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ABSTRACT

This paper discusses the performance of distributed and centralized cooperative positioning system for multiple mobile
terminals. A cooperative positioning system uses ranging between base stations and mobile terminals, and in addition
exploits the links between the mobile terminals as well. However, the number of links in an all-to-all connected setup
increases quadratically with the number of nodes. Our goal is to schedule the access for the available resources (used
bandwidth) to track the nodes of a dynamic system. Therefore, it is essential to reason if the different links between the
mobile terminals are useful. The reasoning assists in allocating resources properly. We investigate distributed algorithms
that act based on the Cramér-Rao Lower Bound (CRLB). We use as benchmark a centralized and much more complex
algorithm that requires all link information and we ignore any latency aspects. The results show that our distributed
algorithm using limited information performs well. Copyright c© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Location information is of tremendous interest in wireless
communication systems. Early 2000 Hightower et al. [1]
described how ubiquitous location systems would support
mobile applications. Mobile applications started to exploit
location since mid of 2008 (basically after the iPhone
3G was released) as a survey of Skyhook showed [2].
Smartphones that offer location based applications obtain
the location information using different technologies. The
Global Positioning System (GPS) offers a solution that is
well established since the beginning of 2000 e.g. many
vehicular users apply GPS in their navigation systems
to navigate their cars. However, indoors or in urban
areas with high-raise buildings the direct access to the
transmitted signal of the GPS satellites is blocked. The
reception quality indoors of the GPS signals and the
challenge of multi-path effects for the GPS receiver
disable the successful use of GPS devices indoors [3,
4]. GPS receivers fail to operate in such environments
and consequently these areas are defined as GPS-denied
areas. Alternative solutions are in demand. Especially as
the Federal Communications Commission (FCC) has re-
started recently [5] the need to fulfill strict requirements to
localize a mobile terminal by the cellular operator if the
terminal calls 911. Mobile positioning indoors raises a lot
of interest for numerous reasons.

Today terrestrial positioning for mobile terminals (MTs)
uses only cellular base stations (BSs) as reference
points [6]. This technique is also called non-cooperative
positioning. Network operators plan their networks to
fulfill the communication needs of each MT. At least one
BS is required to establish and maintain a communication
link. Therefore, the number of BSs with line of sight
(LoS) condition may also be insufficient for trilateration
positioning (e.g. up to three BSs per 1000 m2) [7]. As
opposed to this in public indoor and urban scenarios
the density of MTs is high (10-100 MTs per 1000 m2)
[7]. Therefore, it is rather easy finding pairs of MTs
that have LoS condition [8] which makes a precise
ranging between MTs possible. Such pairs of MTs are
under discussion as mobile relays in cellular mobile
radio system [9]. These links are defined as peer-to-peer
or device-to-device links. The main idea is that MTs
additionally use the measurements of peer-to-peer links
together with the neighboring MTs’ position information
to localize themselves cooperatively. Consequently this
technique is called cooperative positioning [10],[11]. In
2000 Kurazume and Hirose [12] presented a cooperative
positioning setup with numerous robots that cleaned
the ground. In this setup the information was collected
and processed at a central unit and presumed to be
static between different measurements. Decentralized
methodologies using short-range UWB devices have been
investigated e.g. by Wymeersch et al. [13].
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In this paper we discuss the potential to use the
additional ranging information coming from the peer-to-
peer links gathered either at a centralized unit, such as
the base station (or network), or locally inside the mobile
terminal itself. Our focus is on the limitations that result
from the number of possible links. Each link requires
dedicated resources such as the available spectrum. For
this we investigate several resource allocation methods that
operate either locally or globally. The methods use as a
basic criteria the Cramér-Rao Lower Bound (CRLB). The
CRLB offers theoretically a good or a loose estimate of
the performance [14, 15, 16]. The tightness of the bound
depends on the available information. This is a key concern
for a distributed system where only partial information
is used. Therefore, we propose a novel combination
of local resource allocation method together with a
local approximation of the CRLB to apply cooperative
positioning with numerous users simultaneously. For this
the available spectrum for ranging is allocated to multiple
terminals according to the requested demands of the
mobile terminals. The CRLB is used as the decisive factor
to decide which mobile terminal uses which spectrum
band. We define this as a resource allocation problem [17]
and compare different allocation schemes.

2. SYSTEM MODEL

2.1. Notation of the System Model

We setup our system model by defining the nodes in the
network. Nodes in the network are either mobile terminals
(MTs) or base stations (BSs).

Nodes: We consider a network with K BSs
(BS1, . . . , BSK ) and M MTs (MT1, . . . ,MTM )∗.
We use 2-dimensional coordinate vectors to indicate the
location of nodes:

BS: ~r k = [xk, yk]T , ∀k ∈ (1, . . . ,K) (1)

MT: ~ri = [xi , yi ]T , ∀i ∈ (1, . . . ,M). (2)

The position estimations of the MTs are denoted as:

~̂ri = [x̂i , ŷi ]T , ∀i ∈ (1, . . . ,M). (3)

We assume that the MTs and the BSs are always in range
and can communicate with each other. Note: For better
expression, in the remaining of the paper we also use χk(i)

to denote the quantity χ referring to the kth neighboring BS
of MTi and use χj(i) to denote the one referring to the j th

neighboring MT of MTi.

∗In general, for better distinction we use superscript to indicate variables related
to BS and subscript to MT.

