 September 3-5, 2012, Munich, Germany

Time varying mass and inertia in paper winding multibody simulation

854 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076847

Collaborative complex system design applied to an aircraft system

Collaborative complex system design applied to an aircraft system
Eric Thomas, Michel Ravachol

Dassault-Aviation
78 quai Marcel Dassault Cedex 300, 92552 St CLOUD Cedex, FRANCE

eric.thomas@dassault-aviation.com michel.ravachol@dassault-aviation.com

Jean Baptiste Quincy, Martin Malmheden
Dassault Systèmes

10 rue Marcel Dassault, 78946 VELIZY-VILLACOUBLAY Cedex, FRANCE
jean-baptiste.quincy@3ds.com martin.malmheden@3ds.com

Abstract

Aircraft systems have evolved dramatically since
the beginning of aviation. Many improvements of
performance and safety have been made. Now each
sub-system has optimized performance and it is thus
difficult to find gains without breakthroughs in archi-
tectures or technologies; and this is the objective of
the R & D studies towards a more electric aircraft.

Simulations are widely used to explore and justify
aircraft architectures [1], but system simulations cur-
rently suffer from limitations which make them dif-
ficult to use for complex multi-systems analysis.
Therefore tools and processes must evolve to ac-
company these major changes in order to support the
designers in their quest of optimized design.

This article deals with new processes and tools
which will take part, in a close future, in the deter-
mination, the verification and validation of systems
architectures. The results presented here were ob-
tained during the CSDL project (Complex Systems
Design Lab) partly funded by the French govern-
ment.

Keywords: Collaborative process, System engineering, MBSE,
hybrid DAE, multi-physics, multi-levels, Optimization, Robust
Design, Coupling Simulation System - surrogate Models,
PLM/SLM integration

1 Introduction

Aircraft vehicle systems are typical examples of
complex systems. They are composed of many sub-
systems, which overall represent a set of thousands
of equipment, and that have more and more interac-
tions between them.

These sub-systems are provided by several com-

panies for integration and must fulfill aircraft re-
quirements.

The efficient study of performance and safety is
of prime interest when designing complex systems in
a collaborative context. At each stage of the design
cycle, system engineers should be able to find opti-
mized architectures of systems according to require-
ments. Such need is particularly important in the
early stages of design when decisions on the aircrafts
concepts, systems architecture and partners choice
will determine the performance and the future cost of
the product.

Figure 1 Design phases and effort ramp-up

It is thus necessary to make the right decisions in

these early phases. With this intention, the systems
architects may find it beneficial to explore spaces of
design in a smart automated way in order to identify
the points of interest quickly.

The article is structured as follows:
• Section 2 briefly presents aircraft vehicle sys-

tems and their design process.
• Section 3 details the requirements for a collabo-

rative tool for complex system design.

DOI Proceedings of the 9th International Modelica Conference 855
10.3384/ecp12076855 September 3-5, 2012, Munich, Germany

• Section 4 explains the solutions developed
within the project CSDL, in particular collabora-
tive management of hierarchical multi-physics
Modelica models with Dassault Systèmes V6
PLM platform.

• Section 5 presents the challenges ahead to get a
full and efficient set of tools and processes for
future airplane designs.

2 General information on Aircraft
vehicle systems

2.1 Architecture

Aircraft vehicle systems are composed of several
sub-systems. The main sub-systems are represented
in the following composition (figure 2), here for a
conventional aircraft architecture. There are Envi-
ronment Control System (ECS), Power Plant (en-
gines), Electrical, Braking, Hydraulics or Fuel sys-
tems.

They are connected together and to several other
parts like control systems, passengers, environmental
conditions or system properties [2].

Figure 2: Systems architecture of a conventional aircraft

Each of these sub-systems is itself composed of

sub-systems or equipment. For example the ECS is
composed of a bleed (which mixes air flows from the
engines), a cold air unit (which in particular manages
cold and hot air flows to achieve a good comfort for
the passengers in the cabin and a sufficient cooling
for the equipment in the bays), a distribution sub-
system (pipes and parts for distribution of air to
cabin and bays), scoops (to get cold air from external
environment …).

The ECS is connected to engines (power-plants),
passengers comfort models, and environmental con-
ditions.

Traditionally, each aircraft system is defined
within ATA (Air Transport Association) numbering,

which provides a common referencing standard for
all commercial aircraft documentation e. g Chapter
24 is for electrical power or 21 for Air Conditioning
and Pressurization. This standard has many benefits
on common decomposition of aircraft functions, but
tends to segregate sub-systems that may be opti-
mized nearly independently from each over.

In this conventional architecture (fig. 2), electri-
cal systems have only limited interactions with other
subsystems. In the case of a more electrical aircraft,
that is one of the most significant technology
changes for the near future with many expected
benefits, electrical equipment will be spread across
multiple systems. Therefore, there is a consensus that
the way to the truly optimized complex system is
through an overall system redesign, including a
trans-ATA approach.

2.2 Aircraft systems main activities and design
process

The main activities of people involved in the air-
craft vehicle systems are:

• System design and integration of the vehicle
systems on the aircrafts.

• Follow-up, technical expertise and technical
facts processing for the aircraft in service.

The activities are then not limited to design sys-
tems only, but also participates in the maintenance,
improvements of the aircraft systems along the
whole life-cycle (more than 30 years) and in de-
commissioning.

These activities include participation in the certi-
fication process of the aircraft which is necessary to
allow the plane to fly; and for which product justifi-
cation and traceability with respect to the require-
ments are mandatory.

Figure 3: Several of aircraft vehicle systems activities

Collaborative complex system design applied to an aircraft system

856 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076855

In the image above a typical workflow between
the aircraft manufacturer and its suppliers and part-
ners is presented. Several activities of the verifica-
tion and validation process made during functional
analysis, analysis which participates in justifications
(e.g. FHA - Failure Hazard Analysis, behavioural
analysis) are also sketched, connected to functional,
logical and physical architectures.

3 Requirements for an aircraft sys-
tems design platform

Now, it is possible to list requirements for a truly
efficient collaborative platform for aircraft systems
design and optimization.

3.1 General requirements

The “must have” features of such a collaborative
design tool can be listed as follows. They must al-
low:

• Compatibility with the tool managing the
definition: currently 3D Digital Mock-up
with Product Lifecycle Management.

• Project management during the entire life-
time of an aircraft (more than 30 years)

• Collaborative work between all stakeholders
of the design of the aircraft systems.

• System engineering process: requirements,
functional and architecture management e.g.
standard architecture descriptions according
to ATA decomposition.

• Several architecture analyses, in particular
behavioral simulations, based on 3D and
system representations.

3.2 Requirements on models for aircraft sys-
tems architecture

Model Based System Engineering (MBSE) is a
key practice to advance complex systems develop-
ment and Modelica is a critical enabler of MBSE

But system architecture analysis based on models
must also be architecture driven because it is the ar-
chitecture which must be justified and optimized.
Simulations are means for architecture assessment.
Therefore, it must be possible to add behaviors to
components of sub-systems or directly to the sub-
systems of an architecture.

Tools and models must also have several features
as described bellow.

3.2.1 Tools for performance analysis
To evaluate the performances of systems archi-

tectures during trade-off, analysis based on simula-
tions are widely used, from simulation of 0-D/1-D
models to multidimensional models (FEA/CFD…)
for more detailed analysis. The architecture compo-
nents should thus be able to have models with multi-
ple levels of details, chosen according to needs.

In fact, designers should have all models needed
to model the behaviors they want according to the
types of analysis that are to be done. Current analy-
ses are listed bellow:

• Static analysis for study of energy balance,
energy flow distribution or of particular de-
sign points

• Dynamic analysis to study analysis along
time, or Eigen values.

• DOE (Design Of Experiments) including
sensitivity, robustness and optimizations
analysis.

And this must be applied on models with nominal
and non-nominal behaviours (e.g. when failures oc-
cur).

There are also requirements on simulations man-
agement, because simulation properties, models, re-
sults must also be stored and managed to be usable
many years later.

3.2.2 Libraries of models for system engineering
What kind of features would a system engineer

like to find in the application libraries?
System engineer wants to have a set of models

able to represent the behavior of physical compo-
nents with a sufficient accuracy for the kind of
analysis he/she has to do, and to focus on technical
subjects in the way to chose and optimize systems.
Then, system engineer would like to find:
• Multi-domain and multi-physics libraries of

components for the large range of physics im-
plied in the aircraft systems.

• Versatile components whose physical properties
can be parameterized according to product data
sheets or with data linked to definition (managed
by the PLM.)

• Application libraries with validated components
should be valuable, if not essential. Validation in
a defined range of application is very important,
because it is the base for the re-use and extends
of components (which contains knowledge of the
company).

• Switches to enable a model validity checker or
not. Supposing that a validity model is already
defined (see properties [2]).

Eric Thomas, Michel Ravachol, Jean Baptiste Quincy and Martin Malmheden

DOI Proceedings of the 9th International Modelica Conference 857
10.3384/ecp12076855 September 3-5, 2012, Munich, Germany

• Switches to define physical hypotheses: consider
static or dynamic behavior, nominal or non-
nominal behaviors.

• Published additional data which can help to set
simulations. For example stochastic data are of-
ten added to models afterwards by system engi-
neers. It is not logical that such information is
not usually included in models provided by part-
ners. In fact they are the best specialists for pub-
lishing such useful information at the right plac-
es in the models. A general mechanism for pub-
lishing such data should be studied to enable this
process.

3.3 Requirements for model interfaces and
model exchanges

To allow connectivity of models (equipment or
sub-systems), it is important that standard interfaces
are defined, and that more complex interfaces could
be derived from them. These standards must be ap-
plied by all partners, and managed like other inter-
faces.

The tool shall manage:
• IP for model exchange (integrate models of

partners, provide to partners system models).
• Interface between sub-systems. In particular

it must allow change of components (sharing
a particular interface) as defined below in
the application example when surrogate
models may change.

After decomposition in black or grey boxes,
simulations of systems should remain efficient (see
requirements below.)

Functional Mock-up Interface, FMI [7].) can be
used for encapsulation of Modelica models and other
model code as soon as it respects previous require-
ments.

3.4 Requirements for simulations

For early verification of an architecture, quick
evaluations based on thousands of simulations are
required to explore the design space. Therefore, sys-
tem simulation is often used because it is far quicker
than 2D-3D FEA or CFD computations. They are
used to find robust and optimized designs by use of
sensitivity, robustness and optimization process.
They must also take into account variability of archi-
tectures, parameters defined as a range or as a sto-
chastic distribution. It is also necessary to be able to
increase granularity of certain equipment models that
has proven particularly sensitive or to incorporate
new observers only available in detailed models.

Tools often allow co-simulation between 0-1D mod-
els and 2D-3D models. However, it is not really
adapted to early verification because they can lead to
slow simulations, which are often not compatible
with efficient optimizations processes (with several
parameters to optimize and having multiple criteria)
which require a large number of computations.

Computation time is critical because simulations
must be feasible within time constraints to get re-
sults, analyze them and choose the optimized archi-
tecture with a good level of confidence often after
several interactions. It is also important to have suf-
ficiently fast simulations in order to make early deci-
sions and explore alternative architecture designs
during a decision review. To allow such quick calcu-
lations High Performance Computing (HPC) fea-
tures, parallel computations, and distribution of
simulations on adequate hardware are other key fac-
tors.

3.5 Requirements for model debugging

The previous sections suppose that models simu-
late without problems. But it is well known that
complex systems written in a natural physical lan-
guage such as Modelica often gives sets of hybrid
Differential Algebraic Equations with non-linear
equations that can be difficult to initialize and solve.

Even if Dymola and DBM, the Dymola kernel in-
tegrated in Catia V6, is very efficient; performance
and convergence of the initial problem also depends
a lot on the quality of the code written by the author
of the model as well as the how well the iteration
variables of the initial problem have been/can be set.
Features like the homotopy operator [5] help the user
to solve initialization equation systems by providing
a simplified model requiring less start values of itera-
tion variables of the initial problem. However, it is
important that such features could be used both by
model developers and by final advanced users (see
published properties and features in next section).

It is also important that the simulation tool help
users to localize the cause of problem. Many features
have been introduced in Dymola. Following new
features can help:
• More (visual) features to quickly locate impor-

tant information (e.g. component highlights,
model comparisons …).

• Structural analysis to study architecture of mod-
els to localized ways of simulation improve-
ments (causality, algebraic loops, invertibility
…).

• Other methods will be studied in the near future
[8], in particular Modelica models with structural
changes and non-nominal behavior integration.

Collaborative complex system design applied to an aircraft system

858 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076855

4 Application to an aircraft system

Investigation of these problems for very early
stages of design have been done within the project
CSDL, which had the objective to develop a com-
prehensive collaborative environment for decision
making at the earliest stage of a project.

It tries also to take into account that process and
associated tools must help designers along all the
lifecycle of an aircraft, from early stage to opera-
tional service, including justification to requirements
traceability.

It is applied to the design of an environmental
control system.

4.1 Description of the system

An environmental control system (ECS) was se-
lected because it combines several demonstrative
features which can be applied to other systems af-
terwards.

Figure 4: ECS Sizing engineering problem

For this reason, a generic model of ECS was pre-

viously used as a base during ITEA2 Eurosyslib [6]
for properties modelling (see [2]) and will be used to
enhance several modelling features during ITEA2
Modrio [8]. In CSDL it is used to investigate multi-
level modelling and collaborative design.

This generic model is a 0-1D model written in
Modelica. It is composed of basic sub-systems. Air
flow comes from two engines modelled as bounda-
ries with fixed pressure and temperature. A bleed
mixes the two flows and provides the resulting flow
to the Cold Air Unit (CAU) which regulates mass
flow and energy given to the Cabin. Usually the en-
ergy flow rate coming from the CAU is provided to
the different parts of the Cabin and to the Bays
through a complex piping system. In this example,
only a Cabin is taken into account.

Figure 5: Generic ECS

The CAU is composed of a compressor, a turbine,

heat exchangers, pipes and a regulating valve con-
trolled by a PI controller which uses the measured
Cabin temperature and a temperature set point for the
regulation, as shown in figure 6.

Figure 6: Cold Air Unit

4.2 Surrogate model

For rough assessment, a cabin modelled as a vol-
ume or some combination of volumes and heat wall
exchanges may be sufficient. But, for more detailed
insight, in particular for passenger comfort, it is more
suitable to calculate the air flow in cabin using CFD
codes. A usual method is to co-simulate the two
models. For assessment based on small number of
calculations, it is possible to do this; but optimizing
the system may require too many simulations to be
run.

As for passenger comfort optimization, where in-
sight of only a couple of variables in the cabin are
required, it is better to build a reduced surrogate
model from CFD and optimise the system using it as
described in figure 7.

Eric Thomas, Michel Ravachol, Jean Baptiste Quincy and Martin Malmheden

DOI Proceedings of the 9th International Modelica Conference 859
10.3384/ecp12076855 September 3-5, 2012, Munich, Germany

Figure 7: Cabin modeling options

Several types of surrogate models can be used to

approximate the CFD response, RBF (Radial Basis
Function) being one of them. A surrogate model is a
parameterized function. In our use case, inputs are
temperature T and velocity u of the air injected into
the Cabin, plus external temperature Tex. Output are
temperatures at several selected points in the cabin:
T_feet, T_head and T_sensor which are temperatures
around passenger feet and head, sensor used for tem-
perature control feedback.

Figure 8: Surrogate model inputs and outputs

The function is expressed by a mathematical for-

mulation that is parameterized by a set of weights.
These weights are computed so that the surrogate
model matches the CFD response.

4.3 Surrogate model integration in Modelica

To integrate the new model, we need to modify
the interface between the CAU and the Cabin to de-
fine a common interface that is usable for a number
of models both Modelica native and imported ones.

Exchangeable models are declared as replaceable
and constrained by the specified base model which
manages the interface connections compatibility to
other sub-systems. It is done in a similar way as
made in the Modelica library called VehicleInter-
face.

Figure 9: Modelica model with replaceable components

Therefore, when implementing the system tem-

plate with a new Cabin representation, only models
having a compatible interface are proposed to the
user, as shown in the following figure.

Figure 10 Interchangeable Cabin models

Internal parts of compatible models are then de-

fined as can be seen below:

Figure 11: compatible interface with a Volume model

Figure 12: same compatible interface with a CFD model

Models allowed to be used can be both native
Modelica models, reduced models such as RBFs im-
plemented in Modelica but reading data exported
from Isight at runtime, FMU’s or other. This ap-

Collaborative complex system design applied to an aircraft system

860 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076855

proach shows how a flexible common system struc-
ture can be defined using the redeclare/replaceable
constructs to allow simple configuration of a large
number of architecture design alternatives incorpo-
rating different levels of granularity and origin of the
subsystems depending on what is the subject matter.

4.4 Stochastic distribution in Modelica

Stochastic properties of parameters used for
analysis like robustness are often added to model
afterwards when needed. Such properties should be
associated to the model by the company that pro-
vides products or sub-systems; Attempts to define
standard definition of uncertainties have been done,
e.g. as expressed in [4]. But it is not yet standardized,
even if it should be.

We have then tried to add these properties in a
way that will be easy to use for adding such metadata
in existing models. It is done by defining base
classes for distributions and extending the models
with these base classes (here adding a tab in the Dy-
mola graphical interface with additional parameters
for probability distributions.)

Figure 13 Stochastic data definition within Dymola

Such meta-data should be managed by the tool

with publishing mechanisms. The following figure
shows an Isight workflow where these stochastic
properties defined within the model are mapped in
order to be reused in a robustness analysis.

Figure 14 Stochastic data extraction

4.5 Design process

During the design process, several activities must
be carried out. Only main ones are presented. The
purpose is not to be exhaustive, but to show work-
flows and illustrate what must be done and how it
could be done. These activities are iterative and must
create formal links between architectures and prod-
ucts with valid requirements (see [1]). They are also
collaborative (see next chapter).

4.5.1 Engineering Requirements
Passenger thermal comfort should be guaranteed

for a whole range of operating conditions. Some spe-
cific operating conditions corresponding to external
temperature extrema have been chosen as dimension-
ing test cases.

Moreover, several objectives have been set:
minimum mass for the system, minimum mass flow
rate extract from the engines.

Among all design space parameters of the model,
several parameters have been selected: turbine effi-
ciency and nozzle area, main heat exchanger effi-
ciency

More types of requirement for an aircraft ECS
may be found in [2].

4.5.2 Functional analysis and Logical architecture
A simple decomposition of the functional and

logical views are presented in next figure. The func-
tional view represents what the system should do,
and the logical view represents how it is imple-
mented. The logical view shows here that Engines
and ECS are parts of two different ATA (ATA 71 for
"Power Plant" and ATA 21 for ECS, exactly "Air
Conditioning and Pressurization")

Figure 15 Functional and Logical Views

Eric Thomas, Michel Ravachol, Jean Baptiste Quincy and Martin Malmheden

DOI Proceedings of the 9th International Modelica Conference 861
10.3384/ecp12076855 September 3-5, 2012, Munich, Germany

4.6 Collaborative process

To manage systems and build previous models,
specific skills are required. Several actors may inter-
act in aircraft manufacturer units or in partner com-
panies.

4.6.1 Actors
To study the collaborative process, several actors

have been identified and defined in the following
table:

Figure 16: Set of involved actors

4.6.2 Collaborative Workflow
A workflow describing the engineering process

has been defined, as shown below.

Figure 17: Collaborative process

Some of the steps are supported by a simulation ser-
vices automated in Isight, as described below.

4.6.3 Design process

4.6.3.1 Sensitivity analysis
Sensitivity is the first analysis performed on a

model. It helps identifying important parameters to
focus on, and parameters on which tolerances may
be relaxed.

Figure 18 Isight sensitivity analysis configured by a spread-
sheet

4.6.3.2 Optimization
The final aim is to produce optimized systems

according to multi-objective requirements. It is then
an important activity among all design activities.

4.7 Leveraging V6 RFLP

As we mentioned earlier, efficient collaboration
between stakeholders is a key ingredient. V6 CATIA
Systems enables such collaboration by:
• Providing a unique data referential for require-

ments (R), functional decomposition (F), logical
product definition (L) including 0-1D models (cf.
lower part of picture 20 showing the ECS), physi-
cal product definition (P) including CAE multi-
dimensional models.

• Tracing dependencies of these data through im-
plement relationships (cf. right hand side of pic-
ture 20 showing implemented/implementing rela-
tionships thru the R-F-L-P cascade),

• Tracing additional dependencies by capturing
data flow of simulation processes (detailed in
next section).

Figure 19: Mapping of use case data to V6 data referential

(RFLP and Simulation)

Collaborative complex system design applied to an aircraft system

862 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076855

Figure 20 Thermal Architect V6 cockpit: ECS RFLP (right),
ECS system (bottom) and design exploration services (top)

In this way, not only each stakeholder can man-
age the lifecycle of his/her own data properly but
also have access to the data published by other
stakeholders and author his/her data in this context.
Out-of-sync situations can be properly detected in
the case some upstream data is revisioned.

Figure 21 Compass showing that a system reuses an old ver-
sion of a requirement parameter (outlined in red).

4.8 Providing on-the-shelf services for the
Thermal Architect

Figure 22: Services to the Thermal Architect

Through its process integration capability, Isight
enables Method Engineers to build automated simu-
lation services intended to the Thermal Architect and
CAE analyst. Complementarily, simulation data
management capabilities of SIMULIA V6 Scenario
Definition module are used to manage the lifecycle
of these services and to deploy them within the en-

terprise. Moreover, it will manage the data relative to
each usage of these services.

These simulation services are intended to be ge-
neric enough so that they are applicable on a class of
design problems, such that, once a service is pub-
lished by the Method Engineer, this service can be
used on different designs without requiring rework
by the consumer of this service.

After instantiation by the end user, the V6 impact
graph functionality will enable to completely trace
the data flow of the simulation data produced by
these services, so that the end-users will be able to
understand which data contributed to the generation
of a particular data. The example below shows the
dependency of an optimized design candidate on:
• the parameterized system architecture (data cre-

ated by the Thermal architect)
• the CFD model used to generate the surrogate

model that is fed into the 0-1D modelling (data
created by the CAE analyst).

Figure 23: Traceability

4.9 Parameter management

PLM parameters can be defined within the re-
quirements by the Aircraft Architect and reused e.g.
within the Logical system by the Thermal Architect.

These PLM parameters, which have a lifecycle of
their own and are likely to be revisioned, can be used
to publish requirements characteristics such as ex-
pected Cabin temperature range (e.g. between 20 and
24°C), range of operating conditions (e.g. external
temperature between -60 and 40°C) that the aircraft
can be exposed to, as well as performance targets
(e.g. maximum mass).

These PLM parameters are then available down-
stream in the R-F-L-P cascade, and can be used lo-
cally to valuate Knowledgeware parameters that pa-
rameterize applicative V6 data like CATIA System
Modelica models.

Reuse of Knowledgeware parameters in the Mod-
elica models creates links between parameters in the
Modelica models and other data in order to ensure
consistency between teams of different engineering
disciplines that normally do not have much direct

Eric Thomas, Michel Ravachol, Jean Baptiste Quincy and Martin Malmheden

DOI Proceedings of the 9th International Modelica Conference 863
10.3384/ecp12076855 September 3-5, 2012, Munich, Germany

interaction. An example that we show is how a pa-
rameter from the requirements like the external tem-
perature range is reused to drive the values of the
external temperature within the alternative models of
the Environment of the ECS.

Figure 24: Parameter Flow from Requirements to System

4.10 Decision support interactive environment

In order to identify the design points of interest
and to be able to compare these design points, there
is a need for a graphical environment that is able to
show two complementary views of the engineering
problem (cf. figure 25): the analytical view focusing
on the performance and constraints (cf. figures 26
and 27), and the behavior centric view that shows,
for a specific design point, the associated simulation
results (0-1D, CFD, etc…) showing how the virtual
product behaves.

This graphical environment is fed with the results
generated by design exploration processes mentioned
in section 4.8 and is itself packaged as a service to
ensure efficiency, consistency and traceability, quite
important characteristics for the decisions that will
be taken using this environment.

Figure 25: Graphical Environment for Decision Support

Figure 26: Decision views

In addition, using surrogate model it is possible
make interactive request offline. For instance, the
feasible domain can be interactively visualized for
any combination of design parameters and con-
straints (cf. figure 27)

Figure 27: Interactive feasible domain

The ability to performed interactive analysis is a
major towards performing an interactive “what if
analysis”.

Collaborative complex system design applied to an aircraft system

864 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076855

5 Conclusions

In this article, we have tried to sum up what
should be a truly efficient tool for aircrafts systems
design. A lot of work has been done to obtain a cut-
ting edge tool which includes system management in
a PLM framework.

The purpose is to help designers to focus on im-
portant problems in a more and more complex con-
text by providing smart tools that allow them to per-
form their task more efficiently.

For system simulation, Modelica is a key factor.
Many enhancements of the language have made it
the leading modeling language for physical model-
ing. Last but not least is the new integration of syn-
chronous semantics in Modelica 3.3 which allows
state of art modeling of control systems and digital
electrical systems.

Modelica is spreading rapidly in aerospace appli-
cations. Even if the language is much more efficient
than other languages, there are still some challenges
to have efficient simulations involving large hybrid
models of complex multi-systems architectures.
Most of these challenges will be studied in the next
big European project MODRIO (Model Driven
Physical Systems Operation).

Acknowledgements

This work was partially supported by the French
government through the Systematic CSDL project.

References

[1] Advances in Product Modelling and Simula-
tion at Dassault Aviation; Lionel de la
Sayette; RTO AVT Symposium, April 2002.

[2] Modelling of System Properties in a Mode-
lica Framework Audrey Jardin, Daniel Bous-
kela, Thuy, Nguyen, Nancy Ruel (EDF
R&D), Eric Thomas, Laurent Chastanet
(Dassault-Aviation), Raphaël Schoenig, San-
drine Loembé (Dassault-Systèmes), Mode-
lica Conference 2011.

[3] Projet CSDL :, Conception en phase amont
de systèmes complexes sur la plateforme
PLM/SLM de Dassault Systèmes Michel Ra-
vachol, Jean-Baptiste Quincy, NAFEMS Pa-
ris, june 2012.

[4] Modelling of Uncertainties with Modelica
Daniel Bouskela, Audrey Jardin (EDF
R&D), Zakia Benjelloun-Touimi (IFP Ener-
gies nouvelles), Peter Aronsson (MathCore

Engineering), Peter Fritzson (Linköping
University) Modelica Conference 2011.

Project Sites

[5] www.modelica.org
[6] www.eurosyslib.org
[7] www.modelisar.com
[8] www.ITEA2.org / Modrio

Eric Thomas, Michel Ravachol, Jean Baptiste Quincy and Martin Malmheden

DOI Proceedings of the 9th International Modelica Conference 865
10.3384/ecp12076855 September 3-5, 2012, Munich, Germany

Collaborative complex system design applied to an aircraft system

866 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076855

Backward simulation - A tool for designing more efficient mechatronic systems

Backward simulation - A tool for designing more efficient
mechatronic systems

Matthias Liermann
American University of Beirut, Department of Mechanical Engineering

www.aub.edu.lb
matthias.liermann@aub.edu.lb

Abstract

This paper proposes the use of backward simulation
with Modelica as a tool to improve system design. The
aim is to introduce system simulation into early de-
sign stages of mechatronic systems and to use the same
software tools and model libraries that are also used in
later stages for dynamic analysis and control design. It
seems that the necessity of a control design is one of
the main obstacles against the use of conventional dy-
namic system simulation in early design stages. The
main benefit of backward simulation is that it does not
require an implementation of feedback control.

The backward simulation approach is explained us-
ing the example of a servo-hydraulic drive. The paper
shows that it can help to significantly reduce the en-
ergy consumption of this system. It is possible to sim-
ulate typical duty cycles of the drive without the need
to redesign the control for each change.

Keywords: backward simulation; forward simula-
tion; model inverse; hydraulics; mechatronics; servo-
drive; efficiency optimization; servo drives; design
process

1 Introduction

Dynamic system simulation is useful to analyse the dy-
namic behavior of systems, to design controllers or to
determine cumulative system characteristics. Cumula-
tive characteristics, such as for example energy con-
sumption, depend on the definition of a typical load
cycle. Simulation can be used to determine the state
variables of components of the system for this load
cycle and to predict the expected losses and total en-
ergy consumption. This is attractive for the designer
in the initial stages of system development. A typical
example is the design of a servo-drive. The designer
has to make many choices in the initial design stages.
Choices include the appropriate type of drives, such

as electrical, hydraulic or pneumatic, drive configura-
tion. For each drive type the designer has to size its
components. While dynamic simulation could be very
helpful in making these choices, it is, however, rarely
used. One of the main reasons is the need for control
design, which often requires expert knowledge, [8].

Today, engineers use mainly steady state relation-
ships to size components of a mechatronic system.
This can be done with spreadsheet calculations. Some
manufacturers move to offer specialized software for
the dimensioning and analysis of a drive solution such
as the SIZER configuration tool [1] for electric drives.
Such tools take some dynamic forces into account, but
only for predefined, typical scenarios.

This paper presents the method of backward simu-
lation which allows the use of dynamic system simu-
lation to study different system configurations and to
size components. Backward simulation in the context
of this paper is synonymouos with (forward) simula-
tion of the inverse system model. It means that in-
put and output of the simulation are switched and that
the direction of computation goes backward from the
physical outputs to required control inputs. As will
be explained in the paper, the main benefit of back-
ward simulation is the fact that a control does not have
to be implemented. Another benefit is, that imple-
mented with Modelica, the backward simulation ap-
proach could be used with the same models and sim-
ulation tools used for the conventional (forward) sim-
ulation approach. This would lead to a better com-
munication between design and control engineers and
improve the product development.

The rest of the paper is organized as follows. The
role of support of dynamic system simulation in prod-
uct design and the benefits that are coming with the
additional use of backward simulation are described
in section 2. Section 3 reviews the use of backward
simulation in literature and presents two simple ex-
amples to explain the idea and concept. Section 4

DOI Proceedings of the 9th International Modelica Conference 867
10.3384/ecp12076867 September 3-5, 2012, Munich, Germany

presents the mathematical model of a hydraulic drive
as an exemplary application of the backward simula-
tion approach. The backward simulation approach is
demostrated by using it to optimize the hydraulic drive
efficiency for a certain load cycle in section 5. Section
6 provides the conclusion of this study.

2 Dynamic simulation support in
product development

Figure 1 illustrates the conventional support of dy-
namic simulation in the design of a servo drive in the
left flowchart. Usually the design starts by specifying
the desired motion and the expected load. This pro-
vides the necessary information about required torque
and speed which can be used to configure the sys-
tem and size its components. The designer depends
on analytic and empirical design formulas which he
can solve for the unknown parameters. This approach
makes sure that the hard requirements can be met. But
it may be diffcult to include some other important as-
pects of the design, such as average power consump-
tion or required cooling power. These are cumulative
characteristics which depend on the average use. For
those aspects to be included, respective empirical or
analytical design formulas are harder to define. Some
sizing tools such as mentioned in [1] can actually com-
pute power consumption for standard drive cycles on
the basis of steady state simulaton.

Dynamic system simulation is usually used only in
later stages of product development. It is used to ac-
celerate commissioning by setting up control hardware
with hardware-in-the-loop simulation. It is also used
in commissioning or to trouble-shoot unexpected sys-
tem behavior. The design and implementation of a
feedback control is a characteristic part of dynamic
simulation, certainly of servo-drives which operate
in closed loop. The control design verifies whether
the requirement specifications can be met. Once the
control is working, also the cumulative characteristics
such as power consumption and required cooling can
be assessed. If the investigations identify the need to
make changes at this stage in product development, it
is clear that the costs of making those changes will be
high compared to changes made during conceptual de-
sign phase.

An alternative design process is shown in the right
side of Figure 1. The initial design is found from the
same knowledge and experience as in the conventional
design process. The main difference is that backward
dynamic simulation is used right from the beginning.

Figure 1: Backward/Forward vs. conventional simula-
tion support of the design process

The (dynamic) simulation model is built from a com-
ponent library, with the the same models used later
for dynamic analysis and control design. However,
no control is implemented and the simulation is run
in backward mode with the required motion and ex-
ternal forces as boundary conditions. The backward
simulation shows if any component runs into physical
limitations. Also the energy efficiency over a repre-
sentative duty cycle can be assessed. Different con-
figurations can be tested to minimize the energy con-
sumption. The backward simulation helps to detect
and address dynamic performance issues. As a result it
reduces the risk of costly design changes in late stages
of the product development. The control design and
dynamic analysis of the closed loop can be done at a
later stage in the product development. The key advan-
tage of backward simulation for the conceptual design
is that a perfect control system is used, where the mea-
sured signal is always identical to the desired signal.

Another advantage is that the same dynamic model
can be used in later stages of system development for
the control design and hardware-in-the-loop simula-
tion. The only difference between backward and for-
ward simulation is in the definition of inputs and out-
puts and that backward simulation does not need a
control to work. Whereas traditionally there is only
small overlap of the fields of expertises of design and
control engineers, combined backward/forward simu-

Backward simulation - A tool for designing more efficient mechatronic systems

868 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076867

lation would enable them to use and update a common
tool. This can improve cross-departmental communi-
cation and lead to faster and better product develop-
ment. The use of the backward simulation approach is
illustrated in this paper at the example of sizing of a
hydraulic servo-axis.

3 Backward simulation

Backward simulation basically is forward simulation
of the inverse model. It is to switch cause and effect
of a system simulation. The model used for backward
simulation is the same model used for forward simu-
lation. The difference is in the definitions of inputs
and outputs. The input to the model in forward sim-
ulation becomes the output in backward simulation.
Forward simulation follows physical principles from
cause to effect. Backward simulation can be used to
compute the required input for a given output. Back-
ward simulation, or simulation of the model inverse,
can be well automated with equation based modeling
languages such as Modelica. Dymola, as a simulation
tool for Modelica models, is able to calculate the non-
linear model inverse. This capability can be used ef-
fectively for system configuration and sizing, but also
for nonlinear control. The approach of this paper is
closely related to the approach taken in [2], which
uses the inverse simulation approach for the optimal
selection of drive components in aircraft design. The
use of inverse model simulation for nonlinear control
schemes is presented in [14, 12].

This paper uses the term backward simulation syn-
onymously for simulating the model inverse. The
term backward simulation has been used also by
other research groups. The program Advisor, a Mat-
lab/Simulink implementation of model libraries used
for optimization of hybrid vehicle drive trains, uses
a combined backward-forward simulation approach,
[17, 9]. The motivation of using the combined
backward-forward approach is to be able to focus on
system design. The optimization of drivetrain config-
urations can be approached without the need for con-
trol design. The problem of Advisor is that the way in
which the models of this library can be used is prede-
termined, either backward or forward. Equation based
modeling languages such as Modelica have the advan-
tage that the causality of their use is not predefined.

The term backward simulation is also used in the
context of backward planning (for example [5]) or for
simulation of dynamic systems backward in time (see
[6, 13, 16, 15]). In these cases, the simulation aims to

help find the system parameters and initial conditions
which lead to a certain result.

3.1 Backward simulation in Modelica

In many components of the Modelica libraries, signal
inputs are used, to apply external forces or other con-
straints or to make changes in component parameters.
Signal inputs put restrictions on the connection struc-
ture, e.g. an "input" cannot be connected to an "in-
put". It has to be connected to an output. However, it
does not define the computational causality as in other
approaches like Simulink. A typical example is a hy-
draulic control valve modeled as a turbulent resistance,
see Figure 2. The volumetric flow rate Q is propor-

Figure 2: Valve from the Hydraulics library

tional to the partial opening xV and to the square root
of the pressure difference p1− p2 across its ports [10].
With the flow gain cv the flow through a control valve
is expressed as

Q = cvxV
√

p1− p2 (1)

Since the square root function is not defined for neg-
ative pressure differences and not differentiable for
∆p = 0, often an approximate solution for the square
root function is used to implement the flow-pressure
relationship in a model [3]. Such a function is im-
plemented as RegRoot in the standard Modelica Li-
brary in Modelica.Fluid.Utitlities. It is strictly
monotonically increasing, continuously differentiable
and therefore invertible.

Q = cvxV ·RegRoot(p1− p2,∆psmall) (2)

For the implementation of control valves as
for example in Modelica.Fluid.Valves.-

ValveIncompressible, it is assumed that the
partial opening xV is not affected by the pressure
difference or flow through a valve. The valve opening
is therefore defined as a signal input.

Matthias Liermann

DOI Proceedings of the 9th International Modelica Conference 869
10.3384/ecp12076867 September 3-5, 2012, Munich, Germany

For backward simulation, the partial valve opening
xV needs to be solved for from given flow Q and pres-
sure difference p1− p2.

xV =
Q

cV
√

p1− p2
(3)

With simulators such as Simulink, where the causal-
ity of a model is predefined, assigning pressure and
flow as given from boundary conditions leads to an
error since the valve opening is defined as a sig-
nal input. With Modelica this is possible, as Fig-
ure 3 shows. With the block Blocks.Math.Inverse-

Figure 3: Valve from the Hydraulics library

BlockConstraints it is possible to connect an input
function to the volumetric flow sensor and to impose a
required flow on the computation while the signal in-
put of the valve can be interpreted as a signal output.
What this component does, is, to simply connect the
two input signal connectors with each other as well as
the two output signal connectors. The effect is that the
model inverse is automatically derived by the Model-
ica translation engine.We see how Modelica allows to
simulate the system ’backwards’ simply by changing
the boundary conditions for inputs and outputs.

3.2 Simple backward simulation example

The input step function in Figure 3 is filtered with a
first order filter, without which the simulation would
fail. As already stated, backward simulation is for-
ward simulation of the model inverse. Inverting a dy-
namic model usually requires the derivatives of the in-
put function. This is illustrated at the example of a
simple linear system expressed by the transfer func-
tion

G(s) =
Y (s)
U(s)

=
1

s2 +2s+1
. (4)

The input-output dynamics written in state differential
form is

d
dt

[
x1
x2

]
=

[
0 1
−1 −2

]
+

[
0
1

]
u (5)

y =
[
1 0

][x1
x2

]
(6)

The inverse of this system can be expressed as transfer
function

G−1(s) =
U(s)
Y (s)

=
s2 +2s+1

1
. (7)

However, there is no equivalent expression in state
differential form. To express the inverse dynamics,
the states would be functions of their derivatives. In
Simulink and other assignment based simulation lan-
guages, it is important that each model element can
be expressed in state differential form. For the inverse
dynamics element this is impossible.

The state differential form is required also for the
simulation of Modelica models. However, this is
reached through automated rearrangement of all sub-
model equations. This is a difference to other simu-
lator concepts where each element or sub-model must
be represented in state differential form initially.

Figure 4 illustrates how simulation of the inverse
model dynamics is possible when the whole system
is considered. To implement the simulation of the in-
verse model, the derivatives of the input to the inverse
model must exist. Generating the input through a 2nd

order filter assures that two derivatives exist.

Gf(s) =
Y (s)
R(s)

=
25

s2 +10s+25
. (8)

Applying the filtered signal Y (s) = Gf(s)R(s) to the
inverse model Eq. 7 yields

U(s) = R(s) · 25(s2 +2s+1)
s2 +10s+25

(9)

The combined system can be expressed in state differ-
ential form.

d
dt

[
x1
x2

]
=

[
0 1
−25 −10

]
+

[
0

25

]
r (10)

u =
[
−24 −8

][x1
x2

]
+25r (11)

Figure 4 shows that the results of backward and for-
ward simulation match. Feeding the forward simu-
lation with the result u of the backward simulations
yields the desired system response y that was given as
input to the backward simulation.

Backward simulation - A tool for designing more efficient mechatronic systems

870 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076867

Urequired
G(s)

1

s2 + 2s+ 1

Gf(s)

25

s2 + 10s+ 25

G¡1(s)

s2 + 2s+ 1

1

UrequiredYdesired
1

s

Gf(s)

25

s2 + 10s+ 25

Ydesired
1

s

Yforward

Figure 4: Backward simulation example

3.3 Limitations of backward simulation

The backward simulation approach is limited to sys-
tems for which the model inverse exists and is stable.
Coulomb friction for example depends on the sign of
velocity. For zero velocity the coulomb friction is un-
defined and depends on the history of motion. This
function is not invertible without adjustments. An-
other challenge are physical limitations implemented
in the models. If, during backward simulation, one
component reaches a physical limitation, the states
which cause the behavior of the model in limitation
are not clearly defined anymore. There are infinitely
possible combinations of states which cause the lim-
ited model to be in its limit. The cases for which the
model inverse cannot be obtained are further elabo-
rated in [14, 12]. It is subject of future research to
show how relevant these issues are for typical config-
uration and sizing problems and how they can be ad-
dressed appropriately. The next section explains the
mathematical model of the example amplication for
which the advantage of the backward simulation ap-
proach is demonstrated.

4 Model of example application

A typical model for a servo-hydraulic drive is pre-
sented as given in many text books such as [7, 10, 11].
The drive consists of a servo-valve which connects the
two ports of a cylinder to a constant pressure supply
and a tank, see Figure 5.

Figure 5: Hydraulic scheme

The model can be described by a system of nonlin-
ear state differential equations of dimension 6.

ẍp =
1

mt(xp)

[
(pA−α pB)Ap−Ff(ẋp)−Fext

]
(12)

ṗA =
1

Ch,A

[
QA(pA,xV)−Apẋp +QLi(pA, pB)

]
(13)

ṗB =
1

Ch,B

[
QB(pB,xV)+αApẋp−QLi(pA, pB)

]
(14)

ẍV = −ω
2
VxV−2DVωV ẋV +ω

2
V u (15)

Where the states and parameters are listed in Table 1.
The flow equations are nonlinearly dependent on the

valve partial opening xV and the pressure difference.
It has to be defined for different cases depending on
which ports are connected with each other.

QA = cV sg(xV− xo)sign(pS− pA)
√
|pS− pA| . . .

· · ·−cV sg(−xV−xo)sign(pA− pT)
√
|pA− pT| (16)

QB = cV sg(−xV− xo)sign(pS− pB)
√
|pS− pB| . . .

· · ·− cV sg(xV− xo)sign(pB− pT)
√
|pB− pT| (17)

As already explained in section 3.1, the term
sign(∆p)

√
|∆p| does not work reliable in a Modelica

simulator since there is an infinite derivative whenever
∆p becomes zero. For practical implementation the
approximate function RegRoot can be used. The dif-
ferent switching conditions are realized using the func-
tion sg, which is defined as:

sg(x) =
{

0, for x < 0
x, for x≥ 0

(18)

Matthias Liermann

DOI Proceedings of the 9th International Modelica Conference 871
10.3384/ecp12076867 September 3-5, 2012, Munich, Germany

Table 1: States and parameters of model
Symbol Comment Unit
Ch capacity of chamber m3

Pa
E ′A,B effective bulk modulus Pa
Fext external force N
Ff friction force N
pA,B pressure in A,A Pa
QA,B flow into chamber A,B m3

s
QLi leakage from chamber B

into A

m3

s

u valve signal
maximum valve signal -

VA,B Volume chamber A,B m3

xp piston position m
xV valve spool partial open-

ing
-

Ap = 7.6 ·10−4 piston face side surface
area

m2

CLi = 1.6 ·10−13 leakage coefficient m3

Pa.s
cV = 8.9 ·10−8 valve flow gain -
cS = 0.01 Stribeck velocity m

s
DV = 0.9 damping ratio of valve -
Emax = 1.7 ·109 bulk modulus at infinite

pressure
Pa

Fc0 = 100 Coulomb friction force N
Fs0 = 100 Static friction force N
mt = 50 total mass of piston kg
pS = 200 ·105 supply pressure Pa
pT = 2 ·105 reservoir pressure Pa
s = 0.8 stroke m
xo =−1% fractional valve overlap -
α = 1 piston surface ratio -
γ = 800 Approximation factor -
ωV = 628 natural undamped fre-

quency of valve

rad
s

σ = 1000 viscous friction coeffi-
cient

N.s
m

According to the manufacturing of the valve, the spool
can have over- or underlap with the sleeve in the mid-
dle position. The overlap parameter xo takes this into
account. If it is negative, it means that the valve is un-
derlapped and therefore all valve ports are connected
with each other in the middle position of the valve.

The leakage flow across the piston QLi is the cylin-
der pressure difference multiplied by the leakage coef-
ficient CLi.

