FB 1865

Blasversuche zur Auftriebssteigerung am

Profil 23015 mit verschiedenen Klappenformen.

Vebersicht.

An einem Modellflügel, Profil 23015, wurde versucht, den Auftrieb durch Ausblasen von Luft zu steigern. Die auswechselbaren Klappen hatten eine Tiefe von 20 o/o der Flügeltiefe. Der Auftrieb des Flügels wurde mit Klappen verschiedener Form untersucht. Es wurde dabei Luft in der Nähe der Uebergangsstelle Flügel-Klappe ausgeblasen. Durch das Ausblasen wurden erhebliche Auftriebssteigerungen erzielt; mit der Mengenziffer $c_Q = 0,016$ wurde $c_a = 4,0$ mit $c_Q = 0,0215$ wurde $c_a = 5,0$ gemessen.

Gliederung.

- I. Einleitung
- II. Modellbeschreibung und Versuchsdurchführung
- III. Bezeichnungen und Auswertung der Messungen
 - IV. Messergebnisse
 - V. Zusammenfassung
 - VI. Schrifttum.

Der Bericht umfasst: 32 Seiten mit 31 Bildern

Aerodynamische Versuchsanstalt Göttingen e.V. Jnstitut Windkanäle

Jnstitutsleiter:

hleifur.

(R.Seiferth)

Göttingen, den 21.0ktober 1943 Bericht Nr. 43/W/47

Bearbeiter: M. Elmoint

(W.Schwier'

geschen: All. Bitz

(A.Betz)

I. Einleitung:

Die vorliegenden Messungen gehören zu einer Reihe von Versuchen, die den Zweck haben, den Auftrieb von Flügelprofilen durch Ausblasen von Luft zu steigern. Die Ergebnisse dieser Versuchsreihe wurden bisher in den Berichten [1], [2], [3], [4], wiedergegeben, die sich auf Flügel mit Klappe mit den Profilen NACA 23018, 23012 - 64, 0009 - E 4 und Gött. 409 (12,8 o/o Dicke) beziehen. Der vorliegende Bericht vervollstän digt diese Messreihe durch Messungen an einem Profil NACA 2301 das mit Klappen verschiedener Form versehen war.

II. Modellbeschreibung und Versuchsdurchführung:

- 2 -

Es wurde ein Rechteckflügel untersucht, der das Profil NACA 23015 hatte und mit Klappen verschiedener Form von 20 o/o Tiefe (gerechnet von der Hinterkante bis zum Drehpunkt) versehen war. Das untersuchte Profil mit den Auftriebsklappen ist in Bild 1 wiedergegeben. Der Modellflügel hatte eine Spann weite von 1,20 m und eine Tiefe von 0,3 m; er war mit kreisför migen Endscheiben von 0,53 m Durchmesser versehen.

Die Blasluft wurde dem Flügel über profilierte Rohre durch beide Flügelenden zugeführt. Zwischen den Luftführungsrohren und dem Flügel waren Manschetten aus weichem Leder eingebaut, die das Waagespiel ermöglichten. Die Menge der ausgeblasenen Luft wurde mit Normblenden im kreisförmigen Querschni der Zuleitungsrohre gemessen. Jm Jnnenraum des Flügels lag ein mit Anbohrungen versehenes Röhrchen, mit dem der statische Druck im Flügelinneren gemessen wurde.

Die Messungen wurden bei einer Windgeschwindigkeit v = 40 m/sec entsprechend einer Reynoldszahl Re = 0,84[']. 10⁶ (Re eff = 0,94 . 10⁶) durchgeführt.

Die Abhängigkeit des Auftriebs von der Blasmenge wurd so ermittelt, dass die Blasmenge soweit gesteigert wurde, dass die Strömung am Flügel und an der Klappe sicher anlag. Von die sem Zustand aus wurde die Menge dann schrittweise vermindert und dabei jeweils der Auftrieb gemessen.