2.2. Ranging

We mainly use TOA measurements for ranging. For
simplicity we assume all the nodes are fully synchronized
(i.e. there is no clock offset between nodes)†. The signals
propagate with the speed of light (c = 299792458 m/s). In
general, the ranging measurement: ρ [m] is the measured
propagation delay τ̂ [s] multiplied by c:

ρ = τ̂ · c = (τ + ε) · c
= τ · c+ ε · c = d+ η, (4)

where d is the true distance (known as the geometric
line-of-sight (GLOS) distance), τ , d/c is the expected
delay, ε is the noise of the delay estimation and η is the
corresponding ranging error. From Equation (4) we can
see for TOA the ranging error is proportional to the delay
estimation error.

Terrestrial ranging For non-cooperative positioning,
the MT ranges with its neighboring BSs, which we call
terrestrial ranging. We assume the range of BSk(i) to
MTi: ρ

k(i)
i is the true distance dk(i)i with some noise ηk(i)i :

ρ
k(i)
i = d

k(i)
i + η

k(i)
i (5)

Cooperative ranging For cooperative positioning, be-
sides the terrestrial ranging, MTs also measure the distance
from neighboring MTs via peer-to-peer links, called coop-
erative ranging:

ρi,j(i) = di,j(i) + ηi,j(i), (6)

where ρi,j(i) and ηi,j(i) indicate the ranging and
the measurement noise for the MTj(i) →MTi link
(measured by MTi) respectively. In the simplest setup,
all measurement noise can be assumed as independent
additive white Gaussian noise (AWGN) with an identical
variance σ2 for each dimension:

η
k(i)
i , ηi,j(i) ∼ N (0, σ2). (7)

2.3. Resources for Ranging

There are several ways of how terminals could range
between each other using a radio signal. Relevant
parameters that influence the ranging performance are the
used spectrum, the received signal power, the available
time, the mobility of the terminals, hardware impairments,
and potential changes in the environment. In our work we
assume that the mobility of the mobile terminals is not
significant. If multiple terminals are involved they may
want to access the same resources such as the available
spectrum for the radio link and the available time slot.
Another resource could be the used transmit power of the
radio signal to limit the spatial propagation of the radio

†If the system is asynchronous, we can instead use RTD or TDOA.
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signal. Additionally to general aspects, also specifics of
the applied communication scheme can be considered.
Therefore, we investigate the optimal resource allocation
scheme for a real OFDM system, where the noise variance
normally depends on the link parameters, e.g. link distance
(i.e. dki and di,j), occupied subcarriers, transmit power,
shadowing, thermal noise, interference, etc.

2.4. System and Problem Description

The system contains BSs that are synchronized, always
know their location information perfectly and share this
information with MTs. In contrast to a MT that is not
aware of its exact position. The goal of the system is to
estimate MTs’ positions as accurately as possible or with
certain targeting accuracy: %i [m]. A MT collects other
nodes’ position information and measures the distance to
make an estimate based on a positioning algorithm. In the
mean time, MTs also offer their own position estimates
to each other. In general, BSs are stationary whereas MTs
move (reflected in our investigations by a mobility model).
Sometimes a BS can also move and lose its position
reliability (e.g. WiFi access point, femtocell base station,
etc.). In this case it will be considered as a special MT and
adjusts its own position information. Vice versa, when a
MT has a very accurate location estimate, it also has the
possibility to act as a BS, supporting others without being
affected by the error propagation.

The system is modeled in a discrete time step sense to
guarantee the fairness (i.e. all nodes are processing at the
same time). Figure 1 shows a system flowchart. The system
runs in several stages, which are: initialization, communi-
cations, resource allocation, movement, measurement and
position estimate. In the initialization stage, each node
is initialized based on a certain assumption, which could
be deterministically located with a predefined position
or statistically distributed following certain distributions.
Based on the application, the initial estimate can be the true
position, the noisy position information or random values.
In the communications stage, each of the nodes broadcasts
a message which contains its location information as well
as some control signal. The control signal could be the
reliability of its own location information, the resource
it occupied, the environment of its neighborhood, etc.
The resource allocation stage begins after nodes receive
the messages from neighbors. Resources for measurement
links will be allocated by the centralized coordinator or
by the node itself based on its allocation scheme. In
the moving stage, each node moves to a new position
according to its mobility. In the measurement stage, each
node performs range measurements. Then in a location
estimate stage, a new position estimate can be obtained
by combining the measurements and neighbors’ position
information which is read from the received messages. At
the end, it goes back to the communications stage, where
a node creates a new message with the new estimate and
then broadcasts it again. The system moves to the next time
step.

Figure 1. The flowchart of the system setup

3. BOUNDS FOR COOPERATIVE
POSITIONING

In the following section we derive positioning bounds for
a centralized system and an approximation of a bound
that is used locally by each MT. The approach to apply
the bounds offers the flexibility to smoothly transfer from
a centralized to a distributed tracking method and vice
versa. An example could be the particle filter. The bounds
are later used by different resource allocation schemes
to assess their potential to improve the performance. Let
us presume there are in the strict sense two kinds of
algorithms for tracking multiple objects at the same time.
For centralized algorithms all measured data is forwarded
to a single entity that processes the measured data. This
works well if constraints like the coherence time of the
used information is long enough and the objects have a
direct link to the central unit. Distributed algorithms run on
the objects itself (sometimes by sharing the computational
load) to process measured and exchanged data that is
shared between the objects by themselves.