QLi =CLi(pB− pA) (19)

The pressure gradient ṗ in a cylinder chamber is char-

acterized by the hydraulic capacity

Ch =
V
E ′

(20)

which is the quotient of Volume over effective bulk
modulus of the respective chamber. The volumes
change with position of the piston, while the bulk mod-
ulus varies with the chamber pressure. An emperical
model proposed by [4] is

E ′ = Emax

[
1− e−0.4−2·10−7 p

]
(21)

where Emax is the bulk modulus at infinite pressure.
The friction of the hydraulic cylinder can be rep-

resented by the stribeck curve, which is a piecewise
defined function.

Ff(ẋp) = σ ẋp + sign(ẋp)

[
Fc0 +Fs0e−

|ẋp |
cs

]
(22)

where σ is the viscous friction coefficient, Fc0 the
coulomb friction, Fs0 the static friction and cs the so-
called Stribeck velocity. Since the friction model as
given by Eq. (22) is not invertible, an approximation
of it is used by replacing the sign function.

sign(ẋp)≈
2
π

arctan(γ ẋp) (23)

And therefore:

|ẋp| ≈ ẋp
2
π

arctan(γ ẋp) (24)

With the values given in Table 1, the friction function
is plotted in Figure 6.

Figure 6: Friction model

The set of differential algebraic equations Eq. (12-
15) is given in the standard form of ordinary differ-
ential equations, where the state derivatives are ex-
pressed as a function of the states and inputs. For

Backward simulation - A tool for designing more efficient mechatronic systems

872 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076867

backward simulation the model inverse needs to be
expressed by rearranging the equations. This is not
possible algebraically in this case. However, Model-
ica tools, such as Dymola, can generate nonlinear in-
verse models automatically as explained in section 3.
The next section explains how backward simulation
can help in sizing a hydraulic system with respect to
static and dynamic requirement specifications.

5 Efficiency study using dynamic
backward simulation

Backward simulation allows to study the drive’s per-
formance for a whole duty cycle without the need to
design a controller. In fact, perfect control is assumed
because the expected output is forced on the system
as a boundary condition. This is an advantage, since
sometimes it is the necessity of control design which
discourages the early use of system simulation. Of-
ten, in early stages of system development, issues such
as architecture configuration and component sizing is
important. System simulation in forward manner may
then be impractical if changes in the system always
require re-design of the controller. It is interesting to
note that Modelica allows to use the same model for
forward and backward simulation. This means that the
same model used in backward manner for system con-
figuration and component sizing may be used in for-
ward manner later for the control design.

The idea of backward simulation is to force the
prescribed duty cycle as boundary conditions on the
physical outputs of the system, see Figure 7. Con-
sequently, by simulating the inverse model, the corre-
sponding physical inputs are calculated. To do this, no
control has to be implemented. The advantage of this
approach is demonstrated at the example of a hydraulic
servo drive as modeled in the previous section. The
model ’HSS’ in Figure 7 is described by Eqs. 12-15.
For the sake of clarity the system was not put together
by the commercial Modelon Hydraulics library. The
components of this library include some effects which
cause problems for the backward simulation approach.
For example, an interpolation function is used to cal-
culate the average density within a resistance. This
interpolation function causes to fa

Figure 8 shows the required (filtered) duty cycle,
the position and velocity trajectories and the external
force impact. In this duty cycle the hydraulic drive
moves out with a constant velocity of 0.23 m

s while ap-
plying a constant force on a workpiece of 10kN. The
return stroke takes place with high velocity of 0.8 m

s .

Figure 7: Dymola backward simulation of hydraulic
servo system

The objective of optimization is to find the right
sizes of cylinder and valve as well as choosing the op-
erating pressure. To do this in conventional forward
simulation, a control has to be designed. In case the
requirement specifications cannot be met, it is unclear
in forward simulation whether the suboptimal control
limits the performance or whether the components just
don’t allow for a better performance.

Simulation of the setup is performed in backward
simulation with the parameters as listed in Table 1.
The design engineer can examine from the results
whether component limitations were violated. It is
also possible to examine the total energy consump-
tion. Figure 9 shows the required valve signal in-
put HSS.xv, the cylinder pressures HSS.pA, HSS.pB
and the cumulated amounts of energy Eloss, Emech, and
Emech+fric. The top plot indicates that the valve size
is too small since it opens beyond 100%. The cylin-
der pressures are within the range between supply and
tank pressure. At the beginning of the force impact,
the pressure in chamber A has a peak of 185 bar. The
load pressure during the working stroke is ∆pA,B =
(167− 34)bar which is 67% of the available pressure
difference. According to [11] this is the operating
point of optimal efficiency for this type of servo drive.
This can be seen well by looking at the bottom plot of

Matthias Liermann

DOI Proceedings of the 9th International Modelica Conference 873
10.3384/ecp12076867 September 3-5, 2012, Munich, Germany

Working stroke return stroke

t [s]

t [s]

t [s]

[m]

[m/s]

[N]

Figure 8: Duty cycle of drive

Figure 9. It compares the total hydraulic input energy
Eloss, the mechanical output energy Emech and the cu-
mulative curve of mechanical output energy and fric-
tion energy Eloss+fric. In this example, the friction en-
ergy is negligible compared to losses in the valve. Dur-
ing the working stroke, the efficiency is approximately
67% which is optimal according to [11]. The total
energy consumption for the working stroke is 3487J.
The backward simulation reveals that the energy con-
sumption for the return stroke is equal. This result is
interesting although obvious. One might expect that
the return stroke should consume less energy because
no load is applied. However, the same flow is con-
sumed at the same pressure level. Therefore the power
is equal. The backward simulation can now be used
to alter the design to achieve a higher efficiency while
not violating the valve limitations at the same time.

The losses during the return stroke can be reduced
by changing the area ratio of the cylinder. Choosing a
faster valve reduces the dynamic peak in the valve and
pressure signal at the moment when the load is sud-
denly applied. Reducing the cylinder area decreases
the overall losses and increases the load pressure. The
changes according to Table 2 are found through few

Figure 9: Valve signal, pressures and loss curves for
duty cycle

iterative steps and do not represent an optimum solu-
tion. But the effect in terms of reduction of energy
consumption is significant, as Figure 10 shows.

The energy consumption of the improved system
could be reduced by 38% from 7029J to 4323J for
the example duty cycle. The valve was doubled in size
and does not run into limitations anymore. This exam-
ple demonstrates the advantage of the use of backward
simulation for the design of servo drives. Through the
use of backward simulation the energy efficiency of
the systems could be analyzed for a representative duty
cycle without the need to design a control. The control

Table 2: Modified parameters
Symbol Comment Unit
Ap = 6.08 ·10−4 piston face side surface

area
m2

cV17.8 ·10−8 valve flow gain -
α = 0.5 piston surface ratio -
ωV = 1256 natural undamped fre-

quency of valve

rad
s

Backward simulation - A tool for designing more efficient mechatronic systems

874 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076867

Figure 10: Valve signal, pressures and loss curves for
optimized system

design is the next step after the dimensions of the drive
have been determined.

6 Conclusion

This paper explains the idea of backward simulation,
which is basically forward simulation of the inverse
model. It was shown at the example of the mathemat-
ical model of a hydraulic servo-drive that building the
model inverse by hand is not a trivial task. Depend-
ing on the system under study, the model inverse can
only be determined numerically. Modelica tools such
as Dymola provide this capability and therefore facili-
tate this new simulation technique. It is explained that
the backward simulation approach only works if the
system inverse can be build from the model. This may
not be possible for systems with backlash or hystere-
sis. Phenomena like coulomb friction, which are dis-
continuous, need to be approximated.

The advantage of backward simulation is demon-
strated in this paper at the example of a hydraulic
servo drive for which a typical duty cycle was given.
With little effort, new system parameters are found for

which the energy consumption is reduced by nearly
40%.

This study did not make use of already available li-
braries.

7 Acknowledgements

The author expresses thanks to the University Re-
search Board of the American University of Beirut for
funding this research.

References

[1] Michael Ambros. Engineeringtool sizer. In
Antriebstag 2011, Siemens Kundenveranstal-
tung, 2011.

[2] Johann Bals, Gerhard Hofer, Andreas Pfeiffer,
and Christian Schallert. Object-oriented inverse
modelling of multi-domain aircraft equipment
systems with modelica. In Peter Fritzson, ed-
itor, Proceedings of the 3 International Model-
ica Conference, Linkping, November 3-4, 2003,
pages 377–384, 2003.

[3] Francesco Casella, Martin Otter, Katrin Proelss,
Christoph Richter, and Hubertus Tummescheit.
The modelica fluid and media library for model-
ing of incompressible and compressible thermo-
fluid pipe networks. In Proceedings of the 5 In-
ternational Modelica Conference, September 4t-
5th, 2006, volume 2, pages 631–640, 2006.

[4] W. Hoffmann. Dynamisches Verhalten hy-
draulischer Systeme, automatischer Modellauf-
bau und digitale Simulation (Diss.). PhD thesis,
RWTH Aachen University, 1981.

[5] Chueng-Chiu Huang and Hsi-Kuang Wang.
Backward simulation with multiple objectives
control. In Proceedings of the International Mul-
tiConference of Engineers and Computer Scien-
tists 2009 (IMECS), volume 2, 2009.

[6] Amor V.M. Ines and Peter Droogers. Inverse
modelling in estimating soil hydraulic functions:
a genetic algorithm approach. Hydrology and
Earth System Sciences, 6(1):49–65, 2002.

[7] Mohieddine Jelali. Hydraulic Servo Systems:
Modelling, idendification and control. Springer,
2003.

Matthias Liermann

DOI Proceedings of the 9th International Modelica Conference 875
10.3384/ecp12076867 September 3-5, 2012, Munich, Germany

[8] Matthias Liermann and Hubertus Murrenhoff.
Knowledge based tools for the design of servo-
hydraulic closed loop control. In International
Symposium on Power Transmission and Motion
Control (PTMC), pages 17–28, Bath, England,
2005.

[9] T. Markel, A. Brooker, T. Hendricks, V. Johnson,
K. Kelly, B. Kramer, M. O’Keefe, S. Sprik, and
K. Wipke. Advisor: a systems analysis tool for
advanced vehicle modeling. Journal of Power
Sources, 110(2):255 – 266, 2002.

[10] Herbert E. Merrit. Hydraulic control systems.
John Whiley & Sons, Inc., 1967.

[11] Hubertus Murrenhoff. Servohydraulik - geregelte
hydraulische Antriebe [Servo-hydraulics - closed
loop controlled hydraulic drives]. Shaker,
Aachen, 2008.

[12] Martin Otter. Modeling, simulation and control
with Modelica 3.0 and Dymola 7.0 (Preliminary
Draft, Jan 21, 2009). DLR, 2009.

[13] A. Stohl, C. Forster, S. Eckhardt, N. Spichtinger,
H. Huntrieser, J. Heland, H. Schlager, S. Wil-
helm, F. Arnold, and O. Cooper. A back-
ward modeling study of intercontinental pollu-
tion transport using aircraft measurements. Jour-
nal of Geophysical Research, 108(D12):Ach 8 1–
18, 2003.

[14] M. Thümmel, G. Looye, M. Kurze, M. Otter, and
J. Bals. Nonlinear inverse models for control.
In Gerhard Schmitz, editor, Proceedings of the
4th International Modelica Conference, Ham-
burg, March 7-8, 2005, pages 267–279, 2005.

[15] Christopher D. Twigg and Doug L. James. Back-
ward steps in rigid body simulation. ACM Trans-
actions on Graphics, 27:25:1–10, 2008.

[16] Eric A. Wan, Er A. Bogdanov, Richard Kieburtz,
Antonio Baptista, Magnus Carlsson, Yinglong
Zhang, and Mike Zulauf. Model predictive neu-
ral control for aggressive helicopter maneuvers.
In Software Enabled Control: Information Tech-
nologies for Dynamical Systems, chapter 10,
pages 175–200. IEEE Press, John Wiley & Sons,
2003.

[17] K.B. Wipke, M.R. Cuddy, and S.D. Burch. Ad-
visor 2.1: a user-friendly advanced powertrain
simulation using a combined backward/forward

approach. Vehicular Technology, IEEE Transac-
tions on, 48(6):1751 –1761, November 1999.

Backward simulation - A tool for designing more efficient mechatronic systems

876 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076867

Modelling of new vehicle suspension concept with integrated electric drive

Modelling of new vehicle suspension concept
with integrated electric drive

Jakub Tobolářa Jakob Müllerb Alfred Prucknerb

aGerman Aerospace Center (DLR), Institute of Robotics and Mechatronics, Germany;
bBMW Group Forschung und Technik, Munich, Germany

Abstract

In the last decade an electrification of the powertrain
became the significant trend in the passenger cars’ de-
velopment. Beside hybrid electric powertrains there
is also a variety of solutions for pure electric cars.
The presented paper introduces a Modelica model of
an electric vehicle solution with rear driven wheels.
The suspension model containing an individual elec-
tric drive placed close to the wheel will be discussed
with focus on different modelling aspects. Moreover,
some typical characteristics of suspension will be pre-
sented.

Keywords: Modelica; vehicle suspension; planetary
gerbox; electric car; connecting multibody with one-
dimensional

1 Introduction

In the last years, the electrification of the powertrain
of passenger cars became one of the huge challenges
for the vehicle developers. This is the consequence of
the legislative demand to reduce the emissions and of
customer wish to reduce fuel consumption as well.

Several solutions for the hybrid electric vehicles ex-
ist such as parallel or serial arrangement of internal
combustion engine and electric drive. Whereas such
solutions are preferred for mass-production vehicles
the pure electric vehicles are still designed in signif-
icantly lower series.

Electric cars commonly utilise either vehicle body
mounted motors or in-wheel drives. For the first one
the gearbox and drive shafts transmit the drive torque
to the wheels. An alternative concept for electric car
suspension with drive close to the wheel was devel-
oped in the joint research project of BMW Group
Forschung und Technik, DLR and Schaeffler Group.
This concept should utilise advantages of abovemen-
tioned common solutions and additionally minimise

the required space needed for all components includ-
ing battery.

To investigate the behaviour of the suspension in the
early design stage the mutlibody model was created.
Later, a model of electric motor was additionally uti-
lized in an overall vehicle model. Based on the vehicle
model a drive control strategy was developed and op-
timized for various drive manoeuvers.

The presented paper focuses on different aspects of
the modelling in the early design stage.

2 Suspension concept and design

Typical for BMW vehicles, the developed driven sus-
pension was designed for the rear axle, see the result-
ing overall design as shown in Figure 1. The basic
idea was to couple the electric drive fixed on vehicle
body with suspended wheel by means of a gearbox in-
tegrated in the wheel, see [1].

Figure 1: Overall view of the presented rear suspen-
sion (electric drive not displayed)

DOI Proceedings of the 9th International Modelica Conference 877
10.3384/ecp12076877 September 3-5, 2012, Munich, Germany

For the wheel guidance there is used a mechanism
which can be simply imagined as double pendulum, cf.
Figure 2. A swing arm rotating about the axis n1 ori-
ented in lateral direction is fixed on the vehicle body.
The wheel carrier is joined rotationally to this swing
arm, whereby the axis n2 of rotation points to the lat-
eral direction as well. To constrain one redundant
degree of freedom, the wheel carrier is additionally
linked to the vehicle body. The link is placed before
the rotational axis n2 of the carrier. To tune the kine-
matic characteristics of the suspension the orientation
of the two rotational axes n1 and n2 and the position of
the link mounting points can be changed.

Figure 2: Structure of the wheel guidance mechanism

As mentioned above, the in-wheel gear was sug-
gested for the power transmission to minimise the re-
quired space in a vehicle. Due to this solution the elec-
tric drive can be placed close to the wheel at the rota-
tional axis n1 of the swing arm. The driving torque is
transmitted from the drive pinion to the lay shaft on
axis n2 and then to the wheel rim. To reach the de-
sired ratio from drive pinion to wheel, there are two
“planet” gearwheels on the lay shaft, one in contact
with the pinion and the other in contact with the ring
wheel.

To minimise required space a rotational damper and
spiral spring were employed in suspension. Using
such rotational elements was the best way to exploit
the large rotational movements of suspension during
deflection and rebound. The spring was placed on
axis n1 and designed to react the torques acting on the
swing arm. It is supported directly on the vehicle body.

The damper is connected to the swing arm and wheel
carrier instead. Placed on the same axis n2 like the lay
shaft, the rotational velocity of the damper is approxi-
mately double of that of the spring.

Especially for acoustic reasons, there are used elas-
tic bushings and a subframe, too, as usual in the ve-
hicle design. Each of the suspensions is coupled by
means of bushings on the subframe thus constitut-
ing one axle unit. Finaly, the complete subframe is
mounted elastically on the vehicle body.

3 Modelling

The aim of the modelling was to create the multibody
model of the suspension and of the complete vehicle
to perform common analyses during the early design
stage. Additionally, the multibody model was used to
tune the vehicle dynamics control.

In order to promote easy interoperability with the
various automotive libraries not only from DLR, the
created Modelica library was consequently based on
the VehicleInterfaces standards, see [2]. The Vehi-
cleInterfaces focuses on standardising the assemblies
interface definitions without enforcing a standard ve-
hicle model architecture, so that the same assembly
models can be reused in different model architectures.
For example, the chassis assembly uses the same in-
terface definition regardless of it being a basic one-
dimensional (1D) longitudinal model or a complex
multibody vehicle dynamics model.

All the assembly models were created based on
the idea of template and parametrised models as
also utilised in the PowerTrain library from DLR,
see [3], [4] and [5]. Therefore, every Modelica sub-
package with assemblies such as suspensions or steer-
ings contains template models – i. e. assembly models
of different level of detail and for diverse purposes.
Various meaningfully parametrised models of realis-
tic assemblies are then inherited from such template
models and used in an overall vehicle architecture thus
representing a particular vehicle model.

In the following the modelling of the discussed sus-
pension will be described in more detail.

3.1 Wheel guidance

The wheel guidance mechanism was realised as a
multibody model with two rigid bodies and two ro-
tational joints, each one for the swing arm and for the
wheel carrier. The movement of the wheel carrier was
constrained with the link modelled as the Universal-

Modelling of new vehicle suspension concept with integrated electric drive

878 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076877

Spherical joint from Multibody package of Modelica
standard library. The final design of the suspension
utilizes slightly skew rotational axes to achieve suit-
able kinematics common for rear axles of passenger
cars, see camber and toe angle characteristics in Fig-
ure 3.

Figure 3: Camber and toe angle of suspension

3.2 Gearbox

The two-stage gearbox was modelled by means of
two one-dimensional rotational PlanetPlanet models
(see [5]) from PowerTrain library, cf. blocks sun-
Planet and planetRing in Figure 4. The sunPlanet rep-
resents the first stage from drive pinion to the lay shaft,
the planetRing is used for the second stage from lay

shaft to the ring gearwheel which is fixed on the wheel
rim. This configuration is similar to that of a planetary
gearbox.

In the multibody model of the suspension the rota-
tional joints of the wheel as well as of the wheel car-
rier connect the respective body to the predecessory
one. It means, that the joint angles reflect relative ro-
tation of wheel to wheel carrier and of wheel carrier to
swing arm, respectively. On the contrary, the angles of
sun and planet gearwheels and of carrier in the Plan-
etPlanet model are absolute angles as adequate for a
1D rotational mechanics. Therefore, a 1D sub-model
was added which calculates necessary relative angles
to connect the 1D gearbox and multibody suspension
in a correct way. This sub-model was called Rotation-
alAdd and used two times in the gearbox model, see
the blocks called rotAdd2_i, i = 1,2 in Figure 4.

Figure 4: One-dimensional Modelica model of the
gearbox

This sub-model for rotational additon has three
flanges: 1, 2 and 12. The corresponding flange angles
φ1, φ2 and φ12 result from simple kinematics:

φ2 = φ1 +φ12.

The appropriate flange torques yield

τ1 = 0, (1)

τ2ω2 + τ12ω12 = 0. (2)

The equations (1) and (2) both summarise power bal-
ance on flanges 1, 2 and 12. Herewith, the power flow
between 2 and 12 must be in balance. At the flange 1,
in contrast, no power flow may be realised.

Let us focus now on the connection of the sun-
Planet component as first stage of the gearbox to the
swing arm joint. The swing arm body is identical
with the carrier of sunPlanet. For swing arm joint the
revolute joint from Modelica standard library called
Modelica.Mechanics.MultiBody.Joints.Revolute could

Jakub Tobolar, Jakob Müller and Alfred Pruckner

DOI Proceedings of the 9th International Modelica Conference 879
10.3384/ecp12076877 September 3-5, 2012, Munich, Germany

be used, cf. [6]. This revolute joint has two multibody
(a and b) and two 1D rotational (axis and support)
connectors. Simplified described, the following torque
balance is adopted between the connectors:

τMBS,a = −Tab τMBS,b,

τ1D,axis = −τMBS,b naxis,

with transformation matrix Tab from multibody
frame b to frame a and vectors of cut torques τMBS,a

and τMBS,b in frames a and b, respectively, and nor-
malised vector naxis of rotation axis. It should be noted
that the torque from 1D flange support does not ap-
ply within this joint. Consequently, when connect-
ing 1D flange axis to flangeCarrier from 1D gearbox
(see connectors in Figure 4) the scalar carrier torque
τ f langeCarrier = τ1D,axis would be applied on multibody
frame b and supported on frame a. However, this
is unrealistic since for idealised frictionless joints the
supporting torque can only be realised by the torque
source, i. e. by the electric drive.

Therefore, the rotational joint equations are modi-
fied as follows:

τMBS,a+τ1D,support naxis =−Tab(τMBS,b+τ1D,axisnaxis),

τ1D,axis =−τMBS,b naxis.

With such a definition, the torque from 1D flange axis
only applies on multibody frame b and the torque from
1D support on frame a. Consequently, the carrier
torque from 1D gearbox only applies on the swing arm
and not on the predecessory body. The connection of
the second stage of the gearbox to the wheel carrier
joint is arranged in the same way.

The final connection of the total gearbox model with
the multibody components is depicted in Figure 5.

3.3 Spiral spring and damper

For suspension the rotational spiral spring was con-
nected between vehicle body and swing arm. It
was designed to optimally support reaction forces and
torques acting in the swing arm mounting. Especially,
the torque about the swing arm rotational axis and
the vertical force were considered, both resulting from
tyre/road contact. The rotational stiffnes of the re-
alised spring is nearly constant over the whole wheel
deflection range.

Both cut torques and cut forces on the spring mounts
are dependent on their relative deflection, i. e. their rel-
ative orientation and displacement. These dependen-
cies were modelled by means of multi-dimensional ta-
bles within one multibody force element. The tables

Figure 5: Modelica model of suspension (some
marginal elements are not shown)

were generated previously on the base of a finite ele-
ment spring model.

The rotational damper acting between swing arm
and wheel carrier was modelled as one-dimensional
non-linear damper.

3.4 Axle subframe and bushings

On the rear axle, each of the suspensions is mounted
on a module carrier. Each of these module carriers is
then elastically mounted on a subframe which again is
elastically mounted on the vehicle body.

The elastic bushings in the mounts are modelled as
force elements. Generally, it is formulated in such a
way that the forces and torques depend linearly on the
relative position and orientation angles of its connec-
tors, respectively, and on their derivatives. The bush-
ings operate at small angles, i. e. at angles with a mag-
nitude less then 5◦. This fact was considered to sim-
plify the calculations.

4 Suspension kinematics and brake
support angle

In our project, the functionality of the suspension was
proven in various tests, both virtual and real. Within
this section the suspension kinematic characteristics
will be discussed in more detail.

Modelling of new vehicle suspension concept with integrated electric drive

880 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076877

As already shown in Figure 3, the progress of cam-
ber and toe angles was tuned when modifying the ori-
entation of rotational axes n1 and n2 of the swing arm
and the wheel carrier, respectively.

Let us now exploit next typical characteristics - the
support angle εB at braking. Together with the brake
support angle of front suspension and the height of
centre of gravity of the vehicle it is crucially responsi-
ble for the amount of vehicle pitch movement during
braking. According to [7], this angle can be calculated
by means of the translational velocity v∗W at the “vir-
tual” tire/road contact point as

tanεB =±v∗Wx

v∗Wz
.

Such virtual contact point is considered on the wheel
with blocking brake during wheel deflection and re-
bound. In a case of conventional vehicle with brakes
mounted on the wheel carrier this means that the wheel
can be virtually fixed on the carrier during computer
aided investigation of εB. For practical reasons the
point can simply be considered to be on the wheel
carrier, too. On the contrary, when the brake is
mounted otherwise, e. g. on the vehicle body, such vir-
tual blocking must be regarded in a correct way.

This is also the case for the described suspension.
Since the suspension is considered to have no conven-
tional friction brake, the brake torque will only be re-
alised via electric drive. Therefore, in the simulation
the drive pinion was fixed for the brake support an-
gle analysis. In Figure 6 the trajectory of the virtual
contact point is depicted for our case compared to the
point trajectory at conventionally braked wheel.

The analysis proved that the brake support angle εB

depends not only on the suspension geometry but ad-
ditionally on the gear ratio iTotal as depicted by means
of three curves in Figure 7 for increasing ratio.

5 Conclusions

The paper gives an overview of the new vehicle sus-
pension concept with integrated gearbox and electric
drive and focuses especially on modelling aspects. In
the model, the multibody suspension parts are com-
bined with one-dimensional rotational elements for
two-stage gearbox thus enabling efficient simulation.
For proper interaction between such one-dimensional
and multibody parts new Modelica models were intro-
duced.

Besides the wheel guidance functionality, the partic-
ular models of gearbox, spiral spring and bushings are

Figure 6: Trajectory of virtual tyre/road contact point
of developed suspension (suspension representation
simplified): Braking via electric drive (red line at the
bottom) vs. conventional brake mounted on wheel car-
rier (black line)

Figure 7: Brake support angle of suspension for vary-
ing gear ratio iTotal

Jakub Tobolar, Jakob Müller and Alfred Pruckner

DOI Proceedings of the 9th International Modelica Conference 881
10.3384/ecp12076877 September 3-5, 2012, Munich, Germany

discussed. Finally, some particular kinematic charac-
teristics of the suspension are discussed in more detail.

The incorporation of the suspension into the com-
plete vehicle model and the comparison of the simu-
lation results with the real driving manoeuvres as well
as the utilised drive control strategy will be addressed
in the future.

6 Acknowledgements

The development of the presented suspension with
integrated electric drive was partly supported by
“Bayerische Forschungsstiftung” under contract
AZ-840-08 for the project Fahrwerk/Antrieb Integra-
tion ins Rad (FAIR).

References

[1] Pruckner A.: Potenziale eines radnahen Elek-
troantriebs zur Gestaltung neuer Antriebs-
und Fahrzeugarchitekturen. VDI-Fachkonferenz
Berechnung und Erprobung bei alternativen
Antrieben. Baden-Baden, 2011

[2] Dempsey M., Gäfvert M., Harman P., Kral Ch.,
Otter M. and Treffinger P.: Coordinated automo-
tive libraries for vehicle system modelling. In:
Proceedings of the 5th International Modelica
Conference. Vienna, 2006.

[3] Tobolář J., Otter M., Bünte T.: Modelling of Ve-
hicle Powertrains with the Modelica PowerTrain
Library. In: Proceedings of the Dynamisches
Gesamtsystemverhalten von Fahrzeugantrieben.
Haus der Technik Essen, Augsburg, 2007.

[4] Schweiger Ch., Dempsey M. and Otter M.: The
PowerTrain Library: New Concepts and New
Fields of Application. In: Proceedings of the 4th
International Modelica Conference. Hamburg–
Harburg, 2005.

[5] Pelchen Ch., Schweiger Ch., Otter M.: Modeling
and Simulating the Efficiency of Gearboxes and
of Planetary Gearboxes. In: Proceedings of the
2nd International Modelica Conference. Ober-
pfaffenhofen, 2002.

[6] Otter M., Elmqvist H., Mattsson S. E.: The New
Modelica MultiBody Library. In: Proceedings
of the 3rd International Modelica Conference.
Linköping, 2003.

[7] Matschinsky W.: Radführungen der Straßen-
fahrzeuge. 3rd Edition,
ISBN 978-3-540-71196-4, 2007.

Modelling of new vehicle suspension concept with integrated electric drive

882 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076877

Dynamic modeling and simulation of a multi-effect distillation plant

Dynamic modeling and simulation of a multi-effect distillation
plant

Lidia Roca1 Luis J. Yebra1 Manuel Berenguel2 Alberto de la Calle1
1CIEMAT-PSA, Ctra. Senés s/n, 04200 Tabernas, Almería, Spain

Centro de Investigaciones Energéticas, MedioAmbientalesy Tecnológicas
Plataforma Solar de Almería

2Dep. Lenguajes y Computación, Universidad de Almería,
Ctra. Sacramento s/n, 04120 Almería, Spain

{lidia.roca,luis.yebra,alberto.calle}@psa.es,beren@ual.es

Abstract

This paper describes a model which simulates the dy-
namics of a multi-effect distillation system in different
operating conditions. It has been designed to improve
the operation of the process and develop a control
strategy which optimizes the distillate production. The
physical models are based on conservation equations
of mass and energy. They also include experimental
correlations for heat transfer coefficients. Conserva-
tion laws are applied in different components, such as
the heater, the effects and the preheaters. The results of
the mathematical model simulation of the whole pro-
cess show promising outcomes.

Keywords: solar desalination, multi-effect distilla-
tion, modeling

1 Introduction

One of the challenges today is the production of fresh-
water for those population areas with high water stress.
For places close to the sea, the desalination process
provides an excellent way to tackle this problem. The
use of desalination plants in these regions with plen-
tiful seawater resources is becoming a technological
way to produce freshwater. Since large-scale desalina-
tion typically requires large amounts of energy, a so-
lution is coupling desalination plants with renewable
energies [10]. This process can be performed in var-
ious ways, for instance, using solar energy in which
the source that provides the heat for the desalination
process is collected in a solar field.

Multi-effect distillation plants (MED) raise a great
interest in industry due to its efficiency when they are
coupled with a solar thermal system. This kind of sys-

tems is gaining more acceptance as a result of their
lower energy requirements, higher heat transfer coef-
ficients, compactness, high product water quality and
low pre-treatment [2, 7]. In the literature there is a
wide variety of steady-sate models for MED plants
[3, 5, 6, 9]. One of the last works is the one developed
in [13], which shows a hybrid system that combines a
desalination system with solar and wind energies. In
that paper, the model includes the distillation unit, the
flat-plat collectors and the wind system. Regarding dy-
namic models, the literature about multi-effect distil-
lation systems is scarce [4, 8].
The innovation of the present paper is that the dynamic
model has been developed with the object-oriented
Modelica language using the Dymola tool and the
Modelica.Thermallibrary. This framework has al-
lowed us to develop new libraries to make simulations
easier and improve the operating procedure.

2 Description of the system

The AQUASOL system (Figure1) at CIEMAT-
Plataforma Solar de Almería (PSA), located in the
South of Spain, proposes a solar distillation technol-
ogy that consists of a compound parabolic collector
(CPC) solar field, two 12m3 water storage tanks, a
multi-effect distillation unit with a 3m3/h nominal dis-
tillate production, and a double effect (LiBr-H2O) ab-
sorption heat pump (DEAHP) [1].

The desalination plant at CIEMAT-PSA is a
forward-feed multi-effect distillation unit manufac-
tured and delivered by Weir ENTROPIE (Paris,
France) in 1987. It has 14 cells, or effects, in a vertical
arrangement. The original first cell that worked with
low-pressure saturated steam (70 °C, 0.31 bar [11])

DOI Proceedings of the 9th International Modelica Conference 883
10.3384/ecp12076883 September 3-5, 2012, Munich, Germany

CPC SOLAR

FIELD

V1

Gas Boiler DEAHP

Secondary

Water

Tank Tank

Water

Primary

V2

Effect1

MED

Brine Distillate

Seawater

Figure 1: AQUASOL diagram

was replaced in the AQUASOL project by a new one,
which works with hot water coming directly from a
thermal storage tank. For optimal operation, the inlet
feed-water temperature in the first cell must be around
66.5°C. It is possible to reach this temperature with
heat from a solar field as well as with steam generated
by an auxiliary gas boiler coupled to a double effect
absorption heat pump that can work at variable steam
loads (from 30% to 100%).

Seawater is preheated on its way toward the first
cell of the plant, which is at the top of the desalina-
tion tower. Vapour is produced in this first effect (or
heater) using the hot water from the storage system.
This vapour flows to the preheater-1 and part of the
latent heat is transferred to the seawater that flows in-
side this preheater, increasing the temperature of the
seawater. The steam produced in the first effect goes
to the effect-2, where it is condensed in a tube bun-
dle sprayed with the more concentrated brine which
falls by gravity from the previous effect. The latent
heat released by condensation of the vapour allows
part of the seawater entering the second effect to evap-
orate at a lower temperature/pressure. This condensa-
tion/evaporation process is repeated in the successive
effects. Finally, the vapour produced in the effect-14
is condensed in a final condenser cooled by seawater.

3 The dynamic model

The model of the MED unit is based on the following
assumptions:

• no heat losses with the atmosphere,

• no flash vapour is produced,

• the final distillate production is the sum of the dis-
tillate produced in each effect,

• the temperature drop in each effect is equal to the
temperature difference in the preheaters,

• the preheater-14 is considered as the final con-
denser.

Each component of the plant (the heater, the effects
and the preheaters) has been modeled in theModel-
ica language usingModelica.Thermallibrary. Figure
2 shows the final model of the MED unit, which in-
cludes the heater, 13 effects and 14 preheaters.

The inputs of the model are the feedwater mass flow
rate to the heater, ˙mM, the inlet temperature to the
heater,TiM , the salt concentration of the seawater com-
ing into the heater,CB0, the pressure in each effect, the
seawater mass flow rate, ˙msw, and the inlet seawater
temperature to the preheaters 14 and 13. The outputs
of the model are the outlet temperature from the heater,
ToM, and the distillate production, ˙md. The correlations
of the heat transfer coefficients included in the models
were obtained from experiments carried out in the real
plant [12]. Nomenclature and subscripts are shown in
Tables1, 2.

Table 1: Nomenclature

Name Description Units
A Surface area m2

BPE Boiling Point Elevation K
C Concentration %
Cp Specific heat capacity J/kgK
dT Temperature difference

between successive effects K
h Specific entalphy J/kg
ṁ Mass flow rate kg/s
M Mass kg
P Pressure Pa
Q Heat transfer rate W
T Temperature K
U Overall heat trasfer coefficientW/m2K
λ Latent heat of vaporization J/kg

Table 2: Subscripts

Name Description
B Brine
d Distillate
e Effect
h Heater
i Inlet
k Effect identification number
M MED heating water
o Outlet
p Preheater

Dynamic modeling and simulation of a multi-effect distillation plant

884 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076883

effect2

effect3

effect4

effect5

effect6

effect7

effect8

effect9

effect10

effect11

effect12

effect13

effect14

heater preheater1

T1

V2
T2

T3V3

T4

Ambi1 mMi

mMo

ambi2

Figure 2: Modelica model of the MED unit

sw Seawater
v Saturated vapour

3.1 The heater

The first effect of the MED plant is the heater. Hot
water coming from a storage system enters the heat ex-
changer and produces the first evaporation of the sea-
water. Fig.3 shows the model of the heater.

The heat transfer rate for the first effect can be cal-
culated from the MED heating water mass flow rate,
ṁM, and the MED heating water temperature differ-
ence in stationary conditions as follows:

Qh = ṁM ·Cp · (TiM −ToM) (1)

Using the log-mean temperature and the overall heat
transfer coefficient,Uh, the heat transfer rate can be
written as:

Qh = Uh ·Ah ·
(TiM −Tv1)− (ToM−Tv1)

ln TiM−Tv1
ToM−Tv1

(2)

whereTv1 is the saturation temperature of the vapour
generated in the heater.

Distillate mass flow produced in the heater can be
estimated using the latent heat of vaporization,λ :

ṁdh =
Qh

λ
(3)

Since the vapour pressure of the aqueous solution is
lower than that of pure water at the same temperature,
the boiling point of the solution will be higher than
that of the water. Therefore, the temperature of the
brine can be obtained using the boiling point elevation,
BPE:

TB1 = Tv1 +BPE (4)

The BPE is a brine property and depends on the
brine salinity and temperature.

The mass flow rate and concentration of the brine
can be obtained applying mass and energy balances.

Mass balance:

d
dt

(MB1) = ṁsw− ṁB1− ṁd1 (5)

Salt mass balance:

d
dt

(MB1 ·CB1) = ṁsw·CB0− ṁB1 ·CB1 (6)

Lidia Roca, Luis J. Yebra, Manuel Berenguel and Alberto de La Calle

DOI Proceedings of the 9th International Modelica Conference 885
10.3384/ecp12076883 September 3-5, 2012, Munich, Germany

TiM mM

ToM mM

Tsw1 msw

TB1 mB1

CB0

CB1

P

Tv1 md1

Figure 3: Modelica model of the heater

Energy balance:

d
dt

(MB1 ·hB1) = ṁsw·hsw− ṁB1 ·hB1− ṁd1 ·hv1 (7)

3.2 The preheaters

The vapour produced in the heater flows to the
preheater-1 located besides, where it condenses as the
temperature of the seawater that flows inside the pre-
heater tubes increases. This process is repeated in the
successive effects and preheaters. Figure4 shows the
model of the preheater.

dT

Tvk mdk

Tp(k-1) msw

Tp(k) msw

P

Figure 4: Modelica model of the preheater

The heat transfer rate for eachk-preheater was cal-
culated using the measured seawater mass flow rate,
ṁsw, and the temperature difference between the out-
let and the inlet:

Qpk = ṁsw·Cp(Tp(k−1) −Tpk) (8)

Using the overall heat transfer coefficient:

Qpk = Upk ·Ap ·
(Tp(k−1) −Tvk)− (Tpk−Tvk)

ln
Tp(k−1)−Tvk

Tpk−Tvk

(9)

3.3 The effects

The vapour that has not been condensed in the pre-
heater flows to the following effect, where the seawa-
ter with a higher brine concentration flows by gravity
from the previous effect. Then, the vapour condenses
and transfers its latent heat to the seawater producing a
new evaporation. Fig.5 shows the model of one effect.

CB(k-1)

CB(k)

TB(k-1) mB(k-1)

TB(k) mB(k)

Tvk mdk

P

dT

Figure 5: Modelica model of the effect

The heat transfer rate equation for eachk-effect
evaporator is:

Qek = Uek·Ae · (dTk +BPE) (10)

wheredT is the temperature difference between suc-
cessive effects, which is calculated in the prehetear
component.

The distillate mass flow rate in thek-effect is:

ṁdk =
Qek

λ
(11)

The model of each cell or effect is based on mass
and energy balances taking into account the distillate
produced and the brine mass flow rate from the previ-
ous cell:

d
dt

(MBk) = ṁB(k−1)− ṁBk− ṁdk (12)

d
dt

(MBk ·CBk) = ṁB(k−1) ·CB(k−1)− ṁBk ·CBk (13)

d
dt

(MBk ·hBk) = ṁB(k−1) ·hB(k−1)−ṁBk ·hBk−ṁdk ·hvk

(14)

Dynamic modeling and simulation of a multi-effect distillation plant

886 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076883

4 Simulation results

The developed model can be used to improve the oper-
ation of the plant, studying the effect of the variation in
the operating conditions on the MED unit performance
and production rate.

The final distillate production will be the sum of the
amounts of vapour produced in each effect as follows:

ṁd = ṁdh+
k=14

∑
k=2

ṁdk (15)

Figure6 shows the results obtained simulating the
developed model and using the following inputs:

• MED heating water mass flow rate, ˙mM, is 12
kg/s,

• MED inlet heating water temperature,TiM , varies
between 338 and 345 K (as shown in Fig.6)

• seawater mass flow rate inside preheaters 1-13,
ṁsw, is 1.94 kg/s,

• preheater-13 inlet seawater temperature,Tp14 is
about 303 K (see Fig .6).

As it can be observed in Fig.6, the MED outlet heat-
ing water temperature,ToM, is about 3.3 K less than
TiM . Nevertheless, if the inlet temperature increases,
this difference also increases slightly. As it was ex-
pected, higher temperatures cause higher thermal con-
sumption. On the other hand, the higher the inlet tem-
perature, the more distillate is produced.

Therefore, the model may be an efficient tool to es-
timate the thermal consumption depending on the de-
tillate demand. This means that we can predict if the
solar resource is enough to reach the production goals
or if we should combine it with the use of the heat
pump.

5 Conclusions

In this paper, a multi-effect distillation unit has been
modeled. Physical equations for each one of the main
components (the heater, the effect and the preheater)
have been developed using the object-oriented Model-
ica language. The whole plant has been defined with
multiple instances of the effect and preheater subsys-
tems properly interconnected between them. First sim-
ulation results are promising and the model may be
used to improve the operation in the real plant. The
main purpose of the model is the prediction of the ther-
mal dynamics of the heater as well as the prediction of
the distillate production rate.

Acknowledgements

The authors would like to thank the CIEMAT Research
Centre and the Spanish Ministry of Economy and
Competitiveness for funding Project DPI2010-21589-
C05-02.

References

[1] D. Alarcón-Padilla, L. García-Rodríguez, and
J. Blanco-Gálvez. Assesment of an absorp-
tion heat pump coupled to a multi-effect distil-
lation unit within aquasol project.Desalination,
212:303–310, 2007.

[2] M.T. Ali, H.E.S. Fath, and P.R. Armstrong. A
comprehensive techno-economical review of in-
direct solar desalination.Renewable and Sustain-
able Energy Reviews, 15(8):4187–4199, 2011.

[3] N.H. Aly and A.K. El-Figi. Thermal perfor-
mance of seawater desalination systems.Desali-
nation, 158(1-3):127–142, 2003.

[4] N.H. Aly and MA Marwan. Dynamic re-
sponse of multi-effect evaporators.Desalination,
114(2):189–196, 1997.

[5] H. El-Dessouky, I. Alatiqi, S. Bingulac, and
H. Ettouney. Steady-state analysis of the multiple
effect evaporation desalination process.Chemi-
cal engineering & technology, 21(5):437, 1998.

[6] A.M. El-Nashar. Predicting part load perfor-
mance of small med evaporators-a simple simu-
lation program and its experimental verification.
Desalination, 130(3):217–234, 2000.

[7] M.A. Eltawil, Z. Zhengming, and L. Yuan. A
review of renewable energy technologies inte-
grated with desalination systems.Renewable and
Sustainable Energy Reviews, 13(9):2245–2262,
2009.

[8] A. Husain. Integrated Power and Desalination
Plants. EOLSS Publishers Ltd., 2003.

[9] MH Khademi, MR Rahimpour, and A. Jahan-
miri. Simulation and optimization of a six-effect
evaporator in a desalination process.Chemical
Engineering and Processing: Process Intensifi-
cation, 48(1):339–347, 2009.

Lidia Roca, Luis J. Yebra, Manuel Berenguel and Alberto de La Calle

DOI Proceedings of the 9th International Modelica Conference 887
10.3384/ecp12076883 September 3-5, 2012, Munich, Germany

0 1000 2000 3000 4000 5000 6000
302

303

304

305
T

sw
i1

3 [K
]

0 1000 2000 3000 4000 5000 6000
335

340

345

H
ea

te
r

te
m

pe
ra

tu
re

s
[K

]

0 1000 2000 3000 4000 5000 6000
2.2

2.4

2.6

Relative time [s]

m
d [m

3 /h
]

T
iM

 T
oM

·

Figure 6: Simulation results of the MED unit model

[10] E. Mathioulakis, V. Belessiotis, and E. Delyan-
nis. Desalination by using alternative en-
ergy: Review and state-of-the-art.Desalination,
203:346–365, 2006.

[11] B. Milow and E. Zarza. Advanced med solar
desalination plants. configurations, costs, future–
seven years of experience at the plataforma solar
de almeria (spain).Desalination, 108(1-3):51–
58, 1997.

[12] P. Palenzuela, D. Alarcon, J. Blanco, E. Guillen,
M. Ibarra, and G. Zaragoza. Modeling of the heat
transfer of a solar multi-effect distillation plant
at the plataforma solar de almeria.Desalination
and water treatment, 31(1-3):257–268, 2011.

[13] İ.H. Yılmaz and M.S. Söylemez. Design and
computer simulation on multi-effect evaporation
seawater desalination system using hybrid re-
newable energy sources in turkey.Desalination,
2012.