III. Bezeichnungen und Auswertung der Messungen.

Folgende Bezeichnungen werden verwendet:

- A = an der Waage gemessener Gesamtauftrieb in kg
- M = Längsmoment des Flügels, bezogen auf den $\frac{1}{4}$ Punkt auf der Flügelsehne in m*kg
- \mathbf{v} = Anströmgeschwindigkeit in $\frac{m}{\sigma}$
- b = Flügelspannweite = 1,2 m
- l = Flügeltiefe = 0,3 m
- $F = Flügelfläche = 0,36 m^2$
- $\Lambda = Flügelstreckung \frac{b^2}{R}$
 - s = Weite des Blasspaltes
 - $Q = ausgeblasene Luftmenge in <math>\frac{m^2}{s}$
- p = zum Ausblasen von Q erforderlicher Ueberdruck $im Flügel in <math>\frac{kg}{m^2}$
- α = geometrischer Anstellwinkel, gemessen zwischen Profilsehne und Kanalachse
- α_{co} = auf unendliche Strahlabmessungen und unendliche Flügelstreckung umgerechneter Anstellwinkel

$$c_{a} = \frac{A}{\frac{Q}{2} v^{2} \cdot F}$$

$$c_{M} = \frac{M}{\frac{Q}{2} v^{2} \cdot F \cdot l}$$

$$c_{Q} = \frac{Q}{v \cdot F}$$

$$e_p = \frac{p}{\frac{q}{2} v^2}$$

Zur Umrechnung von α auf α_{∞} wurden folgende Beträge von α abgezogen:

- 3 -

1.) Korrektur infolge endlicher Strahlabmessungen:

$$\Delta \alpha^{0}_{K} = c_{a} \cdot 0,655^{\circ}$$

Der Wert wurde nach der II. Göttinger Lieferung S 12 gerechnet.

2.) Korrektur zur Umrechnung auf unendliche Flügelstreckung:

$$\alpha^{o}_{i} = K - \frac{c_{a}}{\pi \cdot \Lambda} \cdot 57,5^{\circ};$$

Der für die benutzten Endscheiben gültige Wert K wurde durch Versuch ermittelt [5]; es ist damit:

$$\alpha_{i}^{o} = c_{a} \cdot 2,811^{o}$$

Die Gesamtkorrektur ist dann:

$$\Delta \alpha^{\circ} = \alpha^{\circ} - \alpha^{\circ}_{\infty} = c_{a} \cdot 3,465^{\circ}$$

Zum Vergleich der gemessenen Werte mit der Theorie wurde in die Kurvenblätter $c_a(\alpha_{\infty})$ jeweils auch der theoretische c_a -Verlauf eingetragen. Die theoretischen Werte für das Profil ohne Klappe wurden nach der Arbeit von W alz [6]ermittelt Es ergibt sich danach:

$$c_{a th} = 7,07 \cdot \sin(\alpha_{0} + 1,44)^{\circ}$$
.

Die Verschiebungen im c_a - Verlauf, die sich demgegenüber durch die Klappenausschläge ergeben, wurden nach der Arbeit von Keune [7] bestimmt.

IV. Messergebnisse:

Die Messergebnisse sind in den Bildern 3 bis 31 dargestellt. In der grössten Zahl der Bilder sind für die verschiedenen Anordnungen und jeweils konstanten Klappenwinkel (η) nebeneinander der Verlauf c_a (c_Q) für verschiedene Anstellwinkel α , c_a (c_M) ebenfalls für verschiedene Anstellwinkel und c_a (α_{∞}) für einige konstante c_Q - Werte. Zu den Kurven c_a (c_M) für konstante Anstellwinkel ist zu sagen, dass für sie der c_Q - Wert längs der Kurven nicht konstant ist; mit ansteigendem c_a wächst vielmehr auch der c_Q - Wert. Für einige konstante c_Q - Werte ist der c_a (c_M) - Verlauf gestrichelt in die Kurvenblätter eingezeichnet.