3.1. Cramér-Rao Lower Bound

The Cramér-Rao Lower Bound (CRLB) expresses the
lower bound of the variance of any estimation. In
positioning it is applied to evaluate the performance of
location estimators. We derive for non-cooperative and for
cooperative positioning with independent ranging noise
a centralized CRLB and for distributed systems a local
approximation of the CRLB. The CRLB will serve in the
next section as part of the utility function for the allocation
schemes.
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For a parameter α estimated with the observation g, i.e.
α ≈ α̂(g), the CRLB theorem states :

var[α̂(g)] ≥ CRLB[α] =
1

E
[
| d
dα

ln p(g|α)|2
] . (8)

For multiple parametersα = [α1, . . . , αN ]T , the CRLB
can be extended as a matrix:

CRLB[α] = J [α]−1, (9)

where J [α] is called Fischer Information Matrix (FIM).
The entity of J [α] is defined as:

J [α]i,j = −E
[

∂2

∂αi∂αj
ln p(g|α)

]
. (10)

The variance of the parameter estimate is lower bounded
by the diagonal element of CRLB matrix:

var [α̂i] ≥ CRLB[α](i,i). (11)

3.2. CRLB for Non-Cooperative Position
Estimation

In non-cooperative positioning, a MT only ranges with its
neighboring BSs. We assume the terrestrial range ρki is the
distance measurement with location independent Gaussian
noise:

ρki = dki + ηki ηki ∼ N (0, (σki )2), (12)

The FIM of ~ri (in our case 2-dimensional, but it is in
principle straightforward for 3-dimensional extension) is:

Jnc[~ri] = −E
[
∂2 ln (p(ρBS

i | ~ri))
∂(~ri)2

]
= HT

nc,iC
−1
nc,iHnc,i, (13)

With Hnc,i is the non-cooperative geometric matrix

Hnc,i ,


(~ri−~r 1(i))T

d
1(i)
i

...
(~ri−~r Ki(i))T

d
Ki(i)
i

 =


(~e

1(i)
i )T

...
(~e
Ki(i)
i )T

 , (14)

with ~e 1(i)
i is the unitary vector between the BS and the

MT. Cnc, i is the non-cooperative ranging noise covariance
matrix, which is diagonal when ranging errors from
different links are uncorrelated:

Cnc, i =


(σ

1(i)
i )2 · · · 0

0
. . . 0

0 · · · (σ
Ki(i)
i )2

 , (15)

For an M MTs non-cooperative positioning sys-
tem, the FIM of the global parameter vector (~rMT =
[(~ri)

T . . . (~rM )T ]T ) is a block diagonal matrix with

the FIM of each MT along the diagonals:

Jnc[~rMT] = −E
[
∂2 ln(p(ρBS

MT | ~rMT))

∂(~rMT)2

]

=

 Jnc[~r1] · · · 0

0
. . . 0

0 · · · Jnc[~rM ]

 ,

where the ρBS
MT denotes all the terrestrial ranges from all

MTs.

3.3. Centralized CRLB of Cooperative Position
Estimation

In non-cooperative positioning, the estimate of one MT is
independent to the other MTs. Therefore, the global FIM
has a block-diagonal structure. In cooperative positioning
as shown before, besides the terrestrial ranging (BS-to-
MT), MTs also measure the distance from neighboring
MTs via peer-to-peer links:

ρi,j = di,j + ηi,j ηi,j ∼ N (0, (σi,j)
2), (16)

where (σi,j)
2 is the measurement variance of MTj →

MTi link. With this cooperative ranging and the shared
(estimated)location from neighbors, MTs are able to
enhance their own positioning performance. However,
due to the interaction between MTs’ estimates, it is
complicated to derive the CRLB for a single MT. In [16],
Penna et al. derived a distributed cooperative positioning
CRLB. They calculated the FIM for each user based on
its own measurements’ marginal likelihood function and
then constructed the global FIM with all the local ones.
In this subsection, we derive the centralized CRLB of
cooperative positioning directly from the likelihood of the
global measurements to find the theoretic lower bound
of the estimator performance. We assume the ranging
variance does not depend on location. Therefore, the FIM
for the whole system can be formulated as:

J [~rMT] = −E
[
∂2 ln (p(ρMT | ~rMT))

∂(~rMT)2

]
= Jnc[~rMT] + Jc[~rMT], (17)

with Jc[~rMT] is the cooperative part defined as:

Jc[~rMT] ,
M∑
i=1

E

∂2∑
j∈Mi

(di,j−ρi,j)2

2(σi,j)2

∂(~rMT)2

 . (18)

Expanding (18), we can get:

Jc[~rMT] ,

 Jc,(1,1) · · · Jc,(1,M)

...
. . .