Dynamic modeling and simulation of a multi-effect distillation plant

888 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076883

Modeling a drum motor for illustrating wearout phenomena

Modeling a drum motor for illustrating wearout phenomena

Olaf Enge-Rosenblatt1, Christian Bayer1, Joachim Schnüttgen2
1Fraunhofer Institute for Integrated Circuits, Division Design Automation,

Zeunerstraße 38, 01069 Dresden, Germany
{Christian.Bayer; Olaf.Enge}@eas.iis.fraunhofer.de
2Interroll Holding GmbH, Interroll Research Center,

Lothforster Straße 32-40, 41849 Wassenberg, Germany
J.Schnuettgen@interroll.com

Abstract

In this contribution, a model of a drum motor is pre-
sented. This model was designed for description of
dynamic behaviour of the drum motor as well as for
the possible implementation of several wearing phe-
nomena. Using this model, a better understanding of
wear and tear phenomena has been achieved by car-
rying out a considerable number of simulation runs
using different operational and wearing conditions.
Using this information, important knowledge about
detection of wearout signs was able to be gained.

Often, mathematical models with different levels
of detail are used. In these cases, it may be a difficult
task to obtain reliable parameters. In this paper, we
present three different approaches for establishing a
model structure and for the determination of needed
parameters. This way, we were able to define every
part of the model with an appropriate level of detail
and equip them with adequate parameter values.

Keywords: drum motor; mathematical model;
wearout phenomena modeling; parameter determi-
nation; condition monitoring

1 Introduction

Applications of mathematical models of technical
systems are widespread in today’s product develop-
ment cycle. Mathematical models help to increase
the understanding of physical properties of a product.
The usage of mathematical models in the design
phase allows investigations of functional properties
under changing operational conditions. Both proper-
ties and operational conditions are described in the
models by certain parameters. In the early phase of
product development, only a certain range of values
for these parameters is needed. Later on, these pa-

rameters have to be determined with higher accuracy
to benefit from the model-based investigations.

Correct and robust operation under changing cir-
cumstances is the most important requirement con-
cerning machines and facilities in today’s industry.
Additionally, all equipment must guarantee a very
high level of availability. These two demands are
competing against each other because every tech-
nical system is characterized by a certain appearance
of wear and tear. This applies to mechanical and
electrical systems but also for any other physical
domain. This appearance of wear and tear increas-
ingly causes a less correct operation of any technical
system with progressing time of operation. There-
fore, compliance checks concerning the allowed tol-
erances have to be performed either in certain time
intervals or depending on the current condition of
wearing. However, those checks take time and,
therefore, decrease the machine’s availability.

Using a mathematical model of a machine or a
facility that is able to reconstruct phenomena of
wearing is one promising way of getting out of the
dilemma. Still, the model must be able to describe
functional and dynamic properties, too. That is the
reason why such mathematical models cannot be
implemented in an easy and straight forward manner.
The model structure developed first has to be laid out
with necessary parameters. Some of them can be cal-
culated while other ones may only be measured. Cal-
culation may be performed analytically or, e.g., by
using a Finite Element model. Parameter measure-
ments mostly need considerable effort for establish-
ing an appropriate test set-up. All three methods
were applied for the development of the model pre-
sented here. Using a well-parameterized model, we
can carry out investigations about impacts of effects
of wear and tear on functional properties of a ma-
chine or a facility.

DOI Proceedings of the 9th International Modelica Conference 889
10.3384/ecp12076889 September 3-5, 2012, Munich, Germany

Figure 1 S

Figure 2 S

In this p
motor is pr
wearout ph
tor’s compo
determined
Element m
Some param
look-up tab
formed to
model are g

2 Desig

A drum mo
ised pulley)
conveyor be
depicted in
main compo
From both f
of the drum
and the othe
the planetar
grey part co

Sectional view

Sketch of the

paper, a ma
resented. Th
enomena oc
onents. Imp

by analytic
methods or b

meters are
bles. Finally,

prove the
given.

gn of a dr

otor (or some
) is a compo
elts. A sectio
Figure 1. Fi

onents belon
figures, one

m motor. The
er black part
ry gear) are
onsists of th

w of drum mo

components

athematical m
his model r
curring with
ortant mode
cal investiga
by extensiv
included int
some simul

functional p

rum moto

etime referre
onent for dri
onal view of
igure 2 show

nging to a typ
can understa
e stator of th
ts (including
fixed at the

he rotor of th

otor

of the drum

model of a
egards impo

hin the drum
el parameter
ations, by F
e measurem
to the mode
lation results
properties of

r

ed to as a m
ving a pulle
f such a mot

ws a sketch o
pical drum m
and the oper
he electric m
the ring whe
outer space

he electric m

motor

drum
ortant

m mo-
rs are
Finite

ments.
el by
s per-
f the

motor-
ey for
tor is

of the
motor.
ration
motor
eel of
. The
motor

and
gear
elect
gear
plan
parts
ings
have
load
of th
the d
attac
plan

T
Mod
well
proa
mod
to a
moto
inve
two
elect
party

the shaft con
(sun wheel

tromagnetic
is shown i

etary wheels
s stand for r
are the mai

e to resist th
. The three in
he electric m
drum shell is
ched to the a
etary gear ca

This mechan
delica becau
-prepared fo

aches for para
del diagram i

model of the
or (including
rter) is realis
output signa
trical subsys
y ([5]) and w

nnected to th
l). Both are
force. The

in blue colo
s are filled
roller bearing
n bearings o

he forces cau
nner bearing

motor and the
s depicted in
adapter and,
arrier.
nical system

use this mul
or implemen
ameter defin
s shown in F
e electrical s
g controlling
sed by one i
als (angle an
stem’s mode

will not be dis

he input of t
e driven by

carrier of th
our (Adapter
light green.
gs. The two

of the drum m
used by the

gs have to gu
e gear’s carr
n red colour.
therefore, d

m was mod
lti-physical
ntation of d

nitions [4]. T
Figure 3. The
subsystem of
g algorithms
input signal
nd angular ve
el is provide
scussed here

the planetary
the motor’s

he planetary
r) while the
 All yellow

o outer bear-
motor. They
belt and its

uide the rotor
rier. Finally,
. It is tightly

driven by the

deled using
language is

different ap-
he Modelica
e connection
f the electric
s and power
(torque) and
elocity). The
d by a third
 in detail.

y
s
y
e

w
-
y
s
r
,

y
e

g
s
-
a
n
c
r
d
e
d

Modeling a drum motor for illustrating wearout phenomena

890 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076889

Figure 3 M

3 Mode

The Modeli
main modu
tem. First, t
ingDL” and
(“drum”) an
smaller rol
ingPR”) bet
torPacket”)
planetary ge
cond, the fr
account (“O
the model (“
(e.g. “oilFil

All of th
by several w
detail defin
The more d
more pheno
Some effec
physical rel
described b
give an ap
dynamic pr
sons behind

In the fo
parts of our

Modelica mod

elica mod

ica model (s
les each des
there are the
d “bearingD
nd the fixed p
ller bearing
tween the ro

and the fi
ear carrier (“

riction becau
ORing”) and,
“planetaryGe
lling”) are no
he used sub-
wearout phen
nes which p
details are i
omena can m
cts can be
lations, other
y general be

pproximated
roperties reg
d them.
ollowing, we
r model of a d

del diagram o

del

ee Figure 3)
scribing a me
e main roller

DR”) between
part (“suppo

gs (“bearing
otor of the el
ixed stator
“ACarrier”),
se of the O-r
, third, a gea
ear”). The ad

ot of importa
-models can
nomena. The
phenomena c
implemented
mathematica
formulated

r effects, how
ehavioural m

representati
gardless of r

e present the
drum motor.

of the drum m

consists of
echanical sub
r bearings (“
n the drum
rt”) as well a
PL” and “
lectric drive
(“stator”) or
respectively

rings is taken
ar is included
dditional mo
nce here.
be suppleme

e model’s lev
can be inclu

d in a mode
ally be descr

by investig
wever, have

models which
on of static

real physical

e most impo

motor

some
ubsys-
“bear-

shell
as the
“bear-

(“ro-
r the

y. Se-
n into
d into
dules

ented
vel of
uded.
el the
ribed.
gating
to be

h only
c and
l rea-

ortant

3.1

The
cylin
degr
pler
an e
Mod
rotat
The
been
rollin
place
bear
drive
the b
exten
exter
ly, t
force
spac

F
ing.
of fo

sub-
torqu
and t

Roller bea

model of the
ndrical joint
ree of freedo
than e.g. in

extension of
delica Standa
tional axes o
friction def

n complemen
ng elements
ed between t
ing (see e.g
e application
bearing. Hen
nded by a R
rnal force va
he direction
e is absorbe

ce of the bear
Figure 4 show

It illustrates
orces. The b

forces i
BF .

ue depends o
their slight d

arings

e roller beari
component

om. Hence, it
[1] or [11]. T

f the Bearin
ard Library [9
of inner and
finition of th
nted by fricti
s (balls in m
the inner and
. [12]). The

ns, where an
nce, the Bea
RealInput in
alue applied

of this forc
ed by all bal
ring.
ws a simple
s the applicat
elt force BF

The result
on the mech
deformation.

ings is imple
with only on

it is designed
The model i

ngFriction m
9]. That mea
outer ring a

he Standard
ion effects ca
many cases)
d outer ring

e model is u
external forc

aringFriction
nterface to c
to the beari

ce is fixed a
lls located o

sketch of a
ation and the

B is divided

ting additio
hanical strain

emented as a
ne rotational
d much sim-
s realized as

model of the
ans that both
are identical.

Library has
aused by the
), which are
of the roller

used for belt
ce can act on
n model was
connect any
ng. Typical-
and thus the
on one half-

a roller bear-
e distribution

into several

onal friction
n of the balls

a
l
-
s
e
h
.
s
e
e
r
t
n
s
y
-
e
-

-
n
l

n
s

Olaf Enge-Rosenblatt, Christian Bayer and Joachim Schnüttgen

DOI Proceedings of the 9th International Modelica Conference 891
10.3384/ecp12076889 September 3-5, 2012, Munich, Germany

Figure 4 S

The pres

Hertzian co
cally mode
displacemen
very small
and outer r
displacemen
each ball w
found that i
displacemen

According t
force to a ba

~
B

i
N FF 

where BF
~

 i
by the exter
shows that t

partial exter
can therefor

i
B

F
F

co


From equat
belt force a
en. Note th
are consider

by the forc

mined by th

the belt forc

Sketch of a ro

ssure of each
ontact stress (
eled by a no
nt value for
relative shif

ring when a
nt value can

with respect t
it is a good a
nt i to be pr

to the Hertzi
all then beco

  2
3

cos iB  ,

is a force va
rnal force ap
the normal fo

rnal force F
re be express

B
i

i
N F

F


co

~

s


tion (2), the
according to
hat only balls
red as the rem

ce. Finally, t

he fact that

ce BF and th

oller bearing

h ball can be
([6], [7], [10
on-linear spr
this model o

ft between t
force is app
be calculate

to its angula
approximatio
roportional to

ian contact m
omes

lue which w
pplied to the
force i

NF is a
i

BF to the rad
sed as

ios .

e distribution
angular ball

s of the resp
maining ball

the force va

all sub-force

hus reads

e described b
0]), which is
ring system.
originates fr
the axes of
plied. Hence

ed analyticall
r position i

on to conside
o the term co
model the no

will be determ
bearing. Fig

a projection o

dial direction

n of the ext
l positions is
pective half-s
ls are not aff

alue BF
~

 is d

es i
BF sum u

by the
basi-

. The
rom a
inner

e, the
ly for
i. We
er the

ios .

ormal

(1)

mined
gure 4
of the

n. i
BF

(2)

ternal
s giv-
space
fected

deter-

up to

F
~

The
force
lar p
in th
tuati
cont

O
sion,

fricti

know

a fac

of th

ring
by tw
twee
the
abso
balls



wher

ring.
late
posit
flang
diffe
rings
refer





Equa
with
wher

ing (
pend
and
of d
face
varia
inne




i

B
B

F
F

cos

~

force value
e acting on o

position but a
he half-space
ions of the to
inuously.

One of the m
, which can

ion i
RF . The

wn normal fo

ctor i
Rk for e

he angular p

under cons
wo look-up

en 0 and 2.
definition of

olute value o
s then reads

 in
i

i
NR rF

re inr and r
. For abrasio
the angular
tions, which
ges. Moreov
ers from the
s might both
rence system

1
o

inin
i

r

r







1
in

ou

inout
i

r

r







ations (5) de
h respect to th
re 0,i denot

(5), we can
ding on relat
both rings. T
amage of ro
depressions

able friction
r and outer r

is
,

2




BF
~

 is actua
one ball chan
also with the
e. Eventually
orque neede

models purpo
n be treated

e friction for

orce i
NF and

each ring, wh

position i m

ideration. W
tables for a
 This introd
f damaged s
of the frictio

i
Rout

i
inRn krk ,, 

outr are the r

n simulation
ball position

h are known
ver, the rota
speed of inne

h rotate. How
m and the rela

0,i

out

in

out

r




0,i

n

ut

out 
 .

escribe the an
he inner and
tes an initial

implement w
tive angles b
This way, th

oller bearings
s like pitting

depending o
ing.

2

 i
.

ally time-dep
nges not only
e number of b
y, this causes
ed to operate

ose is to sim
as an incre

rce is propor

d thus depend

hich might b

measured re

We defined t
all angular p
duces high fl
spots on the
on torque du

out,
.

radii of inne

n it is necess
ns relatively

wn from the
ation speed
ner and outer
wever, they a
ative position

angular positi
d outer ring, r
l position of

wearout phe
between rolli
he most imp
s (e.g. dull s

gs) can be m
on momenta

(3)

pendent. The
y with angu-
balls present
s slight fluc-
e the bearing

mulate abra-
eased rolling

rtional to the

ds further on

be a function

lative to the

these factors
positions be-
lexibility for
e rings. The
ue to rolling

(4)

er and outer

ary to calcu-
y to the ring
 connecting
of the balls
ring and the

are a suitable
ns become

(5a)

(5b)

ion of a ball
respectively,
the ball. Us-

enomena de-
ing elements
ortant forms
surface, sur-

modeled by a
ary angles of

e
-
t
-
g

-
g

e

n

n

e

s
-
r
e
g

r

-
g
g
s
e
e

l
,
-

-
s
s
-
a
f

Modeling a drum motor for illustrating wearout phenomena

892 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076889

3.2 O-rin

The drum m
not leak out
O-rings are
shell preven
introduce hi
of very high
drum motor

To mode
were carried
Section 4. T
only to acco
to obtain u
torque. We
mainly on t
the used lub
lubricant am
fixed comb
simpler stru
haviour of
the friction
proportiona
Hence, it ca

OO k  

where  is
The parame

performing
proximation
torque with
of measured
model Bear
O-rings bec

For both
friction doe
forces and a
absorbed by
nomena at
they are not
we found th
operation –
increasing
ences have
ments, too.

3.3 One-

The drum
stage planet
the standard
bination of
any feature
approach th

ng friction

motor is part
t during ope

e used for se
nting the oil
igh friction v
h influence
r.
el such frict
d out by Int
The goal of
ount for the
useful absol

e found that
the material
bricant (used
mount). But
ination of m

ucture in com
roller bearin

n may be a
al share and
an be written

0,O  ,

s the rotation
eters Ok an

appropriate
n was implem
 rotational sp
d values. To
ringFriction w
cause it offer
h approximat
es not vary w
any load in a
y the main b
O-rings are
t dependent o
hat O-ring fri

because of w
wearout, e.g
to be determ

-stage gear

motor inclu
tary gear, w
d library mo

f two of it. H
es to emulate
he usually ex

tly filled wit
eration. At le
ealing both e
l from leaki
values and, th
on dynamic

tion, extensiv
terroll as wil
f these invest
non-linear b
lute values
t the friction
of the O-rin

d or used not
the friction

material and l
mparison wit
ngs. A first a

combinatio
d a nearly

n like

nal speed of
nd 0,O have

e experiment
mented by f
peed by usin
this end, the

was finally u
s such possib
tions, we ass
with any out
axial directio

bearings. Hen
expected to

on the drum
iction vary b
wearing in e
g. by abrasi
mined by ex

udes a single
which can be
odel IdealPla
However, it
e wearout e

xisting backla

th oil which
east two so-c
ends of the
ng out. But
herefore, the
behaviour o

ve measurem
ll be describ
tigations wa
ehaviour but
for the fri

n values de
ngs as well a
t, lubricant g

n behaviour
lubricant sho
th the frictio
approximatio

on of a velo
constant s

f the drum s
e to be foun

ts. A second
full correlatio
ng a look-up
e standard lib
used to mode
bilities.
umed that O
ter load. The
on are compl
nce, wearout
o be uniform
shell’s angle

both with hou
effects – and
ion. These i
xtensive mea

e-stage or m
implemente

anetary or a
does not inc
ffects. As a
ash and rotat

must
called
drum
they

ey are
of the

ments
bed in
as not
t also
iction
epend
as on

grade,
for a

ows a
n be-
on of
ocity-
share.

(6)

shell.
nd by

d ap-
on of
table
brary
el the

O-ring
e belt
letely
t phe-

m, i.e.
e. But
urs of

d with
influ-
asure-

multi-
ed by
com-
clude

a first
tional

stiffn
and
damp
beha
abra

G
mize
tooth
betw
rippl
to h
may
wou
throu
nite
gear
gula
recti
yield
Hert
ure 5
whee
leads
both
tion
alon
func
FE s

Figu

F

two
for s

indep

linea

ness can be
the gear’s
per system. T

aviour of the
sion.

Gears have sp
e abrasion [2
h flank, whi

ween teeth an
le. During op
igh loads or

break off
ld be very
ugh multi-bo
Element (FE
. In the idea
r position si
ion. Actually
ds a slight de
tzian contact
5 for one wh
el is transmi
s to a little d

h wheels and
 of the w

g the evolve
ction of 
simulation.

ure 5 Gearw
that th
magni
shape

Figure 6 show
gear wheels

small loads, i

pendent of t

arly on 

inserted be
input wheel
The backlash
e drum moto

pecial kinds
2], [13]. Mos
ch ensures t

nd that the tr
peration the
r improper m
under certai
challenging

ody simulati
E) model sta
al case, both
imultaneousl
y, the driven
eformation o
model. This

heel. The torq
tted by this m
deviation 

d depends als
wheels, as th
ent. The tran

and  whi

wheel with str
he deformatio
ification of 10
of the wheel)

ws the resul
s of equal si
i.e. for small

the angular p

 . However

etween the d
l by a rotat
h influences
or and is a

of tooth fla
st gears use
that there is
ransmitted to
flank might

maintenance
in circumsta
to model t

ion, we deve
arting from
wheels chan

ly but with
n wheel mov
of teeth acco
s effect is sh
que applied t
means. The
 in angular
so on the ab

the contact p
nsmitted torq
ich is determ

retching of te
on is displaye
00 in relation
)

lting torque
ize. We can
l  , the tra

position  a

r, for heavy

driving shaft
ional spring
the dynamic
measure for

nks to mini-
the evolvent
no grinding

orque has no
degrade due
. Even teeth
ances. As it
these effects
eloped a Fi-
a two-wheel
nge their an-
opposite di-

ves first and
ording to the
hown in Fig-
to the driven
deformation
r position of
bsolute posi-
point moves
que thus is a
mined by the

eeth (Note
ed using a
n to the

function for
deduce that

ansmission is

and depends

y loads the

t
g
c
r

-
t
g
o
e
h
t
s
-
l
-
-
d
e
-
n
n
f
-
s
a
e

r
t
s

s

e

Olaf Enge-Rosenblatt, Christian Bayer and Joachim Schnüttgen

DOI Proceedings of the 9th International Modelica Conference 893
10.3384/ecp12076889 September 3-5, 2012, Munich, Germany

transmission
depends on

odic in  .

Figure 6 D

t

The resu

develop a M
nation. The
and their ab
of missing t

3.4 Envi

The drum m
Such enviro
cial Belts l
static and d
The key com
added interf
it can act a
library com
late the mo
investigate
tear.

Our Mod
motor. This
as a Matlab
ing torque
from our mo
simulation w
feature in S
combined m
mechanical
parts and co
gations are n

n function b
 . Note tha

Dependency o
their differen

ults of the F
Modelica mo
e investigati
brasion is thu
teeth can be

ronment of

motor is inte
onments can
library, whic
dynamic ana
mponents ar
faces to our

as a pulley a
mponents. Th
otor within a
the effects o

delica model
s component
b Simulink m

and uses an
odel to contr
was carried
Simulink (se
model is to

properties
ontroller of
not content o

becomes non
at the torque

of torque on b
nce

FE simulation
del of any g
on of differ

us possible an
evaluated.

the model

ended for be
be modeled

ch includes
alysis of be
re belt spans
drum motor

and is fully c
his way we a

realistic env
of different s

l does not in
was provide

model [5]. It p
ngular posit
rol the electr
out using th

ee [8]). The
investigate

and setups
the motor. B
of this paper

n-linear and
e function is

both angles a

n can be us
ear wheel co
rent tooth f
nd even the e

elt drive syst
d by the com
elements fo
lt drive syst
 and pulleys
r model such
compatible t
are able to s
vironment an
signs of wear

nclude the ele
ed by a third
provides the
tion and vel
ic motor. Th
he Dymola b
e purpose of

the influenc
to the elect

But these inv
.

d also
peri-

and

ed to
ombi-
flanks
effect

tems.
mmer-
or the
tems.
s. We
h that
to the
simu-
nd to

ar and

ectric
party
driv-

locity
he co-
block
f this
ce of
tronic
vesti-

4

Dete
is a
read
men
coef
urem

F
need
perfo
natio
rings
gear
ated
ley i
(first
and
(seco

T
cal q
temp
carri
typic
was

Figu

F

ured
tache
fricti
shap
spee
0.3 N
fricti
mod
bette
form
fricti

F
oute

Determin

ermination o
very impor
from geom

ts of inertia
fficients need
ments carried
For an appr
ded to measu
ormed. Thes
on of friction
s without an
. To this end
to a certain

is retarded o
t test set-up
due to fricti
ond test set-u

Temperature
quantities in
perature can
ied out with
cal use case
found to be

ure 7 Frictio

Figure 7 show
d across rota
ed to the te
ion because

pe which is
ed because
Nm (see also
ion torque

del by a con
er integration

med using a l
ion torque va

Figure 8 depi
r O-rings are

nation of

f parameters
rtant task. S

metrical value
. But other

d to be determ
d out using re
ropriate assi
ure, a numbe
e tests were
n losses beca
ny influence
d, a single re
rotational sp

only by frict
) or by frict
ion between
up).
and lubricati

nfluencing th
be ignored

in a range o
e. Lubricatio
of no noticea

on torque wit

ws the curve
ational speed
st set-up. It
of bearings o

nearly ind
torque valu

o [12]). In a
is, therefor

nstant value
n of the mea
look-up table
alues depend
icts the mea
e attached to

paramete

s used withi
ome parame
es like mass
parameters

rmined by sp
eal devices.
ignment of
er of roll-ou
focused on

ause of bear
e from electr
eturn pulley
peed. After t
tion torques
tion torques
drum shell

tion are addit
he friction t
if all measu

of temperatu
on, if effecte
able influenc

thout any O-

of friction t
d if no O-r
is a result

only. The cu
dependent o
ues range f
a first approx
re, impleme
of Coulomb

asured curve
e containing

ding on rotati
asurement re
the drum sh

ers

n the model
eters can be
ses and mo-
like friction

pecific meas-

f parameters
ut tests were
the determi-

rings and O-
ric motor or
was acceler-
that, the pul-

in bearings
in bearings

and O-rings

tional physi-
torques. But
urements are
ure like in a
ed correctly,
ce.

ring

torque meas-
rings are at-
of retarding

urve shows a
n rotational

from 0.2 to
ximation the
nted in the

b friction. A
 can be per-

g momentary
ional speed.
esult if both
hell. This is a

l
e
-
n
-

s
e
-
-
r
-
-
s
s
s

-
t
e
a
,

-
-
g
a
l
o
e
e

A
-
y

h
a

Modeling a drum motor for illustrating wearout phenomena

894 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076889

result of re
O-rings. Th
on rotationa
split into o
mately 0.95
cient for fr
speed. The
Here again
curve can b

Figure 8 F

5 Simu

As an exam
ing the rolle
ment result
present sim
tained using
ment of the
stant transv
This force i
1 kN in a ty

Figure 9 N

b
s

etarding frict
he curve sho
al speed. Fo

one part with
5 Nm) and on
friction depe
constant valu

n, a better i
e performed

Friction torqu

ulation res

mple, we pres
er bearings.
ts up to now

mulation resu
g Dymola [

e drum motor
versal force
is induced b

ypical applica

Normal force
ball located w
space of the r

tion because
ows a non-li
or simplificat
h constant f
ne part with
ending linear
ue is about 0
integration o
via a look-u

ue with O-rin

sults

sent simulatio
Because of

w, we can un
ults. These
3]. The app
r consists of
(like force

by the belt a
ation.

e against time
within the for
roller bearing

e of bearings
inear depend
tion, the cur
friction (app
a constant co
rly on rotat

0.1 Nm/1000
of the meas

up table.

ngs

on results re
lack of mea
nfortunately
results were

plication env
f a load by a

FB in Figu
and reaches u

e acting on on
ce loaded hal

g

s and
dency
rve is
proxi-
oeffi-
tional
 rpm.
sured

gard-
asure-

only
e ob-
viron-
a con-
ure 4).
up to

ne
lf-

F
the b
the b
ples
time
load
the h
The
othe
therm
betw
Henc
the n
ball
cons
norm
the b
ever
and
this
fricti
and t

Figu

T
tatin
load
torqu
ear a
fect
dam
fricti
dyna
comp
with
the r
a ce
vani

First we inve
balls of a bea
bearing mod
originates fr

e for the mo
ed half spac
half circle o
normal forc
r half space
more, we as

ween ball and
ce, the same
normal force
instead of ti

sidered ball
mal force lik
ball-specific
y point in ti
the bearing
result for ev
ion can be c
the load forc

ure 10 Torqu
across
with lo
(dashe

To investigat
ng load (not

force), the d
ue and the ro
and velocity
of a spot d
age was intro
ion coefficie
amically usi
pared the to

hout spot dam
results. Both
ertain range
shed. The to

estigated the
aring. This g

del works an
rom. Figure 9
otion of one
e of the bear

on the right
ce is expecte
e (left hand
ssume that th
d inner or ou
e curve shape
e across the
ime. The fri
can then b

ke shown in
friction val

me dependin
’s transversa
ery ball of th
alculated fro

ce.

ue transmitte
s time withou
ocalized dam
ed line)

e the resultin
to be mista

drum motor w
otational load
dependent d

damage at o
oduced by a
ent Rk . This
ng the pres

orques acting
mage, respec
torques are
after the tr

orque withou

 normal forc
gives an imp
nd where the
9 shows the
e ball within
ring (which
hand side i

ed to be zero
side in Fig

there are no
uter ring of
e results wh
angular pos

iction torque
be determine
 Section 3.1
lue can be c
ng on the ba
al load forc
he bearing, t

om present b

ed to the load
ut damage (so

mage on the ou

ng torque rip
aken for the
was driven b
d was emula
damper. To s
one of the ri

localized inc
 increase wa
sent bearing
g on the loa
ctively. Figu
depicted acr

ransient effe
ut bearing da

ce acting on
pression how
e torque rip-
result across
n the force-
is located in
in Figure 4).
o within the

gure 4). Fur-
slip effects

the bearing.
en depicting
sition of the

e for the one
ed from the
1. This way,
calculated at
all’s position
ce. Applying
the complete

bearing angle

displayed
olid line) and
uter ring

pple at a ro-
e transversal
by a constant
ated by a lin-
show the ef-
ings, such a
crease of the
as calculated
g angle. We
ad with and

ure 10 shows
ross time for
ect has been
amage (solid

n
w
-
s
-
n
.
e
-
s
.
g
e
e
e
,
t
n
g
e
e

-
l
t
-
-
a
e
d
e
d
s
r
n
d

Olaf Enge-Rosenblatt, Christian Bayer and Joachim Schnüttgen

DOI Proceedings of the 9th International Modelica Conference 895
10.3384/ecp12076889 September 3-5, 2012, Munich, Germany

line) is nearly constant during the complete simula-
tion interval. Contrastingly, the torque with bearing
damage (dashed line) shows distinct ripples. The
ripples’ magnitude order is about 0.5 % of the
torque’s mean value. That seems to be not so high
but it is enough to detect some differences within a
frequency plot. This way, a damage of sufficient di-
mension could be detected by a dedicated condition
monitoring system.

6 Conclusions

We presented an approach to simulate wear and tear
phenomena within complex systems. For the case of
a drum motor we proposed three different methods
of modeling and parametrising components thereof.
The roller bearing was described analytically,
whereas the gear was simulated using the Finite El-
ement method. A third access to unknown parame-
ters is measurement as shown with the O-rings. Us-
ing these well-parameterised models, we were able
to establish a behavioural description for some im-
portant wearout effects with the drum motor. Hence,
these models can be used to predict the behaviour of
a worn system within its usual environment. This
opens the possibility to investigate some conse-
quences of wearout effects in several simulation runs
in order to establish design rules for condition moni-
toring algorithms and thus support the development
of adapted condition monitoring systems. This in
turn allows for improved maintenance strategies and
reduced costs.

Ackknowledgement

This work was funded by the German Federal Minis-
try of Economy within the project AutASS.

References

[1] Ashtekar, A.; Sadeghi, F.; Stacke, L.-E.:
Surface defects effects on bearing dynamics.
Proceedings of the Institution of Mechanical
Engineers, Part J: Journal of Engineering
Tribology, Vol. 224, No. 1, pp. 25-35, 2010

[2] Colbourne, J.R.: The geometric design of in-
ternal gear pairs, AGMA Technical Paper, 87
FTM 2, 1987

[3] Dymola 7.3, Dassault Systèmes

[4] Fritzson, P.: Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1,
IEEE Press, 2004

[5] Herold, T.; Franck, D.; Lange, E.; Hameyer,
K.: Extension of a d-q model of a permanent
magnet excited synchronous machine by in-
cluding saturation, cross-coupling and slot-
ting effects. IEEE International Electric Ma-
chines Drives Conference (IEMDC), Niagara
Falls, Ontario, Canada, 15-18 May, 2011,
Proc. pp. 1363-1367

[6] Hertz, H.: Über die Berührung fester elasti-
scher Körper. Journal für die reine und an-
gewandte Mathematik, 92:156-171, 1881

[7] Hertz, H.: Über die Berührung fester elasti-
scher Körper (On the contact of rigid elastic
solids). In: Miscellaneous Papers. Jones and
Schott, Editors, J. reine und angewandte Ma-
thematik 92, Macmillan, London, pp. 156ff.,
1896

[8] MATLAB® 2010a, The MathWorks, Inc.

[9] www.modelica.org/libraries/Modelica/

[10] Paland, E.G.: Technisches Taschenbuch.
INA Schaeffer KG, 2002

[11] Stacke, L.-E.; Fritzson, D.: Dynamic behavi-
our of rolling bearings: simulations and expe-
riments. Proceedings of the Institution of
Mechanical Engineers, Part J: Journal of En-
gineering Tribology, Vol. 215, No. 6, pp.
499-508, 2001

[12] Tan, X.; Modafe, A.; Ghodssi, R.: Measure-
ment and modeling of dynamic rolling fric-
tion in linear microball bearings. Journal of
Dynamic Systems, Measurement and Con-
trol, Transactions of the ASME, 128 (4) , pp.
891-898, 2006

[13] Zhuravlev, G.A.; Ageev, A.I.: Gear Teeth
Bending Strength Analysis. Izvestia vyssih
ucebnyh zavedenij. Masinostroenie (11), pp.
44-48, 1978

Modeling a drum motor for illustrating wearout phenomena

896 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076889

“Green Building” – Modelling renewable building energy systems and electric mobility concepts using Modelica

“Green Building” – Modelling renewable building energy systems and
electric mobility concepts using Modelica

René Unger1, Torsten Schwan2, B. Mikoleit1, Bernard Bäker2, Christian Kehrer3, Tobias Rodemann4
1EA EnergieArchitektur GmbH, Dresden, Germany

2Institute of Automotive Technologies Dresden - IAD, Dresden University of Technology
Dresden, Germany

3ITI GmbH, Dresden, Germany
4Honda Research Institute Europe, Offenbach/Main, Germany

rene.unger@ea-gmbh.de, schwan@iad.tu-dresden.de, kehrer@iti.de
Tobias.Rodemann@honda-ri.de

Abstract

For most people, a comfortable living and mobili-
ty are basic needs. With the rising individual demand
for energy as well as the diminishing fossil energy
resources, new optimized concepts for energy supply
and usage are required. To address these challenges,
renewable energy sources, decentralized storage, and
electric mobility concepts are matters of rapidly
growing importance.

Future building energy systems have to success-
fully integrate user demands, local renewable energy,
storage systems and charging infrastructure, a task
requiring extensive scrutinizing.

Typical questions to the engineer are to compare
different system layouts with respect to sustainabil-
ity, cost, and robustness, or to identify the right lev-
ers in an energy system to optimize components and
control algorithms.

This paper describes an approach to solve such
questions using simulations with the non-causal lan-
guage Modelica. Modeling paradigms and examples
are shown. Special emphasize is given to the “Green
Building” library and its components, bringing major
building energy systems and electric vehicles to the
same platform.

Keywords: Renewable energy; Building; eMobility

1 Introduction

Increasing the use of renewable energy for almost
all aspects of people’s life is one of the major topics
of this decade. Energy storage, smarter energy con-
sumption and interaction of energy grid components,
on global scale as well as locally, are tasks to be
solved by the engineer.

Ecological footprint, detail efficiency as well as
usage comfort are matters becoming more important.
To fulfill these aspects, various components like
photovoltaic or storage tanks, even weather forecast,
need to work together to satisfy the users’ demands
in a renewable and reliable way.

In addition to the technical aspects of automation
and networking systems, the functionality of this
component interaction needs to be clarified. Heat,
electricity and mobility used to be separated aspects
in life. With the use of renewables these are increas-
ingly correlated. For example a combination of mi-
cro-wind-turbines, photovoltaics, solar heat and heat
pumps could be used in a specific building. Another
possible solution would be a combined heat and
power unit (CHP) heating the house and charging the
electric vehicle. The solution may also vary depend-
ing on the available monetary budget.

Renewable energy is limited in availability. The
peak PV-power is at noon while peak consumption is
often in the morning or in the evening. The need for
energy storage or at least time shifting of consump-
tion arises. Even user behavior is important in such a
system.

DOI Proceedings of the 9th International Modelica Conference 897
10.3384/ecp12076897 September 3-5, 2012, Munich, Germany

Hence, to find a suitable energy system configu-
ration for a specific scenario has become an exten-
sive engineering task. Therefore, new supporting
tools and methods covering the whole system are
needed.

2 Simulation Tools

Today’s available tools can be categorized into
different groups. First, there are special component
layout programs like for example PVSol for photo-
voltaics.

A second group of tools uses FEM and CFD.
These make it possible to simulate heat and radiation
input to complex rooms and buildings and to calcu-
late the resulting temperature fields, air flow, etc.
EnergyPlus, ANSYS and Ecotect are examples for
these powerful tools.

A third group addresses systems simulation.
HVAC, even photovoltaics and wind are integrated
into one block oriented system model. The underly-
ing physics are often represented as equivalent net-
works while control algorithms are represented in a
signal oriented way or are programmed in a proce-
dural language. A typical tool-chain would contain
TRNSYS and Matlab Simulink. These toolchains are
extraordinary powerful. Yet some important effects
like the nondeterministic behavior of humans, elec-
tric mobility, dynamic costs, battery aging and prob-
ability-based energy management systems have been
difficult to implement.

Modelica, as a non-causal, non-proprietary and
cross-domain modeling language with Tools like
SimulationX excel in these requirements. Some Li-
braries like Modelica “Buildings” or “Human Com-
fort” contain models for building energy and com-

bined control system simulations [8]. Yet, with these
libraries, it is still a huge effort to model a complete
building-vehicle-user energy system.

In such a holistic simulation, systems of fast dy-
namics (1ms-1s) like vehicle physics or battery con-
trol have to work alongside with systems of low dy-
namics (1min-1day) for a long simulation time span
(days to years).

Additionally the models need to be complex
enough to test control algorithms but not too com-
plex for a fast simulation speed as well as safe and
easy to configure. A systems engineer as addressee
of the simulation is specialized in component inter-
action, not in heat pump specifics, vehicle batteries
and detailed building thermodynamics. For special
cases where detail is needed, simulator coupling is
an option.

To fulfill these requirements, an approach widely
used in the automotive industry was adapted to the
field of building energy system modeling and real-
ized in the Green Building Simulation Library.

3 Modelica Green Building Library -
modeling paradigms

The Green Building Library was created using the
cross-domain equation based concept of the Modeli-
ca language. The aim was to create a set of physical
and functional models with similar granularity and
handling. This way a complete renewable energy
system can be represented (Fig. 2), including:

• sources like photovoltaics, windmills, solar-
thermal collectors, heat pumps or CHPs,

• storage tanks, batteries and grid,
• consumers, user behavior, weather as well as
• charging stations and electric vehicles.

Fig. 1: Modelica-based simulation models for vehicles (left) and buildings (right) [1, 5]

“Green Building” – Modelling renewable building energy systems and electric mobility …

898 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076897

The granularity and complexity (fig. 1) of each
element is comparable to the approach used in the
automotive industry (e.g. partial models for engines,
gearboxes and longitudinal dynamics of vehicles).

Special emphasis was placed on the input pa-
rameter set of each component and intuitive model-
ing. For better usability, all parameters are similar to
those found in typical component data sheets or
standardized reports (i.e. EnEV [10]).

Another requirement to the chosen approach is,
that all the relevant characteristics needed for the
comparison of different building energy systems,
shall be calculated within one simulation environ-
ment, if possible. Therefore, all library components
have been modeled as compatible differential-
algebraic equation systems (DAE) including physical
behavior, control algorithms and external interrupt
connectors for energy management systems. Fur-
thermore, optional functions to calculate investment
and operating costs of each component can be used
(fig. 3). Currently, however, these calculations are
performed in external post processing routines.

Another important requirement is a high simula-
tion speed while maintaining the highest possible
time resolution. For advanced comparisons, a year
needs to be simulated with a minimum step size of 1
minute; this is at least half a million steps for one
simulation run. This is longer than the usual 15min –
1h time steps of thermal simulations. To achieve the
needed model reduction fast internal processes were

simplified or replaced with functional descriptions,
each as internal DAE systems.

A major factor for the simplification was the in-
fluence on outer processes and component interac-
tion. A typical example is the windmill power elec-
tronics. Instead of simulated MOSFETs and capaci-
tors, a phenomenological model containing charac-
teristic curves for conversion factors, efficiency and
voltage limiters represents the electronics.

In other models, where such simplification is no
option (error margin, numeric stability), pre-
calculation is used. Complex driving cycles are one
example for fast internal time constants. Heat pump
characteristics based on source and heating medium
temperatures are another example, where the solver
would need to calculate partial differentials.

Emphasize is given to an exact representation on
effects which are relevant for the energetic behavior
of a component (e.g. heat absorption and dissipation
of a heat storage depending on the temperature
spread). Other equations describing less relevant ef-
fects, like volume flow within heat storages, are ne-
glected. This constant granularity is a usability ad-
vantage over usage of models from different sources.

Influences like weather are integrated using an
ambience block, which reads either external data-
bases or location provided with the library as internal
blocks (fig. 3).

Most of the library components require special
control algorithms for the internal regulation of the

Fig. 2: Component models integrated in Modelica-library [2]

Models of Demand

Weathermodel

weather

power

Wind

Sonne

photovoltaic
Umweltwärme

heat

heat pump power-process

model of
building

user-profile eMobility

power

heat

solar heat

micro-wind

grid and
supplier

building-grid

cost-model

battery

Hot-Water-
Storage

CHP

energy management

demand

Models of Consumers

eMobility power-
consumer

heat-
consumer

critical
bounderies

control / measurement

René Unger, Beate Mikoleit, Torsten Schwan, Bernard Bäker,…

DOI Proceedings of the 9th International Modelica Conference 899
10.3384/ecp12076897 September 3-5, 2012, Munich, Germany

system states (e.g. de-icing processes of air heat
pumps). These control strategies are integrated as
blocks in the general component layout to simulate
the typical behavior of the components. The user, to
test new operating strategies like a combined
heat/power-led CHP usage depending on vehicle
dock and weather forecast, can replace the control
block. Another option is the use of controller inputs
for a superimposed energy management (fig. 3).

Within a domain, the components are connected
with specific connector elements, which are derived
from “real-world”-connections like pipes for heating
systems and cables for electrical systems. This way,
the real energy exchange is simulated and can be
observed during and after each simulation run [1].

∫ ∆⋅⋅⋅=
•

dtTVcte medmedpmedtherm med
ρ)((1)

∫ ⋅⋅⋅= dtnIUte phaseeffeffel ϕcos)((2)
Both consistent equations (1) and (2) describe the

interchanged energy between connected components.
Therefore, both equations consist of domain-specific
flow (volume flow and current) and potential (tem-
perature spread and voltage) states as well as further
special constant values.

4 Coupling of Building and Vehicle

As explained before, the main challenge in cou-
pling building and vehicle is the difference in the
major time constants, which would lead to a small
minimum simulation step size.

The thermal energy flow in buildings mainly de-
pends on low system dynamics caused by inner
masses, slow external temperature changes, etc.
Electrical demand changes faster but it still is in the
order of minutes at the building’s lateral.

In contrast to that, vehicle-specific time constants
are much lower, in the order of milliseconds to se-
conds and they are vital for an adequate simulation
of the energetic behavior (fuel, electrical energy).

There are proven frameworks to dynamically
simulate the energetic behavior of vehicles with al-
ternative drive trains [see for example 9]. These con-
tain approaches to simulate the driver’s behavior and
the operating strategy defining the vehicle operation
mode (EV mode, ICE mode) as well as the detailed
dynamic behavior of each vehicle component (e.g.
gear boxes, ICE, EM etc.).

Unfortunately, such approaches are too complex
for implementation in the combined simulation of
buildings and vehicles. Because of the differing sys-
tem dynamics, direct coupling of building and vehi-
cle creates very stiff DAE systems. Hence, either the
simulation time becomes non-acceptable or the re-
sults deteriorate in accuracy and numerical stability.

To solve this we looked at the vehicle from the
building point of view. This way the vehicle is a
component, which is either docked at home or exe-
cuting a certain driving cycle. If it is available and
connected to a charging station (battery electric or
plug-in hybrid) then the vehicle is a consumer or an
intelligent battery. The important information is the
energy or fuel needed for a specific cycle, vehicle
availability and if the vehicle is connected, the power

Fig. 3: Generalized component layout [1]

“Green Building” – Modelling renewable building energy systems and electric mobility …

900 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076897

exchange and control algorithms. The energy de-
mand during the driving cycle does not directly in-
teract with the building. Therefore, this can be repre-
sented by pre-calculated driving cycles, user models
and the simplification of the vehicle to a battery
model.

This way in the building simulation, the vehicle is
considered as only one component of the building
energy system (fig. 4) with focuses on charging and
grid-support. In a preprocessing operation, the driv-
ing cycles for different vehicle internals (ICE, BEV,
PHEV, etc.) are simulated with high accuracy. This
includes detailed longitudinal dynamics, architecture
(serial, parallel etc.), power train components charac-
teristics (e.g. battery size) and selected operating
strategy (e.g. deplete and sustain) [see 9 et al.]. The
main results are mean speed, mean power and fuel or
energy consumption for use within the building en-
ergy simulation.

The vehicle presence can be either derived as a
transient simulation variable from the driving time in
the preprocessing or created as synthetic user behav-
ior for the presence at the charging station.

Using that approach allows a high accuracy of the
fuel and electrical power demand of the vehicle dur-
ing a time period with an adequate simulation speed.
Furthermore, the feedback of the charging strategy
and the power supply to the vehicle on the building

energy system can be analyzed. Influences of superi-
or energy management systems on the electrical en-
ergy supply to the vehicle and the amount of renew-
able energy used for driving the vehicle are analyza-
ble as well.

5 Exemplary simulation results

An example, showing capabilities and power of
the presented “Green Building”-library is a semide-
tached house in Germany. One simulation represents
a conventional energy system and ICE vehicle. A
second simulation shows a complex renewable con-
figuration.

The conventional and the renewable configura-
tion are then assessed regarding:

• primary energy balance,
• carbon dioxide emission balance and
• renewable fraction of traction energy
For these assessments of annual balances, a statis-

tical method was used. Analogue to VDI 4655,
twelve reference days were defined (i.e. sunny win-
terday, weekend). Each reference day was simulated.
The results were superimposed with the weather sta-
tistics of the last 10 years.