- 5 -

Die Bilder 3 bis 14 enthalten die Messergebnisse für das Profil mit ^Spaltklappe bei verschiedenen Schlitzweiten. Zu der Weite der Blasschlitze ist allgemein folgendes zu sagen: Es waren ursprünglich Blasschlitze mit den Weiten s = 0,00167. 0,00333.1, 0,005.1 und 0,00667.1 vorgesehen. Es zeigte sich je doch, dass die vorgegebenen Masse am Modell nicht genau eingehalten waren und dass insbesondere beim Ausblasen die Schlitze mit steigender Blasmenge entsprechend dem ansteigenden Druck im Flügelinnern weiter wurden. Die Blasschlitzweiten sind also im allgemeinen nicht vollständig konstant. Für diese Fälle ist in den Bildern jeweils die Schlitzweite für c_Q = 0,010 und $c_{O} = 0,020$ angegeben.

So schwankt für die Bilder 3 bis 8 die Schlitzweite zwischen den Werten s = 0,004. L und s = 0,005. L (1,2 ... 1,5 mm).

Bei den durchgeführten Versuchen bestätigte sich wieder die bei früheren Messungen gemachte Erfahrung, dass die Oberfläche der Klappe bei einem Ausschlag nicht vollständig ge genüber der ursprünglichen Profilkontur zurückspringen darf. Um das Ausblasen der Luft ausreichend wirksam werden zu lassen musste die Klappe vielmehr mindestens die Kontur des glatten Profils berühren oder noch darüber hinausragen. Für die Spaltklappe ergab sich so bei grossen Klappenausschlägen (30° bis 55°) eine Verschiebung des Klappendrehpunktes gegenüber der Ausgangslage um 0,00333. l senkrecht zur Flügelsehne in Richtung zur Flügelsaugseite hin. Bei kleinen Klappenausschlägen (0⁰ bis 15⁰) wurde der Klappendrehpunkt in der Ausgangslage belassen, da sonst der Spalt zwischen Klappe und Hinterkante des Flügels zu eng wurde und dort eine ausreichende Luftmenge nicht mehr durchtreten konnte.

Der Verlauf des c_a - Wertes abhängig vom Mengenbeiwert ist dem der früheren Messungen grundsätzlich ähnlich, Bei kleinen Klappenausschlägen (Bild 3 und 4) ergibt sich ein verhältnismässig geringer Anstieg des Auftriebs mit der Menge,während bei grösseren Klappenausschlägen (Bild 5 bis 7) der c_a -Anstieg mit wachsender Menge sehr steil ist.

Aus den Auftragungen $c_a(\alpha_{\infty})$ sieht man wieder, dass eine systematische Aenderung des Wertes $\frac{d}{d} \frac{c_a}{\alpha_{\infty}}$ durch das Ausblasen nicht erfolgt. Das Ausblasen bewirkt aber eine erhebliche Verschiebung der Nullauftriebsrichtung und damit eine Erhöhung des Auftriebsbeiwertes bei konstantem α_{∞} . Wie die Bilder 3 bis 7 zeigen, nähert sich der Verlauf $c_a(\alpha_{\infty})$ der Messung mit steigendem c_Q mehr und mehr dem theoretischen Verlauf. Bei $c_Q=0,020$ sind die gemessenen c_a - Werte bis zu einem gewissen Bereich unterhalb des c_a max durchweg grösser als die theoretisch errechneten Werte. Die Möglichkeit zur Ueberschreitung dieser theoretischen Werte wurde im FB 1658 [4]erläutert.

Der die Klappenwirksamkeit kennzeichnende Wert $\frac{\partial \alpha}{\partial \eta}$ wurde durch das Ausblasen ebenfalls erheblich erhöht. Aus den Kurven c_a (α_{∞}) wurde für das η - Jntervall 0° bis 45° für die unten angegebenen jeweils konstanten c_a - Werte der Wert $\frac{\Delta \alpha}{\Delta \eta}$ für verschiedene c_Q - Werte entnommen (für c_Q = 0,020 ist das η -Jntervall 15° bis 45°). Es ergibt sich:

<u>Spaltklappe</u>	°Q	0	0,010	0,015	0,020
s= 0,004.l	ca	1,0	1,5	1,8	2,5
0,005.1	$\frac{\Delta \alpha}{\Delta \eta}$	-0,236	-0,394	-0,472	-0,520

Bei einem Vergleich der obigen Werte für $\frac{\partial \alpha}{\partial n}$ bezw.