...
Jc,(M,1) · · · Jc,(M,M)

 , (19)

where Jc,(i,j) is a 2x2 matrix ∀i, j ∈ (1, . . . ,M). The
block diagonal element Jc,(i,i) can be rewritten as:

Jc,(i,i) = HT
c,i−C

−1
c,bi,i−Hc,i− , (20)
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C−1
c,bi,i− is the cooperative range weight matrix:

C−1
c,bi,i− = diag(c−1

bi,i,1, . . . , c
−1
bi,i,j 6=i, . . . , c

−1
bi,i,M ) (21)

c−1
bi,i,j ,

δi,j
(σi,j)2

+
δj,i

(σj,i)2
for simplicity, δi,j is the link

selection factor:

δi,j =

{
1 if MTj →MTi link is available;
0 if MTj →MTi link is not available,

(22)
and Hc,i− is the cooperative geometry matrix:

Hc,i− =



(~ei,1)T

...
(~ei,j 6=i)

T

...
(~ei,M )T


. (23)

Similarly, the non-block-diagonal elements
(∀Jc,(i,j) with i 6= j) are symmetric and can be derived
as:

Jc,(i,j) = Jc,(j,i) = −~ei,j · c−1
bi,i,j · ~e

T
i,j . (24)

We assume a MT is a neighbor only if both of the bi-
directional links are available (mutual neighbor), i.e.:

i ∈ Mj ⇔ ‡j ∈ Mi, ∀i, j ∈ (1, · · · ,M) and i 6= j,
(25)

This is reasonable for peer-to-peer links in mobile radio
networks and necessarily to be true for a round trip delay
(RTD) measurement between peers. Equation (20) can be
simplified by:

Jc,(i,i) = H̃T
c,iC̃

−1
c,bi,iH̃c,i, (26)

where

C̃−1
c,bii =

(σi,1(i))
2+(σ1(i),i)

2

(σi,1(i))
2·(σ1(i),i)

2 · · · 0

0
. . . 0

0 · · · (σi,Mi(i))
2+(σMi(i),i)

2

(σi,Mi(i))
2·(σMi(i),i)

2

 ,

(27)

and

H̃c,i =

 (~ei,1(i))
T

...
(~ei,Mi(i))

T

 . (28)

‡⇔ is read as ’is equivalent to’.

Equation (24) can be rewritten as:

Jc,(i,j) = Jc,(j,i)

=

{
−~ei,j · ( 1

(σi,j)2
+ 1

(σj,i)2
) · (~ei,j)T if j ∈ Mi

0 if j /∈ Mi

(29)

The cooperative contribution can be obtained by inserting
Equations (20), (24) (or (26), (29)) into Equation (19), and
then we can get the overall FIM J [~rMT] by Equation (17).
By inverting J [~rMT], we can have the global CRLB matrix
for a cooperative positioning system:

CRLBc[~rMT] = J [~rMT]−1. (30)

The variances of estimate coordinates with cooperation are
lower bounded by the corresponding diagonal elements of
CRLB[~rMT]:

var[~̂rMT,c(i)] ≥ CRLB[~rMT](i,i), ∀i ∈ (1, . . . ,M).
(31)

For bi-directional peer-to-peer links (MTj →MTi and
MTi →MTj), the measurement variances are normally
not identical:

(σi,j)
2 < (σj,i)

2, (32)

because of the different channel state information (CSI)
and the adaptive resource allocation scheme. The CRLBs
for non-cooperative and cooperative positioning as well
as the simulated positioning estimation error are shown in
Figure 2. We can see for non-cooperative positioning, the
estimation error can achieve the CRLB and is quite stable.
For cooperative positioning, the estimation accuracy is
also close to the bound. The non-cooperative positioning
performs better than the cooperative case because the
bandwidth for each MT for the cooperative case is half of
the non-cooperative, which makes it an unfair comparison.

3.4. Approximate the Local Cooperative
Positioning CRLB

The previous derivations show for cooperative positioning
the global FIM is normally not a block diagonal matrix.
When calculating the global CRLB matrix, by the inverting
operation, the entities interact with each other. That
means the estimate error of one MT can directly affect
the neighboring MTs who use this estimate as their
reference. Furthermore, this error may even affect some
non-neighboring MTs through some intermediate MTs.
Therefore, for a dense network, calculating the positioning
CRLB for a particular MT is difficult. On the other hand,
for a distributed system there is no central unit collecting
the global information. In this condition, how can a MT
know its own estimate accuracy? Das and Wymeersch [18]
proposed a scheme where each node calculates its own
belief using the broadcasted beliefs of the neighbors.

Our approach approximates the lower bound of its
own estimate variance only by local information. If the
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Figure 2. The positioning CRLB and the simulated positioning
performance. For cooperative positioning we use two MTs that
use the half of the bandwidth each. It is the average of 100

simulations.

neighbor’s estimate variance is known we transfer the
neighbor’s location estimation inaccuracy to an equivalent
ranging variance. For a peer-to-peer link MTj →MTi,
we assume the ranging measurement error (32) and the
MTj’s estimation error in each dimension are normally
distributed with known variances, i.e.:

x̂j = xj + εjx , εjx ∼ N (0, (σjx)2),

ŷj = yj + εjy , εjy ∼ N (0, (σjy )2). (33)

We combine Mj’s estimation variance with the ranging
variance to get an equivalent ranging variance, i.e.:

(σ̃i,j)
2 = f((σjx)2, (σjy )2, (σi,j)

2). (34)

With this transformation, we are able to calculate an
equivalent non-cooperative CRLB just by replacing the
true ranging variances by the equivalent ones. It is like
assuming the neighbor’s estimate is true, but the ranging
measurement is less reliable. At the end of each time step,
besides the location estimate, a MT also broadcasts its own
local CRLB approximation so that others can use it as its
position estimate variance to evaluate this link’s quality.
Sequentially, each MT can approximate its positioning
CRLB and the extra communication effort is negligible
(only one or two more values to share). It transfers the
cooperative positioning problem into an equivalent non-
cooperative positioning one without losing the information
of the estimations’ inaccuracy of neighboring MTs. The
equivalent ranging variance (σ̃i,j)

2 can be derived as
follow:

ρi,j =
√

(xi − xj)2 + (yi − yj)2 + ηi,j

=
√

(xi − x̂j + εjx)2 + (yi − ŷj + εjy )2 + ηi,j ,

(35)

and

M x̂i,j , xi − x̂j , M ŷi,j , yi − ŷj ,

d̂i,j ,
√

(xi − x̂j)2 + (yi − ŷj)2. (36)

The equivalent ranging variance states:

(σ̃i,j)
2 = E

[
(ρi,j − d̂i,j)2

]
= E

[
(M x̂i,j + εjx)2 + (M ŷi,j + εjy )2 + d̂ 2

i,j + η2i,j

]
+ E

[
2ηi,j

√
(M x̂i,j + εjx)2 + (M ŷi,j + εjy )2

]
︸ ︷︷ ︸

=0

− E
[
2d̂i,jηi,j

]
︸ ︷︷ ︸

=0

− E

2d̂i,j

√
(M x̂i,j + εjx)2 + (M ŷi,j + εjy )2︸ ︷︷ ︸

,g(εjx ,εjy )


= σ2

jx + σ2
jy + (σi,j)

2 + 2E
[
d̂ 2
i,j

]
+ 2E [M x̂i,jεjx ] + 2E

[
M ŷi,jεjy

]
− E

[
g(εjx , εjy )

]
.

(37)

g(εjx , εjy ) can be polynomialized by taking the
two variables Maclaurin expansion. If we approximate
g(εjx , εjy ) with the second order expansion, the equivalent
ranging variance becomes:

(σ̃i,j)
2 ≈ (σ̃i,j)

2
2nd (38)

and can be approximated as:

(σ̃i,j)
2 ≈ (σi,j)

2 + cos2 θ̂i,jσ
2
jx + sin2 θ̂i,jσ

2
jy , (39)

where θ̂i,j , angle
(
~ri − ~̂rj

)
. In a cooperative position-

ing system, θ̂i,j can be estimated by the old location
estimate. Another way to estimate θ̂i,j is getting a rough
location estimate at first.

In Figure 3 and 4 the (non-)cooperative positioning
CRLB and the local cooperative CRLB approximation
snapshots are compared. The standard deviation of all the
links are set to be the same (64 m) and the neighbors’
initial approximated CRLBs are set to infinity. We can
see that the approximated CRLB is close to the true
one. Also it is shown that the CRLB decreases when
there are more cooperative nodes. Figure 5 shows the
iterative approximation procedure averaging from 1000
simulations. It can be seen that the approximated local
CRLB converges to a level which slightly higher than
the true CRLB in a few iterations. From the simulation
results we can see that the cooperative CRLB can be
well approximated by the local approximation scheme we
proposed.
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Figure 3. The comparison of the non-cooperative positioning
CRLB (blue circle), the cooperative CRLB (magenta circle) and
the local cooperative CRLB (black circle) approximation in 3
BSs (green dot) and 2 MTs (red dot) case. In this case the
MT network is not dense, therefore, the cooperative gain is not
significant. The three CRLBs are almost overlapping and difficult

to distinguished.

Figure 4. The comparison of the non-cooperative positioning
CRLB (blue circle), the cooperative CRLB (magenta circle) and
the local cooperative CRLB (black circle) approximation in 3
BSs (green dot) and 10 MTs (red dot) case. We can observe a
significant gain through the cooperation. The local approximated
CRLBs are almost overlapping with the true cooperative ones.

4. RESOURCE ALLOCATION SCHEME
FOR COOPERATIVE POSITIONING

Most of the previous research in cooperative positioning
assumes the ranging variances for all the links are identical
or only depend on distance. Luise and Zanier described
in [19] that the CRLB depends on multiple factors in a
terrestrial positioning system. The authors showed that
for a multicarrier signal, this variance also depends on
the transmit power, carrier frequency, bandwidth, the
number and indices of used subcarriers (|Sn|2 6= 0), etc.

Figure 5. The comparison of the (non-) cooperative positioning
CRLB and the local cooperative CRLB approximation

An OFDM signal is formulated as [19]:

s(t) =
1√
N

bN−1
2 c∑

n=b−N−1
2 c

Sne
j2πnfsct (40)

fsc is the subcarrier spacing,N is the number of subcariers
and Sn is the information symbol carried by each
subcarrier. Luise et al. derived the CRLB of the delay
estimation in which states:

var[τ̂ ] ≥ CRLB[τ ] =
1

8π2f2
sc
∑bN−1

2 c
n=b−N−1

2 c
n2|Sn|2/σ2

0

=
1

8π2f2
sc
∑bN−1

2 c
n=b−N−1

2 c
n2SNRn

(41)

τ is the propagation delay, σ2
0 is the variance of thermal

noise.
The CRLB for ranging depicts that all the individual

parameters, such as the subcarrier spacing fSC , the
number of subcarriers N , the index itself of the used
subcarrier n, and the SNR of the used link can be
understood as a resource that could be adapted to
each link. Using different resources may lead to a
different performance. The resource independent variance
assumption from the previous research only holds when
we consider a Time Division Multiple Access (TDMA)
system, where all the links use the same spectrum
resource within a specific time slot sequentially. In dense
cooperative networks, the overall processing delay (Tpro)
of such a system is proportional to the total number of
the links L and increases quadratically with the number
of MTs:

Tpro ∝ L ∼ O(M2). (42)