Fig. 4: Vehicle and charging station as a part of a complete energy system modeled in SimulationX

René Unger, Beate Mikoleit, Torsten Schwan, Bernard Bäker,…

DOI Proceedings of the 9th International Modelica Conference 901
10.3384/ecp12076897 September 3-5, 2012, Munich, Germany

The renewable energy system consists of (fig. 5):
• small combined heat and power unit
• gas-fired condensing boiler
• heat storage
• domestic water boiler
• stationary battery
• photovoltaic system
• plug-in-hybrid-electric-vehicle

In opposite to that, the conventional energy system
only contains three components (fig. 6):

• gas-fired condensing boiler
• domestic water boiler
• compact car (ICE)

Both systems were simulated in combination with
a 3-zonal building model with floor heating system.
Component parameters (e.g. battery size) and system
control algorithms were adapted to the requirements

of the exemplary building scenario. However, pa-
rameter variations (e.g. variation of battery size)
could easily be done due to the flexibility of the li-
brary components.

Although, there are many other analyzable crite-
ria, for renewable energy systems, the ecological
footprint is one of the most important bases of the
decision-making. It is possible to evaluate this foot-
print by using primary energy factors. These factors
bias different forms of energy (e.g. electricity, fuel,
natural gas) by describing how much primary energy
(e.g. coal-equivalent) is required for their provision.

Fig. 7 shows the primary energy balance of the
analyzed system variants. The renewable system has
a better primary energy balance and ecological foot-
print than the conventional system since a big share
of the electrical energy is generated by CHP and
photovoltaics.

Fig. 5: Renewable energy system model

Fig. 6: Conventional energy system model

“Green Building” – Modelling renewable building energy systems and electric mobility …

902 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076897

Another important criterion for evaluation of dif-
ferent building energy systems and connected vehi-
cles with (partly) electrified power train is the annual
carbon dioxide emission balance. In this process all
emissions of vehicles, heating system and electrical
energy consumption are analyzed.

Fig. 8 shows that the annual CO2 emission and
electrical energy consumption of the renewable sys-
tem with PHEV are much lower than the ones of
conventional system. The main reason is the electric-
ity output of photovoltaics and CHP. This helps to

maintain a high renewable mileage of the PHEV in a
typical commuting situation with 30 km of daily
driving. With the regarded vehicle, this cycle could
be covered almost completely on battery. The only
exceptions were some winter days where the com-
bustion engine was needed.

Compared to the conventional system, the CO2
emission for heating in the renewable system is
higher. This is caused by electricity conversion and
by the marginally lower thermal efficiency of the
CHP (92% of CHP compared to 98% of condensing

Fig. 7: Comparison of relative primary energy balance

Fig. 8: Comparison of relative primary energy balance

René Unger, Beate Mikoleit, Torsten Schwan, Bernard Bäker,…

DOI Proceedings of the 9th International Modelica Conference 903
10.3384/ecp12076897 September 3-5, 2012, Munich, Germany

boiler).
The total CO2 emission of the whole energy sys-

tem (building combined with vehicle) of the conven-
tional system is about 55% higher than the one of the
renewable system. This significant impact of the sys-
tem on the environment can now be measured
against investment cost or production resources.

The system can be optimized further to avoid grid
storage (grid feed-in) or towards a maximum renew-
able vehicle mileage.

For the ratio between renewable energy and fossil
fuels used to fulfill the individual mobility demand,
i.e. the annual distance driven only using renewable
energy, the size of the stationary battery is essential.

With the stationary battery, the energy income
(CHP, PV at noon) can be decoupled from energy
usage (charging at night).The basic simulated opera-
tional strategy (also defined in Modelica) was to
charge the stationary battery whenever photovoltaic

energy was available and to transfer this energy to
the vehicle when docked. The difference to the ener-
gy requested by the vehicle was taken from CHP and
grid. Values for losses in battery and converters
matched those of the real components. This way a
bigger amount of PV-energy in the stationary battery
results in a higher renewable mileage.

To evaluate the influence of stationary battery ca-
pacity, the scenario was simulated with four sizes of
relative 100%, 50%, 30% and 10%. Fig. 9 shows that
the PHEV with the biggest battery size is driven with
an average ratio of 95% renewable energy during the
year while the smaller ones have ratios of 91%, 62%
and 24%.

So, with a slightly worse primary energy balance
(about 7%) due to less grid-feeding, the biggest bat-
tery offers almost complete renewable mileage for
the PHEV. With the half size battery, the coverage is
still more than 90%.

Fig. 9: Ratio of renewable energy to total vehicle energy demand

Fig. 10: annual renewable ratio of vehicle energy depending on relative battery capacity

“Green Building” – Modelling renewable building energy systems and electric mobility …

904 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076897

Obviously, with increasing battery size, i.e. ca-
pacity, the achievable annual renewable energy ratio
on mobility increases monotonically (fig. 10). Be-
cause of the presented operating strategy for the pho-
tovoltaic system, the more capacity of the stationary
battery is available the more renewably energy can
be used to recharge the vehicle. An asymptotic max-
imum (fig. 10) occurs because the PHEV uses the
internal combustion engine under cold outside tem-
peratures, thus not using renewables.

Comparing battery costs leads to an optimum re-
garding battery size and annual renewable mobility
energy ratio. This optimum can be calculated using
annual capital costs for battery versus the achievable
renewable energy ratio on annually driven distance.

The same evaluation and optimization could be
done using different operational strategies, compo-
nent (PV) sizes, vehicles or driving cycles. Even ro-
bustness to stochastic user behavior could be ana-
lyzed using the described holistic energy simulation
approach.

6 Summary and Conclusions

The presented Modelica-based simulation library
enables the modeling of various architectures for
building energy systems including vehicles with
(partly) electrified power trains. Simulation with the-
se models creates a multitude of results, which can
be used for evaluating and optimizing these systems
using different criteria. Some criteria like battery size
were presented within this paper. The more complex

energy systems get, the larger the potential for opti-
mization.

Besides the evaluation of energy system variants,
the new Green Building framework (fig. 11) offers
the capability of model-based development also for
energy management algorithms in buildings or pre-
dictive renewable operation strategies for vehicles
with electrified power trains.

Current work aims to improve the library with
new component models like phase changing material
(PCM) thermal storages and more top-level models
for even easier use. A second major research objec-
tive is to create new energy management algorithms
for the complete system using real-prediction and
simulation [3].

Since renewable energies are still expensive in
terms of money and production resources, an effi-
cient use of these systems is essential.

Acknowledgements

The library and methods described are developed
within the research project “Residence and Mobili-
ty”. The research project is encouraged with subsi-
dies from the European Union and the Sächsische
Aufbaubank (SAB).

The simulation results presented in this paper
arise from an exemplary research study, which was
carried out in cooperation with Honda Research In-
stitute Europe.

Fig. 11: Toolchain of simulation framework [1]

René Unger, Beate Mikoleit, Torsten Schwan, Bernard Bäker,…

DOI Proceedings of the 9th International Modelica Conference 905
10.3384/ecp12076897 September 3-5, 2012, Munich, Germany

References

[1] Schwan, T., Unger, R., Baeker, B., Mikoleit,
B., Kehrer, C.: Optimization of local renew-
able energy systems using automotive simu-
lation approaches. 12th Conference of Inter-
national Building Performance Simulation
Association, Sydney, 2011.

[2] Schwan, T., Unger, R., Baeker, B., Mikoleit,
B., Kehrer, C.: Optimization-Tool for local
renewable energy usage in the connected sys-
tem: Building-eMobility. 8th Modelica Con-
ference. Dresden, 2011.

[3] Unger, R., Schwan, T., Mikoleit, B., Baeker,
B.: “Residence and Mobility” – Renewable
Energy Management in the linked system
“Building – eMobility”. 1st International En-
ergy Efficient Vehicle Conference. Dresden,
2011.

[4] Unger, R., Schwan, T., Mikoleit, B., Baeker,
B.: Optimization-Tool for local renewable
energy usage in the connected system:
“Building-eMobility”. 13th ITI Symposium.
Dresden, 2010.

[5] Chrisofakis, E., Junghanns, A., Kehrer, C.,
Rink, A.: Simulation-based development of
automotive control software with Modelica,
8th Modelica Conference, Dresden, 2011.

[6] Fritzon, P.: Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1.
Wiley-IEE Press, 2003.

[7] SimulationX-Hompage of ITI GmbH.
http://www.simulationx.com

[8] Wetter, M., Zuo, W., Nouidui, T. S.: Recent
Developments of the Modelica “Buildings“
Library for Building Energy and Control
Systems. 8th Modelica Conference. Dresden.
2011.

[9] Kutter, S., Langhammer, S., Bäker, B.: eVe-
hicleLib - Eine Modelica-Bibliothek zur Si-
mulation von Fahrzeugen mit alternativen
Antrieben; 20th Symposium Simulationstech-
nik - ASIM 2009. Cottbus. 2009.

[10] Verordnung über energiesparenden Wärme-
schutz und energiesparende Anlagentechnik
bei Gebäuden - Energieeinsparverordnung,
2007.

[11] PVSol Hompage of The Solar Design Com-
pany.
http://www.solardesign.co.uk/index.php.

[12] TRNSYS-Homepage of Transsolar.
http://www.transsolar.com/__software/docs/t
rnsys/trnsys_uebersicht_de.htm

“Green Building” – Modelling renewable building energy systems and electric mobility …

906 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076897

High-Fidelity Transmission Simulation for Hardware-in-the-Loop Applications

High-Fidelity Transmission Simulation for

Hardware-in-the-Loop Applications

Orang Vahid Paul Goossens

Maplesoft

615 Kumpf Drive, Waterloo, ON, Canada, N2V 1K8

ovahid@maplesoft.com pgoossens@maplesoft.com

Abstract

Model-based development plays a central part in op-

timizing existing transmission designs and exploring

new system architectures. Design iterations and per-

formance evaluations are done through virtual proto-

types of the transmission systems, used in hardware-

in-the-loop (HiL) simulations. In this paper,

MapleSim’s Driveline Component Library is intro-

duced. The combination of this Modelica library and

Maple’s core symbolic technology, enables engi-

neers to include more detail into their models target-

ed for real-time simulation of transmission systems.

The paper also includes some results from the work

at Aisin AW in modeling transmissions and HiL test-

ing.

Keywords: Transmissions; Hardware-in-the-loop;

symbolic calculations

1 Introduction

As automotive manufacturers strive to meet and ex-

ceed performance requirements on fuel efficiency

and ride comfort, they have focused increasingly on

the transmission design as one of the key factors.

Engineers are putting tremendous effort into deter-

mining exactly how the power is lost, and what can

be done to reduce losses and improve overall fuel

efficiency. As a result, the transmission industry is

now actively involved in optimizing existing trans-

mission designs and exploring new system architec-

tures. At the same time, transmission controllers are

becoming more complicated and more detailed prod-

uct testing is needed than ever before.

Model-based development (MBD) plays a central

part towards achieving these goals. Design iterations

are done through virtual prototypes of the transmis-

sion systems, used in hardware-in-the-loop (HiL)

simulations. Virtual prototyping can yield more effi-

cient products at significantly reduced costs by al-

lowing engineers to address design issues long be-

fore they invest in physical prototypes.

In this paper we report on some of the activities

under taken at AISIN AW in Japan regarding HiL

simulation and the use of MapleSim environment to
accelerate the development of automatic transmis-
sions. The requirements for low calculation cost

plant models for real-time simulations were met by

creating the gear train part of the model in
MapleSim. These models are then exported as opti-

mized c-code for implementation into the HiL sys-

tem.

2 Transmission Modeling Using the

Driveline Component Library

The transmission models referred to in this paper are

built using the components from the MapleSim

Driveline Component Library (DCL) [1] as well as

other components from the Standard Moldelica Li-

braries [2]. DCL covers all stages in a powertrain

model from the engine through to the differential,

wheels and road loads (See Figure 1). Furthermore,

the library allows for flexible inclusion of power loss

data that best reflect the way in which the loss data

was acquired.

In the remainder of this section, some of the fea-

tures of the components used in modeling transmis-

sions are discussed.

2.1 Clutches and Brakes

As part of the standard component library, MapleSim

provides two clutch models: a standard, controllable

friction clutch and a one-way clutch [2].

In DCL, these models are expanded; clutch and

brake models provide a real output port for the loss

power and a Boolean output port to indicate clutch

lock-up. There are also other formulation improve-

ments that make DCL models perform better when

used with fixed-step integrators usually encountered

DOI Proceedings of the 9th International Modelica Conference 907
10.3384/ecp12076907 September 3-5, 2012, Munich, Germany

in real time applications and Hardware-in-the-Loop

simulations.

Figure 1: Driveline Component Library

2.2 Torque Converter

The torque converter is modeled using tables of

measured data. The following characteristics are

used:

• Torque Ratio vs Speed Ratio

• Load Capacity vs Speed Ratio

Where subscripts “t” and “p” designate turbine and

pump quantities, respectively. The required data can

be given as tabulated data. The Torque Converter

component supports two alternative formulations

based on the following definitions of the load capaci-

ty :





Backward flow, happens during deceleration of

the vehicle where the vehicle kinetic energy is

transmitted back through the transmission to the en-

gine. In this situation, the turbine is pumping and the

pump is acting as a turbine. Since torque converters

are not designed to work optimally this way, the

torque converter will have very different characteris-

tics. This is accommodated in the lookup table data

by providing torque ratios and capacity values for

, typically up to about 5.

In the test model shown in Figure 2, the input

(pump) torque is increased linearly for the first 10

seconds. At low speeds, between t = 0 and 4 s, the

turbine torque increases faster than the input torque.

This is the “torque multiplication” effect typically

seen in the torque converters [3]. Due to the inherent

inefficiencies in the mechanism, the turbine speed is

slightly less than the pump speed while the torque is

driving the pump.

Figure 2: Torque converter test model

High-Fidelity Transmission Simulation for Hardware-in-the-Loop Applications

908 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076907

Note that when the input torque drops at t = 15 s,

the kinetic energy of the dynamometer changes the

torque flow from forward to backward (i.e. turbine

drives the pump), and the pump speed drops below

the turbine speed.

2.3 Gears, Gear Sets, and Transmissions

DCL includes simple and compound gear sets and

related actuation components for modeling gear

trains and transmissions (see Figure 1). The

Ravigneaux gear set component is discussed in the

following as an example of the compound gear com-

ponents in DCL.

Ravigneaux Gear Set

The Ravigneaux configuration is a basic automatic

transmission planetary assembly. As shown Figure 3,

this configuration is constructed internally using

three Planet-Planet components and one Planet-Ring

component.

Figure 3: Internal structure of the Ravigneaux

Gear

Lepelletier Gear Sets

There are two Lepelletier Actuation components (6-

speed and 7-speed) provided in DCL which can be

used together with a Ravigneaux gear and a plane-

tary gear to create 6-speed or 7-speed transmissions

as shown in Figure 4-a and 4-b, respectively.

Figure 4: Building 6-speed (a) and 7-speed (b)

transmissions with the Lepelletier Actuation

components

2.4 Incorporating Losses

As shown in Figure 5, all of the gear components in

the DCL can easily be switched from ideal (i.e. no

losses) to lossy where power losses due to tooth-

meshing are accounted for [4].

Figure 5: Fundamental GUI option for all gears –

ideal = true/false

In lossy mode, the meshing friction is expressed

as a transmission efficiency ()

which may be defined as a function of the gear angu-

lar velocity via data tables. The user has the option to

provide an efficiency table for each meshing gear

pair in the gear set individually.

In compound gear sets (Planetary Gear, Dual-

ratio Planetary Gear, Counter-rotating Planetary

Gear, Ravigneaux Gear, Simpson Gear, and CR-CR

Gear), internal bearing damping can be added using

the component options. Bearing friction can also be

added using external Bearing Friction components

by enabling the optional “planet flanges”. Figure 6

shows a Counter-rotating Planetary Gear component

with added bearing friction losses. The bearing fric-

tion is expressed as a torque loss and is related only

to the shaft speed [2].

Orang Vahid and Paul Goossens

DOI Proceedings of the 9th International Modelica Conference 909
10.3384/ecp12076907 September 3-5, 2012, Munich, Germany

Figure 6: Adding bearing friction to gear sets

3 Advantage of the Symbolic Tech-

nology

Symbolic techniques turn out to be a critical ingredi-

ent, both to enable efficient modeling of these com-

ponents as well as to generate optimized code, yield-

ing the required HiL execution speed. MapleSim’s

symbolic capabilities are enabled by an underlying

Maple computation engine [6], providing extremely

efficient symbolic operations that are necessary for

handling the thousands of system equations typically

found in the transmission models.

A common characteristic of Modelica environ-

ments is that system models are built by assembling

components using “physical” connections, carrying

quantities like torque and rotational angle bi-

directionally between the two components. The deci-

sion on causality of the model is deferred to simula-

tion time, just before the numeric integration process

is started. This is possible because the entire set of

equations for the whole system is generated symbol-

ically, as a first step. At this point we typically have

a set of differential algebraic equations. As shown in

Figure 7, several steps are necessary before these

equations can be solved numerically, yielding simu-

lation results and/or HIL code. These steps are dis-

cussed next.

3.1 Equation Simplification

The initial set of equations generated from the sys-

tem model is typically large and contains many re-

dundancies. Symbolic techniques are used to simpli-

fy this set of equations as much as possible. The

simplifications are exact and do not result in any loss

of fidelity in the model. Trivial equations of the form

a = b are removed. Linear equations are pre-solved

analytically. Reducing the number of equations by a

factor of ten is not uncommon. This simplification

step is key to the scalability of the remaining pre-

processing steps.

Figure 7: Steps towards numerical simulation

3.2 Index Reduction

The generated system consists of differential alge-

braic equations (DAEs). Such equations cannot be

readily solved with standard numerical techniques

because of the presence of algebraic constraints. The

“index” of a DAE is loosely defined as the number

of times the equations need to be differentiated in

order to remove these constraints. The goal here is to

reduce the system of equations to “index 1”, allow-

ing numeric integration. During integration, the con-

straints are monitored for “drift”, ensuring an accu-

rate solution, reflecting the behaviour of both the

differential equations as well as algebraic con-

straints. Again, symbolic techniques turn out to be

essential, allowing differentiation of equations and

efficient index reduction.

3.3 Causalization

At this point, we have a simplified system of (index

1) differential equations. In order to numerically

solve this system, we will need to repeatedly evalu-

ate the system for a particular point. To enable this,

we will need to turn our (acausal) system of equa-

tions into a (causal) sequence of numeric operations.

In short, this process involves imposing an order of

evaluation onto our set of equations. Doing this effi-

ciently involves tools from graph theory, readily

available in the symbolic computing tool chest.

3.4 Optimized Code Generation

Executing speed is critical to HiL applications and

symbolic techniques again turn out to be key to gen-

High-Fidelity Transmission Simulation for Hardware-in-the-Loop Applications

910 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076907

erating highly efficient code. It is, of course, possible

to generate code directly from the causal system of

equations described above. However by looking at

those equations globally, we are able to perform

symbolic optimizations prior to generating code,

which makes the difference between achieving the

required HiL cycle times or not. These optimizations

involve detecting common computation sequences

that can be factored out, which go way beyond the

(local) optimization capabilities of available compil-

ers.

3.5 Two Examples

A Simple Driveline Model:

Consider the driveline mode shown in Figure 8.

The model represents a vehicle powertrain from en-

gine to dynamometer. The model includes a torque

converter between the flywheel and the transmission.

The transmission is a 4-speed Ravigneaux gearbox.

Using throttle and brake controllers, the speed is

changed following a ramp-up/coast down profile.

Using MapleSim’s API commands from Maple,

the simulation time is measured. A fixed time-step

solver (Euler) is used here with a time step of 0.001

sec. Total simulation time is 150 seconds. The simu-

lation was done on a 64-bit Windows 7 machine with

Intel(R) Core(TM) Duo 2.40 GHz CPU. Figure 9

shows Maple’s commands for this example. These

command extract and simplify the model

equationsand convert them to optimized c-code. The

simulation results are obtained from a Maple proce-

dure which includes the complied c-code.

Figure 8: An example of a complete powertrain.

The simulation was done over 15 times faster

than real-time (i.e. ~10 second of integration time for

a 150-second simulation). In 20 consecutive runs the

average simulation time was 9.68 with standard de-

viation of 0.30.

Figure 9: Running MapleSim simulation using

API commands in Maple

A Vehicle Model with Mean-value Engine Model:

The system in Figure 10, is the second example cho-

sen for the real-time demonstration. This model is

considerably more complex than the previous exam-

ple and includes a detailed mean-value engine model

[7] and a 4-speed transmission model. The

MapleSim model uses the New York City Cycle [8]

and runs for 600 seconds. Simulation timing was

done under similar solver settings as the previous

example. The same computer was also used. On av-

erage the simulation was done about 12 times faster

than real-time (i.e. ~50 second of integration time for

a 600-second simulation). Based on 15 consecutive

runs the average simulation time was 50.2 seconds

with standard deviation of 0.54.

4 HiL Simulation of the Automatic

Transmissions

At AISIN AW, HiL simulation is extensively used to

accelerate the development of automatic transmis-

sions. The plant models for HiL simulations require

sufficiently high fidelity to accurately represent the

aspect of the system dynamics important to the de-

signers. At the same time, these models have to have

low calculation cost in order to enable real-time exe-

cution.

As shown in Figure 11, the real-time platform used

in the HiL simulations reported here is the ADX sys-

tem [9] from A&D Technology, Inc.

The plant model is deployed in Simulink [10] and

can be separated into two parts as depicted in Figure

12. The first part is the plant model which is con-

structed of the s-function generated from MapleSim

models including clutches, brakes, and various gear

sets. This part also includes Simulink blocks for oth-

er parts of plant model. The second part is the auto-

matic testing module.

It is critical that the calculation time associated

with the first part (plant model) is kept as low as

Orang Vahid and Paul Goossens

DOI Proceedings of the 9th International Modelica Conference 911
10.3384/ecp12076907 September 3-5, 2012, Munich, Germany

possible to accommodate for the high execution

times of the increasingly more complex automatic

testing routines implemented in the testing module.

Figure 11: HiL simulation system

Figure 12: Model for Real-time system

A sample gear train is shown in Figure 13 which

includes a planetary gear, a Ravigneaux gear, and a

basic gear connected together using three clutches,

two brakes (modeled using clutch components), and

a one-way clutch. This gear train is connected to an

ideal gear which represents the differential gear ra-

tio. The tire load is modeled using additional inertia,

clutch, and brake components. The tire component

and the longitudinal vehicle dynamics component

(refer to Figure 1) are not used here since that level

of fidelity is not necessary for the intended HiL sim-

ulations.

Figure 14 shows the HiL simulation results with

s-function generated from MapleSim. Compared

with another software previously used, it was shown

that for the above model, the implementation of the

s-function generated from MapleSim in the HiL sim-

ulations with a sampling time of 1ms, reduced the

overall CPU time by 250s (or 25% of a time step).

This reduction is due to fact that the MapleSim’s s-

function runs twice as fast as the previously imple-

mented block.

5 Conclusions

In this paper some of the features of the Driveline

Component Library – an add-on Modelica library for

MapleSim modeling, simulation, and analysis envi-

ronment – were introduced. The Driveline Compo-

nent Library provides a comprehensive set of com-

ponents that enable transmission manufacturers – as

well as other automotive developers – to convenient-

ly create plant models for control and simulation.

The underlying symbolic computation engine of

MapleSim (i.e. Maple) expands the inherent ad-

vantages of similar Modelica-based physical model-

ing tools to new heights. Benefiting from the power

of symbolic computing, MapleSim can generate ex-

tremely fast code that is of vital importance when

simulating large complex systems in real-time.

Figure 10: Full vehicle model in MapleSim

High-Fidelity Transmission Simulation for Hardware-in-the-Loop Applications

912 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076907

Figure 13: Gear train model created in MapleSim

Figure 14: A sample of HIL simulation results

The paper also included a brief description of the

activities at AISIN AW on the development of new

automatic transmissions and their use of MapleSim

and the Driveline Component Library in HiL simula-

tions. The optimized c-code generated by MapleSim

from transmission plant models enabled AISIN AW

to perform more detailed HiL simulations. In a sam-

ple case study, it was shown that the s-function gen-

erated by MapleSim ran twice as fast as the s-

function generated by a similar tool.

References

[1] MapleSim User’s Guide, 2011, ISBN 978-1-

926902-09-8.

[2] https://www.modelica.org/ (accessed

2/4/2012).

[3] D. Hrovat and W.E. Tobler. “Bond graph

modeling and computer simulation of auto-

motive torque converters,” Journal of the

Franklin Institute. Volume 319, Issues 1-2,

January-February 1985, pp 93-114.

[4] Pelchen C., Schweiger C., and Otter M.,

“Modeling and Simulating the Efficiency of

Gearboxes and of Planetary Gearboxes,” 2
nd

International Modelica Conference, Proceed-

ings, pp. 257-266.

[5] Joško Deur, Vladimir Ivanovic´, Matthew

Hancock, and Francis Assadian. "Modeling

and Analysis of Active Differential Dynam-

ics," Journal of Dynamic Systems, Measure-

ment, and Control, 2010. Volume 132 /

061501, pp 1-14.

[6] Bernadin L., Chin P., DeMarco P., Geddes

K. O., Hare D. E. G., Heal K. M., Labahn G.,

May J. P., McCarron, Monagan M. B.,

Ohashi D., and Vorkoetter S. M., Maple

Programming Guide, 2011, ISBN 1-926902-

08-1.

[7] - , “Mean-Value Internal Combustion Engine

Model”, Maplesoft, White Paper,

http://www.maplesoft.com/contact/webforms

/whitepapers/enginemodel.aspx, (accessed:

2/4/2012).

Orang Vahid and Paul Goossens

DOI Proceedings of the 9th International Modelica Conference 913
10.3384/ecp12076907 September 3-5, 2012, Munich, Germany

[8] -, Dynamometer Driver's Aid,
http://www.epa.gov/nvfel/testing/dynamomet

er.htm, (accessed: 2/4/2012).

[9] http://www.aanddtech.com/ADX.html (ac-

cessed: 2/4/2012).

[10] http://www.mathworks.com/products/simulin

k/ (accessed: 2/4/2012).

High-Fidelity Transmission Simulation for Hardware-in-the-Loop Applications

914 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076907

ADGenKinetics: An Algorithmically Differentiated Library for Biochemical Networks Modeling via Simplified Kinetics Formats

ADGenKinetics: An Algorithmically Differentiated Library
for Biochemical Networks Modeling

via Simplified Kinetics Formats

Atiyah Elsheikh
Austrian Institute of Technology, Vienna, Austria

Abstract

This work demonstrates the compact but powerful
freely available Modelica library ADGenKinetics for
descriptive modeling of biochemical reaction net-
works using simplified kinetics formats. While exist-
ing powerful works and guidelines for modeling bio-
chemical reaction networks based on classical mech-
anistic kinetics already exist, in this work a first at-
tempt of utilizing the power of Modelica constructs
for providing a compact implementation of simplified
kinetic formats with generalized structured formulas
is presented. This gives the opportunity of realizing
biochemical reaction networks using few number of
reaction components, in contrast to libraries based on
classical mechanistic kinetics which require hundreds
of reaction components. Moreover, ADGenKinetics
is the first algorithmically differentiated Modelica li-
brary that is enhanced with differentiated components
by which parameter sensitivities are additionally com-
puted with minimal efforts from the user perspective.

Keywords: enzyme kinetics, biochemical reaction
networks, systems biology, algorithmic differentiation

1 Introduction

Modelica as a universal modeling language with a lot
of capabilities for supporting hierarchical modeling,
multidisciplinary modeling, object-oriented reusable
components and different modeling flavours with a
large degree of freedom and creativity is continuously
attracting the attention of many scientific fields.
However, in the field of Systems Biology aiming at
studying cellular process with the aid of mathematical
models, there are still few published non-standardized
attempts for modeling biochemical reaction networks
for describing the metabolism within cellular activi-
ties, one of the core modeling activities demanded by
many applications of the field of Systems Biology.

This work demonstrates a comprehensive overview
of the compact Modelica library ADGenKinetics for
a specific set of reaction kinetics. These subsets of
enzyme kinetics are referred to as simplified kinet-
ics formats and are represented by generalized struc-
tured kinetics formulas suitable for biochemical reac-
tions with arbitrary number of substrates, products, in-
hibitors and activators. The employment of general-
ized kinetics have two advantages from two perspec-
tives:

1. From the modeling perspective: Utilization of
generalized kinetics formulas provides the oppor-
tunity of implementing a compact library with so
few numbers of components that the user nei-
ther needs to choose an enzyme kinetic compo-
nent from a long list of components nor needs to
self implement newer enzyme kinetics for newer
cases of non considered reactions

2. From the implementation perspective: By ef-
ficient employment of powerful Modelica lan-
guage constructs, the implementation of highly
specialized practical library for modeling bio-
chemical network applications gets simplified.

The proposed library is distinguished by the following
criteria:

• It is suitably adequate to get linked with special-
ized graphical editors for modeling biochemical
reaction networks and for other applications of
automatic model generation

• It is the first algorithmically differentiated library
by which algorithmic differentiation (AD) tech-
niques [6, 11] are directly applied at the library
level [5]. The resulting additional subpackage
contains extended components in which param-
eter sensitivities, i.e. derivatives of model vari-
ables w.r.t. model parameters, are represented.

DOI Proceedings of the 9th International Modelica Conference 915
10.3384/ecp12076915 September 3-5, 2012, Munich, Germany

• it is open-source and provided under the Model-
ica License 2.

The rest of the work is structured as follows: section 2
presents a quick introduction to biochemical networks
modeling. Section 3 gives rather a quick overview of
various classical and simplified kinetic laws but com-
prehensive enough for appreciating this contribution.
Section 4 demonstrates the proposed library, its ad-
vanantages and limitations along an example in section
5. Finally, outlook is given in section 6.

2 Background and Terminology

2.1 Modeling biochemical reaction networks

Biochemical reaction network models are used for de-
scribing the dynamics of molecular species and their
interaction within the cellular metabolism [9]. Usually
such models are based on the continuum1 and homo-
geneity assumptions2. The law of mass conservation3

is used for describing the rate of change in the mass of
intermediate metabolites (i.e. biochemical substances)
in a biochemical reaction network. The resulting mod-
els typically have the following structure:

ċ = N · v(c,α), c(0) = c0 (1)

where c ∈ Rm stands for vectors of the metabolite con-
centrations, v = v(c, p) ∈ Rn is a vector of reaction
rates described by enzyme kinetics, α is kinetic pa-
rameters vector describing enzyme characteristics and
N ∈ Rm×n is the reactions stoichiometry describing the
number of participating molecules in any single reac-
tion [15].

Figure 1 demonstrates a typical biochemical net-
work of enzymatic reactions termed as the Spiral-
lus which represents an abstraction of Tri-Carboxylic
Acid (TCA) cycle [14]. The set of freely distributed
metabolites A,B,C,D,E,F are viewed as nodes, while
the reactions are viewed as intermediate edges among
the metabolites [2]. With the presence of substrates
being taken up through the initial reaction vupt , in-
termediate reactions become active and the two prod-
ucts Eex,Fex get produced as long as enough substrate
molecules are taken up. Some of the reactions are ir-
reversible such as v3 (i.e. the flow of materials is con-
ceptually only in the forward direction) while others

1All chemical species involved have such a high copy number
to be described by a continuous concentration value

2Diffusion processes are so fast that concentrations can be con-
sidered to be spatially homogeneous

3the mass within a closed system remains constant over time

Figure 1: Spirallus: An Abstraction of the TCA cycle

are reversible such as v1. The reactions vupt ,v3,v4 are
inhibited by the molecules of the metabolites A,D,C
acting as inhibitors respectively. Analogously, specific
molecules of metabolites may act as activators by ac-
celerating certain reactions. Inhibitors and activators
are referred to as effectors or modifiers. A mathemati-
cal model for describing the process dynamics is given
as follows:

˙[A] = vupt − v1
˙[B] = v1 − v2 − v5

˙[C] = v2 − v3
˙[D] = v3 − v4

˙[E] = v4 + v5 − v2 − v6
˙[F] = v3 + v4 − v7

The state variables A,B, ..,Fex corresponds to the con-
centration of metabolites. The algebraic variables v j

describe the reaction rates via algebraic functions re-
ferred to as enzyme kinetics, the topic of the following
section.

3 Enzyme kinetics

Vital cellular processes at the metabolism level are per-
formed according to the present set of enzymatic reac-
tions networks. The base elements of such networks
are the involved enzymatic reactions. For instance,
within an uni-uni enzymatic reaction in the form:

S+E
k1−−⇀↽−−
k−1

ES k2−→ E +P (2)

ADGenKinetics: An Algorithmically Differentiated Library for Biochemical Networks Modeling …

916 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076915

the molecules of the specific enzyme E binds with
the molecules of the substrate S according to a rate
constant k1. Similarly, k−1 is a rate constant describ-
ing the decomposition rate of the complex ES into E
and S. The resulting enzyme-substrate complex ES
molecules are vastly transformed to the product P. The
reaction rate v of such transformation, i.e. product for-
mation, is modeled by enzyme kinetics. Such kinetics
typically correspond to nonlinear functions of the fol-
lowing form:

v(t) = e · f (c(t),α) (3)

where e is the amount of the associated enzyme, α a
set of parameters corresponding to enzyme character-
istics and c(t) the concentration of the involved sub-
strates, products and effectors [1]. In case of a re-
versible reaction, f can be usually expressed in terms
of forward and backward reaction rate as v = v f wd −
vbwd . In this case, the overall direction of the reaction
is then the sign of v. Many enzyme kinetics approaches
for describing the function f exist some of which are
demonstrated in the following subsections.

3.1 Mechanistic kinetics

In order to emphasize the importance of simplified ki-
netics formats, the widely used classical mechanistic
kinetics are introduced as a motivation. Mechanis-
tic kinetics describe the reaction rates of biochemi-
cal enzymatic reactions by involving the underlying
enzyme binding mechanisms within the mathemati-
cal model. For instance, the simple reaction (2) is
modelled by Michaelis-Menten kinetic. Its analytical
derivation based on the quasi-steady state assumption
(i.e. k−1,k1 ≫ k2) leads to the following formula:

v =
k2[E]0[S]

k−1+k2
k1

+[S]
=

Vmax[S]
Km +[S]

(4)

The parameter Km corresponds to the substrate con-
centration that yields the half-maximal reaction rate
Vmax/2. These two parameters represent enzymatic
characteristics demonstrating how quickly the enzyme
becomes saturated and what its maximum activity is.

Reactions with effectors

For enzymatic activities influenced by effectors vari-
ous types and binding mechanisms exist, cf. figure 2
for various inhibition mechanisms. Mechanistic kinet-
ics distinguish such types of inhibitions mechanisms
through their mathematical formulation according to
whether

Figure 2: A summary of different types of inhibition
mechanisms

• the inhibitor binds to the complex ES

• the inhibitor binds to S

• the reversibility of the inhibition

For instance, the analytical derivation of a mechanistic
kinetic for an irreversible reaction inhibited by I ac-
cording to complete competitive inhibition leads to:

v =
Vmax[S]

Km(1+[I]/KI)+ [S]
(5)

Where KI is a parameter that expresses the ratio of EI
formation to EI decomposition. Within competitive
inhibition, the inhibitor I competes with the substrate S
for binding with the enzyme E. In this case, the release
of P is blocked by I, cf. figure 2. Similar discussion
regarding activation mechanisms leads to the fact that
a wide range of mechanistic kinetics formulas exists
distinguishing all these various mechanisms.

Multi-substrate reactions

For cellular reactions with more than one substrate
and one product, very likely to arise in the cellular

Atiyah Elsheikh

DOI Proceedings of the 9th International Modelica Conference 917
10.3384/ecp12076915 September 3-5, 2012, Munich, Germany

metabolism, mechanistic kinetics are more sophisti-
cated. Their analytical derivation additionally consid-
ers the sequence in which substrates bind and products
are released. For example, within a bi-bi reaction, (two
substrates S1,S2 and two products P1,P2) the underly-
ing enzymatic mechanisms are differentiated accord-
ing to whether binding to enzyme is done

• in random order, (i.e. E binds with both of S1 and
S2 in any order)

• in a sequential order, (i.e. S2 binds only with the
complex ES1)

• in an alternate binding of substrates and release
of products (ping-pong mechanisms)

as well as

• which intermediate complexes are formed (only
ES1, ES2 or also ES1S2)

• Interactions among reactants (e.g. inhibition
through product formation)

For example, the kinetic of an ordered bi-bi reaction
(i.e. binding in a specific order)

E +S1 ⇀↽ ES1 +S2 ⇀↽ ES1S2 ⇀↽

EP1P2 ⇀↽ P1 +EP2 ⇀↽ E +P1 +P2 (6)

is described with the equation:

v =
Vmax[S1][S2]

KiS1KmS2 +KmS2 [S1]+ [S1][S2]
(7)

In summary, each combination of assumptions re-
garding the underlying enzymatic reaction leads to
a unique kinetic formula. This results in enormous
number of possible equation patterns corresponding
to combinatorially high number of different assump-
tions. Such equations do not necessarily follow a gen-
eral equation pattern if they are expressed in terms
of mechanistic parameters rather than elementary rate
constants ki. This causes some difficulties by modeling
since hundreds of components need to be separately
implemented for expressing different enzyme binding
mechanisms.

3.2 Generalized kinetics formats

As already shown, mechanistic kinetics characterize
detailed description of the underlying enzymatic
mechanism. These kinetics pose however some prob-
lems when used for describing enzymatic reactions

within cellular environment. Under such crowded
conditions, a lot of effectors may influence the enzyme
activity. When considering all typical interactions,
the corresponding derived kinetic becomes very
complex and parameter dependencies are enhanced
when estimating the parameters with experimentally
generated data leading to serious problems in the
process of model identification [16].

This argument motivates the use of generalized ki-
netics which relay on more simplified assumptions two
of which are introduced. The first type is the so-called
convenience kinetics which assumes a reversible rapid
equilibrium with random binding mechanism [10]. In
this way, the corresponding kinetic of any reaction
with arbitrary number of substrates Si, products Pj, in-
hibitors Ib and activators Aa becomes:

v = ∏
a

KAa +[Aa]

KAa

·∏
b

KIb

KIb +[Ib]

·
V f wd

max ∏
i

[Si]

KmSi

−V bwd
max ∏

j

[Pj]

KmPj

∏
i

(
1+

[Si]

KmSi

)
+∏

j

(
1+

[Pj]

KmPj

)
−1

(8)

Another kinetic format is the linlog kinetic [8] given
by:

v = v0 +∑
i

αi · ln(
Si

S0
i
)+∑

j
β j · ln(

Pj

P0
j
)+

∑
a

γa · ln(
Aa

A0
a
)+∑

a
δb · ln(

Ib

I0
b
) (9)

In contrary to mechanistic parameters, which pro-
vide descriptive physical insights into enzymatic
mechanisms, linlog parameters are based on scaled
sensitivities describing the influence of characteristic
changes of enzymes on a referenced reaction rate at a
reference steady-state v0.

One of the main advantages of the presented kinet-
ics in the context of this work is that they are expressed
in terms of generalized structured formulas very ade-
quate for compact implementation and automatic gen-
eration of highly complex models. However, one of
the limitation of such kinetics is that they may not
describe the enzymatic behavior accurately in some
boundary cases as shown in [7].

ADGenKinetics: An Algorithmically Differentiated Library for Biochemical Networks Modeling …

918 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076915

4 Overview of the library

4.1 The Biochem Library

For modeling biochemical networks with Modelica,
considerable efforts have been realized by the Biochem
library [12]. It provides the essential guidelines and
design principles for achieving this goal, eg. basic im-
plementable interfaces and basic types. According to
the available publications, Biochem provides about 99
abstract reaction types under the restriction that a re-
action can get connected to at most three substrates,
three products and one effector. Out of these abstract
types, many mechanistic reaction kinetics can be de-
rived. Within the library Metabolic, a published im-
plementation of Biochem, at least 180 kinetics are im-
plemented and classified according to the number of
substrates and products within many sub-packages. If
all combination of reaction assumptions are consid-
ered, still many hundred of reaction kinetics need to
be inserted. If more than one effector is considered,
a realistic scenario for biochemical reaction networks
in cellular environment, the number of required com-
ponents corresponding to various kinetics would be so
high.

4.2 The ADGenKinetics Library

In this work, a compact implementation of simpli-
fied kinetics is demonstrated following the main
guidelines provided by Biochem w.r.t. the library
structure, physical units, naming conventions and
some of the implementation. The main differences
appear whenever the mathematical structures of the
simplified kinetics are utilized for implementing
interfaces for the underlying generalized formulas.
These interfaces are specialized according to the
number of reactants, products, specific effectors,
reversibility etc. By exploiting powerful Modelica
constructs, realization of simplified kinetics require
very few number of components out of which realistic
biochemical networks are easily constructed, modeled
and simulated. On the other hand classical mech-
anistic kinetics within implementation of Biochem
requires a large number of components. Users are
likely to insert additional kinetics whenever new or
slightly modified biochemical reaction networks need
to be modeled.

Figure 3 summarizes the presented library. The fol-
lowing packages are available:

• Interfaces: connectors, classification interfaces

and icons

• NodeElements: components for nodes

• Reactions: components for reactions

• Derivatives: extended components for computing
parameter sensitivities

• Examples: biochemical network models

Further two subpackages within NodeElements and
Reactions exist corresponding to two ways of decla-
ration of connectors within components:

1. dynamic: parametrized number of connections

2. static: fixed number of connections

The main differences of both ways and their advan-
tages and disadvantages are emphasized in this section
along with the given examples. Common interfaces
and abstract classes are located above these packages.

4.3 Connectors

The fundamental laws on which biochemical reaction
network models rely i.e. the continuum and homo-
geneity assumptions and the law of conservation (cf.
section 2.1) translates into the terminology of Model-
ica as follows:

Listing 1: Implementation of chemical ports
connector ChemicalPort

"reaction connector from a node to

a reaction"

Units.Concentration c "Concentration";

flow Units.VolumetricReactionRate r

"reaction rate";

end ChemicalPort;

That is, the concentration of a substance is the
potential variable while the flow rate of materials
represents the flow variables when connecting nodes
and reactions together. The mathematical models of
biochemical reaction networks do not require a node
to distinguish between a connection from an ingoing
reaction and a connection to an outgoing reaction.
The sign of the reaction rate is explicitly determining
whether the considered node is a substrate or a product
of the connected reaction.

This situation is different with connections to nodes
from a reaction side. The kinetic formula distinguishes
between a substrate node and a product node, cf. equa-
tion (8). Consequently additional connectors, Chem-
icalPort_S, ChemicalPort_P extending the connector

Atiyah Elsheikh

DOI Proceedings of the 9th International Modelica Conference 919
10.3384/ecp12076915 September 3-5, 2012, Munich, Germany

Figure 3: An overview of the library with static/dynamic number of connections

ChemicalPort with distinguished icons for differenti-
ating between connections to substrates and connec-
tions to products are considered. Additionally, the spe-
cialized connector ModifierChemicalPort between ef-
fectors and reactions is provided. This connector in-
cludes only the concentration of the respective node.
Similarly two icons are provided to distinguish activa-
tors from inhibitors.

4.4 Nodes

In Biochem, implementation of nodes is realized at
three levels of abstraction:

1. NodeConnections: A class providing the basic in-
terfaces and icons, about 8 connectors as a reac-
tant and 4 connectors as a modifier

2. BasicNode: An abstract class realizing basic im-
plementation of nodes and extending NodeCon-
nections

3. Node: An implementation of BasicNode describ-

ADGenKinetics: An Algorithmically Differentiated Library for Biochemical Networks Modeling …

920 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076915

ing the concentration dynamics

The static subpackage is directly taken from Biochem.

In the subpackage dynamic, only one connector for
reactants and one connector for modifiers [15] is given
as follows:

Listing 2: Implementation of node connections
partial model NodeConnections

"Metabolite connections to reactions"

Interfaces.ChemicalPort rc

"connection to any reaction ";

Interfaces.ModifierChemicalPort mc

"connection as a modifier";

end NodeConnections;

The abstract class BasicNode in dynamic looks as fol-
lows:

Listing 3: Implementation of an abstract node class
partial model BasicNode

"Basic declarations of any Metabolite"

extends Interfaces.dynamic.

NodeConnections;

parameter Units.Concentration c_0=0;

Units.Concentration c(start=c_0);

Units.VolumetricReactionRate r_net;

equation

r_net = rc.r;

rc.c = c;

mc.c = c;

end BasicNode;

Direct implementation of BasicNode is realized in the
models FixedConcentrationNode and Node:

Listing 4: Implementation of a node
model Node "Metabolite with dynamic rate"

extends NodeElements.dynamic.BasicNode;

equation

der(c) = r_net;

end Node;

Further types of nodes exist in Biochem.