 $\frac{\Delta \alpha}{\Delta \eta}$ mit denen anderer Messergebnisse ist zu beachten, dass in den meisten Fällen diese Werte für sehr kleine Klappenausschl ge im Bereich von $\eta = 0^{\circ}$ angegeben werden. Bei grösseren Klap penausschlägen werden die Beträge für $\frac{\partial \alpha}{\partial \eta}$ in den meisten Fällen erheblich kleiner. Die obigen Werte stellen demgegenüber Mittelwerte über den gesamten Klappenwinkel-Bereich von 0° bis 45° dar.

Nach der Theorie von Glauert ist für eine Klappe von 20 o/o Tiefe (Tiefe bis zum Klappendrehpunkt gerechnet) $\frac{\partial \alpha}{\partial \eta} = 0,55$ und für eine Klappe von 26 o/o Tiefe (Gesamttiefe) $\frac{\partial \alpha}{\partial \eta} = 0,62$.

Aus den Bildern 3 bis 7 sind für einige c_Q - Werte di erreichten $c_{a max}$ entnommen und in Bild 8 aufgetragen. Für di Spaltklappe ist danach bei der Blasschlitzweite s = 0,00465. 0,00485.l das $c_{a max}$ von 2,36 bei c_Q = 0 auf 4,4 bei c_Q =0,02 gestiegen.

Für einige andere, engere und weitere Blasschlitze sind die mit der Spaltklappe erzielten Messergebnisse in den Bildern 9 bis 13 wiedergegeben. Es sind hier jeweils nur gros se Klappenausschläge vermessen worden, da nur festgestellt werden sollte, welche Höchstwerte mit anderen Schlitzweiten erreichbar sind. Man sieht, dass bei gleichen c_Q - Werten bei engeren Schlitzen jeweils höhere c_a - Werte gemessen wurden als bei weiteren Schlitzen. Dabei ist aber zu bedenken, dass bei engen Schlitzen für das gleiche c_Q zum Ausblasen ein höhe rer Ueberdruck im Flügelinneren erforderlich ist.

Das Ergebnis einer genaueren ^Betrachtung über den Mengenbedarf usw. für die untersuchte Spaltklappe ist in Bild 14 angegeben. Für einige konstante c_a - Werte sind dort abhängig von der Schlitzweite das erforderliche c_q und c_p und die Leistungsziffer c_p . c_q aufgetragen. Das erforderliche

 c_Q steigt mit weiter werdendem Spalt zuerst langsam, dann sehr stark an, während die Druckziffer im gleichen Sinn abfällt. Die Leistungsziffer c_p , c_Q fällt mit weiter werdendem Blasspalt bis zu einem Minimum ab und steigt von dort aus wie der an. Das Minimum für c_p . c_Q wird etwa für die Spaltweite s = 0,005. l erreicht. Bei verlustloser Zuleitung der Blasluft zum Austrittsschlitz wäre diese Schlitzweite bei der gegebenen Anordnung für eine praktische Verwendung des Ausblasens als am günstigsten anzusehen. Da jedoch in den Zuleitungen Verluste entstehen, die einen c_Q^3 proportionalen Leistungsverlust ergeben, ist mit Rücksicht darauf ein geringerer c_Q - Wert anzustre ben. Für eine praktische Verwendung hängt also die günstigste Schlitzweite von den Leitungsverlusten ab, sie wird etwas kleiner sein als der im Versuch ermittelte Wert s = 0,005.1.

Die Bilder 15 bis 28 enthalten Messergebnisse am gleichen Flügel, der jedoch jetzt mit Wölbungsklappen verschiedener Bauart ohne Durchflußspalt zwischen Druck - und Saugseite versehen war.