In a static scenario, a high accuracy can be guaranteed
because the delay will not cause any additional uncertainty.
However, if a system is dynamic, MTs use the neighbors’
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old estimates as the references which are less reliable
when the delay increases. To avoid this effect, we divide
the spectrum resource into small parts to serve multiple
links simultaneously (similar as the Frequency Division
Multiple Access (FDMA) technique in communications).
As already mentioned before, for a real wireless system,
the resources are limited. In order to improve the overall
performance, a resource optimization scheme is required.
Because of the high diversity and the interaction due to
the cooperation, it is difficult to get a global optimal
solution. Alternatively, we can use some suboptimal
approaches like the greedy algorithm. Moreover, recently
the usage of game theory in wireless communication
has been discussed, especially for a distributed system
[20], [21]. Inspired by that, several resource allocation
games are proposed for our distributed cooperative
positioning system. Note we mainly consider the problem
of allocating subcarriers in a multicarrier system. Although
the precise definition of resource allocation may also
include distributing power, time slot, etc.

In this section, a global greedy algorithm is introduced,
which directly works with the global positioning CRLB.
Then a partial decentralized approach inspired by the
bidding game is raised to reduce the computational
complexity. These two schemes will be compared with a
centralized random allocation scheme (i.e. at each time
step, certain amount of resources are allocated to a random
link). At the end, we look into the purely decentralized
case. First we introduce the non-cooperative game from
the Nash equilibrium. Then we design a non-selfish utility
function for our decentralized resource allocation game to
reduce the interference.

4.1. Centralized Greedy Allocation Scheme

From the previous section, we obtained (or at least
estimated) a global positioning CRLB matrix (2M ×
2M ):

CRLB[~rMT] =

 G(1,1) · · · G(1,M)

...
. . .

...
G(M,1) · · · G(M,M)

 . (43)

The trace of each block diagonal submatrix (Trace[G(i,i)])
is the lower bound of the position variance in distance
for each MT. The mean of these traces denotes the
average performance of all the MTs, which refers to
the system’s efficiency. Whereas the variance of them
shows the performance fluctuations of different MTs which
measures the system’s fairness. We focus our research on
optimizing the efficiency.

The global CRLB matrix is obtained from the inverse
of the global FIM, whose dimension increases with the
number of MTs (M ). It is difficult to get a real global
optimal solution whenM is high. Alternatively, the greedy
algorithm is used which tries to optimize the sub-problems
stepwise. Each time we take one piece of resources (could
be a group of subcarriers), try to add them to each link,

calculate a potential cost function and at the end assign it
to the one with the lowest cost. Even with this scheme, the
complexity is quite high. The computational complexity of
allocatingNres pieces of resource isO(M5Nres) (assuming
the complexity of inverting a N ×N matrix is O(N3)),
which will dramatically grow when the network density
increases. The centralized approach requires a central unit
with very high computation capacity.

4.2. Partial Decentralized Allocation Bidding
Scheme

The resource allocation problem can also be analogically
considered as a bidding scheme. A central resource pool
contains all the free resources and works as a coordinator.
Each candidate MT acts as a player of this scheme. At
each time step, the resource pool chooses some resources
and the players bid for it. The resource will be assigned
to the player who offers the highest price. In our case,
the price from each player is designed to denote how
much improvement it will get with this these additional
resources.

We derived an approximation of local positioning
CRLB in Subsection 3.4. An MT (MTi) can add the
potential new resources to each of its links and calcu-
late the approximated local positioning CRLBs. The MT
takes the smallest one and names it CRLB[~ri]loc,new. The
potential improvement can be obtained by subtracting
CRLB[~ri]loc,new from the current local CRLB approxima-
tion (CRLB[~ri]loc,cur). The value of this improvement are
transmitted to the central resource pool as the bidding price
of MTi:

Pricei = CRLB[~ri]loc,cur − CRLB[~ri]loc,new. (44)

The resource pool compares the prices from all the MTs
and gives this resource to the one with the highest price.
This resource will be used for this specific link.

The local CRLB matrix is the inverse of the local FIM
(only 2× 2). For a dense network the complexity of it
can be neglected. Unlike the centralized greedy approach,
for the bidding scheme the computations take place at
both the MTs and the central unit. The MT’s complexity
linearly depends on the number of neighbors (O((Mi +
Ki)Nres)). The central unit’s complexity depends on the
number of MTs (O(MNres)). For dense network, the
overall complexity is O(M2Nres).

4.3. Non-Cooperative Allocation Game

Game theory is a mathematical tool to analyze the rational
behaviors of human in a competitive environment. It has
been applied to predict politics and economy and to make
decision in those areas. There are many types of game in
the game theory. The most commonly used one is called
the non-cooperative game. The idea of the non-cooperative
game theory is as follow:

There are several players in a competitive game
known as agents. The agents cannot communicate with
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H
HHHHa1

a2 null sc1 sc2 sc1, sc2

null (0,0) (0,1) (0,1) (0,2)
sc1 (1,0) (0.1,0.1) (1,1) (0.1, 1.1)
sc2 (1,0) (1,1) (0.1,0.1) (0.1,1.1)

sc1, sc2 (2,0) (1.1,0.1) (1.1, 0.1) (0.2,0.2)

Table I. Non-cooperative resource allocation game

each other. An agent (say the ith one: ai) has some
candidate strategies λm(i)