4.5 Reactions

Each generalized kinetic format is realized within a
subpackage. Currently, the subpackage convenience
is implemented. The realization of other simpli-
fied kinetic formats like linlog kinetics is analogously
straightforward.

4.5.1 dynamic

In this subpackage, convenience kinetics are imple-
mented by extending several abstract classes which
specifies a reaction according to:

1. its dimension: how many substrates and products
are involved as well as the stoichiometry of the
reactants

2. its reversibility

3. whether the reaction is effected by other modi-
fiers, how many and their types

The implementation of these basic classes are shown
as follows:

Listing 5: The dimension of a reaction
class ReactionDimension

"Dimension and structure of a reaction"

parameter Integer NS = 1

"Number of substrates";

parameter Units.StoichiometricCoef

n_S[NS]=ones(NS)

"Stoichiometry of all subtrates";

parameter Integer NP = 1

"Number of products";

parameter Units.StoichiometricCoef

n_P[NP]=ones(NP)

"Stoichiometry of all products";

end ReactionDimension;

Using the previous class, an abstract type for reac-
tions slightly modified version from the one provided
in Biochemis given as follows:

Listing 6: The dimension of a reaction
partial model BasicReaction

"basic declaration of a reaction"

extends Interfaces.dynamic.Dimension

.ReactionDimension;

Units.VolumetricReactionRate v

"reaction rate";

Interfaces.ChemicalPort_S rc_S[NS]

"connection to substrates";

Interfaces.ChemicalPort_P rc_P[NP]

"connection to product";

equation

rc_S [:].r = n_S [:] * v;

rc_P [:].r = -n_P [:] * v;

end BasicReaction;

Specification of the reaction reversibility is done via
the related classes OneWayReaction and TwoWayRe-
action. These classes provide the basic declaration
of related kinetic parameters and are directly taken
from Biochem. Moreover, two additional abstract
classes BasicIrrReaction and BasicRevReaction are
introduced in the proposed library for emphasizing
type abstractions among implemented kinetics:

Listing 7: Basic reversible reaction
partial model BasicRevReaction

"basic implementation of

a reversible reaction"

Atiyah Elsheikh

DOI Proceedings of the 9th International Modelica Conference 921
10.3384/ecp12076915 September 3-5, 2012, Munich, Germany

extends Reactions.convenience.dynamic.

BasicIrrReaction;

extends Interfaces.Reversible.TwoWay;

Real P1 "Product terms nominator";

Real P2 "Product terms denominator";

parameter Units.AffinityConst KmP[NS]

= ones(NS) "Affinity constants of

the product node";

equation

P1 = Vbwdmax * product ({rc_P[i].c/KmP[i]

for i in 1:NP});

P2 = product ({rc_P[i].c/KmP[i] + 1

for i in 1:NP});

end BasicRevReaction;

The corresponding classes for specifying the effec-
tors are given by the classes ReactionInhibition and
ReactionActivation:

Listing 8: The inhibitors of a reaction
partial model ReactionInhibition

"Inhibition influencing a reaction"

parameter Integer NI = 1

"# Metabolites inhibiting the reaction";

Interfaces.ModifierChemicalPort_I

mc_I[NI];

parameter Units.AffinityConst KI[NI]

= ones(NI) "Affinity constant";

Real I "Inhibition term";

equation

I = product ({KI[i] / (KI[i] + mc_I[i].c)

for i in 1:NI});

end ReactionInhibition;

Using these classes, all reaction types of convenience
kinetics are realized only with 8 classes. For instance,
the implementation of convenience kinetics for re-
versible inhibited reactions with arbitrary number of
reactant substrates, products and inhibitors is given as
follows:

Listing 9: Kinetic for reversible inhibited reaction
class InhRevKinetic

"S1+S2+... <==I1 ,I2 ,..== > P1 ,P2 ,..."

extends Reactions.convenience.dynamic.

BasicRevReaction;

extends Reactions.convenience.dynamic.

ReactionInhibition;

equation

v = I * (S1 - P1) / (S2 + P2 - 1);

end InhRevKinetic;

Realistic biochemical reaction networks can be real-
ized using only these 8 classes.

4.5.2 static

This subpackage is more or less a straightforward
implementation of the Biochem guidelines except in

some details. It provides many components for de-
scribing enzyme kinetics with fixed number of sub-
strates, products and modifiers via a static number of
connectors. The implementation is done along many
levels via the following abstract classes:

1. The classes Reaction1S, Reaction2S, ... , Reac-
tion1P, Reaction2P, ... , Reaction1I, Reaction1A
etc. provide the basic icons for reactions with
specific number of connectors to substrates, prod-
ucts, etc.

2. The abstract classes BasicIrrReaction1S1P, Ba-
sicIrrReaction2S1P,...etc. provide basic imple-
mentation for kinetic terms of irreversible and re-
versible reactions with specific number of reac-
tants. Similarly, the classes BasicReaction1I, Ba-
sicReaction1I provide basic implementation for
kinetics terms of modified reactions.

3. The actual kinetics are realized within Ir-
rKinetic1S1P, IrrKinetic1S2P, ... , IrrKi-
netic1S1P1I,... etc. by extending and specializing
the abstract classes.

Using this way, many components need to be pro-
vided. For instance, by realizing reactions with two
substrates and two products together with one modifier
at maximum, there are 2 (substrates)× 2 (products)×
2 (reversibility) ×3 (effectors) = 24 components that
need to be provided. By three substrates and three
products with two modifiers at maximum, about 9×
2×6 = 108 components need to be provided.

4.6 The Derivatives subpackage

The Derivatives subpackage contains an extended
copy of the whole library with identical structure
of subpackages, interfaces and components. Each
component has additional declaration and equations
for computing parameter sensitivities. The equations
are computed using algorithmic differentiation tech-
niques. In this work, new novel AD techniques es-
pecially optimized for equation-based languages are
employed. For any model using the library typically
corresponding to a DAE system of the form:

F(ẋ,x, p, t) = 0 , x(t0) = x0(p) (10)

where x(t) ∈ Rn and p ∈ Rm represent state vari-
ables and model parameters, respectively, importing
the types within the Derivatives subpackage lets the
underlying model of eq. (10) get extended with the the

ADGenKinetics: An Algorithmically Differentiated Library for Biochemical Networks Modeling …

922 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076915

Figure 4: Omix: a highly-specialized graphical editor
for biochemical networks

corresponding sensitivity subsystems:

[Fẋṡi +Fxsi +Fpi]Jp = 0 , si(t0) =
∂x0(p)

∂ pi
(11)

where si =
∂x
∂ pi

for i = 1,2, ...,m

and Jp ∈ Rm×r is the input Jacobian specifying the set
of active parameters q ∈ Rr w.r.t. which derivatives
are sought. The same model simulates the underlying
biochemical reaction network together with the deriva-
tives of all variables with respect to the specified input
parameters. A usage example is available in the Exam-
ples subpackage and is summarized in the following
section.

5 Examples

The implementation of the biochemical network in fig-
ure 1 is demonstrated once with dynamic number of
connections and again with static number of connec-
tions. With dynamic number of connections, the im-
plementation is assembled as follows:

Listing 10: Implementation of the Spirallus network
with parametrized number of connections
model Spirallusdyn

"An abstraction of the TCA cycle"

import ADGenKinetics.

NodeElements.dynamic .*;

import ADGenKinetics.

Reactions.convenience.dynamic .*;

Node Aex(c_0 =1);

Figure 5: Implementation with the Dymola graphical
editor

InhIrrKinetic vupt(NS=1,NP=1,NI=1,

Vfwdmax =1.0,

KmS ={0.1} ,KI ={3.0});

ModifierNode A;

RevKinetic v1(NS=1,NP=1,

Vfwdmax =3.0, Vbwdmax =1.0,

KmS ={0.1} , KmP ={3.0});

Node B;

...

equation

// vupt

connect(Aex.rc,vupt.rc_S [1]);

connect(vupt.rc_P[1],A.rc);

connect(vupt.mc_I[1],A.mc);

// v1

connect(A.rc,v1.rc_S [1]);

connect(v1.rc_P[1],B.rc);

...

end Spirallusdyn;

The main disadvantage of this approach is that the
implementation is provided only at textual level.
Typical modeling environments of Modelica don’t
currently provide graphical support for parametrized
dynamic number of connections yet. Nevertheless,
this approach is ideally relevant for automatic model
generation possibly using specialized graphical edi-
tors for biochemical networks. For instance, figure
4 shows a snap shot of Omix [2] a general-purpose
editor for constructing, editing and visualizing
biochemical networks in a semi-automatic manner.

Atiyah Elsheikh

DOI Proceedings of the 9th International Modelica Conference 923
10.3384/ecp12076915 September 3-5, 2012, Munich, Germany

Figure 6: Concentration of the substances

Omix is enhanced with a plugin for parsing and
generating Modelica models [13]. The tool employs
Open Modelica Compiler (OMC) for parsing a
Modelica library for biochemical network modeling
and identifying existing types of kinetics and nodes.
Then OMC is again used for automatically generating
the corresponding models that can be then simulated
using typical Modelica simulation environments as
described in [3] in a very similar manner to the tool
provided in [4]. The presented library would be ideal
for such a tool or any other SBML-based graphical
editor using very similar concepts.

With the static components of fixed number of con-
nections, biochemical network models can be directly
assembled with common Modelica simulation envi-
ronments. For instance, figure 5 provides the imple-
mentation of the network model using Dymola. Fig-
ures 6 and 7 demonstrate the simulation results of
the concentration of chemical substances and the re-
action rates of reactions of the Spirallus network, re-
spectively. Using the subpackage Derivatives, pa-
rameter sensitivities can be computed in a straight for-
ward way. For the Spirallus example, this can be done
by slightly modifying the declaration part of the code
from listing 10 to the following:

Listing 11: Implementation of the dynamics of the
Spirallus network together with the parameter sensi-
tivities
import ADGenKinetics.Derivatives.

NodeElements.dynamic .*;

import ADGenKinetics.Derivatives.

Reactions.convenience.dynamic .*;

import ADGenKinetics.Derivatives.

Functions .*;

Figure 7: Reaction rates of reactions

inner parameter Integer NG = 24

"Number of gradients";

Node Aex(c_0 =1);

InhRevKinetic vupt(NS=1,NP=1,

Vfwdmax =1.0, g_Vfwdmax=unitVector (1,NG),

KmS ={0.1} , g_KmS={ unitVector (2,NG)},

KI={3.0} , g_KI={ unitVector (3,NG)});

...

IrrKinetic v7(NS=1,NP=1,

Vfwdmax =2.0, g_Vfwdmax=unitVector (23,NG),

KmS ={3.0} , g_KmS={ unitVector (24,NG)});

Node Fex;

equation

// equations remain as before

...

In the last model, the standard types for nodes and re-
actions are replaced by the extended types within the
subpackage Derivatives. An additional unique param-
eter NG is declared, specifying the number of active
parameters w.r.t. which derivatives are sought. Fi-
nally, the input gradient of any parameter p is ini-
tialized with the help of the function unitVector(i,NG)
which returns a unit vector of length NG with the ith
component equal to one. In this way, for any vari-
able v, g_v[i] corresponds to ∂v/∂ p. For parameters
with non-initialized gradients, they simply become in-
active. Figure 8 shows the parameter sensitivities of
the reaction v7 w.r.t. all kinetic parameters.

6 Outlook

In this work, a Modelic library for implementing gen-
eralized kinetics formats based on justifiable simpli-
fication assumptions is provided. With the help of
Modelica language constructs, the opportunity of real-

ADGenKinetics: An Algorithmically Differentiated Library for Biochemical Networks Modeling …

924 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076915

Figure 8: Parameter sensitivities of v7

izing real-life applications with few number of compo-
nents is given. Consequently, the library is especially
adequate for tools requiring automatic model genera-
tion. Moreover, this library follows the main guide-
lines of Biochem making it possible to get integrated
with other existing implementation. The presented li-
brary is the first algorithmically differentiated Mod-
elica library. With minimal additional user efforts,
base models additionally simulate parameter sensitiv-
ities together with the network dynamics. The under-
lying novel equation-based AD techniques which have
been especially designed for ADGenKinetics have also
the potentials to be employed by other Modelica li-
braries.

Acknowledgement

I’d like to acknowledge Dr. Stephan Noack, institute
of Bio- and Geosciences, Biotechnology (IBG-1), re-
search centre Jülich, for valuable discussions about en-
zyme kinetics. His own advanced modeling library
was very inspiring for me for understanding the prin-
ciples of modeling biochemical reaction networks.

References

[1] H. Bisswanger. Enzyme Kinetics, Principles and
Methods. WILEY-VCH Verlag, Weinheim, Ger-
many, 2002.

[2] P. Droste, S. Noack, K. Noh, and W. Wiechert.
Customizable visualization of multi-omics data
in the context of biochemical networks. In VIZ
2009: The 2nd International Conference on In-
formation Visualisation, Barcelona, Spain, 2009.

[3] A. Elsheikh. Modelica-based computational
tools for sensitivity analysis via automatic differ-
entiation. PhD thesis, submitted to Institute of
Computer Science, RWTH Aachen University,
Aachen, Germany, 2011.

[4] A. Elsheikh, S. Noack, and W. Wiechert. Sen-
sitivity analysis of Modelica applications via au-
tomatic differentiation. In Modelica’2008: The
6th International Modelica Conference, Biele-
feld, Germany, 2008.

[5] A. Elsheikh and W. Wiechert. Automatic sensi-
tivity analysis of DAE-systems generated from
equation-based modeling languages. In C. H.
Bischof, H. M. Bücker, P. D. Hovland, U. Nau-
mann, and J. Utke, editors, Advances in Auto-
matic Differentiation, pages 235–246. Springer,
2008.

[6] A. Griewank. Evaluating Derivatives: Princi-
ples and Techniques of Algorithmic Differenti-
ation. Number 19 in Frontiers in Appl. Math.
SIAM, Philadelphia, PA, 2000.

[7] F. Hadlich, S. Noack, and W. Wiechert. Trans-
lating biochemical network models between dif-
ferent kinetic formats. Metabolic Engineering,
11(2):87 – 100, 2009.

[8] J. J. Heijnen. Approximative kinetic for-
mats used in metabolic network modeling.
Biotechnology and Bioengineering, 91(5):534–
545, 2005.

[9] E. Klipp, R. Herwig, A. Kowald, C. Wierling,
and H. Lehrach. Systems Biology in Prac-
tice: Concepts, Implementation and Application.
Wiley-VCH, 2005.

[10] W. Liebermeister and E. Klipp. Bringing
metabolic networks to life: convenience rate law
and thermodynamic constraints. Theoretical Bi-
ology and Medical Modelling, 2006.

[11] U. Naumann. The art of Differentiating Com-
puter Programs, an Introduction to Algorithmic
Differentiation. SIAM, 2012.

[12] E. L. Nilsson and P. Fritzson. A Metabolic Spe-
cialization of a General Purpose Modelica Li-
brary for Biological and Biochemical Systems.
In Proceeding of the 4th International Modelica
Conference, Hamburg, Germany, 2005.

Atiyah Elsheikh

DOI Proceedings of the 9th International Modelica Conference 925
10.3384/ecp12076915 September 3-5, 2012, Munich, Germany

[13] J. Tillack, P. Droste, N. Hackbarth, W. Wiechert,
and K. Nöh. Visually-assisted modeling of ki-
netic metabolic networks - from Omix to Mod-
elica and back. In MATHMOD 2012: The 7th
Vienna International Conference on Mathemati-
cal Modelling, Vienna, Austria, 2012.

[14] S. A. Wahl. Methoden zur integrierten Anal-
yse metabolischer Netzwerke unter stationären
und instationären Bedingungen. PhD thesis, Re-
search Centre Jülich, Germany, 2007.

[15] W. Wiechert, S. Noack, and A. Elsheikh. Mod-
eling languages for biochemical network simu-
lation: Reaction vs equation based approaches.
Advances in Biochemical Engineering / Biotech-
nology, 2010.

[16] W. Wiechert and R. Takors. Validation of
metabolic models: Concepts, tools, and prob-
lems. In H. V. Westerhoff and B. Kholodenko,
editors, Metabolic Engineering in the Post Ge-
nomic Era (Horizon Bioscience). Horizon Scien-
tific Press, 2004.

ADGenKinetics: An Algorithmically Differentiated Library for Biochemical Networks Modeling …

926 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076915

Variable Structure Modeling for Vehicle Refrigeration Applications

Variable Structure Modeling for Vehicle Refrigeration
Applications

Imke Krüger Alexandra Mehlhase Gerhard Schmitz
Hamburg University of Technology, Department of Technical Thermodynamics

Denickestr. 17, 21075 Hamburg
TU Berlin, Department of Software Engineering and Theoretical Computer Science

Ernst-Reuter-Platz 7, 10587 Berlin

Abstract

A variable-structure approach for Modelica models is
presented in this paper. Variable structure models en-
able the user to change the simulation model during
runtime. This is not supported by common simulation
environments and thus a Matlab script is used to con-
trol the run of the simulation. The script switches be-
tween the different models and sets the initial values to
ensure smooth transients of the variables. The method
is applied to a simplified model of a thermal manage-
ment system for Lithium ion batteries in a hybrid ve-
hicle. In this model some components do not need
to be calculated through the complete simulation time
and are removed from the model through the variable-
structure approach. With this approach the simulation
time can be reduces while the simulation accuracy is
not affected negatively.

Keywords: vapour compression cycle; simulation
speed; thermal management, variable-structure model

1 Introduction

How can the variable-structure method help to speed
up simulations? In the case of battery thermal manage-
ment, the branch to the battery cooling can be opened
or closed with a valve such that the battery is only
cooled when needed. So the general structure of the
refrigeration cycle changes from a branched cycle to
a single evaporator cycle. In simulation environments
supporting Modelica it is not possible to change the
set and causality of an equation system. In Modelica
it is assumed that a model always has one set of equa-
tions and that the variables themselves do not change.
For the refrigeration cycle it would be highly useful
to be able to change the equation system because the
equations for the unneeded branch could be turned off.
This means that no unnecessary calculations have to be

done and the simulation time could be reduced. To ex-
plain this approach the thermal management of HEV
batteries will first be explained. Then the general ap-
proach for variable-structure models that was used in
this paper is introduced. The presentation of a sim-
ple model and its preparation for the application of
the variable-structure method is followed by the results
for simulations with and without the variable-structure
method.

2 Thermal Management of HEV bat-
teries

The batteries of hybrid electric vehicles heat up due to
inner heat generation. Thermal management is though
essential to ensure safety and prevent ageing. The only
reliable heat sink for the cells is the automotive refrig-
eration cycle. The cells can be cooled by evaporation
of the refrigerant, therefor a cold plate is put in parallel
to the ordinary evaporator (see fig.1).

Cooling of the cells is only necessary when their up-
per temperature limit is reached. Only then the valve
to the battery cooling branch opens, e.g. there is no
refrigerant flow as long as the cells are cool enough.
The necessary cooling power depends on the drive cy-
cle and the surrounding temperatures.

System simulation plays an important role in the de-
sign of vehicle air conditioning. It enables the user to
test various system architectures as well as providing
values that cannot be measured in real life test rigs. As
the development becomes faster and additional tasks
like battery cooling emerge, accelerating the simula-
tions becomes necessary. Additional components and
more complex system designs raise the dimensions of
the resulting nonlinear equation systems. During the
evaluation process of a cooling system, a lot of simu-
lations for various climatic conditions and heat loads

DOI Proceedings of the 9th International Modelica Conference 927
10.3384/ecp12076927 September 3-5, 2012, Munich, Germany

Figure 1: System architecture of A/C Refrigerant Cy-
cle with Battery Cooling

are necessary to evaluate the additional energy con-
sumption of the refrigeration cycle.

In the current Modelica models with static structure,
the refrigerant mass flow in the battery branch cannot
be set to exactly zero. The resulting very small refrig-
erant mass flows and pressure losses in the control vol-
umes slow down the simulation. In addition, the mass
flow might change its sign, causing further decelera-
tion of the simulation. The equations for the closed
branch have to be solved during the whole simulation
although they are not needed most of the simulation
time. The CPU time needed for simulations becomes
too large and the number of possible simulation runs
is limited by the available time. Very simple (and less
exact) models have to be used, making the results less
reliable.

Calculation time could be radically reduced if the
obsolete equations could be switched off when the bat-
tery branch is closed. The time span during which the
valve is closed can make up large parts of a driving
cycle (see [1]) so there is a large potential to reduce
the time for a simulation run. Currently there is no
possibility to deactivate equations in Dymola/Model-
ica during runtime.

3 Variable-structure modeling with
Modelica/Dymola

A variable-structure model consists of different modes
whereas each mode itself is a model and has a set
of equations and variables. The model can switch
from one mode to another triggered through a switch-

ing condition. When a switching condition occurs the
mode switch takes place and the end values of the sim-
ulation results are used to initialize the next mode. The
modeler has to define which end values to use to ini-
tialize the next mode.

As explained above such a change of an equation
system is needed to model the thermal management
of batteries more efficiently. But neither Dymola nor
other simulation environments e.g. OpenModelica and
SimulationX support the change of a set of equations
of a Modelica model during a simulation run. There-
fore, a scripting approach with Matlab is used as intro-
duced in [2]. This approach allows a user to model
their models in a chosen simulation environment or
language and use Matlab to switch from one mode
(and therefore to another set of equations) to the next.

The general idea is to create a new modeling layer
where the structural change is described and which
handles the actual change. The simulation models are
implemented in a simulation environment chosen by
the user. It is important that the simulation environ-
ment can be controlled through Matlab so a model can
be compiled and a simulation run can be started using
Matlab.

Figure 2 illustrates the sequence of operations in a
Matlab script that handles the change of a set of equa-
tions of a model. In this example the variable-structure
model has two modes, which means we have two mod-
els whereas each model has its own set of equations.
For this example we use Dymola as a simulation en-
vironment, but other environments could be integrated
as well.

Figure 2: Course of events of a Matlab script to change
a set of equations of a Dymola model

As a first step all needed models are compiled,

Variable Structure Modeling for Vehicle Refrigeration Applications

928 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076927

which means an executable model ’dymosim.exe’ with
an initialization file ’dsin.txt’ is created which can be
started through Matlab. Afterwards the simulations
parameters (start time, stop time, solver, etc.) are set.

Then a mapping of variables takes place. In this
mapping process the initialization files of all modes
are loaded. These files contain all variables and pa-
rameters with their startvalues. An equivalent file is
created by Dymola at the end of each simulation of a
model (called ’dsfinal.txt’), containing the endvalues
of variables. When loading such a file we get an array
with all variable names and an array with all initial (or
end) values of a simulation.

For a mode transition between two modes it is nec-
essary to map user defined variables from the end-
array to the initial-array of the next mode. Therefore,
a mapping matrix is created for each transition. This
matrix holds the indices of the values to be read from
the end-array in the first column and the indizees of
the values to be overwritten in the initial-array in the
second column.

This mapping matrix is created at the beginning be-
cause it saves simulation time when a transition is
needed more than once, for instance switching from
mode 1-> 2 -> 1 -> 2 would mean that the mapping
matrix from mode 1 to mode 2 can be used twice. Af-
ter this preparation phase is done the simulation of the
first mode is started. The script uses the dymosim.exe
which is created when compiling a Dymola model to
simulate the model.

When a defined stop condition is reached, which is
implemented in the model itself, a terminate command
will stop the simulation. As soon as the simulation ter-
minates, the end values of the simulation are read from
the ’dsfinal.txt’ file. The earlier created mapping ma-
trix for this transition is then used to map the simula-
tion results to the initial data in the dsin.txt file for the
next mode.

The script then starts the dymosim.exe of the sec-
ond model. This simulation runs until the stop time or
another terminate condition is reached. Then the script
again processes the simulation data and either the stop
time of the simulation is reached which stops the sim-
ulation completely or the script changes back to the
first mode via a transition and the mapping matrix in
this transition.

With this simple approach Dymola can be used to
simulate variable-structure models even though Dy-
mola on its own does not support these kind of mod-
els. This means that existing Modelica models can be
reused for variable-structure models and that they do

not have to be remodeled in other tools or languages
as SOL [3], MOSILAB [4] or Hydra [5] which do
support variable-structure modeling to a certain extent.
The problem with these approaches is, that SOL is an
experimental language and does not support index re-
duction and solvers in the extent that Dymola does.
MOSILAB does not support index reduction at all and
is not freely available for it is still under development.
Hydra is based on functional programming languages
and is therefore not as easy to learn for modelers. All
the existing approaches would mean a remodeling of
the existing air condition models.

4 Evaluation

4.1 Model

All models in this use case are based on the AirCon-
ditioning Library by Modelon [6], based on the AC lib
[7].

A simple test case was created to evaluate the
variable-structure approach. It reduces the complex
model of a refrigeration cycle with thermal manage-
ment of the battery to the main components that are af-
fected when the battery cooling branch is closed. The
model consists of an evaporator with a discretized pipe
in parallel, the branch to the pipe can be closed with a
valve. The valve has a variable Kv-value that can be
set by an input source. The original model with all
initial equations activated (Figure 3) serves also as the
initial mode for the variable-structure model. For the

Figure 3: model for mode 1 with two branches

second mode (Figure 4), only the evaporator branch
remains. Two new component models were created:
splitResistance and junctionResistance. They repre-
sent the pressure loss in the corresponding compo-
nents from the first mode. Using the same names for
the components eases the mapping of the parameters
and start values when a switch occures. This means at
the beginning of the Matlab script where the mapping
takes place, all components and their variables which

Imke Krüger, Alexandra Mehlhase and Gerhard Schmitz

DOI Proceedings of the 9th International Modelica Conference 929
10.3384/ecp12076927 September 3-5, 2012, Munich, Germany

have the same name (e.g. evaporator) are mapped in
the mapping matrix of the transition.

Figure 4: Modelica model for mode 2 with only one
branch

The simulations are carried out as follows: The
valve is closed with a ramp function, beginning at 30s
simulation time. After 10s, the valve is closed. At
50s (10s after complete closure) the variable-structure
model switches to mode 2. At 150s the variable-
structure model switches back to mode 1, the valve
opens again at 160s. Figure 5 shows the sequence for
the kv-Value of the valve.

Figure 5: Simulation sequence for the kv-value of the
valve

4.2 Preparation of the modes

As described above the mode 1 model has more com-
ponents than the mode 2 model but each component
from mode 2 has been in the first model, too. There-
fore, it is known that the end values of the first model
can be used to initialize all components of the second
model. To make the identification of the components
which exist in both modes easier, they were called
exactly the same. Therefore, the mapping function
called at the beginning of the Matlab script can cre-
ate a mapping matrix which maps all variables exist-
ing in both modes to each other. To create the mapping
matrix the script takes the lists of the initial names of
both modes and searches through this list to match the
names. This is necessary because the order of the vari-
ables might not be the same, even (sub-)variables of
a component such as (evaporator.p[1], evaporator.[T])
might be in different order. The first mode has about 7

400 variables and the second mode about 6 900 vari-
ables which makes this mapping process time consum-
ing. A better mapping algorithm is planned for future
work.

If the variables and components are not called the
same, the modeler can define which variables and
components belong together. For instance the modeler
can define that all variables from a component ’a’ from
mode one have to be matched to all variables from a
component ’b’ in model two. In this case all variables
inside these components are matched and the mapping
is saved in the mapping matrix.

To be able to initialize the second model through
the Matlab script the model needs to be prepared for a
script initialization. Many components in the AirCon-
ditioning Library are per default set to initialization
through parameters and initial equations. This leads
to the problem that an initialization from outside is not
per default possible. For instance look at the following
model:

model init

Real T1(start = 100);

Real T2;

initial equation

T2 = T1-10;

...

end init;

In this example T1 has a start value of 100. But T2
can only be initialized through T1 and is 10 smaller
than T1. With such a model we are not able to ini-
tialize the T’s separately because we cannot ignore the
initial equation even though this might be necessary if
this model is the second mode and different values are
needed. In the AirConditioning library such cases can
be handled by setting the initType of the components
to ’noInit’. If a component cannot be initialized exter-
nally and does not have such an initType provided the
user has to change the model to use it in a variable-
structure model. Often these initial equations are deep
down in the model hierarchy, e.g. temperature of the
evaporator wall and therefore it is quite difficult to lo-
cate all needed changes. This does not mean that initial
equations are not allowed for variable-structure mod-
els, it just means that a modeler has to know what his
model is doing and if the initial equations hinder an
initialization from the outside.

An easy way to test if the model can be initialized
though an extern file is to simulate a model for a period
of time and use the end values from the ’dsfinal.txt’ as
initial file and restart the simulation of the same model.

Variable Structure Modeling for Vehicle Refrigeration Applications

930 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076927

If the simulation results are smooth around the mode
change it is usually save to assume that the initializa-
tion worked.

A problem with the initialization through Matlab is
that when using the given Matlab methods to handle
Dymola the initialization does not always work. For
instance, it is possible to use a method dymosim.m
which gets as parameters the name of the Dymola
model and the initial values (and some other data). But
this method does not seem to write the dsin.txt (more
precisely the dsin.mat as it is called from Matlab) cor-
rectly. This means the initialization does not work cor-
rectly and the simulation results are wrong.

First it was assumed that the initial equations in the
AirCondition model were the problem but it was dis-
covered that the given Matlab function seems to be
the problem. Therefore a new initialization method
in Matlab was written. This method uses the mapping
matrix of the transition and creates a new initialization
matrix for the new mode, which only holds the end
data of the old mode and user defined values. All other
data is not included in this initialization matrix. This
new initialization matrix is then saved in the models
dsin file. When switching back from the second mode
to the first not all necessary data is known to initialize
the mode. Therefore, the modeler has to specify the
additional values separately in the Matlab script.

4.3 Results

The results of the variable structure model are conform
to a large extent with the results of the static struc-
ture model, which calculates the unnecessary branch
through the whole simulation time. The mass flow in
and out of the split can be seen in figure 6. The valve
starts to close at 30s, the mass flow changes according
to the changing pressure drops in the branches. When
the valve is completely closed, the mass flow into the
battery branch is almost zero but shows still little vari-
ations around zero for the static structure model.

The variation of the mass flow results in variations
of the pressure drop in the junction. Figure 7 and 8
show the inlet and outlet pressure of the evaporator.
The little variations are thus propagated to all the com-
ponents of the model, to the complex ones (in this ex-
ample the evaporator), too.

The needed CPU time for the simulation runs is
plotted in figure 9. The CPU time is given through
Dymola and is the time from calling the dymosim.exe
until exiting the simulation. Until the first switch of
the variable-structure model, the CPU times rise with
the same speed for both simulations. The second mode

Figure 6: Refrigeration mass flow in and out of the
split for static and variable structure model

Figure 7: Refrigeration pressure at evaporator inlet

of the variable-structure model is calculated rather fast
and does only need a short simulation time. While the
variable-structure model does only need a short simu-
lation time during this phase where only one branch of
the model is simulated the static structure model needs
a lot of simulation time. The opening of the valve at
160s lets the CPU time of the static model rise almost
vertically. Whereas the variable-structure models CPU
time does not rise that high. This already shows that
while only simulating a short period of time (200 sec-
onds), it is already possible to save a lot of simulation
time through the variable-structure approach. In this
example both modes where simulated for the same pe-
riod of time.

Figure 8: Refrigeration pressure at evaporator outlet

Imke Krüger, Alexandra Mehlhase and Gerhard Schmitz

DOI Proceedings of the 9th International Modelica Conference 931
10.3384/ecp12076927 September 3-5, 2012, Munich, Germany

If, as was mentioned in the introduction, the two
branched model is only needed for short periods dur-
ing a drive cycle a lot of simulation time can be saved.
But it also has to be considered that using a variable-
structure model also means that a switching procedure
is necessary and that each mode needs to be compiled.
Compiling the two necessary modes of the variable-
structure models takes about 22 seconds whereas the
compilation of the static structure only takes about 13
seconds. Creating the mapping matrix for each tran-
sition at the beginning of the script take about 10 sec-
onds – the search algorithm is not optimized yet and
the time could be significantly reduced with a better
algorithm.

Figure 9: CPU time needed for simulation

The switching from one mode to the next with
loading the end values and setting the initial values
takes about 0.5 seconds per switch. This means that
when looking at the overall simulation time of the
presented example the variable-structure model needs
about 121 seconds whereas the static structure mod-
els takes about 270 seconds. This means that even
with the necessary overhead the simulation with the
variable-structure model is still faster.

4.4 Restrictions

As already mentioned throughout the paper the
variable-structure approach has some restrictions and
the modeler has to regard certain points. At first
the initialization needs to be mentioned, the modeler
needs to define how the end values of one mode are
used to initialize the next mode. If the old mode does
not provide enough data for the initialization the mod-
eler either has to provide the missing data (by con-
crete values or calculations) or the variable-structure
approach might not be feasible. Furthermore, the mod-
els used as modes need to be initialized from the out-
side, so the modeler might need to adapt the models to

fulfill this requirement.

As it also is with conventional modeling it is with
variable-structure modeling, too, that one should not
use it just because one can. For instance in conven-
tional modeling a model with few equations might suf-
fice even though one could model it more accurately
which might result in solver problems or time prob-
lems. So it is with variable-structure modeling. In
some cases the approach might be usable but not fea-
sible, because the switch does not lead to a significant
positive effect. For instance the simulation time is not
reduced and the accuracy is the same. Another possi-
bility is that the switch is done at the wrong time, e.g.
switching to the second mode of the refrigeration ap-
plication when the valve is not closed yet. This will
lead to a model with inconsistent results. This means
that, as in conventional modeling, the modeler needs
to know his models and what he wants to do to use the
variable-structure approach feasible and sensible.

5 Summary

System simulation for refrigeration cycle models in
vehicle refrigeration applications is time consuming.
The variable structure method presented in this paper
can help to reduce the needed CPU time and the over-
all simulation time for such a model.

With the help of a Matlab script, the user can switch
between several representations of the same model.

It takes some time to prepare and test the models. If
the given advices are already considered during mod-
eling the method can be easily used to speed up simu-
lations.

The method can be applied to other applications
with variable-structure with more than two modes, too.
A Python framework which guides the user through
the steps to describe a variable-structure model is cur-
rently worked on. This will enable the user to de-
scribe the models more easily and to use a free soft-
ware (Python) instead of Matlab. Furthermore, more
simulation environments will be integrated so the user
is not limited to Dymola.

It is planned to investigate the advantages of
variable-structure models more thoroughly and with
more complicated models. With these researches it
will be possible to find out when variable-structure
models can be used sensibly and when it is more useful
to use a static structure model.

Variable Structure Modeling for Vehicle Refrigeration Applications

932 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076927

References

[1] Krüger,I. Energy Consumption Of Battery Cool-
ing In Hybrid Electric Vehicles. In: Proceedings
of 14th International Refrigeration and Air Con-
ditioning Conference, Purdue, USA, 16-19 July
2012 (to be published).

[2] Mehlhase A. Varying the level of detail during
simulation. In: Proceedings of ASIM 2011, Sym-
posium Simulationstechnik, Winterthur, Swiss,
7-9 September 2011.

[3] Zimmer D. Equation-Based Modeling of
Variable-Structure Systems. Ph.D. thesis, Swiss
Federal Institute of Technology, 2010.

[4] Nytsch-Geusen, C., Ernst, T., Nordwig, A., and
et al. (2005). Mosilab: Development of a mod-
elica based generic simulation tool supporting
model structural dynamics. In: G. Schmitz (ed.),
Proceedings of the 4th International Modelica
Conference, Hamburg, March 7-8, 2005.

[5] Nilsson, H., Giorgidze, G. (2010). Exploiting
structural dynamism in Functional Hybrid Mod-
elling for simulation of ideal diodes. In: Proceed-
ings of the 7th EUROSIM Congress on Mod-
elling and Simulation. Czech Technical Univer-
sity Publishing House, Prague, Czech Republic,
2010.

[6] Tummescheid, H., Eborn, J., Prölß, K., AirCon-
ditioning - a Modelica library for dynamic simu-
lation of AC systems, In: G. Schmitz (ed.), Pro-
ceedings of the 4th International Modelica Con-
ference, Hamburg, March 7-8, 2005. vol. 1, p.
185-192.

[7] Pfafferoth, T., Schmitz, G., Modeling and tran-
sient simulation of CO2-refrigeration systems
with Modelica, International Journal of Refrig-
eration, 2004, Vol. 24, no. 1, p.42-52.

Imke Krüger, Alexandra Mehlhase and Gerhard Schmitz

DOI Proceedings of the 9th International Modelica Conference 933
10.3384/ecp12076927 September 3-5, 2012, Munich, Germany

Variable Structure Modeling for Vehicle Refrigeration Applications

934 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076927

Thermal Simulation of Power-Controlled Micro-CHP Systems for Residential Buildings

Thermal Simulation of Power-Controlled Micro-CHP Systems for
Residential Buildings

Sebastian Stinner Dirk Müller
Institute for Energy Efficient Buildings and Indoor Climate
E.ON Energy Research Center, RWTH Aachen University

Mathieustr.10, 52074 Aachen, Germany
sstinner@eonerc.rwth-aachen.de

Abstract

Combined heat and power (CHP) plants are a well-
known technology for industrial and district heating
appliances. As those plants are often used to opti-
mally satisfy thermal demands they often run heat-
controlled. The power generation profiles of those
plants are badly predictable. Those badly predictable
power generation profiles are fluctuating and central
power plants have to work in the times when the heat-
controlled plants do not run. Due to these circum-
stances it should be analysed to what extent a power-
controlled operation can be applied. For this purpose a
dynamic simulation of the whole system is necessary.
This paper presents the possibilities of a dynamic sim-
ulation of a one-family-house with a power-controlled
micro-CHP unit and a thermal storage.

Keywords: CHP; electrical grid; grid compatibility

1 Introduction

The energy supply of Germany will change signifi-
cantly within the next few years. An increasing part of
the power supply will be based on fluctuating sources
like wind power or photovoltaics. On the other hand,
about 35 per cent of the final energy in Germany is
used for space heating and domestic hot water in build-
ings [3]. Thus, reasonable concepts for the building
sector have to be found.

In periods where there is not enough power supply
from the regenerative sources, flexible and energy effi-
cient alternatives have to be considered. One of these
alternatives could be combined heat and power (CHP)
plants. The waste heat of the power generation process
is used at the same time for example for space heating
and domestic hot water. In many cases these plants
can work more efficient than other options to gener-
ate heat. To combine the advantages of the CHP-plant

as a fast reacting power generator and as an efficient
heat supply system, those plants should be operated in
a power-controlled way. This includes that a thermal
storage is needed to buffer the discrepancy between the
run times of the CHP plants and the thermal demand
in the building.

Because of the increasing dynamics of those sys-
tems, dynamic simulations have to be considered to
evaluate which role a system with power-controlled
CHP-plants can play in the future. For these simu-
lations, libraries are used that were developed at the
Institute for Energy Efficient Buildings and Indoor Cli-
mate at RWTH Aachen University. They offer the pos-
sibility to simulate the performance of the CHP plant
and the storage system, the dynamic thermal charac-
teristics of the building and the user behaviour [2].
With this approach, an integrated evaluation of whole
micro-CHP systems is possible.

2 Definition of the problem

Due to new regulations (e.g. [1]) and an increased
awareness of energy topics in public, the integration
of regenerative sources in the German power supply
increases. Especially wind power and photovoltaics
are used as regenerative power sources. The disadvan-
tage of these technologies is their non-controllability.
They are completely dependent to weather conditions
(wind speed and directions, solar radiation) and it is
clear that there is a discrepancy between generation
and demand.

At some times, there will be more regenerative
energy generated than needed. At other times, the
demand is higher than the generation from renew-
able energies. This would especially happen, if there
are many consecutive days without wind and maybe
nearly no direct solar radiation because of clouds and

DOI Proceedings of the 9th International Modelica Conference 935
10.3384/ecp12076935 September 3-5, 2012, Munich, Germany

other effects. The arising gap between generation and
demand should be closed with technologies that are as
efficient as possible. (Micro-)CHP units, for instance,
can reach higher efficiencies than pure power gener-
ating units (figure 1), and could be a suitable alterna-
tive to conventional power plants. Another aspect is

Figure 1: Comparison of combined heat and power
generation and the separated generation [4]

the increasing dynamic of the system. Power plants
are controlled with schedules that are generated from
weather forecasts etc. The forecasts (one day before)
and the real situation (e.g. solar radiation) can differ
in a strong way (figure 2). This results in the need for
fast reacting and fast starting and stopping technolo-
gies. For these applications, CHP units based on inter-
nal combustion engines are a suitable alternative be-
cause of their well controllable and fast reacting load
conditions.

Figure 2: Comparison of predicted and real capacity of
photovoltaics in the zone of one German grid operator
[4]

For an efficient use of CHP units, the heat has to be
used directly in the building. Residential buildings are
predestinated as heat sinks for CHP plants, because of
a year-round heat demand. This heat demand is signif-

icantly larger in winter because of the heating demand
on colder days. In summer there is just the demand
for domestic hot water. Due to this situation and the
fact that the thermal demand does not coincide with
the generation (especially with a power-controlled de-
vice), thermal storages play an important role in such
a concept. Thermal storages are cheap in comparison
to electrical storages with a similar capacity. The size
and insulation of those thermal storages has to be anal-
ysed to find out which kind of storage should be used.

Besides the storage, also the single CHP units have
to be analysed. Today, there are several micro-CHP
units with capacities of 1 kWel on the market for one-
family-dwellings. Based on internal combustion en-
gines, they deliver a thermal power of about 2.5 kW .
If they are used in a power-controlled way, this could
result in less delivered thermal power than would be
needed for space-heating and domestic hot water sup-
ply. A solution to this problem could be an over-
dimensioning of the CHP plants, so that in times of a
running plant, the thermal storage can be loaded very
fast to provide a secure supply based on the CHP-plant
as long as possible. For times, when a secure supply
cannot be guaranteed with this stored thermal energy,
a peak-load boiler should be installed.

Before those systems can be tested in reality in
a power-controlled way, they should be analysed in
simulations to get insight to most of the occurent ef-
fects. Because of the complexity and dynamics of
this system, a coupled thermal, hydraulic and rudi-
mentary electrical simulation is used. Modelica with
its equation-based modelling approach is a good tool
to bring this complexity into a model based on single
components. The used model will be explained in the
following chapter.

3 Whole building system simulation

3.1 Design

For the evaluation of power-controlled micro-CHP-
systems, a whole system model is needed. For the hy-
draulic components, the Modelica fluid-library is used.
With this library, easy connection setups between sin-
gle components of the model are possible. Standard
components like pipes, vessels and valves can be com-
posed to new components. It is also possible to con-
nect the different elements to a whole hydraulic cir-
cuit. The used medium in this model is obviously wa-
ter. All the components are interacting with each other,
so that it is very difficult to just simulate one compo-

Thermal Simulation of Power-Controlled Micro-CHP Systems for Residential Buildings

936 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076935

nent after the other. Especially the storage effects of
the building mass and the included hot water storages
can just be analysed in a coupled complete system sim-
ulation. The different models for simulation of power-
controlled and heat-controlled operation are shown in
figure 3.

Figure 3: The whole building simulation model

The heat generating units are the CHP plant and the
peak-load boiler. There are two storages included, one
for space heating and one for domestic hot water. The
boiler switches on if the stored heat cannot provide
the heat supply in both heat-controlled and power-
controlled operation. The CHP plant is either running
based on a predefined profile (power-controlled, con-
trol 1 in figure 3) or running due to a temperature drop
in the storages (heat-controlled, control 2 in figure 3).
The heat transfer to the single rooms is guaranteed
with radiators.

The model of the micro-CHP plant is built up on
manufacturer’s data [7]. It is mainly based on prede-
fined table values. This means that a given relation
between electrical power, thermal power and fuel con-
sumption can be set in the model for different load
types (part load in different steps and full load). This
simple approach of modelling a CHP-unit gives us the
possibility to study the behaviour of the total building
energy system.

Some delay elements are included to improve the
dynamics of start-up and shut-down processes. Those
processes are very important to model a power-
controlled CHP-unit. The model has an input to pre-
define the values forced by the electrical grid opera-
tor. This signal leads to a calculation of the belonging
thermal power and fuel consumption. The calculated
thermal power is fed to a volume element of the Mod-
elica fluid library. If the plant runs heat controlled, it

just switches off or modulates if a predefined outflow
temperature is reached. In both cases (heat-controlled
and power-controlled), a superior control can be im-
plemented to switch the plant on or off. This can be
used for security applications etc.