Bei der Wölbungsklappe, Form I, für die die Messergebs nisse in den Bildern 15 bis 18 und 19 bis 21 enthalten sind, tritt die Blasluft unmittelbar vor der Klappe aus. Bei den Bildern 15 bis 18 befindet sich der Drehpunkt der Klappe in der ur sprünglich vorgesehenen Lage auf der Druckseitenkontur des Profils, während er bei den Messungen nach den Bildern 19 bis 21 mit der Klappe aus dieser Lage heraus um den Betrag 0,0033.1 zur Saugseite hin und gleichzeitig um den Betrag 0,0067.1 in Richtung zur Flügelhinterkante hin verschoben wurde. Die Klappe ragte dadurch über die Saugseiten-Kontur des Flügels hinaus. Es zeigt sich auch hier wieder, dass durch diese Massnahme die o_n - Werte bei gleicher Blasmenge gestelgert werden konnten.

Ein Vergleich der Messergebnisse dieser Wölbungsklappe mit denen der Spaltklappe zeigt, dass sich mit der Wölbungsklappe die gleichen hohen c_a - Werte erreichen lassen wie mit dieser. In Bild 14 sind für c_a = 4 die erforderlichen Beiwerte für Menge, Leistung und Druck eingetragen. Diese sind von der gleichen Grössenordnung wie für die Spaltklappe, die erforderlichen Mengen jedoch etwas höher. Man kann danach sagen, dass der bei der Spaltklappe vorhandene Spalt zwischen Druck-und Saugseite bei den vorliegenden Versuchen nicht von entscheiden dem Einfluss auf die erreichten c_a - Werte bezw. die dazu auf zubringende Leistung war.

Bei der Wölbungsklappe, Form II, für die einige Messergebnisse in den Bildern 20 bis 24 wiedergegeben sind, wird die aus dem Flügel kommende Luft nicht mehr unmittelbar vor de Klappe ausgeblasen, sondern ein kleines Stück vor der Klappe auf der Saugseite des Flügels, wobei der Blasschlitz so ausgebildet ist, dass die Luft etwa tangential zur Flügeloberfläche austritt (siehe Bild 1). Die ^Form der Klappe selbst ist bei dieser Anordnung gleich der der Anordnung I. Man sieht, dass auch bei diesem nicht unmittelbar vor der Klappe liegenden Blasschlitz c_a-Werte von der gleichen Grösse erzielt werden wie bei der Wölbungsklappe Form I und bei der Spaltklappe.

Die Bilder 27 und 28 enthalten einige Messergebnisse, die mit einer weiteren als Form III bezeichneten Wölbungsklappe gewonnen wurden. Bei dieser Wölbungsklappe liegt der Klappendrehpunkt nicht mehr auf der Profilkontur sondern etwa in der Mitte der Profilhöhe. Die Luft wird wieder unmittelbar vor der Klappe aus dem Flügel ausgeblasen.

Auch mit dieser Klappe wurden c_a - Werte der gleichen Höhe wie bei den anderen Klappen erreicht, jedoch sind die erforderlichen Blasmengen und Leistungen etwas höher als dort.

Eine weitere Messung erstreckte sich auf die Wirkung einer zusätzlichen Spreizklappe an der untersuchten Spaltklappe. Die Ergebnisse dieser Messung bei den Klappenausschlägen 25[°] und 50[°] sind in Bild 29 wiedergegeben. Die Spreizklappe wurde gegenüber der Klappe um 30[°] und 45[°] ausgeschlagen.

Beim Klappenausschlag $\eta = 25^{\circ}$ wurde durch das Ausschlagen de: Spreizklappe eine c_a - und $c_{a max}$ - Erhöhung sowohl bei $\eta_{Spr} = 30^{\circ}$ als auch bei $\eta_{Spr} = 45^{\circ}$ erreicht. Für $\eta_{Spr.} = 45^{\circ}$ hat die Erhöhung des $c_{a max}$ bei $c_{Q} = 0$ den Wert $\Delta c_{a max} = 0,5$ und bei $c_{Q} = 0,015$ den Wert $\Delta c_{a max} = 0,3$. Beim Klappenausschlag $\eta = 50^{\circ}$ ergibt der Spreizklappenausschlag $\eta_{Spr} = 30^{\circ}$ jeweils eine geringfügige Erhöhung des c_{a} und des $c_{a max}$. Mit $\eta_{Spr} = 45^{\circ}$ wurde bei $c_{Q} = 0$ ebenfalls eine gering fügige Verbesserung erreicht. Für den Wert von $c_{Q} = 0,010$ ergibt sich bei diesem Spreizklappenausschlag jedoch deutlich eine Verringerung der c_{a} - und $c_{a max}$ - Werte.