§∈ Λi,m = 1, 2, . . ., where Λi
is the strategies set for ai. An utility function um(i)

can be formulated based on the strategies chosen by
ai and the others which evaluates the benefit (can also
be the cost, penalty, etc. depending on the type of the
game) of this choice. A rational agent will be aware of
others’ potential strategies and the corresponding effects
to itself. The goal of each agent is to optimize its
utility function by applying a specific strategy. For a
decentralized cooperative positioning system, MTs are
considered as agents and the strategies set includes adding
new subcarriers or not, which subcarriers to add, etc.
First we investigate a simple case: Assuming two MTs
are going to share two subcarriers (sc1 and sc2). The
strategies for each MT should contain not adding a new
subcarrier (null), adding one subcarrier (sc1 or sc2) and
adding both (sc1, sc2). We further assume if a subcarrier
is used exclusively, it will contribute to the utility for one
unit, but if a subcarrier is shared with both MTs, due to
the interference, it only brings 0.1 unit contribution to each
utility. A table of strategies and utility is presented in Table
I. The only NE is obtained when both of the agents use both
of the subcarriers. If there is no cooperative agreement,
an agent will always behave selfishly and tries to occupy
both of the subcarriers, even though 80% of the other
joint allocation strategies achieve higher global utilities
(except the three along the diagonal). The result can be
extended to the scenario with more MTs and subcarriers.
With non-cooperative resource allocation game, all MTs
are trying to occupy as many subcarriers as possible. As
the consequence, the interference will be dominant which
may lead to a poor performance.

4.4. Resource Allocation Game with Cooperative
Behavior

In the previous subsection, a non-cooperative allocation
game was introduced, where the price of anarchy problem
may be severe. To avoid this, an allocation game with
the cooperative behavior is proposed. In this game, a MT
is not a greedy agent anymore. It will be satisfied when
its targeting estimation accuracy is achieved. Meanwhile,
it evaluates the probability to have interference based on

§This notation conflicts with the notation for the MTi’s mth neighboring MT
and is used restrictively in this section.

the number of used subcarriers, and jointly chooses its
resource allocation strategy.

We assume there are N subcarriers and M MTs. For
the i’th terminal MTi the current number of subcarriers is
defined as nsc,i, the targeting accuracy as %i and the current
local CRLB approximate as CRLB[~ri]loc,cur. the relative
need of improvement ∆i is:

∆i =
CRLB[~ri]loc,cur − (%i · γ)2

%2i
, (45)

γ is the redundancy factor due to the fact that the
CRLB may be not achievable by a suboptimal positioning
algorithm. Instead of using a deterministic strategy, we
use a statistic one. If ∆i > 0 which means MTi is not
satisfied with the current accuracy. We design pi,get as the
probability of MTi getting some new subcarriers. pi,get

depends on the required improvement and the guessed
interference condition. Whereas if ∆i < 0 which means
the accuracy is more than enough. In order to reduce the
potential interference for others, MTi is willing to release
some subcarriers with the probability pi,release.

Assuming all the other MTs have the same number of
subcarriers randomly chosen from all the subcarriers. For
MTi, the probability that a single subcarrier is interfered
by a specific neighbor (MTj)’s ranging signal is:

pi,j,one =

(
nsc,i−1
N−1

)(
nsc,i
N

) · pintf. (46)

The probability that a single subcarrier is interfered reads:

pi,one =1− (1−
(
nsc,i−1
N−1

)(
nsc,i
N

) · pintf)
(M−1)

=1− (1− nsc,i

N
· pintf)

(M−1). (47)

We define a percentage factor ζ ∈ [0, 1]. Then the
probability that less than ζnsc,i subcarriers get interference
follows the Bernoulli distribution:

pζ =

dnsc,i·ζe∑
k=0

(
k

nsc,i

)
pki,one(1− pi,one)

(nsc,i−k). (48)

If ∆i > 0, probability of getting some new resources
should be constructed in a way that it monotonically
increases with respect to both ∆i and pζ . Moreover, it
should not exceed the interval of [0,1].We propose a
function which fulfill the above constraints:

pi,get = νdc · e
− 1

∆i + (1− νdc)pζ , (49)

where νdc ∈ [0, 1] is a control factor to control the
tradeoff between accuracy improvement and interference
avoidance. If ∆i < 0, the probability of releasing some
occupied resources should be designed in a way that it
monotonically decreases with respect of both ∆i and pζ . It
should also be constrained by the interval [0, 1]. Similarly,
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Figure 6. The probability of getting some new subcarriers
(upper) and the probability of releasing some current subcarriers
(lower). M = 5, N = 1000, %i = 0.5 m, pintf = 1, ζ = 0.5 and

γ = 0.8

we design the function as follow:

pi,release = νdc · e
1

∆i + (1− νdc)(1− pζ). (50)

By this strategy, the overall number of used subcarriers
is controlled by both current accuracy and chance
of interference, which on some levels improves the
performance. Figure 6 shows how the probability of getting
or releasing subcarriers depends on the current local CRLB
approximation and the number of subcarriers a MT already
has.

5. SIMULATION RESULTS

In our simulations we differ between two scenarios. The
first scenario differs between a close-by and far-away
third base station. The two MTs build up the peer-to-
peer link and the resources are allocated depending on the
distance to the far-away BS. The second scenario focuses
on interference coordination and how interference limits
the performance in case it is not well coordinated.