As stated before, a buffer storage has to be inte-
grated to decouple the generated heat from the de-
mand. This decoupling is necessary both in the heat-
controlled and in the power-controlled operation. The
buffer storage is built up as a stratified storage with
several layers which are thermally and hydraulically
connected [6]. Besides the stored energy and the heat
and mass transfer inside the storage, the heat losses to
the environment (in the basement) have to be consid-
ered, because these losses will influence how long the
stored energy can be used. The water elements inside
the storage are volume elements of the Modelica fluid
library. The fluid transfer between the layers is cal-
culated automatically because of the connection to the
hydraulic network of the building. The heat transfer
between the layers is calculated with an approach of
effective thermal conduction. For the heat transfer to
the environment, a physical approach of heat transfer
(convection, conduction, convection) in a tube is used.
In the upper part of the domestic hot water storage, a
heat exchanger is included to seperate the heat supply
circuit physically from the domestic hot water which
has to stay very clean.

Besides the supply system, also the building has to
be modelled. In the examined system, the house is
modelled physically to represent all the storage and
loss effects that can be observed in a house. These are
for example all transmission losses due to the temper-
ature difference between inside and outside. Besides,
the storage capacity of the walls is also considered. If
a wall consists of different layers (e.g. concrete and
insulation material), those different layers are imple-
mented with their storage capacity and heat transport
properties. Another important effect are the ventilation
heat losses of the building effected by infiltration and
air exchange through natural ventilation caused by the
user of the building. The user behaviour is also impor-
tant for the thermal simulation of the building, because
a human being produces heat itself and uses different
electrical devices which produce additional heat.

The third thing where user behaviour plays a role
is the domestic hot water tapping profile. The impact
of the domestic hot water supply on the overall heat
supply for buildings will increase as the space heat de-
mand will gradually decrease in refurbished and new
buildings. The supply of the users with domestic hot

Sebastian Stinner and Dirk Müller

DOI Proceedings of the 9th International Modelica Conference 937
10.3384/ecp12076935 September 3-5, 2012, Munich, Germany

water is implemented with a domestic hot water tank
which is loaded by the CHP-unit and, if necessary, by
the boiler. Another possibility to generate domestic
hot water would be a fresh water station directly cou-
pled to the buffer storage. This should be developed in
the future.

To set the flow temperature of the space heating sys-
tem to a desired value, a return addition is integrated.
This element is especially interesting when there is de-
mand for domestic hot water and space heating at the
same time and the temperature level for the space heat-
ing is lower than the desired domestic hot water tem-
perature. The building model includes heat valves that
inhibit the fluid flow through the radiators if the de-
sired indoor temperature is reached. The desired in-
door temperature can be varied and is set from an in-
put table. In the case described here, a temperature
of 21◦C during the day and 17◦C during the night is
set up. If the temperatures get higher than the de-
sired value, the heat valves close and no fluid flows
through the radiator anymore. As soon as the temper-
atures drop down, the valves open again and let the
hot water pass. The power of the radiators is then cal-
culated depending on the room temperature, the flow
temperature, the surface area of the radiator, the nom-
inal power and the radiator exponent.

3.2 First results

To show the possibilities of the model and the insights
that can be obtained, two examples are shown. The
first analysed plant has a maximum thermal power of
about 2.5 kWth and a maximum electrical power of 1
kWel . This is a standard micro-CHP unit which can
be bought on the German market. Two models will be
compared. On the one hand this is a model with a heat-
controlled CHP-unit. This unit is only controlled by
the temperatures in the buffer storage and the storage
for domestic hot water. On the other hand, we analyse
a power-controlled operation. In this second model,
the times when the CHP unit runs are pre-determined
by a certain profile that is set up maybe from a grid op-
erator. Such a profile will result from a residual load
profile. It is calculated for every time step as the dif-
ference between the electric load in the grid and the
feed-in of renewable sources. If the residual load is
above zero, some CHP units have to run because of a
frequency drop in the grid. In times when the resid-
ual load is below zero, this energy has to be stored
or maybe used in another way (in electricity-driven
heat pumps for example). For two days, this profile
is shown in figure 4.

Figure 4: Desired on/off-profile of the CHP unit for
two days

After running the simulation, the on/off-profile for
the CHP-unit for two exemplary days is shown in fig-
ure 5 in the lower part. In contrast to that, the heat-
controlled CHP-plant runs nearly continuously for all
the days with a little exception at the beginning of
January 2nd. At the same time, the power-controlled
CHP-unit switches off, although the electricity-profile
in figure 4 is set to on at this time. Both switch-off
processes are due to an increasing temperature in the
storage which is shown in figure 5 in the upper part.
The storage volume is set to 1000 litres for both cases.

During the night, there is nearly no heat consump-
tion which leads to an increasing temperature in the
storage and also an increasing temperature of the fluid
flowing to the CHP unit. To analyse these types of
feedback between different parts of the energy sys-
tem, a dynamic approach as it is used with Modelica
is needed. We cannot fill the stratified storage until its
whole temperature is at the maximum reachable tem-
perature, because the plant has also some limits. These
limits have to be analysed in further activities. To guar-
antee a secure energy supply, the plants in the single
houses have to interact with each other. In a case when
one plant cannot operate anymore due to an increasing
temperature, this can be detected at an earlier stage and
another plant can run instead.

The second example which is presented is a system
with a bigger engine with an electrical power of 3 kWel
and a thermal power of 8 kWth. This plant is over-
dimensioned for the examined building, but we want
to study how such a plant will behave in a heat supply
system for one building. Due to the bigger thermal ca-
pacity of the plant, also a bigger thermal storage is in-
cluded. This storage has a volume of 2500 litres. This
storage volume is needed to guarantee longer run times
of the plant. But, as we can see in figure 6, the stor-
age capacity is not big enough to let the CHP-plant run

Thermal Simulation of Power-Controlled Micro-CHP Systems for Residential Buildings

938 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076935

Figure 5: Temperature at the top of the buffer storage
and the on/off-profile of the CHP unit

with the desired profile. The plant often runs in part-
load instead of full-load or it is even switched off. This
shows that a system like this can just work in a house
with worse insulation or it has to share the production
of the desired electrical power with another house.

Figure 6: Desired profile and really produced electric-
ity of the CHP unit (3 kWel) for two days

Other effects like the behaviour of the peak-load-
boiler can also be studied. In this example, the ad-
ditional energy which should be provided by a peak-
load-boiler is analysed. For the heat-controlled plant,
no additional heat from the boiler is needed in the
considered time period of two days. For the power-
controlled plant with a capacity of 1 kWel , an addi-
tional heat energy demand of about 44 kWh is cal-
culated. This shows, that this operation will lead to
higher demands for boilers. The solution for this could
be the over-dimensioned power-controlled plant with
a capacity of 3 kWel . With this plant, just a little de-
mand of about 3 kWh is calculated. With the approach
of an over-dimensioned plant, we can decrease signif-
icantly the additional heat demand which is provided
by a boiler. This does not regard the fact that the plant
with 3 kWel was not running in the pre-defined way.
With a plant running as it was pre-defined, the heat

gained from the plant would increase significantly. If
this operation would be shared to different houses as
mentioned before, it would decrease again. Detailed
analyses of these systems should follow.

In addition, the approach stated in this paper gives
us the possibility to check, if the desired room temper-
atures are reached all the time with these new energy
supply systems.

4 Conclusion and outlook

CHP plants can play a bigger role in the supply of res-
idential buildings because of their flexibility and their
energy efficiency. This paper shows, how Modelica
can be used to model these new and distributed energy
systems for the future. A model for the integration of
the CHP plant in the heat supply for residential build-
ings is shown. The difference between heat-controlled
and power-controlled operation modes is presented.
Different user behaviour profiles can be included to
improve the systems engineering adapted to the single
user.

With this comprehensive model, a detailed analysis
of future power-controlled micro-CHP-systems can be
performed. Besides the analysis of power-controlled
system, also switching between heat-controlled and
power-controlled operation is possible and will be con-
sidered in the future.

Anyway, there are several things which should and
will be implemented in the future. The model of the
micro-CHP plants has to be validated with measure-
ment data to be sure to represent the dynamics of the
plant correctly.

The current models have to be simplified to less
complex and less extensive models. This would pro-
vide the possibility to simulate more than one house in
one model as it was mentioned in chapter 3.2. Thus, it
would be possible to get the houses interconnected and
to simulate the supply of whole city quarters with their
electrical demand and fluctuating electricity sources
like photovoltaics and wind power. This would give
an integrated insight to the energetic impact of future
energy systems with a higher rate of micro-CHPs.

A third point that has to be implemented is the inter-
connection of the different user profiles that are used
in the model. In detail, these are the electrical demand
profile, the domestic hot water profile, the natural ven-
tilation profile and the heat source profile caused by
internal loads. This would additionally improve the
accuracy of the prediction for those energy systems.

Sebastian Stinner and Dirk Müller

DOI Proceedings of the 9th International Modelica Conference 939
10.3384/ecp12076935 September 3-5, 2012, Munich, Germany

References

[1] EnEV 2009, Energieeinsparverordnung, Energy
saving ordinance for buildings, 2009.

[2] A. Hoh, T. Haase, T. Tschirner, D. Müller. A
combined thermo-hydraulic approach to simu-
lation of active building components applying
Modelica. In Proc. of 4th International Modelica
Conference, Hamburg, March 2005.

[3] AG Energiebilanzen e.V., Anwendungsbilanzen
für die Endenergiesektoren in Deutschland in den
Jahren 2009 und 2010, 2011.

[4] TenneT TSO GmbH, Actual and
forecast photovoltaic energy feed-in,
http://www.tennettso.de/site/en/Transparency/
publications/network-figures/actual-and-
forecast-photovoltaic-energy-feed-in, last
call: 11.05.2012.

[5] Aktualisierte und erweitere Testreferenzjahre
(TRY) von Deutschland für mittlere und extreme
Witterungsverhältnisse, Bundesinstitut für Bau-,
Stadt- und Raumforschung, 2011

[6] K. Huchtemann, D. Müller, Advanced simulation
methods for heat pump systems In Proc. of 7th
International Modelica Conference, Como, Italy,
September 2009

[7] P. Jahangiri, Simulation and Comparison of Dif-
ferent District Heating Networks in Combination
with Co-generation Plants, Master thesis, 2010

Thermal Simulation of Power-Controlled Micro-CHP Systems for Residential Buildings

940 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076935

Modeling of a falling film evaporator

Modeling of a falling film evaporator

Alberto de la Callea Luis J. Yebraa Sebastián Dormidob

aCIEMAT-Plataforma Solar de Almería, Ctra. de Senés s/n, 04200 Tabernas, Spain
bUNED, Escuela Técnica Superior de Ingeniería Informática, 28040 Madrid, Spain

Abstract

Falling film evaporators have demonstrated a good
performance in air-conditioning and refrigeration.
This paper presents the development of a detailed
falling film evaporator model. The model is based on
classical Newton’s viscosity law and Nusselt falling
film theory. A library of evaporator components com-
patible with Modelica.Fluid, Modelica.Thermal and
Modelica.Media has been implemented. The simula-
tions presented have the expected behaviour. These
models will be used to a complete model of a heat
pump.

Keywords: Falling film; evaporator; heat pump;
dryout; object-oriented modeling;

1 Introduction

One of the difficulties of working with solar energy
is its variability. Since this technology starts, re-
searchers have studied how to avoid solar irradiance
disturbances affect energy production. The proposed
solutions range from thermal storage to auxiliary en-
ergy sources to make feasible facilities.

With the aim of testing and developing a solar
thermal Multi-Effect Distillation (MED), AQUASOL
experimental thermal desalination plant was built at
CIEMAT-Plataforma Solar de Almería at the early
nineties [6]. Presently, the experimental plant per-
forms an hybrid solar-gas process that combines, a
thermal desalination system and a solar field with a
Double Effect Absorption Heat Pump (DEAHP) cou-
pled with a gas boiler [3] (Fig. 1). This system
achieves at the same time the design requirements of
low-cost, high efficiency and zero discharge [1].

The MED plant is a 14-effect plant where the sea-
water descends due to gravity from the 1st to 14th ef-
fects achieving a 3 m3/h nominal distillate production (
Fig. 1). In the effect 1, the seawater is preheated by hot
water (66.5 °C) coming from a 12-m3 primary storage
tank. Energy supplied to the primary tank can be trans-

Figure 1: AQUASOL project plant flow sheet

Figure 2: Energy balace of MED plant coupled to
DEAHP

ferred by the solar field, by the DEAHP or by both.
When the DEAHP is coupled with the MED plant, the
DEAHP evaporator works as 14th effect distillate con-
denser.

A heat pump is a machine that transfers heat from a
low temperature source to a high temperature source.
In AQUASOL DEAHP, the low temperature source
(35 °C) is the 14th effect cell and the high tempera-
ture source is the water that flows from the secondary
tank (63.5 °C) to the primary tank (66.5 °C). Accord-
ing to the Second Law of Thermodynamics, an energy
input is required to make this heat transfer possible.
This energy is provided by steam generated at the gas

DOI Proceedings of the 9th International Modelica Conference 941
10.3384/ecp12076941 September 3-5, 2012, Munich, Germany

Figure 4: Thermodynamic cycle of the AQUASOL DEAHP

Figure 3: AQUASOL DEAHP, CIEMAT-Plataforma
Solar de Almería

boiler (180 °C). Fig. 2 shows the heat transfer pro-
cess between the MED plant, the DEAHP and the gas
boiler [2].

AQUASOL DEAHP (Fig. 3) is composed of 5 ves-
sels: one evaporator, one absorber, two generators and
one condenser. It uses a water/aqueous lithium bro-
mide solution as working fluid in two fluid intercon-
nected circuits.

Fig. 4 shows the thermodynamic cycle of DEAHP.
The low temperature source (steam from 14th effect
cell) transfers heat to the low pressure evaporator
which generates a steam flow. This steam is absorbed
by a strong lithium bromide solution, as a consequence

it increases its temperature and transfers the heat to the
high temperature source (water that flows from sec-
ondary to primary tank). To desorb the weak lithium
bromide solution there are two generators with two
different pressure levels. The gas boiler transfer heat
to the generator 1 desorbing part of the water of the
solution. The steam generated is condensed in genera-
tor 2 transferring heat and desorbing more water. The
steam generated in generator 2 is condensed transfer-
ring heat to the hot source. Water from condenser and
generator 2 returns to the evaporator and the strong
lithium bromide solution return to absorber.

A detailed model of the DEAHP evaporator is pre-
sented in this paper. This study has been done under
the framework of POWER project.

2 Mathematical model

The nomenclature used in this section is described
in Appendix A. Newton’s notation is used for time
derivatives.

AQUASOL DEAHP evaporator is a horizontal-
tubes-falling-film-type evaporator. Falling film evap-
orators have demonstrated better performance than
flooded tubes evaporators in air conditioning and re-
frigeration applications due to its higher heat transfer

Modeling of a falling film evaporator

942 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076941

Figure 5: DEAHP evaporator scheme

coefficient and its smaller size [4].
A schematic cross section of the evaporator is

shown in Fig. 5. Water is sprayed over the first row
of the bundle tube structure. Over the tube surface, a
thin film of water is formed. Water in the film flows
downward under the gravitational force, falling one by
one over all the column tubes. The film thickness de-
termines the mass and heat flow rates.

The water feeding device can affect evaporator per-
formance because it determines the water distribution
over the tubes. In the model a uniform water distribu-
tion is assumed. When the water film flow rate falls
below a certain limit dry patches are formed. This re-
duces the effective wetted area and consequently the
heat transfer. An empirical correlation of the apparent
wet area fraction F = Awet/At is presented in [5]. The
fraction is calculated according to Eq. 1. If F is equal
or less than 1, F is fixed to 1.

F = 0.0024Re0.91
top (1)

This correction is included in the model through the
wetted length, lwet , which is estimated with F and the
real length l.

lwet = lF (2)

A classical formulation is used to model the dynam-
ics of the falling film displacing over the tubes. It is
assumed that the film thickness is constant over the
tube as shows Fig. 6. According to it and using New-
ton’s Law of Viscosity the force balance equation for
the liquid film can be expressed as:

µ
du
dy

= ∑τs = ρg(δ − y)sin(θ) (3)

Integrating over the spacial coordinates Eq. 3 and
applying the boundary condition u = 0 at y = δ , the
velocity profile is:

u =
ρg
µ

(
δy− y2

2

)
sin(θ) (4)

The downward average film velocity depending on
the angle is:

ū =
1
δ

∫
δ

0

ρg
µ

(
δy− y2

2

)
sin(θ)dy =

ρgδ 2

3µ
sin(θ)

(5)
The average film velocity over the tube is calculated

integrating Eq. 5 over half of the tube circumference
from the top to the bottom:

v =
1
π

∫
π

0

ρgδ 2

3µ
sin(θ)dθ =

2gρδ 2

3πµ
(6)

The mass flow rate at the bottom of the tube is:

ṁbot = 2Γ lwet = 2vδρlwet =
4glwetρ

2δ 2

3πµ
(7)

Eq. 7 has a quadratic relationship with the film thick-
ness.

The film thickness can be calculated using the den-
sity definition:

ρ =
m
V

=
m

πlwet(r+δ)2 −πlwetr2

δ =−r+
√

r2 +
m

πρlwet
(8)

where m, the mass of the water stuck to the outer sur-
face of the tube, is calculated with the mass balance
over the tube:

ṁ = ṁtop − ṁbot − ṁev (9)

According to Nusselt’s classical theory on falling
film condensation, heat is transferred by conduction
across the falling film. Same assumption is used in
this model. Applying Fourier’s law:

Q̇tube = kAwet
Ttube −T

δ
(10)

The thin film energy balance is:

U̇ = Q̇tube + ṁtophtop − ṁbothbot − ṁevhev (11)

where Q̇tube is the heat flow rate transferred by the
tube, ṁbot is calculated with Eq. 7, hbot is assumed as
the falling film specific enthalpy and hev the specific
enthalpy of saturated vapor.

Alberto de La Calle, Luis J. Yebra and Sebastián Dormido

DOI Proceedings of the 9th International Modelica Conference 943
10.3384/ecp12076941 September 3-5, 2012, Munich, Germany

(a) Falling film in sheet mode (b) Falling film scheme

Figure 6: Falling film on a horizontal tube

To determine the evaporated mass flow rate, the fol-
lowing relationship is used:

ṁev =
1

hsg −hsl
(Q̇tube−mḣsl −ṁtop (hsl −htop)) (12)

where the mass of evaporated water is adapted with
changes in the pressure and in the inlet mass flow rate.

The pressure inside the evaporator is estimated with
the ideal gas law because the evaporator works at low
pressures.

3 Modelica library

A new library to simulate a falling film evaporator has
been developed using Modelica version 3.2. This li-
brary is completely compatible with Modelica.Fluid,
Modelica.Thermal and Modelica.Media. Water ther-
modynamic properties have been calculated using the
package Modelica.Media.Water.StandardWater.

The library is divided in the tube model, the tube
conduction model, the tube column model and the tube
bundle model.

The tube model is the basic class which includes
all the equations that models the mass and energy bal-
ances in one single control volume. As inputs the
model has a fluid port of top inlet flow and a heat
port connected to the Nusselt falling film conduction
model, as outputs it has two fluid ports, one for the
outlet flow that falls by gravity at the bottom and
one to evacuate the steam generated, and a real out-
put to provide conduction model the heat transfer co-
efficient. The model obtains the water initial state
variables (temperature and pressure) through an outer

Modelica.Fluid.System class. The parameters of the
tube model are shown in Fig. 7.

Figure 7: Tube model parameter menu

The tube conduction model joins a conduction
model with a tube model, modeling the mass and en-
ergy dynamics of the falling film outside the tube. It
has three fluid ports (top, bottom and steam) and one
heat port where the metal tube transfers heat to the
falling film.

The tube column model uses an array of tube con-
duction models in order to model one of the evapo-
rator columns. The tube conduction models are con-
nected consecutively one by one through top and bot-
tom fluid ports, making a column of tubes. The steam
fluid ports are interconnected between them in a sin-
gle output fluid port. Also, the heat ports are intercon-
nected between them, hence, assuming the same tem-
perature. This assumption is possible because inside
the tubes flow steam that is condensated transferring
heat but keeping constant the temperature.

The tube bundle model adds to the tube col-

Modeling of a falling film evaporator

944 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076941

umn model the dynamics of an evaporator with many
columns. This model assumes that all the columns
have the same dynamics and extrapolates the results
of one single column to all of them. The model addi-
tionally includes a conduction model where the con-
duction across the tubes is modeled as one single mass
that transfers heat from the single mass to the outside.

Figure 8: DEAHP evaporator in Modelica

4 Simulation

The model used to simulate the evaporator shown in
Fig. 5 is composed of a tube bundle model, a wa-
ter level model, a pump model, a gas model, a steam
sink model and a water source model. The water level
model simulates the mass and energy balances of the
vessel under the tubes. The water in the vessel is re-
circulated with the help of a pump to the tube bundle
as it is shown in Fig. 8. The gas model considers the
mass and energy balances of a mixture of gases (steam
and air) in the evaporator vessel where the pressure is
given with the ideal gas law. The steam sink model is
a first approximation to model the absorber where the
steam leaves the vessel always with a steam mass flow
rate lower than the saturation boundary. Water source
model is used to control the vessel water level. The
simulated tube bundle has 8 columns and 25 rows.

The simulation time was 25.8 s of 100 s. It has been
performed starting from steady-state initial conditions.
When the evaporator is started, an ideal pump flows a
constant water flow rate to the tube bundle and each
tube in the model has the same inlet flow rate. Water

and tubes start at the same temperature. At simulation
time 20 s, the tubes progressively raise its tempera-
ture until time 40 s and where its temperature reach
steady-state. Water starts evaporating. First, water
heats the gas increasing slightly the pressure, and then,
the gas leaves the vessel. When the steam sink model
reaches its saturation mass flow rate, the pressure in-
side the vessel raises and that increases also the spe-
cific enthalpy of saturated liquid. This pressure rise
stops when the evaporated mass flow rate reaches the
saturation mass flow rate boundary given by the steam
sink model.

Simulation results are shown in Fig. 9. Fig. 9a
at the top depicts the total heat flow rate transferred
by the tubes to the falling film. At the bottom a com-
parison between tube wall temperature and inlet and
outlet water temperature of the tube bundle is shown.
Fig. 9bI shows the variation of the pressure inside the
vessel. This variation affects to the specific enthalpy of
the saturated liquid as is depicted at Fig. 9bII. Also, in
this figure is shown that while the 25th tube row begins
to evaporate, at the 1st tube row the specific enthalpy
of the inlet water is lower than the specific enthalpy of
saturated water until the evaporator heats all the water
in the vessel and the water in the vessel reaches the sat-
urated temperature. Evolution of dry patches in tubes
can be observed in Fig. 9c. Dryout disappears when
water temperature increases and the Reynols number
increases too. Besides, in this figure can be observed
the evolution of the falling film thickness along the ex-
periment. Fig. 9d shows the steam mass flow rate
generated in the evaporator. As it can be seen, the sim-
ulation has chattering in some of the tubes when the
pressure increases, even though this effect has been
foreseen in Eq. 12. Numerical errors taken into ac-
count could probably be the origin of this problem.

5 Conclusions

A new dynamic model of a falling film evaporator has
been developed. The model is framed in a project
which studies the AQUASOL DEAHP. A Modelica
library for falling films evaporators has been imple-
mented. The library is based on Newton’s viscosity
law and Nusselt’s classical theory of falling film and it
is compatible with Modelica.Fluid, Modelica.Thermal
and Modelica.Media libraries. The simulations show
the expected performance within the range which it
has been designed in spite of chattering in evapora-
tion. The chattering problem will be studied in detail
in future works and possible solutions like hysteresis

Alberto de La Calle, Luis J. Yebra and Sebastián Dormido

DOI Proceedings of the 9th International Modelica Conference 945
10.3384/ecp12076941 September 3-5, 2012, Munich, Germany

are going to be tested. The library will be extended
with new components that will model absorbers and
generators. Models will be calibrated and validated
with experimental data and control algorithms will be
proposed to optimize the DEAHP performance.

Appendix A. Nomenclature

A Area (m2)
F Apparent wet area fraction (dimensionless)
g Gravitational acceleration (m · s−2)
h Specific enthalpy (J ·Kg−1)
l Length (m)
m Mass (Kg)
k Conductivity (W ·m−1 ·K−1)
p Pressure (Pa)
Q Heat (J)
Re Reynols number 4Γ /µ (dimensionless)
r Radius (m)
T Temperature (K)
U Internal energy (J)
u Flow velocity (m · s−1)
V Volume (m3)
v Average film velocity (m · s−1)
x Spatial coordinate tangential to the tube (m)
y Spatial coordinate normal to the tube (m)

Greek symbols
δ Film thickness (m)
Γ Liquid mass flow rate per unit length of tube

(each side) (Kg ·m−1 · s−1)
θ Angle (rad)
µ Dynamic viscosity (Kg ·m−1 · s−1)
ρ Density (Kg ·m−3)
τs Shear stresses (Pa)

Subscripts
bot bottom
ev evaporated
sg saturated gas
sl saturated liquid
t total
top top
tube tube
wet wetted

Acknowledgements

The authors would like to thank to CIEMAT reseach
centre, Spanish Ministry of Economy and Competi-
tiveness and FEDER funds for financed this work un-

der the National Plan Project, Predictive control tech-
niques for efficient management of renewable energy
microgrids. (POWER), DPI2010-21589-C05-02 and
the INNPACTO project, Hibridación de tecnologías
renovables en una planta de generación de energía.
(HIBIOSOLEO), IPT-440000-2010-004.

References

[1] D. C. Alarcón-Padilla, J. Blanco-Gálvez,
L. García-Rodríguez, W. Gernjak, and S. Malato.
First experimental results of a new hybrid
solar/gas multi-effect distillation system: the
AQUASOL project. Desalination, 220(1-3):619–
625, 2008.

[2] D. C. Alarcón-Padilla, L. García-Rodríguez, and
J. Blanco-Gálvez. Assessment of an absorption
heat pump coupled to a multi-effect distillation
unit within AQUASOL project. Desalination,
212(1-3):303–310, 2007.

[3] D. C. Alarcón-Padilla, L. García-Rodríguez, and
J. Blanco-Gálvez. Experimental assessment of
connection of an absorption heat pump to a multi-
effect distillation unit. Desalination, 250(2):500–
505, 2010.

[4] G. Ribatski and A. M. Jacobi. Falling-film evap-
oration on horizontal tubes—a critical review. In-
ternational Journal of Refrigeration, 28(5):635–
653, 2005.

[5] G. Ribatski and J. R. Thome. Experimental study
on the onset of local dryout in an evaporating
falling film on horizontal plain tubes. Experimen-
tal Thermal and Fluid Science, 31(6):483–493,
2007.

[6] E. Zarza, J. Ajona, J. León, A. Gregorzewski, and
K. Genthner. Solar thermal desalination project
at the Plataforma Solar de Almeria. Solar Energy
Materials, 24(1–4):608–622, 1991.

Modeling of a falling film evaporator

946 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076941

0 20 40 60 80 100
−100

0

100

200

300

400

Time [s]

E
x
te

rn
a

l
h

e
a

t
fl
o

w
 r

a
te

 [
k
W

]

(I)

0 20 40 60 80 100
20

25

30

35

Time [s]

T
e

m
p

e
ra

tu
re

 [°
C

]

(II)

T
tube

T
in

T
out

(a) (I) Inlet heat flow rate across tubes (II) Tube wall temperature,
inlet water temperature, outlet water temperature

0 20 40 60 80 100
30

32

34

36

38

40

42

Time [s]

P
re

s
s
u

re
 [

m
b

a
r]

(I)

0 20 40 60 80 100

90

100

110

120

130

Time [s]

S
p

e
c
if
ic

 e
n

th
a

lp
y
 [

k
J
/K

g
]

(II)

h
sl

h
in

h
out

(b) (I) Pressure in the evaporator (II) Specific enthalpy of sat-
urated liquid, inlet water specific enthalpy, outlet water specific
enthalpy

0 20 40 60 80 100
0.4

0.41

0.42

0.43

0.44

Time [s]

δ
 [

m
m

]

(I)

δ

1

δ
12

δ
25

0 20 40 60 80 100
0.95

0.96

0.97

0.98

0.99

1

1.01

Time [s]

D
ry

o
u

t

(II)

F
1

F
12

F
25

(c) (I) Falling film thickness in tube 1, 12 and 25 (II) Apparent
wet area fraction

0 20 40 60 80 100

0

0.02

0.04

0.06

0.08

0.1

0.12

Time [s]

M
a

s
s
 f

lo
w

 r
a

te
 [

K
g

/s
]

m
ev

boundary

(d) Evaporated water mass flow rate and sink saturation boundary

Figure 9: Simulation results

Alberto de La Calle, Luis J. Yebra and Sebastián Dormido

DOI Proceedings of the 9th International Modelica Conference 947
10.3384/ecp12076941 September 3-5, 2012, Munich, Germany

Modeling of a falling film evaporator

948 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076941

Integration of Modelica models into an existing simulation software using FMI for Co-Simulation

Integration of Modelica models into an existing simulation software

using FMI for Co-Simulation

Matthias Pazold
1
, Sebastian Burhenne

2
, Jan Radon

3
, Sebastian Herkel

2
 and Florian Antretter

1

1
Fraunhofer Institute for Building Physics, Holzkirchen, Germany

2
Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany

3
Agr. University of Cracow, Poland

Matthias.Pazold@ibp.fraunhofer.de

Abstract

The Functional Mock-up Interface (FMI) opens new

opportunities for the development and extension of

existing non-Modelica simulation programs with

Modelica models. For the developer this is a produc-

tive way to design and validate new complex simula-

tion models with multi-domain modeling languages

such as Modelica. With the standardized Functional

Mock-up Interface (FMI) and the Functional Mock-

up Unit (FMU) export it is possible to execute these

models within other software tools, including infor-

mation exchange during the simulation. However,

there are some design requirements in Modelica,

which have to be taken into account. In this paper,

models for different HVAC (Heating, Ventilation

and Air Conditioning) equipment configurations are

integrated into existing software using the FMI. An

interface extension plug-in is developed to pick a

specific FMU and execute it alongside the existing

simulation algorithm. Two different coupling algo-

rithms were investigated: the iterative and the co-

simulation approach. Some issues and practical hints

for a successful coupling and simulation are present-

ed.

Keywords: Building Simulation; FMI for Co-

Simulation; HVAC

1 Introduction

The application of building performance software

during the design process is standard in the design of

energy efficient buildings. There are tools that solve

the coupled heat and moisture transport in building

components to avoid moisture related problems such

as mold growth or rotting components. Different

kinds of components (e.g. walls, windows, roof) are

combined to a whole building model. Additionally,

climate data and inner sources lead to a whole build-

ing envelope simulation software, which allows for

an accurate assessment of the indoor environment

and the energy consumption of the building. The

WUFI
®
Plus software offers the possibility for such a

simulation. Until now, the HVAC equipment was

considered as an ideal heating and cooling system.

Current activities aim to implement realistic models

into WUFI
®
Plus to simulate HVAC systems. These

models are written in Modelica [1]. The building

envelope and the HVAC system influence each other

significantly. This makes a separate simulation of

both systems inaccurate and introduces special re-

quirements for combining both in a co-simulation.

The decision to implement the Modelica models into

the existing software rather than model the building

envelope with Modelica was made because of the big

user community, which is familiar with the existing

GUI and other user specific requirements. A possible

way to include Modelica models into an existing

building simulation program is the Functional Mock-

up Interface for Co-Simulation. The integration is

described in this paper.

2 Existing Software / Models

2.1 Building model

WUFI
®
Plus is a holistic model based on the hygro-

thermal envelope calculation model developed by

Künzel [2]. The hygrothermal behavior of the build-

ing envelope affects the overall performance of a

building. WUFI
®
Plus is a building performance sim-

ulation tool, which computes the coupled heat and

moisture transfer in the building components. These

components are combined to a whole building mod-

el. Moisture sources or sinks inside the rooms or

components, input from the envelope due to capillary

DOI Proceedings of the 9th International Modelica Conference 949
10.3384/ecp12076949 September 3-5, 2012, Munich, Germany

action, diffusion and vapor ab- and desorption as a

response to the exterior and interior climate condi-

tions as well as the thermal parameters are taken into

account. A stable and efficient numerical solver had

been designed for the solution of the coupled and

highly nonlinear equations. The conductive heat and

enthalpy flow by vapor diffusion with phase changes

in the energy equation are strongly dependent on the

moisture fields. The vapor flow is simultaneously

governed by the temperature and moisture field due

to the exponential changes of the saturation vapor

pressure with temperature. The differential equations

are discretized by means of an implicit finite volume

method. The model was validated by comparing its

simulation results with the measured data of exten-

sive field experiments [3]. The user can define de-

sign conditions for the indoor climate by setting min-

imal and maximal values.. To simulate the indoor

climate, the software calculates heat and moisture

balances for one or more building zones, regarding

all the sources, sinks and transfers. So long as these

balances are not satisfied during a time step, the inte-

rior temperature and humidity is adapted. For exam-

ple, if the heat loss through the building envelope

and ventilation is more than the solar and internal

heat gains plus space heating capability, the interior

temperature is decreased as long as the loss and the

gain is equal.

2.2 Modelica HVAC models

The aim was to create simple but realistic HVAC

models, which can be used by practitioners. This

means that only necessary and obtainable plant in-

formation is required for these simulations. The

computation time to simulate a building should not

increase to times which are no longer acceptable for

practitioners.

Systems to be simulated include:

 Condensing gas boiler

 Solar thermal collector

 Combined heat and power plants

 Heat pumps

 Bore hole heat exchangers

 Thermally activated building systems

(TABS)

 Radiators

 Storage tanks

 Control equipment

 PV systems

The model development was done with the software

Dymola 2012 [4]. To deliver realistic and validated

plant equipment models, the above mentioned sub-

models are merged to complete HVAC configura-

tions, an example is shown in Figure 1. This was

done to increase the usability and avoid the risk of

non-feasible configurations. In the end, the user

chooses one HVAC configuration and has to select

only a few necessary parameters or import them

from a database.

Figure 1: Exemplary HVAC configuration in

WUFI
®
Plus

3 Integration

The first investigated coupling approach was to use

Dymola specific export possibilities (Source Code

generation). More details on this can be found in [5].

Finally the coupling with the Functional Mock-up

Interface for Co-Simulation was chosen because of

its unified convention and possibilities to perform

the co-simulation. Merging the existing software and

the Modelica HVAC models using the Functional

Mock-up Interface for Model Exchange would re-

quire the development of a new solver for

WUFI
®
Plus. Therefore, one of the main advantages

in the context of the described application was that a

solver is included in the FMU for Co-Simulation. In

the described case it is the CVODE solver included

in the Sundials solver package [6]. The selected

solver within Dymola has no influence on the ex-

ported solver. The standardized interface provides

some methods to interact with the model. Beside in-

stantiating, initializing, setting and obtaining of val-

ues of defined variables and parameters there is the

possibility to execute single time steps. Furthermore,

there is a distinction between time varying variables

and parameters. The value of parameters can be set

before initializing the model; the value of variables

can be set between the time steps. But these time

Integration of Modelica models into an existing simulation software using FMI for Co-Simulation

950 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076949

varying variables must be declared as input within

the Modelica code. Their causality must be set to

Input. If parameters appear in if-statements in sub-

models, the model must be re-compiled for a change

of their value. In the exported and compiled FMU

such a parameter is automatically set to constant and

the value is firmly anchored. Changing the value of

constants within the FMU is not possible.

If-statements are often responsible for discontinuities

and events. They should be avoided during the mod-

el design process because they increase the computa-

tion time [7]. However, to set a parameter of an

if-statement in the compiled FMU, a workaround is

to define the parameter as input.

There are more than one HVAC configurations with

different devices and different parameters and, con-

sequently, many FMUs. WUFI
®
Plus has to interact

with the HVAC system configuration, which is cho-

sen by the user of the software. A FMU adapter

(Figure 2) is written in the object-oriented language

C++ to manage dynamic FMU instantiation, initiali-

zation, set inputs, obtain outputs and execute time

steps. Therefore, the adapter receives information

about the different kinds of configurations and their

parameters (their value references).

Figure 2: Communication between building model and

heating systems

As mentioned, the building model and the HVAC

models have to interact with each other. Some results

of one are needed as input for the other. Two differ-

ent insertion algorithms were investigated and are

discussed below.

3.1 Iterative approach

As described before, WUFI
®
Plus uses an iterative

process to simulate the interior temperature and

moisture for defined zones. Also airflow is calculat-

ed iteratively. For short computation times there is a

solver designed for fast convergence of these values

with only a few iterations. Indeed, the HVAC sys-

tems influence the indoor climate. The first approach

was to use the existing heat and moisture balance

algorithm. The HVAC system receives, for example,

the indoor set point temperature and the actual tem-

perature of a zone and a time step and delivers the

possible heat flow to the zone. If the heat balance is

not satisfied, the current temperature will be in- or

decreased and the HVAC system must iterate (Figure

3).

Figure 3: Flow chart - iterative approach

The advantage of this approach is to use the estab-

lished flexible balance system. The HVAC model

can be coupled in a fast way with only a few modifi-

cations of the WUFI
®
Plus algorithm. However, this

method requires repeating and discarding of FMU

time steps. Therefore the parameter newStep of

fmiDoStep(..) can be set to fmiFalse if the capa-

bility flag canRejectSteps of the FMU is true. Until

now this feature is not supported by the exported

FMU. This is specific to Dymola and might not be

the case for other simulation environments. Howev-

er, in the analyzed case the missing feature is a prob-

lem for the implementation of the iterative approach.

If a time step is regarded as an entire simulation, a

workaround could be to re-initialize the FMU for

every time and iteration step. In order to retain all

information, all time varying variables must be

stored after a step and re-stored as initialization val-

ues for the next step. To repeat a step, the values of

the last step are used. This could be time and

memory consuming. Furthermore, some states of the

model, which cannot be stored in the cache, may

change during a time step.

A further issue of this coupling approach is that the

iteration might end in a continuous loop. The heat

supply system models are designed to deliver a heat

Matthias Pazold, Sebastian Burhenne, Jan Radon, Sebastian Herkel …

DOI Proceedings of the 9th International Modelica Conference 951
10.3384/ecp12076949 September 3-5, 2012, Munich, Germany

flow to the room, when the current room temperature

is lower than the set point temperature. This is im-

plemented using a thermostatic valve model. The

building model iterates the room temperature with

the heat balance, including the heating system as a

kind of heat source. If the balance is positive, the

room temperature can be increased for the next itera-

tion step. In this case, the current room temperature

might become equal or greater than the set point

temperature and in return the heating system model

calculates no heat gain. If the heat balance ends with

a negative sum, the room temperature is decreased.

The heat supply system reconvenes a heat gain for

the next iteration. This leads to a continuous loop.

3.2 Co-simulation approach

The mentioned issues with the iterative approach

lead to a real co-simulation approach. The iterative

process has been removed, so there is no requirement

to repeat time steps within the FMU. Therefore the

building envelope model (WUFI
®
Plus) and the

HVAC model calculate the steps alternately with a

ping-pong method. A usual simulation time step, to

simulate a whole year, is one hour. For the alternate-

ly co-simulation this time step size, with ,e.g. con-

stant room temperatures, very likely leads to unreal-

istic simulation results. One physically realistic solu-

tion is to decrease the time step size.

Figure 4: Flow chart - co-simulation approach

The explicit algorithm (Figure 4) is the following,

described with thermal values: The plant equipment

model calculates a few seconds with a constant inte-

rior temperature. Dependent on the heat emitting

system (e.g. radiator) and its heat capacity and per-

formance, this is possible because of the fast re-

sponse time of the active HVAC system. The result

is still the heat flow which is added as heat gain to

the building zones. Simultaneously, the building is

simulated with the last heat gain. Depending on the

heat balance the new interior temperatures for the

next time step are calculated. With this method,

small time steps depending on the time constant of

the heating system must be used (e.g., five seconds).

This leads to increased computation times. However,

these small sub time steps must not be stored in the

results. Furthermore, the building model converges

faster with small time steps, which saves some com-

putation time.

First tests with a time step of five seconds showed an

increased demand of simulation time of about one

third compared to the WUFI
®
Plus simulation without

the HVAC models. The results of a Dymola simula-

tion compared to the results of an external FMU

simulation of the HVAC system are equal.

4 Conclusions

The multi-zone building model and the HVAC mod-

els are complex models with a lot of variables and

their own specialized solver. Separately they are

proven, validated and stable for many kinds of simu-

lations. The described weak coupling using the co-

simulation approach seems to be a reasonable tech-

nique. Exported FMUs, acting as sub-models with

defined in- and output, can be used to supplement the

building model. The authors believe, that in princi-

ple, the merging of the models is possible with the

introduced iterative and co-simulation approach.

However, not supported features of the exported

FMU make the iterative approach unfeasible. A still

acceptable computation time with the co-simulation

approach led us to the conclusion that this is a more

suitable approach in the described case. The sum of

heat gains over the sub time steps delivered by the

HVAC configuration is realistic. However, future

work will include more investigations about the cho-

sen time intervals and the handling of discontinuous

input.

Acknowledgement

This study was funded by the German Federal Minis-

try of Economics and Technology (BMWi

0329663L)

Integration of Modelica models into an existing simulation software using FMI for Co-Simulation

952 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076949

References

[1] Elmqvist, Hilding 1997. “Modelica – A uni-

fied object- oriented language for physical

systems modeling.” Simulation Practice and

Theory 5, no. 6., 1997.

[2] Künzel, H. M. 1994. Simultaneous Heat and

Moisture Transport in Building Components.

Dissertation. University of Stuttgart, Down-

load: www.building-physics.com

[3] Lengsfeld, K.; Holm, A. 2007. Entwicklung

und Validierung einer hygrothermischen

Raumklima-Simulationssoftware WUFI®-

Plus, Bauphysik 29 (2007), Heft 3, Ernst &

Sohn Verlag für Architektur und technische

Wissenschaften GmbH & Co. KG, Berlin.

[4] Dassault Sysèmes AB 2011. Dymola. Dy-

namic Modeling Laboratory. Dymola Re-

lease notes, Lund, Sweden.

[5] Burhenne, S.; Radon, J.; Pazold, M.; Herkel,

S.; Antretter, F. 2011. Integration of HVAC

Models into a Hygrothermal Whole Building

Simulation Tool, Proceedings of Building

Simulation 2011: 12th Conference of Inter-

national Building Performance Simulation

Association, Sydney, Australia.

[6] Hindmarsh A. C.; Brown P. N.; Grant K. E.;

Lee S. L.; Serban R.; Shumaker D. E.;

Woodward C. S. 2005. SUNDIALS: Suite of

Nonlinear and Differential/Algebraic Equa-

tion Solvers, ACM Transactions on Mathe-

matical Software, 31(3), pp. 363-396, 2005.

Also available as LLNL technical report

UCRL-JP-200037.

[7] Felgner, F.; Liu, L.; Frey G. June 2011. Ver-

gleich numerischer Löser zur Simulation

steifer und hybrider Systeme. Proceedings of

the Kongress Automation 2011, VDI-

Berichte 2143, Baden-Baden, Germany, pp.

303-306 (extended 12-pages paper on CD),

June 2011.

Matthias Pazold, Sebastian Burhenne, Jan Radon, Sebastian Herkel …

DOI Proceedings of the 9th International Modelica Conference 953
10.3384/ecp12076949 September 3-5, 2012, Munich, Germany

Integration of Modelica models into an existing simulation software using FMI for Co-Simulation

954 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076949

Chemical Process Modeling in Modelica

Chemical Process Modeling in Modelica

Ali Baharev Arnold Neumaier
Fakultät für Mathematik, Universität Wien
Nordbergstraße 15, A-1090 Wien, Austria

Abstract

Chemical process models are highly structured. Infor-
mation on how the hierarchical components are con-
nected helps to solve the model efficiently. Our ulti-
mate goal is to develop structure-driven optimization
methods for solving nonlinear programming problems
(NLP). The structural information retrieved from the
JModelica environment will play an important role in
the development of our novel optimization methods.
Foundations of a Modelica library for general-purpose
chemical process modeling have been built. Multi-
ple steady-states in ideal two-product distillation were
computed as a proof of concept. The Modelica source
code is available at the project homepage. The issues
encountered during modeling may be valuable to the
Modelica language designers.

Keywords: separation, distillation column, tearing
methods, homotopy continuation, bifurcation

1 Introduction

The object-oriented component-based modeling
methodology in Modelica (FRITZSON [13]) is well-
suited for chemical processes modeling. Accordingly,
Modelica has received attention in the chemical
engineering literature (SANDROCK & DE VAAL

[19]). Creating a component-based framework for
chemical process modeling is one of the goals of our
project. This framework then serves as a common
language between mathematicians and chemical
engineers. The current chemical engineering literature
is hardly accessible to mathematicians, partly due to
the engineering jargon and unwritten traditions.