Jn den Bildern 30 und 31 ist ein Vergleich der vorliegenden Messungen am Blasflügel mit Spaltklappe mit den bisher am Profil NACA 23015 erreichten günstigsten Messungen mit Grenzschichtabsaugun gegeben.

Bild 30 enthält Ergebnisse der Ausblasmessungen mit Spaltklappe bei s = 0,004.1 ... 0,005.1 und $\eta = 45^{\circ}$ (entsprechend Bild 6) und die günstigsten Messergebnisse eines Absaugeklappenflügels mit einer Klappentiefe $l_{Kl} = 0,20.1$ und $\eta = 45^{\circ}$ bezw. 60° [8]. Auf der linken Bildseite sind für die Absaugung die üblichen Mindestmengenkurven und für das Ausblasen für einige konstante α der Verlauf c_{α}

(c_Q) angegeben. Man sieht aus dieser Auftragung, daß mit gleichen c_Q-Werten beim Ausblasen höhere c_a-Werte als beim Absaugen erreicht wurden, wobei allerdings zu beachten ist, dass die Gesamttiefe der

- 9 -

beim Ausblasen verwendeten Klappe grösser ist als die beim Absau gen vorhandene.Für diese mit gleichem c_Q erreichten höheren c_a -Werte beim Ausblasen sind jedoch nach dem gleichen Bild auch höhere Leistungsziffern $c_p \cdot c_Q$ erforderlich.Vergleicht man die für gleiche c_a -Werte aufzuwendenden Mengen-und Leistungsziffern untereinander, so sieht man, daß beim Ausblasen gegenüber dem Absaugeklappenflügel sich geringere c_Q - Werte und etwa gleiche Leistungsziffern $c_p \cdot c_Q$ ergeben.

Jn Bild 28 rechts ist für Ausblasen und Absaugen für einige konstante c_Q -Werte der Verlauf c_a (α_{co}) angegeben. Um besser mit den Werten der Absaugung vergleichen zu können, wurde in das Kurvenblatt ausser der gemessenen Kurve jeweils auch der Verlauf c_a (α_{co}) eingezeichnet, der sich vermutlich für eine Gesamttiefe der Klappe $l_{Kl}=0,2.1$ ergibt.Dieser Verlauf wurde aus der gemesse nen Kurve durch Verschiebung nach rechts gewonnen, wobei der Betrag der Verschiebung entsprechend dem Unterschied der Klappentiefe theoretisch nach [7] ermittelt wurde.

Bild 29 gibt einen Vergleich zwischen dem Ausblasflügel mi Spaltklappe ($\eta=45^{\circ}$) und einem Flügel (ebenfalls Profil 23015), be dem der Auftrieb durch Absaugen an der Hinterkante gesteigert wu de [9]. Für gleiche Mengenbeiwerte wurden auch hier mit dem Ausblasen höhere c_a -Werte als mit der Absaugung erzielt, wobei aller dings auch wieder für gleiches c_0 beim Ausblasen die höhere Leistungsziffer $c_p \cdot c_0$ erforderlich ist. Für gleiche c_a -Werte ist beim Ausblasen sowohl eine geringere Mengenziffer als auch eine kleinere Leistungsziffer als beim Absaugen erforderlich.

V. Zusammenfassung.

Bei einem Rechteckflügel mit dem Profil NACA 23015, das mit Auftriebsklappen verschiedener Form versehen war, wurde ver sucht, den Auftrieb durch ausblasen von Luft über die Klappe hin weg zu steigern. Die Weite der Blasspalte konnte geändert werde Es zeigte sich, daß die zum Erreichen eines bestimmten c_a -Werte notwendige Blasmenge mit enger werdendem Spalt abnimmt.Bei Berücksichtig ung der Blasleistung ergab sich ein Optimum der Weite des Blasspaltes bei s = 0,004 l...0,005 l. Bei dieser Spalt weite wurden folgende c_a max genziffern bei $\eta = 45^{\circ}$ mit der Spaltklappe gemessen:

1.24	_										
		c,	•			0	0	.005	0,010	0.015	0.020
		, t	l			i polet da fi Naja da sera					
	_					**************************************)	and the second
1		С				2.24	2	.52	3.10	3.96	1.32
		8	i me	x							т <i>.</i>
8				المرجب محيد	••••••••••••••••		·		فيقرب سيباد وتشفي مستعمره فيستكم	}. ````````````````````````````````````	to a many many many second and

Bei engeren Blasspalten wurde mit der Spaltklappe mit c_Q = 0,016 der Wert c_a = 4,0 und mit c_Q = 0,0215 der Wert c_a=5,0 gemessen.

Mit den Wölbungsklappen ergaben sich c_a - Werte, die durchweg nur um wenig geringer als bei der Spaltklappe waren.

Ein Vergleich der Blasmessungen mit den bisher günstigsten Ergebnissen der Absaugung ergab zum Teil eine Gleichwertigkeit zwischen beiden Massnahmen, bei höheren c_a - Werten jedoch eine Ueberlegenheit des Ausblasens.

VI. Schrifttum.

- [1]Ehlers/Schwier: Blasversuche an einem Flügel mit Spaltklappe, FB 1274
- [2] S c h w i e r , Versuche zur Auftriebssteigerung durch Ausblasen von Luft an einem symmetrischen Profil mit Wölbungsklappe grosser Tiefe, FB 1462
- [3] S c h w i e r , Ausblasversuche zur Auftriebssteigerung an einem Flügel von 9 o/o Dicke mit Vorflügel und Klappe, FB 1622
- [4] S c h w i e r , Versuche zur Auftriebssteigerung durch Ausblasen von Luft an einem Profil von 12 o/o Dikke mit verschiedenen Klappenformen, FB 1658
- [5] R e g e n s c h e i t , Messungen an einem Absaugeflügel mit und ohne Knicknase, FB 1312
- [6] W a l z , Uebertragung gemessener Druckverteilungen auf beliebige Anstellwinkel, Lufo Bd. 16 (1939), S.121

[7] Keune, Auftrieb einer geknickten ebenen Platte, Luftfahrtforschung Bd. 13 (1930), S. 85 [8] Regenscheit, Absaugeklappenflügel 23015, FB 1591

[9] Regenscheit, Untersuchungen an einem Flügel mit Hinterkantenabsaugung, FB 1594.

c) Wölbungsklappe, Anordnung II

d) Wölbungsklappe, Anordnung III

<u>Bild 1:</u> Untersuchter Profilschnitt mit den verschiedenen Klappenformen.

<u>Bild 2:</u> Lage der Spaltklappe und Wölbungsklappe, Anordnung I, bei $\eta = 45^{\circ}$.

Bild 3 + 4: Spaltklappe

Bild 5 + 6: Spaltklappe, Klappe zur Saugseite verschohen

Bild 7: Spaltklappe, Klappe zur Saugseite verschoben

- 18

Bild 9 + 10: Spaltklappe, Klappe zur Saugseite verschoben

Bild 15 + 16: Wölbungsklappe, Anordnung I

- 23 -

Bild 17 + 18: Wölbungsklappe, Anordnung I

- 24 -

Bild 19 + 20: Wölbungsklappe, Anordnung I Klappendrehpunkt zur Saugseite verschoben

- 25 -

Bild 21: Wölbungsklappe, Anordnung I; Klappendrehpunkt zur Saugseite verschoben

Bild 22: Wölbungsklappe, Anordnung II

- 26 -

Bild 25 + 26: Wölbungsklappe, Anordnung II

Bild 27 + 28: Wölbungsklappe, Anordnung III

- 29 --

30

Bild 29 : Flügel mit Spaltklappe, Einfluß einer zusätzlichen Spreizklappe, s=0,00485 l.

Blasmessungen mit Spaltklappe nach Bild 6

ŝ

Bild 31 : Vergleich des Ausblasflügels mit einem Flügel mit Hinterkantenabsaugung nach FB 1594