5.1. Near- and Far-Choice (Scenario 1)

In Scenario 1, we use the deterministic maps to compare
the resource allocation solutions from different allocation
schemes. three BSs and two MTs are located in the maps.
We change the location of one BS to see the impact to the
allocation solution (Figure 7 and 10). We used an OFDM
system for positioning which has the total bandwidth of 20
MHz (0MHz∼20MHz). The subcarrier spacing is set to 10
KHz and the carrier frequency is set to 5.2 GHz. Each used
subcarrier transmits the signal with the power of -30dBm.
Only TOA measurements are considered. The allocation
solutions are shown in Figure 8, 9, 11 and 12.

From the simulation results we can see, if the BS is
close by (Figure 7), the MTs will use the BS-MT links
instead of the peer-to-peer links (Figure 8 and 9). Here, the

−10 0 10 20 30 40 50 60 70 80 90 100 110
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35
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y

1

5 (MT_ 2)

34 (MT_ 1)

2

Figure 7. The map setup of Scenario 1. The green dots are the
true positions of BSs and the blue ones are the MTs. In this

case, the third BS is close to the MTs.

Figure 8. Comparison of the resource allocation solutions for
MT1 from different resource allocation schemes in Scenario 1

when the third BS is nearby.

Figure 9. Comparison of the resource allocation solutions for
MT2 from different resource allocation schemes in Scenario 1

when the third BS is nearby.
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Figure 10. The map setup of scenario 1. The green dots are
the true positions of BSs and the blue ones are the MTs. In this

case, the third BS is far from the MTs.

location inaccuracy of the neighboring MT is considered.
Whereas when a BS is far away (Figure 10), the MTs will
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Figure 11. Comparison of the resource allocation solutions for
MT1 from different resource allocation schemes in Scenario 1

when the third BS is far away.

Figure 12. Comparison of the resource allocation solutions for
MT2 from different resource allocation schemes in Scenario 1

when the third BS is far away.

focus on the peer-to-peer links instead of the long distance
BS-MT link (Figure 11 and 12). The SNR is attenuated
due to the long propagation distance which decreases
also the measurement reliability - see equation (41).
Moreover, when a BS is far away, we can observe that
the MT1 put more effort on the peer-to-peer link than the
MT2 because of the geometric constellation. For MT1, a
reference point on the right can significantly decease the
estimation uncertainty at x dimension. Whereas for MT2,
an additional MT on the left will not offer significant gains
because there have been already two BSs on the left. In
general, we can find that the three allocation schemes we
proposed make similar allocating decisions.

5.2. Coordination of Resource (Scenario 2)

In Scenario 2, thirteen BSs are located uniformly in a 60
m × 60 m map, two MTs are located at the predefined
positions. All the BSs and the MTs are stationary. We
used a similar OFDM system as in Scenario 1, expect the
total bandwidth is 2 MHz (0MHz-2MHz). We use Gauss-
Newton for this scenario. The map setup can be found
in Figure 13 and the simulation results (RMS (root mean
square) error) with different resource allocation schemes
are shown in Figure 14.
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Figure 13. The map setup of scenario 2. The red dots are the
true positions for both the BSs and the MTs. The blue traces are

the connected estimations for MTs

Figure 14. The comparison of different resource allocation
schemes in Scenario 2

From Figure 14, we can see that in this scenario,
the resource allocation schemes works well. The result
of bidding game is close to the centralized greedy
algorithm. However, the greedy algorithm has a much
higher complexity: O(M5Nres) (Section 4.1), whereas
the bidding game has a relatively low complexity:
O(MNres) for the central unit and O(MNres) for each
MT. Therefore, we can conclude that the bidding game is
more suitable. The cooperative game performs worse than
the greedy scheme and the bidding game but better than
the random centralized approach and the non-cooperative
game. Furthermore, we applied a decentralized approach
that means the nodes do not know from each other which
resources (subcarrier) the other nodes are using. This
is taken into account by using the interference in the
SINR - we replace the SNR in equation (41) with the
SINR. For a decentralized approach the performance of the
cooperative game is good. For the non-cooperative game,
each MT always tries to increase its number of subcarriers.
Therefore, after ten iterations, the interference is dominant
which results in a rapidly increasing error.
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6. CONCLUSIONS

In this paper we presented two CRLB for cooperative
positioning. The centralized CRLB was derived, and
the local CRLB was approximated. The bounds were
used as a parameter to assess the potential performance
by using different resources of the peer-to-peer links
between MTs. This information was applied for different
resource allocation schemes. For a centralized system, a
greedy algorithm is introduced which divides the problem
into many sub-problems and tries to find the optimum
for each sub-problem. The complexity of the greedy
algorithm is high O(M5Nres). To reduce the complexity,
a partial decentralized allocation scheme - bidding game
is presented. The local approximated CRLB instead of
the global CRLB is used to calculate the potential
improvement for an MT. The simulation results show that
the solution from bidding game is similar as the one from
the greedy algorithm. The overall complexity is reduced
to O(M2Nres). For a purely decentralized system, The
resource allocation can be considered as a non-cooperative
game. We evaluate the Nash equilibrium point where
every MT behaves greedy and selfish. The interference
becomes severe and jeopardizes the positioning estimation.
To solve this problem, a cooperative game is presented.
As a probabilistic approach, we design the utility function
which fulfills the constraints. The simulation results show
it works well in both stationary and dynamic cases. Due to
the interference avoidance, the centralized schemes should
in general outperforms the decentralized ones. However,
from the simulation results we found out that sometimes
the cooperative game performs better than the centralized
greedy scheme. A reason for this could be the gain from
reusing subcarriers is higher than the loss due to the
interference.
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