We created a prototype Modelica implementa-
tion of basic chemical engineering processes. Cur-
rently, only steady-state models are supported.
Once this component library is finished, soft-
ware with a graphical user interface, such as the
OpenModelica Connection Editor (OMEdit), can be
used to build chemical process models. The process

model creation involves only high-level operations on
a GUI; low-level coding is not required. This is the
desired way of input. Not surprisingly, this is also
how it is implemented in commercial chemical process
simulators such as Aspen Plus R©, Aspen HYSYS R© or
CHEMCAD R©.

Nonlinear system of equations are generally solved
using optimization techniques. AMPL (FOURER et al.
[12]) is the de facto standard for model representation
and exchange in the optimization community. Many
solvers for solving nonlinear programming (NLP)
problems are interfaced with the AMPL environment.
We are aiming to create a ‘Modelica to AMPL’ con-
verter. One could use the Modelica toolchain to create
the models conveniently on a GUI. After exporting the
Modelica model in AMPL format, the already existing
software environments (solvers with AMPL interface,
AMPL scripts) can be used. Thus an AMPL export fa-
cility builds a bridge between Modelica users and the
optimization community. Such an implementation ex-
ists (ÅKESSON [3]) but it is no longer supported, and
not publicly available.

Our ultimate goal is the development of structure-
driven optimization methods for solving nonlinear
programming problems (NLP). The structural infor-
mation (hierarchical components and the connections
between them) can be exploited to solve the underly-
ing process model efficiently. For example the process
model of the reactive distillation column in CIRIC &
MIAO [8], producing ethylene glycol from ethylene
oxide and water, has 70 variables and 70 equations.
However, the steady-state process model can be solved
by solving univariate equations only, in a proper elim-
ination order (BAHAREV & NEUMAIER [5]). In other
words, the problem is essentially 1-dimensional. Typ-
ically, chemical process models are essentially low-
dimensional even if their steady-state model is large-
scale.

The structural information is difficult to get from
an AMPL source directly, one would rather try to ex-
tract it from the flattened AMPL file instead. In prin-

DOI Proceedings of the 9th International Modelica Conference 955
10.3384/ecp12076955 September 3-5, 2012, Munich, Germany

ciple, one could recover the required structural infor-
mation from the flattened model, at least to some ex-
tent. This means that the flattening step throws away
the structural information first, then one must try to
recover it inside a solver. In contrast, the structural
information is programmatically accessible in JMod-
elica (ÅKESSON et al. [2]) before flattening, and we
intend to utilize this.

2 Component-based modeling of che-
mical processes

Chemical processes are well-suited for component-
based modeling since they are networks of equip-
ments. In turn, it is natural to model the equipments
hierarchically, as a composite of smaller components.
The smallest subcomponents are called atomic units.
The atomic units are connected by process streams.

2.1 Connector class: process streams

A process stream S consisting of C substances has
C+2 independent variables. It is characterized by the
list of variables

S = {S. f , S.p, S.H},
where S. f is an array of size C. See also Table 1.

variable physical meaning SI unit
f [i]≥ 0 molar flow rate of substance i = 1 : C mol/s
p ≥ 0 pressure Pa
H enthalpy flowrate J/s

Table 1: The C+ 2 variables characterizing a process
stream.

The graphical representation of process streams is
by arrows, as shown in Figure 1.

S

Figure 1: The graphical representation of stream S.

The units are connected by streams. The streams
entering the unit are called inlets, while the streams
leaving it are called outlets. The causal flows reflect
the fact that the chemical process streams are directed,
the material can only flow into the direction specified.

2.2 Sources and sinks

Given their simplicity, the easiest way to describe
these components is by their implementation, see be-
low. The only equations that sources and sinks can be

involved in are the connecting equations and specifi-
cations on their stream variables.

class Source
output Stream outlet;

end Source;

class Sink
input Stream inlet;

end Sink;

2.3 Types of equations

These equations apply to all atomic units in subsec-
tion 2.4. Only flows of chemicals are considered. Heat
flows allowing thermal coupling or multidomain mod-
els would need an extension.
Material balances: A system of C linear equations,
reflecting the conservation of mass.
Heat balance: A linear equation reflecting the conser-
vation of energy.
Mechanical equilibrium: The outlets have the same
pressure as the unit. With the exception of the mixer
and the pressure changer, the pressure of the unit
equals the pressure of its only inlet.
Thermal equilibrium: The enthalpy of the outlets
corresponds to the temperature of the unit. This rela-
tion is expressed by nonlinear equations (equation of
state). If the temperature is not an internal variable of
the unit then these nonlinear equations are missing.
Characterizing equations: These equations charac-
terize how the unit works and cannot be changed.
Connections with other units: These equations de-
scribe how the units are connected by equating the cor-
responding variables of the involved streams.
Specifications: These equations make the steady state
model of the unit well-defined. They usually corre-
spond to closed loop control systems. The form of
these equations shows large variation: they can be triv-
ial equations as well as complicated nonlinear equa-
tions.

2.4 Atomic units

As the name suggests, these units cannot be decom-
posed further to smaller, connected Modelica compo-
nents. Atomic units implement the UnitOp interface,
that is all the equations listed in Subsection 2.3 apply.
These units are the followings.

Chemical Process Modeling in Modelica

956 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076955

A B C

Figure 2: Structural types of the atomic units: (A)
heat exchanger, pressure changer, reactor; (B) divider,
flash; (C) mixer.

1. Mixer
2. Heat exchanger
3. Pressure changer
4. Reactor
5. Divider
6. Flash

The mixer has multiple inlets and a single outlet.
All other atomic units have a single inlet and can have
either one or two outlets. See Figure 2. Some code
snippets are shown below. The simplicity of the imple-
mentation is a consequence of proper decomposition.

class Mixer
extends UnitOp(nInlet=2, nOutlet=1);

end Mixer;

class PressureChanger
extends UnitOp(nInlet=1, nOutlet=1);
redeclare class ChangeInPressure=DeltaP;

end PressureChanger;

class Divider
extends UnitOp(nInlet=1, nOutlet=2);
Real zeta;
equation
outlet[1].f = zeta*inlet[1].f;
outlet[1].H = zeta*inlet[1].H;

end Divider;

The Divider has one so-called unit parameter, ζ ,
its value typically comes from specification.

The atomic units or the equipments are not referred
to as components in the chemical engineering litera-
ture. Unlike Modelica, the word “component” refers
to a particular chemical substance in the process. We
call the smallest Modelica components atomic units
and the composite Modelica components composite
units.

2.5 Notes on the process stream definition

Traditionally, one uses the total molar flowrate, the
mole fractions of the chemical substances, the pressure
and the temperature to characterize a process stream.
In addition, the specific enthalpy is needed to distin-
guish, for example, between boiling water and satu-
rated steam, as they both have a temperature of 100◦C

variable physical meaning SI unit
F ≥ 0 total molar flow rate [mol/s]
x[i]≥ 0 mole fraction of substance i = 1 : C [–]

∑x[i] = 1
p ≥ 0 pressure [Pa]
T ≥ 0 temperature [K]
h specific enthalpy flowrate [J/s mol]

Table 2: Traditional choice of variables to characterize
a process stream.

at atmospheric pressure. The traditional representation
is shown in Table 2.

There are three problems with this representation.
(1) The temperature is uniquely determined by the
other variables and this relation is nonlinear (equation
of state). (2) The material and heat balance equa-
tions are nonlinear because mole fractions are used
to describe the stream composition. (3) The process
stream definition involves an equality constraint (the
mole fractions must sum up to 1).

The first two issues make linear atomic unit mod-
els nonlinear. In particular, the mixer becomes nonlin-
ear. (The thermodynamically consistent model of the
mixer is nonlinear. However, it is practically always
made linear in the chemical engineering literature by
ignoring the so-called heat of mixing.) The mixer is
the only atomic unit having multiple inlets. Thus, a
nonlinear mixer has a domino effect: many of the com-
posite units are no longer worth decomposing.

The temperature can be safely dropped from the
stream definition. It is uniquely determined by the
other variables and it is never needed outside the units.
If, for some reason, the temperature of a stream is
needed, one can always calculate it by running a flash
calculation.

At first sight, it looks strange to the engineer to drop
the temperature from the stream definition. Tradition-
ally, the temperature is included in the stream variables
(e.g. the EMSO model library, DE P. SOARES & SEC-
CHI [9]) as it is easily measured in real life with a ther-
mometer. Nevertheless, it can be safely excluded.

To make the balance equations linear we use the mo-
lar flowrates of the individual substances and the total
enthalpy flowrate in place of the total molar flow rate,
the mole fractions and the specific enthalpy flowrate.
This has the beneficial side-effect that the equality
constraint disappears since the mole fractions are not
present. With these changes to the stream definition
given in Table 2, we arrive at the stream definition pre-
sented in Table 1.

Ali Baharev and Arnold Neumaier

DOI Proceedings of the 9th International Modelica Conference 957
10.3384/ecp12076955 September 3-5, 2012, Munich, Germany

2.6 Why not Modelica.Fluid?

The Modelica.Fluid library superficially resembles our
library. However, according to the documentation:
“The Modelica.Fluid library provides basic interfaces
and components to model 1-dimensional thermo-fluid
flow in networks of pipes. [. . .] there is the restric-
tion that only media models are supported that have
T, (p,T), (p,h), (T,X), (p,T,X) or (p,h,X) as independent
variables. [. . .] (Note, T is temperature, p is pressure,
d is density, h is specific enthalpy, and X is a mass
fraction vector).”

The Modelica.Fluid library does not aim at support-
ing chemical process models. Chemical process mod-
els are different from flows in networks of pipes.

We want to preserve the linearity of the material and
heat balances because it plays an important role in our
novel methods. Since the presence of the tempera-
ture, the mass / mole fractions or the specific enthalpy
would make the balance equations nonlinear, none of
them should not appear in the connector class. As al-
ready discussed in subsection 2.5, only the molar flow
rates of the substances, the pressure and the enthalpy
flowrate together guarantee linearity. Unfortunately,
the Modelica.Fluid library does not allow this choice
of the independent variables.

2.7 Hierarchical modeling: composite units

We call the smallest Modelica components atomic
units and the composite Modelica components com-
posite units. Often, atomic units only exist on the
level of abstraction. For example the equipment in
YI & LUYBEN [20] referred to as reactor cannot be
decomposed further into smaller, functioning pieces.
However, it can be modeled by connecting 7 atomic
units and a sink appropriately. None of these units is a
reactor. See Figure 3.

The set of atomic units listed in Subsection 2.4 was
determined by recursively decomposing a variety of
chemical processes. As a result, this set of atomic
units is sufficient for general-purpose chemical pro-
cess modeling.

Figure 4 shows an example of hierarchical decom-
position. The vapor-liquid equilibrium cascade is a
cascade of stages. A stage is a mixer and a flash unit
connected appropriately. In real life, the stages are the
smallest, still functioning pieces. The decomposition
of the stage into a mixer and a flash unit is an abstrac-
tion, as the stage does not have a mixer or a flash unit
inside. Nevertheless, this decomposition is valid for
modeling.

P

P

P

M H R

S

P

Reactor

Figure 3: The reactor of Yi & Luyben and its abstract
decomposition into atomic units. P: pressure changer,
M: mixer, H: heat exchanger, R: reactive flash, S: sink.

M F

Figure 4: Hierarchical decomposition of the vapor-
liquid equilibrium cascade into a cascade of stages,
then the decomposition of a stage into a mixer M and
a flash unit F.

2.8 Modelica issues encountered

The unit models are valid only if the molar flowrates
are nonnegative. This is due to the internal physi-
cal structure of the corresponding unit. The natural
way to impose these nonnegativity constraints is to
impose it on the molar flowrates and the pressure of

Chemical Process Modeling in Modelica

958 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076955

the stream, that is, in the connector class. Inequal-
ity constraints can be represented within the Modelica
language but only by introducing slack variables and
setting the min/max on these variables accordingly.
This approach is rather inconvenient. The Optimica
language extension (ÅKESSON et al. [1]) supports in-
equalities, it is our preferred way of defining inequality
constraints.

Figure 5: A stage with an optional connection (dashed
arrow).

Another difficulty is that Modelica cannot handle
arrays of components that have optional connections.
All stages have an optional inlet, see Figure 5. This
makes the creation of cascades somewhat awkward as
missing inlets have to be simulated by dummy streams.
The details are difficult to explain in text but easy to
understand from the source code. The reader is re-
ferred to the source code of the VLEcascade, available
from the project homepage at NEUMAIER [17].

3 Application: separation operations

The Modelica implementation discussed in the previ-
ous section is tested on a separation operation model.
The background of the application is briefly presented.
Then numerical results are given for the particular
benchmark in subsection 3.2.

A chemical plant takes raw materials as input and
produces products as output. Roughly speaking, three
steps can be distinguished in a chemical plant: prepa-
ration, reaction and purification. See Figure 6. Un-
wanted chemical substances are separated from the
raw input materials in the first step. The unwanted sub-
stances may interfere with the reaction in the second
step. The reaction produces the desired products and
byproducts. Usually a significant fraction of the reac-
tants remain unreacted. These unreacted reactants, the
products and the waste byproducts are separated in the
third step, called the purification step. The unreacted
reactants are recycled, that is, they are fed back to the
first step.

Both the first and the third step involves separation
operations. In a typical chemical plant, 40–80% of
the investment is spent on separation operation equip-

I II III

Figure 6: Schematic figure of a chemical plant. Input:
raw materials, output: products and byproducts. The
steps are (I) preparation, (II) reaction and (III) purifi-
cation.

ments (PRAUSNITZ et al. [18], p. 2).
Many of the practically relevant equipments used in

separation operations (multistage extraction, absorp-
tion, desorption, stripping and distillation) are inter-
nally a cascade. Not surprisingly, their mathematical
model can be solved in a sequential manner.

Identifying multiple steady states is critical to
proper design, simulation, control, and operation of
these equipments. Unfortunately, professional simula-
tors return only one solution at a time, without indicat-
ing the possible existence of other solutions. Usually,
only one of the steady-states is desired, the so-called
high purity branch. The other steady states are unde-
sirable and potentially harmful as they can lead to un-
expected behavior, meaning that the equipment may
respond to perturbation in a counterintuitive way.

Given the importance of separation operations, they
have already been modeled in Modelica by several au-
thors, for example DURO & MORILLA [11], JOOS

et al. [15] and CHANG et al. [7]. Our implementa-
tion is based on our Modelica component library for
general-purpose chemical process modeling. This dis-
tinguishes our implementation from the previous ones.

3.1 Internal physical structure of distillation
columns

Distillation columns are used in separation operations.
The body of a multistage distillation column is a cas-
cades of stages. In the cascade, the output of one stage
is the input of its two neighbors and vice versa, see
Figure 4. This structural information can be exploited
to solve the underlying process model efficiently.

The internal physical structure is reflected in the
mathematical model of the columns. The equations
can be evaluated in a sequential manner after guessing
just a few variables at one end of the cascade. The es-
sential dimension of the problem is given by the num-
ber of variables that have to be guessed to start the
stage-by-stage computations. The steady-state model
of distillation columns are essentially low-dimensional
even if their steady-state model is large-scale.

Ali Baharev and Arnold Neumaier

DOI Proceedings of the 9th International Modelica Conference 959
10.3384/ecp12076955 September 3-5, 2012, Munich, Germany

This approach, reducing the large-scale model to
a low-dimensional one, is called the stage-by-stage
calculation (LEWIS & MATHESON [16]). Unfortu-
nately, solving the low-dimensional model is very
difficult if not impossible with this method, as it
shows an extreme sensitivity to the initial estimates.
Thus, currently only high-dimensional techniques are
in use (DOHERTY et al. [10], 13–33). But a proof-of-
concept method remedies the numerical difficulties of
the stage-by-stage calculation, see BAHAREV & NEU-
MAIER [5].

3.2 Example: multiple steady-states in ideal
two-product distillation

The Modelica implementation discussed in Section 2
is tested on the distillation column presented in JA-
COBSEN & SKOGESTAD [14]. Its main structure cor-
responds to the linear structure presented in Figure 4,
and detailed in subsection 3.1.

Perhaps the simplest distillation columns are the
single feed two-product columns with ideal vapor-
liquid equilibrium. Even these columns can have mul-
tiple stead-states (JACOBSEN & SKOGESTAD [14]).
One type of multiplicity can occur when the column
has its input specified on a mass or volume basis (e.g.,
mass reflux and molar boilup). This is of high practi-
cal relevance as industrial columns usually have their
inputs specified in this way.

The model equations are taken from BAHAREV

et al. [4]. Specifications are: methanol-propanol feed
composition, mass reflux flow rate and vapor molar
flow rate of the boilup. Heat balances are included in
the model.

In many studies, one is interested in the dependence
of the characteristics on a design parameter (the bifur-
cation parameter) that can be varied, resulting in bi-
furcation diagrams. In this case, the design parameter
is the reflux flowrate specified on mass basis, and the
observed parameter is the product purity. The bifur-
cation diagram is given in Figure 7. The model equa-
tions have five distinct solutions in a certain range of
the reflux flow rate. One of the solutions is infeasi-
ble in practice because it would result in negative flow
rates. The fact that the Modelica implementation gives
the expected steady-states suggests that the implemen-
tation of the involved atomic and composite units is
correct.

0.9

0.99

0.999

P
ro
d
u
ct

p
u
ri
ty

[m
ol
e
fr
ac
ti
on

]

96 97 98 99 100 101 102
Reflux mass flowrate [kg/min]

Figure 7: Bifurcation diagram, multiple steady-states
in ideal two-product distillation. The infeasible
steady-states are represented by dashed lines.

4 Future work

4.1 Recovering structural information

The structural information (connections of the units)
can help to solve the underlying process model effi-
ciently, as already mentioned in the introduction and
in Subsection 3.1. The core equations of the column
in Subsection 3.2 are shown below.

Modelica source:

connect(cascade.outVapor, condenser.inlet);
connect(condenser.distillate,distillate.inlet);
connect(condenser.reflux, cascade.reflux);
connect(feed.outlet, cascade.feed);
connect(cascade.boilup, reboiler.vapor);
connect(cascade.outLiquid, reboiler.inLiquid);
connect(reboiler.bulk, bulk.inlet);

AMPL source:

M_eq{j in 1..N-1}:
sum{k in 1..j} F[k]*z[k] + V[j+1]*y[j+1]
= D*y[1] + (sum{k in 1..j} F[k]+V[j+1]-D)*x[j];

M_tot:
F[N_F]*z[N_F] = D*y[1] + (F[N_F]-D)*x[N];

H_eq{j in 1..N-1}:
sum{k in 1..j} qF[k] + V[j+1]*HV[j+1]
= V[1]*(HV[1]-HL[0]) + D*HL[0]
+ (sum{k in 1..j} F[k]+V[j+1]-D)*HL[j];

The Modelica code is favorable when it comes to
structural information, since it speaks about connec-

Chemical Process Modeling in Modelica

960 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076955

tions as clearly as possible. The JModelica environ-
ment (ÅKESSON et al. [2]) supports programmatic ac-
cess to the connectivity information. JModelica will
play an important role in the further development of
our novel methods.

4.2 Optimization

Optimization methods are used in almost all areas of
engineering. Typical problems in chemical engineer-
ing arise in process design, process control, model de-
velopment, process identification and real-time opti-
mization, see BIEGLER [6]. Our ultimate goal is to de-
velop structure-driven optimization methods for solv-
ing nonlinear programming problems (NLP). This re-
quires an objective function (e.g. minimize cost, max-
imize yield or profit) to be included in the model. In-
equality constraints often required too. Unfortunately,
Modelica does not support cost function and inequali-
ties, only the Optimica language extension (ÅKESSON

et al. [1]) does.

4.3 Dynamic simulation

At the moment, only the steady-state model equations
of the units are implemented in Modelica. It is pos-
sible to extend the library to support dynamic simula-
tion, but it is not easy in practice. Often, the model
equations are not accurately known and the dynamic
calculations may involve additional pitfalls.

Acknowledgements. The research was funded by
the Austrian Science Fund (FWF): P23554.

References

[1] Johan Åkesson, Tove Bergdahl, Magnus Gäfvert,
and Hubertus Tummescheit. Modeling and Opti-
mization with Modelica and Optimica Using the
JModelica.org Open Source Platform. In Pro-
ceedings of the 7th International Modelica Con-
ference, Como, Italy, 20-22 September 2009, pp.
29–38. Linköping University Electronic Press,
Linköpings universitet, 2009.

[2] Johan Åkesson, Torbjörn Ekman, and Görel
Hedin. Implementation of a Modelica compiler
using JastAdd attribute grammars. Science of
Computer Programming, 75:21–38, 2010.

[3] Johan Åkesson. Languages and Tools for Op-
timization of Large-Scale Systems. PhD thesis,
Regler, nov 2007.

[4] Ali Baharev, Lubomir Kolev, and Endre Rév.
Computing multiple steady states in homoge-
neous azeotropic and ideal two-product distilla-
tion. AIChE Journal, 57:1485–1495, 2011.

[5] Ali Baharev and Arnold Neumaier. Steady-state
multiplicities in reactive distillation: stage-by-
stage calculation revisited. AIChE J., 2012.

[6] Lorenz T. Biegler. Nonlinear programming: con-
cepts, algorithms, and applications to chemical
processes. SIAM, 2010.

[7] Chen Chang, Ding Jianwan, Chen Liping, and
Wu Yizhong. Media Modeling for Distillation
Process with Modelica/Mworks. In Proceedings
of the 8th International Modelica Conference,
March 20th-22nd, Technical Univeristy, Dres-
den, Germany, pp. 239–245. Linköping Uni-
versity Electronic Press, Linköpings universitet,
2011.

[8] Amy R. Ciric and Peizhi Miao. Steady state mul-
tiplicities in an ethylene glycol reactive distilla-
tion column. Ind. Eng. Chem. Res., 33:2738–
2748, 1994.

[9] R. de P. Soares and A. R. Secchi. EMSO: A new
environment for modelling, simulation and op-
timisation. In Computer Aided Chemical Engi-
neering, vol. 14, pp. 947–952. Elsevier, 2003.

[10] M. F. Doherty, Z. T. Fidkowski, M. F. Malone,
and R. Taylor. Perry’s Chemical Engineers’
Handbook. McGraw-Hill Professional, 8th ed.,
2007.

[11] N. Duro and F. Morilla. A Modelling Methodol-
ogy for Distillation Columns using Dymola and
Simulink. In Applied Simulation and Modelling.
ACTA Press, 2003.

[12] Robert Fourer, David M. Gay, and Brian Wilson
Kernighan. AMPL: A Modeling Language for
Mathematical Programming. Brooks/Cole USA,
2003.

[13] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1.
Wiley-IEEE Press, 2004.

[14] E.W. Jacobsen and S. Skogestad. Multiple steady
states in ideal two-product distillation. AIChE
Journal, 37:499–511, 1991.

Ali Baharev and Arnold Neumaier

DOI Proceedings of the 9th International Modelica Conference 961
10.3384/ecp12076955 September 3-5, 2012, Munich, Germany

[15] Andreas Joos, Karin Dietl, and Gerhard Schmitz.
Thermal separation: An approach for a model-
ica library for absorption, adsorption and rec-
tification. In Proceedings of the 7th Interna-
tional Modelica Conference, Como, Italy, 20-22
September 2009, pp. 804–813. Linköping Uni-
versity Electronic Press, Linköpings universitet,
2009.

[16] W. K. Lewis and G. L. Matheson. Studies in dis-
tillation. Industrial and Engineering Chemistry,
24:494–498, 1932.

[17] Arnold Neumaier. Structure-driven methods for
large-scale optimization, 2012. URL http://
www.mat.univie.ac.at/~neum/structure.
html.

[18] John M. Prausnitz, Rüdiger N. Lichtenthaler, and
Edmundo Gomes de Azevedo. Molecular Ther-
modynamics of Fluid-Phase Equilibria. Pren-
tice Hall PTR, Upper Saddle River, NJ, third ed.,
1999.

[19] Carl Sandrock and Philip L. de Vaal. Dynamic
simulation of chemical engineering systems us-
ing OpenModelica and CAPE-OPEN. In 19th
European Symposium on Computer Aided Pro-
cess Engineering, vol. 26 of Computer Aided
Chemical Engineering, pp. 859–864. Elsevier,
2009.

[20] Chang K. Yi and William L. Luyben. Design
and control of coupled reactor/column systems–
Part 1. A binary coupled reactor/rectifier system.
Computers & Chemical Engineering, 21(1):25–
46, 1996.

Chemical Process Modeling in Modelica

962 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076955

FMI Add-on for NI VeriStand for HiL Simulation

FMI Add-on for NI VeriStand for HiL Simulation

Cosimo Palma Marco Romanoni

Dofware S.r.l.

10099 San Mauro Torinese (Torino, Italy)

cosimo.palma@dofware.com marco.romanoni@dofware.com

Abstract

Currently, most of the links from Modelica models

to real-time hardware platforms suitable for Testing

and Validation are based upon non standard model

exchange format, or rely on third party preprocessor.

This paper describes the implementation of the Mod-

elisar Functional Mock-up Interface (FMI) support in

NI VeriStand, a commercial software environment

suitable for real-time testing applications.

This paper presents the work conducted to imple-

ment the FMI Add-on for NI-VeriStand, which is

available as a commercial product, and the process to

make hardware in the loop simulation starting from a

Model Based Development environment compliant

with the FMI for Co-Simulation standard for model

export and using it in NI VeriStand environment

with National Instruments real-time hardware.

Keywords: FMI; Hardware in the Loop; NI VeriS-

tand; Real Time Systems

1 Introduction

FMI stands for “Functional Mock-up Interface” [1]

and is an open standard for model exchange speci-

fied in the ITEA2 Modelisar project [2]. The aim of

this work is to enable NI VeriStand [3] to support the

FMI standard for Co-Simulation. This in order to

perform rapid-prototyping and hardware in the loop

simulations using National Instruments hardware

directly from Modelica models exported using the

FMU standard. With the FMI Add-on it is possible to

use FMU models in Windows and /or in National

Instruments RT Targets like NI PXI [4] and NI

CompactRIO [5].

In this paper, we will present:

 A description of the activity carried out for

the implementation of the FMI Add-on [6]

for NI-VeriStand.

 A detailed description of the steps that are to

be performed in order to use FMUs in Na-

tional Instruments PXI RT Targets.

 A validation test for the FMI Add-on per-

formed with Dymola [7] and National In-

struments PXI RT Target based on the de-

tailed model of a 6 dof manipulator.

2 Scenario

Using the FMI Add-on you can make MiL/SiL/HiL

with NI VeriStand framework and all Model Based

Design environments compliant with the FMI for

Co-Simulation standard. Figure 1 shows a typical

scenario of the automotive field where some control

algorithms have been designed in Simulaink and

LabView, and the car model has been modeled in

Dymola. With the FMI add-on and NI VeriStand it is

possible to deploy the plant model along with the

control algorithms in several targets and perform

HiL Validation for the whole system.

Figure 1: Example of HIL scenario in the automotive

field

DOI Proceedings of the 9th International Modelica Conference 963
10.3384/ecp12076963 September 3-5, 2012, Munich, Germany

3 NI VeriStand

NI VeriStand is a software environment for configur-

ing real-time testing applications. NI VeriStand helps

you configure a multicore-ready real-time engine to

execute tasks that include the following:

 Real-time stimulus generation

 Analog, digital, and communication bus in-

terfaces

 Real-time stimulus generation

 Analog, digital, and communication bus in-

terfaces

 Field-programmable gate array

(FPGA)-based I/O interfaces

 Calculated channels

 Triggerable, multifile data logging

 Event alarming and alarm response routines

NI VeriStand can also import control algorithms,

simulation models, and other tasks from NI Lab-

VIEW software and third-party environments. You

can monitor and interact with these tasks using a run-

time editable user interface that includes many useful

tools for value forcing, alarm monitoring, I/O cali-

bration, and stimulus profile editing.

4 Co-Simulation

Co-Simulation is an approach for joint simulation of

models developed with different tools where each

tool treats one part of a modular coupled problem.

Intermediate results are exchanged between these

tools during simulation where data exchange is re-

stricted to discrete communication points.

Between these communication points the subsystems

are solved independently. Figure 2 shows an exam-

ple of Co-Simulation where a complete system has

been modeled using three different tools, and where

each model uses is own numerical solvers and ex-

changes data thanks to the Co-Simulation master

environment during the simulation.

Figure 2: Example of Co-Simulation scenario in the

automotive field with Dymola, Simulink and Lab-

View

5 Implementation

5.1 FMU and Real Time Target

Most Modeling and Simulation Environments

compliant with the FMI 1.0 specification export an

FMU file that contains an XML file and a Dynamic

link library (dll) in order to maintain the intellectual

properties of the model and the integrator algorithms.

For this reason the first issue that arose in the de-

velopment of the FMI add-on was how to use the

model compiled as dll on RT Target running an op-

erating system different from Windows.

Most of National Instruments Real Time Targets

use Phar Lap ETS as operating system. Phar Lap

ETS is a dedicated real-time operating compliant

with a subset of Windows Application Programming

Interface (win32 API) [8].

As consequence the dll included in the FMUs

generated by the commercial modeling tools had to

be checked against Phar Lap requirements.

The first tool chosen was Dymola from Dassault

Systèmes, whose FMU generation routines were

modified by Dassault Systèmes development team in

order to solve all compatibility issues.

In order to check the compatibility of the dll in-

cluded into the FMU files, LabVIEW RT DLL

Checker [10] has been used. Using this tool, dll gen-

erated by any commercial or free tool, together with

hand coded and compiled ones must be tested in or-

der to check if they are compliant for Phar Lap ETS

environments.

Figure 3: LabVIEW RT DLL Checker window

If an FMU model passes this test, it is suitable for

its use into RT Phar Lap Operative Systems such as

National Instruments PXI platforms.

The implementation that is been performed to use

FMUs into NI VeriStand consists in a wrapper be-

tween the FMU specifications and NI VeriStand ap-

proach to process simulation models.

FMI Add-on for NI VeriStand for HiL Simulation

964 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076963

We used C/C++ code for the part that has to be

deployed on RT target and C# language for interact

with NI VeriStand interface for acquire user specifi-

cation for the model and the simulation.

5.2 Co-Simulation Master and Slave

NI VeriStand environment is a full featured Co-

Simulation platform working as master for the Co-

Simulation process. When several FMU’s and Co-

Simulation slave models exported using other model

exchange formats, e.g. S-Functions, are imported

into NI VeriStand, it works as master considering

every imported model as slave.

Figure 4: NI VeriStand logical schema during Co-

Simulation

Data exchange between subsystems is restricted

to discrete communication points. In the time be-

tween two communication points subsystems are

solved independently from each other by their indi-

vidual solver. NI VeriStand controls the data ex-

change between subsystems and the time synchroni-

zation of all slave simulation solvers.

A simulation model can be coupled if it is able to

communicate data during simulation at certain time

points.

Figure 5: NI VeriStand logical schema during Co-

Simulation

In NI VeriStand you can define the duration of

the time step in which VeriStand will read the inputs

and write the outputs. A time step is the atomic unit

of time that all simulation tasks needed to be com-

pleted.

6 Using FMU models on NI Real

Time

This section describes the process of validation for a

model exported as FMU using an RT hardware plat-

form.

First of all a general schema of the HIL scenario,

depending on the system that needs to be validated

has to be developed, see Figure 1. Once the HIL

schema has been decided, the installation of the FMI

Add-on must be done in each RT target that will host

an FMU model, see Fig. 6.

Figure 6: Installation of the FMI add-on on NI RT

targets

In order to setup the HIL system platform, each sub-

system model must be exported from the model

Cosimo Palma and Marco Romanoni

DOI Proceedings of the 9th International Modelica Conference 965
10.3384/ecp12076963 September 3-5, 2012, Munich, Germany

based environment in which it was developed.

With the installation of the FMI add-on VeriStand

will support fmu files in addition to dll, lvmodel, mdl

and out files (Fig. 8) . It has to be highlighted that

FMU models must be compliant with the FMI for

Co-Simulation 1.0 standard. Fig. 7 shows a Dymola

model exported with the FMI standard.

Figure 7: FMU for Co-Simulation model export from

Dymola

After each sub-model has been exported, it must be

imported into NI VeriStand, using the NI System

Explorer as shown in Fig. 8.

Figure 8: FMU model import using the NI System

Explorer

Once the models have been imported into VeriStand,

connections must be configured in order to map

hardware acquisition boards I/O with model va-

riables.

After System Explorer configuration a suitable

workspace can be configured into NI VeriStand in

order to control inputs and visualize the outputs in

real-time, see Fig. 9. Finally the deployment on the

targets will be performed automatically by VeriStand

and users can use their system models in HIL.

Figure 9: NI VeriStand workspace with custom

scopes

7 Test and validation of the FMI

add-on

In order to test the performance and validate the re-

sults of the HIL simulations performed on RT targets

using FMU models, a detailed model of a six dof

mechanical manipulator has been chosen as a test

case. The model of the physical system is a version

of the Modeli-

ca.Mechanics.MultiBody.Examples.Systems.RobotR3

.fullRobot that can be found in the Modelica Stan-

dard Library, modified using Dymola, see Fig. 7.

The original model has been modified adding one

real input for each degree of freedom of the manipu-

lator as reference angle for the motion of the electric

drives. The new model can be controlled by external

sources in real-time. We used also two simple con-

trol algorithms developed, one in Simulink and the

other one in LabView, to control two of the inputs of

the System. The purpose of this two control algo-

rithms was to demonstrate the capabilities of this

methodology and the scalability of the system archi-

tecture.

7.1 The system architecture

The architecture used to validate the system is shown

in Fig. 10, and consists in three models exported in

different formats from different tools that will be

executed together exchanging data in real-time on a

NI PXI-8196 Phar Lap RT target.

The target has been configured into VeriStand using

the System Explorer, as shown in Fig. 11. Two dif-

ferent validation campaigns have been performed,

the first using Windows and the second using Phar

Lap on NI PXI-8196 as targets.

FMI Add-on for NI VeriStand for HiL Simulation

966 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076963

Figure 10: System architecture for the Validation

experiment

Thanks to the Dofware FMI add-on, the FMU model

was loaded into VeriStand and the depvs file, needed

for the deployment of the project into the target, au-

tomatically generated.

Thanks to the support of National Instruments devel-

opment team it was possible to grant the best user

experience in VeriStand to FMU importers. In fact

the FMI add-on was developed in a way so that the

import process in VeriStand is now the same for

every model exchange format, as shown in Fig 11.

Figure 11: Import of different external models using

the system explorer

It is important to note that model parameters im-

ported using the FMU format must to be set in the

modeling environment before the export phase. This

is because the FMI specification does not allow pa-

rameter tuning during the simulation phase but only

before the initialization phase of the model and this

cannot be done into VeriStand. For this reason all the

parameters of the model that need to be tunable dur-

ing the HIL validation tests have to be modified and

changed into inputs before the FMU generation. Still

the parameters of the imported models can be seen in

the system explorer as shown in Fig.12.

This issue will be more likely solved with the next

release of the FMI specification that will allow pa-

rameter tuning during runtime simulations.

Figure 12: Model parameters explorer into VeriStand

To finish the setup phase of the system architecture,

the I/O of the all models must be coupled together

using the System Configuration Mappings editor in

VeriStand, see Fig. 13, and with physical I/O of the

target, see Fig. 14.

Figure 13: System Configuration Mappings editor in

VeriStand, I/O of the models are coupled together

Cosimo Palma and Marco Romanoni

DOI Proceedings of the 9th International Modelica Conference 967
10.3384/ecp12076963 September 3-5, 2012, Munich, Germany

Figure 14: System Configuration Mappings editor in

VeriStand, I/O of the models are coupled with physi-

cal I/O of the DAQ systems

VeriStand will drive the Simulation, thus the time

step along with the execution order of the real time

task models have to be set into the NI tool.

It is important to note that the solver’s time steps of

the single slave models must be smaller than the

sampling time of the master device. It is also impor-

tant to note that the execution time of a single time

step of each single slave model must be smaller than

the allocated running time in VeriStand, or the simu-

lation will be shut down.

The allotted running time is determined by the inte-

raction of your models and the hardware in your sys-

tem. In fact VeriStand must complete all tasks in

addition to the ticking of the models, such as input

data processing and output data returning. The num-

ber of inputs and outputs in the system might in-

crease the time that has to be allot for a time step.

Moreover if the system includes multiple models, all

of your models might need to perform a task during

each given time step.

7.2 I/O Monitoring and validation results

At this point we are able to deploy the project into

the target, i.e. all FMU resource files are copied to

the target accordingly to the depvs files and the si-

mulation can begin.

Once the simulation is running, the simplest way to

monitor the state of the outputs is to develop a cus-

tom workspace into VeriStand, see Fig. 15. The

workspace can include scopes for the model va-

riables and interactive controllers for input and pa-

rameter real-time tuning.

Figure 15: NI VeriStand workspace developed to

control the manipulator model

Fig. 16, 17, 18 and 19 show the simulation results in

terms of reference angles and simulated angles for

each axis of the manipulator. The results are com-

pared to the ones obtained simulating the same sys-

tem entirely in Dymola. We can note that the simula-

tion results in Dymola are matching with the ones

obtained in VeriStand using both windows and NI

PXI targets. It has also to be noted that there are

some little differences from the results obtained in

Dymola and the ones obtained in the PXI target gen-

erated from the “errors” introduced by different

solvers and by logger used to save the output results

and the limited resources of the PXI that generated

data losses in the communication between the sub-

model units and the master sample time. The data

logger was added as a custom device in VeriStand,

and is capable of saving the output data on the file

system using a fifo.

Figure 16: NI VeriStand with PXI target Vs Dymola

benchmark

FMI Add-on for NI VeriStand for HiL Simulation

968 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076963

Figure 17: NI VeriStand with Windows target Vs

Dymola benchmark

Figure 18: NI VeriStand with Windows target Vs

Dymola benchmark

Figure 19: NIVeriStand with PXI target Vs Dymola

benchmark

8 Conclusion

Thanks to the development of the FMI add-on for

NI VeriStand a tool chain can now be defined to per-

form HIL simulation for control validation on NI

hardware platforms starting from Modelica based

models.

The tool chain has been validated against simula-

tion results obtained in Dymola on a detailed system

model divided into sub-systems in order to validate

also the data communications between sub-models

during the HIL tests. NI VeriStand present the possi-

bility to use an external solver, so we created an ad-

don also for FMI for model-exchange. We success-

fully tested it also on Phar Lap OS, but so far very

few solvers have been implemented (Euler and

Runge-Kutta). This solution gave us good results for

simple models, but has still to be improved in order

to implement solvers capable of efficiently handle

complex models.

An important milestone on the roadmap of the

FMI add-on will be the compatibility upgrade with

respect to the FMI 2.0 specification. In this way no

more modifications will be needed in order to tune

the parameters of the Modelica models during HIL

validations.

References

[1] Functional Mock-up Interface:

http://www.functional-mockup-

interface.org/index.html

[2] MODELISAR consortium. Functional Mock-

up Interface for Model Co-simulation V.

1.0. http://www.modelisar.org

[3] NI VeriStand: http://www.ni.com/veristand/

[4] NI PXI: http://www.ni.com/pxi/

[5] NICompactRIO:

http://www.ni.com/compactrio/

[6] FMI Add-on for NI VeriStand,

http://www.dofware.com/products/fmi-add-

on-for-ni-veristand/

[7] Dymola

http://www.3ds.com/products/catia/portfolio/

dymola

[8] FMI for Co-Simulation

http://www.modelisar.com/specifications/FM

I_for_CoSimulation_v1.0.pdf

[9] FMI for Model Exchange and Co-

Simulation, version 2.0

http://www.modelisar.com/specifications/FM

Cosimo Palma and Marco Romanoni

DOI Proceedings of the 9th International Modelica Conference 969
10.3384/ecp12076963 September 3-5, 2012, Munich, Germany

I_for_ModelExchange_and_CoSimulation_v

2.0_Beta3.pdf

[10] LabVIEW RT DLL Checker

http://digital.ni.com/public.nsf/allkb/0BF52E

6FAC0BF9C286256EDB00015230

[11] QTronic GmbH: FMU SDK 1.0.1

http://www.qtronic.de/en/fmusdk.html

[12] Modelica Association: Modelica – A Uni-

fied Object-Oriented Language for Physical

Systems Modeling. Language Specification,

Version 3.2. March 24, 2010. Download:

https://www.modelica.org/documents/Modeli

caSpec32.pdf

[13] Elmqvist H., Otter M., Henriksson D., Thiele

B., and Mattsson S. E. Modelica for Embed-

ded Systems. In Proceedings of the 7th

Modelica Conference, Como, Italy, Sep-

tember, 2009.

[14] H. Hadj-Amor, C Faure, M. Ben Gaïd,

N. Pernet, “Towards a Modelica Real-time

co-simulation with FMI”, Multiphysics Si-

mulation - Advanced Methods for Industrial

Engineering Conference, Fraunhofer, 22-

23 June 2010.

FMI Add-on for NI VeriStand for HiL Simulation

970 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076963

Using Static Parametric Design to Support Systems Engineering of Industrial Automation Systems

Using Static Parametric Design to Support Systems Engineering
of Industrial Automation Systems

Hongchao Ji1 Lars Mikelsons1 Karl Kempf1 Dieter Schramm2
1Bosch Rexroth AG, Lohr am Main, Germany

{hongchao.ji, lars.mikelsons, karl.kempf}@boschrexroth.de
2University of Duisburg-Essen, Duisburg, Germany

dieter.schramm@uni-due.de

Abstract

This paper proposes a static parametric design
methodology for application of the model based sys-
tems engineering (MBSE) paradigm in the world of
Modelica. This methodology allows for parameter
synthesis of the industrial automation systems under
consideration of customer requirements. Furthermore,
the parametrized system can be verified automatically.
An integrated system model consisting of require-
ments, system design and verification models is cre-
ated and can be used as a design template to generate
a new parameter set according to the change of cus-
tomer requirements. A case study from the practice is
presented to proof the concept of this methodology.

Keywords: Model Based Systems Engineering,
SysML, Modelica, Parameter Synthesis

1 Introduction

The complexity of modern industrial automation sys-
tems increases steadily. New functions and technolo-
gies need to be integrated to fulfill customer require-
ments, environmental regulations and/or safety stan-
dards. The increasing complexity has raised many
challenges such as keeping the the design consistent
and approving the correctness with respect to the cus-
tomer requirements. Model based systems engineer-
ing (MBSE) is defined as the formalized application
of modeling to support system requirements, design,
analysis, verification and validation activities begin-
ning in the conceptual design phase and continuing
throughout development and later life cycle phases.
Hence MBSE is a suitable approach to cope with these
challenges.

One of the key issue in MBSE process is to deter-
mine the proper dimension of the system design ac-

cording to the formalized requirements model. The
static parametric design methodology uses Modelica
static models together with the dynamic models to
support the MBSE process by the means of select-
ing the proper components of the desired system from
given product catalogs, dimensioning the sub-systems
as well as checking the correctness of the system de-
sign with respect to systems requirements.

The objective of the static parametric design
methodology is to perform a parameter synthesis of
a technical system according to the customer require-
ments automatically. Furthermore, the calculated sys-
tem design can be verified automatically as well. The
Systems Modelling Language (SysML) [11] is used to
formalize the customer requirements. Moreover, the
extension of abstraction levels and classification de-
fined in [4] is also applied in this paper. Work on
the integration of SysML and Modelica has already
proven its effectiveness in the MBSE [6, 8, 9]. Reusing
these improvements the SysML models can be trans-
formed into executable Modelica models.

In this contribution, we focus on the standard appli-
cation that the structure of the desired system is nor-
mally known to the system engineers. The require-
ments models serve as the basis of the static para-
metric design methodology. By changing the require-
ments models, a new parameter set of the system can
be obtained automatically. In this sense, the integrated
model consisting of requirements, system design and
verification models can be seen as a design template
for a standard application.

This paper is organized in 6 sections. Section2 il-
lustrates the current systems engineering process and
the need of model based systems engineering and
static parametric design methodology. As part of re-
lated work in Section3 a short introduction to SysML
and its integration with Modelica are given. Section
4 introduces the static parametric design methodology

DOI Proceedings of the 9th International Modelica Conference 971
10.3384/ecp12076971 September 3-5, 2012, Munich, Germany

to support the systems engineering in detail. The capa-
bilities of the proposed methodology are demonstrated
using an industrial application in Section5. The paper
closes with conclusions and an outlook to future work.

2 Systems Engineering of Industrial
Automation Systems

The systems engineering process is described in the
following referring to the well known V Model ac-
cording to the VDI 2206 standard [12] depicted in
(Figure1).

Requirement Product

S
ystem

D
esign S

ys
te

m
In

te
gr

at
io

n

Domain-specific Design
Mechanical Engineering

Electrical Engineering
Information Technology

Modelling and Model Analysis

Assurance of Properties

Figure 1: V Model According to VDI 2206 [12]

The main tasks of current systems engineering of
industrial automation systems can be summarized as
follows:

• State the customer needs correctly and unam-
biguously;

• Define the proper system design based on the cus-
tomer requirements;

• Verify the system design against customer re-
quirements.

They will be introduced respectively in the following.

2.1 Requirements Specification

Due to the fact that the requirement specification is
the subject matter of contract between customer and
contractor the above described context implies that the
requirements engineering has to be seen not only from
the technical perspective but also needs to consider the
business process and the contractual situation along
the supplier chain. In this context it is self-evident that
the requirements shall be defined and structured not
only according to technical aspects but also according

to the contractual situation. The definition of levels of
abstraction is an appropriate way to meet these needs.
The depicted levels of abstraction in Figure2 reflect
the described supplier chain and major technologies
involved and therefore are a reasonable choice in the
context of automation systems. In order to deal with
the complexity of large systems the design objects are
clustered in a system break down structure. The re-
quirements derived on the different levels of abstrac-
tion can be referenced in requirement specifications in
order to provide the contractual views on subsets of
requirements.

Figure 2: Levels of Abstraction in Requirements and
System Design

2.2 Systems Design

Industrial automation systems are characterized by
their ability to process a material or work piece ac-
cording to a defined procedure to achieve the output of
a desired product. The challenge of the system engi-
neer is to design a machine that is capable to run the
process in a deterministic and efficient way. This task
is typically performed within a specific design domain
that refers to a field of technical expertise. The proper
selection of the components and their integration into
the overall structure strongly influence the function,
performance, robustness and reliability of the whole
system. Currently the selection of the components is
mainly determined by the competence of the system
engineers which is time consuming and error prone.
In order to avoid manual errors, it is desired to select
the components in a systematical manner.

Today, parameter synthesis of a technical system is
usually based on static calculations in the field of in-
dustrial automation systems. A small example of such
static calculation for selection of a hydraulic valve in
a hydraulic lift system is depicted in Figure3. The di-
mension of the cylinder shall be first defined in order
to calculate the maximal flow rate through the valve

Using Static Parametric Design to Support Systems Engineering of Industrial Automation …

972 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076971

with the given maximal cylinder velocity by

Qmax= AD ·vmax. (1)

After that the nominal size of the valve is determined
by some design criteria. Moreover, the design crite-
ria origin from customer requirements as well. In this
case, the nominal size is defined by the nominal flow
rate which is calculated by

Qnominal= 1.5·Qmax. (2)

The nominal size of the valve can be chosen from the
product catalog according to the nominal flow rate.
That means a proper component, in this case the valve,
is correctly selected for the desired system.

Figure 3: Schematic of a Hydraulic Lift System

In order to ensure the acceptance of a MBSE tool
offering the methodology presented in this paper, these
design guidelines have to be integrated into the MBSE
tool.

2.3 Verification and Validation

Model based verification and validation of a systems
design against systems requirements has been widely
used in the field of industrial automation systems. The
goal here is to verify the system design in an auto-
mated and reproducible way. Since this issue has al-
ready been addressed in virtual verification of systems
design against systems requirements (vVDR) method-
ology [10], it is used to approve the systems design in
this paper as well.

2.4 The Challenges

Since industrial automation systems usually consist of
components from different domains, it is hard to keep
the design correct and consistent. In order to deal with
this fact, the systems design from different engineering
domains shall be integrated into the whole MBSE pro-
cess. Therefore, a universal and standardized model-
ing language is required which shares the understand-
ing among engineers from different disciplines. This
common language shall enable the generation of re-
quirements models, system design models, traceabil-
ity models as well as verification models containing
domain-specific details. SysML is being proposed to
meet this requirement. However it has been evaluated
as not sufficient due to the lack of executable seman-
tics. Integration of the languages SysML and Mod-
elica has proven its efficiency in the area of MBSE
[5, 6, 7, 10]. Therefore, in this contribution SysML
and Modelica are chosen as the modelling languages
applied in our MBSE process as well.

In order to set up a MBSE tool for parameter syn-
thesis, the following two questions have to answered:

1. How to perform a parameter synthesis to deter-
mine all the proper components based on the cus-
tomer requirements in an automatic manner?

2. How to link different kinds of models in the
whole MBSE process?

These two challenges have been addressed in this
paper by the means of using static parametric design
methodology in an integrated system model based on
SysML and Modelica. The details are presented in
Section4.

3 Background and Related Work

3.1 The SysML and Modelica

SysML is a general purpose language used in the field
of systems engineering. It is defined as a UML pro-
file which reuses subsets of UML constructs and ex-
tends them with some additional modeling elements.
SysML is capable to capture the textual requirements
and to allocate them with the design models and test
cases. However due to loosely defined executable se-
mantics SysML is not capable to execute the modeled
physical systems. In contrast to that, Modelica is an
object oriented and equation based modeling language
for multi-domain physical systems. Graphical model-
ing is supported by the object diagram which offers an

Hongchao Ji, Lars Mikelsons, Karl Kempf and Dieter Schramm

DOI Proceedings of the 9th International Modelica Conference 973
10.3384/ecp12076971 September 3-5, 2012, Munich, Germany

intuitive way to describe power transmission through
acausal connections as well as directed signal flows.
Strong semantics allow the generation of executable
models of continuous as well as discrete systems. Ob-
ject oriented language constructs enable the efficient
reuse of models and the design of comprehensive and
easy to use model libraries. As mentioned in Section 2,
a language which integrates the descriptive modeling
power of SysML and the formal executable simulation
power of Modelica seems to be a promising approach
for the systems engineering in industrial automation
systems.

3.2 Related Work

Several work has already been done towards appli-
cation of MBSE paradigm using Modelica language
with different concerns. The vVDR methodology [10]
addresses mainly the virtual verification of systems
requirements by using UML, Modelica and Modeli-
caML. In Dubois et. al. [2] a requirement traceabil-
ity model to enforce the traceability concept in SysML
in the automotive domain is presented. Requirements
management and allocation have already been covered
in the other paper of the author [4].

This paper describes a methodology for the param-
eter synthesis of technical systems according to cus-
tomer requirements. Moreover, the different kinds of
models are linked with the other models in the inte-
grated system model and therefore it is easy to regen-
erate and to verify the final parametrized system. They
will be introduced in detail in the following section.

4 Static Parametric Design

The proposed static parametric design methodology is
based on Modelica static models. Static models are
defined as models that are constant over time. Consid-
ering the whole MBSE process, the following items
can be formalized as Modelica static models:

• Requirement Specifications,

• Product Catalogs,

• Selection Criteria.

4.1 Definitions of Models

The requirement specifications can be defined asre-
quirements modelswhich are captured as stereotyped
SysML models according to the different abstraction
levels and classifications in [4].

This classification is mainly based on the taxonomy
proposed in [3] with some changes as presented in
the following. Instead of the requirement type spe-
cific quality, the structural requirement is defined in
the field of industrial automation.

• A functional requirementis the requirement that
should produce an expected reaction to a given
stimuli.

• A performance is the requirement to check
whether a system variable such as timing, speed,
volume or throughput is in a desired range.

• A structural requirement is the requirement
which describes the structural demand of the
stakeholder.

• A constraint is the requirement to provide the
technical and safety boundary conditions that the
system shall satisfy.

Theproduct catalogs modelsare easy to understand
as Modelica static models. They can modeled as a
simple record class with some table definitions. In
this work, a UML library with a sub-set of the Bosch
Rexroth catalog is implemented and later transformed
to Modelica static models. The advantages of imple-
mentation as UML library over Modelica library is the
compatibility with SysML and the extendibility of the
product catalog.

The selection criteria are implemented asstatic cal-
culation models. The idea is using Modelica functions
to determine the proper dimension of the components.
Normally, those selection criteria for the components
are usually the same. Due to the fact of reuseability, a
Modelica library calledParametricDesignwhich con-
sists of most selection criteria in the field of industrial
automation systems is built as shown in Figure4.

Besides the static models,simulation modelis an
executable model which is used for dynamic simula-
tion. In the verification and validation phase, the sim-
ulation model is linked with the test cases to check the
correctness of the parametrized system design.

All those models are further transformed into Mod-
elica static models with the help of a Modelica code
generator, which is implemented with the help of
Eclipse Acceleo [1].

4.2 Link of Different Models

Several models have been defined in this static para-
metric design methodology. It is necessary to link

Using Static Parametric Design to Support Systems Engineering of Industrial Automation …

974 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076971

Figure 4: Structure of the Parametric Design Library

those models in a efficient manner in order to per-
form a parameter synthesis automatically. The basic
idea is to reference the attributes of SysML model to
the variables, parameters and constants of the Mod-
elica model. Currently, these relations have been es-
tablished manually which is time consuming and error
prone. A method to extend the standard relationships
such as «satisfy», «verify» and «derive» has been pro-
posed in [4]. An overview of the linking of different
models in this methodology is shown in Figure5. The
tooling that supports the binding of related objects is
implemented in Eclipse.

Figure 5: Link of Different Models

4.3 Methodology Description

The prerequests of application of the static design
methodology are

• hydraulic library,

• static design library,

• product catalog library.

Furthermore, the formalized requirements models and
at least one simulation model have to be created at first
as the basis for application of the static parametric de-
sign methodology.

The main steps of this methodology can be summa-
rized as follows:

1. Capture the customer requirements as stereo-
typed requirements according to the proposed
classification in [4].

2. Create a simulation model from the hydraulic li-
brary on the considered level of abstraction.

3. Select the proper design criteria from the para-
metric design library and create the static calcu-
lation model.

4. Link the requirements model, static calculation
model as well as product catalog model in the
parametric design model.

5. Run a parameter synthesis to obtain a best suited
parameter set and the other possible parameter
sets for the desired system.

6. Set the obtained possible parameter sets in the
simulation model and save them as design vari-
ants.

7. Define test cases that need to satisfy customer re-
quirements.

8. Link the requirements model, test cases as well
as simulation models in the verification model.

9. Run a verification that executes all related test
cases and design variants.

10. Choose the best suited design variants according
to the verification results.

Hongchao Ji, Lars Mikelsons, Karl Kempf and Dieter Schramm

DOI Proceedings of the 9th International Modelica Conference 975
10.3384/ecp12076971 September 3-5, 2012, Munich, Germany

5 Application Example

In this section, a hydraulic lift system is used to
demonstrate the static parametric design methodology.
The hydraulic lift system is used to lift a load to a given
height. It shall be considered in the context of the
OEM-supplier relation as it applies to a typical Bosch
Rexroth engineering project.

The task of this case study is to define a best suited
parameter set of the desired lift system which ful-
fills all the customers requirements as well as techni-
cal constraints. First of all, a simulation model shall
be created. Therefore, the structure of the hydraulic
lift system has to be known for the system engineers.
Then, the static calculation model shall be created as
well by selecting the proper design criteria from the
parametric design library. After linking of different
models in the integrated system model, a parameter
synthesis can be performed to obtain the best combi-
nation of the components with the minimal dimension
which satisfy all the requirements.

The main advantage is that the system engineers can
use the integrated system model as a design template.
With the help of this design template, it is much more
easier to variate the parameter set of the hydraulic lift
system by changing the customer requirements auto-
matically.

5.1 Requirements Capture

The requirements from the customers are formalized
as follows: a load of 3000kg shall be lifted to 0.5 m
within 2 s. Besides the customer requirement there are
some technical constraints of the desired system. For
example, the maximum velocity can not exceed 0.6
m/s. The other important constraint is that the pres-
sure drop over the proportional valve shall not exceed
30% of the working pressure. The important require-
ments are listed in Table1. The beginning letter of
the ID of the requirement refers to the type of the re-
quirement. The requirements P1, C2 and C3 can be
verified by test cases which are modeled as Modelica
models. Since the structral requirments S4 and S5 pro-
vide only the important design parameters, they are not
necessary or possible to verify. According to those re-
quirements, the proper components from the product
catalogs shall be selected iteratively until all the com-
ponents are chosen. They can be formalized as SysML
requirements model and later transformed into Mod-
elica static model. An example of the requirements
model and its generated Modelica code are shown in
Figure6.

ID Description
P1 The load shall be lifted to 0.5 mwithin 2 s.
C2 The max. velocity shall not exceed 0.6 m/s.
C3 The pressure loss over the valve shall not

exceed 30% of the working pressure.
S4 The mass of the load is 3000kg.
S5 The working pressure is 200 bar.

Table 1: The System Requirements List

Figure 6: An Example of Requirements Model and
Generated Modelica Code

5.2 Modelling of the Hydraulic Lift System

The object diagram (Figure7) shows the structure of
the hydraulic lift system. The load is lifted by a differ-
ential cylinder which is driven by a constant pressure
source. The proportional valve is controlled by a sim-
ple P-controller to realize the position control. Since
the focus of this work is to illustrate the static paramet-
ric design methodology, the details about the model
will not be introduced here.

5.3 Static Parametric Design Process

The involved components from the product catalog
are the differential cylinder and proportional valve.
Hence, the design criteria models for those two com-
ponents in the design library are selected into the static
parametric design model together with the require-
ments model. Table2 and3 show the important de-
sign variables from the product catalogs of differential
cylinder and proportional valve.

Using Static Parametric Design to Support Systems Engineering of Industrial Automation …

976 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076971

Figure 7: Object Diagram of the Hydraulic Lift Sys-
tem

Piston Rod Max
Diameter Diameter Stroke

mm mm mm
40 28 2000
50 36 2000
63 45 2000
80 56 2000
100 70 3000
125 90 3000
140 100 3000

Table 2: Product Catalog of Differential Cylinders

Nominal Max Pressure
Size Flow Rate Drop

– l/min bar
10 170 80
16 450 180
25 900 350
27 1000 430
35 3500 1100

Table 3: Product Catalog of Proportional Valves

The requirements variables defined in the require-
ments models, such as mass of load, maximum veloc-
ity and desired lifting position are taken as inputs for
the design criteria which are implemented as Modelica
functions. Finally, a parametric design model is ob-
tained by linking the requirements models, static cal-
culation models and the related product catalog mod-
els.

After the parametric design model is created, the
automatic parameter synthesis can be done very con-
veniently. The parametric design model is interactive
solved and the design variables are calculated. Ac-

cording to those design variables the corresponding
components with the proper size are chosen until all
the components from the product catalog are chosen.
The following table shows the automatic generated
best suite combination of cylinder and valve, which
is defined as anoptimal design. It is worth to mention

Piston Rod Max
Cylinder Diameter Diameter Stroke

mm mm mm
Optimal 100 70 3000

Nominal Max Pressure
Valve Size Flow Rate Drop

– l/min bar
Optimal 25 900 350

Table 4: Selected Components from Product Catalog

that the gain of the P-controller is determined by "Try
and Error". In the future, this kind of parameter which
is not related to the product catalog can be defined by
the means of optimization.

5.4 Verification of System Design

After the static parametric design process is done, a
best suited set of combination of the components is
obtained. An automatic verification will check the
optimal design against customer requirements. This
is done by using vVDR methodology [10] to model
the test case of requirements with violation monitor.
According to the requirements definitions in Table1,
three test cases are defined to verify the requirements
P1, C2 and C3. Figure8 shows the verification result
of this proposed optimal design. The first two figures
(Figure8(a)and8(b)) illustrate that the load is lifted to
0.5 meter after 2 second and does not exceed the max-
imal velocity. As shown in Fiugre8(c), the pressure
loss over the valve in steady state satisfies the critical
30% of working pressure 200 bar as well. Therefore,
the hydraulic lift system with the automatic selected
parameter fulfills the customer requirement and tech-
nical constraints.

5.5 Comparison of Design Variants

The best suited combination of components from the
product catalog are supposed to have the minimal size
which satisfy all the requirements. It has been verified
to fulfill all the requirements in the last section. Nev-
ertheless, it is still not proved that the performance of
this design is better than the others variants. In order

Hongchao Ji, Lars Mikelsons, Karl Kempf and Dieter Schramm

DOI Proceedings of the 9th International Modelica Conference 977
10.3384/ecp12076971 September 3-5, 2012, Munich, Germany

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

t [s]

s
[m

]
Load Position

(a) Load Position

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

t [s]

v
[m

/s
]

Load Velocity

(b) Load Velocity

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

t [s]

p
[b

ar
]

Pressure Loss

(c) Pressure Loss

Figure 8: Verification Results of Optimal Design

to validate this, design variants around the optimal de-
sign with other nominal sizes can be generated from
this methodology. The design variants are defined by
substituting the components of the optimal design with
a smaller or larger nominal size. In this case, four de-
sign variants are automatically generated and used to
compare with the optimal design. The dimension of all
the design variants are shown in the following table.

Design Piston Rod Valve
Variants Diameter Diameter Size
Optimal 100 70 25
Variant 1 80 56 25
Variant 2 100 70 16
Variant 3 100 70 27
Variant 4 125 90 25

Table 5: Dimensions and Costs of Design Variants

The simulation results of the optimal design and the
other four design variants are shown in Figure9. It
shows that the design variant 1 and 3 can approach the
desired position within 2 seconds. However the veloc-
ities exceed the maximal velocity constraint 0.6 m/s.
The design variant 2 and 4 fulfill the second test case
and can not satisfy the first one. The results concern-
ing the third test case are listed in Table6.

A verification matrix of the design variants against

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

Comparison Load Position

Desired
Optimal
Variant 1
Variant 2
Variant 3
Variant 4

t [s]

s
[m

]

(a) Comparison of Load Position

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Comparison Load Velocity

Maximal
Optimal
Variant 1
Variant 2
Variant 3
Variant 4

t [s]

s
[m

]

(b) Comparison of Load Velocity

Figure 9: Comparison of Cylinder Positions and Ve-
locities of Different Design Variants

the test cases are shown in Table6. Furthermore, the
costs of design variants depending on the dimensions
of selected components from the product catalog can
also be calculated. With the help of this verification
matrix and the price, the selected optimal combination
of the components from the product catalog is proved
to be exact the best suited design.

Design Test Test Test System
Variants Case 1 Case 2 Case 3 Cost
Optimal passed passed passed 2000
Variant 1 passed failed passed 1700
Variant 2 failed passed passed 1820
Variant 3 passed failed failed 2040
Variant 4 failed passed failed 2400

Table 6: Verification Matrix and System Costs

Using Static Parametric Design to Support Systems Engineering of Industrial Automation …

978 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076971

5.6 Open Issues

This case study demonstrates the proposed static pa-
rameter design methodology. According to the cus-
tomer requirements and technical constraints, the di-
mension of the desired system can be defined auto-
matically. However, the main drawback is that the
simulation model shall be first modeled. That means
this methodology can not be applied to arbitrary sys-
tem. This is due to the fact that there is not enough
information for determining a proper combination of
the desired system in the practice. This drawback also
limit the application of MBSE in the field of industrial
automation systems.

It is noticed that the order for the selection of com-
ponents is fixed in this case, i.e., the dimension of
cylinder shall be first defined in order to determine the
nominal size of the proportional valve. Sometimes the
order is not fixed. For both cases the system engineers
shall have the chance to determine the order for the
selection of components more freely without reimple-
mentation of static design model. Since Modelica is a
standardize equation-based modelling language, it has
been chosen to meet these requirements. It is capable
to deal with the this issue. One proposed concept is
to switch the variability ofparameterandvariableof
static models in an arbitrary manner. The system en-
gineers can give the known parameters until the static
model is balanced and solvable to calculate the other
unknown variables.

6 Conclusion and Future Work

In this paper a static parametric design methodology
has been analyzed in the systems engineering con-
text of industrial automation systems. A set of pos-
sible design variants with different dimensions can be
automatically generated and compared by using this
methodology. The concept has been demonstrated by
a case study of a typical engineering project. The other
contribution of this work is allocation of this method-
ology in a MBSE process in which the parametrized
design variants are fully traceable to the other models.

In the future, the proposed methodology will be im-
plemented as an Eclipse plug-in for better tool sup-
port of the static parametric design. It is usually the
case, not all the parameters can be defined by the static
parametric design methodology. Integration of an op-
timizer to define those parameters is desired. Applica-
tion of a big scenario is also a part of future work.

Acknowledgments

This work is funded by Bosch Rexroth AG and Ger-
man Federal Ministry of Education and Research
(BMBF) in the ITEA2 OPENPROD project.

References

[1] http://www.acceleo.org.

[2] Hubert Dubois, Marie-Agnès Peraldi-Frati, and
Fadoi Lakhal. A Model for Requirements Trace-
ability in a Heterogeneous Model-Based Design
Process: Application to Automotive Embedded
Systems. In15th IEEE International Conference
on Engineering of Complex Computer Systems,
ICECCS 2010, Oxford, United Kingdom, 22-26
March 2010, pages 233–242, 2010.

[3] Martin Glinz. On Non-Functional Requirements.
In 15th IEEE International Requirements Engi-
neering Conference, RE 2007, October 15-19th,
2007, New Delhi, India, pages 21–26, 2007.

[4] Hongchao Ji, Oliver Lenord, and Dieter
Schramm. A Model Driven Approach for
Requirements Engineering of Industrial Au-
tomation Systems. InProceedings of the
4th International Workshop on Equation-
Based Object-Oriented Languages and Tools
(EOOLT’07), pages 13–24, 2011.

[5] Thomas Johnson, Christiaan J.J. Paredis, and
Roger Burkhart. Integrating Models and Simu-
lations of Continuous Dynamics into SysML. In
Proceedings of 6th International Modelica Con-
ference, Bielefeld, Germany, 3-4,March, 2008,
2008.

[6] Christiaan J.J. Paredis, Yves Bernard, Roger M.
Burkhart, Hans-Peter de Koning, Sanford
Friedenthal, Peter Fritzson, Nicolas F. Rou-
quette, and Wladimir Schamai. An Overview of
the SysML-Modelica Transformation Specifica-
tion. In 2010 INCOSE International Symposium,
July 2010.

[7] Adrian Pop, David Akhvlediani, and Peter Fritz-
son. Towards Unified System Modeling with
the ModelicaML UML Profile. InProceedings
of the 1st International Workshop on Equation-
Based Object-Oriented Languages and Tools
(EOOLT’07), pages 13–24, 2007.

Hongchao Ji, Lars Mikelsons, Karl Kempf and Dieter Schramm

DOI Proceedings of the 9th International Modelica Conference 979
10.3384/ecp12076971 September 3-5, 2012, Munich, Germany

[8] Wladimir Schamai. Modelica Modeling Lan-
guage (ModelicaML). Technical report, EADS
Innovation Works, Germany, 2009.

[9] Wladimir Schamai, Peter Fritzson, Chris Pare-
dis, and Adrian Pop. Towards Unified Sys-
tem Modeling and Simulation with Modeli-
caML: Modeling of Executable Behavior Us-
ing Graphical Notations. InProceedings of the
7th International Modelica Conference, Como,
Italy, 20-22 September 2009, number 43 in
Linköping Electronic Conference Proceedings,
pages 612–621. Linköping University Electronic
Press, Linköpings universitet, December 2009.

[10] Wladimir Schamai, Philipp Helle, Peter Fritz-
son, and Christiaan J. J. Paredis. Virtual Veri-
fication of System Designs against System Re-
quirements. InModels in Software Engineering
- Workshops and Symposia at MODELS 2010,
Oslo, Norway, October 2-8, 2010, Reports and
Revised Selected Papers, pages 75–89, 2010.

[11] http://www.omgsysml.org.

[12] VDI. Design Methodology for Mechatronic Sys-
tems (VDI 2206). Technical report, VDI, 2004.

Using Static Parametric Design to Support Systems Engineering of Industrial Automation …

980 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076971

DOI Proceedings of the 9th International Modelica Conference 981
10.3384/ecp12076 September 3-5, 2012, Munich, Germany

Exhibitors

BAUSCH-GALL GmbH

BAUSCH-GALL GmbH (LLC) is an engineering company based in Munich, Germany, which sells and
supports Modelica Libraries, works on simulation projects, organizes training courses and does consulting
based on specific technical know-how. BAUSCH-GALL GmbH also offers special design services, devices
and products for radio frequency (RF) applications. Based on a broad range of expertise in the solution of
practical problems by effective computer application, BAUSCH-GALL GmbH serves the market for
simulation and computer-aided engineering.

CENIT

CENIT has been successfully active for more than 20 years as a leading consulting and software specialist
for optimizing business processes in product lifecycle management (PLM), enterprise information
management (EIM), business optimization & analytics (BOA) and application management services (AMS).
The enterprise focuses chiefly on proprietary software development and on marketing standard solutions by
market leaders such as Dassault Systèmes, SAP and IBM. CENIT employs about 700 staff world-wide,
serving customers from the automotive, aerospace, mechanical engineering, tool and mold construction,
financial services, commercial and consumer goods industries.

Claytex

Claytex is an engineering consultancy and software distributor that specialises in Systems Engineering. Our
expertise is in the modelling and simulation of complex multi-domain systems using Dymola and Modelica.
We are based in Leamington Spa (UK) and work with Modelica and FMI on a wide variety of projects. Most
recently these include the modelling of Low Carbon Vehicles, Formula 1 and Nascar Sprint Cup racing cars.
These projects apply the models in a wide range of tasks including energy usage calculations, control system
development, powertrain design and driving simulators. We develop a number of application libraries for
Dymola include the Engines, Powertrain Dynamics, SystemID, FlexBody, VDLMotorsports and
XMLReader libraries.

http://www.bausch-gall.de/
http://www.cenit.de/
http://www.claytex.com/
http://www.bausch-gall.de/�
http://www.cenit.de/�
http://www.claytex.com/�

Exhibitors

982 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich, Germany 10.3384/ecp12076

CyDesign Labs

CyDesign Labs focuses on the conceptual design phase of complex cyber-electromechanical systems.
CyDesign is a model-based design optimization platform that will allow system designers to evaluate a broad
range of alternative designs and verify major system requirements prior to detailed design. The platform
uses Modelica to simulate system behavior for requirements verification. A comprehensive component
model library allows designers to concentrate on strategic design decisions instead of model development.
By thorough exploration of the trade space of design alternatives and assessment of the viability of these
alternatives, repetitive “design-build-test” cycles can be eliminated, resulting in reduced costs and time to
market. The CyDesign platform will be available for automotive applications starting in early 2013.

Dassault Systèmes

Dassault Systèmes, the 3DEXPERIENCE Company, provides business and people with virtual universes to
imagine sustainable innovations. Its world-leading solutions transform the way products are designed,
produced, and supported. Dassault Systèmes’ collaborative solutions foster social innovation, expanding
possibilities for the virtual world to improve the real world. The group brings value to over 150,000
customers of all sizes in all industries in more than 80 countries.

Dassault Systèmes’ CATIA provides a fully integrated systems modeling environment that enables systems
engineers to execute and analyze system or sub-systems models, while mixing dynamic and state logic
behaviors, using the open source Modelica language.

ITI GmbH

In the realm of system simulation, ITI is a leading developer of innovative software solutions and offers a
vast range of engineering services that help to reduce time-to-market significantly. Our interdisciplinary
software application SimulationX allows for comprehensive physical modeling of complex systems.
Amongst others we support our customers in virtual prototyping, result interpretation and optimization of
energy-efficient design. SimulationX supports the Modelica® language with open and complete CAx
interfaces. The software is applied by more than 700 well-known companies, such as Audi, BMW, Bureau
Veritas, Daimler, Fraunhofer-Gesellschaft, Germanischer Lloyd, Honda, Nikon, Robert Bosch, Siemens,
ThyssenKrupp und Veolia.

http://cydesign.com/
http://www.3ds.com/
http://www.itisim.com/
http://cydesign.com/�
http://www.3ds.com/�
http://www.itisim.com/�

Exhibitors

DOI Proceedings of the 9th International Modelica Conference 983
10.3384/ecp12076 September 3-5, 2012, Munich, Germany

LMS International

Since the 2010 conference, LMS considerably increased its effort to make Imagine.Lab the best-of-breed
platform for system simulation. LMS’ will is to deliver a combined structured approach (C-based and
Modelica-based) to best serve the engineering needs, from full system to detailed component modeling over
most of the mechatronics applications. LMS continues to support the establishment of Modelica as an
industrial reference through its dedicated commercial support team as well as its involvement in European
research projects and its support of the FMI. LMS’s position in the Model Based System Engineering
software market is considerably increasing to the benefit of the industry and the recognition of Modelica.

MapleSoft

Maplesoft, a subsidiary of Cybernet Systems Co., Ltd. in Japan, is the leading provider of high-performance
software tools for engineering, science, and mathematics. Its product suite reflects the philosophy that given
great tools, people can do great things. Maplesoft’s core technologies include Maple, the world’s most
advanced symbolic computation engine, and MapleSim, a Modelica-based physical modeling and simulation
tool. With MapleSim, you can leverage the growing collection of industry-tested Modelica components in
your own projects. Maplesoft’s customers include Ford, BMW, Bosch, Boeing, NASA, CSA, Canon,
Motorola, Microsoft, Bloomberg, and DreamWorks, covering sectors such as automotive, aerospace,
electronics, defense, and energy.

Modelon GmbH

Modelon specializes in providing solutions, services and technology for the research and development of
dynamic systems. We offer unique know-how in physical modeling, simulation and optimization, and
model-based control design. Our customers are spread all over the world andrepresent a variety of
application areas with some emphasis on the automotive, energy and process industries. Modelon has a
strong competitive edge in technology and solutions related to the Modelica language, takes active part in the
language development, and is the premier provider of commercial Modelica libraries. Besides offering
engineering services and modelica libraries, Modelon provides Dymola Training Days for beginners and
advanced users as well. The company has sites in Germany, Sweden and also in USA.

http://www.lmsintl.com/
http://www.maplesoft.com/index.aspx?L=E
http://www.modelon.com/
http://www.lmsintl.com/�
http://www.maplesoft.com/index.aspx?L=E�
http://www.modelon.com/�

Exhibitors

984 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich, Germany 10.3384/ecp12076

Open Modelica

OpenModelica is an open-source Modelica-based modeling and simulation environment intended for
industrial and academic usage. Its long-term development is supported by a non-profit organization – the
Open Source Modelica Consortium (OSMC). The goal with the OpenModelica effort is to create a
comprehensive Open Source Modelica modeling, compilation and simulation environment based on free
software distributed in binary and source code form for research, teaching, and industrial usage. We invite
researchers and students, or any interested developer to participate in the project and cooperate around
OpenModelica, tools, and applications.

QTronic GmbH

QTronic provides engineering software and services for model-based development.

• Silver is a tool used to move control development tasks from real cars, test rigs and HiLs to
Windows PC. Silver provides an environment to quickly port control software (C Code or hex file)
from real ECUs to Windows and to run the resulting virtual ECU in closed-loop with a simulated
vehicle on PC.

• TestWeaver automates search for worst case system behavior, based on an executable system model
and system quality indicators. The objective is to early identify bugs and weak points of a system via
MiL/SiL/HiL.

Our outstanding tools are used by development engineers at AMG, BMW, Bosch, Continental, Honda, IAV,
Mercedes-Benz, Toyota and ZF.

Schlegel Simulation GmbH

Schlegel Simulation GmbH is an engineering company and software distributor based in Munich, Germany.
Our expertise is modeling and simulation of mechatronic systems using Dymola / Modelica and other tools.
We develop simulation models, work on simulation projects, realtime and hardware-in-the-loop simulations,
we develop customer specific simulators and software, and provide consultancy and training. Schlegel
Simulation distributes and supports Dymola.

http://http/www.ida.liu.se/labs/pelab/modelica/OpenSourceModelicaConsortium.html
http://www.qtronic.de/en/
http://www.schlegel-simulation.de/
http://http/www.ida.liu.se/labs/pelab/modelica/OpenSourceModelicaConsortium.html�
http://www.qtronic.de/en/�
http://www.schlegel-simulation.de/�

Exhibitors

DOI Proceedings of the 9th International Modelica Conference 985
10.3384/ecp12076 September 3-5, 2012, Munich, Germany

SIMPACK AG

SIMPACK AG, a spin-off of the DLR, was founded in 1993. The company expanded quickly in the sectors
of Virtual Prototyping and 3D-Simulation and soon achieved international recognition for excellence.

SIMPACK is used for non-linear multi-body simulation and is particularly renowned for the integration of
flexible bodies. The simulation of cars, trucks, engines, rail vehicles, wind turbines and airplanes represent
only some sectors where SIMPACK is used. SIMPACK is the market leader in the simulation of high
frequency vibrations and ‘shock contact’ and therefore the number one choice for the handling and comfort
analyses as well as NVH and durability calculations. The software’s diversity and good connectivity to
various CAD, control, hydraulic and FE software enables SIMPACK to be easily integrated into any
manufacturer’s already established development process.

TLK-Thermo GmbH

TLK-Thermo GmbH has a long experience in R&D with a focus on energy management, mobile air
conditioning and refrigeration systems. During the last years TLK has been continuously increasing the
scope of its activities on other thermal systems such as power plants, residential heating and industrial
refrigeration systems and the thermal management of alternative vehicle concepts. TLK provides its
expertise in thermodynamics, simulation technology and software as engineering services. We offer
simulation and measurement of thermal systems, customized software, consulting and training courses. Our
software products are TIL Suite/TILMedia Suite (modeling of thermal systems), TISC Suite (Co-Simulation
environment), FMI Suite und ViewerSuite.

Transcat PLM GmbH

Founded in 1987, Transcat PLM GmbH is an established specialist and supplier of Product Lifecycle
Management (PLM) solutions based on the CATIA, ENOVIA, DELMIA, SIMULIA and 3DVIA products of
Dassault Systèmes. As a Value Added Reseller (VAR) the company offers the PLM solutions throughout
Germany with the associated services as well as its own add-on software products. As one of a few partners
Transcat PLM is certificated for all V6 products of the PLM 2.0 portfolio and markets the complete V6-
product range of Dassault Systèmes. Transcat PLM also offers customized software components for virtual
product development in its Product Data Quality (PDQ) range. The portfolio is extended by tailored server,
storage and system management concepts.

http://www.simpack.com/
http://www.tlk-thermo.com/
http://www.transcat-plm.com/
http://www.simpack.com/�
http://www.tlk-thermo.com/�
http://www.transcat-plm.com/�

Exhibitors

986 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich, Germany 10.3384/ecp12076

Wolfram

Founded by Stephen Wolfram in 1987, Wolfram is one of the world's most respected software companies. At
the center is Mathematica: the world's most powerful global computation system. In 2011, Wolfram acquired
MathCore Engineering AB - a founding member of the Modelica Association and an active influence in the
Modelica language design since 1997. Through this, SystemModeler was released in 2012 - the most
complete physical modeling and simulation tool. Unlike other systems, SystemModeler requires no add-ons,
fully supports the standard Modelica model language and is designed to connect perfectly with Mathematica
for the ultimate integrated modeling, simulation, and analysis workflow.

XRG Simulation GmbH

XRG Simulation has extended expertise in thermal energy system simulations in the automotive and building
services field, for the aerospace and shipping industry and for power plants. We are specialized in energy
engineering and support industry and research institutions in research, development and improvement of
products and projects. Our excellence is:

• Modelling and simulation of thermodynamic systems
• Mathematical optimization
• Validation of models
• Software development for optimization as well as pre- and post-processing of system simulations

http://www.wolfram.com/system-modeler/
http://www.xrg-simulation.de/
http://www.wolfram.com/system-modeler/�
http://www.xrg-simulation.de/�

	Session 1A: Hybrid Modeling
	Fundamentals of Synchronous Control in Modelica
	A Library for Synchronous Control Systems in Modelica
	State Machines in Modelica
	PNlib - An Advanced Petri Net Library for Hybrid Process Modeling

	Session 1B: Thermofluid Systems
	Simulation of Non-Newtonian Fluids using Modelica
	HelmholtzMedia — A Fluid Properties Library
	Object-Oriented Library of Switching Moving Boundary Models for Two-phase Flow Evaporators and Condensers
	High-Speed Compressible Flow and Gas Dynamics

	Session 1C Power and Energy
	Gas Exchange and Exhaust Condition Modeling of a Diesel Engine using the Engine Dynamics Library
	Library for First-Principle Models of Proton Exchange Membrane Fuel Cells in Modelica
	The Modeling of Energy Flows in Railway Networks using XML-Infrastructure Data
	Implementation of a Modelica Library for Energy Management based on Economic Models

	Session 1D: Electromagnetic Systems I
	Modeling and Simulation of a Linear Piezoelectric Stepper Motor in MapleSim
	Magnetic Hysteresis Models for Modelica
	Motor Management of Permanent Magnet Synchronous Machines
	An approach for modelling quasi-stationary magnetic circuits

	Session 2A: FMI Standard I
	Functional Mockup Interface 2.0: The Standard
	Generation of Sparse Jacobians for the Function Mock-Up Interface 2.0
	Designing models for online use with Modelica and FMI
	Co-simulation with communication step size control in an FMI compatible master algorithm

	Session 2B: Numerical Methods
	On the Formulation of Steady-State Initialization Problems in Object-Oriented Models of Closed Thermo-Hydraulic Systems
	Probability-One Homotopy for Robust Initialization of Differential-Algebraic Equations
	Simulating Modelica models with a Stand-Alone Quantized State Systems Solver
	Fast Simulation of Fluid Models with Colored Jacobians

	Session 2C: Climate Systems I
	Modelling and Calibration of a Thermal Model for an Automotive Cabin using HumanComfort Library
	Holistic vehicle simulation using Modelica –An application on thermal management and operation strategy for electrified vehicles
	Modelling of Radiative Heat Transfer in Modelica with a Mobile Solar Radiation Model and a View Factor Model
	VEPZO – Velocity Propagating Zonal Model for the prediction of airflow pattern and temperature distribution in enclosed spaces

	Session 2D: Mechanic Systems I
	Modeling and Testing of the Hydro-Mechanical Synchronization System for a Double Clutch Transmission
	Predicting the launch feel of automatic and dual clutch transmissions
	Modelling of Elastic Gearboxes Using a Generalized Gear Contact Model
	Revised and Improved Implementation of the Spur Involute Gear Dynamical Model

	Session 3A: Mixed Simulation Techniques I
	Accessing External Data on Local Media and Remote Servers Using a Highly Optimized File Reader Library
	Detailed geometrical information of aircraft fuel tanks incorporated into fuel system simulation models
	Simulation of Artificial Intelligence Agents using Modelica and the DLR Visualization Library

	Session 3B: Embedded and Real-Time Systems
	Functional Development with Modelica
	Translating Modelica to HDL: An Automated Design Flow for FPGA-based Real-Time Hardware-in-the-Loop Simulations
	A Modelica Library for Real-Time Coordination Modeling

	Session 3C: Language and Compilation Concepts I
	Implementation of a Graphical Modelica Editor with Preserved Source Code Formatting
	Model-based Requirement Verification : A Case Study
	A Data-Parallel Algorithmic Modelica Extension for Efficient Execution on Multi-Core Platforms

	Session 3D: Mechanic Systems II
	Modelling and Simulation of the Coupled Rigid-flexible Multibody Systems in MWorks
	A Modelica Library of Anisotropic Flexible Beam Structures for the Simulation of Composite Rotor Blades
	Modeling and Simulation of a Fault-Tolerant Electromechanical Actuation System for Helicopter Swashplates in Modelica

	Session 4A: Language and Compilation Concepts II
	Survey of appropriate matching algorithms for large scale systems of differential algebraic equations
	Static and Dynamic Debugging of Modelica Models

	Session 4B: Control
	A Modelica Sub- and Superset for Safety-Relevant Control Applications
	A Modelica Library for Industrial Control Systems

	Session 4C: Handling Simulation Output
	Modelica3D - Platform Independent Simulation Visualization
	Proposal for a Standard Time Series File Format in HDF5

	Session 4D: Electromagnetic Systems II
	Towards a Memristor Model Library in Modelica
	Fault Detection of Power Electronic Circuit using Wavelet Analysis in Modelica

	Session 5A: Simulation Tools
	PySimulator – A Simulation and Analysis Environment in Python with Plugin Infrastructure
	An OpenModelica Python Interface and its use in PySimulator
	WebMWorks: A General Web-Based Modeling and Simulation Envi-ronment for Modelica

	Session 5B: Mixed Simulation Techniques II
	Using BCVTB for Co-Simulation between Dymola and MATLAB for Multi-Domain Investigations of Production Plants
	FEM models in System Simulations using Model Order Reduction and Functional Mockup Interface
	Using Modelica models for Driver-in-the-loop simulators

	Session 5C: Automotive Systems
	Development of New Concept Vehicles Using Modelica and Expectation to Modelica from Automotive Industries
	A Modular Technique for Automotive System Simulation
	Modeling Vehicle Drivability with Modelica and the Vehicle Dynamics Library

	Session 5D: Power Plants
	Status of ClaRaCCS: Modelling and Simulation of Coal-Fired Power Plants with CO2 Capture
	Start-up Optimization of a Combined Cycle Power Plant
	Modeling and Simulation of a Vertical Wind Power Plant in Dymola/Modelica

	Session 6A: Optimization
	First and second order parameter sensitivities of a metabolically and isotopically non-stationary biochemical network model
	Collocation Methods for Optimization in a Modelica Environment
	Parallel Multiple-Shooting and Collocation Optimization with OpenModelica
	Optimization Library for Interactive Multi-Criteria Optimization Tasks

	Session 6B: Mechanic Systems III
	A Planar Mechanical Library for Teaching Modelica
	DyMoRail: A Modelica Library for modelling railway buffers
	Natural frequency analysis of Modelica powertrain models
	Achieving O(n) Complexity for Models from Modelica.Mechanics.Multibody

	Session 6C: Climate Systems II
	Modeling the discontinuous individual channel injection into fin-and-tube evaporators for residential air-conditioning
	Validation and Application of the Room Model of the Modelica Buildings Library
	The Indoor Climate Library and its Application to Heat and Moisture Transfer in a Vehicle Cabin
	Dynamic Modelling of a Condenser/Water Heater with the ThermoSysPro Library

	Session 6D: FMI Standard II
	FMI implementation in LMS Virtual.Lab Motion and application to a vehicle dynamics case
	Generating Functional Mockup Units from Software Specifications
	Functional Mock-up Interface in Mechatronic Gearshift Simulation for Commercial Vehicles
	Using Functional Mock-up Units for Nonlinear Model Predictive Control

	Poster Session
	Modeling a Low-temperature Compressed Air Energy Storage with Modelica
	Natural Unit Representation in Modelica
	Modelica Code Generation with Polymorphic Arrays and Records Used in Wind Turbine Modeling
	Derivative-free Parameter Optimization of Functional Mock-up Units
	Stochastic Simulation and Inference using Modelica
	A Toolchain for Real-Time Simulation using the OpenModelica Compiler
	Time varying mass and inertia in paper winding multibody simulation
	Collaborative complex system design applied to an aircraft system
	Backward simulation - A tool for designing more efficient mechatronic systems
	Modelling of new vehicle suspension concept with integrated electric drive
	Dynamic modeling and simulation of a multi-effect distillation plant
	Modeling a drum motor for illustrating wearout phenomena
	“Green Building” – Modelling renewable building energy systems and electric mobility concepts using Modelica
	High-Fidelity Transmission Simulation for Hardware-in-the-Loop Applications
	ADGenKinetics: An Algorithmically Differentiated Library for Biochemical Networks Modeling via Simplified Kinetics Formats
	Variable Structure Modeling for Vehicle Refrigeration Applications
	Thermal Simulation of Power-Controlled Micro-CHP Systems for Residential Buildings
	Modeling of a falling film evaporator
	Integration of Modelica models into an existing simulation software using FMI for Co-Simulation
	Chemical Process Modeling in Modelica
	FMI Add-on for NI VeriStand for HiL Simulation
	Using Static Parametric Design to Support Systems Engineering of Industrial Automation Systems

	Exhibitors
	BAUSCH-GALL GmbH
	CENIT
	Claytex
	CyDesign Labs
	Dassault Systèmes
	ITI GmbH
	LMS International
	MapleSoft
	Modelon GmbH
	Open Modelica
	QTronic GmbH
	Schlegel Simulation GmbH
	SIMPACK AG
	TLK-Thermo GmbH
	Transcat PLM GmbH
	Wolfram
	XRG Simulation GmbH

